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1.
Executive Summary
Across the globe, the airline industry deploys a suite of optimization tools for efficient, speedy  
and cost-effective flight scheduling, fleet assignment, aircraft maintenance and crew scheduling.  
With the increased availability of quantum computing-based optimization solutions, these high-impact 
tools can be upgraded to deliver superior performance in both run-time and solution quality for 
large-scale problems.

This paper explores how quantum optimization-driven crew roster designs for airline operations  
can deliver an equitable distribution of work and run-time reduction at scale when compared to  
open-source classical optimization routines.

2.
Background 
IATA (International Air Travel Association) and ICAO (International Civil Aviation Organization) are 
leading groups in the aviation and airline industry, which have assigned airline codes to more than 
5,000 local, regional and international airlines. Prior to the COVID-19 crisis, 1,126 commercial 
airlines operated more than 16 million flights, carrying 4.5 billion customers annually [1].  
American Airlines, a major US airline, operates approximately 5900 flights per day (translating  
to ~70000 flights per month) with a ~900-strong fleet size [2].

Running airline operations smoothly and cost effectively on such a massive scale requires intricate 
planning and scheduling. Airline companies frequently make use of optimization tools to achieve 
this end in the areas of flight scheduling, fleet assignment, aircraft maintenance and  
crew scheduling.

Specifically, airline crew scheduling is a computationally intensive problem with large datasets  
and numerous complex constraints. It is typically solved sequentially as a two-part problem - 
crew/flight pairing, followed by crew rostering. 

•	 Crew/flight pairing: This takes the list of flight legs for a defined period, and sequences them 
together, each of which is referred to as a ‘crew/flight pair’.

•	 Crew rostering: Crew rostering optimization uses flight pairings generated by flight pairing 
optimization, along with crew details such as base location and crew count and assigns  
a pre-defined number of crew members to each pairing to create a ‘crew roster’.

In this paper, we will address the crew rostering problem with a focus on creating satisfaction for 
aviation authorities, labor unions and airline operations and profitability, rather than on optimal 
cost allocation. This is achieved by the efficient allocation of flights to crew members, leading to 
equitable distribution of work, which has a positive direct impact on employee satisfaction and 
airline operational performance, and indirectly on retention rates, costs and brand value.
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The paper focuses on designing crew rosters using quantum annealer-based optimization routines. 
The complexity of crew rostering generally increases with an increase in crew size and the number 
of flights. In comparison to current classical optimization solutions, quantum computing-based 
optimization algorithms allow a more effective search of the solution space to generate better 
results in a shorter time when run at scale for planning and scheduling.

3.
Business Drivers and Challenges  
Some of the major complexities in planning optimal crew rosters include:
•	 Increasing complexity of crew rostering with an increasing number of flights and subsequently 

increasing number of flight pairing and crew size
•	 Constraints of federal authorities that bind airlines, such as maximum and minimum flying hours, 

rest period between assigned flight pairings, minimum number of assigned crew members for 
each flight pairing and cost of operations among others

•	 Real-time planning, a necessary component to handle unforeseen situations, such as flight 
delays, unavailability of crew members and rescheduling of crew member duties to minimally 
impact subsequent schedules of other crew members

Crew rostering is a planning problem, and calls for the design of an optimal schedule for each crew 
member for a pre-defined airline operational period. Key constraints which must be taken into 
consideration while formulating the problem include:
•	 Binding the minimum and maximum flying hours for crew members by a lower and upper limit

•	 Assigning each flight pair to a specified number of crew members
•	 Assigning duties to each crew member
•	 Providing pre-defined rest time in the duty schedule of crew members between consecutively 

assigned flights 
•	 Ensuring that crew members are not assigned more than one flight pairing at the same time

4.
Problem Formulation  
In formulating the required objectives, crew rostering takes into account flight schedules, number 
of crew members and bases, activity rosters and constraints. We describe our approach to problem 
formulation as follows:

Decision variable
Decision variables are binary variables that indicate the assignment of every crew at a base to every 
pairing starting from that base. For example, the decision variable Xcp represents that the cth crew is 
assigned to the pth pairing. Given n crew members at a base and k pairings, there will subsequently 
be (n*k) binary decision variables.
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Constraints
•	 Base of pairing and crew should be the same, as this would reduce the traveling cost of a crew 

member from their base to the pairing base, leading to a cost-effective solution. A matrix Bcp is 
formulated in which each element is 1 or 0. If the crew base and pairing base are the same, then 
it would be 1, otherwise 0. 

