IBM WebSphere
Commerce Suite
SPE Customization

~
Ready-to-use examples for most
common customizations

~ .
E-commerce solutions for
businesses of all sizes

~ Performance tips for
system administrators

Ole Conradsen
Alison Halliday
Thomas Kjaer
Gopala Krishnan
Oscar Torres

ibm.com/redbooks REd bOOkS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

SG24-5958-00

International Technical Support Organization

IBM WebSphere Commerce Suite
SPE Customization

November 2000

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix K, “Special notices” on page 393.

First Edition (November 2000)

This edition applies to WebSphere Commerce Suite, Service Provider Edition (SPE) Version 3, Release
2 for use with AIX and Windows Operating Systems.

This document created or updated on November 30, 2000.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834

11400 Burnet Road

Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures. iX
Tables. Xiii
Preface. XV
The team that wrote thisredbook. XV
Comments welcome. XVi
Chapter 1. Installing WCS Service Provider Edition 1
1.1 Products included with WCS SPE 1
1.2 Hardware and software requirements. 2
1.2.1 Hardware requirements 2
1.2.2 Software requirements 3
1.3 Disk space and paging space requirements 3
1.3.1 Verifyingdiskspace 3
1.3.2 Verifyingpaging space. 4
1.4 Common installationsteps 4
1.4.1 Installation procedures for Domino Go 4.6.2.61 5
1.4.2 Enabling SSL on Domino Go Webserver fortesting 6
1.4.3 Verifying the installation 8
1.5 Installing IBM DB2UDB 6.1.0.6 9
1.5.1 Installation procedure. 9
1.5.2 Verifying the installation 11
1.6 Installing IBM DB2 Text Extenders. 12
1.7 Installing IBM Net.Data6.1. 13
1.7.1 Installation procedures 14
1.8 Installing JDK1.1.6 and WebSphere Application Server 14
1.8.1 Checklist 14
1.8.2 InstallingJDK 1.1.6 15
1.8.3 WebSphere Application Server installation procedures. 15
1.9 Installing IBM Payment Server. 17
1.10 Installing WebSphere Commerce Service Provider. 17
1.11 ConfiguringWCS SPE 18
1.11.1 Net.Commerce settings 19
1.11.2 LDGW settings oo 22
Chapter 2. Configuration of the server environment 25
21 Unique URL 25
2.1.1 Running the server with multiple IP addresses or virtual hosts . . 26
2.2 Shop directory structure 39

© Copyright IBM Corp. 2000 iii

Chapter 3. WCS SPE productoverview. 43

3.1 WCS SPE architecture 43
3.1.1 Overview of components 44
Chapter 4. Building custom stores in a shared environment 51
4.1 The merchantstoremodel 51
4.2 Customizing thelook ofastore 54
4.3 Enabling Net.Commerce features. 55
4.4 Adding new Net.Commerce functionality 56
4.4.1 Net.Commerce architecture 56
4.4.2 Using Overridable functions orcommands 59
Chapter 5. Shoppergroups 61
5.1 Customizing WCS to offer shopper group features. 62
5.1.1 Shoppergroupbasic 62
5.1.2 The customization 69
Chapter 6. Cross-selland up-sell 103
6.1 What is cross-sellingandup-selling 103
6.2 Customization techniques 104
6.2.1 Creating product relationship by mass import utility 104
6.2.2 Import data through browser-based mass importtool 117
6.2.3 Creating product relationship by customizing merchant tool . . . 121
Chapter 7. External business system integration 127
7.1 Integrating external business system with Net.Commerce 127
Chapter 8. Customizing the store creation wizard 129
8.1 Thecatalogscreen. iy 129
8.2 Creating custom category and productpages. 130
8.2.1 Custom categorypages 130
8.2.2 Custom productpages it 137
8.2.3 How the store creation wizard works 141
8.2.4 Creating new category and products panels. 147
8.2.5 Adding new product and category panels................. 156
Chapter 9. Extended customization features 161
9.1 Shipping by product weight 161
9.1.1 Shipping calculationin WCS SPE. 166
9.1.2 Databasetables.. 167
9.1.3 Planning shipping by weight. 173
9.1.4 Adding new features to the merchanttool................. 190
9.1.5 Calculating shippingcost 195
9.1.6 Activating shipping by weight fora merchant 196

iv IBM WebSphere Commerce Suite SPE Customization

9.2 Adding off-line paymentmethods L. 198

9.2.1 Payment methodsindetail 198
9.3 Gift messages/wrapping.t 205
9.83.1 Thescenario i 206
9.3.2 Planning thefeature....... 206
9.3.3 Designingthefeature........ 207
9.3.4 Databasemodel 208
9.3.5 Implementing the ISP interface. 210
9.3.6 Changingthestorepage 212
9.3.7 Implementing the businesslogic. 215
9.3.8 Extending the merchanttool........................... 217
9.3.9 How to charge the customer. 222
Chapter 10. Provisioning 225
10.1 Calling the store creation wizard directly by URL 225
10.1.1 Basicstore 225
10.1.2 Advanced store 227
10.2 Passing existing customer data to the store creation wizard. 228
10.2.1 Custom registrationpage 228
10.2.2 Displaying e-mail and password automatically on login page .230
10.2.3 Storing customer details in the store creation wizard 232
10.2.4 Displaying customer details in the Home Page screen 233
Chapter 11. Multi-language support 237
11.1 Background 237
11.2 Store creation wizard multi-language panel 237
11.3 Multi-language macros. 239
Appendix A. Multi purpose code generation language 243
A1 Introductionto MPG 243
Al Why MPG? .. e 244
A2 Datamodel 246
A.2.1 Declaring model variables 246
A2.2 Creatingthemodel i 247
A.2.3 Creating the model from afile........... 249
A3 Language elements 250
A.3.1 Lexicalstructure 250
A8.2 Declarations e 252
A3.3 Datatypes.o 253
A.3.4 Expressionsandoperators. 253
A3.5 Statements 255
AB.6 Procedures 259
A.3.7 Transformations 260
A.3.8 4.10including othertemplates 265

vi

Appendix B. ShopperGroup codesamples 267

B.1 RegWrappersource Code.ottt 267
B.2 RegWrapper makefile for WinNT 272
B.3 RegWrapper initialization SQLS 272
B.4 Macrofile creagru.d2w 272
B.5 Macro file addshgru.d2w. 276
B.6 Macro addprgru.d2w. 281
Appendix C. Source code for cross and up selling 291
C.1 productRel.d2w Net.Data macro to associate products 291
C.2 Customized product display (cat_product.d2w) macro.............. 293
C.3 Definition file of mass import utility (prprrelini). 297
Appendix D. Store creation wizard samplecode 301
D.1 Three level category example, file more_catinc 301
D.2 Youareherecustompage 302

D.2.1 you_are_here.jsfilelistning 303
D.3 Shortened product page example, cat_product2.d2w file. 304
D.4 The “You are here” custom product page and file you_are_here.inc ... 318
D.5 Full macros XML parameter. 319
D.6 CheckForChanges.js JavaScript 324
D.7 DisplayPagesServietjavaservlet.......... 326
D.8 MacrosBean.javaclass. 328
D.9 DisplayPages.jsppageo vt e 330
D.10 HTML panel pages and file Displaycats./ 331
D.11 Displayprods.html. 333
D.12 Advanced.xmlincludes. 335
D.13 Configurations for samples and Directory structure 335

D.13.1 HTML, JavaScript, jsp and macro configuration. 336

D.13.2 Websphere configuration 336
Appendix E. Shipping by weight sourcecode. 339
E.1 Macro file shipbywdata.d2w 339
E.2 Macro file shipbyweight.d2w. 341
E.3 Macro file shipbywenable.d2w 344
E.4 C++ function GetOrdByWt.cppo oo oo 346
E.5 Makefile for GetOrdByWt.Ccpp. . . o oo oo i 349
E.6 reg_GetOrdByW.db2.sql SQL script. 350
Appendix F. Payment method codelists 351
F.1 PaymentWizard.xml 351
F.2 Offlinelnstructions.tem tewmplatecode 354

IBM WebSphere Commerce Suite SPE Customization

Appendix G. Source code for gift message/wrapping 357

G.1 HTML file giftadmin.htm o 357
G.2 Macrofile giftadmin.d2w. 357
G.3 Macro file giftadmin2.d2w. 358
G.4 Macro file giftadminstore.d2w. 360
G.5 Makefile for addGiftMsg OF 362
G.6 Source code for addGiftMsg.cpp 363
G.7 Modified OrderDetails.temtemplate. 366
Appendix H. Provisioning samplecode 379
H.1 Provisioning HTML example. i 379
H.2 Registration example HTML i i 380
Appendix I. Multi-language samples. 383
[.1 displaylangs.html 383
2 = T L= 3T 386
[.3 Changesto Modeltem. i, 386
.4 Changestoadvanced.xml 386
1.5 1angAdd.CPp .« - o vt 386
Appendix J. Using the additional material....................... 391
J.1 Locating the additional material on the Internet. 391
J.2 Usingthe Web material 391

J.2.1 System requirements for downloading the Web material 391

J.2.2 Howtousethe Webmaterial 392
Appendix K. Specialnotices 393
Appendix L. Related publications. 397
L.1 IBMRedbooks. 397
L.2 IBM Redbooks collections. i 397
L.3 Other resourCces. 397
L.4 Referenced Web sites. i 398
How to get IBM Redbooks 399
IBM Redbooks fax orderform 400
GloSSarY 401
Index 407
IBM Redbooks review 415

vii

viii IBM WebSphere Commerce Suite SPE Customization

Figures

I A e

Editing the PROCESS variable in the configuration file.
Editing the MS_TRANS_COUNT variable in the configuration file
Ncadmin [ogin SCreen e e
The Site Managerbutton.
Choose Store Records to get informationonstores
The list of stores in the bottom frame.
The Store Status field
JAVA code for frytor.html.
The Domino Go Webserverstart.

. The Username and Password screenccuiiiiunne...
. The welcome pagefilelist. i .
. The welcome pagefile listtools.
. The Java function welcome text() i ..
. How to invoke the function welcome text.
. The directory and file structure of the Domino Go Webserver.
. The directory and file structure of the Net.Commerce................
. The common files and directorieson AIX
. The common files and directories on Windows NT4.0...............
.WECS SPE OVEIVIEW . . .o o
. Relationshipamong xmlfiles.
. NetCommerce Architecture
. Commands, Tasks and Overridable Functions
. Fetching the merchant ID from the database.
. The preloaded HTML files e
. The common files and directorieson AIX
. The common files and directories on WINDOWS NT 4.0
. Data model for categories, products anditems
. Data model on merchants, stores, shopper groups, and customers..
. The macro cat_category.d2w afterthechanges
. The macro cat_product.d2w afterthechanges
. The MCUSTINFO table
. SQL for example mcustinforow.
. Store and mall wide registrationscreen.
. The macro cat_category.d2w. i,
. The macro cat_category.d2w afterthechanges
. The Report Section of the cat_cat<number of the store>.d2w macro.. . ..
. Part of the function DISPLAY_PRODUCT_LIST_SINGLEPRICE().
. The SQL statement of DISPLAY_PRODUCT_LIST_SINGLEPRICE() . . .
. The GET_SHOPPERGROUP() function
. The GET_CODEPRICE() function.

© Copyright IBM Corp. 2000

76

X

41

42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.

. The new HTML_Reportsection. 79
The DISPLAY_PRODUCT_LIST_SINGLEPRICE_ISNULL function. 80
The macro cat_category.d2w. i 81
The macro cat_product.d2w afterthechanges 82
The Report Section of the cat_pro<number of the store>.d2w macro. . .. 83
Part of the function DISPLAY_PRODUCT_SINGLEPRICE() 84
SQL statement of function DISPLAY_PRODUCT_SINGLEPRICE(). 85
The GET_SHOPPERGROUP()function. 86
The GET_CODEPRICE()function 86
The new HTML_Reportsection. 87
The DISPLAY_PRODUCT_SINGLEPRICE_ISNULL function 88
The macro cat_catalog.d2w. i 89
The macro cat_cataloc.d2w afterthe changes 90
Important section of the cat_catalog< store number>.d2w file 91
The modified GET_SINGLEPRICE_FEATUREPRODUCT() function. . .. 92
The GET_SHOPPERGROUP()function. oo, 93
The GET_CODEPRICE()function 93
Part of the new HTML_Report section. 94
The GET_SINGLEPRICE_FEATUREPRODUCT_ISNULL function 95
The navigation.xmlfile. 97
The new added lines on navigationNLS.propertiesfile 98
The screen of the creagrou.d2wmacro. oo 100
The screen of the addshgru.d2wmacro 101
The screen of the addprgru.d2w macro. 102
Product page with cross-sell and up-sellfeatures 109
Cross-sell and up-sell functions. 113
Code displaying cross orup sold products 114
Code forclosingthe new window 115
ShowsSell function to display cross-sell/up-sell product in same window. 116
Modified Cross-sell and up-sell functions 116
Merchant tool displaying product catalog features. 118
Import data using the catalog import utility 121
Customized merchant tool - product relationship data entry page. 124
Customized merchant tool - Related products confirmation page. 125
Default category pageot 129
Default productpageo 130
DISPLAY_CATEGORIES function. 131
GET_CHILD_CATS function e 132
DISPLAY_CATS function. e 133
Three-level category custompage. 134
YOU_ARE_HERE_CAT includefile. it 135
YOU_ARE_HERE JavaScript functions. 136
Include statements for cat_category3.d2w 136

IBM WebSphere Commerce Suite SPE Customization

84. YOU_ARE_HERE custom categorypage, 137

85. Shortened product page examplecode. 138
86. Shortened custom productpagec. i 139
87. GET_PROD_CAT function e 140
88. DISPLAY_YOU_ARE_HERE function for custom product page. 140
89. The “YOU_ARE_HERE custom productpage. 141
90. SQAL to select merchant’s reference number...................... 142
91. SQAL to select product and category macros 142
92. XML definitions for category and productpages 143
93. Altered XML parameter for custom categorypage 144
94. ChangeXML JavaScriptfunction 145
95. SetXMLchanges JavaScript function. 146
96. Design flow for new wizard panels. 148
97. Category. Xmlo 148
98. Product.xml e 149
99. Imports for DisplayPagesServlet 150
100.ParseXML method. 151
101.DisplayPagesServiet. 153
102.MacrosBean class. 154
103.Storing the pages choicesinthe JSSPpage. 155
104.Displaying the page choicesonthepanel........................ 156
105.Addinganew panel. 157
106.StoreCreatorBasicNLS.properties. 157
107.Store Wizard category pagespanel 159
108.Store Wizard product pages panel 160
109.Adding a new shippingmethod 161
110.Add locations for which there are different shipping rates. 162
111.Define shipping categories i 162
112.Price grid for the shipping method. 163
113.Sample calculation 164
114.Define the shipping code with the merchanttool................... 165
115.Presenting the purchase price for the customer 166
116.Shippingdatamodel 168
117.SHIPJURST table 168
118.PRSPCODE table listing 169
119.mshipmode table example 170
120.shipmode table 172
121.PSHIPRULE table, Publish Shipping Rate Rule Table 172
122.0rder ProCeSSING. « . o ottt i et e e 174
123.Content of ORDERS table. 176
124.Data in selected columns in SHADDRtable 178
125.Shiptotable content. 180
126.Selected rows from the Merchanttable. 182

Xi

Xii

127.PRODUCT table (1 0f 2) e 185

128.PRODUCT table (20f2)o e 186
129.SHIPPING table example 188
130.SHIPPING table example 188
131.Customized merchant tool with the shipping by weight additions 190
132.Customized shipping by weight interface 193
133.Entering shipping pricedata 194
134.Entering product weightdata. 194
135.Enabling the cutomized shipping calculation. 197
136.The welcome page of the payment setup option. 198
137.The offlinelnstructionsTab panelname 199
138.The off-line method screen i, 200
139.0fflinelnstructions.tmp template (1 0of2) 201
140.0fflinelnstructions.tem template (20f2) 202
141.The first part of the new Offlinelnstructions.tem template file 203
142.The last part of the new Offlinelnstructions.tem template file 204
143.The off-line method screen after customization 205
144.Output from creatinganewtable, 210
145.The ISP interface for gift message/wrapping 211
146.The Payment page with gift message feature enabled 214
147.Assign addGiftMsg Overridable Function 217
148.The merchant tool with gift message. 219
149.0rder Details page in the merchanttool 221
150.CloseMe function. 226
151.0pening store creation wizard in new browser window 227
152.Example ISP registrationpage i 229
153.Registration page: Basic store wizard functions 230
154.Displaying e-mail as login ID automatically. 231
155.Store creator wizard logonscreen. e 231
156.Storing customerdetails 233
157.Functions to display customer details on the home page screen 235
158.The resultant home page screen., 236
159.Language selectionpanel 238
160.New language navigationbar 239
161.Enabling new language schema in common macros 240
162.Language-specificlogon 241
163.Configuration panel for DisplayPagesServlet 337

IBM WebSphere Commerce Suite SPE Customization

Tables

1. Command and overrridable functions compared. 60
2. Product relationshiptypes i 103
3. PRRELTYPE: Product relationship type table details 105
4. PRPRREL: Product-to-product relationship table details. 106
5. Details of mass importfile 110
6. SHIPJURST Table Shipping Jurisdiction. 168
7. PRSPCODE: Product ShippingCode 169
8. MSHIPMODE. 170
9. SHIPMODE 170
10. Sample shipping by weightcost 173
11, Orders .o 175
12. Selected columns from the SHADDR table 177
13. Ship to table description. 178
14. Selected Columns from the MERCHANT table 180
15. PRODUCT table e 182
16. Shipping table description 187
17. Shipping charge calculation methods in the WCS system. 189
18. Additional table for gift message/wrapping 208
19. MPG operators.o e 254
20. Transformations. e 260

© Copyright IBM Corp. 2000 xiii

Xiv IBM WebSphere Commerce Suite SPE Customization

Preface

This redbook contains hints and tips for customizing WebSphere Commerce
Suite Service Provider Edition Version 3.2. The purpose of this book is to
show the flexibility of the product, offer ideas for customization, and give real
ready-to-use working examples with source code and installation instructions.
It is our goal to enable the reader to install and configure the product and
perform common customizations. The first chapter describes installation on
AlIX and AIX configuration considerations. These installation tips will improve
performance and reliability for WCS on AlX. Other chapters describe how to
set up a unique URL for a merchant, customer group, cross link, and shipping
customizations. All examples in this redbook are accompanied by source
code, which makes it possible for the reader to use the examples instantly. It
was our intention that the examples be ready to use, and we supplied enough
information for you to change the examples if they do not exactly fit your
needs. The source code for all examples is available from the ITSO Web site
as described in Appendix J, “Using the additional material” on page 391. The
current eddition was updated November 2000 adding examples and
correcting others.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Ole Conradsen is a Project Leader at the International Technical Support
Organization, Austin Center. He writes extensively about HACMP, HAGEO,
Lotus Domino, and e-business solutions. Before joining the ITSO, he worked
on AIX projects in IBM Denmark for 11 years. Ole holds a Master of Science
degree in Electrical Engineering from The Technical University of Denmark.

Alison Halliday is an IT-Specialist from IBM Global Services, Sweden. She
has four years experience in the Internet and e-business technology areas
and has worked with NetCommerce since 1997. Alison holds a Master of
Science degree in Computer Science from Queen's University, Belfast, N.
Ireland. Her areas of expertise include NetCommerce and WebSphere.

Thomas K. Kjaer is an IT-Specialist in Denmark. He has five years
experience with Web technology and three years experience with
Net.Commerce. Thomas holds a B.A. in Information Science from Aarhus
University, Denmark. He has worked at IBM for two years, and his areas of
expertise include the Net. Commerce and WebSphere Application Server
product groups.

© Copyright IBM Corp. 2000 XV

Venkatachalam Gopala Krishnan is a Software Engineer in IBM Global
Services, India. He has two years experience in Web Development at IBM
and holds a degree in Mechanical Engineering from Bharathiar University,
Coimbatore, India. Gopal is a Sun Certified Java Programmer, and his areas
of expertise include Net.Commerce and WebSphere Application Server.

Oscar Humberto Torres Martin del Campo is a Project Leader in México.
He has two years experience in several fields. He has worked at Telecom &
Soft, S.A. de C.V. (an IBM Business Partner) for two years. His areas of
expertise include Lotus Domino (development and administration) and IBM
e-business solutions with different platforms.

Thanks to the following people for their invaluable contributions to this project:

Greg Krysa
IBM Toronto Lab

Chris Mann
IBM WebSphere Commerce Suite product manager

Mike Polan
IBM Toronto Lab

Jeff Shiner
IBM Toronto Lab

Daesung Chung
IBM International Technical Support Organization, Austin Center

Comments welcome

XVi

Your comments are important to us!
We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

* Fax the evaluation form found in “IBM Redbooks review” on page 415 to
the fax number shown on the form.

¢ Use the online evaluation form found at http://www.redbooks . ibm.com/

e Send your comments in an Internet note to redbookeus. ibm.com

IBM WebSphere Commerce Suite SPE Customization

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Installing WCS Service Provider Edition

This chapter describes how to install WebSphere Commerce Suite (WCS)
Service Provider Edition (SPE) for AlX. The chapter is intended for system
administrators or anyone else who is responsible for performing similar tasks.
This book often refers to the software, WebSphere Commerce Suite, Service
Provider Edition, by its short name, WCS SPE.

Note

We decided to keep this chapter as short and precise as possible and only
cover the installation of the software that is bundled with the WCS SPE CD.
We assume that the reader of this book has knowledge of AlX and has
performed some previous installations of AIX. You may refer to the
Installing and Getting Started Guide V3.2, GC09-2808, for detailed
information and step-by-step installation instructions.

To find out about the most recent product information including any late
changes, see the README file in the root directory of the WCS SPE CD.

1.1 Products included with WCS SPE
The following products are packaged with WCS SPE:
* WebSphere Commerce Server 3.2
IBM DB2 UDB 6.1.0.6
DB2 Text Extenders 6.1
IBM Net.Data 6.1
Lotus Domino Go Webserver 4.6.2.61
IBM Payment Server 1.2.20.3

Netscape Communicator 4.61 for Windows
IBM WebSphere Application Server 2.02 and JDK1.1.6

Compatible Web servers

Although Domino Go Webserver Rel. 4.6.2.61 is the Web Server provided
with WCS SPE, you can use Netscape Enterprise Server Rel 3.61 as the Web
server.

© Copyright IBM Corp. 2000 1

Compatible databases
Although DB2 UDB 6.1.0.6 is the database provided with WCS SPE, you can,
alternatively, use Oracle 8.05 or Oracle 8.06 as your database.

If you have DB2 UDB 5.x currently installed, you must upgrade it to DB2 UDB
6.1.2 and migrate your database.

Supported Web browsers

WCS SPE access to the Administrator is supported using Netscape
Communicator 4.61 from any Windows NT machine that is on the same
network as your WCS SPE machine.

Shoppers can access Web sites by using any of the following Web browsers,
all of which have been tested with WCS SPE:

* Any version of Netscape Navigator supported with Netscape
Communicator 4.61, including Netscape Navigotor4.04,4.06 and 4.08

* Netscape Navigator 4.0 for machintosh

* Internet Explorer 3, 4, and 5

1.2 Hardware and software requirements

This section explains the hardware and software required to install WCS
SPE.

1.2.1 Hardware requirements

You must ensure that you meet the following minimum hardware requirements
before installing WCS SPE 3.2:

e To run WCS SPE 3.2, you need a dedicated RISC System/6000 or IBM
Power Series family of machines (RS/6000 43PModel 150 or higher is
recommended) with the following minimums:

- 200 MHz processor

- Minimum of 128 MB of random access memory (RAM)
- Minimum of 900 MB of free disk space

- CD-ROM drive

- Graphics-capable monitor

* To access the WebSphere Commerce server Administrator, a personal
computer capable of running Windows NT, Windows 98, or Windows 95
with a graphics-capable monitor, color depth of at least 256 colors, and a
mouse or other pointing device is needed.

2 IBM WebSphere Commerce Suite SPE Customization

* A local area network (LAN) adapter that is supported by the TCP/IP
protocol.

1.2.2 Software requirements

You must ensure that you meet the following minimum software requirements
before installing WebSphere Commerce server on an AlX system:

* Ensure that you have AIX 4.3.2 or 4.3.3 on your WCS SPE machine. If you
are using AlX 4.3.2, you must have the following fixes applied:

- You must apply PTF U453695 for CSet++ miscellaneous runtime fixes.

- Ensure that the C runtime xIC.rte is at least at Version 3.6.4.1. To verify
this, type the following at a shell prompt:
lslpp -1 | grep x1C.rte

If the x1c.rteis below the required level, apply PTF U463530. This PTF
will update the x1c.rte to version 3.6.6.0 and is included on the WCS
SPE CD.

* Ensure that you have the following installed on the machine(s) you will use
to access the WCS SPE Administrator:

- Windows NT, Windows 98, or Windows 95

- Netscape Communicator 4.61 or newer version (a copy is provided on
the WCS SPE CD in the /netscape directory).

1.3 Disk space and paging space requirements

This section describes the required disk space and paging space for the
installation of WCS SPE. If disk space is not sufficient, the installation would
stop at midpoint and return There is not enough space in the file system.
Ensure that you have sufficient disk space and paging space before starting
the installation.

1.3.1 Verifying disk space
You must have the following minimum amount of free space:

* 400,000 blocks of free space (at 512 KB per block) in the /home directory.
This is required for DB2. If there is not enough space in the /home
directory, the DB2 install may fail or encounter difficulties. Depending on
the size of your database, you may require even more free space.

e 2,000,000 blocks of free space (at 512 KB per block) in the /usr directory

Chapter 1. Installing WCS Service Provider Edition 3

* Create a file system called /installer with 400,000 blocks of free space (at
512 KB per block). This may be used to store temporary files during
installation. This will help prevent the / (root) file system from getting filled
up because filling up the root file system would jeopardize the complete
system. It is not recommended that you fill in the root system at any cost.

To determine whether you have enough space, type af on an AIX command
line, and look for information about the /home, /usr, and root directories. If
free space is less than required space, use the smit tool to increase free
space.

1.3.2 Verifying paging space

You must have at least 128 MB of paging space. If you are using Netscape,
you need to add another 20 MB of paging space. But, in general it is
recommended to have twice as much paging space as physical memory, that
is, 256 MB if you have 128 MB of memory in the system. For systems with
more than 1 GB of physical memory, the paging space requirements are
lower.

To determine whether you have enough paging space, type 1sps -a from a
command line. Add up the sizes of all the active paging spaces. If the total is
less than 128 MB, use the smit tool to increase paging space.

1.4 Common installation steps

4

This section describes the installation procedures most common to all
software bundled with the WCS SPE CD. You may have to refer to this section
for the installation tips, and, if there is any difference for a particular software,
it is mentioned in the relevant subsections. Perform the following steps:

1. Login is as user ID root
2. If necessary, mount the CD.

3. Change to the CD-ROM install directory. This varies for the respective
software to be installed and is mentioned in the relevant subsection.

4. On the command line, type smit install all.

5. In the Input device / directory for software field, type ./ and click OK or
press Enter.

6. Click on the List button for software to install. Using the cursor movement
keys and the space bar, make your selection.

7. Depending on the software you are installing, highlight and select the
needed part of the software as explained in the relevant subsection.

IBM WebSphere Commerce Suite SPE Customization

8. When you have made all selections, click OK or Press Enter to close the
list.

9. A confirmation message appears. Click OK or Press Enter. The command
Status window appears indicating the installation of the selected product
has started. The installation is completed when the Command field at the
top of the window changes from Running to OK.

10.When the installation is complete, scroll to the Installation Summary
section at the bottom of the listing. In the RESULT column, you should see
either Success or Already Installed next to the name of each component. If
you do not see this, correct the problem and attempt the installation again.

11.Press F12 (Exit).
12.Return to the root directory.

13.Unmount and remove the CD.

1.4.1 Installation procedures for Domino Go 4.6.2.61
This section explains how to install Domino Go Webserver 4.6.2.61.

The following steps are the installation procedure for Domino Go Webserver
4.6.2.61. Refer to Section 1.4, “Common installation steps” on page 4.

1. Change to the CD-ROM install directory for Lotus Domino Go, and type:
cd /CDROM dir/usr/sys/inst.images

2. Domino Go specific installation instructions in smit or smitty are
Highlight the following packages that apply to your copy of the Domino Go
Webserver:
* NetQ.* - This is required if you want to perform searches on the Domino
Go Webserver documentation.
Select one of the following:

* If you are installing the North American version of Domino Go Webserver,
select gskru301.

* If you are installing the Export version of Domino Go Webserver, select
gskre301.

¢ internet_server.base - The server, administrator, and documentation.

e internet_server.loc.lang - Where lang is the code page value for your
locale, such as en_US for American English.

¢ internet_server.msg.lang - The message catalog, where lang is the code
page value for your locale, such as en_US for American English.

Chapter 1. Installing WCS Service Provider Edition 5

* internet_server.security.common - The common security files.

* internet_server.security.us_secure - The security files for use in Canada
and the United States.

* internet_server.security.export - The security files for use outside Canada
and the United States.

Note

Do not install the internet_server.java.* packages. You will install another
Java servlet engine during the WebSphere Application Server installation
process later.

3. Follow the remaining steps per the Common Installation steps and
complete the installation.

1.4.2 Enabling SSL on Domino Go Webserver for testing

6

The following section describes the steps involved in creating a security key
ring for testing. As you perform these steps, your browser may display security
messages. Carefully review the information in each message and decide how
to proceed.

Creating a security ring for testing
To create a security ring for testing, do the following:

1. Ensure Domino Go Webserver is started by typing 1ssrc -s httpd on a
command line. If the status is inactive, start the Webserver.

2. On your NT machine, start your Web browser; disable and clear all disk
and memory caching, and disable all proxy servers.

3. To access the Web server’'s home page, type the following on your
browser:

http://host name/path

where path is the name of your Web server’s home page if you have done
any customization on the Webserver.

4. Click CONFIGURATION AND ADMINISTRATION FORMS.

5. When prompted, type your Webserver administrator user ID and password
and click OK. The default administration user ID is webadmin, and the
password is webibm.

If the authorization fails because of non availability of the webadmin user
during installation, change to the /usr/Ipp/internet/server_root/protect
directory from the command line and type

IBM WebSphere Commerce Suite SPE Customization

htadm -adduser webadmin.passwd webadmin webibm admin
This will create the user ID, webadmin.

6. On the Configuration and Administration Forms page under Security,
select Create Keys.

7. On the Create Key and Request Certificate form, select certificate type
Other, and click Apply.

8. On the Other Certificate form, in the Key name field, type testnetc. In the
Key ring field, type /usr/lpp/internet/server root/testnetc.kyr.

9. Change the Size field to the highest setting that is available.

10.Under Key Ring Password, in both Password fields, type a key ring
password of your choice. You will need this password later to change the
default key in the key ring and to receive certificates into that key ring.

11.Check the Automatic login box.

12.Complete the fields under Distinguished Name. For Server name, use
the fully-qualified name of your Websphere Commerce server.

13.Under Mail to, select Don’t mail.

14.Under Save Copy, in the Save certificate request to file field, type
lusr/1pp/internet/server root/testnetc.txt and click Apply. You should
see a confirmation page indicating that you have successfully created your
public-private key pair and certificate request. If you get a message
indicating an error instead, retry these steps. The error message should
indicate the problem that was encountered.

Setting your test key ring as the current key ring
To make the Web server use your test key ring, do the following:

1. Return to the Configuration and Administration Forms page by clicking
Configuration Page at the bottom of the confirmation page.

2. Under Security, click Security Confirmation.

3. On the Security Configuration form, under Default key rings, select
lusr/lppl/internet/server_root/testnetc.kyr.

4. Select Set selected key ring as current key ring.
5. Click Apply. A page appears confirming that the security configuration
changes have been made.

Receiving and testing the test key ring certificate
To receive and test your key ring certificate, do the following:

Chapter 1. Installing WCS Service Provider Edition 7

. Return to the Configuration and Administration Forms page by clicking

Configuration Page at the bottom of the confirmation page.

On the Configuration page, under Security, click Receive Certificate.

3. On the Receive Certificate form, in the Name of file containing certificate

field, type /usr/lpp/internet/server root/testnetc.txt.

In the Key ring field, type /usr/lpp/internet/server root/testnetc.kyr.

5. In the Key ring password field, type the password that you used to create

the key ring.

Click Apply. You should see a confirmation page that indicates that the
certificate was successfully received.

Return to the Configuration page.

8. Under Security, click Key Management.

On the Key Management form, in the Key Ring Password field, type the
password that you used to create the key ring.

10.Select Designate Trusted Root Keys, and click Apply.

11.0n the Designate Trusted Root Keys form, under Keys, select testnetc

from the list.

12.Click Apply. You should see a confirmation page that indicates the

operation was successful.

13.Stop and start the Web server by typing stopsrc -s httpd and startsrc -s

httpd from AIX command line.

1.4.3 Verifying the installation

8

To verify the installation of the Lotus Domino Go Webserver, do the following:

1.
2.
3.

On your Windows machine, open your Web browser.
Enter the following URL: http://host _name

If you can access the Web server home page, your Web server is running.

To verify that the SSL is working, do the following:

1.

2.

Enter the following URL in the Web browser (be sure it is https, not http):
https://host name

If you can access the Web server home page, SSL has been enabled.

IBM WebSphere Commerce Suite SPE Customization

1.5 Installing IBM DB2 UDB 6.1.0.6

This chapter explains how to install IBM DB2 Universal Database 6.1.0.6
(DB2 UDB). To complete the steps in this chapter you will require the IBM
DB2 Universal Database 6.1.0.6 CD.

1.5.1 Installation procedure

The following is the installation procedure for IBM DB2 UDB 6.1.0.6. Refer to
the common installation steps for general installation instructions and the
instructions unique to UDB in the following section. Perform the following
steps:

1. To install DB2, type the following in an AIX command line
. /db2setup
The db2setup program calls another program that ensures that you have
the necessary PTFs on your system. If you do not, the program asks you if
you want them to be automatically installed. Type y, to automatically install
them, or n, to exit the db2setup program. If you type y, the PTFs are
automatically installed, and you are prompted to reboot and rerun
db2setup. If there are no required PTFs missing, you may proceed further.

2. If you are requested to reboot, type the following on an AIX command line:
bosboot -a
shutdown -Fr

3. The db2setup program scans your system for information about your
current configuration and displays a window called Install DB2 V6.1.
Highlight your selections and press the space bar or press Enter to select
them as follows:

a. If you intend to run a Commerce Service Provider database on this
machine, select DB2 UDB Enterprise Edition.

b. If you intend to run all your Commerce Service Provider databases on
remote machines, select DB2 Administration Client.

c. If you want DB2 messages displayed in a language other than English,
select Customize beside DB2 Product Messages to open the DB2
Messages window. Then, highlight your language code, press the
space bar, highlight OK, and press Enter.

d. If you want to install the DB2 publications in HTML format in a language
other than English, select Customize beside DB2 Product Library and
press Enter to open the DB2 Product Library window. Then, highlight
your language code, press the space bar, highlight OK, and press
Enter.

Chapter 1. Installing WCS Service Provider Edition 9

10

4. When you have made selections, highlight OK and press Enter.

. The Create DB2 services window appears. Select Create a DB2 Instance

and press Enter. The DB2 Instance sub-window appears. Complete the
following details:

a. User Name - Type the DB2 instance ID that you want to use. (The
instance ID, db2inst1, is used as an example in this book.) The
instance ID must meet the following criteria:

* |t cannot be more than eight characters in length.

* It can contain only the characters Ato Z,ato z,0t0 9, @, #, $, and

It cannot begin with an underscore (_).

It cannot be any of the following in upper, lower, or mixed case:
USERS, ADMINS, GUESTS, PUBLIC, or LOCAL.

It cannot begin with any of the following in upper, lower, or mixed
case: IBM, SQL, or SYS.

b. Group Name - Type a group name that you are not currently using for
any other user ID. This group will automatically become the system
administration group for the DB2 instance, and it will be given
administration authority.

c. Password - Type a password that meets the following crietria:
* |t cannot be more than eight characters in length.

* It can contain only the characters Ato Z,atoz,0t0 9, @, #, $, and

* It cannot begin with an underscore (_).
Verify Password - Type the same password again.
Accept the defaults for all other fields, and press Enter

. The Fenced User window is displayed. Accept all the defaults by

highlighting OK and pressing Enter.

. A Notice window is displayed advising you that a system generated

password will be used. Highlight OK and press Enter.

. The Create DB2 Services window is displayed. Highlight OK and press

Enter.

. Ignore the warning message that indicates that the Administration Server

is not created by highlighting OK and pressing Enter.

10.A summary report appears listing the components that will be installed.

Highlight Continue and press Enter.

IBM WebSphere Commerce Suite SPE Customization

11.A warning appears advising you that this is your last chance to stop the
installation. Highlight OK and press Enter.

12.The db2setup program installs your components and creates your
instance ID in the group you specified. Depending on the speed of your
processor, this can take up to 15 minutes. When it completes, a Notice
window informs you whether it was successful or not. Highlight OK and
press Enter.

13.Scan the Status Report to ensure that all components were installed
successfully and that the DB2 instance ID was created successfully.
Highlight OK and press Enter.

14.To close the DB2 Installer window, highlight Close and press Enter.

15.1gnore the message that indicates that the Administration Server is not
created by highlighting OK and pressing Enter.

16.To confirm that you want to exit DB2 Installer, highlight OK and press
Enter.

17.Log on to the instance ID you just created by typing su - db2inst1 (or the
instance ID you typed earlier).

18.Edit the .profile file using a text editor as follows:

Append /usr/1ib to the LIBPATH environment variable after the PATH
statement if it does not appear there already. It should be followed by a
line that exports the LiBPATH. The syntax of these lines should be:
LIBPATH=/usr/lib

export LIBPATH

19.To ensure that there are no errors, run the .profile file by typing the
following on an AIX command line:
. .profile

20.Type exit to return to user ID root.

21.In a AIX command window, type smit users Or smitty users.
22.Select Change/show characteristics of a user.

23.Enter the name of the user in the Enter name of the user field

24 Ensure that the Initial Program field is set to /usr/bin/ksh.

1.5.2 Verifying the installation
To verify the installation, perform the following steps:

1. From an AIX command window, log in as db2inst1.

2. type dp2. This takes you to the db2 = > prompt.

Chapter 1. Installing WCS Service Provider Edition 11

3. Type create database dbname Where dbname is any database name you want
to create

4. Type list database directory to ensure that the database has been
created.

Type connect to dbname. This connects the database we created.
Type create table MyTable (fieldone Integer, field char (20)).
Type list tables to see the created table.

Type quit to return to the AIX command line.

© © N o o

Type db2 connect reset to reset from the database.

1.6 Installing IBM DB2 Text Extenders

12

The DB2 Extenders consist of the DB2 Image Extender, the DB2 Audio
Extender, the DB2 Video Extender, and the DB2 Text Extender components.
WCS SPE requires DB2 Text Extender to be installed. The following are the
installation procedures for IBM DB2 Text Extenders. Refer to the common
installation steps for general installation instructions and the instructions
unique to Text Extender in the following section. Perform the following steps:

1. The DB2 extenders install directory is /CDROM_dir/db2ext/aix.

2. To select the DB2 Extenders for installation, select the components from
the following list depending on whether you are installing the DB2
Extenders server or client:

- db2ext 06 0l.client - DB2 Extenders client component
- db2ext 06 0l.server.ncnee - DB2 Extender server component

- do2ext 06 01.doc.language - DB2 Extenders online information where
language corresponds to your language, for example, En_US for U.S.
English

- db2tx 06 01.dic.laguage - DB2 Text extenders dictionaries to install on
the client

3. After installation, to configure the DB2 Text Extender, do the following:
a. Establish the DB2 Extenders instance
1. Ensure you are a active root user

2. Change to DB2 instance directory by typing
cd /usr/lpp/db2ext 06 1/instance

3. Run the DMBINSTANCE command as follows:

./dmbinstance <instance id>

IBM WebSphere Commerce Suite SPE Customization

Running drbinstance creates the /u/instanceid/dmb directory. Do not
create additional files or directories under the /u/instanceid/dmb
directory. These files are lost if the instance is deleted.

As dmbinstance runs, you are prompted to confirm the following:

* The request to make a DB2 owner instanced (if it is not already a
DB2 instance owner).

* The request to create an instance for the DB2 Image, Audio, and
Video Extenders (IAV) Server. Respond YES.

b. Establish the DB2 Extenders instance environment:
1. Log in as instance id.

2. The dmbprofile script is provided for the Korn shell to establish the
DB2 Extenders environment. The dmbprofile shell scripts contain
statements that update paths in your operating system and set
environment variables. To establish the DB2 Extenders instance
environment, include the DB2 Extenders instance profile into the
login profile for the instance id user ID. Add the following statements
to the end of the login profile for instance id:

LANG=1locale

export LANG

. dmb/dmbprofile

To ensure that there are no errors, run the.profile script by typing the
following on an AIX command line

. .profile

3. Type exit and press Enter to return to user ID root.

For more information on installing and configuring DB2 Extenders as well as
additional topics, such as creating and managing multiple extender instances,
see the file, install.txt, in the db2ext/aixeee/language directory of the
CD-ROM.

1.7 Installing IBM Net.Data 6.1

This section describes how to install Net.Data 6.1. If you are installing or
reinstalling Net.Data after installing Websphere Commerce Server, ensure
that you back up your db2www.ini file in the /usr/Ipp/internet/server_root
directory before installing or reinstalling Net.Data. (Net.Data installs its own
version of this file.) Once you have completed installing or reinstalling
Net.Data, you can replace the Net.Data version of the file with your backup
version of the file.

Chapter 1. Installing WCS Service Provider Edition 13

1.7.1 Installation procedures

The following are the installation procedures for IBM Net.Data 6.1. Refer to
Section 1.4, “Common installation steps” on page 4, for general installation
instructions and the instructions unique to Net.Data in the following section

1. Net.Data installation program is found in the directory,
/CDDROM_dir/code/aix.

2. Highlight the following packages in smit or smiity
* Net.Data

* Net.Data.msg.locale - locale corresponds to your language. For example,
en_US for U.S. English.

3. After installation, test your installation by doing the following:
a. Open the browser on your NT machine.

b. Type in the URL
http://host name/cgi-bin/db2www/hello.d2w/report

c. If Hello World! appears in the browser, the installation is OK.

1.8 Installing JDK1.1.6 and WebSphere Application Server

This section describes how to install WebSphere Application Server 2.02
Standard Edition and JDK 1.1.6. To complete the steps in this chapter, you
will need the WebSphere Application Server 2.02 Standard Edition CD.

WebSphere Application Server is a requirement for using Product Advisor. If
you are not going to be using Product Advisor, the installation of WebSphere
Application Server is optional.

1.8.1 Checklist

To ensure that you successfully complete the steps in this chapter, you must
meet the following requirements:

1. You must have a Web server (either Domino Go Webserver, Netscape
Enterprise Server, or Domino Web Server), Net.Data, and a relational
database management system (either DB2 or Oracle) installed before
beginning the steps in this chapter. During the WebSphere installation,
you will be prompted to install a JDK. Do not install the JDK from this
prompt because you will install the correct JDK in Section 1.8.2, Installing
JDK 1.1.6, below.

2. AIX 4.3.3 includes JDK 1.1.8. If you have this level of AlX installed,
uninstall this version of the JDK using SMIT or SMITTY by selecting all

14 IBM WebSphere Commerce Suite SPE Customization

3.

JDK packages and removing them. Then, install JDK 1.1.6 using the steps
in this chapter.

You must have graphical monitor or terminal to install WebSphere
Application Server. (Telnet from the NT machine would not be sufficient).

1.8.2 Installing JDK 1.1.6

To install JDK1.1.6, perform the common installation steps and the following
steps, which are unique to JDK 1.1.6:

1.
2.
3.

The install directory of JDK is CDROM_dir/AIX/JDK.
To select JDK1.1.6 for installation, highlight Java.adt and Java.rte.

After installing JDK1.1.6, type java -fullversion from the command line.
The following response appears:

java full version "JDK 1.1.6 IBM build all6-19991124 (JIT enabled:
jitc) ™

By default, the JDK gets installed in the /usr/jdk_base directory

5. To verify the installation, write a Hello World Java program and execute it

from the command line.

1.8.3 WebSphere Application Server installation procedures

To install WebSphere Application Server, do the common installation steps
and the following steps unique to WebSphere Application Server. We
recommend that you use the same AlIX console and machine to start the
installation rather than doing a telnet from an NT system and installing the
WebSphere because the installation program is GUI based.

1.
2.
3.

Change to the cd /CDROM_dir/AIX directory.
Enter the ./install.sh command to start the installation program.

The installation program will display your current JDK level and path. If
asked if you wish to install the JDK 1.1.6 from the WebSphere Application
Server CD, enter n. You should have already installed the correct JDK as
outlined in the previous section. Ensure that you do not install the version
of JDK that WebSphere Application Server prompts you to install as the
preferred level of JDK. That version of the JDK does not contain the
patches that the Product Advisor requires.

The installation program will prompt you for the JAVA_HOME path. Enter
the path where the JAVA_HOME is located. By default, this is
/usr/jdk_base.

A Welcome window appears. Click Next to continue.

Chapter 1. Installing WCS Service Provider Edition 15

6. If the License Agreement window appears, review the License Agreement.
To accept the terms, click Yes.

7. On the Choose Destination Location window, either accept the default
installation path, /usr/WebSphere/AppServer, or enter a new installation
path by clicking Browse. When the correct path is specified, click Next to
continue.

8. The next window allows you to select which WebSphere Application
Server components you wish to install. Select the following:

¢ In the left-hand selection box, select the following:
a. Application Server
b. Documentation (optional)
c. AppServer Administrator

* With Application server highlighted in the right-hand selection box, select
the following:

a. Servlet Engine (base)
b. The appropriate plug for the Web server you are using as follows:

* If you are using Netscape Enterprise Server, select
Netscape V3.51.

* If you are using Domino Go Webserver, select
Go Webserver V4.6.1.

9. When you have selected the components to install, click Next.

10.0n the next window, you are prompted to confirm that you want to begin
copying files. If you want to begin the installation, click OK. To return to the
Component and Subcomponent window, click Cancel.

11.When the installation is complete, the Setup Complete window appears. If
you want to review the readme file, ensure that the checkbox is not
selected. Click Finish

12.To test the installation, stop and start your Domino Go Webserver by
issuing the following commands from your AIX command line.
stopsrc -s httpd
startscr -s httpd

13.Type the following URL from your browser in your NT machine. Use admin
as the default user ID and password:
http://host name:9527/

14.Highlight Servlets and click Configuration.

16 IBM WebSphere Commerce Suite SPE Customization

15.Click snoop under Serviet Names and click Load. The snoop servlet will
now be loaded.

16.0pen a new browser and type the following URL:
http://host name/servlet/snoop

17.1f you get the results of the snoop servlet, your installation is OK.

1.9 Installing IBM Payment Server

To install IBM Payment Server, do the common installation steps and the
following steps unique to IBM Payment Server:

1. The install directory for IBM Payment Server
issfCDROM_dir/payment_server.

2. In the software to install field in smitty, type all.

3. Follow the steps in Section 1.4, “Common installation steps” on page 4,
and finish the installation.

1.10 Installing WebSphere Commerce Service Provider

To install WebSphere Commerce Server, perform the steps described in
Section 1.4, “Common installation steps” on page 4, and the following steps
unique to WebSphere Commerce Server:

— Note
Ensure that you have installed your Web server, your database, Net.Data,

JDK, WebSphere Application Server, and Payment Server (if applicable)
before you install WebSphere Commerce Server.

1. If you are using DB2, ensure that it has been started.

2. Verify the level of the xIC run-time library by typing the following:
lslpp -1 | grep x1C.rte

3. The install directory for WebSphere Commerce Server
is/fCDROM_dir/wcsspe.

4. Highlight the NetCommerce3.CHS package in smit or smitty and
commence the installation.

5. After installation is complete, change to the
/usr/lpp/NetCommerce3/server/bin directory in the AIX command line and
type the following:

Chapter 1. Installing WCS Service Provider Edition 17

./start_admin server
This starts the administrator server.

6. On your browser, from your NT machine, type the following URL
http://host name:4444/. Use webadmin and webibm as the user ID and
password.

7. Create a new instance by clicking on New.
8. Accept all the default settings, enter the database password, and click OK.

9. It takes around 15 to 20 minutes for the instance and the database to be
created - depending on your machine.

10.0nce the database is created and populated, once more, type in the URL:
http://host name:4444/
and start the Net.Commerce instance by clicking Start.

11.0nce the instance has been started, a message in the status bar will read
Server Status : Active.

12.Type in the following URL to verify the functionality of the WebSphere
Commerce Server:
http://host name/cspsite
If you get the default CSP home site, the installation of WCS SPE is
complete.

1.11 Configuring WCS SPE

18

After installing WCS SPE, it is a good idea to check some basic settings that
can be changed for each product instead of just staying with the default
settings. WCS SPE consists of several independent products, and, by
changing a few parameters, you can easily improve your system’s
performance, reliability, and availability.

Since WCS SPE consists of many different products, tuning your environment
for the best performance depends on factors, such as what hardware is being
used and the number of merchants and shoppers, all of which we will not be
able to cover in this book. Instead, we will point out a few key areas where
performance improvements can be achieved without much effort.

When you have installed WCS SPE and it is running, we suggest that you
take a look at the following topics:

* Net.Commerce settings

* LDGW setting

IBM WebSphere Commerce Suite SPE Customization

When running a hosted environment, such as the WCS SPE, you should be
aware that each merchant will use the merchant tool to update and publish
their site. This means that merchant activity could have an overall
performance impact to your site, which you must be able to handle. In
general, it is a good idea to encourage your merchants to update their stores
only during off peak hours to allow the best possible performance during the
day.

One of the best ways to improve performance on a Net.Commerce system is
to make use of the dynamic page cache facility, which will cache category and
product pages. By caching these pages, Net.Commerce only has to query the
database for categories or products the first time any user requests one of
these pages. The Net.Commerce version used in WCS SPE v3.2 supports
two different levels of caching: Basic and advanced. However, the caching in
Net.Commerce will affect all stores in the environment; so, before enabling
the caching, you should consider how it will affect the category and product
pages if some merchants have customized them in any way.

1.11.1 Net.Commerce settings

WCE SPE v3.2 is based on Net.Commerce v3.2, which you can also tune in
many ways.

Server processes

When you have installed WCS SPE and you are ready to create the initial
WCS instance, it is possible to specify how many server processes
Net.Commerce is starting. The number of server processes determines how
many simultaneous transactions your system will be able to handle, and the
default value is two. Increasing this number will increase the load on your
server, but it will also allow more transactions to be handled simultaneously.

As a starting point, you should start with four processes per CPU and then
monitor your system for a period watching CPU load, paging, and CPU wait
activity using the AIX commands iostat and vmstat. As long as CPU load is
less than 80 percent, paging is low, and the CPU wait is less than 5 percent,
you can increase the number of server processes. For the best settings, you
should monitor your system during peak hours when the traffic load is at its
highest level.

Changing the number of server processes can be done in two ways:
* You can change the value by using the Configuration Manager:

http://HOSTNAME: 4444/

Chapter 1. Installing WCS Service Provider Edition 19

20

Selecting your instance settings, you will find the tab named Commerce
Suite Server where you can specify the number of server processes.

* You can edit the configuration file by hand.

a. Locate and open the configuration file in your editor. The configuration
file should be named something like the following:

/usr/lpp/NetCommerce3/instance/<instname>/config/ncommerce.conf
b. In the configuration file, locate the line that reads:
PROCESSES 2

The value depends on what was previously specified. See Figure 1.

SERVICE NAME PREFIX ncITSO

EXEC /usr/lpp/NetComrerce3/bin/server
MS HOSINAME f50.itsc.austin.ibm.com
DBNAME ITSO

DBINST db2instl

DBOWNER db2instl

DBPASS bCCT2m6cuzw=

DB HOST

DB NODE

DB REMOTE OFF

PROCESSES 2

_ MERCHANT KEY QunGZnDUQUDK7yWOcENk38vOvgkAOlYm)

Figure 1. Editing the PROCESS variable in the configuration file

c. Change the value 2 to the required number of processes.

d. Save the file and exit the editor.

In both cases, you will need to restart WCS in order to make the change
become effective.

Transactions count

In combination with the PROCESS value, you should monitor the setting of
MS_TRANS_COUNT. In Net.Commerce, the servers, as specified by the
PROCESS directive, recycle when it reaches the number of transactions
specified by this value.

You can increase the value of this setting until your system starts to get
memory paging. The recommended value for MS_TRANS_COUNT is
between 250 and 1000 and should not be set higher than 5000 for this
version of Net.Commerce.

To change the value, you will have to edit the configuration file for
Net.Commerce. To do this, perform the following steps:

IBM WebSphere Commerce Suite SPE Customization

1. Locate and open the configuration file in your editor. The configuration file
should be named something like the following:

/usr/lpp/NetCommerce3/instance/<instname>/config/ncommerce.conf
2. In the configuration file, locate the line that reads:
MS_TRANS COUNT 1000

The value depends on what was previously specified.

MTCOL, NUM CON 5
MIOOL, MAX WAIT 10
NC JRE PATH /usr/jdk base/bin
NC _CLASSPATH /usr/jdk base/lib/classes.zip:/usr/lpp/db2 06 01/java/do2ja
.zip: /usr/lpp/NetCommerce3 /CHS/CHS . jar: /usr/lpp/NetCammerce3 /CHS /Nc_chs.jar
ERR NOTTIFICATION ON
ORDER NOTTIFICATION ON
ADMIN ERR MSG TEMPLATE errmsgadmin.tpl
TEMPLATE PATH /usr/lpp/NetCommerce3/templates/en US
USERTRAFFIC 10OG 1
_MS_TRANS_COUNT 1000)

Figure 2. Editing the MS_TRANS_COUNT variable in the configuration file

3. Change the value 1000 to the required value.
4. Save the file and exit the editor.

5. Restart WCS to make the change become effective.

To determine which value to use, over a period of time, monitor the available
memory on your system for a given value of MS_TRANS_COUNT. If memory
becomes low, performance will be poor or you will get the error message,
Server Not Responding, frequently; so, decrease the value.

Logfiles

For a production environment, all Net. Commerce logs should be set to level 0
in order to minimize the disk-write activity that occurs when writing to log files.
However, if, for some reason, you need logging to some degree, make sure
that the log files are located on a separate disk to maximize parallel 1/0
activity.

To change the log level or the location of the log files, look for the following
lines in the configuration file:

MS LOGPATH /usr/lpp/NetCommerce3/instance/mser/logs
MS_T.OGLEVEL 2

You can set the log level individually for the following components in WCS:

e server controller - srvrctrl.conf

Chapter 1. Installing WCS Service Provider Edition 21

* server process - ncommerce.conf
¢ scheduler - scheduler.conf

e payment - pay_back.conf, pay_cyber.conf and pay_etill.conf

You may also want to clean up your Net.Data macro path since, by default, it
also references the demomall and ncsample directories.The Net.Data path is
specified by the MACRO_PATH and INCLUDE_PATH directives in the
db2www.ini file, which can be found in the /usr/Ipp/internet/server_root/pub/
directory.

1.11.2 LDGW settings

22

The Lotus Domino Go Web Server serves all requests submitted by the
browser and has many settings that can be adjusted for better performance.

Log files

The Web server logs all kinds of traffic including errors. It will generate
several log files to record this information. By default, the Web server
generates the following logfiles: access, agent, referrer, httpd-error,
CGl-error, and servlet logs. Because a lot of disk writing will occur, you
should review which logs to turn on or off before going into production with
your system. If there is no need for the logged data, all logs except the error
logs should be turned off.

As with Net.Commerce logs, you should place the Web server logs on a
different disk to maximize parallel I/O activity because the log files for the
Web server will be some of the fastest growing files.

You can change the log settings on the LDGWs Configuration and
Administration Forms in the Logging and Reporting section.

Pass directives

The pass directives in the Web server specify which directories can be
accessed with a browser. Before going into production, you should review
these settings and only keep the minimum required setting. For example, you
could remove every reference to the demomall, the grocery mall, and so on.
Keeping the pass directives to a minimum can also improve the performance
of the Web server since the server takes the requested URL and processes it
through the list of mapping rules. Processing ends when the request is
accepted, rejected, or redirected to another server. If you have many rules,
you should consider the order of the rules in the list because processing
starts from the top of the list and continues down. You can change the pass
directives on LDGWs Configuration and Administration Forms in the Request
Processing section, and then select Request Routing.

IBM WebSphere Commerce Suite SPE Customization

Cache

LDGW also received a cache feature, which must not be confused with the
Net.Commerce cache. The caching in LDGW can cache static files allowing
for quick response to static files, which includes HTML files, image files, or
other kinds of files whose content will never change.

