
SG24-5522-00

International Technical Support Organization

www.redbooks.ibm.com

Workload Management:
SP and Other RS/6000 Servers

Janakiraman Balasayee, Bruno Blanchard, Subramanian Kannan, Akihiko Tanishita

http://www.redbooks.ibm.com

Workload Management:
SP and Other RS/6000 Servers

March 2000

SG24-5522-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (March 2000)

This edition applies to PSSP Version 3 Release 1 Modification 1(5765-D51) for use with the AIX
Operating System Version 4 Release 3 Modification 3 and to Version 2 Release 1 of LoadLeveler (5765-
D61) and Version 2 Release 1 of Secureway Network Dispatcher in Websphere Performance pack
product family (41L2594)

This document was created or updated on 20.03.2000.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix A, “Special notices” on page 241.

Take Note!

Contents

Figures .ix

Tables. .xi

Preface . xiii
The team that wrote this redbook. xiii
Comments welcome. xiv

Part 1. Workload management tools for RS/6000 SP . 1

Chapter 1. Introduction . 3
1.1 The goal of this book . 3
1.2 The scope of this book . 4
1.3 The organization of this book . 4

Chapter 2. Overview of workload management tools. 5
2.1 LoadLeveler . 5

2.1.1 LoadLeveler goal . 5
2.1.2 LoadLeveler architecture . 5
2.1.3 LoadLeveler features . 6
2.1.4 When to use LoadLeveler . 6

2.2 Secureway Network Dispatcher . 6
2.2.1 Secureway Network Dispatcher goals. 7
2.2.2 Network Dispatcher architecture . 7
2.2.3 Network Dispatcher main features . 8
2.2.4 When to use Secureway Network Dispatcher 9

2.3 AIX Workload Manager . 10
2.3.1 The goal of AIX Workload Manager . 10
2.3.2 AIX Workload Manager architecture . 10
2.3.3 AIX Workload Manager features . 11
2.3.4 When to use AIX Workload Manager . 11

Chapter 3. LoadLeveler . 13
3.1 LoadLeveler and RS/6000 SP overview . 13
3.2 Architecture . 13

3.2.1 Central Manager machine. 14
3.2.2 Executing machine . 15
3.2.3 Scheduling machine . 16
3.2.4 Submit-only machine . 16
3.2.5 How LoadLeveler processes a job . 17

3.3 Installation and configuration . 18
© Copyright IBM Corp. 2000 iii

3.3.1 Requirements . 19
3.3.2 Planning to configure LoadLeveler in an SP environment 19
3.3.3 Installation and configuration process. 25
3.3.4 Basic configuration . 34
3.3.5 Starting LoadLeveler . 39
3.3.6 Stopping LoadLeveler . 43

3.4 Managing LoadLeveler configuration . 43
3.4.1 User, group, and class . 43
3.4.2 Maximum job requests from users . 48
3.4.3 Resource limits . 53
3.4.4 Job priority . 57
3.4.5 Machine priority . 62
3.4.6 Parallel job . 64

3.5 Using and managing LoadLeveler . 71
3.5.1 Submitting a job . 71
3.5.2 Verifying job status . 76
3.5.3 Changing a job’s priority . 80
3.5.4 Holding/releasing a job . 81
3.5.5 Cancelling a job . 83
3.5.6 Verifying the node’s status . 83
3.5.7 Central manager and alternate central manager 84
3.5.8 Using the LoadLeveler GUI. 87

3.6 Checkpointing . 91
3.7 LoadLeveler APIs . 93
3.8 LoadLeveler accounting . 98

3.8.1 Configure LoadLeveler accounting . 98
3.8.2 Collect accounting data . 100
3.8.3 Generate accounting report . 101

Chapter 4. Secureway Network Dispatcher . 103
4.1 Network Dispatcher and RS/6000 SP overview 103
4.2 Architecture . 103
4.3 Installation and configuration . 104

4.3.1 Packaging and requirements . 104
4.3.2 Planning to configure Network Dispatcher in SP 105
4.3.3 The installation and configuration process 107
4.3.4 Configuring SP nodes to NDCLUSTER. 109
4.3.5 Remarks about this configuration . 111

4.4 Alternative configuration using the SP switch 112
4.5 Alternative configuration without SP switch 112
4.6 Related publications on Secureway Network Dispatcher 113
iv Workload Management: SP and Other RS/6000 Servers

Chapter 5. AIX Workload Manager. 115
5.1 AIX Workload Manager and RS/6000 SP overview. 115
5.2 AIX WorkLoad Manager architecture . 115
5.3 Installation and configuration . 116

5.3.1 Packaging and requirements . 116
5.3.2 Planning to configure WLM in SP nodes 116
5.3.3 Installation and the configuration process 116
5.3.4 Basic Configuration . 117
5.3.5 Creating a WLM configuration file collection 118

5.4 Managing the WLM configuration in SP . 121
5.4.1 Definition of user ID and groups . 121
5.4.2 Defining classes . 122
5.4.3 Updating WLM configuration to nodes 125
5.4.4 Starting WLM . 126
5.4.5 Verifying the WLM . 127
5.4.6 Changing classes properties in a configuration. 129
5.4.7 Changing priorities of the currently used classes 130
5.4.8 Stopping WLM . 130

5.5 Other publications related to AIX Workload Manager 131

Part 2. Workload management sample scenarios. 133

Chapter 6. Managing serial batch jobs . 135
6.1 Scenario description . 135
6.2 Tool choice. 135
6.3 Considerations for the executing environment 135
6.4 Executing batch jobs that have no dependency on each other 136

6.4.1 The administration file . 136
6.4.2 The configuration file . 138
6.4.3 Job and the job command file . 138
6.4.4 Submitting jobs to the LoadLeveler . 141
6.4.5 Submitting a small job command file. 144

6.5 Executing batch jobs with dependency on each other. 148

Chapter 7. Managing parallel jobs . 153
7.1 Scenario description . 153
7.2 Tools choice . 153
7.3 Environment for processing parallel jobs . 154
7.4 Executing multiple size parallel jobs . 155

7.4.1 With the Backfill scheduler (Case 1) . 158
7.4.2 With the Backfill scheduler (Case 2) . 160
7.4.3 With the default scheduler . 162

7.5 Executing multiple parallel jobs specifying network types 164
v

7.5.1 User space shared mode . 164
7.5.2 Non-shared user space mode. 166
7.5.3 IP mode over a switch in shared mode 167
7.5.4 Using ethernet with IP in shared mode 169
7.5.5 Using ethernet with IP not-shared mode 171

7.6 Interactive POE . 172

Chapter 8. Managing application build . 175
8.1 Scenario description . 175
8.2 Tool choice. 175
8.3 Configuring the build environment . 176

8.3.1 LoadLeveler administration file . 176
8.3.2 LoadLeveler local configuration file. 176
8.3.3 Creating an executable. 177
8.3.4 Submitting a compilation job to the LoadLeveler 177
8.3.5 Submitting the Build Job to the LoadLeveler 182

Chapter 9. Managing workload using checkpointing 187
9.1 Scenario description . 187
9.2 Tools choice . 187
9.3 Testing environment . 187
9.4 System-initiated serial job checkpointing . 187

9.4.1 Configuring the LoadL_config file for checkpointing 188
9.4.2 Writing a sample C program for testing Checkpoint 188
9.4.3 Creating a job command file with checkpoint enabled. 189
9.4.4 Testing the system-initiated serial checkpoint 190

9.5 User-initiated serial job checkpointing . 194
9.6 System- and user-initiated checkpointing . 195

Chapter 10. Workload Management using LoadLeveler and WLM . . 197
10.1 Scenario description . 197
10.2 Tool choice. 198
10.3 Testing environment . 198
10.4 LoadLeveler configuration . 198
10.5 WorkLoad manager configuration . 198
10.6 Serial and parallel jobs for testing . 201
10.7 Testing the scenario . 202

Chapter 11. Managing users . 207
11.1 Scenario description . 207
11.2 Tool choice. 207
11.3 Environment configuration . 207

11.3.1 Hardware platform . 208
11.3.2 Dispatcher configuration . 209
vi Workload Management: SP and Other RS/6000 Servers

11.3.3 Configuration of users, groups, and applications 211
11.4 Results . 212
11.5 Closing comments . 214

Chapter 12. Workload management for Web server 215
12.1 Scenario description . 215
12.2 Tools choice . 215
12.3 Configuring the test environment configuration 215

12.3.1 Hardware and network configuration. 215
12.4 Installation and configuration of IBM HTTP server 217

12.4.1 Basic configuration . 217
12.4.2 Creating a common documentation directory 219
12.4.3 Configuring the dispatcher . 220

Chapter 13. Managing online interactive workloads 223
13.1 Scenario description . 223
13.2 Tools choice . 223
13.3 Configuring the test environment . 224

13.3.1 Hardware and network configuration. 224
13.3.2 Network dispatcher configuration . 225
13.3.3 Managing the user Telnet sessions . 226
13.3.4 Using multiple applications . 239
13.3.5 Remarks on using the custom advisors and WLM. 240

Appendix A. Special notices . 241

Appendix B. Related publications . 245
B.1 IBM Redbooks . 245
B.2 IBM Redbooks collections. 245
B.3 Other resources . 246
B.4 Referenced Web sites. 246

How to get IBM Redbooks . 247
IBM Redbooks fax order form . 248

Glossary . 249

Index . 251

IBM Redbooks review . 257
vii

viii Workload Management: SP and Other RS/6000 Servers

Figures

1. Flow of how LoadLeveler processes a job. 17
2. LoadLeveler directory and files . 24
3. User, group, and class stanza keywords . 44
4. Maximum job requests keywords. 49
5. Resource limits keywords . 54
6. Job priority keywords . 58
7. The adapter stanza (1 of 2) . 67
8. The adapter stanza (2 of 2) . 68
9. The keywords for parallel jobs . 69
10. Keywords for submitting a serial job . 72
11. Keywords required to submit a Parallel job . 74
12. Long listing of llq (Part 1 of 2) . 77
13. Long listing of llq (Part 2 of 2) . 78
14. LoadLeveler GUI Main window . 88
15. Submit a Job dialog . 89
16. Build a serial job command file . 90
17. Hardware environment for Network Dispatcher installation 107
18. Aliasing NDCLUSTER on the SP ethernet adapter 109
19. Data flow between client, dispatcher, and server 111
20. Network Dispatcher using SP switch router. 112
21. Network Dispatcher using Ethernet/FDDI/ATM networks 113
22. Secureway Network Dispatcher configuration . 209
23. Manager window in rule-based configuration. 213
24. Advisor window in a multicluster environment . 213
25. Monitoring connections . 214
26. Simple network configuration. 216
27. Web document obtained from http server on Node 9 219
28. Simple “one-network” configuration. 224
29. Managing the connections using fixed weight for nodes 227
© Copyright IBM Corp. 2000 ix

x Workload Management: SP and Other RS/6000 Servers

Tables

1. Supported AIX and PSSP versions for LoadLeveler Version 2.1 19
2. The Role of nodes in our test environment . 21
3. LoadLeveler file sets . 21
4. The action when exceeding Job step limit . 55
5. Limits for class_first . 56
6. Limits for class_second . 56
7. Role of nodes for Network Dispatcher configuration 106
8. Network configuration . 106
9. The process time of job steps . 139
10. Server access by group . 212
11. Role of nodes for ND configuration . 216
12. The hostname and IP address for the test environment 216
13. Role of nodes for ND configuration . 224
14. Hostname and IP address of nodes for the test environment 225
15. With default manager configuration . 229
16. With propotions setting 20, 20, 60, 0 . 237
17. With manager proportion 0, 0, 100, 0 . 237
© Copyright IBM Corp. 2000 xi

xii Workload Management: SP and Other RS/6000 Servers

Preface

Workload management is a key issue in RS/6000 SP environments in which
multiple tasks are to be executed on several SP nodes. Improper allocation of
resources to these tasks can result in a waste of resources or the allocation
of critical resources to less important tasks while higher-priority tasks wait.
The goal of workload management is to optimize the allocation of resources
to the tasks that are to be executed by an RS/6000 SP environment. The
benefit to the customer is improved utilization of resources and effective
management of the RS/6000 SP system.

This redbook discusses the tools that can be used to manage the workload in
SP. However, most of the information provided in this book also applies to
other RS/6000 Servers. This redbook contains step-by-step configuration
procedures for the tools as well as useful scenarios and sample
configurations. In Part 1, we discuss the installation and configuration of the
workload management tools. In Part 2, we discuss example scenarios using
the tools described in Part 1.

This redbook is intended to help consultants and IT managers, their technical
teams, and RS/6000 sales teams in IBM that need to identify requirements
and opportunities and plan for workload management on RS/6000 SPs. This
redbook gives a broad understanding of workload management, and it will
help you design and create solutions to optimize the use of your RS/6000 SP
resources.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization.

Janakiraman Balasayee is an IT Specialist in the PSS department of IBM
Global Services in India. He holds a Diploma in Electrical Engineering. He
has 15 years of experience in the IT field. He provides country support for
RS/6000, AIX, and SP. His areas of expertise include RS/6000 and SP
hardware and AIX and SP system management.

Bruno Blanchard is an IT Architect working for IBM France at the IGS EMEA
Technical Center in La Gaude. He holds an Engineer degree from Ecole
Centrale de Paris and a Master of Science degree from Oregon State
University. He has been with IBM since 1983 as a system engineer for VM on
43xx, 308x, 309x, and for AIX on PS/2, RT, RS/6000, and SP Systems. He is
© Copyright IBM Corp. 2000 xiii

a certified AIX and SP specialist, and his areas of expertise include Network
Management on the IBM 2220, 2219, and 2225.

Subramanian Kannan is a project leader at the International Technical
Support Organization, Poughkeepsie Center. He has been with IBM since
1995 and has worked in different areas related to RS/6000 SP. He currently
writes redbooks and teaches ITSO workshops with a focus on RS/6000 SP
technology.

Akihiko Tanishita is an IT Specialist from IBM Japan. He holds a Master of
Applied Electronics degree from the Science University of Tokyo. He entered
IBM Japan in 1995. Since 1995, he has worked on several RS/6000
implementations at customer sites performing administration and problem
determination as well as technical support for AIX, RS/6000, and RS/6000
SP.

Thanks to the following people for their invaluable contributions to this project:

Andre Albot
IBM Austin

Curt Christopher
IBM DesMoines

Marcello Barrios, Waiman Chan, Abbas Farazdel, Lalita Malik, Rod Stevens,
Lisa Valletta
IBM Poughkeepsie

Chris Gage
IBM Raleigh

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 257 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xiv Workload Management: SP and Other RS/6000 Servers

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Part 1. Workload management tools for RS/6000 SP
© Copyright IBM Corp. 2000 1

2 Workload Management: SP and Other RS/6000 Servers

Chapter 1. Introduction

The term workload management has different meanings depending on the
context in which it is used. In this redbook, we restrict ourselves to the
following definition:

Workload management is the activity of managing the allocation of SP
resources to the jobs in an SP environment in order to optimize their use.

In other words, the goal of workload management in this book is to improve
and balance the utilization of SP resources and manage the workload in an
SP environment effectively.

Therefore, this definition excludes the following activities:

• Performance monitoring and tuning

Tuning consists of configuring the system parameters, and is not the
purpose of this book. Tuning is addressed in the redbooks RS/6000
Performance Tools in Focus, SG24-4989, and RS/6000 SP Performance
Tuning, SG24-5340. Performance monitoring may be needed to verify that
a workload management tool has indeed improved overall system
throughput.

• Parallel programming

This activity consists of splitting a job into different tasks (processes and
threads) that will execute each task on a different processor and
communicate with each other in order to improve the performance of the
application. This activity does not belong to workload management, which
considers only defined tasks and tries to optimize their execution. Parallel
programming is addressed in the redbook RS/6000 Scalable
POWERparallel System: Scientific and Technical Computing Overview,
SG24-4541.

1.1 The goal of this book

We intend to provide a reference book that you can use as a source of
information for workload management tools with “how-to” examples that you
can use on your SP systems to manage your jobs.

We expect this book to help you identify the tools that apply to your RS/6000
SP configuration depending on the type of applications the nodes will host.
© Copyright IBM Corp. 2000 3

This book can also be viewed as a tutorial. It provides practical installation
and configuration instructions for tools that are specific to the SP environment
and shows how these tools can be configured for sample scenarios. The
sample scenarios also describe how two of these tools can work together to
manage workload in an SP environment.

1.2 The scope of this book

This book addresses workload management on the RS/6000 SP system. It
describes the use of three IBM products that handle workload management:

• LoadLeveler

• Secureway Network Dispatcher

• AIX Workload Manager, a feature supported in AIX in version 4.3.3

These three products are also available on stand-alone RS/6000 - not only on
the RS/6000 SP. In this book, we explain how these products can be used in
an SP environment. However, most of this information also applies to stand-
alone RS/6000. This book can also be helpful to administrators and architects
of stand-alone RS/6000-based environments.

Other workload management products may be available from third-party
vendors but are outside the scope of this redbook.

1.3 The organization of this book

This redbook consists of two parts:

Part 1, “Workload management tools for RS/6000 SP” on page 1, describes
the three IBM workload management tools available to the user of an SP
environment: LoadLeveler, Secureway Network Dispatcher, and AIX
Workload Manager.

Part 2, “Workload management sample scenarios” on page 133, presents
scenarios in which workload management tools are needed. Each chapter
describes a scenario and explains which of the tools can be used specifically
for the scenario described. When two tools can be used together to manage
the workload, we will describe how you can configure them.
4 Workload Management: SP and Other RS/6000 Servers

Chapter 2. Overview of workload management tools

Remember the definition we gave in Chapter 1, "Introduction": Workload
management is the activity of managing the allocation of SP resources to the
jobs in an SP environment in order to optimize their use.

Customers use SP for Server Consolidation of multiple individual servers and
Internet solutions, such as Web server, mail server, Enterprise computing,
Business intellegent solutions, and Large and complex high-performance
computing needs. In such environments, the SP is used to run interactive
sessions, batch jobs, and large parallel jobs.

Workload management of these different types of tasks cannot be met by a
single product. IBM offers three products related to workload management,
and this chapter provides an overview of these workload management tools.

2.1 LoadLeveler

LoadLeveler is a job management system that is based on the Condor job
scheduler from the University of Wisconsin. IBM Research has made many
enhancements to this base code, such as user-based priority scheduling,
NFS/AFS support, and GUI. In this book, we discuss the current LoadLeveler
version 2.1.

2.1.1 LoadLeveler goal
IBM LoadLeveler is a job scheduler for managing the user jobs in an SP
environment. The LoadLeveler supports both serial and parallel jobs. The
user’s jobs are executed in SP nodes based on the job specification and
resource requirements. LoadLeveler queues the user’s jobs and executes
them according to resource availability and priorities, thereby, managing the
workload on SP nodes.

2.1.2 LoadLeveler architecture
LoadLeveler architecture consists of four components:

• Central Manager node

• Scheduling node(s)

• Executing node(s)

• Submit Only node(s)
© Copyright IBM Corp. 2000 5

The function of Central Manager is to manage the pool of nodes in the
LoadLeveler Cluster. The Scheduling Nodes receive the jobs submitted by the
users, store them in a queue, and request the central manager to allocate
nodes for executing the jobs. The executing nodes run the jobs submitted by
the users. The submit only nodes are for the users to submit the jobs. These
nodes are generally the users’ workstations, and LoadLeveler does not
execute the jobs on these nodes.

A job is defined by a job command file. You can specify the name of the job,
the job steps, and other LoadLeveler statements for required resources to
execute the job.

The administrator can set up an alternate central manager, which
automatically assumes central manager responsibilities in the event of a
central manager failure.

2.1.3 LoadLeveler features
LoadLeveler provides the following features:

• A method of balancing workload among available SP nodes

• The ability to define a flexible computing environment as a LoadLeveler
cluster with configurable administration and configuration files

• Commands and APIs for managing jobs

• The ability to request a suitable computing environment for jobs with the
job command file.

• The ability to manage serial and parallel jobs.

2.1.4 When to use LoadLeveler
LoadLeveler is very useful in an environment in which one needs to manage
serial, batch, and parallel jobs. Using LoadLeveler, the SP resources can be
managed to balance the workload. You can take advantage of the
LoadLeveler parameters to define the workload management criteria specific
to their requirements. The LoadLeveler also increases the throughput by
effectively managing the user jobs.

2.2 Secureway Network Dispatcher

In this book, we address version 2.1 of IBM Secureway Network Dispatcher.
This is the new name of the product that was called eNetwork Dispatcher in
version 2.0 and was called Interactive Network Dispatcher before that.
6 Workload Management: SP and Other RS/6000 Servers

Currently, this version of the product is packaged with the Websphere
performance pack software version 3.0.

2.2.1 Secureway Network Dispatcher goals
Secureway Network Dispatcher has two goals: One is aimed at the client, and
one is aimed at the system administrator.

From a user point of view, the goal of Network Dispatcher is to present the
client a service accessible through a TCP/IP network of servers with a unique
universal IP address to access this service. This address presents the client
with the view of a unique, possibly infinitely powerful, highly-available, virtual
server.

For the system administrator, the goal of Network Dispatcher is to provide the
means of spreading the workload of a service accessible through TCP/IP
between several physical servers to maximize the resource use while
providing a flexible and easy-to-manage environment.

Telnet servers, WEB (HTTP) servers, and FTP servers can take advantage of
Network Dispatcher.

2.2.2 Network Dispatcher architecture
The Secureway Network Dispatcher consists of three components:

• The dispatcher

• Interactive Session Support (ISS)

• Content Based Routing (CBR)

Customers will usually not need all three products but will install one of them
(Dispatcher or CBR) and, optionally, ISS.

2.2.2.1 Dispatcher
The Dispatcher is the component that provides load balancing support for
TCP connections. It is installed on a server having the IP address to which all
client request are sent. It then routes the user requests to one of the servers
that will process it and return the answer directly to the client. There is no
Network Dispatcher code to install either on the client or the application
servers. The applications run unchanged. From a client point of view, the
service is provided by the server on which the Dispatcher is executing. From
a server administration point of view, the Dispatcher server is a front-end to
several servers.
Chapter 2. Overview of workload management tools 7

2.2.2.2 ISS
ISS is a component that can be used alone or in conjunction with Dispatcher.
ISS has several roles: First, it provides a monitoring services that looks at
loads on each of the servers managed by Network Dispatcher. Second, it
distributes the results of this monitoring to the Dispatcher and to any other
user defined “observer” that wishes to receive monitoring information. Third, it
provides an intelligent name resolution service by either interfacing with an
existing DNS server or by acting as a DNS server.

To use ISS services, the ISS code has to be installed on all servers to be
monitored and gathered in a “cell”. One of these servers is selected to
perform the role of cell manager, that is, monitoring all other servers and
providing inputs to the Dispatcher, observers, and DNS servers. Other
members in the cell monitor the cell manager and cooperate for one of them
to take over the cell manager role in case it fails.

2.2.2.3 Content-based routing (CBR)
When only HTTP traffic is to be balanced, content-based routing (CBR) is an
alternative to Dispatcher (no other protocol is managed by CBR). CBR works
in conjunction with the IBM Web Traffic Express (WTE) caching proxy server
to provide a load balancing service based on the content of HTTP packets.

As for the Dispatcher, CBR is only installed on a front-end between the HTTP
client and the HTTP servers. This front-end must be a WTE proxy server. The
client and server application are unchanged.

2.2.3 Network Dispatcher main features
Network Dispatcher has many features. We mention a few of them in this
overview and present detailed information on these features in the following
chapters. The following are the main features of Network Dispatcher.

2.2.3.1 Customization
Network Dispatcher is an evolutionary product that offers the user the option
of customization and expansion. Users can start using Network Dispatcher
with the default rules provided with the Dispatcher, ISS, or CBR. Then, if
customers want to add their own set of monitoring commands, parameters,
and so on, they can write their own advisors for the Dispatcher or CBR or add
observers for ISS.

2.2.3.2 Expandability
Since the goal of Network Dispatcher is to hide the real implementation of
servers to the service client, it of course provides the possibility to add (or
remove) servers with no service down time.
8 Workload Management: SP and Other RS/6000 Servers

2.2.3.3 High availability
The Dispatcher can be configured with an active server and a stand-by
backup server. Both servers communicate through a heartbeat protocol to
check that their partner is alive. If the stand-by server discovers that the
active server is not responding, it can automatically take over the dispatching
function.

2.2.3.4 Multiple locations support
Both the Dispatcher and ISS are designed to provide workload management
between servers that are either all on the same site or on sites thousands of
kilometers away.

2.2.3.5 Single point of control
Version 2.1 of Network Dispatcher provides an authenticated remote control
feature that provides a secure way of managing the Network Dispatcher-
controlled machines from a single point of control. This point of control need
not be on the Dispatcher or server machine. It can, for example, be installed
on the Network Dispatcher administrator.

2.2.4 When to use Secureway Network Dispatcher
Network Dispatcher is the product to be installed by all customers who
provide a service over an intranet or the Internet in an environment that
demands service adaptability to frequently-changing request types.

If you want to use an RS/6000 SP to host HTTP servers, Network Dispatcher
will allow you to have all your SP nodes seen as only one IP address,
whatever the number of nodes may be. Network Dispatcher causes the
allocation of some functions to nodes (cgi servers on some nodes, html file
server on others) to be transparent to your client.

If you have an HTTP server that faces peak access load at some time of the
year, Network Dispatcher will allow you to add physical servers during this
period to answer the request and then reassign them to their other tasks the
remaining part of the year. In an RS/6000 SP environment, nodes can be
dynamically added or subtracted from the pool of nodes that constitutes the
HTTP server.

If you are looking for a virtual IP address that will always be available and
remains the same so that your customers can always contact your server
even when you change your machines, upgrade your SP nodes, or face a
power loss in one site, Network Dispatcher can help you.
Chapter 2. Overview of workload management tools 9

If you wish to have all your customers contact you by the same name and IP
address wherever they are in the world, and if you want to install many
servers around the world close to these customers so that they will not flee
your site because of excessive response times, ISS will help you.

2.3 AIX Workload Manager

This section describes AIX Workload Manager, which is packaged with AIX
Version 4.3.3. WLM monitors and regulates the allocation of system
resources for user applications running on an RS/6000 server.

2.3.1 The goal of AIX Workload Manager
The goal of AIX Workload Manager is to provide ways of controlling resources
within an RS/6000 server or in an SP node in order to balance the workload
at the node level by assigning relative priorities to various sets of tasks or to
prevent one application from monopolizing the system resources. AIX
Workload Manager provides the system administration tools to control the
CPU time and physical memory allocation within an RS/6000 server or node
in SP.

RS/6000 SP nodes are among the most powerful RS/6000 machines, and
they are often used in server consolidation environments. Therefore,
administrators of such RS/6000 SP systems will take advantage of using the
new AIX Workload Manager feature of AIX to optimize resource allocation
within a node.

2.3.2 AIX Workload Manager architecture
AIX Workload Manager has been a feature of AIX since Version 4.3.3. It is
included in AIX and is not an additional product.

AIX Workload Manager is only aimed at managing resources within one AIX
system, that is, within a uniprocessor or SMP machine. It does not allow
workload management between different AIX systems. In the case of an RS/
6000 SP environment, WLM is used and configured on each node
independently of the other nodes. In the case where workload management is
to be used to distribute load between the SP nodes, WLM can be used on
each node in conjunction with LoadLeveler or Secureway Network
Dispatcher. These tools will provide the load balancing between the nodes
while WLM manages resource allocation within each node.

WLM introduces the concept of class to AIX.
10 Workload Management: SP and Other RS/6000 Servers

A class is a collection of processes. WLM monitors the CPU and physical
memory utilization for all the classes of jobs and regulates their resource
consumption using minimum, maximum and target values set for each class
by the system administrator.

WLM automatically assigns every process to a class using a set of
assignment rules given by the system administrator. This class assignment is
done based on the value of three attributes of the process: User ID, group ID,
and the pathname of the application file it executes. When a process is
started, it is assigned a class by WLM by comparing the values of those three
attributes to the values given in the assignment rules file.

Classes can be given a relative importance using an attribute of the class
called the tier number (zero to nine). A class with a lower tier number will be
considered more important and, thus, will have resources applied
preferentially to a less critical class with a higher tier number.

2.3.3 AIX Workload Manager features
AIX Workload Manager is an optional feature of AIX. It is the responsibility of
system administrators to decide how and when to use it. If WLM is not turned
on, the AIX scheduler and virtual memory manager allocate resources to the
processes using the same rules and priority mechanisms as previous
releases of AIX.

WLM can be dynamically turned on or off while the AIX system is running and
applications are in use. Class characteristics can be modified online.

2.3.4 When to use AIX Workload Manager
WLM is mainly intended to be used in powerful or large SMP systems. If your
SP contains many SMP nodes (S70 or S80), WLM can help you maximize the
throughput of these nodes.

WLM is to be used when a group of users or applications are to be
guaranteed a fair allocation of system resources or when they have to be
protected from other users or processes that are running on the same system
and could end using up all available resources.

When one group of processes has absolute priority over other groups of
process, WLM can be used to ensure that all resources will be allocated to
this first group until it has completed the tasks.
Chapter 2. Overview of workload management tools 11

12 Workload Management: SP and Other RS/6000 Servers

Chapter 3. LoadLeveler

This chapter describes the installation and configuration of LoadLeveler
Version 2.1 in an SP environment. The objective is to help you understand the
key concepts, plan your LoadLeveler cluster, and perform the installation and
configuration. First, we will try to do a basic configuration, and, later, we will
discuss the management of key LoadLeveler features.

3.1 LoadLeveler and RS/6000 SP overview

LoadLeveler is a distributed network-wide job management software for
scheduling jobs. RS/6000 SP can be viewed as a network of servers. SP
users execute serial and batch jobs in these nodes. In such a scenario, it is
extremely important to balance the workload across the SP nodes. If some
nodes are heavily loaded while other nodes are idle, valuable system
resources are not being fully utilized. LoadLeveler is a product that can
manage your resources effectively by distributing the load across all the
nodes in an SP environment.

LoadLeveler provides tools to help users build, submit, and manage batch
jobs quickly and effectively in a dynamic environment. Customers can extend
the LoadLeveler functions by developing applications using Application
Programming Interface (API) support. One such example is the scheduler
developed by the Cornell Theory Center (EASY-LL).

LoadLeveler can be used for workload balancing of both serial and parallel
jobs. For parallel jobs, a parallel operating environment interfaces with
LoadLeveler to obtain the multiple SP nodes required for the job’s parallel
tasks. With the CSS function of PSSP V3.1, LoadLeveler can support up to
four user space tasks per SP switch adapter. LoadLeveler is used in many
RS/6000 SP sites worldwide.

3.2 Architecture

LoadLeveler V2.1 forms a group of RS/6000 and/or nodes of RS/6000 SP as
a LoadLeveler cluster managed by LoadLeveler daemons running on these
nodes. From the outside of this cluster, users view it as a single
computational resource.

Inside the cluster, each node is customized for characteristics, such as the
maximum number of jobs the node can accept or which types of jobs it can
accept. Also, each node has one or multiple roles to process jobs and
© Copyright IBM Corp. 2000 13

manage node status and job status by communicating with each other. As a
result, LoadLeveler is aware of the resources in the cluster and schedules the
jobs accordingly.

When a job is submitted to LoadLeveler, LoadLeveler examines the job and
matches the requirement with the available resources. If there is no available
resource to execute the job, the job is placed in the LoadLeveler queue. When
the required resources become available, LoadLeveler dispatches the job to
nodes.

In a LoadLeveler cluster, there exist four machine roles: Central Manager
machine, Scheduling machine, Executing machine, and Submitting machine.
Any node in a cluster can perform one or more roles. These roles are
described in the following sections.

3.2.1 Central Manager machine
The Central Manager manages all the resources of the LoadLeveler cluster
by continuously interacting with the LoadLeveler processes (known as
deamons). The Central Manager gathers the status information on availability,
job status, etc. to manage the jobs and resources.

The role of the Central Manager machine is to examine the submitted job’s
requirement and find one or more nodes in the cluster to run the job. The
negotiator daemon, LoadL_negotiator, runs on this machine to performs this
role. The LoadL_master and LoadL_negotiator daemons are the minimum
requirement to run on the Central Manager machine. In addition, you can also
enable the running of the LoadL_schedd, LoadL_startd, and LoadL_kbdd
daemons in the Central Manager machine.

You can have only one negotiator daemon running in a LoadLeveler cluster.
The negotiator daemon receives the job and node status messages from the
Schedd daemon running in the scheduling machine and from the Startd
daemon running in the executing machine. It maintains the status of the jobs
and nodes in the cluster.

For High Availability, you can define one or more nodes in the cluster as the
alternate central manager. The alternate central manager communicates with
the primary central manager at periodic intervals to stay informed of the
status of the primary central manager. This is also called the heartbeat. The
time duration between heartbeats is defined by the keyword
CENTRAL_MANAGER_HEARTBEAT_INTERVAL in the configuration file.

There is one more variable that has to be defined in the configuration file
when you enable the alternate central manager. This keyword is
14 Workload Management: SP and Other RS/6000 Servers

CENTRAL_MANAGER_TIMEOUT, which defines the number of heartbeat
intervals the alternate central manager should wait before declaring the
primary central manager inoperative or dead.

Once the alternate central manager declares the primary central manager
inoperative, the LoadL_master daemon running on the alternate central
manager starts the LoadL_negotiator daemon. When an alternate becomes
the central manager, the jobs are not lost, but it may take some time to show
the correct status when you give the LoadLeveler commands.

When the negotiator daemon receives the new job request from the schedd
daemon, the negotiator daemon examines the job requirement and schedules
the job based on the criteria and policy options. Once the daemon finds a job
that can be executed, the negotiator daemon requests the schedd to begin
taking steps to run the job.

The negotiator daemon handles the following requests from users to:

• Set priorities

• Query about jobs

• Remove jobs

• Hold or release jobs

• Favor or unfavor users or jobs

3.2.2 Executing machine
The jobs submitted by users are executed in this machine. This machine
performs two main functions: It informs the job status and the machine
resource information to the negotiator daemon on the central manager. The
LoadL_master and LoadL_startd daemons are the minimum that should run
on this machine.

The LoadL_startd daemon reports the following information to the negotiator
daemon:

• The state of the startd daemon.

• The time when the current state was entered.

• The physical memory on the machine in megabytes.

• The free disk space in kilobytes on the file system where the executables
for the LoadLeveler jobs assigned to this machine are stored.

• The number of seconds since the keyboard or mouse was last used. It
also includes any telnet or interactive activity from any remote machine.
Chapter 3. LoadLeveler 15

• The number of CPUs installed.

• The CPU load on the system is measured using the Berkeley’s one-minute
load average. The load average is the average of the number of processes
ready to run or waiting for disk I/O to complete.

• Name of the current machine

• Adapter on the machine

• Available classes on the machine

To execute jobs, the startd daemon receives the job to be run from the schedd
daemon in the scheduling machine.

When the startd starts a job on the executing machine, the startd daemon
spawns the LoadL_starter starter process to start. The starter process is
responsible for running the job and reporting the status back to the startd
daemon. This starter process runs the job by forking a child process that runs
with the user ID and group ID of the submitting user. The starter child creates
a new process group to execute the user’s program or a shell.

3.2.3 Scheduling machine
When a job is submitted to LoadLeveler, it is placed in a queue managed by a
scheduling machine, and the information of the job is kept within this
machine. There can be more than one scheduling machine in a cluster. The
LoadL_master and LoadL_schedd daemons are the minimum that should run
on this machine. The scheduling machine can also be an executing machine
in the cluster. In that case, the LoadL_startd and LoadL_kbdd daemons will
also run in this machine.

The schedd daemon receives all the jobs submitted and manages the list.
The schedd daemon forwards the job information to the negotiator daemon
running on the central manager machine as soon as it is received and waits
for the negotiator to select the machine to run the job. When the schedd is
authorized to run the job from the negotiator daemon, it contacts the startd
daemon on the executing machines selected by the negotiator daemon.

3.2.4 Submit-only machine
This type of machine can only be used for submitting, querying, and
cancelling jobs. There will not be any LoadLeveler daemons running on the
submit-only machines. This machine cannot be a resource for processing a
job in a LoadLeveler cluster. This feature allows machines that are outside
the LoadLeveler cluster to submit jobs. When a job is submitted from this
machine, the schedd daemon receives the job and processes the request.
16 Workload Management: SP and Other RS/6000 Servers

A Graphical User Interface (GUI) is also available in Submit-only machines for
submitting jobs.

3.2.5 How LoadLeveler processes a job
In a LoadLeveler cluster, users describe their processing requirement in a job
command file. When the job command file is submitted to LoadLeveler,
LoadLeveler processes the job as shown in Figure 1.

Figure 1. Flow of how LoadLeveler processes a job

The steps involved from the time the user submits the job to the time the user
is notified that the job is completed are as follows:

1. When a user submits a job to the LoadLeveler cluster, the schedd daemon
on the scheduling machine receives the job. A job is received as a job
object and placed in a job queue.

2. The schedd daemon contacts the negotiator daemon on the Central
Manager machine to report that a new job has been placed in the queue
and sends job description information to the negotiator.

3. The negotiator daemon examines the job description information and
decides which node or nodes should execute the job. Then, the negotiator
daemon contacts the schedd daemon to begin taking steps to run the job.
This process is called a permit to run.

Central manager
machine

Executing machineScheduling machine

schedd

starter

startd

negotiator

kbdd

job
queue

X

4

3
2

9

8 7

6

5

1

User submits a job to
LoadLever cluster

Y

Chapter 3. LoadLeveler 17

4. The schedd daemon contacts the startd daemon on the executing
machine and requests to start the job.

5. The startd daemon spawns the starter process. The starter runs the job by
forking a child process. The starter process manages all the processes
associated with a job step.

6. The schedd daemon sends the starter process the job information and the
executable.

7. When the job is completed, the starter process notifies the completion
status to the startd.

8. The startd daemon notifies the schedd daemon that the job has been
completed.

9. The schedd daemon examines the information it has received and reports
to the negotiator that the job has been completed.

3.3 Installation and configuration

This section discusses the installation and basic configuration of LoadLeveler
V2.1 in an SP environment.

Installing and configuring LoadLeveler can be complex. The information in
this section will help you install LoadLeveler on multiple nodes in an SP
environment. This section is not a replacement for the LoadLeveler
Publications. For detailed information and administration of LoadLeveler, refer
to the following LoadLeveler publications:

• LoadLeveler for AIX Version 2 Release 1 Installation Memo, GI10-0642

• LoadLeveler for AIX: Using and Administering, SA22-7311

The steps for the planning, installation, and basic configuration of
LoadLeveler are as follows:

1. Verify whether you have the supported version of AIX and PSSP installed
on the nodes for installing LoadLeveler Version 2.1.

2. Plan how your nodes in the SP environment will be working in the
LoadLeveler cluster. For example, which node will act as the Central
Manager, and which node will be the executing node?

3. Plan where you want to have the various directories required for the
LoadLeveler.

4. The LoadL_config and LoadL_admin files in the central manager node
have to be replicated across all nodes in the cluster. This can be achieved
using various methods. You will have to plan which method can be
18 Workload Management: SP and Other RS/6000 Servers

followed in your environment. Some of the methods are discussed in
Section 3.3.4.3, “Managing the configuration files within the cluster” on
page 36.

5. Install the LoadLeveler product in all the nodes using installp.

6. Run the installation script on all the nodes.

7. Customize the administration and configuration files as planned in steps 2,
3, and 4.

8. Test LoadLeveler by submitting serial and parallel jobs.

3.3.1 Requirements
Before starting the installation, you have to perform the following
preinstallation checks in order to avoid failures during installation:

1. Check whether you have the correct versions of AIX and PSSP installed
on the nodes. Refer to the Table 1 for the supported AIX and PSSP
versions for LoadLeveler Version 2.1.

Table 1. Supported AIX and PSSP versions for LoadLeveler Version 2.1

2. Check whether you have sufficient disk space available in the /usr
filesystem on all the nodes.

• To install the LoadL.full and LoadL.msg.lang filesets, you need a minimum
of 21 MB of space in the /usr filesystem. An additional 2 MB of space will
be required if you need to install the LoadL.html and LoadL.pdf
documentation filesets.

• To install the LoadLeveler filesets in a submit-only machine, you need a
minimum of 9 MB space in the /usr filesystem. An additional 2 MB of
space will be required if you need to install the LoadL.html and LoadL.pdf

documentation filesets.

3.3.2 Planning to configure LoadLeveler in an SP environment
Consider the following when planning to configure LoadLeveler in an SP
environment:

1. Decide what user name, group name, user ID, and group ID you would like
to have for LoadLeveler.

2. Decide the role of various nodes in the LoadLeveler cluster.

PSSP AIX

LoadLeveler 2.1 2.2 2.3 2.4 3.1 3.1.1 4.3.0 4.3.1 4.3.2 4.3.3

2.1 N N N N Y Y N N Y Y
Chapter 3. LoadLeveler 19

3. Decide the location of the LoadLeveler directory structure.

3.3.2.1 User and group IDs
LoadLeveler requires a common user name, group name, user ID, and group
ID across all the nodes in the LoadLeveler cluster. By default, loadl is the
name used for the LoadLeveler user and group. We also recommend that you
use the default user and group named loadl.

If you want to use a user and group name other than loadl, you will have to
use the new name in the appropriate places during the installation. For
example, if you want to have the user name and group name be loadl2.1, you
need to do the following:

• Create the user and group named loadl2.1 with its home directory as /u/
loadl2.1.

• Copy the file /usr/lpp/LoadL/full/samples/LoadL.cfg to /etc directory using
the following command:

cp /usr/lpp/LoadL/full/samples/LoadL.cfg /etc

• Edit the file /etc/LoadL.cfg so its contents look like this:

The user ID and group ID should also be the same across all nodes. There
are three methods available to maintain a consistent user database across all
nodes. This is discussed in detail in Chapter 12 of The RS/6000 SP Inside
Out, SG24-5374.

Generally, in an SP environment, the SP File Collections facility provided by
the PSSP software is used to maintain a consistent user and group database
across all the nodes.

In the lab environment, we decided to have the default user and group ID
loadl. The SP User Management and the File Collections have been enabled
in order to maintain the uniformity of the user and group IDs across all nodes.

As seen from the splstdata -e output, the SP site environment data has the
following attributes related to user management:

• usermgmt_config true

cat /etc/LoadL.cfg
LoadLUserid = loadl2.1
LoadLGroupid = loadl2.1
LoadLConfig = /u/loadl2.1/LoadL_config
20 Workload Management: SP and Other RS/6000 Servers

• filecoll_config true

• amd_config false

3.3.2.2 Planning the role of nodes
In the test environment, we had ten node SP systems. Initially, we used six
nodes of the system for the LoadLeveler cluster. To discuss the example
scenario (described in Part 2 of this book), we added the remaining four
nodes in this cluster. You will see that we use all ten nodes when we discuss
the example scenarios. We now need to decide the role of each node in our
LoadLeveler cluster:

• Identify nodes for central manager and alternate central manager
machines.

• Identify nodes for scheduling machines.

• Identify nodes for submit-only machines.

• Identify nodes for executing machines.

Table 2 describes the roles assigned in the test environment.

Table 2. The Role of nodes in our test environment

We recommend that you not use the CWS in your LoadLeveler cluster as a
computational resource.

The list of LoadLeveler filesets that comes as part of Version 2.1 is listed in
Table 3.

Table 3. LoadLeveler file sets

LoadLeveler element The hostname of node

Central manager machine sp4n01

Alternate Central Manager machine sp4n06

Scheduling machine sp4n05, sp4n15

Executing machine sp4n01, sp4n05, sp4n06,
sp4n07,sp4n08,sp4n15

Submit-only machine sp4cws

File set The function

LoadL.full LoadLeveler (For nodes in the cluster)

LoadL.so LoadLeveler (For Submit-only machine)

LoadL.msg.lang LoadLeveler messages
Chapter 3. LoadLeveler 21

The minimum filesets required to be installed in the central manager, the
alternate central manager, and the scheduling and executing machines are
LoadL.full and LoadL.msg.lang.

The minimum filesets required to be installed in the submit-only node are
LoadL.so and Loadl.msg.lang.

The documentation filesets, LoadL.html and LoadL.pdf, can be installed in
one node or all the nodes as per your requirements.

3.3.2.3 LoadLeveler Directory Structure
LoadLeveler uses several files and directories. You should understand the
purpose and usage of these files and directories before the installation. The
directories are:

• Home directory

The home directory for the use loadl is /u/loadl. The installation script
creates the administration file and the global configuration file in this
directory. These two files need to be identical across all the nodes in the
LoadLeveler cluster.

• Release directory

LoadLeveler products are installed in the /usr/lpp/LoadL/full directory. The
LoadLeveler binaries and libraries reside in this directory.

When you install PTFs for LoadLeveler, the PTFs have to be applied on all
the nodes in the LoadLeveler cluster. If you want to avoid doing the PTF
installations on all the nodes, you can share this directory from the central
manager node by using AFS or NFS. In this case, you will have to create
the symbolic links for the shared libraries.

In our view, installing the LoadLeveler product on each node makes the
administration tasks simpler than sharing the release directory. We
recommend installing the LoadLeveler product on each node.

• Local directory

LoadLeveler uses files that are private to each node in this directory. You
can customize the keywords that are specific to a node in the local
configuration file residing in this directory. In the test environment, we use
the /u/loadl as the local directory for all the nodes.

LoadL.html LoadLeveler HTML Pages

LoadL.pdf LoadLeveler PDF Documentation

File set The function
22 Workload Management: SP and Other RS/6000 Servers

LoadLeveler creates log, execute, and spool directories under this
directory tree. LoadLeveler uses these directories as follows:

• execute directory- LoadLeveler uses this directory to store
executables of jobs submitted from other machines.

• log directory - LoadLeveler uses this directory to store log files of
daemons running on the node.

• spool directory - LoadLeveler keeps local job queue and checkpoint
files in this directory.

Figure 2 on page 24 illustrates these directories and files.

You should have at least 15 MB of free space in this local directory
filesystem. The size of this local directory depends on your environment,
such as the number of jobs and the size of logs. You need to estimate the
required size and expand the filesystem if necessary.

Note
Chapter 3. LoadLeveler 23

Figure 2. LoadLeveler directory and files

The following files should be common on all nodes in a LoadLeveler cluster:

• /etc/LoadL.cfg (This file is only required when you do not use default user
ID and group ID)

• The administration file (LoadL_admin)

• The configuration file (LoadL_config)

It may be a good idea to configure the file collection on your RS/6000 SP for
propagating these common files to nodes in your cluster. Perhaps, by sharing
the home directory with NFS, you can keep these files common among
nodes. Another option is using the pcp command when you update these files
and copy to multiple nodes.

Each node maintains a local copy of the following files:

• A local configuration file (LoadL_config.local)

• Files in spool, execute, log directory

Global Configuration file
(LoadL_config)

LoadLeveler Cluster

Local Directory
Local configuration file
(LoadL_config.local)
/execute
/log
/spool

Local Directory
Local configuration file
(LoadL_config.local)
/execute
/log
/spool

Local Directory
Local configuration file
(LoadL_config.local)
/execute
/log
/spool

Administration file
(LoadL_admin)

Node NodeNode

Home Directory
24 Workload Management: SP and Other RS/6000 Servers

These files reside in the local directory of LoadLeveler. You can specify the
same directory path with the local directory as with the home directory.
However, you should keep the log, spool, and execute directories in a local
file system in order to maximize performance; so, if you share the home
directory among nodes in your LoadLeveler cluster, you should specify a
different directory for the local directory.

3.3.2.4 General considerations
You can use the llctl command to control daemons on all nodes in your
LoadLeveler cluster. The llctl command needs rsh privileges on all nodes
in order to control daemons on remote nodes; so, you have to configure the
environment to perform rsh privileges, such as $HOME/.rhosts and Kerberos.

When you have both Kerberos and the standard AIX authentication method in
your RS/6000 SP system, the authentication of Kerberos is resolved first
before the standard AIX system; so, if you do not want to get error messages
from Kerberos, you need to add loadl user as the Kerberos principle and get
the Kerberos ticket before performing this command.

3.3.3 Installation and configuration process
This section discusses the steps involved in installing the LoadLeveler in an
SP environment. In the test environment, we decided to install the
LoadLeveler on six nodes. The Installation of LoadLeveler on the nodes will
be done from the CWS using the distributed shell and parallel commands that
are available as part of the PSSP filesets.

The steps for installing the LoadLeveler in the nodes are as follows.

1. Log in as root in the CWS.

You need to log in as the root user for creating user and group IDs in the
CWS. Also, for executing the installp commands, one has to be a root
user.

2. Create an SP group called loadl on the CWS using smit as follows:

smitty mkgroup
Chapter 3. LoadLeveler 25

In this example, we have given 2500 as the group ID. You can leave this field
blank for system default.

3. Create an SP user named loadl on the CWS using smit as follows:

smitty spmkuser

Here, in the test environment, we have given 2500 as the user ID for the loadl
user and its home directory as /u/loadl.

Add a Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Group NAME [loadl]
ADMINISTRATIVE group? true
Group ID [2500]
USER list []
ADMINISTRATOR list []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
26 Workload Management: SP and Other RS/6000 Servers

4. The next step is to propagate the loadl user and group ID to all the nodes
in the SP. This can be done by executing the supper command from the dsh
prompt on all the nodes as shown in the following screen.

