Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (557)

Search Parameters:
Keywords = continuous wavelet transform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1199 KiB  
Article
Lightweight Bearing Fault Diagnosis Method Based on Improved Residual Network
by Lei Gong, Chongwen Pang, Guoqiang Wang and Nianfeng Shi
Electronics 2024, 13(18), 3749; https://doi.org/10.3390/electronics13183749 (registering DOI) - 20 Sep 2024
Abstract
A lightweight bearing fault detection approach based on an improved residual network is presented to solve the shortcomings of previous fault diagnostic methods, such as inadequate feature extraction and an excessive computational cost due to high model complexity. First, the raw data are [...] Read more.
A lightweight bearing fault detection approach based on an improved residual network is presented to solve the shortcomings of previous fault diagnostic methods, such as inadequate feature extraction and an excessive computational cost due to high model complexity. First, the raw data are turned into a time–frequency map using the continuous wavelet transform, which captures all of the signal’s time- and frequency-domain properties. Second, an improved residual network model was built, which incorporates the criss-cross attention mechanism and depth-separable convolution into the residual network structure to realize the important distinction of the extracted features and reduce computational resources while ensuring diagnostic accuracy; simultaneously, the Meta-Acon activation function was introduced to improve the network’s self-adaptive characterization ability. The study findings indicate that the suggested approach had a 99.95% accuracy rate and a floating point computational complexity of 0.53 GF. Compared with other networks, it had greater fault detection accuracy and stronger generalization ability, and it could perform high-precision fault diagnostic jobs due to its lower complexity. Full article
10 pages, 6681 KiB  
Communication
Sparsity-Enhanced Constrained Least-Squares Spectral Analysis with Greedy-FISTA
by Guohua Wei, Wubing Deng, Zhenchun Li and Li-Yun Fu
Remote Sens. 2024, 16(18), 3486; https://doi.org/10.3390/rs16183486 - 20 Sep 2024
Abstract
The utilization of the inversion-based algorithm for spectral decomposition using constrained least-squares spectral analysis (CLSSA) facilitates a time–frequency spectrum with higher temporal and frequency resolution. The conventional CLSSA algorithm is solved by optimizing an L2-norm regularized least-squares misfit function using Gaussian elimination, which [...] Read more.
The utilization of the inversion-based algorithm for spectral decomposition using constrained least-squares spectral analysis (CLSSA) facilitates a time–frequency spectrum with higher temporal and frequency resolution. The conventional CLSSA algorithm is solved by optimizing an L2-norm regularized least-squares misfit function using Gaussian elimination, which suffers from intensive computational cost. Instead of solving an L2-norm regularized misfit function, we propose to use an L1-norm regularized objective function to enhance the sparsity of the resulting time–frequency spectra. Then, we utilize a faster, smarter, and greedier algorithm named greedy-FISTA to enhance the computational efficiency. Compared to the short-time Fourier transform, continuous wavelet transform, and the conventional CLSSA method, the sparsity-enhanced CLSSA with the greedy-FISTA is capable of achieving time–frequency spectra with higher resolution but with much less computational cost. The applicability of this sparsity-enhanced CLSSA method is demonstrated through synthetic and real data examples. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

14 pages, 658 KiB  
Communication
Signal Separation Operator Based on Wavelet Transform for Non-Stationary Signal Decomposition
by Ningning Han, Yongzhen Pei and Zhanjie Song
Sensors 2024, 24(18), 6026; https://doi.org/10.3390/s24186026 - 18 Sep 2024
Viewed by 264
Abstract
This paper develops a new frame for non-stationary signal separation, which is a combination of wavelet transform, clustering strategy and local maximum approximation. We provide a rigorous mathematical theoretical analysis and prove that the proposed algorithm can estimate instantaneous frequencies and sub-signal modes [...] Read more.
This paper develops a new frame for non-stationary signal separation, which is a combination of wavelet transform, clustering strategy and local maximum approximation. We provide a rigorous mathematical theoretical analysis and prove that the proposed algorithm can estimate instantaneous frequencies and sub-signal modes from a blind source signal. The error bounds for instantaneous frequency estimation and sub-signal recovery are provided. Numerical experiments on synthetic and real data demonstrate the effectiveness and efficiency of the proposed algorithm. Our method based on wavelet transform can be extended to other time–frequency transforms, which provides a new perspective of time–frequency analysis tools in solving the non-stationary signal separation problem. Full article
Show Figures