However, one drawback with the LDGW caching is that every file you want the
Web server to cache must be explicitly specified in the configuration file
before the Web server starts. Changes to the files of cached files will require
a restart of the Web server.

You can change which files to cache on LDGWs Configuration and
Administration Forms in the System Management section, and then select
Caching. For further information about WCS SPE configuration and tuning,
look for the following PDF documents on the WCS Web site:

http://www-4.1ibm.com/software/webservers/commerce/servers/lit-tech-general
.html

or

http://www.software. ibm.com/commerce/net .commerce

* Net.Commerce Configuration and Tuning Updated 29 February, 2000

* Webserver Configuration and Tuning Updated 29 February, 2000

e DB2 Configuration Parameters Updated 29 February, 2000

* Net.Commerce Configuration Planning Guide Updated 14 February, 2000

Chapter 1. Installing WCS Service Provider Edition 23

24 |BM WebSphere Commerce Suite SPE Customization

Chapter 2. Configuration of the server environment

The Websphere Commerce Suite (WCS) is a powerful product composed of
several IBM products. It includes Domino Go Webserver, DB2 Universal
Database, and more.

The Application Services Provider (ASP) can make use of the features in
these products and customize them, thus, merchants are able to offer added
value to their customers and be more competitive.

In the first part of this chapter, we will talk about how the ASP can configure
the Domino Go Webserver to obtain some benefits.

Another very important subject is where and in which directories all the
information files for each merchant on the server reside. This is very
important for the ASP because having good data organization is the key to
preventing any sharing problems between information for different merchants.
In the second part of this chapter, we will talk about how the WCS is
organized in the server. Using this information will make it very easy to get an
idea of where and how to modify, protect, and even achieve customization.

2.1 Unique URL

The objective with this section is to show how each merchant can get a
unique URL such that the mall or CSP URL is not shown on the Web browser.
The URL of the mall must be hidden, even in the dynamic pages, to give each
shop a more unique identification.

In many cases, merchants want to be contacted via the Internet by their own
domain. For example, a merchant who creates the store, myfirstiBMstore, in a
WCS SPE environment with the hostname, thehostname, must type
http://thehostname/myfirstIBMstore t0 see the store.

Often, the merchant wants or already has the Internet domain name
www.myfirstiBMstore.com. The merchant wants customers to get access to
the store from the mall address, but also from the Web site:
http://www.myfirstIBMstore.com.

The WCS SPE has been designed and developed to serve not just one
merchant but a group of merchants. It is, therefore, very important for the
ASP to have this information and the knowledge to offer this service to the
merchants.

© Copyright IBM Corp. 2000 25

2.1.1 Running the server with multiple IP addresses or virtual hosts

26

The ASP may want to use one server to provide Web service for multiple
merchants. For example, you might have two merchants (merchant A and
merchant B), both of whom want to make information about their companies
and/or stores available on the World Wide Web (WWW). You might want to
put both Web sites on the same machine if the expected number of requests
for information is not large enough to justify a separate machine for each
customer.

With the Domino Go Webserver, you can use multiple IP addresses, virtual
hosts, or both to provide multiple Web sites on one server.

2.1.1.1 Multiple IP addresses

To use multiple IP addresses, your server must be installed on a machine with
multiple network connections, have one or more adapters, or use IP alias
where each adapter has more than one IP address.

If you have only one network connection and run two instances of the server
on the same machine, only one server has the benefit of using the default
port number. Requests to the other server would have to include a port
number.

If you are running WCS under AlX, be aware that AlX has a method of
assigning an alias name to the same network adapter. In this way, you can
have several Web sites in the same server with only one network adapter.

For more information about the alias names under AlX, see the A/X Version
3.2 Commands Reference, Volume 3, GC23-2367.

If your machine has two or more adapters or network connections, you can
run just one instance of the server and assign each merchant a different IP
address. For each IP address, you must define a different host name. For
example, merchant A could be www.merchanta.com on |IP address 9.67.106.79,
and merchant B could be www.merchantB.org on IP address 9.83.100.45. You
could then configure the server to serve a different set of information
depending on the IP address the request comes in on. Because the server
can accept requests from the default port of each network connection,
requests to either host name could be directed to the default port number.

If your server has multiple IP addresses, you can associate a specific secure
sockets layer (SSL) key ring label for each individual IP address. For
example, if the server has two different IP addresses configured
(125.25.116.87 and 125.25.116.89) with Domain Name Server (DNS) entries
of www.Mall.mycom and www.SuperShopper . com, respectively, the keyfile database

IBM WebSphere Commerce Suite SPE Customization

could contain two separate sets of keys and certificates. Each hostname/IP
address combination would have its own corresponding certificate.

To take advantage of SSL support for multiple IP addresses, you must assign
each host name a different IP address and then define a specific key ring
label per IP address.

2.1.1.2 Virtual hosts

With virtual hosts, no additional hardware is required, and you can save IP
addresses. However, clients must support HTTP 1.1 or HTTP 1.0 with 1.1
Extensions. The reason for this is that Version 1.0 of HTTP does not support
multiple URLs for a single TCP connection. The problem has been solved
with Version 1.1 of HTTP.

With virtual hosts, you can run just one instance of the server and assign
each merchant to a different virtual host. In the DNS, you define your hosts
and associate them with the IP address of your server. You can then
configure the server to serve a different set of information depending on the
host for which the request is made. Requests do not require a port number.

— Note

Another advantage, if you chose the Virtual Host option, you don’t need a
SSL certificate for each merchant. It means that the same certificate is
used for the mall and every store in it. The cost of maintaining the
certificate can be shared among all the merchants in the mall.

2.1.1.3 Setting up your server

Setting up your server to use multiple IP addresses or virtual hosts is very
similar. For multiple IP addresses, you will need to specify the IP address a
request comes in on, and, for virtual hosts, you will need to specify the host
name for which a request is made.

You configure the server to serve different information for each merchant by
indicating that certain parts of your configuration apply only to requests
coming in on certain addresses or for certain hosts. You can configure three
key parts of your server so that requests are processed differently based on
the IP address they come in on or the host name in the URL: Welcome
Pages, Mapping rules, or Access control.

Welcome pages
You can specify different sets of file names to use as welcome pages
depending on the address on which the request comes in or the host name in

Chapter 2. Configuration of the server environment 27

28

the URL. The file names you define as welcome pages determine how the
server responds to requests that do not contain a specific file name.

For example, you might want to specify that homeA.html is a welcome page
only for requests received on 9.67.106.79 or for hostA, and homeB.html is a
welcome page only for requests received on address 9.83.100.45 or for
hostB.

From the Configuration and Administration forms page, you can configure
your list of welcome pages by clicking on Initial Page. From the Initial Page
form, click the help icon for information on defining welcome pages and how
to associate a welcome page file name with an IP address or a host name.

Alternatively, if you are editing the configuration file, you can add an
IP-address or host name at the end of a Welcome directive to associate a
welcome page file name with an IP address or a host name. Select
Directories and Welcome Page => Set viewing options and view the
details and the description of the Welcome directive.

Mapping rules

You can specify a different set of mapping rules for the server to use
depending on the address a request comes in on or the host name in a URL.
Mapping rules map a request to a physical file on the server and determine
whether the server processes a request.

For example, you might want to specify that a request beginning /cgi-bin/
received on IP address 9.67.106.79 or for hostA should be mapped to the
/merchantA/cgi/ directory, and the same request received on IP address
9.83.100.45 or for hostB should be mapped to the /merchantB/cgi/ directory.

From the Configuration and Administration forms page, you can configure
your mapping rules by clicking on Request Routing. From the Request
Routing form, click the help icon for information on how to use mapping rules
and how to associate a mapping rule with an IP address or a host name.

Alternatively, if you are editing the configuration file, you can add an
IP-address or hostname at the end of Exec, Fail, Map, Pass, and Redirect
directives to associate the directive with an IP address or a host name. Select
Resource mapping => Redirect URLs for details and the description of
these directives.

Access control
You can activate different protection rules for a request based on the address
the request comes in on or the host name in a URL. Protection rules are

IBM WebSphere Commerce Suite SPE Customization

defined in protection setups and determine how your server controls access
to files and programs.

For example, you might want to specify that a request beginning with /cgi-bin/
and received on address 9.67.106.79 is protected by the rules in a protection
setup named PROT-A, and the same request received on 9.83.100.45 is
protected by the rules in a protection setup named PROT-B.

From the Configuration and Administration forms page, you can configure
how protection is activated by clicking on Document Protection. From the
Document Protection form, click the help icon for information on protecting
documents and how to associate protection with an IP address or a host
name.

Alternatively, if you are editing the configuration file, you can add an
IP-address or a hostname at the end of the DefProt and Protect directives to
associate the directive with an IP address or a host name. For details, see the
description of these directives in "Access control - Set up access control for
the server".

For our purposes, it is strongly recommended to use the Virtual Host method
with the customization of the Welcome Pages.

2.1.1.4 Example

An ASP wants to install the WCS in one server (AIX or NT), and he or she
wants to use the power of the Domino Go Webserver for static pages and
another application.

He or she wants each merchant to have his or her own unique URL that can
be accessed by customers on the World Wide Web. Besides this, he or she
wants all the merchants to be able to be accessed in the mall.

What can we do?
For this example, we have the intervention of three persons:

e The ASP administrator who owns the hardware (server, hubs, routers,
network cards, and so on) and software and has all the administrator
attributes for all the sites.

* The merchant who owns a store and pays the ASP for the Hosting Service
and has administrator attributes just for his or her store.

* The customer who buys products and services from the merchant on the
Internet using a computer and a Web browser and his or her credit card.

Chapter 2. Configuration of the server environment 29

30

Scenario
We installed a WCS in one server with the hostname, www.themall.com..

Once we were sure that the WCS was working properly, we installed the
Merchant Tool. With the Merchant Tool, we created three stores:

« FREYTOR
« JAJAJA
* RISITAS

Those stores can be accessed without any problems by typing
http://www.themall .com/<storename> ; SO, we now have one mall with three
stores.

Now, the owner of the store, FREYTOR, wants to have a unique URL. It
means that he or she wants his or her customers to be able to access the
store by typing the IP address for the store or http: //www.freytor.com beside
the mall name, http://www.themall.com/freytor.

Moreover, the merchants want a unique identity, that is, they want to hide the
contents of the status bar that appear at the bottom of the browser and hide
any other information or status lines that refer to the mall.

Now, we must decide which solution to offer this merchant, the Multiple IP
solution or the Virtual Host solution.

For this example, we have chosen to use the Virtual Host solution because it
has several advantages in the typical environment for a WCS SPE
installation.

The Virtual Host solution is inexpensive to install and maintain because you
do not need to buy or install additional hardware. It is also easy because you
do not need to do any changes to your server configuration and it only takes a
few steps to solve the problem.

Another advantage of using this method is that you do not need to buy a new
SSL certificate for every store in the mall. This means that all the stores use
one common certificate, the SSL certificate for the mall.

In this example, we assume that the merchant already bought a URL and had
the domain name registered in the Network Information Center (NIC).

First, we will set up the Domain Name Server (DNS) to map the URL
www . freytor.com to the IP address of the mall, www.themall.com..

IBM WebSphere Commerce Suite SPE Customization

When the merchant creates a new store, the store has the status New. And
the store is not activated in the mall before the status is changed by the ASP

— Note

All the stores created with the WCS can have any of the next four statuses:

New.- The store has been created but the Merchant can’t open it.

Close.- The store is available to the Merchant, but the customers can’t buy.
Open.- The store is open and the Customer can see the catalog and buy.
Lock.- The ASP locks the store and the Merchant can’t customize or use it.

After creation, the merchant will contact the ASP because the ASP is the only
one who has access permission to update the store status from New to
Close. Later, the merchant can update from Close to Open status with the
Merchant Tool.

To update the store status from New to Close using the Net.Commerce
administration tool (ncadmin), we must perform the following steps:

1. Get in the administration tool by entering the following URL in the browser:
http://<hostname>/ncadmin

See Figure 3.

aE> ociment Dove EE S A N |

Figure 3. Ncadmin login screen

2. Type the Username and the Password, and then click on the LOGON
button.

Chapter 2. Configuration of the server environment 31

32

3. On the left menu bar, choose the Site Manager option as shown in Figure
4.

Figure 4. The Site Manager button

4. Inside the Site Manager option, we can see a new menu bar. In this menu
bar, we have a new section with the name CHS.

This section is only to manage the stores created under the WCS.

— Note
Don’t try to setup any store created under WCS with other options than
those that appear under the label CHS.

This options are only for those stores created with the Store Creator under
the Net.Commerce schema.

From this menu bar, chose Store Records as shown in Figure 5 on page
32.

ee) |

SETORE RECORDE

CTYBERCASH

FPASSWORD RESET

b- MESSAGING STSTEM

SORDER DELIVERY

» USA0E REPORTS LI

Figure 5. Choose Store Records to get information on stores

IBM WebSphere Commerce Suite SPE Customization

5. On the screen appears a form with all the fields left blank. To search for
stores, click on Search button. Next, as shown in Figure 6, there a list of
all the stores created with WCS will appear.

Select the store to update (in our case, FREYTOR)

Store Number Store Name {Currency State Domain Name Path
37 Everything Green 5D Open evervthinggreen
831 FREYTOR UsD Open FREYTOR

Figure 6. The list of stores in the bottom frame

When you have selected the desired store, the fields in the form are filled
with the store data.

6. One of the fields is Store Status; so, we must click on the field to chose
one of the four statuses available as shown in Figure 7.

Store Status
Cpen j
Lock
Cpen ion
Mew Store Categd]
UsD hd [Departmen

Figure 7. The Store Status field
So, we choose the Close status and click on the Upgrade button to save
the changes.
Now, the store can be opened and published by the merchant.

At this point, we can see the store published on the mall. If we type
http://themall.com, under the All Store Categories option of the MALL
DIRECTORY menu, we can see the merchants store (in this case,
FREYTOR).

The next part of the customization consists of creating a Welcome Page
for our merchant store.

Chapter 2. Configuration of the server environment 33

This simple welcome page must be created under the path
/usr/lpp/internet/server root/pub/ for AIX and x:\IBM\www\HTML\ for NT,
where x: is the logical unit where you install the WCS.

The page consists of three lines of Java script code. In this case, the page
named freytor.html of our example looks like the one shown in Figure 8.

<script language="JavaScript">
location.href = "/freytor/";
</script>

Figure 8. JAVA code for frytor.html|

Now, we have a welcome page that refers directly to the merchant store first
page; so, we must customize the Domino Go Webserver to be able to serve
the information of the merchant by just typing the URL.

To do this, perform the following steps:

1. Type the URL for http://www.themall.com/frmtpage.html. See Figure 9 on
page 34.

L
Fe

v ¥ 3 4 2 @ 3 & B @ E
Bk i Bekad fioms Sech Newwe Pk Seos Shp oo

" Bocknatks f; Losaion: [FAPENNN =] @ Whats Relsed
Ao essge 8 wetwat [ot (5] peoge (5 velowpapes 5] Dovrioad (5 e

< dann/no
Go Webserver

NEIGURATION AND ADMINISTRATION FORMS
The Configuration and Administration Forms allow youto set up and configare the Lotus Domino Go Webserver.

LOTUS DOMINO GO WEBSERVER WEB SITE
rspace and check aut our Web sit

=3 [Document: Done ESS TR e 1

Figure 9. The Domino Go Webserver start

2. Then, select the link CONFIGURATION AND ADMINISTRATION FORMS,
and a new screen appear asking for your User Name and the Password as
shown in Figure 10.

34 IBM WebSphere Commerce Suite SPE Customization

Uzername and Password Required E I

Enter uzername for Private_futhonization at 127.0.0.7:

Izer Mame: ||

Pazsword: I

x|

Cancel

Figure 10. The Username and Password screen

By default, the User Name is webadmin, while the Password is webibm.

Once the Username and the Password have been accepted, the whole
screen changes.

3. Now, select the Initial Page option under the Directories and Welcome

Page menu
Once we do this, the screen will show you a list like the one in Figure 11
on page 35.
Index File name Server TP address or host name
Exaraple lotsge. kil o855
1 Hevtor. hitrnl v frevtor. com
=2 csprmall htrml wwwr. thermnall com
3 A elcorme html
4 welc ome. htiml
5 indez htrml
& [Hadaia. htrnl |www.juJu_1u. Cootr
7 nisitas. htmml |Www.ns1tas.com
2

Frntpage htrl

Figure 11. The welcome page file list

This list is the welcome page file names database. You can see, for example,
that the file name, freytor.html, will appear only for requests from the host
name www.freytor.com, and so on.

Under the list, you can find some fields and radio buttons as shown in Figure
12. Those are our tools to use if we want to insert, replace, and/or remove a
welcome page.

Chapter 2. Configuration of the server environment 35

36

¥ Insert before " Insert after = Feplace " Remove Index |1 ‘l

File name I

Server IP address or host name I [Optional)

Figure 12. The welcome page file list tools

Inserting a new welcome page
Perform the following steps to insert a new welcome page:

1.
2.

Select either Insert before or Insert after.
Select an index number.

Your choices in steps 1 and 2 indicate the position you want the item to
have in the list. For example, if you select Insert before and Index 2, the
item will be second in the list. If you select Insert after and Index 4, the
item will be fifth in the list.

3. Enter the new file name in the File name field.

4. Optionally, specify the server IP address or host name to associate with

the welcome page.

Click Apply to update your server with the changes you made to the form,
or click Reset to return to the values that were on the form before you
made the changes.

Replacing a welcome page
Perform the following steps to replace a welcome page:

1.

Select Replace.

2. Select the index number of the item you want to replace.
3.
4

Enter the file name of a new welcome page in the File name field.

. Optionally, specify the server IP address or host name to associate with

the welcome page.

Click Apply to update your server with the changes you made to the form,
or click Reset to return to the values that were on the form before you
made the changes.

Removing a welcome page
Perform the following steps to remove a welcome page:

1.
2.

Select Remove.

Select the index number of the item you want to remove.

IBM WebSphere Commerce Suite SPE Customization

3. Click Apply to update your server with the changes you made to the form,
or Click Reset to return to the values that were on the form before you
made the changes.

Once we insert, replace, and/or remove a row, the Domino Go Webserver
presents a confirmation screen with two buttons: The Configuration Page
button and the Restart Server button.

To make more changes to the welcome page file names list, select
Configuration Page.

To invoke the changes, select Restart Server. This causes the server to
read the updated configuration file and restart without fully shutting down.

— Note

These steps must be followed for every new store. If the merchant don’t
want a unique URL, then the access to the store must be set to
http://<mall>/<storename>

At this point, it is possible for the customers to get access to the merchant’s
store by typing the unique URL (in this case, http://www.freytor.com).

This does not mean that access to the store via the mall’s URL has been lost.
Besides, if the customer types the URL, http://<malls/<store> (for our
example, http://www.themall.com/freytor), he or she can access the store
normally.

The final step is to hide the status bar that appears at the bottom of the
browser. When you move the mouse over a link, the address of the link
appears in the status line. If the merchant wants to hide the fact that his or her
shop is running as part of the mall, the merchant does not want to show the
full address in the status bar. Instead, the merchant wants to show a
message, such as Welcome to my store.To make this happen, we need to
type a few Java script lines in the index.html file.

Two variables have an influence on the status bar: window.defaultStatus and
window.status. The first one is the contents of the status bar when there is
nothing else to put on the status bar. It persists unless the contents of the
browser change. The second variable holds the message in the status bar
when something changes. The typical use of the second one follows:

<body onlLoad="window.defaultStatus='Welcome to my store.'">

Using those variables, we create a very short Java function to add on the
/usr/lpp/internet/server_root/pub/<storename>/index.html file (for AlX) or the

Chapter 2. Configuration of the server environment 37

38

XAIBM\www\HTML\<storename>\index.html file (for NT) as shown in Figure

13 on page 38.

<script language="JavaScript"s

var thetext=""
var started=false
var step=0

var times=1

function welcometext ()

{
times--
if (times==0)
{

if (started==false)

started = true;
window.status = hellotext;
setTimeout ("anim()",1) ;

thetext = hellotext;
1
1

function showstatustext (txt)

thetext = txt;
setTimeout ("welcometext ()", 4000)
times++

}

function anim()

{

step++

if (step==11) {step=1}

if (step==1) {window.status='>= }
if (step==2) {window.status='=> }
if (step==3) { }
if (step==4) { }
if (step==5) { }
if (step==7) {window.status='===>=>=='+thetext+'== }
if (step==8) {window.status='s====>=>='+thetext+'=<=< }
if (step==9) {window.status='= }
if (step==10) {window.status=' !

) |
if (step==11) {window.status='===
setTimeout ("anim() ",200) ;

</script>

var hellotext="You are now on www.freytor.com. Your 24 hours a day open store"

~

Figure 13. The Java function welcome text()

This code must be invoked on the BODY statement of the

/usr/lpp/internet/server_root/pub/<storename>/index.html file (for AlX) or the

IBM WebSphere Commerce Suite SPE Customization

XAIBM\www\HTML\<storename>\index.html file (for NT) as shown in Figure
14 on page 39.

<HEAD>
<FRAMESET ROWS=78,* BORDER=0 ONLOAD=setContentsURL() ;welcometext () ;>
<FRAME NAME=BRANNER

Figure 14. How to invoke the function welcome text

At this point, we have a store that can be accessed with the unique URL, by
typing the complete path (http://<malls/<stores), or by choosing it in the mall
directory, and we have a Java script function that shows a message instead of
the URL of any link.

— Note

This steps must be followed to customize any store you want to be
accessed by the unique URL and want to hide the contents of the status
bar.

2.2 Shop directory structure

One of the most important subjects for any ASP administrator is where and
how is the information organized.

Because WCS is a shared environment, it is very important for every ASP to
have good organization of the space in the server, and it is even more
important when the ASP has several stores owned by several merchants.

With good organization of the files, we will have more control over the space
assigned to each merchant, and we will be able to prevent any problem with
the server.

Note

In this case, we are talking about WCS running under AIX. In other cases,
such as AS/400, Windows NT, and so on, three are minor differences, but,
essentially, the structure is the same.

When the product is installed, by default, the installation process creates a
structure for each product.

Chapter 2. Configuration of the server environment 39

40

When the Domino Go Webserver is installed, the path,
/usr/lpp/internet/server root/pub, iS created. It means that all the
information beginning from this path can be published on the Internet.

When a new store is created, the WCS creates a sub-directory named after
the store under this path. For example, if we create a store named mystore,
the sub-directory, mystore, will be added to the path, and all HTML files
related to this store will be created under it as shown in Figure 15.

Figure 15. The directory and file structure of the Domino Go Webserver

In Figure 13 on page 38, we showed graphically where the WCS creates
sub-directories and where we can find required files.

Something similar happens when Net.Commerce is installed. The
Net.Commerce installation path is /usr/lpp/NetCommerce3/macro/en_US,
and, in this sub-directory, the WCS creates a new subdirectory under this
path for each new store.The name of the sub-directory is the code number
corresponding to the store on the DB2 database of this store as shown in
Figure 16 on page 41.

IBM WebSphere Commerce Suite SPE Customization

I metCommerces _netcommerce

_ dser_1s _Jen_us
_limas B [0
""" Jor_turnoff 2wy

foat_attributes d2w

cat_attributes d2w

72 720
14 e

Figure 16. The directory and file structure of the Net. Commerce

As you can see in Figure 15 on page 40, the structure of files and directories
of the Net.Commerce (one of the most important components of WCS) is very
similar to the structure of the Web Server. Also, in Net.commerce, every store
has its own sub-directory and files, and it doesn’t matter if the server has
many stores or only one of them. If one of the merchants makes a change or
customizes anything in his or her own store, the changes will not be reflected
in other stores. In addition to these files and subdirectories, there exists
another subdirectory structure and file sets that are common to all stores in
the mall. If you make changes to these common files, all the stores in the mall
will show the changes. In Figure 17 on page 42, we show graphically where in
the file structure these common files are, both for AIX and for Windows NT
4.0 Server.

Chapter 2. Configuration of the server environment 41

42

hbrovezer_addrsettingz.inc

1 ExpressStoremodel
_lizgl.d2w

Figure 17. The common files and directories on AIX

Figure 18 shows the common files and directories on Windows NT 4.0.

brovyser_addrsettings.inc,

G ExpressstoreModel

Figure 18. The common files and directories on Windows NT 4.0

IBM WebSphere Commerce Suite SPE Customization

Chapter 3. WCS SPE product overview

The WebSphere Commerce Suite, Service Provider Edition is a complex
product built upon a number of other products that are very powerful in their
own right. In this chapter, we will present an overview of how these
components are integrated. Then, we will continue with a more detailed
description of each, how they interact in WCS SPE, and what functionalities
they address. Lastly, we will discuss the skills and tools required to customize
them. This is intended to give a clear picture of WCS SPE to ISPs and to help
understand the product and how it may be customized.

3.1 WCS SPE architecture

WCS SPE is a comprehensive set of integrated software components that,
together, form the hosting server. Figure 19 illustrates these components.

Administrator/Merchant
Browser

Shopper Browser

MERCHAMNT STORE

MERCHAMT T2l
STORE WZARDS
CATALODS EDITOR
SITE ADMIMISTRATOR

HTTR/SSL
'TNehSphere Commerce Suite, —l
| Service Provider Edition | Domino Go YWebserver | |
| |
l |
| icati |
| WebSphg:r:-‘:gfllcatmn WebSphere Commerce
Suite I
| ML Document Structure |
| Services I
E-Commerce MET DT
|);-I MPG Classes | Framework |
| Tt [
Payment
| |
| W I
&
S

e —

Fr——————
DATABASE

Figure 19. WCS SPE overview

© Copyright IBM Corp. 2000 43

3.1.1 Overview of components

44

This section goes through the principle components of WCS SPE with
functional descriptions and explains its role in the overall WCS SPE product
and what tools or skill bases are needed to customize it.

3.1.1.1 DB2

The database is the backbone behind any successful e-business application;
therefore, it is also true of WCS SPE. DB2 is a multimedia Web-ready
relational database management system for business intelligence and
transaction processing. In the case of WCS SPE, it is used to store the
merchant’s profile, customer data, product portfolio, and details of the order.
Most transactions activated by the customer, such as adding a product to the
shopping basket, are stored in DB2. This allows for secure shopping and data
consistency. DB2 is an advanced product with many performance tuning
features and advanced searching tools, such as DB2 Extender. There is an
extensive amount of information on DB2. A good starting point is, perhaps,
the IBM DB2 homepage at the following Web site:

http://www.software. ibm.com/data/db2/

3.1.1.2 Domino Go Webserver

The Domino Go Webserver is a secure, high-performance, transaction-ready
Web server supporting a range of Internet standards, such as HTTP 1.0,
HTTP 1.1, SSL, and SSI. This product is also a fundamental building block for
the WCS SPE and comes fully configured after its installation. Its main
function is to redirect the requests from the user to the appropriate service on
the host machine, for example, to the Net.Commerce server director or to the
Websphere Application Server. It has the customizable functionalities
expected of a high-level Webserver and demands the skills typical of a Web
master. Further information can be found at the following Web site:

http://<your hostnames>/Docs/drulOmst.htm

3.1.1.3 Net.Data

Net.Data enables Internet and intranet access to relational database data,
which will then be presented through the customer’s browser. This gives Web
sites the ability to present dynamic pages to the customer, that is, pages that
can be changed depending on certain conditions. For example, if the
customer is a discount shopper, they will be presented with the same product
page as an ordinary shopper but with their special price. This price difference
is dynamically generated. Net.Data works through a CGI program that
interprets macro files. These files, typically, contain a mixture of Net.Data

IBM WebSphere Commerce Suite SPE Customization

syntax, SQL calls, and HTML tags, which the CGl interprets, resulting in an
HTTP response back to the browser.

In WCS SPE, Net.Data is an integral part of the application and is invoked
principally for display purposes, for example, a product/category page or a
shopping basket. It is a relatively simple but versatile and robust scripting
language with a large scope for customizing the presentation of a merchant’s
store. The skills required are Net.Data programming knowledge and SQL.

Further information and downloadable manuals can be obtained at the
following Web site:

http://www.software. ibm.com/data/net .data/

3.1.1.4 Websphere Application Server

The WebSphere Application Server (WAS) is a Java application server
designed for the management and deployment of Web applications. It is
installed on a host Webserver that redirects certain defined requests to it.
The WAS then uses the host machine’s Java run-time environment to execute
the Java programs that make up the Web applications. In WCS SPE, these
applications consist of Java Server Pages (JSPs) and Java servlets and are
used mostly in the merchant tool and catalog tool. The servlets work in
conjunction with XML files (see Section 3.1.1.5, “XML” on page 45) and MPG
template files (see Section 3.1.1.6, “Multi Purpose code Generation language
(MPG)” on page 47). Principally, Java skills are required to work with the
WAS.

There is a Web-based administrator using the following URL:
http://<your hostnames>:9527/

For further information on the WAS product, you can look at the following:
® http://www.software.ibm.com/webservers/appserv/

* The redbook, WebSphere Application Servers: Standard and Advanced
Editions, SG24-5460

3.1.1.5 XML

Extensible Markup Language (XML) is used to represent structured data in a
text format according to a set of rules or guidelines, that is, platform- and
application-independent. Both the structure and content of the data are
represented through a tag-based format that is easily generated and read by
a computer. These tags, or elements, convey the meaning of the data they
contain, not how they should be presented to the customer. Here is an

Chapter 3. WCS SPE product overview 45

46

example of an XML file from WCS SPE that is used to define a sample store
that is set up during installation. It has been edited slightly for simplicity:

<store storeName="WCSSPE Service Store'"s>

<pages fileName="homePage"
gui="/servlet/MerchantAdmin?DISPLAY=CTnchs.page editor.pageGUIs.HomePage"
htmlGenerator="html/nchs/page editor/simplePages/homePage.html”
htmlHeader="html /nchs/page_editor/htmlPageHeader.html"
htmlTrailer="html/nchs/page editor/htmlPageTrailer.html">

</pages>

</store>

which relates in C++ terms.

store.storeName
store->pages.fileName
store->pages.gui
store->pages.htmlGenerator
store->pages.htmlHeader
store->pages.htmlTrailer

It is an extensible markup language derived from SGML that gives you the
flexibility to define your own set of tags and allow third parties to use and
understand them.

The Websphere Application Server product contains document structure
services that allow the generation and manipulation of XML files using Java.
In WCS SPE, the data required to define the store creator wizard screens or
the merchant tool, for example, is saved in XML files. Java servlets are used
to parse these and create HTML output to the browser, based on their
contents. The WCS SPE also generates xmls, for example, when defining a
new store, a default file is created, settings.xml, which is then built upon to
produce the layout for the new store.

XML configuration files in NCHS
Figure 20 on page 47 shows the relationship among NCHS configuration
files.

IBM WebSphere Commerce Suite SPE Customization

merchantTool.xml

<noteBook resourceBundle="nchs.mtoolNLS". .>

<Folder name="setUpYourStoreFolder">
<link name="giftMessage"
url="/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/gfmsg.d2w/report?merfnbr=$env.merchant_id$".

tasks.xml
model.xml
<modelConfig> <nfile name="nchs/mtoolTasks.xml"/>
<model nameSpace="nchs"> <nfile name="nchs/orderMgmtTasks.xml"/
<resourceBundle name="mtoolNLS <nfile name="nchs/paymentTasks.xml"/>
bundle="com.ibm.commerce.tools.nchs.properties.mtoolNLS" /,

mtoolTasks.xml

mtoolNLS.properties
Ztask name="CTnchs/mtool/StoreState"

template="nchs/mtool/StoreState.tem"
setUpYourStoreFolder=Set Up Your Stor class="com.ibm.commerce.tools.nchs.mtool.StoreSfate"

giftMessage=gift message dbSessionRequired="true"
openCloseStore=open/close store accessControlled="true"
userGroups=siteAdmin storeAdmin*/>

Figure 20. Relationship among xml files

Further information on XML
The following are further sources of information on XML:

* From your WCS application:
http://<your hostnames:9527/doc/whatis/icxml4j.html

® http://www.ibm.com/developer/xml/

e The redbook, The XML Files: Using XML and XSL with IBM WebSphere
3.0, SG24-5479

3.1.1.6 Multi Purpose code Generation language (MPG)

—— Note

The use of MPG is not supported by IBM. Any modification to files in
relation to MPG is at your own risk. Changes made to files in relation to
MPG may not work in previous and/or new versions of WebSphere
Commerce Suite, Service Provider Edition. IBM does not guarantee any
migration path for changes made to files in relation to MPG.

Chapter 3. WCS SPE product overview 47

48

MPG (Multi Purpose Generator) is a utility used to generate output, and, in
the case of WCS, it produces the pages in the merchant tool, payment
wizard, and store creation wizard. It consists of two components: The model
(Java class) and the template. The model consists of the data or variables
that are used to generate the output, and the template describes the
presentation of that output. Unfortunately, the MPG models in the WCS SPE
Java framework are unpublished and cannot be modified nor can new ones
be created. However, the template part of MPG consists of text files that are
relatively simple to program; so, customization of the graphical layout is
possible. Even though MPG is used throughout the merchant tool and
wizards, new pages can be added in whatever Web technology the ISP is
familiar with and supported by WCS, such as simple HTMLs, net.data
macros, servlets, or JSP pages. MPG is also described in Appendix A, “Multi
purpose code generation language” on page 243.

3.1.1.7 Net.Commerce architecture

The WCS SPE is built upon and extends the IBM award winning merchant
server software, Net.Commerce 3.2. To understand WCS SPE, it is also
important to understand the underlying Net.Commerce capabilities.
Net.Commerce is built in two layers as shown in Figure 21.

g Owvearridable Functicns (OFs) 3
- Commands and s

i c E Commerce Framsork

Net. CDmmerceé

Figure 21. NetCommerce Architecture

Net.Server is a generic infrastructure containing foundation classes for the
system. It forms an environment for components to plug into to allow it to
handle Web requests and RDBMS-based transactions, among other things.
The second layer is the Net. Commerce layer, which consists of a
commerce-specific object model and a collection of commerce-related
commands, tasks, and overridable functions (OFs). It is at this level that

IBM WebSphere Commerce Suite SPE Customization

possibilities for merchant customizations appear. Figure 22 describes how
commands use tasks to call OFs.

Calls "

Command Calls
L|':i‘:":ii _f_3fl_"=j1 .

' — s __Calls_

L OF | . Task

! alls 1

1 Uses)

i 1

1 1

1 1

¥ ¥

Database

Figure 22. Commands, Tasks and Overridable Functions

Through the e-commerce framework, these OFs can be customized and
replaced by merchant-specific code, and new commands and tasks can be
created. This level of customization is used to implement business logic, such
as special prices, once a customer buys 10 of a certain product. Typical skills
required are C++, SQL, and knowledge of the Net. Commerce e-commerce
framework.

Further information can be obtained from the following sources:

* The downloadable document, Commands, Tasks, Overridable Functions
and the e-commerce Data Objects Updated 13 September, 1999 from the
following Websites:
http://www-4.1ibm.com/software/webservers/commerce/servers/lit-tech-gene
ral .html Or
http://www.software. ibm.com/commerce/net .commerce

* The Redbook Building e-commerce Solutions with Net. Commerce: A
Project Guidebook, SG24-5417.

* The book, e-business with Net. Commerce by Samantha Shurety, Prentice
Hall. ISBN 0-13-083808-x

Chapter 3. WCS SPE product overview 49

50 IBM WebSphere Commerce Suite SPE Customization

Chapter 4. Building custom stores in a shared environment

WCS SPE is based on the Net.Commerce product, which gives the ISP and
merchants many possibilities to customize their site. Most of the
customization that the merchant can do is done using the merchant tool.
However, adding features to WCS SPE or offering further customizations will
add a great value for the ISP because this will make one ISP different from
another.

The ISP might want to add new features or offer specialized customizations
for several reasons. One important reason is that adding your own new
features is close to producing your own product, which we will refer to as
branding WCS SPE.

Using WCS SPE as basis for a hosting environment, you will have to keep in
mind that all merchants will run in a shared environment. This means that all
merchants are using the same database, the same Web server, and also
sharing a lot of code implementing the business logic. Enabling or using
certain customizations might then have an impact on the whole environment,
which you need to be aware of before offering more advanced customizations
to your customers. When adding new features to the product, you also have
to consider if the new features should be included in the merchant tool, have
their own admin application, or just be offered as a service.

Also, when offering customizations to your merchants, you should consider if
it is of general interest, in which case the customizations should be available
in the merchant tool or, if it is so special, for one particular merchant.

In this chapter, we will explain the different levels of customizations that can
be done with the product and what influence they will have regarding the
other merchants and enabling certain kinds of customization. Since WCS
SPE is a complex product, extensible knowledge is required to fully utilize all
the features that come with the product, which means that a good
understanding of HTML, Java Script, Net.Data, Java, and C++ is a must.

4.1 The merchant store model

The stores created in WCS SPE are running in a hosted environment, which
means that they will share many common elements. The merchant tool and
the store model are shared by all the stores and are the elements you would
most like to customize. To get an understanding of how the stores makes use
of the shared elements, we will start with a description of what happens when
a new store is created using the wizard.

© Copyright IBM Corp. 2000 51

52

When a merchant creates a new store, one of the first things that happens is
that a new record in the table merchant is created, and the merchant is
assigned a unique reference number. This reference number is used to create
a directory that will contain the HTML and other data for the merchant.

In this example, we just created a store using the basic store creator and
gave it the name, advancedstore. The ID that will be used to create the
directory can be found in the MERFNBR column in the MERCHANT table.

As Figure 23 shows, our newly-created advanced store got the reference ID,
1098.

~
To exit db2 interactive mode, type QUIT at the command prompt. Outside
interactive mode, all commands must be prefixed with 'db2'.
To list the current command option settings, type LIST COMMAND OPTIONS.
For more detailed help, refer to the Online Reference Manual.
db2 => comnect to itso
Database Connection Information
Database server = DB2/6000 6.1.0
SQL authorization ID = DB2INST1
Local database alias = ITSO
db2 => select merfnbr from merchant where mestname='advancedstore’
MERFNBR
1098
1 record(s) selected.
do2 =>
- J

Figure 23. Fetching the merchant ID from the database

The directory that is created for the store is
/usr/lpp/NetCommerce3/CHS/source/1098, which, by default, contains a file,
settings.xml, that contains some default values for our site and the
information that was entered using the store creator wizard.

The created directory also contains another directory, HTML, which, by
default, contains a few HTML files that the store creator wizard copied. This
HTML directory is also the directory that we can access from the merchant
tool when managing files.

IBM WebSphere Commerce Suite SPE Customization

All the pre loaded files that you can see in Figure 24 on page 53 are just
simple redirections to some commands with the proper parameters; so, if a
user tries to access our store using the URL,
http://HOSTNAME/advancedstore/catalog, the file, catalog.html, will redirect the
user to the catalogbisplay command. The pre loaded files will not be
overwritten by WCS; so, the merchant can modify or delete them if they want
to. See Figure 24.

£50>: /usr/1lpp/NetCommerce3 /CHS/source/1098/html>1s -1)
total 56

-rw-rw-r-- 1 nobody nobody 605 Mar 09 13:42 catalog.html

-rw-rw-r-- 1 nobody nobody 604 Mar 09 13:42 customer service.html

-rw-rw-r-- 1 nobody nobody 661 Mar 09 13:41 logon.html

-rw-rw-r-- 1 nobody nobody 600 Mar 09 13:41 register.html

-rw-rw-r-- 1 nobody nobody 610 Mar 09 13:42 search.html

-rw-rw-r-- 1 nobody nobody 603 Mar 09 13:42 shop cart.html

-rw-rw-r-- 1 nobody nobody 610 Mar 09 13:42 zzz.html
£50>/usr/1pp/NetCommerce3/CHS/source/1098 /html > y

Figure 24. The preloaded HTML files

If the merchant has created new HTML or image files for the store, these can
be uploaded to the same directory where the preloaded files exist (see Figure
24) by using the upload facility in the merchant tool. You have to keep in mind
that managing files with the merchant tool is only possible for advanced
stores. If you want merchants using the basic store to be able to upload new
files, you will have to set up some kind of ftp service.

Using the merchant reference number, the store creator wizards also makes
some other directories to keep store-specific macro files. The directories in
our example, with reference number 1098, are as follows:

/usr/lpp/NetCommerce3/macro/en US/1098/
/usr/lpp/NetCommerce3/macro/en US/category/1098/
/usr/lpp/NetCommerce3/macro/en US/product/1098/

Based on the information given during the create store process, a set of
default macros will be placed in all the macro directories. As with the
preloaded HTML files, the preloaded macro files can be overridden if
necessary.

If you look at the preloaded macro files, for example, the logon.d2w macro,
you will see something like this:

$include "1098/include.inc"
$include "1098/theme.inc"
%include "ClassicStoreModel/logon.d2w"

Chapter 4. Building custom stores in a shared environment 53

The files, include.inc and theme.inc, are both located in the same directory as
the logon.d2w file and contain information about this particular store based
on information given when the merchant created the store or if they later
changed the store design using the merchant tool. This means that you
should never edit these files yourself because your changes would be
overwritten by the merchant tool.

The interesting part is the last include statement, which includes the actual
content of the logon page based on which store model the merchant has
selected. What this means is that all stores using the same store model share
the same macros. Making changes in one of the default macros for a store
model will be reflected immediately in all the stores using that model.

Apart from the merchant reference number in the table MERCHANT, a
number of other database entries is also created. The LogonID and password
entered on the first page in the store creator wizards are added to the
SHOPPER table together with other administrative info in the SHADDR table,
and an entry is made in the MCSPINFO table for the store.

4.2 Customizing the look of a store

54

The first thing a merchant probably would try to do is change the visual
appearance of the shop. If the merchant created a store using the advanced
store creator, a lot of customization can be done at the store level using the
merchant tool.

After the store is created, the merchant will still be able to change the look of
his or her store by using the design store feature in the merchant tool. This
features lets the merchant change, create, upload, and manage files.

Since each store has its own directory for HTML pages, based either on the
internal merchant reference or the store name, changes made to each store
does not have any side effect on the other stores.

Right now the shopping flow is predefined and cannot be changed by the
merchant, but, in some cases, the merchant wants a completely different
shopping flow. This could, for example, be for easier navigation, quicker
shopping, or something different.

Since all the stores are running in a shared environment, they all share the
same macro files based on what store model they have chosen during initial
store creation. However, there are some ways to do this kind of
customization, even if the stores are running in a shared environment. One

IBM WebSphere Commerce Suite SPE Customization

possible solution is to add the feature as a new store model by customizing
the wizard and making it available to all your customers.

It is also possible to customize at the store level, which is needed if, for
example, a merchant only wants some small changes that should not be
available to all other merchants. When the store was created, a few
directories for merchant-specific macro files were created. These directories
also contain some preloaded macros that contain a few lines of code to
include merchant-specific settings together with the default store model
macro. To customize one of the default macros for a merchant, such as the
logon page for merchant 1098, perform the following steps:

1. Locate the default macro in either
/usr/lpp/NetCommerce3 /macro/common/ClassicStoreModel OfF
/usr/1lpp/NetCommerce3/macro/common/ExpressStoreModel depending on
which model the merchant uses.

Copy the macro file, logon.d2w, to a temporary working directory.
Rename the macro file to logon.inc

Edit the macro making the required changes.

o k> 0D

When finished, copy the new macro, logon.inc, to the merchant-specific
directory, /usr/lpp/NetCommerce3/macro/en_US/1098.

6. In the same directory, open logon.d2w and change the last line to:
%include "1098/logon.inc"

and save the file. This line tells Net.Commerce to use our customized
version of the logon page instead of the shared macro.

After the change, you can launch the browser to verify that it is only this
particular store that has the customized version of our logon page.

As this example shows, it is possible to customize each store independently
of the other stores. However, customizing the look and feel of a store this way
means that the merchant will no longer be able to change the look of the store
by using the merchant tool. In fact, the changed files might even get
overwritten by the merchant tool.

4.3 Enabling Net.Commerce features

Enabling some of the Net.Commerce functionality can sometimes add extra
value for a merchant. What does Net.Commerce offer, and will it have any
impact on the other merchants, that this particular merchant wants to have a
special Net.Commerce feature enabled?

Chapter 4. Building custom stores in a shared environment 55

Net.Commerce as a basic product includes support for features such as
shopper groups, discount and other shipping algorithms. However, if you want
to enable features that are not directly available in the merchant tool, you
might end up having to customize it yourself as an ISP. This is the case with
shopper groups and shipping product by weight instead of quantity, which we
in later chapters will describe in details how to enable in the WCS SPE.

When customizing beyond what the merchant tools allows your merchant to
do, you should consider using a staging server in combination with your
production environment. As most online stores operate 24 hours a day, 365
days of the year, this makes it difficult to perform maintenance or test
changes to the system, without taking the system offline for a period.

Using a Net.Commerce staging server allows you to copy the production
server database so that it is possible to test updates without affecting
customers. This is not only useful for testing updates to the product catalog,
but it is also very important for testing new commands, overridable functions,
and macros.

4.4 Adding new Net.Commerce functionality

Extending Net.Commerce by adding new functionality is the most advanced
customization that can be done and will be required for very specific kinds of
customization, such as linking to legacy systems, implementing new shipping
algorithms, or other kinds of functionality that cannot be implemented using
standard Net.Commerce.

Customizing beyond the default Net.Commerce requires some work to be
done in terms of specification, design, and implementation. Since this type of
customization concerns the core of Net.Commerce, it requires knowledge
about the framework and how the core components can be customized.

4.4.1 Net.Commerce architecture

56

The core Net.Commerce system consists of the components, commands,
tasks, and overridable functions, that, together, are the object model that the
merchant can customize.

Commands

Commands perform specific kinds of business operations, such as putting
items in your shopping basket, displaying a category page, or updating your
address book. The command and its parameter are sent to the Web server,
typically posted from a form or as a hyper link, and then executed as an HTTP

IBM WebSphere Commerce Suite SPE Customization

request. When the command finishes executing, it sends back an HTTP
response to the browser.

Net.Commerce commands are classified as one of the following two types,
depending on whether they perform a Display or Process function.

Basically, Display commands just retrieve information from the database and
display the information to the shopper in the form of HTML pages. They work
by setting a view task that calls an overridable function to display the page.
Display commands can be invoked consecutively and will show the same
page every time. No changes are made to the database when a display
command is executed, or the same change is made every time the command
is executed. Examples of display commands are: AddressForm,
CategoryDisplay, ProductDisplay, and OrderDisplay.

Process commands process and write data to the database. This type of
commands will typical set several process tasks, which will call an overridable
function to perform part of the overall processing. Not all updates to the
database is done in the overridable function, so a process command itself
can access the database and make the updates. Unlike the Display
commands, the Process commands are not repeatable, so each time a
command is executed the database is updated and if the command executes
successfully, the changes are committed to the database. Examples of
process commands are: AddressAdd, RegisterNew, OrderltemUpdate, and
OrderltemDelete.

Most commands in Net. Commerce take as input parameters that are used
either by the command itself, an overridable function, or another command
that is called later. Two types of parameters exists: Required and optional. For
the commands supplied with WCS SPE, the syntax diagrams and
descriptions can be found in the manual, Commands, Tasks, Overridable
Functions and Database Tables, which comes with the product.

Tasks

A task is a “contract” between a command and an overridable function or
between two overridable functions. It defines the rules that govern the
relationship between the two. These rules dictate the following:

* The work that the caller expects the overridable function to perform
* The parameters that the caller passes to the overridable function

* The parameters and other results that the caller expects the overridable
function to return

Chapter 4. Building custom stores in a shared environment 57

58

When you create overridable functions, you must follow the rules that are
defined for the task that the overridable function implements.

As with commands, there are different types of tasks: Display tasks, process
tasks, and error tasks. Display tasks can be divided further into view and
exception tasks.

* View tasks are used for overridable functions that display pages that
shoppers see during the shopping process. For example, product pages,
category pages, and registration pages.

* Process tasks are used for overridable functions that process information,
such as calculating the total cost of an order, calculating the shipping
charge, or doing online payments.

» Exception tasks are used for overridable functions that handle exception
conditions, such as when a shopper tries to order an item that is not in
stock.

Tasks also provide the scope and security framework so that, if a merchant
decides to customize an overridable function for a specific task, the
customized version of the function is only active in this particular store. This
means that every merchant can implement and assign his or her own
overridable function for the tasks.

Overridable functions

An overridable function is program code that implements a task. It
implements the behavior that is expected by the task by dealing with input
and output parameters as defined by the task.

When an overridable function is called, a task name and merchant reference
number are provided to the overridable function manager. If the task is
defined with a scope of 0 (mall scope), the merchant reference number is
ignored, and default implementation of the overridable function is invoked. If
the scope is 1 (store scope) and the merchant has provided an
implementation, the merchant's implementation is invoked.

Functions that implement view or exception tasks usually populate the HTTP
response back to the browser by calling one of the supplied overridable
functions.

Overridable functions for process tasks usually process information, such as
checking address information, calculating a product price, or even linking to
external legacy systems.

IBM WebSphere Commerce Suite SPE Customization

If the merchant wants to customize one of the supplied overridable functions,
they should replace the default implementation with their own. Even though
all process tasks can be replaced, Net.Commerce also supplies a couple of
extendable process tasks. These tasks are available to the merchant for
performing additional processing prior to the completion of a command.
Examples of such functions are:

* EXT_SHIPTO_UPD
* EXT_ORD_PROC

These two tasks are used in the orderItemShipTo and OrderProcess commands
and can be customized. By default, they are assigned to the overridable
function, DoNothingNoArgs. The customer can then replace these functions
to meet their business needs, and they can do it without interfering with the
other merchant in the same environment. A typical example of customizing
the extendable process task is integrating Net.Commerce with a legacy
system, such as an order processing or online payment system.

4.4.2 Using Overridable functions or commands

In most cases, when a merchant needs some kind of customization at the
Net.Commerce level, one of the supplied overridable functions for a task can
be modified and then replace the original function. However, in some cases,
none of the existing process tasks can be used for customization, and the
only solution might be to write a completely new command for the required
business logic.

With the tasks model, the scope for overridable functions can be defined at a
store or mall level, which makes it possible for each task that a command
calls to have more than one implementation, depending on the merchant
requirement. Working with commands does not offer a similar feature, which
means that new commands are available to all merchants in a shared
environment. This must be taken into consideration when determining
whether to create a new command or an overridable function.

Deciding if the customization should be in the form of a new command or an
overridable function depends on what the merchant wants to accomplish. In
general, a command should be created for store operation or if the feature
needed is not supported by an existing command. A new overridable function
should be created if you want to change the way an existing command
operates or if a merchant has some special needs for a given task.

Chapter 4. Building custom stores in a shared environment 59

60

However, this rule should only be taken as a general guideline, since the
reverse might be true for some kind of business. Table 1 summarizes the
main differences between a command and an overridable function.

Table 1. Command and overrridable functions compared

Command

Overridable function

Defines business logic,

Performs a defined unit of
work, as part of a

form, such as add to
basket button.

Purpose such as adding items to command, such as
shopping basket. fetching the price of a
product.
Invoked by the shoppervia | Invoked by a command or
Invocation a button, hypertextlinkora | another overridable

function, using the task
model.

Implementation

At mall level, that means
thata merchantcan’tadd a
new command only

available at his or her store.

At merchant level, each
merchant can implement
their own custom function.

IBM WebSphere Commerce Suite SPE Customization

Chapter 5.

Shopper groups

Some existing business very likely have some system to differentiate regular
shoppers from one-time-only shoppers. One common way to do this is to
supply regular shoppers with a club card that gives them a discount on
certain products each time they shop. In addition, if they are part of the club,
these shoppers may be presented with special offers or products to which the
one-time-only shoppers do not have access.

In any e-business, there are many parallels to the preferred shopper group
schema. Instead of regular and one-time-only shoppers, an e-business
normally has registered and guest shoppers. Similar to the application for a
club card, registered shoppers must supply information, such as their name,
billing address, shipping address, and phone number. In return, they are
given (or personally create) a unique login name and password to your site.
This functions as their club card and places them in your virtual store’s
preferred group. Thus, by logging in each time they come to your store, they
will have access to specials and discounts that guest shoppers will not be
able to access.

Another purpose of club cards is to enable businesses to keep track of
shoppers’ buying patterns. By doing this, businesses can send promotional
information on products that fit into a customer’s particular pattern in hopes of
generating more business. The underlying idea is to personalize the shopping
experience for the customer by providing product information that is most
pertinent to his or her buying patterns.

In your e-business, personalization can be accomplished in a much more
efficient manner. Because your system is constantly monitoring the products
customers place in their shopping carts, it can instantaneously offer related
products or accessories for existing products. Personalization can also go
beyond just the sale of products. Registered shoppers could also possibly
change the look and feel of the virtual store to suit their preferences.

However, it is important that personalization does not become too intrusive.
For example, shoppers could get very annoyed if a related product is pushed
onto the screen every time they access their shopping cart. An alternative
would be to offer just one or two products during the checkout process. As
always, it is important to ensure that the customer has a good shopping
experience.

In this chapter, we explain how the ASP can customize the WCS to take
advantage of those features of Net.Commerce.

© Copyright IBM Corp. 2000 61

5.1 Customizing WCS to offer shopper group features

By default, the WCS does not provide any tool for the ASP to offer the option
of the shopper groups.

Don’t forget that the basement of the WCS is the Net.Commerce 3.2; so, we
will try to use and add the shopper group feature to it.

In Net.Commerce 3.2, being part of a shopper group can entitle shoppers to
discounts or other bonuses for purchasing products. For example, if market
research has shown that certain shoppers repeatedly purchase certain
products, you could assign these shoppers to the same shopper group, or you
can create a shopper group to reward frequent shoppers for their business.
You could also create shopper groups that are based on demographic
characteristics, such as a shopper group for seniors.

In Net.Commerce 3.2, you assign different prices to products for different
groups of shoppers. You can also customize the way products and categories
appear to members of shopper groups by creating a separate template with
the Template Designer. The customized product template is assigned to the
shopper group on the Product/ltem Information form.

In Net.Commerce 3.2, you can create, search for, list, modify, or delete
shopper groups using the Shopper Groups form.

— Note
In Net.Commerce 3.2, the shoppers can belong to only one group per
store.

To enroll a shopper in a shopper group after it is created, you must select
the group from the Customer Information form.

To make it possible to offer this feature to the merchants, the ASP must make
several customizations, additions, and changes to some parts of the WCS.
We will work with tables, macros, and commands; we recommend that you
follow the steps very carefully because they are common to all the stores in
the mall.

5.1.1 Shopper group basic

First of all, we must remember that, in WCS, we will have several people
involved in the shopping process.

62 IBM WebSphere Commerce Suite SPE Customization

* The administratoris a person who works for the ASP and has the
responsibility of managing and controlling all of the WCS mall.

* The merchantis a person or enterprise that buys a store (a space in the
WCS mall) to sell goods or services on the Internet. The Merchant can
only have control over his or her own store.

* The customeris a person who gets into the merchant’s store to buy goods
and services. The customer can be registered on the Merchant’s store or
not, but, if the Customer has been registered in the store, he or she can
belong to a shopper group (with other customers). The customer can only
have control over his or her own orders.

To make this easy to understand, imagine that we are an enterprise that
wants to offer some products over the World Wide Web (WWW). We contract
the services of an ASP who hosts our store.

We design our store, and, finally, the store is working and receiving orders
from several customers. Some of them are Registered Customers and the
rest are not.

We note that some of these Registered Customers have several things in
common: They belong to a sport club; so, we decide to contact them and offer
membership in a Shopper Group so that they can earn better prices and
special offers and discounts.

This is how we can do this: Every time a user who belongs to the Shopper
Group logs onto the store and browses the catalog, the store automatically
presents the special prices.

As we mentioned at the beginning of this chapter, Net. Commerce 3.2 (the
basement of the WCS) has this feature, but, in this case, we must customize
it.

Luckily, we can to use several code pieces , macros and commands from
Net.Commerce 3.2 without problem.

As we see in Chapter 2.2, “Shop directory structure” on page 39, there are
some files which are common for every store in the mall. Those files are
located as shown in Figure 25 and Figure 26 on page 64.

Chapter 5. Shopper groups 63

64

hbrovezer_addrsettingz.inc

1 ExpressStoremodel
_lizgl.d2w

Figure 25. The common files and directories on AIX

browser_addrsettings inc,

G ExpressstoreModel

Figure 26. The common files and directories on WINDOWS NT 4.0

—Note:

This customization can be made only in the Classic Store Model stores,
because the Express Store Model the customers never been registered.

Another thing to remember is that most of the tables from the database are
the same as for Net.Commerce, and they are common for every store in the
mall. We can, therefore, use them for this customization.

