
SG24-5327-00

International Technical Support Organization

http://www.redbooks.ibm.com

HACMP Enhanced Scalability:
User-Defined Events
Yoshimichi Kosuge, John Easton

HACMP Enhanced Scalability:
User-Defined Events

November 1998

SG24-5327-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (November 1998)

This edition applies to Version 4.2.1 and later of High Availability Cluster Multiprocessing Enhanced
Scalability (HACMP ES) and Version 2.3 and later of Parallel System Support Programs (PSSP) for use
with the AIX Operating System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 185.

Take Note!

Contents

Figures .ix

Tables. .xi

Preface . xiii
The Team That Wrote This Redbook . xiv
Comments Welcome . xv

Part 1. Automated Operations of an HA Cluster . 1

Chapter 1. High Availability (HA) Clusters in the Real World 3
1.1 System Downtime . 3
1.2 High Availability vs. Concurrent Operations . 4

1.2.1 The High Availability Capabilities . 5
1.2.2 The Concurrent Operations Capabilities . 6

1.3 Systems Management Disciplines . 7
1.4 RS/6000 Cluster Technology (RSCT) . 10

1.4.1 Event Management. 10
1.4.2 Group Services. 11

1.5 HACMP and RS/6000 Cluster Technology (RSCT) 12

Chapter 2. Events and Actions . 15
2.1 What is an Event? . 15
2.2 Event Monitoring . 16

2.2.1 Sampling Frequency. 16
2.2.2 Types of Monitoring . 17
2.2.3 Critical Resources . 19

2.3 Event Monitoring Example . 20
2.4 Classes of Actions . 23

2.4.1 Class I Action . 23
2.4.2 Class II Action . 23
2.4.3 Class III Action . 25
2.4.4 Class IV Action . 26

Chapter 3. Defining and Configuring Event/Action Pairs 29
3.1 Determining the Monitoring Mechanism . 29

3.1.1 How Can the Event Be Detected? . 29
3.1.2 Where Does the Recovery Action Need to Run?. 35

3.2 Choosing Event or Action Mechanisms . 41
© Copyright IBM Corp. 1998 iii

Part 2. Tools and Utilities . 45

Chapter 4. The AIX Error Log and Error Notification 47
4.1 The Error Logging Process and Error Notification. 47
4.2 Logging Errors to the Error Log . 51

4.2.1 Logging Errors from a Shell Script . 51
4.2.2 Redirecting syslog Messages to the AIX Error Log 53
4.2.3 Generating syslog Messages from a Shell Script 55
4.2.4 Writing to the AIX Error Log from an Application 55

4.3 Implementing Error Notification in the Real World 58
4.3.1 Implications of Error Logging on System Performance 58
4.3.2 Which Events Should Have Error Notification Objects? 61
4.3.3 Identifying the Correct Error Templates 62
4.3.4 Error Notification Methods . 64

4.4 Testing Error Notification Objects . 66
4.5 Error Logging and Event Management . 68

4.5.1 Informing Event Management That an Error Has Been Logged . 68
4.5.2 Logging Events Detected to the AIX Error Log 71

Chapter 5. Event Management and Perspectives 73
5.1 A Brief Overview of the Event Management Subsystem 73
5.2 Event Management Using the Perspectives GUI 75
5.3 Event Notification Using Perspectives . 77

5.3.1 Creating a Perspectives Object for Event Notification 77
5.3.2 Monitoring for Event Notifications Using Perspectives 79

5.4 Triggering Actions from Events Using Perspectives 81
5.4.1 Creating a Perspectives Object to React to an Event 82

5.5 Creating a New Condition. 85
5.6 Using the Event Perspective for Notification and Recovery 87

5.6.1 Event Monitor or Event Configuration Tool 88
5.6.2 Using the Event Perspective as an Event Monitor. 88
5.6.3 Using the Event Perspective as an Event Configuration Tool . . . 89
5.6.4 Invoking a Recovery Action from an AIX Error Log Entry 90
5.6.5 Invoking a Recovery Action from a Shell Script. 92

Chapter 6. HACMP Recovery Programs . 95
6.1 HACMP and Events . 95
6.2 The /usr/sbin/cluster/events/rules.hacmprd File 96

6.2.1 Predefined Events . 96
6.2.2 User-Defined Events . 97
6.2.3 Event Handling by HACMP . 98

6.3 Recovery Programs . 98
6.3.1 Recovery Command Specifications . 98
iv HACMP Enhanced Scalability: User-Defined Events

6.3.2 Barriers . 99
6.3.3 Passing Information to Recovery Commands 100

6.4 Adding User Events to a HACMP Configuration 101
6.4.1 User Events That Have a Specific Resource Monitor 101
6.4.2 User Events That Do Not Have a Specific Resource Monitor . . 101

Chapter 7. Other Event Utilities and Functions 105
7.1 The Role of CSPOC in Multisystem Event Recovery 105

7.1.1 Remote Execution Using the CSPOC Execution Language . . . 106
7.1.2 CSPOC Multinode and Single Node "Recovery Programs" 107
7.1.3 Considerations for Using CSPOC . 108
7.1.4 CSPOC Summary. 110

7.2 The SP Problem Management Subsystem (pman) 111
7.2.1 Basic pman Operations . 111
7.2.2 HACMP and pman Interactions. 113

7.3 Using IBM.PSSP.pm.User_State Resource Variables 114
7.3.1 Creating Script-Based Resource Monitors 115

Part 3. How Do You Monitor This?. 121

Chapter 8. Common Monitoring Tasks . 123
8.1 Monitoring Processes . 123

8.1.1 Recovery Actions for Process Death Events 125
8.1.2 Rearm Considerations for Process Death Events 127

8.2 File System Space . 128
8.2.1 Recovery Actions for File System Full Events 129
8.2.2 Rearm Considerations for File System Space Events 133

8.3 Error Log Entries . 133
8.3.1 Recovery Actions for Error Log Entry Events 135
8.3.2 Rearm Considerations for Error Log Entry Events 135

Chapter 9. Common Recovery Actions . 137
9.1 Freeing Up File System Space . 137
9.2 Killing Processes . 140

Chapter 10. The Top Ten Events and Actions 143
10.1 Introduction . 143
10.2 File System Full Events . 144

10.2.1 The root (/) File System Filling Up . 144
10.2.2 The /var File System Filling Up . 145
10.2.3 The /tmp File System Filling Up . 147

10.3 Process Death Events . 148
10.3.1 Failure of Domain Nameserver (named) Process 148
 v

10.3.2 Failure of Portmapper Process . 149
10.4 Virtual Memory Events . 151

10.4.1 Running Out of Paging Space. 151
10.5 Performance Events . 153

10.5.1 Excessive Paging Activity . 153
10.5.2 Memory Leakage in an Application . 155

10.6 Time Events . 156
10.6.1 System Clock Wandering . 156

10.7 Hardware Failures . 158
10.7.1 Failure of the scsi0 Adapter . 158

Chapter 11. Sample Events and Actions . 161
11.1 Components, Events and Possible Responses 161

11.1.1 Accounting . 161
11.1.2 AFS Client . 162
11.1.3 AFS Server . 163
11.1.4 Auditing . 163
11.1.5 BNU/UUCP. 164
11.1.6 cron Daemon . 164
11.1.7 DCE/DFS Clients and Servers . 165
11.1.8 DHCP Client . 166
11.1.9 DHCP Server . 166
11.1.10 Domain Name Server . 167
11.1.11 iFOR/LS . 167
11.1.12 Mail . 167
11.1.13 NCS . 168
11.1.14 NFS Client . 168
11.1.15 NFS Server. 169
11.1.16 NIM Server . 169
11.1.17 NIS Client . 170
11.1.18 NIS Server (master or slave) . 170
11.1.19 Portmapper. 170
11.1.20 Printing . 171
11.1.21 Secure NFS - see NIS . 172
11.1.22 syslog daemon . 172
11.1.23 TCP/IP . 172
11.1.24 TIME Client (timed). 172
11.1.25 TIME Server (master) (NTP) . 173
11.1.26 TIME Server (master or submaster) (timed) 173
11.1.27 writesrv. 173
11.1.28 XStation Server . 173
vi HACMP Enhanced Scalability: User-Defined Events

Appendix A. scdsk_mon . 175
A.1 cfgodm.c . 175
A.2 cfgodm.h . 178
A.3 scdsk_mon.c . 181

Appendix B. Special Notices . 185

Appendix C. Related Publications. 187
C.1 International Technical Support Organization Publications 187
C.2 Redbooks on CD-ROMs . 187
C.3 Other Publications . 187

How to Get ITSO Redbooks . 189
How IBM Employees Can Get ITSO Redbooks . 189
How Customers Can Get ITSO Redbooks. 190
IBM Redbook Order Form . 191

Glossary . 193

List of Abbreviations. 195

Index . 197

ITSO Redbook Evaluation . 203
 vii

viii HACMP Enhanced Scalability: User-Defined Events

Figures

1. Simple Two-Node Cluster Configuration . 21
2. Relationship between Event Detection Mechanisms 30
3. AIX Error Log Event Detection Mechanism . 31
4. Decision Tree to Create Error Notification . 33
5. Resource Monitor Event Detection Mechanism. 34
6. Recovery Action Decision Tree . 36
7. Cluster Environment Sample . 39
8. Cluster Environment Sample Recovery Action . 40
9. Decision Tree to Select Event Detection Mechanism 44
10. Example of a Two-Node Cluster . 61
11. Event Management Subsystem. 74
12. SP Perspectives Launch Pad . 75
13. Event Perspective . 76
14. Create Event Definition . 78
15. Event Icons . 79
16. View Event Notification Log . 80
17. View Event Notification . 81
18. Response Options . 83
19. Create Condition . 86
© Copyright IBM Corp. 1998 ix

x HACMP Enhanced Scalability: User-Defined Events

Tables

1. Using Defined or Known AIX Error Labels. 41
2. Using Resource Monitor . 42
3. Using Shell Script or Programs . 42
4. Using syslog. 43
5. SBS for IBM.PSSP.Prog.pcount and IBM.PSSP.Prog.xpcount 124
6. SBS for IBM.PSSP.pm.errlog . 134
7. DCE/DFS Sites and Processes . 165
© Copyright IBM Corp. 1998 xi

xii HACMP Enhanced Scalability: User-Defined Events

Preface

This redbook describes the various methods in which High Availability Cluster
Multi-Processing for AIX (HACMP for AIX) clusters can be extended to handle
problem conditions other than those handled by the base product. The
majority of these methods are enabled through the use of RS/6000 Cluster
Technology (RSCT). System implementors and system administrators should
use this book as a guide to defining, configuring, and maintaining user events
within their system using AIX and IBM Parallel System Support Programs for
AIX (PSSP) facilities and the IBM High Availability Cluster Multi-Processing
for AIX Enhanced Scalability (HACMP/ES) product.

The redbook is of value to system administrators and system implementors
who wish to understand and utilize RSCT in a HACMP/ES environment. Many
practical examples are presented as implementations of the techniques
described.

An introduction is given to the automatic operation of a HACMP for AIX
cluster. The benefits of automated operations are looked at, and an
introduction to the key concepts are described in detail.

The concept of an event and the issues involved with event monitoring are
discussed, and the different actions that may be taken when an event occurs
are described. In addition, the book assists in determining the best
methodology for monitoring a given resource.

The AIX error logging mechanism is described along with the various
methods of writing error log entries and how error notification may be used to
trigger user events. This is illustrated with a series of examples and
operational scenarios.

The Event Management subsystem and SP Perspectives are also discussed.
The Event Management capabilities of Perspectives are examined, and the
book describes how to configure the system by using the GUI to define
important user events. User-defined events are the actions that should be
triggered when the event occurs.

Furthermore, the integrated user event functions of the HACMP/ES product
are introduced, and the configuration of the rules.hacmprd file and recovery
programs are discussed.

Other utilities and functions that are useful within clustered environments for
either detecting the occurrence of events or running recovery actions are
discussed, and the book shows how Event Management can be used to
© Copyright IBM Corp. 1998 xiii

perform common monitoring tasks. As each task is introduced, the resource
variables that are used for monitoring are explained and examples of their
use are given.

Common actions that may be taken when an event occurs are provided, and
guidance is given for using these actions.

Finally, the redbook describes some of the system components that may run
on an AIX system and provides examples of the events that should be
monitored for and sample recovery actions, should these events occur.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working with the International Technical Support Organization, Poughkeepsie
Center.

Yoshimichi Kosuge is an IBM RS/6000 SP project leader at the International
Technical Support Organization, Poughkeepsie Center. He joined IBM Japan
in 1982 and has worked in the following areas: LSI design, S/390 CP
microcode, VM, MVS, OS/2, and AIX. Since joining the ITSO in 1998, he has
been involved in writing redbooks and teaching IBM classes worldwide on all
areas of RS/6000 SP.

John Easton has worked for IBM for 12 years in a variety of UNIX technical
roles. He worked in Austin during the development of the RISC System/6000
and AIX Version 3 and holds several computer security patents. Since 1991,
he has focussed on high availability and clustered systems and is currently
Technical Consultant for the IBM High Availability Cluster Competency
Centre, based in the UK. He has developed parts of the IBM HACMP for AIX
product and is part of the team responsible for shaping IBM clustering and
high availability strategies and directions.

Thanks to the following people for their invaluable contributions to this
project:

Mike Coffey
Simon Marchese
Chris Owen
Mike Schmidt
Dave Spurway
Tom Weaver
xiv HACMP Enhanced Scalability: User-Defined Events

Comments Welcome

Your comments are important to us

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 203
to the fax number shown on the form.

 • Use the electronic evaluation form found on the redbook Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
 xv

xvi HACMP Enhanced Scalability: User-Defined Events

Part 1. Automated Operations of an HA Cluster
© Copyright IBM Corp. 1998 1

2 HACMP Enhanced Scalability: User-Defined Events

Chapter 1. High Availability (HA) Clusters in the Real World

This chapter provides an introduction to the automatic operation of a HACMP
for AIX cluster. It looks at the benefits of automated operations and
introduces the key concepts that are described in detail in the subsequent
chapters.

1.1 System Downtime

Modern businesses rely upon the availability of their computer systems. It is
becoming increasingly common that if the computer systems that run the
business fail, then a company can only function properly for a short period of
time, if at all. As a result, there is a great effort made to keep the systems
available. The key to doing this is to reduce system downtime.

System downtime can be either planned or unplanned. Planned downtime is
the time that a system is down for applying maintenance updates, taking
backups, and so on. In most environments, planned downtime accounts for
over 90% of the time a computer is unavailable.

Unplanned downtime is the time that a system is down because something
unexpected has happened or because a component has failed; it accounts for
the remaining downtime.

Whether planned or unplanned, the four most likely causes of system
downtime, according to many industry surveys, are:

 • Software failures
 • Systems management activity
 • Operator errors
 • Hardware failures

A similar list created ten years ago would probably have placed hardware
failures at the top of the list (or at least it certainly would be higher than its
fourth place position today). This is because significant effort has been
expended on the design and manufacture of modern hardware components,
which makes them much more reliable than earlier versions. This trend looks
like it will continue for the foreseeable future.

Software, on the other hand, has become much more complex. People now
are trying to address more complex problems because the performance of
the underlying hardware has improved to the point whereby it becomes
feasible to attempt to address these problems. In addition, modern software
© Copyright IBM Corp. 1998 3

engineering techniques tend to produce software with much more function
than was traditionally supplied.

The increasing use of code generators and 4GL environments also increases
the volumes of code generated, and while they may significantly reduce the
time taken to create new software functions, the level of redundant or unused
code is very high. This adds dramatically to the complexity of the software
and increases the likelihood of failure.

Just as the complexity and functionality of the application software has
increased significantly, the complexity of the operating systems and other
system software has also increased. Partly this is due to the increasing
complexity and novel designs now being utilized in the hardware, but mostly it
is due to operating systems having to provide more and more integrated
functions.

A few years ago, communications or utility software would have been an
additional cost add-on to the operating system. It is now included in the
package. Whereas previously a system administrator required significant skill
in the systems hardware, software now accounts for the vast majority of
training that system administrators and operators require in order to carry out
their jobs.

As systems become more complex, the time and skills needed to manage
them also increase. Firstly, as the operating system and applications acquire
more functionality, there are more tasks that need to be performed to keep
them running. This takes up additional time that previously was not required
because the functions did not exist. Secondly, as the complexity increases,
there is more need for training in the new functionality or potentially. You
could say there was more chance of making a mistake.

Software failures will continue to be the major cause of system downtime
because of this increasing complexity. Allied with this will be an increasing
amount of time required to perform systems management tasks. In an already
crowded day, this increased pressure will ensure that mistakes and errors will
continue to be made.

1.2 High Availability vs. Concurrent Operations

The HACMP software allows you to build a highly available environment that
ensures that the critical applications at your site are available to your end
users. However, high availability is only part of the equation that needs to be
solved. Continuous availability is the goal towards which the majority of end
users would like to see their systems move. Continuous availability is the
4 HACMP Enhanced Scalability: User-Defined Events

combination of the two components of continuous operations and high
availability. Continuous operations provides freedom from planned downtime:
the time taken to perform systems administration and operational tasks. High
availability, on the other hand, can be regarded as providing freedom from
unplanned downtime, such as hardware failures.

At the start, it is worthwhile setting some expectations about what a HACMP
system can and cannot do. While much of this is limited only by the skills of
the implementer, it is important to understand what a HACMP cluster actually
provides in terms of addressing the high availability and continuous
operations aspects of a continuous availability system.

1.2.1 The High Availability Capabilities
1. If the HACMP software is merely installed on a system, it will not provide

any high availability functions. These are only available after customizing.

2. If the TCP/IP and LVM prerequisite steps have been performed as
documented in the HACMP Installation Guide Chapters 4 through 7, and if
the HACMP SMIT panels have been completed correctly (see Chapter 11
and 12 of the HACMP Installation Guide), and if no extra shell scripts or
programs are added to the system, the cluster can provide protection
against:

 • TCP/IP LAN network interface/adapter failure

HACMP performs this by reconfiguring the IP address (and in certain
configurations a hardware address to a standby network adapter).

 • Server node (CPU) failure

HACMP performs this by reconfiguring another cluster node to take
over any shared disks and the IP address (and in certain
configurations, a hardware address of the failed node).

 • TCP/IP failure

This is the sole partial AIX failure that HACMP can protect against.
Should TCP/IP fail, keepalive traffic across an RS232 line or a SCSI
target mode heartbeat (if implemented) will prevent either processor
from trying to assume control of the other's resources.

3. After performing step 2, and adding some additional code (for example,
application server start and stop scripts), the cluster can, in addition to the
failures documented, provide for restart of an application following a
server node failure. It may also be able to provide protection against:

 • TCP/IP LAN network failure
High Availability (HA) Clusters in the Real World 5

HACMP performs this by moving a service onto a secondary network
should the primary network fail. This is only possible if you have two
physical networks with network adapters on each.

Beyond these basic functions, the software provides little availability
functionality. Other functions are certainly possible with a HACMP cluster, but
some of them may require some significant effort to achieve. Almost any
function is possible, depending upon the skill of the implementer.

Note that the following failures are not handled by the HACMP software:

 • Disk and/or disk adapter failures

Handling these failures is a function of the AIX Logical Volume Manager,
or of a device such as a RAID disk array to implement mirroring or another
data protection model.

 • Failures of other devices

Handling these failures is a function that is left to the implementer of the
cluster to provide by using AIX facilities such as error notification, and so
on.

 • Application failures

Handling these failures is a function that is left to the implementer of the
cluster to provide.

1.2.2 The Concurrent Operations Capabilities
When an HACMP cluster has been correctly implemented, it can also provide
certain concurrent operations capabilities, in addition to the previously
mentioned high availability functions. The AIX operating system provides
many facilities, such as the Logical Volume Manager and its dynamically
pageable kernel that allow potential downtime to be avoided. HACMP allows
you to continue providing a service to the end users of the system while a
cluster node is taken down for maintenance (such as the application of fixes
to the system, the upgrading of software and hardware, and so on). This
eliminates a portion of the time that a system will be down for planned
maintenance.

In effect, this ability is provided through a controlled failure. In a controlled
failure, a node is taken down, the workload is automatically moved to a
surviving node, and users continue working. When the maintenance process
completes, the node may be reintegrated into the cluster and the workload
restored to its original location. This process may then be repeated on the
other cluster nodes in turn.
6 HACMP Enhanced Scalability: User-Defined Events

It is important to differentiate between the service provided by a node, which
during maintenance activities may be provided by another cluster node, and
that provided by the cluster as a whole. Using HACMP, all of the highly
available services provided by the individual nodes may be provided to the
end users during a maintenance period.

HACMP provides a basic mechanism that allows a cluster to provide a certain
amount of continuous availability function. Given a suitable configuration, the
high availability functions can give complete freedom from some, but not all,
unplanned outages. Likewise, the concurrent operations facilities give some
freedom from planned outages.

If the facilities provided by the AIX operating system itself are taken into
account, both of these areas are covered to a greater extent, but there are
still a number of other areas that need to be addressed. Before we address
these, however, it is worth putting this into perspective by considering just
what tasks need to be performed to run a computer system successfully.

1.3 Systems Management Disciplines

The management of a computer system falls into six main disciplines. These
disciplines are:

 • Business Management

These are functions that support the business and its administration.

 • Change Management

These are functions that manage and control changes within the computer
system.

 • Configuration Management

These are functions that allow for the planning, maintenance, and
development of the resources that make up the computer system.

 • Operations Management

These are functions to support the computer system.

 • Performance Management

These are functions to measure and address the effectiveness of the
system in meeting the business needs it was designed to address.

 • Problem Management

These are functions to manage the process from detection to resolution of
problems with the system.
High Availability (HA) Clusters in the Real World 7

The six disciplines may be subdivided into sets of tasks or processes. The
absolute definitions of these, and indeed the assignment of a given task to a
given discipline, is very much dependent upon the model within which you are
working. However, a non-exhaustive breakdown might look something like
this:

 • Business Management

Inventory Control
Financial Services
Budget Planning
Service Agreement
Project Management
Security Management
Business Strategy Planning
Services Marketing
Architecture Definition
Management System Definition
Organization Planning and Control
Staff Performance
Education and Training

 • Change Management

Change Entry
Assess and Approve
Plan
Schedule
Distribute
Synchronize
Install
Activate
Test

 • Configuration Management

Configuration Design
Environmental Planning
Configuration Creation
Updating Configuration Information
Accessing Configuration Information

 • Operations Management

Workload Planning
Operations Planning
Workload Control
Operations Control
8 HACMP Enhanced Scalability: User-Defined Events

 • Performance Management

Capacity Planning
Performance Policy
Performance Control
Performance Execution and Measurement

 • Problem Management

Problem Policy Planning and Definition
Problem Process Planning and Tracking
Problem Correlation and Determination
Problem Analysis and Diagnosis
Problem Bypass and Recovery
Problem Assignment
Problem Fix Determination
Problem Escalation
Problem Resolution and Verification

If we are completely parochial, from a continuous availability perspective,
almost all of these key tasks have some bearing on the availability of the
system. The first step in increasing the availability of a system is to provide or
perform systems management for it. But, as computer systems get larger and
more complex, they become correspondingly harder to manage. The
clustering of systems, rather than making this easier, actually increases this
difficulty. Ten independent systems that are networked together are
significantly easier to manage than ten systems which are clustered together
because of the interdependencies between the systems in the clustered
configuration. Consequently, tools are needed to assist with their
management.

For true mission-critical computing, there should also be as little reliance on
external resources as possible; the system should handle as much function
as possible. This allows much swifter action to be taken and also increases
the chance of the action being correct.

Consider, for example, the case of a component failure in a computer system
and the associated recovery. When the component fails, the system will, in
the vast majority of cases, be able to detect the failure significantly faster
than an operator. The detection time for the system is a function of how often
the component is used, sampled, or monitored for correct operation. The
detection time for operators is a much more complex combination of whether
they happen to be in front of the screen when the alert or error message
comes in, and of what tools they have available to assist in isolating the error
and/or linking the error to the particular failing component. This is also very
High Availability (HA) Clusters in the Real World 9

much dependent upon the skill of the operator in question. Even the most
skilled operator, with intimate knowledge of the system, will be potentially
several orders of magnitude slower than the system itself in detecting a
failure. And until the problem has been detected and the failing component
identified, no recovery action can occur.

When it comes to the recovery from the failure, the system again has an
advantage in terms of speed, although this may not be as important as its
advantage in correctness.

The skilled operator will know what action to take from experience and will
promptly start the correct recovery procedure. But what if the operator is new
to the job or is unfamiliar with this particular system? What if this recovery
procedure has not been invoked for several months or even years? What if
there is no a recovery procedure for this failure defined within the
organization? In the worst case, an incorrect recovery action could be
invoked that actually causes more trouble than the original problem.

Whatever the situation, additional time will be taken to recover from the
failure, time that the system is potentially unavailable for doing what it was
designed to do, to assist with the running of the business.

1.4 RS/6000 Cluster Technology (RSCT)

RS/6000 Cluster Technology (RSCT) is the name given to a set of software
facilities that are designed to make management of a cluster easier. These
have been added to the HACMP for AIX product to create HACMP ES. The
RSCT software provides facilities to detect outages, failures, and impending
failure conditions. It also allows software components, executing on different
cluster nodes, to react to the failure conditions and coordinate recovery
actions with each other.

The main tools provided by RS/6000 Cluster Technology are:

 • Event Management
 • Group Services

These two components work together to provide the infrastructure needed to
address the issues of software failures and operational errors.

1.4.1 Event Management
The function of the Event Management subsystem is to monitor the status of
system resources. Through this, it can detect unplanned outages and failures.
Also, by using monitoring data over a period of time, it is possible to anticipate
10 HACMP Enhanced Scalability: User-Defined Events

potential problems before they become failures. The Event Management
subsystem can:

 • Notify software when an unplanned outage or failure occurs in the cluster.

 • Notify when the status of a cluster resource meets a set of predefined
conditions to allow anticipation of problems before they become failures.

 • Provide status information about cluster resources.

Event Management provides an application programming interface to allow
software to add information about its own resources that will enable it to be
monitored using the Event Management subsystem. The software can be
alerted, not only to failures in the cluster, but also to potential resource
problems. This permits the software to react and remain available. For
example, by monitoring memory resources, the software can modify its use of
memory to head off a memory shortage before it cripples the application.
Alternatively, the software could transfer workload from a node that is
beginning to thrash, instead of waiting for a failure and then scrambling to
pick up the pieces.

For more information on Event Management and the facilities it provides,
refer to Event Management Programming Guide and Reference.

1.4.2 Group Services
Group Services provides a set of utilities that helps software to coordinate
recovery and non-recovery activities between its own components and with
other applications. It also provides notification when a software component or
basic hardware service fails. Group Services helps in both the design and
implementation of highly available software, and in the consistent recovery of
multiple applications, by providing:

 • Coordination for applications in formulating and executing failure recovery
plans.

 • Coordination for your applications and others in managing any change in
responsibilities between the components of your distributed software.

 • Notification to your software when an unplanned outage or failure occurs
in one of your software's components or in some of the basic hardware
services.

Group Services provides the basic system infrastructure that software needs
to be highly available. It provides tools to coordinate distributed components
in deciding how to respond to failures and to synchronize them in carrying out
this response. Software will be notified of failures in key cluster hardware,
High Availability (HA) Clusters in the Real World 11

such as node or network adapter failures, as well as of failures in key
components of your software.

But Group Services does more than provide recovery and synchronization
capability; it permits your software to monitor the recovery actions taken by
other Group Services applications. This allows your software to compensate
when another Group Services application that you depend upon executes its
failure recovery. This feature can greatly help applications that work closely
together and are equally impacted if a failure occurs.

If your software already has an infrastructure for high availability, your
application can make use of Group Services to coordinate itself with other
Group Services applications and continue to make use of your own
infrastructure. Group Services does not force you to abandon any existing
infrastructure that you may already have; you simply make use of Group
Services to coordinate with other applications that do not make use of your
infrastructure.

For more information on the Group Services subsystem and the facilities it
provides, refer to Group Services Programming Guide and Reference.

1.5 HACMP and RS/6000 Cluster Technology (RSCT)

As we saw earlier, HACMP provides a fairly large set of basic high availability
functions and some continuous operations functions. From a high availability
perspective, RSCT provides the additional mechanisms to fill the remaining
gaps in the high availability functions. As previously mentioned, the main
limitations in the capabilities of the HACMP software were its inability to
handle:

 • Disk and/or disk adapter failures
 • Failures of other devices
 • Application failures

RSCT provides the necessary facilities that allow HACMP to address these
failures. The majority of the rest of the book shows how this can be done.

From a concurrent operations perspective, RSCT provides facilities that allow
system conditions to be handled automatically before they necessarily require
maintenance. Monitoring trends in the state of various system components as
they change over time, or against a threshold, allows rectification of a
potential situation before it becomes absolute. By acting upon these
transitional state changes, it is quite possible to avert an absolute failure.
12 HACMP Enhanced Scalability: User-Defined Events

The end result of this is that there is a perceptible increase in the availability
of the system because the recovery action for a resource in a non-critical
state is likely to take a shorter time than that for a resource in a critical or
failed state. There will still be a need to take the system down to perform
certain tasks; however, the application of RSCT allows for significantly
reduced planned downtime periods.

HACMP and RSCT can be regarded as providing System Intelligence. Once
configured, the facilities they provide resemble those of a skilled operator who
is always on duty and never makes mistakes. This allows a system to react
swiftly to conditions as they arise, to select the correct course of action to
handle a particular occurrence, and to run this action in the most suitable way
to maintain the availability of the system. If the action itself fails, RSCT can
even determine a secondary approach to handle the condition and use that
instead.
High Availability (HA) Clusters in the Real World 13

14 HACMP Enhanced Scalability: User-Defined Events

Chapter 2. Events and Actions

This chapter introduces the concept of an event and the issues involved with
event monitoring. It then introduces the different sorts of actions that may be
taken when an event occurs.

2.1 What is an Event?

There are many possible definitions of “event”, but for the purpose of this
discussion, an event is the occurrence of a change in state. The manifestation
of the state change may be such that the event appears to be occurring for a
given and defined resource. For example, a disk or a network adapter.
Alternatively, it may manifest itself in such a fashion that the actual underlying
cause of the state change is unknown or is a result of multiple state changes
for a set of potentially unrelated components. The key criteria that we are
really concerned about is that we can monitor for the occurrence of the event
in some fashion.

Traditionally, event monitoring has only been concerned with major changes
of state, for example, a hard disk in a computer system will either be in a
working state or a failed state. There is no concept of transition within a
model such as this. Events such as the following are fairly easy to detect; the
resource is either functioning or not.

 • Disk hdisk1 is failed.

 • Node alpha has been powered off.

 • Software program C has just abended.

But a monitoring scheme that is only concerned with absolute state is very
limited. Futhermore, when an absolute failure occurs and is consequently
detected, the time to recover from it may be significant.

The Event Management subsystem provides a mechanism by which
transitional changes in state may be measured. By monitoring the changes in
state for a resource over time, it is possible to detect a trend that may lead to
a failure in the future. By acting upon the transitional state changes, it may be
possible to avert the absolute failure. This means that there is a perceptible
increase in the availability of the system because the recovery action for a
resource in a non-critical state is most likely to take a shorter time than that of
a resource in a critical or failed state. The recovery action is also likely to be
less invasive.
© Copyright IBM Corp. 1998 15

As well as monitoring state transition trends over time, it is possible to set a
threshold for a given measurable quantity. The concept of a threshold is
completely alien to a traditional event monitoring model where the resource
will either be working or not. It cannot be 95% working.

The transitional model, by providing the ability to measure state changes
against a threshold value, provides more flexibility. Consider the following
examples:

 • Free space in /tmp is less than 5%.

 • CPU utilization is greater than 85%.

 • The volume of network traffic received on the tok0 adapter has just
doubled but is still less than 50% of the maximum possible throughput.

In each case, the detection of these situations, by monitoring trends in state
change over time or against a threshold, can allow us to rectify a potential
failure before it becomes an absolute failure.

2.2 Event Monitoring

Event monitoring by nature is invasive. Even though a significant effort may
be made to avoid this, there will always be some impact, somewhere on the
system resulting from the event monitoring activities. For example, if you were
to undertake monitoring of every single file on an average AIX system for any
possible change, the system would be spending all of its time performing the
monitoring tasks and very little time, if any, actually doing what it was
designed to do. This may seem an extreme example, but it illustrates the main
problem of event monitoring. Given all of the advanced facilities provided,
how should event monitoring be configured to provide useful information,
while at the same time minimize system impact? This is really a combination
of three different items: how often to monitor (sampling frequency), how to
monitor (types of monitoring), and what to monitor (critical resources).

2.2.1 Sampling Frequency
Given a mechanism that is monitoring for changes in state, the frequency with
which measurements are taken has a major bearing on the system impact of
the monitor. Measuring a value once every minute will consume significantly
less system resource than making the same measurement once every
second.

The resource that is being monitored very much determines the sampling
frequency. Resources that change frequently need much shorter time
16 HACMP Enhanced Scalability: User-Defined Events

intervals between each measurement or observation; whereas, those
resources that change at a slower rate can get away with longer
measurement intervals without running the risk of missing important changes.

Once the measurement has been taken, the time within which it is reported is
also of consideration. Again, resources changing at a faster rate require
faster reporting intervals.

Example observation intervals (in seconds) for different types of resources
might be:

 • CPU 15
 • Disk 80
 • Filesystem 60
 • LAN 40
 • Memory 15
 • Process 60

If the monitoring is being provided by an Event Management Resource
Monitor, the observation and reporting intervals may be found in the
EM_Resource_Class of the SDR.