In the test environment, we have selected six nodes that will be part of the
LoadLeveler cluster. In order to install in these six nodes, it will be easy if we
use these nodes as the working collective members for dsh. We created a

Add a User

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* User NAME [loadl]
User ID [2500]
LOGIN user? true
PRIMARY group [loadl]
Secondary GROUPS []
HOME directory [/u/loadl]
Initial PROGRAM []
User INFORMATION []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

cat /tmp/loadlnodes
sp4n01
sp4n05
sp4n06
sp4n07
sp4n08
sp4n15
export WCOLL=/tmp/loadlnodes
dsh /var/sysman/supper update user.admin
sp4n01: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n01: File Changes: 3 updated, 0 removed, 0 errors.
sp4n05: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n05: File Changes: 3 updated, 0 removed, 0 errors.
sp4n06: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n06: File Changes: 3 updated, 0 removed, 0 errors.
sp4n07: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n07: File Changes: 3 updated, 0 removed, 0 errors.
sp4n08: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n08: File Changes: 3 updated, 0 removed, 0 errors.
sp4n15: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n15: File Changes: 3 updated, 0 removed, 0 errors.
Chapter 3. LoadLeveler 27

file, /tmp/loadlnodes, which contains the hostnames of only these six nodes,
and set this as the WCOLL environment variable for dsh.

5. Create the loadl home directory, /u/loadl, on all the nodes. Also, change
the file owner and group to loadl on all the nodes using the following
commands:

6. In this step, we will install the LoadLeveler product on the nodes in our
LoadLeveler cluster.

We have to install the LoadL.full and LoadL.msg.lang filesets on the
central manager, alternate central manager, and scheduling and executing
nodes. In the test environment, we need to install sp4n01, sp4n05,
sp4n06, sp4n07, sp4n08, and sp4n15 on the nodes.

We do not plan to share the release directory; so, we have to install the
fileset on each node. We copy the LoadLeveler filesets from the product
CD to the CWS in the /psspimage/loadl directory and NFS export this
directory to all the nodes for the installation.

Install the LoadL.full and LoadL.msg.en_US filesets on all the nodes in the
LoadLeveler cluster using the following commands:

export WCOLL=/tmp/loadlnodes
dsh mkdir /u/loadl
dsh ls -ld /u/loadl
sp4n01: drwxr-xr-x 2 root system 1024 Oct 31 15:51 /u/loadl
sp4n05: drwxr-xr-x 2 root system 1024 Oct 31 15:51 /u/loadl
sp4n06: drwxr-xr-x 2 root system 1024 Oct 31 15:51 /u/loadl
sp4n07: drwxr-xr-x 2 root system 1024 Oct 31 15:51 /u/loadl
sp4n08: drwxr-xr-x 2 root system 1024 Oct 31 15:51 /u/loadl
sp4n15: drwxr-xr-x 2 root system 1024 Oct 31 15:51 /u/loadl
dsh chown loadl.loadl /u/loadl
dsh ls -ld /u/loadl
sp4n01: drwxr-xr-x 2 loadl loadl 512 Oct 25 15:06 /u/loadl
sp4n05: drwxr-xr-x 2 loadl loadl 1024 Oct 31 15:51 /u/loadl
sp4n06: drwxr-xr-x 2 loadl loadl 1024 Oct 31 15:51 /u/loadl
sp4n07: drwxr-xr-x 2 loadl loadl 1024 Oct 31 15:51 /u/loadl
sp4n08: drwxr-xr-x 2 loadl loadl 1024 Oct 31 15:51 /u/loadl
sp4n15: drwxr-xr-x 2 loadl loadl 1024 Oct 31 15:51 /u/loadl
28 Workload Management: SP and Other RS/6000 Servers

Check the last part of the installp output for all the nodes to verify that the
installation has gone through successfully. The output for all the nodes should
look like the following:

Verify that the LoadLeveler filesets have been installed on all the nodes using
the command shown in the following screen:

dsh mkdir -p /mntloadl
dsh mount sp4en0:/psspimage/loadl /mntloadl
dsh df | grep mntloadl
sp4n01: sp4en0:/psspimage/loadl 2007040 774496 62% 122 1% /mntloadl
sp4n05: sp4en0:/psspimage/loadl 2007040 774496 62% 122 1% /mntloadl
sp4n06: sp4en0:/psspimage/loadl 2007040 774496 62% 122 1% /mntloadl
sp4n07: sp4en0:/psspimage/loadl 2007040 774496 62% 122 1% /mntloadl
sp4n08: sp4en0:/psspimage/loadl 2007040 774496 62% 122 1% /mntloadl
sp4n15: sp4en0:/psspimage/loadl 2007040 774496 62% 122 1% /mntloadl
#
dsh installp -acgNqwX -d /mntloadl LoadL.full LoadL.msg.en_US

sp4n15: Installation Summary
sp4n15: --------------------
sp4n15: Name Level Part Event Result
sp4n15: ---
sp4n15: LoadL.full 2.1.0.0 USR APPLY SUCCESS
sp4n15: LoadL.msg.en_US 2.1.0.0 USR APPLY SUCCESS
sp4n15: LoadL.full 2.1.0.0 ROOT APPLY SUCCESS

export WCOLL=/tmp/loadlnodes
dsh lslpp -la LoadL* | dshbak -c
HOSTS ---
sp4n01 sp4n05 sp4n06 sp4n07
sp4n08 sp4n15

Fileset Level State Description
--

Path: /usr/lib/objrepos
LoadL.full 2.1.0.0 COMMITTED LoadLeveler
LoadL.msg.en_US 2.1.0.0 COMMITTED LoadLeveler Messages - U.S.

English

Path: /etc/objrepos
LoadL.full 2.1.0.0 COMMITTED LoadLeveler
Chapter 3. LoadLeveler 29

7. In this step, we will install the submit-only component of the LoadLeveler.
The filesets needed for a submit-only machine are LoadL.so and
LoadL.msg.en_US. In the test environment, we have planned to have the
CWS as the submit-only machine. The command to install the submit-only
filesets in the CWS is:

installp -acgNqwX -d /psspimage/loadl LoadL.so LoadL.msg.en_US

If you had planned to have one of the nodes, for example, sp4n08, as the
submit-only machine, you can install using the following commands:

dsh -w sp4n08

dsh > mount sp4en0:/psspimage/loadl /mntloadl

dsh > installp -acgNqwX -d /mntloadl LoadL.so LoadL.msg.en_US

8. Change the ownership of all the executables in the /usr/lpp/LoadL so that
they are owned by the loadl user ID. This excludes the LoadL_master file,
which has to be owned by root. The command to accomplish this in all the
nodes is:

export WCOLL=/tmp/loadlnodes

dsh chown -R loadl.loadl /usr/lpp/LoadL/full

dsh chown root.system /usr/lpp/LoadL/full/bin/LoadL_master

The command to accomplish this in the submit-only machine, which, in our
case, is the CWS, is:

chown -R loadl.loadl /usr/lpp/LoadL/so

The next step is to run the LoadLeveler installation script, llinit, which
completes the installation of LoadLeveler. This script needs to be executed
on each node in the LoadLeveler cluster. You must run this script as the
loadl user. The llinit determines the home directory by the value of the
HOME environment variable; so, before executing this command, check
that the environment variable, $HOME, for the loadl user is set to the
home directory of the loadl.

To perform this step from the CWS as loadl user, the loadl user needs
authorization. To get authorization from Kerberos, one has to add loadl
user as a new principle to Kerberos and get a Kerberos ticket.

Create a new kerberos principle for user loadl using the following
commands:
30 Workload Management: SP and Other RS/6000 Servers

After getting the kerberos ticket, you can perform the llinit command on
each node from the CWS.

The syntax of the llinit script is as follows:

llinit -local localdir -release releasedir -cm central_manager

where localdir is the full path name of the local directory; releasedir is the
full path name of the release directory, and central_manager is the name
of the central manager node.

The process that is performed by the llinit script includes the creation of
the LoadL_admin and the LoadL_config files on the home directory and
the editing of these files; so, if the home directory is shared among
multiple nodes, we do not recommend that you perform llinit at the same
time on multiple nodes.

The commands to initiate the llinit on all the nodes from the CWS are as
follows:

kadmin
Welcome to the Kerberos Administration Program, version 2
Type "help" if you need it.
admin: ank loadl
Admin password:
Password for loadl:
Verifying, please re-enter Password for loadl:
loadl added to database.
admin: quit
#
#
su - loadl
$k4init
Kerberos Initialization
Kerberos name: loadl
Password:
$

Chapter 3. LoadLeveler 31

The llinit creates sub-directories under the local directory and sets the
appropriate permission to these directories.

9. Edit the.profile in the home directory of the loadl user to include the
following entries to define the PATH and MANPATH environment variables:

PATH=$PATH:/usr/lpp/LoadL/full/bin:/u/loadl/bin:/usr/lpp/LoadL/so/bin

MANPATH=/usr/lpp/LoadL/full/man/$LANG:/usr/lpp/LoadL/full/man

3.3.3.1 Directory structure after installation
When you execute the llinit command, it initializes the following:

• It creates the subdirectories, spool, log, and execute, under the loadl’s
home directory, /u/loadl.

• It sets the required permissions for the newly-created directories.

• It creates the files, LoadL_admin, LoadL_config, and LoadL_config.local,
under the /u/loadl directory.

hostname
sp4cws
su - loadl
$ export WCOLL=/tmp/loadlnodes
$ /usr/lpp/ssp/bin/dsh
dsh> /usr/lpp/LoadL/full/bin/llinit -local /u/loadl -release /usr/lpp/LoadL/full
-cm sp4n01
sp4n01: /usr/lpp/LoadL/full/bin/llinit: creating directory "/u/loadl/spool".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: creating directory "/u/loadl/log".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: creating directory "/u/loadl/execute".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: set permission "700" on "/u/loadl/spool"
.
sp4n01: /usr/lpp/LoadL/full/bin/llinit: set permission "775" on "/u/loadl/log".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: set permission "1777" on "/u/loadl/execu
te".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: creating file "/u/loadl/LoadL_admin".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: creating file "/u/loadl/LoadL_config".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: creating file "/u/loadl/LoadL_config.loc
al".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: editing file /u/loadl/LoadL_config.
sp4n01: /usr/lpp/LoadL/full/bin/llinit: editing file /u/loadl/LoadL_admin.
sp4n01: /usr/lpp/LoadL/full/bin/llinit: creating symbolic link "/u/loadl/bin ->
/usr/lpp/LoadL/full/bin".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: creating symbolic link "/u/loadl/lib ->
/usr/lpp/LoadL/full/lib".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: creating symbolic link "/u/loadl/man ->
/usr/lpp/LoadL/full/man".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: creating symbolic link "/u/loadl/samples
-> /usr/lpp/LoadL/full/samples".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: creating symbolic link "/u/loadl/include
-> /usr/lpp/LoadL/full/include".
sp4n01: /usr/lpp/LoadL/full/bin/llinit: program complete.
32 Workload Management: SP and Other RS/6000 Servers

• It edits the files LoadL_admin and LoadL_config based on the inputs given
to the llinit command.

• It creates the required symbolic links under the /u/loadl directory.

The directory structure of the loadl home directory in Central Manager node,
sp4n01, after executing the llinit command, will look like the following:

The output of the loadl home directory on all the other nodes after executing
the llinit command will look like:

The screen output here only reflects the directory structure for the sp4n05
node. The other nodes will be the same as sp4n05.

dsh -w sp4n01 ls -l /u/loadl
sp4n01: -rw------- 1 loadl loadl 1434 Nov 02 07:39 .sh_history
sp4n01: -rw-r--r-- 1 loadl loadl 8274 Nov 01 16:17 LoadL_admin
sp4n01: -rw-r--r-- 1 loadl loadl 7567 Nov 01 16:38 LoadL_config
sp4n01: -rw-r--r-- 1 loadl loadl 268 Nov 01 16:17 LoadL_config.local
sp4n01: lrwxrwxrwx 1 loadl loadl 23 Nov 01 16:11 bin -> /usr/lpp/Lo
adL/full/bin
sp4n01: drwxrwxrwt 3 loadl loadl 512 Nov 01 16:20 execute
sp4n01: lrwxrwxrwx 1 loadl loadl 27 Nov 01 16:11 include -> /usr/lp
p/LoadL/full/include
sp4n01: lrwxrwxrwx 1 loadl loadl 23 Nov 01 16:11 lib -> /usr/lpp/Lo
adL/full/lib
sp4n01: drwxrwxr-x 2 loadl loadl 512 Nov 02 08:00 log
sp4n01: lrwxrwxrwx 1 loadl loadl 23 Nov 01 16:11 man -> /usr/lpp/Lo
adL/full/man
sp4n01: lrwxrwxrwx 1 loadl loadl 27 Nov 01 16:11 samples -> /usr/lp
p/LoadL/full/samples
sp4n01: drwx------ 2 loadl loadl 512 Nov 01 16:20 spool

dsh -w sp4n05 ls -l /u/loadl
sp4n05: total 36
sp4n05: -rw-r--r-- 1 loadl loadl 8274 Nov 01 16:19 LoadL_admin
sp4n05: -rw-r--r-- 1 loadl loadl 7567 Nov 01 16:38 LoadL_config
sp4n05: -rw-r--r-- 1 loadl loadl 268 Nov 11 1998 LoadL_config.local
sp4n05: lrwxrwxrwx 1 loadl loadl 23 Nov 01 16:11 bin -> /usr/lpp/Lo
adL/full/bin
sp4n05: drwxrwxrwt 3 loadl loadl 512 Nov 01 16:20 execute
sp4n05: lrwxrwxrwx 1 loadl loadl 27 Nov 01 16:11 include -> /usr/lp
p/LoadL/full/include
sp4n05: lrwxrwxrwx 1 loadl loadl 23 Nov 01 16:11 lib -> /usr/lpp/Lo
adL/full/lib
sp4n05: drwxrwxr-x 2 loadl loadl 512 Nov 01 16:50 log
sp4n05: lrwxrwxrwx 1 loadl loadl 23 Nov 01 16:11 man -> /usr/lpp/Lo
adL/full/man
sp4n05: lrwxrwxrwx 1 loadl loadl 27 Nov 01 16:11 samples -> /usr/lp
p/LoadL/full/samples
sp4n05: drwx------ 2 loadl loadl 512 Nov 01 16:20 spool
Chapter 3. LoadLeveler 33

3.3.4 Basic configuration
In this section, we will describe the basic minimum configuration required to
start LoadLeveler. LoadLeveler needs the administration file and the
configuration file to run. These files are located in the loadl home directory.
The file LoadL_admin is the administration file, and LoadL_config is the
configuration file. There is also a local configuration file, LoadL_config.local,
in the local directory. This file is linked symbolically from the loadl home
directory. During the installation process, the llinit command copies the
default administration and configuration files to the LoadLeveler directories
and edits some entries based on the information you entered as the llinit
parameters.

There are many keywords that can be modified in these files to customize
your requirements. The following sections explain the basic minimum
configurations you need to know before starting LoadLeveler.

3.3.4.1 The Administration file
This file consists of machine, class, user, group, and adapter stanzas. For the
basic configuration, you need to edit the machine stanza. Class, user group,
and adapter stanzas are optional. We will discuss these stanzas in Section
3.4.1, “User, group, and class” on page 43.

For basic configuration, you need to define the role of the nodes in machine
stanza. By creating this stanza, all the nodes in your LoadLeveler cluster and
the submit-only machine can know which node is the central manager and
which is the scheduling node; so, you need to edit this stanza to match the
roles of machines in your LoadLeveler cluster.

The following screen output shows the machine stanzas defined in the
LoadL_admin file for our test environment:
34 Workload Management: SP and Other RS/6000 Servers

In our LoadLeveler cluster, the central manager machine is sp4n01; the
alternate central manager is sp4n06, and the scheduling machine is sp4n05
and sp4n15. The CWS sp4en0 is configured as the submit-only machine.

You can have only one node as the central manager. Therefore, there can be
only one entry in the LoadL_admin file that has the stanza, central_manager
= true, which identifies the central manager node.

The schedd_host=true stanza means that nodes sp4n05 and sp4n15 are
scheduling nodes. These nodes will receive jobs submitted from the submit-
only machines. Whether the schedd daemon should run on this node or not is
not determined by this stanza. It is determined by the definition,
SCHEDD_RUNS_HERE = true, in the LoadL_config configuration file.

3.3.4.2 The configuration file
There are two configuration files: The global configuration file (LoadL_config)
and the local configuration file (LoadL_config.local). These two files have the
same format and information. The global configuration file contains
configuration information common to all nodes in the LoadLeveler cluster. The
information of the local configuration file overrides the configuration in the
global configuration file allowing specific information for an individual node.

The configuration file consists of statements that describe the keyword and
the value. As part of the basic configuration, the minimum keywords that you
should edit are as follows:

###
MACHINE STANZAS:
These are the machine stanzas; the first machine is defined as
the central manager. mach1:, mach2:, etc. are machine name labels -
revise these placeholder labels with the names of the machines in the
pool, and specify any schedd_host and submit_only keywords and values
(true or false), if required.
###
sp4n01.msc.itso.ibm.com: type = machine

central_manager = true
sp4n05.msc.itso.ibm.com: type = machine

schedd_host = true
sp4n06.msc.itso.ibm.com: type = machine

central_manager = alt
sp4n07.msc.itso.ibm.com: type = machine
sp4n08.msc.itso.ibm.com: type = machine
sp4n15.msc.itso.ibm.com: type = machine

schedd_host = true
sp4en0.msc.itso.ibm.com: type = machine

submit_only = true
Chapter 3. LoadLeveler 35

SCHEDD_RUNS_HERE = true or false

STARTD_RUNS_HERE = true or false

X_RUNS_HERE = true or false

These keywords define what LoadLeveler daemon runs on this machine. The
SCHEDD_RUNS_HERE, STARTD_RUNS_HERE, X_RUNS_HERE keywords define whether
schedd, startd, and the keyboard daemon run. The default value of these
keywords is true. If you do not want to start the deamons on a specific node,
you have to specify the keyword as false in the local configuration file.

In our example, we change the value of the keyword X_RUNS_HERE to false.

The role of the keyboard daemon is to monitor keyboard and mouse activity.
Therefore, the daemon attempts to connect to X server on the machine. We
do not start X server on our nodes. This means that we do not need to have
the daemon running.

We also add the keyword entry SCHEDD_RUNS_HERE = false to the local
configuration file on sp4n01, sp4n06, sp4n07, and sp4n08 so that the schedd
daemon does not run on these nodes.

3.3.4.3 Managing the configuration files within the cluster
The LoadL_admin and LoadL_config files are to be maintained in all the
nodes within the cluster. These files must remain the same in all nodes.

There are three different methods for managing the admin and config file
common across all the nodes in the cluster. They are as follows:

1. Propagate the admin and config files to all the nodes in the cluster using
the file collections that come with PSSP.

2. NFS exports the loadl home directory from the central manager node and
mounts it on all the nodes in the cluster.

3. Copy the admin and config files to all the nodes in the cluster whenever
you make changes to these files in the central manager using the parallel

copy command, which comes as part of the PSSP.

The best method to implement in an SP environment will be to use the file
collections.

File collection method
In our test environment, we use the CWS as the submit-only machine. The
LoadL_admin and the LoadL_config files will be propagated from the CWS to
all nodes in the cluster. For simplicity, we are adding the files to be
propagated in the user.admin. If you do not want to add this to the
36 Workload Management: SP and Other RS/6000 Servers

user.admin, you can create your own class of file collection for LoadLeveler.
The steps to create a separate class for file collection are described in
Section 5.3.5, “Creating a WLM configuration file collection” on page 118.

The steps to add the loadl config files in the existing file collection are as
follows:

1. Log in as root in the CWS.

2. Edit the /var/sysman/sup/user.admin/list to add the following entries:

upgrade ./u/loadl/LoadL_admin

upgrade ./u/loadl/LoadL_config

3. Propagate the files to the nodes using the following commands:

NFS mount method
In this method, you will be exporting the loadl home directory from the central
manager machine to all the nodes in the cluster. The steps to implement are
as follows:

1. Log in as root in the node CWS.

2. First, you need to start the NFS daemons and then export the loadl home
directory on the NFS server. You can perform this task using the following
commands:

export WCOLL=/tmp/loadlnodes
dsh
dsh> /var/sysman/supper scan user.admin
dsh> /var/sysman/supper update user.admin
sp4n01: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n01: File Changes: 2 updated, 0 removed, 0 errors.
sp4n05: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n05: File Changes: 2 updated, 0 removed, 0 errors.
sp4n06: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n06: File Changes: 2 updated, 0 removed, 0 errors.
sp4n07: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n07: File Changes: 2 updated, 0 removed, 0 errors.
sp4n08: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n08: File Changes: 2 updated, 0 removed, 0 errors.
sp4n15: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n15: File Changes: 2 updated, 0 removed, 0 errors.
Chapter 3. LoadLeveler 37

3. Mount the loadl home directory on the NFS client in the LoadLeveler
cluster. In our case, nodes sp4n05, sp4n06, sp4n07, sp4n08, and sp4n15
are the NFS clients.

You can mount an NFS filesystem with the mknfsmnt command. By using
this command, you can add the home directory to the /etc/filesystem and
configure mounting automatically at system restart.

You can also ensure the result of mounting using the df command. The
following screen shows that /u/loadl of sp4n01 is available by mounting on
nodes in the LoadLeveler cluster:

Parallel copy method
In this method, whenever you make any changes to the LoadL_admin or the
LoadL_config file, you need to copy them manually to all the nodes in the
cluster using the pcp command. The pcp command is available as part of
PSSP. The steps for copying the config files from the central manager to all
the nodes in the cluster are as follows:

1. Log in as root in the Central Manager node, sp4n01.

dsh -w sp4n01 mknfs -B
sp4n01: 0513-029 The portmap Subsystem is already active.
sp4n01: Multiple instances are not supported.
sp4n01: Starting NFS services:
sp4n01: 0513-059 The biod Subsystem has been started. Subsystem PID is 21698.
sp4n01: 0513-059 The nfsd Subsystem has been started. Subsystem PID is 21982.
sp4n01: 0513-059 The rpc.mountd Subsystem has been started. Subsystem PID is 24244.
sp4n01: 0513-059 The rpc.statd Subsystem has been started. Subsystem PID is 22552.
sp4n01: 0513-059 The rpc.lockd Subsystem has been started. Subsystem PID is 22954.
sp4n01: Completed NFS services.
sp4n01: 0513-095 The request for subsystem refresh was completed successfully.
dsh -w sp4n01 mknfsexp -d /u/loadl -t rw -B
sp4n01: /u/loadl
sp4n01: Exported /u/loadl
#

dsh mknfsmnt -f /u/loadl -d /u/loadl -h sp4n01 -A -w bg
dsh df | grep \/u\/loadl
sp4n05: sp4n01:/u/loadl 8192 7648 7% 72 8% /u/loadl
sp4n06: sp4n01:/u/loadl 8192 7648 7% 72 8% /u/loadl
sp4n07: sp4n01:/u/loadl 8192 7648 7% 72 8% /u/loadl
sp4n08: sp4n01:/u/loadl 8192 7648 7% 72 8% /u/loadl
sp4n15: sp4n01:/u/loadl 8192 7648 7% 72 8% /u/loadl
38 Workload Management: SP and Other RS/6000 Servers

2. Execute the following commands to copy the LoadL_admin and
LoadL_config files from the node, sp4n01, to all the nodes in the cluster.

pcp -w sp4en0,sp4n05,sp4n06,sp4n07,sp4n08,sp4n15 \

/u/loadl/LoadL_admin /u/loadl/LoadL_admin

pcp -w sp4en0,sp4n05,sp4n06,sp4n07,sp4n08,sp4n15 \

/u/loadl/LoadL_admin /u/loadl/LoadL_admin

3.3.5 Starting LoadLeveler
You can start the LoadLeveler daemons from any node in your LoadLeveler
cluster using the user ID, loadl.

To start the daemons on all the nodes that are defined in the machine stanza,
enter the command:

llctl -g start

When you run the llctl command, the screen output will look like the
following:

As mentioned in Section 3.3.2.4, “General considerations” on page 25, llctl
uses rsh in order to start the daemons on other nodes. You may see a
Kerberos error message in the screen output if the loadl user does not have a
Kerberos ticket when performing the command. But, you can ignore these
messages if you have set up your RS/6000 SP for standard AIX
authentication for the rsh command. However, if you do not have permission

$ llctl -g start
llctl: Attempting to start LoadLeveler on host sp4n01.msc.itso.ibm.com.
LoadL_master 2.1.0.0 rtrot3dh 98/10/22 AIX 4.3 2
10/27 19:08:05 CentralManager = sp4n01.msc.itso.ibm.com
llctl: Attempting to start LoadLeveler on host sp4n05.msc.itso.ibm.com.
spk4rsh: 0041-003 No tickets file found. You need to run "k4init".
rshd: 0826-813 Permission is denied.
llctl: Attempting to start LoadLeveler on host sp4n06.msc.itso.ibm.com.
spk4rsh: 0041-003 No tickets file found. You need to run "k4init".
rshd: 0826-813 Permission is denied.
llctl: Attempting to start LoadLeveler on host sp4n07.msc.itso.ibm.com.
spk4rsh: 0041-003 No tickets file found. You need to run "k4init".
rshd: 0826-813 Permission is denied.
llctl: Attempting to start LoadLeveler on host sp4n08.msc.itso.ibm.com.
spk4rsh: 0041-003 No tickets file found. You need to run "k4init".
rshd: 0826-813 Permission is denied.
llctl: Attempting to start LoadLeveler on host sp4n15.msc.itso.ibm.com.
spk4rsh: 0041-003 No tickets file found. You need to run "k4init".
rshd: 0826-813 Permission is denied.
$

Chapter 3. LoadLeveler 39

to perform rsh even on standard AIX authentication, llctl fails to start the
LoadLeveler daemons on remote hosts.

The following is the output when we perform llctl after getting the Kerberos
ticket:

There may be a need to start the LoadLeveler in only one node. This can be
done using the -h option of the llctl command. To start the LoadLeveler on
the node, sp4n11, use the command:

$ llctl -h sp4n11 start

The llctl command starts the required LoadLeveler daemons on all the
nodes based on the definition of the nodes in the LoadL_admin file. The
daemons that are started and running in the central manager node can be
verified using the command shown in the following screen:

The daemons that are started and running on scheduler nodes, sp4n05 and
sp4n15, can be seen using the following command:

$ llctl -g start
llctl: Attempting to start LoadLeveler on host sp4n01.msc.itso.ibm.com.
LoadL_master 2.1.0.0 rtrot3dh 98/10/22 AIX 4.3 2
10/27 19:09:41 CentralManager = sp4n01.msc.itso.ibm.com
llctl: Attempting to start LoadLeveler on host sp4n05.msc.itso.ibm.com.
LoadL_master 2.1.0.0 rtrot3dh 98/10/22 AIX 4.3 2
10/27 19:09:43 CentralManager = sp4n01.msc.itso.ibm.com
llctl: Attempting to start LoadLeveler on host sp4n06.msc.itso.ibm.com.
LoadL_master 2.1.0.0 rtrot3dh 98/10/22 AIX 4.3 2
10/27 19:09:43 CentralManager = sp4n01.msc.itso.ibm.com
llctl: Attempting to start LoadLeveler on host sp4n07.msc.itso.ibm.com.
LoadL_master 2.1.0.0 rtrot3dh 98/10/22 AIX 4.3 2
10/27 19:09:44 CentralManager = sp4n01.msc.itso.ibm.com
llctl: Attempting to start LoadLeveler on host sp4n08.msc.itso.ibm.com.
LoadL_master 2.1.0.0 rtrot3dh 98/10/22 AIX 4.3 2
10/27 19:09:45 CentralManager = sp4n01.msc.itso.ibm.com
llctl: Attempting to start LoadLeveler on host sp4n15.msc.itso.ibm.com.
LoadL_master 2.1.0.0 rtrot3dh 98/10/22 AIX 4.3 2
10/27 19:09:46 CentralManager = sp4n01.msc.itso.ibm.com
$

dsh -w sp4n01 ps -ef | grep LoadL
sp4n01: loadl 9596 22486 0 16:02:21 - 0:04 LoadL_negotiator -f
sp4n01: loadl 22486 1 0 16:02:21 - 0:00 /usr/lpp/LoadL/full/bin/LoadL_master
sp4n01: loadl 24660 22486 3 16:02:21 - 0:55 LoadL_startd -f
40 Workload Management: SP and Other RS/6000 Servers

The daemons that are started and running on the executing nodes can be
verified using the following command:

You can see that LoadL_master and LoadL_startd are running on all the
nodes; LoadL_negotiator is running on sp4n01, which is the central manager,
and LoadL_schedd is running on scheduling nodes sp4n05 and sp4n15.

If you use the default configuration file on your nodes, you may see
LoadL_kbdd and LoadL_schedd running on all the nodes.

Verify the status of the LoadLeveler cluster using the llstatus command, and
the output will look like the following:

dsh -w sp4n05,sp4n15 ps -ef | grep LoadL
sp4n05: loadl 11516 1 0 16:02:22 - 0:00 /usr/lpp/LoadL/full/bin/LoadL_master
sp4n05: loadl 11948 11516 1 16:02:22 - 0:18 LoadL_startd -f
sp4n05: loadl 13072 11516 0 16:02:22 - 0:00 LoadL_schedd -f
sp4n15: loadl 17688 23284 0 16:02:25 - 0:26 LoadL_startd -f
sp4n15: loadl 21652 23284 0 16:02:25 - 0:00 LoadL_schedd -f
sp4n15: loadl 23284 1 0 16:02:25 - 0:00 /usr/lpp/LoadL/full/bin/LoadL_master
#

dsh -w sp4n06,sp4n07,sp4n08 ps -ef | grep LoadL
sp4n06: loadl 12464 13138 1 16:02:23 - 0:17 LoadL_startd -f
sp4n06: loadl 13138 1 0 16:02:23 - 0:00 /usr/lpp/LoadL/full/bin/LoadL_master
sp4n07: loadl 12084 1 0 16:02:24 - 0:00 /usr/lpp/LoadL/full/bin/LoadL_master
sp4n07: loadl 13470 12084 0 16:02:24 - 0:17 LoadL_startd -f
sp4n08: loadl 12968 1 0 16:02:24 - 0:00 /usr/lpp/LoadL/full/bin/LoadL_master
sp4n08: loadl 13520 12968 0 16:02:25 - 0:17 LoadL_startd -f
#

Chapter 3. LoadLeveler 41

To confirm that your LoadLeveler can process your job, you have to prepare
the job command file. You can see some sample files in the /usr/lpp/LoadL/
full/samples directory.

You can submit a sample job command file, job1.cmd, with the llsubmit

command. After submitting the llsubmit command, you can see the status of
job queue with the llq command. The following is an example screen for
testing the LoadLeveler:

You can see that two job steps are in the queue, No_Class, but they are not
running.

To run the job steps, you need to add the Class keyword to accept No_Class
jobs on these machines. The following entry shows accepting one No_Class
job on this machine.

Class = {“No_Class”}

su - loadl
$ /usr/lpp/LoadL/full/bin/llstatus
Name Schedd InQ Act Startd Run LdAvg Idle Arch OpSys
sp4n01.msc.itso.ibm.com Down 0 0 Idle 0 0.05 5 R6000 AIX43
sp4n05.msc.itso.ibm.com Avail 0 0 Idle 0 0.00 9999 R6000 AIX43
sp4n06.msc.itso.ibm.com Down 0 0 Idle 0 0.01 9999 R6000 AIX43
sp4n07.msc.itso.ibm.com Down 0 0 Idle 0 0.00 9999 R6000 AIX43
sp4n08.msc.itso.ibm.com Down 0 0 Idle 0 0.01 3534 R6000 AIX43
sp4n15.msc.itso.ibm.com Avail 0 0 Idle 0 3.40 9999 R6000 AIX43

R6000/AIX43 6 machines 0 jobs 0 running
Total Machines 6 machines 0 jobs 0 running

The Central Manager is defined on sp4n01.msc.itso.ibm.com
The following machine is marked SUBMIT_ONLY
sp4en0.msc.itso.ibm.com

All machines on the machine_list are present.

$ llsubmit job1.cmd
llsubmit: The job "sp4n01.msc.itso.ibm.com.1" with 2 job steps has been submitte
d.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n01.1.0 loadl 10/28 04:55 I 50 No_Class
sp4n01.1.1 loadl 10/28 04:55 I 50 No_Class

2 job steps in queue, 2 waiting, 0 pending, 0 running, 0 held
42 Workload Management: SP and Other RS/6000 Servers

The following is the output after the class entry in the local configuration file
on the sp4n15 node:

You can see one job task running on the node, sp4n15.

3.3.6 Stopping LoadLeveler
The LoadLeveler daemons on a node can be stopped using the llctl

command. This can only be done by the LoadLeveler administrator. The
syntax for stopping the LoadLeveler in the node, sp4n01, is as follows:

Use the following command to shut down the LoadLeveler cluster:

$ llctl -g stop

3.4 Managing LoadLeveler configuration

This section describes how to configure LoadLeveler for managing the
workload on RS/6000 SP. The LoadLeveler administration file and the
configuration file can be modified for your requirement. By modifying these
files, you can manage the jobs in your RS/6000 SP.

3.4.1 User, group, and class
LoadLeveler manages jobs using the key parameters defined for user, group,
and class. The job class of a job is determined by the user who submitted the
job. An administrator can control the configuration for user, group, and class
by modifying these stanzas in the administration file.

$ llsubmit job1.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.2" with 2 job steps has been submitt
$ ll1
ksh: ll1: not found.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.2.0 loadl 10/28 15:03 R 50 No_Class sp4n15
sp4n15.2.1 loadl 10/28 15:03 I 50 No_Class

2 job steps in queue, 1 waiting, 0 pending, 1 running, 0 held
$

$ llctl -h sp4n01 stop
llctl: Sent stop command to host sp4n01.msc.itso.ibm.com.
Chapter 3. LoadLeveler 43

The following figure shows all the keywords related to the user, group, and
class stanzas that you can modify in the administration file:

Figure 3. User, group, and class stanza keywords

You can manage LoadLeveler resources for user, group, and class with these
keywords. We will discuss each keyword at first and show a sample
configuration using the following keywords.

• default_class

You can use this keyword to specify the default class for a job. A user can
specify the name of a job class in the job command file with the class
keyword. For example, if you want to submit a job to a specific class, say,
class_first, you can add the following line in your job command file:

@ class = class_first

If you do not specify the class in the job command file, the class you
specify with this default_class keyword is used for the job class.

If you do not specify this default_class in the administration file, the name
of the default class is No_Class.

Class

admin

exclude_groups
exclude_users

maxjobs

master_node_requirement
max_node
max_processors
total_tasks
priority

class_comment

include_groups
include_users

nice
core_limit
cpu_limit
data_limit
file_limit
job_cpu_limit
rss_limit
stack_limit
wall_clock_limit

NQS_class
NQS_cubmit
NQS_query

User

account

default_class
default_group
maxidle
maxjobs
maxqueued
max_node
max_processors
total_tasks
default_interactive_class
priority

Group

exclude_users
include_users
maxidle
maxjobs
maxqueued
max_node
max_processors
total_tasks
priority

admin

User, Group, Class relation stanzas
44 Workload Management: SP and Other RS/6000 Servers

You can specify a list of class names as the value of this keyword. If you
specify multiple default class names in the list, LoadLeveler selects a class
that matches the resource requirement specified in the job command file.

• default_group

You can specify the default group name to which a user can belong by
assigning the name to this keyword in the user stanza. You can specify a
group name when you submit a job in the job command file with the group
keyword. If you do not specify the name in the job command file, the group
name specified to this default_group keyword is used for jobs submitted by
the user. If this keyword is not in the administration file, the default group
name is No_group.

• admin

You can use this keyword in the class and the group stanza to specify
administrator names of a class and the group respectively. If you specify
the names to this keyword in the class stanza, the administrators can hold,
release, and cancel jobs in that class. If you specify the names in the
group stanza, the administrators can hold, release, and cancel jobs that
are submitted by the users in the group.

• exclude_users

This keyword can be used in the class and group stanzas. If you specify
the names to this keyword in the class stanza, the users are not permitted
to submit jobs for that class. If you specify users in the group stanza with
this keyword, the users are not permitted to belong to the group.

• include_users

This keyword can be used in the class and the group stanza. If you specify
the user names to this keyword in the class stanza, you can limit the users
who can submit jobs for that class. If you specify the user names to this in
the group stanza, you can limit the users who can belong to that group.
The default is all users are included. Note that you should not specify
exclude_users and include_users in the same stanza.

• exclude_groups

This keyword can be used in the class stanza. If you specify group names
to this keyword, the groups are not permitted to use this class as their job
class.

• include_groups

This keyword can be used in the class stanza. By specifying group names
to this keyword, you can limit the groups that can use this class. The
Chapter 3. LoadLeveler 45

default is all groups included. Note that you should not specify
exclude_groups and include_groups in the same stanza.

• class_comment

You can specify the description of the class to this keyword. You can see
the description in the output of the llclass command.

We show an example of these user, group, and class keywords. We describe
the following environment in our LoadLeveler cluster:

• We want to have two classes: class_first and class_second.

• We want to have two groups: group_para and group_serial.

• We have to manage four users: kannan1, bala1, bruno1, and tani1.

Each user has the default class and the default group. As a default class,
user kannan1 and bala1 use class_first, and bruno1 and tani1 use
class_second. As the default group, kannan1 and bruno1 use group_para,
and bala1 and tani1 use group_serial.

• The class class_first has include_users keyword specifying users,
kannan1 and bala1 so that user bruno1 and tani1 cannot use class_first as
their job class.

• The class_second class has an exclude_users keyword specifying a user,
kannan1, so that user kannan1 cannot use class_second as his or her job
class. The bala1 can use class_second if he or she specifies job class in
the job command file.

• The group_para group has to have include_users keyword specifying
users kannan1 and bruno1 so that bala1 and tani1 cannot belong to the
group group_para.

• The group_serial group has to have exclude_users keyword specifying a
user kannan1 so that kannan1 cannot belong to the group.

• We give administrator privilege to kannan1 for class_first and group_para.

• We give administrator privilege to bala1 for group_serial.

The following screen output of the admin file shows the keywords for the
stanzas to describe the above environment:
46 Workload Management: SP and Other RS/6000 Servers

To execute a job on a node, the node has to accept the jobs for that class. You
need to define the Class keyword in the configuration file to accept the class.
For example, if you add the following line to the local configuration file on the
node, sp4n01, node sp4n01 can run two jobs of class_first and one job of
class_second:

Class = {"class_first" "class_first" "class_second"}

So, you can use this Class keyword in the configuration file with stanzas in
the administration file to specify who can use the node to run jobs and the
number of jobs of that class. Therefore, if two jobs of kannan1 are running on

###
Sample class stanza
###
class_first: type = class

class_comment = "First Class Users"
include_users = kannan1 bala1
admin = kannan1

class_second: type = class
class_comment = "Second Class Users"
exclude_users = kannan1

###
Sample group stanz
###
group_para: type = group

admin = kannan1
include_users = kannan1 bruno1

#
group_serial: type = group

admin = bala1
exclude_users = kannan1

##
Sample user stanza
###
kannan1: type = user

default_class = class_first
default_group = group_para

#
bala1: type = user

default_class = class_first
default_group = group_serial

#
bruno1: type = user

default_class = class_second
default_group = group_para

#
tani1: type = user

default_class = class_second
default_group = group_serial
Chapter 3. LoadLeveler 47

this node, the job submitted by bala1 as class_first cannot run on the same
node until one of the jobs of kannan1 is completed.

In addition to the Class keyword, you can use the MAX_STARTERS keyword
to specify how many jobs can run on a node. The MAX_STARTERS keyword
can be defined in the configuration file. The keyword specifies the maximum
number of jobs that can run simultaneously on a machine.

For example, if you want to limit the number of jobs running on a node to two
and you want to limit the class of the jobs to class_first and class_second,
you need to specify the following keywords in the local configuration file on
the node:

Class = {"class_first" "class_first" "class_second"}

MAX_STARTER = 2

The possible combinations of jobs that can run on this node are:

• Two class_first jobs

• One class_first and one class_second job

• Only one class_first job, or only one class_second job

3.4.2 Maximum job requests from users
When multiple users want to use RS/6000 SP, you may want to control the
number of jobs submitted by a user. If you do not control the number of jobs
for a user, a user may dominate the workload on your RS/6000 SP and may
prevent other users from running jobs. The keywords in bold print in Figure 4
on page 49 can be used for managing the job limits.
48 Workload Management: SP and Other RS/6000 Servers

Figure 4. Maximum job requests keywords

To understand the keywords, maxidle, maxjobs, and maxqueued, you have to
know the following job states placed by the negotiator after you submit a job:

• Idle

When a job is placed in the idle state, this job is considered, by the
negotiator daemon, to be running on a node or nodes; so, this idle state
means that the negotiator daemon is searching nodes for dispatching this
job for the user.

• Running

This state means the job is running on a node or nodes.

• NotQueued

When a job is placed in the NotQueued state, this job is not considered, by
the negotiator daemon, to be running. That is, the negotiator daemon is
not searching nodes for this job.

• Pending and Starting

The Pending state and the Starting state are temporary states between
the Idle state and the Running state. The Pending state means that the

Class

admin

exclude_groups
exclude_users

maxjobs
master_node_requirement
max_node
max_processors
total_tasks
priority

class_comment

include_groups
include_users

nice
core_limit
cpu_limit
data_limit
file_limit
job_cpu_limit
rss_limit
stack_limit
wall_clock_limit
NQS_class
NQS_cubmit
NQS_query

User

account

default_class
default_group

maxidle
maxjobs
maxqueued
max_node
max_processors
total_tasks
default_interactive_class
priority

Group

exclude_users
include_users
maxidle
maxjobs
maxqueued
max_node
max_processors
total_tasks
priority

admin

Maximum job requests keywords
Chapter 3. LoadLeveler 49

negotiator daemon has selected nodes for the job and the job is in the
process of starting by the schedd and startd daemons. The Starting state
means the job has been dispatched to the target nodes and is in the
process of starting on the nodes.

You can control the number of jobs that are placed in the preceding states.
The following are the keyword definitions:

• maxidle - You can specify the maximum number of jobs placed in the Idle
state with this keyword. This keyword can be used in the user or group
stanza in the administration file. If you use this keyword in the user stanza,
you can limit the number of idle jobs for a user. If you use this keyword in
the group stanza, you can limit the number of idle jobs for the group. If you
do not put this keyword in the administration file, there is no limit on the
number of idle jobs.

• maxjobs - You can specify the maximum number of jobs placed in the
Running state with this keyword. This keyword can be used in the user,
group, and class stanzas in the administration file. If you use this keyword
in the user stanza, you can limit the number of jobs the user can run at any
time. If you use this keyword in the group stanza, you can limit the number
of jobs that group can run at any time. If you use this keyword in the class
stanza, you can limit the number of running jobs for that class. If you do
not put this keyword in the administration file, the default value is -1. This
means there is no limit on the number of running jobs.

• maxqueued - You can specify the maximum number of jobs that are
placed in a queue, that is, this keyword controls the number of jobs in any
of these states: Idle, running, pending, or starting. You can use this
keyword in the user and group stanzas in the administration file. If you use
this keyword in the user stanza, you can limit the maximum number of jobs
allowed in the queue for the user. If you use this keyword in the group
stanza, you can limit the maximum number of jobs for that group. The
default is no limit on the number of jobs that can be placed in queue.

For a new job to be allowed into the job queue, the following conditions must
be satisfied:

• The number of the user’s job in the queue (in the Idle, Pending, Starting,
and Running states) is less than the value of the maxqueued keyword in
the user stanza.

• The number of jobs belonging to the user’s group that are in the queue (in
the Idle, Pending, Starting and Running states) is less than the value of
the maxqueued keyword in the group stanza
50 Workload Management: SP and Other RS/6000 Servers

• The number of jobs belonging to the user in the Idle state is less than the
value of the maxidle keyword in the user stanza.

• The number of jobs belonging to the group in the Idle state is less than the
value of the maxidle keyword in the group stanza.

If either of these conditions is not satisfied, the new job is placed in the
NotQueued state until one of jobs in the queue changes the state and all of
these conditions are satisfied.

Once a job is in the queue, the job will run if the following conditions are
satisfied:

• The number of the user’s jobs that are running on nodes is less than the
value of the maxjobs keyword in the user stanza.

• The number of the group’s jobs that are running on nodes is less than the
value of the maxjobs keyword in the group stanza.

• The number of class jobs that are running on nodes is less than the value
of the maxjobs keyword in the class stanza.

We use an example to describe the use of these keywords. We create an
environment with the following characteristics in our LoadLeveler cluster:

• We want to limit the total number of running jobs that are submitted by the
users in each group. We want to set this limit to 20.

• We want to limit the total number of jobs that are in the queue for each
group. We want to set this limit to 40.

• For the users, kannan1 and bruno1, we want to limit the number of jobs
that are in the Idle state to five.

• For the users, bala1 and tani1, we want to limit the number of running jobs
to two and the number of jobs in queue to four.

To test this environment, you need the following modifications in the
administration file:
Chapter 3. LoadLeveler 51

###
Sample class stanza
###
class_first: type = class

class_comment = "First Class Users"
include_users = kannan1 bala1
admin = kannan1

#
class_second: type = class

class_comment = "Second Class Users"
exclude_users = kannan1

###
Sample group stanz
###
group_para: type = group

admin = kannan1
include_users = kannan1 bruno1
maxjobs = 20
maxqueued = 40

#
group_serial: type = group

admin = bala1
exclude_users = kannan1
maxjobs = 20
maxqueued = 40

##
Sample user stanza
###
kannan1: type = user

default_class = class_first
default_group = group_para
maxidle = 5

#
bala1: type = user

default_class = class_first
default_group = group_serial
maxjobs = 2
maxqueued = 4

#
bruno1: type = user

default_class = class_second
default_group = group_para
maxidle = 5

#
tani1: type = user

default_class = class_second
default_group = group_serial
maxjobs = 2
maxqueued = 4
52 Workload Management: SP and Other RS/6000 Servers

3.4.3 Resource limits
You may want to manage resource limits allowed to use by a job step or a
process running on RS/6000 SP nodes. AIX has the following user resource
limit attributes:

fsize The file size limit that a user’s precess can create or extend.

cpu The CPU time limit that a user’s process can use.

data The data segment size limit to be used by a user’s process.

stack The stack segment size limit to be used by a user’s process.

core The core file size limit that a user’s process can create

rss The resident size limit that a user’s process can grow

You can see these user resource limits in the /etc/security/limits file on each
node. AIX has a soft limit and a hard limit for each resource.

In addition to the above process resource limits, LoadLeveler manages two
additional limits for managing resources for a job step.

You can specify these limits in the class stanza of the administration file. The
following figure shows the keywords to set these limits. The limit keywords are
expressed with bold characters:
Chapter 3. LoadLeveler 53

Figure 5. Resource limits keywords

The following are keyword definitions:

core_limit This keyword is for setting the value of the core file size limit
(core) in the AIX user resource limit for a process invoked by
a job.

cpu_limit This keyword is for setting the value of the CPU time limit
(cpu) in the AIX user resource limit for a process invoked by
a job.

data_limit This keyword is for setting the value of the data segment
size limit (data) in the AIX user resource limit for a process
invoked by a job.

file_limit This keyword is for setting the value of the file size limit
(fsize) in the AIX user resource limit for a process invoked
by a job.

job_cpu_limit This keyword is for setting the total CPU time limit to be
used by all processes of a job step. This value is for the
entire job step; so, if a job step forks five processes, the total

Class

admin

exclude_groups
exclude_users

maxjobs
master_node_requirement
max_node
max_processors
total_tasks
priority

class_comment

include_groups
include_users

nice
core_limit
cpu_limit
data_limit
file_limit
job_cpu_limit
rss_limit
stack_limit
wall_clock_limit
NQS_class
NQS_cubmit
NQS_query

User

account
default_class
default_group

maxidle
maxjobs
maxqueued
max_node
max_processors
total_tasks
default_interactive_class
priority

Group

exclude_users
include_users
maxidle
maxjobs
maxqueued
max_node
max_processors
total_tasks
priority

admin

Resource limits keywords
54 Workload Management: SP and Other RS/6000 Servers

CPU time consumed by 5 processes cannot consume more
than the value specified with this keyword.

rss_limit This keyword is for setting the value of the resident set size
limit (rss) in the AIX user resource limit for a process
invoked by a job.

stack_limit This keyword is for setting the value of the stack segment
size (stack) in the AIX user resource limit for a process
invoked by a job.

wall_clock_limit This keyword is for setting the value for elapsed time that a
job can be running.

You can specify the hard limit and the soft limit to each keyword using the
following syntax:

limit_keyword = hardlimit,softlimit

To know the syntax and the units of these keywords in detail, refer to the book
IBM LoadLeveler for AIX - Using and Administering, SA22-7311.

Note that LoadLeveler sets the user process limits by the value of core_limit,
cpu_limit, data_limit, file_limit, rss_limit, and stack_limit; however, these limits
are managed by AIX.

For the limits of job_cpu_time and wall_clock_limt, LoadLeveler manages the
limits per job step. Table 4 shows the actions that occur when a job step limit
is exceeded.

Table 4. The action when exceeding Job step limit

We will now show example class stanzas to set resource limits for users in
classes.