The tables we need to this customization are:

IBM WebSphere Commerce Suite SPE Customization

The Category table, CATEGORY, contains information that describes the
product categories and subcategories for each store. Each row describes
a category. The columns, CGLDESC and CGDISPLAY, are available for
merchant customization. The content, path, and name of the template that
displays the category information, subcategory information, and images
that were originally stored in these fields are now stored in the table,
CATESGP.

The Shopper Group Category Template table, CATESGP, contains
information indicating that the Net.Commerce system needs to display
category information to shoppers in different shopper groups. Each row
associates one shopper group with one template for one category. A
category template defines the format in which categories are displayed.
Template customization by category was introduced in Version 2 of
Net.Commerce. It functions similarly to the existing shopper group product
template customization, which uses the table, PRODSGP.

The Category Product Relationship table, CGPRREL, defines the
relationships between the categories and products. Each row describes
one relationship.

The Category Relationship Table, CGRYREL, defines the relationships
between the categories and subcategories for each store. This information
is used to structure the product categories that are presented to shoppers.
Each row describes one relationship.

The Merchant Customer Information table, MCUSTINFO, has two
purposes:

a. It associates shoppers with shopper groups.

b. It holds additional information about shoppers who have special
relationships with the merchant. For example, if a particular shopper
has a customer number with the merchant, the number can be
identified in this table.

But remember: Each shopper and customer can belong to a maximum of
one shopper group per merchant.

The Merchant Profile table, MERCHANT, describes each merchant
including information on the primary contact for the merchant. Each row
corresponds to one merchant. For a one-merchant mall, this table contains
only one row.

The Shopper Group Product Template table, PRODSGP, contains
information indicating that the Net.Commerce system needs to display
product and item information to shoppers in different shopper groups.
Each row associates one shopper group with one template for one

Chapter 5. Shopper groups 65

66

product. A product template defines the format in which products and
items are displayed.

The Product table, PRODUCT, describes all the products and items
available at all stores. An item is a product that must be qualified by one or
more attributes to be resolved into an SKU. An SKU (Stock Keeping Unit)
is an orderable item. In this table, items are distinguished by having a
non-null PRPRFNBR. Each row contains information on one product or
item.

The Shopper Address Book table, SHADDR, serves as an address book
for each registered shopper. At the time of registration, the shopper
provides his or her address, and this entry is flagged as permanent. When
a shopper moves, the shopper can provide a new address, and a new
entry is added to the table. The old address is not discarded, but it is
flagged as temporary. Temporary rows are also created if a shopper
provides a new address for a specific order without updating the address
book.

Shoppers can also add addresses for other individuals, such as relatives
or places, to this table. All such entries are flagged as permanent.

The Shopper Group table, SHOPGRP, describes the shopper groups that
are defined for each store. Each row contains information on one shopper
group.

The Shopper Profile table, SHOPPER, contains information needed to
identify each shopper and user to the Net.Commerce system. It also
contains some basic contact and classification information. (More contact
and classification information can be found in the SHOPDEM and
SHADDR tables.)

When the database is initially installed, a row is inserted into the
SHOPPER, ACCTRL, SHOPDEM, and SHADDR tables defining the site
administrator. In the table, SHLOGID is set to ncadmin, and SHLPSWD is
set to the encrypted form of ncadmin. The administrator should change
this password immediately after installing the system.

One row is defined for each shopper (whether or not the shopper is
registered) and for each user.

The relationship between the category, product, and item tables is shown in
Figure 27 on page 67.

IBM WebSphere Commerce Suite SPE Customization

e e CUBLOMEZEA
| Template —for
| SHOPGRP
categorizes 1 4
*
CGRYREL ; CATEGORY
categorized by PRODSGP /| CATESGP
* 1
F 3
has
categorized products by _. according
: - : o
CGPRREL | - i Price ——
_ SHOPGRP
categorized by i
! *
) *| PRODUCT |' fagged with
iterms 3 PRODPRCS
grouped
to products * 1
pOBEESSEs
+ *
Fe L :|PRODDSTATR PRODATR

Figure 27. Data model for categories, products and items

The relationship between the merchant, store, shopper group, and customer

tables is shown in Figure 28.

ORDERS

" OWnNs

Product *

STRCGRY

*

MERCHANT

defines

defines

categorizes

assigns
shopper

to shopper
group

MCUSTINFO

e

Info Tables

Shipping
Info Tables

Figure 28. Data model on merchants, stores, shopper groups, and customers

Chapter 5. Shopper groups

67

68

Every time a Registered Shopper wants to get in to the store, the servlet
Logon (managed by the Websphere Application Server -WAS-) invokes the
Net.Commerce command, LogonForm.

The LogonForm command displays a page that allows a registered shopper to
log on to the store or mall.

Once the Registered Shopper types the username and password, the WCS
proceeds to execute the Logon command.

The Logon command logs a registered shopper onto a store or mall; so, the
WCS shows the catalog using the categorybisplay command. This command
displays a category page based on the shopper group in which the shopper is
a member and verifies which template must be used.

This command is called the cat_category.d2w macro and is located on the
path, X\IBM\NetCommerce3\macro\en_US\category\<number of the store>,
(for Windows NT 4.0) or
usr/lpp/NetCommerce3/macro/en_US/category/<number of the store> (for
AlX).

The macro consists of three Net.Data code lines, and appears as shown in
Figure 29.

%include "831\include.inc"
%include "831\theme.inc"

$include "ClassicStoreModel\cat category.d2w"

Figure 29. The macro cat_category.d2w after the changes

In this figure, we can see that the first two lines call an environment macro for
the store (in our example, <number of the store> has been replaced by the
number 831). The cat_category.d2w macro (see the last line in Figure 29) is
the macro that shows the categories, sub-categories, and the product list.
Once the Registered Shopper chooses a category and/or subsequent
subcategories, the WCS shows the product list.

When the Registered Shopper choose a product, the Productbisplay
command is activated. The productDisplay command displays a product or
item page based on the shopper group of which the shopper is a member (if
any). As in the case of the CategoryDisplay command, this command calls for
the cat_product.d2w macro, located on the path,
XA\IBM\NetCommerce3\macro\en_US\product\<number of the store> (for
Windows NT 4.0) or usr/Ipp/NetCommerce3/macro/en_US/product/<number
of the store> (for AlX). Here again, the macro consists of three Net.Data code
lines, and it looks like that shown in Figure 30 on page 69.

IBM WebSphere Commerce Suite SPE Customization

%include "831\include.inc"
%include "831\theme.inc"
$include "ClassicStoreModel\cat product.d2w"

Figure 30. The macro cat_product.d2w after the changes

In this figure, we can see that the first two lines call an environment macro for
the store (in our example, <number of the store> has been substituted by the
number 831). The cat_product.d2w macro (see the last line in Figure 30) is
the macro that shows the categories, sub-categories, and the product list.
Finally, if the Registered Shopper chooses a product, the orderTtemList
command displays a list of products and items in the shopping cart from
which shoppers can select the ones they want to order. From this point, the
process is the same for all the shoppers.

5.1.2 The customization

The WCS customization to offer the shopper group features can be split into
two parts: The first part consists of the preparation of templates, macros, and
everything necessary to prepare the backoffice (the ASP side), and the
second part consists of the customization of the merchant tool to make it
possible for the merchant to create, modify, and manage shopper groups and
registered shoppers.

5.1.2.1 Customization of the site
The first step in this customization must be made by the ASP because the
ASP is the only person with access to the macros.

— Note

This first part of the customization is where the ASP prepare the way for
the merchant to operate with the shopper groups features.

First, we will change the standard WCS registration. The default is to register
at mall level so that a shopper is not connected to any store. For the shopper
groups feature, we require that merchants can only access shoppers that are
registered at their store or mall wide. Therefore, the standard registration
must be changed. The MCUSTINFO table in WCS represents the relationship
between the shopper and the merchant. See Figure 31 on page 70.

Chapter 5. Shopper groups 69

70

¥ 5ample Contents - MCUSTINFO
ALUSRESZ0- DBZ - ITSD - DBRZIMSTT - MCLUSTINEO

MCSHNBR |MCMENBR |MCSGMBR |MCUsSTID |MCFIELD1 |
3097 2147 2026

Figure 31. The MCUSTINFO table

Therefore, we require a command that will call the original RegisterNew
command but will also create this row in table MCUSTINFO. We will also use
the mcfield1 field as a flag, “A”, to signify whether a shopper is registered mall
wide. You will see an example SQL in Figure 32 where user shopper is
connected to merchant bellavista, but it is also registered mall wide (
mcfield1 = “A”).

(S — Command entered --------------------——-————- R
select shlogid, mename, mcmenbr, mcshnbr, mcfieldl
from shopper, merchant, mcustinfo
where shlogid="'shopper"
and mcshnbr=shrfnbr
and mcmenbr=merfnbr
SHLOGID MENAME MCMENBR MCSHNBR MCFIELD1
shopper bellavista 2147 8068 A
1 record(s) selected.)

Figure 32. SQL for example mcustinfo row

Our new command is called regwrapper. You can find the full code and
implementation details in Appendix B.1, “RegWrapper source code” on page
267. First, it calls the original registerNew command using the
CommandManager as follows:

// get id for RegisterNew cmd

NC RegistrationID ID regnew ("IBM","NC", "RegisterNew",1.0) ;

// Use CommandManager to call RegisterNew cmd

if (NC CommandManager::Call (LocalReq, LocalRes, Env, ID regnew) !=NULL) {
return false;

}

Then, it creates a new row in the MCUSTINFO table using the
merchantRefNum parameter, the shopper’s reference number, and an empty
shopper group value.

IBM WebSphere Commerce Suite SPE Customization

String VAL shopref = loggeduser->getRefNum() ;

String VAL shopgrp = "";

mcustinfo = mcustinfo home.Create (merchantRefNum, VAL shopref
, VAL shopgrp) ;

It also updates mcfield1 to the value A if the parameter regtype is equal to 1:

if (VAL regtype == "1")
mcustinfo->setFieldl ("A") ;

Lastly, we need to change the registration macro for the store to implement
our new command. In the ClassicStoreModel, this is file:

/usr/lpp/NetCommerce3/macro/common/ClassicStoreModel/reg new.d2w

We change the call from RegisterNew to our new command, regWrapper
(shown in bold below):

<FORM name="registerNew" method=POST
action="https://$ (HOST NAME)/cgi-bin/ncommerce3/regWrapper">
<INPUT TYPE="hidden" NAME="merchant rn" Value="§$ (MerchantRefNum) ">
<INPUT TYPE="hidden" NAME:"Old_email" Value="">

Then, we add our new parameter, regtype, as a check box for the shopper to
click on (shown in bold below):

<TD ALIGN="left">

<FONT FACE="S$ (BodyFontFace) "

SIZE="$ (BodyFontSize) ">$ (TXT_INSTR_REGISTERNEW)
</TD></TR>

<TR><TD></TD></TR>

<tr><TD COLSPAN=3>

<INPUT TYPE="checkbox" NAME="regtype" value='1l"'>Check here if you want Mall
wide registration.

</TD></tr>

<TR><TD></TD></TR>

The changed registration screen is shown in Figure 33 on page 72.

Chapter 5. Shopper groups 71

72

Account Registration

To register, type the information below. Registering allows you to maintain a shopping cart which
shenivs your order history.

I Check here if you want Mall wide registration.

Keep your LogonlD and password in a safe place.

LogonlD {mandatory)

Figure 33. Store and mall wide registration screen

— Note
The command regwrapper is only called when the store is in open state, if
the user is in the merchant tool and looking at the store, regwrapper will not
be called and the change will not be noticed.

Now, we continue with the required macro changes. To prevent any
undesirable changes on the other stores that do not need or do not want the
shopper groups featured, we must perform several steps:

When a store is created, the WCS give a consecutive number for this store;
so, in the hard drive, we can see on locations
XAIBM\NetCommerce3\macro\en_US\category (for Windows NT 4.0) and
usr/lpp/NetCommerce3/macro/en_US/category (for AlX) a subdirectory
named with the number of the store (for example, our store has the number
831).

On this sub-directory, we can find the macro, cat_category.d2w, which
contains a few lines of code as shown in Figure 34.

%include "831\include.inc"
%include "831\theme.inc"
$include "ClassicStoreModel\cat category.d2w"

Figure 34. The macro cat_category.d2w

IBM WebSphere Commerce Suite SPE Customization

On the first two lines, we can see that the macro includes another two
environment macros, include.inc and theme.inc, which are located on the
path X:\IBM\NetCommerce3\macro\en_US\ (for Windows NT 4.0) or
usr/lpp/NetCommerce3/macro/en_US/ (for AlX) on a subdirectory with the
same number as the store (for example, our store has the number 831).

Those macros declare several environment variables, such as background
color, text color, buttons, and so on.

The last line is the most important because it invokes the macro that really
does the work.

This macro is located on the path
XA\IBM\NetCommerce3\macro\common\ClassicStoreModel (for Windows NT
4.0) or usr/lpp/NetCommerce3/macro/common/ClassicStoreModel (for AIX)

This is a common macro. It means that if you make some changes on it, these
changes can affect the behavior of the other stores.

To prevent this, we can make a copy of this macro with a name, such as
cat_cat<number of the store>.d2w (even in the same subdirectory) and make
all the changes on it (for example, cat_cat831.d2w).

The only change we must make on the macro cat_category.d2w is to change
the name of the macro in the last line,

%include "ClassicStoreModel\cat_category.d2w", for

%include "ClassicStoreModel\cat_cat831.d2w".

%include "831\include.inc"
%include "831\theme.inc"
$include "ClassicStoreModel\cat cat831.d2w"

Figure 35. The macro cat_category.d2w after the changes

Now, we can modify the macro, cat_cat<number of the store>.d2w, located in
XA\IBM\NetCommerce3\macro\common\ClassicStoreModel (for Windows NT
4.0) or usr/lpp/NetCommerce3/macro/common/ClassicStoreModel (for AIX).

This macro is the template that presents the category information for all the
stores.

By default, if you have more than one price for the same product, when the
table of products is displayed, it shows one different row for each product; so,
if you have two different prices (one normal price and a price for one shopper

Chapter 5. Shopper groups 73

group), in the browser, there will appear a double product list. One with the
normal prices and the other with the prices for the shopper group.

If you see the report section of this macro, you can see that the macro has
several functions to present the category information on the browser.

These functions are:

dtw_odbc
dtw_odbc
dtw_odbc
dtw_odbc

%function
%function
%function
%function

GET_CATEGORY_TITLEINFO()
DISPLAY_CATEGORIES()
DISPLAY_PRODUCT_LIST_DUALPRICE()
DISPLAY_PRODUCT_LIST_SINGLEPRICE()

—_— o~~~
~— ~— ~— ~—

In Figure 36 on page 75, we can see what those functions in the Report
section are called.

74 I1BM WebSphere Commerce Suite SPE Customization

4 N
%{ %}
%{ HIML Report Section
%{ %}
$HIML REPORT({
<CENTER>
<TABLE BORDER=0 WIDTH=$ (TableWidth)
ALIGN=$ (TableAlignment) CELLPADDING=4 CELLSPACING=0>
<TR>
<TD ALIGN=$ (TitleAlignment) VALIGN="center"s
%$IF (PAGE == "LOGON")
<FONT FACE=$ (TitleFontFace) COLOR=S (TitleFontColor)
SIZE=$ (TitleFontSize) >Welcome back $(SESSION ID) !
%ELSE
<FONT FACE=$ (TitleFontFace) COLOR=S (TitleFontColor)
SIZE=$ (TitleFontSize) >$ (TXT TITLE CATALOG)
$ENDIF
</TD>
</TR>
</TABLE>
</CENTER>
<CENTER>
<TABLE BORDER=0 WIDTH=S$ (TableWidth) ALIGN=S$ (TableAlignment)
CELLPADDING=4 CELLSPACING=0>
<TR><TD>@DISPLAY CATEGORIES ()</ID></TR>
$IF (ComvMultiplyFactor == NULL || ConvDivideFactor == NULL)
<TR><TD>@DISPLAY PRODUCT LIST SINGLEPRICE()</TD></TR>
%ELSE
<TR><TD>@DISPLAY PRCDUCT LIST DUALPRICE ()</TD></TR>
$ENDIF
%$IF (NOCATEGORIESINCATEGORY == "YES" && NOPRODUCTSINCATEGORY == "YES")
<TR><TD><FONT FACE="S$ (BodyFontFace)"
SIZE="$ (BodyFontSize) ">$ (MSG_ NOPRODUCTS) </TD></TR>
$ENDIF
<!--TR><TD ALIGN="center">

Use our secure online ordering system, or call ...</TD></TR-->
</TABLE>
</CENTER>
</BODY>
</HIML>
%}
- J
Figure 36. The Report Section of the cat_cat<number of the store>.d2w macro
Chapter 5. Shopper groups 75

We will modify the DISPLAY_PRODUCT_LIST_SINGLEPRICE function
because this is the function that displays the product list and the prices for
each product in the list in this case. As shown in Section 5.1.1, “Shopper
group basic” on page 62, the database tables involved in this process are
closely related; the function, DISPLAY_PRODUCT_LIST_SINGLEPRICE,
must access up to three tables and several columns at the same time just to
display the prices. Figure 37 shows the tables involved by this macro,
product, cgprrel, and prodprcs (previously described), and, after a short
analysis, we can see that the function never uses the table, prodsgp, which
has the relation between the shopper group and this price.

sfunction (dtw odoc) DISPLAY PRODUCT LIST SINGLEFRICE() { h
SELECT prfull, pmbr, prsdesc, prthmb, prldescl, pppre, prrfnbr,
cpseqgnbr, cpognbr,
pppre,
NC CurrFormat (ppprc, '$(CurPrefix)', '$(CurPostfix)', 's(CurGroupingSep)' ,
'$ (CurDecimalSep) ' , $(CurRounder),
$ (CurGroupingSize) , $(CurDecimalPlaces), '', 1) as FormattedCurPrice
FROM product, cgprrel, prodprcs
WHERE cpcgnbr=$ (cgrfnbr) and cpmenbr=$ (cgmenbr) and cpprnbr=prrfnbr and prpub=1
and ppprnbr=prrfnbr and ppmenbr=s (MerchantRefNum) and
(($(NC_NOW) >= ppdeffs and $(NC NOW) <= ppdefff) or
(ppdeffs is null and ppdefff is null)) ORDER BY cpsegnbr ASC, pppre DESC
$REPORT{
<CENTER>
<TABLE BORDER=0 WIDTH=$ (TableWidth) ALIGN=$ (TableAlignment)
CELLPADDING=4 CELLSPACING=0>
$IF (cgrfnbr != HomeCategoryNum)
<TR>
<ID align="left">
<FONT FACE="$ (BodyFontFace)"
SIZE="$ (BodyFontSize) ">$ (TXT INSTR CATALOGCGRYLIST)< /FONT>
</TD>
</TR>
SENDIF
<TR><TD>
</TD></TR>
SROW({
@TW_CONCAT (V_FormattedCurPrice, $(CurDescription), SHOWPRICE)
$INCLUDE "/ClassicStoreModel/cat productlist.inc"
%}
</TABLE>
</CENTER>
%}
SMESSAGE({
100:{ @TW ASSIGN (NOPRODUCTSINCATEGORY, "YES") %} :continue
default: {
Problem with DISPLAY PRODUCT LIST SINGLEPRICE ()
in file $(DTW MACRO FILENAME) because of error $(RETURN CODE) .

$ (DTW_DEFAULT MESSAGE)%} :continue
%}
-) J

Figure 37. Part of the function DISPLAY_PRODUCT_LIST_SINGLEPRICE()

76 IBM WebSphere Commerce Suite SPE Customization

If we add some lines to the function in the SQL statement that selects the
variables from those databases, we can solve this part of the problem. See
Figure 38.

$function (dtw odbc) DISPLAY PRODUCT LIST SINGLEPFRICE() {

SELECT prfull, prmbr, prsdesc, prthmb, prldescl, pppre, prrfnbr,
cpsegnbr, cpmenbr, cpcgnbr, cpprnbr,
pppre, ppsgnbr, ppprnbr, ppmenbr,
psprnbr, pssgnbr,
NC CurrFormat (ppprc, '$(CurPrefix)', '$(CurPostfix)', 's(CurGroupingSep)' ,
'$ (CurDecimalSep) ' , $(CurRounder), $(CurGroupingSize) , $(CurDecimalPlaces), '', 1)
as FormattedCurPrice
FROM product, cgprrel, prodprcs, prodsgp
WHERE ~CGPRREL. cpegnbr=$ (cgrfnbr)
and COGPRREL. cpmenbr=$ (cgmenbr)
and CGPRREL. cpprnbr=PRODUCT . prrfnbr
and prpub=1
and (($(NC NOW) >= PRODPRCS.ppdeffs and $(NC NOW) <= PRODPRCS.ppdefff) or
(PRODPRCS .ppdeffs is null and PRODPRCS.ppdefff is null))
and PRODSGP . psprnbr=PRODUCT . prrfnbr
and PRODPRCS . ppprnbr=PRODUCT . prrfnbr
and PRODPRCS.ppsgnbr=$ (OHT CODE)
and PRODPRCS . ppmenbr=$ (MerchantRefNum)

ORDER BY cpsegnbr ASC, pppre DESC

N J

Figure 38. The SQL statement of DISPLAY_PRODUCT_LIST_SINGLEPRICE()

We added the table, prodsgp, and some where conditions, such as
and PRODPRCS.ppsgnbr=$ (OHT CODE).

The ppsgnbr column of the PRODPRCS table is the key to getting the correct
price for a specific shopper group.

The $(OHT_CODE) variable is the result from the other two functions that we
included. Those functions are: GET_SHOPERGROUP and
GET_CODEPRICE.

The GET_SHOPERGROUP function gets the shopper group code from the
table SHADDR using the variable $(SESSION_ID), which has the username
of the shopper. If the shopper is not a registered shopper, the variable,
$(SESSION_ID), has a code generated by the WCS.

Chapter 5. Shopper groups 77

78

sfunction (dtw odbc) GET SHOPERGROUP() {
SELECT sanick, sashnbr
FROM shaddr
WHERE ~SHADDR.sanick='$ (SESSION ID)'
$REPORT{

SROW({

@TW_assign (CHT USER, V_SASHNER)
}

SMESSAGE
100:{ @DTW ASSIGN (OHT USER, NULL) %} :continue
default: {
Prcoblem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME)
because of error $(RETURN CODE).
$ (DTW DEFAULT MESSAGE)%} :continue

o°

";}
- J
Figure 39. The GET_SHOPPERGROUP() function

o°

You can see that, if a shopper group exists, the variable, $(OHT_USER), gets
a value; otherwise, if the shopper group does not exist (because it is not a
registered user), the variable, $(OHT_USER), gets a NULL value.

The GET_CODEPRICE() function, shown in Figure 40, uses the variable,
$(OHT_USER), to get the code of the price belonging to the shopper group.

~
$function (dtw odbc) GET CODEPRICE() {

SELECT mcshnbr, mcsgnbr
FROM mcustinfo
WHERE MCUSTINFO.mcshnbr=$ (CHT USER)
$REPORT{
SROW({
@TW assign (CHT CODE, V_MCSGNBER)
}

SMESSAGE
100:{ @DTW ASSIGN (OHT CODE, NULL) %} :continue
default: {
Problem with GET CODEPRICE() in file $(DI'W MACRO FILENAME)
because of error $(RETURN CODE).
$ (DTW DEFAULT MESSAGE)%} :continue

o°

o\
— 0P

- /

Figure 40. The GET_CODEPRICE() function

Now, using the MCUSTINFO table, which lists the relationships between the
shoppers and the shopper groups, the variable, $(OHT_CODE), gets the
code of the shopper group, and, with this value, we can get the correct
product price for a specific shopper group.

IBM WebSphere Commerce Suite SPE Customization

Finally, we modify the HTML_REPORT section of the macro. See Figure 41.

-

o°

o°

{
{ HIML Report Section
{

o°

$HIML REPORT({

<HTML>

@GET_CATEGORY TITLEINFO()
<HEAD>

<CENTER>
<TABLE BORDER=0 WIDTH=$ (TableWidth) ALIGN=$ (TableAlignment)
CELLPADDING=4 CELLSPACING=0>
<TR><TD>@DISPLAY CATEGORIES ()</TD></TR>
$IF (ConvMultiplyFactor == NULL || ConvDivideFactor == NULL)
@GET _SHOPERGROUP ()
%IF (OHT USER == NULL)
<TR><TD>@DISPIAY PRODUCT LIST SINGLEPRICE TSNULL()</TD></TR>
%ELSE
@GET_CODEPRICE ()
%IF (OHT CODE == NULL)
<TR><TD>@DISPIAY PRODUCT LIST SINGLEPRICE TSNULL()</TD></TR>
%ELSE
<TR><TD>@DISPIAY PRODUCT LIST SINGLEPRICE ()</TD></TR>
$ENDIF
<TR><TD>@DISPIAY PRODUCT LIST SINGLEPRICE ()</TD></TR>
$ENDIF
$ELSE
<TR><TD>@DISPIAY PRODUCT LIST DUALPRICE()</TD></TR>
$ENDIF
%$IF (NOCATEGORIESINCATEGORY == "YES" && NOPRODUCTSINCATEGORY == "YES")
<TR><TD><FONT FACE="$ (BodyFontFace) "
SIZE="$ (BodyFontSize) ">$ (MSG_NOPRODUCTS) </TD></TR>
$ENDIF
<!--TR><TD ALIGN="center"><FONT FACE="$ (BodyFontFace)"
SIZE="$ (BodyFontSizeSmall) ">
Use our secure online ordering system, or call
.. .</TD></TR-->
</TABLE>
</CENTER>
</BODY>
</HIML>

&l

~

Figure 41. The new HTML_Report section

The next step is to make a new function that manages those cases when the

shopper is not a registered user.

This new function is called from the macro in Figure 41 and its name is
DISPLAY_PRODUCT_LIST_SINGLEPRICE_ISNULL.

Chapter 5. Shopper groups

79

80

This function is almost the same as the
DISPLAY_PRODUCT_LIST_SINGLEPRICE function, but, as we can see in
Figure 42, we compare the ppsgnbr column with the prrinbr column of the
PRODUCT table instead of the $(OHT_CODE) variable.

$function (dtw odbc) DISPLAY PRODUCT LIST SINGLEPRICE ISNULL() {

SELECT prfull, prmbr, prsdesc, prthmb, prldescl, pppre, prrfnbr,
cpsegnbr, cpmenbr, cpcgnbr, cpprnbr,
pppre, ppsgnbr, ppprnbr, ppmenbr,
psprmbr, pssgnbr,
NC CurrFormat (ppprc, '$(CurPrefix)', '$(CurPostfix)', 's(CurGroupingSep)' ,
'$ (CurDecimalSep) ' , $(CurRounder), $(CurGroupingSize) , $(CurDecimalPlaces), '', 1)
as FormattedCurPrice
FROM product, cgprrel, prodprcs, prodsgp
WHERE ~CGPRREL. cpcegnbr=$ (cgrfnbr)
and COGPRREL. cpmenbr=$ (cgmenbr)
and CGPRREL. cpprnbr=PRODUCT . prrfnbr
and prpub=1
and (($(NC NOW) >= PRODPRCS.ppdeffs and $(NC NOW) <= PRODPRCS.ppdefff) or
(PRODPRCS .ppdeffs is null and PRODPRCS.ppdefff is null))
and PRODSGP . psprnbr=PRODUCT . prrfnbr
and PRODPRCS . ppprnbr=PRODUCT . prrfnbr
and PRODPRCS.ppsgnbr is NULL
and PRODPRCS . ppmenbr=$ (MerchantRefNum)
ORDER BY cpsegnbr ASC, pppre DESC
$REPORT{
<CENTER>
<TABLE BORDER=0 WIDTH=$ (TableWidth) ALIGN=$ (TableAlignment)
CELLPADDING=4 CELLSPACING=0>
$IF (cgrfnbr != HomeCategoryNum)
<TR>
<ID align="left">
<FONT FACE="$ (BodyFontFace)"
SIZE="$ (BodyFontSize) ">$ (TXT INSTR CATALOGCGRYLIST) < /FONT>
</TD>
</TR>
SENDIF
<TR><TD>
</TD></TR>
SROW({
@TW_CONCAT (V_FormattedCurPrice, $(CurDescription), SHOWPRICE)
$INCLUDE "/ClassicStoreModel/cat productlist.inc"
%}
</TABLE>
</CENTER>
%}
SMESSAGE({
100:{ @TW ASSIGN (NOPRODUCTSINCATEGCRY, "YES") %} :continue
default: {
Problem with DISPLAY PRODUCT LIST SINGLEPRICE ()
in file $(DTW MACRO FILENAME) because of error $(RETURN CODE) .

$ (DTW_DEFAULT MESSAGE)%} :continue

o°
—

o°
—

-

Figure 42. The DISPLAY_PRODUCT_LIST_SINGLEPRICE_ISNULL function

IBM WebSphere Commerce Suite SPE Customization

Now, it is time to work with the cat_product.d2w macro.

This macro works very similarly to cat_category.d2w, but, in this case, we
only work with products, not with categories.

As in the cat_category.d2w macro, when a store is created, the WCS gives a
consecutive number for this store; so, in the hard drive, we can see, on
location X:\IBM\NetCommerce3\macro\en_US\product (for Windows NT 4.0)
or usr/Ipp/NetCommerce3/macro/en_US/product (for AIX), a sub-directory
named after the number of the store (for example, our store has the number
831).

On this sub-directory we can find the macro, cat_product.d2w, which contains
a few lines of code as shown in Figure 43.

%include "831\include.inc"
%include "831\theme.inc"
$include "ClassicStoreModel\cat product.d2w"

Figure 43. The macro cat_category.d2w

On the first two lines, we can see that the macro includes another two
environment macros: include.inc and theme.inc.

Both are located on the path X:\IBM\NetCommerce3\macro\en_US\ (for
Windows NT 4.0) or usr/lpp/NetCommerce3/macro/en_US/ (for AIX) on a
subdirectory with the same number of the store (for example, our store has
the number 831).

Those macros declare several environment variables, such as the color of the
background, text, buttons, and so on.

The last line is the most important because it invokes the macro that really
does the work.

This macro is located on the path
XA\IBM\NetCommerce3\macro\common\ClassicStoreModel (for Windows NT
4.0) or usr/lpp/NetCommerce3/macro/common/ClassicStoreModel (for AIX)

This is a common macro. It means that if you make some changes to it, these
changes can affect the behavior of the other stores.

To prevent this, we can make a copy of this macro with a name, such as
cat_pro<number of the store>.d2w (even in the same subdirectory) and make
all the changes to it (for example, cat_pro831.d2w).

Chapter 5. Shopper groups 81

The only change we must make on the macro cat_product.d2w is to change
the name of the macro in the last line:

%include "ClassicStoreModel\cat_product.d2w" for

%include "ClassicStoreModel\cat_pro831.d2w"

%include "831\include.inc"
%include "831\theme.inc"
$include "ClassicStoreModel\cat pro831l.d2w"

Figure 44. The macro cat_product.d2w after the changes

Now, we can modify the macro, cat_cat<number, of the store>.d2w located in
XAIBM\NetCommerce3\macro\common\ClassicStoreModel (for Windows NT
4.0) or usr/lpp/NetCommerce3/macro/common/ClassicStoreModel (for AIX).

This macro is the template that presents the product information for all the
stores.

By default, if you have more than one price for the same product, when the
table of products is displayed, it shows one different row for each product; so,
if you have two different prices (one normal price and a price for one shopper
group), in the browser, there will appear a double product list. One with the
normal prices and the other with the price for a shopper group.

If you look at the report section of this macro, you can see that the macro has
several functions to present the category information on the browser.

Those functions are:

dtw_odbc
dtw_odbc
dtw_odbc
dtw_odbc
dtw_odbc
dtw_odbc
dtw_odbc
dtw_odbc
dtw_odbc
dtw_odbc

%function
%function
%function
%function
%function
%function
%function
%function
%function
%function

GET_PRODUCTNAME()
GET_DISTINCTATTRIBUTES()
DISPLAY_PRODUCT_IMAGE()
DISPLAY_PRODUCT_INFO
DISPLAY_PRODATTR
DISPLAY_PRODUCT_DUALPRICE
DISPLAY_PRODUCT_SINGLEPRICE()
DISPLAY_PRODUCT_DUALPRICE_RANGE()
DISPLAY_PRODUCT_SINGLEPRICE_RANGE()
DISPLAY_ITEMS_DROPDOWN()

—~——— A~ aAAaAAaAaAAA~
— N~ S~ ' ~—

In Figure 45 on page 83, we can see how some of the most important
functions of the Report Section are called.

82 IBM WebSphere Commerce Suite SPE Customization

{ HIML Report Section

a0 o op)
ARRARAR
J

$HIML REPORT({

<HIML>

<CENTER>
<TABLE BORDER=0 WIDTH=S$ (TableWidth) ALIGN=S$ (TableAlignment)
CELLPADDING=4 CELLSPACING=0>
<!--A HREF="http://$ (HOST NAME) /cgi-bin/ncommerce3/InterestItemAdd?product rn=
$ (prrfnbr) smerchant rn=3$ (MerchantRefNum) SWISHLISTSHOPPER RN=$ (SESSION RN)
&url=http://$ (HOST NAME) /cgi-bin/ncommerce3/InterestItemDisplay">
Add to my wishlist
</A-->
@DISPLAY PRODUCT IMAGE ()
@DISPLAY PRODUCT INFO()
$IF (FLAG ATTRIBUTES == "0" &% (ConvMultiplyFactor == NULL | |
ConvDivideFactor == NULL))
@DISPLAY PRODUCT SINGLEPRICE ()
SELIF (FLAG ATTRIBUIES == "0" && (ConvMultiplyFactor != NULL &&
ConvDivideFactor != NULL))

@DISPLAY PRODUCT DUALPRICE ()
$ELIF (FLAG ATTRIBUTES > "0" && (ConvMultiplyFactor == NULL ||
ConvDivideFactor == NULL))

@DISPLAY PRODUCT SINGLEPRICE RANGE ()

@DISPLAY ITEMS DROPDOWN ()
SELIF (FLAG ATTRIBUIES > "O" && (ConvMultiplyFactor != NULL &&
ConvDivideFactor != NULL))

@DISPLAY PRODUCT DUALPRICE RANGE ()

@DISPLAY ITEMS DROPDOWN ()
$ENDIF
<TR><TD ALIGN="center"><FONT FACE="S$ (BodyFontFace)" SIZE="-1"
COLOR=$ (HighlightFontColorl) >**You can change or remove items from your shopping
cart at any time.</TD></TR>

(o -
=

Figure 45. The Report Section of the cat_pro<number of the store>.d2w macro

The function we will modify is DISPLAY_PRODUCT_SINGLEPRICE()
because this is the function that displays the price of the product chosen by
the customer from the product list.

As shown in Section 5.1.1, “Shopper group basic” on page 62, the databases
involved in this process have a very close relationship. As shown in Figure 46
on page 84, the DISPLAY_PRODUCT_SINGLEPRICE function uses two
tables and several columns at the same time to display the prices.

Chapter 5. Shopper groups 83

4 $function (dtw odbc) DISPLAY PRODUCT SINGLEPRICE () { A
SELECT prnbr, ppprc, ppcur, pppre, ppdeffs, ppdefff,
NC CurrFormat (ppprc, '$(CurPrefix)', '$(CurPostfix)', 's(CurGroupingSep)' ,
'$ (CurDecimalSep) ' , $(CurRounder), $(CurGroupingSize) , $(CurDecimalPlaces),
'en US', 1) as FormattedCurPrice
FROM product, prodprcs
WHERE prmenbr=S (MerchantRefNum)
and prrfnbr=s (prrfnbr)
and ppprnbr=$ (prrfnbr)
and (($(NC NOW) >= ppdeffs and $(NC NOW) <= ppdefff) or (ppdeffs is null and
ppdefff is null))
ORDER BY pppre DESC
$REPORT{
@TW ASSIGN (ACTUALPRICE, "O")
<TR BGCOLOR=$ (HighLightColor2) >
<TD ALIGN="center" COLSPAN=2>
SROW({
%IF (ROW NUM == "1")

$ (LBL, PRODUCTPRICE) :

$ (V_FormattedCurPrice) $(CurDescription)
<!--
$ (V_ppdeffs) to $(V ppdefff)-->
@TW ASSIGN (ACTUALPRICE, V FormattedCurPrice)
SENDIF
%IF (V_pppre == "0" && ACTUALPRICE < V FormattedCurPrice)

(<STRIKE>S (V_FormattedCurPrice) $(CurDescription)</STRIKE>)
<!--
$ (V_ppdeffs) to $(V_ppdefff)-->
SENDIF
- : J

Figure 46. Part of the function DISPLAY_PRODUCT_SINGLEPRICE()

As we can see, the tables involved by this macro are product, and prodprcs,
which were described earlier, and, after a short analysis, we can see that the
function never uses the table, prodsgp, which has the relation between the
shopper group and this respective price.

If we add some lines to the function in the SQL statement that selects the
variables from those databases, we can solve this other part of the problem.
See Figure 47.

84 IBM WebSphere Commerce Suite SPE Customization

-~
$function (dtw odbc) DISPLAY PRODUCT LIST SINGLEFRICE() {

SELECT prfull, prmbr, prsdesc, prthmb, prldescl, pppre, prrfnbr,
cpsegnbr, cpmenbr, cpcgnbr, cpprnbr,
pppre, ppsgnbr, ppprrbr, ppmenbr,
psprnbr, pssgnbr,
NC CurrFormat (ppprc, '$(CurPrefix)', '$(CurPostfix)', 's(CurGroupingSep)' ,
'$ (CurDecimalSep) ' , $(CurRounder), $(CurGroupingSize) , $(CurDecimalPlaces), '', 1)
as FormattedCurPrice
FROM product, cgprrel, prodprcs, prodsgp
WHERE ~CGPRREL. cpegnbr=$ (cgrfnbr)
and COGPRREL. cpmenbr=$ (cgmenbr)
and CGPRREL. cpprnbr=PRODUCT . prrfnbr
and prpub=1
and (($(NC NOW) >= PRODPRCS.ppdeffs and $(NC NOW) <= PRODPRCS.ppdefff) or
(PRODPRCS .ppdeffs is null and PRODPRCS.ppdefff is null))
and PRODSGP . psprnbr=PRODUCT . prrfnbr
and PRODPRCS . ppprnbr=PRODUCT . prrfnbr
and PRODPRCS.ppsgnbr=$ (OHT CODE)
and PRODPRCS . ppmenbr=$ (MerchantRefNum)
ORDER BY cpsegnbr ASC, pppre DESC

N J

Figure 47. SQL statement of function DISPLAY_PRODUCT_SINGLEPRICE()

We added the table prodsgp, and some where conditions, such as
and PRODPRCS.ppsgnbr=$(OHT_CODE).

This column, ppsgnbr, of the table, PRODPRCS, is the key to getting the
correct price for a specific shopper group.

The $(OHT_CODE) variable is the result of two other functions that we
included. Those functions are: GET_SHOPERGROUP and
GET_CODEPRICE

The GET_SHOPERGROUP function gets the shopper group code from the
table, SHADDR, using the variable, $(SESSION_ID), which has the
Username of the shopper. If the shopper is not a registered shopper, the
variable, $(SESSION_ID), has a code generated by the WCS. See Figure 48.

Chapter 5. Shopper groups 85

$function (dtw odbc) GET SHOPERGROUP () {
SELECT sanick, sashnbr
FROM shaddr
WHERE SHADLR.sanick='$ (SESSION ID) '
$REPORT{

SROW{

@TW _assign(OHT USER, V SASHNBR)
}

SMESSAGE {
100:{ @DIW ASSIGN(OHT USER, NULL) %} :continue
default: {
Problem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME)
because of error $(RETURN CODE).
$ (DIW DEFAULT MESSAGE)%} :contirmue

o°

o°

";}
- /
Figure 48. The GET_SHOPPERGROUP()function

You can see that, if a shopper group code exists the $(OHT_USER) variable
gets this value; otherwise, if a shopper group does not exist (because it is not
a registered user), the $(OHT_USER) variable gets a NULL value.

The GET_CODEPRICE function uses the variable, $(OHT_USER), to get the
price code that belongs to the shopper group.

sfunction (dtw odbc) GET CODEPRICE() {
SELECT mcshnbr, mcsgnbr
FROM mcustinfo
WHERE MCUSTINFO.mcshnbr=$ (OHT USER)
$REPORT{

SROW({

@TW_assign (CHT CCDE, V_MCSGNER)

}

%)

SMESSAGE
100:{ @DTW ASSIGN (OHT CODE, NULL) %} :continue
default: {
Problem with GET CODEPRICE() in file $(DI'W MACRO FILENAME)
because of error $(RETURN CODE).
$ (DTW DEFAULT MESSAGE)%} :continue

o°

o°

?}
N J
Figure 49. The GET_CODEPRICE()function

Now, using the MCUSTINFO table, which has the relationship between the
shoppers with shopper groups, the variable, $(OHT_CODE), gets the code of
the shopper group, and, with this value, we can get to the correct product
price for a specific shopper group.

Finally, we modify the HTML_REPORT section of the macro

86 IBM WebSphere Commerce Suite SPE Customization

o°

o°

{
{ HIML Report Section
{

o°

$HIML REPORT({

<CENTER>
<TABLE BORDER=0 WIDTH=$ (TableWidth) ALIGN=$ (TableAlignment)
CELLPADDING=4 CELLSPACING=0>
<!--A HREF="http://$ (HOST NAME) /cgi-bin/ncommerce3/InterestItemAdd?product rn=
$ (prrfnbr)
&merchant rn=$ (MerchantRefNum) &SWISHLISTSHOPPER RN=$ (SESSION RN)
surl=http://$ (HOST NAME) /cgi-bin/ncommerce3/InterestItemDisplay” >
Add to my wishlist
</A-->
@ISPLAY PRODUCT IMAGE ()
@ISPLAY PRODUCT INFO()
$IF (FLAG ATTRIBUTES == "0" && (ConvMultiplyFactor == NULL ||
ConvDivideFactor == NULL))
@GET SHOPERGROUP ()
$IF (OHT USER == NULL)
<TR><TD>@DISPLAY PRODUCT SINGLEPRICE ISNULL()</TD></TR>
%ELSE
@GET_CODEPRICE ()
@GET_CODEPRICE ()
$IF (OHT CODE == NULL)
<TR><TD>@DISPLAY PRODUCT SINGLEPRICE ISNULL()</TD></TR>

SELSE
<TR><TD>@DISPLAY PRODUCT SINGLEPRICE()</TD></TR>
SENDIF
SENDIF
SELIF (FLAG ATTRIBUTES == "0" && (ConvMultiplyFactor != NULL &&

ConvDivideFactor != NULL))
@DISPLAY PRODUCT DUALPRICE ()
$ELIF (FLAG ATTRIBUTES > "0" & (ConvMultiplyFactor == NULL ||
ConvDivideFactor == NULL))
@DISPLAY PRODUCT SINGLEPRICE RANGE ()
@DISPLAY ITEMS DROPDOWN ()
SELIF (FLAG ATTRIBUTES > "0" && (ConvMultiplyFactor != NULL &&
ConvDivideFactor != NULL))

N J

Figure 50. The new HTML_Report section

The next step is to make a new function to manage those cases when the
shopper is not a registered user.

This new function is called in the last figure, and the name of the function is
DISPLAY_PRODUCT_SINGLEPRICE_ISNULL.

Chapter 5. Shopper groups 87

88

This function is almost the same as the function,
DISPLAY_PRODUCT_SINGLEPRICE, but, as we can see in Figure 51, we
now compare the column, ppsgnbr, from the table, PRODPRCS, with the
condition, is NULL, instead of the variable, $(OHT_CODE).

$function (dtw odbc) DISPLAY PRODUCT SINGLEPRICE TISNULL () { A
SELECT prmbr, ppprc, ppcur, pppre, ppdeffs, ppdefff,
NC CurrFormat (ppprc, '$(CurPrefix)', '$(CurPostfix)', 's(CurGroupingSep)' ,
'$ (CurDecimalSep) ' , $(CurRounder), $(CurGroupingSize) , $(CurDecimalPlaces),
'en US', 1) as FormattedCurPrice
FROM product, prodprcs, prodsgp
WHERE prmenbr=S (MerchantRefNum)
and prrfnbr=$ (prrfnbr)
and ppprnbr=$ (prrfnbr)
and PRODPRCS.ppsgnbr is NULL
and PRODSGP.psprnbr=$ (prrfnbr)
and (($(NC NOW) >= ppdeffs and $(NC NOW) <= ppdefff) or
(ppdeffs is null and ppdefff is null))
ORDER BY pppre DESC
$REPORT{
@TW ASSIGN (ACTUALPRICE, "O")
<TR BGCOLOR=$ (HighLightColor2) >
<TD ALIGN="center" COLSPAN=2>
SROW({
%IF (ROW NUM == "1")

$ (LBL_PRODUCTPRICE) :

$ (V_FormattedCurPrice) $(CurDescription)
<!--
$ (V_ppdeffs) to $(V ppdefff)-->
@TW ASSIGN (ACTUALPRICE, V FormattedCurPrice)
SENDIF
%IF (V_pppre == "0" && ACTUALPRICE < V FormattedCurPrice)

(<STRIKE>S (V_FormattedCurPrice) $(CurDescription)</STRIKE>)
<!--
$ (V_ppdeffs) to $(V _ppdefff)-->
$ENDIF
%}
</TD>
</TR>
&)

Figure 51. The DISPLAY_PRODUCT_SINGLEPRICE_ISNULL function

As in both cases, category and the product macros, we must proceed with the
cat_catalog.d2w macro, which displays the initial page of the catalog with
those featured products and the categories.

As in the cat_category.d2w and cat_product.d2w macros, when a store is
created, the WCS gives a consecutive number for this store; so, in the hard

IBM WebSphere Commerce Suite SPE Customization

drive, we can see, on locations X:\IBM\NetCommerce3\macro\en_US (for
Windows NT 4.0) and usr/lpp/NetCommerce3/macro/en_US (for AlX), a
sub-directory named after the number of the store (for example, our store has
the number 831).

On this subdirectory, we can find the macro, cat_product.d2w, which contains
a few lines of code as shown in Figure 52.

%include "831\include.inc"
%include "831\theme.inc"
$include "ClassicStoreModel\cat catalog.d2w"

Figure 52. The macro cat_catalog.d2w

Here, the first two lines of the macro include another two environment
macros: include.inc and theme.inc.

Both are located on the path, X:\IBM\NetCommerce3\macro\en_US\ (for
Windows NT 4.0) or usr/lpp/NetCommerce3/macro/en_US/ (for AIX), on a
subdirectory with the same number as the store (for example, our store has
the number 831).

Those macros declare several environment variables, such as color of the
background, text, buttons, and so on.

The last line is the most important because this line invokes the macro that
really does the work.

This macro is located on the path
XA\IBM\NetCommerce3\macro\common\ClassicStoreModel (for Windows NT
4.0) or usr/lpp/NetCommerce3/macro/common/ClassicStoreModel (for AIX).

This is a common macro. It means that if you make some changes on it, these
changes can affect the behavior of the other stores.

To prevent this, we can make a copy of this macro with a name, such as
cat_catalog<number of the store>.d2w (even in the same subdirectory) and
make all the changes on it (for example, cat_catalog831.d2w).

The only change we must make on the macro, cat_catalog.d2w, is to change
the name of the macro in the last line,

%include "ClassicStoreModel\cat_product.d2w", to

%include "ClassicStoreModel\cat_catalog831.d2w". See Figure 53.

Chapter 5. Shopper groups 89

%include "831\theme.inc"

%include "831\include.inc"
$include "ClassicStoreModel\cat catalog831.d2w"

Figure 53. The macro cat_cataloc.d2w after the changes

Now, we can modify the macro, cat_catalog<number of the store>.d2w,
located in X:\IBM\NetCommerce3\macro\common\ClassicStoreModel (for
Windows NT 4.0) or
usr/Ipp/NetCommerce3/macro/common/ClassicStoreModel (for AIX).

If you see the report section of this macro, you can see that the macro has
several functions to present the categories of information on the browser.
Those functions are:

* %function(dtw_odbc) DEBUG_FEATUREPRODUCTS()

* %function(dtw_odbc) COUNT_FEATUREPRODUCTS()

* %function(dtw_odbc) CALC_RANDOMFEATUREDPRODUCTROW

* %function(dtw_odbc) GET_FEATUREPRODUCT()

* %function(dtw_odbc) GET_LATESTPRODUCT()

* %function(dtw_odbc) GET_SINGLEPRICE_FEATUREPRODUCT()

* %function(dtw_odbc)
GET_SINGLEPRICE_FEATUREPRODUCT_ISNULLY()

* %function(dtw_odbc) GET_DUALPRICE_FEATUREPRODUCT()

* %function(dtw_odbc) DISPLAY_CATEGORIES()

* %function(dtw_odbc) DISPLAY_PRODUCT_LIST_DUALPRICE()

* %function(dtw_odbc) DISPLAY_PRODUCT_LIST_SINGLEPRICE()

In Figure 54 on page 91, we can see how some of the most important
functions in the Report Section are called.

90 IBM WebSphere Commerce Suite SPE Customization

o°

o°

{
{ HIML Report Section
{

o°

$HIML REPORT({
<HTML>
@TW TIME("S", SEED)
@TW SUBSTR (SEED, @DIW rLENGTH(SEED), "1", SEED)
@COUNT FEATUREPRODUCTS ()
$IF (RANDOM ENDBOUND > "QO")
@CALC RANDOMFEATUREDPRODUCTROW ()
@GET FEATUREPRODUCT ()
$ELIF (RANDOM ENDBOUND == "O")
@TW ASSIGN (RANDOM ROWNUM, "1")
@GET FEATUREPRODUCT ()
$ELSE
@GET LATESTPRODUCT ()
$ENDIF
$IF (ConvMultiplyFactor == NULL || ConvDivideFactor == NULL)
@GET SINGLEPRICE FEATUREPRODUCT ()
$ELSE
@GET DUALPRICE FEATUREPRODUCT ()
$ENDIF
<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1999 01:01:01 GMI">
</HEAD>
<BODY BACKGR(="$ (BodyImage) " BGCOLOR="$ (BodyColor) " TEXT="$ (TextCol)"
LINK="$ (LinkCol) " VLINK="$ (VLinkCol)" ALINK="$ (ALinkCol)">
@TW_ADD (MerchantRefNum, "O", "2" , SecurityCheck)
@TW_ASSIGN (NOCATEGORIESINCATEGORY, "NO")
@TW_ASSIGN (NOPRODUCTSINCATEGORY, "NO")
<CENTER>
<TABLE BORDER=0 WIDTH=$ (TableWidth) ALIGN=$ (TableAlignment) CELLPADDING=4
CELLSPACING=0>

<TR>
<TD ALIGN=S$ (TitleAlignment) VALIGN="center">
$IF (PAGE == "LOGON")

<FONT FACE=$ (TitleFontFace) COLOR=S (TitleFontColor)
SIZE=$ (TitleFontSize) >Welcome back $ (SESSION ID) |
$ELSE
<FONT FACE=$ (TitleFontFace) COLOR=S (TitleFontColor)
SIZE=S (TitleFontSize) >$ (TXT TITLE CATALOG)

_ SENDIF P,

Figure 54. Important section of the cat_catalog< store number>.d2w file

The function we will modify is GET_SINGLEPRICE_FEATUREPRODUCT()
because this is the function that displays the price of the product chosen by
the customer from the product list.

In Figure 55, we show the modified
GET_SINGLEPRICE_FEATUREPRODUCT() function.

Chapter 5. Shopper groups 91

92

$FUNCTION (dtw_odbc) GET SINGLEPRICE FEATUREPRODUCT() {
SELECT pravdate, prfull, prsdesc, prldescl, ppprc, prrfnbr,
NC CurrFormat (ppprc, '$(CurPrefix)', '$(CurPostfix)', 's(CurGroupingSep)' ,
'$ (CurDecimalSep) ' , $(CurRounder), $(CurGroupingSize) , $(CurDecimalPlaces), '', 1)
as FormattedFeatureCurPrice
FROM product, prodprcs
where prmenbr=s (MerchantRefNum)
and prrfnbr=$ (FEATURE PRRFNBER)
and ppmenbr=prmenbr
and ppprmbr=prrfnbr
and (($(NC NOW) >= ppdeffs and $(NC NOW) <= ppdefff) or (ppdeffs is null and
ppdefff is null))
and PRODPRCS.ppsgnbr=$ (OHT CODE)

ORDER BY pppre ASC
$REPORT{

@TW ASSIGN (FEATURE PRICE, V FormattedFeatureCurPrice)

o°

}
MESSAGE {
100:{%} :continue
default: {
Problem with GET SINGLEPRICE FEATUREPRODUCT()
in file $(DTW MACRO FILENAME) because of error $(RETURN CODE) .

$ (DTW_DEFAULT MESSAGE)%} :continue

oe

o°
—

o°

- } /

Figure 55. The modified GET_SINGLEPRICE_FEATUREPRODUCT() function

We added the table, prodsgp, and some where conditions, such as
and PRODPRCS.ppsgnbr=$(OHT_CODE).

The ppsgnbr column of the PRODPRCS table is the key to getting the correct
price for a specific shopper group.

The $(OHT_CODE) variable is the result from the other two functions that we
included. Those functions are GET_SHOPERGROUP and
GET_CODEPRICE.

The GET_SHOPERGROUP function, shown in Figure 56 on page 93, gets
the shopper group code from the SHADDR table using the $(SESSION_ID)
variable, which has the Username of the shopper. If the shopper is not a
registered shopper, the $(SESSION_ID) variable has a code generated by the
WCS.

IBM WebSphere Commerce Suite SPE Customization

sfunction (dtw odbc) GET SHOPERGROUP() {
SELECT sanick, sashnbr
FROM shaddr
WHERE ~SHADDR.sanick='$ (SESSION ID)'
$REPORT{

SROW({

@TW_assign (CHT USER, V_SASHNER)
}

SMESSAGE
100:{ @DTW ASSIGN (OHT USER, NULL) %} :continue
default: {
Prcoblem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME)
because of error $(RETURN CODE).
$ (DTW DEFAULT MESSAGE)%} :continue

o°

o
— 0P

-
Figure 56. The GET_SHOPPERGROUP()function

You can see that, if a shopper group code exists the $(OHT_USER) variable
gets this value; otherwise, if a shopper group does not exist (because it is not
a registered user), the $(OHT_USER) variable gets a NULL value.

The GET_CODEPRICE function uses the $(OHT_USER) variable to get the
code of the price that belongs to the shopper group.

sfunction (dtw odbc) GET CODEPRICE() {
SELECT mcshnbr, mcsgnbr
FROM mcustinfo
WHERE MCUSTINFO.mcshnbr=$ (OHT USER)
$REPORT{

SROW({

@TW_assign (OHT CCDE, V_MCSGNER)

}

%)

SMESSAGE
100:{ @DTW ASSIGN (OHT CODE, NULL) %} :continue
default: {
Problem with GET CODEPRICE() in file $(DI'W MACRO FILENAME)
because of error $(RETURN CODE).
$ (DTW DEFAULT MESSAGE)%} :continue

o°

o
— op

- /

Figure 57. The GET_CODEPRICE()function

Now, using the MCUSTINFO table, which has the relationship between the
shoppers and shopper groups, the $(OHT_CODE) variable gets the code of
the shopper group, and, with this value, we can to get the correct product
price for a specific shopper group.

Chapter 5. Shopper groups 93

Finally, we modify the HTML_REPORT section of the macro in Figure 58.

4 N

{
{ HIML Report Section
{

o°

o°

o°

$HIML REPORT({
<HTML>

@TW TIME ("S", SEED)
@TW_SUBSTR (SEED, @DTW rLENGTH(SEED), "1", SEED)

@COUNT FEATUREPRODUCTS ()

$IF (RANDOM ENDBOUND > "O")
@CALC RANDOMFEATUREDPRODUCTROW ()
@GET FEATUREPRODUCT ()

$ELIF (RANDOM ENDBOUND == "O")
@TW _ASSIGN (RANDOM ROWNUM, "1")
@GET FEATUREPRODUCT ()

$ELSE
@GET LATESTPRODUCT ()

$ENDIF

$IF (ConvMultiplyFactor == NULL || ConvDivideFactor == NULL)
@GET_SHOPERGROUP ()
$IF (OHT USER == NULL)
@GET SINGLEPRICE FEATUREPRCDUCT ISNULL ()
$ELSE
@GET_CODEPRICE ()
$IF (OHT CODE == NULL)
@GET SINGLEPRICE FEATUREPRCDUCT ISNULL ()
$ELSE
@GET_SINGLEPRICE FEATUREPRODUCT ()
SENDIF
SENDIF
$ELSE
@GET DUALPRICE FEATUREPRODUCT ()
SENDIF

<HEAD>
<META HITP-EQUIV=Expires CONTENT="Mon, 01 Jan 1999 01:01:01 GMI">
</HEAD>

<BODY BACKGROUND="$ (BodyImage)" BGCOLOR="$ (BodyColor)" TEXT="$ (TextCol)"
LINK="$ (LinkCol) " VLINK="$ (VLinkCol)" ALINK="S$ (ALinkCol)">

_ J

Figure 58. Part of the new HTML_Report section

The next step is to make a new function that manages those cases when the
shopper is not a registered user.