Figure 1

18 pages, 14147 KiB  
Article
Evolution Process and Land Use/Land Cover Response of Urban–Rural Space in Wuhan under Polycentric Structure
by Jisheng Yan and Jing Ye
Land 2024, 13(9), 1502; https://doi.org/10.3390/land13091502 - 16 Sep 2024
Viewed by 282
Abstract
Polycentric development facilitates urban–rural spatial reshaping and land use/land cover (LULC) protection. Previous studies have predominantly focused on urban areas, with spatial delineation methods biased towards the macro-level, lacking a holistic perspective that situates them within the urban–rural spatial framework. This study proposes [...] Read more.
Polycentric development facilitates urban–rural spatial reshaping and land use/land cover (LULC) protection. Previous studies have predominantly focused on urban areas, with spatial delineation methods biased towards the macro-level, lacking a holistic perspective that situates them within the urban–rural spatial framework. This study proposes a spatial delineation framework that is applicable to the polycentric structure, taking into account the social, economic, and natural characteristics of urbanization. It employs semivariance analysis and spatial continuous wavelet transform (SCWT) to analyze the effects of polycentric development on the urban–rural space of Wuhan from 2012 to 2021 and applies a land use transition matrix, landscape indices, and bivariate spatial autocorrelation to quantify the responses and differences of LULC within urban–rural space. The results indicate that 600m×600m is the best scale for exhibiting the multidimensional characterization of urbanization. The polycentric structure alleviates the compact development of the central city, and it drives rapid expansion at the urban–rural fringe, exacerbating the spatial heterogeneity in LULC change pattern, spatial configuration, and urbanization response within urban–rural spaces. The overall effects of urbanization on LULC are relatively weak along the urban–rural gradient, experiencing a transition from positive to negative and back to positive. This study employs a novel spatial delineation framework to depict the polycentric transformation of metropolitan areas and provides valuable insights for regional planning and ecological conservation in the urban–rural fringe. Full article
(This article belongs to the Special Issue Rural–Urban Gradients: Landscape and Nature Conservation II)
Show Figures

Figure 1

35 pages, 12036 KiB  
Article
Transfer Learning and Deep Neural Networks for Robust Intersubject Hand Movement Detection from EEG Signals
by Chiang Liang Kok, Chee Kit Ho, Thein Htet Aung, Yit Yan Koh and Tee Hui Teo
Appl. Sci. 2024, 14(17), 8091; https://doi.org/10.3390/app14178091 - 9 Sep 2024
Viewed by 485
Abstract
In this research, five systems were developed to classify four distinct motor functions—forward hand movement (FW), grasp (GP), release (RL), and reverse hand movement (RV)—from EEG signals, using the WAY-EEG-GAL dataset where participants performed a sequence of hand movements. During preprocessing, band-pass filtering [...] Read more.
In this research, five systems were developed to classify four distinct motor functions—forward hand movement (FW), grasp (GP), release (RL), and reverse hand movement (RV)—from EEG signals, using the WAY-EEG-GAL dataset where participants performed a sequence of hand movements. During preprocessing, band-pass filtering was applied to remove artifacts and focus on the mu and beta frequency bands. The initial system, a preliminary study model, explored the overall framework of EEG signal processing and classification, utilizing time-domain features such as variance and frequency-domain features such as alpha and beta power, with a KNN model for classification. Insights from this study informed the development of a baseline system, which innovatively combined the common spatial patterns (CSP) method with continuous wavelet transform (CWT) for feature extraction and employed a GoogLeNet classifier with transfer learning. This system classified six unique pairs of events derived from the four motor functions, achieving remarkable accuracy, with the highest being 99.73% for the GP–RV pair and the lowest 80.87% for the FW–GP pair in intersubject classification. Building on this success, three additional systems were developed for four-way classification. The final model, ML-CSP-OVR, demonstrated the highest intersubject classification accuracy of 78.08% using all combined data and 76.39% for leave-one-out intersubject classification. This proposed model, featuring a novel combination of CSP-OVR, CWT, and GoogLeNet, represents a significant advancement in the field, showcasing strong potential as a general system for motor imagery (MI) tasks that is not dependent on the subject. This work highlights the prominence of the research contribution by demonstrating the effectiveness and robustness of the proposed approach in achieving high classification accuracy across different motor functions and subjects. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