Type of job Exceeding soft limit Exceeding hard limit

Serial SIGXCPU or SIGKILL
issued

SIGKILL issued

Parallel(non-PVM)
SIGXCPU issued to both
the user program and to
the parallel daemon

SIGTERM issued

PVM SIGXCPU issued to the
user program

pvm_halt invoked to shut
down PVM
Chapter 3. LoadLeveler 55

For class_first, we set the limits listed in Table 5.

Table 5. Limits for class_first

For class_second, we set the limits listed in Table 6.

Table 6. Limits for class_second

Although we do not assign the soft limit for cpu_limit and file_limit, the soft
limit is adjusted downward to equal the hard limit.

The following screen output shows the the class stanza keywords used in the
admin file to set the limits.

Resource keyword Hard limit Soft limit

job_cpu_limit 24 hours 12 hours

wall_clock_limit 24 hours 12 hours

Resource keyword Hard limit Soft limit

cpu_limit 3 hours Not assign

data_limit 80 MB 60 MB

file_limit 512 MB Not assign

stack_limit 80 MB 60 MB

job_cpu_limit 2 hours 1 hours

wall_clock_limit 3 hours 2 hours
56 Workload Management: SP and Other RS/6000 Servers

A LoadLeveler user can specify these resource limits in the job command file
with the same keywords. But, if the hard limit specified in the job command
file is greater than the hard limit of the class, the hard limit of the class is
used. Also, the hard limit specified in the job command file cannot be greater
than the hard limit on the node limit set by the AIX user resource limit. If the
hard limit specified in the job command file is greater than the limit on the
node, the limit set by the AIX user limit is used.

3.4.4 Job priority
When you have multiple job requests to be processed on your RS/6000 SP,
you may have to consider the job priority, that is, which job should be
processed earlier and which job should be processed later. Job priority can
be an important factor for the workload management on your RS/6000 SP.

Each job needs a different number of nodes; so, scheduling multiple jobs is
not simple. However, the LoadLeveler’s base priority for jobs in queue is first-
in-first-out (FIFO) based on submission time. You can modify this job priority
using the user, group, and class stanza keywords.

The user, group, and class stanzas have the priority keyword and the nice
keyword. The nice keyword does not affect the LoadLeveler’s scheduling; it
affects the job priority on a node after dispatching the job.

These keywords can be seen with bold characters in Figure 6 on page 58.

###
Sample class stanza
###
class_first: type = class

class_comment = "First Class Users"
include_users = kannan1 bala1
admin = kannan1
job_cpu_limit = 24:00:00,12:00:00
wall_clock_limit = 24:00:00,12:00:00

#
class_second: type = class

class_comment = "Second Class Users"
exclude_users = kannan1
cpu_limit = 00:30:00
data_limit = 80mb,60mb
file_limit = 512mb
stack_limit = 80mb,60mb
job_cpu_limit = 02:00:00,01:00:00
wall_clock_limit = 03:00:00,02:00:00
Chapter 3. LoadLeveler 57

Figure 6. Job priority keywords

A list of the keywords and their definitions follows:

priority You can specify an integer as the value of this keyword in the user,
group, and class stanzas. The value specified to this keyword in
the user, group, and class stanzas is referred to as the value of
UserSysprio, GroupSysprio, and ClassSysprio. UserSysprio,
GroupSysprio, and ClassSysprio can be used in the configuration
file to change the SYSPRIO keyword value that affects the
dispatching priority. If you do not modify the configuration file,
these values are not used. If you modify this value in the
configuration file, it can affect the LoadLeveler’s scheduling
priority. The default value of this keyword is 0.

nice You can use this keyword in the class stanza. LoadLeveler
increments the initial process priority on AIX using this value. The
nice value can be one factor for a job priority on a node after
dispatching a job. You can specify an integer from -20 to 20. The
higher the number, the lower the priority. The default value is zero.

Class

admin

exclude_groups
exclude_users

maxjobs
master_node_requirement
max_node
max_processors
total_tasks
priority

class_comment

include_groups
include_users

nice
core_limit
cpu_limit
data_limit
file_limit
job_cpu_limit
rss_limit
stack_limit
wall_clock_limit

NQS_class
NQS_cubmit
NQS_query

User

account

default_class
default_group

maxidle
maxjobs
maxqueued
max_node
max_processors
total_tasks
default_interactive_class
priority

Group

exclude_users
include_users
maxidle
maxjobs
maxqueued
max_node
max_processors
total_tasks
priority

admin

Job priority keywords
58 Workload Management: SP and Other RS/6000 Servers

In addition to these keywords in the administration file, the SYSPRIO
keyword in the configuration file and the user_priority keyword in the job
command file also need to be considered. The LoadLeveler schedules jobs
based on the adjusted system priority, which is determined by using both
SYSPRIO (System priority) and user_priority (User priority).

SYSPRIO The value of SYSPRIO is determined by the definition in the
configuration file. You can select the factor that affects the value of
SYSPRIO in the configuration using the following keywords:

ClassSysprio The value of the priority keyword in the class stanza
is referenced as this value.

GroupQueuedJobs The number of job steps currently in the queue
submitted by the group, that is, the number of job
steps that are in a Running, Starting, Pending, or
Idle state.

GroupRunningJobs The number of job steps submitted by the group that
are in a Running, Starting, or Pending state.

GroupSysprio The value of the priority keyword in the group stanza
is referenced as this value.

GroupTotalJobs The total number of job steps associated with the
group. The total number of job steps includes all job
steps reported by the llq command.

QDate The difference between the UNIX date when the job
step enters the queue and the UNIX date when the
negotiator starts up. The larger the value, the later
the job is submitted. The unit is in seconds.

UserPrio The value of user_priority keyword in the job
command file is referenced as this value. This
keyword is discussed later. You do not need to use
this value.

UserQueuedJobs The number of job steps currently in the queue
submitted by the user, that is, the number of job
steps that are in a Running, Starting, Pending, or
Idle state.

UserRunningJobs The number of job steps submitted by the user that
are in a Running, Starting, or Pending state.

UserSysprio The value of the priority keyword in the class stanza
is referenced as this value.
Chapter 3. LoadLeveler 59

UserTotalJobs The total number of job steps associated with the
user. Total job steps means all job steps reported by
the llq command.

You can define the SYSPRIO with these factors. Jobs assigned higher
SYSPRIO numbers are considered for dispatch before jobs with lower
numbers.

The default definition of the SYSPRIO is the following:

SYSPRIO: 0 - (QDate)

This default definition creates a FIFO job queue based on submission time
because jobs submitted at a later time have lower SYSPRIO than jobs
submitted at an earlier time.

If you want to add the value specified in the user, group, and class stanza in
the administration file as the factor in addition to the submitted time, you can
define the SYSPRIO in the following way:

SYSPRIO: ClassSysprio + UserSysprio + GroupSysprio - (QDate)

If you want to give more weight to a user who does not have jobs running at
the time, it may be good idea to add the number of running jobs in addition to
the submitted time:

SYSPRIO: 0 - (UserRunningJobs * 10) - (QDate)

Note that SYSPRIO is calculated and assigned in the following cases:

• The new job is added to the queue.

• You change the job priority with a command.

• The NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL is elapsed.
This keyword is defined in the configuration file.

The default value of NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL
is zero; so, if you want to recalculate the SYSPRIO based on the current
usage with the specific interval, you should set a non-zero value to this
keyword in the configuration file.

user_priority When submitting a job, you can specify the value to this keyword
as initial priority among your jobs in the job command file. This
value only affects the order among the same users job steps in
the same class. It does not affect the order of the job submitted
by another user.
60 Workload Management: SP and Other RS/6000 Servers

With SYSPRIO and the user_priority, LoadLeveler gives the adjusted system
priority to jobs in the following way:

1. It first orders jobs by SYSPRIO

2. Among jobs that belong to the same user and the same class, change the
order based on the user_priority. This is done by changing the order of the
same user’s jobs; so this does not affect another user’s job.

We show an example of customizing the job priority. In the following example,
we give the job priority based on the submission time, but we want to give
higher priority to class_first jobs than class_second jobs in addition to the
submission time. We also assign the nice value to jobs of class_first to run
with higher priority on nodes. The following screen shows the sample
administration file that describes this configuration.

To reflect these keywords to the SYSPRIO, you need to modify the SYSPRIO
in the configuration file. We show the modified SYSPRIO in the following
screen:

###
Sample class stanza
###
class_first: type = class

class_comment = "First Class Users"
include_users = kannan1 bala1
admin = kannan1
job_cpu_limit = 24:00:00,12:00:00
wall_clock_limit = 24:00:00,12:00:00
priority = 100
nice = -5

#
class_second: type = class

class_comment = "Second Class Users"
exclude_users = kannan1
cpu_limit = 00:30:00
data_limit = 80mb,60mb
file_limit = 512mb
stack_limit = 80mb,60mb
job_cpu_limit = 02:00:00,01:00:00
wall_clock_limit = 03:00:00,02:00:00
priority = 60

#SYSPRIO: 0 - (QDate)
SYSPRIO: (ClassSysprio) - (QDate)
Chapter 3. LoadLeveler 61

3.4.5 Machine priority
When you submit jobs to your RS/6000 SP, LoadLeveler selects nodes for
executing jobs. This selection of nodes can also be complex because
LoadLeveler has to deal with multiple types of jobs and multiple types of
nodes.

When you think of load balancing on your RS/6000 SP environment, you may
think you want to offer hints to LoadLeveler about which node should be
selected first and which should be selected later. The negotiator assigns and
manages a machine priority number to each node. This machine priority is
based on the MACHPRIO keyword in the configuration file. You can modify
this MACHPRIO keyword to reflect your criteria on node selection.

The nodes assigned higher MACHPRIO numbers are considered to run jobs
before nodes with lower numbers.

In the configuration file, you can use the following keywords to define the
MACHPRIO keyword:

LoadAvg The CPU load on the system is measured using the
Berkeley one-minute load average. This load average is the
average of the number of processes ready to run or waiting
for disk I/O to complete.

Cpus The number of processors of the node.

Speed The relative speed of the node. You can use the speed
keyword to specify this value in the machine stanza of the
administration file. The default value is 1.

Memory The size of real memory in megabytes of the node.

Virtual Memory The size of available paging space in kilobytes on the node.

Disk The size of free disk space in kilobytes on the filesystem
where the executables reside.

Custom Metric This value is determined by the CUSTOM_METRIC keyword
in the configuration file. This allows you to give a relative
priority number for each node.
You can specify an arbitrary number using the
CUSTOM_METRIC keyword to give a relative priority
number. Or by specifying an executable and any required
arguments to CUSTOM_METRIC_COMMAND keyword in
the configuration file, the exit code of this command is
assigned to CUSTOM_METRIC. If this command does not
exit normally, CUSTOM_METRIC is assigned a value of 1.
62 Workload Management: SP and Other RS/6000 Servers

This command is forked every time when startd daemon
updates the load information to the central manager. This
interval is determined by the value of
(POLLING_FREQUENCY * POLLS_PER_UPDATE). These
values can be modified in the configuration file.

MasterMachPriority A value that is equal to 1 for nodes that are used as
master nodes for parallel jobs. This value is equal to 0 for
nodes that are not master nodes. In the administration file,
you can specify master_node_exclusive = true if you want
the node to only be used as a master node for parallel jobs.

When the negotiator assigns a job to a node, the negotiator adds a
compensating value to LoadAvg of the node. This default value is 0.5. You
can modify this value by specifying a value to
NEGOTIATOR_LOADAVG_INCREMENT in the configuration file. If you use a
MACHPRIO that is based on LoadAvg, because of this compensating value,
the node’s priority may be lower than other nodes immediately after a job is
scheduled to the node.

We show a sample to assign the machine priority based on the number of
processes on the process table. We create a shell script named
numofproc.ksh and use the exit code of the numofproc.ksh. This shell script
returns the number of processes by counting the lines of the output of the ps

command as exit code. The following screen shows the numofproc.ksh shell
script:

To reflect the exit code to MACHPRIO, you need to specify the following
keywords in the configuration file:

CUSTOM_METRIC_COMMAND = /u/loadl/numofproc.ksh

MACHPRIO: 0 - (1000 * LoadAvg) - (CustomMetric)

Note that all the machines need to have this configuration file and the shell
script.

#!/bin/ksh
NUMOFPROC=̀ /usr/bin/ps -ef | wc -l`
((NUMOFPROC=NUMOFPROC-1))
exit $NUMOFPROC
Chapter 3. LoadLeveler 63

3.4.6 Parallel job
When you use the LoadLeveler to schedule parallel jobs, you need to use
keywords that are associated with parallel jobs. In the job command file, you
can request a specific adapter for your parallel tasks with the network
keyword. To allow this, you need to modify the machine stanza and the
adapter stanza in the administration file.

You need to add to the machine stanza with the following keywords:

• adapter_stanzas

You need to specify using this keyword all adapter names available on this
node. You can specify a adapter stanza name list to this keyword. Each
adapter stanza name listed here links to an adapter in the adapter stanza.

• alias

You can specify a blank-delimited list of machine names. In general, if your
machine stanza name matches the hostname of the machine, you may not
have to specify this keyword. If you specify the machine stanza name
other than the hostname such as the hostname corresponding to the
switch IP address, you need to specify the hostname using this alias
keyword.

The following screen shows the sample machine stanza we have created
to add the adapter stanza:
64 Workload Management: SP and Other RS/6000 Servers

We create the adapter stanza for each adapter listed in the adapter_stanzas

keyword in the machine stanza shown in the preceding screen.

The adapter stanza has the following keywords:

adapter_name Name of the network interface

interface_addressThe IP address for this interface.

interface_name The IP name corresponding to this adapter.

network_type You can specify the name of the network. This keyword
defines the types of networks a user can specify with the
network keyword in the job command file. For example,
you can specify the name Ethernet for the ethernet work
adapters.

switch_node_numberThis value is defined based on the value of the
switch_node_number field in the Node class in the SDR.

You can use the llextSDR command to extract adapter information from the
SDR. The llextSDR command creates adapter and machine stanzas based on

sp4n01.msc.itso.ibm.com: type = machine
central_manager = true
adapter_stanzas = sp4sw01.msc.itso.ibm.com sp4n01.msc.itso.ibm.com
alias = sp4sw01.msc.itso.ibm.com

#
sp4n05.msc.itso.ibm.com: type = machine

schedd_host = true
adapter_stanzas = sp4sw05.msc.itso.ibm.com sp4n05.msc.itso.ibm.com
alias = sp4sw05.msc.itso.ibm.com

#
sp4n06.msc.itso.ibm.com: type=machine

adapter_stanzas = sp4sw06.msc.itso.ibm.com sp4n06.msc.itso.ibm.com
alias = sp4sw06.msc.itso.ibm.com

#
sp4n07.msc.itso.ibm.com: type = machine

adapter_stanzas = sp4sw07.msc.itso.ibm.com sp4n07.msc.itso.ibm.com
alias = sp4sw07.msc.itso.ibm.com

#
sp4n08.msc.itso.ibm.com: type = machine

adapter_stanzas = sp4sw08.msc.itso.ibm.com sp4n08.msc.itso.ibm.com
alias = sp4sw08.msc.itso.ibm.com

#
sp4n15.msc.itso.ibm.com: type = machine

schedd_host = true
adapter_stanzas = sp4sw15.msc.itso.ibm.com sp4n15.msc.itso.ibm.com
alias = sp4sw15.msc.itso.ibm.com
Chapter 3. LoadLeveler 65

the SDR and writes the stanzas to standard output; so, you can create these
stanzas easily by using the output of this command.

Figure 7 and Figure 8 on page 68 show the sample adapter stanzas. These
stanzas are created using the output of llextSDR command.
66 Workload Management: SP and Other RS/6000 Servers

Figure 7. The adapter stanza (1 of 2)

sp4sw01.msc.itso.ibm.com: type = adapter
adapter_name = css0
network_type = switch
interface_address = 192.168.14.1
interface_name = sp4sw01.msc.itso.ibm.com
switch_node_number = 0

#
sp4n01.msc.itso.ibm.com: type = adapter

adapter_name = en0
network_type = ethernet
interface_address = 192.168.4.1
interface_name = sp4n01.msc.itso.ibm.com

#
sp4sw05.msc.itso.ibm.com: type = adapter

adapter_name = css0
network_type = switch
interface_address = 192.168.14.5
interface_name = sp4sw05.msc.itso.ibm.com
switch_node_number = 4

#
sp4n05.msc.itso.ibm.com: type = adapter

adapter_name = en0
network_type = ethernet
interface_address = 192.168.4.5
interface_name = sp4n05.msc.itso.ibm.com

#
sp4sw06.msc.itso.ibm.com: type = adapter

adapter_name = css0
network_type = switch
interface_address = 192.168.14.6
interface_name = sp4sw06.msc.itso.ibm.com
switch_node_number = 5

#
sp4n06.msc.itso.ibm.com: type = adapter

adapter_name = en0
network_type = ethernet
interface_address = 192.168.4.6
interface_name = sp4n06.msc.itso.ibm.com

#
sp4sw07.msc.itso.ibm.com: type = adapter

adapter_name = css0
network_type = switch
interface_address = 192.168.14.7
interface_name = sp4sw07.msc.itso.ibm.com
switch_node_number = 6

#
sp4n07.msc.itso.ibm.com: type = adapter

adapter_name = en0
network_type = ethernet
interface_address = 192.168.4.7
interface_name = sp4n07.msc.itso.ibm.com
Chapter 3. LoadLeveler 67

Figure 8. The adapter stanza (2 of 2)

By defining this adapter stanza, users can request css0 and en0 for their
parallel tasks with the network keyword in the job command file.

There are some keywords you can define in your machine stanza in addition
to the above keywords. These are optional for parallel jobs:

• machine_mode - You can specify the type of job this node can run. You
can specify one of the following values:

batch Specifies this node can be only used for batch jobs

interactive Specifies this node can be only used for interactive jobs.
Only POE is currently enabled to run interactively.

general Specifies this node can be used for both batch jobs and
interactive jobs. This is the default value.

• pvm_root - When you use PVM, you can use this keyword to specify the
pathname where the PVM executables reside. The value of this keyword is
used to set the environment variable $(PVM_ROOT) required by PVM.

• pool_list - By defining numbers to this keyword, you can specify to which
pool this node belongs. Parallel jobs can use this pool number to request

sp4sw08.msc.itso.ibm.com: type = adapter
adapter_name = css0
network_type = switch
interface_address = 192.168.14.8
interface_name = sp4sw08.msc.itso.ibm.com
switch_node_number = 7

#
sp4n08.msc.itso.ibm.com: type = adapter

adapter_name = en0
network_type = ethernet
interface_address = 192.168.4.8
interface_name = sp4n08.msc.itso.ibm.com

#
sp4sw15.msc.itso.ibm.com: type = adapter

adapter_name = css0
network_type = switch
interface_address = 192.168.14.15
interface_name = sp4sw15.msc.itso.ibm.com
switch_node_number = 14

#
sp4n15.msc.itso.ibm.com: type = adapter

adapter_name = en0
network_type = ethernet
interface_address = 192.168.4.15
interface_name = sp4n15.msc.itso.ibm.com
68 Workload Management: SP and Other RS/6000 Servers

for nodes belonging to a specific pool. This keyword provides compatibility
with the function that was previously part of the Resource Manager.

In the user, group, and class stanza, there are some keywords that are used
to manage parallel jobs. These keywords are not necessarily required, but
you can use them to manage parallel jobs. Figure 9 shows these keywords
with bold characters.

Figure 9. The keywords for parallel jobs

• max_node

You can specify the maximum number of nodes a user can request for a
parallel job. A user can specify the maximum number of nodes and the
minimum number of nodes with the node keyword in the job command file
when submitting a job. This max_node keyword restricts the maximum
number a user can request with the node keyword. You can use this
keyword in the user, group, and class stanzas. The default is -1, which
means there is no limit.

• max_processors

Class

admin

exclude_groups
exclude_users

maxjobs
master_node_requirement
max_node
max_processors
total_tasks
priority

class_comment

include_groups
include_users

nice
core_limit
cpu_limit
data_limit
file_limit
job_cpu_limit
rss_limit
stack_limit
wall_clock_limit
NQS_class
NQS_cubmit
NQS_query

User

account

default_class
default_group

maxidle
maxjobs
maxqueued
max_node
max_processors
total_tasks
default_interactive_class
priority

Group

exclude_users
include_users
maxidle
maxjobs
maxqueued
max_node
max_processors
total_tasks
priority

admin

Keywords for parallel jobs
Chapter 3. LoadLeveler 69

You can specify the maximum number of processors a user can request
for a parallel job in a job command file using the max_processors keyword.
You can specify this keyword in the user, group, and class stanzas. The
default is -1, which means there is no limit.

• total_tasks

You can specify the maximum number of tasks a user can request for a
parallel job in the job command file using total_task keyword. You can use
this keyword in the user, group, and class stanzas. The default is -1, which
means there is no limit.

• default _interactive_class

You can specify the default class name to this keyword in the user stanza.
This class name is assigned to the user when the user submits an
interactive job and the user does not specify a class using the
LOADL_INTERACTIVE_CLASS environment variable. You can specify
only one default class name to this keyword.

• master_node_requirement

This keyword is used in the class stanza. You can specify the value true or
false to this keyword. If you specify true in the class stanza, LoadLeveler
selects the node as the first node (called the master) that has the
master_node_exclusive = true setting in the machine stanza for the
parallel jobs in this class.

Although we do not list the wall_clock_limit keyword here, you should
specify the keyword for using the backfill scheduler in the class stanza. If
you do not use the keyword in the class stanza, users who submit jobs
must specify the wall clock time in their job command file. The backfill
scheduler uses the wall_clock_limit to find short jobs that can be
completed without delay while large jobs wait for multiple nodes.

We show an example class stanza for running parallel jobs. We want to
create the following environment:

• We create a new class for parallel jobs that can be used by all users.

• A job in this class can request a maximum of five nodes.

• A job in this class can request a maximum of 15 tasks.

• Jobs have a 24 hour run time hard limit and a 12 hour run time soft limit.

The following is a class stanza to describe this environment:
70 Workload Management: SP and Other RS/6000 Servers

3.5 Using and managing LoadLeveler

In this section, we will discuss how to use LoadLeveler to submit jobs and
manage them effectively within the given resources.

3.5.1 Submitting a job
In this section we will discuss how to submit jobs to LoadLeveler. LoadLeveler
will not directly accept the executable file. The LoadLeveler job has to be
defined by a job command file. Only after defining a job command file will a
user be able to submit the job for scheduling and execution. The job
command file almost resembles a shell script.

The job command file contains the LoadLeveler statement with LoadLeveler
keywords that describe the job. The job command file can be built using a
normal editor or using the Build a job window in the GUI. Once the job
command file is prepared, the job can be submitted using the llsubmit

command or from the xloadl GUI. By default, the name of a job command file
ends in .cmd. However, this is not required.

The llsubmit command can be issued from any node in the LoadLeveler
cluster or from the submit only nodes.

The list of LoadLeveler keywords that are available is shown in Figure 10 on
page 72. The LoadLeveler keyword is case-insensitive. Some of the keywords
are only required when you want to submit a parallel job. These are discussed
in detail later in this chapter.

For now, using examples, we will discuss how to create the job command file
for serial and parallel jobs.

3.5.1.1 Serial job command file
Figure 10 on page 72 shows the list of keywords that are available with
LoadLeveler and the bold ones indicate few keywords used for submitting a
serial job.

class_parallel: type = class
class_comment = "For job_type parallel"
max_node = 5
total_tasks = 15
wall_clock_limit = 24:00:00,12:00:00
Chapter 3. LoadLeveler 71

Figure 10. Keywords for submitting a serial job

The keywords are fully explained in the LoadLeveler publication manuals. For
the description of each keyword, we suggest that you refer to the LoadLeveler
publication, LoadLeveler for AIX: Using and Administering, SA22-7311.

For example, let us imagine that the user, bala, belonging to the group, staff,
wants to submit an executable script called bala.sh as a serial job to the
LoadLeveler. The home directory for user bala is /u/bala. The user bala has
been authorized to submit the jobs in the class stanza for small. The job
command file, bala.cmd, is edited using a vi editor, and its contents will look
like the following:

account_no
arguments
checkpoint
class
comment
core_limit
cpu_limit
data_limit
dependency
environment
error
executable
file_limit
group
hold

image_size
initialdir
input
job_cpu_limit
job_name
job_type
max_processors
min_processors
network
node
node_usage
notification
notify_user
output
parallel_path

preferences
queue
requirements
restart
rss_limit
shell
stack_limit
startdate
step_name
tasks_per_node
total_tasks
user_notify
wall_clock_limit
72 Workload Management: SP and Other RS/6000 Servers

Once the job command file is built, it can be submitted to LoadLeveler for
execution. The command to submit is llsubmit. For our example, run the
command llsubmit bala.cmd to submit the job to the LoadLeveler:

The llsubmit command returns the job ID. In this case, the job has been
submitted to the node, sp4n15, and the job number is 258. Now, to verify the
status of the job you have just submitted using the llq command:

The output here shows that your job has been submitted for execution on the
node sp4n07. Now, to verify that the process has been started in the node,
sp4n07, we issue the ps command. This can be done by logging on to the
node, sp4n07, or by using the dsh command from the CWS. Here, the screen
output is shown by using the dsh command from the CWS.

#!/bin/ksh
@ job_type = serial
@ executable = bala.sh
@ arguments =
@ group = staff
@ error = bala.$(Host).$(Cluster).$(Process).err
@ output = bala.$(Host).$(Cluster).$(Process).out
@ initialdir = /u/bala
@ notify_user = bala
@ notification = always
@ checkpoint = no
@ restart = no
@ requirements =(Arch == "R6000") && (OpSys == "AIX43")
@ class = small
@ account_no = bala
@ queue

$ llsubmit bala.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.258" has been submitted.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.258.0 bala 11/11 08:23 R 50 small sp4n07

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held
Chapter 3. LoadLeveler 73

The LoadL-startd daemon has started the LoadL_starter process for the user,
bala. This LoadL_starter process has forked a child process to execute the
script bala.sh.

3.5.1.2 Parallel job command file
Figure 11 shows the list of keywords that are available with the LoadLeveler.
The bold ones indicate a few of the keywords used for submitting a parallel
job. The Parallel Operating Environment fileset ppe.poe is required to run the
parallel job. The Parallel Operating Environment is a priced product of IBM on
RS/6000 SP.

Figure 11. Keywords required to submit a Parallel job

At this point, let us take an example to build a parallel job command file. The
user, bala, wants to submit a parallel job using POE. The name of the
executable file is mpi_test. The user wants this job to be run on two nodes

dsh -w sp4n07
dsh> ps -eaf | grep bala
sp4n07: bala 13560 15668 0 08:23:58 - 0:00 -ksh -c exec /u/loadl/exe
cute/sp4n15.msc.itso.ibm.com.258.0/bala.sh
sp4n07: bala 15668 14498 0 08:23:57 - 0:00 LoadL_starter -p 4 -s sp4
n15.msc.itso.ibm.com.258.0
sp4n07: bala 20176 13560 0 08:24:54 - 0:00 sleep 50

account_no
arguments
checkpoint
class
comment
core_limit
cpu_limit
data_limit
dependency
environment
error
executable
file_limit
group
hold

image_size
initialdir
input
job_cpu_limit
job_name
job_type
max_processors
min_processors
network
node
node_usage
notification
notify_user
output
parallel_path

preferences
queue
requirements
restart
rss_limit
shell
stack_limit
startdate
step_name
tasks_per_node
total_tasks
user_notify
wall_clock_limit
74 Workload Management: SP and Other RS/6000 Servers

using the css0 switch adapter. The job command file for submitting this
parallel job to the LoadLeveler looks like the following:

Once the job command file is ready, it can be submitted to the LoadLeveler
using the llsubmit command. The name of the job command file created here
is bala_mpi.cmd.

The job bala_mpi.cmd is submitted to the scheduler sp4n05 and the job ID is
sp4n05.214. This llq output shows that it is running on node sp4n07. This is a
parallel job which runs on two nodes. This can be verified using the llstatus

command. After submitting the parallel job, the llstatus command will look
like the following:

POE job : using switch (css0)

@ job_type=parallel
@ notification = always
@ account_no = bala
@ environment = COPY_ALL; MP_TIMEOUT=1200;
@ error = bala_mpi.$(Host).$(Cluster).$(Process).err
@ output = bala_mpi.$(Host).$(Cluster).$(Process).out
@ wall_clock_limit = 600,500
@ network.mpi = css0,shared,us
Beginning of step1
@ step_name= step1
@ node= 2
@ total_tasks = 2
@ executable = /bin/poe
@ arguments = /u/bala/mpi_test -ilevel 6 -labelio yes
@ class = small
@ queue

$ llsubmit bala_mpi.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.157" has been submitted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.214.0 bala 11/11 10:48 ST 50 small sp4n07

1 job steps in queue, 0 waiting, 1 pending, 0 running, 0 held
Chapter 3. LoadLeveler 75

From the llstatus command output, you can see that the job is running on
two nodes: sp4n06 and sp4n07. Now, to see the process that has been
started in the nodes, sp4n06 and sp4n07, use the dsh command from the
CWS as shown in the next screen:

From the output, you can see the LoadL_starter is started on both the nodes
that are assigned for the parallel job. The pmdv2 is the POE process for
executing the parallel job. The mpi_test is the executable parallel code that is
running on both nodes.

3.5.2 Verifying job status
Once a job has been submitted to the LoadLeveler, the status of the job can
be seen using the llq command. By default, the llq command gives the
status of all the jobs in the queue. The following is the sample output of the
llq command after submitting the serial job.

$ llstatus
Name Schedd InQ Act Startd Run LdAvg Idle Arch OpSys
sp4n01.msc.itso.ibm.com Down 0 0 Idle 0 0.01 3 R6000 AIX43
sp4n05.msc.itso.ibm.com Avail 1 0 Idle 0 0.03 9999 R6000 AIX43
sp4n06.msc.itso.ibm.com Down 0 0 Run 1 0.00 9999 R6000 AIX43
sp4n07.msc.itso.ibm.com Down 0 0 Run 1 0.00 9999 R6000 AIX43
sp4n08.msc.itso.ibm.com Down 0 0 Idle 0 0.26 9999 R6000 AIX43
sp4n15.msc.itso.ibm.com Avail 0 0 Idle 0 3.00 9999 R6000 AIX43

R6000/AIX43 6 machines 1 jobs 2 running
Total Machines 6 machines 1 jobs 2 running

The Central Manager is defined on sp4n01.msc.itso.ibm.com

The following machine is marked SUBMIT_ONLY
sp4en0.msc.itso.ibm.com

All machines on the machine_list are present.

dsh -w sp4n06,sp4n07 ps -eaf | grep bala
sp4n06: bala 4576 4824 7 10:48:58 - 0:00 /etc/pmdv2
sp4n06: bala 4824 13900 3 10:48:56 - 0:00 LoadL_starter -p 4 -s sp4
n05.msc.itso.ibm.com.214.0
sp4n06: bala 15448 4576 61 10:48:59 - 0:00 /u/bala/mpi_test
sp4n07: bala 5940 15860 96 10:48:59 - 0:01 /u/bala/mpi_test
sp4n07: bala 14046 3558 6 10:48:56 - 0:00 LoadL_starter -p 4 -s sp4
n05.msc.itso.ibm.com.214.0
sp4n07: bala 14232 14046 9 10:48:57 - 0:00 /u/loadl/execute/sp4n05.m
sc.itso.ibm.com.214.0/poe
sp4n07: bala 15860 14046 4 10:48:58 - 0:00 /etc/pmdv2
76 Workload Management: SP and Other RS/6000 Servers

There are few useful flags that can be used with the llq command. The most
useful among them are -l and -s flags. The -l flag is used for getting more
detailed status information about the job. For more details about the other
flags, refer to the LoadLeveler publication, LoadLeveler for AIX: Using and
Administering, SA22-7311.

The following is the example output for the llq -l sp4n05.57.0 command,
where sp4n05.57.0 is the serial job that is submitted to LoadLeveler.

Figure 12. Long listing of llq (Part 1 of 2)

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.57.0 bala 11/8 12:07 R 50 small sp4n05

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held

$ llq -l sp4n05.57.0
=============== Job Step sp4n05.msc.itso.ibm.com.57.0 ===============

Job Step Id: sp4n05.msc.itso.ibm.com.57.0
Job Name: sp4n05.msc.itso.ibm.com.57
Step Name: 0

Structure Version: 9
Owner: bala

Queue Date: Mon Nov 8 12:07:21 CST 1999
Status: Running

Dispatch Time: Mon Nov 8 12:07:21 CST 1999
Completion Date:
Completion Code:
User Priority: 50
user_sysprio: 80
class_sysprio: 100
group_sysprio: 0

System Priority: -136188
q_sysprio: -136188

Notifications: Always
Virtual Image Size: 1 kilobytes

Checkpoint:
Restart: no

Hold Job Until:
Cmd: bala.sh
Args:
Env:
In: /dev/null
Out: bala.sp4n01.57.0.out
Err: bala.sp4n01.57.0.err
Chapter 3. LoadLeveler 77

Figure 13. Long listing of llq (Part 2 of 2)

The -s flag is used to find out why the job is kept in the NotQueued, Idle or
Deferred state. The following example shows the output of the llq command
where the bold ones indicate the jobs that are in the idle state.

Initial Working Dir: /u/bala
Dependency:

Requirements: (Arch == "R6000") && (OpSys == "AIX43")
Preferences:
Step Type: Serial

Min Processors:
Max Processors:
Allocated Host: sp4n05.msc.itso.ibm.com

Node Usage: shared
Submitting Host: sp4n01.msc.itso.ibm.com

Notify User: bala
Shell: /bin/ksh

LoadLeveler Group: staff
Class: small

Cpu Hard Limit: 72900 seconds
Cpu Soft Limit: -1
Data Hard Limit: -1
Data Soft Limit: -1
Core Hard Limit: -1
Core Soft Limit: -1
File Hard Limit: -1
File Soft Limit: -1
Stack Hard Limit: -1
Stack Soft Limit: -1
Rss Hard Limit: -1
Rss Soft Limit: -1

Step Cpu Hard Limit: -1
Step Cpu Soft Limit: -1
Wall Clk Hard Limit: 1800 seconds
Wall Clk Soft Limit: -1

Comment:
Account: bala

Unix Group: staff
NQS Submit Queue:
NQS Query Queues:

Negotiator Messages:
Adapter Requirement:

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held
78 Workload Management: SP and Other RS/6000 Servers

Let us consider one job, sp4n15.105.0, to find out why it cannot run at this
point in time. To find the reasons, let us execute the llq -s command. The
evaluation for job step, sp4n15.105.0, being kept in the idle state is given in
the last few lines of the llq -s output, and it looks like this:

In this example, user bala has submitted ten jobs in the job class small. The
job class small is allowed to run only one job at a time in the nodes sp4n01,
sp4n05, sp4n06, sp4n07, sp4n08, and sp4n15. This condition is defined by
the LoadL_config.local file in each node by the Class keyword.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.46.0 bala 11/8 11:42 R 50 small sp4n08
sp4n15.101.0 bala 11/8 11:42 R 50 small sp4n06
sp4n05.47.0 bala 11/8 11:42 R 50 small sp4n05
sp4n15.102.0 bala 11/8 11:42 R 50 small sp4n07
sp4n05.48.0 bala 11/8 11:42 R 50 small sp4n01
sp4n15.103.0 bala 11/8 11:42 R 50 small sp4n15
sp4n05.49.0 bala 11/8 11:44 I 50 small
sp4n15.104.0 bala 11/8 11:44 I 50 small
sp4n05.50.0 bala 11/8 11:44 I 50 small
sp4n15.105.0 bala 11/8 11:44 I 50 small

$ llq -s sp4n15.105.0
============================== EVALUATIONS FOR JOB STEP 105.0 ==================
============

SUMMARY

The class of this job step is : small. However, no machine in the LoadLeveler cl
uster can start a job step of this class at the present time.

ANALYSIS

sp4n15.msc.itso.ibm.com : No initiator of job class = small is available on t
his machine at the present time.

sp4n08.msc.itso.ibm.com : No initiator of job class = small is available on t
his machine at the present time.

sp4n07.msc.itso.ibm.com : No initiator of job class = small is available on t
his machine at the present time.

sp4n06.msc.itso.ibm.com : No initiator of job class = small is available on t
his machine at the present time.

sp4n05.msc.itso.ibm.com : No initiator of job class = small is available on t
his machine at the present time.

sp4n01.msc.itso.ibm.com : No initiator of job class = small is available on t
his machine at the present time.
Chapter 3. LoadLeveler 79

The llq output shows that one job of the class small is already running in
nodes sp4n01, sp4n05, sp4n06, sp4n07, sp4n08, and sp4n15. These nodes
cannot run anymore jobs submitted in the class small as defined in the
LoadL_config.local; so, the job sp4n15.105.0 is kept in the idle state. The
scheduler periodically checks for the availability of any node to run under this
class. Once any node becomes free, the scheduler submits the job to that
node for execution.

3.5.3 Changing a job’s priority
The administrator or user may need to run a job at a higher or lower priority
for various reasons. LoadLeveler gives you the option of changing the priority
of a job that has been submitted to the scheduler. This can be done using the
llprio command. The priority of a job ranges from 0 to 100, with the higher
numbers corresponding to higher priorities. To change the priority, you need
to supply a + (plus) or - (minus) followed by an incremental value.

The priority of a job can only be changed by the owner of the job or by the
LoadLeveler administrator. Also, changing the priority of a running job has no
significance. Changing the priority of a job is only significant for the jobs in
the queue for dispatching.

Let us consider an example in which the user bala has submitted many jobs
to LoadLeveler, and they are in the queue. The llq command output shows
the jobs that are submitted to the LoadLeveler queue:

Now, the user bala wants the job sp4n05.61.0 to be run before sp4n15.115.0.
This can be achieved either by increasing the priority of job sp4n05.61.0 or by
decreasing the priority of job sp4n15.115.0. Here, the user has decided to
increase the priority of job sp4n05.61 by 50 using the llprio command. The
following output shows the job status after increasing the priority using the
llprio command.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.113.0 bala 11/8 15:03 R 50 small sp4n07
sp4n05.59.0 bala 11/8 15:03 R 50 small sp4n06
sp4n15.114.0 bala 11/8 15:03 R 50 small sp4n05
sp4n05.60.0 bala 11/8 15:03 R 50 small sp4n01
sp4n15.115.0 bala 11/8 15:03 I 50 small
sp4n05.61.0 bala 11/8 15:03 I 50 small

6 job steps in queue, 2 waiting, 0 pending, 4 running, 0 held
80 Workload Management: SP and Other RS/6000 Servers

From the job status, you can see that job sp4n05.61.0 is scheduled before job
sp4n15.115.0. Job sp4n05.61.0 will be the next job that will be scheduled for
execution as soon as any of the nodes become free.

3.5.4 Holding/releasing a job
The administrator or user may need to hold some of the jobs from running for
various reasons. For example, the user or administrator may feel that the job
is not so urgent and that it can run during the weekend or overnight. In order
to hold a job submitted in the queue, there is a LoadLeveler command,
llhold, which will place the job in a temporary hold. This command will only
affect the jobs that are not running. The owner of a job can put his or her job
on hold, or the LoadLeveler administrator can put any job in the queue in a
hold state.

For example, user bala has submitted few jobs to the LoadLeveler. Some of
these jobs are already running and some of the jobs are in the queue. Now,
bala has decided to hold one of the jobs, sp4n15.115.0, which is waiting in
the queue. The screen output shows the commands that user bala will
execute to monitor the status of the job whether it has moved to the hold
state.

$ llprio +50 sp4n05.61.0
llprio: Priority command has been sent to the central manager.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.113.0 bala 11/8 15:03 R 50 small sp4n07
sp4n05.59.0 bala 11/8 15:03 R 50 small sp4n06
sp4n05.60.0 bala 11/8 15:03 R 50 small sp4n01
sp4n15.114.0 bala 11/8 15:03 R 50 small sp4n05
sp4n05.61.0 bala 11/8 15:03 I 100 small
sp4n15.115.0 bala 11/8 15:03 I 50 small

6 job steps in queue, 2 waiting, 0 pending, 4 running, 0 held
Chapter 3. LoadLeveler 81

The screen output here shows the state of job sp4n15.115.0, which was in
the “I” (idle) state, has changed to the “H” (hold) state after the execution of
the llhold command. You can also see that job sp4n05.61.0 is being pushed
above in the queue.

The job that is kept in held state can be released using the llhold -r

command. Only the LoadLeveler administrator can release other users’ jobs
that are in the hold state. Now, let us try to release the job that we put on hold
in the previous example. The screen output here shows the result of the
llhold command:

Immediately after releasing the hold on job sp4n15.115.0, it has started
running on node sp4n05 since it is free. If there were no nodes available to
run, this job would have been kept in the queue in an idle state.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.60.0 bala 11/8 15:03 R 100 small sp4n01
sp4n15.113.0 bala 11/8 15:03 R 50 small sp4n07
sp4n05.59.0 bala 11/8 15:03 R 50 small sp4n06
sp4n15.114.0 bala 11/8 15:03 R 50 small sp4n05
sp4n15.115.0 bala 11/8 15:03 I 60 small
sp4n05.61.0 bala 11/8 15:03 I 50 small

6 job steps in queue, 2 waiting, 0 pending, 4 running, 0 held
$ llhold sp4n15.115.0
llhold: Hold command has been sent to the central manager.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.60.0 bala 11/8 15:03 R 100 small sp4n01
sp4n15.113.0 bala 11/8 15:03 R 50 small sp4n07
sp4n05.59.0 bala 11/8 15:03 R 50 small sp4n06
sp4n15.114.0 bala 11/8 15:03 R 50 small sp4n05
sp4n05.61.0 bala 11/8 15:03 I 50 small
sp4n15.115.0 bala 11/8 15:03 H 60 small

$ llhold -r sp4n15.115.0
llhold: Hold command has been sent to the central manager.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.115.0 bala 11/8 15:03 R 60 small sp4n05
sp4n05.61.0 bala 11/8 15:03 R 50 small sp4n07

2 job steps in queue, 0 waiting, 0 pending, 2 running, 0 held
82 Workload Management: SP and Other RS/6000 Servers

3.5.5 Cancelling a job
The Jobs submitted to the LoadLeveler queue can be cancelled using the
llcancel command. This command can be used to cancel running jobs and
queued jobs. There are options available to cancel the jobs based on the user
ID, hostname, queue host, cluster ID or process ID. The jobs submitted by
other users can only be cancelled by the LoadLeveler administrator.

The screen output here shows the job status before and after executing the
llcancel command to cancel job sp4n15.117.0.

3.5.6 Verifying the node’s status
The llstatus command is used to display the status of the nodes that are
available in the LoadLeveler cluster. When you execute the llstatus

command, it displays one line of information about each node in the
LoadLeveler cluster. To get a long listing of the node status information, you
can use the llstatus command with the -l option.

It is also possible to get a customized format of the status of the node using
the -f option. The syntax to create a customized format is explained in detail
in the manual LoadLeveler for AIX: Using and Administering, SA22-7311.

Sample output of the llstatus command is shown in the following screen:

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.116.0 bala 11/8 15:11 R 50 small sp4n05
sp4n15.117.0 bala 11/8 15:11 R 50 small sp4n01
sp4n05.64.0 bala 11/8 15:11 I 50 small
sp4n05.65.0 bala 11/8 15:11 I 50 small
sp4n15.118.0 bala 11/8 15:11 I 50 small

5 job steps in queue, 3 waiting, 0 pending, 2 running, 0 held
$ llcancel sp4n15.117.0
llcancel: Cancel command has been sent to the central manager.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.116.0 bala 11/8 15:11 R 50 small sp4n05
sp4n05.64.0 bala 11/8 15:11 R 50 small sp4n01
sp4n05.65.0 bala 11/8 15:11 I 50 small
sp4n15.118.0 bala 11/8 15:11 I 50 small

4 job steps in queue, 2 waiting, 0 pending, 2 running, 0 held
Chapter 3. LoadLeveler 83

The llstatus command output here shows that there are six nodes in the
LoadLeveler cluster. The scheduler is running on nodes sp4n05 and sp4n15.
The startd daemon is running on all six nodes. There are two parallel jobs on
sp4n05, and they are running on four nodes: sp4n05, sp4n06, sp4n07, and
sp4n08. Each node is running two tasks; so, there are a total of eight tasks
running in the LoadLeveler cluster.

The output also shows which node is acting as the Central Manager and
which node is acting as the submit-only machine. In our case, sp4n01 is the
central manager and sp4en0 is configured as the submit-only machine.

3.5.7 Central manager and alternate central manager
The main function of the Central Manager is to coordinate all LoadLeveler
related activities within the LoadLeveler cluster. This node gathers node
status and job information from all nodes in the cluster. This information is
used to decide on which nodes the jobs in the queue can be executed. One
may wonder what will happen to the jobs that are running when the central
manager goes down. When the central manager goes down, the status of the
jobs is as follows:

• Jobs executing on the other nodes will continue to run.

• Jobs waiting in the queue for execution will remain and get started when
the Central Manager or its alternative come up.

• Users may continue to submit jobs from other nodes. These jobs will be in
the queue and will get started when the Central Manager comes up.

$ llstatus
Name Schedd InQ Act Startd Run LdAvg Idle Arch OpSys
sp4n01.msc.itso.ibm.com Down 0 0 Idle 0 0.00 0 R6000 AIX43
sp4n05.msc.itso.ibm.com Avail 2 1 Run 2 0.23 9999 R6000 AIX43
sp4n06.msc.itso.ibm.com Down 0 0 Run 2 0.16 9999 R6000 AIX43
sp4n07.msc.itso.ibm.com Down 0 0 Run 2 0.08 9999 R6000 AIX43
sp4n08.msc.itso.ibm.com Down 0 0 Run 2 0.16 9999 R6000 AIX43
sp4n15.msc.itso.ibm.com Avail 0 0 Idle 0 3.00 9999 R6000 AIX43

R6000/AIX43 6 machines 2 jobs 8 running
Total Machines 6 machines 2 jobs 8 running

The Central Manager is defined on sp4n01.msc.itso.ibm.com

The following machine is marked SUBMIT_ONLY
sp4en0.msc.itso.ibm.com

All machines on the machine_list are present.
84 Workload Management: SP and Other RS/6000 Servers

• Job information is not lost. When the central manager comes up, you will
be able to see all the running and waiting jobs that were in the queue.

The name of the Central Manager node can be seen at the end of the
llstatus command output. In order to avoid the central manager being a
single point of failure, we can designate any node in the cluster as the
alternate central manager. The alternate central manager node will act as a
standby for the central manager node.

Whenever the central manager node goes down or does not respond to the
alternate central manager daemon due to network failures, the alternate
central manager will start acting as the central manager. The alternate central
manager will only become the central manager if there is no response from
the central manager for the timeout period that is set by the keywords
CENTRAL_MANAGER_HEARTBEAT_INTERVAL and
CENTRAL_MANAGER_TIMEOUT in the configuration file.

In the test environment, we configured sp4n01 as the central manager node
and sp4n06 as the alternate central manager node. Let us simulate a
condition of bringing down the central manager and see how the alternate
central manager behaves. The central manager can be brought down using
the llctl -h sp4n01 stop command:

After stopping the daemons in the central manager, if you immediately issue
the llq or llstatus command to check the job or machine status, the system
will report an error. The error will look like the following:

$ llctl -h sp4n01 stop
llctl: Sent stop command to host sp4n01.msc.itso.ibm.com.
Chapter 3. LoadLeveler 85

Node sp4n06, which has been defined as the alternate central manager, will
be trying to communicate with the LoadLeveler daemons on node sp4n01.
Since the daemons are not running, it will never get a response back from
node sp4n01. Node sp4n06 will wait until the timeout period. Once the
timeout period is reached, node sp4n06 will start the negotiator daemon and
start contacting all the nodes in the cluster. This daemon will take some time
to understand the status of all the nodes in the cluster. The time taken
depends on the number of nodes in the cluster. If you try to run the llstatus

command during this period, it may only show some nodes; there is no need
to panic. The screen output here shows the result of the llstatus command
after the alternate central manager has received all the nodes in the cluster.

$ llq
11/09 15:45:11 llq: 2539-463 Cannot connect to sp4n01.msc.itso.ibm.com "LoadL_n
egotiator" on port 9614. errno = 22
11/09 15:45:11 llq: 2539-463 Cannot connect to sp4n06.msc.itso.ibm.com "LoadL_n
egotiator" on port 9614. errno = 22
11/09 15:45:11 llq: 2539-463 Cannot connect to sp4n01.msc.itso.ibm.com "LoadL_n
egotiator" on port 9614. errno = 22
llq: There is currently no job status to report.
$ /llstatus
11/09 15:45:14 llstatus: 2539-463 Cannot connect to sp4n01.msc.itso.ibm.com "Lo
adL_negotiator" on port 9614. errno = 22
11/09 15:45:14 llstatus: 2539-463 Cannot connect to sp4n06.msc.itso.ibm.com "Lo
adL_negotiator" on port 9614. errno = 22
11/09 15:45:14 llstatus: 2539-463 Cannot connect to sp4n01.msc.itso.ibm.com "Lo
adL_negotiator" on port 9614. errno = 22
llstatus: There is currently no machine status to report.
86 Workload Management: SP and Other RS/6000 Servers

It is clear from the output that the jobs that were running prior to bringing
down the central manager continue to run.