94 IBM WebSphere Commerce Suite SPE Customization

This new function is called in the last figure, and the name of the function is
GET_SINGLEPRICE_FEATUREPRODUCT_ISNULLY().

This function is almost the same as the
GET_SINGLEPRICE_FEATUREPRODUCTY() function, but, as we can see in
Figure 59, we now compare the ppsgnbr column from the PRODPRCS table
with the is NULL condition instead of the $(OHT_CODE) variable.

[%FUNCI‘ION (dtw_odbc) GET SINGLEPRICE FEATUREPRODUCT ISNULL() {
SELECT pravdate, prfull, prsdesc, prldescl, ppprc, prrinbr,
NC CurrFormat (ppprc, '$(CurPrefix)', '$(CurPostfix)', 's(CurGroupingSep)' ,
'S (CurDecimalSep) ' , $(CurRounder), $(CurGroupingSize) , $(CurDecimalPlaces), '', 1)
as FormattedFeatureCurPrice
FROM product, prodprcs
where prmenbr=s (MerchantRefNum)
and prrfnbr=$ (FEATURE PRRFNBER)
and ppmenbr=prmenor
and ppprmbr=prrfnbor
and (($(NC NOW) >= ppdeffs and $(NC NOW) <= ppdefff) or
(ppdeffs is nulland (ppdefff is null))and PRODPRCS.ppsgnbr is NULL

ORDER BY pppre ASC
$REPORT{

@DTW_ASSIGN (FEATURE PRICE, V FormattedFeatureCurPrice)

o°

}
MESSAGE {

100:{%} :continue

default: {
Problem with GET SINGLEPRICE FEATUREPRODUCT ()
in file $(DTW MACRO FILENAME) because of error $(RETURN CODE) .

$ (DTW_DEFAULT MESSAGE) %} :continue

%}
}

oe

(oo
I

Figure 59. The GET_SINGLEPRICE_FEATUREPRODUCT_ISNULL function

5.1.2.2 Customization of the merchant tool

Now, we must work on the customization of the merchant tool because, as we
can see, this tool does not offer any feature to create, manage, or add
registered shoppers to a shopper group.

We split this customization into two parts:

1. Customization of the navigation menu

2. Creating the macros that manage the databases

The first part consists of several steps to show the merchant this new feature
in the merchant tool, and the second part consists of creating those macros

Chapter 5. Shopper groups 95

96

that manage the database to create, update, and manage the shopper
groups.

— Note

Remember that those changes must be only for the Classic Store Model,
and not for the Express Store model

Customization of the navigation menu

This menu consist of two main parts: An *.xml file named navigation.xml and
located in the path, /usr/Ipp/NetCommerce3/Tools/xml/nchs/mtool/advanced/
(for AIX) or X:\Ibm\NetCommerce3\Tools\xm\nchs\mtool\advanced (for
Windows NT 4.0), and the file navigationNLS.properties located in the
compiled *.jar file named nchs.jar. This *.jar file is located in the path
/usr/Ipp/NetCommerce3/Tools/lib (for AIX) or X:\Ibm\NetCommerce3\Tools\lib
(for Windows NT 4.0).

The first one is an XML file that contains all the instructions for showing the
menu bar on the left side frame of the merchant tool.

We must add some lines to create a new category (node), named Shopper
Groups, and two options (sub-nodes), named create shopper groups and
manage shopper groups.

In Figure 60 on page 97, we can see part of the navigation.xml file.

IBM WebSphere Commerce Suite SPE Customization

<?xml version="1.0"?>
<tree resourceBundle="nchs.navigationNLS">
<node name="root"
image="/NCTools/images/clear.gif"
openImage="/NCTools/images/clear.gif"
users="siteAdmin storeAdmin catalogAdmin orderAdmin" >
<node name="viewStore"
url="/servlet /MerchantAdmin?DISPLAY=CTnchs .mtool .Storelink"
image="/NCTools/images/bullet blank.gif"
users="siteAdmin storeAdmin catalogAdmin orderAdmin" />
<node name="gettingStarted"

image="/NCTools/images/clear.gif"

openImage="/NCTools/images/clear.gif"

users="siteAdmin storeAdmin catalogAdmin orderAdmin" >

<node name="quickStart"
url="/servlet/MerchantAdmin?DISPLAY=CTnchs .mtool .GetStarted"
image="/NCTools/images/clear.gif"
users="siteAdmin storeAdmin catalogAdmin orderAdmin" />
<node name="getMerchantGuide"
url="/servlet/MerchantAdmin?DISPLAY=CTnchs.mtool .MerGuide"
image="/NCTools/images/clear.gif"
users="siteAdmin storeAdmin catalogAdmin orderAdmin" />

</node>
<node name="shopperGroups"
image="/NCTools/images/clear.gif"
openImage="/NCTools/images/clear.gif"
users="siteAdmin storeAdmin orderAdmin" >
<node name="createShopperGroups"
url="http://www.themall .com/cgi-bin/ncommerce3/ExecMacro/creagrou.d2w/report"
image="/NCTools/images/clear.gif"
users="siteAdmin storeAdmin" />
<node name="addShopperstoGroups"
url="http://www.themall .com/cgi-bin/ncommerce3/ExecMacro/addshgru.d2w/report""
image="/NCTools/images/clear.gif"
users="siteAdmin storeAdmin" />
<node name="GroupstoPrices"
url="http://www.themall .com/cgi-bin/ncommerce3/ExecMacro/addprgru. d2w/report"
image="/NCTools/images/clear.gif"
users="siteAdmin storeAdmin" />
</node>
</node>
</tree>

Figure 60. The navigation.xml file

We can see the statement, <tree resourceBundle="nchs.navigationNLS">, on
the second line; this indicates which compiled file (nchs.jar) and which
properties file (navigationNLS.properties) we must customize to complete this
part. We recommend creating a new sub-directory, called WORK, and making
a copy of the nchs.jar file on it. We must extract all the contents of the
nchs.jar (with sub-directories) on the same directory, and then to open the
file, navigationNLS.properties, located in the new path

Chapter 5. Shopper groups 97

98

/usr/work/com/ibm/commerce/tools/nchs/properties (on AlX) or
X:\work\com\ibm\commerce\tools\nchs\properties (on Windows NT 4.0)

With a text editor, we must add some lines as shown in Figure 61.

shopperGroups=Shopper Groups
createShopperGroups=create shopper groups
addShopperstoGroups=Add shoppers to a group
GroupstoPrices=Assign prices to a group

Figure 61. The new added lines on navigationNLS.properties file
Now, save the file and recompile all the * jar files.

To do this, type jar cvf new.jar com/* in the path X:\work (for Windows NT
4.0) or /usr/work (for AIX).

We must copy this new.jar file into the path /usr/Ipp/NetCommerce3/Tools/lib
(for AIX) or X:\Ibm\NetCommerce3\Tools\lib (for Windows NT 4.0).

Then, we must stop the WCS (WCS Servlet Service for Windows NT 4.0),
rename the old nchs.jar file, rename the new.jar file as nchs.jar, and, finally,
restart the WCS.

Create the macros that manage the databases
First of all, we must create those shopper groups that will handle the
registered shoppers in the merchant’s store.

As we saw in the customization of the navigation menu part, in the second
sub-node (<node name="createShopperGroups"), we can see the URL
http://www.themall .com/cgi-bin/ncommerce3/ExecMacro/creagrou.d2w/report
located in the path, /usr/lpp/NetCommerce3/Tools/xml/nchs/mtool/advanced/
(for AIX) or X:\Ibm\NetCommerce3\Tools\xm\nchs\mtool\advanced (for
Windows NT 4.0).

This is called to a macro, named creagrou.d2w, which asks for the new
shopper group data (the name of the shopper group and a short description)
and then proceeds to create the new shopper group. The macro,
creagrou.d2w, is listed in Appendix B.4, “Macro file creagru.d2w” on page
272.

The main purpose of this macro is to manage the SHOPGRP table, which
describes the shopper groups that are defined for each store. Each row of this
table contains information on one shopper group.

IBM WebSphere Commerce Suite SPE Customization

Another table to manage is the KEYS table, which contains the current
maximum values of the primary keys of the tables:

* ORDERS

* SHIPTO

» SHOPPER

» SHADDR

* TASKS

* TAXCGRY

* SHIPMODE, STRCGRY
* MERCHANT
* MSHIPMODE
* ACC_GROUP
* PRSPCODE
* SHIPPING

* SHOPGRP

* PRODUCT

* PRODPRCS
* CATEGORY
* SCALE

» DISCCODE

* STAGLOG

* ACC_MODE

When a merchant executes the macro using the merchant tool, the result is
something like that shown in Figure 62 on page 100.

Chapter 5. Shopper groups 99

100

BM WebSphere Commeice Suite, Service Provider Edition - Netscape

Merchant Tool - Advanced

B Creating Shopper Groups
Get Started for the store FREYTOR

[_[Of x|

Reporis
|

Store-Setup

Store-Design

Product Catalog =

Store Administration

Process Orders

ShopperGroups =l

c Go Register I
Existing Groups
| |

[F == |Document: Dore OEL A2 2l

Figure 62. The screen of the creagrou.d2w macro

The merchant simply needs to type the name of the new shopper group in the
field called Group Name:, a short description of this shopper group in the field

called Description:, and, finally, select Go Register.

Once the shopper groups have been created, the next step is to assign those

registered shoppers that do not yet belong to a shopper group.

To solve this, we create a macro called addshgru.d2w. The macro is listed in

Appendix B.5, “Macro file addshgru.d2w” on page 276.

With this new feature, the merchant can choose between those registered
shoppers with no shopper group, choose a group previously created, and,
finally, see the shoppers contained in the chosen group.

In Figure 63 on page 101, we show the graphic interface that the merchant

can see.

IBM WebSphere Commerce Suite SPE Customization

BM WebSphere Commerce Sui Service Provider Edition - Netscape !Elm

re Adding Registered Shoppers to

Get Started Shopper Groups

Reports Chose a shopper from the nezt list

Store Satup CODE ' mNamE EMam
Store Design 2609 IIr Benjamin Bemstrong ben_33@toyota.com

Product C;talog 2606 Dz Gilberto Fregoso giregoso@aol.com

Store Administration = Toseph S_mth jemith@hotmail. com

Process Orders i Uil it P pere@home com

Shopper Groups — Ol € it i conradsen@ibm.com

[== |Document: Done

= = e e A

Figure 63. The screen of the addshgru.d2w macro

Finally, the macro that assigns prices to products for each shopper group,
addprgru.d2w, is created. The macro, addprgru.d2w, is listed in Appendix B.6,
“Macro addprgru.d2w” on page 281.

In Figure 64 on page 102, we can see the first page that the addprgru.d2w
macro shows.

Chapter 5. Shopper groups 101

102

* IBM WebSphere Comm

12

Get Started

Reporis

Store Setup

Store Design
Product Catalog
Store Administration
Process Orders
Shopper Groups

Merchant Tool - Advanced

ion - Netscape

Assigning Product Prices o
Shopper Groups
Chose a product from the next list

AV-002 Asridn Caza Soviético SUKOT2T (Flanker)

AVC-001 Avion Caza F-22

Producto 3 Producto 3

I == |

|Document: Done

Figure 64. The screen of the addprgru.d2w macro

IBM WebSphere Commerce Suite SPE Customization

Chapter 6. Cross-sell and up-sell

WebSphere Commerce Suite Service Provider Edition (WCS-SPE) provides
a feature to customize products displayed in an online store to follow the two
useful business strategies of selling, namely, cross-selling and up-selling of
products. The objective of this section is to create a store that has cross-sell
and up-sell features. The intended audience for this chapter is e-business
Service Providers and store managers of merchants who own stores and
need to customize them for cross-selling and up-selling.

6.1 What is cross-selling and up-selling

Cross-selling refers to suggesting a product that compliments what the
shopper has already chosen. For example, if the shopper has selected corn
flakes, you can suggest a carton of milk to go with the cereal.

In a real store scenario, merchants or retailers often place related
merchandise in one area. Sales clerks are always on the lookout for an
opportunity to sell a more expensive product or an accessory product if it has
a higher profit margin. For example, if a shopper is looking at gloves, he or
she may also be willing to purchase a scarf that goes with it, or, after a
shopper buys a pair of shoes, he or she may consider purchasing a
shoe-horn or shoeshine kit. Several relationship types between the products
are possible including compatible accessory, cross-sell, or up-sell items. Let
us look at a definition for each of these relationships as shown in Table 2.

Table 2. Product relationship types

Product relationship Description

type

Up-sell Related items to be promoted to entice shopper up the price
scale

Cross-sell Related items to be promoted on the same price scale

Compatible Compatible items to be promoted as accessories

In an online store, when a product page is displayed, there can be a hyperlink
to the related product. Once the shopper is interested in the related product,
he or she clicks on the link that takes him to another window where the text,
May we suggest, appears at the top of the page for cross-selling, or This is
better appears for up-selling, or You might also be interested in appears for
compatible accessories. A thumbnail image of the suggested product, a
description, a price, and a button to add the product to the shopping cart can

© Copyright IBM Corp. 2000 103

also be displayed in the window. The shopper can add the product to the
shopping cart if they wish to buy the product, or they may close the window to
continue shopping.

6.2 Customization techniques

Some customization technique that can be followed to get the features of
cross-sell and up-sell of products are:

1. Create tables for product relationships and import data through a mass
import utility.

2. Import data through a browser-based mass import utility.

3. Customize the Merchant tool catalog editor to create the relationship
between the products.

6.2.1 Creating product relationship by mass import utility

104

Creating a product relationship between the products with the mass import
utility works fine for cross-selling or up-selling multiple products. This is done
in the following way:

1. Create two tables: One for defining the product relationship types and
another for creating the exact relationships between the products.

2. Customize the Net.Data macro that displays the product page.

To achieve this functionality, a reference application, related.exe (54 KB), can
be downloaded. The application is available on the Websphere Commerce
Server reference site, which, at the time of this writing, was found in the
following URL:

www-4 . ibm. com/software/webservers/commerce/community/process/refapps . html

The application identifies related or compatible products with IBM
WebSphere Commerce Suite and also introduces two new tables to represent
product relationships, such as compatible accessory, cross-sell, or up-sell
items. You can skip this section by downloading the application and following
the instructions as given in the accessorizer.pdf document, or you can
perform the steps provided in the next section to create tables and customize
Net.Data macros. The user interface in this application package is based on
the Net.Commerce sample Metropolitan Mall (demomall). Changing this
application package to work with your own interface should be relatively
straightforward.

IBM WebSphere Commerce Suite SPE Customization

6.2.1.1 Creating product relationship tables in demomall database
This section describes the definition of two new tables in the demomall
database and registering them with the Net.Commerce Keys manager. A
database connection to demomall is needed to update the current database.
Perform the following steps:

1. Log on as a DB2 administrator and open a DB2 command prompt.
2. Connect to the database by issuing the following query:
connect to demomall

3. Create the product relationship type table, PRRELTYPE. The technical
details are listed in Table 3.

Table 3. PRRELTYPE: Product relationship type table details

Column Column type Description
name
The reference number for the Product
prtrfnbr INTEGER NOT NULL Relationship Type. This is the primary
key.
prtname CHAR(30) NOT NULL The name of the relationship type.
prtdesc CHAR(254) The description of the relationship
type.
prtfield1 INTEGER Reserved for merchant customization.
prtfield2 INTEGER Reserved for merchant customization.
prtfield3 CHAR(254) Reserved for merchant customization.

The following set of queries creates the table:

drop index ui_prtil;

drop table PRRELTYPE;

create table PRRELTYPE(prtrfnbr integer not null, prtname char (30) not
null, prtdesc char(254), prtfieldl integer, prtfield2 integer, prtfield3
char (254), constraint p prreltype primary key (prtrfnbr));

create unique index ui prtl on PRRELTYPE (prtname) ;

Chapter 6. Cross-sell and up-sell 105

4. Create a table, PRPRREL, that creates the exact relationship between the
product. The technical details of the table are as follows:

Table 4. PRPRREL: Product-to-product relationship table details

Column Column type Description
name
plrfnbr INTEGER NOT The reference number for the Product
NULL Relationship. This is the primary key.
Merchant reference number. This is a foreign
plmenbr INTEGER NOT key that references the MERFNBR column in the
NULL MERCHANT table.
The reference number of the Product
plprtnbr INTEGER NOT Relationship Type. This is a foreign key that
NULL references the PRTRFNBR column in the
PRRELTYPE table.
The Product Reference Number of the base
plprnbr INTEGER NOT product. This is a foreign key that references
NULL the PRRFNBR column in the PRODUCT table.
The Product Reference Number of the related
plrelprnbr INTEGER NOT product. This is a foreign key that references the
NULL PRRFNBR column in the PRODUCT table.
Recommended quantity of the related product,
plqty INTEGER for example, two batteries per flashlight.
plsegnbr INTEGER A sequence number for the display.
The Shopper Group Reference Number. This is
plsgnbr INTEGER a foreign key that references the SGRFNBR
column in the SHOPGRP table.
plpub INTEGER Publish flag. Use 1 to indicate that the
relationship should be published.
plfield1 INTEGER Reserved for merchant customization.
plfield2 CHAR(254) Reserved for merchant customization.

The following set of queries creates the table with the required index:

drop index ui_prprrel;

drop index i prprrell;

drop index i prprrel2;

drop index i prprrel3;

drop table prprrel;

create table prprrel (plrfnbr integer not null, plmenbr integer not
null, plprtnbr integer not null, plprnbr integer not null, plrelprnbr

106 IBM WebSphere Commerce Suite SPE Customization

integer not null, plgty integer, plsegnbr float, plsgnbr integer, plpub
smallint, plfieldl integer, plfield2 char(254), constraint p_prprrel
primary key (plrfnbr), constraint fme prprrel foreign key (plmenbr)
references merchant (merfnbr) on delete cascade, constraint

fpr prprrell foreign key (plprnbr) references product (prrfnbr) on
delete cascade, constraint fpr prprrel2 foreign key (plrelprnbr)
references product (prrfnbr) on delete cascade, constraint fsg prprrel
foreign key (plsgnbr) references shopgrp (sgrfnbr) on delete cascade,
constraint fprl pl foreign key (plprtnbr) references PRRELTYPE
(prtrfnbr) on delete cascade) ;

create unique index ui prprrel on prprrel (PLMENBR, PLPRNBR, PLRELPRNER,
PLSGNBR, PLPRTNBER) ;

create index i prprrell on prprrel (plmenbr);

create index i prprrel2 on prprrel (plprnbr);

create index i prprrel3 on prprrel (plrelprnbr);

5. Register with the key manager of the Net.Commerce database. The query
to do that is as follows:

delete from KEYS where keytable = 'prprrel';

delete from KEYS where keytable = 'prreltype';

insert into KEYS (keyrfnbr, keytable, keycolumn, keymaxid) values
((select max(keyrfnbr) + 1 from KEYS), 'prprrel', 'plrfnbr',6 0);
insert into KEYS (keyrfnbr, keytable, keycolumn, keymaxid) values
((select max (keyrfnbr) + 1 from KEYS), 'prreltype', 'prtrfnbr',6 O0);

6. The next step is to define the relationship types in the PRRELTYPE table.
There are three predefined relationship types in this solution as shown in
Table 1 on page 60. To populate the prreltype table with the predefined
relationship, the following set of queries is used:

delete from PRRELTYPE;

insert into PRRELTYPE (prtrfnbr, prtname, prtdesc) values

(1, 'Compatible', 'Compatible items to be promoted as accessories') ;
insert into PRRELTYPE (prtrfnbr, prtname, prtdesc) values

(2, 'Up-sell', 'Related items to be promoted to entice shopper up the
price scale');

insert into PRRELTYPE (prtrfnbr, prtname, prtdesc) values (3,
'Cross-sell', 'Related items to be promoted on the same price scale');
update keys set (keymaxid) = (select max (prtrfnbr) from prreltype) where
keytable = 'prreltype';

6.2.1.2 Populating the product-to-product relationship table

It is required to populate the product-to-product relationship table
(PRPRREL) with the data. To do this, let us consider one example and
proceed. The Metropolitan mall example shipped with the Net.Commerce
product can be used. It contains several store examples. One is called 6th
Avenue Department Store. This store is programmed to sell hardware, such

Chapter 6. Cross-sell and up-sell 107

108

as hand tools and gardening tools, computer related products, such as
computer hardware and software, and fashion-related items. We will consider
one example, say, Computer Hardware, which is used to sell personal
computers and printers.

Let us define the scope of the product to be sold and the related products to
be shown as cross-sell product or up-sell product. Suppose a shopper wishes
to buy an IBM Aptiva M53 type of PC. When the product page for IBM Aptiva
M53 is loaded, there might be some hyperlinks to related products also
displayed on the Web page. The IBM Aptiva M40 type of PC is better than
M583; so, it can be up-sold, and software products, such as PC DOS 7, OS/2
Warp CD Pak, and Kid Riffs can be cross-sold. A display about compatible
accessories for the PC, such as Winwriter 150 and Lexmark Optra E, can
also be sold. This is shown in Figure 65 on page 109.

IBM WebSphere Commerce Suite SPE Customization

hittps://fak. itec. austin b, comd cgi-bin/ncommerce 3/ ProductDizplay Pprrfnbr=1 3 prmenbr=20

Figure 65. Product page with cross-sell and up-sell features

To achieve this feature, the data has to be uploaded in the prprrel table in the
database. That is, for M53 types of PCs, the up-sold product is M40 and the
cross-sold products are PC DOS 7, OS/2 Warp CD, and Kid Riffs, and the
compatible accessories products are Winwriter 150 and lexmark Optra E. The
easiest way to define this relationship between products in the database
would be (if the number of products is very high) to use a mass import utility
method. Perform the following steps:

Chapter 6. Cross-sell and up-sell 109

110

1. Create a file, called sample_prprrel.mpt, in the text editor, and copy the

following code into the file. This file has the actual data that relates the
products:

#VERSION; 32

#STORE; 6ixth Avenue

#COLUMNDELIMITER; |

#PRPRREL |1 |1|Compatible| | S2168M53E14 | | P9OPt900E
#PRPRREL |1 |1|Compatible| | S2168M53E14 | | PL82W150E
#PRPRREL |1|1|Cross-sell | |S2168M53E14 | | 083G9302
#PRPRREL|1|1|Cross-sell| |S2168M53E14 | |083G9303
#PRPRREL|1|1|Cross-sell| |S2168M53E14 | |E2456841
#PRPRREL|1|1|Cross-sell| |S2168M53E14 | |E2456842
#PRPRREL|1|1|Up-sell| |S2168M53E14 | | 03245341

The creation of the mass import file is an important step for uploading the
actual product data. The details of the PRPRREL table in Table 4 on page
106 relate to the above mass import file using “I” as the delimiter, and the
file has the syntax described in Table 5.

Table 5. Details of mass import file

Value in the Corresponding

Mass import file | element in the Description
prprrel table

#PRPRREL name of the table Name of the table

1 plpub whether to publish the product or not

1 plgty No. of quantity related with the product
Compatible prtname product relationship type name in

prreltype table

Blank plsgnbr Shopper group reference number
S2168M53E14 plprmbr 1st product’s SKU number

Blank plseq Sequence number

P90OPt900E plrelprnbr 2nd product’s SKU number

Create a file called prprrel.ini in the text editor and copy the code given in
the Appendix C.3, “Definition file of mass import utility (prprrel.ini)” on
page 297.This file contains the definition of mass import file and the tables
getting updated. You can also refer to the default definition file,
massimpt.db2.ini, of the mass import utility in the
/usr/lpp/NetCommerce3/bin directory. Since we have two new tables to be
updated, the default file will differ from the prprrel.ini file with the following
code that defines the syntax for two new tables:

IBM WebSphere Commerce Suite SPE Customization

#VERSION;32

H#TABLE; prreltype

#COLUMNS ; prtrfnbr;prtname;prtdesc;prtfieldl;prtfield2;prtfield3
#UI ; prtname

#REFNUM; prtrfnbr

H#TABLE; prprrel

#COLUMNS ; plrfnbr;plmenbr; plpub; plgty;plprtnbr; plsgnbr;plprnbr;plsegnbr;
plrelprnbr

#UT ; plmenbr; plprnbr; plrelprnbr;plsgnbr; plprtnbr
#CONSTTOKEN ; plmenbr ; merchant

#REFNUM; plrfnbr

#FORREF; prprrel; plprnbr;product ; prrfnbr; prmenbr; prnbr

#FORREF; prprrel; plrelprnbr;product ; prrinbr; prmenbr; prnbr

#FORREF; prprrel; plprtnbr;prreltype; prtrinbr;prtname

connect to the demomall database by issuing the following query from the
DB2 Command prompt:

connect to demomall

Mass import the file issuing the following command from the DB2
command prompt. Ensure that you are in the same directory where the
mass import file, sample_prprrel.mpt, and the definition file, prprrel.ini,
exist.

massimpt -infile sample prprrel.mpt -db demomall -log prprrel.log
-inputformat v32 -deffile prprrel.ini

. Check the prprel.log.log file for any errors and the result of the database

update.

In this way, the product-to-product relationship table (prprrel) has been
populated with the required data using the mass import utility.

6.2.1.3 Customizing product display Net.Data macro

The next step is to customize the product display page that displays the IBM
Aptiva M53 product page. First, you need to know which macro is responsible
for displaying the product page. This is done with the following method.

1.

Right-click on the product page, and view the Frame info. If the page uses
an ExecMacro command, the name of the macro is displayed in the URL.
Find the exact macro that displays the page in your system. It is usually
identified by the directory in which it resides. The directory name will be
the merchant reference number. There may be many macros with the
same name for various stores created in the system.

Chapter 6. Cross-sell and up-sell 111

112

2. If the productDisplay command is used instead of ExecMacro, this
command sets the PROD_DSP view task to display the product based on
the merchant number and reference number. Use the merchant number
field to filter the results from the macros or prodsgp tables to find out the
exact macro and the path to identify where it is found in the file system.

In this case, tempcomp.d2w is the macro for the merchant reference number,
2066, and product number, 13, and it is available in the following directory in
the AIX system:

/usr/lpp/NetCommerce3/macro/en_US/product

Since this macro is used by many stores to display the product pages
containing computer products, you must make a copy of this file and call it
tempcomp_crup.d2w to represent cross-selling and up-selling. Also, make
one more copy of the same file and call it tempcomp_crup_win.d2w. This file
is used to display the related product page in the new window. Perform the
following steps to customize the product page to list cross-sell and up-sell
products:

1. Open the tempcomp_crup.d2w file in the text editor.

2. Copy the following function as shown in Figure 66 on page 113 in the
function definition block along with other database functions.

IBM WebSphere Commerce Suite SPE Customization

4 N

%{Cross sell, Up sell function starts here%}

$function (dtw odbc) Sell (IN 1 prtname) {
select plrelprnbr, prrfnbr, prnbr, prsdesc
from prprrel, prreltype, product

where

plpub = 1 and

prpub = 1 and

prrfnbr = plrelprnbr and

plpmbr = $ (prrfnbr) and
(plsgnbr is NULL OR plsgnbr=$ (GroupNurber)) and
plprtnbr = prtrfnbr and
prtname = '$(1l_prtname) '

$REPORT{
SROW({
@TW_ASSIGN (prrelprnbr, $ (V_prrfnbr))
<tr>
<td><a href=#

onClick=ShowSell ($ (prrelprnbr)) >$ (V_prnbr) </td><td>$ (V_prsdesc) </td>

</tr>

SMESSAGE({100: {%} : continue%}

}
%{Cross sell, Up sell function ends here%}
N J

Figure 66. Cross-sell and up-sell functions

3. After calling the SQL18() function and before displaying the shopping cart
button, copy the following section, as shown in Figure 67 on page 114, into

Chapter 6. Cross-sell and up-sell 113

the HTML_REPORT section of the macro.

<!-- Cross Selling, Up selling code starts here -->
<table CELLSPACING=0 CELLPADDING=0 BORDER=0>

<trs>
<th colspan="2" align="left">
This is better (Upsell)...:
</th>

</tr>

@Sell ("Up-sell")

<trs>
<th colspan="2" align="left">
May we suggest (Cross-sell)...:
</th>

</tr>

@Sell ("Cross-sell")

<trs>
<th colspan="2" align="left">
Compatible accessories:
</th>

</tr>

@Sell ("Compatible")
<SCRIPT LANGUAGE="javascript">

function ShowSell (prrelprnbr)

{
window.open ("http://$ (HOST NAME) /cgi-bin/ncommerce3/ExecMacro/product/tempco
mp_crup win.d2w/report?prrinbr="+prrelprnbr+"&prmenbr=$ (prmenbr) ", "sellwindo
w", "toolbar=no, locat ion=no,directories=no, status=no, menubar=no, resizable=yes
,width300,height=500, prompt=no, scrollbars=1, setTimeOut=no") ;

1
</SCRIPT>
</table>

<!-- Cross Selling, Up selling code ends here -->
N J

Figure 67. Code displaying cross or up sold products

4. Open the second macro, tempcomp_crup_win.d2w, in a text editor. This
macro is used to display the related product page. Refer to Figure 67, the
Java script function opens up a new window with the content as available
in the tempcomp_crup_win.d2w macro. Now, it is necessary to add the
functionality of closing the window and returning to the main window once
the product is added to the shopping cart, or close the window before

114 I1BM WebSphere Commerce Suite SPE Customization

proceeding. This message is added in the HTML_REPORT section of the
macro.

To close the window, press the Add to Shopping Cart button; this will call
the InterestItemadd command and display the shopping cart page using
the InterestItembisplay command passed as a hidden variable in the form
element. Now, our requirement is to close the window instead of
displaying the shopping cart in the new page, but the item added to the
shopping cart must be added before closing the window. The code,
InterestitemDisplay, is passed in a hidden variable. An ExecMacro
command is called to execute a macro called closewin.d2w, which does
nothing but close the window. The code is shown in Figure 68.

-

<!-- Content of tempcomp crup win.d2w file which calls the closewin.d2w
macro to close the window -->

<INPUT TYPE=HIDDEN NAME="url"
VALUE="/cgi-bin/ncommerce3/ExecMacro/product /close win.d2w/report">
<!-- INPUT TYPE=HIDDEN NAME="url"
VALUE="/cgi-bin/ncommerce3/InterestIterDisplay" -->

<!-- Content of closewin.d2w - to be copied in a new file called
closewin.d2w-->

$HIML REPORT {
<HIML>
<HEAD>
<TITLE>
Close Window
</TITLE>
</HEAD>
<BODY onLoad="window.close () ">
</BODY>
</HIML>

)

Figure 68. Code for closing the new window

5.

These steps will display a page similar to the one shown in Figure 65 on
page 109. To test the macro, enter the following URL in your browser:
http://<host>/cgi-bin/ncommerce3/ProductDisplay?prrinbr=13&prmenbr=2066

Click on the product that is displayed for cross-selling. For example, click
on 0835903 PC DOS 7. This will pop up a new window with the details of
the product. This window contains two buttons: One to add it to the
shopping cart and another one to close the window before proceeding.
Add the product to the shopping cart that closes the window. Go back to
the main browser and check to see whether the shopping cart was added.

This design will open a new window displaying the cross-sell/up-sell product.
If desired, the design can fairly easy be changed to display the

Chapter 6. Cross-sell and up-sell 115

116

cross-sell/up-sell product in the same window. The user can then use the
browser button to go back to the parent product. To implement this change in
behaviour we’ll have to change the code shown in Figure 67. The new
ShowSell function is shown in Figure 69.

<SCRIPT>
function ShowSell (prrelprmbr) {
self.location.href =
"/cgi-bin/ncommerce3 /ProductDisplay?prmenbr=$ (prmenbr) &prrinbr="+prrelprnbr;

</SCRIPT>

Figure 69. ShowSell function to display cross-sell/up-sell product in same window

Keep in mind, that cross-sell/up-sell product is now being displayed in the
same window and frame, Net.Data "Sell" function in Figure 66 on page 113
should now be replaced with th code in Figure 70.

4 N

%{Cross sell, Up sell function starts here%}

$function (dtw odbc) Sell (IN 1 prtname) {
select plrelprnbr, prrfnbr, prnbr, prsdesc
from prprrel, prreltype, product

where

plpub = 1 and

prpub = 1 and

prrfnbr = plrelpmbr and

plpmbr = $(prrfnbr) and
plprtnbr = prtrfnbr and
prtname = '$ (1 prtname)'

$REPORT{
SROW({
@TW_ASSIGN (prrelprnbr, $ (V_prrfnbr))
<tr>
<td width=45% align=center><a
href="javascript:ShowSell ($ (prrelprnbr)) ; "

onClick="ShowSell ($ (prrelprnbr)) ;">$ (V_prnbr) </td>
<td width=55% align=left>$ (V prsdesc)</td>
</tr>

5}

}
MESSAGE{100:{ %} :continue %}
{Cross sell, Up sell function ends here%})

o°

oe

o°

N

Figure 70. Modified Cross-sell and up-sell functions

IBM WebSphere Commerce Suite SPE Customization

6.2.2 Import data through browser-based mass import tool

This section describes how to import data in the product-to-product
relationship (PRPRREL) table. Before proceeding with this section, you must
create the product relationship (PRREL) table and the product-to-product
relationship (PRPRREL) table in the database. The creation of these two
tables is explained in Section 6.2.1.1, “Creating product relationship tables in
demomall database” on page 105.

The customization of the Net.Data macro to display the product page is also
the same as explained in Section 6.2.1.3, “Customizing product display
Net.Data macro” on page 111. A sample of the customized Net.Data macro,
cat_product.d2w, is available in Appendix C.2, “Customized product display
(cat_product.d2w) macro” on page 293.

Thus, this part would mainly concentrate on how to update the
product-to-product relationship type (PRPRREL) table in the database from
the merchant tool’s mass import utility available with the import catalog. We
assume that merchants will be using the import catalog utility available in the
merchant tool to import their product catalog. It is better to create the
relationships between the product once when the product is being
categorized. By doing so, related data is uploaded only once. To categorize
the products that are to be sold online, an Excel template is available with the
WCS SPE system. This template guides the creation of a mass import file for
the product and its categories. This particular customization technique also
extends the same excel template for creating data for the product relationship
tables.

The steps involved in creating the mass import file and definition file and
uploading them to the database can be described as follows:

1. Create the mass import file using a spreadsheet.

2. Append the definition file for new tables.

3. Upload data into database using import catalog option in merchant tool.

6.2.2.1 Creating a mass import file using a spread sheet

The Mass Import utility requires a file in ASCII delimited format. Some
spreadsheet programs support this format; however, Lotus 1-2-3 does not. If
you save a file as text in Lotus 1-2-3, it appears to be in tabular delimited
format, but it is not. The characters separating columns are a series of
spaces.

Chapter 6. Cross-sell and up-sell 117

A template of the spread sheet file is available in the WCS SPE system. You
can download the spreadsheet template file and use it to create your mass
import file.

The template is available in the merchant tool of the WCS SPE system under
the import catalog section. After creating the store, the merchant will wish to
populate the store with products and information about them. To do this, he or
she would upload the product catalog file, which contains the product
information.

The merchant logs in to the merchant tool from the cspsite. He or she will
click on the product catalog navigation bar on the import catalog submenu. It
will display a window with an information button. If you click on the
information button, it will display a window like that shown in Figure 71.

BM WehSphere Commerce Suite, Service Provider Edition - Netzcape

Merchant Tool - Advanced

Catalog Import Information
This page provides all the nformation required to create an smport file.
+ download a sample wnport file

+ download an Excel template that sudes you through the proces:
+ determine shipping and tax codes for vour store to tput i your ;

Sample Files
The following satmples are provided:

+ Comma-delvmted text file (14 KB)
+ Ezcel template (zpped, 12 KB)
+ Ezcel file (minped, 17 KB)

Figure 71. Merchant tool displaying product catalog features

118 IBM WebSphere Commerce Suite SPE Customization

This page provides all the information required to create an import file. You
can:

* Download a sample import file (a comma-delimited text file)

* Download an Excel template that guides you through the process of
creating an import file

Download the Excel template. You should customize the excel template to
upload data for the new product-to-product relationship (PRPRREL) table.
The technical details of the PRPRREL table are explained in Table 4 on page
106, and the details of the mass import file explained in Table 5 on page 110
will help create the new worksheet for creating product relationships in the
sample.in work book. Save the file as a comma-separated file type (.csv).
Open the file in the text editor to see the contents of the file in the
comma-delimited format. A sample file, called sample.in, is available with the
WCS SPE product to guide you in creating the mass import file.

As an example, Create a store with no products, and import the products and
category to the store using the import catalog utility. Download the sample.in
file from the merchant tool. Instead of using an excel template for creating a
mass import file, Open the sample file in the text editor, and copy the
following piece of data at the end of the file.

#PRPRREL,1, 1, Compatible, ,sku-d10, ,sku-dl
#PRPRREL,1, 1, Compatible, , sku-dlo0, ,sku-d2
#PRPRREL, 1,1, Cross-sell, ,sku-dilo, ,sku-d3
#PRPRREL, 1,1, Cross-sell, ,sku-dlo, ,sku-d4
#PRPRREL, 1,1, Cross-sell, ,sku-dilo0, ,sku-ds
#PRPRREL, 1,1, Cross-sell, ,sku-dlo0, ,sku-dé
#PRPRREL,1,1,Up-sell, ,sku-dio, , sku-d7

Save the file. Update the definition file as explained in the next section and
import the file using the import catalog utility from the merchant tool.

6.2.2.2 Append the definition file for new tables

Before importing the data into the database from the comma-separated value
format file, it is necessary to define the syntax of the new mass import file
with the values of the new tables in a definition file. The definition file used for
the mass import from the browser-based import catalog featured in the
merchant tool is catimp.ini. This file is different from the default definition file
of the mass import utility, massimpt.db2.in, which is available in the
/usr/lpp/NetCommerce3/bin directory.

The catimp.ini file contains the definition of the tables to be uploaded except
the definition of the new table we created. The next step is to append the file

Chapter 6. Cross-sell and up-sell 119

120

with the definition of data for the new tables. This file is available in the
/usr/Ipp/NetCommerce3/Tools/public/catalog_import directory.

Open the catimp.ini file in a text editor and copy the following code at the end
of the file:

H#TABLE; prreltype

#COLUMNS ; prtrfnbr; prtname;prtdesc;prtfieldl;prtfield2;prtfield3
#UI ; prtname

#REFNUM; prtrfnbr

#TABLE; prprrel

#COLUMNS ; plrfnbr; plmenbr; plpub;plgty;plprtnbr;plsgnbr;plprnbr; plsegnbr;plr
elprnbr

#UT ; plmenbr; plprnbr; plrelprnbr;plsgnbr; plprtnbr
#CONSTTOKEN ; plmenbr ; merchant

#REFNUM; plrfnbr

#FORREF; prprrel; plprnbr;product ; prrinbr; prmenbr; prnbr

#FORREF; prprrel; plrelprnbr;product; prrinbr; prmenbr; prnbr

#FORREF; prprrel; plprtnbr;prreltype; prtrinbr;prtname

Save the file. Now we have both the mass import file and the definition file in
place for uploading.

6.2.2.3 Importing the file from the browser tool
To import data available in the mass import file, perform the following steps:

1. Log in to your merchant tool.

2. Select the Product Catalog menu in the navigation bar.

3. Click on the Import Catalog menu item.

4. This will display the window shown in Figure 72 on page 121.
5

. Click on the Browse button to select your mass import file from your
machine.

6. Select your file and open it.
7. Click on the Import File button to upload the data into the database.

8. The Merchant tool will send a confirmation stating that the catalog import
has been submitted.

9. Close the merchant tool.

IBM WebSphere Commerce Suite SPE Customization

IBM WebSphere Commerce Suite, Service Provider Edition M= E3

Merchant Tool - Advanced

Catalog Import

To mmport a store catalog you must first create a file contaming product m
format. After you create the wmport file use this page to upload the file. ¥
has been imported.

For information about how to create vour wnport file, click Information.

Infarmation |

Catalog irmport file [C2 WINNTY Profiles) hdmi Browse... |

Reply e-mail Ig}{@ u=. ibm. com

L,
1111
£
(1L
1
£
B

Figure 72. Import data using the catalog import utility

6.2.3 Creating product relationship by customizing merchant tool

This section describes the creation of a product relationship between
products using a customized merchant tool. This technique is used to create
relationships between products, and it can also be extended to remove
relationships and modify the relationship between products. The scenario
assumed is that the type of relationship existing between the products is as
defined in Table 2 on page 103.

This technique also requires tables, such as the ones created in Section
6.2.1.1, “Creating product relationship tables in demomall database” on page
105. You should create the tables and populate the PRRELTYPE
(product-to-product relationship type) table with the required data before
proceeding. The customization of the Net.Data macro to display the product

Chapter 6. Cross-sell and up-sell 121

122

page is also the same as explained in Section 6.2.1.3, “Customizing product
display Net.Data macro” on page 111. A sample of customized Net.Data
macro cat_product.d2w is available in Appendix C.2, “Customized product
display (cat_product.d2w) macro” on page 293.

Thus, this part will mainly concentrate on how to update the PRPRREL
(product-to-product relationship type) table in the database from the
customized merchant tool instead of using a mass import utility. The mass
import utility is the best option if the number of products is large, and, if the
number of products is less, this method can be used to create a product
relationship.

Since the merchant will be using the merchant tool, we have to add an extra
feature to the tool’s menu that will link to our macro that will show the product
relationship. On this page, the merchant can relate the product to another
product belonging to the same store.

The macro is named productRel.d2w and is placed in the following directory:
/usr/lpp/NetCommerce3/macro/en US/ncadmin/storemgr

The source code can be found in Appendix C, “Source code for cross and up
selling” on page 291, macro file productRel.d2w.

To add this macro to the merchant tool for the advanced store under “Product
Catalog”, do the following:

1. Locate and open the xml file, navigation.xml, for the navigation bar in the
advanced store. At the time of this writing, it was found in:
/usr/lpp/NetCommerce3/Tools/xml/nchs/mtool /advanced

2. In the file, locate the line that reads <node name="productCatalog", and, just
before the closing tag, </node>, add the following new link tag:

<node name="RelateProduct"
url="http://<hostname>/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/
productRel . d2w/report ?merfnbr=3$env.merchant ids"

wholepage="true"

image="/NCTools/images/clear.gif"

users="siteAdmin storeAdmin catalogAdmin"/>

where
* name denotes the variable used to identify the link
* url denotes the action of the link
* images defines the image on the navigation bar to the left of the link

¢ users defines which users are allowed to see this link

IBM WebSphere Commerce Suite SPE Customization

3. Save the XML file.

4. Locate and open the file, navigationNLS.properties, which is found in
/usr/Ipp/NetCommerce3/Tools/lib/nctools.jar. Unjar the file issuing the
following from the command line:

jar -xvf nctools.jar

5. This would extract into two sub folders called com and manifest. The
navigationNLS. properties file can be found in the directory
usr/Ipp/NetCommerce3/Tools/lib/com/ibm/commerce/tools/nchs/properties

6. Open the navigationNLS.properties file using a text editor, and add the
following line:

productCatalog=Product Catalog
7. Save the file.

8. Re-create the nctools.jar file by issuing the following command from the
command line
jar -cf0 nctools.jar com

9. Restart WCS and Lotus Domino Go Web server to get the changes
reflected.

After restarting WCS, you can launch the merchant tool to enable the feature
for a particular store. Click on the Relate Product menu item in the
navigation bar, and you will notice that the content frame displays the product
relationship page, as shown in Figure 73 on page 124, from the macro,
productRel.d2w.

Chapter 6. Cross-sell and up-sell 123

124

M IBM WebSphere Commerce Suite, Service Provider Edition - Netscape
Merchant Tool - Advanced
Store | Select the first product |501- SKU-0001-Rose-§ 24.95 j
 View Store
* Get Started Select the related product : [# e R AT M A
- Reports
¥ Store Setup Select the relationship type : & Up-8ell € Cross-8ell € Compatible
- Store Style
= Product Catalog Enter the related product quartty |1_
- Edit Catalng
oL B Select whether to publish the relation: @ Publish € Not to Publish
- Quick Find
Import Catalog - M
“ Relate Product
- Store Administration
- Process Orders

Figure 73. Customized merchant tool - product relationship data entry page

The merchant could select the product based on the details available in the
list box. The list box shows details, such as the product number, item SKU
number, product description, and the price of the product. These details are
provided in the list box for selecting the product quickly based on the
description and price. Then, the merchant could select the related product
based on the reference number, item SKU, product description, and product
price.

The merchant could provide the type of the relationship existing between the
two products whether it is up-selling product, cross-selling product, or the
related product is a compatible accessory to the main product. He is also
required to give the quantity of the related product that could be sold together,
such as two batteries per flash light. He or she may wish to publish the
relation or not to publish the relation. Once he or she clicks on the Relate
button, the product-to-product relationship (PRPRREL) table gets updated
and the result is displayed in the confirmation page as shown in Figure 74 on
page 125.

IBM WebSphere Commerce Suite SPE Customization

IBM WebSphere Commerce Suite, Service Provider Edition - Netscape

MerchantToo=Advanced

| »

Store Tou have related the following products.

- View Siore PRODUCT NO. [RELATED PROD NO, [RELATION TYPE
 Get Started 01 502 (Cross-sel
 Noport 01 513 [Compatle

- Store Setup

- Store Style

&= Product Catalog
~ Edit Catalog
-~ Quick Find
Import Catalog =
“ Relate Product

- Store Administration
- Process Orders

& == \Document: Dong = T AP B |

Figure 74. Customized merchant tool - Related products confirmation page

The confirmation page shows the details of the products related to each other
and the type of the relationship between them as selected from the prprrel
table.

— Note

It is very important to note that Net.Data macro should not be used for
updating the database in Net.Commerce system. We have done it here to
make the interface simple. It is always recommended to use Commands
and Overrideable Functions to achieve any update to the database in your
implementation.

Once the product relationship is created, customize the Net.Data macro that
displays the product page of your store by following the steps given in Section
6.2.1.3, “Customizing product display Net.Data macro” on page 111.

Chapter 6. Cross-sell and up-sell 125

126 IBM WebSphere Commerce Suite SPE Customization

Chapter 7. External business system integration

This chapter describe how to integrate information from the WCS into the
merchant’s external business systems. The intended audience for this
chapter may include the service providers and the merchants who own the
online store and wish to integrate their legacy business system with a
Net.Commerce system. In this chapter, we will mainly concentrate on how to
integrate the existing order management system maintained by the
merchants with the Net.Commerce system.

7.1 Integrating external business system with Net.Commerce

When we look at extending an e-commerce site to other external business
systems, the first point of execution is the area of order management. Order
management will mean the processes that are taking place after the shopper
has placed the order in an online shopping store and given the valid payment
and shipping details. This mainly deals with order fulfillment or customer
fulfillment processes that are followed until the shopper receives the product
or service for which he or she has paid. As orders are created in the
commerce system, merchants want that order data to be passed to an
existing accounting or order management application.

Connecting stores in WCS SPE to external business systems is a feasibility
study with general implementation guidelines. Providing specific how to’s is
not reasonable because back end systems will vary from merchant to
merchant. It is very important to note that the integration of merchant-related
information to his or her order management or order fulfillment system should
not crash the whole WCS SPE system. It means that the customization of an
order processing system for an online store in Net.Commerce should be
specific to that merchant-related functionality only. That is, customization for
one merchant to his or her store level should not affect the other stores within
the shared environment.

To achieve this functionality, a reference application, named Secure third
party fulfillment [javafulfillment.exe, 422KB] can be downloaded from the net
in the Webshpere commerce server reference site, which, at the time of this
writing, was found in the following URL:

www-4 . ibm. com/software/webservers/commerce/community/process/refapps . html

This application leverages the strength of Java to send an encrypted request
for third-party fulfilment. Once an order is received from and confirmed to a
shopper, this reference application helps you take that request and securely

© Copyright IBM Corp. 2000 127

send it outside your organization. You can download the application and unzip
the package and the following the instructions as given in the product
documentation, Java Fulfillment: Integrating Java With IBM Net.Commerce.

128 IBM WebSphere Commerce Suite SPE Customization

Chapter 8. Customizing the store creation wizard

This chapter will describe how to customize the store creation wizard for the
advanced store. First, it will explain how to create new category and product
pages for the merchant to choose from. Then, it will describe how to create
new screens in the store creation wizard to allow the merchant to choose
from these pages for their site. Lastly, it will describe how to alter the store
creation process so that the new choices are implemented.

Using a step-by-step practical example, we hope to give a more detailed
understanding of the store wizard and also show how an ISP can enhance
functionality and offerings for their site.

8.1 The catalog screen

The catalog screen in the store creation wizard for the advanced store allows
the merchant to select from predefined categories and products as they are
creating their store. However, with the standard installation of WCS, these
categories and products will only be displayed with the default pages as
shown in Figure 75 below and Figure 76 on page 130.

Since not all merchants will be selling the same product range, it would
benefit them immensely if they could choose from a number of different
product and category pages. In the following sections, we will show how to
create new product and category pages for the merchant to choose from and
then how to customize the store creation wizard to offer this service.

Catalog

Browse our online catalog. If you see something that you like, you can purchase it securely from
our store,

Fall Fashions Pants Sweaters

Figure 75. Default category page

© Copyright IBM Corp. 2000 129

Baggy-Fit Cotton Twill Jeans

Baggy-Fit Cotton Twill Jeans
[Froduct # SKU-0001]

Comfortable and loose fit with traditional S-pocket styling and front fhy. 100% brush twill cotton.
Machine wash.

Deszigner : Fred Brown
Fly : Zipper Fly

Product Price: 3 54.95 USD

Specify wour product selections then olick Add to Shopping Gart.

Sizel—— Select a value -- j

Colorl—— Select a value -- j

Figure 76. Default product page

8.2 Creating custom category and product pages

First, we will look at how to create custom category and product pages for
your site. We shall create two new category and product pages for the
merchant to choose from. We will be using the ClassicStoreModel, but this
will also hold for the ExpressStoreModel. The general rule for creating custom
pages is to use the default macro as the base so that you are sure that they
have all the necessary functions. Additional code should be kept in an include
file, and any changes made to the original code should be as small as
possible.

8.2.1 Custom category pages

The default category for the ClassicStoreModel is held in the file:

/usr/lpp/NetCommerce3/macro/common/ClassicStoreModel/cat_category.d2w

IBM WebSphere Commerce Suite SPE Customization

To create the new category pages, we took this file as the blueprint and
created files under the same directory called cat_category2.d2w and
cat_category3.d2w. The blueprint file contains the base functions required to
create a category page. They are summarized as follows:

e GET_CATEGORY_TITLEINFO() - This stores the current category name
and reference number in the variables, CGRYBANNERNAME and
CGRYNUM.

* DISPLAY_CATEGORIES() - This displays all the subcategories with links
that belong directly under the current category.

e DISPLAY_PRODUCT_LIST_SINGLEPRICE() - If the category displays
products, it displays these in list form with single price information.

e DISPLAY_PRODUCT_LIST_DUALPRICE() - Similar to
DISPLAY_PRODUCT_LIST_SINGLEPRICE() but with double price
information in the situation of DEM and EURO.

All of these functions are essential and must be included to create a
functioning category page.

8.2.1.1 Three level category example.

The first new category we created was based on adding a third-level category
to the page when a merchant has a deep catalog tree. First, we took the
original DISPLAY_CATEGORIES function, and, instead of displaying the
result of the database query, we created a net.data Table variable to contain
it. Figure 77 shows the changed function.

-
sfunction(dtw odbc) DISPLAY CATEGORIES(OUT table) {

SELECT cgrfnbr, cgname, cgldesc

FROM category, cgryrel

WHERE crccgnbr=cgrfnbr and crpcegnbr=$ (cgrfnbr) and crmenbr=$ (cgmenbr) and cgpub=1
ORDER BY crsegnbr

SMESSAGE
100:{ %} :continue
default: {
<HR><FONI‘ FACE="$ (BodyFontFace) "
SIZE="$ (BodyFontSize) ">$ (ERR MSG GENERAL)

3$ (ERR LBL FUNCTIONNAME)
GET CATEGORY TTTLEINFO ()
$ (ERR LBI, ERRORMESSAGE)
$ (DTW DEFAULT MESSAGE) <HR> %} :continue

Figure 77. DISPLAY_CATEGORIES function

Chapter 8. Customizing the store creation wizard 131

Then, we created an include file containing the definitions and two new
functions that we need to display the extra category information. First, a table
variable. called catTable, is declared, which will hold the result from the
DISPLAY_CATGEORIES function. The other definitions are standard net.data
variables for the Table function:

$define{

catTable = $%TABLE (20)
DTW_SET TOTAL ROWS="YES"
DTW_DEFAULT REPORT = "NO"

%}

The DISPLAY_CATS macro function loops through the values in catTable and
calls GET_CHILD_CATS for each, which displays any child categories found.
The code for these functions is found in Figure 78 below and Figure 79 on
page 133.

("sfunction (dtw_odbc) GET CHILD CATS (IN newcgrfnbr) { R

SELECT cgrfnbr, cgname, cgldesc

FROM category, cgryrel

WHERE crcegnbr=cgrfnbr and crpcgnbr=$ (newcgrfnbr) and crmenbr=s (cgmenbr) and
cgpub=1

ORDER BY crsegnbr

$REPORT {

@DIW_TB rGEIV (catTable, loop, "2")

</td><td>------ </td><td>

SROW{

<A

HREF="http://$ (HOST NAME) /cgi-bin/ncommerce3/CategoryDisplay?cgrinbr=$(V_cgrfnbr) &g
menbr=$ (MerchantRefNum) ">

$ (V_cgname)

o°

1
1
SMESSAGE
100:{

<A
HREF="http://$ (HOST NAME) /cgi-bin/ncommerce3/CategoryDisplay?cgrinbr=$ (newcgrfnbr) &
gmenbr=$ (MerchantRefNum) ">
@DTW_TB rGETV (catTable, loop, "2")
 %} :continue
default: {%}:continue

o°

o°

}

}

o
-

Figure 78. GET_CHILD_CATS function

132 IBM WebSphere Commerce Suite SPE Customization

/%MACROJUNCTION DISPIAY CATS () {)

@TW ASSIGN (locp, "1")
@TW_TB ROWS (catTable, totalrows)

$IF (totalrows != "0")
<CENTER><TABLE BORDER=0 WIDTH=$ (TableWidth) ALIGN=$ (TableAlignment) CELLPADDING=4
CELLSPACING=0>
<TR><TD align="left"><FONT FACE="S (BodyFontFace)"
SIZE="$ (BodyFontSize) ">$ (TXT INSTR CATALOGCGRY)</TD></TR>
</TABLE></CENTER>

<CENTER><TABLE BORDER=0 WIDTH=$ (TableWidth) ALIGN=$ (TableAlignment) CELLPADDING=4
CELLSPACING=0>
<TR><TD VALIGN="top" ><FONT FACE="$ (BodyFontFace)"
SIZE="$ (BodyFontSize) ">$ (CGRYBANNERNAME)
</td><td>
<table BORDER=0 CELLPADDING=4 CELLSPACING=0>

$WHILE (loop <= totalrows) {
<tr><td align=right>
@TW TB GETV(catTable, loop, "1", newcgrfnbr)
@GET CHILD CATS (newcgrfnbr)
</td></tr><tr><td>
</td></tr>
@TW_ADD (loop, "1", loop)

o°

}

</table>

</TD></TR><TR><TD>
</TD>< /TR>< /TABLE>< /CENTER>
$ELSE
@DTW_ASSIGN (NOCATEGORIESINCATEGORY, "YES")
<CENTER><TABLE BORDER=0 WIDTH=$ (TableWidth) ALIGN=$ (TableAlignment) CELLPADDING=4
CELLSPACING=0>
<TR><TD align="left"><FONT FACE="S (BodyFontFace)"
SIZE="$ (BodyFontSize) ">$ (TXT INSTR CATAIOGCGRY)</TD></TR>
</TABLE></CENTER>

<CENTER><TABLE BORDER=0 WIDTH=$ (TableWidth) ALIGN=$ (TableAlignment) CELLPADDING=4
CELLSPACING=0>
<TR><TD VALIGN="top" ><FONT FACE="$ (BodyFontFace)"
SIZE="$ (BodyFontSize) ">$ (CGRYRANNERNAME)

</TD></TR><TR><TD>
</TD></TR>
</TABLE></CENTER>
ENDIF

}

[o° o
\

Figure 79. DISPLAY_CATS function

The new functions were included in the cat_category2.d2w macro by adding
the following statement in bold before the HTML_REPORT section of the
macro:

o°

INCLUDE "more cat.inc"

{
{

oe
—

HIML Report Section

oe
—

o® o° o° o

{
HTIML_REPORT

Chapter 8. Customizing the store creation wizard 133

They are called just after the original function as in the following line:
<TR><TD>@DISPLAY CATEGORIES (catTable)@DISPLAY CATS ()</TD></TR>

The resulting category page is shown in Figure 80, and the additional code is
found in Appendix D.1, “Three level category example, file more_cat.inc” on
page 301.