15 pages, 2394 KiB  
Article
Analysis of Wavelet Coherence in Calf Agonist-Antagonist Muscles during Dynamic Fatigue
by Xindi Ni, Loi Ieong, Mai Xiang and Ye Liu
Life 2024, 14(9), 1137; https://doi.org/10.3390/life14091137 - 9 Sep 2024
Viewed by 373
Abstract
Dynamic muscle fatigue during repetitive movements can lead to changes in communication between the central nervous system and peripheral muscles. This study investigated these changes by examining electromyogram (EMG) characteristics from agonist and antagonist muscles during a fatiguing task. Twenty-two healthy male university [...] Read more.
Dynamic muscle fatigue during repetitive movements can lead to changes in communication between the central nervous system and peripheral muscles. This study investigated these changes by examining electromyogram (EMG) characteristics from agonist and antagonist muscles during a fatiguing task. Twenty-two healthy male university students (age: 22.92 ± 2.19 years) performed heel raises until fatigue. EMG signals from lateral gastrocnemius (GL) and tibialis anterior (TA) muscles were processed using synchrosqueezed wavelet transform (SST). Root mean square (RMS), mean frequency (MF), power across frequency ranges, wavelet coherence, and co-activation ratio were computed. During the initial 80% of the task, RMS and EMG power increased for both muscles, while MF declined. In the final 20%, GL parameters stabilized, but TA showed significant decreases. Beta and gamma intermuscular coherence increased upon reaching 60% of the task. Alpha coherence and co-activation ratio remained constant. Results suggest that the central nervous system adopts a differentiated control strategy for agonist and antagonist muscles during fatigue progression. Initially, a coordinated “common drive” mechanism enhances both muscle groups’ activity. Later, despite continued increases in muscle activity, neural-muscular coupling remains stable. This asynchronous, differentiated control mechanism enhances our understanding of neuromuscular adaptations during fatigue, potentially contributing to the development of more targeted fatigue assessment and management strategies. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance)
Show Figures

Figure 1

24 pages, 8373 KiB  
Article
Hyperspectral Estimation of Chlorophyll Content in Wheat under CO2 Stress Based on Fractional Order Differentiation and Continuous Wavelet Transforms
by Liuya Zhang, Debao Yuan, Yuqing Fan, Renxu Yang, Maochen Zhao, Jinbao Jiang, Wenxuan Zhang, Ziyi Huang, Guidan Ye and Weining Li
Remote Sens. 2024, 16(17), 3341; https://doi.org/10.3390/rs16173341 - 9 Sep 2024
Viewed by 563
Abstract
The leaf chlorophyll content (LCC) of winter wheat, an important food crop widely grown worldwide, is a key indicator for assessing its growth and health status in response to CO2 stress. However, the remote sensing quantitative estimation of winter wheat LCC under [...] Read more.
The leaf chlorophyll content (LCC) of winter wheat, an important food crop widely grown worldwide, is a key indicator for assessing its growth and health status in response to CO2 stress. However, the remote sensing quantitative estimation of winter wheat LCC under CO2 stress conditions also faces challenges such as an unclear spectral sensitivity range, baseline drift, overlapping spectral peaks, and complex spectral response due to CO2 stress changes. To address these challenges, this study introduced the fractional order derivative (FOD) and continuous wavelet transform (CWT) techniques into the estimation of winter wheat LCC. Combined with the raw hyperspectral data, we deeply analyzed the spectral response characteristics of winter wheat LCC under CO2 stress. We proposed a stacking model including multiple linear regression (MLR), decision tree regression (DTR), random forest (RF), and adaptive boosting (AdaBoost) to filter the optimal combination from a large number of feature variables. We use a dual-band combination and vegetation index strategy to achieve the accurate estimation of LCC in winter wheat under CO2 stress. The results showed that (1) the FOD and CWT methods significantly improved the correlation between the raw spectral reflectance and LCC of winter wheat under CO2 stress. (2) The 1.2-order derivative dual-band index (RVI (R720, R522)) constructed by combining the sensitive spectral bands of the CO2 response of winter wheat leaves achieved a high-precision estimation of the LCC under CO2 stress conditions (R2 = 0.901). Meanwhile, the red-edged vegetation stress index (RVSI) constructed based on the CWT technique at specific scales also demonstrated good performance in LCC estimation (R2 = 0.880), verifying the effectiveness of the multi-scale analysis in revealing the mechanism of the CO2 impact on winter wheat. (3) By stacking the sensitive spectral features extracted by combining the FOD and CWT methods, we further improved the LCC estimation accuracy (R2 = 0.906). This study not only provides a scientific basis and technical support for the accurate estimation of LCC in winter wheat under CO2 stress but also provides new ideas and methods for coping with climate change, optimizing crop-growing conditions, and improving crop yield and quality in agricultural management. The proposed method is also of great reference value for estimating physiological parameters of other crops under similar environmental stresses. Full article
Show Figures