2.2.2 Types of Monitoring
The impact of monitoring a resource depends upon how the monitoring is
done. This in turn depends upon the resource being monitored. While there
are alternative monitoring methods, the options are very much the same as
the ways of implementing a resource monitor for Event Management. These
are:

 • Through a daemon

 • Through a command

 • Through code added to an existing program

The choice of mechanism very much depends upon your starting point. If you
are coming from “nowhere,” then you have more options potentially than if
you already have an existing resource monitor that you wish to modify.

For more information on the different methods of implementing resource
monitors and the implications of each type, refer to Event Management
Programming Guide and Reference.

Monitoring a resource internally normally requires either an internal
monitoring facility to have been provided by the application developer or
Events and Actions 17

access to the source code of the application that allows you to add monitoring
capabilities.

Monitoring a resource using an external resource monitor is more susceptible
to error and interference than a resource monitor that is implemented within
the resource or its controlling software. This is due to the requirements of
communication between the resource and monitor. By externalizing the
monitor from the resource, an additional potential point of failure is also
introduced. Given a monitor that is checking for the existence and correct
function of a given device, if communications between the two components
fails, how will this manifest itself? Is there the possibility that this will be
perceived, albeit incorrectly, as a device failure? These issues need to be
balanced against the fact that an external monitor is potentially easier to
write. All of these factors need to be taken into consideration when
determining where to monitor from.

Monitoring via an external monitor will use more system resources in terms of
the additional process(es) of the monitor and communications between the
monitor and resource. Monitoring provided internally will not require this, but
may result in a possible increase in system utilization by the resource itself. In
the majority of cases, the incremental increase in resource utilization is likely
to be small; however, the cumulative effect of multiple monitors should not be
underestimated.

2.2.2.1 Active Monitors vs. Passive Monitors
Having determined the type of monitoring required, a decision should be
made as to whether to monitor in an active or passive mode. An active
monitor is more invasive than a passive monitor because it has to physically
query the resource or its controlling software. This may interrupt any activity
that is currently occurring with the resource or, if there is a delay in which
data is returned to the monitor because the resource is busy, a false reading
may be taken. There are various techniques to minimize the effect of this,
such as issuing a non-blocking read against a disk, but some interruption is
unavoidable.

A passive monitor, on the other hand, is much more inclined to wait until
something happens, say an error is returned, before doing anything. These
monitors are much less invasive but potentially less accurate.

If a monitor samples a resource at a given frequency, there is a good chance
that it is of the active type.
18 HACMP Enhanced Scalability: User-Defined Events

2.2.3 Critical Resources
To make the most effective use of monitoring facilities, you need to give
careful consideration to how the resources of the system are to be monitored
and, if active monitoring is to occur, at what rate the results will be gathered.
These decisions will have some effect on the level of invasion that monitoring
places on the system. The most effect, however, will result the selective
choice of what resources should or should not have monitoring enabled for
them.

Not all of the resources in a system are critical to its correct operation. In fact,
in many cases, the failure of a given resource will effect no one other than the
people directly using it at the time of failure. The failure of a user’s shell
process effects no one but that user. The system is still available.
Consequently, monitoring for a failure of this shell process is unlikely to derive
any real benefit. On the other hand, should a critical filesystem fill up or a
system disk fail, there is more likelihood of serious system performance
degradation. Monitoring in this situation shows measurable benefits.

The technique by which critical resources are identified, and the effect of their
loss quantified, is known as Component Failure Impact Analysis (CFIA). The
basic stages of this type of analysis involve:

 • Describing the system design in terms of the resources.

 • Describing the services that the system is supposed to provide.

 • Defining resource chains, so that the interdependencies between different
resources and services may be determined.

 • Analyzing these resource chains to identify critical resources.

 • Identifying the effect that the failure of/reduction in availability of the
critical resources will have on the services.

 • Defining a mechanism by which failure of a resource can be recovered or
averted such that the services are maintained.

2.2.3.1 Critical Resource Categories
Critical Resources generally fall into four categories. These are dependent
upon where, in the system as a whole, a backup resource exists.

The first category consists of those resources that have no backup resource
or recovery mechanism. The failure of a resource in this category is likely to
stop the system from performing useful work. In a system which has been
designed for high availability, there should be no resources in this category. If
there are, then there is something wrong with either the design or the
implementation.
Events and Actions 19

Monitoring for this first category provides little benefit other than to inform the
system operator when a problem has occurred because no recovery action is
possible.

The second and third categories consist of resources that have a backup.
This backup may either be another resource of the same type that is capable
of taking over the workload (for example, an Ethernet service adapter failing
over to an Ethernet standby adapter), or a resource of a different type that is
capable of providing the service, albeit potentially in a different or reduced
form. An example of this might be the failover of an NFS file server from the
SP switch to an FDDI backup network. The service will continue to be
provided but in a potentially slightly modified form and at a lower bandwidth.

The difference between these categories relates to where the backup
resource is physically located. The second category consists of those
resources that have a backup resource within the same cluster node. The
third category consists of those resources that have no backup resource
within the same cluster node. In the case of the third category, a recovery
following a failure is performed by moving the effected services to another
cluster node.

In the vast majority of cases, monitoring for these resources should be
carried out by the node containing the resources. For example, monitoring for
the failure of a critical adapter. In a very few cases, another cluster node may
provide monitoring in the case where the critical resource is the node itself or
a component whose failure the containing node cannot detect.

The final category of resources consists of those that have no backup
resource but have a recovery mechanism. These resources are often those
that do not fail in the absolute sense but become constrained. For example, a
filesystem filling up, or a system starting to thrash.

Monitoring for these resources should be carried out on the nodes containing
the resources.

2.3 Event Monitoring Example

Consider the simple two-node cluster shown in Figure 1 on page 21.
However, note that a cluster configuration like this is not designed for no
single point of failure and, as such, should not be used in a production
environment. The design is used here purely as an illustration.
20 HACMP Enhanced Scalability: User-Defined Events

Figure 1. Simple Two-Node Cluster Configuration

Node 1 is an NFS server serving the file system held on the shared disks.
Node 2 is a backup for Node 1. Each node contains two Ethernet adapters for
client attachment, one in a service role, one in a standby role. All disks are
mirrored. The X.25 adapter provides connection to a remote site for software
updates.

For the NFS server instance to function correctly, the shared disks must be
available. These are attached through a SCSI Adapter 1. The operating
system should be running. This is provided by the SCSI disks attached to
SCSI Adapter 0.

Node 1

NFS Server Instance

SCSI Disk SCSI Disk

SCSI Adapter 0

Ethernet Adapter 1

Ethernet Adapter 0

SCSI Adapter 1

Node 2

SCSI Disk SCSI Disk

SCSI Adapter 0

Ethernet Adapter 1

Ethernet Adapter 0

SCSI Adapter 1

X.25 AdapterX.25 Adapter

Shared Disks
Events and Actions 21

The critical resources for this node are:

 • The two SCSI adapters

If the SCSI adapter attached to the external disks fails, the NFS server
cannot access the data it is serving. Monitoring for failure of this adapter
can only be carried out on Node 1. If the SCSI adapter attached to the
internal disks fails, the operating system disks (containing, for example,
paging spaces) becomes inaccessible. Monitoring for the failure of this
adapter can only be carried out on Node 1. Sampling for these resources
should occur once every 30 seconds.

 • The two SCSI buses

If the SCSI bus attaching Node 1 to the external disks fails, the server
cannot access the data it is serving. Monitoring for failure of this bus can
be carried out by any system attached to the external SCSI bus. It is most
likely to be performed by Node 1, as this is the system using the disks. If
the SCSI bus attaching the internal disks fails, the operating system disks
becomes inaccessible. Monitoring for the failure of this resource can only
be carried out on Node 1. Sampling for these resources should occur once
every 30 seconds.

 • The service Ethernet adapter

If the service Ethernet adapter fails, client traffic cannot be handled.
Monitoring for this failure can be carried out on this node, or on the other
cluster nodes, or from one of the NFS clients. Assuming HACMP is not
monitoring the system, sampling for this resource should occur once every
40 seconds.

 • The X.25 adapter

If the X.25 card fails, the connection to the remote system(s) will fail.
Monitoring for failure of the X.25 adapter does not bring much benefit
other than notification of the failure because there is no possible backup.

 • Node 1 itself

If Node 1 fails, the service will fail. Monitoring for failure of the node can
only be performed on another system. Sampling for this resource should
occur once every 30 seconds.

The critical service is:

 • The NFS server

Total failure of the NFS server, or the processes that make up the server,
will cause the service to stop. Monitoring for the failure can either occur on
the server or on a client. As the service would most likely be monitored by
22 HACMP Enhanced Scalability: User-Defined Events

checking for the life of the processes that comprise the instance, this
would typically be performed on the node currently running the NFS
server. Sampling for service availability should occur about once every 30
seconds.

2.4 Classes of Actions

When the occurrence of an event has been detected, it is possible for the
system to automatically initiate an action. This action (which is most likely,
though not necessarily, a shell script) can cause other activities to occur.

There are four basic classes of action. Each class of action has a specific role
in system recovery and will only be suitable for specific situations.

The four classes of actions are:

Class I Do nothing

Class II Notification actions

Class III Simple recovery actions

Class IV Complex recovery actions

Each action class builds upon the former, in that a simple recovery action is
also likely to provide notification functionality.

2.4.1 Class I Action
It may seem at first glance that the unit or “do nothing” action is defined more
for completeness than any other purpose. In fact, most actions defined to the
system will be Class 1 actions, in that the act of not specifically defining an
action is equivalent to defining an action that does nothing.

Apart from the unintentional use of this action, there are very few occasions
where it would typically be used in a recovery sense.

2.4.2 Class II Action
Notification actions are the most common actions that are defined on a
system. The basic purpose of a Class II action is to tell someone that
something happened. It does not attempt to recover the event or error.

Some examples of Class II actions might be:

 • Write a message in a log file.

 • Write a message to the console.
Events and Actions 23

 • Send mail to a user ID (typically root).

 • Notify another reporting mechanism (such as Tivoli).

When creating a notification action, there are several basic pieces of
information that need to be provided to make the notification useful.

The first is when the event occurred; in other words, some form of time stamp.
The time at which the event occurred is important because it helps to
establish a sequence of events, and hence, the interrelationship between one
event and another. If you know that component A failed at time x, then you
might expect component B, which relies upon A for its correct operation, to
fail at a time of x+y. If B were to fail at a time of x-y (that is, before the A
component failed), the failure of B would, in this case, most likely be due to a
different cause.

A cluster adds some complexity over a single system in that there must be a
mechanism for coordinating time within the cluster of machines. Many
problems may arise should the system times of the various cluster nodes
differ widely. When reporting the time of an event to a notification action, you
should ensure that you are reporting a "cluster time" rather than a local
"machine time" because this allows a sequence of events to be established
between the machines in the cluster, as well as between processes on the
local machine.

The second component of a successful notification is where the event
actually occurred— that is, on which machine in the cluster. The notification
action is normally run by the system that physically detected the event. In the
vast majority of cases, though not necessarily, this will be the system where
the event occurred. HACMP provides facilities to swap IP addresses between
network adapters. Consequently, care should be taken to ensure that the
identifier that is returned is related to the physical cluster node rather than
something that is related to the IP address, which may only temporarily have
been swapped there. In some circumstances, it is also useful to know which
system in the cluster detected the event.

The final piece of information is an identifier that can allow the event to either
be uniquely identified or to point to more detailed information. The less
additional information required by the reader to determine the cause of the
event, the better. However, care should be taken to ensure that a reasonable
level of threshold is provided. If the message written is several pages long,
while complete in all details, there is probably too much information being
notified. What needs to be determined is a sensible minimum for a system
operator to react to, or for the log record to be meaningful. The other obvious
24 HACMP Enhanced Scalability: User-Defined Events

drawback of large messages being logged is that you increase the risk of
filling log files or the directories holding them.

Consider the following example. A simple notification action might look like:

#!/bin/ksh
TIME=‘/usr/bin/date‘
NODE=‘/usr/sbin/cluster/utilities/get_local_nodename‘
/usr/bin/echo $TIME $NODE volume group sharevg is in an error state
exit 0

The output from this action would be:

Mon Oct 20 12:01:39 BST 1997 node1 volume group sharevg is in an error
state

Compare this with:

Mon Oct 20 12:01:39 BST 1997 node1 disk hdisk11 in volume group sharevg
has failed with error DISK_ERR1, SEQNO=559

The second output provides much more useful information, yet takes very
little extra space. From it you can determine not only what disk has failed but
also how it failed and where to go to find more information about the failure.

Notification output is always more useful when it is logged to a file. It can also
be sent to the console or mailed to a user, but then there is a risk that it will
either be missed or ignored until later. The first example output is less useful
because it forces the user to search elsewhere to determine what actually
happened. Any notification being sent directly to a user, or a systems
management application like Tivoli, needs to provide more information than
this basic set to be useful.

2.4.3 Class III Action
A simple recovery action is one that runs on a single cluster node that
attempts to rectify the situation that caused the event. These actions are
normally used where the event is caused by a situation that is specific to one
node and has no interrelated actions that are required on the other cluster
nodes. Such events generally involve resources internal to the cluster node or
resources that are external to the node and not shared with any other. As
soon as the recovery action involves activity on the other nodes, a more
complex Class IV action is needed.

Remember that the Class III action builds upon the Class II action, in that it
should provide logging and/or other forms of notification.
Events and Actions 25

Consider the following example. The event that is anticipated occurs when
the /tmp filesystem is over 90% full. The /tmp filesystem is part of rootvg, so it
is internal to the cluster node in question. As a result, a Class III action may
be invoked to handle this condition because there are unlikely to be any
dependencies from the other cluster nodes. A possible, albeit drastic,
recovery action might look something like:

#!/bin/ksh
DATE=‘/usr/bin/date‘
NODE=‘/usr/sbin/cluster/utilities/get_local_nodename‘
echo $DATE $NODE "/tmp filesystem over 90% utilized - cleanup invoked" \
>> /var/local/logfile
/usr/bin/rm -rf /tmp/* /.*
if (($? != 0))
then
echo "/tmp cleanup - failed " >> /var/local/logfile
exit -1
else
echo "/tmp cleanup - succeeded" >> /var/local/logfile
exit 0
fi
echo $DATE $NODE \
"/tmp filesystem over 90% utilized - cleanup completed" \
>> /var/local/logfile

This will remove the contents of the /tmp directory, and hence, cure the
situation that generated the original event. The main issue with such a
recovery action is that the very act of running it, while fixing the original
problem, may well cause more problems in the future. A recovery action
should always perform the minimum activity required to recover the situation
in order to reduce the risk of the recovery action itself giving rise to problems.
A better version of the preceding script might, for example, remove files older
than one week.

2.4.4 Class IV Action
The complexity of a cluster arises from the interdependencies between the
cluster nodes. In many cases, an event is handled by taking one action on
one cluster node and different, though related, actions on some, or all, of the
other cluster nodes.

Writing a traditional shell script that executes separate functions on different
nodes is fairly uncommon due to the lack of a suitable mechanism to tie all of
the components back together to provide synchronized actions. This is
especially relevant when the processing power of the different cluster nodes
varies widely and, as a result, timing issues become much more significant.
26 HACMP Enhanced Scalability: User-Defined Events

The addition of function such as dsh on the RS/6000 SP, or the recovery
program model within HACMP itself provides synchronization mechanisms
that facilitate the complex recovery models needed for Class IV actions.

The simplest form of a Class IV action is actually a Class III action that
causes the node upon which it is run to fail. The node failure is detected by
HACMP in the usual fashion, and takeover processing occurs. This involves
separate actions being run on the other cluster nodes, hence, it becomes a
complex action by definition.

Most Class IV actions will be managed using recovery programs provided by
HACMP for AIX. For more information on using recovery programs, refer to
Chapter 6, “HACMP Recovery Programs” on page 95.

Complex recovery actions are typically invoked for failures involving
resources that are either shared or connected to multiple systems. Consider
the following situation when a disk attached to multiple systems fails.

2.4.4.1 Complex Recovery Sample
1. The node that has the volume group containing the failed disk detects the

disk failure.

2. This node runs a recovery action that:

 • Automatically removes the disk from the volume group.

 • Adds a new disk to the volume group.

 • Remakes and resynchronizes the mirrors held on the failed disk onto
the new disk.

3. Having completed these activities, this node informs the other nodes of
the event and invokes a recovery action on the other nodes that:

 • Changes the definition of the disk in the local ODM to now contain the
PVID of the new disk.

This functionality provides a "hot-spare" type facility for mirrored shared
disks. The second stage of the recovery activity is necessary because the
ODMs on the other cluster nodes will have the PVID of the failed disk rather
than that of the new disk. If these ODMs are not updated, when the varyon of
the shared volume group is attempted, it will fail because it cannot find the
disk with the PVID it has a record for. By changing the PVID of the failed disk
to that of the new disk, this problem does not arise.
Events and Actions 27

Recent releases of HACMP (since Version 4.2.0) provide functionality to
update the ODMs of the other cluster nodes automatically during a failover by
performing an exportvg/importvg. This facility is known as lazy update.

The example in 2.4.4.1, “Complex Recovery Sample” on page 27 illustrates
one action being run on one node in the cluster, with different actions being
run on the other cluster nodes. In this case, the actions run on the other
nodes are likely to be (though are not necessarily) identical. If so, there are
only two components that need to be invoked, one for the node detecting the
event, and one for the other cluster nodes.

More complexity is required when the actions run on the nodes are all
different; in which case, it is necessary to determine where the event
occurred, where the action is running, and potentially perform other tests to
be able to determine what component of the action to run and with what
parameters.

The action invoked is, to a certain extent, limited by the mechanism by which
it was detected. The recovery action depends upon the location (node) where
the action is run and the degree to which the script exploits any intelligence it
might have. Referring again to the example in 2.4.4.1, “Complex Recovery
Sample” on page 27, if all cluster nodes see an identical view of the shared
disks, that is, if the device name hdisk5 refers to the same physical device on
all nodes, then assuming that it is this disk that has failed, the update of the
ODM needs to be performed against hdisk5. If the disks are named differently
on each cluster node, additional logic needs to be provided (for example, by
using the PVID of the failed disk) to determine which hdisk record of the ODM
to change on which system.

As is the case with most programs, there is a trade-off between functionality,
ease of creation, and ease of maintenance. A Class I action is likely to be
simple to write and maintain. Actions that consist of multiple components are
distributed across multiple cluster nodes or provide additional intelligent logic
that is much more powerful, yet are correspondingly harder to create and
maintain.

The choice of which approach to take is very much defined by the skills
available to create and maintain the system. In the majority of situations, it is
simpler to create and maintain multiple small programs rather than a few
large, more complex, ones.
28 HACMP Enhanced Scalability: User-Defined Events

Chapter 3. Defining and Configuring Event/Action Pairs

This chapter helps you determine the best methodology for monitoring a
given resource.

3.1 Determining the Monitoring Mechanism

There are various techniques for monitoring a resource within a cluster. Some
of these techniques only allow for monitoring and logging, while others
provide mechanisms by which recovery actions may be triggered. Assuming
that a recovery action is required to be run, it is necessary to determine the
best mechanism to use. To perform this, there are two questions that should
be asked:

 • How is the event detected?

 • Where does the recovery action need to run?

The following sections look at some of the issues involved in answering these
questions.

3.1.1 How Can the Event Be Detected?
There are four mechanisms for detecting the occurrence of an event:

 • AIX error log

 • syslog

 • User monitor (shell script or program)

 • Resource monitor

The interaction between these four mechanisms can be fairly complex, as
Figure 2 on page 30 shows. For example, syslog and both types of user
monitors can write to the AIX error log. A program-based user monitor can
pass information to a resource monitor or may indeed be a resource monitor
itself. Just to add to the complexity, resource monitors can write to the AIX
error log and vice versa.
© Copyright IBM Corp. 1998 29

Figure 2. Relationship between Event Detection Mechanisms

In reality, this then leaves two main detection mechanisms: the AIX error log,
which may be fed from other sources, and a resource monitor.

3.1.1.1 Using the AIX Error Log
The flow between the various components that can write to the AIX error log,
and the actions that can be triggered from the AIX error log, are shown in
Figure 3 on page 31.

syslog User Monitor (shell script)

AIX error log Resource Monitor

User Monitor (program)
30 HACMP Enhanced Scalability: User-Defined Events

Figure 3. AIX Error Log Event Detection Mechanism

Each entry in the error log has an error label. In order to trigger an action by
using an error notification object, this error label needs to be known. Certain
error labels can only be generated by a specific device. For example,
TOK_ADAP_CHK by a Token Ring adapter. There are also generic error

syslog Device Drivers AIX ComponentsApplications

AIX Error Log

Error Notification

Local shell script Resource Monitor Remote shell script

HACMP

Local and Remote

pman

Local shell script

Remote shell Script

shell Scripts

Local shell script

Local and Remote
shell scripts

Recovery Program

(synchronized)

(unsynchronized)

Remote shell script

Perspectives
Defining and Configuring Event/Action Pairs 31

labels that can be generated by different types of devices. The DISK_ERR1
error, for example, could be generated by a CD-ROM drive, a R/W optical
drive, or a disk drive. There are error labels generated by software and error
labels, such as SYSLOG or OPMSG.

Determining the correct error label for a given failure or problem is, in many
cases, not as straightforward as it could be. Refer to Chapter 4, “The AIX
Error Log and Error Notification” on page 47 for more information on
determining the correct error label.

3.1.1.2 Using a Resource Monitor
Use of a resource monitor provides increased flexibility over and above use of
the AIX error log as a detection mechanism. Whereas the AIX error log
provides a much more traditional monitoring mechanism, showing that a
device is either in a failed state or not, a resource monitor introduces the
concept of defining an event predicate, such that the event is triggered when
a value reaches a certain level (for example, paging space on a cluster node
reaches 90% utilization).

Despite this flexibility, there is still a limitation, in that a resource monitor is
required to provide the information about the resource, and this monitor has
to be capable of detecting the measurable quantity that you are using as a
trigger. For example, the harmpd resource monitor provides, among other
things, measurement facilities for the IBM.PSSP.Prog.pcount resource
variable. This resource variable allows monitoring of processes to see
whether they are running a specific process or not. You cannot use this
resource variable to monitor, for example, the amount of memory used by a
given process. It is necessary to ensure that the resource monitor you are
using is capable of providing the data you need.

The flow between the various components that can write to a resource
monitor, and the actions that can be triggered from this monitor, are shown in
Figure 4 on page 33.
32 HACMP Enhanced Scalability: User-Defined Events

Figure 4. Decision Tree to Create Error Notification

Does the event you are expecting have a single
defined error label that will be written to the error log?

Do you know what error labels you
need to use to detect the event?

Can you detect the event through an external
method and use this to generate a generic error label?

Create a single error notification object
for this error label / resource.

Create multiple error notification objects
for this error label or resource.

Create a single error notification object to detect

Using the AIX error log mechanism
may not be feasible for this event.

Yes No

Does the event you are expecting need multiple error labels
to be defined to ensure that the event can be detected?

Yes No

No

No

the generic error label and provide logic
in the recovery program.

Yes

Yes
Defining and Configuring Event/Action Pairs 33

Figure 5. Resource Monitor Event Detection Mechanism

The resource monitors that are provided as standard allow for most of the
typical monitoring functions to be performed. Determining whether the
resource monitor provides the necessary functionality, or whether the
resource variables exist to correctly identify the resource property, is the
responsibility of the system administrator.

Refer to Chapter 8, “Common Monitoring Tasks” on page 123 for more
information on common monitoring tasks. Refer to Chapter 11, “Sample

syslog Device Drivers AIX ComponentsApplications

Resource Monitor

pman Perspectives HACMP Recovery Program

Local Shell Script

Remote Shell Script

SNMP Trap AIX Error Logsyslog

Error Notification

Local Shell Script

Remote Shell Script
34 HACMP Enhanced Scalability: User-Defined Events

Events and Actions” on page 161 for more information on monitoring various
common software subsystems.

3.1.2 Where Does the Recovery Action Need to Run?
A recovery action may need to be invoked either on a single node or on
multiple nodes. In the single node case, this may be on the node where the
event occurs, or on the node that detected the event (these may in fact be the
same), or on one other node in the cluster (for example, a recovery action on
the control workstation).

In the multiple node situation, the event may need to run on all of the cluster
nodes or on a subset. All nodes may be required to run the same recovery
action or different recovery actions. The recovery actions may or may not
need to be synchronized to run.

Figure 6 on page 36 shows a decision tree illustrating how to select recovery
actions.
Defining and Configuring Event/Action Pairs 35

Figure 6. Recovery Action Decision Tree

3.1.2.1 Single Node Recovery Actions
Execution of a recovery action on a single node is relatively simple to
perform. An event detected through the AIX error log, when it matches an
existing error notification object, can cause a recovery method to be run. This
recovery action can either run on the detecting node or can cause (by rsh or a
similar function) the recovery action to run on a different cluster node,
security permissions permitting.

Single node

Node where event occurred

Node where event was detected

Another node

Multiple nodes

All cluster nodes

Subset of nodes

Same recovery action on all nodes

Different recovery actions on different nodes

Synchronized

Unsynchronized

Synchronized

Unsynchronized

Same recovery action on all nodes

Different recovery actions on different nodes

Synchronized

Unsynchronized

Synchronized

Unsynchronized
36 HACMP Enhanced Scalability: User-Defined Events

Creating an error notification object to execute on the detecting node is
simple. Executing on remote nodes is also easy but becomes complicated
should the node on which the method has to execute change based upon the
error.

Refer to Chapter 4, “The AIX Error Log and Error Notification” on page 47 for
more information and examples of error notification methods.

The definition of a recovery action from an event detected by a resource
monitor may be performed using the Event Perspective or by a Problem
Management subsystem (pman). An event notification object may be created
in the usual fashion. This defines the instance vectors for the resource
variable.

If you need to define new predicates, these are defined by creating or
modifying a condition. Remember that in Event Perspective a predicate is
referred to as an expression. Event Perspective also allows an action to be
invoked on a node different from that where the event was detected.

For more information on using the Event Perspective, refer to Chapter 5,
“Event Management and Perspectives” on page 73. For more information on
using the Problem Management subsystem, refer to Chapter 7, “Other Event
Utilities and Functions” on page 105.

3.1.2.2 Multiple Node Recovery Actions
Multiple node recovery actions are more complex to define. There are three
main considerations:

 • Which nodes from the set of cluster nodes need to run an action?

 • What action should the individual cluster nodes run?

 • Do you need synchronization between the actions running on cluster
nodes?

There are three main collections of nodes that may be called upon to run an
event:

 • The node where the event occurred runs the command.

 • All nodes except the one where the event occurred run the command.

 • All cluster nodes run the command.

These correspond to the three options offered by an HACMP ES recovery
program. In the vast majority of situations, these node collections will provide
all of the required functionality.
Defining and Configuring Event/Action Pairs 37

An HACMP ES recovery program will provide the necessary facilities to allow
an action to be run on any of the node collections. The action of running the
same action on both the “event” and “other” collections simultaneously is the
same as running the action on the “all” collection. The reasoning behind this
breakdown is that it allows for different actions to be run on different
collections. There is no need to provide barrier synchronization if it is not
required.

There is one other case of a node collection. This is where the nodes, upon
which the recovery action is run, are independent of where the event
occurred. Consider the following two examples. The first demonstrates the
all/event/other approach. This is the node_down recovery program from
HACMP ES.

event "node_down" 0 NULL
#
barrier
#
other “node_down” 0 NULL
#
barrier
#
all "node_down_complete" X NULL

The node where the event occurs runs the node_down script. When this
completes successfully, the other nodes (that is, all those except where the
event occurred) run the node_down script. Where this might initially appear to
be the same as running node_down against the "all" collective, timing is
important in this case. Also, the node_down script provides its own logic to
determine whether to run the node_down_local or node_down_remote script
on the cluster node in question. All cluster nodes then run
node_down_complete. This recovery program could potentially be rewritten
as:

event "node_down_local" 0 NULL
#
barrier
#
other "node_down_remote" 0 NULL
#
barrier
#
all "node_down_complete" X NULL

However, consider the cluster environment shown in Figure 7 on page 39.
38 HACMP Enhanced Scalability: User-Defined Events

Figure 7. Cluster Environment Sample

For one of the applications, node C is the “server”. Nodes A and B are clients.
Node C is protected by Node D. When Node C fails, Node D will have to run
one action to take over the server functions. Nodes A and B will have to
reconnect to the server. This process is shown in Figure 8 on page 40.

A B C D
Defining and Configuring Event/Action Pairs 39

Figure 8. Cluster Environment Sample Recovery Action

In this environment, the event/other/all model falls down. It would be perfectly
possible to force the recovery program mechanism to deal with this. One
method of doing this might be to create different actions with the same name
on Nodes A, B, and D. However, this might potentially lead to systems
management confusion in the future.

Another alternative could be to provide additional logic in the action script to
determine whether to run either a failover or a reconnect, depending upon
where in the cluster the action was run. This might be complex to do, given
the environment. A possible solution would be to add the concept of a “list”
node collection--this would run the action on the nodes in the list.

Cluster Single Point of Control (CSPOC) provides functionality to execute a
script on a list of nodes. Hence, the “recovery program” in this case could be
provided by CSPOC. This does not provide synchronization between nodes,
but in this case, this is not necessary. The pseudo code for the CSPOC
recovery might look like:

%try_serial nodeD
run_failover_actions

A B C D

Failover action

Reconnect action
Reconnect action
40 HACMP Enhanced Scalability: User-Defined Events

wait for failover to complete
%try_parallel nodeA nodeB

run reconnect actions

In practice, if nodes A and B are using TCP/IP to communicate with nodes C
and D, this problem should be resolvable using IP address takeover. If the
communications between the two systems are not IP based, a mechanism
such as this would be required.

For more information on using CSPOC, see the HACMP for AIX
Administration Guide.

There is no simple way of determining which action to run where in a cluster.
To do this, you need to understand the implications of a given event on each
of the nodes. This should guide you into determining the relevant actions that
need to run within each node. Some basic guidelines to follow are:

1. Identify the services you need to provide and the resources on which
these services depend.

2. Identify the users of these services and their physical location.

3. Identify the steps that need to be followed to get the resource back into a
functional state following a failure.

 • An event occurring against a device or resource that is only used by a
single node only needs a recovery action to run on that node.

 • An event occurring against a device or resource that is used or
accessed by other cluster nodes needs a "recovery" action that runs on
the node holding it and "reconnect" actions to run on the other (using)
cluster nodes.

3.2 Choosing Event or Action Mechanisms

Table 1 through Table 4 on page 43 and Figure 9 on page 44 may be of use
when determining what mechanism to use to detect an error and trigger an
action.

1. Table 1 applies to cases where you use defined or known AIX error labels
to detect events.

Table 1. Using Defined or Known AIX Error Labels

Required Recovery Action Mechanism

Recovery action on the detecting node AIX error notification object
Defining and Configuring Event/Action Pairs 41

2. Table 2 applies to cases where you use a resource monitor to detect
events.

Table 2. Using Resource Monitor

3. Table 3 applies to cases where you use shell scripts or programs to detect
events. Use errlogger/errlog()/logger to write to the AIX error log.

Table 3. Using Shell Script or Programs

Recovery action on one other node AIX error notification object (remote
execution of recovery command)

Unsynchronized recovery action on
multiple nodes

Event Perspective (triggered via
errlog_rm notification object)
CSPOC triggered from error notification
object

Synchronized recovery action on multiple
nodes

HACMP Recovery Program (triggered by
errlog_rm notification object)

Required Recovery Action Mechanism

Recovery action on the detecting node Event Perspective

Recovery action on one other node Event Perspective

Unsynchronized recovery action on
multiple nodes

Event Perspective

Synchronized recovery action on multiple
nodes

HACMP Recovery Program

Required Recovery Action Mechanism

Recovery action on the detecting node AIX error notification object

Recovery action on one other node AIX error notification object (remote
execution of recovery command)

Unsynchronized recovery action on
multiple nodes

Event Perspective (triggered by errlog_rm
notification object)
CSPOC triggered from error notification
object

Synchronized recovery action on multiple
nodes

HACMP Recovery Program (triggered by
errlog_rm notification object)

Required Recovery Action Mechanism
42 HACMP Enhanced Scalability: User-Defined Events

4. Table 4 applies to the case where you use syslog to detect events. Use
syslog redirection to write to the AIX error log.

Table 4. Using syslog

Required Recovery Action Mechanism

Recovery action on the detecting node AIX error notification object

Recovery action on one other node AIX error notification object (remote
execution of recovery command)

Unsynchronized recovery action on
multiple nodes

Perspectives (triggered by errlog_rm
notification object) CSPOC triggered from
error notification object

Synchronized recovery action on multiple
nodes

HACMP Recovery Program (triggered by
errlog_rm notification object)
Defining and Configuring Event/Action Pairs 43

Figure 9. Decision Tree to Select Event Detection Mechanism

Does the event you are expecting have an AIX error label?

Do you wish to run an action
when the event occurs?

Do you have a resource monitor
that can detect the event?

Yes No

The event will be logged
in the AIX error log

YesNo

Will your recovery action run
on more than one node?

Yes

Error notification
by AIX error log

No

Do you need synchronization between cluster nodes?

Yes

HACMP
Recovery Program

Perspectives
Event Definition

Yes No
44 HACMP Enhanced Scalability: User-Defined Events

Part 2. Tools and Utilities
© Copyright IBM Corp. 1998 45

46 HACMP Enhanced Scalability: User-Defined Events

Chapter 4. The AIX Error Log and Error Notification

This chapter describes the use of the AIX system error logging facilities. It
discusses how the error logging mechanism works, provides several
mechanisms for writing to the log, and describes how to automatically react to
errors written there.