3.5.8 Using the LoadLeveler GUI
LoadLeveler also provides a Motif-based GUI that can be used for building job
command files and submitting and managing jobs. The GUI can be started
using the following command:

/usr/lpp/LoadL/full/bin/xloadl &

To start the GUI on a submit-only machine, issue the following command:

/usr/lpp/LoadL/so/bin/xloadl_so &

Here, we will discuss the basic steps to start and use the LoadLeveler GUI.
The step-by-step instructions for performing various tasks using the GUI are
explained in detail in the publication LoadLeveler for AIX: Using and
Administering, SA22-7311. We suggest you to refer to this manual for more
details.

Figure 14 on page 88 shows the GUI that appears when xloadl_so is started
on the submit-only machine. There are three windows that display the
information regarding the jobs, machines, and messages.

$ llstatus
Name Schedd InQ Act Startd Run LdAvg Idle Arch OpSys

sp4n05.msc.itso.ibm.com Avail 0 0 Idle 0 0.04 9999 R6000 AIX43
sp4n06.msc.itso.ibm.com Down 0 0 Run 1 1.00 9999 R6000 AIX43
sp4n07.msc.itso.ibm.com Down 0 0 Run 1 0.97 9999 R6000 AIX43
sp4n08.msc.itso.ibm.com Down 0 0 Run 1 0.97 1429 R6000 AIX43
sp4n15.msc.itso.ibm.com Avail 1 1 Idle 0 3.04 9999 R6000 AIX43

R6000/AIX43 5 machines 1 jobs 3 running
Total Machines 5 machines 1 jobs 3 running

The Central Manager is defined on sp4n01.msc.itso.ibm.com, but is unusable
Alternate Central Manager is serving from sp4n06.msc.itso.ibm.com

The following machine is marked SUBMIT_ONLY
sp4en0.msc.itso.ibm.com

The following machine is absent
sp4n01.msc.itso.ibm.com
Chapter 3. LoadLeveler 87

Figure 14. LoadLeveler GUI Main window

The job window gives the job status of all the jobs. This output will be the
same as what you get when you run the llq command from the shell prompt.
The menu bar in the jobs window has many options related to actions that can
be performed on the jobs. By default, the job status screen will be refreshed
every 120 seconds.

The machine window gives the machine status of all the nodes in the
LoadLeveler cluster. The output will look the same as what you get when you
run the llstatus command from the shell prompt. By default, the machine
status will be refreshed every 60 seconds.
88 Workload Management: SP and Other RS/6000 Servers

The message window gives the output of the commands you run from the job
menu bar or the machines menu bar. The message window in Figure 14 on
page 88 shows that three jobs were submitted.

3.5.8.1 Submitting a job from GUI
You can use the GUI to submit jobs. To submit a job, select the File menu in
the job or machines window, and choose Submit a Job. This opens up the
Submit a Job dialog as shown in Figure 15. Select the job command file from
the list, and click on the Submit button to submit the job. Once you click on
the submit button, the job is submitted to LoadLeveler, and the job ID will be
displayed in the message window. The job and machine status may need to
be refreshed in order to get the current status of the job and the nodes on
which the job is running.

Figure 15. Submit a Job dialog

3.5.8.2 Building the job command file
The LoadLeveler GUI can be used to create the job command file. This is a
very useful tool for first timers for building a LoadLeveler job command file.
The GUI can be used to create job command files for serial, parallel, and
PVM jobs. Let us take an example of creating a serial job command file to run
Chapter 3. LoadLeveler 89

the script bala.sh. To create a job command file, select the File menu in the
job status window and click on Build a Job. Now, you can choose the job type
for building the job command file. For our example, to build a serial job file,
click on Serial. This opens up the Build a Job dialog box as shown in Figure
16.

Figure 16. Build a serial job command file

The minimum fields that must be edited to submit the bala.sh script as a
serial job are the executable and class fields. After editing these fields, click
the Submit button to submit the job to LoadLeveler. If you want to save the
job command file, click Save. This will open a dialog box for entering the
90 Workload Management: SP and Other RS/6000 Servers

filename you want to save. The same method can be used for building the
parallel jobs.

3.6 Checkpointing

The jobs submitted to the LoadLeveler have three types of completion. In a
normal successful completion, job execution is aborted by LoadLeveler
because wall clock time specified by the job is completed, or there is an
abrupt end to the job due to node failure. In the case of a normal successful
completion, no further action is necessary because the job is completed
through normal execution. In the other two cases, the job has to be restarted
by the user. In general, the job is restarted from the beginning by resubmitting
the job to LoadLeveler. But, it would be ideal if the job was restarted from the
point of failure either on the same node or on a different node. Restarting
from the point of failure will save time from the user’s point of view and
resources from the administrator’s point of view.

Checkpointing is the method by which you can periodically save the state of a
job so that, if the job does not complete, it can be restarted from the saved
state. LoadLeveler provides the facility for checkpointing. There are some
keywords to be defined in the job command file to enable checkpointing and
restart the job from the saved state.

A checkpoint can either be initiated by the system or by the user. System-
initiated checkpointing is only available for serial jobs. User-initiated
checkpointing is available for both serial and parallel jobs.

The serial jobs must use the LoadLeveler checkpoint API call to request for
used initiated checkpointing. You can also enable both the user and system-
initiated checkpoints for serial jobs.The system-initiated one automatically
checkpoints your program at preset intervals.

The POE jobs have to use the parallel environment (PE) checkpointing API
for requesting user initiated checkpoint. The LoadLeveler checkpoint API
does not support checkpointing parallel jobs. The checkpointing for parallel
PVM jobs is not supported.

The keywords for checkpointing are:

checkpoint = user_initiated | system_initiated | no

User-initiated
The user’s application program determines when the checkpoint is to be
taken. This type of checkpointing is available for both serial and parallel jobs.
Chapter 3. LoadLeveler 91

System-initiated
The checkpoint is taken at administrator-defined intervals. This is defined by
MIN_CKPT_INTERVAL and MAX_CKPT_INTERVAL in the LoadL_config file
or in the LoadL_config.local file. The default values are 900 and 7200
seconds. The first checkpoint is taken at MIN_CKPT_INTERVAL. The second
checkpoint will be taken at MIN_CKPT_INTERVAL * 2. The third checkpoint
will be taken at twice the interval of the second checkpoint, that is,
MIN_CKPT_INTERVAL *4. In this fashion, the checkpoint interval will be
doubled with the previous checkpoint interval until it reaches the
MAX_CKPT_INTERVAL.

The environment variables required for checkpointing are:

• CHKPT_STATE = enable | restart

• CHKPT_FILE

• CHKPT_DIR

The CHKPT_STATE environment variable allows you to enable checkpointing.
The enable option enables the checkpointing. The restart option restarts the
executable from an existing checkpoint. If you set the checkpoint equal to no
in the job command file, no checkpoints will be taken regardless of the value
of the CHKPT_STATE variable.

The CHKPT_FILE and CHKPT_DIR environment variables help you manage
your checkpoint files. If you want the job to be restarted on a different node,
you must define the directory in a global file system. If you define the
directory in the local file system, the job can only be restarted in the same
node in which it was running.

The following are a few points to keep in mind when you want to enable
checkpoint:

• Set the CHKPT_FILE and CHKPT_DIR variables to a global file system so
that you can migrate the job to a different node.

• Check that you have sufficient space in the CHKPT_DIR directory.
LoadLeveler will try to reserve enough disk space for the checkpoint file
when the job is started, but it is your responsibility to ensure that sufficient
space is available.

• Set the checkpoint file size to maximum. This is required to ensure that the
creation of the checkpoint file is not prevented due to system limits. This
can be done by setting the file_limit to unlimited for your job class.

• The programs need to be compiled with one of the following supported
compilers:
92 Workload Management: SP and Other RS/6000 Servers

• For Fortran: xlf 5.1.1 or later releases

• For C and C++: xlC 3.6.x or Visual Age C, C++ (VAC++) 4.1, and later
releases

• To enable user-initiated checkpointing, check that the programs are linked
to the LoadLeveler libraries libchkrst.a and chkrst_wrap.o. To ensure that
your checkpointing jobs are linked correctly, compile your programs using
the compile script found in the bin directory of the LoadLeveler release
directory.

3.7 LoadLeveler APIs

LoadLeveler provides Application Programming Interface (API) support for
customers to develop site-specific LoadLeveler functions and commands.
This allows the user’s application programs to communicate with the
LoadLeveler environment.

Let us try to understand the need for this API and how we can use it.
LoadLeveler gives you various executables to submit, query, manage jobs,
and generate reports about the usage of the resources in the LoadLeveler
cluster. There may be cases in which some of the required functions in your
customer environment cannot be met by these executables. In such
situations, you can implement them by writing your own code using this API to
interface with the LoadLeveler environment.

For example, the format of the accounting report generated using the
llsummary command may not meet your requirements, and you may want to
have the report generated in a different format. Generating the report in the
required format can be done using two methods:

• Take the output using the llsummary command, which comes as part of
LoadLeveler, and use the tools, such as grep and awk, to convert it to the
required format.

• Write your own program using the GetHistory report generation
subroutine to generate the reports.

Preparing the accounting report in the customized format is one example of
using the LoadLeveler API. There may be many other requirements to submit,
query, or manage jobs in your environment that may need to be implemented.
In such situations, this API will be useful for creating your own executables to
communicate with the LoadLeveler environment.

The LoadLeveler Version 2 Release 1 provides the following APIs, which can
be used to integrate to the basic LoadLeveler functions:
Chapter 3. LoadLeveler 93

• Accounting API

• Serial Checkpointing API

• Submit API

• Data Access API

• Parallel Job API

• Job control API

• Query API

• User Exits

There are a few sample programs available in the /usr/lpp/LoadL/full/samples
directory for using the various API calls.

The llapi.h header file defines all the API data structures and subroutines.
The libllapi.a library contains all the LoadLeveler API subroutines. These
libraries are not thread-safe and, thus, should not be linked to the threaded
applications. The syntax and usage of the subroutines is discussed in detail
in the manual LoadLeveler for AIX: Using and Administering, SA22-7311.

Example of using the API
Now, we will write a program using the LoadLeveler API. This example
queries and obtains the list of current jobs from the negotiator. It then prints
the step ID and the name of the first allocated host. We edited the program
llapi-test.c to implement this example, and the code looks like the following:
94 Workload Management: SP and Other RS/6000 Servers

#include "llapi.h"

main(int argc,char *argv[])
{
LL_element *queryObject=NULL, *job=NULL;
int rc, num, err, state;
LL_element *step=NULL, *machine = NULL;
char *id=NULL, *name=NULL;

/* Initialize the query for jobs */
queryObject = ll_query(JOBS);

/* I want to query all jobs */
rc = ll_set_request(queryObject,QUERY_ALL,NULL,NULL);

/* Request the objects from the Negotiator daemon */
job = ll_get_objs(queryObject,LL_CM,NULL,&num,&err);

/* Did we get a list of objects ? */
if (job == NULL) {

printf(" ll_get_objs returned a NULL object.\n");
printf(" err = %d\n",err);

}
else {

/* Loop through the list and process */
printf(" RESULT: number of jobs in list = %d\n",num);
while(job) {

rc = ll_get_data(job,LL_JobGetFirstStep, &step);
while (step) {

rc = ll_get_data(step,LL_StepID, &id);
rc = ll_get_data(step,LL_StepState,&state);
printf(" RESULT: step id: %s\n",id);
if (state == STATE_RUNNING) {

rc = ll_get_data(step,LL_StepGetFirstMachine, &machine);
rc = ll_get_data(machine,LL_MachineName, &name);

printf(" Running on 1st assigned host: %s.\n",name);
free(name);

}
else

printf(" Not Running.\n");
free(id);
rc=ll_get_data(job,LL_JobGetNextStep,&step);

}
job = ll_next_obj(queryObject);

}
}

/* free objects obtained from Negotiator */
rc = ll_free_objs(queryObject);

/* free query element */
rc = ll_deallocate(queryObject);

}

Chapter 3. LoadLeveler 95

Once the file has been edited using your favorite editor, we need to compile
and link this program using the make command. The Makefile to compile and
link this program to the llapi library looks like:

Next, run the make command to create the executable llapi-test. Now, let us
run this executable that we had created and see how this piece of code has
communicated with the negotiator and returned the results. We can see the
output of the llq command and the output of our test code llapi-test.

#
5765-145 (C) COPYRIGHT IBM CORP 1993
5765-227 (C) COPYRIGHT IBM CORP 1993
5765-228 (C) COPYRIGHT IBM CORP 1993
#
#***
Module Name : Makefile for accounting api sample programs
#***

CC = cc

RELEASE_DIR=/usr/lpp/LoadL/full

LIB_DIR=$(RELEASE_DIR)/lib
INCLUDE_DIR=$(RELEASE_DIR)/include

CFLAGS = -I$(INCLUDE_DIR)

LDFLAGS = -L$(LIB_DIR) -lllapi

all: llapi-test

llapi-test: llapi-test.o
$(CC) $(CFLAGS) -o llapi-test llapi-test.o $(LDFLAGS)
96 Workload Management: SP and Other RS/6000 Servers

From this example, we can see how we captured the job status using the
LoadLeveler API subroutines. Using the API, customers can customize the
output formats. For example, each site would like to have a different style of
accounting report generated from LoadLeveler; in such situations, you can
use the accounting API.

Using the LoadLeveler API, you can develop your own scheduling
applications that may be necessary for your environment

There are two such schedulers developed using the LoadLeveler API: EASY-
LL is one of the schedulers developed jointly by IBM and the Cornell Theory
Centre. The other one is the MAUI scheduler developed by the Maui High
Performance Computing Center.

EASY-LL is a scheduling mechanism that provides FIFO scheduling for both
large and small by means of a backfill algorithm. This algorithms allows small
jobs to make use of the idle nodes without delaying the execution of the large
jobs that need more nodes. The backfill algorithm has since been made
available in the IBM LoadLeveler Version 2 Release 1. For more details about
EASY-LL, refer to the Web site http://www.tc.cornell.edu.

The MAUI scheduler was developed to specifically address the job scheduling
requirements of the Maui High Performance Computing Centre. This
scheduler is designed to integrate fair share scheduling and backfill
capabilities with LoadLeveler infrastructure. For more details about this
scheduler, refer to the Web site http://www.mhpcc.edu.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.513.0 bala 11/17 09:11 R 50 small sp4n05
sp4n05.711.0 bala 11/17 09:11 R 50 small sp4n01
sp4n15.514.0 bala 11/17 09:12 I 50 small

3 job steps in queue, 1 waiting, 0 pending, 2 running, 0 held

$./llapi-test
RESULT: number of jobs in list = 3
RESULT: step id: sp4n15.msc.itso.ibm.com.514.0
Not Running.
RESULT: step id: sp4n15.msc.itso.ibm.com.513.0
Running on 1st assigned host: sp4n05.msc.itso.ibm.com.
RESULT: step id: sp4n05.msc.itso.ibm.com.711.0
Running on 1st assigned host: sp4n01.msc.itso.ibm.com.
$

Chapter 3. LoadLeveler 97

3.8 LoadLeveler accounting

LoadLeveler has a feature to collect accounting information about the jobs
that are run in the LoadLeveler cluster. This will be useful for analyzing the
usage of all the nodes in the cluster. In some cases, the customer
installations allow external customers or users to use the resources on a
chargeable basis. In such situations, there is a requirement to find out the
usage of the resources for charging purposes. The LoadLeveler accounting
system can be enabled to collect the various resources used by all the users
in the cluster.

The accounting information for a completed serial job is determined by the
accumulated resources consumed by that job in the node. In case of a
completed parallel job, the information is gathered by accumulating the
resources from all the nodes that ran the job.

LoadLeveler can collect a variety of accounting information based on your
requirements. The various types of job resource data that can be collected
are:

• Job Resource data on serial parallel jobs

• Job Resource data based on the machines

• Job Resource data based on events

• Job Resource data based on user accounts

3.8.1 Configure LoadLeveler accounting
The steps to configure LoadLeveler accounting are as follows:

1. Log in as root user in the CWS.

2. To start collecting the accounting information, the following keywords have
to be enabled in the LoadL_config file.

#
Specify accounting controls
#
ACCT = A_ON A_DETAIL
ACCT_VALIDATION = $(BIN)/llacctval
GLOBAL_HISTORY = $(SPOOL)

LoadL_StartD Macros

JOB_LIMIT_POLICY = 120
JOB_ACCT_Q_POLICY = 300
98 Workload Management: SP and Other RS/6000 Servers

The keyword ACCT = A_ON A_DETAIL where A_ON enables accounting and
A_DETAIL collects detailed information.

The ACCT_VALIDATION keyword is the routine that performs validation. You
can also supply your own validation routine by specifying this keyword in the
configuration file. For example, if you need to track the use of the resources
based on user account, the users must specify the account_no keyword in
their job command file.

The GLOBAL_HISTORY keyword defines the directory in which the
accounting data file needs to be collected. By default, this is defined in the
spool subdirectory under the loadl’s home directory. In the lab, the loadl’s
home directory is /u/loadl; so, the accounting data file is created under /u/
loadl/spool.

JOB_LIMIT_POLICY and JOB_ACCT_Q_POLICY are used to control how
often the startd daemon collects resource consumption data on running jobs
and how often the job_cpu_limit is checked.

3. Propagate the LoadL_config file to all the nodes in the cluster using the
command shown in the following screen:

4. To put the changes into effect, the LoadLeveler daemons have to reread
the config files. This can be done using the following command:

dsh -w sp4n01,sp4n05,sp4n06,sp4n07,sp4n08,sp4n15
dsh> /var/sysman/supper update user.admin
sp4n01: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n01: File Changes: 1 updated, 0 removed, 0 errors.
sp4n05: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n05: File Changes: 1 updated, 0 removed, 0 errors.
sp4n06: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n06: File Changes: 1 updated, 0 removed, 0 errors.
sp4n07: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n07: File Changes: 1 updated, 0 removed, 0 errors.
sp4n08: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n08: File Changes: 1 updated, 0 removed, 0 errors.
sp4n15: Updating collection user.admin from server sp4en0.msc.itso.ibm.com.
sp4n15: File Changes: 1 updated, 0 removed, 0 errors.
dsh>
Chapter 3. LoadLeveler 99

3.8.2 Collect accounting data
To create an accounting report, we first need to collect the data from all the
nodes in the LoadLeveler cluster. This can be collected using the llacctmrg

command. This command can only be executed by the LoadLeveler
administrator. The history information is only collected and stored in the
scheduling nodes. When you run the llacctmrg command without any options,
you can see the history file received only from the scheduler nodes. In the
test environment, the nodes sp4n05 and sp4n15 are the scheduling nodes.
The history file available in these two nodes will be received and merged as
one global history file. The output of the llacctmrg command will look like the
following:

So, instead of giving the llacctmrg command without any options, you can use
the -h option with the hostlist of scheduler nodes. For example, to receive the
history files from nodes sp4n05 and sp4n15, use the following command:

su - loadl
$ llctl -g reconfig
llctl: Sent reconfig command to host sp4n01.msc.itso.ibm.com.
llctl: Sent reconfig command to host sp4n06.msc.itso.ibm.com.
llctl: Sent reconfig command to host sp4n05.msc.itso.ibm.com.
llctl: Sent reconfig command to host sp4n07.msc.itso.ibm.com.
llctl: Sent reconfig command to host sp4n08.msc.itso.ibm.com.
llctl: Sent reconfig command to host sp4n15.msc.itso.ibm.com.
$

$ llacctmrg
11/15 10:07:16 llacctmrg: 2539-463 Cannot connect to sp4n01.msc.itso.ibm.com "L
oadL_schedd" on port 9605. errno = 79
llacctmrg: 2512-021 Cannot connect to LoadL_schedd on host sp4n01.msc.itso.ibm.c
om.
11/15 10:07:16 llacctmrg: 2539-463 Cannot connect to sp4n06.msc.itso.ibm.com "L
oadL_schedd" on port 9605. errno = 79
llacctmrg: 2512-021 Cannot connect to LoadL_schedd on host sp4n06.msc.itso.ibm.c
om.
llacctmrg: History transferred successfully from sp4n05.msc.itso.ibm.com (524304
bytes).
11/15 10:07:17 llacctmrg: 2539-463 Cannot connect to sp4n07.msc.itso.ibm.com "L
oadL_schedd" on port 9605. errno = 79
llacctmrg: 2512-021 Cannot connect to LoadL_schedd on host sp4n07.msc.itso.ibm.c
om.
11/15 10:07:17 llacctmrg: 2539-463 Cannot connect to sp4n08.msc.itso.ibm.com "L
oadL_schedd" on port 9605. errno = 79
llacctmrg: 2512-021 Cannot connect to LoadL_schedd on host sp4n08.msc.itso.ibm.c
om.
llacctmrg: History transferred successfully from sp4n15.msc.itso.ibm.com (376212
bytes).
100 Workload Management: SP and Other RS/6000 Servers

$ llacctmrg -h sp4n05 sp4n15

The global history file globalhist.<timestamp> will be created in the directory
as defined by the GLOBAL_HISTORY variable in the LoadL_config file. The
default is the spool directory /u/loadl/spool.

3.8.3 Generate accounting report
From the collected data, you can create the report using the llsummary

command. This command has many flags for collecting the report in various
formats. The default output includes summaries of the following data:

• The number of jobs and the total CPU usage on a per-user basis.

• The number of jobs and the total CPU usage per class.

• The number of jobs and the total CPU usage per group.

• The number of jobs and the total CPU usage per account number.

The default output without any option will look like the following:

The definitions of the various fields follow:

$ llsummary globalhist.199911151007
Name Jobs Steps Job Cpu Starter Cpu Leverage
tani1 18 24 0+00:03:08 0+00:00:24 7.8
bala 28 28 0+01:51:11 0+00:00:13 513.2

bruno1 15 21 0+01:39:30 0+00:00:12 497.5
kannan1 16 17 0+02:45:05 0+00:00:16 619.1
TOTAL 77 90 0+06:18:55 0+00:01:07 339.3

Class Jobs Steps Job Cpu Starter Cpu Leverage
class_parall 11 11 0+00:01:40 0+00:00:19 5.3

small 28 28 0+01:51:11 0+00:00:13 513.2
class_second 22 34 0+01:40:57 0+00:00:16 378.6
class_first 16 17 0+02:45:05 0+00:00:16 619.1

TOTAL 77 90 0+06:18:55 0+00:01:07 339.3

Group Jobs Steps Job Cpu Starter Cpu Leverage
group_serial 18 24 0+00:03:08 0+00:00:24 7.8

staff 13 13 0+00:00:08 0+00:00:04 2.0
No_Group 15 15 0+01:51:02 0+00:00:09 740.2

group_para 31 38 0+04:24:35 0+00:00:29 547.4
TOTAL 77 90 0+06:18:55 0+00:01:07 339.3

Account Jobs Steps Job Cpu Starter Cpu Leverage
NONE 60 73 0+06:06:57 0+00:01:00 366.9
bala 17 17 0+00:11:57 0+00:00:06 119.5
TOTAL 77 90 0+06:18:55 0+00:01:07 339.3
Chapter 3. LoadLeveler 101

Name The user ID that submitted the job to the LoadLeveler

Jobs The total number of jobs submitted by this user

Steps The total number of job steps submitted by this user

Job CPU The total CPU time consumed by this user

Starter CPU The Total CPU time taken by the LoadLeveler starter process
for this user

Leverage The ratio of the job CPU to starter CPU

Class The class defined by the user in his job command file or the
default class

Group The Users login group as defined in the job command file or the
default group

Account The users account name as defined in the job command file or
the default account

We can also generate the report for a particular user, class, group, unixgroup,
or node. This can be done using the -u, -c, -g, -G, and -a
options in the llsummary command.

The throughput of the system can be found using the option -r throughput in
the llsummary command. For more details on the syntax and options of the
llsummary command, refer to the manual LoadLeveler for AIX: Using and
Administering, SA22-7311.

As we discussed in the previous section you can customize the accounting
report specific to your requirement if the report generated by the various
options of the llsummary command doesn’t meet your requirement. Using the
APIs you can write your own code using the GetHistory subroutine of the
LoadLeveler API. There is a sample code and makefile given in the /usr/lpp/
LoadL/full/samples/llphist directory on how to use this subroutine to generate
the report.
102 Workload Management: SP and Other RS/6000 Servers

Chapter 4. Secureway Network Dispatcher

Secureway Network Dispatcher Version 2.1 is a component of Websphere
performance pack Version 2.0. Secureway Network Dispatcher is a load
balancing tool for managing TCP/IP connections in a network of servers.
Network Dispatcher can be configured to manage the TCP/IP sessions for a
group of SP nodes. In this chapter, we will discuss the configuration of
Network Dispatcher in an SP environment.

4.1 Network Dispatcher and RS/6000 SP overview

Secureway Network Dispatcher is a product for managing the TCP/IP
connections in a network of servers. The RS/6000 SP environment can be
viewed as a network of servers, thus, Network Dispatcher is very well suited
for an SP environment. It can also be seen as the software counterpart of the
RS/6000 SP hardware. In the domain of server consolidation, one the most
attractive features of the RS/6000 SP is its scaleability, which allows a
customer to add (or remove) nodes to an SP cluster. Secureway Network
Dispatcher brings the software scalability that makes all the SP nodes look
like a unique server, with only one IP address, that can provide a constantly-
available service to the client. Secureway Network Dispatcher makes the
hardware implementation of the SP environment transparent to the end-user.

From a network administration point of view, Secureway Network Dispatcher
is aimed at providing traffic load balancing between different networks.
Therefore, it fits perfectly into an SP environment where several networks are
generally available: The service ethernet network, the SP switch, and the
networks connecting the SP to the external world. Secureway Network
Dispatcher provides a means of spreading the traffic load between all
available networks to prevent network bottlenecks.

4.2 Architecture

Secureway Network Dispatcher is a tool for managing TCP/IP connections to
a group of servers in a networked environment. The basic architecture of
Network Dispatcher consists of a Network Dispatcher server, optional
standby server, and a group of nodes in a cluster for routing the TCP/IP
connections. All TCP/IP connections to this group of nodes will be routed
through the Network Dispatcher server, which provides a virtual IP address to
these nodes. In short, Network Dispatcher provides the virtual view to these
nodes. The Secureway Network Dispatcher components are:
© Copyright IBM Corp. 2000 103

• Dispatcher

• Interactive Session Support (ISS)

• Content Based Routing (CBR)

Network Dispatcher manages the TCP/IP connections from the clients based
on the current workload on these nodes. Network Dispatcher calculates the
load on these nodes by the number of connections, server load information
from ISS, or advisors.

For detailed information about features of Network Dispatcher, we
recommend that you read the redbook New and Improved : IBM WebSphere
Performance Pack :Loadbalancing with IBM Secureway Network Dispatcher,
SG24-5858.

We also recommend that you read SecureWay Network Dispatcher - User’s
Guide, GC31-8496, which contains installation and configuration instructions
as well as command and configuration file descriptions.

4.3 Installation and configuration

In this section, we will discuss the configuration of Secureway Network
Dispatcher in an SP environment. We will also discuss the steps for planning
and installing the dispatcher in SP nodes.

4.3.1 Packaging and requirements
Secureway Network Dispatcher is made of three components: The
Dispatcher, ISS, and CBR. These components are packaged in several
filesets. You only need to install the filesets corresponding to the components
you need.

In the list below, <lang> must be replaced by the identifier of the locale you
will use, such as en_US for U.S. English.

To install:

• The Dispatcher

• intnd.admin.rte

• intnd.nd.driver

• intnd.nd.rte

• intnd.ndadmin.rte

• intnd.msg.<lang>.admin.rte
104 Workload Management: SP and Other RS/6000 Servers

• intnd.msg.<lang>.nd.rte

• intnd.msg.<lang>.ndadmin.rte

• ISS

• intnd.admin.rte

• intnd.issr.rte

• intnd.issadmin.rte

• intnd.msg.<lang>.admin.rte

• intnd.msg.<lang>.issr.rte

• intnd.msg.<lang>.issadmin.rte

• CBR

• intnd.admin.rte

• intnd.cbr.rte

• intnd.cbradmin.rte

• intnd.msg.<lang>.admin.rte

• intnd.msg.<lang>.cbr.rte

• intnd.msg.<lang>.cbradmin.rte

• Network Dispatcher Documentation

• intnd.doc.en_US

The prerequisites for installing any of the Network Dispatcher components in
an SP environment are:

• IBM AIX Version 4.2.1 or higher

• Java runtime environment (JRE) Version 1.1.6 or higher (Java.rte.bin,
Java.rte.class, Java.rte.lib).

• Web Traffic Express (WTE) Version 2.0 if you are using the CBR
component.

4.3.2 Planning to configure Network Dispatcher in SP
You need to plan the configuration of a Network Dispatcher Cluster for your
SP environment. You must identify the nodes for configuring the Network
Dispatcher server and standby or backup Network Dispatcher server. You
also need to identify the cluster of nodes to be managed by the Network
Dispatcher server. Also, identify the networks to be configured for routing the
connections. Define the necessary route definitions if they are needed.
Chapter 4. Secureway Network Dispatcher 105

The roles that we planned for the nodes in our test environment are listed in
Table 7.

Table 7. Role of nodes for Network Dispatcher configuration

The network configurations we planned for routing the connections are listed
in Table 8.

Table 8. Network configuration

We configured control workstation (CWS) and node15 (sp4n15) as routers to
the external clients.

The logical view of the above scenario is represented in Figure 17 on page
107.

Role Hostname of the node

Network Dispatcher server sp4n10

Network Dispatcher standby server sp4n09

Network Dispatcher cluster nodes sp4n11, sp4n13

Network type Function assigned

SP Ethernet Incoming connections from client

SP switch Network Dispatcher communication and
routing the connections to nodes

Additional Ethernet Outgoing traffic from nodes
106 Workload Management: SP and Other RS/6000 Servers

Figure 17. Hardware environment for Network Dispatcher installation

4.3.3 The installation and configuration process
This section describes the installation steps for configuring the Dispatcher in
our SP environment.

1. Copy the filesets from installation media to CWS.

Using the smitty bffcreate command, we copied the Network Dispatcher
filesets to the /spdata/sys1/install/aix433/lppsource directory in CWS.

2. Install the Network Dispatcher filesets in node 10 (sp4n10).

3. Start the Network Dispatcher server

a. Log on to the sp4n10, and start the Network Dispatcher server using
the ndserver command.

b. Enter #ndserver

4. Verify, using the ps command, whether the java process has been started
by the ndserver command.

C lien t

Node 15CW S

Node 10 Node 11 N ode 13

S P Ethernet

E thernet 2

S P Sw itch

N ode 9

dsh -w sp4n10, mount sp4cws:/spdata/sys1/install/aix433/lppsource /mnt
dsh -w sp4n10 installp -acXgd /mnt intnd.msg.en_US.admin.rte intnd.admin.rte
intnd.msg.en_US.issadmin.rte intnd.iss.rte intnd.issadmin.rte intnd.ndadmin.rte
intnd.msg.en_US.ndadmin.rte intnd.msg.en_US.iss.rte intnd.nd.driver \
intnd.nd.rte intnd.msg.en_US.nd.rte
#

Chapter 4. Secureway Network Dispatcher 107

5. Create the authentication keys, and start the executor.

6. Define the non-forwarding IP address.

We set the non-forwarding address to the IP address node 10 on the SP
ethernet adapter.

7. Define the Network Dispatcher cluster.

We now define a with the virtual IP address as 192.168.4.100 and assign
to the new Network Dispatcher cluster called NDCLUSTER. The clients
will connect to the NDCLUSTER using this IP address.

8. Add an alias on the Network Dispatcher server node.

The NDCLUSTER address is aliased to the en0 interface of the Dispatcher
machine as presented on Figure 18 on page 109.

ps -ef|grep java
root 21002 1 51 14:07:32 pts/0 0:03 java com/ibm/internet/nd/server/S

RV_ConfigServer 10099 10005 /usr/lpp/nd/dispatcher/logs/ /usr/lpp/nd/dispatcher/
configurations/ /usr/lpp/nd/dispatcher/bin/

#ndkeys create
#Key files have been created successfully
#ndcontrol executor start
Loaded kernel successfully.

ndcontrol executor set nfa 192.168.4.10
Executor field(s) successfully set.

ndcontrol cluster add NDCLUSTER
Cluster 192.168.4.100 has been added.
108 Workload Management: SP and Other RS/6000 Servers

Figure 18. Aliasing NDCLUSTER on the SP ethernet adapter

9. Configure CWS as the Network Dispatcher management station.

We configured CWS as the management station for Network Dispatcher
administration. We installed the Network Dispatcher administration filesets
(for Base Network Dispatcher) as well as the license key on the CWS. In
addition, we installed the Network Dispatcher documentation:

4.3.4 Configuring SP nodes to NDCLUSTER
By performing the steps described in the previous section, we installed and
configured the Network Dispatcher server and created a new cluster called
NDCLUSTER. Now, we can add nodes and services to this cluster. As we
planned, we will add sp4n11 and sp4n13 to the NDCLUSTER. The nodes are
configured in the Network Dispatcher cluster for a TCP/IP service. We define
telnet service at port 23 and add nodes 11 and 13 for this service in the
NDCLUSTER:

Nodes 11 and 13 are configured to serve telnet requests sent to port 23 of the
Dispatcher. To ensure that traffic between the Dispatcher and the server flows

pwd
/spdata/sys1/install/aix433/lppsource
installp -acXgd. intnd.admin.rte intnd.msg.en_US.admin.rte intnd.doc.en_US \
intnd.ndadmin.rte intnd.msg.en_US.ndadmin.rte
#

ndcontrol port add 192.168.4.100:23
Port 23 successfully added to cluster 192.168.4.100.
ndcontrol port set 192.168.4.100:23 staletimeout 32000000
Port field(s) successfully set.
Chapter 4. Secureway Network Dispatcher 109

through the SP Switch, we use the switch address of these nodes as an
argument of the ndcontrol command:

The loopback device on server nodes 11 and 13 must be aliased to the
cluster address NDCLUSTER so that the nodes accept incoming requests.
We issued the following command in the control workstation:

We defined the default routes in CWS and node 15 for managing the
incoming and outgoing traffic.

The manager and the advisors are started with the default values. We present
their use in Part 2, “Workload management sample scenarios” on page 133.

In this configuration, the data flow is indicated by the numbered arrows as in
Figure 19 on page 111. Requests from clients flow through the network (1
and 2) to the Dispatcher. They are forwarded on the SP switch (3) to the
appropriate server (node 11 or 13), and the outgoing message is routed
through the network (4, 5, and 6) to the client.

ndcontrol server add NDCLUSTER:23:sp4sw11+sp4sw13
Server 192.168.14.11 was added to port 23 of cluster 192.168.4.100.
Server 192.168.14.13 was added to port 23 of cluster 192.168.4.100.

dsh -w sp4n11,sp4n13 ifconfig lo0 alias NDCLUSTER netmask 255.255.255.0
#

#ndcontrol manager start
The manager has been started.
#ndcontrol advisor start telnet 23
Advisor 'telnet' has been started on port 23.
ndcontrol manager proportions 48 48 4 0
The proportions of the manager were set to: 48 48 4 0
110 Workload Management: SP and Other RS/6000 Servers

Figure 19. Data flow between client, dispatcher, and server

Figure 19 contains the IP addresses used for each network adapter in this
configuration. The SP ethernet adapter address of node 10 is 192.168.4.10. It
is also aliased to 192.168.4.100. This is the address used to represent the
server cluster. The client will send their request to the 192.168.4.100 address
also defined as NDCLUSTER.msc.itso.ibm.com.

To stop the server on the Dispatcher node, issue the following command on
the dispatcher node.

4.3.5 Remarks about this configuration
In the configuration described above, the CWS is used as the software
repository and also as a Network Dispatcher administrative station. We used
three networks to manage the network traffic. We also made use of the SP
switch taking advantage of its availability in our SP configuration, sharing the
bandwidth with other applications that use the switch. If your configuration
does not have an SP switch, you can, alternatively, use another network, such
as ethernet or FDDI, instead of the switch.

1

C lient

R oute r
(N ode 15)

R oute r
(C W S)

D ispa tcher
(N ode 10)

Server
(N ode 11)

S erver
(N ode 13)

S P E thernet E thernet 2

S P S witch

19 2.1 68.15.1519 2.1 68.4.15

19 2.1 68.4.10

19 2.1 68.4.140

9 .1 2.0 .1 01

9 .1 2.0 .4

19 2.1 68.14.10 192 .1 68.14.11 1 92.168.14 .13

1 92.168 .15 .11 19 2.1 68.15.13

6

5

4

3

2

1

19 2.1 68.4.100

#ndserver stop
Chapter 4. Secureway Network Dispatcher 111

4.4 Alternative configuration using the SP switch

Alternatively, if you want to use the SP switch bandwidth for outgoing traffic
out of the SP nodes, you can configure the SP with Switch router, and the
dispatcher can be configured to take advantage of the switch bandwidth for
outgoing network communication. A sample configuration is described in
Figure 20.

Figure 20. Network Dispatcher using SP switch router

4.5 Alternative configuration without SP switch

Another simple alternative configuration is to use one separate network other
than the SP administrative ethernet for managing both incoming and outgoing
traffic. This configuration does not require SP switch, and you can configure
the Network Dispatcher to use this additional network to manage the network
connections. A sample configuration is described in Figure 21 on page 113.

S
w

it
ch

N
et

w
or

k

SPControl Workstation

sp4en0

ND- Network Dispatcher

WLM- WorkloadManager

SPSwitch

Gateway Server

WLM
ND Server

WLM
NDNodes

WLM, NDNodes

WLM, NDNodes

WLM

SP Ethernet WLM

WLM WLM

WLM WLM

SPSwitch
Router
Adapter

ATM
OC-3c

ATM
OC-12c

4-port
FDDI

HIPPI
Adapter

Sonet
OC-3c

8-port
E-net 10/100

HSSI
Adapter

SP Router
Adapter

SPSwitch
Router
Adapter

ATM
Switch

External
Router

World
Wide
Web

S
w

it
ch

N
et

w
o

rk
112 Workload Management: SP and Other RS/6000 Servers

Figure 21. Network Dispatcher using Ethernet/FDDI/ATM networks

4.6 Related publications on Secureway Network Dispatcher

We have not discussed the features and functions of the Secureway Network
Dispatcher in detail in this book. The detailed information about this product
can be found in the following documents. We suggest that you read these
documents before configuring the Dispatcher in SP.

The SecureWay Network Dispatcher - User’s Guide, GC31-8496, contains
installation and configuration instructions as well as command and
configuration files description.

Part New and Improved : IBM WebSphere Performance Pack :Loadbalancing
with IBM Secureway Network Dispatcher, SG24-5858, presents concrete
examples of the use of Secureway Network Dispatcher in the general context
of the IBM Websphere performance pack.

The Web site http://www.ibm.com/software/network/dispatcher contains more
information on Secureway Network Dispatcher.

S
w

it
ch

N
et

w
o

rk
SPControl Workstation

sp4en0

ND- NetworkDispatcher

WLM-WorkloadManager
GatewayServer

WLM
NDServer

WLM
NDNodes

WLM, NDNodes

WLM, NDNodes

WLM

SPEthernet WLM

WLM WLM

WLM WLM

Ethernet/FDDI/ATM
Network

Router Internet
Chapter 4. Secureway Network Dispatcher 113

114 Workload Management: SP and Other RS/6000 Servers

Chapter 5. AIX Workload Manager

AIX Workload Manager is a feature of AIX version 4.3.3. WLM is a tool to
support the management of resources in an RS/6000 server. AIX workload
manager can be configured to manage the workload within a node in an RS/
6000 SP. In this chapter, we will focus on using WLM in an RS/6000 SP
environment.

5.1 AIX Workload Manager and RS/6000 SP overview

The WLM component of AIX 4.3.3 is a very useful product for managing
mixed workload situations in an RS/6000 server. Using WLM, you can control
the allocation of resources, such as CPU and memory, to users and
applications. This is achieved by grouping specific users, groups, or
applications into WLM classes and regulating the resource allocations
between these different classes using shares and limits. The resources are
allocated to the classes as a percentage of CPU and memory. WLM allows
you to define priorities between the classes. WLM allocates the resources
based on the class configurations when jobs are executed.

RS/6000 SP is being used to consolidate multiple servers and applications;
therefore, SP is increasingly being used to run more than one type of
workload. In such situations, you need to configure the SP nodes to manage
the mixed workloads within a node. As with any other RS/6000 server, WLM
provides the support for managing the workloads within an SP node. The
products, LoadLeveler and Secureway Network Dispatcher, can be used to
schedule the jobs in multiple nodes in SP.

In this chapter, we will focus on configuring WLM on SP using PSSP tools,
such as file collection. In Part 2, “Workload management sample scenarios”
on page 133, we will describe a few scenarios on how to manage the
workload in SP using WLM with LoadLeveler and Secureway Network
Dispatcher.

5.2 AIX WorkLoad Manager architecture

WLM is a tool that helps administrators manage the resources in an RS/6000
server or a node in SP. The basic concepts of WLM are classes and tiers. The
classes describe the rules and resource limits for allocating the CPU and
Memory. The users, groups, or path names of the applications they execute,
are defined using the class assignment rules. The tiers define the importance
© Copyright IBM Corp. 2000 115

of the class. WLM monitors the load on the system and allocates the
resources to the jobs based on the class and tier defined by the administrator.

For a detailed description of WLM features and how to create a WLM
configuration, we recommend that you read section 7.2 of the redbook Server
Consolidation on RS/6000, SG24-5507.

We also recommend that you read about the WLM commands described in
AIX Version 4.3 Commands Reference, SBOF-1877, for using the command
line interface, and Workload Manager Technical Reference on the Web at
http://www.ibm.com/servers/aix/library under Technical Publication section.

5.3 Installation and configuration

In this section, we will discuss on the installation and configuration of WLM in
SP nodes. We will also discuss how to make use of PSSP tools, such as file
collection, to create a consistent WLM configuration for a node set in SP. We
will also discuss how to use the distributed shell feature to manage WLM
configuration in SP.

5.3.1 Packaging and requirements
AIX Workload Manager is a part of the AIX 4.3.3 runtime. It is packaged with
AIX 4.3.3 as a mandatory fileset bos.rte.control. This fileset is installed on the
SP nodes with the base AIX 4.3.3. installation; therefore, there are no
prerequisites for the installation of WLM in SP.

5.3.2 Planning to configure WLM in SP nodes
The SP supports multiple AIX versions to run on its nodes. The WLM is only
installed on the nodes that run AIX 4.3.3. It is not necessary to configure
WLM in all the nodes of SP that run AIX Version 4.3.3. The system
administrator can select the nodes in which WLM configuration may be
necessary. WLM configuration is required when you have to manage the
mixed type of workload. You can select a subset or all the nodes in SP for
configuring WLM if you need to manage different types of workloads in these
nodes.

5.3.3 Installation and the configuration process
As we have just discussed, there are no installation steps for WLM
installation; therefore, we will now discuss the configuration of WLM in SP
nodes using the file collection methods of PSSP. Before we begin configuring
WLM on SP nodes, we will verify the installation of the fileset, bos.rte.control,
116 Workload Management: SP and Other RS/6000 Servers

in the CWS and SP nodes. This can be performed by issuing the following
command in the control workstation:

5.3.4 Basic Configuration
The configuration files of WLM are located in the /etc/wlm directory in each
node where AIX 4.3.3 is installed and in the control workstation. The default
configuration files are located in the /etc/wlm/standard directory. This
configuration contains a class definition file for two classes: System and
default. The other files in this directory are limits, shares, and rules. These
files define the characteristics for the two classes defined in the class file. The
current file in /etc/wlm is a symbolic link to the /etc/wlm/standard directory.
The current file defines the active WLM configuration for that node. Initially,
the current file is a link to the /etc/wlm/standard directory.

WLM configuration can be customized for your requirements in two ways:
One method is to modify the files in the /etc/wlm/standard directory. The other
method is to create a separate directory under /etc/wlm and copy the files
from the /etc/wlm/standard directory and customize the files to your
requirements.

To configure the WLM in SP, we define WLM configuration for the nodes in the
control workstation, and then we can propagate them to the nodes using file
collection. In this process, we can create a consistent WLM configuration in

lslpp -l bos.rte.control for CWS

dsh -W lslpp -l bos.rte.control for nodes

cd /etc/wlm
ls -al
total 32
drwxr-xr-x 3 root system 512 Oct 20 11:54 .
drwxr-xr-x 27 root system 7680 Oct 20 11:48 ..
lrwxrwxrwx 1 root system 17 Oct 07 14:33 current -> /etc/wlm/standard
drwxr-xr-x 2 root system 512 Oct 07 14:33 standard
ls -al standard
total 48
drwxr-xr-x 2 root system 512 Oct 20 11:55 .
drwxr-xr-x 6 root system 512 Oct 20 11:55 ..
-rw-r--r-- 1 root system 423 Apr 27 14:51 classes
-rw-r--r-- 1 root system 430 Apr 27 14:51 limits
-rw-r--r-- 1 root system 496 Apr 27 14:51 rules
-rw-r--r-- 1 root system 404 Apr 27 14:51 shares
Chapter 5. AIX Workload Manager 117

SP nodes. In this case, the /etc/wlm directory in CWS consists of all WLM
configuration files for SP nodes. To use file collection to manage WLM
configuration, we define a separate file collection in CWS called
wlmCollection.

5.3.5 Creating a WLM configuration file collection
Creating a new file collection for WLM configuration will help you
independently manage the WLM configuration in SP. You can use file
collection methods to distribute the changes to the WLM configuration.

5.3.5.1 Creating a file collection directory
First, we create a directory under /var/sysman/sup, called wlmCollection, to
hold the file collection control files and copy the configuration files from the
existing file collection sup.admin to the wlmCollection directory.

If sup.admin has been modified at your site, ensure that the copied prefix file
contains only a “/” (slash) and that the copied refuse file is empty.

5.3.5.2 Creating a list file
We now edit the list file in this directory and define what files will be managed
by wlmCollection. We defined the following rules to add entries to this file.

• The /etc/wlm/current link is not copied from the CWS to the node so that
each node pointer to the current configuration is not changed by file
collection updates.

• The backups (*.old) created by WLM are not propagated to the nodes.

cd /var/sysman/sup
mkdir wlmCollection
chown bin.bin wlmCollection
cd /var/sysman/sup/sup.admin/
ls -al
total 9
drwxr-xr-x 2 bin bin 512 Oct 21 07:49 .
drwxr-xr-x 8 bin bin 512 Oct 21 10:04 ..
-rw-r--r-- 1 root system 1877 Oct 20 10:48 host
-rwxr-xr-- 1 bin bin 219 Oct 19 11:09 list
-rwxr-xr-- 1 bin bin 0 Oct 19 11:09 lock
-rwxr-xr-- 1 bin bin 2 Oct 19 11:09 prefix
-rwxr-xr-- 1 bin bin 1 Oct 19 11:09 refuse
-rwxr-xr-- 1 bin bin 0 Oct 19 11:09 supperlock
cp -p host lock prefix refuse supperlock ../wlmCollection
118 Workload Management: SP and Other RS/6000 Servers

• All other files in the /etc/wlm directory of the CWS are copied onto each
node.

We add the following entries to the list file. We then create a link to the newly-
created list in the /var/sysman/sup/lists.

5.3.5.3 Updating the file.collection file
We now define wlmCollection as a primary file collection by editing /var/
sysman/file.collections and adding the last three lines in the following
example. Refer to the Parallel System Support Program for AIX -
Administration Guide, SA22-7348, for details about the syntax of these lines.

5.3.5.4 Updating the .resident file
We now have to update the .resident file for each node on which the file
collection will be propagated to add wlmCollection. After this update, /var/
sysman/sup/.resident contains:

pwd
/var/sysman/sup/wlmCollection
cat list
symlinkall
omit ./etc/wlm/current
omitany ./etc/wlm/*/*.old
upgrade ./etc/wlm
ln -s /var/sysman/sup/wlmCollection/list /var/sysman/sup/lists/wlmCollection

pwd
/var/sysman
cat file.collections
#
File collection definitions
sup.admin - file collection to manage file collections(sup)
primary sup.admin - /var/sysman - / EO power no
user.admin - file collection to manage files needed to manage user
primary user.admin - / - / EO power no
power_system - file collection to manage common files across systems
primary power_system - /share/power/system/3.2 - / EO power no
commons - file collection to manage common files across systems
secondary node.root power_system / - /share/power/system/3.2 EO power no
wlmCollection - user defined file collection for managing wlm configurations
of all SP nodes from the CWS.
primary wlmCollection - / - / EDO power no
#

Chapter 5. AIX Workload Manager 119

5.3.5.5 Update the sup.admin collection.
For each node on which the wlmCollection is to be propagated, we have to
update the sup.admin collection. We perform this directly from the CWS using
distributed shell:

5.3.5.6 Building the scan file
We now build a scan file to speed up later file collection processing using the
dsh command to execute the scan command on each node from the CWS.

5.3.5.7 Installing the wlmCollection
We now install the wlmCollection file collection in the nodes where we will use
WLM to manage the node resources.

Using the distributed shell, we can now propagate the WLM configuration
from control workstation to SP nodes. In this process, the files in the /etc/wlm
directory in CWS are copied to the SP nodes. So far, we have discussed the
basic WLM configuration and the file collection configuration required to
distribute the WLM configuration files to SP nodes. We have not defined any

pwd
/var/sysman/sup
cat .resident
node.root 0
sup.admin 0
user.admin 0
wlmCollection 0
#

dsh -w sp4n09,sp4n10,sp4n11,sp4n13 /var/sysman/supper \
update sup.admin
#

dsh -w sp4n09,sp4n10,sp4n11,sp4n13 /var/sysman/supper \
scan wlmCollection
#

dsh -w sp4n09,sp4n10,sp4n11,sp4n13 /var/sysman/supper \
install wlmCollection
#

120 Workload Management: SP and Other RS/6000 Servers

WLM classes for managing node resources. You can define such class
configurations in CWS and use the file collection methods for distributing
them to SP nodes. We will discuss these issues in the next section.