Graphical abstract

21 pages, 7130 KiB  
Article
Research on Fault Diagnosis of Drilling Pump Fluid End Based on Time-Frequency Analysis and Convolutional Neural Network
by Maolin Dai and Zhiqiang Huang
Processes 2024, 12(9), 1929; https://doi.org/10.3390/pr12091929 - 8 Sep 2024
Viewed by 485
Abstract
Operating in harsh environments, drilling pumps are highly susceptible to failure and challenging to diagnose. To enhance the fault diagnosis accuracy of the drilling pump fluid end and ensure the safety and stability of drilling operations, this paper proposes a fault diagnosis method [...] Read more.
Operating in harsh environments, drilling pumps are highly susceptible to failure and challenging to diagnose. To enhance the fault diagnosis accuracy of the drilling pump fluid end and ensure the safety and stability of drilling operations, this paper proposes a fault diagnosis method based on time-frequency analysis and convolutional neural networks. Firstly, continuous wavelet transform (CWT) is used to convert the collected vibration signals into time-frequency diagrams, providing a comprehensive database for fault diagnosis. Next, a SqueezeNet-based fault diagnosis model is developed to identify faults. To validate the effectiveness of the proposed method, fault signals from the fluid end were collected, and fault diagnosis experiments were conducted. The experimental results demonstrated that the proposed method achieved an accuracy of 97.77% in diagnosing nine types of faults at the fluid end, effectively enabling precise fault diagnosis, which is higher than the accuracy of a 1D convolutional neural network by 14.55%. This study offers valuable insights into the fault diagnosis of drilling pumps and other complex equipment. Full article
(This article belongs to the Special Issue Multiphase Flow and Optimal Design in Fluid Machinery)
Show Figures

Figure 1

30 pages, 11844 KiB  
Article
Enhancing Thin Coal Seam Detection in Eastern Indian Coalfields Using ICWT-Decon-Based Seismic Attributes and Acoustic Impedance Inversion
by Naresh Kumar Seelam, Thinesh Kumar, Santosh Dhubia, Gangumalla Srinivasa Rao and Sanjit Kumar Pal
Minerals 2024, 14(9), 920; https://doi.org/10.3390/min14090920 - 7 Sep 2024
Viewed by 458
Abstract
A high-resolution seismic survey (HRSS) is often used in coal exploration to bridge the data gap between two consecutive boreholes and avoid ambiguity in geological interpretation. The application of high-resolution seismic surveys in the Indian context is challenging as the delineation of thin [...] Read more.
A high-resolution seismic survey (HRSS) is often used in coal exploration to bridge the data gap between two consecutive boreholes and avoid ambiguity in geological interpretation. The application of high-resolution seismic surveys in the Indian context is challenging as the delineation of thin non-coal layers within the coal layer requires a very high seismic data resolution. However, conventional seismic processing techniques fail to resolve thin coal/non-coal layers and faults, which is crucial for the precise estimation of coal resources and mine economics. To address these issues, we applied the inverse continuous wavelet transform deconvolution (ICWT-Decon) technique to post-stack depth-migrated seismic sections. We examined the feasibility of the ICWT-Decon technique in both a synthetic post-stack depth-migrated model and 2D/3D seismic data from the North Karanpura and Talcher Coalfields in Eastern India. The results offered enhanced seismic sections, attributes (similarity and sweetness), and acoustic inversion that aided in the precise positioning of faults and the delineation of a thin non-coal layer of 4.68 m within a 16.7 m coal seam at an approximate depth of 450 m to 550 m. This helped in the refinement of the resource estimation from 74.96 MT before applying ICWT-Decon to 55.92 MT afterward. Overall, the results of the study showed enhancements in the seismic data resolution, the better output of seismic attributes, and acoustic inversion, which could enable more precise lithological and structural interpretation. Full article
(This article belongs to the Special Issue Seismics in Mineral Exploration)
Show Figures