4.1 The Error Logging Process and Error Notification

The AIX Error Log provides a very powerful facility to allow an event to
automatically trigger a recovery action. The main function this facility provides
is to allow a device driver to record software or hardware failures. These may
be recorded for informational purposes or to assist with fault detection and
problem determination. Although the term “error” is used, in many cases the
information written to the error log is not necessarily the result of a failure. As
a result, and because the error logging mechanism is easily extensible, it can
be exploited to address many areas beyond its original scope.

When an error or fault is detected, the detecting software module creates an
error record that is written to /dev/error. To do this, it will use either the
errlog() subroutine or the errsave() kernel service, depending upon whether
the detecting module is running in user or kernel space, respectively. The
error record is time stamped, and the error daemon (errdemon) takes this
error record and creates an error log entry from it. Before the entry is written
to the error log, the errdemon compares the label sent by the detecting
module to the contents of the error record template repository. The daemon
retrieves the appropriate template from the repository, the resource name of
the entity that caused the error, and any available detail data. If the error
signifies a hardware-related problem and hardware Vital Product Data (VPD)
exists, the daemon retrieves the VPD from the Object Data Manager (ODM).

The error logging mechanisms provide a way to record the occurrence of an
event. This does nothing in itself to trigger an action. To do this, the second
component, error notification, is invoked. Each time an error is logged, the
error daemon determines if the error log entry matches the selection criteria
of any of the error notification objects. If matches exist, the daemon runs the
programmed action, called a notify method, for each matched object. The
selection criteria for an event and the associated notify method are stored in
an Error Notification object. This is held in the Error Notification object class
of the ODM, /etc/objrepos/errnotify.

Error Notification objects may be created in one of two ways. The first is to
use an editor to create a stanza file and then use the odmadd command to take
© Copyright IBM Corp. 1998 47

this file as input to the error notification object class. The format of the stanza
file for an error notification object is:

errnotify:
 en_pid =
 en_name = ""
 en_persistenceflg =
 en_label = ""
 en_crcid =
 en_class = ""
 en_type = ""
 en_alertflg = ""
 en_resource = ""
 en_rtype = ""
 en_rclass = ""
 en_symptom = ""
 en_method = ""

For more information about the error notification object class, the descriptors,
and the possible values, refer to AIX Version 4.3 General Programming
Concepts: Writing and Debugging Programs, SC23-4128.

If the stanza file is /tmp/error1.stz, the error notification object is created
using:

odmadd /tmp/error1.stz

Alternatively, if you have HACMP installed on your system, you can use SMIT
to create the error notification object. The fastpath to the SMIT panel for
managing error notification objects is:

smit cm_EN_menu

SMIT will display the following menu:
48 HACMP Enhanced Scalability: User-Defined Events

Selecting Add a Notify Method will present the following screen:

Error Notification

Move cursor to desired item and press Enter.

 Add a Notify Method
 Change/Show a Notify Method
 Delete a Notify Method

F1=Help F2=Refresh F3=Cancel Esc+8=Image
Esc+9=Shell Esc+0=Exit Enter=Do

Add a Notify Method

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Notify Object Name []
* Persist across system restart? No +
 Process ID for use by Notify Method [] +#
 Select Error Class None +
 Select Error Type None +
 Match Alertable errors? None +
Select Error Label [] +

 Resource Name All +
 Resource Type All +
 Resource Class All +
* Notify Method []

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset Esc+6=Command Esc+7=Edit Esc+8=Image
The AIX Error Log and Error Notification 49

The appropriate data should be inserted in the relevant fields. Pressing the
Enter key will add the error notification object to the ODM. For more
information about the use of SMIT in defining error notification objects, refer
to HACMP for AIX Installation Guide, SC23-1940. For information on the
possible values that can be used in the entry fields, see AIX Version 4.3
General Programming Concepts: Writing and Debugging Programs,
SC23-4128.

On systems with PSSP installed, a similar menu may be found using the
fastpath:

smit padd_en

SMIT will display the following menu:

The only difference here is the ability to add an error notification object on
multiple nodes.

Error Notification provides a powerful facility to automate recovery actions
should a problem arise. The RS/6000 hardware and AIX Operating system
are the main sources for errors that are logged to the error log. However, it is
easy to log your own errors to the error log to take advantage of this
functionality within your environment.

Add a Notification Object

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 Add Object to all Nodes in Partition no +
 Add Object to Hosts []
* Notify Object Name []
 Process ID for use by Notify Method [] #
 Persist across system restart no +
 Error Label [] +
 Error Class All +
 Error Type All +
 Match Alertable Errors All +
 Resource Name []
 Resource Type []
 Resource Class []
* Notification Method []

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset Esc+6=Command Esc+7=Edit Esc+8=Image
Esc+9=Shell Esc+0=Exit Enter=Do
50 HACMP Enhanced Scalability: User-Defined Events

The following section discusses how to write information to the error log and
how to define error notification objects and methods to deal with the errors
you are writing. Examples of how you might use this facility in conjunction
with the HACMP for AIX software are also provided.

4.2 Logging Errors to the Error Log

This section describes several methods to log errors to the error log.

4.2.1 Logging Errors from a Shell Script
The simplest method of writing to the error log, and one that is easily
implementable in a shell script, is to use the errlogger command. This allows
an error log entry to be written that can contain a message of up to 230 bytes
in length and is primarily used by the system operator to write information to
the error log. The entry in the error log is of type OPMSG. Running the
command:

errlogger "This is an error message"

will result in an entry similar to the following being written into the error log:

errpt -aJ OPMSG

LABEL: OPMSG
IDENTIFIER: AA8AB241

Date/Time: Sun May 10 09:45:50
Sequence Number: 687
Machine Id: 000081007000
Node Id: sp2en0
Class: O
Type: TEMP
Resource Name: OPERATOR

Description
OPERATOR NOTIFICATION

User Causes
ERRLOGGER COMMAND

 Recommended Actions
 REVIEW DETAILED DATA

Detail Data
MESSAGE FROM ERRLOGGER COMMAND
The AIX Error Log and Error Notification 51

This is an error message

This is of limited use for the purpose of triggering an action directly because
the error log entry will have the same error label (OPMSG) regardless of the
content of the error message. In order to make use of this message, the error
message (or, more accurately, the detail data) needs to be extracted by the
error notification method and then potentially a second script needs to be
invoked to handle the error condition.

A generic error notification mechanism that uses this method to write error
log entries might look something like the following:

The shell scripts that call the errlogger command do so with one of the
following patterns:

errlogger A1
errlogger B1
errlogger C1

These are trapped by an error notification object that looks like:

errnotify:
en_pid = 0

 en_name = "my_script_errs"
 en_persistenceflg = 1
 en_label = "OPMSG"
 en_crcid = 0
 en_class = "O"

en_type = "TEMP"
 en_alertflg = ""
 en_resource = ""
 en_rtype = ""
 en_rclass = ""
 en_symptom = ""

en_method = "/usr/local/err_method/script_errs $1"

The /usr/local/err_method/script_errs notify method that is invoked looks
like:

#!/bin/ksh
ERR=‘/usr/bin/errpt -a -l $1 | tail -1‘
case $ERR in
 A1) exec /usr/local/scripts/A1_recovery_script;;
 B1) exec /usr/local/scripts/B1_recovery_script;;
 C1) exec /usr/local/scripts/C1_recovery_script;;
esac
exit 0
52 HACMP Enhanced Scalability: User-Defined Events

4.2.2 Redirecting syslog Messages to the AIX Error Log
Some operating system components and applications use the syslog facility
for logging errors and other events. User applications can also use these
facilities. Where syslog provides its own logging mechanism, notification of
these types of events can also be redirected to the error log. For instance, it
may be desirable to be able to list error log messages and syslog messages
in a single report. This facility also allows an error notification object to be
triggered upon receipt of a syslog event. The entry in the error log for a
redirected syslog message is of type SYSLOG.

To redirect syslog messages to the error log, you should specify errlog as the
destination in the syslog configuration file, /etc/syslog.conf.

For more information on the syslog facility, see the syslogd daemon.

By default, HACMP for AIX informational messages are redirected by syslog
to /var/adm/cluster.log. If you wish to redirect these messages to the error
log, the entry in /etc/syslog.conf should be changed to:

HACMP for AIX Informational Messages from HACMP for AIX
local0.info errlog

Should an HACMP event occur, the error log will contain entries similar to:

LABEL: SYSLOG
IDENTIFIER: C6ACA566

Date/Time: Wed 24 Sep 05:38:26
Sequence Number: 201
Machine Id: 002119924800
Node Id: HAserver2_en0
Class:
Type: UNKN
Resource Name: syslog

Description
MESSAGE REDIRECTED FROM SYSLOG

User Causes
OPERATOR REDIRECTED SYSLOG MESSAGES TO ERROR LOG

Recommended Actions
REVIEW DETAILED DATA

Detail Data
SYSLOG MESSAGE
<13>Sep 24 05:38:26 HACMP for AIX: EVENT COMPLETED: node_down_complete
server1
The AIX Error Log and Error Notification 53

As with the use of the errlogger command, this change is of limited value for
directly triggering an action because all error log entries that have been
redirected by syslog will have the same error label (SYSLOG) regardless of
the original source of the event. Once again, in order to make use of this
message, the detail data needs to be extracted by the error notification
method and then a second script needs to be invoked to handle the condition.

A generic mechanism for handling messages redirected from syslogd could
resemble the following. First, the redirected syslog event is matched with an
error notification object that looks like:

errnotify:
 en_pid = 0
 en_name = "syslog_msgs"
 en_persistenceflg = 1
 en_label = "SYSLOG"
 en_crcid = 0
 en_class = "S"
 en_type = "UNKN"
 en_alertflg = ""
 en_resource = ""
 en_rtype = ""
 en_rclass = ""
 en_symptom = ""
 en_method = "/usr/local/bin/syslog_msg_handler $1"

The notify method is dependent on the format of the message written by the
application or operating system function that you are trying to monitor. You
will need a mechanism to extract a unique identifier from the message before
you can act upon it. Assuming an application that writes messages to syslog
in the format:

error_number information_message

the /usr/local/bin/syslog_msg_handler script that is invoked might look like:

#!/bin/ksh
MSG=‘/usr/bin/errpt -a -l $1 | tail -1 | awk ’{print $5}’‘
case $MSG in
 "01-234"|"01-456") /usr/local/scripts/app_restart;;
 "02-456") /usr/local/scripts/disk_space_recovery;;
 "03-123"|"03-987"|"03-675") /usr/local/scripts/reauth_handler;;
 *) /usr/bin/true;; # This does nothing as all other errors are
not serious
esac
exit 0
54 HACMP Enhanced Scalability: User-Defined Events

4.2.3 Generating syslog Messages from a Shell Script
In addition to application use of syslog, it is possible for user error messages
to be written to syslog. The logger command provides a mechanism to write
to the syslog facility from the command line or a shell script. The message
passed to the logger command is written to the system log. If /etc/syslog.conf
is configured to allow it, this message will then be placed in the error log
where it can be used to trigger an error notification method.

The functionality provided by the logger command is similar to that provided
by the errlogger command, with two major exceptions:

 • The logger command may be run by any user, whereas errlogger can only
be run by root. This is particularly useful when a shell script has to run
with a given non-root user ID.

 • The logger command allows other data to be passed to syslog, and hence
to the error log, such as a tag. This tag may be useful when it comes to
uniquely identifying the message parsed by the error notification method.

For more information on the use of the logger command, refer to AIX Version
4.3 Commands Reference, SBOF-1877.

4.2.4 Writing to the AIX Error Log from an Application
A full description of the steps required to write to the error log from an
application may be found in AIX Version 4.3 Kernel Extensions and Device
Support Programming Concepts, SC23-4125. Despite the title of that manual,
the methods are also applicable to standard applications. The steps required
to do this are briefly reviewed in “Error Message Definitions” on page 55.

4.2.4.1 Error Message Definitions
Error messages are composed of a type, codepoints, and data. Codepoints
are hexadecimal numbers representing messages. Most of them are reserved
for system use, but some are available for user-defined messages.

The text that appears in the error report is defined through an error template.
This is a combination of type and codepoint data and is identified by a unique
error number.

When an error occurs, detail data is formatted according to the template to
produce an entry in the error log.

The process of enabling an application to write to the AIX error log consists of
three steps:
The AIX Error Log and Error Notification 55

1. Define what messages need to be logged. If suitable messages are not
already defined to the system, the new ones need to be defined to the
system as codepoints.

2. Codepoints are then combined to produce the template.

3. The application needs to have a subroutine call added to invoke the
template and log the message.

4.2.4.2 Adding Codepoints
There are many codepoints defined to AIX. You may be able to reuse an
existing codepoint rather than define your own. The existing ones are divided
among a number of message sets that relate to possible causes for the error.
The codepoints may be listed using the errmsg command.

If you cannot find a suitable message (codepoint) in existence already, then
you will need to add one. A file containing the text for the codepoint should be
created. An example of such a file might be:

SET R
F001 "New Codepoint Text"

This can then be added to the system using the errinstall command. The
errinstall operation will create a file called file_name.undo, which can be used
to remove the codepoint if required.

4.2.4.3 Creating an Error Template
Having added the codepoint, the next step is to create an error template. Use
an editor to create a template definition file. The file will look something like
this:

+MY_APP_ERR1:
Comment = "This application has failed"
Class = S
Log = True
Report = True
Alert = True
Err_type = PERM
Err_desc = 2000
Prob_causes = 0000
User_causes = 0000
User_actions = F001
Inst_causes = 0000
Inst_actions = 0000
Fail_causes = 0000
Fail_actions = 0000
56 HACMP Enhanced Scalability: User-Defined Events

The template can then be added to the system using the errupdate command:

errupdate -h file_name

The -h flag tells errupdate to produce the C language header file, which can
then be used when writing applications. The header file created as a result of
the errupdate command will look similar to:

define ERRID_MY_APP_ERR1 0x7ca84f9e /* This application has failed */

4.2.4.4 Adding Code to the Application to Log Errors
Having added your error message and template to the system, you are now
ready to use it with the errlog() system call. An example of code to invoke the
template and message created above is shown in “Creating an Error
Template” on page 56.

#include <sys/errids.h>
#include <sys/err_rec.h>
#include <memory.h>
#include <string.h>
#include "errdesc.h"
int main(void)
{
 ERR_REC(1) errbuf;
 errbuf.error_id=ERRID_MY_APP_ERR1;
 strcpy(errbuf.resource_name,"My Application");
 return errlog(&errbuf,sizeof(errbuf));
}

When this is invoked, the summary output from errpt will show:

ERROR_ID TIMESTAMP T CL RESOURCE_NAME ERROR_DESCRIPTION
7CA84F9E 0719122895 P S My Application SOFTWARE PROGRAM ABNORMALLY
TERMINATED

with the more detailed output from errpt -a giving:

ERROR LABEL: MY_APP_ERR1
ERROR ID: 7CA84F9E

Date/Time: Wed 19 Jul 12:28:59
Sequence Number: 76319
Machine Id: 000029111000
Node Id: node2
Error Class: S
Error Type: PERM
Resource Name: My Application

Error Description
The AIX Error Log and Error Notification 57

SOFTWARE PROGRAM ABNORMALLY TERMINATED

Probable Causes
PROCESSOR

User Causes
0000

Recommended Actions
New Codepoint Text

Install Causes
0000

Recommended Actions
PERFORM PROBLEM DETERMINATION PROCEDURES

Failure Causes
PROCESSOR

Recommended Actions
PERFORM PROBLEM DETERMINATION PROCEDURES

Having enabled your application to write to the error log, you can now create
error notification objects to cause recovery actions to run should specific
errors be generated.

4.3 Implementing Error Notification in the Real World

This section describes the method to implement error notification.

4.3.1 Implications of Error Logging on System Performance
The error logging functionality provided by AIX is a very powerful facility, but,
as with any facility like this, it may be subject to misuse. The vast majority of
entries in the AIX error log will be derived from the underlying hardware, the
AIX Operating System, or other system software. There is little that can be
done to control the number of events logged from these resources. The AIX
Operating System and its components have been architected, for the most
part, to provide suitable thresholding of these.

However, if you add large numbers of error notification objects, this will affect
the behavior of the system. Each time an error is logged, the error daemon
determines if the error log entry matches the selection criteria of any of the
error notification objects. If there are large numbers of objects to be checked,
the time taken to perform the checking will increase. Similarly, the use of
system resources to perform this task will also increase. In the majority of
systems, this will not be a major issue; however, systems that are already
resource-constrained may run into problems.
58 HACMP Enhanced Scalability: User-Defined Events

When adding your own facilities to write to the AIX error log, three key factors
should be considered when deciding what information should be written to
the error log.

4.3.1.1 The Importance of the Event
The first step is to determine whether a particular event should be logged or
not. The general rule is to not log information that is either unimportant or
confusing to its intended audience. However, a worse mistake is to not log an
error that merits logging.

There are no hard and fast rules as to what should and should not be logged,
but typically, you should only log critical or unrecoverable failures. In those
cases where it may be useful to also log informational messages or events
that were recovered internally, for problem determination purposes, you
should work with the software developer, if possible, to identify a mechanism
to turn on this logging only when it is really required rather than having these
items logged by default.

The correct execution of a piece of software should not be logged. To do so
not only causes unnecessary use of system resources, but also leads to a
tendency of the operator to ignore these messages, vast numbers of them
being irrelevant. This runs the risk of missing a critical failure that has been
written to the error log quite legitimately.

4.3.1.2 The Text Written to the Log
Having determined that an event should be logged, the next step is to
determine the text to be written. Messages should be short and informative
rather than long and cryptic. If you are automating recovery following the
logging of an error by using error notification, remember that it may be
necessary to use a short tag or error number that is easier for programmers
to test for rather than trying to parse a unique string from several lines of text.
The needs of automated recovery have to be balanced against the clarity of
the message, or a combination of the two may be required. For example,
messages similar to:

123-456: A critical software failure has occurred
123-768: Critical failure in module auth_check

would be easier for an error notification method to handle than:

A critical software failure has occurred
Critical failure in module auth_check

Yet they still retain the same degree of legibility to an operator. This is mainly
of concern if you are using a facility such as errlogger from a shell script or
The AIX Error Log and Error Notification 59

the errlog system call from a program. If you are using the logger command to
write to the error log via syslog, you can use the -t flag to specify a tag that
can be separate from the message itself.

4.3.1.3 Levels of Threshold
It is also important to determine the correct level of threshold and ensure that
the error logging mechanisms you are using keep within the guidelines you
have set. Each error to be logged, regardless of whether it is a software or
hardware error, should be limited by threshold to avoid filling the error log with
duplicate information. Just as you should determine what errors are important
to log, the mechanism by which the log entry is written should ensure that you
log an error once rather than multiple times.

The effects of excessive error logging include overwriting existing error log
entries and potentially missing or losing errors. This can also be unduly
alarming to an end user. The end user or service person can perceive a
situation as more serious or pervasive than it is if they see hundreds of
identical or nearly identical error entries where one or two might have
sufficed.

Where it is important to set reasonable threshold levels, you can mitigate the
effects of a poor threshold somewhat by ensuring that the sizes of the logs
and buffers are adequate for the system. It is possible to configure the sizes
of the in-memory buffer used by the error log device, and the size of the error
log itself, by using flags on the errdemon command. It is important to ensure
that these parameters are set to the correct size for your system. In practice,
you should leave them at their default sizes until a problem occurs.

The in-memory buffer is pinned, and hence, if the buffer is made excessively
large, performance of other processes will be impacted. If you make the
buffer too small, however, the buffer can become full if error entries arrive
faster than they can be read from the buffer and put into the log file. When the
buffer fills, new entries are discarded until space becomes available in the
buffer. You will know that this situation has occurred because the errdemon
will create an error log entry to inform you. However, you may have lost an
error that you wished to trap, and the required error notification object will not
have been run.

The error log held on disk needs to be set to the correct size. When the error
log fills, the log will wrap and existing information will be overwritten. This may
lead to inaccurate diagnostic analysis should an important error message be
lost.
60 HACMP Enhanced Scalability: User-Defined Events

At the same time, if the error log is made excessively large, it will consume
disk resource. The default system error log in the /var file system also
contains subdirectories and data files that are used by many busy
applications, such as accounting, mail, and the print spooler. If applications
on your system use the /var file system extensively, and you have set a large
maximum size for the error log, you may fill the file system, which could cause
other operational problems on the system.

4.3.2 Which Events Should Have Error Notification Objects?
Consider the example of a two-node cluster shown in Figure 10:

Figure 10. Example of a Two-Node Cluster

Each cluster node in this configuration has a single adapter to attach it to the
shared disk subsystem that contains a database. Node 1 is active and
running the database application. Node 2 is a standby node. If the disk
adapter in node A fails, there is no way for it to access the database.
Consequently, the system is unable to run the application.

However, from HACMP’s perspective, the node will still be functioning
correctly because heartbeat packets (keepalives) will still be being sent to or
received from the other cluster node. No failover or recovery action will occur.

Node 1

Ethernet Adapter 1

Ethernet Adapter 0

SCSI Adapter 1

Node 2

Ethernet Adapter 1

Ethernet Adapter 0

SCSI Adapter 1

Shared Disks

A A’ A"
The AIX Error Log and Error Notification 61

This is a classic situation where error notification would be used to detect the
failure of the disk adapter and force a failover to the standby node. The failure
of the adapter is detected when errors are logged and a recovery action (error
notification method) is then initiated, which enables failover to occur.

The data in the external subsystem exists in a three-copy mirror, each copy
denoted by A, A' and A”. The failure of a single mirror will not cause Node 1 to
be unable to access the data and, as such, an error notification object to
force a failure similar to that in the case of the adapter failure is unnecessary.
However, it would be useful to know that a mirror had failed.

The subsystem has a single power cord. Failure of the power cord would
cause loss of access to the entire database. Once again, an error notification
object that forced failover to Node 2 would be of little use because Node 2
would be unable to access the disks, and the failover would fail.

There are no hard and fast rules as to what components should have error
notification objects because this is very much subject to the design of the
cluster. In a cluster configured for no single point of failure, there may be no
need for error notification to be used. Typically though, any components that
are key to the correct operation of the system, be they hardware or software,
which do not have backup within a cluster node, will require error notification
objects to force a failover to another system. Those critical components that
do have a backup within a system may also require error notification objects,
although in these cases, the notification method will control failover to the
backup resource in the same node.

To determine the need for error notification, you should refer to the cluster
diagram created during the planning phase of your implementation and
identify those components without backup or that require special recovery
processing.

Having determined which of the components need error notification objects, it
is necessary to work out what events or errors the component is capable of
generating.

If the component is software that has been developed locally, you should
know which events can be generated and which need to be handled. If the
component is hardware or software that has not been developed locally, you
should follow the following procedure.

4.3.3 Identifying the Correct Error Templates
Using the errpt command with the -t flag lists the error record templates
that have been installed on the system. These are all of the events or errors
62 HACMP Enhanced Scalability: User-Defined Events

that it is possible to generate. To get those events that a particular class of
device is capable of generating, you will need to search through this list.

For a list of the categories of error identifiers written to the error log, refer to
AIX Version 4.3 Problem Solving Guide and Reference, SC23-4123 .

For example, to get a list of all of the errors generated by SCSI devices, enter
the command

errpt -t | grep SCSI

The resulting output will look similar to:

038F2580 SCSI_ERR7 UNKN H UNDETERMINED ERROR
0502F666 SCSI_ERR1 PERM H ADAPTER ERROR
0BA49C99 SCSI_ERR10 TEMP H SCSI BUS ERROR
13881423 SCSI_ERR4 TEMP H MICROCODE PROGRAM ERROR
4EDEF5A1 SCSI_ERR5 PERM S SOFTWARE PROGRAM ERROR
52DB7218 SCSI_ERR6 TEMP S SOFTWARE PROGRAM ERROR
54E423ED SCSI_ERR9 PERM H POTENTIAL DATA LOSS CONDITION
5CC986A0 SCSI_ERR3 PERM H MICROCODE PROGRAM ERROR
C14C511C SCSI_ERR2 TEMP H ADAPTER ERROR

There are six error types that identify the severity of an error log entry. They
are:

 • INFO Informational Entries
 • PEND Impending loss of Availability
 • PERM Permanent
 • PERF Unacceptable performance degradation
 • TEMP Temporary
 • UNKN Unknown

A permanent (PERM) error is generated when the component or its
controlling software is unable to recover from the causing condition. Usually,
receipt of this type of error implies a hardware or software defect. Error types
other than PERM usually do not indicate a defect but are recorded so that
they can be analyzed by the diagnostics programs. For example, temporary
(TEMP) errors are normally generated when a condition has arisen that has
been recovered after several attempts.

A good starting point would therefore be to create error notification objects for
all of the permanent errors defined for the critical components identified
earlier. This will provide increased protection for your environment. Error
notification objects for other error types may be useful or required, depending
upon your operational environment.
The AIX Error Log and Error Notification 63

Note that in addition to listing the error type for an error, the errpt -t
command also shows the error class in the fourth column of the output. This
is used when creating the error notification object.

See AIX Version 4.3 Problem Solving Guide and Reference, SC23-4123 or
the documentation supplied with the component for more information about
the errors that can be generated and their respective severities.

Remember that errors can be generated that are not those that you
necessarily expect. The interaction between hardware and software is often
complex and tightly linked. This can potentially lead to one or more
unexpected errors being generated when a device fails. When a disk fails, it
is quite possible, for example, to generate any one of, or any combination of,
errors from the Logical Volume Manager, from the generic disk device driver
(that is HDISK errors), or from the specific disk device driver (that is SCSI
errors). This is in addition to any adapter or subsystem errors that might be
generated.

So, when trying to determine which error notification objects are required for
a given component, remember to allow for these complex interactions.
Similarly, when testing the system, test the environment thoroughly to ensure
that you see as wide a range of potential errors as possible.

Remember also that the generation of an error log entry is often dependent
upon the activity of the component. It is quite possible to power off a device
and for no error to be generated until some system activity attempts to access
or use the device. For example, a disk will not be marked as failed until you
attempt to write to it. A very common mistake is to create an error notification
object for a disk, and then power off the disk, and then wonder why the error
notification object is not triggered. Devices which are infrequently used will be
difficult to monitor passively.

4.3.4 Error Notification Methods
The error notification method is typically a shell script or a command string.
This is run when an error matching the selection criteria of the Error
Notification object is logged. The most important thing to know about this, and
a frequent cause of errors when implementing error notification objects, is
that the error notification daemon uses the sh -c command to execute the
notify method. When creating and testing error notification methods, it is
important to test that the command can be invoked correctly with sh -c. The
error notification daemon provides the following arguments to the notify
method.

 • $1 - Sequence number from the error log entry
64 HACMP Enhanced Scalability: User-Defined Events

 • $2 - Error ID from the error log entry
 • $3 - Class from the error log entry
 • $4 - Type from the error log entry
 • $5 - Alert flags value from the error log entry
 • $6 - Resource name from the error log entry
 • $7 - Resource type from the error log entry
 • $8 - Resource class from the error log entry
 • $9 - Error label from the error log entry

Invoking an error notification method on the detecting node is simple. The
shell script or command string is simply defined as part of the error
notification object. When invoking a method on a different cluster node, this is
also simple, provided the node on which the method is invoked does not
change. If this is the case, the notification method can include the relevant rsh
commands. Consider the following examples:

The error notification object looks like:

errnotify:
 en_pid = 0
 en_name = "disk_error"
 en_persistenceflg = 1
 en_label = ""
 en_crcid =
 en_class = "H"
 en_type = "PERM"
 en_alertflg = ""
 en_resource = ""
 en_rtype = ""
 en_rclass = "disk"
 en_symptom = ""
 en_method = "/usr/local/bin/disk_err_handler $9"

This will run the notification method, /usr/local/bin/disk_err_handler, each
time a PERM type error is logged against a disk resource. Note that the error
label is passed to the error notification method with $9.

In general, it is better to invoke the recovery commands from a shell script
rather than directly from the error notification method. This is because some
commands do not function correctly when invoked by sh-c. Note that
/usr/local/bin/disk_err_handler might look like this when the method is to be
run on the detecting node only:

#!/bin/ksh
#
case $1 in
The AIX Error Log and Error Notification 65

DISK_ERR1) /usr/local/bin/do_something;;
DISK_ERR2) /usr/local/bin/do_something_else;;
DISK_ERR3) /usr/local/bin/do_something_different;;

esac

When execution on a single remote node is required, this shell script might
look like:

#!/bin/ksh
#
case $1 in

DISK_ERR1) /usr/bin/rsh ctrl_ws /usr/local/bin/do_something;;
DISK_ERR2) /usr/bin/rsh ctrl_ws /usr/local/bin/do_something_else;;
DISK_ERR3) /usr/bin/rsh ctrl_ws /usr/local/bin/do_another_thing;;

esac

If the remote node changes depending upon the error, the script changes to:

#!/bin/ksh
#
case $1 in

DISK_ERR1) /usr/bin/rsh node1 /usr/local/bin/do_something;;
DISK_ERR2) /usr/bin/rsh node2 /usr/local/bin/do_something_else;;
DISK_ERR3) /usr/bin/rsh node2 /usr/local/bin/do_another_thing;;

esac

4.4 Testing Error Notification Objects

It can be difficult to test an error notification object. The first problems arise in
actually generating the particular error in the first place. Most hardware errors
are generated when a piece of hardware fails or functions incorrectly. This is
complicated by the fact that certain errors are generated when the hardware
fails in a certain way. Short of physically breaking the hardware, and
potentially breaking it in a specific way, how are you going to generate the
error to test your error notification object?

Assuming that you have a mechanism to fail a piece of hardware, for example
by powering off a disk, you should not have too much trouble in generating a
range of errors. For those errors that are harder to generate, it is necessary to
have a mechanism for simulating errors using software.

The following source code allows you to generate errors for testing:

#include <sys/errids.h>
#include <sys/err_rec.h>
#include <string.h>
#include <stdio.h>
66 HACMP Enhanced Scalability: User-Defined Events

int main(int argc, char *argv[])
{
 int err_code;
 ERR_REC(1) errbuf;
 if (argc != 3)
 {
 printf("Usage: err_test <error_id> <resource_name>");
 exit (1);
 }
 sscanf(argv[1], "%x", &err_code);
 errbuf.error_id=err_code;
 strcpy(errbuf.resource_name, argv[2]);
 return errlog(&errbuf, sizeof(errbuf));
}

The err_test command, generated from the preceding code, allows you to
write an entry to the error log. This can be used to trigger, and hence test, an
error notification object. For example, to test an error notification object that is
designed to react to loss of quorum for a volume group, that is, triggering
upon receipt of an error log entry with an error label of LVM_SA_QUORCLOSE, you
would perform the following steps:

1. Determine the error ID for the LVM_SA_QUORCLOSE error:

errpt -t | grep LVM_SA_QUORCLOSE

This will extract the error template as follows:

91F9700D LVM_SA_QUORCLOSE UNKN H QUORUM LOST, VOLUME GROUP CLOSING

2. The err_test command is invoked:

err_test 91F9700D sharevg

This will write the following error into the error log:

LABEL: LVM_SA_QUORCLOSE
IDENTIFIER: 91F9700D

Date/Time: Tue 23 Sep 16:38:10
Sequence Number: 34
Machine Id: 003540094100
Node Id: node3
Class: H
Type: UNKN
Resource Name: sharevg
Resource Class: NONE
Resource Type: NONE
Location: NONE
The AIX Error Log and Error Notification 67

Description
QUORUM LOST, VOLUME GROUP CLOSING

Probable Causes
PHYSICAL VOLUME UNAVAILABLE

Detail Data
MAJOR/MINOR DEVICE NUMBER
0000 0000
QUORUM COUNT
ACTIVE COUNT

If the error notification object is correctly defined, it will trigger upon receipt of
this error log entry.

4.5 Error Logging and Event Management

The AIX error logging facility is very powerful in its own right; however, its
scope and function can be further extended by utilizing Event Management
functionality such as Perspectives.

4.5.1 Informing Event Management That an Error Has Been Logged
The base AIX error notification facility allows an error notification method to
be invoked when an error occurs. This notification method will run on the
system in which the error was logged. In many cases, this is sufficient to
handle the condition that generated the error. For example, should an error
occur that can only be recovered by failing over to another cluster node, the
notification method need only halt the system or run a graceful stop of the
cluster manager with takeover. HACMP can then provide recovery in the
usual fashion. Assume, however, that the failure condition was more complex,
and that recovery actions needed to be run on a different node or on multiple
nodes in the cluster. This capability can be provided by the Event
Management subsystem.

Event Management can be informed that an error has occurred using the
errlog_rm notification method (this, more accurately, is a resource monitor).
This method is physically located in the /usr/lpp/ssp/bin directory and is
invoked by an error notification object like this:

errnotify:
 en_pid = 0
 en_name = ""
 en_persistenceflg = 1
 en_label = ""
68 HACMP Enhanced Scalability: User-Defined Events

 en_crcid = 0
 en_class = ""
 en_type = ""
 en_alertflg = ""
 en_resource = ""
 en_rtype = ""
 en_rclass = ""
 en_symptom = ""
 en_method = "/usr/lpp/ssp/bin/errlog_rm $1 $2 $3 $4 $5 $6 $7 $8
$9"

The errlog_rm program updates the IBM.PSSP.pm.Errlog resource variable.
This allows error log entry parameters to be passed to Event Management.
Event Management clients can then register to be notified on an event based
on this resource variable. One example of this in use might be using the
Event Management Perspectives GUI to monitor the error log.

