9/25/2019 Overview of the minion infrastructure - lowRISC

Jobs (/jobs/) Our work (/our-work/)

(https://www lowrisc.org) Community (/community/) Blog (/blog/)
About us (/about/) Docs (/docs/)

Tutorial for the v0.4 lowRISC release (https://www.lowrisc.org/docs/minion-v0.4/)

Overview of the minion infrastructure

As part of the lowRISC project we are exploring how simple processors (minions
(https://www.lowrisc.org/docs/memo-2014-001-tagged-memory-and-minion-cores/) can help
define an SoC’s functionality including some 1/0 interfaces. We invisage tailoring these cores
depending on where they are used and also providing a thin layer of additional logic to help
interface between the core and the signals it is driving or monitoring (we refer to this as the
shim logic). This release includes a simple minion subsystem to help us explore some of these
ideas. In theory multiple Minions could be used, but to meet the objective of supporting the
same FPGA platform as before, only one Minion, which is dedicated to vital I/O tasks, is
provided.

“In this picture...” -> 1 think the message is that the n is nearly complete and that we’ve taken
a step forward in supporting the idea of minion cores. Not that the minion core system is the
“main topic of this tutorial” (i.e. the whole tutorial)

In the picture below you can find an updated overview of the lowRISC system architecture. If
you compare it to the previous SoC overview (https://www.lowrisc.org/docs/debug-
v0.3/overview/) you can see that the major change is tagged memory implementation and the
new minion infrastructure.

https://www.lowrisc.org/docs/minion-v0.4/overview/ 1/5

https://www.lowrisc.org/
https://www.lowrisc.org/jobs/
https://www.lowrisc.org/our-work/
https://www.lowrisc.org/community/
https://www.lowrisc.org/blog/
https://www.lowrisc.org/about/
https://www.lowrisc.org/docs/
https://www.lowrisc.org/docs/minion-v0.4/
https://www.lowrisc.org/docs/memo-2014-001-tagged-memory-and-minion-cores/
https://www.lowrisc.org/docs/debug-v0.3/overview/

9/25/2019 Overview of the minion infrastructure - lowRISC

Rocket-Chip

Rocke Rocke Rocke
Core‘ . Core‘ Core‘

y 4d 4
[CsW--[TsH[s

lowRISC-Chip

— TileLink

— AXI

—— Debug network

RTC Chisel modules
Verilog modules

Il Tag storage

TileLink 1 TileLink
MEM network 10 network
Keyboard Screen
M BootROM

Acfigs (devicetree)

Sl domiau(burs Bngap
A 4
26pLg Ol/WAN

tag cache Buffer Minion
i ' Subsystem
AXI 10 network (PULPino)
AXI mem network
DDR System €ontrol | [®ART| |SPI| |BRAM
Host | |Flash SD Card | | GPIOs

Pre-defined Design constraints

Our goal of supporting the same FPGA board as the previous release may only be realised with
a single Minion, due to logic area constraints. Nevertheless it is conceived that a fully-fledged
system would make use of several Minions. The Minion processor is based on a cut-down
version of Pulpino (http://www.pulp-platform.org/), a RISC-V compatible processor from ETH
Zurich. THis Minion is intended to off-load some input/output tasks from the Rocket.

For example, memory card access previously used the AXI infrastructure and SPI IP from Xilinx
to boot and access the card under Linux. The SD-card interface is eventually intended to be a
software re-programmable input/output device incorporating programmable shift registers as
well as direct CPU control. To re-create the previous functionality, it was necessary to provide
a backward compatible interface to be used to allow Linux to boot from a small on-chip
memory.

This chicken and egg scenario is solved by making use of a fixed /O shim in this release.

To take advantage of the 4-bit mode of operation available with modern SDHC-cards, a
simplified SD-subsystem from the opencores sd_card_controller project was adapted for use
with the Minion. The enhanced system including processor takes approximately ¥; of the
FPGA. Some aspects of the operation of these cards are obscure. It is desirable to refer to older
documents such as the MMC card specification for clarification of missing information.

https://www.lowrisc.org/docs/minion-v0.4/overview/ 2/5

http://www.pulp-platform.org/

9/25/2019 Overview of the minion infrastructure - lowRISC

Overview of the boot process

To economise on silicon area, most systems nowadays make use of a large volatile off-chip
memory, such as mobile double-data rate(DDR) dynamic memory, together with a small on-
chip ROM. This concept has hardly changed since the PC-bios was introduced in the 1980s.
The economies of scale come from the specialised architecture of the DDR memory. A size of
64K is usually considered adequate for a boot program. In the FPGA context something larger
would take resources away from useful subsystems such as caches and Minion program
memory. By contrast, for non-volatile memory, NAND flash is the market leader by volume,
and especially prevalent in secure-digital(SD) cards, where the flash is combined with an
intelligent controller (which also results in variable latency).