5.4 Managing the WLM configuration in SP

For managing the nodes in SP, we define the WLM configurations in the CWS.
For your configurations, it may be necessary to define more than one WLM
configuration. You can then assign a WLM configuration to a node or a group
of nodes. In the following example, we want to manage two types of
workloads in the SP nodes: Interactive and batch. We want to assign two
nodes with higher resources for interactive jobs compared to batch jobs.
Similarly, we want to assign two nodes for batch jobs with a greater share of
resources.

5.4.1 Definition of user ID and groups
First, using the SP User Management on the CWS, we define the user IDs
and groups that are to be managed through WLM.

We decided to create three groups:

• InterA for interactive users mostly using application A.

• InterB for interactive users mostly using application B.

• Batch for users submitting batch jobs.

And we created users with the SP User Management tools:

• InterA1 and InterA2 belonging to group InterA

• InterB1 and InterB2 belonging to group InterB

• Batch1 and Batch2 belonging to group Batch

mkgroup -'A' id='1000' InterA
mkgroup -'A' id='2000' InterB
mkgroup -'A' id='3000' Batch
#

Chapter 5. AIX Workload Manager 121

5.4.2 Defining classes
In the scenario, we have to create two workload profiles, and we do not
modify the default set of configuration files. Rather, we define one for each
set of nodes, and we use the nodes profile as a mnemonic name for each
configuration set.

The easiest way to create these configuration directories is to copy the
standard configuration provided on the AIX distribution, and then modify it.
We create two directories in /etc/wlm for InteractiveNodes and Batchnodes
and copy the standard WLM property files from the /etc/wlm/standard
directory:

For customizing WLM, it is possible to use the command line interface, SMIT,
or the Web-Based System Manager. WLM has a concept of current
configuration. The current configuration is a pointer (a symbolic link) in /etc/

smitty spmkuser

Add a User

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* User NAME [InterA1]
User ID [1001]
LOGIN user? true
PRIMARY group [InterA]
Secondary GROUPS []
HOME directory [/home/InterA1]
Initial PROGRAM [/bin/ksh]
User INFORMATION [Interactive use of Application A]

cd /etc/wlm
ls -al
total 32
drwxr-xr-x 3 root system 512 Oct 20 11:54 .
drwxr-xr-x 27 root system 7680 Oct 20 11:48 ..
lrwxrwxrwx 1 root system 17 Oct 07 14:33 current -> /etc/wlm/standard
drwxr-xr-x 2 root system 512 Oct 07 14:33 standard
mkdir InteractiveNodes
mkdir BatchNodes
cp -pr standard/* InteractiveNodes
cp -pr standard/* BatchNodes
122 Workload Management: SP and Other RS/6000 Servers

wlm to the directory of the configuration currently in use on the system. The
SMIT interface allows you to work with the current configuration and not other
configurations. We use the command line interface in the following sections.
This is also useful for managing the WLM configuration in RS/6000 SP. We
recommend that the reader refer to the redbook Server Consolidation on RS/
6000, SG24-5507, for examples of using SMIT or the Web-Based System
Manager.

5.4.2.1 Interactive node configuration
First, we create a description file for this configuration. This description file is
optional, but we recommend that one be created in an SP environment
because there may be many different workload profiles. This description will
be useful when you later need to refer to this profile to modify it.

The description file is a free text ASCII file containing only one line of text. It
is stored in /etc/wlm/InteractiveNodes.

We then create a new class, interjobs, for interactive jobs and a class,
batchjobs, for batch. Since we define the configuration for the nodes where
priority is given to interactive activity over batch jobs, we give a share level of
10 to interjobs, and we set batch jobs in tier 1 to ensure that processes in this
class will not be scheduled as long as there are other jobs ready to run in the
system. We also change the System class so that it has priority over all
processes except those in the Interactive class.

As a result, we can see that the property files have been changed:

pwd
/etc/wlm/InteractiveNodes
cat description
Profile to be used for nodes 9 and 10, running interactive applications.
#

mkclass -a tier=0 -c shares=10 -m shares=10 -d InteractiveNodes interjobs
mkclass -a tier=1 -c shares=1 -m shares=1 -d InteractiveNodes batchjobs
chclass -c shares=2 -m shares=2 -d InteractiveNodes System
Chapter 5. AIX Workload Manager 123

We now have to define the rules for assigning processes to classes. We
choose a simple criteria: All processes belonging to groups InterA or InterB
will be in class interjobs; all processes belonging to the group Batch will be in
class batchjobs, and all others will be either in the System or Default class.

There is no command to modify the assignment of rules. This can be done
using a text editor or wsm. We edited the /etc/wlm/InteractiveNodes/rules file
and added three rules (lines starting with interjobs and batchjobs):

more classes
System:

description = ""
tier = 0

Default:

interjobs:
tier = 0

batchjobs:
tier = 1

more limits
System:

CPU = 0%-100%
memory = 1%-100%

more shares
System:

CPU = 2
memory = 2

interjobs:
CPU = 10
memory = 10

batchjobs:
CPU = 1
memory = 1
124 Workload Management: SP and Other RS/6000 Servers

5.4.2.2 Batch Node class
For the batch nodes, we create same interjobs and batchjobs classes, but, in
this configuration, priorities are inverted: Batchjobs get the highest priority.
However, to ensure that the response time of interactive users would not be
too long, we keep all classes in the same tier. We assign a minimum of 50
percent of CPU and memory resources to batch jobs. We keep the same
assignment rules that exist in the InteractiveNodes configuration.

5.4.3 Updating WLM configuration to nodes
The WLM configurations defined in the previous section are created in the
control workstation. These configurations should be propagated to the SP
nodes using the wlmCollection file collection.

pwd
/etc/wlm/InteractiveNodes
cat rules
* IBM_PROLOG_BEGIN_TAG
* This is an automatically generated prolog.
*
* bos43N src/bos/etc/wlm/rules 1.1
*
* Licensed Materials - Property of IBM
*
* (C) COPYRIGHT International Business Machines Corp. 1999
* All Rights Reserved
*
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* IBM_PROLOG_END_TAG
* class resvd user group application
System - root - -
interjobs - - InterA -
interjobs - - InterB -
batchjob - - Batch -
Default - - - -
#

mkclass -d BatchNodes interjobs
mkclass -c shares=10 -c min=50 -m shares=10 -m min=50 -d BatchNodes batchjobs
chclass -c shares=2 -m shares=2 -d BatchNodes System
cp -p /etc/wlm/InteractiveNodes/rules /etc/wlm/BatchNodes/rules
#

Chapter 5. AIX Workload Manager 125

5.4.3.1 Using the distributed shell command
We will use the PSSP dsh command to copy the files to the SP nodes. We
perform this command on the four nodes of our SP configuration:

5.4.3.2 Using crontab
We can also define the supper update command in the crontab in these nodes
to perform the update at regular intervals. We modify the crontab entry on
each node with the following entry:

5.4.4 Starting WLM
WLM is activated with the wlmcntrl command. Usually, on production
systems, WLM will be started during system initialization by a wlmcntrl

command added to the file /etc/inittab. The system administration tools, SMIT
and WebSM, offer menu selections to either start WLM immediately or at boot
time by adding a WLM entry to the inittab, or both.

The WLM entry will be added at the end of the /etc/inittab file; so, starting
WLM will be the last step in the system initialization. System administrators
might want to start WLM before starting their main applications so that the
resource utilization of these applications is controlled by WLM from the start.
They would then have to move the WLM entry up in the inittab file.

One thing to remember when doing this is that the application files referenced
in the assignment rules must be accessible when WLM is started. Otherwise,
those applications that cannot be accessed will be ignored, and the
assignment rules will be incomplete. To avoid this problem, WLM should be
started after all the file systems containing application files (both local and
remote if applicable) are mounted.

5.4.4.1 Activating WLM at boot time
We use the dsh and mkitab commands to modify the /etc/inittab file of each
node. We install the InteractivesNodes configuration on nodes 9 and 10 and
the BatchNodes configuration on nodes 11 and 15.

dsh -w sp4n09,sp4n10,sp4n11,sp4n13 /var/sysman/supper \
update wlmCollection

10 * * * * /var/sysman/supper update sup.admin user.admin node.root \
wlmCollection 1>/dev/null 2>/dev/null
126 Workload Management: SP and Other RS/6000 Servers

Now, WLM will start at the next reboot of each node.

5.4.4.2 Using the command line
It is not necessary to reboot the node to activate the WLM configuration. We
can use the command line interface to start the WLM after the configurations
are copied using the file collection methods.

WLM is now active on our four nodes, with a different configuration on each of
them.

5.4.5 Verifying the WLM
It is possible to verify WLM activity with the wlmcntrl -q command, but we
recommend that you use the wlmstat command that provides more
information and returns an error message if WLM is not started.

dsh -w sp4n09,sp4n10 "mkitab -i rc 'wlm:2:once:wlmcntrl \
-d /etc/wlm/InteractivesNodes > /dev/console 2>&1'"
dsh -w sp4n11 , sp4n15 "mkitab -i rc 'wlm:2:once:wlmcntrl \
-d /etc/wlm/BatchNodes > /dev/console 2>&1'"

dsh -w sp4n09,sp4n10 “wlmcntrl -d /etc/wlm/InteractivesNodes”
dsh -w sp4n11,sp4n15 "wlmcntrl -d /etc/wlm/BatchNodes"
#

Chapter 5. AIX Workload Manager 127

Now, we have created a simple CPU-intensive ksh script (merely a loop
performing 100000 additions and one file copy). We start this script four times
with user ID InterA1 and five times with user ID Batch1 on nodes 9 and 11.
We can then use the wlmstat command to visualize the effect of the different
configuration scripts:

Node 9 is using the InteractivesNodes configuration that favors user InterA1
while node 11 runs the BatchNodes configuration in favor of user Batch1.
Even if there are more instances of the program run by Batch1, we see that,

dsh -w sp4n09,sp4n10,sp4n11 wlmstat
sp4n09: Name CPU MEM
sp4n09: Unclassified 1 6
sp4n09: System 11 14
sp4n09: Default 0 0
sp4n09: interjobs 0 0
sp4n09: batchjobs 0 0
sp4n10: Name CPU MEM
sp4n10: Unclassified 0 31
sp4n10: System 0 0
sp4n10: Default 0 0
sp4n10: interjobs 0 0
sp4n10: batchjobs 0 0
sp4n11: Name CPU MEM
sp4n11: Unclassified 2 58
sp4n11: System 0 1
sp4n11: Default 0 0
sp4n11: interjobs 0 0
sp4n11: batchjobs 0 0
#

dsh -w sp4n09,sp4n11
dsh> wlmstat
sp4n09: Name CPU MEM
sp4n09: Unclassified 0 6
sp4n09: System 1 21
sp4n09: Default 0 0
sp4n09: interjobs 56 0
sp4n09: batchjobs 43 0
sp4n11: Name CPU MEM
sp4n11: Unclassified 3 44
sp4n11: System 2 12
sp4n11: Default 0 0
sp4n11: interjobs 27 0
sp4n11: batchjobs 68 1
dsh>
128 Workload Management: SP and Other RS/6000 Servers

on Node 9, user InterA1 gets more resources than user Batch1. And, of
course, the situation is reversed on node 11.

It may be surprising to see that, even with the “extreme” options used in
configuring InteractivesNodes, Batch1 gets 43 percent of node 9’s CPU. The
difference between the resources allocated to InterA1 and Batch1 may seem
minor when compared to the differences between the parameters used in the
configuration. This may be due to the fact that the program is not just
performing a CPU activity. It also performs file copy (disk I/O), and, when all
InterA1 processes are waiting for the I/O to complete, they cannot use the
CPU; so, WLM allocates it to the Batch1 processes. This explains how even if
Batch1 processes are in Tier 1, and not Tier 0, they get some resources.

Actions on the wlm parameters do not have immediate consequences. It
takes some time for the system to stabilize to the load equilibrium defined by
the new parameters. We, therefore, recommend that you monitor your system
for some time after each change of parameters before drawing any
conclusions about the consequences of the change.

5.4.6 Changing classes properties in a configuration
We can change the initial classes configuration by modifying the class
parameters. Here we only modify the shares and limits of existing classes in a
configuration currently in use.

We first log on to the CWS and modify the InteractivesNodes configuration.
We set the shares limit of the interjobs class to 97.

We then propagate the modification to all nodes using file collections.

chclass -m shares=97 -c shares=97 -d InteractivesNodes interjobs
#

dsh -w sp4n09,sp4n10,sp4n11 /var/sysman/supper scan wlmCollection
dsh -w sp4n09,sp4n10,sp4n11 /var/sysman/supper update wlmCollection
sp4n09: Updating collection wlmCollection from server sp4en0.msc.itso.ibm.com.
sp4n09: File Changes: 4 updated, 0 removed, 0 errors.
sp4n10: Updating collection wlmCollection from server sp4en0.msc.itso.ibm.com.
sp4n10: File Changes: 4 updated, 0 removed, 0 errors.
sp4n11: Updating collection wlmCollection from server sp4en0.msc.itso.ibm.com.
sp4n11: File Changes: 4 updated, 0 removed, 0 errors.
#

Chapter 5. AIX Workload Manager 129

We update the wlm current configuration on node 9:

5.4.7 Changing priorities of the currently used classes
It is possible to load another configuration if it contains the same classes as
the current configuration. This is useful if, for example, you want to have a set
of priorities for daytime to favor interactive users and a set of priorities for
nighttime to favor other users. In our scenario, node 9 is initially managed
with InteractiveNodes configuration and node 11 with BatchNodes
configuration. We load the BatchNodes configuration on node 9 using the
update (-u) option of wlmcntrl, and then we measure the result:

Now that node 9 and node 11 are using the same wlm configuration, the
resource allocation becomes similar on both nodes.

5.4.8 Stopping WLM
To stop WLM on the nodes, issue the following command:

dsh -w sp4n09 wlmcntrl -d InteractivesNodes -u
#

dsh -w sp4n09 wlmcntrl -d BatchNodes -u
dsh -w sp4n09,sp4n11 wlmstat
sp4n09: Name CPU MEM
sp4n09: Unclassified 0 6
sp4n09: System 0 21
sp4n09: Default 0 0
sp4n09: interjobs 20 0
sp4n09: batchjobs 79 0
sp4n11: Name CPU MEM
sp4n11: Unclassified 2 44
sp4n11: System 0 13
sp4n11: Default 0 0
sp4n11: interjobs 22 0
sp4n11: batchjobs 75 1
#

#dsh -w sp4n09 ,sp4n10, sp4n11,sp4n15 wlmcntrl -o
130 Workload Management: SP and Other RS/6000 Servers

5.5 Other publications related to AIX Workload Manager

We recommend that you refer to the following documents for additional
information about AIX Workload Manager.

Details about the WLM commands can be found in AIX Version 4.3
Commands Reference, SBOF-1877.

The Workload Manager Technical Reference can be found on the Web at
http://www.ibm.com/servers/aix/library under the Technical Publication
section.

The Web-based System Manager online help offers detailed descriptions of
the WLM activities that can be performed from the wsm Graphical User
Interface.

Section 7.2 of Server Consolidation on RS/6000, SG24-5507 contains an
introduction to AIX Workload Manager.

Chapter 4 of Parallel System Support Program for AIX - Administration
Guide, SA22-7348, describes the use of File Collections
Chapter 5. AIX Workload Manager 131

132 Workload Management: SP and Other RS/6000 Servers

Part 2. Workload management sample scenarios
© Copyright IBM Corp. 2000 133

134 Workload Management: SP and Other RS/6000 Servers

Chapter 6. Managing serial batch jobs

This chapter discusses how to distribute workload to nodes in the RS/6000
SP when you want to execute multiple serial jobs.

6.1 Scenario description

Suppose a user has multiple serial jobs to perform. We will cover the
following two test cases:

1. Executing batch jobs that have no dependency on each other:

If the multiple batch jobs have no dependency on each other, you can
execute these jobs simultaneously using multiple nodes. For executing
jobs at the same time, you need to know how to configure the environment
for dispatching these jobs to nodes in your RS/6000 SP.

2. Executing batch jobs that have dependency on each other:

You may have batch jobs that have dependency on each other. For
example, you may need to execute batch job B after job A is completed
successfully. In this case, you need to know how to manage this
dependency in your environment.

6.2 Tool choice

You can use LoadLeveler to perform this scenario. By using LoadLeveler, you
can use multiple nodes as a single system image and the LoadLeveler
distributes workload to nodes for executing multiple batch jobs. We use the
following environment:

• LoadLeveler V2.1 and AIX V4.3.3 on 10 nodes in the RS/6000 SP

• We define all 10 nodes as the executing nodes in LoadLeveler cluster

• We define two nodes as the scheduling nodes in LoadLeveler cluster

6.3 Considerations for the executing environment

To use multiple nodes in a LoadLeveler cluster, you need to create a common
user space for your users, that is, a user has to have the same user ID and
group ID on nodes in the LoadLeveler cluster to perform jobs. In our
environment, we created the user ID using the SP user management function
and propagate the ID with the file collection to create this common user
space.
© Copyright IBM Corp. 2000 135

You need to consider the input and the output for jobs. The job should be able
to read the input file from every executing node in the LoadLeveler cluster.
You can configure a global file system, such as NFS, to share the directory
that is needed by the jobs for I/O. We used NFS for the user’s home directory.
The user submits jobs from the home directory and gets the output from this
directory.

6.4 Executing batch jobs that have no dependency on each other

If you have multiple jobs with no dependency, you can execute jobs
simultaneously using multiple nodes. You can manage the workload for
performing the serial jobs by using the class statement in the config file. You
can control the number of jobs running on each node; this results in the
distribution of jobs to multiple nodes while workload for the serial jobs is
limiting on each node.

6.4.1 The administration file
We define four classes in our LoadLeveler cluster. We use one of those four
classes, named class_second, for executing 20 serial jobs by user tani1. The
following is the class stanza in the administration file:
136 Workload Management: SP and Other RS/6000 Servers

The class_second has some keywords for the resource limit and the priority.
Tani1’s jobs should be expected within these limits.

The following screen shows the definition of user tani1 in the user stanza:

This user’s default class is class_second. So, if this user does not specify a
class name in the command file, jobs submitted by this user belong to the
class_second class. This user can run 40 jobs simultaneously and have 80
jobs in the job queue.

small: type = class
priority = 100
include_users=bala

#
class_first: type = class

class_comment = "First Class Users"
include_users = kannan1 bala1
admin = kannan1
job_cpu_limit = 24:00:00,12:00:00
wall_clock_limit = 24:00:00,12:00:00
priority = 100
nice = -5

#
class_second: type = class

class_comment = "Second Class Users"
exclude_users = kannan1
cpu_limit = 00:30:00
data_limit = 80mb,60mb
file_limit = 512mb
stack_limit = 80mb,60mb
job_cpu_limit = 02:00:00,01:00:00
wall_clock_limit = 03:00:00,02:00:00
priority = 60

#
class_parallel: type = class

class_comment = "For job_type parallel"
max_node = 5
total_tasks = 15
wall_clock_limit = 24:00:00,12:00:00

tani1: type = user
default_class = class_second
default_group = group_serial
maxjobs = 40
maxqueued = 80
Chapter 6. Managing serial batch jobs 137

6.4.2 The configuration file
We want to control workload by limiting the maximum number of jobs that can
run on each node.

We define the following Class keyword in the local configuration file on each
node:

This setting means each node can execute one class_second job; so, the user
tani1 can execute 10 jobs at the same time using 10 nodes in our RS/6000
SP environment, assuming other jobs are not using class_second. By this
definition, you can distribute the workload to multiple nodes when multiple
jobs are submitted simultaneously. You can also control the workload of each
class job on each node and prevent the class from dominating the workload
on each node.

6.4.3 Job and the job command file
We use a simple korn shell script for each job. The shell script needs a
specific process time before exiting the script. We can specify the process
time as the first parameter of the shell script. The following is the shell script
we use for this scenario:

For performing 20 jobs, we create two job command files: sen1_all_1.cmd
and sen1_all_2.cmd. Each job command file has 10 job steps. In each job

Class = { "small" "small" "small" "small" "class_first" "class_first"
"class_second"
"short_limit" "long_limit" "class_parallel" }

$ cat sec_spend.ksh
#!/bin/ksh
echo $2 $3 $1 `date "+%m/%d/%Y %H:%M:%S"` `hostname` >> $2.pre.out

sleep $1

echo $2 $3 $1 `date "+%m/%d/%Y %H:%M:%S"` `hostname` >> $2.post.out

exit 0
$

138 Workload Management: SP and Other RS/6000 Servers

step, we perform the shell script sec_spend.ksh with a different process time
parameter. Table 9 shows the process time for each job step.

Table 9. The process time of job steps

The same job step in the two job command files will have the same process
time. The difference between two job command files is the name of the output
file that is specified as the second parameter of the shell script. The following
is one of two job command files:

Job step Process time in seconds

step0 120

step1 110

step2 100

step3 90

step4 80

step5 70

step6 60

step7 50

step8 40

step9 30
Chapter 6. Managing serial batch jobs 139

Submit 10 Serial Jobs
#
@ job_name = sen1_all_1
@ step_name = step0
@ executable = sec_spend.ksh
@ arguments = 120 sen1_all_1 step0
@ wall_clock_limit = 125
@ queue
@ step_name = step1
@ executable = sec_spend.ksh
@ arguments = 110 sen1_all_1 step1
@ wall_clock_limit = 115
@ queue
@ step_name = step2
@ executable = sec_spend.ksh
@ arguments = 100 sen1_all_1 step2
@ wall_clock_limit = 105
@ queue
@ step_name = step3
@ executable = sec_spend.ksh
@ arguments = 90 sen1_all_1 step3
@ wall_clock_limit = 95
@ queue
@ step_name = step4
@ executable = sec_spend.ksh
@ arguments = 80 sen1_all_1 step4
@ wall_clock_limit = 85
@ queue
@ step_name = step5
@ executable = sec_spend.ksh
@ arguments = 70 sen1_all_1 step5
@ wall_clock_limit = 75
@ queue
@ step_name = step6
@ executable = sec_spend.ksh
@ arguments = 60 sen1_all_1 step6
@ wall_clock_limit = 65
@ queue
@ step_name = step7
@ executable = sec_spend.ksh
@ arguments = 50 sen1_all_1 step7
@ wall_clock_limit = 55
@ queue
@ step_name = step8
@ executable = sec_spend.ksh
@ arguments = 40 sen1_all_1 step8
@ wall_clock_limit = 45
@ queue
@ step_name = step9
@ executable = sec_spend.ksh
@ arguments = 30 sen1_all_1 step9
@ wall_clock_limit = 35
@ queue
140 Workload Management: SP and Other RS/6000 Servers

In each step, we specify step_name, executable, arguments, wall_clock_time,
and queue keyword. For example, the following command is performed in
step0 with executable, arguments, and queue keywords:

sec_spend.ksh 120 sen1_all_1 step0

The wall_clock_time is important. If you underestimate the time, the job is
killed by LoadLeveler before completing the process. Therefore, you need to
specify a larger time than the real process time. If you only perform serial jobs
in your LoadLeveler cluster, you do not need to overestimate, but, when
performing serial jobs and parallel jobs simultaneously, estimating adequate
time may be an important factor for the efficient functionality of the backfill
scheduler. This will be discussed in another scenario where we will perform
both serial jobs and parallel jobs in a LoadLeveler cluster.

6.4.4 Submitting jobs to the LoadLeveler
Before submitting jobs, you should confirm the node status of nodes in your
LoadLeveler cluster with the llstatus command. The output of the llstatus

command is shown in the following screen:

This output shows two scheduler daemons running on sp4n05 and sp4n15.
The startd daemon is running on every executing node. At this time, no job is
running.

$ llstatus
Name Schedd InQ Act Startd Run LdAvg Idle Arch OpSys
sp4n01.msc.itso.ibm.com Down 0 0 Idle 0 0.08 720 R6000 AIX43
sp4n05.msc.itso.ibm.com Avail 0 0 Idle 0 0.01 9999 R6000 AIX43
sp4n06.msc.itso.ibm.com Down 0 0 Idle 0 0.02 9999 R6000 AIX43
sp4n07.msc.itso.ibm.com Down 0 0 Idle 0 0.00 9999 R6000 AIX43
sp4n08.msc.itso.ibm.com Down 0 0 Idle 0 0.02 9999 R6000 AIX43
sp4n09.msc.itso.ibm.com Down 0 0 Idle 0 0.00 1300 R6000 AIX43
sp4n10.msc.itso.ibm.com Down 0 0 Idle 0 0.01 2433 R6000 AIX43
sp4n11.msc.itso.ibm.com Down 0 0 Idle 0 0.03 1184 R6000 AIX43
sp4n13.msc.itso.ibm.com Down 0 0 Idle 0 0.00 725 R6000 AIX43
sp4n15.msc.itso.ibm.com Avail 0 0 Idle 0 3.00 9999 R6000 AIX43

R6000/AIX43 10 machines 0 jobs 0 running
Total Machines 10 machines 0 jobs 0 running

The Central Manager is defined on sp4n01.msc.itso.ibm.com

The following machine is marked SUBMIT_ONLY
sp4en0.msc.itso.ibm.com

All machines on the machine_list are present.
Chapter 6. Managing serial batch jobs 141

You can also find the available class information by using the llclass

command, and you can find the current queue information by using the llq

command. The following is the screen output when we perform the llclass

and llq commands before submitting jobs:

We can see that class_second has 10 free slots in this output. That means 10
class_second jobs can run in the LoadLeveler cluster at this time, and we can
see that no jobs are placed in the queue by the output of the llq command.

After confirming the current status, we submit two job command files,
sen1_all_1.cmd and sen1_all_2.cmd, with the llsubmit command. The
following is the output when we submit the command:

$ llclass
Name MaxJobCPU MaxProcCPU Free Max Description

d+hh:mm:ss d+hh:mm:ss Slots Slots

short_limit -1 -1 10 10
long_limit -1 -1 10 10
small -1 -1 40 40
class_parallel -1 0+20:15:00 10 10 For job_type parallel
class_second 0+02:00:00 0+00:30:00 10 10 Second Class Users
class_first 1+00:00:00 -1 20 20 First Class Users
$ llq
llq: There is currently no job status to report.
142 Workload Management: SP and Other RS/6000 Servers

In the screen output, you can see the queue status from the output of the llq

command after submitting the jobs. We can see that 10 job steps defined in a
job command file are handled by a scheduling node, and each job command
file is handled by the different scheduling node. The ID is represented by the
hostname of the scheduling node, the assigned job number, and the step
number. The 10 job steps are dispatched to 10 nodes. On each node, only
one job step is running as the class_second job. The other 10 jobs are placed
in the idle state to wait in the queue.

The following screen output shows the queue status we can get with the llq

command after some time has elapsed:

$ llsubmit sen1_all_1.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.169" with 10 job steps has been submitted
.
$ llsubmit sen1_all_2.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.120" with 10 job steps has been submitted
.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.169.0 tani1 11/9 14:06 R 50 class_second sp4n07
sp4n15.169.9 tani1 11/9 14:06 R 50 class_second sp4n15
sp4n15.169.1 tani1 11/9 14:06 R 50 class_second sp4n09
sp4n15.169.2 tani1 11/9 14:06 R 50 class_second sp4n05
sp4n15.169.3 tani1 11/9 14:06 R 50 class_second sp4n06
sp4n15.169.4 tani1 11/9 14:06 R 50 class_second sp4n10
sp4n15.169.5 tani1 11/9 14:06 R 50 class_second sp4n13
sp4n15.169.6 tani1 11/9 14:06 R 50 class_second sp4n11
sp4n15.169.7 tani1 11/9 14:06 R 50 class_second sp4n01
sp4n15.169.8 tani1 11/9 14:06 R 50 class_second sp4n08
sp4n05.120.2 tani1 11/9 14:07 I 50 class_second
sp4n05.120.3 tani1 11/9 14:07 I 50 class_second
sp4n05.120.4 tani1 11/9 14:07 I 50 class_second
sp4n05.120.5 tani1 11/9 14:07 I 50 class_second
sp4n05.120.1 tani1 11/9 14:07 I 50 class_second
sp4n05.120.6 tani1 11/9 14:07 I 50 class_second
sp4n05.120.0 tani1 11/9 14:07 I 50 class_second
sp4n05.120.7 tani1 11/9 14:07 I 50 class_second
sp4n05.120.8 tani1 11/9 14:07 I 50 class_second
sp4n05.120.9 tani1 11/9 14:07 I 50 class_second

20 job steps in queue, 10 waiting, 0 pending, 10 running, 0 held
Chapter 6. Managing serial batch jobs 143

In the screen output we see that six job steps are completed; 10 job steps are
running, and four jobs steps are still waiting. In this way, LoadLeveler
dispatches the next job successively when one of the jobs that was running is
completed and the node is available to execute the class job. This results in
using nodes efficiently without leaving nodes unused while controlling the
workload of each node.

6.4.5 Submitting a small job command file
In the preceding example, we created two job command files with ten job
steps each. In this subsection, we divide the preceding two job command files
into 20 job command files that have one job step each. The jobs we want to
perform are the same as in the preceding subsection. What we want to know
is the difference between submitting a job command file that contains multiple
job steps and submitting multiple job command files that each contain single
job steps.

The following is one of the 20 job command files we created for this purpose:

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.169.1 tani1 11/9 14:06 R 50 class_second sp4n09
sp4n15.169.0 tani1 11/9 14:06 R 50 class_second sp4n07
sp4n15.169.2 tani1 11/9 14:06 R 50 class_second sp4n05
sp4n15.169.3 tani1 11/9 14:06 R 50 class_second sp4n06
sp4n05.120.0 tani1 11/9 14:07 R 50 class_second sp4n15
sp4n05.120.5 tani1 11/9 14:07 R 50 class_second sp4n10
sp4n05.120.1 tani1 11/9 14:07 R 50 class_second sp4n08
sp4n05.120.2 tani1 11/9 14:07 R 50 class_second sp4n01
sp4n05.120.3 tani1 11/9 14:07 R 50 class_second sp4n11
sp4n05.120.4 tani1 11/9 14:07 R 50 class_second sp4n13
sp4n05.120.6 tani1 11/9 14:07 I 50 class_second
sp4n05.120.9 tani1 11/9 14:07 I 50 class_second
sp4n05.120.7 tani1 11/9 14:07 I 50 class_second
sp4n05.120.8 tani1 11/9 14:07 I 50 class_second
sp4n15.169.5 tani1 11/9 14:06 C 50 class_second
sp4n15.169.4 tani1 11/9 14:06 C 50 class_second
sp4n15.169.6 tani1 11/9 14:06 C 50 class_second
sp4n15.169.7 tani1 11/9 14:06 C 50 class_second
sp4n15.169.8 tani1 11/9 14:06 C 50 class_second
sp4n15.169.9 tani1 11/9 14:06 C 50 class_second

14 job steps in queue, 4 waiting, 0 pending, 10 running, 0 held
144 Workload Management: SP and Other RS/6000 Servers

Each job command file has a different value for the entry of the arguments

keyword in order to give different parameters to each job command file.

For submitting 20 job command files, we have to perform llsubmit commands
20 times; so, we create the shell script to perform the llsubmit command 20
times as shown in the following screen:

With this sen1_one_all.ksh shell script, we submit 20 job command files. You
can see the queue status after submitting 20 job command files using the
script in the following screen:

$ cat sen1_one_0.cmd
@ step_name = step0
@ executable = sec_spend.ksh
@ arguments = 120 sen1_one_1 step0
@ wall_clock_limit = 125
@ queue
$

$ cat sen1_one_all.ksh
#!/bin/ksh
llsubmit sen1_one_0.cmd
llsubmit sen1_one_1.cmd
llsubmit sen1_one_2.cmd
llsubmit sen1_one_3.cmd
llsubmit sen1_one_4.cmd
llsubmit sen1_one_5.cmd
llsubmit sen1_one_6.cmd
llsubmit sen1_one_7.cmd
llsubmit sen1_one_8.cmd
llsubmit sen1_one_9.cmd
llsubmit sen1_one_0.cmd
llsubmit sen1_one_1.cmd
llsubmit sen1_one_2.cmd
llsubmit sen1_one_3.cmd
llsubmit sen1_one_4.cmd
llsubmit sen1_one_5.cmd
llsubmit sen1_one_6.cmd
llsubmit sen1_one_7.cmd
llsubmit sen1_one_8.cmd
llsubmit sen1_one_9.cmd
$

Chapter 6. Managing serial batch jobs 145

You can see the difference in the ID columns. Each job command file is
assigned a job ID with a step ID 0. And you can see the behavior by which the
LoadLeveler distributes the submission to multiple scheduling nodes equally.
The nodes sp4n05 and sp4n15 have same number of jobs to schedule. But
there is no difference about dispatching job steps to nodes. The LoadLeveler
distributes the first 10 jobs to 10 nodes with job step units.

If you want to manage job steps as a group in the queue, we recommend that
you write multiple steps in a job command file. You can manage each job step
with the llprio and llcancel commands by specifying hostname.job-id.step-id
in the following way:

llprio +30 sp4n15.310.9

llcancel sp4n15.310.9

You can also manage all the job steps within a job as a group by using the
commands without specifying the job step ID:

llprio +30 sp4n15.310

llcancel sp4n15.310

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.132.0 tani1 11/9 14:27 R 50 class_second sp4n09
sp4n15.183.0 tani1 11/9 14:27 R 50 class_second sp4n08
sp4n15.182.0 tani1 11/9 14:27 R 50 class_second sp4n13
sp4n05.133.0 tani1 11/9 14:27 R 50 class_second sp4n07
sp4n05.134.0 tani1 11/9 14:27 R 50 class_second sp4n05
sp4n15.184.0 tani1 11/9 14:27 R 50 class_second sp4n11
sp4n05.135.0 tani1 11/9 14:27 R 50 class_second sp4n10
sp4n15.186.0 tani1 11/9 14:27 R 50 class_second sp4n15
sp4n05.136.0 tani1 11/9 14:27 R 50 class_second sp4n01
sp4n15.185.0 tani1 11/9 14:27 R 50 class_second sp4n06
sp4n15.187.0 tani1 11/9 14:27 I 50 class_second
sp4n05.137.0 tani1 11/9 14:27 I 50 class_second
sp4n05.138.0 tani1 11/9 14:27 I 50 class_second
sp4n15.188.0 tani1 11/9 14:27 I 50 class_second
sp4n05.139.0 tani1 11/9 14:27 I 50 class_second
sp4n05.140.0 tani1 11/9 14:27 I 50 class_second
sp4n15.190.0 tani1 11/9 14:27 I 50 class_second
sp4n15.189.0 tani1 11/9 14:27 I 50 class_second
sp4n05.141.0 tani1 11/9 14:27 I 50 class_second
sp4n15.191.0 tani1 11/9 14:27 I 50 class_second

20 job steps in queue, 10 waiting, 0 pending, 10 running, 0 held
$

146 Workload Management: SP and Other RS/6000 Servers

The following output shows the job status after submitting two job command
files that include five job steps each:

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.270.1 tani1 11/12 17:18 R 50 class_second sp4n07
sp4n05.270.0 tani1 11/12 17:18 R 50 class_second sp4n11
sp4n05.270.2 tani1 11/12 17:18 R 50 class_second sp4n05
sp4n05.270.4 tani1 11/12 17:18 R 50 class_second sp4n06
sp4n05.270.3 tani1 11/12 17:18 R 50 class_second sp4n08
sp4n15.313.0 tani1 11/12 17:18 R 50 class_second sp4n01
sp4n15.313.4 tani1 11/12 17:18 R 50 class_second sp4n15
sp4n15.313.1 tani1 11/12 17:18 R 50 class_second sp4n10
sp4n15.313.2 tani1 11/12 17:18 R 50 class_second sp4n13
sp4n15.313.3 tani1 11/12 17:18 R 50 class_second sp4n09

10 job steps in queue, 0 waiting, 0 pending, 10 running, 0 held
$ llcancel sp4n15.313.2
llcancel: Cancel command has been sent to the central manager.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.270.1 tani1 11/12 17:18 R 50 class_second sp4n07
sp4n05.270.0 tani1 11/12 17:18 R 50 class_second sp4n11
sp4n05.270.2 tani1 11/12 17:18 R 50 class_second sp4n05
sp4n05.270.4 tani1 11/12 17:18 R 50 class_second sp4n06
sp4n05.270.3 tani1 11/12 17:18 R 50 class_second sp4n08
sp4n15.313.0 tani1 11/12 17:18 R 50 class_second sp4n01
sp4n15.313.4 tani1 11/12 17:18 R 50 class_second sp4n15
sp4n15.313.1 tani1 11/12 17:18 R 50 class_second sp4n10
sp4n15.313.3 tani1 11/12 17:18 R 50 class_second sp4n09
sp4n15.313.2 tani1 11/12 17:18 CA 50 class_second

9 job steps in queue, 0 waiting, 0 pending, 9 running, 0 held
$ llcancel sp4n05.270
llcancel: Cancel command has been sent to the central manager.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.313.1 tani1 11/12 17:18 R 50 class_second sp4n10
sp4n15.313.0 tani1 11/12 17:18 R 50 class_second sp4n01
sp4n15.313.4 tani1 11/12 17:18 R 50 class_second sp4n15
sp4n15.313.3 tani1 11/12 17:18 R 50 class_second sp4n09
sp4n15.313.2 tani1 11/12 17:18 CA 50 class_second

4 job steps in queue, 0 waiting, 0 pending, 4 running, 0 held
$

Chapter 6. Managing serial batch jobs 147

You can see from the screen output that you can cancel each job step with
the llcancel command by specifying the step ID, and you can cancel the job
step as a group by using the command without specifying the step ID.

It is easier and more convenient to describe multiple job steps in a job
command file than to prepare multiple job files.

Also, if your jobs have dependency, you can manage them by describing them
in a job command file. This is discussed in the following section.

6.5 Executing batch jobs with dependency on each other

In some cases, you may need to perform batch jobs sequentially because of
the dependency between jobs. You can specify the dependency between job
steps in the job command file by using the dependency keyword. In this
section, we submit a job command file that has the dependency keyword to
LoadLeveler, and we show how LoadLeveler manages these dependencies.

We have seven job steps to perform. We can perform steps 0, 1, 2, 4, and 5 5
simultaneously, but step 3 should be performed after steps 0, 1, and 2 are
completed successfully with exit code 0. Also, job step 6 should be performed
after steps 4 and 5 are completed successfully with exit code 0. We can
perform steps 3 and 6 simultaneously.

The job command file is shown in the following screen:
148 Workload Management: SP and Other RS/6000 Servers

You can see dependency keywords in job steps 3 and 6. The dependency
keyword in step 3 means that step 3 is only performed when the exit codes of
steps 0, 1, and 2 are all equal to 0. The keyword in step 6 means that step 6
is only performed when the exit codes of step 4 and step 5 are equal to 0.

The following screen output shows the queue status after submitting the job
command file shown in the preceding screen:

$ cat depend1.cmd
Dependency cmd
#
@ job_name = depend_1
@ step_name = step0
@ executable = sec_spend_exit.ksh
@ arguments = 120 depend_1 step0 0
@ wall_clock_limit = 125
@ queue
@ step_name = step1
@ executable = sec_spend_exit.ksh
@ arguments = 110 depend_1 step1 0
@ wall_clock_limit = 115
@ queue
@ step_name = step2
@ executable = sec_spend_exit.ksh
@ arguments = 100 depend_1 step2 0
@ wall_clock_limit = 105
@ queue
@ dependency = (step0 == 0) && (step1 == 0) && (step2 == 0)
@ step_name = step3
@ executable = sec_spend_exit.ksh
@ arguments = 90 depend_1 step3 0
@ wall_clock_limit = 95
@ queue
@ step_name = step4
@ executable = sec_spend_exit.ksh
@ arguments = 80 depend_1 step4 0
@ wall_clock_limit = 85
@ queue
@ step_name = step5
@ executable = sec_spend_exit.ksh
@ arguments = 70 depend_1 step5 0
@ wall_clock_limit = 75
@ queue
@ dependency = (step4 == 0) && (step5 == 0)
@ step_name = step6
@ executable = sec_spend_exit.ksh
@ arguments = 60 depend_1 step6 0
@ wall_clock_limit = 65
@ queue
Chapter 6. Managing serial batch jobs 149

The first output of the llq command shows that steps 0, 1, 2, 4, and 5 are
running simultaneously on different nodes, and steps 3 and 6 are placed in
the Not Queued (NQ) state because these step have the dependency
keyword.

The second output of the llq command shows that steps 4 and 5 have been
completed and step 6 is running on node sp4n08. However, steps 0, 1, and 2
are still running. Step 3 is still placed in the Not Queued state.

The third output shows that steps 0, 1, and 3 have been completed; so, step 3
has started running.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.142.1 tani1 11/9 14:53 R 50 class_second sp4n06
sp4n05.142.0 tani1 11/9 14:53 R 50 class_second sp4n09
sp4n05.142.2 tani1 11/9 14:53 R 50 class_second sp4n11
sp4n05.142.5 tani1 11/9 14:53 R 50 class_second sp4n13
sp4n05.142.4 tani1 11/9 14:53 R 50 class_second sp4n08
sp4n05.142.3 tani1 11/9 14:53 NQ 50 class_second
sp4n05.142.6 tani1 11/9 14:53 NQ 50 class_second

7 job steps in queue, 0 waiting, 0 pending, 5 running, 2 held
$
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.142.1 tani1 11/9 14:53 R 50 class_second sp4n06
sp4n05.142.0 tani1 11/9 14:53 R 50 class_second sp4n09
sp4n05.142.2 tani1 11/9 14:53 R 50 class_second sp4n11
sp4n05.142.6 tani1 11/9 14:53 R 50 class_second sp4n08
sp4n05.142.3 tani1 11/9 14:53 NQ 50 class_second
sp4n05.142.5 tani1 11/9 14:53 C 50 class_second
sp4n05.142.4 tani1 11/9 14:53 C 50 class_second

5 job steps in queue, 0 waiting, 0 pending, 4 running, 1 held
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.142.6 tani1 11/9 14:53 R 50 class_second sp4n08
sp4n05.142.3 tani1 11/9 14:53 R 50 class_second sp4n11
sp4n05.142.2 tani1 11/9 14:53 C 50 class_second
sp4n05.142.1 tani1 11/9 14:53 C 50 class_second
sp4n05.142.0 tani1 11/9 14:53 C 50 class_second
sp4n05.142.4 tani1 11/9 14:53 C 50 class_second
sp4n05.142.5 tani1 11/9 14:53 C 50 class_second

2 job steps in queue, 0 waiting, 0 pending, 2 running, 0 held
150 Workload Management: SP and Other RS/6000 Servers

These results show that the LoadLeveler dispatches jobs to nodes to process
in parallel if the job steps do not have the dependency, but, if you specify the
dependency in the job command file, the LoadLeveler manages the
dependency and dispatches the job when the dependency is satisfied.

We will now show how the LoadLeveler manages job steps if the dependency
cannot be satisfied. We tested the case in which step 5 returns the value 1 as
exit code. The following screen shows the queue status after step 5
completes with exit code 1:

The first output shows that steps 4 and 5 have been completed, but step 6 is
placed in the NR state. The NR state stands for the Not Run state; so, step 6
does not run because the dependency is not satisfied.

The second output shows that step3 is running because the dependency is
satisfied for step3.

The third output shows that the NR state does not remain in the queue after
all other steps in the job command file are completed.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.193.0 tani1 11/9 15:15 R 50 class_second sp4n09
sp4n15.193.1 tani1 11/9 15:15 R 50 class_second sp4n05
sp4n15.193.2 tani1 11/9 15:15 R 50 class_second sp4n06
sp4n15.193.3 tani1 11/9 15:15 NQ 50 class_second
sp4n15.193.6 tani1 11/9 15:15 NR 50 class_second
sp4n15.193.5 tani1 11/9 15:15 C 50 class_second
sp4n15.193.4 tani1 11/9 15:15 C 50 class_second

4 job steps in queue, 0 waiting, 0 pending, 3 running, 1 held

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.193.3 tani1 11/9 15:15 R 50 class_second sp4n09
sp4n15.193.6 tani1 11/9 15:15 NR 50 class_second
sp4n15.193.0 tani1 11/9 15:15 C 50 class_second
sp4n15.193.1 tani1 11/9 15:15 C 50 class_second
sp4n15.193.4 tani1 11/9 15:15 C 50 class_second
sp4n15.193.2 tani1 11/9 15:15 C 50 class_second
sp4n15.193.5 tani1 11/9 15:15 C 50 class_second

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held
$ llq
llq: There is currently no job status to report.
Chapter 6. Managing serial batch jobs 151

152 Workload Management: SP and Other RS/6000 Servers

Chapter 7. Managing parallel jobs

This chapter describes some scenarios for managing parallel jobs. The
parallel jobs are written with the Message Passing Interface (MPI) library on
Parallel Operating Environment (POE) V2.4. We show an example of
submitting the POE jobs with the LoadLeveler V2.1.

7.1 Scenario description

We discuss the following scenarios:

• Executing multiple size parallel jobs

You may have multiple parallel jobs, and each job may request a different
number of resources and different times for processing the job. In this
scenario, we prepare three parallel jobs of different sizes and show how
LoadLeveler schedules these jobs.

• Executing multiple parallel jobs using a communication subsystem

You can request a communication adapter and a communication
subsystem mode for a job by specifying the request in the job command
file. We show how LoadLeveler schedules the jobs that specify the
network requests.

• Interactive POE Job

When you perform a POE Job interactively, you can manage resource
information with LoadLeveler. POE contacts LoadLeveler to know the
resource and manages the job. In this scenario, we will show how
LoadLeveler manages the job.

7.2 Tools choice

We discuss submitting parallel jobs with the following products:

• PSSP V3.1.1 and AIX V4.3.3

• LoadLeveler V2.1

• Parallel Environment (PE) for AIX V2.4

Parallel Environment for AIX V2.4 includes the Parallel Operating
Environment (POE) as one of its component. In an earlier release of PE, POE
relied on the SP Resource Management to perform job management
functions. This function keeps track of available or allocated nodes and
loading the switch tables for programs performing User Space
© Copyright IBM Corp. 2000 153

communications. LoadLeveler V2.1 provides the resource management
function. POE can get node and adapter information from LoadLeveler. For
the User Space communication, LoadLeveler is able to load and unload to the
Job Switch Resource Table (JSRT) and provide access to the JSRT to POE;
so, LoadLeveler V2.1 works as the job management system for POE V2.4.

The benefits of using LoadLeveler V2.1 with POE V2.4 on RS/6000 SP
include:

• LoadLeveler V2.1 supports multiple processes that use user space
protocols with the SP switch. Each SP switch adapter has four adapter
windows available for using user space protocol.

• LoadLeveler Version 2.1 allows a job step to request the network
resources required for a task to run both the Message Passing Interface
(MPI) and the Low-level Application Programming Interface (LAPI). MPI
runs in both IP or user space mode, but LAPI can only run in user space
mode.

• The new scheduler, called the Backfill scheduler, provides a backfill
capability for scheduling multiple size parallel jobs. The Backfill scheduler
schedules small jobs while waiting for the start time of any large job
requiring many nodes. This scheduler allocates the nodes more efficiently
by dispatching smaller jobs while waiting for the resources for large jobs.

• LoadLeveler V2.1 works with POE V2.4 for interactive jobs.

• LoadLeveler V2.1 allows multiple tasks of a parallel job to run on the same
node.

7.3 Environment for processing parallel jobs

You need to have a common user name space of the same kind as when
processing serial jobs. Refer to Section 6.3, "Considerations for the executing
environment" on page 135, for information on creating a common user name
space.

You have to edit the machine stanza and the adapter stanza in the
administration file for users to request the network adapter in the job
command file. Refer to Section 3.4.6, "Parallel job" on page 64, for
information on the environment of parallel jobs.

We create a class for processing parallel jobs in our environment. All users
can use this class. The following are the definitions for the classes in the
admin file:
154 Workload Management: SP and Other RS/6000 Servers

All parallel jobs discussed in this chapter will use this class.

7.4 Executing multiple size parallel jobs

LoadLeveler V2.1 has two types of scheduler: The default scheduler and the
Backfill scheduler. If you do not change the default configuration in the
configuration file, the Backfill scheduler is selected with the SCHEDULER_TYPE

keyword. The following screen displays the scheduler selection part of the
configuration file:

In the screen output, the Backfill scheduler is selected. If you comment out
SCHEDULER_TYPE = BACKFILL and activate the SCHEDULER_TYPE = statement in the
file, the default scheduler is activated. You can use the job control API to use
an external scheduler for site-specific requirements. The SCHEDULER_API = YES

is used to enable the job control API.

In this section, we discuss how these schedulers schedule varying sizes of
parallel jobs. The scheduler has to allocate multiple numbers of nodes
depending on the size of parallel jobs. If you have various sizes of parallel
jobs, scheduling is a complex task.