Consider the following error that was written to the error log following a core
dump:

LABEL: CORE_DUMP
IDENTIFIER: DE0A8DC4

Date/Time: Mon Nov 17 11:40:41
Sequence Number: 626
Machine Id: 000022718000
Node Id: deneb
Class: S
Type: PERM
Resource Name: SYSPROC

Description
SOFTWARE PROGRAM ABNORMALLY TERMINATED

Probable Causes
SOFTWARE PROGRAM

User Causes
UNKNOWN

Recommended Actions
CORRECT THEN RETRY

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
RERUN THE APPLICATION PROGRAM
IF PROBLEM PERSISTS THEN DO THE FOLLOWING
The AIX Error Log and Error Notification 69

CONTACT APPROPRIATE SERVICE REPRESENTATIVE

Detail Data
SIGNAL NUMBER

11
USER’S PROCESS ID:

13206
FILE SYSTEM SERIAL NUMBER

57
INODE NUMBER

6160
PROGRAM NAME
notes

On the monitoring system, the Perspectives Event Management interface has
an Event Definition that monitors changes in the IBM.PSSP.pm.Errlog
resource variable. The predicate used in this case is X@0 != X@1; in other
words, the event triggers whenever a new error is logged to the AIX error log.
Viewing the event notification shows the following:

Event Definition Name: error_event
Condition

Name: errtest1
Description: An error log entry has been written
Resource Variable:IBM.PSSP.pm.Errlog
Expression: X@0!=X@1

Event Status
Resource Variable Value:

Field: 0
name: sequenceNumber
value: 626
type: char
Field: 1
name: errorID
value: DE0A8DC4
type: char
Field: 2
name: errorClass
value: S
type: char
Field: 3
name: errorType
value: PERM
type: char
Field: 4
name: alertFlagValue
70 HACMP Enhanced Scalability: User-Defined Events

value: 0
type: char
Field: 5
name: resourceName
value: SYSPROC
type: char
Field: 6
name: resourceType
value: NONE
type: char
Field: 7
name: resourceClass
value: NONE
type: char
Field: 8
name: errorLabel
value: CORE_DUMP
type: char

Time: Mon Nov 17 11:40:41 1997
Resource: NodeNum=1

The main advantage of monitoring the error log in this fashion is that
monitoring may take place, and/or an action may be invoked on a different
cluster node from that where the error occurred. This would be harder to
achieve using the standard AIX error notification mechanism.

4.5.2 Logging Events Detected to the AIX Error Log
In the same way that it is possible to tell Event Management about an error
that has been logged to the AIX error log, it is possible for Event Management
to write an entry to the AIX error log to the effect that an event has occurred.
Events defined using the Event Management Perspectives interface (spevent)
allow for an entry to be written to the error log. This can be used to trigger an
event notification method as before.

Once again, the error label will be the same regardless of the event that has
occurred (HA_PMAN_EVENT_ON), so additional logic would have to be
provided to assist in isolating the absolute cause of the error log entry to
allow the correct recovery action to be taken.

The following is an example of the format of an entry written to the AIX error
log by this mechanism. Note that the Event Management resource variable,
instance vector, and predicate are all provided in the error log entry.

LABEL: HA_PMAN_EVENT_ON
IDENTIFIER: E460E36E
The AIX Error Log and Error Notification 71

Date/Time: Wed Oct 8 04:38:55
Sequence Number: 1005
Machine Id: 00034173A000
Node Id: ctrl_ws
Class: S
Type: UNKN
Resource Name: pmand

Description
MONITORED SITUATION EXISTS

Probable Causes
MONITORED EVENT

Failure Causes
MONITORED EVENT

Recommended Actions
REVIEW DETAILED DATA

Detail Data
NAME
tmperr1
Node Number
1
RESOURCE TYPE
IBM.PSSP.aixos.FS.%totused
RESOURCE NAME
VG=rootvg;LV=hd3;NodeNum=1
SURPASSED THRESHOLD VALUE
X>90
DESCRIPTION
TMPERR1-TMP FULL EVENT HAS OCCURRED!
72 HACMP Enhanced Scalability: User-Defined Events

Chapter 5. Event Management and Perspectives

Perspectives is a feature of the IBM PSSP software that is used on the
RS/6000 SP. If you are not using an SP system, you will not have this
functionality available to you.

This chapter introduces the Event Management subsystem and the
Perspectives Graphical Systems Management tool. It looks at the Event
Management capabilities of Perspectives and describes how to configure the
system by using the GUI to define important user events. User-defined
events are the actions that should be triggered when an event occurs.

5.1 A Brief Overview of the Event Management Subsystem

Event Management is a distributed subsystem that ensures that status
information related to one component of the system can be delivered to a
second component, such that the latter can act upon this information. Event
Management looks after resources. A resource can be anything in the system
that we care to monitor, though typically the resources that are of interest are
those that provide some important or critical service to a system user, for
example, CPU usage, file system capacity, and so on.

The various resources that make up the system are monitored by entities
called Resource Monitors. These monitors are usually programs that keep
track of what the resource is up to and also supply information about the
resource. Rather than provide all of the possible information about the
resource, certain key attributes are monitored. Information about the status of
these key attributes is provided to Event Management through an application
programming interface known as the Resource Monitor Application
Programming Interface (RMAPI).

Collecting information about these key resources is only part of the story. The
information is of little use unless it can be acted upon, and Event
Management clients perform this role. An Event Management client is an
application that expresses an interest in one or more of the attributes of a
resource being monitored by a Resource monitor.

Event Management clients interface with the Event Management subsystem
through a second API known as the Event Management Application
Programming Interface (EMAPI). When a client starts, it registers an interest
in a given set of attributes for one or a number of resources. For each
attribute, a condition is defined. Event Management keeps track of both the
information being provided to it from the Resource monitors and the
© Copyright IBM Corp. 1998 73

information requested from it by its clients. When an attribute that Event
Management is receiving information about matches a condition in which a
client has expressed an interest, Event Management generates an event and
notifies the client.

Event Management subsystems on different systems communicate such that
a client does not have to be on the same machine as the resource in which it
is interested. This also allows a single view of these events to be provided to
the entire set of machines. In Figure 11, client C on Node 2 may register for,
and will receive, the same event information about the resource monitored by
Resource Monitor 1 as client A.

Figure 11. Event Management Subsystem

The ability to specify a condition of interest, plus the ability to monitor a given
resource from any machine within the cluster, makes Event Management an
ideal tool for improving the availability of a system. This is achieved by setting
the conditions such that you anticipate problems and can hence compensate
for them before they become actual failures.

Event Management is extensible through its two APIs, so you not only can
automatically react to problems elsewhere in the system, but also create your
own resource monitors to manage the status of your applications.

A

B
E

M
A

P
I

R
M

A
P

IEvent
Management
Subsystem

1

Node 1

C

E
M

A
P

I

R
M

A
P

IEvent
Management
Subsystem

2

Node 2

3

Clients Resource Monitors

Clients Resource Monitors
74 HACMP Enhanced Scalability: User-Defined Events

For more information on the Event Management subsystem, on writing
applications and resource monitors and sample code, refer to Event
Management Programming Guide and Reference.

5.2 Event Management Using the Perspectives GUI

A good introduction to the concepts of Event Management can be obtained by
using the Perspectives interface. Perspectives is a systems management tool
with an iconic interface. The main functions it provides are:

 • Hardware control and monitoring

 • Performance monitoring

 • VSD management

 • Event monitoring

For more information on Perspectives and how to use it, refer to the IBM
Parallel System Support Programs for AIX: Administration Guide, GC23-3897
or the Perspectives online help facility.

The Event Perspective interface may be invoked from the main Perspectives
window. To invoke the Perspectives interface, type the following on the
command line:

perspectives &

This assumes that /usr/lpp/ssp/bin is in your PATH. The window shown in
Figure 12 will be displayed:

Figure 12. SP Perspectives Launch Pad
Event Management and Perspectives 75

Double-click the manage events icon:

The Event Perspective window, shown in Figure 13, will be displayed:

Figure 13. Event Perspective

Alternatively, you can invoke the Event Perspective directly from a window by
typing the following on the command line:

spevent &

Once again, this assumes that /usr/lpp/ssp/bin is in your PATH. The Event
Perspective window will appear as before.
76 HACMP Enhanced Scalability: User-Defined Events

5.3 Event Notification Using Perspectives

This section describes how to use the Perspectives.

5.3.1 Creating a Perspectives Object for Event Notification
To create a Perspectives Object Using Perspectives, do the following:

1. If you have not already started the Event Perspective, do so now by
following the instructions in 5.2, “Event Management Using the
Perspectives GUI” on page 75.

2. If the Event Definitions pane is not already highlighted, click the left mouse
button in the pane to highlight it. This enables the Create button near the
top of the window.

3. Click Create . The Create Event Definition Window shown in Figure 14 on
page 78 appears.
Event Management and Perspectives 77

Figure 14. Create Event Definition

4. Select the Condition that you wish to monitor.

If you do not know the name of the condition, press the down arrow to
display the list of known conditions. Use the scroll bar to scroll through the
list.

Select the condition, for example pageSpaceLow, from the list by clicking
on it to highlight it. The Description box will show a description of the
condition. Verify that the description describes that which you wish to
monitor for.

If you cannot find a condition that meets your requirements, see 5.5,
“Creating a New Condition” on page 85.
78 HACMP Enhanced Scalability: User-Defined Events

5. Specify the resource that you wish to monitor for the condition you
defined. For example, NodeNum (the node number). The Resource
Identifier box will show the identifiers that you have selected.

6. Select Register to register the event with Event Management.

7. Finally, type the name that you wish the event to be known in the Event
Definition Name text entry box. Always select a meaningful name that will
assist, rather than hinder, systems management activities. For example:
node1_pgsp_low.

8. Press the Create button near the bottom of the window to create an Event
Definition object that will allow you to monitor the condition specified in the
definition. An icon for the event definition will appear in the Event
Definition pane. It will look like one of the icons shown in Figure 15:

If the event definition is in error, you will need to modify your definition until it
is correct. To change the event definition, double click on the event definition
icon, and the Event Definition window will open.

Figure 15. Event Icons

5.3.2 Monitoring for Event Notifications Using Perspectives
When the Perspectives interface is running, the Event Definitions will be
monitored provided they are registered with Event Management. When the
defined conditions of an Event Definition are met, the registered icon will
change to look like this:

To receive information about the event, double click on the changed icon. The
window shown in Figure 16 on page 80 will display:

Registered UnregisteredCannot be monitored
Event Management and Perspectives 79

Figure 16. View Event Notification Log

This is the Event Notification Log. To receive information about the specific
event, double-click the line related to the event definition, and the Event
Notification screen shown in Figure 17 on page 81 will display.
80 HACMP Enhanced Scalability: User-Defined Events

Figure 17. View Event Notification

Notification that an event has occurred is only the starting point. To be useful
for automating operations, it has to be possible to trigger an action when an
event occurs.

5.4 Triggering Actions from Events Using Perspectives

This section describes how to create a Perspectives object to react to an
event.
Event Management and Perspectives 81

5.4.1 Creating a Perspectives Object to React to an Event
1. If you have not already started the Event Perspective, do so now by

following the instructions in 5.3, “Event Notification Using Perspectives” on
page 77.

2. If the Event Definitions pane is not already highlighted, click the left mouse
button in the pane to highlight it. This enables the Create button near the
top of the window.

3. Press the Create button. The Create Event Definition Window shown in
Figure 14 on page 78 appears.

4. Select the Condition that you wish to monitor.

If you do not know the name of the condition, press the button with the
down arrow to display the list of known conditions. Use the scroll bar to
scroll through the list.

Select the condition, for example, pageSpaceLow, from the list by clicking
on it to highlight it. The Description box will show a description of the
condition. Verify that the description describes what you wish to monitor
for.

If you cannot find a condition that meets your requirements, see 5.5,
“Creating a New Condition” on page 85.

5. Specify the resource you wish to monitor the condition you defined. For
example: NodeNum (the node number). The Resource Identifier box will
show the identifiers that you have selected.

6. Select Register to register the event with Event Management.

7. Finally, type the name by which you wish the event to be known in the
Event Definition Name text entry box. Always select a meaningful name
that will assist, rather than hinder, systems management activities. For
example: node1_pgsp_low.

8. To define the actions to be run when the event conditions are met, select
the Response Options tag near the top of the window on the right hand
side. The second page of the Create Event Definition screen shown in
Figure 18 on page 83 is presented.
82 HACMP Enhanced Scalability: User-Defined Events

Figure 18. Response Options

9. Define the actions you wish to run when the event occurs:

 • If you simply wish to be notified of the occurrence of the event where you
are running the Perspectives interface, you do not need to do anything
more than ensure that the "Get Notified During the Event Perspective
Session" button is on. It is on by default.

 • If you wish an action to be run when the event occurs, select Take
Actions When the Event Occurs . The Command box is enabled, and
you can enter the command to invoke the recovery action in this box. This
is typically, though not necessarily, the full pathname of a shell script. For
example, if we wanted to stop the AppA application when the event
Event Management and Perspectives 83

occurs, the Command box would contain something like
/usr/local/bin/stop_AppA, which is the command to stop the application.

 • If you wish an action to be run when the rearm event occurs, select Take
Actions When the Rearm Event Occurs . The Rearm-Command box is
enabled, and you can enter the command to invoke the rearm action in
this box. This is typically, though not necessarily, the full pathname of a
shell script. For example, if we wanted to restart the AppA application
when the event occurs, the Command box would contains something like
/usr/local/bin/start_AppA, which is the command to start the application.

 • You can also specify whether you want SNMP traps, or AIX error log, or
syslog entries to be written by selecting the relevant buttons and entering
the required information into the relevant fields.

For example, if you enable AIX error logging or syslogging of errors
and type the following text in the panel:

TMPFULL1-TMP FULL EVENT HAS OCCURRED!

then when the error occurs, the following will be logged in the error log:

LABEL:HA_PMAN_EVENT_ON
IDENTIFIER: E460E36E

Date/Time: Wed Oct 8 04:38:55
Sequence Number: 1005
Machine Id: 00034173A000
Node Id: ctrl_ws
Class: S
Type: UNKN
Resource Name: pmand

Description
MONITORED SITUATION EXISTS

Probable Causes
MONITORED EVENT

Failure Causes
MONITORED EVENT

Recommended Actions
REVIEW DETAILED DATA

Detail Data
NAME
tmperr1
Node Number
1

84 HACMP Enhanced Scalability: User-Defined Events

RESOURCE TYPE
IBM.PSSP.aixos.FS.%totused
RESOURCE NAME
VG=rootvg;LV=hd3;NodeNum=1
SURPASSED THRESHOLD VALUE
X>90
DESCRIPTION
TMPERR1-TMP FULL EVENT HAS OCCURRED!

Simultaneously, the following will be logged by syslog. The actual
location where this message has been sent will depend upon the
definitions in your /etc/syslog.conf file.

Nov 21 17:29:56 ctrl_ws pmand[14088]:
SP Problem Mgmt: Monitored Situation Exists:
Name=tmperr1
Node Number=0Resource Variable=IBM.PSSP.aixos.FS.%totused
Instance Vector=VG=rootvg;LV=hd3;NodeNum=0
Predicate=X>90
Description=TMPERR1-TMP FULL EVENT HAS OCCURRED!

 • Finally, you should select the cluster node where these actions
should be run. For example, to run the actions on the control
workstation (the node with a node number of 0), select On Selected
Nodes and highlight 0 in the list of nodes.

10.Pressing the Create button will now add the event with its associated
actions to the configuration and register it with Event Management.
Pressing the Create button near the bottom of the window will create an
Event Definition object. An icon for the event definition will appear in the
Event Definition pane.

5.5 Creating a New Condition

Many event conditions have been defined on the system. However, if the
event condition you wish to monitor does not exist, a new condition can easily
be created. From the main spevent window, highlight the Event Definitions
pane and press Create to create a new event. The Create Event Definition
window appears. From this window, select Create Condition . The Create
Condition window shown in Figure 19 on page 86 appears:
Event Management and Perspectives 85

Figure 19. Create Condition

To create a new condition, perform the following steps:

1. Enter the Resource Variable Name, for example
IBM.PSSP.SampleCmdMon.state

If you do not know the name of the resource variable or cannot remember
the complete resource variable name, pressing the down arrow will reveal
a selection list. This may be viewed using the scroll bar. Alternatively,
typing the individual characters in the Resource Variable Name field will
86 HACMP Enhanced Scalability: User-Defined Events

cause the highlight value to change, allowing you to find the resource
variable if you know part of its name.

The Resource Variable Description field will contain a description of the
resource variable. This should describe the condition you are defining.
When the Resource Variable is selected, other fields, including the
Resource Identifier fields, will now be filled in using information from the
SDR if it is available. This can be changed if it is incorrect.

2. Enter the Expressions that describe the values of the Resource Variable to
trigger the event and rearm the monitor. Note that Perspectives uses the
term "expression" where the rest of Event Management uses the term
"predicate". For more information on predicates, refer to IBM Parallel
System Support Programs for AIX: Event Management Programming
Guide and Reference, SC23-3996.

3. Type the name by which the condition will be known in the Condition
Name field. This will be used to select conditions from the Event Definition
screen, so it should be descriptive of the function of the condition.

4. Type some descriptive text in the Condition Description box to describe
the function of the condition.

5. Press OK to create the condition. The create condition window
disappears, and you are returned to the Create Event Definition window.

For more information on using the Create Condition window, see the
Perspectives online help.

5.6 Using the Event Perspective for Notification and Recovery

Perspectives provides a simple-to-use interface for both defining error
conditions and creating error definition objects that apply these conditions to
specific resources. The error definition objects allow for the detection of
events and allow actions to be triggered upon receipt of an event. These
actions allow for scripts or programs to be run on one or more nodes of the
cluster. They also allow for logging of errors to the AIX error log and/or syslog
and for SNMP traps to be generated.

This may seem to provide all of the required functionality, and indeed in many
cases this will be true. However, there are a few areas where Perspectives
may not be the best tool for the job because it does not provide all of the
necessary functionality, as described in the following sections.
Event Management and Perspectives 87

5.6.1 Event Monitor or Event Configuration Tool
The first decision that should be taken regarding the Event Perspective is
how it is intended to be used within your environment. You can use spevent
as a systems management interface for events, as a configuration tool for
configuring event or action pairs, or as a combination of the two. Whichever
approach you decide upon, the number of event definitions should be kept
reasonably low. This is not because of any underlying restriction in its
capabilities, but rather because too many event definitions make the interface
overly complex to manage and use. As the number of event icons increases,
it becomes increasingly difficult to find the particular event definitions you are
looking for.

This is especially true if you intend to be using the Event Perspective within a
larger systems management framework or as a standalone event monitor. If
this is the case, the number of event definitions should be limited only to
those key events that are critical to the correct operation of your system.

A potentially better use of Perspectives is as a simple configuration tool for
user events. In this environment, the number of event definitions matters less
because they are not being actively managed. However, as before, when it
comes to changing or updating an existing event definition, having a large
number of them will result in the desired one being harder to find.

5.6.2 Using the Event Perspective as an Event Monitor
If you intend to use spevent primarily as an Event Monitor, you should ensure
that each event definition has a rearm predicate in addition to the event
predicate. If you do not do this, the event definition is very limited in function.
Once triggered, the event definition cannot process further changes in the
state of a resource until it is reset, either by restarting the spevent monitor or,
potentially, following a system reboot or similar restart.

Besides making the spevent unmanageable, a very large number of event
definitions will also impact the speed with which event notifications are
received. This is especially true if there are multiple instance vectors in
existence for a single resource variable.

The behavior of the spevent perspective is not necessarily intuitive when it
comes to handling an event. When an event is triggered, the event definition
icon changes, and the Event Notification Log window appears.

If there is a highlight bar in this window, this is not necessarily placed on the
event that has just triggered. Consequently, it may mislead an untrained
operator. The most recent event is to be found at the top of the screen.
88 HACMP Enhanced Scalability: User-Defined Events

In complex environments, however, where there is a lot of event activity, the
event that you think has caused the Event Notification Log to be displayed
may not in fact be at the top, having been superseded by subsequent events.

If this occurs frequently, a review needs to be done of the number of events
defined or the conditions used to trigger notification, because the values
chosen make the use of Perspectives impractical within environments such
as these.

Double-clicking on the icon of a triggered event definition will display the
Create Event Definition screen and will not take you to the Event Notification
log, as might be expected.

5.6.3 Using the Event Perspective as an Event Configuration Tool
While the Event Perspective can perform a useful systems management role
in certain systems, its use as an event and condition configuration tool is
probably appropriate.

Events configured with Perspectives are only monitored where a
Perspectives session is running. If Perspectives will not be running at all
times, or if event definitions are required to be monitored when Perspectives
is inoperative, the event definitions should be configured using the SP
problem management subsystem.

The first thing that has to be understood is that the Event Perspective relies
on resource monitors. If you do not have a resource monitor that can provide
the necessary information to allow you to monitor your critical resources, then
the Event Perspective interface loses some of its appeal. That said, there are
a number of resource monitors provided that cover a large proportion of the
common functions you are likely to need. In addition, although it requires
additional effort, you can create resource monitors yourself that provide any
additional function required within your environment.

When creating conditions and event definitions, there are several
alternatives. These relate to where the instance vectors are defined.

Consider the following example. To measure how much space has been used
in the /tmp file system, the IBM.PSSP.aixos.FS.%totused resource variable
would be used. This could be configured in a couple of different ways. The
first would be to perform most of the configuration in the condition. In this
case, you might configure a condition, tmpFull, with the Fixed Resource
Identifiers thus:

LV=hd3;VG=rootvg
Event Management and Perspectives 89

In this case, the Event Definition only has to identify the nodes of interest;
that is:

NodeNum=3

Contrast this with the creation of an fsFull condition with no Fixed Resource
Identifiers. The Event Definition in this case has to provide all of the
necessary information for the instance vector.

NodeNum=3;LV=hd3;VG=rootvg

While at first sight there might appear to be no difference between these two
alternatives, the former provides for greater control and manageability than
the latter. There is less chance of making mistakes when predefining most of
the instance vector within the condition. Consider also a situation where you
have a different set of predicates for different types of file systems. For
example, 90% for /tmp, 80% for /var, and 80% for /. In this environment,
creating three different conditions, tmpFull, varFull, and rootFull, where each
has the correct predicate, is more easily understandable than having three
variants on fsFull with different predicate settings.

Finally, although the Event Perspective can run recovery events on multiple
nodes, there is no simple mechanism for synchronizing the actions of these
scripts. This effectively limits Perspectives to simple multinode (Class III)
events. If you need this level of synchronization, then you will need to use
HACMP and its recovery programs, which provide barrier synchronization
protocols.

5.6.4 Invoking a Recovery Action from an AIX Error Log Entry
As discussed in Chapter 5.6.3, “Using the Event Perspective as an Event
Configuration Tool” on page 89, the Event Perspective relies on a resource
monitor to act as a trigger. If no resource monitor exists for the condition you
wish to monitor, then it can be difficult to harness the power of the
Perspectives interface.

The AIX error notification facility allows an error notification method to be
invoked when an error occurs. Event Management, and hence Perspectives,
can be informed that this error has occurred using the errlog_rm notification
method (this, more accurately, is a resource monitor). Using this mechanism,
a Perspectives recovery action can be triggered from an error being written to
the AIX error log.

You can monitor errlog_rm by using the IBM.PSSP.pm.Errlog resource
variable. This has a single instance vector, NodeNum, which specifies the
cluster node that you wish to monitor.
90 HACMP Enhanced Scalability: User-Defined Events

If monitoring of any error log activity is required, a condition needs to be
defined using the spevent perspective with an expression (predicate) of:

X@0!=X@P0

This is unlikely to be of any use unless spevent is being used solely as a
monitor for these events. If an error definition was to be created using a
condition based upon this predicate, any action associated with this error
definition would be run whenever an event was written to the error log.

A better method would be to define a predicate in the condition that triggers
only when a specific event that is of interest occurs. A Predicate providing
this would look like the following:

X@0!=X@P0 && X@1=="0x91f9700d"

This predicate illustrates several interesting things. First, the X@0!=X@P0 part of
the predicate ensures that an event is triggered only when a new event
arrives. In this case, X@0 refers to a field in the Structured Byte String (SBS)
that contains the sequence number of the error that occurred, and X@1 refers
to the field of the SBS that contains the error ID of the error, while 91F9700D is
the error ID for the error LVM_SA_QUORCLOSE, indicating a loss of quorum for a
volume group.

Having defined the condition with this event predicate, the condition can then
be used to define an event definition.

This predicate could also have been written as:

X@0!=X@P0 && X@8=="LVM_SA_QUORCLOSE"

where X@8 refers to the field in the SBS that contains the error label of the
error that was generated. To identify the error label or error ID for a particular
error, use the errpt command with the -t flag. This lists the error record
templates that have been installed on the system. For example, to get a list of
all of the errors generated by SCSI devices, enter the command:

errpt -t | grep SCSI

The resulting output will look similar to:

038F2580 SCSI_ERR7 UNKN H UNDETERMINED ERROR
0502F666 SCSI_ERR1 PERM H ADAPTER ERROR
0BA49C99 SCSI_ERR10 TEMP H SCSI BUS ERROR
13881423 SCSI_ERR4 TEMP H MICROCODE PROGRAM ERROR
4EDEF5A1 SCSI_ERR5 PERM S SOFTWARE PROGRAM ERROR
52DB7218 SCSI_ERR6 TEMP S SOFTWARE PROGRAM ERROR
54E423ED SCSI_ERR9 PERM H POTENTIAL DATA LOSS CONDITION
Event Management and Perspectives 91

5CC986A0 SCSI_ERR3 PERM H MICROCODE PROGRAM ERROR
C14C511C SCSI_ERR2 TEMP H ADAPTER ERROR

The error ID for a failure is the first field in a line entry. The error label is the
second field.

For more information on using the IBM.PSSP.pm.Errlog resource variable,
see Chapter 8, “Common Monitoring Tasks” on page 123 .

5.6.5 Invoking a Recovery Action from a Shell Script
Just as a Perspectives recovery action may be invoked from an AIX error log
entry, this same technique can be used to trigger an event via Perspectives
from a shell script by invoking the errlog_rm notification method (resource
monitor) directly. An error notification object that invokes errlog_rm has a
definition that looks like this:

errnotify:
 en_pid = 0
 en_name = ""
 en_persistenceflg = 1
 en_label = ""
 en_crcid = 0
 en_class = ""
 en_type = ""
 en_alertflg = ""
 en_resource = ""
 en_rtype = ""
 en_rclass = ""
 en_symptom = ""
 en_method = "/usr/lpp/ssp/bin/errlog_rm $1 $2 $3 $4 $5 $6 $7 $8
$9"

The errlog_rm resource monitor can also be invoked on the command line or
from a shell script. Hence, it is perfectly possible to create a monitoring shell
script that looks like this:

#!/bin/ksh
#
monitoring shell script
#
while true
do

/usr/local/bin/test_device
if (($? != 0))
then

/usr/lpp/ssp/bin/errlog_rm ‘/bin/date‘ 1
92 HACMP Enhanced Scalability: User-Defined Events

fi
sleep 60

done

This shell script is rather crude and serves only to illustrate the point rather
than being a reasonable example of a monitor. In the Perspectives condition,
a predicate of:

X@0!=X@P0 X@1=="1"

could be used. This is then used within an event definition. The use of the
date command to create the first field ensures a unique identifier. X@0!=X@P0
ensures that the same error will not be retrieved multiple times.
Event Management and Perspectives 93

94 HACMP Enhanced Scalability: User-Defined Events

Chapter 6. HACMP Recovery Programs

This chapter introduces the integrated user event functions of the HACMP
Enhanced Scalability product. It discusses the configuration of the
rules.hacmprd file and introduces recovery programs.

6.1 HACMP and Events

An HACMP cluster is event-driven. The software was initially configured so
that the cluster can detect and provide recovery actions for the following
cluster topology events:

node_up A cluster node joins the cluster.

node_down A cluster node leaves the cluster, either due to a failure or
in a controlled fashion.

network_up A network has become available.

network_down A network has failed.

swap_adapter A service adapter has failed.

In addition to these, some reconfiguration events are also defined. These
occur when the cluster topology has been changed. Each event has an
associated completion event, which is run after the event itself. For example,
when the node_down event has finished running, the node_down_complete
event is started. These predefined events allow the cluster manager to react
to major changes, such as node joins or network failures. However, by
themselves, they do not allow the cluster to react to other events such as disk
or software component failures. To do this, the cluster requires additional
configuration. Traditionally, this has been provided through AIX functions such
as error notification. However, it is now possible to use RS/6000 Cluster
Technology (RSCT) to provide these functions.

HACMP ES uses RSCT to handle user-defined events. It uses the Event
Management subsystem to perform and provide event detection and Group
Services to provide synchronization and control facilities for the recovery
mechanisms. As was discussed earlier, Event Management receives
information about a resource from a resource monitor. HACMP ES is an
Event Management client in that it registers with Event Management to
receive information about the resource conditions that it is interested in.
When the event predicate evaluation matches those conditions that have
been defined, the Event Management subsystem generates an event. This is
passed to HACMP, which then invokes the appropriate recovery program for
© Copyright IBM Corp. 1998 95

that event. If the event program requires actions to be performed on multiple
nodes in the cluster, Group Services provides a barrier synchronization
protocol for the recovery programs.

6.2 The /usr/sbin/cluster/events/rules.hacmprd File

Events are mapped to their respective recovery programs in the
rules.hacmprd file. This is located in the /usr/sbin/cluster/events directory. If
the event is predefined to HACMP, notification will come from Group Services.
If the event is user-defined, then notification will come from the Event
Management subsystem. In both cases, the entry in the rules.hacmprd file is
of the same format as follows:

1. Name

2. State (qualifier)

3. Recovery program path

4. Recovery type (reserved for future use)

5. Recovery level (reserved for future use)

6. Resource variable name (used for Event Manager events)

7. Instance vector (used for Event Manager events)

8. Predicate (used for Event Manager events)

9. Rearm predicate (used for Event Manager events)

All event definitions that are added to the rules.hacmprd file must consist of
exactly nine lines. Comments (lines beginning with a #) are not counted. If
there is no value for a line, then the line should be left blank rather than
removing or ignoring it. If the event definition is not in this format, the system
will hang when the cluster manager is started, and error messages similar to
the following will be written to the console:

Oct 13 05:15:19 node1 clstrmgr[8576]: Mon Oct 13 05:15:19 RdInit: Bad
format in rules file at line 223
Oct 13 05:15:19 node1 clstrmgr[8576]: Mon Oct 13 05:15:19 RdInit error
Oct 13 05:15:19 node1 clstrmgr[8576]: Mon Oct 13 05:15:19 hacmprd on
node 0 is exiting with code 3

6.2.1 Predefined Events
Entries for the following predefined events (those that are triggered from
Group Services) exist in the rules.hacmprd file by default:

 • node_up
96 HACMP Enhanced Scalability: User-Defined Events

 • node_down

 • network_up

 • network_down

 • swap_adapter

 • join_standby

 • fail_standby

 • reconfig_topology

 • reconfig_resource

A typical event definition that is triggered by a Group Services notification
might look like this:

Beginning of Event Definition Node Up
#
TE_JOIN_NODE
0
/usr/sbin/cluster/events/node_up.rp
2
0l
#6) resource variable name (Used for Event Manager events)

#7) Instance vector, only used for event manager events

#8) Predicate, only used for event manager events

#9) Rearm predicate, only used for event manager events

End of Event Definition Node Up

These predefined events provide the necessary functionality to allow HACMP
to protect against node, network and network adapter failures, as well as
allowing dynamic reconfiguration to function.

6.2.2 User-Defined Events
There are no user-defined events in the rules.hacmprd file as it is shipped.
Any events found in this file that are not on the predefined list above were
added by someone. User events have the same format, but a different layout,
because they are triggered from the Event Management subsystem.

A typical event definition triggered by Event Management might look like this:

Beginning of Event Definition Temp Directory Full
#

HACMP Recovery Programs 97

TEMP_FULL
0
/usr/local/events/tmp_full.rp
2
0
IBM.PSSP.aixos.FS.%totused
NodeNum=*;LV=hd3;VG=rootvg
X>90
X<80
End of Event Definition Temp Directory Full

The difference between events triggered by Event Management and those
triggered by Group Services is the additional definition of a resource variable
and a set of conditions.

Note that in both of the above sample event definitions, there are exactly nine
lines between the lines defining the beginning and the end of the event
definition.

6.2.3 Event Handling by HACMP
When an event occurs, the following steps are followed:

1. Group Services or Event Management notifies the cluster manager. Group
Services handles the predefined events, such as node or network events,
whereas Event Management takes care of user-defined events.

2. The cluster manager reads the rules.hacmprd file, which maps recovery
actions to events.

3. The cluster manager runs the recovery program.

4. The recovery program in turn runs a series of recovery commands. These
are potentially run simultaneously on multiple cluster nodes and kept
synchronized by barriers.

5. The cluster manager receives return status from the recovery commands.

6.3 Recovery Programs

This section describes recovery programs.

6.3.1 Recovery Command Specifications
The third line of the event definition specifies the recovery program that is to
be run when the user-defined event is triggered. The recovery program is not
a shell script but a sequence of recovery command specifications. Each
specification is of the following format:
98 HACMP Enhanced Scalability: User-Defined Events

node_set recovery_command expected_status NULL

where the values on the line are separated by spaces.

The nodeset specifies which nodes should run the recovery command. This
can take one of three values:

all All cluster nodes run the recovery command.

event The node where the event occurred runs the recovery
command.

other All nodes except the one where the event occurred run the
recovery command.

recovery_command is a quote-delimited string containing the full pathname
of the command to be executed.

expected_status is the successful return code of recovery_command.

