KevsRobots Learning Platform
64% Percent Complete
By Kevin McAleer, 2 Minutes
This lesson delves into Data Analysis and Aggregation with Pandas. Effective data analysis often involves summarizing data, grouping it based on certain criteria, and performing aggregate computations. We will explore these powerful capabilities in Pandas to derive meaningful insights from data.
Pandas provides convenient methods to get descriptive statistics:
# Descriptive statistics
summary = df.describe()
The describe()
method returns a Data Frame with descriptive statistics for each column in the original Data Frame, like this:
Column1 Column2
count 5.000000 5.000000
mean 0.000000 0.000000
std 0.707107 0.707107
min -1.000000 -1.000000
25% -1.000000 -1.000000
50% 0.000000 0.000000
75% 1.000000 1.000000
max 1.000000 1.000000
You can also explore unique values and counts:
# Unique values and counts
unique_values = df['ColumnName'].unique()
value_counts = df['ColumnName'].value_counts()
Group data by one or more columns:
# Grouping data
grouped = df.groupby('ColumnName')
Perform aggregate computations on groups:
# Aggregating data
aggregated_data = grouped.aggregate(np.sum)
Create pivot tables for multidimensional data analysis:
# Pivot tables
pivot_table = df.pivot_table(values='ValueColumn', index='RowColumn', columns='ColumnColumn')
In this lesson, we’ve explored essential aspects of data analysis and aggregation using Pandas. Understanding how to summarize, group, and aggregate data is crucial for effective data analysis and gaining insights.
You can use the arrows ← →
on your keyboard to navigate between lessons.