To take control of the SD I/0O process using the Minion, the boot process that was previously
used needs to be duplicated and modified. The SD-card protocol requires a 119-bit command
shift register, together with 512-bit (minimum) data FIFOs. The long history of development of
media cards requires an elaborate initialisation sequence. For purposes of booting, this is
replaced by a fixed sequence. The consequence of this is that, although Linux supports all
kinds of SD-cards, the system can only boot from Micro-SDHC cards capable of 5MHz
operation (the majority of those now available).

To avoid using the SPI mode of the SD-card, a lengthy sequence of inquiry packets needs to be
sent to establish the SD-card capabilities. Users should avoid using the onboard PIC processor
to configure the bitstream in SPI mode. This will result in difficulties returning to SD-mode
later. Alternatives available are USB memory stick (if the built-in keyboard is not needed), or
on-board Quad SPI flash. The Rocket chip has only 64K ROM (implemented as block RAM)
allocated to the boot process. A full-blown SD-card protocol stack would be many times this
size, so we make many simplifying assumptions about the technology of the card which will
be used. Essentially it needs to be Micro-SDHC, with a fixed 5MHz initialisation and operating
frequency.

The initialisation is:

e CmdoO (reset)

e Cmd8 (send interface condition)

e ACmd41 (send operating condition)

e Cmd2 (send card ID)

e Cmd3 (send relative card address)

e Cmd9 (send card-specific data)

e Cmd13 (send status register)

e Cmd7 (select card)

e Acmd51 (send SD configuration register)

https://www.lowrisc.org/docs/minion-v0.4/overview/ 3/5

9/25/2019 Overview of the minion infrastructure - lowRISC

e Acmdb6 (set bus width)
e Acmd13 (send SD status)

Assuming no errors occured, sector read can proceed with Cmd16(set block length) followed
by Cmd17(read single).

All commands have a command phase, some also have a data phase, for more details consult
the SD Group physical layer specification.

Within each relevant command an elaborate data phase provides longitudinal CRC checking
and error recovery. A future enhancement could add the intelligence for multi-block random
access during booting.

Boot file system

The boot file system only supports a single DOS partition, which has to be partition 1. It does
not support writing to the card. Most modern SD-cards out of the box will meet these
requirements. Under Linux the available facilities are much more sophisticated, and a second
ext2 partition with extended userland commands can happily coexist with this boot partition.

FPGA boards, by their very nature, are noisy environments so it is desirable to be able to check
the contents of the second stage boot loader after reading it from card. The builtin ROM can
read an md5 text file and compare its contents with the calculated value on the second stage
boot loader. The remaining task is to extract the ELF segments for the Berkley Boot Loader
(BBL), and the kernel itself to their respective locations in memory, before the boot process
proper can begin.

Future minion developments

This release incorporates a ‘minion’ core for the first time, but there is of course much more to
be done. In the future, we want to integrate support for a programmable ‘shim’ that would
allow minions to be used in a flexible way for programmable IO, to have the minion control
the boot process, and to stabilise the interface between the minion and application cores.

Please get in touch with us (https://www.lowrisc.org/community/) if you have ideas and
opinions about future directions we should take. Now it’s time to learn more about the debug
system or jump into using it:

* Prepare the environment and get started (https://www.lowrisc.org/docs/minion-
v0.4/environment/)

https://www.lowrisc.org/docs/minion-v0.4/overview/ 4/5

https://www.lowrisc.org/community/
https://www.lowrisc.org/docs/minion-v0.4/environment/

9/25/2019 Overview of the minion infrastructure - lowRISC

Next
Prepare the environment (https://www.lowrisc.org/docs/minion-vo.4/environment/)

https://www.lowrisc.org/docs/minion-v0.4/overview/ 5/5

https://www.lowrisc.org/docs/minion-v0.4/environment/