•	 Total flying hours should be within the prescribed limit defined by Federal Aviation Regulations 
(FAR). This does not include rest time between the flight legs.

Xcp: Binary variable, equal to 1, if pth pairing is assigned to cth crew member, otherwise 0

Bcp: Binary variable, equal to 1, if crew base and pairing base is same, otherwise 0

fp: Flying time of pairing p

fmin: Minimum flying hours for a crew member

fmax: Maximum flying hours for a crew member

n: Total number of crew members

k: Total number of pairings

•	 Overall flying hours consist of flying hours with rest time. It should be within the prescribed limit. 
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Op: Overall flying hour of pth pairing

Omax: Maximum allowable overall flying hours for a crew member

Omin: Minimum allowable overall flying hours for a crew member

•	 Inter-pairing time, which is the time between two consecutive duties of a crew member. 
This should be more than a user-defined minimum time.

× + +1 × +1 ≤ 1       +1 − <  

d(p+1): Departure time of (p+1)th pairing

ap: Arrival time of pth pairing

tmin: Minimum inter-pairing time



•	 Each pairing should be assigned a minimum number of crew members. This constraint ensures 
that all pairings have crew members.
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Cmin: Minimum number of required crew

Objective
To minimize total cost incurred on the airline due to allocation of different pairings. 

( (=1=1
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rc: Cost of cth crew member

5.
Solution Methodology
Our current work explores the application of quantum annealer-based optimization for crew 
rostering along with a comparison to an open-source python-based classical optimizer.

Solving any optimization problem requires two steps - one, formulating the problem, and two, 
obtaining the optimal solution to the formulation. The first step constitutes understanding the 
problem and formulating it in mathematical terms. This mathematical formulation can be done  
in several ways, such as Linear Programming (LP), Mixed Integer Linear Programming (MILP),  
non-linear and quadratic. Based on the convenience of formulating the problem and the availability 
of algorithms, techniques and tools to solve the model, a method of formulation is chosen. 
Once the problem is formulated, the second step in the optimization problem is obtaining the 
solution with the most optimal cost. As the problem size increases, the problem cannot be 
solved analytically, and brute force methods theoretically could take exponentially longer. Hence, 
numerical approaches are utilized to provide approximate solutions to large optimization problems.

Classical optimization-based approach
We have formulated the problem as a binary linear programming one. Classical LP solvers have 
been used for decades to solve optimization problems for industry and academia. For crew 
rostering, the open-source python library ‘Pyomo’ has been utilized to model the optimization 
problem. Pyomo can be used to define abstract problems, create concrete problem instances and 
solve these instances with standard classical optimization routines. It provides a capability that is 
commonly associated with algebraic modeling languages like AMPL and GAMS. Pyomo leverages 
the capabilities of the Coopr software, which integrates Python packages for defining optimizers, 
modeling optimization applications and managing computational experiments. COIN-OR Branch 
and Cut (CBC) solver has been used to solve the problem. It is an open-source mixed-integer linear 
programming solver.
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Quantum annealer-based approach
Quantum annealers are essentially ISING 
machines that help solve combinatorial 
optimization problems. Solving optimization 
problems with quantum annealers requires 
encoding industry and academia problems  
to energy minimization problems.  
Quantum annealers employ energy encoding 
to map problems to hardware and follow 
a nature-inspired quantum optimization 
paradigm. It allows the system to evolve 
through time while maintaining control 
over the pace of evolution, and when given 
enough time, a system will achieve its lowest 
energy point. 

While classical algorithms, such as 
simulated annealing, also employ a similar 
phenomenon, quantum annealers can 
deliver significant performance and quality 
improvement over classical algorithms using 
quantum mechanical phenomena such as 
quantum tunneling. 

In the context of crew rostering, the 
complexity of problems increases with 
an increase in the number of flights, crew 
members and flight bases - which, in turn, 
increases the number of flight pairings. 
Current classical optimization systems are 
developed over decades and provide good 
approximations for medium-sized problems. 
However, the run-time increases substantially 
with an increase in problem size and a 
decrease in result quality. Quantum solvers 
such as hybrid classical-quantum solvers on 
quantum annealers and quantum-inspired 

classical optimization algorithms (QIO) can 
improve solution quality while reducing 
the run-time for certain types of energy 
landscapes representing a particular class  
of problems. 