Figure 1

31 pages, 10133 KiB  
Review
Hydraulic Fracture Closure Detection Techniques: A Comprehensive Review
by Mohamed Adel Gabry, Ibrahim Eltaleb, Amr Ramadan, Ali Rezaei and Mohamed Y. Soliman
Energies 2024, 17(17), 4470; https://doi.org/10.3390/en17174470 - 5 Sep 2024
Viewed by 506
Abstract
This study reviews methods for detecting fracture closure pressure in both unconventional and conventional reservoirs using mathematical models and fluid flow equations. It evaluates techniques such as the Nolte method, tangent method, and compliance method. The investigation relies on observing changes in fluid [...] Read more.
This study reviews methods for detecting fracture closure pressure in both unconventional and conventional reservoirs using mathematical models and fluid flow equations. It evaluates techniques such as the Nolte method, tangent method, and compliance method. The investigation relies on observing changes in fluid flow regimes from preclosure to postclosure using fluid flow equations to examine the postclosure flow regime effect on the G function. Reverse calculations model pressure decline across synthesized flow regimes, facilitating a detailed investigation of the closure process. The analysis reveals that the tangent method is sensitive to postclosure fluid flow, while the compliance method is less effective in reservoirs with significant tortuosity or natural fractures. This paper recommends assessing natural fractures’ characteristics and permeability to identify the source of leak-off before selecting a technique. It proposes integrating various methods to comprehensively understand subsurface formations, combining their strengths for accurate fracture closure identification and a better understanding of subsurface formations. The new proposed workflow employs the continuous wavelet transform (CWT) technique for fracture closure detection, avoiding physical model preassumptions or simplifications to confirm the results. This approach offers guidance on selecting appropriate methods by integrating different techniques. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

16 pages, 12492 KiB  
Article
The Development of a Novel Transient Signal Analysis: A Wavelet Transform Approach
by Eduardo Gómez-Luna, Dixon E. Cuadros-Orta, John E. Candelo-Becerra and Juan C. Vasquez
Computation 2024, 12(9), 178; https://doi.org/10.3390/computation12090178 - 3 Sep 2024
Viewed by 409
Abstract
This paper presents a new method for the analysis of transient signals in the frequency domain based on the Continuous Wavelet Transform (CWT). The proposed case study involves test signals measured from an electronic switch considering open and close operations. The source is [...] Read more.
This paper presents a new method for the analysis of transient signals in the frequency domain based on the Continuous Wavelet Transform (CWT). The proposed case study involves test signals measured from an electronic switch considering open and close operations. The source is connected to inductive, resistive, and capacitive loads. Resonance behaviors are introduced and compared with the Discrete Fourier Transform (DFT). Multiple factors, such as reliability, repeatability, high noise attenuation, and the smoothing of the analyzed spectrum, are considered in this study. This proposed study highlights the effectiveness of CWT in signal processing, especially in obtaining a detailed spectrum that reveals the behavior of electrical circuits. Resonance behaviors were analyzed, demonstrating that the signal processing performed by CWT is better for spectrum analysis than DFT. This study shows the potential of CWT to analyze transient electrical signals, specifically for identifying and characterizing the behavior of load connections and disconnections. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