When recovery_command is run, the return code is compared to the
expected_status value. If the values do not match, recovery_command has
failed, and the cluster manager generates an event error. The handling of the
event will then hang until fixed by manual intervention. The node on which
recovery_command has failed will not hit the barrier, and consequently, all
other nodes that are participating in running the event wait at the barrier. If
the return code is not important, or you do not wish to make a comparison,
specify an X as the value.

NULL is, at this time, a reserved field for future use. The word NULL should
appear at the end of the line.

6.3.2 Barriers
Recovery program specifications may be separated by barriers. These are
denoted by the keyword "barrier". They provide synchronization points for all
of the commands prior to the barrier. When a node hits the barrier, the cluster
manager on the node initiates the barrier protocol. When all nodes have met
at the barrier and have voted to approve the protocol, the next phase of the
recovery program is executed.

A recovery program might look like this:

Recovery Program 1
#
event "/usr/local/bin/restart_server" 0 NULL
other "/usr/local/bin/reconnect_clnt" 0 NULL
#

HACMP Recovery Programs 99

barrier
#
all "/usr/local/bin/restart" 0 NULL

In this example, when the event occurs, the node that detected the event runs
the /usr/local/bin/restart_server script. At the same time, the other cluster
nodes run the /usr/local/bin/reconnect_clnt command. Both of these
commands have a zero return code when they successfully complete. If a
non-zero return code is received from any of the cluster nodes, the recovery
program will hang and, after a period of time, the config_too_long event will
be triggered by the cluster manager. Upon the successful completion of the
/usr/local/bin/reconnect_clnt commands, the other nodes wait at the barrier
until the /usr/local/bin/restart_server command, which takes much longer to
execute, also completes. Once all cluster nodes have reached the barrier,
after voting to approve the barrier protocol, they then all simultaneously
execute the /usr/local/bin/restart command.

6.3.3 Passing Information to Recovery Commands
When a recovery program runs, the following environment variables are set
for the recovery_command:

 • EVRVNAME - the resource variable of the event, that is,
IBM.PSSP.Prog.xpcount

 • FIELD_2=

 • FIELD_1=1

 • FIELD_0=0

 • EVNAME - the name of the event (from the rules.hacmprd file, UE1)

 • EVENT_NODE -=1

 • EVRV=SBS

 • COORDINATOR=1

 • MEMBERSHIP - the cluster membership when the event was generated;
that is, 1 2

 • EVLOCATION - the node where the event was generated; that is, 1

 • PWD=/

 • TIMESTAMP - the time when the event was generated; that is, Mon Oct 13
11:37:02 1997

These variables can be used to pass information about the event to the file
system recovery command to allow more complex recovery to occur.
100 HACMP Enhanced Scalability: User-Defined Events

6.4 Adding User Events to a HACMP Configuration

This section describes how to add user events to a HACMP configuration.

6.4.1 User Events That Have a Specific Resource Monitor
Many events can be monitored by a defined resource monitor. It is simple to
add these events to the rules.hacmprd file, and hence, to the HACMP
configuration. To register the cluster manager for interest in one of these
events, you need only to edit the rules.hacmprd file to include an entry for the
event. This defines the resource variable, the instance vector for the
resource, and the event and rearm predicates.

For example, assume that you wish to monitor the amount of free space in the
root file system on node 2 of the cluster and take an action when this gets
less than 10%. In this case, the event that you are interested in can be
monitored by a specific resource monitor. The resource variable is
IBM.PSSP.aixos.FS.%totused, and the instance vector for the / file system on
cluster node 2 is NodeNum=2;LV=hd4;VG=rootvg. This then gives an event
definition added to the rules.hacmprd file that looks like this:

Beginning of Event Definition node2root Directory Full
#
NODE_2_ROOT_FULL
0
/usr/local/events/root_full.rp
2
0
IBM.PSSP.aixos.FS.%totused
NodeNum=2;LV=hd4;VG=rootvg
X>90
X<80
End of Event Definition node2root Directory Full

Other entries for other resources/resource monitors can be added in a similar
fashion.

6.4.2 User Events That Do Not Have a Specific Resource Monitor
Adding new events that do not have specific resource monitors is more
complex. The recovery program can only be triggered by a resource monitor;
and therefore, there needs to be an alternative mechanism to detect the
event. For example, through the AIX error log or syslog, and then use this to
trigger the recovery program through the IBM.PSSP.pm.Errlog resource
monitor.
HACMP Recovery Programs 101

Assuming that you have a mechanism to write to the error log, whatever that
might be, you can trigger a HACMP recovery program on this event using
errlog_rm.

The first example is where a recovery program is triggered directly from an
error received by a device driver. Consider a cluster where each cluster node
has a single X.25 adapter providing a communications service. When this
adapter fails, the service needs to fail over to another system. The error that
we wish to trap can be found using errpt -t. The error id is:

57797644

The entry in the rules.hacmprd file will look like this:

Beginning of Event Definition x25_failure
#
X25_ADAPTER_FAIL
0
/usr/local/cfg/events/kill_node.rp
2
0
IBM.PSSP.pm.Errlog
NodeNum=*
X@0!=X@P0 && X@1=="0x57797644"

End of Event Definition x25_failure

When an error with an error id of 57797644 is logged to the error log on any
cluster node, the kill_node Recovery Program will be run. This recovery
program looks like this:

kill_node Recovery Program
#
event "/etc/halt -q" 0 NULL

The second example is one where the recovery program is again triggered
from the errlog_rm resource monitor, but rather than the error coming directly
from a device driver or application, the resource monitor is invoked directly by
the shell script performing the monitoring function. The cluster consists of two
nodes, with the active node running an application. Because of the way the
application functions, it cannot be restarted on the same node when it fails.
Consequently, the service needs to fail over to the other system in the cluster.
The application is monitored by the following shell script, which is run
periodically by cron:

#!/bin/ksh
Appmonitor
#

102 HACMP Enhanced Scalability: User-Defined Events

/bin/ipcs -s| grep suppsvr > /dev/null
if (($? != 0))
then

/usr/lpp/ssp/bin/errlog_rm AA BB CC
exit 0

fi
exit 0

The corresponding entry in the rules.hacmprd file that triggers the recovery
program looks like this:

Beginning of Event Definition suppsvr_failure
#
SUPPSVR_FAIL
0
/usr/local/cfg/events/kill_node.rp
2
0
IBM.PSSP.pm.Errlog
NodeNum=*
X@0!=X@P0 && X@1=="BB"

End of Event Definition suppsvr_failure

The kill_node Recovery Program looks like this:

kill_node Recovery Program
#
event "/etc/halt -q" 0 NULL
HACMP Recovery Programs 103

104 HACMP Enhanced Scalability: User-Defined Events

Chapter 7. Other Event Utilities and Functions

SP Problem Management is a function of the IBM PSSP software that is used
on the RS/6000 SP. If you are not using an SP system, you will not have this
functionality available to you.

This chapter describes the other utilities and functions that are useful within
clustered environments for either detecting the occurrence of events or
running recovery actions.

In addition to the major functions discussed previously, there are several
other utilities or functions that can be utilized within a clustered environment
to provide either enhanced error detection or recovery functions. While the
facilities offered are not necessarily as key as those provided, for example, by
AIX with its error logging functionality, those provided by PSSP with the Event
Perspective, or HACMP and its recovery programs, they may still have an
important role to play in certain clusters.

This chapter covers the following tools and utilities:

 • Cluster Single Point of Control (CSPOC)

 • The SP Problem Management Subsystem (pman)

 • Using IBM.PSSP.pm.User_State resource variables

7.1 The Role of CSPOC in Multisystem Event Recovery

The Cluster Single Point of Control (CSPOC) facility is provided to assist with
the administration of a HACMP cluster from a single point. When it is invoked,
CSPOC automatically performs administrative tasks on the nodes in a cluster.
If CSPOC were not present, a system administrator would have to execute
each task separately on each node in the cluster. This causes additional
administrative overhead and can lead to inconsistencies within the cluster.

By automatically propagating system administration tasks, CSPOC eases the
administration of clusters by providing a set of cluster administration
commands. The main area of interest from a recovery action perspective,
however, is CSPOC's extensibility.

First, there are a few terms that need to be understood. In CSPOC terms, the
source node is the node on which the CSPOC command is invoked, and the
destination node is the node on which the CSPOC command executes any
underlying AIX commands. Each time any remote execution is invoked, a list
of destination nodes is used to determine where to execute the CSPOC
© Copyright IBM Corp. 1998 105

commands. The nodes in these destination lists must be all, or a subset of,
the cluster nodes.

7.1.1 Remote Execution Using the CSPOC Execution Language
Any CSPOC command has a set of responsibilities to control the execution of
commands on multiple nodes, to collect status and log information, to
respond to errors, and so on. Written in a traditional programming or scripting
language, there is a large degree of code duplication and significant potential
for errors. To resolve this dilemma, CSPOC commands are defined as
execution plans in a language called CSPOC Extension Language (CEL),
which contains the necessary constructs to handle common tasks with a
minimum of programming input.

The two primary constructs used for remote execution of commands that are
defined by CEL preprocessor (celpp) are try_serial and try_parallel. The main
difference between them manifests itself in the order in which commands are
executed and return codes are checked. When using try_serial, the
commands in the script are executed on one node at a time, and the checking
of return codes, and so on, is interleaved with the command execution. The
control flow is as follows:

for each node
initiate command on node
wait for command to complete
check status for node and execute except/others clauses

end

On the other hand, try_parallel allows commands to be executing on multiple
nodes simultaneously, but consequently limits the opportunities to check for
errors on one node before executing commands on others. In this case, the
control flow is:

for each node
initiate command on each node

end
wait for all commands to complete
for each node

check status for node and execute except/others clauses
end

Use of try_parallel can result in significantly lower command execution times
compared to try_serial, but at the cost of requiring more sophisticated error
handling and recovery logic.
106 HACMP Enhanced Scalability: User-Defined Events

7.1.2 CSPOC Multinode and Single Node "Recovery Programs"
The following examples show how CSPOC may be used to provide functions
similar to a HACMP recovery program, but without the barrier synchronization
protocols. The example shows the execution plans for the equivalent of the
node_down.rp recovery program. These execution plans could either be
prepared in advance, or, in a more advanced environment, the CEL could be
processed dynamically. This would avoid the need to maintain multiple, very
similar shell scripts on the systems. As a comparison, here is the original
recovery program:

event "node_down" 0 NULL
#
barrier
#
other "node_down" 0 NULL
#
barrier
#
all "node_down_complete" X NULL

The first execution plan handles the local node. This is assumed to be the
node where the event has occurred. This script might be triggered by an error
notification method:

Init CSPOC
%include cl_init.cel

THISNODE=‘/usr/sbin/cluster/utilities/get_local_nodename‘
_TARGET_NODES=$THISNODE

%try_serial _NODE _TARGET_NODES
/usr/local/cspoc/node_down

%end
exit 0

The second execution plan handles the remote cluster nodes:

Init CSPOC
%include cl_init.cel

THISNODE=‘/usr/sbin/cluster/utilities/get_local_nodename‘
_TARGET_NODES=$(echo $_TARGET_NODES | sed "s/,*$THISNODE,*//")

%try_parallel _NODE _TARGET_NODES
/usr/local/cspoc/node_down

%end
exit 0
Other Event Utilities and Functions 107

In both of these execution plans, the /usr/local/cspoc/node_down script that
is called looks like:

#!/bin/ksh
#
Set up environment
LOCALNODENAME=‘/usr/sbin/cluster/utilities/get_local_nodename‘
export LOCALNODENAME
for param in ‘/usr/sbin/cluster/utilities/cllsparam -n $LOCALNODENAME
do

export $param
done

Run event
/usr/sbin/cluster/events/cmd/clcallev node_down graceful
exit $?

Finally, this execution plan handles the node_down_complete functions for all
cluster nodes:

Init CSPOC
%include cl_init.cel

%try_parallel _NODE _TARGET_NODES
/usr/local/cspoc/node_down_complete

%end
exit 0

where /usr/local/cspoc/node_down_complete looks like:

#!/bin/ksh
#
Set up environment
LOCALNODENAME=‘/usr/sbin/cluster/utilities/get_local_nodename‘
export LOCALNODENAME
for param in ‘/usr/sbin/cluster/utilities/cllsparam -n $LOCALNODENAME
do

export $param
done

Run event
/usr/sbin/cluster/events/cmd/clcallev node_down_complete graceful
exit $?

7.1.3 Considerations for Using CSPOC
CSPOC offers a set of facilities that, in certain situations, may be of use when
implementing recovery actions. It provides a relatively simple mechanism for
108 HACMP Enhanced Scalability: User-Defined Events

executing commands on multiple systems in serial and parallel, plus
mechanisms for returning errors and messages to a single point. However,
there are a few restrictions that may make it unsuitable for implementing
recovery plans in your environment. Some of these are discussed in the
following sections.

7.1.3.1 Security Aspects of CSPOC
CSPOC uses the rsh command to remotely execute commands on the cluster
nodes. Hence, it requires rsh access to the nodes in the cluster. If running
without the enhanced security features of HACMP that use Kerberos, the
/.rhosts, $HOME/.rhosts, and /etc/hosts.equiv files must be configured
appropriately so that the user has the permissions required to execute
commands on all the cluster nodes. In addition, the CSPOC commands
require any privileges needed to run the underlying AIX system
administration tasks. If running the underlying AIX commands requires the
user to be root, the CSPOC command will also require the user to be root.

If your environment does not permit the use of rsh, and you are not utilizing
the enhanced security features of HACMP, you will not be able to use
CSPOC-based recovery actions.

7.1.3.2 Activity Logging and Error Reporting
All warning and error messages are reported in the CSPOC command’s
standard error and the CSPOC log file. The output from a CSPOC command
resides on the node in which the command is invoked. The output consists of
the output of the underlying administrative tasks grouped by cluster node. For
a CSPOC command executed across three nodes, the output format would
be:

Node 1: 1st output line from AIX command run on node 1
...
Node 1: nth output line from AIX command run on node 1
Node 2: 1st output line from AIX command run on node 2
...
Node 2: nth output line from AIX command run on node 2
Node 3: 1st output line from AIX command run on node 3
...
Node 3: nth output line from AIX command run on node 3

CSPOC also maintains a log file that records information about the execution
of each CSPOC command. Again, this file resides on the source node. If a
CSPOC recovery command fails, you need a mechanism for parsing any error
messages, either out of the log file or from stdout, in order to initiate other
recovery actions.
Other Event Utilities and Functions 109

Before executing the underlying AIX commands, a CSPOC command verifies
that the following are true:

 • All cluster nodes are available, that is, the command is able to rsh to all of
the cluster nodes.

 • All cluster nodes are installed with HACMP version 4.2 or higher.

 • When creating a new object, that the object does not already exist on any
of the cluster nodes.

The user has the option of passing a force flag to the CSPOC command,
which causes it to skip this verification. However, if the force flag is not set,
and any of these conditions exist, the CSPOC stops execution, and the
appropriate error message is reported. In a failure state, where potentially
one or more cluster nodes on a destination list are unavailable or
inaccessible, this verification may cause a CSPOC recovery action to fail. If
the force flag is set, this may cause a cluster inconsistency to arise. This
could potentially lead to serious problems in the future if left unresolved for
any length of time.

If an error occurs because an underlying AIX command fails, the CSPOC
command may either issue a warning message and continue execution or
issue an error message and stop execution. CSPOC does not attempt to roll
back any changes already made to the system. This may leave the cluster in
an inconsistent state. It is up to the system administrator to consult the
CSPOC log and output in order to determine and perform the appropriate
cleanup. This may cause problems where there are complex interactions
between cluster nodes.

CSPOC does not prevent more than one CSPOC command from being run at
the same time across the cluster. As long as the user has the proper system
administration privileges, CSPOC will attempt to execute the command. This
can again cause potential inconsistencies.

7.1.4 CSPOC Summary
CSPOC provides useful facilities for running a command on multiple
machines; however, there are limitations as to its effectiveness for recovery
actions. If a simple command needs to be run on a number of cluster nodes
and these commands are independent of one another, CSPOC may offer the
facilities that are required. CSPOC does not provide the more comprehensive
functions, such as barrier synchronization; hence, where complex
interactions occur between nodes, CSPOC is unsuitable for use.
110 HACMP Enhanced Scalability: User-Defined Events

CSPOC also does not provide any form of rollback facilities; whereas the
facilities provided by Group Services allow for alternative recovery actions to
be followed should an initial attempt at recovery fail. In summary, using
CSPOC to drive recovery actions is only advised where the commands being
run are simple and independent of each other.

7.2 The SP Problem Management Subsystem (pman)

This section describes the SP Problem Management subsystem.

7.2.1 Basic pman Operations
Just as the Perspectives interface provides a graphical tool for configuring
actions that should occur when a given event happens, the set of commands
and utilities provided by the SP Problem Management subsystem provides a
similar function from the command line. The problem management
subsystem is an Event Management client and subscribes to receive
notification of an event. When this event occurs, various actions can be run.
As with Perspectives, these include:

 • Running a command or script

 • Issuing an SNMP trap

 • Logging the event to syslog/AIX error log

The vehicle by which Problem Management functions is the pmand daemon.
Because pmand is a daemon, the events that it has subscribed to receive
notifications about are processed, even though the user who subscribed to
them originally has logged off. This is in contrast to the event perspective that
only monitors for the configured events where Perspectives itself is running.

Events are configured using the pmandef command. The following are
examples of the pmandef command in use:

To configure an event definition that will run a command when the event
evaluates

pmandef -s error_def1 \
-e "IBM.PSSP.aixos.FS.%totused:NodeNum=1;LV=hd4;VG=rootvg:X>90" \
-c "/etc/chfs -a size=+1 /" -n 1

For more information and the full syntax of the pmandef command, refer to
PSSP Commands and Technical Reference.

In the preceding example, when the root file system on node1 exceeds 90%
utilization, the chfs command is run on node1 to extend the file system size
Other Event Utilities and Functions 111

by one physical partition. Notice that the resource variable, the instance
vector, and the predicate are all supplied on the command line. error_def1 is
just the name by which the error definition can be managed.

Similarly, if instead of running a command it was determined that an SNMP
trap should be generated, the preceding event definition command would look
like this:

pmandef -s error_def1 \
-e "IBM.PSSP.aixos.FS.%totused:NodeNum=1;LV=hd4;VG=rootvg:X>90" \
-t 12345

In this case, when the event occurs a SNMP trap of ID 12345 will be
generated.

Finally, if logging of the event to syslog and the AIX error log was required,
the pmandef command would look like this:

pmandef -s error_def1 \
-e "IBM.PSSP.aixos.FS.%totused:NodeNum=1;LV=hd4;VG=rootvg:X>90" \
-i "The root filesystem on node1 is over 90% full"

The entry written to the error log would look like:

LABEL: HA_PMAN_EVENT_ON
IDENTIFIER: E460E36E

Date/Time: Mon Dec 15 18:02:43
Sequence Number: 1115
Machine Id: 00034173A000
Node Id: ctrl_ws
Class: S
Type: UNKN
Resource Name: pmand

Description
MONITORED SITUATION EXISTS

Probable Causes
MONITORED EVENT

Failure Causes
MONITORED EVENT

Recommended Actions
REVIEW DETAILED DATA

Detail Data
NAME
112 HACMP Enhanced Scalability: User-Defined Events

error_def1
Node Number
1
RESOURCE TYPE
IBM.PSSP.aixos.FS.%totused
RESOURCE NAME
VG=rootvg;LV=hd4;NodeNum=1
SURPASSED THRESHOLD VALUE
X>90
DESCRIPTION
The root filesystem on node1 is over 90% full

The Problem Management subsystem relies on the Event Management
subsystem, which itself is distributed. As a result, monitoring does not have to
be performed on the node containing the resource.

When pmandef is run, the event definition is created and stored in the
pmandConfig class of the SDR. Once there, it may be queried and
manipulated using the standard SDR commands.

7.2.2 HACMP and pman Interactions
The Problem Management subsystem can support execution of recovery
actions on multiple nodes. As with a Perspectives error definition, the
execution of the recovery actions will not be synchronized between the
different cluster nodes unless a synchronization mechanism is provided. If
there is a requirement to trigger, for example, a HACMP recovery program
from a pman error definition, this may be performed by defining an entry in
the rules.hacmprd file to trigger a recovery program based upon error written
to the error log.

In practice, however, this would never need to be done. Being driven by a
resource monitor, the Problem Management subsystem is driven in the same
way as a HACMP recovery program. Consequently, creating a pman
definition that writes to the AIX error log, and then using this to trigger a
HACMP recovery program, is adding unnecessary complexity. It would be
simpler to trigger the recovery program directly from the same resource
monitor/instance vector/predicate combination.

For more information on the SP Problem Management subsystem, refer to
IBM Parallel System Support Programs for AIX: Administration Guide,
GC23-3897.
Other Event Utilities and Functions 113

7.3 Using IBM.PSSP.pm.User_State Resource Variables

After using the Event Management system for a while, it will become clear
that its real strength lies in its extensibility. However, writing a program to
either provide information to Event Management through the Resource
Monitor API (RMAPI), or to subscribe to event notifications using the Event
Management API (EMAPI), is a fairly major undertaking. Often all that is
required is the ability to interact with the Event Management subsystem from
a shell script. The Problem Management subsystem provides this
functionality through the pmanrmd daemon and its associated set of sixteen
resource variables.

The pmanrmd daemon, or Problem Management Resource Monitor daemon,
to give it its full name, provides a set of resource variables:
IBM.PSSP.pm.User_state1 through IBM.PSSP.pm.User_state16. These
resource variables are of type State, in that each fluctuation in the value of
the resource variable is significant and must be observed. The data type of
the State is a structured byte string (SBS). This has a single field that can
contain a character string. The single instance vector for the resource
variable is NodeNum, the node number.

The value of the resource variable is set using the pmanrminput command. For
example, to set the value of the IBM.PSSP.pm.User_state1 resource variable
to FAILED, the following command should be issued:

pmanrminput -s pman -a "IBM.PSSP.pm.User_state1+FAILED+"

This can be detected in any of the usual ways and used as a trigger for a
recovery action. For example, to use the SP Problem Management
subsystem to detect and trigger an action, the pman error definition would be
created by the following command:

pmandef -s user_state1 \
-e "IBM.PSSP.pm.User_state1:NodeNum=1:X@0==FAILED" \
-c "/usr/bin/banner failed > /dev/console"

If the user_state1 pman error definition object is defined using the preceding
pman command, then whenever the preceding pmanrminput command is run,
the word "failed" will be displayed on the console using the banner command.
This is a trivial example, but serves to illustrate the power of the pmanrminput
command.

It is also worth explaining these two commands. In the pmanrminput command,
the two plus symbols (+) are delimiters. In the pmandef command, X@0 is
114 HACMP Enhanced Scalability: User-Defined Events

used as a predicate operand because the data type is a structured byte
string, zero referring to the first (and only) field in the SBS.

Just as a pman error definition can be triggered from a pmanrminput
command, a HACMP recovery program may also be triggered in a similar
fashion. To trigger a node_down action when the preceding pmanrminput
command is run, the following definition should be added to the
rules.hacmprd file:

Beginning of Event Definition user_state1_failure
#
U_STATE1
0
/usr/sbin/cluster/events/node_down.rp
2
0
IBM.PSSP.pm.User_state1
NodeNum=*
X@0=="FAILED"

End of Event Definition user_state_1_failure

For more information on the pmanrminput command and the SP Problem
Management subsystem, refer to IBM Parallel System Support Programs for
AIX: Administration Guide, GC23-3897.

7.3.1 Creating Script-Based Resource Monitors
Using the mechanisms provided by SP Problem Management, it is a relatively
easy task to create simple script-based resource monitors for monitoring
complex environments. This is much easier than creating the corresponding
C programs to perform the same task.

There are limitations with this approach, chiefly that you are limited to sixteen
resource variables of the IBM.PSSP.pm.User_state type, so they should be
used appropriately. Also, you are limited to passing character strings, though
obviously a character string can contain a numeric value. However, having
only a single field in the SBS for each resource variable, if more than one
piece of information needs to be passed, you will need to utilize multiple
resource variables to do it.

Consider the following example:
Other Event Utilities and Functions 115

In a cluster, a database application instance consists of five processes.
These are named:

DB_writer

DB_logger

DB_recov

DB_reader

DB_ctrl

If you were to attempt to monitor this using the IBM.PSSP.Prog.pcount or
IBM.PSSP.Prog.xpcount, you would need a set of five instance vectors.
These, assuming that we are monitoring on node 5 of the cluster, would look
like this:

ProgName=DB_writer;UserName=root;NodeNum=5
ProgName=DB_logger;UserName=root;NodeNum=5
ProgName=DB_recov;UserName=root;NodeNum=5
ProgName=DB_reader;UserName=root;NodeNum=5
ProgName=DB_ctrl;UserName=root;NodeNum=5

Each of these would need a predicate similar to:

X@0 == 0

Because the processes interact, monitoring of the entire database subsystem
requires a mechanism to link these five predicates together, such that the
combination in order to take an action would be:

X@0DB_writer==0 || X@0DB_logger==0 || X@0DB_reader==0 || X@0DB_ctrl==0 ||
X@0DB_recov==0

Event Management does not provide a method for combining the predicates
of different resource variables, so this would have to be provided by the
implementer. As you can see, this is becoming increasingly complex.
Compare this, then, with the following simple shell script:

#!/bin/ksh
Simple DB monitor
#
count the DB_processes
COUNT=‘ps -ef | egrep DB_ | grep -v egrep | wc -l‘
/usr/lpp/ssp/bin/pmanrminput -s pman -a
"IBM.PSSP.pm.User_state1+$COUNT+"
exit 0
116 HACMP Enhanced Scalability: User-Defined Events

This can be run every 5 minutes from cron. Assume that the action that we
wish to take when a process dies is to cleanly stop and restart the database.
This could be handled on the local node by a Perspectives object, or more
likely, a pman object. This would be created using:

pmandef -s dbmon \
-e "IBM.PSSP.pm.User_state1:NodeNum=5:X@0!=5" \
-c "/usr/DB/cycle"

where /usr/BD/cycle is the script that stops the database cleanly and restarts
it.

If, on the other hand, the required action was to perform a HACMP
node_down on the node and to fail over to another, this could also be
achieved by using the preceding script in conjunction with the following entry
in the rules.hacmprd file:

Beginning of Event Definition DB_proc_failure
#
U_STATE1
0
/usr/sbin/cluster/events/node_down.rp
2
0
IBM.PSSP.pm.User_state1
NodeNum=5
X@0!="5"

End of Event Definition DB_proc_failure

This second mechanism will not be as accurate, or as immediate in detecting
a failure of a process in the database instance, as creating a mechanism
using the IBM.PSSP.prog.pcount resource variable. It will also not handle the
situation where a process hangs but remains in the process table. However,
for the vast majority of situations, it will provide sufficient accuracy. The ease
with which it is created is its main strength.

Consider this second example, which is more complex, but still a trivial,
example to illustrate the points under discussion. This uses a single
User_state resource variable to monitor multiple different devices and relies
on multiple pman objects to handle the different outputs. Once again, this
script would be likely to be run periodically by cron:

#!/bin/ksh
Multiple monitor
#
Check that /usr/local is mounted
Other Event Utilities and Functions 117

/etc/mount | grep "/usr/local" > /dev/null
if (($? != 0))
then
 /usr/lpp/ssp/bin/pmanrminput -s pman -a
"IBM.PSSP.pm.User_state1+LOCAL_UNMOUNTED+"
fi
Check that all print queues are available
for test in ‘/usr/bin/lpstat | grep -v Status | grep -v |
awk"/usr/local"‘
do
 if [[$test != "READY" || $test != "RUNNING"]]
 then
 /usr/lpp/ssp/bin/pmanrminput -s pman -a
"IBM.PSSP.pm.User_state1+PRINTQ_DOWN+"
 fi
done
Check NFS connections to clients
remotes=‘/usr/etc/showmount | wc -l‘
if (($remotes < 5))
then
 /usr/lpp/ssp/bin/pmanrminput -s pman -a
"IBM.PSSP.pm.User_state1+CLNT_NFS_DOWN+"
fi
exit 0

This script is then matched to three different pman objects created through
the following commands:

pmandef -s local_mount \
-e "IBM.PSSP.pm.User_state1:NodeNum=5:X@0!=LOCAL_UNMOUNTED" \
-c "/etc/mount /usr/local"

pmandef -s pqmon \
-e "IBM.PSSP.pm.User_state1:NodeNum=5:X@0!=PRINTQ_DOWN" \
-c "/usr/local/bin/restart_printq"

pmandef -s nfsmountmon \
-e "IBM.PSSP.pm.User_state1:NodeNum=5:X@0!=CLNT_NFS_DOWN" \
-c "/usr/local/bin/client_check"

The third, and final example, shows how multiple script based
User_state-type resource monitors may be combined in a single monitoring
tool to invoke a HACMP fail over by another User_state resource monitor.
The first component represents the two script monitors and their
corresponding pman object definitions:

#!/bin/ksh
118 HACMP Enhanced Scalability: User-Defined Events

Multiple resource monitor example - 1
#
Check that all print queues are available
for test in ‘/usr/bin/lpstat | grep -v Status | grep -v |
awk"/usr/local"‘
do
 if [[$test != "READY" || $test != "RUNNING"]]
 then
 /usr/lpp/ssp/bin/pmanrminput -s pman -a
"IBM.PSSP.pm.User_state1+PRINTQ_DOWN+"
 fi
done
exit 0

This is matched with the pman object created using the following:

pmandef -s pqmon \
-e "IBM.PSSP.pm.User_state1:NodeNum=5:X@0!=PRINTQ_DOWN" \
-c "/usr/bin/touch /tmp/pqfail"

This creates a file marker in /tmp when the first resource monitor evaluates as
true.

This is the second script/pman object combination:

#!/bin/ksh
Multiple resource monitor example - 2
#
Check that all printers are available
count=‘/etc/lsdev -Ccprinter | grep Available | wc -l‘
if (($count < 5))
then

/usr/lpp/ssp/bin/pmanrminput -s pman -a
"IBM.PSSP.pm.User_state2+PRINTERDOWN+"
fi
done
exit 0

This is matched with the pman object created using the following:

pmandef -s pqmon \
-e "IBM.PSSP.pm.User_state2:NodeNum=5:X@0!=PRINTERDOWN" \
-c "/usr/bin/touch /tmp/printerfail"

Finally, these are tied together with a third monitor that is run periodically by
cron. This looks like:

#!/bin/ksh
Basic Print Subsystem monitor
Other Event Utilities and Functions 119

#
Check for marker files
if [[-f /tmp/pqfail && -f /tmp/printerfail]]
then
 /usr/lpp/ssp/bin/pmanrminput -s pman -a
"IBM.PSSP.pm.User_state3+FAILED+"
fi
exit 0

This then triggers a HACMP recovery program through:

Beginning of Event Definition print subsys failure
#
PRINT_SUBSYS_FAIL
0
/usr/sbin/cluster/events/node_down.rp
2
0
IBM.PSSP.pm.User_state3
NodeNum=5
X@0!="FAILED"

End of Event Definition print subsys failure
120 HACMP Enhanced Scalability: User-Defined Events

Part 3. How Do You Monitor This?
© Copyright IBM Corp. 1998 121

122 HACMP Enhanced Scalability: User-Defined Events

Chapter 8. Common Monitoring Tasks

This chapter shows how Event Management can be used to perform common
monitoring tasks. As each task is introduced, the resource variables that are
used for monitoring are explained and examples of their use are given. These
examples may be used with Perspectives or the SP Problem Management
(pman) subsystem.

8.1 Monitoring Processes

There are two event management resource variables that are used for
monitoring processes. They provide very similar functions, and care should
be taken to ensure that the correct one is used if incorrect results are to be
avoided. They are:

 • IBM.PSSP.Prog.pcount, which represents all processes running a
program, regardless of why they are running it.

 • IBM.PSSP.Prog.xpcount, which only represents those processes that are
running a specified program as a result of having called one of the exec()
routines.

Typically, a process runs a program because it called an exec() routine
specifying the program. It is possible, however, that a process may be
running a program because it inherited the program from its parent process,
and hence, never called an exec() routine. Some daemons do this. For
example, the following ps output shows that only the process whose PID is
16706 called an exec() routine to run the biod program. All the other
processes inherited the biod program from their parent process--the process
with PID 16706:

ps -ef | grep biod
root 15942 16706 0 Oct 12 - 0:16 /usr/sbin/biod 6
root 16706 2344 0 Oct 12 - 0:15 /usr/sbin/biod 6
root 16972 16706 0 Oct 12 - 0:15 /usr/sbin/biod 6
root 17224 16706 0 Oct 12 - 0:15 /usr/sbin/biod 6
root 17486 16706 0 Oct 12 - 0:15 /usr/sbin/biod 6
root 17744 16706 0 Oct 12 - 0:15 /usr/sbin/biod 6

To monitor processes that inherit programs, the IBM.PSSP.Prog.pcount
resource variable should be used.

To only monitor processes that explicitly call an exec() routine to run a
program, the IBM.PSSP.Prog.xpcount resource variable should be used.
© Copyright IBM Corp. 1998 123

Using IBM.PSSP.Prog.pcount to monitor certain classes of programs, such as
those that create child processes to run other programs, may lead to
unintended events. Consider inetd as an example; inetd’s function is to spawn
other daemons. As the services of a daemon it controls are requested, inetd
calls fork() to create a child process. That child process starts out running the
inetd program but quickly calls an exec() routine to run the appropriate
daemon, such as telnetd. Therefore, for brief periods of time, more than one
process will be running the inetd program.

If IBM.PSSP.Prog.pcount was used to monitor inetd, events might be
generated showing these child processes running inetd for small periods of
time. To avoid these "false" events, it would be better to use
IBM.PSSP.Prog.xpcount.