D-Wave’s quantum annealers currently 
support optimization models in the form of 
Constrained Quadratic Models (CQM) or 
Binary Quadratic Models (BQM) to define 
objectives and constraints. BQMs are further 
transformed into Quadratic Unconstrained 
Binary Optimization (QUBO) or equivalent 
ISING formulation in ferromagnetism. 

To use quantum annealers, first, the 
optimization problem must be converted 
to CQMs or QUBOs. CQM, as the name 
suggests, are constrained models with  
binary or integer decision variables.  
QUBOs have only binary decision variables, 
and the constraints need to be converted into 
an unconstrained problem using the penalty 
method. In this method, constraints are 
added to the objective function with a penalty. 
If a solution fails to satisfy a constraint, then 
the corresponding penalty will be added to 
the total cost.

Dimod has been utilized for CQM formulation, 
while Qubovert has been utilized to formulate 
the QUBO model. D-Wave’s Leap Hybrid 
Solvers, which are used to solve the 
problem, implement state-of-the-art classical 
algorithms together with intelligent allocation 
of the quantum computer to parts of the 
problem where it benefits most.



6.
Results & Discussion
Data description

Table 1 Dataset Description

Attributes Base 1 Base 2

Dataset

Number of Pairings (n) 22 126

Number of Crew Members (k) 10 30

Problem Size (n*k) 220 3780

Constraints

Maximum Flying Hours 100

Maximum Overall Hours 300

Number of Crew Members/Pairing 2

Minimum Inter-pairing Time (hours) 18

Table 2 KPIs for Base 1

Attributes Classical CQM

Flying Hours

Minimum 53.6 58.93

Maximum 95.05 80.43

Mean 69.96 69.96

Standard Deviation 14.32 7.77

Overall Hours

Minimum 159.38 180.28

Maximum 292.25 272.55

Mean 216.52 216.52

Standard Deviation 50.37 32.16

Number of Pairings
Minimum 4 3

Maximum 6 5

Number of Flights
Minimum 28 28

Maximum 48 41

Average Inter-pairing Time 
(hrs)

Minimum 66.5 35.32

Maximum 138.5 269.28

Total Run-time (seconds) 5.121 5.752

Results for base 1
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Table 3 KPIs for Base 2

Attributes Classical CQM

Flying Hours

Minimum 57.76 47.5

Maximum 93.2 97.33

Mean 78.92 82.31

Standard Deviation 10.25 10.60971

Overall Hours

Minimum 148.01 114.67

Maximum 273.08 279.05

Mean 206.17 215.89

Standard Deviation 37.94 35.062

Number of Pairings
Minimum 6 5

Maximum 12 12

Number of Flights
Minimum 32 31

Maximum 59 55

Average Inter-pairing Time 
(hrs)

Minimum 50.82 28.60

Maximum 68.07 104.38

Total Run-time (seconds) 77.235 55.037

Results for base 2

Visualizations

Figure 1 Distribution of Flying and Overall Hours Over Entire Crew Roster
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Figure 2 Distribution of Average Inter-pairing Time (in hours) Over Entire Crew Roster

Figure 3 Total Number of Flights Over Entire Crew Roster

Analysis of results
Quality of Solution

•	 As shown by Figure 1, the quantum solution provides a relatively even distribution of flying hours 
and overall hours over the entire roster 

•	 Tables 2 & 3 further support the above claim, as the standard deviation of flying hours and 
overall hours for the quantum solution is less than or equal to the classical solution

•	 The quantum solution also provides a more even distribution of the number of flights,  
as compared to the classical solution, as shown in Figure 3 

•	 In terms of average inter-pairing time, as shown in Figure 2, the classical solution provides a 
relatively even distribution

Scalability of Solution

The CQM quantum annealer provides a scalable solution as proven by the results on different 
bases. We have observed that the solver time does not increase significantly with problem size 
while giving an acceptable quality of a valid solution. There is a slight increase of 0.7% in the total 
time as the problem size increased 17 times.
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