19 pages, 6915 KiB  
Article
Automated Crack Detection in Monolithic Zirconia Crowns Using Acoustic Emission and Deep Learning Techniques
by Kuson Tuntiwong, Supan Tungjitkusolmun and Pattarapong Phasukkit
Sensors 2024, 24(17), 5682; https://doi.org/10.3390/s24175682 - 31 Aug 2024
Viewed by 493
Abstract
Monolithic zirconia (MZ) crowns are widely utilized in dental restorations, particularly for substantial tooth structure loss. Inspection, tactile, and radiographic examinations can be time-consuming and error-prone, which may delay diagnosis. Consequently, an objective, automatic, and reliable process is required for identifying dental crown [...] Read more.
Monolithic zirconia (MZ) crowns are widely utilized in dental restorations, particularly for substantial tooth structure loss. Inspection, tactile, and radiographic examinations can be time-consuming and error-prone, which may delay diagnosis. Consequently, an objective, automatic, and reliable process is required for identifying dental crown defects. This study aimed to explore the potential of transforming acoustic emission (AE) signals to continuous wavelet transform (CWT), combined with Conventional Neural Network (CNN) to assist in crack detection. A new CNN image segmentation model, based on multi-class semantic segmentation using Inception-ResNet-v2, was developed. Real-time detection of AE signals under loads, which induce cracking, provided significant insights into crack formation in MZ crowns. Pencil lead breaking (PLB) was used to simulate crack propagation. The CWT and CNN models were used to automate the crack classification process. The Inception-ResNet-v2 architecture with transfer learning categorized the cracks in MZ crowns into five groups: labial, palatal, incisal, left, and right. After 2000 epochs, with a learning rate of 0.0001, the model achieved an accuracy of 99.4667%, demonstrating that deep learning significantly improved the localization of cracks in MZ crowns. This development can potentially aid dentists in clinical decision-making by facilitating the early detection and prevention of crack failures. Full article
(This article belongs to the Special Issue Intelligent Sensing Technologies in Structural Health Monitoring)
Show Figures

Figure 1

21 pages, 14678 KiB  
Article
Continuous Wavelet Transform Analysis of Climate Variability, Resiliency, and Restoration Strategies in Mesohaline Tidal Creeks
by Andrew C. Muller, Keaghan A. Muller and Diana L. Muller
Water 2024, 16(17), 2433; https://doi.org/10.3390/w16172433 - 28 Aug 2024
Viewed by 544
Abstract
This research article employs the continuous wavelet transform analysis to identify the climatological effects among various water quality parameters to identify the successfulness of upland stream restoration on the receiving mesohaline tidal creeks. Estuaries and their corresponding tidal creeks have been impacted by [...] Read more.
This research article employs the continuous wavelet transform analysis to identify the climatological effects among various water quality parameters to identify the successfulness of upland stream restoration on the receiving mesohaline tidal creeks. Estuaries and their corresponding tidal creeks have been impacted by human anthropogenic influences for decades, allowing a variety of restoration practices to be implemented in upland streams. In the face of climate variability and continuous human development pressures, this research performs statistical analysis and a wavelet coherence on, before, and after stream restoration for water quality changes in Chesapeake Bay’s tidal tributaries in the Lower Western Shore to identify if the restoration strategies have been effective in the mesohaline tidal creeks. Statistical analysis showed that currently, the receiving tidal basins are not seeing the required positive improvements in water quality after years of upland stream restoration. Compounding this is the fact climate variability cannot be ignored. Results indicate that the North Atlantic Oscillation (NAO) has significant wavelet coherence with bottom dissolved oxygen, precipitation, and nutrients. This suggests that current restoration efforts may not be able to keep up with climate variability, and other techniques (restoration or policies) may need to be implemented. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