Catalog
Browse our online catalog. If wou see something that yvou like, you can purchase it securely from
our store.
Hardware Store Hand Tools - wﬁnﬁhﬂ”
Gardening Tools - W | Utenail

Figure 80. Three-level category custom page

8.2.1.2 The You are here custom category page

The second category page we designed contained additional information on
the user’s location in a You are here bar. For example You are here >> Hand
Tools >> Hammers. This is particularly useful if there is a deep category tree
that allows the user to click back and forth along the various branches. Again,
the cat_category.d2w macro was used as the base, and a new file,
cat_category3.d2w, was created in the same directory. Two new functions
were created in an include file as shown in Figure 81 on page 135.
DISPLAY_YOU_ARE_HERE() is a macro function that starts at the current
category and calls GET_CAT_PARENT repeatedly to get the previous
categories until the root is found. These categories are stored using the
JavaScript function, setupcategories, which adds an entry each time to the
categories array. Once completed, the You_are_here string is displayed using
the printyouarehere JavaScript function. The JavaScript functions are
displayed in Figure 82 on page 136.

134 IBM WebSphere Commerce Suite SPE Customization

/%define{ R
hasParent="TRUE"
globalref=""

%)

$function (dtw odbc) GET CAT PARENT (IN cgrfnbr) {

SELECT cgname, cgrfnbr

FROM category, cgryrel

WHERE cgmenbr=S (MerchantRefNum)
and crmenbr=3$ (MerchantRefNum)
and CRCCGNBR=S$ (cgrfnbr)
and cgrfnbr=CRPCGNBR

$REPORT{
@TW_ASSIGN (hasParent, "TRUE")
@DTW_ASSIGN (globalref,V cgrfnbr)
setupcategories ('$ (loop) ', '$ (V_cgname) ', '$ (V_cgrfnbr) ')

o°

}
MESSAGE {
100:{ @DTW ASSIGN (hasParent,"FALSE") %} :continue
default: {@DTW ASSIGN (hasParent, "FALSE")%} :continue

oe

5}

o°
—

$MACRO FUNCTION DISPLAY YOU ARE HERE() {

<script>
@TW ASSIGN (globalref, cgrfnbr)
@TW_ASSIGN (loop, "0")

SWHILE (loop < "10" && hasParent == "TRUE") {
@GET _CAT PARENT (globalref)
@TW_ADD (loop, "1", 1loop)

5}

var cgmenbr = 'S (MerchantRefNum)';
</script>

<tr><td><div align="left">

<font size="$(BodyFontSize)" face="Arial, Helvetica, sans-serif"s

s You are here:
Home

@TW_SUBTRACT (loop, "2", 1loop)

<script>
printyouarehere ('S (loop) ')
</script>

» $ (CGRYRANNERNAME) </divs</td></tr>

%}
N J

Figure 81. YOU_ARE_HERE_CAT include file

Chapter 8. Customizing the store creation wizard 135

136

var categories = new Array () ;
var list = "";

function CreateCats (name,ref) {
this.name=name;

this.ref=ref;

return this;}

function setupcategories(i,name,ref)
categories|[i]=new CreateCats (name,ref);}

function printyouarehere (total) {

var index=total;

while (categories[index] && index > -1)({
printcategory (index) ;

index--;

}

document .write (list) ;}

function printcategory (index) {

list += " » ";

list += "<a href=/cgi-bin/ncommerce3/CategoryDisplay?cgrfnbr=";
list += categories[index] .ref+"&cgmenbr="+cgmenbr+">";

list += categories[index] .name+"";

U Y,

Figure 82. YOU_ARE_HERE JavaScript functions

Only a few changes were then made to the original cat_category.d2w file. The
files are included by adding the bold lines of code shown in Figure 83.

4 M
%}

o°

o°

o°

{
{ Extension section
{

%INCLUDE "you are here cat.inc"

o°

o°

{
{ HIML Report Section
{

o°

$HIML REPORT({

<HTML>

@GET_CATEGORY TITLEINFO()

<HEAD>
<META HITP-EQUIV=Expires CONTENT="Mon, 01 Jan 1999 01:01:01 GMI">
<SCRIPT SRC="/EXT pages/javascript/you are here.js"></SCRIPT>

- /

Figure 83. Include statements for cat_category3.d2w

IBM WebSphere Commerce Suite SPE Customization

The DISPLAY_YOU_ARE_HERE function is called just before the existing
DISPLAY_CATEGORIES function.

<TR><TD>@DISPLAY YOU ARE HERE () </TD></TR>
<TR><TD>@DISPLAY CATEGORIES ()</TD></TR>

The macro results in the screen shown in Figure 84, and the code is found in
Appendix D.2, “You are here custom page” on page 302.

Catalog

m ¥ou are here: Horne » Hardware Store » Gardening Tools =Garden Utensils

Browse our cnline catalog. If you see something that you like, you can purchase it securely from
our store.

Garden UWensils

3 Piece Garden Tool Set [55-411-PC]
Price $ 16.41US0

(e Product Details)

3 Piece Hand Tool Set [285-742-GH]
Price § 27.35U50

Figure 84. YOU_ARE_HERE custom category page

8.2.2 Custom product pages
The default product page for the ClassicStoreModel is held in the file:

/usr/lpp/NetCommerce3/macro/common/ClassicStoreModel/cat_product .d2w

Again, as in the category example, it is very important to use this file as a
base for your new custom product pages. Especially since this macro file is a
little more complicated than the previous example. The base functions are as
follows:

* GET_PRODUCTNAME() - This stores the product name in the
PRODUCTNAME variable.

e GET_DISTINCTATTRIBUTES() - This stores the number of attributes that
a product has in the FLAG_ATTRIBUTES variable.

Chapter 8. Customizing the store creation wizard 137

138

* DISPLAY_PRODUCT_IMAGE() - This displays the product large image.

* DISPLAY_PRODUCT_INFO() - This displays the product SKU number
and product short and long description.

* DISPLAY_PRODATTR()- This displays each of the product attributes in a
drop down list with their values. It also displays the Add to Shopping Cart
button.

* DISPLAY_PRODUCT_SINGLEPRICE() - This displays single product
price.

* DISPLAY_PRODUCT_DUALPRICE() - This displays double product price
when the user has selected two currencies.

* DISPLAY_PRODUCT_SINGLEPRICE_RANGE() - The product may be on
special offer; so, this function displays the previous prices along with the
current special-offer price.

e DISPLAY_PRODUCT_DUALPRICE_RANGE() - This is as above but only
for dual currencies.

8.2.2.1 Shortened product page example

In the first example, we took the cat_product.d2w macro as a base and
created a new file, called cat_product2.d2, under the same directory. We are
aiming to create a new product page that will take up less space on the main
frame so the user won’t have to scroll. The principal change we made was to
move the DISPLAY_ITEMS_DROPDOWN() function so that it comes before
the DISPLAY_PRODUCT_SINGLEPRICE_RANGE() and
DISPLAY_PRODUCT_DUALPRICE_RANGE() functions and to take the Add
to Shopping Cart button out of the items function so that the items and prices
could be displayed in the same HTML table. Part of the code is shown in
Figure 85 on page 138.

(" SELIF (FLAG ATTRIBUTES > "0" && (ConvMultiplyFactor == NUIL || ConvDivideFactor ==)
NULL))
@DISPIAY ITEMS DROPDOWN ()
@DISPIAY PRODUCT SINGLEPRICE RANGE ()
SELIF (FLAG ATTRIBUTES > "0" && (ConvMultiplyFactor != NULL && ConvDivideFactor !=
NULL))
@DISPIAY ITEMS DROPDOWN ()
@DISPIAY PRODUCT DUALPRICE RANGE ()
SENDIF
$IF (SHOWADDTOCART == "YES")
<p><INPUT TYPE="hidden" NAME="comment" VALUE="$ (LB, COMMENTS): ">
<INPUT TYPE=SUBMIT VALUE="@DTW rUPPERCASE (BUT ADDTOSHOPCART) ">
</TD></TR></TABLE>
SENDIF

- J

Figure 85. Shortened product page example code

IBM WebSphere Commerce Suite SPE Customization

The remaining changes were to the HTML table tags and the space tags to
shorten the page. Figure 86 shows how it appears, and the final code is in
Appendix D.3, “Shortened product page example, cat_product2.d2w file” on
page 304.

Catalog

Browse our online cataleg. If you see something that you like, you can purchase it securely fram
our store,

V-Neck Sweater

V-Neck Sweater

[Preduet# 5kU-0005]) A contermnporany look with ribbed neckline, 10024 wool,
Machine wash.

Desigrer : Rosemary Hill

Specify your product selections then click Add to
$Shopping Cart Product Price: § 44.95 USD

Shea|.- Select 2 vaue - ADD TO SHOPPING CART
Golor |- Select a value - 7|

[fou ean change or mmows podoets form your shopping car at any tire.)

Figure 86. Shortened custom product page

8.2.2.2 “You are here” custom product page.

The second product page we designed was an extension on the previous
“You are here” category example. This time the product name would be
included and the category history would begin from a product.

Again the cat_product.d2w macro was used as the base and a file
cat_product3.d2w created in the same directory. But we also used our
previous code you_are_here.js and you_are_here_cat.inc, which we renamed
you_are_here.inc. One extra function was added to you_are_here.inc, that
retrieves the starting parent category of the product as shown in Figure 87.

Chapter 8. Customizing the store creation wizard 139

sfunction (dtw odoc) GET PROD CAT (IN prrfnbr) {

SELECT cgname, cgrfnbr

FROM category, cgprrel

WHERE cgmenbr=$ (MerchantRefNum)
and cpmenbr=s (MerchantRefNum)
and cpprnbr=s (prrfnbr)
and cgrfnbr=cpcgnbr

$REPORT{
@DTW_ASSIGN (hasParent, "TRUE")
@TW_ASSIGN (globalref,V_cgrfnbr)
setupcategories (0, '$ (V_cgname) ', '$ (V_cgrfnbr) ')

o°

}
MESSAGE {
100:{ @DTW ASSIGN (hasParent,"FALSE") %} :continue
default: {@DTW ASSIGN (hasParent, "FALSE")%}:continue

oe

5}

3

Figure 87. GET_PROD_CAT function

Also, the function, DISPLAY_YOU_ARE_HERE, needed to be changed to
include the product name. The changes are shown in bold in Figure 88 on
page 140.

$MACRO FUNCTION DISPLAY YOU ARE HERE() {

<script>

@GET PROD CAT (prrfnbr)

@DTW_ASSIGN (loop, "1")

SWHILE (loop < "10" && hasParent == "TRUE"){
@GET_CAT PARENT (globalref)

@TW _ADD (loop, "1", loop)

5}

var cgmenbr = 'S (MerchantRefNum)';

</script>

<tr bgcolor="#FFFFFF"><td><div align="left">

<font size="$(BodyFontSize)" face="Arial, Helvetica, sans-serif"s You are here: Home

@TW_SUBTRACT (loop, "2", 1loop)

<script>

printyouarehere ('$(loop) ')
</script>

» ; $ (PRODUCTNAME)
</div></td></tr>

¥}

Figure 88. DISPLAY_YOU_ARE_HERE function for custom product page

140 IBM WebSphere Commerce Suite SPE Customization

The Java script file remained the same and they are included and called as
they are for the You_are_here category example. The custom code created is
found in Appendix D.4, “The “You are here” custom product page and file
you_are_here.inc” on page 318, and the resultant page is shown in Figure 89
on page 141.

Catalog

m ¥ou are here: Home » Hardware Store » Hand Tools » Hammers »Claw Hammer

Claw Hammer

[Product # 91-123H] Styled with slanted front and heat-treated
head. Steel handle with cushion grip.

Height: 0.0500 m Length : 0.2500 m Width 1 01000 m
Weight : 06000 ky

Product Price : & 10 87 USD

ADD TO SHOPPIMNG CART

[ou ean change or emove products from wour shopping eart st any tirme.)

Figure 89. The “YOU_ARE_HERE custom product page

8.2.3 How the store creation wizard works

This sections explains in detail how the wizard operates and then describes
the code we created to add the new panels. For full implementation details,
see Appendix D, “Store creation wizard sample code” on page 301. The store
creation wizard contains a number of panels that offer, for example,
alternative themes or banner bars from which the merchant chooses to
determine how his or her store appears. These choices are stored by the
wizard and used to create the merchant’s store when they press the Finish
button at the end of the creation process. This information is held as an
object-called model in the store creation wizard’s client browser. Each panel
adds more values to this object. When Finish is pressed on the final screen, a
Java script function, convertToXML(), is called, which converts this object into
a number of XML parameters that are then sent to the servlet,

Chapter 8. Customizing the store creation wizard 141

142

MerchantAdmin. This servlet then does all the work of creating the new store
based on the values in the XML parameters. In regards to the category and
product pages, this servlet carries out the following actions:

1. It creates the new store files for the category and product pages based on
an XML tag specified in an XML parameter sent from the final screen.

2. It places these new files in the new store’s home macro directory. This is:
/usr/lpp/NetCommerce3/macro/en US/category/<merchant reference numbers/
/usr/lpp/NetCommerce3/macro/en US/product/<merchant reference numbers/

You can obtain the merchant reference number by running the sql shown in
Figure 90 where mename equals the merchant’s name.

——————————————————————————— Command entered --------------------———————-
select merfnbr from merchant where mename='bellavista'

1 record(s) selected.

Figure 90. SQL to select merchant’s reference number

3. Inserts new entries into the macros table for this new merchant. These
new entries specify which macro the product displays and the category
display tasks use. Figure 91 shows the sql to display these values.

T — Command entered --------------------——-————- N
select tkrfnbr, tkname, mamernbr, mafilename from macros, tasks where
tkrfnbr=marfnbr and mamernbr = 2147 and (tkrfnbr=9042 or tkrfnbr=9043)

9043 DEFAULT CAT TEMPLATE 2147 2147/cat category.d2w
9042 DEFAULT PROD TEMPLATE 2147 2147/cat product.d2w

2 record(s) selected.

Figure 91. SQL to select product and category macros

In the example in Figure 91, we can see that the task,
DEFAULT_CAT_TEMPLATE, uses the template in the directory:

/usr/lpp/NetCommerce3/macro/en US/category/2147/cat category.d2w

IBM WebSphere Commerce Suite SPE Customization

where the root directory for category macros is:
/usr/lpp/NetCommerce3/macro/en US/category/

Here, we have the contents of this template, which we see is based on the
ClassicStoreModel’s cat_category.d2w macro:

%$include "2147\include.inc"
%$include "2147\theme.inc"
%$include "ClassicStoreModel\cat category.d2w"

Which files to create and use as a template are defined in the XML
parameters sent in the final screen. Therefore, the key to altering the
category and product files created for a merchant lies in changing the content
of the final XML parameter. Figure 92 shows the section of the XML that
contains the definitions for the category and product macros.

-

<task>
<refno>9043</refno>
<file>cat category.d2w</file>
</task>
<task>
<refno>9042</refno>
<filescat product.d2w</file>
</task>

<macro>
<baseDir>categoryBase</baseDir>
<name>cat_category</name>
<generator>cat_category</generators
</macro>
<macro>
<baseDir>macroBase</baseDir>
<name>cat_category</name>
<generator>cat_category</generators
</macro>
<macro>
<baseDirsproductBase</baseDir>
<name>cat_product</name>
<generators>cat_product</generators
</macro>
<macro>
<baseDir>macroBase</baseDir>
<name>cat_product</name>
<generators>cat_product</generators
</macro>

- /

Figure 92. XML definitions for category and product pages

Chapter 8. Customizing the store creation wizard 143

144

Appendix D.5, “Full macros XML parameter” on page 319, shows the full
macros XML parameter.

The <task> tag represents the task reference number (tasks.tkrfnbr) and
macro file (macros.mafilename) to be inserted into the macros table for that
task. The <macro> tags define the base product or category macro that
should be used when creating the new file. It has a number of elements.
<baseDir> is to define the directory for this macro. For example, we have the
value categoryBase, which translates as the following directory:

/usr/lpp/NetCommerce3/macro/en US/category/

The <name> tag is the name of the new file, and the <generator> tag is used
to define which macro it is to be generated from; so, if we wanted to use the
cat_category3.d2w macro, which we just created in our new store, the
resultant XML tags should appear as shown in Figure 93.

<task>
<refno>9043</refno>
<filescat category3.d2w</file>
</task>
<macros
<baseDir>categoryBase</baseDir>
<name>cat_category3</name>
<generator>cat_category3</generator>
</macro>
<macros
<baseDir>macroBase</baseDir>
<name>cat_category3</name>
<generator>cat_category3</generator>
q </macro>

Figure 93. Altered XML parameter for custom category page

The MerchantAdmin servlet would then create the entries for the new file,
cat_category3.d2w, instead of the default.

8.2.3.1 Changing the macro XML settings

There are a number of alternative solutions for changing the XML settings. It
would be good to take advantage of WebSphere’s XML parser, write a servlet
that would alter the macros XML, and then use filtering to pass the changed
parameters to the MerchantAdmin servlet. Unfortunately, in practice, this has
proven too slow and cumbersome. The idea we chose was to write a
JavaScript function that would change the XML parameter once it had been
created by the JavaScript function, convertToXML(). This would save any
unneccessary parameter requests to the server and would allow all the
processing to take place on the client side.

IBM WebSphere Commerce Suite SPE Customization

To represent the elements that we want to change in the XML parameter, we
created a JavaScript array variable, called newElements, which is defined as:

newElements.orig
newElements.newvalue

Where orig contains the default XML tag and newvalue contains the changed
version. Then, as shown in Figure 94, we wrote the JavaScript function,
changeXML, which parses through the XML parameter one line at a time
searching for a match to orig. If found, it changes the string to newvalue.

function nospaces (tempstring) {
var tempstring2="";
for (j=0; j < tempstring.length; j++)
{if (tempstring.charAt(j) != " ")
tempstring2 += tempstring.charAt (j) ;

return tempstring?;}

function changeXML (xmlstring) {
nlcode = "10";

var tempstring="";

var tempstring2="";

var newxmlstring="";

var index = 0;

var b = false;

for (i=0; i < xmlstring.length; i++)
if (xmlstring.charCodeAt (i) == nlcode) {
// go around all elements and check for a hit. If yes then change it.
index = 0;
b = false;
tempstring2 = nospaces (tempstring) ;
while (newElements[index] && !b) {
if (newElements[index] .orig == tempstring2) {
tempstring = newElements [index] .newvalue;
b = true;
break;
} /7 if
index++;
} //while
newxmlstring += tempstring + xmlstring.charAt(i);
tempstring="";

else
tempstring += xmlstring.charAt(i);}
return newxmlstring;

U Y,

Figure 94. ChangeXML JavaScript function

But, we also need to create values for this newElements array. The JavaScript
function, setXMLChanges, shown in Figure 95, is used in the category and

Chapter 8. Customizing the store creation wizard 145

146

product selection panels in the store creation wizard. When the merchant
selects a category page, setXMLchanges is called to create or update the
contents of the newElements array.

() // arrays for changed Elements N
var newElements = new Array() ;

function CreateElement (orig, newvalue) {
this.orig = orig

this.newvalue=newvalue;

return this;

}

function UpdateElement (orig, newvalue, index) {
newElements [index] .orig=orig;

newElements [index] .newvalue=newvalue;

return this;

}

function getarrayindex Elements(orig) {

var newindex=newElements.length;

var b = true;

var index=0;

while (newElements[index] && b){

if (newElements[index] .orig == orig)
{b=false;newindex=index;break; }

index++;

}

return newindex;

}

function setXMLChanges (orig page, chosen page, orig base , chosen base, orig gen,
chosen gen) {

var i=getarrayindex Elements(orig page) ;

if (i==newElements.length)

newElements [1] =new CreateElement (orig page, chosen page) ;

else

UpdateElement (orig page,chosen page, i) ;

i=getarrayindex Elements(orig base);

if (i==newElements.length)

newElements [1] =new CreateElement (orig base, chosen base) ;
else

UpdateElement (orig base,chosen base, i) ;

i=getarrayindex Elements(orig gen);
if (i==newElements.length)
newElements [1] =new CreateElement (orig gen,chosen gen) ;
else
UpdateElement (orig gen, chosen gen, i) ;
}
- J

Figure 95. SetXMLchanges JavaScript function

IBM WebSphere Commerce Suite SPE Customization

All of the above JavaScript is contained in a single file, called
CheckForChanges.js. See Appendix D.6, “CheckForChanges.js JavaScript”
on page 324. It is included in the wizard using its model template file, which
defines the top frame of the wizard window. Here is the file:

/usr/lpp/NetCommerce3/Tools/mpg templates/common/Model . tem

It was included just above the other JavaScript files in the following way:
<SCRIPT SRC="/EXT NCTools/javascript/CheckForChanges.js"></SCRIPT>
<SCRIPT SRC="/NCTools/javascript/ConvertToXML.js"></SCRIPT>

<SCRIPT SRC="/NCTools/javascript/NumberFormat.js"></SCRIPT>

To change the XML just created by calling the changeXML() fn, we altered the
verify panel for the advanced store. This is found in:

/usr/lpp/NetCommerce3/Tools/mpg_templates/nchs/store_creator/advanced/
Verify.tem

And, our new function was called after the XML[1] parameter was created.
The XML[1] parameter contains the macro information. You will see the new
code in bold below:

document .£1.XML[0] .value = top.convertToXML (pageObject , "pageXML") ;
document .f1.XML[1] .value = top.convertToXML (macros , "macros") ;
document.fl.XML[1] .value = top.changeXML (document.fl.XML[1] .value) ;
document .f1.XML[2] .value = top.convertToXML (layouts , "layoutXML") ;

How we called the setXMLchanges function will be shown in the next section
where we will create the new panels for the store creation wizard.

8.2.4 Creating new category and products panels

The next step is to create the new screens or panels in the store creation
wizard that will allow the merchant to choose from our category and product
pages.

Even though the templates in WCS are created in MPG, that does not mean
that new ones must also be created in MPG. This gives us the freedom to
choose whatever Internet technology we prefer and is supported by WCS
from simple HTML or net.data macro. For our example, we have chosen to
use servlets, JSPs and XML files. This will introduce the new underlying
WebSphere technology that is introduced in this latest release of WCS. It also
follows along the same methodology as used in MPG to separate the
processing logic from the display and data logic. The XML is used for
representing the data, the JSP for display, and the servlet and bean classes
for functionality. Our design is as shown in Figure 96 on page 148.

Chapter 8. Customizing the store creation wizard 147

148

XML

e Java Servlet & Bean

XML

-_.__,_,.,-r""ﬂ_h"'“
 JSP Web
One or harny Page
AML files

Figure 96. Design flow for new wizard panels

In this example, we want to create a generic servlet that could be used to
create any number of new panels in the store creation wizard. These panels
will allow the merchant to choose from a variety of pages for the one function,
such as different login screens or order summary pages. The only change
would be in the XML file and, maybe, but not necessarily, the JSP file. There
is an HTML version of the panels in Appendix D.10, “HTML panel pages and
file Displaycats./” on page 331 which has hard coded the category and
product choices, if you require a simpler solution.

8.2.4.1 XML files

We will use XML files to contain the information about the various product or
category pages we want to show to the merchant. Since we also plan to use
only one display JSP page, we will use the XML to contain display
information, such as the image for each page and the title. We created two
XML files, category.xml and product.xml, under the /appldata/XML/ directory
according to our own format as shown in Figure 97 and Figure 98 on page
149.

g N

<?xml version="1.0"?>

<Newmacross>

<title value="Please choose from the category pages below:"/>

<origpage value="cat category.d2w"/>

<origbase value="cat category"/>

<newtask file="cat category.d2w" base="cat category" image="catl.gif" desc="Default
page"/>

<newtask file="cat category2.d2w" base="cat category2" image="cat2.gif" desc="More
Categories"/>

<newtask file="cat category3.d2w" base="cat category3" image="cat3.gif"
desc="You Are Here Info"/>

</newmacros>

Figure 97. Category.xml

IBM WebSphere Commerce Suite SPE Customization

/<?xml version="1.0"?> R
<NEewmacros:>
<title value="Please choose from the product pages below:"/>
<origpage value="cat product.d2w"/>
<origbase value="cat product"/>
<newtask file="cat product.d2w" base="cat product" image="prodl.gif" desc="Default
page"/>
<newtask file="cat product2.d2w" base="cat product2" image="prod2.gif" desc="Shortened
page"/>
<newtask file="cat product3.d2w" base="cat product3" image="prod3.gif"
desc="You Are Here Info"/>
</newmacros>

Figure 98. Product.xml|

Description of the tags:
* <title> - This is the title to display on the panel page.
e <origpage> - This is the default macro value.
e <origbase> - This is the default base value.

* <newtask> -This describes each of the choices to be presented to the
merchant.

¢ <file> - This is the new macro filename.
e <base> - This is the new base value.
* <image> - This is the image to appear to represent this page choice.

* <desc> - This is the description text to display for each page.

8.2.4.2 The Java servlet

The Java servlet class will parse the XML file specified in the parameters and
set the values of the macrosBean (see Section 8.2.4.3, “macrosBean” on
page 153) according to the content of the XML file. Then, it will call the JSP
page, specified as a request parameter, with the macrosBean included in the
response.

The parameters sent to the servlet are:

xmlfile=product.xml
jspfile=/EXT_pages/html/DisplayPages.jsp

We also create an initial parameter for the servlet as:

xmlpath=/appldata/XML/

Chapter 8. Customizing the store creation wizard 149

150

Appendix D.13.2, “Websphere configuration” on page 336, shows how to
create an initial parameter. Therefore, the xmls are to be found in XMLPATH +
XMLFILE.

Figure 99, shows the imports required for the servlet. It is important to have
these classes in your class path when compiling. See Appendix D.13.2,
“Websphere configuration” on page 336.

4 N
/

* DisplayPagesServlet

// These imports are for the XML parsing
import org.w3c.dom.*;

import com.ibm.xml.parsers.*;

import com.ibm.xml.parser.*;

import java.io.*;
import java.beans.Beans;

// These are for the servlet methods
import javax.servlet.*;
import javax.servlet.http.*;

//We import our custom created Bean
import macrosBean;

- J

Figure 99. Imports for DisplayPagesServiet

Figure 100 on page 151 shows the parseXML method. We are using the IBM
XML parser for Java (XML4J). This is pure Java software that can read XML
data and generate its structured tree. This then allows the elements of the
tree to be accessed as objects using DOM (Document Object Model). First,
we obtain the root of the tree:

Element root = (Element)doc.getDocumentElement()

And we then use this as the reference to obtain the other elements. In our
example, we know the names of the elements we are looking for but not their
attributes. The following statement retrieves the attribute value for element
title:

((Element) root.getElementsByTagName("title").item(0)).getAttribute("value")

We then call assign functions in the macrosBean class (see Section 8.2.4.3,
“macrosBean” on page 153) to store these tag values.

IBM WebSphere Commerce Suite SPE Customization

mBean.settitle(((Element)
root.getElementsByTagName("title").item(0)).getAttribute("value"))

For further information concerning WebSphere and XML, refer to the
redbook, The XML Files: Using XML and XSL with IBM WebSphere 3.0,
SG24-5479.

[public void parseXML (String xmlpath, macrosBean mBean)

throws ServletException, IOException

try{

// declare a DOMparser on our xml file.

DOMParser parser = new DOMParser() ;

parser.parse (xmlpath) ;

// Then we retreive the document root of the file.
Document doc = null;

doc = parser.getDocument () ;

Element root = (Element)doc.getDocumentElement () ;

// which we then use as parameters in assign calls to the macroBean
mBean.settitle(((Element)

root .getElementsByTagName ("title") .item(0)) .getAttribute ("value")) ;
mBean.setorigpage (((Element)

root . getElement sByTagName ("origpage") .item(0)) .getAttribute ("value")) ;
mBean.setorigbase (((Element)

root .getElement sByTagName ("origbase") .item(0)) .getAttribute ("value")) ;

//Here we get the list of elements containing the newtask tag
NodeList elements = root.getElementsByTagName ("newtask") ;

//Then we loop around this list to obtain the other tag values

for (int i = 0; i < elements.getLength(); i++) {

Element orderItem = (Element)elements.item(i);

mBean.setfile (((Element)elements.item(i)) .getAttribute ("file"),1);
mBean.setbase (((Element) elements.item(i)) .getAttribute ("base") ,1) ;
mBean.setimage (((Element)elements.item(i)) .getAttribute ("image"),1);
mBean.setdesc (((Element) elements.item(i)) .getAttribute ("desc"),1) ;

}
}

catch (FileNotFoundException el) {
el.printStackTrace () ;

}

catch (Exception e2) {
e2.printStackTrace () ;

\} //end of parseXML method

// Having retrieved the root we use that to retreive the other elements by tag name.

Figure 100. ParseXML method

Chapter 8. Customizing the store creation wizard

151

Figure 101 on page 153 shows the main body of the servlet. The doGet and
doPost methods both call the performTask method. The full code is found in
Appendix D.7, “DisplayPagesServlet.java servlet” on page 326.

152 IBM WebSphere Commerce Suite SPE Customization

/public class DisplayPagesServlet extends HttpServlet

{

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
{

}

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
{

}

public void performTask (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
{

performTask (req, res);

performTask (req, res);

// Get parameters both init and from request.
String xmlValue = getServletConfig() .getInitParameter ("xmlpath") +
req.getParameter ("xmlfile") ;
String jspValue = req.getParameter ("jspfile");

macrosBean mBean;

// create an instance of the macrosbean
try

{
mBean = (macrosBean) Beans.instantiate (this.getClass () .getClassLoader (),
"macrosBean") ;
}
catch (Exception ex)
{
throw new ServletException("Can't create BEAN of class macrosBean: "
+ ex.getMessage()) ;
}

// Call the XML parse function
parseXML (xmlValue,mBean) ;

// To send the Bean to a JSP file for content formatting and display
// 1) Set the Bean as an attribute in the current request dbject
((com.sun.server.http.HttpServiceRequest) req) .setAttribute("mBean", mBean) ;

// 2) Use callPage to invoke the JSP file and pass the current request object
((com.sun.server.http.HttpServiceResponse) res) .callPage(jspValue, req);

} // end of performTask method

Figure 101. DisplayPagesServiet

8.2.4.3 macrosBean
For storing the data for access by the JSP page we have created a bean class
called macrosBean. The XML file is parsed and the values in the bean set by

Chapter 8. Customizing the store creation wizard 153

154

the servlet discussed in Section 8.2.4.2, “The Java servlet” on page 149. The
macrosBean contains the variables and methods for storing and retrieving
this data. Figure 102 shows the beginning of the macrosBean class and two
methods to set and retrieve the title value. The full code is found in Appendix
D.8, “MacrosBean.java class” on page 328. The java code in the files
MacrosBean.java and DisplayPagesServlet.java is compiled using the
following commands

Compiling MacrosBean.java

javac -classpath .;D:\IBM\JDK\lib\classes.zip;D:\IBM\WAServer\lib\jsdk.jar
MacrosBean.java

Compiling DisplayPagesServlet.java:

javac -classpath .;D:\IBM\JDK\lib\classes.zip;D:\IBM\WAServer\lib\jsdk.jar;
DAIBM\WAServenlib\jst.jar;D:\IBM\NetCommerce3\Tools\lib\xml4j.jar
DisplayPagesServlet.java

.] N
import javax.servlet.http.*;

import java.io.PrintWriter;
import java.io.IOException;

public class macrosBean extends HttpServlet {
private String title = "";

private String origpage = "";

private String origbase = "";

private static final int numpages = 3;
private String[] file = new String[numpages] ;
private String[] base = new String[numpages] ;
private String[] image = new String[numpages] ;
private String[] desc = new String[numpages] ;

public void service (HttpServletRequest req, HttpServletResponse res)
throws IOException

{

}

public void settitle(String value) {
this.title = value;

1

public String gettitle() {

return title;

}

_ e)

Figure 102. MacrosBean class

IBM WebSphere Commerce Suite SPE Customization

8.2.4.4 JSP page

We created a generic JSP page, DisplayPages.jsp, to display the new page
choices to the merchant. First, it accesses the macrosBean created by the
DisplayPagesServlet:

<bean name="mBean" type="macrosBean" introspect="no" create="no"
scope="request"></bean>

Then, it retrieves the default page values from the bean by calling the
methods directly and then stores them as Java script variables.

//getting the variables from the bean.
<% out.println("var orig page='<file>" + mBean.getorigpage () +"</file>';"
) i%>

<% out.println("var orig basetemp='" + mBean.getorigbase() +"';") ;%>

The various page choices, macro file and base file, are stored in the following
JavaScript array variable:

theOptions.file
theOptions.baseDir

Figure 103 shows the code for doing this.

'/ /theOptions variable holds the different page choices for the user N
var theOptions = new Array() ;
var list = "";

function CreateOptions(file, baseDir) {
this.file=file;

this.baseDir=baseDir;

return this;

//This function prints panel choices and sets it's values in variable theOptions.
function setuppage (filevalue,basevalue, j, image,desc)

var listbase="<td><table Border=0 CELLPADDING=2 CELLSPACING=2><tr><td bgcolor=black>";
var listbase2 = "<td><p></td><td><input type=radio name=choice value=" +j + "
onclick=storesettings (this.value)></td>";

var listimage = ""

list += listbase2 + listbase + listimage +"</td></tr><tr><td><font face=Arial,
Helvetica, sans-serifs>"+ desc +"</fonts></td></tr></tables></td>";

theOptions [j]=new CreateOptions (filevalue,basevalue) ;

//prints out all the choices on the panel
function printoptions() {
document .write (1ist) ;

}
\ J

Figure 103. Storing the pages choices in the JSP page.

Chapter 8. Customizing the store creation wizard 155

The setuppage() function is called for each choice retrieved from the bean. It
adds this choice to the theOptions array and also creates the HTML tags to
define how it is to be displayed in the variable list. Then, the printoptions()
function is called to display all the choices on the panel. The code in Figure
104 on page 156 uses the JSP, REPEAT tag to loop around the choices in the
bean and call the setuppage() function. Finally, the printoptions() function is
called.

<script>
<REPEAT INDEX="i">

<% out.println("setuppage ('" + mBean.getfile(i)+"','"+
nmBean.getbase (1) +"', "+i+", '"+mBean.getimage (i) +"', ' "+mBean.getdesc (1) +"')") ;%>

</REPEAT>
printoptions() ;
_< /script>)

Figure 104. Displaying the page choices on the panel

Full implementation details and code can be found in Appendix D.9,
“DisplayPages.jsp page” on page 330. How the new panels appear can be
seen in Figure 107 on page 159 and Figure 108 on page 160.

8.2.5 Adding new product and category panels

156

Now, we should have everything complete and ready to integrate into the
store creation wizard. The following describes the step-by-step procedure to
add the new panels we created to the wizard for the advanced store.

The following file contains the definitions for the panels to be displayed for the
advanced store.

/usr/lpp/NetCommerce3/Tools/xml/nchs/store_creator/advanced.xml

Figure 105 on page 157, shows a sample from this file. Each <panel> tag is
used to represent a separate screen in the wizard. It also defines its name,
URL link of the screen, and helplink if required. You will see the two new
panels (in bold) have been placed after the existing catalog panel. Insert
these new entries and save the file.

IBM WebSphere Commerce Suite SPE Customization

<panel name="storeCreatorPanelCatalog"

url="/servlet/MerchantAdmin?DISPLAY=CInchs. sc.advanced.Catalog"
helplink="CTnchs. sc.advanced.Catalog.Help" />

<panel name="storeCreatorPanelCategory"

url="/servlet/DisplayPagesServlet?xml file=category.xml&jspfile=/EXT pages/html/Di

splayPages.jsp" />

<panel name="storeCreatorPanelProduct"

url="/servlet/DisplayPagesServlet?xml file=product .xml& jspfile=/EXT pages/html/Dis

playPages.jsp" />

<panel name="storeCreatorPanelBammerPage"
url="/servlet/MerchantAdmin?DISPLAY=CInchs. sc.basic.BannerPage"

_ helplink="CTnchs.sc.basic.BannerPage.Help" /> P,

Figure 105. Adding a new panel

Then we need to define the names that will appear on the left hand menu and
the top banner bar when these screens are shown. These values are held in
the properties file for the store creator. Open the following jar file using jar
from a command line or any zip program.

/usr/lpp/NetCommerce3/Tools/lib/nchs.jar
And add new entries in the following properties file:
/com/ibm/commerce/tools/nchs/properties/StoreCreatorBasicNLS.properties

Or whatever is your language version. You will see a number of other
language files. Figure 106 shows in bold the additions to make, where
storeCreatorPanelProduct is the left hand menu value and
storeCreatorPanelProduct_title is the banner bar title value.

4 N
storeCreatorPanelCatalog=Catalog

storeCreatorPanelCatalog title=Product Catalog Information

storeCreatorPanelCategory title=Category Pages Selection Screen
storeCreatorPanelCategory=Category Pages
storeCreatorPanelProduct title=Product Pages Selection Screen
storeCreatorPanel Product=Product Pages

storeCreatorPanelVerify=Verify
storeCreatorPanelVerify title=Verify Your Choices
storeCreatorPanelModel=Store Model
KstoreCreatorPanellVbdelititle:Store Shopping Flow Model)

Figure 106. StoreCreatorBasicNLS.properties

Then, re-create the jar file making a backup of the original. The simplest way
from the command line is as follows:

Chapter 8. Customizing the store creation wizard 157

158

jar cvf nchs.jar com/*

Stop the WebSphere Servlet Service by stopping the Web server.
stopsrc -s httpd

Copy the new jar file over the old jar remembering to make a backup.
cp nchs.jar /usr/lpp/NetCommerce3/lib/nchs.jar

Start the Websphere Servlet Service by restarting the Web server:
startsrc -s httpd

The new panels should appear as shown in Figure 107 below and Figure 108
on page 160.

— Note

If the merchant changes their store style through the merchant tool to
ExpressStoreModel and back again to ClassicStoreModel the store will be
recreated with the default templates. You may either want to disable this
option or add the category and product page choices to the merchant tool.

IBM WebSphere Commerce Suite SPE Customization

dvanced Store - Netscape

¥ Information

¥ Store Style | || —
¥ Store Color I —
¥ Store Scheme

¥ Store Iodel |

¥ Catalog Default page More Categories You_Are_Here Info

Category Pages

N

Product Pages
Banner

Home Page
Wenfy

Cancel << Previous Mext ==

@ == | Dacument; Done

Figure 107. Store Wizard category pages panel

Chapter 8. Customizing the store creation wizard 159

dvanced Store - Netscape

Product Pages Selection Screen

Please choose from the product pages below:

¥ Information
¥ Store Style o) .
FICTURE PICTURE |
¥ Store Color N EIEEE
— T f—
¥ Store Scheme c — @ e g o
| |
¥ Store hodel —_= -
Default page Shortened page You_Are_Here Info

¥ Catalog
¥ Category Pages

@ Product Pages

Batmer
Home Page
Verify

Cancel << Previous Mext ==

@ =¢D‘=| |Doc:ument: Dane

Figure 108. Store Wizard product pages panel

160 IBM WebSphere Commerce Suite SPE Customization

Chapter 9. Extended customization features

Even with the high number of features in WCS SPE, the ASP may need some
customizations either because customers have special needs or because the
ASP wants to provide special services to differentiate himself or herself from
other ASPs. In this chapter, we will explore a number of customization
examples and look at how it will impact the mall.

9.1 Shipping by product weight

The default configuration of WCS SPE does not include facilities to calculate
shipping cost by weight although the standard facilities of the underlying
WCS allow a rather flexible shipping cost system. The goal with this section is
to give an example of how WCS SPE can be customized to handle shipping
by weight in addition to the standard shipping by size. Before we actually start
customizing the shipping system, let us take a brief look at the standard
features.

In Figure 109, we have the screen for adding a new shipping method. In this
example, we will add a method called IBM shipping.

Specify Shipping Providers

Fuelcome Tao add a shipping provider, enter the shipping company in the
shipping method in the Shipping service field, then click Add.

Providers
Shipping carrier
Jurisdictions I

Shipping service

Categories

Rates
Add I Remove I

Defined shipping providers
IIEIM AIR, AR |

Figure 109. Adding a new shipping method

For each shipping method, we can enter geographies or jurisdictions and
then different shipping rates depending on destination. In the example in
Figure 110 on page 162, we enter information for four locations, but all
possible locations could be entered.

© Copyright IBM Corp. 2000 161

162

Country

Jurisdictions

|Sweden j
Categories State/Province
Rates

Add Hemove |

Defined jurisdictions:

United States, Texas |
United States, Florida

Denrmark, Other

Sweden, Other

Figure 110. Add locations for which there are different shipping rates

After entering the locations, we define the shipping or item categories. At a
later stage, we can assign a category to each item in the product catalog to
use for the shipping cost calculation. The categories are shown in Figure 111.

¥ Providers New shipping category

¥ urisdictions

Categories
Add Remove

Fates
Defined shipping categories

Large ltems =]
Medium ltems

small ltems

Tiny_ltems

Figure 111. Define shipping categories

Now, when the shipping method, destination, and item category are defined,
we can enter the price grid for the shipping. Figure 112 on page 163 shows a
sample table for the IBM shipping example.

IBM WebSphere Commerce Suite SPE Customization

‘ Costitem ‘ Large ltems ‘Medium Items‘ Small ltems ‘Weight_Based‘ Tiny ltems

Other Countries 70000 o0 fpooo0. fpoo0 Jlooo0 4000
United States, Alabama 10000 0000 pooo0 poo0 o0 4000
United States, Texas 20000 o000 o000 ool 000 400
Denmark Other ~ [BO000 oo o0 oo om0 400w
Sweden, Other ~ [40000 fooo0 om0 o0 oo 400
India, Other “5.0000 P o poon om oo
Mexico, Other B0 oo o oo om0 oo

Figure 112. Price grid for the shipping method

Figure 113 on page 164 shows a sample calculation for a Medium-sized item

to Denmark. The shipping cost to Denmark for a Medium size item is zero

USD plus three USD for shipping, which makes a total price of three USD for
shipping. Figure 113 on page 164 shows a sample shipping cost calculation
for a Tiny-sized item to Alabama USA.

Chapter 9. Extended customization features

163

The tax and shipping charges are:

Item price 100.00
Item tax 0.0o0
Shipping charge 4.00

Additional shipping cost
Cost/item 1.00
Cost'order 0.00
Y%/order 0.00

Total shipping charge 5.00 S.00
Shipping Tax Q.00

Total (USD) 105.00

Figure 113. Sample calculation
Finally, we must define the shipping category for each product. We define one

item as Medium, one item as Small and one as Tiny as shown in Figure 114
on page 165.

164 IBM WebSphere Commerce Suite SPE Customization

Pams - Products

Mew ™ | List lterns | Change Price | Edit » | Pr

[Mumber ¥ Mame T Frice 1
[skU-0001 Baggy-Fit Cotton Twill Jeans 64,95
[SkU-0002 Flain-Front Pants 78.95
W SkLU-0003 Classic Slacks 39.95

- Edit Product - Netzcape

Product - Classic Slacks

General Shipping category

FPrice |Medium lterms ﬂ

Product=—FPlain=FrontPants

General Shipping category

O Small ltems =
“ Edit Froduct - Netscape

FGeneral Shipping categary

FPrice ITin},r_Items ;I

Product =—Baggy-FitCotton-Twillsleans

Figure 114. Define the shipping code with the merchant tool

Now, it’s time to make a test buy. We buy three items: A medium, a small, and
a tiny item, and the shipping address is in Austin TX, U.S.A. Select the IBM

AIR shipping to see the shipping cost. We buy three items and pay three

times the shipping cost per item plus shipping cost for a medium, small, and
tiny item. The prices and shipping costs are $2.00 (times three), $0, $0, and

4% and come to 103$. The prices are listed in Figure 112 on page 163.

Chapter 9. Extended customization features

165

Billing Address [ipdate)
Ole Petersen

999 Westlake

Austin, Texas

United States

Tavy

Froduct Hame

Shipping Charges (1IBM AIR - AIR)

Shipping Tax (IEM &R - AlIR)

pdate |
Sub-Total % 194.85

BN AR AIR

Figure 115. Presenting the purchase price for the customer

9.1.1 Shipping calculation in WCS SPE

Unlike WCS V3.2 and V4, WCS SPE is using a jurisdiction-based shipping
solution. In other words, shipping rates are defined based on the following
three factors: Shipping jurisdictions, shipping providers, and shipping
categories (code). This is implemented by replacing the default Overridable
Function (OF), GetOrdShTot_1.0, with another that does not support the
shipping by weight calculation method. The shipping calculation is made
using the following tables to set up the shipping rate for a specific merchant:

e SHIPJURST - Store the shipping country/state jurisdictions for each
merchant (SPE used only).

* PRSPCODE - Store shipping code (WCS table).

e MSHIPMODE/SHIPMODE - Store the shipping providers for each
merchant (WCS table).

* PSHIPRULE - Define the shipping rate for each combination of shipping
jurisdiction, shipping code, and shipping providers (SPE used only).

166 IBM WebSphere Commerce Suite SPE Customization

All these tables are filled in by the SPE shipping wizard, and merchants are
allowed to add/delete the shipping providers (see Figure 109 on page 161),
add/delete shipping jurisdictions (see Figure 110 on page 162), and
add/delete shipping categories (see Figure 111 on page 162). The shipping
rates page will create a three-dimensional view of shipping rates based on
the above three factors. One example for a shipping provider is shown in
Figure 112 on page 163. A merchant will be allowed to modify the shipping
rates from GUI and store the changes back to the PSHIPRULE table and
other shipping-related tables.

Again, the shipping calculation for the SPE version is different from the base
WCS product. It was designed to be the best fit for a net commerce hosting
scenario (Ease of use from the GUI, merchant-specific shipping rate,
shipping jurisdiction support, easy setup, and so on). These are the reasons
why the SPE does not use the SHIPPING table and function from the base
Net.Commerce version.

The SPE shipping wizard supports shipping categories, such as large, small,
and medium items, and so on. However, in order to simplify the
administration, the shipping wizard does not support shipping charges based
on weight ranges since this would be too complicated to show in a table. For
example, for each shipping category, you may have four or more different
weight ranges: Zero to one kilograms, One to two kilograms, two to five
kilograms and more than five kilograms. This means that you would have to
show the following four-dimensional view from the GUI: Shipping providers,
shipping categories, shipping jurisdictions, and shipping ranges. This would
make the GUI hard to use, especially for those hosting merchants.

9.1.2 Database tables

Now, let us take a look at the underlying DB2 tables and see what information
we have. The Data Model for shipping looks like that shown in Figure 116 on
page 168.

Chapter 9. Extended customization features 167

168

SHIPJURST

MSHIPMODE

SHIPMODE

PRSPCODE

PSHIPRULE

Figure 116. Shipping data model

Table 6 contains information about shipping jurisdictions. The maximum

number of rows in this table is 100.

Table 6. SHIPJURST Table Shipping Jurisdiction

Column name Column type Column description
SPJUNBR INTEGER NOT Shipping jurisdiction reference number.
NULL Unique reference number for this table.
SPJCNTRY CHAR (25) Country of shipping jurisdiction.
SPJSTATE CHAR (25) State of shipping jurisdiction.
Merchant reference number. This is a
SPJMENBR INTEGER foreign key that references column
MERFNBR in table MERCHANT.

Figure 117 on page 168 shows an example of the shipjurst table.

SPJMENER |

SPJUNBR | SPJCNTRY | SPJISTATE |

677 | United States | Alabama | 854 |
‘678 | Uniced states | Texas | 8sa |
679 | Demmark | |ssa |
es0 | swedem | esa |
e [maia | esa |
2 | mexico | |ssa |

Figure 117. SHIPJURST table

IBM WebSphere Commerce Suite SPE Customization

Table 7 contains the shipping codes that a merchant can assign to a product.
The shipping code can be used to determine the method for calculating the
shipping charges. The Net.Commerce system provides an Overridable
Function that supports eight shipping charge calculation options. These
options are described in the PSSPMTHD column. You can change the
interpretation of the codes by programming an Overridable Function. Each
row contains a shipping charge calculation method for a merchant.

Table 7. PRSPCODE: Product Shipping Code

Column name

Column type

Column description

PSRFNBR INTEGER NOT | Product shipping code reference number. This is
NULL a primary key.
PSCODE CHAR (5) NOT | Product shipping code. Together with PSMENBR
NULL and PSSPMTHD, this is a unique index.
Merchant reference number. This is a foreign key
PSMENBR INTEGER NOT | that references column MERFNBR in table
NULL MERCHANT. Together with PSCODE and
PSSPMTHD, this is a unique index.
Shipping charge calculation method. Together
with PSMENBR and PSSPMTHD, this is a unique
PSSPMTHD CHAR (2) index. The default Overridable Function
recognizes the methods Q1-Q4 and W1-W4
described below. for a further description of
Q1-Q4 and W1-W4 see Table 17
PSSPDESC VARCHAR Shipping code description.
(254)
PSFIELD1 VARCHAR Reserved for merchant customization.
(254)

Figure 118 shows an example of the PRSPCODE table.

PSRFNBR | PSCODE | PSMENBR | PSSPMTHD| PSSPDESC | PSFIELD1 |)
e Ja0er o 11
523 |1 | 7285 |3 | targe Iems | |
321 | 324 | 7285 | @3 | Medium Ttems| |
325 |25 | 7285 |03 | small Teems | |
326 |26 | 7285 |03 | TinyTtems | |
- J
Figure 118. PRSPCODE table listing
Chapter 9. Extended customization features 169

170

Table 8 indicates the shipping modes that each merchant supports. Each row
associates a shipping mode with a merchant.

Table 8. MSHIPMODE

Column name Column type Column description
MMRFNBR INTEGER NOT Merchant shipping mode reference
NULL number. This is a primary key.
MMSMNBR INTEGER NOT Shipping mode reference number. This is a
NULL foreign key that references column
SMRFNBR in table SHIPMODE.
MMMENBR INTEGER NOT Merchant reference number. This is a
NULL foreign key that references column
MERFNBR in table MERCHANT.
MMDEFFS TIMESTAMP (for The date that the shipping mode becomes
DB2) available
MMDEFFF TIMESTAMP (for The date that the shipping mode becomes
DB2) unavailable.
MMFIELDA1 VARCHAR (254) Reserved for merchant customization.
MMFIELD2 INTEGER Reserved for merchant customization.
MMTRKSPNBR VARCHAR (64) Carrier-assigned shipper number.
Reserved for future use.

Figure 119 on page 170 shows an example of the MSHIPMODE table.

MMRFNBR| MMSMNER |

MMMENBR | MMDEFFS| MMDEFFF| MMFIELD1| MMFIELD2| MMTRKSPNBR

323 | 319 |
2413 | 2409 |
2414 | 2410 |

Figure 119. mshipmode table example

Table 9 contains the names of the shipping carriers and the shipping service
arrangements (shipping modes) that each carrier provides. Each row
associates one shipping mode with one carrier.

Table 9. SHIPMODE

Column name

Column type

Column description

SMRFNBR

INTEGER NOT | Shipping mode reference number. This is a
NULL primary key.

IBM WebSphere Commerce Suite SPE Customization

Column name

Column type

Column description

SMCARRID CHAR (30) Carrier identifier, such as Federal Express.
SMSPMODE CHAR (30) Carrier service shipping mode, such as FedEx
Express Overnight.
SMSPDESC VARCHAR Shipping mode description.
(254)
SMFIELD1 VARCHAR Reserved for merchant customization.
(254)
SMFIELD2 INTEGER Reserved for merchant customization.
SMTRKNAME VARCHAR (64) | Tracking application name. Reserved for future
use.
SMTRKURL VARCHAR (64) | Tracking application URL. Reserved for future
use.
SMTRKSH VARCHAR (64) | Tracking application socks host, if needed.
Reserved for future use.
SMTRKSP INTEGER Tracking application socks port, if needed.
Reserved for future use.
SMTRKICON VARCHAR (64) | Tracking application icon for status link. Reserved
for future use.
SMTRKTYPE CHAR (8) Tracking application inquiry type. Reserved for

future use.

Figure 120 on page 172 show an example of the SHIPMODE table.

Chapter 9. Extended customization features 171

172

SMRFNBR | SMCARRID | SMSPMODE | SMSPDESC | SMFIELD1| SMFIELD2
1| Metropolitan| Overnicht | courier | |
2| Metropolitan| 2-Day | courier | |
3| Metropolitan| Grownd | courter | |
31 | mmam | A | couwster | |
2405 | ues | gift shipping | Courier | |
2410 | es | mowmal | courter | |

Figure 120. shipmode table

The PSHIPRULE table in Figure 121 lists the shipping rates for each
jurisdiction and shipping method. Compare it to the data entered in Figure
112.

SPRL| SPME | SPR | SP | SPCNTRY| SPSTATE| SP | SP | SPMT | SPSRVS| SPFLTRT |SPTB
NBR | NBR | TYPE| RULRG| | | CcITY| ZIPC| NBR | | | NBR
523 | 7285 |0 |0 | U.sa | Texas | | | |35 | 1.00000 |
524 | 7285 |1 |0 | U.sa [Texas | | | |a15 | o.00000 |
s2s | 7285 |2 |0 |U.sa. |Texas | | | | 319 | 0.00000 |
26 | 7285 |3 | 0 | U.s.A. | Texas | | | 323 | 319 | 1.00000 |
327 | 7285 |3 | 0 | U.s.A | Texas | | | 324 | 319 | 2.00000 |
528 | 7285 |3 |0 | U.sa | Texas | | [325 | 315 | 3.00000 |
529 | 7285 |3 |0 | U.sa | Texas | | |36 | 315 | 4.00000 |
N /

Figure 121. PSHIPRULE table, Publish Shipping Rate Rule Table

IBM WebSphere Commerce Suite SPE Customization

9.1.3 Planning shipping by weight

In the previous section, we looked at the shipping system configured with
WCS SPE and saw that it cannot support shipping by product weight, and we
must, therefore, plan an extension.

The shipping cost is calculated by the process task, GET_ORD_SH_TOT,
which, in turn, by default, calls the default Overridable Function,
GetOrdShTot. This function gets the order reference number,
ORDER_REF_NUM, as a string and delivers product shipping cost as a
string. The task is to replace the default function with a new one, which can
calculate the cost by weight. As described earlier in this chapter, there are
many good reasons why the standard method does not support shipping by
weight, and we must make some assumptions to simplify system
maintenance before we can design an extension to handle shipping by
weight.

The target for the WCS SPE product is small- and medium-size merchants
who want to go on the Internet with a professional Web shop that can handle
payment and shipping. The assumption is that these kinds of merchants most
likely want to ship by units or by weight, not a combination of the two. In other
words, when a given merchant goes on the Web, all his or her invoices will be
by units or by weight. This simplifies the calculations a lot if we do not have to
make mixed invoices because we can assume that the order will be
quantum-based if just one item in the order is shipped by quantum. Also,
more importantly, it makes it much easier for the merchant because he or she
has only to maintain one type of price table: Units or weight. We will also
assume that this type of merchant, if shipping by weight, will use one and only
one shipping provider; this will make it simpler for the merchant to maintain
the shipping cost tables, and, again, in this market segment, it is important to
make it easy to maintain even if we have to sacrifice some flexibility or
options. With these restrictions, the merchant can type his or her shipping
cost into a table, very much like the one used for shipping by units. The table
might look like Table 10.

Table 10. Sample shipping by weight cost

0-0.5 weight | 0.5-1 weight | 1-2 weight 2-- weight
unit unit unit unit

United States
Alabama

United States
Alaska

United States
Arizona

Chapter 9. Extended customization features 173

174

0-0.5 weight
unit

0.5-1 weight
unit

1-2 weight

2-- weight
unit

More states

Afghanistan

Albania

Algeria

Andorra

More countries

To calculate the shipping cost, the calculation function gets the order

reference number as an input parameter, and, from this number, it has to
resolve all order lines and the destination. The Database table look up could
appear as shown in Figure 122 on page 174.