As can be seen, some knowledge about how a program operates may be
needed before deciding how best to monitor it. For most cases, it is probably
appropriate to use the IBM.PSSP.Prog.xpcount resource variable to monitor a
program. However, if the program to be monitored is inherited by long-running
processes that do not call an exec() routine, IBM.PSSP.Prog.pcount might be
appropriate.

Both IBM.PSSP.Prog.pcount and IBM.PSSP.Prog.xpcount have instance
vectors that specify the program name, the user name, and the node number
of interest. The ProgName and UserName instance vector elements cannot
be wildcarded. The NodeNum instance vector element may be wildcarded.

Table 5 shows the structured byte string (SBS) included in the resource
variable’s value.

Table 5. SBS for IBM.PSSP.Prog.pcount and IBM.PSSP.Prog.xpcount

If we wish to monitor the inetd process on node 5, the instance vector would
be:

ProgName=inetd;UserName=root;NodeNum=5

Field Serial
Number

Data Type Description

0 long The current number of processes running the program for
the user.

1 long The previous number of processes that had been running
the program for the user.

2 char A comma-separated list of the PIDs of the processes
currently running.
124 HACMP Enhanced Scalability: User-Defined Events

A change in the value of an IBM.PSSP.Prog.xpcount or
IBM.PSSP.Prog.pcount instance either indicates that fewer processes or
more processes are running the program. Which condition is indicated can be
determined by comparing the value of the current process count with the
value of the previous process count. This is done with the predicate.

If the event you are monitoring for is a change in the number of processes
running a program, the predicate would be:

X@0 != X@1

This indicates when the value of the SBS Field serial number 0 is different
from SBS Field serial number 1. This will not tell you whether additional
processes have started or existing processes have stopped or died, only that
the number of processes has changed. If you wish to monitor for a reduction
in the number of processes, that is, the stop or death of a process, the
predicate would be:

X@0 < X@1

This would be used to monitor a set of processes, such as the biod daemons
in the preceding example, with the same name.

If you are monitoring for process death, that is, when no processes are
running the program, the predicate would be:

X@0 == 0

This indicates when the value of the SBS Field serial number 0 (the current
number of processes running the program) equals zero. This would also be
used to monitor for the existence of a single important process.

Both the IBM.PSSP.Prog.pcount and IBM.PSSP.Prog.xpcount resource
variables are designed to be used to monitor programs that are expected to
have long lifetimes. If they are used to monitor a program that runs for only a
few seconds, not all processes that run the program may be detected.

8.1.1 Recovery Actions for Process Death Events
The choice of a recovery action to handle a process death event has to be
made with care. Where it may seem that the obvious course of action is to
restart the process, this can often lead to further problems. Consider the
examples in the following section.

8.1.1.1 Process Dies Because of Resource Unavailability
In many situations, the fact that the process has failed is not due to a fault in
the code that makes up the process, but rather to a problem elsewhere in the
Common Monitoring Tasks 125

system. One activity that a process may undertake is to log its activity to a
file. When the file system that contains the log file fills up, the process is
unable to log and, therefore, abends. In this situation, a simple restart of the
process will have no effect whatsoever because the process will simply die
again. Only by first rectifying the underlying cause of the process death can
the process be made to restart successfully.

8.1.1.2 Controlled Stop of a Process vs Process Death
When a process is stopped in a controlled fashion, it will often perform
cleanup activities. If a process dies, there is no cleanup as a result, and the
attempted restart of the process will fail.

Consider an application which runs as a single process. The process ID of
this is held in file /tmp/app.PID. This file exists to prevent multiple instances of
the process from running on the system at the same time. Should the app
process fail, the attempted restart also fails because of the existence of the
app.PID file. This makes the startup routine believe that an instance of app is
already running on the system. Only by first cleaning up the remains of the
previous app instance can the restart of the process succeed.

8.1.1.3 Failure of a Process of Multiple Interrelated Processes
Many applications consist of multiple interrelated processes that make up a
single application instance. Often, these processes will be communicating
through some defined mechanism. For example, an area of shared memory.
In these situations, the uncoordinated restart of a single process within the
instance may cause additional problems. One possibility is that the newly
restarted process will simply be unable to communicate with those remaining
from the original application invocation. Another possibility might be that the
other processes fail. When running an instance that consists of multiple
processes, you should always restart the entire instance if a single process
fails rather than attempt to start only the failed process, unless you have fully
verified that a process within an instance may be restarted independently of
the others.

8.1.1.4 4. Controlled Process Death
It is difficult for the Event Management subsystem to determine the difference
between a real failure of a process and a controlled stop, particularly if the
process is stopped quite legitimately, albeit incorrectly, by another user. This
then introduces a requirement on the recovery action to be able to determine
the difference between the two.

To illustrate this, consider the following example where we have a process
called critical_process that we are monitoring for any abnormal termination.
126 HACMP Enhanced Scalability: User-Defined Events

The recovery action looks for the presence of a marker to determine whether
this is a controlled or abnormal stop. The critical_process recovery action
hence might resemble:

#!/bin/ksh
recovery action for critical_process
#
if [[-f /tmp/crit_proc_marker]]
then

Abnormal stop - restart critical_process
/usr/local/bin/critical_process
exit 0

else
Normal stop - do nothing
exit 0

fi

This is a simple example but illustrates the problem that we face. Having now
used a marker to determine whether this is a normal or abnormal stop,
additional effort must be applied to be made to the mechanism for starting
and stopping the critical_process process. Whereas before it might simply
have been sufficient to run critical_process on the command line, this
approach implies the use of start and stop scripts to create and destroy the
marker as appropriate.

The start script, start_crit_proc, might look like:

#!/bin/ksh
start script for critical_process
touch /tmp/crit_proc_marker
/usr/local/bin/critical_process
exit 0

The corresponding stop script, stop_crit_proc, would then look like:

#!/bin/ksh
stop script for critical_process
#
rm /tmp/crit_proc_marker
/usr/local/bin/kill_critical_process
exit 0

8.1.2 Rearm Considerations for Process Death Events
The rearm event for a process death notification is not always required. To a
large extent this depends upon the original event that occurred. If the system
is deemed to be working correctly only when a given number of processes
are running, for example 6, the rearm predicate would be:
Common Monitoring Tasks 127

X@0 == 6

However, if a single instance of a process is all that is needed, the rearm
predicate would be:

X@0 >= 0

8.2 File System Space

There are two event management resource variables that are used for
monitoring file systems. They are:

 • IBM.PSSP.aixos.FS.%totused, which is very useful because it provides
information about the utilization of a file system in percentage terms.

The instance vector for the IBM.PSSP.aixos.FS.%totused resource
variable comprises three values: the node in which the file system resides
(NodeNum), the name of the logical volume containing the file system
(LV), and the name of the volume group containing the logical volume
(VG).

The NodeNum instance vector element may be wildcarded.

 • IBM.PSSP.aixos.FS.%nodesused, which provides information about inode
utilization within a file system, is less useful except in environments where
very large numbers of small files are required to be stored in a single file
system.

The resource variable's value is a quantity of data type float containing the
percentage utilization of the file system.

If we wish to monitor the root file system (/) on node 3, the instance vector
would be:

VG=rootvg;LV=hd4;NodeNum=3

The logical volume associated with a file system can be identified using the
lsfs command. Once the logical volume name is known, the volume group
can be located. Under normal circumstances, an AIX file system should not
be more than 90% full if optimum performance is to be maintained. An event
may be triggered when this threshold is reached using the predicate:

X > 90

In certain environments, for example for DFS and AFS cache file systems, the
utilization should be lower. Monitoring in these situations requires a lower
value.
128 HACMP Enhanced Scalability: User-Defined Events

If you expect the utilization of a file system to remain approximately constant
and wish to be informed if the utilization suddenly changes, the predicate
would be:

X >= X@P + 5

This predicate will evaluate as true if the utilization of the file system has
increased by more than 5% since its previous observation. File system
observations are made, by default, every 60 seconds. If the resource variable
is used to monitor file systems that change rapidly over time, the resource
variable may not provide totally accurate information.

8.2.1 Recovery Actions for File System Full Events
The choice of a recovery action to handle a file system full condition, or a file
system hitting the limit predefined by the event condition predicate, must be
selected with care if any data loss is to be avoided. The seemingly obvious
course of action is to remove the files within the file system, but this is almost
guaranteed to introduce future problems.

The contents of a file system, and the volatility of the data stored there, vary
widely among systems. While it is impossible to give a set of guidelines that
will hold in every environment, the following general concepts tend to hold
true:

(/) The root file system (/) is the top of the file tree. It is usually
small and contains mount points for many other file systems.
However, it also contains the files and directories critical for
system operation, including the device directory, the ODM,
and programs for booting the system. If / fills up, the system
configuration stands a very good chance of becoming
corrupted. Consequently, the root file system filling up should
be avoided at all costs.

/home The /home file system contains user home directories. Disk
space within this file system can be managed through
techniques such disk quotas to ensure that users do not use
too much space. In most systems, however, this file system is
the most likely to fill up over time as users store increasing
volumes of data.

/var The /var file system tends to fill up because it contains
subdirectories and data files that are used by busy
applications such as accounting, mail, and the print spooling
subsystem. The majority of data in /var is transient; for
Common Monitoring Tasks 129

example, files are held here before printing. Once the file has
been successfully sent to the printer, the disk space used by it
is freed. If /var is full, functions such as mail, printing, and so
on will stop functioning.

/tmp The /tmp file system is normally intended to be used to hold
files on a temporary basis. In reality, however, it often tends to
fill up because users use it as a pool of additional disk space.
It also often contains temporary files created by applications
during the course of their operation such as temporary files
created by compilers. If /tmp is full, these applications may
cease to function correctly.

/usr The /usr file system contains executable files that can be
shared among machines. The majority of files in this file
system do not change. As a result, /usr should not change on
a day-to-day basis unless new applications or software
maintenance is being applied. Good system management
practices should avoid the majority of situations that result in
/usr suddenly filling up.

/export Some systems have a /export file system that contains the
server files exported to clients, such as diskless or dataless
systems. The /export file system typically contains
executables, paging space for diskless clients, and root file
systems for diskless or dataless systems. As with the /usr file
system, the majority of files in this file system do not change,
and disk space allocated for paging space and so on is
already allocated. As a result, on a day-to-day basis, file
system space should not be an issue. Good system
management should avoid the majority of situations that result
in it filling up.

Given the preceding general guidelines for which file systems run the risk of
filling, and the results of such an event, consider the examples of recovery
mechanisms for file system full events given in the following section.

8.2.1.1 Invoke Backup or Archive Mechanism
All systems should have some backup mechanism; typically, it is to tape. One
possibility for recovering space in a file system is to back up either all of the
files, or the least recently used files, to tape or to another backup medium.
This will allow file system space to be recovered but may result in initial
complaints from users that they have "lost" data. Having been backed up, of
course, the data can be recovered. Should this occur, it is often a good time
130 HACMP Enhanced Scalability: User-Defined Events

to then convince users to perform their own housekeeping to release space
occupied by files that they are no longer using.

Use of a hierarchical storage management (HSM) system can also alleviate
file system space problems. Most HSM systems migrate data from fast
storage devices, predominantly magnetic disks, to slower storage, such as
optical or tape devices. Typically this is performed when objects within a file
system reach a certain age or have not been accessed for a period of time,
say two months. When migration occurs, the object is copied to the slower
storage medium, and the copy held in the file system is removed. A pointer
remains to the object. If the user attempts to access the object, it is retrieved
from the slower storage and brought back onto magnetic media. The user
simply perceives a longer time before the object is available for use.

Most HSM environments provide mechanisms to move data from fast storage
to slower storage. One possibility would be to temporarily reduce the
time-to-live value for objects held on magnetic media. The effect of this would
be to move data to slower storage, and hence, reacquire file system space.
Other HSM systems provide facilities to archive the entire contents of a file
system to slower storage.

8.2.1.2 Increasing the Size of a File System
The AIX logical volume manager provides the capability to dynamically
extend a file system. One possible recovery action to invoke, should a file
system hit its preset utilization threshold, could be to extend a file system.

As with any recovery action, however, this has its potential advantages and
disadvantages. In a disk-rich environment where there is a lot of spare
capacity, adding additional space is a quick, easy, and non-disruptive change
to the system. In a disk-poor environment, this is unlikely to be an option.
Even in the disk-rich environments, however, this is not always an ideal
solution. Disk space is allocated in logical partition-sized chunks. In
environments with large capacity physical disks, these logical partitions may
be quite large; consequently, more disk space may be allocated than intended
if care is not taken.

Another consequence of logical partitions is that they are allocated from the
within the volume group. This may mean that they are allocated on a different
physical device. In some environments, this may lead to performance issues
because the logical partitions are not contiguous, or because they are located
on the relatively slow "edges" of the disk platters.

A final consideration with automatically increasing file system sizes is, that if
each time the predefined limit is reached, a new logical partition is added.
Common Monitoring Tasks 131

This will also tend to fill up over time. User data tends to expand to fill the
available space. This is simply putting off the issue until it can no longer be
addressed non-disruptively. Where automatically increasing the file system
size is a powerful tool, it has to be matched by careful systems management
and corresponding planning.

8.2.1.3 Deleting File System Contents
Making a conscious decision to delete some or all of the contents of a full file
system is a "last resort" option and is not one that should be undertaken
without careful consideration beforehand of the implications of this action. By
its very nature, a recovery action such as this is disruptive, and because it
deletes files, its results are not predictable.

That said, there are often many files present in a file system that are either
obsolete or unneeded. These include objects such as core files, a.out files,
temporary or checkpoint files created by editors, and so on.

Should you decide to follow this course of action, a good starting point for a
recovery script is the skulker program. Take a copy of this and modify it to fit
your environment because it has much of the necessary logic in place already
to deal with obsolete or unneeded files. A recovery action script to do this for
a single file system based upon skulker might look like this:

#!/usr/bin/bsh
fs_clean - Script to reclaim file system space
#
WARNING: THE WHOLE PURPOSE OF THIS SCRIPT IS TO REMOVE FILES,
SO IT HAS THE POTENTIAL FOR UNEXPECTED RESULTS.

remove_file()
{

if [-z "‘/usr/sbin/fuser $1 2>/dev/null‘"]; then
/usr/bin/rm -f $1

fi
}

date=‘/usr/bin/date‘
uname=‘/usr/bin/uname -nm‘
echo "$0 cleaned the $1 file system at $date on $uname"

/usr/bin/find $1 \
\(\(\(-name "*.bak" -o -name core -o -name a.out -o \
-name "...*" -o -name ".*.bak" -o -name ed.hup -o \
-name smit.script -o -name smit.log \) \
-atime +1 -mtime +1 -type f \
\) \
132 HACMP Enhanced Scalability: User-Defined Events

-o \
\(\(-name proof -o -name galley \) \
-atime +1 -mtime +1 -type f ! -perm -0200 \
\) \
\) -xdev -print | \
while read FILE2REM
do

remove_file $FILE2REM
done

To invoke this against the /home directory, the following command would be
used:

/usr/local/bin/fs_clean /home

8.2.2 Rearm Considerations for File System Space Events
The rearm predicate for a file system space event is typically the opposite of
the original event predicate. If the event is triggered when free space in the
file system is less than 10% of the total space, that is, when the predicate is:

X > 90

the rearm predicate for the event would be:

X < 90

8.3 Error Log Entries

The event management resource variable that is used for monitoring the AIX
error log is:

 • IBM.PSSP.pm.Errlog

IBM.PSSP.pm.Errlog contains information from an entry written to the AIX
error log. The sole instance vector for the resource variable is NodeNum. This
specifies the number of the node in which the error log that you wish to
monitor resides. The NodeNum instance vector element may be wildcarded.

The resource variable's value is a structured byte string that contains strings
of data from the AIX error notification daemon. For more information, refer to
Table 6.
Common Monitoring Tasks 133

Table 6. SBS for IBM.PSSP.pm.errlog

If we wish to monitor the AIX error log on node 1 of the cluster, the instance
vector would be:

NodeNum=1

A change in the value of an IBM.PSSP.pm.Errlog instance indicates that a
new entry has been written to the error log or logs that are being monitored.
Monitoring solely for changes, for example, new log entries, can be achieved
using the following predicate:

X@0 != X@P0

This indicates when the value of the SBS Field serial number 0, the sequence
number of the error, is different from its previous value. Each entry in the AIX
error log has a sequence number. These are assigned in increasing order.
Creating a condition with a predicate like this will tell you only that an error
has occurred and has been logged. It will not tell you anything about the

Field
Serial
Number

Data
Type

Description

0 cstring The sequence number of the error log entry.

1 cstring The error ID of the error log entry. For example, 00530EA6.

2 cstring The class of the error log entry. For example, H=hardware,
S=software, and so on.

3 cstring The type of the error log entry. This identifies the severity of
the error log entry. For example, PERM, TEMP, PEND, and
so on.

4 cstring The alert flags value of the error log entry. This identifies
whether the error is alertable.

5 cstring The resource name of the error log entry. For a hardware
error, this is the device name.

6 cstring The resource type of the error log entry. For hardware
errors, this is the device type of the resource from the
devices object class.

7 cstring The resource class of the error log entry. For hardware
errors, this is the device class. It is not applicable for
software errors.

8 cstring The error label from the error log entry. For example,
X25_ALERT25.
134 HACMP Enhanced Scalability: User-Defined Events

importance of the error. To monitor the error log for a specific error or set of
errors, a predicate similar to the following should be used:

X@0!=X@P0 && X@1=="0x476b351d"

In this predicate, X@1 refers to SBS Field serial number 1. This is the error ID
associated with the error. In this case, 476B351D is the error ID for the
TAPE_ERR2 error, a permanent failure of a tape drive attached to the
system. This predicate could also have been written:

X@0!=X@P0 && X@8=="TAPE_ERR2"

where X@8 refers to the field in the SBS that contains the error label of the
error that was generated. To identify the error label or error ID for a particular
error, use the errpt command with the -t flag. The error ID for a failure is the
first field, and the error label is the second field in the resulting output. If used
with pman, SBS field 8 contents will need to be enclosed in double quotation
marks.

8.3.1 Recovery Actions for Error Log Entry Events
The recovery action used to handle an error log entry event is dependent
upon: how critical the resource is within the system; whether recovery is
possible; if so, where that recovery should occur. There are various generic
actions that may be taken. These include:

 • Restart of the failed resource locally

 • Failover of the resource to another local resource

 • Failover of the resource to another cluster node

This discussion is no different from the case where the errors have been
detected by the AIX error log itself, and the event is triggered through error
notification. See Chapter 11, “Sample Events and Actions” on page 161 for
more detail.

8.3.2 Rearm Considerations for Error Log Entry Events
The rearm predicate for an error log entry event is very dependent upon the
recovery action. In general, however, because the initial trigger of the
resource monitor occurs based on a "one-off" event rather than, for example,
comparing a value against a threshold, there is no valid concept of a rearm
event for these occurrences, and hence, no valid rearm predicate.
Common Monitoring Tasks 135

136 HACMP Enhanced Scalability: User-Defined Events

Chapter 9. Common Recovery Actions

This chapter provides some sample actions that may be used in response to
an event. As each action is introduced, guidelines for the use of the action are
given.

9.1 Freeing Up File System Space

This shell script, which is loosely based upon the logic in /etc/skulker, frees
up file system space by deleting old files. For the most part, only files older
than seven days old are deleted. This can be changed by changing the
numbers associated with the -atime and -mtine flags in the find command. In
a well-managed system, a script like this should not be a problem to run,
there being a week in which to process any outstanding issues that have
been brought to light through logfile output.

The script is invoked with the sole parameter being the file system that is to
be cleaned. That is:

filesystem_clean /tmp

As with any shell script that deletes files, there is an inherent risk of losing
data when running this script:

#!/usr/bin/ksh
#
Filesystem cleanup script
#
function general_cleanup
{

DIR=$1
/usr/bin/find $DIR \
\(\(\(-name "*.bak" -o -name ".*.bak" -o \
-name "*.BAK" -o -name ".*.BAK" -o -name "...*" -o \
-name "*.CKP" -o -name ".*.CKP" -o -name core -o \
-name a.out -o -name ed.hup -o -name core.last -o \
-name "*~" -o -name .sh_history -o -name smit.script -o \
-name smit.log \) \
-atime +7 -mtime +7 -type f \
\) \
-o \
\(\(-name proof -o -name galley \) \
-atime +7 -mtime +7 -type f ! -perm -0200 \
\) \
\) \
-xdev -print | \
© Copyright IBM Corp. 1998 137

while read FILE
do

clear_file $FILE
done

}
function clear_file
{

if [-z "‘/usr/sbin/fuser $1 2>/dev/null‘"]
then

remove it if no-one is using it
/usr/bin/rm -f $1

else
clear it if something is holding it open
> $1

fi
}
Log what we are about to do
DATE=‘/usr/bin/date‘
UNAME=‘/usr/bin/uname -n‘
/usr/bin/echo "Filesystem cleanup of $1 run at $DATE on $UNAME" | mail
root
case $1 in

"/") # root directory
general_cleanup /
root specific cleanup
/usr/bin/find $1 \
\(\(-name image.data -o -name "ntp.conf0*" -o \
-name "ntp.conf1*" \) \
-atime +7 -mtime +7 -type f \
\) \
-xdev -print | \
while read FILE
do

clear_file $FILE
done;;

"/tmp") # tmp directory
general_cleanup /tmp
tmp specific cleanup
/usr/bin/find $1 \
\(\(-name "*" -o ! -name "tkt*" \) \
-atime +7 -mtime +7 -type f \
\) \
-xdev -print | \
while read FILE
do

clear_file $FILE
done;;
138 HACMP Enhanced Scalability: User-Defined Events

"/var") # var directory
general_cleanup /var
SP var specific cleanup
/usr/bin/find $1 \
\(\(-name "hmlogfile.*" -o -name amd.log -o \
-name "pmand.*.log*" -o -name "pmanrmd.*.log*" -o \
-name sysctld.log -o -name kerberos.log -o \
-name "sdrd.*" -o -name admin_server.syslog -o \
-name SPdaemon.log -o -name SDR_test.log -o \
-name spmon_itest.log -o \
-name jm_install_verify.log -o \
-name SYSMAN_test.log -o \
-name auto.log -o -name "haem*" -o \
-name "hats*" -o -name "hags*" \) \
-atime +7 -mtime +7 -type f \
\) \
-xdev -print | \
while read FILE
do

clear_file $FILE
done
other var specific cleanup
/usr/bin/errclear 7

/usr/bin/find $1 \
\(\(-name INEd.FATAL.LOG -o -name trcfile -o \
-name sulog -o -name log \) \
-atime +7 -mtime +7 -type f \
\) \
-xdev -print | \
while read FILE
do

clear_file $FILE
done
for VARDIR in /var/spool/qdaemon /var/spool/lpd/qdir \
/var/spool/uucp
do

if [[-d $VARDIR]]
then

/usr/bin/find $VARDIR -mtime +7 HR> -type f -print | \
while read FILE
do

clear_file $FILE
done

fi
done
if [[-d /var/spool/qftp]]
Common Recovery Actions 139

then
 /usr/bin/find /var/spool/qftp \

\(-name ’tmp*’ -o -name ’[0-9]*’ \) \
-mtime +7 -print | \
while read FILE
do

clear_file $FILE
done

fi
if [[-d /var/tmp]]
then

/usr/bin/find /var/tmp -atime +7 \
-mtime +7 -type f -print | \
while read FILE
do

clear_file $FILE
done

fi
if [[-d /var/news]]
then

 /usr/bin/find /var/news -mtime +45 \
-type f -print | \
while read FILE
do

clear_file $FILE
done

fi
if [[-d /var/adm/nim]]
then

/usr/bin/find /var/adm/nim -mtime +7 \
-type f -print | \
while read FILE
do

/usr/bin/rm -rf $FILE
done

fi;;
*) # Any other directory

general_cleanup $1 ;;
esac

9.2 Killing Processes

This shell script kills the processes that are the top ten users of CPU resource
or memory as measured by the ps command. In order to ensure that key
processes on the system are not inadvertently killed, the script uses an
exclusion list. This contains the names of those processes that are not to be
140 HACMP Enhanced Scalability: User-Defined Events

considered for termination. The script is invoked with a single parameter, m or
c, that determines whether the processes to be killed are memory or CPU
users. There is also a "safety catch" to ensure that if the script is inadvertently
invoked, no processes will be killed. To kill the top ten memory-using
processes that are not on the exclusion list, the script would be invoked thus:

proc_clean m Y

The exclusion list is a separate file. Its location is defined within the script and
may be changed as required. The format of the file consists of a single entry
per line, as such:

hatsd
swapper
init
syncd
portmap

As with any shell script that kills processes, the behavior of this script has an
inherent risk of causing unforeseen problems when run. This is compounded
by the fact that the processes that may be killed by it will vary depending upon
when the script is run:

#!/bin/ksh
#
Process cleaning script
#

EXCLUSION_LIST=/tmp/exclusion_list

Safety catch
if [[$2 != "Y"]]
then

echo "proc_clean was not confirmed"
echo "exiting..."
exit 0

fi
Log what we are about to do
DATE=‘/usr/bin/date‘
UNAME=‘/usr/bin/uname -n‘
/usr/bin/echo "Process cleanup run at $DATE on $UNAME" | mail root
case $1 in

m) # Top 10 memory using processes
for PID in ‘ps auxw | grep -v kproc | grep -vf $EXCLUSION_LIST |

tail +2 | sort -k 1.21,1.25nr|head | awk ’{print $2}’‘
do

kill -15 $PID
ps -ef | awk ’{print $2}’ | grep $PID
Common Recovery Actions 141

if (($? == 0))
then

kill -9 $PID
fi

done;;
c) # Top 10 CPU using processes
for PID in ‘ps auxw | grep -v kproc | grep -vf $EXCLUSION_LIST |

tail +2 | sort -k 1.16,1.20nr|head | awk ’{print $2}’‘
do

kill -15 $PID
ps -ef | awk ’{print $2}’ | grep $PID
if (($? == 0))
then

kill -9 $PID
fi

done;;
*) # Error - no parameter passed
echo "Error: no parameter passed to proc_clean";;

esac
exit 0
142 HACMP Enhanced Scalability: User-Defined Events

Chapter 10. The Top Ten Events and Actions

This chapter discusses the major events or occurrences that every system
should monitor for. It provides both mechanisms for monitoring for these
events and sample recovery actions should these events occur.

10.1 Introduction

This section identifies the top ten events that should be monitored for.
Occurrence of any of these events is likely to lead to problems with the
system in the near future if action is not taken to resolve the underlying
problem or provides some other sort of remedial action. Note that the events
are not given in any particular order of severity.

For each event, a selection of the problems that might arise if it is not fixed is
given along with mechanisms for detecting these events and potential
recovery actions.

Providing a list of the "top ten" events is much harder than it might seem. To
begin with, the list has to be generic enough to apply in more than a few
specific systems. Secondly, there is no way to easily assume what is right or
wrong for a particular environment. In many cases, a CPU which is 100%
utilized would appear to be a problem. Yet if this same CPU is performing all
of the tasks which it is called upon to do, is there actually a problem?
Similarly, large amounts of paging may be perceived in some situations to be
an issue. Yet if the perceived performance of the system as a whole is
deemed to be OK, again, just where is the problem in this event?

What this list tries to provide is a set of ten situations where problems will
arise--in some cases, immediately after the event occurs--in others, after a
longer period of time. They may not all apply on every single system in
existence, but the vast majority of systems will suffer when these events
occur.

Finally, the AIX Operating System, and the underlying hardware, is very
robust. Many devices and operating system components provide their own
recovery mechanisms should a failure occur: bad blocks on disks may be
relocated; failed daemons may be respawned; or more complex recovery will
occur. For example, within a device driver.

Therefore, for most systems, it will be the application software that causes
most problems, and hence it is this software that needs to be monitored. This
redbook does not discuss the intricacies of monitoring specific applications. If
© Copyright IBM Corp. 1998 143

you think it is difficult to identify the top ten AIX events, just think about trying
to identify the top ten applications.

In many cases, it is not possible to provide a generic recovery action. For
those examples where file system space is an issue, or for when the death of
a process has occurred, refer to Chapter 8, “Common Monitoring Tasks” on
page 123 for general guidelines on recovery actions. See also Chapter 9,
“Common Recovery Actions” on page 137.

10.2 File System Full Events

Three of the top ten events and actions are related to the file system full
condition.

10.2.1 The root (/) File System Filling Up
The root file system contains many critical components, any one of which
may become corrupted or inaccessible should the file system fill up. Among
others, the following problems may arise if this occurs:

 • Corruption of the Object Data Manager (ODM)

The ODM holds a large amount of AIX configuration information that is not
held in flat files. This data can be impossible to recreate without restoring
from a backup. If lost, it contains information about device configurations,
logical volume information, installed software, and so on. Loss of access to
this data will result in system failures.

 • Corruption of system configuration files in /etc

There are many flat configuration files held in the /etc directory in the root file
system. These contain other configuration details, such as information about
users and groups, file system configurations, network names and addresses,
and other network configuration data. Loss of access to this data will most
likely result in subsystem, and potentially entire system, failures.

File system space may be monitored using the following Event Management
Resource Variable:

IBM.PSSP.aixos.FS.%totused

The normal instance vector for the root file system will be:

NodeNum=*;LV=hd4;VG=rootvg

In most systems, the root file system is deliberately kept small but fairly full.
144 HACMP Enhanced Scalability: User-Defined Events

Consequently, a typical predicate for the condition might be:

X>95

In most environments, there is very little that can be deleted from the root file
system. It may be that there are leftover files from editing sessions or other
processes that have failed or ended abnormally. The following command
might be run to attempt to remove these files:

find / -name "*.bak" -o -name core -o -name a.out -o \
-name "...*" -o -name ".*.bak" -o -name ed.hup \
-atime +1 -mtime +1 -type f -print | xargs -e rm -f

In many cases, the root file system is also the home directory of the root user.
This may mean that there are SMIT logfiles that are held here. These are only
useful to keep if you intend doing something with them in the future. These
can be very large if not cleaned up regularly; consequently, removing these
logfiles may also free up space in /.

rm -f /smit.script /smit.log

As a last resort, if there is still no space free in the root file system, it is worth
considering an automatic extension of the file system. The following
command will add a single logical partition to the / file system:

chfs -a size=+1 /

10.2.2 The /var File System Filling Up
The /var file system contains working space used by many subsystems.
These will cease to function correctly if the file system fills up. The following
subsystems are likely to exhibit problems if the /var file system runs out of
space:

 • Accounting
 • Error logging
 • cron
 • mail
 • printing
 • uucp

File system space may be monitored using the following Event Management
Resource Variable:

IBM.PSSP.aixos.FS.%totused

The normal instance vector for the /var file system will be:

NodeNum=*;LV=hd9var;VG=rootvg
The Top Ten Events and Actions 145

The /var file system is typically fairly large in an average AIX system, and the
amount of freespace may vary quite significantly over time. It is therefore
important to set a predicate that is likely to be triggered only when there is a
problem rather than being triggered under normal operational conditions,
which would be quite possible if the value of the right operand was fairly low.
A typical predicate for the condition might be:

X>90

In most environments, there are many logfiles that can be deleted from the
/var file system. These may contain important data to assist with problem
determination; therefore, a backup followed by a removal is a preferred option
if this is possible. However, this is not always the case, and consequently, the
following procedure to remove logfiles may be followed should the key
consideration be keeping the system running:

 • Remove printer log files:

rm -f /var/adm/lp-log
rm -f /var/adm/lw-log

 • Remove uucp log files:

rm -f /var/spool/uucp/LOGFILE
rm -f /var/spool/uucp/SYSLOG
rm -f /var/spool/uucp/ERRLOG

 • Remove older files in /var/tmp:

find /var/tmp -type f -atime +7 -exec rm -f {}

Delete /var/adm/wtmp and /var/adm/acct if you do not need the files for
accounting purposes.

The following cleanup operations are more invasive and should be used as
last resort options. Use of these may cause loss of data that you wish to keep.

Firstly, the AIX error log may be of a significant size. This can be cleared
using:

errclear 0

Remove any files in the /var/preserve directory. This holds preserved data
from interrupted edit sessions:

rm -f /var/preserve/*

Also check for the existence of tracefiles. These are kept by default in
/var/adm/ras/trcfile.
146 HACMP Enhanced Scalability: User-Defined Events

10.2.3 The /tmp File System Filling Up
The /tmp file system contains working space used by some subsystems. It is
also frequently (and potentially incorrectly) used as extra space by users of
the system. Those subsystems that use /tmp will cease to function correctly if
the file system fills up. Where the given effects of /tmp filling up are specific to
the software installed on a particular system, the following components are
most likely to exhibit problems if the /tmp file system runs out of space:

 • compilers
 • editors

File system space may be monitored using the following Event Management
Resource Variable:

IBM.PSSP.aixos.FS.%totused

The normal instance vector for the /tmp file system will be:

NodeNum=*;LV=hd3;VG=rootvg

The /tmp file system is typically fairly large in an average AIX system and the
amount of freespace may vary quite significantly over time. It is therefore
important to set a predicate that is likely to be triggered only when there is a
problem rather than being triggered under normal operational conditions,
which would be quite possible if the value of the right operand was fairly low.
A typical predicate for the condition might be:

X>90

It is important that users understand the site policy for the /tmp file system. In
many system environments, data placed in /tmp is held there at the user's
own risk, and if a situation should arise that requires /tmp to be cleared out,
any files which have been placed there may be lost. This is a sensible policy
to follow because, strictly speaking, the /tmp directory is really intended for
system-generated temporary files rather than being a spare area of disk
space for users. If a policy such as this is implemented, the recovery action
for /tmp filling up would be fairly simple—that is:

rm -rf /tmp/*

Be aware that in RS/6000 SP environments, the existence of kerberos ticket
files, for example, /tmp/tkt0, will be effected by such a removal exercise. The
tickets associated with these files should be destroyed and regenerated if this
policy is followed.
The Top Ten Events and Actions 147

If this policy is not implemented at your site, then you are once again forced
into determining the relative importance of the files held in /tmp. A possible
solution might be to remove older files, as such:

find /tmp -type f -atime +7 -exec rm -f {}

10.3 Process Death Events

Two of the top ten events and actions are related to process death.