We prepare the following job command files for submitting multiple sizes
parallel jobs:

• n4t110.cmd

class_parallel: type = class
class_comment = "For job_type parallel"
max_node = 5
total_tasks = 15
wall_clock_limit = 24:00:00,12:00:00
cpu_limit = 20:15:00

For Backfill Scheduler
SCHEDULER_API= NO
SCHEDULER_TYPE = BACKFILL
For default scheduler
SCHEDULER_API= NO
SCHEDULER_TYPE =
For external scheduler
SCHEDULER_API= YES
SCHEDULER_TYPE =
Chapter 7. Managing parallel jobs 155

This parallel job needs 4 nodes. We estimate the elapsed time for this job
will be running at 110 sec. We set the value 110 to wall_clock_limit
keyword in the job command file. The following is the output screen of
n4t110.cmd file with cat command:

• n5110.cmd

This parallel job needs five nodes. We estimate the elapsed time for this
job will be running at 110 seconds. We set the value of 110 to the
wall_clock_limit keyword in the job command file. The following is the
screen output of the n5t110.cmd file with the cat command:

• n2t60.cmd

This parallel job needs two nodes. We estimate the elapsed time for this
job will be running at 60 seconds. We set a value of 60 to the

$ cat n4t110.cmd
Small Parallel Job 2 node 1 minute
need 4 node
wall clock limit 110 sec
@ job_type=parallel
@ environment = COPY_ALL; MP_TIMEOUT=2000;
@ error = btat_test.$(Host).$(Cluster).$(Process).err
@ output = btat_test.$(Host).$(Cluster).$(Process).out
@ wall_clock_limit = 110,110
@ network.mpi = css0,not_shared,ip
@ node = 4
@ tasks_per_node = 1
@ executable = /bin/poe
@ arguments = /u/tani1/SCENARIO_PARA/btat -d 90 -t 1 -m 1000 -v -labelio yes
@ class = class_parallel
@ queue

$ cat n5t110.cmd
Small Parallel Job 2 node 1 minute
need 5 node
wall clock limit 110 sec
@ job_type=parallel
@ environment = COPY_ALL; MP_TIMEOUT=2000;
@ error = btat_test.$(Host).$(Cluster).$(Process).err
@ output = btat_test.$(Host).$(Cluster).$(Process).out
@ wall_clock_limit = 110,110
@ network.mpi = css0,not_shared,ip
@ node = 5
@ tasks_per_node = 1
@ executable = /bin/poe
@ arguments = /u/tani1/SCENARIO_PARA/btat -d 90 -t 1 -m 1000 -v -labelio yes
@ class = class_parallel
@ queue
156 Workload Management: SP and Other RS/6000 Servers

wall_clock_limit keyword in the job command file. The following is the
screen output of the n2t60.cmd file with the cat command:

For executing these parallel jobs, we suppose that we only have six nodes,
and each node can execute only one job task for the class_parallel job. The
following screen is the output of the llclass command:

You can see that we have six slots for the class_parallel job in our
LoadLeveler cluster. That is, if a job is submitted with the n5t110.cmd file and
is in run state, other jobs cannot run simultaneously.

The another configuration for scheduling jobs is the job priority determined by
the SYSPRIO keyword in the configuration file. Refer to Section 3.4.4, "Job
priority" on page 57, to get the detail information of this keyword.

$ cat n2t60.cmd
Small Parallel Job 2 node 1 minute
need 2 node
wall clock limit 60 sec
@ job_type=parallel
@ environment = COPY_ALL; MP_TIMEOUT=2000;
@ error = btat_test.$(Host).$(Cluster).$(Process).err
@ output = btat_test.$(Host).$(Cluster).$(Process).out
@ wall_clock_limit = 60,60
@ network.mpi = css0,not_shared,ip
@ node = 2
@ tasks_per_node = 1
@ executable = /bin/poe
@ arguments = /u/tani1/SCENARIO_PARA/btat -d 30 -t 1 -m 1000 -v -labelio yes
@ class = class_parallel
@ queue

$ llclass
Name MaxJobCPU MaxProcCPU Free Max Description

d+hh:mm:ss d+hh:mm:ss Slots Slots

interactive -1 -1 2 2
inter_class -1 -1 2 2
short_limit -1 -1 10 10
small -1 -1 37 37
long_limit -1 -1 10 10
class_parallel -1 0+20:15:00 6 6 For job_type parallel
class_second 0+02:00:00 0+00:30:00 10 10 Second Class Users
class_first 1+00:00:00 -1 20 20 First Class Users
$ llq
llq: There is currently no job status to report.
Chapter 7. Managing parallel jobs 157

Our configuration of the keyword throughout this chapter is the following
default setting:

SYSPRIO: 0 - (QDate)

This means the job priority is assigned based on FIFO.

7.4.1 With the Backfill scheduler (Case 1)
We will discuss how the Backfill scheduler schedules jobs of various sizes in
this section with the job command files described in the preceding section.

The jobs are submitted in the following order:

1. n4n110.cmd

2. n5t110.cmd

3. n2t60.cmd

4. n2t60.cmd

The following screen output shows the status of the jobs after they are
submitted:

In this screen output, you can see that the scheduler receives and assigns
the job ID to each job. The n4t110.cmd command is submitted first and
assigned the ID sp4n05.627.0. The n5t110.cmd job is submitted second and
assigned the ID sp4n05.628.0. The n2t60.cmd job is submitted third and
assigned the ID sp4n05.629.0. The n2t60.cmd job is submitted again as the
fourth job and assigned the ID sp4n15.424.0. The output of the llq command

$ llsubmit n4t110.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.627" has been submitted.
$ llsubmit n5t110.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.628" has been submitted.
$ llsubmit n2t60.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.629" has been submitted.
$ llsubmit n2t60.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.424" has been submitted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.627.0 tani1 11/16 13:09 R 50 class_parall sp4n08
sp4n05.629.0 tani1 11/16 13:10 R 50 class_parall sp4n07
sp4n05.628.0 tani1 11/16 13:09 I 50 class_parall
sp4n15.424.0 tani1 11/16 13:10 I 50 class_parall

4 job steps in queue, 2 waiting, 0 pending, 2 running, 0 held
158 Workload Management: SP and Other RS/6000 Servers

shows that both sp4n05.627.0 and sp4n05.629.0 are currently running. That
is, the Backfill scheduler scheduled the execution of sp4n05.629.0 before
sp4n05.628.0 and used two nodes for sp4n05.629.0 in addition to four nodes
for sp4n05.627.0. The scheduler can estimate the maximum time for job
completion of n2t60.cmd at 60 seconds with the wall_clock_limit; so, the job
can run and complete the task while waiting for the the n4t110.cmd job to
complete.

The following screen output shows the result of the llq command that we can
get after some intervals:

This screen output shows that sp4n05.629.0 completed while sp4n05.627.0 was
still running. The two nodes becametemporarily idle; however, the scheduler
did not dispatch the sp4n15.424.0 job to two nodes before dispatching
sp4n05.628.0. The scheduler waits for the completion of job sp4n05.627.0 and
dispatches sp4n05.628.0 next.

The wall clock limit of sp4n15.424.0 is 60 seconds, and that of sp4n05.627.0 is
110 seconds. If sp4n15.424.0 is dispatched prior to sp4n05.628.0, the
sp4n05.628.0 may need to wait to finish the sp4n15.424.0 to get five nodes.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.627.0 tani1 11/16 13:09 R 50 class_parall sp4n08
sp4n05.628.0 tani1 11/16 13:09 I 50 class_parall
sp4n15.424.0 tani1 11/16 13:10 I 50 class_parall

3 job steps in queue, 2 waiting, 0 pending, 1 running, 0 held
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.628.0 tani1 11/16 13:09 R 50 class_parall sp4n07
sp4n15.424.0 tani1 11/16 13:10 I 50 class_parall

2 job steps in queue, 1 waiting, 0 pending, 1 running, 0 held
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.424.0 tani1 11/16 13:10 R 50 class_parall sp4n07

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held
$

Chapter 7. Managing parallel jobs 159

7.4.2 With the Backfill scheduler (Case 2)
We submit the same jobs in the same order as the ones described in the
preceding subsection. Since we know the real elapsed time to complete each
job from the first experiment, we change the wall clock limit to the small size
of jobs that need two nodes. We renamed the job command file and changed
the value of the wall_clock_limit in the following way:

The bold character shows the difference between the n2t40.cmd and the
n2t60.cmd. We submit the n2t40.cmd job command file as the alternative to
n2t60.cmd.

The following is the output when we submitted job command files:

$ cat n2t40.cmd
Small Parallel Job 2 node 1 minute
need 2 node
wall clock limit 40 sec
@ job_type=parallel
@ environment = COPY_ALL; MP_TIMEOUT=2000;
@ error = btat_test.$(Host).$(Cluster).$(Process).err
@ output = btat_test.$(Host).$(Cluster).$(Process).out
@ wall_clock_limit = 40,40
@ network.mpi = css0,not_shared,ip
@ node = 2
@ tasks_per_node = 1
@ executable = /bin/poe
@ arguments = /u/tani1/SCENARIO_PARA/btat -d 30 -t 1 -m 1000 -v -labelio yes
@ class = class_parallel
@ queue

$ llsubmit n4t110.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.425" has been submitted.
$ llsubmit n5t110.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.426" has been submitted.
$ llsubmit n2t40.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.630" has been submitted.
$ llsubmit n2t40.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.631" has been submitted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.425.0 tani1 11/16 13:14 R 50 class_parall sp4n07
sp4n05.630.0 tani1 11/16 13:14 R 50 class_parall sp4n08
sp4n15.426.0 tani1 11/16 13:14 I 50 class_parall
sp4n05.631.0 tani1 11/16 13:14 I 50 class_parall

4 job steps in queue, 2 waiting, 0 pending, 2 running, 0 held
160 Workload Management: SP and Other RS/6000 Servers

In the screen output, you can see that the n4t110.cmd job is submitted first
and assigned the ID of sp4n15.625.0. The n5t110.cmd job is submitted
second and assigned the ID of sp4n15.626.0. The n2t40.cmd job is submitted
third and assigned the ID of sp4n05.630.0. The n2t40.cmd job is submitted
again as the fourth job and assigned the ID of sp4n05.631.0. The output of
the llq command shows that both sp4n15.625.0 and sp4n05.630.0 are
running in our LoadLeveler cluster.

The following screen shows the llq command after some intervals:

The first output shows that, while executing sp4n15.425.0, the job sp4n05.631.0

was allocated two nodes. The last submitted job was sp4n15.426.0. The wall
clock limit of sp4n05.630.0 and sp4n05.631.0 is 40 seconds, and that of
sp4n15.425.0 is 110 seconds. Thus, the maximum total time for processing
both jobs that require two nodes is shorter than the latter job that requires
four nodes.

You can see the following characteristics in these scenarios:

• The Backfill scheduler backfills the small size jobs if the required resource
is matched to the small size jobs while the large jobs wait for the
resources.

• Although the Backfill scheduler backfills the small size of jobs, the Backfill
scheduler honors the job priority. The starting of the highest priority job is
never delayed.

• The Backfill scheduler knows the maximum processing time by the value
of the wall_clock_time keyword.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.425.0 tani1 11/16 13:14 R 50 class_parall sp4n07
sp4n05.631.0 tani1 11/16 13:14 R 50 class_parall sp4n08
sp4n15.426.0 tani1 11/16 13:14 I 50 class_parall

3 job steps in queue, 1 waiting, 0 pending, 2 running, 0 held
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.426.0 tani1 11/16 13:14 R 50 class_parall sp4n08

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held
$

Chapter 7. Managing parallel jobs 161

If you want your job to run quickly, you should submit the job with fewer node
requests and shorter wall clock limit time. Note that overestimating the time is
a disadvantage for your job from this point of view; however, underestimating
results in the termination of your job before it completes.

7.4.3 With the default scheduler
In this section, we will discuss how the default scheduler schedules the jobs
when we submit the same job command files we used with the Backfill
scheduler.

To use the default scheduler, we chang the SCHEDULER_TYPE keyword entry in
the admin file:

We submit the same job command file in the same order as we used with the
Backfill scheduler. You can see the output that resulted when we submitted to
the default scheduler in the following screen:

For Backfill Scheduler
SCHEDULER_API= NO
SCHEDULER_TYPE = BACKFILL
For default scheduler
SCHEDULER_API= NO
SCHEDULER_TYPE =
For external scheduler
SCHEDULER_API= YES
SCHEDULER_TYPE =
162 Workload Management: SP and Other RS/6000 Servers

The job IDs are assigned to jobs. The default scheduler does not schedule
small job sp4n15.422.0 although two nodes are available while executing
sp4n05.624.0 with four nodes.

The following is the screen output of the llq command after some interval:

This output shows that the second job the scheduler dispatched was
sp4n05.625.0. That is, when executing the first job with four nodes, two nodes
were idle, and jobs with two node requirements were waiting in the queue. As
you can see, the Backfill scheduler is the preferred one, especially for
executing jobs in these simple scenarios.

$ llq
llq: There is currently no job status to report.
$ llsubmit n4t110.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.624" has been submitted.
$ llsubmit n5t110.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.625" has been submitted.
$ llsubmit n2t60.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.422" has been submitted.
$ llsubmit n2t60.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.626" has been submitted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.624.0 tani1 11/16 13:03 R 50 class_parall sp4n07
sp4n05.625.0 tani1 11/16 13:03 I 50 class_parall
sp4n15.422.0 tani1 11/16 13:03 I 50 class_parall
sp4n05.626.0 tani1 11/16 13:03 I 50 class_parall

4 job steps in queue, 3 waiting, 0 pending, 1 running, 0 held

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.625.0 tani1 11/16 13:03 R 50 class_parall sp4n06
sp4n15.422.0 tani1 11/16 13:03 I 50 class_parall
sp4n05.626.0 tani1 11/16 13:03 I 50 class_parall

3 job steps in queue, 2 waiting, 0 pending, 1 running, 0 held
Chapter 7. Managing parallel jobs 163

7.5 Executing multiple parallel jobs specifying network types

You can specify the network requirement for your parallel jobs with the
network keyword in the job command file. In this scenario, we show how
LoadLeveler allocates the network resource for parallel jobs depending on the
request and how this network request affects the execution of parallel jobs.

To allow users to execute multiple class_parallel jobs, we changed the entry
of the Class keyword in the local configuration file. Now, we have four nodes
that can execute six class_parallel jobs. The following is the output of the
llclass command:

You can see that 24 slots are available for class_parallel jobs.

7.5.1 User space shared mode
At first, we run multiple parallel jobs written with the MPI library. A job needs
four nodes, and one task runs on each node. We want to communicate with
user space mode through the SP switch. We share the switch adapter with
tasks of other job steps. The following screen output shows the job command
file to submit this job:

$ llclass
Name MaxJobCPU MaxProcCPU Free Max Description

d+hh:mm:ss d+hh:mm:ss Slots Slots

interactive -1 -1 2 2
inter_class -1 -1 2 2
short_limit -1 -1 10 10
small -1 -1 37 37
long_limit -1 -1 10 10
class_parallel -1 0+20:15:00 24 24 For job_type parallel
class_second 0+02:00:00 0+00:30:00 10 10 Second Class Users
class_first 1+00:00:00 -1 20 20 First Class Users
164 Workload Management: SP and Other RS/6000 Servers

The network keyword means that we need a css0 adapter that can be shared
with other tasks and communicate with MPI using user space mode. The
node keyword means we need four nodes for this job, and tasks_per_node

means we run one task on each node.

We submit this job command file six times. The following screen output shows
the result when we submitted the job command file:

$ cat us_share_css0.cmd
@ job_type=parallel
@ environment = COPY_ALL; MP_TIMEOUT=2000;
@ error = btat_test.$(Host).$(Cluster).$(Process).err
@ output = btat_test.$(Host).$(Cluster).$(Process).out
@ wall_clock_limit = 180,180
@ network.mpi = css0,shared,us
@ node = 4
@ tasks_per_node = 1
@ executable = /bin/poe
@ arguments = /u/tani1/SCENARIO_PARA/btat -d 40 -t 1 -m 1000 -v -labelio yes
@ class = class_parallel
@ queue

$ llsubmit us_share_css0.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.660" has been submitted.
$ llsubmit us_share_css0.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.661" has been submitted.
$ llsubmit us_share_css0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.456" has been submitted.
$ llsubmit us_share_css0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.457" has been submitted.
$ llsubmit us_share_css0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.458" has been submitted.
$ llsubmit us_share_css0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.459" has been submitted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.660.0 tani1 11/16 16:40 R 50 class_parall sp4n09
sp4n05.661.0 tani1 11/16 16:40 R 50 class_parall sp4n09
sp4n15.456.0 tani1 11/16 16:40 R 50 class_parall sp4n09
sp4n15.457.0 tani1 11/16 16:40 R 50 class_parall sp4n09
sp4n15.458.0 tani1 11/16 16:40 I 50 class_parall
sp4n15.459.0 tani1 11/16 16:40 I 50 class_parall

6 job steps in queue, 2 waiting, 0 pending, 4 running, 0 held
Chapter 7. Managing parallel jobs 165

The screen output shows that after six job command files are submitted, four
jobs are running and two jobs are waiting in the job queue. The following
screen output shows the result of the ps command using distributed shell on
the CWS to see tasks running on each node:

You can see four tasks running on each node. For user space mode
communication, four adapter windows can be allocated on each node. The
LoadLeveler allows you to run up to four user space tasks per node
simultaneously.

7.5.2 Non-shared user space mode
We change the entry of the network keyword in the job command file for
requesting LoadLeveler for dedicated use of the switch adapter. You can see
this change in the following screen output:

dsh -a ps -ef | grep btat | grep -v grep | awk '{print $1,$2,$6,$9}'
sp4n06: tani1 16:40:16 /u/tani1/SCENARIO_PARA/btat
sp4n06: tani1 16:40:18 /u/tani1/SCENARIO_PARA/btat
sp4n06: tani1 16:40:15 /u/tani1/SCENARIO_PARA/btat
sp4n06: tani1 16:40:12 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:40:15 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:40:12 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:40:16 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:40:18 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:40:18 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:40:14 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:40:12 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:40:16 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:40:16 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:40:12 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:40:15 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:40:18 /u/tani1/SCENARIO_PARA/btat
#

$ cat us_notshare_css0.cmd
@ job_type=parallel
@ environment = COPY_ALL; MP_TIMEOUT=2000;
@ error = btat_test.$(Host).$(Cluster).$(Process).err
@ output = btat_test.$(Host).$(Cluster).$(Process).out
@ wall_clock_limit = 180,180
@ network.mpi = css0,not_shared,us
@ node = 4
@ tasks_per_node = 1
@ executable = /bin/poe
@ arguments = /u/tani1/SCENARIO_PARA/btat -d 40 -t 1 -m 1000 -v -labelio yes
@ class = class_parallel
@ queue
166 Workload Management: SP and Other RS/6000 Servers

not_shared means that the LoadLeveler reserves the adapter for this job and
the adapter is not shared with other jobs that use this adapter with user space
mode. If another job uses the adapter with IP mode, the job can use this
adapter.

We submit the job command file four times. The following screen shows the
output that resulted after we submitted the jobs:

In this case, only one job step can run. Other jobs are waiting for the job to
complete, and you can see the output of the ps command with dsh on the
CWS in the following screen output:

7.5.3 IP mode over a switch in shared mode
If you want to use the switch with IP mode, you can issue a request to
LoadLeveler by changing the network keyword. You can see the change in the
job command file from the following screen output in bold.

$ llq
llq: There is currently no job status to report.
$ llsubmit us_notshare_css0.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.662" has been submitted.
$ llsubmit us_notshare_css0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.460" has been submitted.
$ llsubmit us_notshare_css0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.461" has been submitted.
$ llsubmit us_notshare_css0.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.663" has been submitted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.662.0 tani1 11/16 16:43 R 50 class_parall sp4n09
sp4n15.460.0 tani1 11/16 16:43 I 50 class_parall
sp4n15.461.0 tani1 11/16 16:43 I 50 class_parall
sp4n05.663.0 tani1 11/16 16:43 I 50 class_parall

4 job steps in queue, 3 waiting, 0 pending, 1 running, 0 held
$

dsh -a ps -ef | grep btat | grep -v grep | awk '{print $1,$2,$6,$9}'
sp4n06: tani1 16:43:28 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:43:29 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:43:28 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:43:28 /u/tani1/SCENARIO_PARA/btat
Chapter 7. Managing parallel jobs 167

The job command file requests the css0 adapter in IP mode that is shared
with other job steps.

The following screen shows the output that resulted after we submitted the
job command file five times:

You can see that multiple job steps (more than four) can run if you use IP
mode, and, in the following screen output, you can see that multiple tasks are
running on each node:

$ cat ip_share_css0.cmd
@ job_type=parallel
@ environment = COPY_ALL; MP_TIMEOUT=2000;
@ error = btat_test.$(Host).$(Cluster).$(Process).err
@ output = btat_test.$(Host).$(Cluster).$(Process).out
@ wall_clock_limit = 180,180
@ network.mpi = css0,shared,ip
@ node = 4
@ tasks_per_node = 1
@ executable = /bin/poe
@ arguments = /u/tani1/SCENARIO_PARA/btat -d 40 -t 1 -m 1000 -v -labelio yes
@ class = class_parallel
@ queue

$ llq
llq: There is currently no job status to report.
$ llsubmit ip_share_css0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.466" has been submitted.
$ llsubmit ip_share_css0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.467" has been submitted.
$ llsubmit ip_share_css0.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.665" has been submitted.
$ llsubmit ip_share_css0.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.666" has been submitted.
$ llsubmit ip_share_css0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.468" has been submitted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.466.0 tani1 11/16 16:48 R 50 class_parall sp4n07
sp4n15.467.0 tani1 11/16 16:48 R 50 class_parall sp4n07
sp4n05.665.0 tani1 11/16 16:48 R 50 class_parall sp4n09
sp4n05.666.0 tani1 11/16 16:48 R 50 class_parall sp4n09
sp4n15.468.0 tani1 11/16 16:48 R 50 class_parall sp4n09

5 job steps in queue, 0 waiting, 0 pending, 5 running, 0 held
168 Workload Management: SP and Other RS/6000 Servers

7.5.4 Using ethernet with IP in shared mode
You can request a network interface when you use the IP mode. The following
is the job command file that requests the en0 interface in shared mode:

The following screen shows the output that resulted after we submitted the
job command file. You can see that multiple jobs are running simultaneously:

dsh -a ps -ef | grep btat | grep -v grep | awk '{print $1,$2,$6,$9}'
sp4n06: tani1 16:48:35 /u/tani1/SCENARIO_PARA/btat
sp4n06: tani1 16:48:41 /u/tani1/SCENARIO_PARA/btat
sp4n06: tani1 16:48:43 /u/tani1/SCENARIO_PARA/btat
sp4n06: tani1 16:48:41 /u/tani1/SCENARIO_PARA/btat
sp4n06: tani1 16:48:39 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:48:41 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:48:39 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:48:43 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:48:41 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:48:35 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:48:43 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:48:35 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:48:41 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:48:41 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:48:39 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:48:35 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:48:41 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:48:41 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:48:43 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:48:39 /u/tani1/SCENARIO_PARA/btat
#

$ cat ip_share_en0.cmd
@ job_type=parallel
@ environment = COPY_ALL; MP_TIMEOUT=2000;
@ error = btat_test.$(Host).$(Cluster).$(Process).err
@ output = btat_test.$(Host).$(Cluster).$(Process).out
@ wall_clock_limit = 180,180
@ network.mpi = en0,shared,ip
@ node = 4
@ tasks_per_node = 1
@ executable = /bin/poe
@ arguments = /u/tani1/SCENARIO_PARA/btat -d 40 -t 1 -m 1000 -v -labelio yes
@ class = class_parallel
@ queue
Chapter 7. Managing parallel jobs 169

You can also see that multiple tasks are running on each node in the following
screen output:

$ llq
llq: There is currently no job status to report.
$ llsubmit ip_share_en0.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.669" has been submitted.
$ llsubmit ip_share_en0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.471" has been submitted.
$ llsubmit ip_share_en0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.472" has been submitted.
$ llsubmit ip_share_en0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.473" has been submitted.
$ llsubmit ip_share_en0.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.670" has been submitted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.669.0 tani1 11/16 16:54 R 50 class_parall sp4n09
sp4n15.471.0 tani1 11/16 16:54 R 50 class_parall sp4n09
sp4n15.472.0 tani1 11/16 16:54 R 50 class_parall sp4n06
sp4n15.473.0 tani1 11/16 16:54 R 50 class_parall sp4n06
sp4n05.670.0 tani1 11/16 16:54 ST 50 class_parall sp4n06

5 job steps in queue, 0 waiting, 1 pending, 4 running, 0 held

dsh -a ps -ef | grep btat | grep -v grep | awk '{print $1,$2,$6,$9}'
sp4n06: tani1 16:54:37 /u/tani1/SCENARIO_PARA/btat
sp4n06: tani1 16:54:42 /u/tani1/SCENARIO_PARA/btat
sp4n06: tani1 16:54:35 /u/tani1/SCENARIO_PARA/btat
sp4n06: tani1 16:54:43 /u/tani1/SCENARIO_PARA/btat
sp4n06: tani1 16:54:45 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:54:42 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:54:35 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:54:45 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:54:43 /u/tani1/SCENARIO_PARA/btat
sp4n07: tani1 16:54:37 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:54:36 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:54:45 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:54:43 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:54:37 /u/tani1/SCENARIO_PARA/btat
sp4n08: tani1 16:54:42 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:54:42 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:54:37 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:54:45 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:54:43 /u/tani1/SCENARIO_PARA/btat
sp4n09: tani1 16:54:35 /u/tani1/SCENARIO_PARA/btat
170 Workload Management: SP and Other RS/6000 Servers

7.5.5 Using ethernet with IP not-shared mode
You can specify not_shared usage when you request an interface with IP
mode. The following screen shows the job command file with network
keyword entry for not_shared usage:

We submitted this job command file five times. You can see the output screen
when we submitted the job command files in the following:

You can see that only one job is running, and other jobs are waiting in the job
queue.

$ cat ip_notshare_en0.cmd
@ job_type=parallel
@ environment = COPY_ALL; MP_TIMEOUT=2000;
@ error = btat_test.$(Host).$(Cluster).$(Process).err
@ output = btat_test.$(Host).$(Cluster).$(Process).out
@ wall_clock_limit = 180,180
@ network.mpi = en0,not_shared,ip
@ node = 4
@ tasks_per_node = 1
@ executable = /bin/poe
@ arguments = /u/tani1/SCENARIO_PARA/btat -d 40 -t 1 -m 1000 -v -labelio yes
@ class = class_parallel
@ queue

$ llsubmit ip_notshare_en0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.469" has been submitted.
$ llsubmit ip_notshare_en0.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.667" has been submitted.
$ llsubmit ip_notshare_en0.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.668" has been submitted.
$ llsubmit ip_notshare_en0.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.470" has been submitted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.469.0 tani1 11/16 16:51 R 50 class_parall sp4n09
sp4n05.667.0 tani1 11/16 16:51 I 50 class_parall
sp4n05.668.0 tani1 11/16 16:51 I 50 class_parall
sp4n15.470.0 tani1 11/16 16:51 I 50 class_parall

4 job steps in queue, 3 waiting, 0 pending, 1 running, 0 held
Chapter 7. Managing parallel jobs 171

7.6 Interactive POE

When you want to perform a POE job interactively using userspace, you need
to define default_interactive_class in the administration file. LoadLeveler uses
this class name for your interactive POE job. The following modification is
required in the user stanza used in this scenario:

You can specify the pool_list keyword in the machine stanza. By specifying
the pool_list, LoadLeveler manages the pool list and allocates the nodes for
your POE job. If you define the pool_list in the machine stanza, you can
perform your POE job without the hostlist file by specifying the pool with the
option. To read about how to create a hostlist file, refer to the book Parallel
Environment for AIX: Operation and Use, SC28-1979.

The following is the machine stanza we use in this scenario. Three nodes are
defined as pool 1 with the pool_list keyword:

When you perform POE interactively, you can specify your resource
requirements with environment variables or flags of the poe command. You
can see these flags by entering the poe command with -h:

poe -h

tani1: type = user
default_class = class_second
default_group = group_serial
default_interactive_class = class_parallel
maxjobs = 40
maxqueued = 80

sp4n06.msc.itso.ibm.com: type=machine
central_manager = alt
adapter_stanzas = sp4n06_en0 sp4n06_css0
spacct_excluse_enable = false
pool_list = 1

sp4n07.msc.itso.ibm.com: type = machine
adapter_stanzas = sp4n07_en0 sp4n07_css0
spacct_excluse_enable = false
pool_list = 1

sp4n08.msc.itso.ibm.com: type = machine
adapter_stanzas = sp4n08_en0 sp4n08_css0
spacct_excluse_enable = false
pool_list = 1
172 Workload Management: SP and Other RS/6000 Servers

The following is the screen output when we executed the POE job
interactively:

In this case, we specified the css0 for network adapter and user space mode
for communication protocol as environment variables. We specified pool 1
with the -rmpool flag and the number of nodes with the -procs flag. The -
infolevel flag determines the level of message reporting for debug purposes.

The following is the screen output that resulted when we executed the poe

command:

In the output, you can see that POE contacts the LoadLeveler and creates the
job command file. The LoadLeveler receives and assigns the job ID for the
job. You can check the status with the llq command. The following screen
shows the output of the llq command:

$ export MP_EUIDEVICE=css0
$ export MP_EUILIB=us
$ poe mpi_test -rmpool 1 -procs 3 -infolevel 4 2>&1 | more

INFO: DEBUG_LEVEL changed from 0 to 2
D1<L2>: ./host.list file did not exist
D1<L2>: mp_euilib = us
D1<L2>: node allocation strategy = 1
INFO: 0031-364 Contacting LoadLeveler to set and query information for interact
ive jo
b
D1<L2>: Job Command String:
#@ job_type = parallel
#@ environment = COPY_ALL
#@ requirements = (Pool == 1)
#@ node = 3
#@ total_tasks = 3
#@ node_usage = not_shared
#@ network.mpi = css0,not_shared,us
#@ class = class_parallel
#@ queue

INFO: 0031-380 LoadLeveler step ID is sp4n15.msc.itso.ibm.com.646.0
D1<L2>: Job key assigned by LoadLeveler = 943044330
INFO: 0031-119 Host sp4n06.msc.itso.ibm.com allocated for task 0
INFO: 0031-119 Host sp4n08.msc.itso.ibm.com allocated for task 1
INFO: 0031-119 Host sp4n07.msc.itso.ibm.com allocated for task 2
D1<L2>: Spawning /etc/pmdv2 on all nodes
D1<L2>: Socket file descriptor for task 0 (sp4n06.msc.itso.ibm.com) is 6
D1<L2>: Socket file descriptor for task 1 (sp4n08.msc.itso.ibm.com) is 7
D1<L2>: Socket file descriptor for task 2 (sp4n07.msc.itso.ibm.com) is 8
Chapter 7. Managing parallel jobs 173

The job is running as the class_parallel job. In the following screen, you can
see that three tasks are running on three nodes:

POE contacts the LoadLeveler to get the resource information and manages
the resource and the job. Using LoadLeveler, you can manage the workload -
not only the batch jobs but also the interactive POE jobs.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.646.0 tani1 11/19 14:45 R 50 class_parall sp4n06

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held

dsh -w sp4n06,sp4n07,sp4n08 ps -ef | grep mpi
sp4n06: tani1 6382 14286 77 14:45:31 - 4:23 mpi_test
sp4n07: tani1 3568 12954 78 14:45:31 - 4:23 mpi_test
sp4n08: tani1 13252 15376 115 14:45:31 - 4:23 mpi_test
#

174 Workload Management: SP and Other RS/6000 Servers

Chapter 8. Managing application build

This chapter discusses the distribution of workload for the compilation and
linking of multiple source programs and the creation of the executable in an
SP environment.

8.1 Scenario description

In an application development environment, there will be a number of
program files to be compiled and linked to create the executable file.
Compiling a program is an extremely CPU- and memory-intensive job.
Generally, we prepare the build using the make command, which compiles the
programs one by one in a serial fashion and then links the object modules to
get the executable. This is really a time-consuming process.

At this point, we would like to show an example of how we can use the
LoadLeveler to submit this compilation of the programs in parallel across all
nodes in the LoadLeveler cluster. This way, the time taken to build an
application can be reduced.

For the sample scenario, we are using the C sample files that come as part of
the PESSL software for building the executable. These files are available in
the directory /usr/lpp/pessl.rte.common/example/c. This particular sample
program has the following source programs: diffusion.c, fourier.c, main.c, and
scalemod.c. There is a Makefile file given to compile and create the
executable using the make command. The make command compiles the four
source programs serially and then links the object files to build the
executable.

Here, we will first show how we can submit the make command as a
LoadLeveler job; then, we will show how we can do the compilation of the four
source programs in parallel in four nodes in the SP using LoadLeveler.

8.2 Tool choice

To perform a parallel build across all nodes in the cluster, we need the
following environment in all the nodes in which compilation needs to be done.

• LoadLeveler installed and configured as part of the LoadLeveler cluster.

• The required version of AIX, PSSP, and POE is installed on all the nodes.

• The required compiler version is installed on all the nodes, and it has the
licence to do the compilation.
© Copyright IBM Corp. 2000 175

• The other dependent software and libraries that are required for the
compilation of this program are installed and made available.

• The source code and header files required for compilation are accessible
to all the nodes in the LoadLeveler cluster.

For our sample scenario in the lab, we used the following environment:

• LoadLeveler V2.1, AIX V4.3.3, PSSP V3.1.1, and POE V2.4 are installed
on ten nodes in the RS/6000 SP.

• We defined all ten nodes as the executing nodes in the LoadLeveler
cluster.

• We defined two nodes as the scheduling nodes in the LoadLeveler cluster.

• We installed PESSL on all the nodes. The sample program we are using
here requires the pessl libraries.

8.3 Configuring the build environment

We copied the sample files from the example directory, /usr/lpp/
pessl.rte.common.example/c, to tani1’s home directory. The home directory
of the user tani1 is /u/tani1, and it is exported from the CWS to all the nodes.
This sample PESSL program has four C source programs to be compiled.

8.3.1 LoadLeveler administration file
We created a class called build, and the user tani1 is being permitted to use
this class. This is configured in the LoadL_admin file, and it will look like the
following:

8.3.2 LoadLeveler local configuration file
We installed the C compiler and the PESSL software in the nodes sp4n01,
sp4n05, sp4n06, sp4n07, and sp4n08. The sample make program has four
source programs that we want to get that compiled in any of these nodes. We
added the build class for the class keyword in the local configuration file in
each of these nodes. The contents of LoadL_config.local will look like the
following:

CLASS STANZAS:
build: type = class

priority = 100
include_users=bala tani1
total_tasks = 100
max_node = 16
176 Workload Management: SP and Other RS/6000 Servers

8.3.3 Creating an executable
Creating an executable file from the source program can be defined as a two-
step process. The first step is to compile all the source programs, and the
second step is to link them to create the executable. The second step of
linking the object modules cannot be done unless the first step is completed
without errors.

We also need to implement the same thing in the LoadLeveler as two steps
for creating the executable. In LoadLeveler terms, we can say that step0 does
the compilation, and step1 does the linking of the object modules. We also
need to tell the LoadLeveler that step1 is dependent on the successful
completion of step0.

8.3.4 Submitting a compilation job to the LoadLeveler
In the normal environment, to compile a C program, we use the cc <options>

<filename> command to get the object code. Now, we will see how we can
submit this as a LoadLeveler job. As we mentioned earlier, LoadLeveler
cannot directly accept the executable to submit a job, and it needs to be given
as a job command file. We wrote a script that is used to create the job
command file. The contents of the llxlc script look like the following:

The llxlc script creates a job command file: compile.cmd. This job command
file will have the minimum required keywords that are required to submit a job.

• The initialdir keyword names your working directory for this job.

Class = { "build" "small" "class_first" "class_first" "class_second" "short_limi
t" "long_limit" }

$ cat llxlc
echo "#!/bin/ksh" > compile.cmd
echo "# @ initialdir = /u/tani1/SCENARIO1/make" >> compile.cmd
echo "# @ error = $4.err ">> compile.cmd
echo "# @ output = $4.out " >> compile.cmd
echo "# @ executable = /usr/bin/cc" >> compile.cmd
echo "# @ arguments = " $* >> compile.cmd
echo "# @ class = build" >> compile.cmd
echo "# @ queue" >> compile.cmd
llsubmit compile.cmd
Chapter 8. Managing application build 177

• The error and output keywords define the name of the output and error
files to be created. Here we are creating files with the same name of the
source program file with the .err and .out extensions respectively.

• The class field tells you the class of node on which this job must run.

• The executable is given as the cc command.

• The arguments received along with llxlc are passed as the arguments to
cc.

• The last line in the script submits the job compile.cmd to the LoadLeveler
using the llsubmit command.

Let us take one example of a C program compiled using the normal cc and
the same when we use the llxlc script to submit it to the LoadLeveler.

Compile using cc

$ cc -c -g -O3 fourier.c

When you give the cc from the shell prompt, it does the compilation on the
same node.

Compile using llxlc

Let us compile the same program using llxlc here and see the difference.

$ llxlc -c -g -O3 fourier.c

llsubmit: The job "sp4n15.msc.itso.ibm.com.647" has been submitted.

When you use the llxlc script with the same arguments as given to the cc

command, the llxlc script creates the job command file compile.cmd and
submits the job to the LoadLeveler.

The contents of the compile.cmd file look like the following:

$ cat compile.cmd
#!/bin/ksh
@ initialdir = /u/tani1/SCENARIO1/make
@ error = fourier.c.err
@ output = fourier.c.out
@ executable = /usr/bin/cc
@ arguments = -c -g -O3 fourier.c
@ class = build
@ queue
178 Workload Management: SP and Other RS/6000 Servers

Now, the LoadLeveler will schedule the job in any of the nodes with the class
build based on the availability of the node that is free to run jobs of this class
build.

The steps that we have seen so far are for creating one job command file for
compiling one source code. Normally, there would be multiple source
programs compiled in an application. In a normal case, we create the
Makefile, which defines all the source files to be compiled and files to be
linked to create the final executable. After editing the Makefile, we use the
make command, which takes the input from the Makefile to process the targets
defined in the Makefile.

Now, let us see how we can use the make command and the Makefile in our
scripts to achieve the same results by submitting them as multiple jobs to the
LoadLeveler. In order to use this default Makefile for submitting jobs to
LoadLeveler, we need to make some minor modifications to the default
Makefile. The changes required for the Makefile are shown in the following
screen:
Chapter 8. Managing application build 179

The first change is to replace the line CC = /usr/vac/bin/cc with CC = llxlc.
The llxlc is the script, which we created for creating the job command file.
The second change is to have a target defined to only perform the
compilation. This is highlighted and shown in the Makefile here.

Now, when we execute the make command with the target as compile, it
invokes the llxlc script along with the arguments instead of cc. The make

command will invoke the llxlc script for each compilation of source program
as defined in the Makefile. The llxlc script, in turn, creates a job command
file for each compilation and submits it as a job to the LoadLeveler; so, if you
had defined four source programs to be compiled in the Makefile, it means it
will create four jobs to be submitted to the LoadLeveler.

#***
#* LICENSED MATERIALS - PROPERTY OF IBM *
#* "RESTRICTED MATERIALS OF IBM" *
#* *
#* 5765-422 *
#* (C) COPYRIGHT IBM CORP. 1995. ALL RIGHTS RESERVED. *
#* *
#* U.S. GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION *
#* OR DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH *
#* IBM CORP. *
#***

#CC = /usr/lpp/xlC/bin/cc
#CC = /usr/vac/bin/cc (Comment this line for Parallel Build)
Add the next line for Parallel Build
CC = llxlc

CFLAGS = -O3
OBJS = main.o scalemod.o diffusion.o fourier.o

#.c.o: (Comment this line for parallel Build)
Add the next two lines for Parallel Build
compile:$(OBJS)
$(OBJS):

$(CC) -c -g $(CFLAGS) $<

diffus:
mpcc -o diffus $(OBJS) -lpessl -lblacs -lm -lessl

clean:
rm -f *.o diffus core *.lst

main.o: main.c diffus.h parameter.h
diffusion.o: diffusion.c diffus.h parameter.h
fourier.o: fourier.c diffus.h parameter.h
scalemod.o: scalemod.c diffus.h parameter.h
180 Workload Management: SP and Other RS/6000 Servers

Let us execute the make command for our example and see how it submits the
job to the LoadLeveler:

From the screen output, you can see that the four programs, main.c,
scalemod.c, diffusion.c, and fourier.c, are submitted as four jobs to the
LoadLeveler using the make command with the target compile. The job status
when seen using the llq command shows that the four jobs are running in the
four nodes, sp4n05, sp4n06, sp4n07, and sp4n08. Now, let us see the processes
that are running in these four nodes. This can be seen using the dsh

command from the CWS, and the output looks like the following:

$ make compile
llxlc -c -g -O3 main.c

llsubmit: The job "sp4n05.msc.itso.ibm.com.841" has been submitted.
llxlc -c -g -O3 scalemod.c

llsubmit: The job "sp4n15.msc.itso.ibm.com.658" has been submitted.
llxlc -c -g -O3 diffusion.c

llsubmit: The job "sp4n05.msc.itso.ibm.com.842" has been submitted.
llxlc -c -g -O3 fourier.c

llsubmit: The job "sp4n15.msc.itso.ibm.com.659" has been submitted.
Target "compile" is up to date.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.841.0 tani1 11/22 09:39 R 50 build sp4n08
sp4n15.658.0 tani1 11/22 09:39 R 50 build sp4n07
sp4n05.842.0 tani1 11/22 09:39 R 50 build sp4n06
sp4n15.659.0 tani1 11/22 09:39 R 50 build sp4n05

4 job steps in queue, 0 waiting, 0 pending, 4 running, 0 held
$

Chapter 8. Managing application build 181

The LoadLeveler will get the job executed on different nodes in the
LoadLeveler cluster based on the class and workload of the nodes. In this
way, we can do the parallel compilation across multiple nodes and balance
the workload across all the nodes.

8.3.5 Submitting the Build Job to the LoadLeveler
Once all the source programs are compiled, we can perform the linking of
objects to create the executable. This has to be executed only on one node.
This can also be submitted as one serial job to the LoadLeveler so that the
LoadLeveler can schedule this job to a node that is free. The normal method
of linking is with the make command as follows:

dsh -w sp4n05,sp4n06,sp4n07,sp4n08
dsh> ps -eaf | grep tani1
sp4n05: tani1 5490 13926 0 09:39:21 - 0:00 /u/loadl/execute/sp4n15.m
sc.itso.ibm.com.659.0/cc -c -g -O3 fourier.c
sp4n05: tani1 7458 5490 0 09:39:21 - 0:00 xlcentry -D_AIX -D_AIX32
-D_AIX41 -D_AIX43 -D_IBMR2 -D_POWER -qlanglvl=extended -qnoro -qnoroconst -g -O3
-ofourier.o fourier.c /tmp/xlcqwfxia /tmp/xlcqwfxib /dev/null fourier.lst fouri
er /tmp/xlcqwfxic
sp4n05: tani1 13926 6892 0 09:39:20 - 0:00 LoadL_starter -p 4 -s sp4
n15.msc.itso.ibm.com.659.0
sp4n06: tani1 6328 4740 0 09:39:19 - 0:00 LoadL_starter -p 4 -s sp4
n05.msc.itso.ibm.com.842.0
sp4n06: tani1 8422 14276 0 09:39:21 - 0:00 xlcentry -D_AIX -D_AIX32
-D_AIX41 -D_AIX43 -D_IBMR2 -D_POWER -qlanglvl=extended -qnoro -qnoroconst -g -O3
-odiffusion.o diffusion.c /tmp/xlcY9nYqa /tmp/xlcY9nYqb /dev/null diffusion.lst
diffusion /tmp/xlcY9nYqc
sp4n06: tani1 14276 6328 0 09:39:20 - 0:00 /u/loadl/execute/sp4n05.m
sc.itso.ibm.com.842.0/cc -c -g -O3 diffusion.c
sp4n07: tani1 11880 5494 0 09:39:19 - 0:00 LoadL_starter -p 4 -s sp4
n15.msc.itso.ibm.com.658.0
sp4n07: tani1 12834 11880 0 09:39:20 - 0:00 /u/loadl/execute/sp4n15.m
sc.itso.ibm.com.658.0/cc -c -g -O3 scalemod.c
sp4n07: tani1 13104 12834 0 09:39:20 - 0:00 xlcentry -D_AIX -D_AIX32
-D_AIX41 -D_AIX43 -D_IBMR2 -D_POWER -qlanglvl=extended -qnoro -qnoroconst -g -O3
-oscalemod.o scalemod.c /tmp/xlcXnm9ia /tmp/xlcXnm9ib /dev/null scalemod.lst sc
alemod /tmp/xlcXnm9ic
sp4n08: tani1 3406 15454 0 09:39:19 - 0:00 /u/loadl/execute/sp4n05.m
sc.itso.ibm.com.841.0/cc -c -g -O3 main.c
sp4n08: tani1 12900 3406 0 09:39:20 - 0:00 xlcentry -D_AIX -D_AIX32
-D_AIX41 -D_AIX43 -D_IBMR2 -D_POWER -qlanglvl=extended -qnoro -qnoroconst -g -O3
-omain.o main.c /tmp/xlcQ7duUa /tmp/xlcQ7duUb /dev/null main.lst main /tmp/xlcQ
7duUc
sp4n08: tani1 15454 5720 0 09:39:18 - 0:00 LoadL_starter -p 4 -s sp4
n05.msc.itso.ibm.com.841.0
182 Workload Management: SP and Other RS/6000 Servers

When you issue the make command from the shell prompt, it executes in the
same node. Now, let us do the same thing by submitting it as a job to the
LoadLeveler. Edit the job command file, diffus.cmd, to submit the linking of all
object modules using the make command. The contents of the job command
file will look like the following:

Submit the diffus.cmd job to the LoadLeveler using the llsubmit command,
and check the job status using the llq command to find the node on which the
job is executed.

From the screen output shown here, you can see the job is running on the
node sp4n08.

So far, we have shown how to submit the compilation and linking of object
modules as two different steps to get the final executable code. But, normally,
we do the same in one step by simply issuing the make command once. This
two step process can be done using one llsubmit command.

$ make diffus
mpcc -o diffus main.o scalemod.o diffusion.o fourier.o -lpessl -lblacs -

lm -lessl

$ cat diffus.cmd
#!/bin/ksh
@ initialdir = /u/tani1/SCENARIO1/make
@ error = diffus.err
@ output = diffus.out
@ executable = /usr/bin/make
@ arguments = diffus
@ class = build
@ queue

$ llsubmit diffus.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.849" has been submitted.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.849.0 tani1 11/22 12:14 R 50 build sp4n08

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held
Chapter 8. Managing application build 183

For this, we should create a job command file with two steps: The first step in
the job command file should perform the compilation of all the source
programs, and the second step should do the linking of all the object modules
to make the executable. When you do it this way, all the jobs will be submitted
to the LoadLeveler immediately. But, we cannot perform the linking unless the
compilation is finished successfully. In other words, the second step of linking
the object modules should only start after the first step has finished
successfully.

This can be implemented in the LoadLeveler job command file using the hold

keyword. The first step in the job command file will be step0, and the second
step will be step1. We will define the job command file for step1 as being held
by the user. This will keep the job on hold by the user until he or she releases
the hold.

The user can monitor whether all his or her compilation jobs are successful
and whether the object files are created. Once the user confirms that all the
compilations are successful, he or she can release the hold for this job using
the llhold -r command. As soon as the hold on the job is released, the
LoadLeveler will submit the job for execution on any node that is free.

The contents of the job command file build.cmd will look like the following:

Now, let us submit this job to the LoadLeveler and see how it works.

$ cat build.cmd
#!/bin/ksh
@ initialdir = /u/tani1/SCENARIO1/make
@ error = build.err
@ output = build.out
@ step_name = step0
@ executable = /usr/bin/make
@ arguments = compile
@ class = build
@ queue
@ step_name = step1
@ hold = user
@ executable = /usr/bin/make
@ arguments = diffus
@ class = build
@ queue
184 Workload Management: SP and Other RS/6000 Servers

From the screen output, you can see that the four source programs are
running while one job is kept on hold. The job that is kept on hold is the
linking job. After some time, the user can use the llq command to check
whether all four jobs have completed.

The user can also check that all his or her object modules were created
successfully. Now the user can release the job that is on hold using the llhold

-r command.

Immediately after executing the release command, the job was submitted to
the node, sp4n01, and the executable, diffus, was created.

$ llsubmit build.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.824" with 2 job steps has been submit
ted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.641.0 tani1 11/19 14:33 R 50 build sp4n05
sp4n05.825.0 tani1 11/19 14:33 R 50 build sp4n06
sp4n15.642.0 tani1 11/19 14:33 R 50 build sp4n08
sp4n05.826.0 tani1 11/19 14:33 R 50 build sp4n07
sp4n05.824.1 tani1 11/19 14:33 H 50 build
sp4n05.824.0 tani1 11/19 14:33 C 50 build

5 job steps in queue, 0 waiting, 0 pending, 4 running, 1 held

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.824.1 tani1 11/19 14:33 H 50 build
sp4n05.824.0 tani1 11/19 14:33 C 50 build

1 job steps in queue, 0 waiting, 0 pending, 0 running, 1 held

$ llhold -r sp4n05.824.1
llhold: Hold command has been sent to the central manager.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.824.1 tani1 11/19 14:33 R 50 build sp4n01
sp4n05.824.0 tani1 11/19 14:33 C 50 build

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held
Chapter 8. Managing application build 185

This way, one can speed up the build process in an SP environment using the
LoadLeveler.
186 Workload Management: SP and Other RS/6000 Servers

Chapter 9. Managing workload using checkpointing

In this chapter, we will discuss how to perform checkpointing of serial and
parallel jobs. The types of checkpointing that can be enabled and the
associated keywords are discussed in detail in Section ”3.6” Checkpointing”
on page 91.