Orders

ORRFNBR=

v

shipto

STRFNBR =orders.
ORMORDER

STRFNBR =orders.
ORMORDER

v

Product

Prspcode

PRRFNBR=shipto
.STRFNBR2

PRRFNBR=product
.PRPSNBR

Shaddr

Merchant

SARFNBR=SHIPTO
.STANBR

MERFNBR=SHIPTO
.STMENBR

Shipping

Shipping rates

Figure 122. Order processing

IBM WebSphere Commerce Suite SPE Customization

Let us take a look at how to find the shipping cost from the database. The
ORDERS table shown in Table 11 contains information about orders that are
placed by shoppers. Each row corresponds to a single order, and each order

has a line in the SHIPTO table for each item in the order. The lines in the
SHIPTO table point to the PRODUCT table where we can get information
about the product such as product name, product number, and weight. From
the PRODUCT table, we can link to the PRSPCODE table where we get
information about the shipping mode. The default shipping mode in WCS
SPE is Q3, but, in this example, we will work with shipping mode W3 for
weight-based shipping in addition to the Q3 mode. If the shipping is in W3
mode, we can link from the PRSPCODE table to the SHIPPING table and get
the shipping cost. Finally, for each line in the shipto table, we have a pointer
to the shopper address and merchant information.

Table 11. Orders

Column name Column type Column description
ORRFNBR INTEGER NOT | Unique internally generated order reference
NULL number. This is a primary key.
INTEGER NOT | Shopper reference number. This is a foreign key
ORSHNBR NULL (delete rule = no action) that references
SHRFNBR in table SHOPPER.
INTEGER NOT | Merchant reference number. This is a foreign key
ORMENBR NULL that references column MERFNBR in table
MERCHANT.
ORMORDER CHAR (30) Order reference number generated by the
merchant. Unique within a merchant store.
Address reference number for the billing address.
ORBLLTO INTEGER This is a foreign key (delete rule = no action) that
references column SARFNBR in table SHADDR.
ORPRTOT NUM(15,2) Total product price for this order.
ORTXTOT NUM(15,2) Total sales tax for this order.
ORSHTOT NUM(15,2) Total shipping charges for this order.
ORSHTXTOT NUM(15,2) Total tax on shipping charges for this order.
Currency in which the price is expressed. The
ORCPCUR CHAR (10) format of the currency must adhere to 1ISO 4217
standards.

Chapter 9. Extended customization features 175

176

Column name

Column type

Column description

Order status:

P - Order in pending state

C - Order in completed state (order was placed)
X - Order was cancelled

| - Inventory updated pending (order no longer

ORSTAT CHAR (1) pending)
M - Ready for authorization (order passed
inventory update)
All single upper case letters are reserved for
Net.Commerce.
ORLOCK CHAR(1) Lock indicator for disallowing any updates to the
order.
ORPSTMP TIMESTAMP (for DB2) The date and time the order was
placed.
ORUSTMP TIMESTAMP The date and time the order entry was last
(for DB2) updated.
ORFIELD1 INTEGER Reserved for merchant customization.
ORFIELD2 NUM (15,2) Reserved for merchant customization.
ORFIELD3 VARCHAR Reserved for merchant customization.
(254)

An example of the content in the ORDERS table is shown in Figure 123.

~
ORRFNBR | ORSHNBR | ORMENBR | ORMORDER | ORBLLTO | ORPRTOT | ORTXTOT |
2206 | o | 7285 | 2206 | 46 | 64.95 | 0.00 |
ORSHTOT | ORSHTXTOT | ORCPCUR | ORSTAT | ORLOCK | ORPSTMP | ORUSTMP
14.80 | 0.00 | UsD | P | 1 | | 2000-03-28

| | | | | | 14:38:18.538445
ORFIELDl | ORFIELD2 | ORFIELD3

\ \

J

Figure 123. Content of ORDERS table

The SHADDR table shown in Table 12 on page 177 serves as an address
book for each registered shopper. At the time of registration, the shopper

IBM WebSphere Commerce Suite SPE Customization

provides his or her address, and this entry is flagged as permanent. When a
shopper moves, the shopper can provide a new address, and a new entry is
added to the table. The old address is not discarded, but it is flagged as
temporary. Temporary rows are also created if a shopper provides a new
address for a specific order without updating the address book. Shoppers can
also add addresses for other individuals, such as relatives or places to this
table. All such entries are flagged as permanent.

Table 12. Selected columns from the SHADDR table

Column name Column type Column description

Unique address reference
SARFNBR INTEGER NOT NULL number - internally
generated. Thisis a
primary key.

Shopper reference
number. This is a foreign
SASHNBR INTEGER NOT NULL key that references the
SHRFNBR column in the
SHOPPER table.

This is the nickname of
another individual, such as
SANICK CHAR (31) NOT NULL a relative, to whom the
address information
applies.

Individual’s title: Dr.

Mr.

SATITLE CHAR (5) Mrs.

Ms.

N - Not provided (default)

SALNAME CHAR (30) Individual’s last name.
SAFNAME CHAR (30) Individual’s first name.
Individual’s phone number
SAPHONE1 CHAR (30) 1 (For example, daytime
phone).
SAADDR1 CHAR (50) NULL Individual’s address line 1.
SAADDR2 CHAR (50) Individual’s address line 2.
SAADDRS3 CHAR (50) Individual’s address line 3.
SACITY CHAR (30) NULL Individual’s city name.

Chapter 9. Extended customization features 177

178

Column name Column type Column description

SASTATE CHAR (20) NULL Individual’s state, province,
or equivalent, abbreviated.

SACNTRY CHAR (30) NULL Individual’s country.

SAZIPC CHAR (20) Individual’s zip code or
equivalent.

SASTMP TIMESTAMP (for DB2) The date and time the row
was created.

Figure 124 shows one data record in the shopper address, SHADDR table.

~
SARFNBR | SASHNBR | SANICK | SATITLE | SALNAME| SAFNAME| SAPHONEL
46 | 316 | hanseibm.com | | hansen | Jan | 977-0983
SAADDR1 | SAADDR2| SAADDR3| SACITY| SASTATE| SACNTRY | SAZIPC| SASTMP
999 Parmer Ln]| | | Austin| Texas | USA | 78777 |
- /

Figure 124. Data in selected columns in SHADDR table

The SHIPTO table shown in Table 13 associates each product and item in a
suborder with a shipping address. Each row corresponds to one product or

item.

Table 13. Ship to table description

Column name Column type Column description
STRFNBR INTEGER NOT Unique shipto reference number, internally
NULL generated. This is a primary key.
Order reference number. This is a foreign key
STORNBR INTEGER that references the ORRFNBR column in the
ORDERS table.
STSANBR INTEGER NOT Address reference number for the shipping
NULL address.
INTEGER NOT Shopper reference number. This is a foreign key
STSHNBR NULL that references the SHRFNBR column in the
SHOPPER table.
INTEGER NOT Merchant reference number. This is a foreign key
STMENBR NULL that references the MERFNBR column in the
MERCHANT table.

IBM WebSphere Commerce Suite SPE Customization

Column name

Column type

Column description

Product reference number. This is not a foreign
key. Note that no foreign key is defined in the

STPRNBR INTEGER NOT STPRNBR column so that no information on any
NULL order is lost when the product in the PRODUCT
table is deleted.
STPRICE NUM(15,2) Unit price of the item.
Currency in which the price is expressed. The
STCPCUR CHAR (10) format of the currency must adhere to 1ISO4217
standards.
STPCODE CHAR (5) The date and time the shipto entry was made.
STCMT VARCHAR (254) | Comments from shopper, such as a greeting for
a gift.
STQUANT INTEGER NOT Quantity ordered.
NULL
Order Status:
P - In pending state
C - In past state
STSTAT CHAR (1) NOT X - Cancelled
NULL | - Inventory update pending (shipto no longer
pending)
M - Ready for authentication (shipto passed
inventory update)
STPSTMP TIMESTAMP (for | The date and time the shipto entry was made.
DB2)
STUSTMP TIMESTAMP (for | The date and time the shipto entry was last
DB2) updated.
STSMNBR INTEGER Merchant shipping mode reference number (refer
to MSHIPMODE).
STFIELDA1 INTEGER Reserved for merchant customization.
STFIELD2 VARCHAR (254) Reserved for merchant customization.
STTRKNBR CHAR (64) Tracking number. Reserved for future use.
STTRKDATE DATE Shipment date. Reserved for future use.
STBASEPRICE | NUM (15, 2) If the product price was converted, this is the
original price before conversion.
STBASECURR | CHAR (3) Original currency before conversion in alphabetic

code as per I1ISO 4217.

Chapter 9. Extended customization features 179

180

Figure 125 shows an example of data in the shipto table. The STORNBR field
references ORRFNBR in the ORDERS table. STSANBR is the Address
reference number for the shipping address. STSHNBR references SHRFNBR
in the SHOPPER table; STMENBR references MERFNBR in the MERCHANT
table, and STPRNBR references product number in the PRODUCT table.

STRFNBR | STORNBR | STSANBR | STSHNBR | STMENBR | STPRNBR | STPRICE | STCPCUR R
1856 | 1852 | 2538 | 2538 | 7285 | 492 | 39.95 | vsD |
1899 | 1895 | 2495 | 316 | 785 | 485 | 64.95 | UsD
1542 | 1895 | 2495 | 316 | 785 | 489 | 79.95 | usD
STPCODE | STCMT | STQUANT | STSTAT | STPSTMP | STUSTMP
default | commencs: | 1 | ¢ | 2000-03-23 | 2000-03-23
| | | | 17:54:32.252073| 17:59:08.829404
default | comments: | 1 | B | 2000-03-24 | 2000-03-27
| | | | 17:26:07.698597| 11:04:29.584062
default | Commemts: | 1 | B | 2000-03-24 | 2000-03-27
: 17:26:25.590922| 11:04:29.590862
STSMNBR| STFIELD1| STFIELD2| STBASEPRICE| STBASECURR| STTRKNBR| STTRKDATE
2
323 | | | | \ \
323 | | | | \ \
&)

Figure 125. Shipto table content

The MERCHANT table (selected columns of which are shown in Table 14)
describes each merchant as well as information on the primary contact for the
merchant. Each row corresponds to one merchant. For a one-merchant mall,
this table contains only one row. No foreign key is enforced for this table.

Table 14. Selected Columns from the MERCHANT table

Column name Column type Column description
MERFNBR INTEGER NOT Unique merchant reference number -
NULL internally assigned. This is a primary key.

IBM WebSphere Commerce Suite SPE Customization

Column name

Column type

Column description

Merchant's company name. If no name is
provided when the store is created, this

MENAME CHAR (80) column contains the store name of the
merchant as defined in the MESTNAME
column in this table.

MECLNAM CHAR (30) NOT Merchant contact’s last name.

NULL
MECFNAM CHAR (30) NOT Merchant contact’s first name.
NULL
MECPHH1 CHAR (30) NOT Merchant contact’s primary phone number.
NULL
MEPHONE CHAR (30) NOT Merchant’'s company phone number.
NULL
MEADDR1 CHAR (50) Merchant’s company street address line 1.
MECITY CHAR (30) NOT Merchant’'s company city name.
NULL
MESTATE CHAR (20) NOT Merchant’'s company state, province, or
NULL equivalent (abbreviated).
MECNTRY CHAR (30) NOT Merchant’'s company country.
NULL
CHAR (10) NOT Currency in which prices for this store are
MECUR NULL expressed. The format of the currency must

adhere to ISO 4217 standards.

Figure 126 on page 182 show data from two merchants in the merchants

table.

Chapter 9. Extended customization features 181

MERFNBR | MENAME | MECLNAM | MECFNAM| MECPH1

1001 | Concept Store 1| Fong | James | (555)123-1001
7285 | shop4 | Hansen | Per | 512-977-0999
| MEPHONE | MEADDR1

| MECITY | MESTATE | MECNTRY | MECUR
| North York | ON | Canada | cap
| Austin | tx | United States | USD
N oI /

Figure 126. Selected rows from the Merchant table

The PRODUCT table describes all the items available at all stores. An item is
a product that must be qualified by one or more attributes to be resolved into
a Stock Keeping Unit (SKU). A SKU is an orderable item. In this table, items
must have a non-null value in the PRPRFNBR column. Each row contains
information on one product item.

Table 15. PRODUCT table

Column name Column type Column description
PRRFNBR INTEGER NOT | Product reference number. This is a primary key.
NULL
Merchant reference number. This is a foreign key
PRMENBR INTEGER NOT | that references the MERFNBR column in the
NULL MERCHANT table. Together with the PRNBR

column, this is a unique index

Product number of the parent. This is a foreign

PRPRFNBR INTEGER key that references the PRRFNBR column in the
PRODUCT table. If null, this is the topmost
product.

PRNBR CHAR (64) NOT | Product number or item SKU. Together with the

NULL PRMENBR column, this is a unique index.

PRSDESC VARCHAR Short description of the product including its

(254) name.

182 IBM WebSphere Commerce Suite SPE Customization

Column name

Column type

Column description

LONG

PRLDESCH1 VARCHAR (for | Detailed description 1 of the product.
DB2)
LONG
PRLDESC2 VARCHAR (for | Detailed description 2 of the product.
DB2)
LONG
PRLDESC3 VARCHAR (for | Detailed description 3 of the product.
DB2)
PRTHMB CHAR (254) Product thumbnail image file path and name.
PRFULL CHAR (254) Product full-sized image file path and name.
Should this product be displayed to the public?
PRPUB SMALLINT 0 -No
1-Yes
2 - Marked for deletion
PRKNUTAG CHAR (64) Reserved for IBM use.
PRWGHT NUM (15,4) Weight of the item for determining the shipping
charges. The default is 0.
PRWMEAS CHAR (20) Unit of measurement for the weight (for example,
kilograms or ounces).
PRLNGTH NUM (15,4) Length of the item (can be used for shipping). The
default is 0.
PRWIDTH NUM (15,4) Width of the item (can be used for shipping). The
default is 0.
PRHEIGHT NUM (15,4) Height of the item (can be used for shipping). The
default is 0.
PRSMEAS CHAR (20) Unit of measurement for the dimensions (for
example, meters or inches).
PRPSNBR INTEGER Shipping code for shipping charges. The default
Product is null. This is not a foreign key.
PRPCODE CHAR (25) No field description available
PRURL VARCHAR URL for soft goods or links.
(254)
Number of items in stock. The default is null,
PRVENT INTEGER meaning the merchant has not yet stocked the

product. This field is not used for a product that
has items associated with it.

Chapter 9. Extended customization features 183

184

Column name Column type Column description
TIMESTAMP Availability date of the product. If the item is out of
PRAVDATE (for DB2) stock or is not yet stocked, the merchant can
specify the availability date.
PRSPECIAL CHAR (4) Special information about the product: S - on sale
PRSTMP TIMESTAMP The date and time the product information was
(for DB2) last updated.
PRFIELD1 INTEGER Reserved for merchant customization.
PRFIELD2 INTEGER Reserved for merchant customization.
PRFIELD5 VARCHAR Reserved for merchant customization.
(254)
PRFIELD4 VARCHAR Reserved for merchant customization.
(254)
PRFIELD3 NUM (15,2) Reserved for merchant customization.
PRFIELD4 VARCHAR Reserved for merchant customization.
(254)
PRFIELD5 VARCHAR Reserved for merchant customization.
(254)
INTEGER Product discount code. This is a foreign key that
PRDCONBR references the DCORFNBR column in the
DISCCODE table.
PROID CHAR (36) Reserved for IBM use.

Figure 127 on page 185 and Figure 128 on page 186 show data examples

from the PRODUCT table.

IBM WebSphere Commerce Suite SPE Customization

PRRFNBR| PRMENBR | PRPRFNBR | PRNBR | PRSDESC

105 | 601 | | 9545F0G | Thinkpad 755C

as6 | 7285 | 44 | Sk0-0001-2 | Bagay-Fit Cotton

489 | 7285 | 487 | SKU-0002-2 | Plain-Fromt Pants

as2 | 7285 | 4s0 | sKu-0003-2 | Classic slacks

lo18 | 7801 | | Sku-0008 | Petunia Thunderscorm

PRLDESC1 | PRLDESC2 | PRLDESC3 | PRTHMB | PRFULL | PRPUB

| jevssce.aiF | tevssc.GIE | 1

comtor ... 1 1 | |pamszgit |1

polyest.. | 1 | |pametgit |1

pertect... | | | | shortezgif |1

Avore ...l | 1 | flwersuipsl1
- J

Figure 127. PRODUCT table (1 of 2)

Chapter 9. Extended customization features 185

186

PRKNUTAG | PRWGHT | PRWMEAS | PRLNGTH | PRWIDTH | PRHEIGHT | PRSMEAS | PRPSNBR

| 0.0000 | | 0.0000 | 0.0000 | 0.0000 |

| | | | | | | 326

| | | | | | | 325

| | | | | | | 324

| | | | | | |
PRPCODE | PRURL | PRVENT | PRAVDATE | PRSPECIAL | PRSTMP

| | | | | 2000-03-20 10:03:22.0

default | | 45 | 2000-03-20 17:03:28.1] | 2000-03-23 17:04:30.7
default | | 232 | 2000-03-20 17:03:28.4] | 2000-03-23 17:02:00.9
default | | 76 | 2000-03-20 17:03:28.8] | 2000-03-23 17:02:43.3
default | | 34 | 2000-03-21 16:42:50.7] | 2000-03-21 16:42:50.7

Figure 128. PRODUCT table (2 of 2)

With the data in the product table, we have the weight of each item in the
shipment and can calculate the total weight. To calculate the cost, we must

IBM WebSphere Commerce Suite SPE Customization

have the cost per weight unit; the SHIPPING table holds this information. Let
us now take a look at the data in the SHIPPING table shown in Table 16.

Table 16. Shipping table description

Column name

Column type

Column description

SPRFNBR

INTEGER NOT NULL

Shipping reference number. This is a
primary key.

SPMENBR

INTEGER NOT NULL

Merchant reference number. This is a
foreign key that references the MERFNBR
column in the MERCHANT table.

SPMMNBR

INTEGER

Merchant shipping mode reference
number. This is a foreign key that
references the MMRFNBR column in the
MSHIPMODE table.

SPPSNBR

INTEGER

Product shipping code reference number.
This is a foreign key that references the
PSRFNBR column in the PRSPCODE
table.

SPADDRJR

CHAR (20)

Address jurisdiction indicator. This is the
jurisdiction on which the price is based.

SPCNTRY

CHAR (30)

Country identifier. This is the country on
which the price is based.

SPSTRAMT

NUM (15,2) NOT NULL

Starting amount of a range. If used for a
weight, the weight must be in the same
units as defined for the product in the
PRODUCT table.

SPENDAMT

NUM (15,2) NOT NULL

Ending amount of a range. If used for a
weight, the weight must be in the same
units as defined for the product in the
PRODUCT table.

SPCHRGE

NUM (15,2)

Shipping charge.

SPDEFFF

TIMESTAMP (for DB2)

The date that the shipping calculation
method is no longer valid.

SPFIELD1

VARCHAR (254)

Reserved for merchant customization.

SPFIELD2

NUM (15,2)

Reserved for merchant customization.

SPCURR

CHAR (3)

The currency of the amounts in the
SPCHRGE and SPRATE columns. If
NULL, then the value of MECUR in the
MERCHANT table is used.

SPRATE

NUM (8,2)

Shipping rate.

Chapter 9. Extended customization features

187

188

Column name Column type

Column description

SPDEFFS TIMESTAMP (for DB2)

The date that the shipping calculation
method becomes effective.

Figure 129 shows an example of data in the SHIPPING table. The
SPSTRAMT, SPENDAMT, and SPCHRGE columns hold the lower weight

boundary, the upper weight boundary, and the shipping charge for shipping to

to this jurisdiction. The SPMMNBR and SPPSNBR fields link to the

MSHPMODE and PRSPCODE tables.

SPENDAMT | SPCHRGE | SPRATE | SPDEFFS

SPRFNBR | SPMENBR | SPMMNBR | SPPSNBR | SPADDRJR | SPCNTRY | SPSTRAMT |

Figure 129. SHIPPING table example

(" sPRFNER | SPMENBR | SPMMNBR | SPPSNBR | SPADDRJR | SPCNTRY | SPSTRAMT

s s |71 |7 | @ | oo
o lwss |7 17 1 @ |00
s |7ass |7 17 1 o 2000
s |mes (7 |7 | o 3000
SPENDAMT | SPCHRGE | SPRATE | SPDEFFS | SPDEFFF | SPFIELD1 | SPFIELD2 | SPCURR
.00 J200 | |1
2000 o0 | | | 1 1
.00 1000 | |11
999999.00 | 15.00 | | | | | |

Figure 130. SHIPPING table example

IBM WebSphere Commerce Suite SPE Customization

The standard WCS system operates with 4 quantity and 4 weight based
calculation methods, in the SPE version this is limited to only one method,
quantum based Q3 method for the reasons described earlier. In this example
however we will reenable one weight based calculation method. For
compatibility it will be named W3, that is, we will have a Q3 and a W3 method
in the system.

Table 17. Shipping charge calculation methods in the WCS system

Shipping | Method description Detailed description
method
Cost calculated for total quantity of items within
Q1 Quantity/Cumulative/ | each specified range. $1.00 for one to five books,
Total $2.00 for six to 10 books. Seven books will cost
$3.00
Cost for each item,calculated for each specified
Q2 Quantity/Cumulative/ | range. $1.00 per book for one to five books, and
Unit $2.00 per book for six to 10 books. Seven books
will cost $9.00
Cost for total quantity of items, falling within a
Q3 Quantity/Range/ specified range. $1.00 for one to five books, and
Total $2.00 for six to 10 books. Seven books will cost
$2.00.
Cost for each item, based on total quantity falling
Q4 Quantity/Range/ within a specified range. $1.00 for one to five
Unit books, and $2.00 for six to 10 books. Seven
books will cost $14.00
Cost for total weight of shipment calculated for
Wi Weight/Cumulative/ each specified range. $1.00 for one to five kg,
Total $2.00 for six to 10 kg. Seven kg will cost $3.00
Cost for each unit of weight calculated for each
w2 Weight/Cumulative/ specified range. $1.00 per kg for one to five kg,
Unit and $2.00 per kg for six to 10 kg. Seven kg will
cost $9.00
Cost for total weight of shipment, falling within a
W3 Weight/Range/ specified range. $1.00 for one to five kg, and
Total $2.00 for six to 10 kg. Seven kg will cost $2.00.
Cost for each unit of weight, based on total
W4 Weight/Range/ weight within a specified range. $1.00 for one to
Unit five kg, and $2.00 for six to 10 kg. Seven kg will

cost $14.00

Chapter 9. Extended customization features 189

Now, after we know which tables are involved in the shipping calculation, the

steps needed to enable the calculation can be determined; the steps that
must be completed are:

1. Add new features to the merchant tool interface to support the
maintenance of the following tables:

* SHIPPING table maintaining the rates per. jurisdiction
* PRODUCT table maintaining the weight and weight unit per product

* PRSPCODE table maintaining the psspmthd field to reflect weight based
calculation

2. Write a new function to replace the standard GetOrdShTot_1.0 function.

The merchant must be able to maintain the SHIPPING, PRODUCT, and
PRSPCODE tables, and it should be enabled through the merchant tool. The
best way to do this is to implement some Net.Data macros. The function to
replace the GetOrdShTot_1.0 function must be written in C++. The following
sections will describe how to add these functions.

9.1.4 Adding new features to the merchant tool

190

The goal with the merchant tool enhancement is to add the ability to maintain
three database tables from the tool. As mentioned in the previous section, the
tables we want to maintain are the PRSPCODE, PRODUCT, and SHIPPING
tables. We will make one WCS macro to maintain each table. This will add

three menu items to the merchant tool; we add a new section as shown in
Figure 131.

" Store Setup
E| Shipping by weight
-~ Enable/disable shippin

=hip cost by weight

Product weight data

Figure 131. Customized merchant tool with the shipping by weight additions

To add these three extra menu items to the menu of the merchant tool and
add functions, we will have to create three additional WCS macro files. in this
example, the macro files are shipbywenable.d2w, shipbywdata.d2w, and
shipbyweight.d2w. The macros are in the following directory:

/usr/lpp/NetCommerce3/macro/en_US/ncadmin/storemgr/

IBM WebSphere Commerce Suite SPE Customization

The source code can be found in Appendix E, “Shipping by weight source
code” on page 339.

To activate these macros for the merchant tool, perform the following steps:

1. Locate and open the XML file, navigation.xml, for the navigation bar in the
advanced store. The file is placed in the following directory:
ust/Ipp/NetCommerce3/Tools/xml/nchs/mtool/advanced/.

2. In the file, locate the line that reads <node name="storeSetup". Locate
where the store setup section ends, and add the following new link tag just
before the next section:

<node name="ShipByWeight"
image="/NCTools/images/clear.gif"
openImage="/NCTools/images/clear.gif"
users="siteAdmin storeAdmin" >

<node name="ShipByWeightenable"

url="/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/shipbywenable .d2w/r
eport?merfnbr=5env.merchant ids"
wholepage="true"
image="/NCTools/images/clear.gif"
users="siteAdmin storeAdmin catalogAdmin" />

<node name="CostShipByWeight"

url="/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/shipbyweight .d2w/re
port?merfnbr=senv.merchant ids$"
wholepage="true"
image="/NCTools/images/clear.gif"
users="siteAdmin storeAdmin catalogAdmin" />

<node name="ShipByWeightData"
url="/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/shipbywdata.d2w/rep
ort?merfnbr=$env.merchant ids"
wholepage="true"
image="/NCTools/images/clear.gif"

users="siteAdmin storeAdmin catalogAdmin" />

</node>

where

Chapter 9. Extended customization features 191

192

* node name denotes the variable used to identify the link.
* url denotes the action of the link.
* images defines the image on the navigation bar to the left of the link.
» users defines which users are allowed to see this link.
3. Save the XML file.

4. Locate and open the file navigationNLS.properties. It is found in
/usr/lpp/NetCommerce3/Tools/lib/nctools.jar. To access the properties file,
you must unjar the file by issuing the following from the command line:

jar -xvf nctools.jar

5. This command will unpack the jar file into two sub folders, called com and
manifest. The navigationNLS. properties file can be found in the directory,
/usr/lpp/NetCommerce3/Tools/lib/com/ibm/commerce/tools/nchs/properties

6. Open the navigationNLS.properties file using a text editor and add the
following lines:
ShipByWeight = Shipping by weight
ShipByWeightenable = Enable/disable shipping by weight
CostShipByWeight = Ship cost by weight
ShipByWeightData = Product weight data

Save the file.

7. Re-create the nctools.jar file by issuing the following command to pack the
file from the command line:
jar -cf0 nctools.jar com

8. Restart WCS and Lotus Domino Go Web sever to make the changes
reflected.

Now, after implementing these changes, we are able to maintain the
PRODUCT, PRSPCODE, and SHIPPING tables. We can see the changes
when we open the merchant interface as shown in Figure 132 on page 193.

IBM WebSphere Commerce Suite SPE Customization

Merchant Tool - Advanced

Store

“iew Store

" Get Started

" Reports

" Store Setup

E| Shipping by weight

. Enable/disable shipping by weight

Ship cost by weight
Froduct weight data

Figure 132. Customized shipping by weight interface

Three new functions are added to the menu:
* Enable/disable shipping by weight
* Ship cost by weight
* Product weight data

The first function, Enable/disable shipping by weight, updates the
PRSPCODE table and creates one W3 method. To make it easier for the
merchant to change the shipping method, the program looks for the
Weight_Based shipping method and changes it. Therefore, there must be a
shipping method called Weight_Based (see Figure 112 on page 163) before
you enable the shipping by weight. The merchant can then switch the
shipping code between W3 and Q83 for the weight-based shipping method
and, thereby, enable or disable the shipping by weight.

The Ship cost by weight menu allows you to enter one price for each weight
range for all destinations in the shipping price grid. An example for Alabama
U.S.A. is given in Figure 133 on page 194.

Chapter 9. Extended customization features 193

Store - Contry selected for update 18: Trited States
~ Wiew Store
- Get Started Select state for shipping cost: |Alahama =
#- Reports
" Store Setup Enter start weight range m Eg |1
=l Shipping by weight
Enable/disable shippin Enter end weight range in Kg Iz
Ship colt by weight
“ Product weight data || Enter price for shipping : |3|
- Store Style
- Product Catalog
- Store Administration update |
- Process Orders

Figure 133. Entering shipping price data

The third menu item, Product weight data, is used to update the PRODUCT
table with weight information. Weight data must be entered for each product
that should be shipped by weight. Entering data will deposit the information
into the PRODUCT table and change the pointer in the PRPSNBR column to
point to the weight-based shipping method.

Y ou selected the following product: B85
Product number and descriphon:
SETT-0001 - Baggy-Fit Cotton Thwall Teans

Product weight - Please update values

|1.5IIIDD -[wa =]

update |

Figure 134. Entering product weight data

194 IBM WebSphere Commerce Suite SPE Customization

Now, when the system to update the information for shipping is ready, we can
proceed and create the calculation process where we calculate the shipping
cost based upon the entered information.

9.1.5 Calculating shipping cost

The program to calculate the shipping cost makes use of the tables
ORDERS, SHADDR, SHIPTO, PRODUCT, PRSPCODE, and SHIPPING as
mentioned in the previous section.

Shipping by weight can get very complicated and can require very detailed
data entered into the system; this is not desirable in our environment where
we want the data entered by merchants with limited time and resources. We
must, therefore, make some assumptions to simplify the shipping by weight
method:

* A shipping method, called Weight_Based, must be defined (see Figure
112 on page 163).

* The shipping cost for the maximum possible weight must be defined (see
Figure 133 on page 194). This must be done for each jurisdiction.

* If the weight for one or more order items in the order is undefined, the
shipping cost will be calculated by quantum.

* There must be a price grid defined for jurisdiction Other; this will be the
price for all weight-based shipment not otherwise priced.

¢ All items in an order are shipped to the same address.

* The weight for all items in an order is summed up, and the shipping cost is
calculated from the total weight of the order.

* Only one weight unit is supported.

The steps involved to retrieve the shipping cost are described in the following
pseudo code example. The real code, written in C++, is listed in Appendix
E.4, “C++ function GetOrdByWt.cpp” on page 346. This code replaces the
default Overridable Function, GetOrdShTot_1.0. This new function is called
GetOrdByWit:

GET ORDER REF NR

GET ORDERS WHERE ORDERS.ORDER REF NR

GET SHIPTO WHERE SHIPTO.STRFNBR = ORDERS.ORMORDER
FOR ALL IN SHIPTO DO

GET PRODUCT WHERE PRODUCT .PRRFNBR=SHIPTO.STRFNBR2
DONE

GET SHADDR WHERE SHADDR.SARFNBR=SHIPTO.STANBR

GET PRSPCODE WHERE PRSPCODE.PRRFNBR=PRODUCT.PRPSNBR
IF PRSPCODE.PSSPMTHD of any order line = Q3 THEN

Chapter 9. Extended customization features 195

SKIP AND USE STANDARD METHOD
ELSE
FOR ALL IN PRODUCT DO
SUM PRWGHT
DONE
GET SHIPPING WHERE CONTRY AND JURISTICTION IS = SHADDR. AND
WIEGHT = PRWGHT
RETURN SHIPPING.SPCHRGE

9.1.6 Activating shipping by weight for a merchant

196

The new shipping Overrideable Function must be defined for WCS before it
can be activated. The steps that must be completed to create and define the
new OF are:

1. Generate and compile the C++ code to implement the function

2. Generate a library libITSO.a and copy it to /usr/Ipp/NetCommerce3/bin
directory

3. Register the new OF with WCS

4. Activate the new OF for our shop.

The C++ code is described earlier and listed in Appendix E.4. A make file to
compile the code is listed in Appendix E.5, “Makefile for GetOrdByWt.cpp” on
page 349. To use the make utility, type make all on a command line, the make
utility takes the makefile as instructions to generate the library file libITSO.a,
after the file is generated you must copy it to the /usr/Ipp/NetCommerce3/bin
directory manually.

Then to register the new OF GetOrdByWt in the WCS OF database, some
SQL statements must be performed. The statements are listed in a SQL script
in Appendix E.6, “reg_GetOrdByW.db2.sql SQL script” on page 350 to
execute the script perform the following steps:

1. Log in as the DB2 instance owner (defaults to db2inst1).

2. Connect to the database by executing the following command:
db2 connect to itso
itso is the name of our database.

3. Run the script to register the function:
do2 -tvf reg GetOrdByW.db2.sqgl

4. Restart WCS

IBM WebSphere Commerce Suite SPE Customization

When the new OF is registered, you can assign it to a task using the
NCADMIN interface of Net. Commerce.

1.

S L A

9.

Log on as administrator on NCADMIN with the following command:
http://HOSTNAME/ncadmin/

Select SITE MANAGER in the left menu

Select TASK MANAGEMENT in the left menu

In the Select Task Type pull-down menu, chose PROCESS.

In the Task Name list, select GET_ORD_SH_TOT.

Select TASK ASSIGNMENT in the left menu.

In the store list select the mall or a store, we chose Dress demo in this
example.

In the Overridable Functions box, select GetOrdByWt(WCS SPE)(IBM
ITSO)(1.00).

Click the UPDATE button to make the changes.

The ncadmin interface screen in Figure 135 shows the OF assignment. Since
only the ASP has access to the ncadmin interface, this is a way for the ASP
to control which merchants can make use of the shipping by weight function.

W Overridable Function Assignment

= MNet Commerce

Task Type

[FrOCESS

Task Mame
|[sET_orp_sH TOT

Store -- Overridable Funciion(Produci)Vendor)} Version) Assignment

MALL--GetOrdShTot (MO (IBRI1 . 00) =
advancedsto i

Sendce Store--Mo Assignment

Onerridable Functions
-Mo Assignment- il
AnditaddrBookMC)(IBR(1.00)
AnditaddrBookCult{NCIIBRI(1.00)
— [AuditAddrBookProxy (NI O0)
=1 NPT T,

Sliil

Figure 135. Enabling the cutomized shipping calculation

When the function is activated, the merchant can charging shipping costs by
weight if weight data is entered into the system as described in Figure 131 on
page 190 through Figure 134 on page 194.

Chapter 9. Extended customization features 197

9.2 Adding off-line payment methods

By default, the WCS has only one off-line payment method to offer merchants
and customers, but, sometimes, it is necessary to have more than one
method. By adding additional off-line payment options, the merchants can
select from a list of offline payment methods, such as check, money order, or
C.O.D. If there were three additional payment methods, the merchant would
have to provide the customer with instructions in a message box. The order
summary page should include the message and the order type.

This is important for ASPs in those countries that do not have good credit
card regulations or for those merchants who want to sell with the C.O.D.
method in the first transaction.

9.2.1 Payment methods in detail

198

When a merchant creates a new store or sets up the store, the merchant tool
shows a screen like that shown in Figure 136.

#7 Payment Information - Netscape

Vi/elcome

The Payment YWizard enables you to specify how payments will be processed. As you
Q Welcome praceed thraugh the wizard, you will need to complete the following steps:

Fayment Method Specify the payment methods that your store uses.

Select the credit cards that your store accepts

Select an authorization method to be used by your store.

Provide payment instructions and confirmation messages for shoppers.

Offline Method .
Online Method

Online Instruction

Summary

Figure 136. The welcome page of the payment setup option

The payment wizard contains a number of panels that, for example, offer
alternative payment methods from which the merchant chooses to determine
the payment method for the customer. These choices are stored by the

IBM WebSphere Commerce Suite SPE Customization

wizard and used to create the merchant’s store when they press the Finish
button at the end of the creation process. This information is held as an
object called payment in the store creation wizard’s client browser. Each
panel adds more values to this object. When the Finish button is pressed on
the final screen, a Java script function, convertToXML(), is called and
converts this object into a number of XML parameters that are then sent to
the servlet, MerchantAdmin.

This servlet does all the work of creating or modifying the new store based on
the values in the XML parameters.

The PaymentWizard.xml file, located in
X:A\Ibm\NetCommerce3\Tools\xml\nchs\payments (for Windows NT 4.0)
or

/usr/lpp/NetCommerce3/Tools/xml/nchs/payments (for AIX), is listed in
Appendix F.1, “PaymentWizard.xml” on page 351.

As we can see in the file listing, there exists one panel name for each step in
the payment wizard, and there is one payment method for each online
payment method.

Because we are adding more options for the off-line payment methods, we
must take a look at the offlinelnstructionsTab panel name.

<panel name = "offlineInstructionsTab"
url = "/servlet/MerchantAdmin?DISPIAY=CTnchs.payment.OfflineInstructions"
helplink = "CInchs.Payment.offlineInstructions.Help" />

Figure 137. The offlinelnstructions Tab panel name

When the panel is executed, a call is made to the servlet, MerchantAdmin, to
display the Offlinelnstructions.tem template, which is shown in Figure 138 on
page 200.

Chapter 9. Extended customization features 199

200

¥ Payment Information - Hetscape
Specify Offline PaymentInstructions and Messages
Complete the text of the desired option and chose it to provide payment instructions and
¥ilfelcome a confirmation message for the custamer.
¥ Payment hethod
Offline payment instructions
G Offline Method ;I
Summary
=
Offline confirmation message
=l
=

Figure 138. The off-line method screen

We can see that the merchant has only one option for off-line payments.
Because we want to offer more options, it is necessary to customize the
Offlinelnstructions.tmp template, which is located in
X:AIbm\NetCommerce3\Tools\mpg_templates\nchs\payment (for Windows NT
4.0)

or

/usr/lpp/NetCommerce3/Tools/mpg_templates/nchs/payment (for AlX).

The next four figures show the original and changed templates; the changed
templates are also listed in Appendix F, “Payment method code lists” on page
351.

IBM WebSphere Commerce Suite SPE Customization

Model nchs (paymentNLS)
display ()

/*

<HIML>
<!--
Licensed Materials - Property of IBM

&)
Figure 139. Offlinelnstructions.tmp template (1 of 2)

Chapter 9. Extended customization features 201

202

s
5648-B47

(C) Copyright IBM Corp. 1998, 1999, 2000. All Rights Reserved

US Govermment Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

<LINK REL="stylesheet" HREF="/NCTools/html/common/pagestyle.css">
<SCRIPT SRC="/NCTools/javascript/Util.js"></SCRIPT>
<SCRIPT>
var payment = top.get("payment");
function initializeState()
{
document . f1.paymentInstructions.value =
convertFromHIMLToText (payment .offlineInstructions) ;
document . f1.confirmMessage.value =
convertFromHIMLToText (payment .offlineConfirmation) ;

function validateEntries()

if (document.fl.paymentInstructions.value.length > 256 ||
document . £1.confirmMessage.value.length > 256) {
alert ("$paymentNLS.offlineMsgTooLongsS") ;
return false;

payment .offlineInstructions =

convertFromText TOHIML (document . £1 . paymentInstructions.value) ;
payment .offlineConfirmation =

convertFromText TOHIML (document . £1 . confirmMessage.value) ;
top.put ("payment", payment) ;

return true;

</SCRIPT>
<BODY BGCOLOR="#CCCCCC" ONLOAD="initializeState();">

<FORM NAME="f1">
SpaymentNLS .of flineDesc$

<UL TYPE="DISC">
$paymentNLS. of flineInstructions$

<TEXTAREA WRAP=PHYSICAL NAME="paymentInstructions" ROWS=4 COLS=35></TEXTAREA>

$paymentNLS . of flineConfirmation$

<TEXTAREA WRAP=PHYSICAL NAME="confirmMessage" ROWS=4 (COLS=35></TEXTAREA>

</FORM>
</BODY>
</HIML>
*/
J

Figure 140. Offlinelnstructions.tem template (2 of 2)

IBM WebSphere Commerce Suite SPE Customization

We can customize the template by adding some lines to it to offer more
options, such as payment with check, C.0.D., and many more options.

In the next two figures, we can see the new Offlinelnstructions.tem template
after the customization:

~
Model nchs (paymentNLS)
display ()
/*
<!-
Licensed Materials - Property of IBM
5648-B47
(c) Copyright IBM Corp. 1998, 1999. All Rights Reserved
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
->
<HTML>
<LINK REL="stylesheet" HREF="/NCTools/html/common/pagestyle.css">
<SCRIPT>
var payment = top.get("payment");
function initializeState()
{
document . f1.payment Instructionsl.value = payment.offlineInstructions;
document . f1.confirmMessagel.value = payment.offlineConfirmation;
}
function validateEntries ()
if (document.fl.paymentInstructionsl.value.length > 256 ||
document . £1.confirmMessagel.value.length > 256) {
alert ("$paymentNLS.offlineMsgTooLongs") ;
return false;
}
payment .offlineInstructions = document.fl.choseninstr.value;
payment .of flineConfirmation = document.fl.confirmMessagel.value;
top.put ("payment", payment);
return true;
</SCRIPT>
<BODY BGCOLOR="#CCCCCC" ONLOAD="initializeState() ;">
<FORM NAME="f1">
SpaymentNLS . of f1ineDescS$

<UL TYPE="DISC">
<input type=radio name=choose
onclick="this.form.choseninstr.value=this.form.paymentInstructionsl.value;" CHECKED>
$paymentNLS. offlineInstructionsS

N J

Figure 141. The first part of the new Offlinelnstructions.tem template file

Chapter 9. Extended customization features 203

204

4 <TEXTAREA WRAP=PHYSICAL NAME="paymentInstructionsl" ROWS=2 COLS=35> A

Call us to a number 1-800-__ - to bring your credit card information
and order nunber.</TEXTAREA>

<input type=radio name=choose
onclick="this.form.choseninstr.value=this.form.paymentInstructions2.value;">
Pay with check

<TEXTAREA WRAP=PHYSICAL NAME="paymentInstructions2" ROWS=2 COLS=35 >
Send us your check to the account number scx-xococoox of the scoooooooooo
bank to complete your order.</TEXTAREA>

<input type=radio name=choose
onclick="this.form.choseninstr.value=this.form.paymentInstructions3.value;">
Cash On Delivery (C.0.D.)

<TEXTAREA WRAP=PHYSICAL NAME="paymentInstructions3" ROWS=2 COLS=35 >
Just pay your order when you recive it in your home. As easy as it!</TEXTAREA>
<input type=hidden name=choseninstr value="">

$paymentNLS . of flineConfirmation$

<TEXTAREA WRAP=PHYSICAL NAME="confirmMessagel" ROWS=1 COLS=35>We appreciate a lot
your purchase. For any information about your order, please see the Customer
Information Section.</TEXTAREA>

</FORM>
</BODY>
</HIML>
*/
}

-

Figure 142. The last part of the new Offlinelnstructions.tem template file

To see these new changes, we must stop and restart the Websphere Servlet
Service, and, finally, we can see a screen like the one shown in Figure 143 on
page 205.

IBM WebSphere Commerce Suite SPE Customization

¥ielcome
¥ Payment hethod
(C offtine Method

Summary

ayment Information - Netscape

Specify Offline Payment Instructions and Messages

Complete the text of the desired option and chose it to provide payment instructions and
a confirmation message for the customer.

& Offline payment instructions

Just pay your order when you recive it in your home

B
-

' Pay with check

Send ug your check to the account number xxx-eoooeoo of the ;I
xooooooooso: bank to complete your order =

= Cash On Delivery (C.0.D.}
Just pay your order when you recive it in your home. As easy as

I =
it! LI

Offline confirmation message
Ikgkjfgﬁhfrudgf ﬂ

Cancel << Previous Mext ==

Figure 143. The off-line method screen after customization

9.3 Gift messages/wrapping

In this section, we will go into detail about how to implement gift messages
and gift wrapping as new features in the WCS SPE environment. We will
create the example and explain in detail how to expand and use the existing
database model to store information specific to this new feature, and we will
show how to enable the feature for a single store only.
Adding and implementing this new feature will be an example of an advanced
customization that requires knowledge about the WCS framework as well as
a good understanding of how Net.Commerce works.
In the example, we will be modifying a store created as an advanced store
using the classic store model.

Chapter 9. Extended customization features

205

— Note

It is very important to note that the Net.Data macro should not be used for
updating the database in the Net.Commerce system. We have done it here
to make the interface simple. It is always recommended to use commands
and Overridable Functions to achieve any update to the database in your
implementation.

9.3.1 The scenario

To illustrate the process of adding a new feature to WCS SPE, consider the
following scenario: The ISP has purchased WCS SPE and is already hosting
many merchants. However, some of the merchants are asking for a special
feature to be used when shipping gifts for special occasions, such as
Christmas, Easter, or birthdays. The merchants want to be able to offer their
customer the opportunity to personalize a gift message and, optionally, select
a special gift wrapping when shipping their purchase as part of a gift.
Because only some of the merchants might have the business model where
gift messages and wrapping are appropriate, this service should be offered
as an option to the merchants. Also, not all merchants might want this feature
to be enabled all the time but only on special occasions, which means that
the merchant must be able to enable/disable the feature at any time they
desire.

9.3.2 Planning the feature

206

Adding a feature, such as gift message/wrapping, requires some
modification, which means the feature must be carefully specified. Also, since
adding this type of feature requires restarting WCS, you should inform your
merchants about their services being down for a short period of time, for
example, with service window.

When designing this feature, the following things must be considered before
implementation:

e The ISP must be able to offer the feature to some merchants.

e The merchants must be able to enable and disable the feature.

¢ |f the merchant has enabled the feature, it should appear to the shopper
during the shopping flow.

* The merchant might want to present information on how to use the
feature; so, each merchant must be able to define their own help text.

IBM WebSphere Commerce Suite SPE Customization

* If the shopper has entered a message and/or selected a gift wrapping, it
must be stored somewhere so the merchant can see this information.

The implementation of the listed items will require a lot of changes to be
made. Besides implementing the actual logic for the features, we also need to
customize some Net.Data macros to include the gift feature in the shopping
flow, and we need to make use of the database model to be able to store
information, such as the actual message, the gift wrapping selected, and
whether the feature is enabled for this merchant.

9.3.3 Designing the feature

With the specifications, we now need to design the actual solutions, which
means that we will have to specify which parts need to be done. For this
feature, parts are visible to the ISP and the merchant, and some parts are
visible to the shopper.

Options visible to the ISP

The ISP must be able to enable and disable this feature to each merchant,
this could be part of charging the merchant for using the feature. The easiest
way to do this is to have the information available in the NCADMIN interface,
which the ISP will use.

Options visible to the merchant

When necessary, the merchant should be able to enable and disable and
change the text that will appear as part of the feature. For administrative
purposes, the merchant should also be able to access the choices made by
the shopper, which means the actual message and the wrapping the shopper
selected. We decided to show this information as part of the manage order
page in the merchant tool and add a new page to the tool where the merchant
can enable and disable the feature and change the text explaining how to use
the feature.

Options visible to the shopper

If the feature is enabled for a particular store, the shopper must be presented
with a page where it is possible to type in a gift message and select one of
the gift wrappings, together with instructions on how to use the feature.

We think the most natural place to display this information and collect the
input would be during the checkout process. We then decided to expand the
“Payment information” page with a section including the gift
message/wrapping feature. For this purpose, we will have to change the
macro, ord_pay.d2w, to include a function that checks whether this feature is
enabled for the store, and, if so, it will add some HTML to the payment page.

Chapter 9. Extended customization features 207

9.3.4 Database model

208

As can be seen from the description of the feature, we need to be able to
store some information when using it. We will have to explore the
Net.Commerce database model, since this is the obvious place to store this
kind of information.

To store new data in Net. Commerce, you got the these possibilities:

1. Add new fields to existing tables. For example, some of the data we need
to store is related to the merchant, and in the tables, MERCHANT and
MCSPINFO, there is already one row for each merchant. Adding new
fields to one of these tables is quite easy but has a huge drawback: Since
we are actually making changes to the database scheme, we will, most
likely, run into problems if we later decide to upgrade your server to the
next version of WCS SPE.

2. Use reserved for customization fields. Many tables in the WCS database
scheme contain fields that can be used for customization. The
MERCHANT table, for example, contains two custom fields, each having
the datatype, varchar(254). Using custom fields is nice if you need to
supply additional information, but, since there are only a limited number of
custom fields in each table, you might run out of unused fields as you start
to extend WCS.

3. Create new tables with the columns needed. This will separate the feature
from the WCS system but will require us to maintain the relationship to the
database. We also need to take care of cleaning up unused data.
However, by using the existing referential integrity, this could be a fairly
easy task.

In this example, we will use options two and three. Option one is not the
recommended way to store additional informations; so, we will just show how
to add a new table and how to use the custom fields in existing tables.

For each merchant, we need to store the following information:

Table 18. Additional table for gift message/wrapping

Column name Type Description

Merchant reference
number. This is a foreign
GMMENBR INTEGER key that reference column
MERFNBR in table
MERCHANT

IBM WebSphere Commerce Suite SPE Customization

Column name

Type

Description

GMALLOW

SMALLINT

0 - Merchant is not allowed
to use this feature

1 - Merchant is allowed to
use this feature

GMENABLED

SMALLINT

0 - Feature disabled in
store
1 - Feature enabled in
store

GMDESC

VARCHAR(254)

The information text to be
shown at the gift page

To create the database table shown in Table 18, perform the following steps:

1.
2.

Log in as the DB2 instance owner (defaults to user db2inst1).

Add the following code to the script file:

create table giftmessage (

gmmenbr integer not null,

gmallow smallint,

gmenabled smallint,

gndesc varchar (254),

constraint p giftmessage primary key (gmmenbr),

constraint fme giftmessage foreign key (gmmenbr)
references merchant (merfnbr)
on delete cascade

)i

3. Save the file and exit editor.

4. Connect to the database by executing the following command:

db2 connect to itso
In our example, the database is called ITSO.
Run the following script to create the table:

db2 -tvf giftmessage.db2.sql

This is the SQL that will generate the table, and the output should look
something like that shown in Figure 144 on page 210.

Chapter 9. Extended customization features

Create a file, called giftmessage.db2.sql, which will contain the SQL.

209

£50: :db2instl: /home/db2inst1/GiftMessage>do2 connect to itso
Database Connection Information
Database server DB2/6000 6.1.0

SQL authorization ID DB2INST1
Local database alias = ITSO

£50: :db2instl: /home/db2inst1/GiftMessage>do2 -tvf giftmessage.db2.sql

create table giftmessage (gmmenbr integer not null, gmallow
smallint, gmenabled smallint, gmdesc varchar (254) ,

constraint p giftmessage primary key (gmmenbr), constraint fme giftmessage

foreign key (gmmenbr) references merchant (merfnbr) on delete cascade

DB20000I The SQL command completed successfully.

£50: :db2inst1: /home/db2inst1/GiftMessage>
N\ J

Figure 144. Output from creating a new table

Now, the table is created and we can continue developing the macros that will
control which merchants can use this feature.

9.3.5 Implementing the ISP interface

210

Now that we have created the new database table, we can start implementing
the tool that the ISP will use to enable the feature for stores.

The ISP will be presented with an HTML page from which they can retrieve
information about the status of each merchant. When a merchant is selected,
a macro page will show the current gift message/wrapping information for the
selected merchant. The ISP can then choose to update the availability of the
feature or select a new merchant.

To keep things simple, we have not integrated the new macros into the
NCADMIN interface of Net.Commerce. The interface itself is a frame
structure in which the upper frame shows a pull-down menu containing all the
merchants. When a merchant is selected, the required information is
retrieved from the database and shown in the bottom frame.

Figure 145 on page 211 shows what the interface looks like when a store has
been selected and the information displayed to the ISP.

IBM WebSphere Commerce Suite SPE Customization

b " Manage Gift Message/wrapping Feature - Metscape

File Edit “iew Go Communicator Help
F o

Manage Gift Message/Wrapping Feature

Store Name

|k0|heck j Find Store |

Gift Message Wrapping status
& Enabled
" Disabled

UPDATE STATUS |

Informations handled by merchant

Enabled m store: yes

Information text:

Look here!

Create sometling special, use thus great Gift message feature of our shop!

Please enter your personal message below,

[== |Document: Done

Figure 145. The ISP interface for gift message/wrapping

The source code for the HTML and macro files can be found in Appendix G,
“Source code for gift message/wrapping” on page 357. The file,
giftadmin.htm, should be put in the following directory:

/usr/lpp/NetCommerce3/html/en_US/ncadmin/sitemgr/
and the two macro files should be put in:
/usr/lpp/NetCommerce3/macro/en_US/ncadmin/sitemgr/

To launch the ISP interface in your browser, type the following URL in your
browsers location field:

http://HOSTNAME/ncadmin/sitemgr/giftadmin.htm

Chapter 9. Extended customization features 211

Before you launch the URL, make sure you are already logged on as an
administrator; otherwise, you will be presented with the mall logon page.

9.3.6 Changing the store page

We need to modify the macro ord_pay.d2w so it displays the gift message
fields when the feature has been enabled by the ISP and the merchant.

To make this new feature available to all merchants, we need to change the
default ord_pay.d2w macro for the advanced store, which can be found in the
following directory:

/usr/Ipp/NetCommerce3/macro/common/ClassicStoreModel/

It is also possible to customize the macro individually for each merchant, but,
for now, we will just change the default mall macro to include the functionality
to handle the gift message part.

We will modify the ord_pay.d2w macro by adding a function that will check
whether the gift message feature is enabled in the shop. The function queries
the database against the table we created to see if the ISP and the merchant
have enabled the feature. As a result, the function sets some variables so
that, later in the HTML section, we can decide whether or not we should add
the extra HTML for the feature.

The function that we have added looks something like the following:

${ Function to retrieve gift message informations about current merchant
if the feature is enabled and the merchant is allowed to use it. %}
$FUNCTION (dtw_odbc) GetGiftMessageInfo () {
SELECT

gmdesc
FROM
giftmessage
WHERE
gmmenbr = $(MerchantRefNum) AND
gmallow = 1 AND

gmenabled = 1

$REPORT {
$ROW{
@DIW_assign (GIFTMSGENABLED, "yes")
@DTW_assign (GIFTMSGTEXT, V_gmdesc)
%)
%)

$MESSAGE {
default : { @DTW_assign (GIFTMSGENABLED, "no") %} : continue
%)

212 IBM WebSphere Commerce Suite SPE Customization

In the HTML section of the macro, we will then call the GetGiftMsgInfo()
function; then, we can check the GIFTMSGENABLED variable to see whether
or not we will have to show the extra HTML.

If the feature is enabled, the HTML we add will print out the information text,
which can be fetched from the GIFTMSGTEXT Net.Data variable and add two
extra input fields to the order form.

The first field is an input field of type text, which we will name giftmsg, where
the customer can type in the message they want. The second type of field is
the four radio buttons, named wrapping, where the customer can choose one
of the four gift wrappings. The number of gift wrappings is fixed and requires
the merchant to have uploaded four images. In our example, we made four
images, each 48x48 pixels, and placed them in the following directory:

/usr/lpp/internet/server_root/pub/<storename>/images

The images should be named giftwrap1.gif, giftwrap2.gif, giftwrap3.gif and
giftwrap4.gif. If you want to change the file names, you must change them in
the ord_pay.d2w macro. The <storename> can be fetched from the
LongStoreName variable, as can be seen in the example code.

Our extension to the HTML section looks like this:

@GetGiftMessageInfo ()
%$1F (GIFTMSGENABLED == "yes")
<TABLE BORDER="1" WIDTH="100%" CELLPADDING="Q0"
CELLSPACING="0">
<TR>
<TD><TABLE BORDER="0" WIDTH="100%" CELLPADDING="0"
CELLSPACING="4">
<TR VALIGN="TOP">

<TD WIDTH="50%"><FONT FACE="$ (BodyFontFace)"
SIZE="$ (BodyFontSize) ">$ (SIFTMSGTEXT)

</TD>

<TD VALIGN="MIDDLE" ROWSPAN="2" WIDTH="50%"><CENTER>

<INPUT TYPE="radio" name="wrapping" value="1">

<INPUT TYPE="radio" name="wrapping" value="2">

<INPUT TYPE="radio" name="wrapping" value="3">

<INPUT TYPE="radio" name="wrapping" value="4">

</CENTER></TD>

Chapter 9. Extended customization features 213

214

</TR>
<TR>
<TD WIDTH="50%"><INPUT TYPE="text" NAME="giftmsg"
SIZE="24" MAXLENGTH="254">
</TD>
</TR>
</TABLE>
</TD>
</TR>
</TABLE>
$ENDIF

We have placed the extra HTML code just before the submit button to be sure
it is with the FORM tag of the payment form.

In Figure 146, you can see the output from the new ord_pay.d2w macro when
the gift message/wrapping feature is enabled.

{ kolbeck - Netscape

File Edit “iew Go Communicator Help

Loock here!

Create something special, use this great Gift
message feature of our shop!

Please enter your personal message below.

Special gift for you! oo

Home Search Customer service

I ==

Catalog Shopping cart Registration Logon Logoff

| Document: Done

Figure 146. The Payment page with gift message feature enabled

IBM WebSphere Commerce Suite SPE Customization

9.3.7 Implementing the business logic

The modification we made to the ord_pay.d2w macro included two new fields
in the order form. However, these elements are HTML, which means that the
Net.Commerce command, orderProcess, wWhich will process the order, does
not know anything about them. To be able to handle the extra information that
the ord_pay.d2w macro might send and to store this information together with
the current order, we need to extend the OrderProcess command.

The manual, Commands, Tasks, Overridable Functions and Database Tables,
which is available at the Web site,
http://www-4.1ibm.com/software/webservers/commerce/servers/lit-tech-general
.html, and describes how all the commands in WCS work. From the
description of the command, we can see that the orderProcess command calls
a task with the name, EXT_ORD_PROC, to perform additional processing
that is needed.