10.3.1 Failure of Domain Nameserver (named) Process
Name resolution is of surprising importance to the day-to-day operation of a
computer system within a networked environment. Where it is perfectly
feasible for each computer to have its own /etc/hosts file containing all of the
hostnames and IP addresses that it will be required to communicate with, the
management of such an environment rapidly becomes time consuming. The
implementation of a nameserver, a single repository of this information, is the
obvious solution once the number of machines reaches a certain point.

Many people assume that a nameserver is used only when you wish to
communicate with another system. However, once nameserving is
implemented in a networked environment, reference will be made to the
nameserver even for local tasks. Many more functions require name lookup or
address resolution than would immediately spring to mind. If the nameserver
fails, in addition to the more obvious TCP/IP communications problems that
will arise, many, or all, of the following will cease to function or function
incorrectly:

 • fonts
 • fileserving
 • X windows
 • mail

The named process can be monitored using the following Event Management
Resource Variable:

IBM.PSSP.Prog.pcount

The normal instance vector for the named daemon will be similar to:

NodeNum=4;ProgName=named;UserName=root

Notice that rather than wildcarding the NodeNum component of the instance
vector, because there will only be a single node running named, there is no
148 HACMP Enhanced Scalability: User-Defined Events

point in monitoring all nodes. A typical predicate for the condition describing
the death of the named process would be:

X@0==0

The obvious solution to the nameserver being a single point of failure is to
have two of them; in other words, to implement a secondary nameserver for
the domain. This is the preferred long-term fix for named problems. However,
if this has not been done, it is important to get the named process running
again as soon as possible.

The named daemon can be restarted as required. Assuming that the
configuration files were correct beforehand and the daemon was running
normally, the recovery action to restart the daemon will consist of the
following command:

startsrc -s named

This command assumes that the named daemon has its configuration files in
the default location, /etc/named.boot, /etc/named.data, and so on. If the files
were held in another location, in /usr/local/dns for example, the command
would be:

startsrc -s named -a ’-b /usr/local/dns/named.boot’

This solution assumes that the configuration was fine and was working
correctly. If the failure has arisen because of a change in the configuration,
however, this will need to be resolved before the named daemon will restart.

If you are using SCCS to manage changes to your system files, the rmdel
command will allow you to back out a delta (change) from a file. This may
allow you to return to a working configuration.

If you are not using SCCS, and the named process fails repeatedly after a
change, there is little automation that can be performed to return the system
into a working configuration. Instead, this will require manual intervention.

10.3.2 Failure of Portmapper Process
As with name resolution, as discussed in 10.3.1, “Failure of Domain
Nameserver (named) Process” on page 148, the portmap daemon provides
services to many operating system components. Many strange errors can
arise that are seemingly unrelated if the portmap daemon fails. For example,
it is possible to generate the following error if the portmapper is not running:

Fatal error: Invalid Shared Memory operation
The Top Ten Events and Actions 149

The /etc/rpc file contains the list of RPC program numbers. The contents of
this file will give some feel for those functions of your system that would fail if
the portmapper were to cease functioning:

portmapper 100000 portmap sunrpc
rstatd 100001 rstat rup perfmeter
rusersd 100002 rusers
nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount
ypbind 100007
walld 100008 rwall shutdown
yppasswdd 100009 yppasswd
etherstatd 100010 etherstat
rquotad 100011 rquotaprog quota rquota
sprayd 100012 spray
3270_mapper 100013
rje_mapper 100014
selection_svc 100015 selnsvc
database_svc 100016
rexd 100017 rex
alis 100018
sched 100019
llockmgr 100020
nlockmgr 100021
x25.inr 100022
statmon 100023
status 100024
bootparam 100026
ypupdated 100028 ypupdate
keyserv 100029 keyserver
sunlink_mapper 100033
tfsd 100037
nsed 100038
nsemntd 100039
showfhd 100043 showfh
cmsd 100068 dtcalendar
ypxfrd 100069 ypxfr
pcnfsd 150001
ttdbserver 100083 tooltalk

The portmap process can be monitored using the following Event
Management Resource Variable:

IBM.PSSP.Prog.pcount

The normal instance vector for the portmap daemon will be similar to:
150 HACMP Enhanced Scalability: User-Defined Events

NodeNum=*;ProgName=portmap;UserName=root

A typical predicate for the condition describing the death of the process would
be:

X@0==0

The portmap daemon may be restarted as required. However, if it terminated
abnormally, all the RPC servers on the system that were using it should also
be restarted. Fortunately, a large number of these restarts can be performed
very easily. If the primary user of portmap services on the system was NFS
and NIS, a possible recovery action for a portmap failure would be:

Stop NFS
sh /etc/nfs.clean
sleep 10
Restart portmapper
startsrc -s portmap
Restart NFS
/etc/rc.nfs

Other users of the portmap subsystem, such as the various CDE
components, rpc.cmsd, rpc.ttdbserver, and so on, are normally invoked
automatically when the user starts the relevant CDE application. For
example, rpc.cmsd is started when the dtcm (CDE calendar agent) process is
run. A solution for these might be to kill any existing calendar agent
processes (dtcm) so that the next user to invoke dtcm will also restart the
rpc.cmsd RPC server.

10.4 Virtual Memory Events

One of the top ten events and actions is related to virtual memory.

10.4.1 Running Out of Paging Space
AIX, being a virtual memory operating system, is reliant on its paging
space(s) having sufficient capacity to be able to support its processes. The
initial default paging space size is determined during the system
customization phase of AIX installation according to the following standards:

 • Paging space can use no less than 16 MB.
 • Paging space can use no more than 20% of total disk space.
 • If real memory is less than 32 MB, paging space is two times real memory.
 • If real memory is greater than, or equal to, 32 MB, paging space is real

memory plus 16 MB.
The Top Ten Events and Actions 151

In certain environments, for example those that run with massive executables
or datasets, there may be a requirement to have up to twice the amount of
physical memory available as page spaces. Therefore, there is very often a
need to increase the amount of paging space from that initially configured
when the system was installed.

If paging space runs low, processes may be lost. If paging space runs out, the
system may "panic". The system monitors the number of free paging space
blocks and detects when a paging space shortage exists.

When the number of free paging space blocks falls below a threshold known
as the paging space warning level, the system informs all processes (except
kprocs) of the low condition by sending the SIGDANGER signal.

If the shortage continues and falls below a second threshold known as the
paging space kill level, the system sends the SIGKILL signal to processes
that are the major users of paging space and that do not have a signal
handler for the SIGDANGER signal (the default action for the SIGDANGER
signal is to ignore the signal). The system continues sending SIGKILL signals
until the number of free paging space blocks is above the paging space kill
level.

If you do not wish to have processes killed in this fashion because they do not
handle SIGDANGER appropriately, then you need a warning mechanism.
This may be obtained by using the Event Management resource variable:

IBM.PSSP.aixos.PagSp.totalfree

By default, the SIGDANGER signal will start being sent when the number of
free paging space pages falls below 512, although this may have been
changed using the vmtune command. The predicate for the resource variable
therefore needs to be triggered before this limit is reached. For example, by
using:

X<600

Hopefully, capacity planning for the system will ensure that this event does
not occur. However, if it does, additional paging space should be defined
when the paging space low condition is detected. This may be performed
using the chps command, as such:

chps -s1 hd6

This will add one logical partition of disk space to the hd6 page space. This is
equivalent to 1024 extra paging space frames if the logical partition size for
152 HACMP Enhanced Scalability: User-Defined Events

the volume group is 4 MB. This should be sufficient to alleviate the current
crisis.

The downside of allocating additional page space in this fashion is that
performance of the system may deteriorate because the two paging spaces
(the original hd6 plus its recently allocated logical partition) are unlikely to be
contiguous on the disk. The addition will thus keep the system running but is
likely to require some systems management activity in the near future to
move partitions around on the disk to make the paging space contiguous
again.

While it would be perfectly feasible to create a script to perform this task at
the same time as increasing the paging space size, this is not advised as the
system would already be under stress at the time, and the additional activity
may push the system into the danger area once again or potentially push it
into the paging space kill area.

An alternative would be to use this threshold as a trigger for systems
management activity to manually clean up processes that are excessively
using paging space.

10.5 Performance Events

Two of the top ten events and actions are related to performance.

10.5.1 Excessive Paging Activity
As was stated earlier, any performance measurement is likely to be very
much system-specific, and as such, difficult to define. However, excessive
paging activity is likely to be a cause of concern. If this occurs, then the
performance of the system will be reduced. There are two potential
mechanisms to determine that paging is excessive. The first uses the Event
Management resource variable:

IBM.PSSP.aixos.Mem.Virt.pgspout

This provides a measure of the number of pages written to paging space.
This is equivalent to the po column in vmstat output; that is:

r b avm fre re pi po fr sr cy in sy cs us sy id wa
 0 0 41218 103830 0 0 0 0 0 0 134 471 51 1 1 98 0
 0 0 41218 103830 0 0 0 0 0 0 130 415 43 0 0 99 0

In a well-balanced system, this value should be zero. If this is the case, there
is no contention for the available memory, and hence, no paging of memory
used by running processes out to page space occurs. However, as this
The Top Ten Events and Actions 153

number increases, there is more and more time spent paging memory than
running the processes. In just about any system, there will be occasions
when paging does occur, so triggering an event when paging occurs would be
an invalid thing to do. A better measurement of excessive paging would be to
review vmstat output over a period of time and then determine a suitable
value for paging out that you deem to be excessive. For example:

X>80

Another method of determining overcommitment of memory is to look at the
number of pages in the free list. This shows the number of free pages of
memory that are available to accommodate page faults. As memory becomes
more and more utilized, the number of free pages decreases. Eventually,
pages will be reclaimed by the operating system to ensure that the system
does not come to a grinding halt. A situation where there are no free pages
for a long period of time is a cause for concern. The number of pages on the
free list can be monitored using the following resource variable:

IBM.PSSP.aixos.Mem.Real.numfrb

The predicate for this needs to not only reflect the current value, but also a
trend in values, such that the event is triggered when the problem has been
occurring for a while rather than at its first occurrence. Again, the absolute
values will depend on your observations of the system, but a predicate to do
this might be:

X<=50 && X<=X@P

Memory overcommitment may be a short-term problem caused by the
running of a number of memory-intensive processes, or may be a long-term
problem where the system is underconfigured for its workload. The only real
solution in the latter case is to purchase and install more memory.

Short-term solutions involve changing the way that a system utilizes virtual
memory. These can be made using the vmtune command. The advantage of
vmtune is that any changes made to the operational parameters of the Virtual
Memory Manager only last until the next reboot of the system. If the changes
you make only serve to make the situation worse, a reboot of the cluster node
will restore the system to its original state.

For more information on the use of the vmtune command, see AIX Version 4.3
Commands Reference, SBOF-1877. For more information on tuning VMM
page replacement, see AIX Versions 3.2 and 4 Performance Tuning Guide,
SC23-2365.
154 HACMP Enhanced Scalability: User-Defined Events

10.5.2 Memory Leakage in an Application
A so-called "memory leak" occurs when a program has a bug in it. This bug
normally takes the form of repeatedly allocating memory, using it, and then
neglecting to free it. A memory leak in a long-running program is a serious
problem because it can result in memory fragmentation and the accumulation
of large numbers of mostly garbage-filled pages in real memory and page
space. Systems have been known to run out of page space because of a
memory leak in a single program.

A memory leak can be detected by looking for processes whose working
segment continually grows in size. To get detailed information about the size
of the working segment, the svmon command may be used. Not all systems
may have the svmon command installed however, but a reasonable
approximation may be achieved by looking at the output of the ps v
command, as follows:

PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
31740 pts/1 A 0:00 0 232 468 32768 101 176 0.0 0.0 tn
34272 pts/0 A 0:00 9 232 468 32768 101 176 0.0 0.0 tn
34312 pts/2 A 0:00 15 172 436 32768 190 228 0.0 0.0 ksh
35292 pts/2 A 0:00 1 208 300 32768 46 60 0.0 0.0 ps v

The columns of interest are those that are memory-related: RSS, SIZE, TRS,
and TSIZ. The sum of these columns gives a quick approximation of the
memory utilization of the process. If you wish to monitor a particular process
that you suspect of having a memory leak, you could use a mechanism
similar to the following. Here, the process ID of the process in question is
8404.

ps v 8404 | grep -v PID | awk ’{print $6+$7+$9+$10}’

This returns the total memory usage (RSS+SIZE+TRS+TSIZ) as:

950

It is possible to run a shell script based upon this command periodically over
time (using cron) and place the value received into one of the User_state
resource variables thus:

#!/bin/ksh
PROCID=‘ps -ef | egrep DBappl | grep -v egrep | awk ’{print $2}’‘
MEMUSE=‘ps v $PROCID | grep -v PID | awk ’{print $6+$7+$9+$10}’‘
/usr/lpp/ssp/bin/pmanrminput -s pman \
-a "IBM.PSSP.pm.User_state3+$MEMUSE+"
exit 0
The Top Ten Events and Actions 155

This places the value of the memory usage of the DBappl process into the
IBM.PSSP.pm.User_state3 resource variable. This can then be monitored
using a predicate like:

X@0!=X@P0 && X@0>=X@P0+30

If the memory usage of the process increases between observations by more
than 30 pages, this predicate will evaluate as true. The absolute value of the
delta in such a case is system-and process-dependent.

If a process develops a memory leak, the simplest action is to stop it running.
This prevents it from using up more system resources, and hence, potentially
putting the entire system at risk. However, in many situations, this may not be
practical. In this case, the policy for handling rogue processes at your site
should be invoked.

10.6 Time Events

One of the top ten events and actions is related to time.

10.6.1 System Clock Wandering
The time at which a system clock is set in a stand-alone system can have
several interesting implications for applications and the operating system.
Within a clustered environment, where there is a much greater
interdependence between the cluster nodes, time--or rather the time on a
node that is out of step with the others--can cause serious conditions to arise.
These include:

 • Security failures

The timestamp on a kerberos key may result in it being invalid on one system,
even though it was only recently granted or created.

 • Application start-up

It is not uncommon, following a failure, for an application such as a database
to refuse to start because the latest timestamp on the database log is after
the current time on the local system. Variations on this can occur when the
timestamp and the current system time, even though in the correct temporal
order (that is, the log timestamp is earlier than the system time), are widely
different, or when a node attempts to participate in a parallel database and is
refused because its system time is widely different from the existing cluster
nodes.

 • User access
156 HACMP Enhanced Scalability: User-Defined Events

It is possible to specify the time periods that users may use a system. An
incorrect system time may cause user access to be denied.

There is no resource variable for monitoring system time or the degree to
which one clock is different from another. In a networked environment, and
especially in a clustered environment, time synchronization is important, but if
the mechanisms that have been put in place to ensure synchronization fail, or
if the clocks wander nevertheless, there needs to be a mechanism to detect
and handle this.

The most obvious preventative mechanism is to use the following command
to monitor either timed or xntpd, whichever you are using in your
environment:

IBM.PSSP.Prog.pcount

The normal instance vector for the timed daemon will be similar to:

NodeNum=*;ProgName=timed;UserName=root

The predicate for the death of the process would be:

X@0==0

Note that xntpd tends to run in a central location, for example, in the control
workstation in a RS/6000 SP environment. Monitoring for it should therefore
not be performed with a wildcarded NodeNum.

Even though the timed or xntpd processes may be running, system clocks
may still wander. This can be detected using the timedc command. For
example, running the following command on svrnode2:

timedc clockdiff svrnode1

will provide input similar to this:

time on svrnode1 is 2983 ms. behind time on svrnode2

This command can be placed into a periodically run shell script and used to
feed information into a User_state resource variable, as such:

#!/bin/ksh
TIMESERVER=ctrl_ws
TIMESHIFT=‘/usr/sbin/timedc clockdiff $TIMESERVER | awk ’{print $5}’‘
/usr/lpp/ssp/bin/pmanrminput -s pman \
-a "IBM.PSSP.pm.User_state10+$TIMESHIFT+"
exit 0
The Top Ten Events and Actions 157

This places the value of the time difference between this system and the
timeserver into the IBM.PSSP.pm.User_state10 resource variable. This can
then be monitored using a predicate like:

X@0>"900000"

If the time difference between this node and the timeserver is greater than
900000 milliseconds (15 minutes), this predicate will evaluate as true. The
absolute value of the delta is system-dependent and, potentially,
application-dependent.

Should this predicate trigger, the obvious action to take is to resynchronize
the clock of the node that is falling out of step with that of the master time
reference. While there are various techniques that can be used to do this, the
simplest method is to use the date command to reset the time.

10.7 Hardware Failures

One of the top ten events and actions is related to hardware.

10.7.1 Failure of the scsi0 Adapter
It may seem strange to have this item as an entry in the "top ten" events, but
it is here for good reason. The scsi0 in the title is a generic descriptor for the
SCSI adapter that is attached to the internal (operating system) disks. In most
systems, this will be /dev/scsi0.

A common perception is that a failure of this adapter will always cause a
failure of the operating system, which ought to manifest itself as a complete
system crash. This is not always true. In fact, it is very rarely the case.

The basic problem is the unpredictable state of the system as a result of the
failure of this adapter. It is possible to observe many different effects, ranging
from the "expected" system crash, through various degrees of operating
system "hang," to some systems with very large memory sizes seeming not to
"notice" this failure.

Under normal operating conditions, a large proportion of AIX programs and
data will already be resident in memory because they will have been used
earlier. Consequently, there is little need to use the disk or disks attached to
the scsi0 adapter. The system will continue to function correctly until some
attempt is made to access the disks connected to the failed adapter. The
session, or process, attempting this will then hang. However, the system itself
is not hung, and it is quite feasible to go to another terminal and continue
158 HACMP Enhanced Scalability: User-Defined Events

working (or for another process to continue working) until this also attempts to
access the disks and consequently hangs too.

The standard solution to a problem such as this would be to use error
notification to detect the failure and then trigger an error notification method
or use another Event Management technique, such as the SP Problem
Management subsystem, to trigger a recovery action. This is designed to
handle such failures as these.

However, the single SCSI adapter has an effect here too. Consider the
following scenario where an error notification object is configured such that,
should a catastrophic failure of the SCSI adapter occur, a shell script is to be
run that halts the machine.

When the SCSI adapter fails, an error is generated by the device driver. This
error is written to the error log that is held in memory, as would normally
occur. However, the error cannot be written to the disk error log because the
disk is no longer accessible. The converse of this is also true: just as
information cannot be written to the disk, the script to be run to halt the
system (the error notification method or the action triggered from Event
Management) is also inaccessible.

The scdsk_mon program monitors the SCSI adapter that is driving the
internal disks. Should a failure of this adapter occur, then the system is
halted. The other cluster nodes see this as a crash and take normal action to
take over the workload that was running on this system.

The way that scdsk_mon works is to issue non-blocking reads against each of
the disks that are attached to the adapter. The read is issued against block 0
of the raw device, /dev/rhdiskN, so that the interference that the monitor will
cause is kept to a minimum. As each read is issued, an independent timer is
set running.

As we have previously seen, the failure of the SCSI adapter causes the
process attempting to access the disk to hang. The timeout periods specified
as part of the SCSI standard are too long to be useful in this case. The
independent timer gives us the freedom to ignore the built-in timeouts.

If the disk read fails, the timer runs down, and the disk is marked as being
potentially unavailable. Each disk attached to the adapter has a non-blocking
read request issued against it in turn. The monitor then sleeps for a while
before "polling" the disks again.

Because a single disk may well be busy performing other I/O, and hence, fail
to respond to a single non-blocking read request, a disk is not marked as
The Top Ten Events and Actions 159

permanently unavailable unless access to it fails on multiple consecutive
attempts. As long as a single disk returns a successful read, the adapter and
bus are assumed to be good. Should all disks on the adapter fail to return
successful reads during a single polling period, the adapter is marked as bad,
and the system is halted.

In order to be able to handle different system environments, the choice of
adapter to monitor, the polling frequency, and the disk read timeout are
configurable. The defaults as supplied are suitable for the majority of systems
and will detect a failure and halt a typical system in less than 1 minute. The
usage of the scdsk_mon command is as follows:

scdsk_mon -l logical_device_name [-t timeout] [-p polling_interval]

where:

 • -l stands for the logical device name.

The device name of the adapter that you wish to monitor, that is, scsi0. Do
not put a /dev prefix onto this name.

 • -t stands for the timeout for the disk read request in seconds.

This is the value that the timer waits for before marking the disk as
potentially unavailable. The default value for this is 10 seconds.

 • -p stands for the polling interval in seconds.

This value determines how frequently the disk and adapter are monitored.
The default value is 30 seconds.

For example, to monitor the internal adapter scsi0 using scdsk_mon, issue:

scdsk_mon -l scsi0 &

The source code for scdsk_mon can be found in Appendix A, “scdsk_mon” on
page 175.
160 HACMP Enhanced Scalability: User-Defined Events

Chapter 11. Sample Events and Actions

This chapter discusses some of the system components that may run on an
AIX system. It also provides examples of the events that should be monitored
for and sample recovery actions should these events occur.

11.1 Components, Events and Possible Responses

This section ties together the monitoring techniques discussed in Chapter 10
with typical events that can occur. It explains the effects, or implications, of
these events, how to detect them, and possible recovery actions.

Each section in this chapter has the following format:

 • Name of Entity to be monitored.

Comments about what the normal situation should be, the conditions that
should be monitored for, or the implications of the event.

Example Resource Variable
Example Predicate

Where appropriate, a possible recovery action or comments about
recovering from this situation.

In many cases, it is not possible to provide a generic recovery action. For
those examples where file system space is an issue, or for when the death of
a process has occurred, refer to Chapter 8, “Common Monitoring Tasks” on
page 123 for general guidelines on recovery actions. See also Chapter 9,
“Common Recovery Actions” on page 137.

11.1.1 Accounting
Key files and directories:

The files and directories that are used depend upon the types of accounting
being performed. If there is no space in these directories, no accounting
records can be written, and consequently, the data will be incorrect. For each
type of accounting, the following files or directories may be used:

 • Connect-Time Accounting

/var/adm/wtmp

 • Process Accounting

/var/adm/pacct

 • Disk-Usage Accounting
© Copyright IBM Corp. 1998 161

/var/adm/acct/nite/dacct

 • Printer-Usage Accounting

/var/adm/qacct

IBM.PSSP.aixos.FS.%totused
X>90

11.1.2 AFS Client
Processes:

 • afsd

The number of afsd daemons and the options with which they run are site
dependent. Typically between 6 and 10 afsd processes should be running.
Failure of these processes will cause the client to function incorrectly.

IBM.PSSP.Prog.pcount
X@0==8

This assumes that your site normally runs with 8 afsd processes.

 • inetd.afs

The inetd.afs process is optionally run. This allows for functions such as AFS
authenticated r-commands. Failure of this process will cause authenticated
r-commands to cease to function.

IBM.PSSP.Prog.pcount
X@0==0

Key files and directories:

 • /usr/vice/cache - AFS cache

The AFS cache should be configured on a separate logical volume. At all
times, there should be a minimum of 10% of the LV/file system size available
as free space. If the cache fills beyond this, the performance of the client may
fall to unacceptable levels.

IBM.PSSP.aixos.FS.%totused
X>90

The AFS cache may be flushed to free space. This forces unwritten data in
the cache to be written back to the server or written data to be discarded. To
flush data from selected directories, use the fs flush command. To force all
cache data to be invalidated, use the fs flushvolume command. After the
cache has been flushed, subsequent access to this data will retrieve those
accessed pages from the server. This access will initially be slower than if the
162 HACMP Enhanced Scalability: User-Defined Events

page were locally cached. If this event is triggered frequently, the cache size
should be reviewed and potentially increased.

11.1.3 AFS Server
Processes:

 • afsd - see AFS client in 11.1.2
 • bosserver
 • buserver
 • fs
 • kaserver
 • ptserver
 • vlserver

Failure of any of these processes will cause the server to function incorrectly
or cease functioning as a server. You will need multiple instance vectors (one
for each process) to monitor these processes.

IBM.PSSP.Prog.pcount
X@0==0
upserver - optional

The upserver process is optionally run.

IBM.PSSP.Prog.pcount
X@0==0

Key files and directories:

 • /vicepa etc

The directories hold the data from the AFS file systems that are served to the
clients. If these directories fill up, no more data can be saved on the server.

IBM.PSSP.aixos.FS.%totused
X>90

11.1.4 Auditing
Process:

If you are using the BIN collection mode for auditing records:

 • auditbin

Failure of this process will cause the system to be unable to process audit
records. This may result in the system being shutdown, as security may
potentially be compromised.
Sample Events and Actions 163

IBM.PSSP.Prog.pcount
X@0==0

Key files and directories:

If you are using the BIN collection mode for auditing records:

 • File systems containing audit records

These directories contain the audit records detected on your system. The
location of these directories is specific to your environment. Typically they will
exist in a separate file system named /audit (or some similar name). In many
environments, if these directories fill up, you will not be able to store any new
audit records. In this case, it is often a predetermined policy to shut down the
system.

IBM.PSSP.aixos.FS.%totused
X>90

11.1.5 BNU/UUCP
Key files and directories:

 • /var/spool/uucppublic

This is the uucp spool directory. Free space should exist here to hold files for
transfer to other systems.

IBM.PSSP.aixos.FS.%totused
X>90

The commands uuclean, uucleanup and uudemon.cleanu are provided to clear
out files and logfiles from the uucp spooling and logging directories. These
may be used to free up space before more drastic measures are taken.

11.1.6 cron Daemon
Process:

 • cron

The cron daemon should be respawned automatically following a failure. If
the cron daemon has failed totally–that is, if it cannot be respawned
automatically, this is likely to be due to another cause.

IBM.PSSP.Prog.pcount
X@0==0
164 HACMP Enhanced Scalability: User-Defined Events

11.1.7 DCE/DFS Clients and Servers
Process:

The different processes that will run on the system are dependent upon the
role the system should perform. The number of each type of process is site-
dependent; see Table 7.

Table 7. DCE/DFS Sites and Processes

Failure of any of these processes will cause the system to function incorrectly
or cease functioning. You will need multiple instance vectors (one for each
type of process) to monitor these processes.

IBM.PSSP.Prog.pcount
X@0==0

Key files and directories:

 • /var/dce/adm/dfs/cache

This is the DFS cache, which should be kept on a separate logical volume.
The normal recommendation for a DFS cache is that at least 15% of the total
logical volume size should be available as free space.

IBM.PSSP.aixos.FS.%totused
X>85

dc
ed

cd
sa

dv

cd
sc

le
rk

dt
sd

se
cd

cd
sd

bo
ss

er
ve

r

up
se

rv
er

fls
er

ve
r

fts
er

ve
r

fx
d

df
sd

df
sb

in
d

Security Client X

CDS Client X X X

DTS Client X X X X

Security Server X X X X

CDS Server X X X X

DTS Server X X X X

DFS SCM X X X X X

DFS FLDB Server X X X X X X

DFS Fileset Server X X X X X X

DFS Client X X X X X
Sample Events and Actions 165

 • /var/dce/adm/directory/cds

This contains the CDS clerk cache. The amount of free space in the CDS
clerk cache should be at least the size of the CDS database. This is site-
dependent, but is typically less than 2MB in size.

IBM.PSSP.aixos.FS.%totused
X>90

This assumes that the CDS clerk cache is held in its own file system.

 • /var/dce/security/rgy_data

This holds the DCE Security Registry. The amount of free space in the
security registry should be at least the size of the security registry.

IBM.PSSP.aixos.FS.%totused
X>50

This assumes that the security registry is held in its own file system.

 • logical volumes used to hold DFS aggregates/filesets

These directories hold the data from the DFS file systems that are served to
the clients. If these directories fill up, no more data can be saved on the
server. Their location is dependent upon the configuration at your site.

IBM.PSSP.aixos.FS.%totused
X>90

11.1.8 DHCP Client
Process:

 • dhcpd

Failure of this process will cause the system to be unable to request a
dynamic IP address, and hence, be unable to connect to the network. If the
system has already obtained an IP address, it will be unable to renew it.

IBM.PSSP.Prog.pcount
X@0==0

11.1.9 DHCP Server
Process:

 • dhcpsd
166 HACMP Enhanced Scalability: User-Defined Events

Failure of this process will cause the system to be unable to function as a
DHCP server. Clients will not be able to discover IP addresses, and hence,
will be unable to connect to the network.

IBM.PSSP.Prog.pcount
X@0==0

11.1.10 Domain Name Server
Processes:

 • named

Failure of this process will cause the system to be unable to function as a
nameserver. This may cause many other, seemingly unrelated, system
functions to fail.

IBM.PSSP.Prog.pcount
X@0==0

The named daemon can be restarted automatically if it should fail by using
the startsrc command with appropriate parameters for your environment. If
this event triggers repeatedly, the problem most likely is not with the process,
but lies elsewhere in the named configuration files.

11.1.11 iFOR/LS
Processes:

 • llbd
 • glbd
 • netlsd

Failure of any of these processes will cause the system to function incorrectly
or cease functioning. You will need multiple instance vectors (one for each
type of process) to monitor these processes.

IBM.PSSP.Prog.pcount
X@0==0

11.1.12 Mail
Process:

 • sendmail

Failure of this process will cause the system to function incorrectly.

IBM.PSSP.Prog.pcount
X@0==0
Sample Events and Actions 167

Key files and directories:

 • /var/spool/mqueue

By default, this directory contains the temporary files and the log file
associated with the messages in the outbound mail queue. This directory, or
its contents, may be in a different location in your environment.

 • /var/spool/mail

By default, this directory contains the inbound mail for users on the local
system. This directory, or its contents, may be different in your environment. If
this directory fills up, mail for users on this system may not be able to be
delivered.

IBM.PSSP.aixos.FS.%totused
X>90

11.1.13 NCS
Processes:

 • llbd
 • glbd

Failure of any of these processes will cause the system to function incorrectly
or cease functioning. You will need multiple instance vectors (one for each
type of process) to monitor these processes.

IBM.PSSP.Prog.pcount
X@0==0

11.1.14 NFS Client
Processes:

 • biod
 • rpc.statd
 • rpc.lockd

Failure of any of these processes will cause the system to function incorrectly
or cease functioning. You will need multiple instance vectors (one for each
type of process) to monitor these processes. On earlier versions of AIX,
multiple biod daemons appear in the process table. Later versions have a
single biod daemon entry. Your predicate should reflect the situation on your
system.

IBM.PSSP.Prog.pcount
X@0==0
168 HACMP Enhanced Scalability: User-Defined Events

11.1.15 NFS Server
Processes:

 • rpc.lockd
 • rpc.statd
 • nfsd
 • rpc.mountd

If the server environment is required to support automounting of file systems:

 • amd

or

 • automount

Failure of any of these processes will cause the system to function incorrectly
or cease functioning. You will need multiple instance vectors (one for each
type of process) to monitor these processes. On earlier versions of AIX,
multiple biod daemons appear in the process table. Later versions have a
single biod daemon entry. Your predicate should reflect the situation on your
system.

IBM.PSSP.Prog.pcount
X@0==0

Key files and directories:

 • Exported data directories

These directories hold the data from the NFS file systems that are served to
the clients. If these directories fill up, no more data can be saved on the
server. Their location is dependent upon the configuration at your site.

IBM.PSSP.aixos.FS.%totused
X>90

11.1.16 NIM Server
Process:

 • nimesis

Failure of this process will cause the system to be unable to function as a NIM
server.

IBM.PSSP.Prog.pcount
X@0==0

Key files and directories:
Sample Events and Actions 169

 • File systems containing NIM objects

These directories contain the NIM objects such as lpp_source, SPOT and so
on. The location of these directories are specific to your environment. If these
directories fill up, you will not be able to store any additional NIM objects.

IBM.PSSP.aixos.FS.%totused
X>90

11.1.17 NIS Client
Process:

 • ypbind

Failure of this process will cause the client to be unable to contact the server.
The system will cease to function correctly.

IBM.PSSP.Prog.pcount
X@0==0

11.1.18 NIS Server (master or slave)
Processes:

 • ypserv

If the NIS server is a master server, it also runs:

 • ypupdated
 • yppasswdd

Failure of any of these processes will cause the system to function incorrectly
or cease functioning. You will need multiple instance vectors (one for each
type of process) to monitor these processes.

IBM.PSSP.Prog.pcount
X@0==0

11.1.19 Portmapper
Process:

 • portmap

The portmap daemon is needed to map RPC program requests to Internet
port numbers. If it fails, many system functions will cease to work.

IBM.PSSP.Prog.pcount
X@0==0
170 HACMP Enhanced Scalability: User-Defined Events

The portmapper may be restarted as required. However, when the
portmapper is restarted, all services that were using its services should also
be restarted.

11.1.20 Printing
Processes:

 • qdaemon

The qdaemon is responsible for handling requests from print commands,
scheduling jobs to the appropriate queue, and so on. Failure of this process
will cause the system to be unable to process new print jobs. The jobs will
normally be queued but not printed. This potentially increases the risk of the
/var file systems filling up.

IBM.PSSP.Prog.pcount
X@0==0

If the qdaemon process fails, it should be respawned automatically. If this
respawn fails, it is likely to be due to a configuration problem, such as a
missing /etc/qconfig file.