9.1 Scenario description

Checkpoint can either be initiated by the system or by the user. System-
initiated checkpointing is only available for serial jobs. User-initiated
checkpointing is available for both serial and parallel jobs. For user-initiated
checkpointing, you should have to insert the checkpoint subroutines in the
source program at required intervals. You can also enable both the user- and
system-initiated checkpoints for serial jobs.The system-initiated one will
automatically checkpoint your program at preset intervals.

Here, we will take a sample C program and demonstrate how we can use the
system-initiated and user-initiated checkpointing.

9.2 Tools choice

To initiate user- and system-initiated checkpointing, the following criteria must
be met in the SP nodes.

• LoadLeveler installed and configured as part of the LoadLeveler cluster

• The required version of AIX, PSSP, and POE installed on all the nodes

• The required version of C or Fortran compiler installed in any one of the
nodes for compiling

9.3 Testing environment

The sample C program is available under the home directory of user bala.
The home directory of the user bala is /u/bala, and it is NFS exported from
the CWS to all the nodes. File collection is enabled, and user management is
done from the CWS.

9.4 System-initiated serial job checkpointing

Here, we will illustrate, by means of an example, how system-initiated
checkpointing works.
© Copyright IBM Corp. 2000 187

9.4.1 Configuring the LoadL_config file for checkpointing
In the case of system-initiated checkpointing, the system will checkpoint at
periodic intervals as defined by the administrator in the LoadL_config file. The
keywords are MIN_CKPT_INTERVAL and MAX_CKPT_INTERVAL. For our test
environment, we defined the following values in the LoadL_config file.

MIN_CKPT_INTERVAL = 60

MAX_CKPT_INTERVAL = 300

9.4.2 Writing a sample C program for testing Checkpoint
We wrote a sample C program that counts to five and goes to sleep for five
seconds. It resumes, counts to five again, and goes to sleep. This program is
in a continuous loop.

The sample C program for testing our system-initiated checkpointing looks
like this:

For system-initiated checkpoints, there are no checkpoint related subroutines
required in the source program. But, the serial jobs have to be linked with the
libchkrst.a and chkrst_wrap.o LoadLeveler libraries. To ensure that
checkpointing is working properly, we suggest that you always use the scripts
provided by LoadLeveler for compiling and linking the object modules. These
scripts are available in the /usr/lpp/LoadL/full/bin directory. For the C source

$ cat no_ckpt.c
#include <stdio.h>

main()
{

int i, rc = 99;

for (i = 0 ; ; i++) {
fprintf(stdout, "i = %d\n", i);
fflush(stdout);

if (i % 5 == 0) {
fprintf(stdout, "Counting\n");
fprintf(stdout, "Sleeping 5 seconds...\n");
fflush(stdout);
sleep(5);
fprintf(stdout, "Resume.\n");
fflush(stdout);

}
}

}

188 Workload Management: SP and Other RS/6000 Servers

program, no_ckpt.c, we used the crxlc script to create the no_ckpt executable.
The command to create the executable looks like this:

$ /usr/lpp/LoadL/full/bin/crxlc no_ckpt no_ckpt.c

9.4.3 Creating a job command file with checkpoint enabled
The next step is to create a job command file to submit the executable no_ckpt

as a LoadLeveler job. We will enable system-initiated checkpointing in the job
command file. The job command file sys-ckpt.cmd for system-initiated
checkpointing with the executable as no_ckpt will look like this:

There are five keywords defined in the job command file that are related to
checkpoint. They are highlighted in the screen output.

• The checkpoint keyword indicates that it has to perform system-initiated
checkpointing.

• The restart = yes keyword indicates that the job has to be restarted after
a failure. This keyword has to be set to yes for system-initiated
checkpointing. If you set it to no, the LoadLeveler, while submitting the job,
will force it to yes.

• The Environment variable, CHKPT_STATE = enable, enables checkpointing.

#
Testing system initiated checkpointing using a c program

@ EXE = no_ckpt
@ TC = sysckpt
#
Execute step
#
@ initialdir = /u/bala/check
@ step_name = $(TC)
@ error = $(EXE).$(Cluster).$(Process).err
@ output = $(EXE).$(Cluster).$(Process).out
@ class = small
@ notification = always
@ executable = $(EXE)
@ environment = COPY_ALL
@ requirements = (Machine == {"sp4n08.msc.itso.ibm.com" "sp4n09.msc.itso.ibm.c
om"})
@ environment = CHKPT_STATE=enable; CHKPT_FILE=$(EXE).ckpt; CHKPT_DIR=/u/bala/
check
@ checkpoint = system_initiated
@ restart = yes
@ queue
Chapter 9. Managing workload using checkpointing 189

• The name of the checkpoint file that has to be created by the system is
defined by the CHKPT_FILE keyword. In our case, we defined it to be
executable.ckpt.

• The directory where this checkpoint files to be created is defined by the
keyword CHKPT_DIR.

9.4.4 Testing the system-initiated serial checkpoint
Having created the executable and the job command file, we will now test the
checkpoint program. The user bala has logged in to one of the nodes to
perform the test. The following are the steps to test the system-initiated
checkpointing.

1. Submit the job to the LoadLeveler using the llsubmit command:

2. Check the status of the job to find out on which node the job is scheduled
and running using the llq command.

From the output, you can see that the job ID is sp4n05.863.0, and it is
running on the node sp4n05.

3. Check the CHKPT_DIR for the checkpoint files that have been created by
the system. In the job command file, we defined that the CHKPT_DIR is /u/
bala/check, and the files are to be created with the extension .ckpt.

From the output, you can see that three checkpoint files are created at this
time. These checkpoint files will be updated at periodic intervals as
defined in the configuration file.

$ llsubmit sys-ckpt.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.863" has been submitted.

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.863.0 bala 11/23 13:55 R 50 small sp4n05

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held

$ ls -l *.ckpt*
-rw-r----- 1 bala staff 217029 Nov 23 14:35 no_ckpt.ckpt
-rw-r----- 2 bala staff 217029 Nov 23 14:30 no_ckpt.ckptjDnyUa
-rw-r----- 2 bala staff 217029 Nov 23 14:30 no_ckpt.ckptjDnyUb
190 Workload Management: SP and Other RS/6000 Servers

4. Check the output file to see the current status of the sample program. The
no_ckpt.out output file looks like this:

From the output, we can see that the program has counted up to 135 and
then gone to sleep for five seconds.

5. Now, we will force the node to fail. In the labs, we forced the node sp4n05
to fail by giving the reboot -q command.

6. Check the llq and llstatus outputs. It will show as if the job is still running.
There is a keyword, MACHINE_UPDATE_INTERVAL, defined in the LoadL_config
file. This keyword defines the timeout period before which the nodes must
report to the central manager. If there is no response within this period,
the central manager will mark this machine as down. The default value for
this keyword is 300 seconds.

7. After 300 seconds, if you see the llstatus for the node, you can see that it
would have been marked as down by the central manager. Verify the
output file to see to what count the job has completed. The screen here
shows the job and machine status after 300 seconds. The tail of the output
file is also shown to indicate the end of the job when node sp4n05 failed.

$ tail no_ckpt.863.0.out
Counting
Sleeping 5 seconds...
Resume.
i = 131
i = 132
i = 133
i = 134
i = 135
Counting
Sleeping 5 seconds...
Chapter 9. Managing workload using checkpointing 191

From the screen output you can see that the node sp4n05 has been set as
down and the job has finished counting upto 870 before the node sp4n05
failed.

8. Now, let us assume that node sp4n05 is not going to come up for some
time and we want to run this job in a different node. For this, we will first
issue the llcancel command to cancel this job on node sp4n05. When you
issue this command, the job will be put into a Remove Pending (RP) state.

9. To resubmit the job from the checkpoint, we need to modify the keyword,
CHKPT_STATE = restart, instead of the keyword, enable, in the job
command file.

10.After modifying the job command file, resubmit the job to LoadLeveler
using the llsubmit command. Check the job status to determine on which
node the job is now scheduled.

$ llstatus | grep sp4n05
sp4n05.msc.itso.ibm.com Down 1 1 Down 1 0.01 9999 R6000 AIX43

$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.863.0 bala 11/23 13:55 R 50 small sp4n05

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held
$ tail *.out
Counting
Sleeping 5 seconds...
Resume.
i = 866
i = 867
i = 868
i = 869
i = 870
Counting
Sleeping 5 seconds...

$ llcancel sp4n05.863.0
llcancel: Cancel command has been sent to the central manager.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.863.0 bala 11/23 13:55 RP 50 small

0 job steps in queue, 0 waiting, 0 pending, 0 running, 0 held
192 Workload Management: SP and Other RS/6000 Servers

From the screen output, you can see that the job has been submitted in node
sp4n07 and the job ID is sp4n15.680.0

11.Now, we need to check whether the job has started from the saved state in
the checkpoint file or whether it has started from the beginning. This can
be checked by comparing the end of the output file, no_ckpt.863.0.out,
and the start of the file no_ckpt.680.0.out. Here, we will show the tail
output of no_ckpt.863.0.out and the head output of the file
no_ckpt.680.0.out.

From the screen output, you can see that the last count in the first submitted
job is 870, and the start count in the job that was resubmitted is 781. The
reason is that the checkpoint is being done at periodic intervals.

$ llsubmit sys-ckpt.cmd
llsubmit: The job "sp4n15.msc.itso.ibm.com.680" has been submitted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n15.680.0 bala 11/23 14:23 R 50 small sp4n07
sp4n05.863.0 bala 11/23 13:55 RP 50 small

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held

$ tail *863*.out
Counting
Sleeping 5 seconds...
Resume.
i = 866
i = 867
i = 868
i = 869
i = 870
Counting
Sleeping 5 seconds.

$ head *680*.out
[YOU HAVE NEW MAIL]
i = 781
i = 782
i = 783
i = 784
i = 785
Counting
Chapter 9. Managing workload using checkpointing 193

When resubmitted, the job will only start from the previous checkpoint state.
This indicates that the system has checkpointed after counting to 780, and
so, when we resubmitted, the job has started at 781.

9.5 User-initiated serial job checkpointing

In the case of user-initiated checkpointing, the system will not checkpoint at
predefined intervals as defined in the configuration file. Instead, users have to
implement, in their source program, where they need to checkpoint. For this,
users have to use the ckpt subroutine in their source programs in the places
where they want to save the state of the program.

The procedure to resubmit the job using the checkpoint file is the same as we
perform for system-initiated checkpoint. Here, we do not intend to repeat the
same. As far as the procedure is concerned, there are two differences when
compared to system-initiated checkpoint; so, here, we will discuss only those
two points. They are:

1. The user has to code his or her program to call the ckpt subroutine as and
when he or she requires to save the state. Here, we have written a small C
program that uses the ckpt subroutine:

#include <stdio.h>

main()
{

int i, rc = 99;

for (i = 0 ; ; i++) {
fprintf(stdout, "i = %d\n", i);
fflush(stdout);

if (i % 5 == 0) {
fprintf(stdout, "Start checkpoint...\n");
fflush(stdout);
ckpt();
fprintf(stdout, "Completed ckpt\n");
fprintf(stdout, "Sleeping 3 seconds...\n");
fflush(stdout);
sleep(3);
fprintf(stdout, "Resume.\n");
fflush(stdout);

}
}

}
$

194 Workload Management: SP and Other RS/6000 Servers

2. In the job command file, the checkpoint has to be set for user_initiated.
The job command file for the user_initiated checkpoint looks like the
following:

9.6 System- and user-initiated checkpointing

LoadLeveler supports both user- and system-initiated checkpoints. In order to
enable both, you need to specify the checkpoint keyword to system_initiated

in your job command file and also have your program written using the
appropriate ckpt subroutine call. This way, both system and user will initiate to
save the state of the job as defined in the configuration file and whenever the
ckpt subroutine is called from the program. The checkpointing of parallel jobs
can be done by the user-initiated method. For more information on how to use
it in parallel programs, refer to the Parallel Environment Version 2.4
documentation.

Testing user initiated checkpointing using a c program

@ EXE = ckpt_test
@ TC = userckpt
#
Execute step
#
@ step_name = $(TC)
@ error = $(EXE).$(Cluster).$(Process).err
@ output = $(EXE).$(Cluster).$(Process).out
@ class = small
@ notification = always
@ executable = $(EXE)
@ environment = COPY_ALL
@ environment = CHKPT_STATE=restart; CHKPT_FILE=$(EXE).ckpt; CHKPT_DIR=/u/bala
/check
@ initialdir = /u/bala/check
@ checkpoint = user_initiated
@ restart = yes
@ queue
$

Chapter 9. Managing workload using checkpointing 195

196 Workload Management: SP and Other RS/6000 Servers

Chapter 10. Workload Management using LoadLeveler and WLM

The IBM LoadLeveler product can be used to schedule the user jobs in an SP
environment. LoadLeveler selects the nodes based on the job description
defined by the user. System resources, such as CPU and memory, can be
allocated to the LoadLeveler jobs using the new AIX feature WLM. We can use
LoadLeveler to schedule the jobs and WLM to allocate the resources to a job.
This chapter discusses the distribution of the workload using LoadLeveler
and WLM in an SP environment.

10.1 Scenario description

Let us consider a scenario in which we have an SP being used to execute
parallel and serial jobs in both interactive and batch mode. The jobs are being
submitted by the LoadLeveler. There will be both the serial and parallel jobs
running in the nodes. The resources used by the parallel job in each node
may vary as per the AIX scheduler based on the number of jobs running in
the node. In a typical parallel environment, the parallel jobs communicate
among themselves using the message passing interface. In such an
environment, it is better if we can assign equal resources to each node. In
this scenario, the customer would like to have a mechanism by which the
parallel jobs submitted to the nodes get equal priority from the scheduler and
the virtual memory manager in the node.

From the machine status, LoadLeveler will determine what physical resources
are available on each node in the cluster, and it will submit the jobs
accordingly in the nodes. The class keyword in the local configuration file in
the node defines which class of jobs can be run in that node and how many
jobs can be run at a time. Once the job has been submitted to a node for
execution, the LoadLeveler has no role to play about the usage of the CPU
and memory resources in that node. When we have multiple jobs running in
the node, the priority at which a job will execute is decided by the AIX
scheduler.

The AIX Workload Manager (WLM) provides the system administrator greater
control over how the scheduler and virtual memory manager allocate
resources to process. This is specific to one node.

As you can see, LoadLeveler can be used to manage the jobs across multiple
nodes, whereas the WLM can be used to manage the execution of jobs within
the node. With this in mind, we will see how we can use both of them to
ensure that the parallel jobs get more priority than the serial jobs.
© Copyright IBM Corp. 2000 197

10.2 Tool choice

To perform workload management using both LoadLeveler and WLM, the
following environment crieteria must be met in all the nodes:

• LoadLeveler is installed and configured in all the nodes

• Workload manager is installed and configured in all the nodes

10.3 Testing environment

There are two users: bala and tani1. The user bala is considered to be a
parallel job user, whereas the user tani1 is a serial job user. We want to
assign the user bala with more CPU and memory resources than the serial
jobs submitted by user tani1. The configurations required for LoadLeveler and
WLM to achieve this in an SP environment are discussed in the following
sections in more detail.

10.4 LoadLeveler configuration

We presume here that the LoadLeveler is installed and running on all the
nodes. Here, we will show the configuration defined for the users bala and
tani1.

LoadLeveler configuration criteria for user bala are as follows:

• The user bala is configured as a LoadLeveler user. The user bala is
allowed to submit the jobs in the job class small.

• The LoadL_config.local file in all the nodes has the small class defined for
the class keyword.

The LoadLeveler configurations for user tani1 are as follows:

• The user, tani1, is configured as a LoadLeveler user. The user, tani1, is
allowed to submit the jobs in the class_second job class.

• The LoadL_config.local file in all the nodes has the class_second defined
for the class keyword.

10.5 WorkLoad manager configuration

In this section, we will discuss the workload manager configuration required
for our scenario. For the procedure to install and configure the Workload
Manager, refer to Section 5.3.3, “Installation and the configuration process”
on page 116.
198 Workload Management: SP and Other RS/6000 Servers

For the scenario described, the Workload Manager configuration rules will
look like the following:

Class
We will create two classes: Parallel and serial. The parallel class will be
configured as tier0 and the serial class as tier1. This indicates that the
processes running in the parallel class will have more priority for the
resources than the serial class. This is configured in the classes file. The
contents of the classes file will look like this:

Limits
Here, we will define the limits for the parallel and serial classes. Let us define
the maximum CPU limits for parallel classes as 75 percent and those for the
serial classes as 25 percent. The contents of the limits file will look like the
following:

Shares
We will define the number of shares for the parallel class as two and the
number for the serial class as one. The contents of the shares file for this
configuration will look like the following:

cat /etc/wlm/parallel/classes
parallel:

tier = 0

serial:
tier = 1

System:

Default:

cat /etc/wlm/parallel/limits
parallel:

memory = 1%-75%
CPU = 1%-75%

serial:
memory = 1%-25%
CPU = 1%-25%

System:
memory = 1%-100%
CPU = 1%-100%
Chapter 10. Workload Management using LoadLeveler and WLM 199

Rules
In order for WLM to classify processes into the two new classes, we must
provide a set of class assignment rules. Class assignment is done by
comparing attributes of the process, such as user ID, group ID and/or the
pathname of the application executed with the values in the assignment rules
file. The first match determines to which class the process will be assigned.

In our test environment, we would like to have the process running with the
user ID bala come under the class parallel and the processe running with the
user ID tani1 to come under the class serial. The contents of the rules file for
our test environment will look like the following:

In order for the configuration to be similar across all the nodes in the SP
cluster, we configured the Workload Manager in the CWS and enabled file
collections to propagate the files to all the nodes in the cluster. Refer to
Section 5.3.3, “Installation and the configuration process” on page 116for the
procedure to configure file collection. Propagate the files to all the nodes in
the cluster from the dsh prompt using the following commands:

#dsh -a

dsh>/var/sysman/supper update wlmCollection

Next, we need to reinitialize the WLM to look into the changed configuration
rules. This can be done using the following commands:

#dsh -a

dsh> wlmcntrl -u

cat /etc/wlm/parallel/shares
parallel:

CPU = 2
memory = 2

serial:
CPU = 1
memory = 1

cat /etc/wlm/parallel/rules
* class resvd user group application
parallel - bala - -
serial - tani1 - -
System - root - -
Default - - - -
200 Workload Management: SP and Other RS/6000 Servers

10.6 Serial and parallel jobs for testing

For testing the scenario, we have created one serial job and one parallel job.
The serial job will be submitted by the user tani1, and the parallel job will be
submitted by the user bala. Since we wanted to capture the screen and show
the process running on different nodes, we restricted ourselves to two nodes.
This was done by adding the keyword requirements in the job command file.

The serial job is an executable file called serial submitted using llsubmit by
the user tani1. The job command file for the serial job to be submitted by user
tani1 looks like this:

The parallel job is an executable btat_test, which has to be passed as an
argument to the executable /bin/poe. This parallel job will run on the two
nodes sp4n05 and sp4n06. There will be four tasks running on each node.
The job command file for the parallel job to be submitted by user bala looks
like the following:

cat serial.cmd
#!/bin/ksh
@ job_type = serial
@ executable = serial
@ error = tani1.$(Host).$(Cluster).$(Process).err
@ output = tani1.$(Host).$(Cluster).$(Process).out
@ initialdir = /u/tani1
@ notify_user = tani1
@ notification = always
@ requirements =(Arch == "R6000") && (OpSys == "AIX43")
@ requirements = (Machine == {"sp4n05.msc.itso.ibm.com" "sp4n06.msc.itso.ibm.c
om"})
@ class = class_second
@ queue
Chapter 10. Workload Management using LoadLeveler and WLM 201

10.7 Testing the scenario

To test the scenario, we will first submit the serial job from the user, tani1, and
allow the CPU and memory resources allocated to this serial class job. In
order to have better CPU load on the system, we will submit the same job four
times so that each node runs two serial jobs. The screen output here shows
the submission of the serial job by the user tani1.

Now, let us see the resources taken by the user tani1 using the wlmstat

command. In order to check the status on both nodes at the same time, we
used the distributed shell feature of SP from the CWS. The output of the
wlmstat command on nodes sp4n05 and sp4n06 looks like the following:

cat parallel.cmd
@ job_type=parallel
@ notification = error
@ account_no = bala
@ environment = COPY_ALL; MP_TIMEOUT=2000;
@ requirements = (Machine == {"sp4n05.msc.itso.ibm.com" "sp4n06.msc.itso.ibm.c
om"})
@ error = btat_test.$(Host).$(Cluster).$(Process).err
@ output = btat_test.$(Host).$(Cluster).$(Process).out
@ wall_clock_limit = 6000,5000
@ network.mpi = css0,shared,us
@ node = 2
@ tasks_per_node = 4
@ executable = /bin/poe
@ arguments = /u/bala/btat -d 400 -m 1000000 -v -ilevel 6 -labelio yes
@ class = small
@ queue

$ llsubmit serial.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.935" has been submitted.
$ llsubmit serial.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.936" has been submitted.
$ llsubmit serial.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.937" has been submitted.
$ llsubmit serial.cmd
lllsubmit: The job "sp4n05.msc.itso.ibm.com.938" has been submitted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.935.0 tani1 11/30 13:52 R 50 class_second sp4n05
sp4n05.936.0 tani1 11/30 13:53 R 50 class_second sp4n05
sp4n05.937.0 tani1 11/30 13:53 R 50 class_second sp4n06
sp4n05.938.0 tani1 11/30 13:53 ST 50 class_second sp4n06

4 job steps in queue, 0 waiting, 1 pending, 3 running, 0 held
202 Workload Management: SP and Other RS/6000 Servers

From the wlmstat output, we can see that there are no processes other than
the serial class job that is running on both nodes, and it is consuming 97
percent of CPU resources. This 97 percent of CPU is the processes running
by the user tani1. The processes that are running under this serial class can
be seen using the ps command. The screen here shows the processes for
which the resources are allocated by the AIX scheduler and virtual memory
manager to the class serial.

Now, let us submit the parallel job from user bala and monitor how CPU and
memory resources are allocated by the AIX scheduler and virtual memory
manager. The following screen shows the submission of the parallel job by
user bala.

dsh -w sp4n05,sp4n06
dsh> wlmstat
sp4n05: Name CPU MEM
sp4n05: Unclassified 3 36
sp4n05: System 1 9
sp4n05: Default 0 1
sp4n05: parallel 0 1
sp4n05: serial 97 1
sp4n06: Name CPU MEM
sp4n06: Unclassified 3 31
sp4n06: System 1 10
sp4n06: Default 0 0
sp4n06: parallel 0 1
sp4n06: serial 97 1

dsh> ps -ae -o pid,user,class,pcpu,vsz,wchan,args | grep serial
sp4n05: 15746 tani1 serial 44.7 820 - /u/loadl/execut
e/sp4n05.msc.itso.ibm.com.936.0/serial
sp4n05: 16884 tani1 serial 45.0 820 - /u/loadl/execut
e/sp4n05.msc.itso.ibm.com.935.0/serial
sp4n05: 18324 tani1 serial 0.0 348 EVENT -ksh
sp4n06: 4376 tani1 serial 46.4 820 - /u/loadl/execut
e/sp4n05.msc.itso.ibm.com.938.0/serial
sp4n06: 15266 tani1 serial 46.7 820 - /u/loadl/execut
e/sp4n05.msc.itso.ibm.com.937.0/serial
dsh> ps -ae -o pid,user,class,pcpu,vsz,wchan,args | grep serial
sp4n05: 15746 tani1 serial 46.9 820 - /u/loadl/execut
e/sp4n05.msc.itso.ibm.com.936.0/serial
sp4n05: 16884 tani1 serial 47.1 820 - /u/loadl/execut
e/sp4n05.msc.itso.ibm.com.935.0/serial
sp4n05: 18324 tani1 serial 0.0 348 EVENT -ksh
sp4n06: 4376 tani1 serial 46.2 820 - /u/loadl/execut
e/sp4n05.msc.itso.ibm.com.938.0/serial
sp4n06: 15266 tani1 serial 46.3 820 - /u/loadl/execut
e/sp4n05.msc.itso.ibm.com.937.0/serial
Chapter 10. Workload Management using LoadLeveler and WLM 203

This parallel job is a two-node job with four tasks in each node. Since, in the
job command file, we defined the requirements for this job to run only in the
nodes sp4n05 and sp4n06, the job is scheduled by the LoadLeveler to the
nodes sp4n05 and sp4n06. Let us now check the resource allocation, which
is done using the wlmstat command:

The screen output here shows the CPU resource allocated to the parallel
class on nodes sp4n05 and sp4n06 are 75 percent and 77 percent
respectively, whereas the CPU resource allocated to the serial job has come
down from 97 percent to 19 percent and 18 percent respectively.

Now, let us see which processes are running under the parallel class using
the ps command. The following screen shows the processes for which the
resources are allocated by the AIX scheduler and virtual memory manager to
the class parallel.

$ llsubmit parallel.cmd
llsubmit: The job "sp4n05.msc.itso.ibm.com.939" has been submitted.
$ llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sp4n05.935.0 tani1 11/30 13:52 R 50 class_second sp4n05
sp4n05.936.0 tani1 11/30 13:53 R 50 class_second sp4n05
sp4n05.937.0 tani1 11/30 13:53 R 50 class_second sp4n06
sp4n05.938.0 tani1 11/30 13:53 R 50 class_second sp4n06
sp4n05.939.0 bala 11/30 13:54 R 50 small sp4n06

5 job steps in queue, 0 waiting, 0 pending, 5 running, 0 held

dsh> wlmstat
sp4n05: Name CPU MEM
sp4n05: Unclassified 3 36
sp4n05: System 1 10
sp4n05: Default 0 1
sp4n05: parallel 75 17
sp4n05: serial 19 0
sp4n06: Name CPU MEM
sp4n06: Unclassified 3 31
sp4n06: System 1 10
sp4n06: Default 0 0
sp4n06: parallel 77 17
sp4n06: serial 18 1
204 Workload Management: SP and Other RS/6000 Servers

From the screen output, you can see that only the tasks that are running
under the user bala are classified under the WLM class parallel.

dsh> ps -ae -o pid,user,class,pcpu,vsz,wchan,args | grep parallel
sp4n05: 6942 bala parallel 0.0 468 - /etc/pmdv2
sp4n05: 14404 bala parallel 0.0 468 - /etc/pmdv2
sp4n05: 14666 bala parallel 0.0 468 - /etc/pmdv2
sp4n05: 15580 bala parallel 14.9 9308 * /u/bala/btat -d
400 -m 1000000 -v
sp4n05: 16274 bala parallel 0.0 468 - /etc/pmdv2
sp4n05: 17068 bala parallel 14.9 9308 * /u/bala/btat -d
400 -m 1000000 -v
sp4n05: 17308 bala parallel 16.4 9308 * /u/bala/btat -d
400 -m 1000000 -v
sp4n05: 17428 bala parallel 14.9 9376 * /u/bala/btat -d
400 -m 1000000 -v
sp4n05: 18326 bala parallel 0.0 348 EVENT -ksh
sp4n06: 2370 bala parallel 0.0 468 - /etc/pmdv2
sp4n06: 4746 bala parallel 16.4 9436 * /u/bala/btat -d
400 -m 1000000 -v
sp4n06: 7484 bala parallel 16.4 9432 * /u/bala/btat -d
400 -m 1000000 -v
sp4n06: 12724 bala parallel 16.4 9436 * /u/bala/btat -d
400 -m 1000000 -v
sp4n06: 13058 bala parallel 0.0 976 - /u/loadl/execut
e/sp4n05.msc.itso.ibm.com.939.0/poe -d 400 -m 1000000 -v
sp4n06: 13822 bala parallel 0.0 468 - /etc/pmdv2
sp4n06: 14472 bala parallel 14.9 9384 * /u/bala/btat -d
400 -m 1000000 -v
sp4n06: 15492 bala parallel 0.0 468 - /etc/pmdv2
sp4n06: 16532 bala parallel 0.0 468 - /etc/pmdv2
Chapter 10. Workload Management using LoadLeveler and WLM 205

206 Workload Management: SP and Other RS/6000 Servers

Chapter 11. Managing users

This scenario will describe the use of Secureway Network Dispatcher and
PSSP features to manage groups of users with different needs accessing the
same service in a server consolidation environment.

11.1 Scenario description

We assume that we have to provide a computer environment that meets the
following requirements:

• Two groups of users are using workstation applications executing on four
hosts.

• They access the hosts using telnet.

• Each group has a different priority.

• Under normal conditions, each group of users is confined to a subset of
the hosts and must be prevented from accessing the other hosts.

• The implementation must be flexible so that, when load conditions change,
it is possible to easily change the allocation of user group to the available
hosts or to add hosts.

11.2 Tool choice

To fulfill these requirements, we use the following hardware and software
tools:

• RS/6000 SP with four nodes

• PSSP User Management to share the AIX user and group between all SP
nodes

• PSSP access control (spacs_cntrl) to limit each user’s access to the
subset of nodes he or she is allowed to use

• Dispatcher to allocate each user request to the server able to process the
request

11.3 Environment configuration

All users access the services using telnet. The Dispatcher is unable to look
into the content of a telnet IP packet to identify which user is sending the
request; therefore, the Dispatcher cannot rely only on the port number used
by clients to make a routing decision, and an extra decision criteria needs to
© Copyright IBM Corp. 2000 207

be used in addition to the basic port-based algorithm. We present two ways of
solving this problem:

1. Rule-based decision

If the users are grouped by range of IP addresses, the Dispatcher can be
configured to use the IP address of the incoming requests to route it to the
appropriate server. This could be the case when, for example, all
members of a development team are using workstations connected to the
same subnet, and all members of a marketing department are connected
to a subnet in another building, and they want to share the resource of an
SP cluster.

2. Multiple clusters

If rule-based decision is not possible, another possibility is to create two
clusters on the same Dispatcher. Each group is assigned one cluster so
that each group has the impression of having its own (virtual) server. The
two clusters can then share the SP nodes, but this is transparent to the
users.

Telnet servers do not accept incoming requests on several ports. For
applications that are able to listen to several ports, there is another solution to
this problem. Rather than defining a multiple cluster, you can define one
cluster managing requests on two ports associated with the same application.
Each group of users is allocated one of the two ports. We do not present this
solution in detail here.

11.3.1 Hardware platform
With either a rule-based choice or multiple clusters, we use the same
hardware configuration.

We reuse the configuration presented in Chapter 4, “Secureway Network
Dispatcher” on page 103, with the addition of one extra SP node as server.
This configuration is presented in Figure 22 on page 209.
208 Workload Management: SP and Other RS/6000 Servers

Figure 22. Secureway Network Dispatcher configuration

11.3.2 Dispatcher configuration
The Dispatcher configuration is different for the ruled-based choice and
multiple cluster solutions. In this section, we only present the installation
steps specific to these configurations. Refer to 4.2, “Architecture” on page
103, for general Dispatcher installation instructions.

11.3.2.1 Configuration for rule-based choice
We assume that users of one group are all working from workstations with IP
addresses in the range 9.12.0.0 to 9.12.0.100 and that users in the other
group use addresses in the range 9.12.0.101 to 9.12.0.255.

Dispatcher is installed on Server 1.

We created a cluster with the address 192.168.4.100. We configured the Port
23 for load balancing the telnet connections. Other ports are not configured.
We created the rules to define our requirement. The following screen output
describes the Dispatcher commands we used to test this scenario:

Client

2nd Disp.
Server 2
(Node 9)

Server 3
(Node 11)

Server 4
(Node 13)

Network 2 (ethernet 2)

Network 3 (SP Switch)

Internet

Prim. Disp.
Server 1
(Node 10)

Network 1 (SP ethernet)
Chapter 11. Managing users 209

The first rule indicates that all client requests coming from an address in the
range 9.12.0.100-255 will use server 9 and 10. The second rule routes users
in the other range to use servers 11 and 13. The last rule, which is always
true, is evaluated only if the request does not match any of the previous two
rules. If a request comes from an address outside the ranges specified in the
first two rules, this request is dropped.

The manager and the advisors are activated. The manager proportions are
set to 40, 40, 20, 0 so that the input from the telnet advisor is also used by the
dispatching algorithm.:

11.3.2.2 Configuration for multiple clusters
We decide that users in one group use cluster 192.168.14.100 and that the
other group points to cluster 192.168.14.101.

Dispatcher is installed on Server 1 (node 10).

ndcontrol cluster add 192.168.4.100
Cluster 192.168.4.100 has been added.
ndcontrol port add 192.168.4.100:23
Port 23 successfully added to cluster 192.168.4.100.
ndcontrol server add NDCLUSTER:23:sp4sw09+sp4sw10+sp4sw11+sp4sw13
Server 192.168.14.09 was added to port 23 of cluster 192.168.4.100.
Server 192.168.14.10 was added to port 23 of cluster 192.168.4.100.
Server 192.168.14.11 was added to port 23 of cluster 192.168.4.100.
Server 192.168.14.13 was added to port 23 of cluster 192.168.4.100.
ndcontrol rule add 192.168.4.100:23:RuleMktg type ip priority 42 beginrange \
9.12.0.101 endrange 9.12.0.255
ndcontrol rule useserver 192.168.4.100:23:RuleMktg 192.168.14.9+192.168.14.10

ndcontrol rule add 192.168.4.100:23:RuleDevl type ip priority 52 beginrange \
9.12.0.0 endrange 9.12.0.100
ndcontrol rule useserver 192.168.4.100:23:RuleDevl 192.168.14.11+192.168.4.13

ndcontrol rule add 192.168.4.100:23:RuleOther type true priority 62 \
beginrange 0 endrange 0

ndcontrol manager start manager.log 10004
ndcontrol manager proportions 40 40 20 0

ndcontrol advisor start Telnet 23 Telnet_23.log
210 Workload Management: SP and Other RS/6000 Servers

The two clusters are created and configured (aliased) on the same adapter of
node 10;

Port 23 is configured for load balancing of telnet connections on both clusters
in the same command. Other ports are not configured.

Servers 1 and 2 are assigned to port 23 of cluster 101 while servers 3 and 4
are assigned to cluster 100:

The manager and the advisors are activated. The manager proportions are
set to 40, 40, 20, 0 so that the input from the telnet advisor is also used by the
dispatching algorithm.:

The loopback device on server nodes 9, 11, and 13 must be aliased to both
cluster addresses. In initial conditions, each node will belong to only one
cluster, but aliasing both clusters will later allow dynamic reallocation of
nodes to the other cluster if needed.

11.3.3 Configuration of users, groups, and applications
User and group management is implemented the same way as for ruled-
based choices or multiple clusters.

Users belong to one of three groups:

• devl contains devl1 and devl2.

ndcontrol cluster add 192.168.4.100
ndcontrol cluster configure 192.168.4.100
ndcontrol cluster add 192.168.4.101
ndcontrol cluster configure 192.168.4.101

ndcontrol port add 192.168.4.100+192.168.4.101:23
ndcontrol port set 192.168.4.100+192.168.4.101:23 staletimeout 32000000

ndcontrol server add 192.168.4.100:23:192.168.14.11+192.168.14.13
ndcontrol server add 192.168.4.101:23:192.168.14.9+192.168.14.10

ndcontrol manager start manager.log 10004
ndcontrol manager proportions 40 40 20 0

ndcontrol advisor start Telnet 23 Telnet_23.log

ifconfig lo0 alias 192.168.4.100 netmask 255.255.255.0
ifconfig lo0 alias 192.168.4.101 netmask 255.255.255.0
Chapter 11. Managing users 211

• mktg consists of mktg1 and mktg2.

In normal operating mode, groups are given access to each server based on
the following table:

Table 10. Server access by group

PSSP User Management is used to manage groups and user IDs, which are,
therefore, defined on all four nodes. It is then possible to dynamically
reallocate users to other servers, if necessary, by new load conditions if a
node is down or for any other reason.

When telnetting to the cluster address, users will always be routed to the
nodes they are allowed to use by the cluster administrator. However, if a user
discovers the real IP address of a node that he or she is not allowed to use,
they can telnet directly to this address rather than using the cluster address,
and, since we used the SP User Management, he or she would be able to log
on to the node. Therefore, PSSP access control (spacs_cntrl) is configured to
prevent user access to unauthorized nodes. A simple way of using the PSSP
access control is to use the spacs_cntrl command for each user. For example,
we enable user devl1 to log onto nodes 9 and 10, and we prevent this user
from logging on to nodes 11 and 13:

In a real RS/6000 SP environment, it is likely that there will be too many users
defined in the system to manage them one by one. In this case, we
recommend that you use the file collection option or the NIS group options to
manage users by group rather than individually. Chapter 5 of Parallel System
Support Program for AIX - Administration Guide ,SA22-7348, provides
detailed information about the possibilities offered by spacs_cntrl.

11.4 Results

The Dispatcher and the servers are now ready to serve client requests. Using
the ndadmin GUI, we can check all settings of the Dispatcher. Figure 23 and

Server 1 Server 2 Server 3 Server 4

Mktg yes yes no no

Devl no no yes yes

dsh -w sp4n09,sp4n10 /usr/lpp/ssp/bin/spacs_cntrl unblock devl1
dsh -w sp4n11,sp4n13 /usr/lpp/ssp/bin/spacs_cntrl block devl1
#

212 Workload Management: SP and Other RS/6000 Servers

Figure 24 present the manager settings in a rule-based configuration and the
advisor measured load in a multicluster environment.

Figure 23. Manager window in rule-based configuration.

Figure 24. Advisor window in a multicluster environment

To check that load balancing is performed as planned, we select port 23 on
the Dispatcher GUI with the right mouse button, and click Monitor. From a
client workstation, we telnet to the cluster four times. In the Monitor window,
Chapter 11. Managing users 213

we can verify that the new connections are allocated to the two nodes we are
allowed to use (See Figure 25).

Figure 25. Monitoring connections

11.5 Closing comments

When using Dispatcher to manage a group of users logging into a pool of SP
nodes, we recommend that you share the groups’ and users’ AIX definitions
between all the nodes so that users can log onto any nodes rather than
limiting these definitions to the nodes where the users are initially authorized
to log in. This may help you take advantage of the dynamic reconfiguration
possibilities of the RS/6000 SP and of Dispatcher.
214 Workload Management: SP and Other RS/6000 Servers

Chapter 12. Workload management for Web server

The RS/6000 SP is one of the most powerful Web servers on the market
today. The SP provides very high scalability and availability to such Web
servers. The multiple node SP configuration with Secureway Dispatcher
software provides a load-balanced environment for managing Web servers.
The dispatcher software can be configured to manage the client connections
to the SP nodes based on node load. In this chapter, we will discuss the
workload management scenario with SP nodes functioning as the Web
server.

12.1 Scenario description

In this scenario, we consider a computing environment with the following
requirements:

• The Web server is configured on multiple nodes in SP.

• The client connections are to be routed to the nodes to balance the
workload.

12.2 Tools choice

To test this scenario, we use the following hardware and software tools:

• An RS/6000 SP with four nodes

• The IBM HTTP server

• IBM Secureway Network Dispatcher 2.1

12.3 Configuring the test environment configuration

We will now define the test environment. We use four SP nodes for this test
scenario. We will configure the Network dispatcher server in one node, and
we will use the other three nodes as a Web server. We will define a shared
file system for the Web documents. We will use the default methods for
managing the client connections and we will also use the http advisor shipped
with the dispatcher to manage the connections.

12.3.1 Hardware and network configuration
The purpose of this scenario is to balance the Web client connections to the
SP nodes; so, we will create a simple network configuration between the
nodes. This is illustrated in Figure 26 on page 216.
© Copyright IBM Corp. 2000 215

Figure 26. Simple network configuration

We assign the roles listed in Table 11 to the nodes.

Table 11. Role of nodes for ND configuration

We will use only one network interface for network communication. We do not
use a switch interface in this scenario.

Table 12. The hostname and IP address for the test environment

We will install and configure the IBM HTTP server software in these three
server nodes. The three nodes will act together as the Web server for the
external clients. The external clients will see the three nodes as a single
system through the cluster address defined in the dispatcher configuration.

Role Hostname of the node

ND server sp4n10

ND cluster nodes sp4n09, sp4n11, sp4n13

Hostname IP address

sp4n10 192.168.4.10

sp4n09 192.168.4.9

sp4n11 192.168.4.11

sp4n13 192.168.4.13

1 9 2 . 1 6 8 .4 . 1 3

S e r v e r 2
(N o d e 9)

S e r v e r 3
(N o d e 1 1)

P r i m . D i s p .
S e r v e r 1
(N o d e 1 0)

I n t e r n e t

1 9 2 . 1 6 8 . 4 .1 0

C l ie n t
C l ie n t

C l i e n tC l ie n t
C l i e n t

C l i e n tC l i e n tC l ie n tC l i e n t

S e r v e r 4
(N o d e 1 3)

1 9 2 . 1 6 8 . 4 .1 11 9 2 . 1 6 8 . 4 . 9
216 Workload Management: SP and Other RS/6000 Servers

12.4 Installation and configuration of IBM HTTP server

To configure the Web server on the SP nodes, we need to install the IBM http
server software on all four nodes. First, we copied the IBM HTTP server
product Version 1.3.6.0 filesets into the control workstation. The following
filesets are required to install the IBM HTTP server. We copied these filesets
into the /psspimage/http directory in the control workstation.

We created a user, admuser, and a new group, admingrp . We designated
admuser as the administrator for managing the HTTP server.

We installed the HTTP product on the nodes using the dsh utility as described
below.

After the installation, the HTTP server product files are located in the /usr/
HTTPServer directory in all the four nodes in our test environment. The
binary files are located in the bin directory and the http config files are located
in the conf directory. The default documentation directory is located in the
htdocs directory.

12.4.1 Basic configuration
To configure the nodes as a Web server, we need to make few changes to the
default httpd.conf file in the conf directory. We changed values to the following
variables in this configuration file.

http_server.admin 1.3.6.0 IBM HTTP Server Administration
http_server.base.rte 1.3.6.0 IBM HTTP Server Base Run-Time
http_server.base.source 1.3.6.0 IBM HTTP Server Source Code
http_server.frca 1.3.6.0 IBM HTTP Server Fast Response
http_server.html 1.3.6.0 IBM HTTP Server Documentation
http_server.man.en_US 1.3.6.0 IBM HTTP Server Manual Pages
http_server.modules.mt 1.3.6.0 IBM HTTP Server MT Module
http_server.modules.snmp 1.3.6.0 IBM HTTP Server SNMP Module
http_server.msg.en_US.admin
http_server.msg.en_US.html
http_server.base.rte 1.3.6.0 IBM HTTP Server Base Run-Time

#dsh -w sp4n09,sp4n11,sp4n13
#dsh mkdir -p /mnthttp
#dsh mount sp4en0:/psspimage/http /mnthttp
#dsh installp -acgNqwX -d /mnthttp http_server.base http_server.html http_server.man_enU
Chapter 12. Workload management for Web server 217

We identified the administrative user and the group in the configuration file.
We started modifying the httpd.conf file with node 9 in our configuration; so,
the ServerName variable in the configuration file was set to
sp4n09.msc.itso.ibm.com. The domain name in the test environment is
msc.itso.ibm.com. We made the same changes in nodes 11 and 13. To start
the Web server, we need to define the documentation directory were the Web
documentation is located. The default documentation directory is /usr/HTTP/
htdocs directory. This directory is located in all four nodes in the test
environment. We started the http server by issuing following command in the
control workstation:

We observed that the http processes were started in these nodes. We
connected to this server from a client machine using Netscpae browser. We
connected to node 9 and saw the HTTP server page on the browser . We
tested the connection for node 10 and node 13, and we got the same html
page on the screen.

User admuser
Group admingrp
ServerName sp4n09.msc.itso.ibm.com
<Directory /usr/HTTPServer/htdocs>
DocumentRoot /usr/HTTPServer/htdocs

dsh -w sp4n09,sp4n11,sp4n13 /usr/HTTPServer/bin/apachectl start
218 Workload Management: SP and Other RS/6000 Servers

Figure 27. Web document obtained from http server on Node 9

12.4.2 Creating a common documentation directory
In the basic configuration, we configured three http servers on the three SP
nodes. The documentation directory is located in the /usr/HTTPServer/htdocs
directory for all the servers. In this configuration, we have three http servers
serving the same Web document because the content of the directory, /usr/
HTTPServer/htdocs, is same. But, this directory is unique to each node and
since they have the same contents , we observe the same page irrespective
of the node we connect from the client machine. To access this document, the
client can connect to any one of the nodes in this cluster. Now, we can
configure the three independent Web servers as a cluster Web server using
the IBM Secureway Network Dispatcher. Using Dispatcher, we can assign a
single cluster address for all three servers, and we can define the http service
for port 80 in Dispatcher configuration. In this case, we need to make sure
that the content of the document directory is the same in all the nodes. This
can be achieved in SP by NFS file systems, multiple copies of independent
file systems managed by file collections methods, or by using the GPFS file
system.

NFS file system
To maintain the content of the document directory of the Web server using
NFS file system , you need to configure an NFS file server in your network
Chapter 12. Workload management for Web server 219

configuration. You need to mount this file system on all the nodes. In this
case, any changes to the documents are automatically seen by the http
servers, and they serve the same content. The document is accessed over
the network from the NFS server for serving a client request.

File collection methods
You can define a file collection for the document directory, and the PSSP file
collection methods will replicate the files at regular intervals. In this method,
the document directory will be local to each node. The contents of the
document directory can be modified in a master node, and it will be replicated
to other nodes using PSSP file collection methods. You can define a separate
file collection for managing the Web server document directory. Please refer
to Section 5.3.3, “Installation and the configuration process” on page 116, for
information on how to create a file collection. In this case, the document will
be served from the local disk for servicing a Web client request.

GPFS file system
Another alternative in an SP environment is to use a GPFS file system to
maintain a document directory. GPFS is a parallel file system; the document
directory is maintained by the GPFS servers. In this case, the document
directory is a striped file system on all the participating nodes. To configure a
GPFS file system, refer to the redbooks GPFS: A Parallel File system, SG24-
5165, and Sizing and Tuning of GPFS, SG24-5610, for information on sizing
and performance tuning of the GPFS file system.

You can choose any of the methods just described to create a common
document directory for the Web server cluster. You can use the SP switch to
improve the network performance for data access.

12.4.3 Configuring the dispatcher
We configured the ND server on sp4n10, and sp4n09, sp4n11, and sp4n13
as http server nodes for load balancing. We followed the procedures
described in Chapter 4, “Secureway Network Dispatcher” on page 103, for
configuring the ND cluster. The cluster IP address was defined as
192.168.4.100. The configuration steps are defined in the following screen
output:
220 Workload Management: SP and Other RS/6000 Servers

We configured port 80 for the http service and added the three servers in this
configuration.

Next, we connected to the Web server using the cluster address while the
dispatcher was routing the connections to one of the three servers based on
the load on each node. The clients will see the cluster a single web server
and you can add or remove the nodes in the cluster with out shutting down
the cluster. The dispatcher provides different ways to load balance the
connections and we will discuss them in the next chapter.

In this chapter we have only discussed how to configure a Web server and
balance the workload in a multi-node SP configuration. We have not
discussed the various ways the Web server can be configured to improve
performance. You can refer to the following documentation for detailed
information on these topics:

• IBM HTTP Server Powered by Apache on RS/6000, SG24-5132

• IBM Websphere Performance Pack: Caching and Filtering with IBM Web
Traffic Express, SG24-5859.

ndcontrol executor start
ndcontrol executor set nfa 9.12.0.4
ndcontrol cluster add 192.168.4.100
ndcontrol port add 192.168.4.100:80
ndcontrol port set 192.168.4.100:80 staletimeout 32000000
ndcontrol server add 192.168.4.100:80:192.168.4.9
ndcontrol server add 192.168.4.100:80:192.168.4.13
ndcontrol server add 192.168.4.100:80:192.168.4.11
ndcontrol cluster configure 192.168.4.100 lo0 255.255.255.0
Chapter 12. Workload management for Web server 221

222 Workload Management: SP and Other RS/6000 Servers

Chapter 13. Managing online interactive workloads

Managing with interactive workload in SP is a challenging task for system
administrators. Online users always want to connect to a node with the
smallest current workload in order to get better response time. It is difficult for
the SP administrators and users to find out which node to log in or connect to
in order to get better response time. Also, the system administrators want to
balance the workload across the SP nodes to utilize the nodes effectively. In
an SP environment, it is possible that some nodes will get a very high load
while other nodes get lesser or moderate loads.

Earlier, the interactive sessions were managed by the Interactive Sessions
Support (ISS) component of the LoadLeveler. ISS was based on DNS
implementation and had limited features. The IBM Secureway Network
Dispatcher product has many features for managing the interactive sessions.
As we discussed in Part 1, the secureway Network Dispatcher manages the
TCP/IP connections in a network of servers, and SP can be viewed as a
network of servers. With Network Dispatcher, we will be able manage the
user connections and balance the workload across the SP nodes.