From the description of the EXT_ORD_PROC task, we see what input
parameters we can expect, how we should handle errors, and that this task is,
by default, assigned to the OF DoNothingNoArgs(). As the name of the OF
says, the default function does nothing.

What we have do to be able to process the extra information is to write an OF
and assign it to the EXT_ORD_PROC task, which is then executed by the
orderProcess command. The new OF, which we will call addGiftMsg, takes the
gift message and the selected wrapping from the HTML form and stores the
information with the current order. From the description of the database
tables, we can see that the ORDERS table contains extra fields for
customization. We will use two of the fields. In ORFIELD1, we will store the
number of the selected wrapping, and, in ORFIELDS3, we will store the
message.

If you want to get into details about how to write commands and Overridable
Functions for Net.Commerce, it is worth taking a look at the book Commands,
Tasks, Overridable Functions and the E-Commerce Data Objects, which can
be found on the Net.Commerce Web site:

http://www.software. ibm.com/commerce/net .commerce

This book describes in detail the programming framework of Net. Commerce
v3.x and is a must for anyone who is interested in customizing and extending
Net.Commerce.

In this example, when you compile the code found in Appendix G.6, “Source
code for addGiftMsg.cpp” on page 363, using the makefile, you will end up
with a library, named libITSO.a, which you must copy to the

Chapter 9. Extended customization features 215

216

/usr/lpp/NetCommerce3/bin directory so that Net.Commerce can access our
new OF. Before you can assign the EXT_ORD_PROC task to our new
function, the addGiftMsg function must be registered in the database. We will
create an SQL script to register the function as we did when we created the
new table in the database:

1.
2.

Log in as the DB2 instance owner (defaults to db2inst1).

Create a file, called reg_giftmsg.db2.sql, and type in the following SQL
code:

—— kkkhkkkkkhkkhkkkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkdhkhkhkhkhkhkhkhkhkhkhkkhkhhkhhhkkkx

-- * Register of addGiftMsg for PROCESS TASK EXT ORD PROC

- %

insert into ofs(refnum, dll name, vendor, product, name, version)
values (

(select max(refnum)+1l from ofs),

'1ibITSO.a',

"IBM ITSO', 'WCS SPE',

'addGiftMsg',1.0

) ;

3. Save the file and exit the editor.

4. Connect to the database by executing the following command:

6.

db2 connect to itso

itso is the name of our database.
Run the script to register the function:
db2 -tvf reg giftmsg.db2.sql

Restart WCS

When the new OF is registered, you can assign it to the task using the
NCADMIN interface of Net.Commerce.

1.

N o o kD

Log on as administrator on NCADMIN with the following command:
http://HOSTNAME/ncadmin/

Select SITE MANAGER in the left menu

Select TASK MANAGEMENT in the left menu

In the Select Task Type pull-down menu, chose PROCESS.

In the Task Name list, select EXT_ORD_PROC.

Select TASK ASSIGNMENT in the left menu.

In the Overridable Functions box, select addGiftMsg(WCS SPE)(IBM
ITSO)(1.00).

IBM WebSphere Commerce Suite SPE Customization

8. Click the UPDATE button to make the changes.

Figure 147 shows the screen just before pressing the UPDATE button, and,
as you can see, the task was, by default, assigned to the DoNothingNoArgs
function.

et. Commerce Administrator - Netscape

File Edit “iew Go Communicator Help

= Net.Commerce

STORE CREATOR Overridable Funciion Assignment -
Tashk Type

» STORE MANAGER IPROCESS

SAMPLES AND TUTGRIALS | Task MName

[EXT_oRD_PROC

» MALL INFORMATION
1

Store -- Overridahle Function{Product)}Vendor)Version) Assignment

CURRENCY MAPFING
» PO ——— MALL--DoNathingMoArgs
Bixth Avenue--Mao Assignment
advancedB--MNo Assignment
Basics--Mo Assignment
Everything Green--MNo Assignment

Jim's Homeware--Mo Agsignment

1
STORE RECORDS

} SHOPFPER INFORMATION)
] kolbeck--Mo Assignment

EHIFFING PROVIDERS N . o—

] Lorne's Lawn Care--No Agsignment =

TEMPLATE DESIGNER
]

ACCESS GROUFS
1

COMMAND SECURITY

WCS-SPE
ETORE RECORDS
FPASSWORD HESE‘F
» MESSAGING SYSTEI‘:‘
» ORDER DELIVER; m
o |
’EW| |Document: Done =g % AP G >

Figure 147. Assign addGiftMsg Overridable Function

9.3.8 Extending the merchant tool

The merchant needs to be able to change the availability of the feature as
well as change the text that will be shown on the payment page. The
merchant interface to the gift message/wrapping is, basically, the same as the
ASP interface, except that the merchant can also change the text message.

Since the merchant will be using the merchant tool, we will have to add an
extra feature to the menu of the tool, which will link to our macro that will
show the current status of the feature for the store. On this page, the
merchant can enable or disable as well as change the info text.

Chapter 9. Extended customization features 217

218

The macro is named giftadminstore.d2w and is placed in the
/usr/lpp/NetCommerce3/macro/en_US/ncadmin/storemgr/ directory.

The source code can be found in Appendix G.4, “Macro file
giftadminstore.d2w” on page 360.

To add this macro to the merchant tool for the advanced store under Store
Setup, do the following:

1. Locate and open the xml file, navigation.xml, for the navigation bar in the
advanced store, which is found in
/usr/Ipp/NetCommerce3/Tools/xml/nchs/mtool/advanced/

2. In the file, locate the line that reads <node name="storeSetup", and, just
before the closing tag, </node>, add the following new link tag:

<node name="adminGift"
url="/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/giftadminstore.d2w/
report"

image="/NCTools/images/clear.gif"

users="siteAdmin storeAdmin" />

where:
* name is the variable used to identify the link.
* url is the action of the link.
* images defines the image on the navigation bar to the left of the link.
* users defines which users are allowed to see this link.
3. Save the XML file.

4. Locate and open the file, navigationNLS.properties, which, at the time of
this writing, can be found in /usr/Ipp/NetCommerce3/Tools/lib/nctools.jar,
and add the following line:

adminGift=Gift Messages

5. Save the file, re-create the nctools.jar, and restart WCS.

After restarting WCS, you can launch the merchant tool to enable the feature
for a particular store.

IBM WebSphere Commerce Suite SPE Customization

IBEM wWebSphere Commerce Sui

Store

~ Wiew Store

- Get Started
"~ Reporis

- Store Setup

R =
- [

- Payments
Taxes
Shipping
Administration

- OpeniClose Stare
Gift Message

H- Store Style

t- Product Catalog

H

2]

Store Administration

(B el el e

“ Process Orders

=

te. Service Provider Edition - Netscape

Gift Message/Wrapping

Status for Gift Message:

@ Enabled

' Disabled

Current info text (maz 254 chars):

<h>Look here!<p>rCreate something special, ;I
use this great Gift message feature of our
shop !<p>Please enter your personal message

below.
[
UFDATE |

Wrapping preview

1. 2.3 4

| To upload new preview images, select the Store StyleManage Files

,@ == | Document: Done

N I B

Figure 148. The merchant tool with gift message

When the merchant

receives the order, he or she must be able to see

whether the customer has entered a gift message or selected a gift wrapping.
We will extend the Order Details page in the merchant tool to include
information given by the customer during the purchase. For more details
about the template files in WCS SPE, read the manual, Customization Guide,
Version 3.2, which is shipped with the product.

The template file for the order details page, which we will change, is named
OrderDetails.tem, and is located in the following directory:

/usr/lpp/NetCommerce3/Tools/mpg_templates/nchs/order_mgmt/

and we will extend it with a function to retrieve and display the information
entered by the customer at the payment page. Perform the following steps:

1. Open the file in your editor.

2. Find the line where the addComments() function is called. The lines

should look like t

-- Add the order

he following:

comments

Chapter 9. Extended customization features 219

220

/*

 */
horizontalSeparator (orderMgmtNLS . orderDetailsComment Separator)
addComments ()

Insert a call to our new function that will display gift message information
by adding the following line:

-- Show gift message/wrapping informations

addGiftMessage ()

. Add the following function to the file:

-- Add gift message/wrappings for this order

addGiftMessage ()
{
Query stmtgift
Var giftmsg
Var wrapping

giftmsg = ""
wrapping = ""

stmtgift = "SELECT ORFIELD1, ORFIEID3 FROM ORDERS WHERE ORRFNBR=" +
parameters.selectedOrders

stmtgift|reset ()
wrapping += stmtgift.orfieldl
giftmsg += stmtgift.orfield3

if (giftmsg != "null") {
/*
<H3>Gift Message:</H3>
Sgiftmsg$
*/
}
if (wrapping != "0" && wrapping != "null") {
/*

<H3>Selected Wrapping</H3>
Wrapping no. S$wrapping$
*/

IBM WebSphere Commerce Suite SPE Customization

We added the code just before the addComment() function in the template
file.

5. Save the template file and restart WCS.

After the modification of the Order Details page, the merchant will be able to
see the information that the customer has entered during the checkout, which
is shown in Figure 149. The modified OrderDetails.tem file is also shown in its
complete form in Appendix G.7, “Modified OrderDetails.tem template” on
page 366.

BM WebSphere Commerce Suite, Service Provider Edition - Netscape

o CIEUIL LAIU pE.” [NIE o . a : ;I
Store | Credit card number: Credit card information is unavailable
- Wiew Store
- Get Started
*- Reports
- Store Setup Comments
*- Store Style
& Product Catalog Mo cornrnents have been added to this order
- Store Administration
Remove Comments
- Process Orders
“iew Sent Orders
Manage Orders Gift Message:
“ Place Order
Special gift for youl
Selected Wrapping
Wrapping no. 4

Edit Order Change Status Return to Manage Orders

=
= == | Dacument: Done

Jeh AP EE A | g

Figure 149. Order Details page in the merchant tool

Now that we have implemented everything, it is possible to test the overall
functionality of the gift message/wrapping feature. Using the URL

http://HOSTNAME/ncadmin/sitemgr/giftadmin.htm

you should be able to enable or disable the new feature for each of your
merchants as an ASP. This page, intended for the ASP only, makes it easy to
handle the accounting as you can see if the feature is enabled in one store or
not. If a store wishes to use the feature, the ASP can enable it in that
particular store and then add the use of it to the bill.

Chapter 9. Extended customization features 221

As a merchant, you can use the merchant tool to enable or disable the feature
in your store or change the information text that is displayed on the payment
information page. You can also test your new payment page, place a test
order that includes a gift message, and then retrieve this information on the
Order Details page in the merchant tool.

9.3.9 How to charge the customer

222

Until now, using the feature in the shop has been free of charge for the
shopper. However, since it might require some extra work for the merchant to
handle the request about gift messages, sometimes, the merchant might want
to charge the shopper for using the feature. Since the feature is implemented
in this chapter, the following possibilities for charging the shopper exist.

Make a note and change the order in the merchant tool

When the shopper is on the payment page, you should make a note saying
something like the following: Note: Using the gift message 1$ will added when
your order is processed. However, the shopper will not see this extra charge
as part of the payment information, which is the bad side of this approach,
since he or she will not immediately see how much the total will be. In some
countries, there might also be some legal issues about adding charges after
the shopper has accepted the purchase.

Charging for the use of the feature can be done by the merchant using the
merchant tool. When the merchant is processing the orders, he or she can
chose to edit the orders that make use of the gift message and then add the
charges to those orders.

Add a special shipping provider

The charge of using the gift message feature can also be done by adding an
additional shipping service called, for example, gifts, which then adds the
amount to the purchase when the shopper has selected to use the gift
message. In order to implement this, you will need to change the
orderpay.d2w macro further so that it uses the standard shipping by default.
But, when the shopper decides to use the gift message feature, the page
should recalculate the shipping, now including the use of the feature.

This implementation works best if the merchant only has one shipping
provider; otherwise, they will have to define the shipping service with gift
messages for each of their shipping providers. However, having the
orderpay.d2w macro recalculate the order makes it possible for the shopper
to see the exact amount just before finalizing the order.

IBM WebSphere Commerce Suite SPE Customization

Add a virtual product called gift message

The default shop a merchant gets when he or she creates a store makes it
possible for the shopper to add a comment to every item in the shopping
basket.

If you add a product, called Gift Message, to your catalog, the shopper can
then type in the message in the comment field if he or she decides to add the
product to the shopping card. The product should be uncategorized so that it
doesn’t show up on the product catalog. Even if the product is uncategorized
and, thus, is not shown when browsing the catalog, the shopper will still be
able to find the product if he or she searches for it.

On the Payment Information page, one could place a button that reads Add
gift message, which then adds this product to the shopping card and shows
the shopping basket where the shopper can type in the message.

This implementation also makes it possible to calculate the exact amount that
the shopper has to pay. However, even this implementation is quite easy for
the merchant; it gives no way for the ISP to control which merchant uses a
special feature like this, and, thus, the ISP cannot charge the merchant for
using such a feature.

Chapter 9. Extended customization features 223

224 IBM WebSphere Commerce Suite SPE Customization

Chapter 10. Provisioning

Many ISPs already have an existing site offering various services to the
customer. This chapter discusses how to simply extend that existing site to
include WCS SPE. First, we will look at the direct URLs to call when creating
a basic or advanced store. This is done instead of going through the standard
WCS site page. Finally, we will use a common scenario where an ISP has one
custom registration page for all of their services and explain how to pass this
information to the store creation wizard so the customer does not need to
retype it.

10.1 Calling the store creation wizard directly by URL

We will outline the URLSs to call to create the basic or advanced stores. To let
the ISP include the URLs on previously-created pages.

10.1.1 Basic store
The URL to call the create basic store wizard is as follows:

http://<hostname>/servlet/MerchantAdmin?GOTO=Banner&body=CTnchs . sc.CreateS
tore&storeXML=nchs.store creator.basic.xml&level=Basic&catalogXML=nchs.cat
alog.simpleCatalog.xml&bannerHTML=registerBannerBasic.html

This will call the first page in the creation process, but it will appear in the
same browser window from which it was called. The default installation of
WCS displays the store creation wizard in a new browser window. If you want
it called in the same browser window, you will have to change the action of
the Close button on the final wizard screen. It expects to be in a new window
and attempts to close it. The template containing the close button is the file:

/usr/lpp/NetCommerce3/Tools/mpg_template/nchs/store_creator/NavClose.tem

It is necessary to change the JavaScript function, closeMe(), in that file as
shown in Figure 150 on page 226. Remove the text marked in italics and
insert the text marked in bold. For the changes to take effect, WebSphere
must be restarted.

© Copyright IBM Corp. 2000 225

4 <SCRIPT> h

function closeMe ()

{

var cts = new Date() ;

*/
Var serviceDataHome = homeDirectory.lockup ("ServiceDataHome")
Var serviceDataFilter = serviceDataHome.createFilter ()
serviceDataFilter.setLevelEquals (merchant.level)
serviceDataFilter.setAttributeEquals ('mtoolXML')
Var mtoolXML = serviceDataHome.find (serviceDataFilter) ;

/*

var cts = new Date();
var loc = 'http://$env.hostname$/servlet/MerchantAdmin?'
+ 'DISPLAY=CTnchs.mtool .MerchantTool&CTS=' + cts.getTime() ;

// remove all commented out below
/* var newwindow =
top.getPanelAttribute ("storeCreatorPanelVerify", "mtool InNewWindow") ;
if (newwindow == "NO" && top.window.opener.closed == false) {
top.location.href = loc;
} else {
window. open (loc) ;
top.close () ;
}
*/
// And add the following line
top.location.href = loc;
1
</SCRIPT>
- J

Figure 150. CloseMe function

If you want the store creation wizard to appear in a new window as in the
WCS, you can add the JavaScript code, shown in Figure 151 on page 227, to
your custom page and you then call the function with:

Click here to create a Basic Store

You will notice that the URL for a basic store, called basic and marked in bold
in Figure 151 on page 227, has an extra parameter, called CTS. This is set to
the current time and is used to prevent caching of this page by the browser. It
is optional (but recommended) to include this since browser caching can
cause problems. The following code calls the basic store wizard with
non-caching functionality added and with the CTS parameter set as a random
number.

<a href="javascript:window.location =
' /servlet/MerchantAdmin?GOTO=Banner&body=CTnchs. sc.CreateStore&storeXML=nc
hs.store creator.basic.xml&level=Basic&catalogXML=nchs.catalog.simpleCatal

226 IBM WebSphere Commerce Suite SPE Customization

og.xml&bannerHIML=registerBannerBasic.html&CTS=" +
Math.ceil (Math.random() *10000) ; ">Click here to create a Basic Store

4 N

<script Language="JavaScript">

// setting up the window

var w;

var launch str = "Please be patient. The merchant tool will be launched in another
window.";

var unsupported browser textl = "The merchant tool requires either:";

var unsupported browser iteml = "Netscape Navigator 4.06 or higher";

var unsupported browser item2 = "Intermet Explorer 4.01 or higher";

var unsupported browser text2 = "Install the correct browser before creating a
store.";

var now = new Date() ;

// Declaring the basic & advanced URLs as variables

var basic =
"/servlet/MerchantAdmin?GOTO=Banner&body=CTnchs . sc.CreateStore&storeXMl=nchs.store cr
eator.basic.xml&level=Basic&catalogXML=nchs.catalog. simpleCatalog.xml&bannerHTML=regi
sterBannerBasic.html&CTS=" + now.getTime();

var advanced =
"/servlet/MerchantAdmin?GOTO=Banner&body=CTnchs . sc.CreateStore&storeXMl=nchs.store cr
eator.advanced.xml&level=AdvancedsbannerHTML=registerBanner .html&CTS=" +
now.getTime () ;

function create basic() {
create store (basic)

}

function create advanced() {
create store (advanced)

function create store (storeurl)

{

if ((navigator.appName.indexOf ("Netscape") > -1 &&

parseFloat (navigator.appVersion) >= 4.06) ||
(navigator.appName . indexOf ("Microsoft") > -1 &&
parseFloat (navigator.appVersion) >= 4.0)) {
w = window.open (storeurl, "MerchantTool",

"resizable=no, scrollbars=yes, status=yes, width=780, height=550, screenX=0, screenY=0, left
=0, top=0") ;

} else {

alert (unsupported browser textl+"\n"+unsupported browser iteml+"\n"+unsupported brows
er iteml+"\n"+unsupported browser text2);

</script>

- J

Figure 151. Opening store creation wizard in new browser window

10.1.2 Advanced store
The URL to call for the Advanced store creation wizard is:

Chapter 10. Provisioning 227

http://<hostname>/servlet/MerchantAdmin?GOTO=Banner&body=CTnchs . sc.CreateS
tore&storeXML=nchs.store creator.advanced.xml&level=Advanced&bannerHTML=re
gisterBamner.html

As for the Basic store example, if you open the page in the same browser, you
will have to modify the close button on the final creator screen. See Figure
150 on page 226.

The code for opening the advanced store creation wizard in a new window is
shown is Figure 151 on page 227 and is similar to the basic store. The call is
as follows:

Click here to create an Advanced
Store

Here is an HTML anchor tag example if you want to call advanced store with
the non caching feature.

<a href="javascript:window.location =

' /servlet/MerchantAdmin?GOTO=Banner&body=CTnchs. sc.CreateStore&storeXML=nc
hs.store creator.advanced.xml&level=Advanced&bannerHIML=registerBanner.htm
1&CTS="' + Math.ceil (Math.random()*10000) ; ">Click here to create a Advanced
Store

HTML showing all these examples for both basic and advanced stores can be
found in Appendix H.1, “Provisioning HTML example” on page 379.

10.2 Passing existing customer data to the store creation wizard

Very often, when an existing ISP site has been running for a short time, they
already have a number of customers registered and have their own
registration page. This page would be common for all the various services
that the ISP offers. In the default installation of WCS, the Home Page screen
requires a lot of this registration information. If the customer has already
typed it in once, it can be irritating to have to type it in a second time. In the
example in this section, we will show how to have one common custom
registration form for an ISP and make that information available to the store
creation wizard. We will also use the direct URL calls to the store creation
wizard discussed in the previous sections.

10.2.1 Custom registration page

228

We created an example registration page that an ISP might have. The
customer details can either be typed in or may already exist in a user
database held by the ISP. See Figure 152 on page 229.

IBM WebSphere Commerce Suite SPE Customization

No.1ISP

Registration Form

Please fill in your details and then choose which service you wish to register for.

Firstname: IJoa
Lastname: IBnggs
Address: |4 Main Street

Address line 2 |Nem;mm

City INewcity

State: IFlDr1da
Country: IUmted States
Zip [125 58
Telephone: 1 8 102345
Fax [t & 6sam32
Email Ijoe@joe.com
Password I***

Home Page Services | E-Stare Basic Services E-Stare Advanced Services

Figure 152. Example ISP registration page

The customers’ details are stored in HTML form, whose action is the call to
the store creation wizard. The standard parameters required by the wizard
are also stored as hidden variables as shown by the following:

<form method=post action='/servlet/MerchantAdmin'>
<input type=hidden name=GOTO value="Banner" >
<input type=hidden name=body value="CTnchs.sc.CreateStore" >

<input type=hidden name=storeXML value="" ><
input type=hidden name=level value="" >
<input type=hidden name=catalogXML value="" >
<input type=hidden name=bannerHTML value="" >
<input type=hidden name=CTS value="" >

When the customer chooses a Basic e-Store or Advanced e-Store, the
appropriate values for these variables are created because each variable has
a different value depending on the type of store you want to create. Any
spaces or non-alphanumeric characters that exist in the customer data are
also converted so that they are sent correctly in the request. This is done with

Chapter 10. Provisioning 229

the convert_params() JavaScript function shown in Figure 153, which
describes how we make the call to the basic store wizard.

(‘function convert - params (form) {
form.firstname.value = escape (form.firstname.value) ;
form.lastname.value = escape (form.lastname.value) ;
form.addl.value = escape (form.addl.value) ;
form.add2.value = escape (form.add2.value) ;
form.city.value = escape (form.city.value) ;
form.state.value = escape (form.state.value) ;
form.country.value = escape (form.country.value) ;
form.zip.value = escape (form.zip.value) ;
form.phone.value = escape (form.phone.value) ;
form.fax.value = escape (form.fax.value) ;
form.email .value = escape (form.email.value) ;
form.password.value = escape (form.password.value) ;

}

function basic e store services (form) {
convert params (form) ;

form.storeXML.value="nchs.store creator.basic.xml";
form.level .value="Basic";
form.catalogXML.value="nchs.catalog. simpleCatalog.xml" ;
form.bannerHIML. value="registerBammerBasic.html";
form.CTS.value= now.getTime() ;

form.submit () ;

\} /

Figure 153. Registration page: Basic store wizard functions

This function was called by the following HTML button:
<input type=button value="E-Store Basic Services"

onclick="basic e store services(this.form)">

Full code for the registration page can be found in Appendix H.2,
“Registration example HTML” on page 380.

10.2.2 Displaying e-mail and password automatically on login page
The first store creation wizard page is a login page, and this relates to the file:

/usr/lpp/NetCommerce3/Tools/mpg_template/nchs/store_creator/CreateStore
tem

First, we want to customize this file to show the customer’s e-mail and
password typed in on the registration page as the login ID and password. This
template file is written in MPG, and the syntax for accessing a parameter is
as follows:

230 IBM WebSphere Commerce Suite SPE Customization

$parameters.email$

Where e-mail is the parameter name. To show the e-mail and password
parameters in the login screen, we added the code in bold in Figure 154 to
the didErrorOccur function, which is run when the page is loaded. Again,
WebSphere must be restarted for the changes to take effect.

(function didErrorOccur ())
{
*/
if (errormsg != "') {
/* alert ("Serrormsg$") ;
document . f1.logonid.value = "Sparameters.logonid$";
document . f1.password.value = "$Sparameters.passwordS";
document . f1.c password.value = "Sparameters.c password$";
document .f1.store name.value = "Sparameters.store names"; */ endl
1
/*
// extra code to display email parameter as logonid if it exists
if ("$parameters.email$" != "UNDEFINED")
document. f1.logonid.value = "$parameters.email$";
if ("$parameters.password$" != "UNDEFINED"){
document. f1.password.value = "$parameters.password$";
document. f1l.c password.value = "$parameters.password$";

}

document . £1.1logonid. focus () ;
return true;

Figure 154. Displaying e-mail as login ID automatically

The resultant screen is shown in Figure 155.

Create Basic Store

Enter your LogenID), password and store name For convenience, you may want to use your e-mail address as your LogonD

E-mail address

IbDE@JDE . com

Password Confirm password

Iwwa wET

Store name

Create Store |

Figure 155. Store creator wizard logon screen

Chapter 10. Provisioning 231

10.2.3 Storing customer details in the store creation wizard

232

Once the login ID, password, and shop name have been processed, control is
passed from the login page to the main store wizard page. Therefore, we also
need to pass the customer details parameters again since we want to access
them in the wizard’s home page screen. To do this, we create the parameters
as hidden variables in the CreateStore.tem file.

<INPUT TYPE=HIDDEN NAME="firstname" VALUE="S$Sparameters.firstname$" >
<input type=hidden name="lastname" value="S$parameters.lastname$" >
<input type=hidden name="addl" value="S$parameters.addls$" >

<input type=hidden name="add2" value="S$parameters.add2$" >

<input type=hidden name="city" value="S$parameters.city$" >

<input type=hidden name="state" value="S$parameters.state$" >

<input type=hidden name="country" value="S$parameters.countrys" >
<input type=hidden name="zip" value="S$parameters.zip$" >

<input type=hidden name="phone" value="S$parameters.phone$" >

<input type=hidden name="fax" value="S$parameters.fax$" >

The action of this page’s form is the process() section of the same file. It is
then necessary to alter the call to the next wizard page by adding our
parameters as shown below:

-- redirection

/*<SCRIPT>

params = '&firstname='

+escape ('Sparameters.firstnames') +' &lastname="'+escape ('Sparameters.lastnam
es');

params +=

'&addl="+escape (' Sparameters.addls') +'&add2="+escape (' Sparameters.add2s"') ;
params +=

'&city="+escape ('Sparameters.city$') +'&state="+escape (' Sparameters.states’
)

params +=

'&country="'+escape (' Sparameters.countrys$') +'&zip="'+escape (' Sparameters.zip
$")

params +=

' §phone="+escape (' Sparameters.phone$') +'&fax="+escape (' Sparameters.faxs$') ;
top.location.href="http://Senv.hostname$/servlet /MerchantAdmin?DISPLAY=CTC
ommon . Model &XMLFile=Sparameters. storeXML$&email=Sparameters.emails' +
params;

</SCRIPT>*/

The template file for the next page is found in:
/usr/lpp/NetCommerce3/Tools/mpg_template/common/Model.tem

We can tell this from the DISPLAY parameter set in the call:

IBM WebSphere Commerce Suite SPE Customization

DISPLAY=CTcommon.Model

Now, we want to store these parameters in the top page of the wizard so that
they will be available for the other panels that will be displayed. We created a
JavaScript object called EXT_homepage:

var EXT_homepage = new Object();

Then, we added the customer parameters to this object as shown in bold in
Figure 156, and this code was included in the Model.tem file:

/usr/lpp/NetCommerce3/Tools/mpg_template/nchs/store_creator/CreateStore

tem
CSCRIPT SRC="/NCTools/javascript/Vector.js"></SCRIPT> N
<SCRIPT>
// Code for custamer details
var EXT homepage = new Object() ;
function setparameter (content){
if (content == "UNDEFINED")
return "";
else
return content;
}
EXT homepage. firstr tparameter ("$parameters.firstnames$") ;
EXT homepage.lastr tparameter ("$parameters.lastnames$") ;
EXT homepage.addl=setparameter ("$parameters.addls") ;
EXT homepage.add2=setparameter ("$parameters.add2s") ;
EXT homepage.city=setparameter ("$parameters.citys$") ;
EXT homepage.state=setparameter ("$parameters.state$") ;
EXT homepage.country=setparameter ("$parameters.country$") ;
EXT homepage.zip=setparameter ("$parameters.zip$") ;
EXT homepage.phone=setparameter ("$parameters.phone$") ;
EXT homepage. fax=setparameter ("$parameters.fax$") ;
EXT homepage.email=setparameter ("$parameters.email$") ;
//End of custam code
var model = new Object() ;)

Figure 156. Storing customer details

10.2.4 Displaying customer details in the Home Page screen

Now that we have stored the customer details, they are available to any of the
wizard screens. We will show how to access the data using the Home Page
screen. The template for the home page for both the advanced and basic
stores is the following file:

Chapter 10. Provisioning 233

/usr/lpp/NetCommerce3/Tools/mpg_template/nchs/store_creator/basic/Home
Page.tem

We changed the default Initialize() function to display any customer data
stored in the object EXT_homepage when loading the page. Also, a new
function, setcountry(), was created that set the select box to the country
typed in on the registration page. The changed code is shown in bold in
Figure 157 on page 235.

234 IBM WebSphere Commerce Suite SPE Customization

4 //Return the index value of the selectbox option that N
// equals custamer registration value sentcountry
// otherwise return 0
function setcountry (selectBox, sentcountry){
found=0;
for (i=0;i < selectBox.length; i++){
if (selectBox.options[i].text == sentcountry){
found = i;
break;}

return found;

function initializeState()
{
document . f1.firstName.value =
convertFromHIMLToText (stripUndefined (homepage . firstName, top.EXT homepage.firstname));
document . f1.lastName.value =
convertFromHIMLToText (stripUndefined (homepage . lastName, top.EXT homepage.lastname)) ;
document . £1.phone.value =
convertFromHIMLToText (stripUndefined (homepage .phone, top.EXT homepage.phone)) ;
document . £1.fax.value = convertFromHIMLToText (stripUndefined (homepage. fax,
top.EXT hamepage. fax)) ;
document . f1.email.value =
convertFromHIMLToText (stripUndefined (homepage.email, top.EXT homepage.email)) ;

var found = setcountry (document.fl.merchantCountry, top.EXT hamepage.country) ;

var selectedCountry = stripUndefined(homepage.selectedCountry, found);
document . £1.merchantAddressl.value =

convertFromHIMLToText (stripUndefined (homepage.addressl, top.EXT homepage.addl)) ;
document . £1.merchantAddress2.value =

convertFromHIMLToText (stripUndefined (homepage . address2, top.EXT homepage.add2)) ;
document . £1.merchantCity.value =

convertFromHIMLToText (stripUndefined (homepage.city, top.EXT hamepage.city));
document . £1 .merchantState.value =

convertFromHIMLToText (stripUndefined (homepage.state, top.EXT homepage.state));
document . £1 .merchantZi p .value =

convertFromHIMLToText (stripUndefined (homepage. zip, top.EXT homepage.zip)) ;
document . £1.merchantCountry [selectedCountry] .selected = true;

document . f1.aboutus.value =
convertFromHIMLToText (stripUndefined (homepage . aboutus,
"$SstoreCreatorBasicNLS . HomePageExamplelS$")) ;

document .f1.description.value =
convertFromHIMLToText (stripUndefined (homepage.description,
"SstoreCreatorBasicNLS . HomePageExample2s")) ;

top.pageAlreadyloaded = true;

- } J

Figure 157. Functions to display customer details on the home page screen

So, if any customer details are held in the EXT_homepage object, they will be
displayed on the home page screen as shown in Figure 158 on page 236.
Remember that in order for any changes made to MPG template files to take
effect require WebSphere to be restarted.

Chapter 10. Provisioning 235

¥ Tnformation
¥ Store Syl
¥ Store Color
¥ Store Scheme
¥ Banner

G Home Page

Catalog
Payments

Verify

¢ Information - Content

Enter your contact mformation and business address. The contact s the person who answers customers questions.
bustness address to correspond with you by mail

First name Last name

Joe IB logys
Telephone number Fax number

Il g 102343 Il & 654832
Address

|4 Nain Street

INewtown

City State/Province
INewcitV IFlorida
Colntry ZipPostal code

|United States j |123 56

Customer service e-mal address

Ijoe@joe.com

Figure 158. The resultant home page screen

The information in this chapter has described how to include links from Web
pages to various WCS pages.

236 IBM WebSphere Commerce Suite SPE Customization

Chapter 11. Multi-language support

Multi-language capabilities are very important, especially in the European
market and even in such bilingual countries as Canada, Belgium, and France.
In the European Union and Scandinavia, many companies want to use the
global nature of the Internet to go beyond national boundaries. This entails a
new currency that is supported by WCS SPE as well as a new language for
your store. The default language in WCS SPE is the language in which the
product was installed.

In this chapter, we want to show how to offer merchants a selection of
different languages in which to create their store.

11.1 Background

When a store is created in WCS SPE a number of HTML files are created
containing hardcoded textual information. These are found in the following
files:

/usr/lpp/internet/server root/pub/<merchant .mestname>/homepage .html
/usr/lpp/internet/server root/pub/<merchant.mestnames>/navigationBar.html

The default language for this is the installed language version of WCS. The
content in homepage.html can be changed through the store creation wizard.
But not the navigationBar.html. Its content can be changed through the
merchant wizard, but it would be more professional if the navigation bar was
created in the new language chosen. To do this, we must send an extra XML
parameter to the final creation process in the store wizard as in the variable,
enXML, shown in Appendix I.1, “displaylangs.html” on page 383.

We also need to store language choice, for which we have chosen custom
field merchant.mefield1.

For the Net.Data macro files, the translation text is stored in the following file:

/usr/lpp/NetCommerce/macro/en US/<StoreModel>/translation text.inc

11.2 Store creation wizard multi-language panel

We created a new panel for the store wizard, shown in Figure 159 on page
238. Implementation details are listed in Appendix |, “Multi-language
samples” on page 383. Here, the merchant can choose a language. This then
stores the appropriate XML parameter in the top frame and also calls the new
command, langadd, which stores this language value in merchant.mefield1.

© Copyright IBM Corp. 2000 237

238

Please choose a language from below:

T Default- US English & Swedish € Danish Assign language

Figure 159. Language selection panel

To implement the new navigationBar.html, we made the following changes to
the file:

/usr/lpp/NetCommerce3/Tools/mpg templates/nchs/store creator/advanced/Veri
fy.tem

We also added a new XML parameter:

<FORM NAME="f1" METHOD=POST
ACTION="http://$env.hostname$/servlet/tempServliet">

<INPUT TYPE=HIDDEN NAME="PROCESS" VALUE="CTnchs.sc.advanced.Verify">
<INPUT TYPE=HIDDEN NAME="XML" VALUE="">

<INPUT TYPE=HIDDEN NAME="XML" VALUE="">

<INPUT TYPE=HIDDEN NAME="XML" VALUE="">

<INPUT TYPE=HIDDEN NAME="XML" VALUE="">

<INPUT TYPE=HIDDEN NAME="XML" VALUE="">

<INPUT TYPE=HIDDEN NAME="XML" VALUE="">

Set it to the value in the top frame in the validatePanelSubmit() JavaScript
function:

document .£f1.XML[5] .value = top.langElements.XML;

And, lastly, in the Process() section of the MPG, we added it as a parameter
to the settings file:

Model navigationBar

x = gettings.settings.put ("navigationBar", navigationBar)

These parameters are then sent to the final screen when the store is created,
and a new language navigation bar is created as shown in Figure 160 on
page 239.

IBM WebSphere Commerce Suite SPE Customization

Katalog

Kundvagn

Kund service

Registrera

Logga av

Figure 160. New language navigation bar

11.3 Multi-language macros

We want to replace the default translation file with our new custom files. We
create these file as follows:

/usr/lpp/NetCommerce3/macro/common/ClassicStoreModel/sv_SE/translation tex
t.inc
/usr/lpp/NetCommerce3/macro/common/ClassicStoreModel/en US/translation tex
t.inc
/usr/lpp/NetCommerce3/macro/common/ClassicStoreModel/de DK/translation tex
t.inc

Sample content of this file is shown below for the logon screen:

@DTW_ASSIGN (BUT LOGOFF, "Logga av")

(
@DTW_ASSIGN (BUT LOGON , "Logga pa")
@DTW_ASSIGN (LBL LOGONID , "Anvandar ID:")
@DTW_ASSIGN (LBL_LOGONID OLD , "Anvéndar ID:")
@DTW_ASSIGN (LBL PASSWORD , "Losenord:")
@DTW_ASSIGN (TXT TITLE LOGON , "Logga pa")
(

@DTW_ASSIGN (TXT INSTR LOGONFORM , "")

Shown in bold in Figure 161 on page 240 are the changes we made to the
default logon macro to implement the new language. In this code, we select
the language from the merchant’s database and then use that to include the
appropriate language file. The default logon macro is:

Chapter 11. Multi-language support 239

/usr/lpp/NetCommerce3/macro/common/ClassicStoreModel /logon.d2w

(%function (dtw odbc) GET MERCHANT LANG() {
SELECT mefieldl as lang

FROM merchant

WHERE merfnbr = $(MerchantRefNum)

%REPORT{
@DTW ASSIGN (lang,V lang)

%}

SMESSAGE{
100: { @DTW ASSIGN(lang,"en US") %} :continue
default: {
<HR><FONT FACE="$ (BodyFontFace)"
SIZE="$ (BodyFontSize) ">$ (ERR MSG GENERAL)

$ (ERR LBL FUNCTIONNAME) GET ADDRESS REF ()
$ (ERR LBL. ERRORMESSAGE)
$ (DTW DEFAULT MESSAGE) <HR> %}
%}
%}

o°

{ 5}

{ HIML Report Section

o°

o°
©
—

$HIML REPORT {
<HIML>

<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1999 01:01:01 GMI">
$INCLUDE "ClassicStoreModel/browser addrsettings.inc"

</HEAD>

<BODY BACKGROUND="$ (BodyImage) " BGCOLOR="$ (BodyColor) " TEXT="$ (TextCol)"
LINK="$ (LinkCol) " VLINK="$ (VLinkCol)" ALINK="$ (ALinkCol) ">

@GET_ MERCHANT LANG()
\%include "/ClassicStoreModel/$ (lang) /text. inc"

Figure 161. Enabling new language schema in common macros

The new macro will appear as shown in Figure 162 on page 241.

240 IBM WebSphere Commerce Suite SPE Customization

Logga pd

Anvandar 1D:

LOGGA PA

Figure 162. Language-specific logon

Chapter 11. Multi-language support 241

242 IBM WebSphere Commerce Suite SPE Customization

Appendix A. Multi purpose code generation language

The purpose of this document is to describe a template-driven framework that
may be used to facilitate the generation of code. This framework has many
applications, from simple form letters or HTML pages to complex programs or
class libraries created by application builders.

A.1 Introduction to MPG

MultiPurpose Generator (MPG) is a utility that may be used to generate
output. The output may be anything from form letters to HTML pages to
complex C++/Java code. MPG splits the generation into two components: The
model and the template. The model is the set of external data (variables) that
is used to generate the output. The template is the logic that describes how
the output is to be generated.

Consider a letter of confirmation that an employer sends to confirm that they
have received an application for employment. Rather than personally writing a
letter to every person that applied, the company would probably issue a
standard letter and simply change the name, address, position applied for,
and so on. In this case, the standard letter would be the template, and the
model would consist of the following static information:

Model:
name.first: Sally
name.last: Smith
address.linet: 2400 Bayview Ave, Apt 23
address.line2: North York, Ont
address.postal_code: M4N 1JS
position: Development Analyst
internal_contact: Dave Johnston
contact_position: Human Resources Directory
date: June 21, 1997
cc_list[0]: Fred Smith
cc_list[1]: Barney Noble

Template:

form letter()

© Copyright IBM Corp. 2000 243

{

Model name, address, position, internal contact, contact persion, date,
cc list

/*

Enterprise Software
Sdates

Sname.first$ Sname.last$S
Saddress.linel$
Saddress.line2$
Saddress.postal code$

Dear Sname.first$:

On behalf of the company I would like to thank you for applying for the
position of S$position$. Blah, Blah....

Sincerely,

$internal contact$
Scontact position$

cc: */
repeat (cc_list | middle (v, ")) {
cc_list

}
}

The above example reveals some of the elementary syntax of the template
language. The body of the letter is enclosed with the delimiters, /* and */, as
free-form text. For convenience, the writer of the template has escaped from
the free-form text using a $ sign to substitute a variable from the external
model (This is the same as /* Enterprise Software */ date /* */). Variables
are pulled in from the model by declaring them as Model var1, var2, and so
on.

A.1.1 Why MPG?

This is a question that has been asked often, and it is best answered by
starting at the root from which this language evolved.

244 I1BM WebSphere Commerce Suite SPE Customization

MPG evolved from my work on a previous project: Data Access Builder for
C++/Java (DAX). DAX was an application that was used to map database
tables and SQL result sets to object-oriented classes. Once the user had
defined a mapping, the builder would generate classes (in the form of C++ or
Java code) that could be used to access the database. The logic for
generating these classes was originally C++ code. During development, the
developer would make changes to the code, rebuild the application, run it,
and examine the output. This became a very tedious process, especially
when making small changes, such as updating a comment. The syntax of the
C++ language made the code generation rather awkward. Static text could
not span more than one line without ending the string with an “ (and don’t
forget to put \n!). Substituting variables often required a string conversion and
syntax, such as ...“ + new IString(variable) + “... The looping structures (while,
for) were not well-suited for generating function calls (‘,; must be between
variables, need to keep track of an external iterator). In general, handling lists
proved awkward. Over time (with many developers editing the same code),
the model/view separation in the code started to deteriorate.

It was any of these many other issues that started the evolution of MPG. First,
the static text was moved into an external file to make for easy “simple”
modifications. The text file eventually served as an outline for the generated
code. It became natural to add certain “primitive” constructs to this file, such
as conditional and looping structures. This text file eventually evolved into the
MPG template.

The following summarizes some of the key features of MPG that make it a
better alternative to using traditional languages, such as C++/Java:
1. Clear separation between model and view
2. Simple language designed for code generation
1. Easier syntax
1. Free-form text
2. No statement terminators
3. Output stream is implicit
2. Weak typing
1. Datatype conversions are automatic
2. No type casting
3. Specially designed constructs
1. Repeat loop

2. List manipulation

Appendix A. Multi purpose code generation language 245

4.

5.

3. Designed for the common ‘code generation’ case
Special additions

1. Counters

2. SQL Queries

3. SQL Statements

String manipulation

1. Built-in transformations for string formatting

2. Built-in support for currency formatting

3. Interpreted templates (no need to compile)

1.

Quicker development life cycle

4. Security control

1.

o > 0D

Direct control over the model that is accessible from the template
No file manipulation

No network access

Database access can be turned on/off

Scope is limited to the given print stream and the external model. (No
other 1/0O can occur)

A.2 Data model

In this section, we will describe how to create the model that is to be used in
the template.

A.2.1 Declaring model variables

In order to use variables from the model, they must be declared in the
template. A declaration is prefaced with the keyword Model. Multiple entries
may be used from the model by separating them with commas. Model
declarations may occur inside procedures or at the global scope (accessible
in all procedures).

Example:

main ()

{

Model env, merchant

246 IBM WebSphere Commerce Suite SPE Customization

In the above template, the programmer has declared two variables that will be
extracted from the model: env and merchant. At runtime, the generator will
extract the variables that have been mapped to the keys (env, merchant) from
the model (Hashtable) and map them to env and merchant in the template.

A.2.2 Creating the model

Since MPG has been written in Java, its data model consists of Java objects.
The model that is passed to the template is a Hashtable that contains a
mapping of the name of the variable to the Java object that it represents.
Some of the most common types of Java objects used in the model are
String, Boolean, Double, Vector, and Hashtable.

Example:

Hashtable model = new Hashtable() ;

A.2.2.1 Using regular Java objects

Regular Java objects (that is, from package java.lang) are typically used as
single values in the model. Objects of type java.lang.String are the most
commonly used. Numbers (java.lang.Integer, java.lang.Double),
java.lang.Boolean, and so on are also quite common. In general, MPG uses
the toString() method on these objects when generating the output.

Example:

model.put (“name”, “Jane Smith”);

model.put (“today”, new Date());

model.put (“flag”, Boolean.TRUE);

model .put (“number of items”, new Integer (20));

A.2.2.2 Using hashtables

Objects of type java.util. Hashtable may be used in MPG to create structures.
For example, the address variable consists of a Hashtable that contains other
variables (in this case, variables of type String). The variables in the
Hashtable may be directly accessed by their keys. The Hashtable can, of
course, contain other Hashtables; this allows infinite levels of structures and
substructures.

For example, the model used in the form letter template (see introduction)
may have been created as follows:

// name substitutions

Hashtable name = new Hashtable() ;
name.put (“first”, "“Sally”);
name.put (“last”, “Smith”);
model.put (“name”, name);

Appendix A. Multi purpose code generation language 247

248

// address substitutions

Hashtable address = new Hashtable();

address.put (“1linel”, "“2400 Bayview Ave, Apt 23”);
address.put (“1ine2”, “North York, Ont”);
address.put ("postal code”, “M4N 1JS”) ;

model . put (“address”, address) ;

A.2.2.3 Using vectors and arrays

The java.util. Vector class and arrays of type Object/[] are also treated specially
in MPG. The template allows you to loop through elements of these variables.
Consider a situation where we are generating the private members of a Java
class. The data will consist of two lists, a list containing the member names
(member_names) and a list containing the types of the members
(data_types):

Model:

// member names

Vector member names = new Vector();
member names.addElement (“varl”) ;

member names.addElement (“var2”) ;

member names.addElement (“var3”) ;

model . add ("member names”, member names) ;

// data types

Vector data types = new Vector();
data types.addElement (“int”) ;

data types.addElement (“String”) ;
data types.addElement (“double”) ;
model .add (“data types”, data types);

Template:
class definition()
{
Model member names, data types
/*
public class A
{
public A() {} */ endl
repeat (member names, data types) {
/* private $Sdata types$ Smember names$; */ endl
}
/*
1/
}

IBM WebSphere Commerce Suite SPE Customization

Output:

public class A

{
public A() {}
private int varl
private String var2
private double var3

}

The preceding example illustrates the use of single value variables as
elements in the Vector. Vectors and arrays may contain any type of object
including other Vectors and Hashtables.

A.2.2.4 Using Java Beans

Java Beans may also be used in the model. The bean properties may be
accessed directly as properties of the variables to which they are mapped.
For example, consider a Java class, Merchant, that has a property, called
refno. The Merchant class would have a method, getRefno(), that would
return the value of the property. If an object of type Merchant were mapped to
the variable name, merchant, in the model, it may be referenced in the
template as merchant.refno.

At runtime, the template would end up calling Merchant.getRefno() to resolve
the value of merchant.refno.

Parameterless methods may also be invoked on the beans. For example, if
the Merchant class has a method update(), it may be invoked in the template
as merchant.update().

A.2.3 Creating the model from a file

The model may be declared in a file and created using the model parser. The
model parser reads in the file and builds the model that may be used to pass
to a template. The following is the grammar that is used to define the model:

declarations ::= declaration [declaration] ...
declaration ::= var_name = value

value :== single_value | table_value | list_value
single_value :== string | number | boolean

table_value :== { declaration [, declaration] ... }

Appendix A. Multi purpose code generation language 249

list_value :== { value [, value] ... }
var_name :== letter [letter | digit | _1] ...

string :== “characters” | ‘characters’ Note: use backslash to obtain special
characters (ie \n)

number :== digits | digits . digits
boolean :== true | false

letter ;== a-z A-Z

digits :== digit [digit]...

digit :== 0-9

character :== any valid character

Example:

-- The following describes the model used in the introductory sample
name={ first='Sally’, last="Smith” }
address={ linel = “2400 Bayview Ave, Apt 23",

line2="North York, Ont”,

postal code="M4N 1JS” }

position="Development Analyst”
internal contact= “Dave Johnston”
contact position="Human Resources Directory”
date="June 21, 1997”
cc list = ["Fred Leary", "Barney Noble"]

A.3 Language elements

The preceding sections informally introduced some of the elementary syntax
of the language. In this section, we will explore, in detail, the syntax and
directives of the language. Syntactically, the MPG language resembles C,
C++, and Java. This resemblance was intentional to make it easier for
experienced programmers to quickly get up and running using MPG.

A.3.1 Lexical structure

The lexical structure of a programming language is the set of elementary
rules that specify how you write programs in the language. This low-level

250 IBM WebSphere Commerce Suite SPE Customization

syntax specifies details, such as what variable names look like, comments,
and how statements are separated.

A.3.1.1 Case-sensitivity

MPG is a case-sensitive language. Keywords, variable names, and procedure
names must be typed with consistent capitalization. For example, the
variable, x, is entirely different from the variable, X.

A.3.1.2 Whitespace

The MPG parser ignores spaces, tabs, and new lines that appear between
tokens in the templates. Note that this does not include white spaces that are
included in strings (delimited by ‘ and “) and whitespace that exists inside the
free-form delimiters (/* and */).

A.3.1.3 Comments

There are two types of comments in MPG. The first type of comment spans a
single line. This comment starts with the comment delimiter --. Anything
appearing after -- on the same line will be treated as a comment and ignored
by the parser. The second type of comment spans multiple lines and is often
useful for removing pieces of code for testing purposes. These types of
comments start with /- and end with -/.

Note that comments are not allowed within literal strings and within the
free-form delimiters.

A.3.1.4 Statement terminators

Many languages, such as C/C++ or Java, use a semi-colon (;) to act as a
statement terminator. In MPG, there are no statement terminators.
Semicolons may be added to statements but will be ignored.

A.3.1.5 Literals

A literal is a data value that appears directly in the template. Literals consist
of numbers, strings, and Boolean values (true, false). Numbers may be
integers or floating point values. Floating point values use a period as the
decimal separator. Strings are delimited between “ or “” and must occur on a
single line. All characters between the delimiters are part of the string.
Special characters may be added to the string by use of the backslash (\). For
example, to add a new line to a string literal, use \n (‘line1\nline2’). The
Boolean values, true and false, may also appear as literals in the template.

A.3.1.6 Free-form text
One element in particular that distinguishes the syntax of MPG from other
programming languages is the ability to add freeform text to a template.

Appendix A. Multi purpose code generation language 251

Free-form text may include any text (including newlines). Free-form text is
delimited by C-style comments /* and */. These delimiters were purposefully
chosen to allow the text to appear in a different color if the programmer is
using a color-coded C-style editor, which is very common nowadays.

For convenience, statements may be embedded in freeform text by delimiting
them in dollar signs ($). This is often used to substitute a variable inside the
text. The tilde character (~) may be used to escape characters, such as the
dollar sign, in cases where it is not meant to escape the free-form text.

A.3.1.7 Identifiers

An identifier is simply a name. In MPG, identifiers are used to name variables
and functions. The rules for legal identifiers are similar to those of C. The first
character must be a letter and may be followed by any combination of letters,
numbers, and underscores (_). Note that identifiers can only contain ASCII
characters. Unicode or Latin-1 characters are not allowed.

A.3.1.8 Reserved words
There are a number of reserved words in MPG. These are words that you
cannot use as identifiers. The following is a list of reserved words in MPG:

if Var repeat
else Query while
contains Statement before
startsWith Counter after
endsWith List middle
end| Stack condition
true return stop
false continue include
Model break

A.3.2 Declarations

Before any variables may be used in the template, they must be declared.
There are four different types of variables: Model variables, SQL queries,
SQL statements, and regular variables. Declarations may occur anywhere in
the template and are valid in the scope that they are declared and any
subscopes. Variables are declared by starting with a keyword that identifies
the type of variable. These keywords are:

e Model

e Var

252 IBM WebSphere Commerce Suite SPE Customization

* Query

e Statement

The keyword is followed by the name of the variable. Multiple variables may
be declared at the same time by separating them with commas (,).

Examples:

Model env, merchant
Var x

Query queryl, query2

A.3.2.1 Variable scope

The scope of a variable defines the section of code where the variable exists.
A scope is defined by a starting { and an ending }. Each procedure has a
different variable scope. Even repeat loops and if statements can have
variable scopes. Any variables that are defined outside of a procedure are
considered “global”. This means that they are accessible to all parts of the
template.

A.3.3 Data types

The MPG template language itself only supports six data types: Numbers,
strings, and Boolean values (true, false), counters, stacks, and lists. These
are the types of data that may appear as literals in the template. The external
model, however, supports all Java objects. The objects in the external model
may be manipulated through there defined methods and properties or
converted to strings (typically using the foString() method).

A.3.4 Expressions and operators

Expressions and operators are very similar to what you will find in C/Java.

An expression is a “phrase” that the MPG runtime can evaluate to produce a
value. The simplest expressions are literals or variable names. The value of a
literal is the literal itself. The value of a variable expression is the value to
which the variable refers. More complex expressions may be constructed
using operators.

Operators are operations that apply to one or more expressions. MPG has
two types of operators: Unary operators, which apply to a single expression,
and binary operators, which apply to two expressions. The following table
describes all of the operators in MPG. Included in this table is the precedence
of the operators. The precedence determines the order in which a set of

Appendix A. Multi purpose code generation language 253

254

operations will occur. In an expression where the precedence is the same for
all operators, it is evaluated from left to right

Table 19. MPG operators

P Operator Type Operand type(s) Action performed
Accesses a property

7 binary variable, property or method on the
variable

7 [] binary list, integer Accesses an
element in a list
Accesses property

7 [] binary variable, expression | of variable (similar to
an associative array)
Makes the

8 () unary expression expression the
highest precedence

7 ++ unary variable (number) Increments the
number by 1

7 ++ unary variable (list) Increments the list’s
internal counter

7 -- unary variable (number) Decrements the
number by 1

7 - unary variable (list) Decrements the list’s
internal counter

5 +, - binary numbers Addition, subtraction

6 * binary numbers Multiplication,
division

5 + binary strings Concatenation

2 && binary booleans Logical AND

2 Il binary booleans Logical OR

4 ! unary boolean Logical complement
(NOT)

3 == binary any Test for equality

3 = binary any Test for inequality

3 >, >= binary numbers or strings Greaterthan, greater
than or equal

IBM WebSphere Commerce Suite SPE Customization

P Operator

Type

Operand type(s)

Action performed

3 <, <=

binary

numbers or strings

Less than, less than
or equal

3 contains

binary

strings

True if left arg
contains right arg

3 startsWith

binary

strings

True if left arg starts
with right arg

3 endsWith

binary

strings

True if left arg ends
with right arg

binary

variable, expression

Assigns value of
expression to
variable

binary

variable, expression

Appends the value of
the expression to the
variables current
value (for numbers
the numeric value is
added)

binary

expression,
transformation

Applies the given
transformation to the
expression

8 new

unary

type

Creates a new object
(currently: Stack,
Counter, List)

A.3.5 Statements

As described in the preceding section, expressions are phrases that may be
evaluated to produce a value. The general effect of an expression is to output
the value to the print stream and/or produce side effects, such as moving the
internal cursor on a list. To add logical flow to a template, you need to use
statements.

A.3.5.1 The if statement
The if statement is used to execute statements or expressions conditionally.
This works the way you would expect if you are a C/Java programmer:
Form 1:
if (expression) statement
or optionally:

Appendix A. Multi purpose code generation language 255

256

if (expression) {
statements

}

Form 2:

if (expression) statement
else statement

or optionally:

if (expression) {
statements

}

else {
statements

}

If the evaluated expression is true or evaluates to the string value ‘“frue”, the
statement (or block of statements) associated with the ifis executed. If an
else condition is given and the expression does not evaluate to frue (or string
value “true”) the statement (or block of statements) associated with the elseis
executed.

Multiple conditional situations can be handled by chaining if statements off of
the else clauses.

Example:

if (env.isNetscape_v2) {

/

else if (env.isNetscape_v3) {

/

else if (env.isNetscape_v4) {

IBM WebSphere Commerce Suite SPE Customization

A.3.5.2 The repeat statement

Looping is achieved through the use of the repeat statement. Options to the
repeat statement consist of two parts.

In the first part, known as the repeat list, the items to iterate over are given.
The items are variables that are usually lists, counters, or SQL queries. The
variables in this list must be separated by commas (,). All repeatable
elements in MPG maintain an internal iterator. The first time through the
repeat loop, the internal iterator of each element is reset. This is equivalent to
calling the reset() method on each variable. Through each iteration of the
loop, each element increments its internal iterator using the increment()
method, which is equivalent to the ++ operator. The loop ends when one of
the members in the repeat list reaches its last value of the stop condition (see
the following) is reached.

The second part of the repeat statement consists of blocks of code to execute
before and after the loop, code to execute in-between each iteration,
conditions to meet before executing the block of the repeat statement, and a
stop condition. These options are separated from the repeat list by using a
vertical bar ().