19 pages, 8706 KiB  
Article
Deep Learning-Based Flood Detection for Bridge Monitoring Using Accelerometer Data
by Penghao Deng, Jidong J. Yang and Tien Yee
Infrastructures 2024, 9(9), 140; https://doi.org/10.3390/infrastructures9090140 - 25 Aug 2024
Viewed by 510
Abstract
Flooding and consequential scouring are the primary causes of bridge failures, making the detection of such events crucial for structural safety. This study investigates the characteristics of accelerometer data from bridge pier vibrations and proposes a flood detection method with deep learning-based models [...] Read more.
Flooding and consequential scouring are the primary causes of bridge failures, making the detection of such events crucial for structural safety. This study investigates the characteristics of accelerometer data from bridge pier vibrations and proposes a flood detection method with deep learning-based models based on ResNet18 and 1D Convolution architectures. These models were comprehensively evaluated for (1) detecting vehicles passing on bridges and (2) detecting flood events based on axis-specific accelerometer data under various traffic conditions. Continuous Wavelet Transform (CWT) was employed to convert the accelerometer data into richer time-frequency representations, enhancing the detection of passing vehicles. Notably, when vehicles are passing over bridges, the vertical direction exhibits a magnified and more sustained energy distribution across a wider frequency range. Additionally, under flooding conditions, time-frequency representations from the bridge direction reveal a significant increase in energy intensity and continuity compared with non-flooding conditions. For detection of vehicles passing, ResNet18 outperformed the 1D Convolution model, achieving an accuracy of 97.2% compared with 91.4%. For flood detection without vehicles passing, the two models performed similarly well, with accuracies of 97.3% and 98.3%, respectively. However, in scenarios with vehicles passing, the 1D Convolution model excelled, achieving an accuracy of 98.6%, significantly higher than that of ResNet18 (81.6%). This suggests that high-frequency signals, such as vertical vibrations induced by passing vehicles, are better captured by more complex representations (CWT) and models (e.g., ResNet18), while relatively low-frequency signals, such as longitudinal vibrations caused by flooding, can be effectively captured by simpler 1D Convolution over the original signals. Consequentially, the two model types are deployed in a pipeline where the ResNet18 model is used for classifying whether vehicles are passing the bridge, followed by two 1D Convolution models: one trained for detecting flood events under vehicles-passing conditions and the other trained for detecting flood events under no-vehicles-passing conditions. This hierarchical approach provides a robust framework for real-time monitoring of bridge response to vehicle passing and timely warning of flood events, enhancing the potential to reduce bridge collapses and improve public safety. Full article
Show Figures

Figure 1

14 pages, 2609 KiB  
Article
A Spectral Detection Method Based on Integrated and Partition Modeling for Trace Copper in High-Concentration Zinc Solution
by Fengbo Zhou, Bo Wu and Jianhua Zhou
Molecules 2024, 29(17), 4006; https://doi.org/10.3390/molecules29174006 - 24 Aug 2024
Viewed by 371
Abstract
In zinc smelting solution, because the concentration of zinc is too high, the spectral signals of trace copper are masked by the spectral signals of zinc, and their spectral signals overlap, which makes it difficult to detect the concentration of trace copper. To [...] Read more.
In zinc smelting solution, because the concentration of zinc is too high, the spectral signals of trace copper are masked by the spectral signals of zinc, and their spectral signals overlap, which makes it difficult to detect the concentration of trace copper. To solve this problem, a spectrophotometric method based on integrated and partition modeling is proposed. Firstly, the derivative spectra based on continuous wavelet transform are used to preprocess the spectral signal and highlight the spectral peak of copper. Then, the interval partition modeling is used to select the optimal characteristic interval of copper according to the root mean square error of prediction, and the wavelength points of the absorbance matrix are selected by correlation-coefficient threshold to improve the sensitivity and linearity of copper ions. Finally, the partial least squares integrated modeling based on the Adaboost algorithm is established by using the selected wavelength to realize the concentration detection of trace copper in the zinc liquid. Comparing the proposed method with existing regression methods, the results showed that this method can not only reduce the complexity of wavelength screening, but can also ensure the stability of detection performance. The predicted root mean square error of copper was 0.0307, the correlation coefficient was 0.9978, and the average relative error of prediction was 3.14%, which effectively realized the detection of trace copper under the background of high-concentration zinc liquid. Full article
Show Figures

Figure 1

Back to TopTop