In this section, we will discuss the management of interactive sessions in SP.
We will discuss two ways of managing the interactive sessions. First, we will
use the default loadbalancing methods used by ND for routing the
connections. In the second method, we will use the custom advisors of ND
and provide the node load information using AIX workload manager.

13.1 Scenario description

In this scenario, we consider a computing environment with the following
requirements:

• Users create many interactive TCP/IP connections to SP from the client
terminals.

• The user connections need to be automatically routed to a least loaded SP
node.

• WLM is configured in SP nodes for managing the workload at each node

13.2 Tools choice

To manage user connections and balance the load on the nodes, we chose
the following tools :

• IBM Secureway Network Dispatcher Version 2.1
© Copyright IBM Corp. 2000 223

• AIX Workload Manager

• File collection tools of PSSP

• Java development tools for writing custom advisors for ND

13.3 Configuring the test environment

We will define the following test environment. The SP environment we used in
the lab has 10 nodes. For this test scenario, we will use only four nodes. We
will configure Network Dispatcher and WLM in this environment. We will also
define the users’ sessions and show how the TCP/IP sessions can be
managed using Network Dispatcher. We will also define the Loadbalancing
methods for the nodes using WLM. We will write custom advisors to gather
the node workload information and use this information to balance the
workload in the SP environment.

13.3.1 Hardware and network configuration
The purpose of this scenario is to balance the client connections to the SP
nodes; so, we will create simple network configuration between the nodes.
This illustrated in the Figure 22.

Figure 28. Simple “one-network” configuration.

We assign the roles listed in Table 13 to the nodes.

Table 13. Role of nodes for ND configuration

Role Hostname of the node

ND server sp4n10

1 9 2 . 1 6 8 . 4 . 1 3

S e r v e r 2
(N o d e 9)

S e r v e r 3
(N o d e 1 1)

P r i m . D i s p .
S e r v e r 1
(N o d e 1 0)

I n t e r n e t

1 9 2 . 1 6 8 . 4 . 1 0

C l ie n t
C l i e n t

C l i e n tC l i e n tC l i e n t

C l i e n tC l i e n tC l ie n tC l i e n t

S e r v e r 4
(N o d e 1 3)

1 9 2 . 1 6 8 . 4 . 1 11 9 2 . 1 6 8 . 4 .9
224 Workload Management: SP and Other RS/6000 Servers

We will use only one network interface for network communication. We do not
use a switch interface in this scenario.

Table 14. Hostname and IP address of nodes for the test environment

The user sessions we consider here are TCP/IP connections to the SP
nodes. Usually, these connections can be any application that is serviced on
a TCP/IP port. Most of the client/server applications use a specific TCP/IP
port for communication. We can configure these applications in one or more
SP nodes, and the Network Dispatcher can be configured to manage the
connections to these applications. The application can be a simple telnet
service, and users can log on to any node in SP to run their applications. The
application can also be a large parallel database server, Web server, parallel
file system, and so on. In these scenarios, we can manage the user TCP/IP
connections by routing them to a node based on the current workload on the
nodes. We can configure nodes with WLM to manage the workload at nodes
and we can use Network Dispatcher to distribute the connections.

We test the loadbalancing scenario with TCP/IP application Telnet. We did
not create a particular user application environment during this project but the
procedure followed here can be applicable to most user environments.

13.3.2 Network dispatcher configuration
We configured the ND server on sp4n10, sp4n09, sp4n11, and sp4n13 as
application nodes for load balancing. To configure the ND cluster, we followed
the procedures described in Figure 4 on page 103. The cluster IP address
was defined as 192.168.4.100. The configuration steps are defined in the
following screen output:

NDcluster nodes sp4n09, sp4n11, sp4n13

Hostname IP address

sp4n10 192.168.4.10

sp4n09 192.168.4.9

sp4n11 192.168.4.11

sp4n13 192.168.4.13

Role Hostname of the node
Chapter 13. Managing online interactive workloads 225

13.3.3 Managing the user Telnet sessions
For managing user workload in this scenario, the telnet connections, we used
the following three methods:

• Default weighted round robin method

• Fixed weight method

• Using Manager and Advisors

13.3.3.1 Default weighted round robin method
The dispatcher is currently configured with three nodes to accept the
connections at port 23 for telnet service. We now issue the telnet command
to the cluster address, telnet 192.168.4.100, from the client terminals, and the
dispatcher routes the connection to any of the three nodes. At this point,
dispatcher load balances the client connections based on a weighted round
robin method. In this method, the user telnet connections are forwarded to the
nodes in a round robin fashion. In this method, the default dispatcher
configuration sets equal weights to the nodes in the cluster.

13.3.3.2 Fixed weight method
The SP configurations can have different types of nodes, thus, the power of
these nodes can differ greatly. It would be appropriate to set different weights
to these nodes based on their power. The SP configurations in our lab
environment had mixed types of nodes. Node 9 in this cluster is a four CPU
PowerPC 332 Mhz node, and nodes 11 and 13 were single CPU 66 Mhz
nodes. Node 9 is more powerful than nodes 11 and 13. To manage the
workload with mixed nodes, we use the fixed weight method. In this method,
we define the weight of node 9 as 10 times that of nodes 11 and 13. We set
this weight using the following commands:

ndcontrol executor start
ndcontrol executor set nfa 9.12.0.4
ndcontrol cluster add 192.168.4.100
ndcontrol port add 192.168.4.100:23
ndcontrol port set 192.168.4.100:23 staletimeout 32000000
ndcontrol server add 192.168.4.100:23:192.168.4.9
ndcontrol server add 192.168.4.100:23:192.168.4.13
ndcontrol server add 192.168.4.100:23:192.168.4.11
ndcontrol cluster configure 192.168.4.100 lo0 255.255.255.0
226 Workload Management: SP and Other RS/6000 Servers

We have now created telnet connections to the cluster, and the dispatcher
routes the connections to the nodes based on the weights defined for the
nodes. In this scenario, the connections were routed to the nodes in a 1:10
ratio as shown in Figure 29.

Figure 29. Managing the connections using fixed weight for nodes

ndcontrol server set 192.168.4.100:23:192.168.4.13 weight 1
ndcontrol server set 192.168.4.100:23:192.168.4.11 weight 1
ndcontrol server set 192.168.4.100:23:192.168.4.9 weight 10
Chapter 13. Managing online interactive workloads 227

13.3.3.3 Using managers and advisors
In the previous two methods, the workload is balanced based on the static
weights defined in the Dispatcher configuration. These weights are defined
manually by the administrators, and the dispatcher cannot automatically
adjust these values based on the current load in the nodes. While these two
methods provide certain workload balancing functions based on the weights
defined for the nodes, the weights are not adjusted based on the current
workload at each node. The Manager feature of dispatcher dynamically sets
weights to the nodes in the cluster based on the internal counters in the
executor, feedback from advisors, and load information from a system
monitoring tool, such as ISS. The manager dynamically calculates the
weights based on proportions assigned to the four factors, such as active
connections, new connections, advisor information, and system monitoring
tools. Based on the proportions settings, the manager feature of dispatcher
recalculates the weights to each node in the cluster. The proportions define
the importance of the parameter in calculating the weights. The default values
are 50 percent for active connections, 50 percent for new connections and
zero percent for advisors and system monitoring tools. You can change the
proportions to suit your configuration, but the sum of the proportions should
be equal to 100. There are certain guidelines for setting these proportions,
and they are described in the Network Dispatcher user guide.

At this point in time, we set the proportions to the default values to 50, 50, 0,
and 0. The following steps describe how to start the manager and set the
proportions in dispatcher configuration. The screen output also shows the
current load on the nodes.

#ndcontrol manager start
The manager has been started.
ndcontrol manager proportions 50 50 0 0
The proportions of the manager were set to: 50 50 0 0
228 Workload Management: SP and Other RS/6000 Servers

We created 10 telnet connections, and the connections were distributed as
shown in Table 15.

Table 15. With default manager configuration

Using custom advisors
The advisor feature of the dispatcher sends a TCP request to the nodes and
measure the actual client response time for a particular port. These results
are fed to the manager for weight calculations. The importance of the advisor
in recalculating the weights is defined by the proportions. The advisor
function is optional in dispatcher. But, it is recommended that you use the
advisor. There are advisors currently available with the Network Dispatcher
for certain TCP protocols. You have the option of writing the custom advisors.
You can write a custom advisor to provide precise load information for the
nodes in the cluster. The custom advisors are to be written and compiled
using java Version 1.1. The custom advisors can be written in such a way as
to receive the load information from the server application and feed it to the
manager for calculating the weights. At this time, you can set the appropriate
importance to the advisor proportions for the manager to calculate the
weights. In this case, you can set higher proportions for the advisors. It is also
recommended to set at least 20 percent of the proportions to each active
connection and new connection parameter.

Node name Number of connections

SP4n09 2

SP4n11 3

SP4n13 5

--

| 192.168.4.100| WEIGHT | ACTIVE % 50 | NEW % 50 | PORT % 0 | SYSTEM % 0 |
--

| PORT: 23 | NOW | NEW | WT | CONNECT | WT | CONNECT | WT | LOAD | WT | LOAD |
--

192.168.4.13	14	14	18	0	10	0	10	0	-9999	-1
192.168.4.11	14	14	18	0	10	0	10	0	-9999	-1
192.168.14.9	5	5	0	11	10	0	10	0	-9999	Down
--

| PORT TOTALS: | 33 | 33 | | 11 | | 0 | | 0 | | -1002 |

Chapter 13. Managing online interactive workloads 229

We modified the sample custom advisor code shipped with the dispatcher to
receive the load information from the server. We used a separate control port
to receive the load information from the server. On the server side, we wrote a
simple java code to send the current load information from the server using
the control port. We executed this server code on all three servers. We used
AIX Workload manager to collect the current load information on the server.
To start, we configure the AIX Workload manager on the servers.

WLM configuration on the nodes
We created a user group, telnet, and we allowed telnet access to the users of
this group on the three nodes. We created a new WLM configuration
directory, /etc/wlm/session, in all the nodes. We also defined a WLM class,
tnintjobs, and we defined telnet group to this class. The following is the WLM
configuration used in this scenario.

We activated this WLM configuration using the wlmcntrl -d /etc/wlm/session

command.

For this scenario, we defined the load on the nodes as a measure of cpuload.
We wrote two shell scripts to gather the load information on the system.

The CPULOAD script measures the current cpuload on each node.

WLM CLASS Configuration
System:

description = ""
tier = 0

Default:
tnintjobs:

description = "Interactive jobs called by telnet users"
tier = 0

httpjobs:
description = "HTTP Service"
tier = 0

WLM Rules configuration

* class resvd user group application
tnintjobs - - telnet -
httpjobs - - - /usr/HTTPServer/bin/httpd
System - root - -
Default - - - -

cat CPULOAD
wlmstat -c |awk '{sum = sum + $2 ; print sum}' | tail -1 |awk '{ print $1*100+1 }'
230 Workload Management: SP and Other RS/6000 Servers

The WLMLOAD23 script measures the current cpuload on each node defined by
the tnintjobs class.

The shell scripts used here use the wlmstat command to measure the load on
the system based only on the cpuload on the nodes. You can write your own
scripts to derive the load on the nodes specific to your configuration.

We put these commands in the cron table on each node so that they execute
at regular intervals. The following are the crontab entries.

The output of these scripts is created in two files in the /tmp directory. These
output files read by the simple java application to forward the load information
to the dispatcher custom advisor.

Java application on the nodes
We wrote the following piece of java code to read the load information from
the output files created by the previous shell scripts to the custom advisor
using a control port. This application was developed in Java Version 1.1.

The execution procedure for this program is as follows:

Java server < control port > < file >

<control port> is the number of the port in which the custom advisor will
receive the load information.

<file> is the name of the file from which the node load information should be
read by this application.

For general cpuload information, for all applications, we use the cpuload.out
file. For the cpuload created by the telnet application, we use the
wlmload23.out file. The number 23 signifies the TCP/IP port for telnet service.

cat WLMLOAD23
wlmstat -l tnintjobs -c |grep tnintjobs |awk '{ print $2/75 * 10000 }' | cut -f 1 -d .

5 * * * * /tmp/CPULOAD 1>/tmp/cpuload.out
5 * * * * /tmp/WLMLOAD23 1>/tmp/wlmload23.out
Chapter 13. Managing online interactive workloads 231

import java.io.*;
import java.net.*;
import java.util.*;

public class server
{

public static void main(String args[]) throws Exception
{
if (args.length != 2)

{
System.out.println("\nUsage : java server <port> <file name>");
System.out.println(" port - an integer where the server listens");
System.out.println(" file name - input file");
System.exit(0);
}
ServerSocket serverSocket = null;
Socket clientSocket = null;
int port = Integer.parseInt(args[0]);
String command= args[1];
serverSocket = new ServerSocket(port);
while (true)
{
clientSocket = serverSocket.accept();
serviceClient(clientSocket,command);
}

}

public static void serviceClient(Socket client,String command)
{
DataInputStream inbound = null;
PrintStream outbound = null;

try{
inbound = new DataInputStream(new BufferedInputStream(client.getInputStream()));
outbound = new PrintStream(new BufferedOutputStream(client.getOutputStream(),1024),

false);

tring inputLine=inbound.readLine();
//System.out.println(inputLine);
int j=0,count=1;
String s = null;
BufferedReader br = new BufferedReader(new FileReader(command));
s = new String(br.readLine());
//System.out.println("Data: " + s);
outbound.println(s);
outbound.flush();
outbound.close();
inbound.close();
client.close();
br.close();
}
catch(Exception e){
//System.out.println(e.getMessage());
}
}

}

232 Workload Management: SP and Other RS/6000 Servers

Custom advisor code
We modified the sample custom advisor code shipped with the dispatcher
product for our requirement. The two specific changes are:

• The custom advisor works in replace mode to pass the load information
from the server.

• We use a control port other than the TCP/IP port used by the dispatcher
for servicecing the client requests. In this case we use the control port
number 8823. This defined in the variable ADV_DEF_CONTROLPORT =
8823.

We named this custom advisor port23. We followed the ND naming
conventions for the custom advisors.

We started the dispatcher server and the manager. We started this custom
advisor using the following command:

We started the java application on the nodes by issuing following command:

At this point in time, the custom advisor was receiving the cpuload
information for telnet class users.

ndcontrol advisor start port23 23

java server 8823 /tmp/wlmload23.out
Chapter 13. Managing online interactive workloads 233

/**
* ADV_port23: The Network Dispatcher custom advisor for port 23
*
*
* This class defines a sample custom advisor for Network Dispatcher. Like all
* advisors, this custom advisor extends the function of the advisor base, called ADV_Base.
* It is the advisor base that actually performs most of the advisor's functions,
* such as reporting loads back to the Network Dispatcher for use in the
* Network Dispatcher's weight algorithm. The advisor base also performs socket connect
* and close operations and provides send and receive
* methods for use by the advisor. The advisor itself is used only for
* sending and receiving data to and from the port on the server being advised.
* The TCP methods within the advisor base
* are timed to calculate the load. A flag within the constructor in the ADV_base
* overwrites the existing load with the new load returned from the advisor if desired.
*
* Note: Based on a value set in the constructor, the advisor base supplies
* the load to the weight algorithm at specified intervals. If the actual
* advisor has not completed so that it can return a valid load, the advisor base uses
* the previous load.
*
* NAMING
*
* The naming convention is as follows:
*
* - The file must be located in the Network Dispatcher base directory.
* The defaults for the directory vary by operating system:
*
* - NT - \Program Files\nd\dispatcher
* - AIX - /usr/lpp/nd/dispatcher
* - Solaris - /opt/nd/dispatcher
* within the subdirectory of lib\CustomAdvisors.
*
* - The Advisor name must be preceded with "ADV_". The advisor can
* be started with only the name, however; for instance, the "ADV_port23"
* advisor can be started with "port23".
*
* - The advisor name must be in lowercase.
*
* With these rules in mind, therefore, this port23 is referred to as:
*
* <base directory>/lib/CustomAdvisors/ADV_port23.class.
*
*
* Advisors, as with the rest of Network Dispatcher, must be compiled with Java 1.1.5.
* To ensure access to Network Dispatcher classes, make sure that the ibmnd.jar
* file (located in the lib subdirectory of the base directory) is included in the system's
* CLASSPATH.
*
*

234 Workload Management: SP and Other RS/6000 Servers

* Methods provided by ADV_Base:
*
* - ADV_Base (Constructor):
*
* - Parms
* - String sName = Name of the advisor
* - String sVersion = Version of the advisor
* - int iDefaultPort = Default port number to advise on
* - int iInterval = Interval on which to advise on the servers
* - String sDefaultLogFileName = Unused. Must be passed in as "".
* - boolean replace = True - replace the load value being calculated by the advisor
* base False - add to the load value being calculated by the advisor base
* - Return
* - Constructors do not have return values.
package CustomAdvisors;
import java.io.*;
import java.net.*;
import com.ibm.internet.nd.advisors.*;
public class ADV_port23 extends ADV_Base implements ADV_MethodInterface
{
String COPYRIGHT = "(C) Copyright IBM Corporation 1997, All Rights Reserved.\n";

static final String ADV_NAME = "port23";
static final int ADV_DEF_ADV_ON_PORT = 23;
static final int ADV_DEF_INTERVAL = 7;
static final int ADV_DEF_CONTROLPORT = 8823;

// Note: Most server protocols require a carriage return ("\r") and line feed ("\n")
// at the end of messages. If so, include them in your string here.
static final String ADV_SEND_REQUEST =
"hello";

/**
* Constructor.
*
* Parms: None; but the constructor for ADV_Base has several parameters that must be
* passed to it.
*
*/
public ADV_port23()
{
super(ADV_NAME,

"2.0.0.0-03.27.98",
ADV_DEF_ADV_ON_PORT,
ADV_DEF_INTERVAL,
"", // not used
true);

super.setAdvisor(this);
}

Chapter 13. Managing online interactive workloads 235

/**
* ADV_AdvisorInitialize
*
* Any Advisor-specific initialization that must take place after the advisor
* base is started.
* This method is called only once and is typically not used.
*/
public void ADV_AdvisorInitialize()
{
return;

}
public int getLoad(int iConnectTime, ADV_Thread caller)
{

int iRc;
int iLoad = ADV_HOST_INACCESSIBLE; // -1
Socket SoServer = null;

// Send tcp request
iRc = caller.send(ADV_SEND_REQUEST);
if (iRc >= 0)
{

// Perform a receive
StringBuffer sbReceiveData = new StringBuffer("");
iRc = caller.receive(sbReceiveData);

if (iRc >= 0)
{

String Sserver = caller.getCurrentServer();
try
{
SoServer = new Socket(Sserver,ADV_DEF_CONTROLPORT);
PrintStream outbound = new PrintStream(

SoServer.getOutputStream());
DataInputStream inbound = new DataInputStream(

SoServer.getInputStream());
outbound.println("Hello");
outbound.flush();
String fromServer;
while ((fromServer = inbound.readLine()) != null)
iLoad = Integer.parseInt(fromServer.trim());
inbound.close();
}
catch(Exception e){
iLoad = 0;
}
try
{
SoServer.close();
}
catch(Exception e){}

}
}
return iLoad;

}

} // End - ADV_port23
236 Workload Management: SP and Other RS/6000 Servers

Test 1
To test how the telnet connections are routed to the nodes based on the load
information from the nodes, we created initial cpuloads on two nodes: sp4n11
and sp4n13. To do this, we ran a program under the user, telnet1, who is a
member of the user group telnet. We measured the cpuload created by this
user using the WLMLOAD23 script on the nodes. This script reported a load
factor of 12133 in sp4n13 and 12533 in sp4n11. We did not create any load
on sp4n09. We set the manager proportions as 20, 20, 60, and 0. That is, 20
percent each for active connections and new connections and 60 percent for
advisors. We obtained the following report from the dispatcher manager
function.

Now, we create 10 telnet sessions, and the connections are routed to the
nodes in the following way:

Table 16. With propotions setting 20, 20, 60, 0

As we see in Table 16, the least loaded node received the most connections.

Now, we change the manager proportions to 0, 0, 100, 0. This is done to
assign the maximum weight to advisor load information. Again, we create ten
telnet connections to the cluster, and the connections are routed as listed in
Table 17.

Table 17. With manager proportion 0, 0, 100, 0

Node name Number of connections

Sp4n13 3

sp4n11 2

sp4n09 5

Node name Number of connections

SP4n11 0

---|
192.168.4.100| WEIGHT | ACTIVE % 20 | NEW % 20 | PORT % 60 | SYSTEM % 0 |

| PORT: 23 | NOW | NEW | WT | CONNECT | WT | CONNECT | WT | LOAD | WT | LOAD |

192.168.4.13	7	7	15	0	8	1	5	12133	-9999	-1
192.168.4.11	7	7	15	0	8	1	5	12533	-9999	-1
192.168.14.9	13	13	0	12	12	1	19	0	-9999	Down

| PORT TOTALS: | 27 | 27 | | 12 | | 3 | | 24666 | | -1002 |

Chapter 13. Managing online interactive workloads 237

As we see from the above results, all the new connections were routed to a
node with the least of the cpu loads.

Test 2
In this test, we did not create any initial cpuload on the nodes, and we started
with no load on the nodes. The WLMLOAD23 script returned 0 for all the
nodes. We set the manager proportions to 0, 0, 100, and 0 setting maximum
weight to the advisor input. We initiated the telnet sessions to the cluster. The
first connection was routed to node sp4n13. We logged on as telnet1 user
and started a CPU-intensive job on this node. We waited for the cronjob
WLMLOAD23 script to calculate the cpuload for the tnintjobs class. The
WLMLOAD23 script returned a cpuload factor of 12533 to the advisor once
the cron job was completed. The advisor returned load 12533 for node 13 and
0 for sp4n11 and sp4n09. This started the second command to the cluster,
and, this time, the connection was routed to sp4n11. Again, we logged on to
the node as telnet1 user and started the CPU-intensive job on this node; we
waited for the cron job to complete, and the advisor-returned cpuload factor
for this node was 12133. Next, we issued the third telnet connection, and, this
time, the dispatcher routed this connection to sp4n09. We also logged on as
telnet1 user and issued the same CPU-intensive job on this node. After
waiting for the cronjob to complete, we got the following report from the
manager:

The cpuload returned for node 9 was 3333. While we used the same CPU-
intensive job in all the nodes, the load factor for node 9 was less compared to
nodes 11 and 13. This is because node 9 was a different type of node than
nodes 11 and 13. Node 9 was a four-CPU 332 Mhz node while nodes 11 and
13 were weaker 66 Mhz nodes. At this point in time, we see node 9 as the

SP4n13 0

SP4n09 10

Node name Number of connections

| 192.168.4.100| WEIGHT | ACTIVE % 0 | NEW % 0 | PORT % 100 | SYSTEM % 0 |

| PORT: 23 | NOW | NEW | WT | CONNECT | WT | CONNECT | WT | LOAD | WT | LOAD |

192.168.4.13	3	3	11	1	2	1	3	12133	-9999	-1
192.168.4.11	1	1	8	2	0	1	1	12533	-9999	-1
192.168.14.9	20	24	10	13	26	0	24	3333	-9999	Down

| PORT TOTALS: | 24 | 28 | | 16 | | 2 | | 27999 | | -1002 |

238 Workload Management: SP and Other RS/6000 Servers

least loaded node, and, so, as expected, all subsequent telnet connections
were routed to this node until the load on this node became nearly equal to
the load on the other two nodes.

13.3.4 Using multiple applications
The dispatcher software can be used to manage the load on SP if more than
one application is running on SP nodes. To load balance the multiple
applications in SP nodes, we can use both dispatcher and AIX workload
manager. While AIX workload manager can manage the resources of the
individual nodes, the dispatcher can route the TCP/IP connections for the
application to the nodes with the least load. To manage the load using custom
advisors, you need to write one custom advisor per port. You also need to
configure the WLM to allocate the resources for the applications in the nodes.
We tested such an environment using two applications: Telnet and HTTP.

To do this, we configured three nodes, sp4n09, sp4n11, and sp4n13, as Web
servers accessing the same Web document. This Web document was seen
by the three servers through an NFS file system. You can also configure a
GPFS in SP to perform this function. We defined the following limits in the
WLM configuration file in each node:

We have assigned 75 percent of the resources to telnet jobs and 25 percent
of the resources to the Web server. This is defined as tnintjobs and httpjobs

in the limits file of WLM session configuration directory. We wrote another
custom advisor similar to the custom advisor we wrote for the telnet session
with control port 8880. We created following script file using the WLM
command for gathering load information for http jobs. The script was called
WLMLOAD80. The number 80 signifies the port number for http.

cat limits
tnintjobs:

memory = 1%-75%
CPU = 1%-75%

httpjobs:
memory = 1%-25%
CPU = 1%-25%

System:
memory = 1%-100%
CPU = 1%-100%

cat WLMLOAD80
wlmstat -l httpjobs -c |grep httpjobs |awk '{ print $2/25*10000 }'
| cut -f 1 -d .
Chapter 13. Managing online interactive workloads 239

We added this job to the crontab as we did in the previous test to collect the
load information at regular intervals. We redirected the output of this script to
the /tmp/wlmload80.out file. This file will be the input file for the Java
application to send the load information to the advisor. Since we now have
two custom advisors for port 23 for telnet and port 80 for http, we need to start
two java applications on each node to read the data from the file and send to
the custom advisor; so, we issued the following commands on each node:

Java server 8823 /tmp/wlmload23.out
Java server 8880 /tmp/wlmload80.out

The two files, wlmload23.out and wlmload80.out, provide the load information,
and these files are updated at regular intervals by the cronjob. We also set
the dispatcher manager propotions to 0, 0, 100, and 0. In this setting, the
advisor load information will get the maximum weight while calculating the
load information.

In this configuration, we observed that the telnet connections were routed to
the nodes based on the load information for tnintjobs, and the http
connections were routed to the nodes based on the load information for
httpjobs. The load information for these two applications was obtained using
the WLM command wlmstat. Also, the node resources were allocated to these
jobs as defined in the limits file of the WLM configuration.

13.3.5 Remarks on using the custom advisors and WLM
When using custom advisors, the compiled code should be placed in the /usr/
lpp/nd/dispatcher/lib/Custom advisors directory. For every port that you want
to manage, you need to write one customer advisor code in Java Version 1.1
and change the port number, control port number, and the request string
specific to that port. You need not write any java code to run on the server, but
you need to execute the server code on each node. You have to run this
server code for every port in order to pass load information to the dispatcher.
You have to specify a one input file per port created by a WLM script. You also
need to write a shell script to calculate the workload information and place it
in a cronjob to execute at frequent intervals. When setting the proportions for
the manager to 0, 0, 100, 0, the workload is balanced entirely based on the
load information provided by the Custom Advisors. The dispatcher load
balancing algorithms are not used with these settings. As we mentioned
earlier, the dispatcher software recommend to set the new and active
connections proportions to, at least, 20,20. It is recommended to start with
the 20, 20, 60, 0 settings for the manager and gradually change these
proportions based on the load balancing pattern for your specific application
and system configurations. You can use WLM to allocate the resources within
a node.
240 Workload Management: SP and Other RS/6000 Servers

Appendix A. Special notices

This publication is intended to help IBM customers, Business Partners, IBM
System Engineers and other RS/6000 SP specialists who are involved in
workload management projects in SP. The information in this publication is
not intended as the specification of any programming interfaces that are
provided by product LoadLeveler Version 2 and Release 1 and AIX Version 4
Release 3 and modification 3 and Secureway Network Dispatcher Version 2
Release 1 . See the PUBLICATIONS section of the IBM Programming
Announcement for LoadLeveler Version 2 Release 1 and AIX Version 4
Release 3 and modification 3 and Secureway Network Dispatcher Version 2
Release 1 for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
© Copyright IBM Corp. 2000 241

assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other

AIX AS/400
eNetwork GPFS
Home Director IBM
LoadLeveler Netfinity
NetView PESSL
POE POWER 3
POWERparallel PowerPC
PSSP RS/6000
SecureWay SP
System/390 WebSphere
242 Workload Management: SP and Other RS/6000 Servers

countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix A. Special notices 243

244 Workload Management: SP and Other RS/6000 Servers

Appendix B. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 IBM Redbooks

For information on ordering these publications, see “How to get IBM
Redbooks” on page 247.

• GPFS: A Parallel File System, SG24-5165

• IBM HTTP Server Powered by Apache on RS/6000, SG24-5132

• IBM Websphere Performance Pack: Caching and Filtering with IBM Web
Traffic Express, SG24-5859

• Load Balancing for eNetwork Communications Servers, SG24-5305

• New and Improved : IBM WebSphere Performance Pack: Loadbalancing
with IBM Secureway Network Dispatcher, SG24-5858

• RS/6000 Performance Tools in Focus, SG24-4989

• RS/6000 Scalable POWERparallel System: Scientific and Technical
Computing Overview, SG24-4541

• RS/6000 SP Performance Tuning, SG24-5340

• Server Consolidation on RS/6000, SG24-5507

• Sizing and Tuning GPFS, SG24-5610

• The RS/6000 SP Inside Out, SG24-5374

B.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates, and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
© Copyright IBM Corp. 2000 245

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

B.3 Other resources

These publications are also relevant as further information sources:

• LoadLeveler for AIX: Using and Administering, SA22-7311

• Parallel Environment for AIX: Operation and Use Vol.1, SC28-1979

• PSSP: Administration Guide, SA22-7348

• SecureWay Network Dispatcher for AIX, Solaris, and Windows,
GC31-8496

The following publication is product documentation and must be purchased
with the software product:

• IBM LoadLeveler for AIX Version 2 Release 1, Installation Memo,
GI10-0642

B.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www.tc.cornell.edu

• http://www.mhpcc.edu

• http://www.ibm.com/software/network/dispatcher

• http://www.ibm.com/servers/aix/library

• http://www.ibm.com/servers/aix/library

Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694

CD-ROM Title Collection Kit
Number
246 Workload Management: SP and Other RS/6000 Servers

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 247

http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
248 Workload Management: SP and Other RS/6000 Servers

Glossary

ACL. Access Control List.

AFS. Andrew File System.

AIX. Advanced Interactive Executive.

API. Application Programming Interface.

ARP. Address Resolution Protocol.

BSD. Berkeley Software Distribution.

CBR. Context Base Routing.

CPU. Central Processing Unit.

CSS. Communication Subsystem.

CWS. Control Work Station.

DFS. Distributed File System.

DNS. Domain Name Server.

ESSL. Engineering and Scientific Subroutine
Library.

FIFO. First in first out.

FTP. File Transfer Protocol.

GPFS. General Parallel File System.

IBM. International Business Machines.

IP. Internet Protocol.

ISS. Interactive Session Support.

ITSO. International Technical Support
Organization.

LAN. Local Area Network.

LAPI. Low Level Application Programming
Interface.

LPP. Licensed Program Product.

MB. Megabytes.

MPI. Message Passing Interface.

MPL. Message Passing Library.

MPP. Massive Parallel Processors.

ND. Network Dispatcher.

NFS. Network File System.

PE. Parallel Environment.
© Copyright IBM Corp. 2000
PESSL. Parallel Engineering and Scientific
Subroutine Library.

POE. Parallel Operating Environment.

PSSP. Parallel System Support Program.

PTF. Problem Temporary Fix.

PVM. Parallel Virtual Machine.

SDR. System Data Repository.

SMIT. System Management Interface Tool.

SMP. Symmetrical Multiprocessing.

SP. RS/6000 SP.

TCP. Transmission Control Protocol.

WCOLL. Working Collection.

WLM. Work Load Manager.

WEBSM. Web-based System Manager.

WTE. Web Traffic Express.
249

250 Workload Management: SP and Other RS/6000 Servers

Index

Symbols
$HOME/.rhosts 25
/etc/filesystem 38
/etc/LoadL.cfg 24
/etc/security/limits 53
/etc/wlm 117
/etc/wlm/current 118
/etc/wlm/standard 117
/usr/HTTP/htdocs 218
/usr/lpp/LoadL/full/bin 188
/usr/lpp/LoadL/full/bin/xloadl 87
/usr/lpp/LoadL/full/samples 42
/usr/lpp/LoadL/so/bin/xloadl_so 87
/usr/lpp/nd/dispatcher/lib/Custom advisors 240
/usr/vac/bin/cc 180

A
accounting 98

llacctmrg 100
llsummary 101

accounting information 98
accounting report 97
ACCT 99
ACCT_VALIDATION 99
Adapter 16
adapter information from the SDR 65
adapter stanza 64

adapter_name 65
interface_address 65
interface_name 65
network_type 65
switch_node_number 65

administration 6
administration file 61, 136
administrators 4
advisor 210, 229
AIX Workload Manager 4, 10, 115
AIX workload manager 223
alias 64
allocate 115
allocation 3, 5, 9
alternate central manager 14, 15, 85
API 6
Application Programming Interfaces 13
applications 3
© Copyright IBM Corp. 2000
architects 4
architecture 5
assign 10

B
backfill 70
backfill algorithm 97
Backfill scheduler 154
backfill scheduler 158
balance 3
batch 121
batch jobs 5, 13, 135
batch jobs with dependency 135
batch jobs with no dependency 135
Berkeley 16
book 3, 4
build 13

C
C 93, 175
C++ 93
cancel 83
CBR 8
Central Manager 5, 6, 14, 38, 84
CENTRAL_MANAGER_HEARTBEAT_INTERVAL
85
CENTRAL_MANAGER_TIMEOUT 85
checkpoint 91, 189
checkpoint file size 92
checkpointing 187
CHKPT_DIR 92, 190
CHKPT_FILE 92, 190
CHKPT_STATE 92
chkrst_wrap.o. 188
ckpt subroutine 194
class 46
class stanza

class_comment 46
core_limit 54
cpu_limit 54
data_limit 54
exclude_groups 45
file_limit 54
include_groups 45
job_cpu_limit 54
master_node_requirement 70
251

nice 58
rss_limit 55
stack_limit 55
wall_clock_limit 55

class stanza for running parallel jobs 70
Client 111
Cluster 6, 13
cluster address 221
command 6, 25

apachectl 218
bffcreate 107
cc 177
chclass 129
dsh 27, 110, 126
installp 30
llacctmrg 100
llcancel 83, 146
llclass 142
llctl 25, 39, 43
llextSDR 65
llhold 81, 82, 184
llinit 30, 31
llprio 80, 146
llq 42, 76, 142, 143
llstatus 83, 141
llsubmit 42, 142, 178, 183
llsummary 93, 102
make 175
mkgroup 25
mknfsmnt 38
ndcontrol 108
ndkeys 108
ndserver 107
pcp 38
ps 107
spmkuser 26
supper 27
wlmcntrl 127, 230
wlmstat 202, 231
xloadl 71

common user name 20
Compile 178
Compiling 175
computing environment 6
configuration 4, 130
configure 4
control workstation 106, 217
CPU 62, 115
creating the job command file 89

crontab 126
custom advisors 223, 229
Custom Metric 62
Customize 19

D
default scheduler 155, 162
default_interactive_class 172
dependency 135, 150
dependency between job steps 148
dependency keyword 148
directory 18, 22
Disk 62
Dispatcher 7, 104
distribute 135
distributed 13
DNS 8, 223
documentation 19
dynamic 9
dynamic reconfiguration 214

E
EASY-LL 13, 97
eNetwork Dispatcher 6
Enterprise computing, 5
Ethernet 65
ethernet with IP mode 171
examples 3
executable 175
executing machine 16
Executing Node 5
export 28

F
File Collection 20, 36, 118, 220
File Collection Method

36
file_limit 92
Fortran 93
free space 23
front-end 7
FTP 7

G
GLOBAL_HISTORY 99
GPFS 220, 239
group id 26
252 Workload Management: SP and Other RS/6000 Servers

group name 19
group stanza

admin 45
exclude_users 45
include_users 45

GroupQueuedJobs 59
GroupRunningJobs 59
GroupSysprio 59
GroupTotalJobs 59
GUI to submit jobs 89

H
hard limit 55
heartbeat 14
highly available 7
how to 3
HTTP 7
http

//www.mhpcc.edu 97
//www.tc.cornell.edu 97

httpd.conf 217

I
IBM HTTP Server 215
IBM Secureway network dispatcher 223
information 3
installation 4, 13
installp 29
instructions 4
interactive 121
Interactive Network Dispatcher 6
Interactive POE 153
interactive POE 172
Interactive Session Support 7
interactive sessions, 5
interactive workload 223
Internet solutions 5
IP mode 169
ISS 8, 223

J
Java 105, 107, 224, 240
job 3, 5, 18
job command file 42, 71, 139, 143
job priority 57
Job states

Deferred 78

Idle 49, 50
idle state 49
Not Queued 150
Not Run 151
NotQueued 49, 51
NR 151
Pending 49
Remove Pending (RP) 192
Running 49, 50, 59
Staring 49
Starting 49

job step 143
Job Switch Resource Table 154
JOB_ACCT_Q_POLICY 99
JOB_LIMIT_POLICY 99

K
Kerberos 25, 30
kerberos ticket 31
keyword 22, 44

L
large SMP 11
libchkrst.a 188
libllapi.a 94
Limits 199
linking 177
llapi.h 94
llxlc 177
llxlc script 177
load average 16
load balancing 7, 10, 103, 209, 225
Load Leveler Application Programming Interface
93
LoadAvg 62
LOADL_INTERACTIVE_CLASS 70
LoadL_master 30
LoadL_starter 74
LoadLeveler 4, 5, 135, 197
LoadLeveler Directory Structure 22

execute directory 23
Home Directory 22
Local Directory 22
log directory 23
Release Directory 22
spool directory 23

LoadLeveler filesets 28
LoadLeveler GUI 87
253

LoadLeveler libraries for checkpoint 93
local configuration file 138, 164
log 32
Low-levelApplicationProgramming Interface(LAPI)
154

M
machine_mode

batch 68
general 68
interactive 68

MACHPRIO 62
make 96
Makefile 175, 179
manage 4, 71
manage your jobs 3
Manager 228
Manager and Advisors 226
managing 3, 5
MANPATH 32
master_node_exclusive 70
MasterMachPriority 63
MAUI scheduler 97
MAX_CKPT_INTERVAL 92, 188
maximum number of jobs 138
Memory 15, 62, 115
Message Passing Interface 153, 154, 197
MIN_CKPT_INTERVAL 92, 188
mount 38
multiple job steps 144
multiple parallel jobs 153
multiple scheduling nodes 146

N
negotiator 14, 17, 49
NEGOTIATOR_LOADAVG_INCREMENT 63
NEGOTIATOR_RECALCULATE_SYSPRIO_INTE
RVAL 60
Network Dispatcher 224
network of servers 103
NFS 24, 219
NFS Mount Method 37
NIS 212
nodes 5
not_shared 167

O
object module 177
optimize 3, 5
overview 5

P
parallel 5, 6
parallel build 175
Parallel Copy 36, 38
parallel environment 91
Parallel jobs 68
parallel jobs 5, 64, 153
Parallel Operating Environment 13, 74, 153
Parallel programming 3
PATH 32
performance 25
Performance monitoring 3
permission 32
planning the installation 18
pmdv2 76
pool 6
pool_list 68
pool_list keyword 172
PowerPC 226
preinstallation checks 19
priority 5, 15
products 4
proportions 210, 228, 237
PSSP 13, 207
PVM 55
pvm_root 68

Q
QDate 59
queue 141

R
redbook 4
reference 3
requirements 5
Resource limits

core 53
cpu 53
data 53
fsize 53
rss 53
stack 53
254 Workload Management: SP and Other RS/6000 Servers

Resource Manager 69, 153
resources 3, 5, 14, 115
restart 189
role of various nodes 19
roles of machines 14
round robin 226
route 105
RS/6000 4
Rule based 208
Rules 115, 200

S
S80 11
sample scenarios 4
scalability 103
scenario 4, 115
schedd 16, 17
SCHEDD_RUNS_HERE 36
schedule 14
scheduler 11
SCHEDULER_TYPE 155
scheduling machine 16
Scheduling Node 5, 6
SDR 65
Secureway Network Dispatcher 4, 6, 207
serial 5, 6
serial jobs 135
Server Consolidation 5, 10, 103
server consolidation 207
sessions 103
Shares 199
single job step 144
Single point of control 9
single point of failure 85
SMP node 11
soft limit 55
source programs 175
SP environment 4
SP switch 110, 164
SP User Management 20
spacs_cntrl 207, 212
Speed 62
spool 32
standalone RS/6000 4
stanza 34

adapter stanza 64, 154
class stanza 45, 136
machine stanza 34, 154

user stanza 45, 50
startd 15, 18
STARTD_RUNS_HERE 36
starter 16
statement 35
stopping the LoadLeveler 43
submit 13
submit a sample job 42
Submit Only Node 5
Submit-only 16
submit-only component 30
Submit-only machines 17
switch adapter 75
Switch router 112
switch with IP mode 167
SYSPRIO 59, 157
system initiated 187, 195
System Initiated checkpoint 92

T
tasks 3
TCPIP 103
tcpip port 225
telnet 7, 109, 237
third party 4
tier 116
timeout 85
tools 3, 4, 5
tuning 3
tutorial. 4

U
user id 26
user initiated 187
User Initiated checkpoint 91
User Space 153, 164
user space mode 154, 165
user space tasks 13
user stanza

default_class 44
default_group 45
default_interactive_class 70
max_node 69
max_processors 69
maxidle 50
maxjobs 50
maxqueued 50
priority 58
255

total_tasks 70
user submitting the job 17
user_initiated 195
user_priority 60
UserPrio 59
UserQueuedJobs 59
UserRunningJobs 59
UserSysprio 59
UserTotalJobs 60
utilization 3

V
vendors 4
Virtual Memory 62
virtual memory manager 11
virtual server 7

W
wall_clock_limit 70, 156
wall_clock_time 91, 141
WCOLL environment variable 28
WEB 7
web server 5, 215
Websphere performance pack 7, 103
WLM 10, 115, 197, 224
work 4
working collective members 27
workload 4, 5, 6, 13, 182
Workload management 3, 4
workload management 4, 5
workstations 6, 208

X
X_RUNS_HERE 36
256 Workload Management: SP and Other RS/6000 Servers

© Copyright IBM Corp. 2000 257

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5522-00
Workload Management: SP and Other RS/6000 Servers

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
http://www.ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/

Printed in the U.S.A.

SG24-5522-00

W
orkload

M
anagem

ent:
SP

and
O

ther
R

S
/6000

Servers
S

G
24-5522-00

®

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction
	1.1 The goal of this book
	1.2 The scope of this book
	1.3 The organization of this book

	Chapter 2. Overview of workload management tools
	2.1 LoadLeveler
	2.1.1 LoadLeveler goal
	2.1.2 LoadLeveler architecture
	2.1.3 LoadLeveler features
	2.1.4 When to use LoadLeveler

	2.2 Secureway Network Dispatcher
	2.2.1 Secureway Network Dispatcher goals
	2.2.2 Network Dispatcher architecture
	2.2.3 Network Dispatcher main features
	2.2.4 When to use Secureway Network Dispatcher

	2.3 AIX Workload Manager
	2.3.1 The goal of AIX Workload Manager
	2.3.2 AIX Workload Manager architecture
	2.3.3 AIX Workload Manager features
	2.3.4 When to use AIX Workload Manager

	Chapter 3. LoadLeveler
	3.1 LoadLeveler and RS/6000 SP overview
	3.2 Architecture
	3.2.1 Central Manager machine
	3.2.2 Executing machine
	3.2.3 Scheduling machine
	3.2.4 Submit-only machine
	3.2.5 How LoadLeveler processes a job

	3.3 Installation and configuration
	3.3.1 Requirements
	3.3.2 Planning to configure LoadLeveler in an SP environment
	3.3.3 Installation and configuration process
	3.3.4 Basic configuration
	3.3.5 Starting LoadLeveler
	3.3.6 Stopping LoadLeveler

	3.4 Managing LoadLeveler configuration
	3.4.1 User, group, and class
	3.4.2 Maximum job requests from users
	3.4.3 Resource limits
	3.4.4 Job priority
	3.4.5 Machine priority
	3.4.6 Parallel job

	3.5 Using and managing LoadLeveler
	3.5.1 Submitting a job
	3.5.2 Verifying job status
	3.5.3 Changing a job’s priority
	3.5.4 Holding/releasing a job
	3.5.5 Cancelling a job
	3.5.6 Verifying the node’s status
	3.5.7 Central manager and alternate central manager
	3.5.8 Using the LoadLeveler GUI

	3.6 Checkpointing
	3.7 LoadLeveler APIs
	3.8 LoadLeveler accounting
	3.8.1 Configure LoadLeveler accounting
	3.8.2 Collect accounting data
	3.8.3 Generate accounting report

	Chapter 4. Secureway Network Dispatcher
	4.1 Network Dispatcher and RS/6000 SP overview
	4.2 Architecture
	4.3 Installation and configuration
	4.3.1 Packaging and requirements
	4.3.2 Planning to configure Network Dispatcher in SP
	4.3.3 The installation and configuration process
	4.3.4 Configuring SP nodes to NDCLUSTER
	4.3.5 Remarks about this configuration

	4.4 Alternative configuration using the SP switch
	4.5 Alternative configuration without SP switch
	4.6 Related publications on Secureway Network Dispatcher

	Chapter 5. AIX Workload Manager
	5.1 AIX Workload Manager and RS/6000 SP overview
	5.2 AIX WorkLoad Manager architecture
	5.3 Installation and configuration
	5.3.1 Packaging and requirements
	5.3.2 Planning to configure WLM in SP nodes
	5.3.3 Installation and the configuration process
	5.3.4 Basic Configuration
	5.3.5 Creating a WLM configuration file collection

	5.4 Managing the WLM configuration in SP
	5.4.1 Definition of user ID and groups
	5.4.2 Defining classes
	5.4.3 Updating WLM configuration to nodes
	5.4.4 Starting WLM
	5.4.5 Verifying the WLM
	5.4.6 Changing classes properties in a configuration
	5.4.7 Changing priorities of the currently used classes
	5.4.8 Stopping WLM

	5.5 Other publications related to AIX Workload Manager

	Chapter 6. Managing serial batch jobs
	6.1 Scenario description
	6.2 Tool choice
	6.3 Considerations for the executing environment
	6.4 Executing batch jobs that have no dependency on each other
	6.4.1 The administration file
	6.4.2 The configuration file
	6.4.3 Job and the job command file
	6.4.4 Submitting jobs to the LoadLeveler
	6.4.5 Submitting a small job command file

	6.5 Executing batch jobs with dependency on each other

	Chapter 7. Managing parallel jobs
	7.1 Scenario description
	7.2 Tools choice
	7.3 Environment for processing parallel jobs
	7.4 Executing multiple size parallel jobs
	7.4.1 With the Backfill scheduler (Case 1)
	7.4.2 With the Backfill scheduler (Case 2)
	7.4.3 With the default scheduler

	7.5 Executing multiple parallel jobs specifying network types
	7.5.1 User space shared mode
	7.5.2 Non-shared user space mode
	7.5.3 IP mode over a switch in shared mode
	7.5.4 Using ethernet with IP in shared mode
	7.5.5 Using ethernet with IP not-shared mode

	7.6 Interactive POE

	Chapter 8. Managing application build
	8.1 Scenario description
	8.2 Tool choice
	8.3 Configuring the build environment
	8.3.1 LoadLeveler administration file
	8.3.2 LoadLeveler local configuration file
	8.3.3 Creating an executable
	8.3.4 Submitting a compilation job to the LoadLeveler
	8.3.5 Submitting the Build Job to the LoadLeveler

	Chapter 9. Managing workload using checkpointing
	9.1 Scenario description
	9.2 Tools choice
	9.3 Testing environment
	9.4 System-initiated serial job checkpointing
	9.4.1 Configuring the LoadL_config file for checkpointing
	9.4.2 Writing a sample C program for testing Checkpoint
	9.4.3 Creating a job command file with checkpoint enabled
	9.4.4 Testing the system-initiated serial checkpoint

	9.5 User-initiated serial job checkpointing
	9.6 System- and user-initiated checkpointing

	Chapter 10. Workload Management using LoadLeveler and WLM
	10.1 Scenario description
	10.2 Tool choice
	10.3 Testing environment
	10.4 LoadLeveler configuration
	10.5 WorkLoad manager configuration
	10.6 Serial and parallel jobs for testing
	10.7 Testing the scenario

	Chapter 11. Managing users
	11.1 Scenario description
	11.2 Tool choice
	11.3 Environment configuration
	11.3.1 Hardware platform
	11.3.2 Dispatcher configuration
	11.3.3 Configuration of users, groups, and applications

	11.4 Results
	11.5 Closing comments

	Chapter 12. Workload management for Web server
	12.1 Scenario description
	12.2 Tools choice
	12.3 Configuring the test environment configuration
	12.3.1 Hardware and network configuration

	12.4 Installation and configuration of IBM HTTP server
	12.4.1 Basic configuration
	12.4.2 Creating a common documentation directory
	12.4.3 Configuring the dispatcher

	Chapter 13. Managing online interactive workloads
	13.1 Scenario description
	13.2 Tools choice
	13.3 Configuring the test environment
	13.3.1 Hardware and network configuration
	13.3.2 Network dispatcher configuration
	13.3.3 Managing the user Telnet sessions
	13.3.4 Using multiple applications
	13.3.5 Remarks on using the custom advisors and WLM

	Appendix A. Special notices
	Appendix B. Related publications
	B.1 IBM Redbooks
	B.2 IBM Redbooks collections
	B.3 Other resources
	B.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Index
	IBM Redbooks review