The before option consists of a block of code preceded by the keyword,
before. The block of code is executed before the first iteration of the loop and
is only performed if the body of the loop is executed at least once. Similarly,
the after option is performed upon completion of the loop only if the body was
executed at least once. The middle directive may be used to perform
operations between each iteration. A common use of this option is to
generate an argument list that is separated by commas:

repeat(method.args | before { /*8method.name$(*/ }
middle /*, */
after /*); */)

{

args.name

}
The condition option may be used in order to avoid certain combinations of
the repeat list occurring. The body of the loop will only be executed when the
expression in the condition evaluates to “true”. If, in the above example, we
wanted to generate code that invokes a method only with the arguments that
are primitive types:

repeat(method.args | before { /*$method.name$(*/ }

Appendix A. Multi purpose code generation language 257

middle /*, */

after /*); */

condition(isPrimitive(args.type)))
{

args.name

f

Note that the middle block is only executed between the arguments that meet
the condition. If no arguments are primitive, the before and after blocks are
not executed.

The stop option halts the execution of the loop when its condition evaluates to
true. For example, if it was necessary to generate the method call with the
first three arguments, the following code could be used:

Var i = new Counter(1,1)

repeat(method.args, i | before { /*$method.name$(*/ }
middle /*, */
after /*); */
stop(i ==4))

{

args.name

/
A.3.5.3 The while loop
While loops may be used to repeat a segment of code while a certain
condition remains true. This is used the in the same way as the while loop in
C.

Example:
while(i >0) {
i=i-l
/

IBM WebSphere Commerce Suite SPE Customization

A.3.5.4 The return statement

The return statement is useful for terminating the execution of a procedure.
As soon as a procedure encounters a return statement, the procedure ends
and returns to its caller.

A.3.5.5 The break statement
The break statement is useful for terminating the execution of a loop. As soon
as a loop encounters a break statement, the loop terminates.

A.3.5.6 The continue statement

The continue statement is useful for terminating the current iteration of a loop.
As soon as a loop encounters a continue statement, the loop starts its next
iteration.

A.3.6 Procedures

A procedure is a piece of MPG code that is defined once in a template and
can be executed many times. Procedures may be passed arguments
specifying the value(s) upon which the procedure is to operate. Procedures
are defined as follows:

procedure_name(argl, arg2)

{

<procedure body>

/

Procedures are invoked by following the procedure’s name with an optional
comma-separated list of arguments within parentheses. The following are
examples of procedure invocations:

display_category()
x = generate_select()
redirect(“http://www.mystore.com/” + subdir + “/index.html”)

The second example illustrates how to intercept the output of a procedure. By
default, the output of a procedure (that is, the code that it generates) is sent
to the output stream. By assigning the procedure call to a variable (x =
generate_select()) the output is intercepted (in this case, placed in variable
X).

Appendix A. Multi purpose code generation language 259

A.3.7 Transformations

260

Transformations are a set of utility functions that are used for formatting
(transforming) the output. A transformation may be applied to an expression
by placing a vertical bar (I) after it, the name of the transformation and the
argument list. The argument list is dependant on the transformation.

Any number of transformations may be applied to an expression by chaining
them together and separating them with vertical bars (l). They will be
evaluated in left-to-right order, and the result of each transformation is
passed to the next transformation in the list.

Example:
member.name|lowerCase()|change(“get”, “set”)|upperCase(4,1)

Table 20 describes all of the transformations.

Table 20. Transformations

Transformation Description
upperCase() Converts expression to upper case
upperCase(pos) Converts expression to upper case

starting at the given position

upperCase(pos, length) Converts expression to upper case
starting at the given position for the given
length

lowerCase() Converts expression to lower case

lowerCase(pos) Converts expression to lower case starting

at the given position

lowerCase(pos, length) Converts expression to lower case starting
at the given position for the given length

substring(pos) Returns the portion of the expression start
at the given position

substring(pos, length) Returns the portion of the expression start
at the given position for the given length

upperCase() Converts expression to upper case

upperCase(pos) Converts expression to upper case
starting at the given position

IBM WebSphere Commerce Suite SPE Customization

Transformation

Description

upperCase(pos, length)

Converts expression to upper case
starting at the given position for the given
length

isUpperCase() Tests to see if the expression is all upper
case
isUpperCase(pos) Tests to see if the expression is all upper

case starting at the given position

isUpperCase(pos, length)

Tests to see if the expression is all upper
case starting at the given position for the
given length

isLowerCase() Tests to see if the expression is all lower
case
isLowerCase(pos) Tests to see if the expression is all lower

case starting at the given position

isLowerCase(pos, length)

Tests to see if the expression is all lower
case starting at the given position for the
given length

isDigit()

Tests to see if the expression is all digits

isDigit(pos)

Tests to see if the expression is all digits
starting at the given position

isDigit(pos, length)

Tests to see if the expression is all digits
starting at the given position for the given
length

remove(pos)

Removes the substring starting at the
given position

remove(pos, length)

Removes the substring starting at the
given position for the given length

insert(str)

Inserts the given string at the beginning of
the expression

insert(str, pos)

Inserts the given string at the given
position

change(pattern, str)

Replaces all occurrences of the pattern
with the replacement string str

change(pattern, str, max)

Replaces up to max occurrences of the
pattern with the replacement string str.

Appendix A.

Multi purpose code generation language 261

262

Transformation

Description

changeToken(pattern, str)

Tokenizes the string and replaces all
tokens matching pattern with the
replacement token str. (TBD)

changeToken(pattern, str, max)

Tokenizes the string and replaces up to
max all tokens matching pattern with the
replacement token str.

length() Returns the length of the string as an
integer.
strip() Strips leading and trailing whitespace

strip(chars)

Strips leading and trailing characters in the
set chars

stripLeading()

Strips leading whitespace

stripLeading(chars)

Strips leading characters in the set chars

stripTrailing()

Strips trailing whitespace

stripTrailing(chars)

Strips trailing characters in the set chars

occurencesOf(pattern) Returns the number of occurrences of the
specified pattern

indexOf(pattern) Returns the index of the given pattern
(index starts at 0)

isDigit() Tests to see if the expression is all digits

isDigit(pos) Tests to see if the expression is all digits

starting at the given position

isDigit(pos, length)

Tests to see if the expression is all digits
starting at the given position for the given
length

remove(pos)

Removes the substring starting at the
given position

reverse(string)

Reverses a string

round()

Rounds the number to an integer

round(precision)

Rounds the number to the given number of
decimal places.

floor()

Returns the floor of the number (0 decimal
places)

IBM WebSphere Commerce Suite SPE Customization

Transformation

Description

floor(precision)

Returns the floor of the number to the
given number of decimal places.

ceil()

Returns the ceiling of the number (0
decimal places)

ceil(precision)

Returns the ceiling of the number to the
given number of decimal places.

abs(number)

Returns the absolute value of the given
number

format(locale)

Formats a number in the given locale

format(precision)

Formats a number to have the given
precision (appends Os if necessary)

format(precision, locale)

Formats a number to have the given
precision (appends Os if necessary) in the
given locale

toNumber()

Converts the expression to a number
(using the default locale)

toNumber(locale)

Converts the expression to a number
using the given locale

toDouble(locale)

Converts the expression to a double using
the given locale

tolnteger(locale)

Converts the expression to a integer using
the given locale

toBoolean()

Converts the expression to a Boolean

toString()

Converts the expression to a string

toTimestamp(value)

Converts the value to a timestamp. If value
is a number, it contructs a Timestamp
object with the long value; otherwise, it
assumes the string value is in the format:
YYYY-MM-DD-HH.MM.SS.SSSSSS

toTime(value)

Converts the value to a Time. If value is a
number, it contructs a Time object with the
long value; otherwise, it assumes the
string value is in the format: HH.MM.SS

Appendix A.

Multi purpose code generation language 263

264

Transformation

Description

toDate(value)

Converts the value to a java.sql.Date. If
value is a number, it contructs a Date
object with the long value; otherwise, it
assumes the string value is in the format:
YYYY-MM-DD

toJavaScript(value)

Converts the value so it may be assigned
to a Java script variable (replaces ' with \',
\n with \\n, " with \\")

format_date()

Formats a date using the default locale

format_date(locale)

Formats a date using the given locale

format_time()

Formats a time using the default locale

format_time(locale)

Formats a time using the given locale

format_timestamp()

Formats a timestamp using the default
locale

format_timestamp(locale)

Formats a timestamp using the given
locale

currency(locale)

Formats the number as a currency for the
given locale

currency_HTML(locale)

Same as currency, formats for HTML
display

currencySET(symbol)

Formats the number for the given SET
symbol

currencySET_HTML(symbol)

Same as currencySET, formats for HTML
display

currencyNoSymbols(locale)

Same as currency, removes currency
symbols.

currencyNoSymbolsSET(setCode)

Same as currencySET, removes currency
symbols

currencyNoSymbolsSET_HTML(setCode
)

Same as currencyNoSymbolsSET,
formats for HTML display

toJavaScript(value)

Converts the value so it may be assigned
to a JavaScript variable (replaces ' with \',
\n with \\n, " with \\")

format_date()

Formats a date using the default locale

IBM WebSphere Commerce Suite SPE Customization

Transformation Description
format_date(locale) Formats a date using the given locale
format_time() Formats a time using the default locale
format_time(locale) Formats a time using the given locale
format_timestamp() Formats a timestamp using the default

locale

A.3.8 4.10 including other templates

Code from other templates may be reused by including them in the current
template. This allows you to reference other procedures or global variables
defined outside of the template. The following is an example of how you
would include another template:

include “common/address_formats.tem”

The include directive finds the given template by searching the template
path. This is a file system path (or paths) that is searched to find the given
template. Subdirectories may be searched by specifying the subdirectory in
the include directory (as shown). The directory separator is /. This is the
same across all platforms (including Windows platforms).

Appendix A. Multi purpose code generation language 265

266 IBM WebSphere Commerce Suite SPE Customization

Appendix B. ShopperGroup code samples

This appendix contains source code listing for programs used in Chapter 5,
“Shopper groups” on page 61

B.1 RegWrapper source code

[/ Kk ok ok kok ok ok sk ok sk ok okok ok ok Kk K ok ok ok ok ok ko Rk ok kk ok ok ok ok ok ok Rk Rk k ok ok ok ko kR ok ok kk ok ok ok ko k kR ok ok ok ok ok ok ok k ok

** Licensed Materials - Property of IBM * %
* % * %
** 5697-D24 *x
* * * %
% (C) Copyright IBM Corp. 1995, 1999. All Rights Reserved. * %
* % * %

** US Government Users Restricted Rights - Use, duplication or disclosure * %
** restricted by GSA ADP Schedule Contract with IBM Corp. * %

ok ok ok ok ok ok Kok ok K ko sk ok ok ok ok ok Rk ok Kk ok k kR Rk ok k ok ok ok ko k ok ok kkkkk ko k ko kkkkkkkkkkkkkkkkkkkk /

/*

regWrapper Command for redbook
Date:2000/04/04
Purpose : Wrapper for RegisterNew cmd that relates new shopper to merchant

Usage: /cgi-bin/ncommerce3/regWrapper?merchant rn=<>®type=<>

&url=<>&... normal params for RegisterNew
History
Version Date Who Comment

*/

#include "objects/objects.pch"

//

#ifdef _ TRACE COMMANDS_
typedef TraceYes Trace;

#telse
typedef TraceNo Trace;
#endif
static Trace trace("MY_COMMANDS ("__ FILE ")");
//

#if defined (WIN32)

#define _ EXPORT MODE__ _ declspec (dllexport)
#elif defined (AIX)

#define _ EXPORT MODE__

#endif

//

© Copyright IBM Corp. 2000 267

268

// variables used by the Process function
String merchantRefNum;
String _VAL url;

// optional parameter
String VAL regtype;

//NVP_names declarations
static const StringWithOwnership NVP_merchant_rn("merchant_rn");
static const StringWithOwnership NVP_url ("url");

// optional
static const StringWithOwnership NVP_regtype ("regtype") ;

LI 77777 77177777
11111111117

//

// regWrapper

//

LI 77777 777770777177777
11111111117

class _ EXPORT_MODE _ regWrapper : public NC_Command

{

static const ClassName _STR ThisClass;

public:
regWrapper (void)

{

// Trace the function call
Trace::Tracer T(_STR _CONSTRUCTOR, _STR ThisClass) ;

virtual bool Initialize (void)

{
// Trace the function call
Trace::Tracer T(_STR Initialize, _STR ThisClass) ;
return true;
}
virtual ~regWrapper (void)
{
// Trace the function call
Trace: :Tracer T(_STR DESTRUCTOR, _STR ThisClass) ;
}

void operator delete(void* p) { ::delete p; }
virtual NC Command* Clone (void) { return new regWrapper; }

public:
virtual void FailedRegistration (NC RegistrationID& RegID, const ErrorMsg Reg* Err)

{

// Trace the function call
Trace: :Tracer T(_STR_FailedRegistration, _STR ThisClass) ;

if (Err == & ERR REG UNEXPECTED OBJ)

{

IBM WebSphere Commerce Suite SPE Customization

error << indent << "ERROR: regWrapper not accepted by the manager" << endl;

}

else if (Err == & ERR REG DUPE_ID)

{

error << indent << "ERROR: regWrapper: another command with the same name has
already been registered" << endl;

}

else if (Err == & ERR REG_OBJ NOT FROM DLL)

{

error << indent << "ERROR: regWrapper is packaged in a different DLL then the one
registered in the DB" << endl;

}
else

{
}

error << indent << "ERROR: regWrapper's registration failed" << endl;

error << indent << "ERROR: regWrapper unknown registration error" << endl;

virtual bool CheckParameters (const HttpRequest& Req, HttpResponse& Res,

{

NC_Environment& Env, NC_Environment& Resources

// Trace the function call
Trace: :Tracer T(_STR_CheckParameters, _STR ThisClass) ;

if (Misc::CheckFieldExistence (Req, NVP_merchant rn, merchantRefNum, false)==false)

return false;

debug << indent << " - CheckParams merchantRefNum" << merchantRefNum << endl;

if (Misc::CheckFieldExistence (Req, NVP_url, VAL url, false) == false)
return false;

debug << indent << " - CheckParams url" << _VAL url << endl;

// return success if everything went OK
return true;

[/ KhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkQ

// Process section

virtual bool Process

{

// Trace the function call
Trace::Tracer T(_STR Process, _STR ThisClass) ;

// dump the nvp
debug << indent <<

debug << indent << " start process" << endl;

debug << indent << " --- DumpInputStart ---" << endl;
NameValuePairMap: : Iterator I (&Req.getNVPs()) ;
for (I.Begin(); *I != NULL; ++I

{

debug << indent << (*I)->getName().c str() << " = ";
debug << (*I)->getValue().c_str() << endl;

}

debug << indent << " --- DumpInputEnd ---" << endl;

Appendix B. ShopperGroup code samples

(const HttpRequest& Req, HttpResponse& Res, NC Environment& Env)

" << endl;

269

//

// call RegisterNew command
// Set up variables
HttpResponse LocalRes;
HttpRequest LocalReq;

// Set up the LocalRequest for the RegisterNew cmd
String queryString = "?merchant rn=";

queryString << merchantRefNum;

String NVP_name;

// Add the appropriate NVP from Req to LocalReq

for (I.Begin(); *I != NULL; ++I
{
NVP_name = (*I)->getName () ;
if (NVP_name != NVP_merchant_rn && NVP_name != NVP_regtype)
queryString << "&" << NVP_name << "=" << (*I)->getValue();
}
debug << "query String = " << queryString;

LocalReq.setQUERY STRING (queryString.c_str());

//

// get id for RegisterNew cmd

NC RegistrationID ID regnew("IBM","NC", "RegisterNew",1.0) ;

// Use CommandManager to call RegisterNew cmd
if (NC_CommandManager: :Call (LocalReq, LocalRes,Env,ID regnew) !=NULL) {
return false;

//
//get current user

User* loggeduser =
(User*)Misc: :CheckEnvironmentVariable (Env,NC_Environment::_ VAR Shopper) ;

DataBase& DB = * (DataBase*)Misc: :CheckEnvironmentVariable (Env,
NC_Environment:: VAR MainDatabase) ;

if (loggeduser->isRegistered())

debug << "shopper is registered: continue" << endl;
else{

debug << "shopper is not registered" << endl;

return false;

}
//

/ /MCUSTINFO
MerchantUserInfoHome mcustinfo home(DB) ;
MerchantUserInfo* mcustinfo;

String VAL shopref = loggeduser->getRefNum() ;
String VAL shopgrp = "";

mcustinfo = mcustinfo home.Create (merchantRefNum, VAL shopref , VAL shopgrp) ;

270 IBM WebSphere Commerce Suite SPE Customization

//

//

// Tracing variable to identify calls to functions for your class.

//search for optional regtype field

for (I.Begin(); *I != NULL; ++I

{
if ((*I)->getName() == NVP_ regtype) {
_ VAL _regtype = (*I)->getValue();
debug << "regtype = " << VAL regtype << endl;
if (_VAL regtype == "1"
mcustinfo->setFieldl ("A") ;

break;

}i
}i

debug << indent << "Insert row in mcustinfo" << endl;
// write to table

if (mcustinfo->Write() != ERR_DB NO_ ERROR)
return false;

//get user's new registered cookie from the LocalRes
Cookie* LocalCookie = LocalRes.getCookie ("SESSION ID");
String _VAL value = LocalCookie->getValue() ;

// Set the user's cookie in the wrapper cmd response
Res.AddCookie ("SESSION ID", VAL value);

// redirect to url
Res.setLocation(VAL url, false);

debug << indent << " - Process end " << endl;
debug << indent << "

" << endl;

// destroy objects
mcustinfo_home.Destroy (mcustinfo) ;

return true;

const ClassName regWrapper:: STR ThisClass ("regWrapper") ;

//
//
//
//

Automatically instanciate your command and registers it to the
"Vendor" is the name of the company you write this command for.
"Product" is the name of the product/package this command will
"CommandName" is the actual name of your command

// 1.0 is the version of this command
static bool X1 = NC CommandManager::Register ("IBM" ,

//

"NCh ,
"regWrapper",
1.0 B
new regWrapper

)i

name you give it.

be part of

Appendix B. ShopperGroup code samples

271

B.2 RegWrapper makefile for WinNT

NC_ROOT
PCH

INC
LIBS

GCFLAGS
GLFLAGS
OBJS

debug:

d:\ibm\netcommerce3

= objects\objects.pch

= /I$(NC_ROOT)\adt\include

= $(NC_ROOT) \adt\1lib\nc3 containers.lib \
$ (NC_ROOT) \adt\1lib\nc3_messages.lib \
$ (NC_ROOT) \adt\1lib\nc3_common.lib \
$ (NC_ROOT) \adt\1lib\nc3_dbc.1lib \
$ (NC_ROOT) \adt\1lib\nc3 pay objects.lib \
$ (NC_ROOT) \adt\lib\server objs.lib

= /nologo /c /GX $(DEBUG COMPILE) /MD /Wl /D X86=1 /D X86 \
/D_CONSOLE /DWIN32 $(INC) /YX"$(PCH)" /Gi

= /nologo $(DEBUG LINK) /DLL /machine:IX86

= regwrapper.obj

@nmake -f makefile.nt all "DEBUG COMPILE=/Zi /Gm /Od /DEBUG" "DEBUG LINK=/DEBUG"

-NOLOGO

release

@nmake -f makefile.nt all "DEBUG COMPILE =/02 /Og /Oi /Ot /Oy /Ob2 /Gs /GEf /Gy /G5"

-NOLOGO

all

regwrapper.dll

regwrapper.dll : $(OBJS)

/PDB:$ (

link $(OBJS) $(GLFLAGS) $(LIBS) /OUT:$(@R).dll /implib:$(@R).1lib
@R) .pdb

regwrapper.obj : $(@R).cpp $(GLBDEP)

cleanal

copy :

cl $(GCFLAGS) $(@R).cpp

1
del *.obj *.pdb *.idb *.ilk *.exp vc4?.*

copy regwrapper.dll d:\ibm\NetCommerce3\bin\

B.3 RegWrapper

insert
VALUES
insert
insert

initialization SQLs

into CMDS (REFNUM,DLLfNAME,VENDOR,PRODUCT,NAME,VERSION,URL,EXPORT,DESCRIPTION)
(20004, 'regwrapper.dll', 'IBM', 'NC', 'regWrapper',1.00, 'regWrapper',1,"'");

into POOL_CMD (POOL_RN,CMD RN) VALUES (1,20004);

into acc_mode (refnum,cmd_refnum,ssl,protect) values (10004,20004,0,0)

B.4 Macro file creagru.d2w

272

o°

{

IBM WebSphere C

Licensed Materials - Property of IBM ==

ommerce Suite SPE Customization

== 5697-D24

(C) Copyright IBM Corp. 1995, 1999. All Rights Reserved. ==

US Government Users Restricted Rights - Use, duplication or disclosure =
restricted by GSA ADP Schedule Contract with IBM Corp. ==

%define {
queryFormName = ""
protected_command url = ""
merfnbrval = ""
firstMerfnbr = ""
oneVar = ""
TD="align=1left bgcolor=""#6699FF"" "
TD2="align=left bgcolor=""#FDD7AC"" "
TD3="align=right bgcolor=""#FDD7AC"" "
TD4="align=center bgcolor=""#6699FF"" "
TD5="align=center bgcolor=""#FDD7AC"" "

o

}

$function(dtw_odbc) GET_SHOPERGROUP () {

SELECT sanick, sashnbr

FROM shaddr
WHERE sanick='$ (SESSION_ID)'

$REPORT {

$ROW{

@DTW_assign (OHT MERCHANTCODE, V_SASHNBR)

o

}
%)
$MESSAGE{
100:{ @DTW_ASSIGN(OHT MERCHANTCODE, NULL) %} :continue
default: {
Problem with GET SHOPERGROUP() in file $(DTW _MACRO FILENAME) because
of error $(RETURN_CODE).
$(DTW_DEFAULT MESSAGE)$%} :continue

}

o
— o0

$function(dtw_odbc) StoreName() {
SELECT MENAME
FROM MERCHANT
WHERE MERFNBR=$(OHTiMERCHANTCODE)

$REPORT {

SROW {
@DTW_assign (OHT MERCHANTNAME, V_MENAME)
%}

o
—

o

}

$function(dtw_odbc) GET_CONSECUTIVE () {
SELECT keyrfnbr, keytable, keycolumn, keymaxid
FROM keys
WHERE keyrfnbr=13
$REPORT {
$ROW{
@DITW_assign (OHT KEYTABLE, V_KEYTABLE)
@DTW_assign (OHT KEYCOLUMN, V_KEYCOLUMN)
@DIW_assign (OHT KEYMAXID, V_KEYMAXID)
@DIW_add (V_KEYMAXID, "1", OHT KEYCONS)

Appendix B. ShopperGroup code samples 273

o

}
%)
$MESSAGE{
100:{ @DTW_ASSIGN(OHT MERCHANTCODE, NULL) %} :continue
default: {
Problem with GET SHOPERGROUP() in file $(DTW _MACRO FILENAME) because
of error $(RETURN_CODE).
$(DTW_DEFAULT MESSAGE)$%} :continue

}

o
- oe

$function(dtw_odbc) GET_GROUPNAMES () {
SELECT sgrfnbr, sgname, sgtext
FROM shopgrp
WHERE sgmenbr=$ (OHT MERCHANTCODE)
$REPORT {
<table width="100%">
<tr><th
$(TD) >NAME<th
$(TD) >DESCRIPTION
$ROW { <tr>
<td $(TD2) >$(V_sgname)
<td $(TD2) >$(V_sgtext)
%)

</table>

o

}
$MESSAGE {
100:{
<table width="100%">
<tr><th
$(TD) >NAME<th
$(TD) >DESCRIPTION
<tr>
<td $(TD2) >NO GROUPS TO SHOW
<td $(TD2) >NO GROUPS TO SHOW
%} :continue
default:{
Problem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME) because
of error $(RETURN_CODE).
$ (DTW_DEFAULT MESSAGE)%} :continue

)
)

$function(dtw_odbc) SAVEGROUP() {
INSERT INTO SHOPGRP VALUES ($ (OHT KEYCONS), $(OHT MERCHANTCODE), '$(SGNAME)',
'$(SGTEXT) ', '', '', '")
$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME) because
of error $(RETURN CODE).
$(DTW DEFAULT MESSAGE)%} :continue

%}
}

o

o

sfunction(dtw odbc) SAVEKEY () {
UPDATE KEYS
SET KEYMAXID = $(OHT KEYCONS) WHERE KEYRFNBR = 13
$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME) because
of error $(RETURN CODE).
$(DTW_DEFAULT MESSAGE)$%} :continue

%}
}

o

o
—_~—
o
—

274 1BM WebSphere Commerce Suite SPE Customization

{ HTML REPORT Section

3
g
3
g

{

$HIML_REPORT {

<HTML>

<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon,
<TITLE>Shopper Groups</TITLE>
</HEAD>

@GET_SHOPERGROUP ()

@StoreName ()

Creating Shopper Groups

for the store $(OHT MERCHANTNAME)

o
—

01 Jan 1996 01:01:01 GMT">

<form method="post" action="$ (SERVER)SAVEGROUP">

<table width="60%">

<tr>

<td $(TD) >GROUP NAME:

<td><input type="input" name="SGNAME" value="" size=50 maxlength=50>
<tr>

<td $(TD) >DESCRIPTION
<TD COLSPAN=3 HEIGHT=&{cHt}; ALIGN=&{txt};><TEXTAREA NAME="SGTEXT" ROWS=5 COLS=50

WRAP=virtual>
</TEXTAREA>
</table>

<input type=submit value="Go Register"s>

<CENTER>

Existing Groups

</CENTER>
@GET_GROUPNAMES ()
</HTML>

%}

g

o

{

o
—

o

{ HTML SAVEGROUP Section

{

o

o
—

$HTML (SAVEGROUP) {

<HTML>

<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon,
<TITLE>Shopper Groups</TITLE>
</HEAD>

@GET_SHOPERGROUP ()

@StoreName ()

@GET7CONSECUTIVE()

@SAVEKEY ()

@SAVEGROUP ()

Creating Shopper Groups

for the store $(OHT MERCHANTNAME)

01 Jan 1996 01:01:01 GMT">

<form method="post" action="$ (SERVER)SAVEGROUP">

Appendix B. ShopperGroup code samples

275

<table width="60%">

<tr>

<td $(TD) >GROUP NAME:

<td><input type="input" name="SGNAME:" value="" size=50 maxlength=50>
<tr>

<td $(TD) >DESCRIPTION

<TD COLSPAN=3 HEIGHT=&{cHt}; ALIGN=&{txt};><TEXTAREA NAME="SGTEXT" ROWS=5 COLS=50
WRAP=virtuals>

</TEXTAREA>

</table>
<input type=submit value="Go Register">

<CENTER>

Existing Groups

</CENTER>
@GET_GROUPNAMES ()
</HTML>

%)

B.5 Macro file addshgru.d2w

== Licensed Materials - Property of IBM

5697-D24

= (C) Copyright IBM Corp. 1995, 1999. All Rights Reserved. ==

== US Government Users Restricted Rights - Use, duplication or disclosure =
== restricted by GSA ADP Schedule Contract with IBM Corp. ==

%define {
queryFormName = ""
protected_command url = ""
merfnbrval = ""
firstMerfnbr = ""
oneVar = ""
TD="align=1left bgcolor=""#6699FF"" "
TD2="align=left bgcolor=""#FDD7AC"" "
TD3="align=right bgcolor=""#FDD7AC"" "
TD4="align=center bgcolor=""#6699FF"" "
TD5="align=center bgcolor=""#FDD7AC"" "

o

}

$function(dtw_odbc) GET_SHOPERGROUP () {

SELECT sanick, sashnbr

FROM shaddr
WHERE sanick='$ (SESSION_ID)'

$REPORT {

$ROW{

@DTW_assign (OHT MERCHANTCODE, V_SASHNBR)

o
—

276 IBM WebSphere Commerce Suite SPE Customization

%)
$MESSAGE{
100:{ @DTW_ASSIGN(OHT MERCHANTCODE, NULL) %} :continue
default: {
Problem with GET SHOPERGROUP() in file $(DTW _MACRO FILENAME) because
of error $(RETURN_CODE).
$(DTW_DEFAULT MESSAGE)$%} :continue

}

o
— oo

$function(dtw odbc) GroupName() {
SELECT SGNAME
FROM SHOPGRP
WHERE SGRFNBR=$ (CODEGROUP)

$REPORT {
SROW {
@DTW_assign (GROUPNAME, V_SGNAME)

%}

g

o
—

o

}

$function(dtw_odbc) StoreName() {
SELECT MENAME
FROM MERCHANT
WHERE MERFNBR=$(OHTiMERCHANTCODE)

$REPORT {
SROW {
@DTW_assign (OHT MERCHANTNAME, V_MENAME)

%}

o
—

o

}

$function(dtw_odbc) GET_GROUPNAMES () {
SELECT sgrfnbr, sgname, sgtext
FROM shopgrp
WHERE sgmenbr=$(OHTiMERCHANTCODE)
$REPORT {
<table width="100%">
<tr><th
$(TD) >NAME<th
$(TD) >DESCRIPTION
$ROW { <tr>
<td $(TD2) >$ (V_sgname)
<td $(TD2) >$(V_sgtext)
%)

</table>

o

}
$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME) because
of error $(RETURN CODE).
$ (DTW_DEFAULT MESSAGE)$%} :continue

)
)

$function(dtw_odbc) GET_SHOPPNAMES () {
SELECT shrfnbr, shlogid, shshtyp,
sarfnbr, sashnbr, sanick, satitle, safname, samname, salname, saemaill
FROM SHOPPER, SHADDR
WHERE SHSHTYP = 'R'
AND (shrfnbr in (select mcshnbr from MCUSTINFO WHERE MCSGNBR is NULL AND MCMENBR =
$ (OHT MERCHANTCODE)))

o

Appendix B. ShopperGroup code samples 277

AND SHRFNBR = SASHNBR
AND SHLOGID = SANICK
ORDER BY safname
$REPORT {

<CAPTION>
Chose a shopper from the next list
</CAPTION>
<table width="100%">
<tr><th

$(TD) >CODE<th

$(TD) >NAME<th

$(TD) >E-MAIL
$ROW { <tr>

@DTW_CONCAT ($ (V_satitle)," ",OHT REALNAME)
@DTW_CONCAT ($ (OHT REALNAME)," ",OHT REALNAME)
@DTW_CONCAT ($ (OHT REALNAME) , $ (V_safname) , OHT REALNAME)
@DTW_CONCAT ($ (OHT REALNAME)," ",OHT REALNAME)
@DTW_CONCAT ($ (OHT REALNAME) , $ (V_salname) ,OHT REALNAME)

<td $(TD2) >$ (V_sashnbr)
<td $(TD2) >$(OHT REALNAME)
<td $(TD2) >$(V_saemaill

5)

</table>

o

}
$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR $(OHT MERCHANTCODE)%} :continue
default:{
Problem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME) because
of error $(RETURN CODE).
$ (DTW_DEFAULT MESSAGE)$%} :continue

%}
}

o

sfunction(dtw_odbc) GET SHOPPCHOOS () {
SELECT sarfnbr, sashnbr, sanick, satitle, safname, samname, salname, saemaill
FROM SHADDR
WHERE SASHNBR = $ (CODESHOPP)
ORDER BY safname
$REPORT {
<CAPTION>

The choosen shopper was

</CAPTION>
<table width="100%">
<tr><th
$(TD) >CODE<th
$(TD) >NAME<th
$(TD) >E-MAIL
$ROW { <tr>

@DTWﬁCONCAT($(Visatitle)," ",OHTiREALNAME)
@DTW_CONCAT ($ (OHT REALNAME) , " ",OHT REALNAME)
@DTW_CONCAT ($ (OHT_REALNAME) , $ (V_safname) , OHT REALNAME)
@DTW_CONCAT ($ (OHT REALNAME) , " ",OHT REALNAME)
@DTW_CONCAT ($ (OHT_REALNAME) , $ (V_salname) , OHT REALNAME)

<td $(TD2) >$(V_sashnbr)

<td $(TD2)>$(OHT7REALNAME)

<td $(TD2) >$(V_saemaill

o
—

278 IBM WebSphere Commerce Suite SPE Customization

</table>

o

}
$MESSAGE {

100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME) because
of error $(RETURN CODE).
$(DTW_DEFAULT MESSAGE)$%} :continue

%}

o

}

$function(dtw_odbc) ADD_SHOPTOGROUP () {
UPDATE MCUSTINFO
SET MCSGNBR = $ (CODEGROUP)
WHERE MCSHNBR = $ (CODESHOPP)
$MESSAGE {
100:{ ADD SHOPTOGROUP() %} :continue

AND MCMENBR =

$ (OHT_MERCHANTCODE)

default:{
Problem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME) because
of error $(RETURN_CODE).
$(DTW_DEFAULT MESSAGE)%} :continue

%}

o

}

$function(dtw_odbc) SHOW_STATUS () {

SELECT mcshnbr,
sarfnbr, sashnbr, sanick, satitle, safname, samname, salname, saemaill
FROM MCUSTINFO, SHADDR
WHERE mcshnbr = SASHNBR
AND MCMENBR = $(OHT7MERCHANTCODE)
AND MCSGNBR = $ (CODEGROUP)
AND SAADRFLG = 'P'
ORDER BY safname
$REPORT {
<table width="100%">
<tr><th
$(TD) >CODE<th
$(TD) >NAME<th
$(TD) >E-MAIL
$ROW { <tr>
@DTWﬁCONCAT($(Visatit1e)," ",OHTiREALNAME)
@DTW_CONCAT ($ (OHT REALNAME)," ",OHT REALNAME)
@DTW_CONCAT ($ (OHT_REALNAME) , $ (V_safname) , OHT REALNAME)
@DTW_CONCAT ($ (OHT REALNAME)," ",OHT REALNAME)
@DTW_CONCAT ($ (OHT_REALNAME) , $ (V_salname) ,OHT REALNAME)
<td $(TD2) >$(V_sashnbr)
<td $(TD2)>$(OHT REALNAME)
<td $(TD2) >$(V_saemaill
%)
</table>
%}
$MESSAGE {

100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME) because
of error $(RETURN CODE).
$(DTW_DEFAULT MESSAGE)$%} :continue

%}

o

}

o

o
—

{

{ HTML Report Section

o

o

{

$HTML_REPORT {

o
—

Appendix B. ShopperGroup code samples

279

280

<HTML>

<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon,

<TITLE>Shopper Groups</TITLE>
</HEAD>

@GET_SHOPERGROUP ()
@StoreName ()

Adding Registered Shoppers to

Shopper Groups

@GET SHOPPNAMES ()
</HTML>

}

o

01 Jan 1996 01:01:01 GMT">

o

{

{ HTML SHOWGROUPS Section

o

o
—

o

{
$HTML (SHOWGROUPS) {
<HTML>

<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon,

<TITLE>Shopper Groups</TITLE>

</HEAD>

@GET SHOPPCHOOS ()
@GET_SHOPERGROUP ()

Now pick a Shopper Group from the

Shopper Groups list

@GET_GROUPNAMES ()
</HTML>

}

o

o

{

o
—

01 Jan 1996 01:01:01 GMT">

o
—

o

{ HTML ADDTOGROUP Section

o

{
$HTML (ADDTOGROUP) {
<HTML>

<HEAD>

o
—

IBM WebSphere Commerce Suite SPE Customization

<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT"»>
<TITLE>Shopper Groups</TITLE>

</HEAD>

@GET_SHOPERGROUP ()

@StoreName ()

@GroupName ()

@ADD_SHOPTOGROUP ()

The shoppers whom belongs to the

Shopper Group "$ (GROUPNAME) " are

@SHOW_STATUS ()

</HTML>

}

o

B.6 Macro addprgru.d2w

o
N~

Licensed Materials - Property of IBM

== 5697-D24

= (C) Copyright IBM Corp. 1995, 1999. All Rights Reserved. ==

US Government Users Restricted Rights - Use, duplication or disclosure
== restricted by GSA ADP Schedule Contract with IBM Corp. ==

sdefine {
queryFormName = ""
protected command url = ""
merfnbrval = ""
firstMerfnbr = ""
onevVar = ""
TD="align=1left bgcolor=""#6699FF"" "
TD2="align=left bgcolor=""#FDD7AC"" "
TD3="align=right bgcolor=""#FDD7AC"" "
TD4="align=center bgcolor=""#6699FF"" "
TD5="align=center bgcolor=""#FDD7AC"" "

o

}

$function(dtw_odbc) GET_SHOPERGROUP () {

SELECT sanick, sashnbr

FROM shaddr
WHERE sanick='$ (SESSION_ID)'

$REPORT {

$ROW{

@DTW_assign (OHT MERCHANTCODE, V_SASHNBR)

o
—
o
—

Appendix B. ShopperGroup code samples

281

$MESSAGE{
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default: {
Problem with GET SHOPERGROUP() in file $(DTW _MACRO FILENAME) because
of error $(RETURN CODE).
$ (DTW_DEFAULT MESSAGE)$%} :continue

}

o
— o0

$function(dtw odbc) GroupName() {
SELECT SGRFNBR, SGNAME
FROM SHOPGRP
WHERE SGRFNBR=$ (CODEGROUP)

$REPORT {
SROW {
@DTW_assign (GROUPNAME, V_SGNAME)

%}

}
MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with GroupName () in file $(DTW MACRO FILENAME) because of
error $(RETURN_CODE).
$ (DTW_DEFAULT MESSAGE)%} :continue

%}
}

$function(dtw odbc) ProduName () {
SELECT PRRFNBR, PRSDESC
FROM PRODUCT
WHERE PRRFNBR=$ (CODEPROD)

o
s
o
s

o

$REPORT {
SROW {
@DTW_assign (PRODUNAME, V_PRSDESC)

%}

g

o

}
$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with GroupName () in file $(DTW MACRO FILENAME) because of
error $(RETURN_CODE).
$ (DTW_DEFAULT MESSAGE)%} :continue

%}
}

o

$function(dtw_odbc) StoreName() {
SELECT MENAME, MECUR
FROM MERCHANT
WHERE MERFNBR=$(OHTiMERCHANTCODE)

$REPORT
SROW {
@DTW_assign (OHT MERCHANTNAME, V_MENAME)
@DTW_assign (OHT MERCHANTCUR, V_MECUR)

%}

%}
$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with StoreName() in file $(DTW MACRO FILENAME) because of
error $(RETURN_CODE).
$ (DTW_DEFAULT MESSAGE)%} :continue

)
)

$function(dtw_odbc) GET_GROUPNAMES () {
SELECT sgrfnbr, sgname, sgtext
FROM shopgrp

o

282 IBM WebSphere Commerce Suite SPE Customization

WHERE SGMENBR = $ (OHT MERCHANTCODE)
AND (sgrfnbr not in (SELECT PPSGNBR FROM PRODPRCS WHERE PPMENBR =
$ (OHT MERCHANTCODE) AND PPPRNBR = $(CODEPROD) AND PPSGNBR is not NULL))
$REPORT {
<table width="100%">
<tr><th
$(TDh4) >NAME<th
$(TD4) >DESCRIPTION
$ROW { <tr>
<td $(TD2) >$(Visgname)
<td $(TD2) >$(V_sgtext)
%)
</table>
%}
$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME) because
of error $(RETURN_CODE).
$(DTW_DEFAULT MESSAGE)$%} :continue

%}
}

$function(dtw odbc) GET PRODUNAMES () {
SELECT PRNBR, PRMENBR, PRRFNBR, PRSDESC, PRFULL, PRPUB
FROM PRODUCT
WHERE PRMENBR=$(OHTiMERCHANTCODE)
AND PRPUB=1
ORDER BY PRNBR
$REPORT {

o

<CAPTION>
Chose a product from the next list
</CAPTION>
<table width="100%">
<tr><th
$(TDh4) >SKU<th

)
$(TD4) >DESCRIPTION<th
$(TDh4) >IMAGE
$ROW { <tr>
<td $(TD2) >$ (V_prnbr)
<td $(TD2) >$(V_PRSDESC)
<td $(TD5) >

%)
</table>
%}
$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with GET SHOPERGROUP() in file $(DTW MACRO FILENAME) because
of error $(RETURN CODE).
$(DTW_DEFAULT MESSAGE)$%} :continue

)
)

$function(dtw_odbc) SHOWPRICES() {
SELECT PPSGNBR, PPPRC,
SGNAME, SGRFNBR
FROM PRODPRCS, SHOPGRP
WHERE PRODPRCS.PPMENBR=$ (OHT MERCHANTCODE)
AND PRODPRCS.PPPRNBR=$ (CODEPROD)
AND PRODPRCS.PPSGNBR=SHOPGRP . SGRFNBR
$REPORT {
<table width="100%">
<tr><th

o

Appendix B. ShopperGroup code samples 283

284

$(TD4) >SHOPPER GROUP<th
$(TDh4) >PRICE
$ROW { <tr>
<td $(TD2) ><a
href="$(SERVER)REMOVEPRICE?CODEPROD=$(CODEPROD)&CODEGROUP=$(V78GRFNBR)&OHTiMERCHANTCODE=
$ (OHT MERCHANTCODE) ">$ (V_SGNAME)
<td $(TD5) ><a
href="$(SERVER)EDITPRICES?CODEPROD=$(CODEPROD)&CODEGROUP=$(V75GRFNBR)&OHTiMERCHANTCODE=$
(OHTiMERCHANTCODE)">$(V7PPPRC)
%)

</table>

o

}
$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with SHOWPRICES() in file $(DTW_MACRO FILENAME) because of
error $(RETURN_CODE).
$ (DTW_DEFAULT MESSAGE)%} :continue

)
)

$function(dtw _odbc) GET PRODUCHOOS () {
SELECT PRNBR, PRMENBR, PRRFNBR, PRSDESC, PRFULL, PRPUB,
PPMENBR, PPPRNBR, PPPRC
FROM PRODUCT, PRODPRCS
WHERE PRRFNBR=$ (CODEPROD)
AND PPMENBR=$(OHTiMERCHANTCODE)
AND PPPRNBR=$ (CODEPROD)
AND PPSGNBR is NULL
ORDER BY PRRFNBR
$REPORT {
<table width="60%" border="0">
$ROW { <tr>
$ (V_prnbr)

$ (V_PRSDESC)

PRICE:$ $(V_PPPRC)

%}

</table>

o

o

}
$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with GET PRODUCHOOS $ (DTW MACRO FILENAME) because of error
$ (RETURN_CODE) .
$ (DTW_DEFAULT MESSAGE)%} :continue

)
)

o

$function(dtw_odbc) GET_CONSECUTIVE () {
SELECT keyrfnbr, keytable, keycolumn, keymaxid
FROM keys

WHERE keyrfnbr=15

$REPORT {
@DTW_assign (OHT KEYTABLE, V_KEYTABLE)
@DTW_assign (OHT KEYCOLUMN, V_KEYCOLUMN)
@DTW_assign (OHT KEYMAXID, V_KEYMAXID)
@DTW_add (V_KEYMAXID, "1", OHT KEYCONS)

o

}
$MESSAGE(
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default: {
Problem with GET CONSECUTIVE() in file $(DTW_MACRO FILENAME)
because of error $(RETURN_CODE).
$ (DTW_DEFAULT MESSAGE)%} :continue

IBM WebSphere Commerce Suite SPE Customization

o
— oe

sfunction(dtw odbc) SAVEKEY () {
UPDATE KEYS
SET KEYMAXID = $(OHT KEYCONS) WHERE KEYRFNBR = 15
$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with SAVEKEY() in file $(DTW_MACRO_FILENAME) because of error
$ (RETURN_CODE) .
$ (DTW_DEFAULT MESSAGE)%} :continue

)
)

o

$function(dtw_odbc) SAVEPRICE() {
INSERT INTO PRODPRCS VALUES ($(OHT KEYCONS), $(OHT MERCHANTCODE), $(CODEPROD),

$ (CODEGROUP) , $ (PPPRICE), '$(OHT MERCHANTCUR) ', 1,
12000-03-24-14.49.48.000000"','9999-12-31-24.00.00.000000", "', "', '")
$MESSAGE {

100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with SAVEPRICE() in file $(DTW MACRO FILENAME) because of
error $(RETURN_CODE).
$ (DTW_DEFAULT MESSAGE)%} :continue

)
)

$function(dtw_odbc) EDITPRICES() {
SELECT PPRFNBR, PPSGNBR, PPPRC,
SGNAME, SGRFNBR
FROM PRODPRCS, SHOPGRP
WHERE PRODPRCS,PPMENBR=$(OHTﬁMERCHANTCODE)
AND PRODPRCS.PPPRNBR=S (CODEPROD)
AND PRODPRCS.PPSGNBR=S$ (CODEGROUP)
$REPORT {
<form method="post"
action="$ (SERVER) CHANGEPRICES? CODEGROUP=$ (CODEGROUP) &CODEPROD=$ (CODEPROD) " >
<table width="60%">
<tr>
<td $(TD) >GROUP NAME:
<td $(TD2)>$ (GROUPNAME)
<tr>
<td $(TD) >PRICE:
<td $(TD2)><input type="input" name="PPPRICE" value=$(V_PPPRC) size=15
maxlength=15>
<input type=hidden name=CODEGROUP value=$ (CODEGROUP) >
<input type=hidden name=CODEPROD value=$ (CODEPROD) >
<input type=hidden name=CODEPRICE value=$ (V_PPRFNBR) >
</table>
<input type=submit value="Go Change">

o

o

}
$MESSAGE(
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with EDITPRICE() in file $(DTW_MACRO FILENAME) because of
error $(RETURN_CODE).
$ (DTW_DEFAULT MESSAGE)%} :continue
%}

%)

$function (dtw_odbc) CHANGEPRICES () ({
UPDATE PRODPRCS
SET PPPRC = $(PPPRICE) WHERE PPRFNBR = $(CODEPRICE)
$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue

Appendix B. ShopperGroup code samples 285

286

default:{
Problem with CHANGEPRICES() in file $(DTW MACRO FILENAME) because of
error $(RETURN_CODE) .
$ (DTW_DEFAULT MESSAGE)%} :continue

%}
}

g

o

$function(dtw_odbc) REMOVEPRICE() {
DELETE FROM PRODPRCS
WHERE PRODPRCS.PPMENBR=$ (OHT MERCHANTCODE)

AND PRODPRCS . PPPRNBR=$ (CODEPROD)

AND PRODPRCS.PPSGNBR=$ (CODEGROUP)

$MESSAGE {
100:{ NO HAY NADA QUE PRESENTAR %} :continue
default:{
Problem with REMOVEPRICE() in file $(DTW _MACRO FILENAME) because of

error $(RETURN_CODE).
$ (DTW_DEFAULT MESSAGE)%} :continue

%}
}

g

o

{

{ HTML Report Section

o
—

o° oe

o
o
—

$HIML_REPORT {
<HTML>
<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
<TITLE>Shopper Groups</TITLE>

</HEAD>

@GET_SHOPERGROUP ()
@StoreName ()

Assigning Product Prices to

Shopper Groups

@GET7PRODUNAMES()
</HTML>

o
—

o
o
—

{ HTML SHOWPRICES Section

{

$HTML (SHOWPRICES) {

o° oe

o
—

<HTML>
<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
<TITLE>Shopper Groups</TITLE>

</HEAD>

IBM WebSphere Commerce Suite SPE Customization

@GET_SHOPERGROUP ()
@StoreName ()

@GET PRODUCHOOS ()
@SHOWPRICES ()

<P>

<CENTER>

Available Shopper Groups

</CENTER>

@GET GROUPNAMES ()
</HTML>

}

o

o

{

{ HTML INPUTPRICE Section

{

$HTML (INPUTPRICE) {

o
—

o

o

o
—

<HTML>
<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
<TITLE>Shopper Groups</TITLE>

</HEAD>
@GET_SHOPERGROUP ()
@GroupName ()
@ProduName ()
@StoreName ()
@GET PRODUCHOOS ()
@SHOWPRICES ()

<form method="post"
action="$ (SERVER) SAVEPRICE? CODEGROUP=$ (CODEGROUP) &CODEPROD=$ (CODEPROD) " >
<table width="60%">
<tr>
<td $(TD) >GROUP NAME:
<td $(TD2)>$ (GROUPNAME)
<tr>
<td $(TD) >PRICE:
<td $(TD2) ><input type="input" name="PPPRICE" value=0.00 size=15 maxlength=15>
<input type=hidden name=CODEGROUP value=$ (CODEGROUP) >
<input type=hidden name=CODEPROD value=$ (CODEPROD) >
</table>
<input type=submit value="Go Register'">
</HTML>

}

o

o

{

{ HTML SAVEPRICE Section

{

$HTML (SAVEPRICE) {

o
—

o

o

o
—

<HTML>

Appendix B. ShopperGroup code samples

287

288

<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon,

<TITLE>Shopper Groups</TITLE>

</HEAD>
@GET_SHOPERGROUP ()
@GroupName ()
@StoreName ()
@GET7CONSECUTIVE()
@SAVEKEY ()
@SAVEPRICE ()
@GET_PRODUCHOOS ()
@SHOWPRICES ()

<P>

<CENTER>

Available Shopper Groups

</CENTER>

@GET GROUPNAMES ()
</HTML>

}

o

o

{

01 Jan 1996 01:01:01 GMT">

o
—

o

{ HTML EDITPRICES Section

o

$HTML (EDITPRICES) {
<HTML>

<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon,

<TITLE>Shopper Groups</TITLE>

</HEAD>
@GET_SHOPERGROUP ()
@GroupName ()
@ProduName ()
@StoreName ()
@GET_PRODUCHOOS ()
@SHOWPRICES ()

@EDITPRICES ()
</HTML>

}

o

o

{

o
—

01 Jan 1996 01:01:01 GMT">

o
—

o

{ HTML CHANGEPRICES Section

{

o

o
—

$HTML (CHANGEPRICES) {

<HTML>

IBM WebSphere Commerce Suite SPE Customization

<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon,
<TITLE>Shopper Groups</TITLE>

</HEAD>
@GET_SHOPERGROUP ()
@GroupName ()
@ProduName ()
@StoreName ()
@CHANGEPRICES ()
@GET PRODUCHOOS ()
@SHOWPRICES ()

<P>

<CENTER>

Available Shopper Groups

</CENTER>
@GET_GROUPNAMES ()
</HTML>

}

o

01 Jan 1996 01:01:01 GMT">

o

{

{ HTML REMOVEPRICE Section

{

o

o

o o
— —

$HTML (REMOVEPRICE) {
<HTML>
<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon,
<TITLE>Shopper Groups</TITLE>

</HEAD>
@GET_SHOPERGROUP ()
@GroupName ()
@ProduName ()
@StoreName ()
@REMOVEPRICE ()
@GET PRODUCHOOS ()
@SHOWPRICES ()

<P>

<CENTER>

Available Shopper Groups

</CENTER>
@GET_GROUPNAMES ()
</HTML>

}

o

01 Jan 1996 01:01:01 GMT">

Appendix B. ShopperGroup code samples

289

290 IBM WebSphere Commerce Suite SPE Customization

Appendix C. Source code for cross and up selling

This appendix contains program source code listing for relating products in
cross and up selling as used in Chapter 6, “Cross-sell and up-sell” on page

103.

C.1 productRel.d2w Net.Data macro to associate products

== Licensed Materials - Property of IBM ==
== 5697-D24 ==
== (C) Copyright IBM Corp. 1995, 1999. All Rights Reserved. ==

== US Government Users Restricted Rights - Use, duplication or disclosure ==
== restricted by GSA ADP Schedule Contract with IBM Corp. ==

%DEFINE

{
DATABASE="demomall"
LOGIN="db2inst1l"
PASSWORD="chuy5"
DTW_HTML_TABLE="YES"
plmenbr=""

o\

}

$FUNCTION (DTW_ODBC) updateDb()

{

insert into prprrel values(((select max(plrfnbr) from prprrel) +
1
)
%}

$FUNCTION (DTW_ODBC) selectProductNum()

{
select prrfnbr,prnbr,prsdesc,ppprc from product,prodprcs where prmenbr=$ (merfnbr)
prrfnbr=ppprnbr and ppmenbr = $(merfnbr) order by prrfnbr
$REPORT
{
SROW
{
<OPTION VALUE="$ (V_prrfnbr)"> $(V_prrfnbr)- $(V_prnbr)-$(V_prsdesc)-$ $(V_ppprc)
</OPTION>

5)
)

o

o

}

$FUNCTION (DTW_ODBC) selectRelated()
{

select plprnbr,plrelprnbr,prtname from prprrel,prreltype where plmenbr=$ (plmenbr)
plprtnbr = prtrfnbr

$REPORT

{

© Copyright IBM Corp. 2000

), $ (plmenbr) , $ (plprtnbr), $ (plprnbr) ,$ (plrelprnbr) , $(plgty) ,null,null, $ (plpub) ,null,null

and

and

291

o
—

<TABLE BORDER CELLPADDING =
<TR><TH> PRODUCT NO.

2>

SROW
{
<TR>
<TD> $(V_plprnbr) </TD>
<TD> $(V_plrelprnbr) </TD>
<TD> $(V_prtname) </TD>
</TR>
%}
</TABLE>

o

}

$HTML_REPORT

{

<HTML>
<HEAD> <TITLE> product Catalog Relationship editor </TITLE>

<

<

<P>

<p>

Sel
Up-

<p>

NAM
<p>

CHE

/HEAD>

BODY>
<FORM METHOD="GET" ACTION="PROCESS">
@DTW_ASSIGN (plmenbr, merfnbr)

</TH> <TH> RELATED PROD NO.

</TH> <TH> RELATION TYPE </TH> </TR>

<INPUT TYPE="HIDDEN" NAME="plmenbr" VALUE="$ (plmenbr)">

<P>

Select the first product
@selectProductNum ()

</SELECT>

Select the related product
@selectProductNum ()
</SELECT>

ect the relationship type
Sell

<SELECT NAME="plprnbr"s>

<SELECT NAME="plrelprnbr"s>

<INPUT TYPE="RADIO" NAME="plprtnbr" VALUE="2" CHECKED>

<INPUT TYPE="RADIO" NAME='"plprtnbr" VALUE="3"> Cross-Sell
<INPUT TYPE="RADIO" NAME="plprtnbr" VALUE="1"> Compatible

Enter the related product quantity
E="plgty">

Select whether to publish the relation:
CKED> Publish

<INPUT TYPE="TEXT"

size="2" VALUE="1"

<INPUT TYPE="RADIO" NAME="plpub" VALUE="1"

<INPUT TYPE="RADIO" NAME="plpub" VALUE="2"> Not to Publish

<

</
5)

SHT!

{

<H'
<
<

292

<INPUT TYPE="SUBMIT"
/BODY >

VALUE="Relate">

HTML>

ML (PROCESS)

TML>

HEAD>

/HEAD>

<BODY>
@updateDb ()
You have related the following products.
@selectRelated()

</BODY>

IBM WebSphere Commerce Suite SPE Customization

== (C) Copyright IBM Corp. 1995, 1999. All Ri

== US Government Users Restricted Rights - Use,
== restricted by GSA ADP Schedule Contract with

*** This macro takes the MERFNBR as the input

==*** and retrieves product informations for thi

ghts Reserved.

duplication or disclosure
IBM Corp.

parameter named 'merfnbr'***==

S Store **xkkxkkkkkkhkkkhkkkxk

%include "7286/include.inc"
%$include "7286/theme.inc"

oe |l
—_—

$INCLUDE "/ClassicStoreModel/translation text.inc"

sdefine {
SHOWSQL="NO"
NC_NOW = "{fn now() }"
prrelprnbr=""
sellcnt=""

o

}

%$INCLUDE "/ClassicStoreModel/service info.inc"

%{ Cross Sell, Up sell Function Definitions

o

$function(dtw odbc) CountSell(IN 1 prtname) {
select count (plrelprnbr) as sellcnt
from prprrel, prreltype, product

where
plpub = 1 and
prpub = 1 and

prrfnbr = plrelprnbr and
plprnbr = $(prrfnbr) and
plprtnbr = prtrfnbr and
prtname = '$ (1l _prtname)'

$REPORT{
$ROW{
@DTW_ASSIGN (sellcnt,V_sellcnt)

$MESSAGE{100:{ %} :continue %}

o

}

sfunction(dtw odbc) Sell (IN 1 prtname) {
select plrelprnbr, prrfnbr, prnbr, prsdesc

Appendix C. Source code for cross and up selling

293

from prprrel, prreltype, product

where
plpub = 1 and
prpub = 1 and

prrfnbr = plrelprnbr and
plprnbr = $(prrfnbr) and
plprtnbr = prtrfnbr and

prtname = '$ (1l _prtname)'
$REPORT{
$ROW{
@DTW_ASSIGN (prrelprnbr, $ (V_prrfnbr))
<tr>

<td><a href=#
onClick=ShowSell ($ (prrelprnbr)) >$ (V_prnbr) </td><td>$ (V_prsdesc) </td>

</tr>
%}
}
M.

$MESSAGE{100:{ %} :continue %}

o

o

}

%{ Other Function definitions %}

{

{ HTML Report Section

o

o
—

o

o
o