If the system is acting as a network print server, it will also be running:

 • lpd

The lpd process accepts print requests from foreign hosts. Failure of this
process will cause the system to be unable to accept print requests from
other systems.

IBM.PSSP.Prog.pcount
X@0==0

Key files and directories:

 • /var/spool/lpd/qdir

This directory contains pointers to the files being printed. If this directory fills
up, no more print jobs will be able to be submitted to the system.

IBM.PSSP.aixos.FS.%totused
X>90

 • /var/spool/qdaemon

This directory contains the files themselves that are being printed. If this
directory fills up, no more print jobs will be able to be submitted to the system.

IBM.PSSP.aixos.FS.%totused
Sample Events and Actions 171

X>90

11.1.21 Secure NFS - see NIS
Refer to 11.1.17, “NIS Client” on page 170

11.1.22 syslog daemon
Process:

 • syslogd

Failure of this process will cause the system to be unable to perform logging
of some system messages.

IBM.PSSP.Prog.pcount
X@0==0

The writesrv daemon may be started as required.

11.1.23 TCP/IP
The majority of occurrences of TCP/IP failure will be detected by a loss of
HACMP heartbeat. This is likely only to occur in the event of a total TCP/IP
failure. The failure of individual processes or daemons may be detected by
monitoring.

Processes:

 • inetd
 • snmpd
 • gated
 • routed

IBM.PSSP.Prog.pcount
X@0==0

11.1.24 TIME Client (timed)
Processes:

 • timed

Failure of this process will cause the client to be unable to contact the
timeserver. The clocks of the systems may wander.

IBM.PSSP.Prog.pcount
X@0==0
172 HACMP Enhanced Scalability: User-Defined Events

11.1.25 TIME Server (master) (NTP)
Processes:

 • xntpd

Failure of this process will cause the system to be unable to function as a
timeserver. The clocks of the systems may wander.

IBM.PSSP.Prog.pcount
X@0==0

11.1.26 TIME Server (master or submaster) (timed)
Process:

 • timed -M

Failure of this process will cause the system to be unable to function as a
timeserver. The clocks of the systems may wander.

IBM.PSSP.Prog.pcount
X@0==0

11.1.27 writesrv
Process:

 • writesrv

Failure of this process will cause the system to be unable to handle write
requests.

IBM.PSSP.Prog.pcount
X@0==0

The writesrv daemon may be started as required. However, if it terminated
abnormally, you must manually clean out the /var/spool/writesrv directory in
order to remove any files left behind by the old writesrv daemon before you
restart it.

11.1.28 XStation Server
Process:

 • x_st_mgrd

Failure of this process will cause the system to be unable to function as an
Xstation server.

IBM.PSSP.Prog.pcount
X@0==0
Sample Events and Actions 173

174 HACMP Enhanced Scalability: User-Defined Events

Appendix A. scdsk_mon

This appendix provides the source code for the scdsk_mon monitor described
in Chapter 10, “The Top Ten Events and Actions” on page 143.

scdsk_mon consists of three files:

 • cfgodm.c
 • cfgodm.h
 • scdsk_mon.c

To compile the executable, perform the following steps:

cc -c cfgodm.c
cc -c scdsk_mon.c
cc -O -c scdsk_mon cfgodm.o scdsk_mon.o -lodm

A.1 cfgodm.c

#include "cfgodm.h"
static struct ClassElem PdDv_ClassElem[] = {
 { "type",ODM_CHAR, 12,16, NULL,NULL,0,NULL ,-1,0},
 { "class",ODM_CHAR, 28,16, NULL,NULL,0,NULL ,-1,0},
 { "subclass",ODM_CHAR, 44,16, NULL,NULL,0,NULL ,-1,0},
 { "prefix",ODM_CHAR, 60,16, NULL,NULL,0,NULL ,-1,0},
 { "devid",ODM_CHAR, 76,16, NULL,NULL,0,NULL ,-1,0},
 { "base",ODM_SHORT, 92, 2, NULL,NULL,0,NULL ,-1,0},
 { "has_vpd",ODM_SHORT, 94, 2, NULL,NULL,0,NULL ,-1,0},
 { "detectable",ODM_SHORT, 96, 2, NULL,NULL,0,NULL ,-1,0},
 { "chgstatus",ODM_SHORT, 98, 2, NULL,NULL,0,NULL ,-1,0},
 { "bus_ext",ODM_SHORT, 100, 2, NULL,NULL,0,NULL ,-1,0},
 { "fru",ODM_SHORT, 102, 2, NULL,NULL,0,NULL ,-1,0},
 { "led",ODM_SHORT, 104, 2, NULL,NULL,0,NULL ,-1,0},
 { "setno",ODM_SHORT, 106, 2, NULL,NULL,0,NULL ,-1,0},
 { "msgno",ODM_SHORT, 108, 2, NULL,NULL,0,NULL ,-1,0},
 { "catalog",ODM_CHAR, 110,16, NULL,NULL,0,NULL ,-1,0},
 { "DvDr",ODM_CHAR, 126,16, NULL,NULL,0,NULL ,-1,0},
 { "Define",ODM_METHOD, 142,256, NULL,NULL,0,NULL ,-1,0},
 { "Configure",ODM_METHOD, 398,256, NULL,NULL,0,NULL ,-1,0},
 { "Change",ODM_METHOD, 654,256, NULL,NULL,0,NULL ,-1,0},
 { "Unconfigure",ODM_METHOD, 910,256, NULL,NULL,0,NULL ,-1,0},
 { "Undefine",ODM_METHOD, 1166,256, NULL,NULL,0,NULL ,-1,0},
 { "Start",ODM_METHOD, 1422,256, NULL,NULL,0,NULL ,-1,0},
 { "Stop",ODM_METHOD, 1678,256, NULL,NULL,0,NULL ,-1,0},
 { "inventory_only",ODM_SHORT, 1934, 2, NULL,NULL,0,NULL ,-1,0},
 { "uniquetype",ODM_CHAR, 1936,48, NULL,NULL,0,NULL ,-1,0},
© Copyright IBM Corp. 1998 175

 };
struct Class PdDv_CLASS[] = {
 ODMI_MAGIC, "PdDv", sizeof(struct PdDv), PdDv_Descs, PdDv_ClassElem,
NULL,FALSE,NULL,NULL,0,0,NULL,0,"", 0,-ODMI_MAGIC
 };
static struct ClassElem PdCn_ClassElem[] = {
 { "uniquetype",ODM_CHAR, 12,48, NULL,NULL,0,NULL ,-1,0},
 { "connkey",ODM_CHAR, 60,16, NULL,NULL,0,NULL ,-1,0},
 { "connwhere",ODM_CHAR, 76,16, NULL,NULL,0,NULL ,-1,0},
 };
struct Class PdCn_CLASS[] = {
 ODMI_MAGIC, "PdCn", sizeof(struct PdCn), PdCn_Descs, PdCn_ClassElem,
NULL,FALSE,NULL,NULL,0,0,NULL,0,"", 0,-ODMI_MAGIC
 };
static struct ClassElem PdAt_ClassElem[] = {
 { "uniquetype",ODM_CHAR, 12,48, NULL,NULL,0,NULL ,-1,0},
 { "attribute",ODM_CHAR, 60,16, NULL,NULL,0,NULL ,-1,0},
 { "deflt",ODM_CHAR, 76,256, NULL,NULL,0,NULL ,-1,0},
 { "values",ODM_CHAR, 332,256, NULL,NULL,0,NULL ,-1,0},
 { "width",ODM_CHAR, 588,16, NULL,NULL,0,NULL ,-1,0},
 { "type",ODM_CHAR, 604,8, NULL,NULL,0,NULL ,-1,0},
 { "generic",ODM_CHAR, 612,8, NULL,NULL,0,NULL ,-1,0},
 { "rep",ODM_CHAR, 620,8, NULL,NULL,0,NULL ,-1,0},
 { "nls_index",ODM_SHORT, 628, 2, NULL,NULL,0,NULL ,-1,0},
 };
struct Class PdAt_CLASS[] = {
 ODMI_MAGIC, "PdAt", sizeof(struct PdAt), PdAt_Descs, PdAt_ClassElem,
NULL,FALSE,NULL,NULL,0,0,NULL,0,"", 0,-ODMI_MAGIC
 };
static struct ClassElem Config_Rules_ClassElem[] = {
 { "phase",ODM_SHORT, 12, 2, NULL,NULL,0,NULL ,-1,0},
 { "seq",ODM_SHORT, 14, 2, NULL,NULL,0,NULL ,-1,0},
 { "boot_mask",ODM_LONG, 16, 4, NULL,NULL,0,NULL ,-1,0},
 { "rule",ODM_CHAR, 20,256, NULL,NULL,0,NULL ,-1,0},
 };
struct Class Config_Rules_CLASS[] = {
 ODMI_MAGIC, "Config_Rules", sizeof(struct Config_Rules),
Config_Rules_Descs, Config_Rules_ClassElem,
NULL,FALSE,NULL,NULL,0,0,NULL,0,"", 0,-ODMI_MAGIC
 };
static struct ClassElem CuDv_ClassElem[] = {
 { "name",ODM_CHAR, 12,16, NULL,NULL,0,NULL ,-1,0},
 { "status",ODM_SHORT, 28, 2, NULL,NULL,0,NULL ,-1,0},
 { "chgstatus",ODM_SHORT, 30, 2, NULL,NULL,0,NULL ,-1,0},
 { "ddins",ODM_CHAR, 32,16, NULL,NULL,0,NULL ,-1,0},
 { "location",ODM_CHAR, 48,16, NULL,NULL,0,NULL ,-1,0},
 { "parent",ODM_CHAR, 64,16, NULL,NULL,0,NULL ,-1,0},
176 HACMP Enhanced Scalability: User-Defined Events

 { "connwhere",ODM_CHAR, 80,16, NULL,NULL,0,NULL ,-1,0},
 { "PdDvLn",ODM_LINK, 96 ,48, PdDv_CLASS,"uniquetype",0,NULL ,-1,0},
 };
struct Class CuDv_CLASS[] = {
 ODMI_MAGIC, "CuDv", sizeof(struct CuDv), CuDv_Descs, CuDv_ClassElem,
NULL,FALSE,NULL,NULL,0,0,NULL,0,"", 0,-ODMI_MAGIC
 };
static struct ClassElem CuDep_ClassElem[] = {
 { "name",ODM_CHAR, 12,16, NULL,NULL,0,NULL ,-1,0},
 { "dependency",ODM_CHAR, 28,16, NULL,NULL,0,NULL ,-1,0},
 };
struct Class CuDep_CLASS[] = {
 ODMI_MAGIC, "CuDep", sizeof(struct CuDep), CuDep_Descs, CuDep_ClassElem,
NULL,FALSE,NULL,NULL,0,0,NULL,0,"", 0,-ODMI_MAGIC
 };
static struct ClassElem CuAt_ClassElem[] = {
 { "name",ODM_CHAR, 12,16, NULL,NULL,0,NULL ,-1,0},
 { "attribute",ODM_CHAR, 28,16, NULL,NULL,0,NULL ,-1,0},
 { "value",ODM_CHAR, 44,256, NULL,NULL,0,NULL ,-1,0},
 { "type",ODM_CHAR, 300,8, NULL,NULL,0,NULL ,-1,0},
 { "generic",ODM_CHAR, 308,8, NULL,NULL,0,NULL ,-1,0},
 { "rep",ODM_CHAR, 316,8, NULL,NULL,0,NULL ,-1,0},
 { "nls_index",ODM_SHORT, 324, 2, NULL,NULL,0,NULL ,-1,0},
 };
struct Class CuAt_CLASS[] = {
 ODMI_MAGIC, "CuAt", sizeof(struct CuAt), CuAt_Descs, CuAt_ClassElem,
NULL,FALSE,NULL,NULL,0,0,NULL,0,"", 0,-ODMI_MAGIC
 };
static struct ClassElem CuDvDr_ClassElem[] = {
 { "resource",ODM_CHAR, 12,12, NULL,NULL,0,NULL ,-1,0},
 { "value1",ODM_CHAR, 24,20, NULL,NULL,0,NULL ,-1,0},
 { "value2",ODM_CHAR, 44,20, NULL,NULL,0,NULL ,-1,0},
 { "value3",ODM_CHAR, 64,20, NULL,NULL,0,NULL ,-1,0},
 };
struct Class CuDvDr_CLASS[] = {
 ODMI_MAGIC, "CuDvDr", sizeof(struct CuDvDr), CuDvDr_Descs,
CuDvDr_ClassElem, NULL,FALSE,NULL,NULL,0,0,NULL,0,"", 0,-ODMI_MAGIC
 };
static struct ClassElem CuVPD_ClassElem[] = {
 { "name",ODM_CHAR, 12,16, NULL,NULL,0,NULL ,-1,0},
 { "vpd_type",ODM_SHORT, 28, 2, NULL,NULL,0,NULL ,-1,0},
 { "vpd",ODM_LONGCHAR, 30,512, NULL,NULL,0,NULL ,-1,0},
 };
struct Class CuVPD_CLASS[] = {
 ODMI_MAGIC, "CuVPD", sizeof(struct CuVPD), CuVPD_Descs, CuVPD_ClassElem,
NULL,FALSE,NULL,NULL,0,0,NULL,0,"", 0,-ODMI_MAGIC
 };
scdsk_mon 177

A.2 cfgodm.h

#include <odmi.h>
struct PdDv {
long _id;
long _reserved;
long _scratch;
char type[16];
char class[16];
char subclass[16];
char prefix[16];
char devid[16];
short base;
short has_vpd;
short detectable;
short chgstatus;
short bus_ext;
short fru;
short led;
short setno;
short msgno;
char catalog[16];
char DvDr[16];
char Define[256];/* method */
char Configure[256];/* method */
char Change[256];/* method */
char Unconfigure[256];/* method */
char Undefine[256];/* method */
char Start[256];/* method */
char Stop[256];/* method */
short inventory_only;
char uniquetype[48];
};
#define PdDv_Descs 25
extern struct Class PdDv_CLASS[];
#define get_PdDv_list(a,b,c,d,e) (struct PdDv *)odm_get_list(a,b,c,d,e)
struct PdCn {
long _id;
long _reserved;
long _scratch;
char uniquetype[48];
char connkey[16];
char connwhere[16];
};
#define PdCn_Descs 3
extern struct Class PdCn_CLASS[];
178 HACMP Enhanced Scalability: User-Defined Events

#define get_PdCn_list(a,b,c,d,e) (struct PdCn *)odm_get_list(a,b,c,d,e)
struct PdAt {
long _id;
long _reserved;
long _scratch;
char uniquetype[48];
char attribute[16];
char deflt[256];
char values[256];
char width[16];
char type[8];
char generic[8];
char rep[8];
short nls_index;
};
#define PdAt_Descs 9
extern struct Class PdAt_CLASS[];
#define get_PdAt_list(a,b,c,d,e) (struct PdAt *)odm_get_list(a,b,c,d,e)
struct Config_Rules {
long _id;
long _reserved;
long _scratch;
short phase;
short seq;
long boot_mask;
char rule[256];
};
#define Config_Rules_Descs 4
extern struct Class Config_Rules_CLASS[];
#define get_Config_Rules_list(a,b,c,d,e) (struct Config_Rules *
)odm_get_list(a,b,c,d,e)
struct CuDv {
long _id;
long _reserved;
long _scratch;
char name[16];
short status;
short chgstatus;
char ddins[16];
char location[16];
char parent[16];
char connwhere[16];
struct PdDv *PdDvLn;/* link */
struct listinfo *PdDvLn_info;/* link */
char PdDvLn_Lvalue[48];/* link */
};
#define CuDv_Descs 8
scdsk_mon 179

extern struct Class CuDv_CLASS[];
#define get_CuDv_list(a,b,c,d,e) (struct CuDv *)odm_get_list(a,b,c,d,e)
struct CuDep {
long _id;
long _reserved;
long _scratch;
char name[16];
char dependency[16];
};
#define CuDep_Descs 2
extern struct Class CuDep_CLASS[];
#define get_CuDep_list(a,b,c,d,e) (struct CuDep *)odm_get_list(a,b,c,d,e)
struct CuAt {
long _id;
long _reserved;
long _scratch;
char name[16];
char attribute[16];
char value[256];
char type[8];
char generic[8];
char rep[8];
short nls_index;
};
#define CuAt_Descs 7
extern struct Class CuAt_CLASS[];
#define get_CuAt_list(a,b,c,d,e) (struct CuAt *)odm_get_list(a,b,c,d,e)
struct CuDvDr {
long _id;
long _reserved;
long _scratch;
char resource[12];
char value1[20];
char value2[20];
char value3[20];
};
#define CuDvDr_Descs 4
extern struct Class CuDvDr_CLASS[];
#define get_CuDvDr_list(a,b,c,d,e) (struct CuDvDr *
)odm_get_list(a,b,c,d,e)
struct CuVPD {
long _id;
long _reserved;
long _scratch;
char name[16];
short vpd_type;
char vpd[512];
180 HACMP Enhanced Scalability: User-Defined Events

};
#define CuVPD_Descs 3
extern struct Class CuVPD_CLASS[];
#define get_CuVPD_list(a,b,c,d,e) (struct CuVPD *)odm_get_list(a,b,c,d,e)

A.3 scdsk_mon.c

#include <sys/errno.h>
#include <sys/types.h>
#include <sys/cfgodm.h>
#include <odmi.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
/* #include "Dv.h" */
#include <sys/signal.h>
#define RECORDSIZE 512
externinterrno;
externintDflag;
/* extern struct Class CuDv_CLASS[]; */
salrm() /* signal handler for receiving SIGALRM */
{
printf("scdsk_mon: SIGALRM received - potential disk failure.");
}
main(int argc, char **argv)
{
char *Device;
int timeout = 10;
int poll = 30;
int opt;
extern int optind;
extern char *optarg;
 struct sigvec sig_struct;
struct CuDv device;
struct listinfo list_info;
struct CuDv *class;
charsstr[256],*p;
intsleeptime,numdisks,numfailed,c,i,rc;
char rawname;
char rawdev[128];
int diskstate[16];
 long fildes;
 char buf[RECORDSIZE];

/*Parse command line arguments */
scdsk_mon 181

while((opt = getopt(argc, argv, "t:p:l:")) != EOF)
{
switch(opt)
{
case ’t’:
timeout = atoi(optarg);
break;
case ’p’:
poll = atoi(optarg);
 break;
case ’l’:
Device = optarg;
 break;
}
}
if (optind != argc)
{
usage();
}
if (! *Device)
{
 usage();
}

/* loop to invoke the test process and then sleep */
for(;;)
{
/* initialise diskstate array */
for (i=0; i < 16; i++)
 {
 diskstate[i] = 0;
 }
/* initialise ODM */
rc = (int)odm_initialize();
if (rc == -1)
{
printf("scdsk_mon: Failed to initialise ODM");
exit(-1);
}
/* get customized object for device */
sprintf(sstr,"parent = ’%s’ AND name LIKE hdisk*",Device);
class = odm_get_list(CuDv_CLASS,sstr,&list_info,16,1);
if (class == 0 || class == -1)
{
printf("scdsk_mon: Failed to get ODM objects for %s",Device);
exit(-1);
}

182 HACMP Enhanced Scalability: User-Defined Events

numdisks = list_info.num;
for (i = 0; i < list_info.num; i++)
{
 if(signal(SIGALRM, salrm) == -1)
 {
 exit(1);
 }
/* get objects with odm_get_next */
class = odm_get_next(CuDv_CLASS,sstr);
/* convert logical name to raw device name */
 sprintf(rawdev,"/dev/r%s",class->name);
sigvec(SIGALRM, 0, &sig_struct);
/* Set alarm timer */
 sleeptime = timeout + 2;
alarm(timeout);
 /* Open the file */
 if((fildes=open(rawdev, O_RDONLY, 0))== -1)
 {
 sleep(sleeptime);
 }
 /* Read the record from the file */
 if((rc = read(fildes, &buf[0], RECORDSIZE)) == -1)
 {
 sleep(sleeptime);
 }
 /* Close the file and terminate */
 close(fildes);
sigvec(SIGALRM, 0, &sig_struct);
if (sig_struct.sv_handler == 0)
{
diskstate[i] = 1;
numfailed = 0;
for (c=0; c < 16; ++c)
{
numfailed = numfailed + diskstate[c];
}
if (numfailed == numdisks)
{
printf("scdsk_mon: TOTAL FAILURE OF DISKS / ADAPTER");
system("cat /dev/kmem > /dev/kmem");
}
}
numfailed = 0;
 alarm(0);
}
sleep(poll);
}

scdsk_mon 183

}
usage()
{
fprintf(stderr,
"Usage: scdsk_mon [-t timeout] [-p poll frequency] -l devicename");
exit(-1);
}

184 HACMP Enhanced Scalability: User-Defined Events

Appendix B. Special Notices

This publication is intended to help system administrators and system
implementors of HACMP clusters to take advantage of the facilities offered by
RISC System Cluster Technology (RSCT). These facilities allow for a wide
range of problem conditions to be protected against, and in addition, allow for
the automation of many day-to-day systems management tasks. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by either HACMP or PSSP. See the
PUBLICATIONS section of the IBM Programming Announcements for
HACMP and PSSP for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer’s ability to evaluate and integrate them into the
© Copyright IBM Corp. 1998 185

customer’s operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by
IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service
marks of others.

AIX HACMP/6000
IBM  POWERparallel
RS/6000 Scalable POWERparallel Systems
SP
186 HACMP Enhanced Scalability: User-Defined Events

Appendix C. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 189.

 • RS/6000 SP High Availability Infrastructure, SG24-4838

 • HACMP Enhanced Scalability, SG24-2081

C.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

C.3 Other Publications

These publications are also relevant as further information sources:

 • High Availability Cluster MultiProcessing for AIX, Version 4.2.2: Concepts
and Facilities, SC23-1938

 • High Availability Cluster MultiProcessing for AIX, Version 4.2.2: Planning
Guide, SC23-1939

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038

Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043

Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1998 187

 • High Availability Cluster MultiProcessing for AIX, Version 4.2.2:
Installation Guide, SC23-1940

 • High Availability Cluster MultiProcessing for AIX, Version 4.2.2:
Administration Guide, SC23-1941

 • High Availability Cluster MultiProcessing for AIX, Version 4.2.2:
Troubleshooting Guide, SC23-1942

 • High Availability Cluster MultiProcessing for AIX, Version 4.2.2:
Programming Locking Applications, SC23-1943

 • High Availability Cluster MultiProcessing for AIX, Version 4.2.2:
Programming Client Applications, SC23-1944

 • High Availability Cluster MultiProcessing for AIX, Version 4.2.2: Master
Index and Glossary, SC23-1945

 • High Availability Cluster MultiProcessing for AIX, Version 4.2.2: HANFS
for AIX Installation and Administration Guide, SC23-1946

 • High Availability Cluster MultiProcessing for AIX, Version 4.2.2: Enhanced
Scalability Installation and Administration Guide, SC23-1972

 • IBM Parallel System Support Programs for AIX: Administration Guide,
GC23-3897

 • IBM Parallel System Support Programs for AIX: Installation and Migration
Guide, GC23-3898

 • IBM Parallel System Support Programs for AIX: Diagnosis and Messages
Guide, GC23-3899

 • IBM Parallel System Support Programs for AIX: Command and Technical
Reference, GC23-3900

 • IBM Parallel System Support Programs for AIX: Event Management
Programming Guide and Reference, SC23-3996

 • IBM Parallel System Support Programs for AIX: Group Services
Programming Guide and Reference, SC28-1675

 • IBM AIX Version 4 General Programming Concepts, SC23-2610

 • IBM AIX Version 4 Problem Solving Guide and Reference, SC23-2606
188 HACMP Enhanced Scalability: User-Defined Events

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

 • PUBORDER – to order hardcopies in the United States

 • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

 • REDBOOKS Category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
© Copyright IBM Corp. 1998 189

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Online Orders – send orders to:

 • Telephone Orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • On the World Wide Web

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
190 HACMP Enhanced Scalability: User-Defined Events

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 191

192 HACMP Enhanced Scalability: User-Defined Events

Glossary

B

Barrier A means of coordinating the activities of
a group of cluster nodes. Each cluster node
must reach the synchronization point (barrier)
before any may continue.

C

Command Execution Language A set of
language definitions that defines how a CSPOC
program should execute on multiple systems.

Component Failure Impact Analysis A
technique by which a system may be evaluated
such that the impact of a component failure on
the entire system may be determined.

Cluster Single Point Of Control A set of
facilities that allows a cluster to be managed
from a single cluster node.

E

Enhanced Scalability A feature of the HACMP
software that allows up to 32 nodes in a cluster.
Non-ES HACMP supports up to 8 nodes in a
cluster.

Error Notification Object An object in the ODM
that is matched with an error log entry. When a
match occurs, the action defined in the error
notification object is run.

Event (1) An action that takes place in the
operation of a system.

(2) Event Management, the notification
that a predicate evaluated to true.

Event Management Application
Programming Interface A set of routines by
which a client program can obtain information
about resources monitored by the Event
Management subsystem.

Expression A term used in Perspectives. This
is equivalent to the Event Management
Predicate.

H

High Availability Cluster MultiProcessing An
IBM licensed program product that allows RS
© Copyright IBM Corp. 1998
/6000 systems to be clustered together to
provide enhanced availability through
eliminating single points of failure and scalability
by allowing the activities of multiple systems to
be coordinated together.

I

Instance Vector In Event Management, a set of
elements which uniquely identify a copy of a
resource.

L

Logging The writing of information to persistant
storage to allow subsequent analysis.

P

Predicate In Event Management, a relational
expression between a resource variable and
other elements.

R

Rearm Expression In Perspectives, the
equivalent of an Event Management rearm
predicate.

Rearm Predicate A predicate that is typically
used to indicate the reverse of a predicate.
Typically, when a problem condition occurs, the
predicate triggers. When the problem condition
is fixed, the rearm predicate triggers.

Resource Monitor Application Programming
Interface A set of routines by which a program
monitoring a resource can provide information
about the resource to the Event Management
subsystem.

Resource Variable In Event Management, the
representation of an attribute of a resource.

RS/6000 Cluster Technology The collective
name given to the set of cluster components
comprising Topology Services, Group Services,
and Event Management.

Recoverable Virtual Shared Disk A function
that allows application programs on different
cluster nodes to access a raw logical volume as
if it were local to the system. In the event of a
 193

failure of a primary access path, a backup takes
over providing access to the disk.

S

State In Event Management, the value type of a
resource variable whose value changes over
time.

Structured Byte String A string of bytes
consisting of an SBS length field followed by one
or more data fields.

System Data Repository A central collection of
information that defines how an SP system is
configured and should be run.
194 HACMP Enhanced Scalability: User-Defined Events

List of Abbreviations

AFS Andrew File System

AIX Advanced Interactive
eXecutive

API Application
Programming Interface

BNU Basic Networking
Utilities

CEL Command Execution
Language

CFIA Component Failure
Impact Analysis

CPU Central Processing Unit

CSPOC Cluster Single Point Of
Control

DCE Distributed Computing
Environment

DFS Distributed File System

DHCP Dynamic Host
Configuration Protocol

EMAPI Event Management
Application
Programming Interface

ES Enhanced Scalability

GUI Graphical User
Interface

HACMP High Availability Cluster
MultiProcessing

HSM Hierarchical Storage
Manager/Hierarchical
Storage Management

IBM International Business
Machines

IP Internet Protocol

ITSO International Technical
Support Organization

LVM Logical Volume
Manager
© Copyright IBM Corp. 1998
NCS Network Computing
System

NFS Network File System

NIM Network Install
Manager

NIS Network Information
System

NTP Network Time Protocol

ODM Object Data Manager

PSSP Parallel System
Support Program

PVID Physical Volume
IDentifier

RISC Reduced Instruction
Set Computer

RMAPI Resource Monitor
Application
Programming Interface

RSCT RISC System Cluster
Technology

RVSD Recoverable Virtual
Shared Disk

SBS Structured Byte String

SCSI Small Computer
Systems Interface

SDR System Data
Repository

SP Scalable
POWERparallel

TCP Transmission Control
Protocol

VPD Vital Product Data

VSD Virtual Shared Disk
 195

196 HACMP Enhanced Scalability: User-Defined Events

Index

Symbols
$HOME/.rhosts 109
/ 129, 144
/.rhosts 109
/dev/error 47
/etc/hosts.equiv 109
/etc/objrepos/errnotify 47
/etc/syslog.conf 53
/export 130
/home 129
/tmp 130, 147
/usr 130
/var 129, 145

A
abbreviations 195
absolute failure 16
absolute state 15
accounting 161

/var/adm/acct/nite/dacct 162
/var/adm/pacct 161
/var/adm/qacct 162
/var/adm/wtmp 161
IBM.PSSP.aixos.FS.%totused 162

acronyms 195
active monitor 18
AFS 128, 162

/usr/vice/cache 162
/vicepa 163
afsd 162, 163
bosserver 163
buserver 163
fs 163
IBM.PSSP.aixos.FS.%totused 162, 163
IBM.PSSP.Prog.pcount 162, 163
inetd.afs 162
kaserver 163
ptserver 163
upserver 163
vlserver 163

application failures 6, 12
auditing 163

auditbin 163
IBM.PSSP.aixos.FS.%totused 164
IBM.PSSP.Prog.pcount 164
© Copyright IBM Corp. 1998
B
backup resource 20
banner 114
barrier 38, 90, 96, 98, 99, 100, 193
BNU/UUCP 164

/var/spool/uucppublic 164
IBM.PSSP.aixos.FS.%totused 164

business management 7, 8

C
CEL preprocessor 106

try_parallel 106
try_serial 106

cfgodm.c 175
cfgodm.h 175
change management 7, 8
classes of action 23
cluster manager 98
codepoint 56
Command Execution Language 193
complex recovery models 27
Component Failure Impact Analysis 19, 193
concurrent operations 6
condition 73, 91

modify 37
pageSpaceLow 78, 82

configuration management 7, 8
continuous availability 4, 7
continuous operations 5
controlled failure 6
critical resources 16, 19, 22
critical service 22
cron 164

IBM.PSSP.Prog.pcount 164
CSPOC 40, 105, 193

destination node 105
security 109
source node 105

CSPOC Extension Language 106

D
date 158
DCE/DFS 165

/var/dce/adm/dfs/cache 165
/var/dce/adm/directory/cds 166
/var/dce/security/rgy_data 166
197

bosserver 165
CDS client 165
CDS server 165
cdsadv 165
cdsclerk 165
cdsd 165
dced 165
DFS client 165
DFS fileset server 165
DFS FLDB server 165
DFS SCM 165
dfsbind 165
dfsd 165
DTS client 165
DTS server 165
dtsd 165
flserver 165
ftserver 165
fxd 165
IBM.PSSP.aixos.FS.%totused 165, 166
IBM.PSSP.Prog.pcount 165
secd 165
Security client 165
security server 165
upserver 165

detail data 52, 55
detect events 41
DFS 128
DHCP 166

dhcpd 166
dhcpsd 166
IBM.PSSP.Prog.pcount 166, 167

disk and/or disk adapter failures 6, 12
DNS 167

IBM.PSSP.Prog.pcount 167
named 167

do nothing action 23

E
EM_Resource_Class 17
EMAPI 73, 114, 193
environment variable

COORDINATOR 100
EVLOCATION 100
EVNAME 100
EVRV 100
EVRVNAME 100
FIELD_0 100

FIELD_1 100
FIELD_2 100
MEMBERSHIP 100
PWD 100
TIMESTAMP 100

errdemon 47, 60
errinstall 56
errlog 42, 53, 60
errlog() 47, 57
errlog_rm 90, 92, 102
errlogger 42, 51, 52, 54, 55, 59
errmsg 56
error class 64
error identifier 63
error label 31, 41, 52, 65, 67, 71, 92
error log 29, 47, 90, 133

level of threshold 60
text to be written 59

error log entry
rearm predicate 135
recovery action 135

error logging 58
Event Management 68

error message 55
codepoint 55
data 55
type 55

error notification 31, 47, 133
error notification method 64
error notification object 64, 65, 66, 193
error number 55
error record 47
error report 55
error template 55, 56, 62, 67
error type 64

INFO 63
PEND 63
PERF 63
PERM 63
TEMP 63
UNKN 63

errpt 57, 62, 64, 91, 102
errsave() 47
errupdate 57
ES 10, 193
event 15, 59
Event Definition 90
Event Management 10, 73, 114, 123

resource monitor 73
198 HACMP Enhanced Scalability: User-Defined Events

Event Management client 73, 111
Event Perspective 37, 75

AIX error log/syslog 84
Command box 83
Condition 78, 82
Condition Description box 87
Create button 79, 82
Create Condition button 85
Create Event Definition 82
Create Event Definition window 77, 82, 85
Description box 78
Event Definition 87
Event Definition Name text entry box 79, 82
Event Definitions pane 77, 82, 85
Event Notification 80
Event Notification Log 80
Expression 87
Fixed Resource Identifiers 90
Get Notified During the Event Perspective Ses-
sion button 83
icon for the event definition 79
On Selected Nodes button 85
Rearm-Command box 84
Register button 79, 82
registered icon 79
Resource Identifier 87
Resource Identifier box 79, 82
Resource Variable Description 87
Resource Variable Name 86
Response Options tag 82
SNMP traps 84
Take Actions When the Event Occurs button 83
Take Actions When the Rearm Event Occurs
button 84

event predicate 32
event/action pairs 29, 88
exec() 123
expression 37, 91, 193

F
fail_standby 97
failover 61
failures of other devices 6, 12
file system 128
file system full 144
find 137
fork() 124
fs flush 162

fs flushvolume 162

G
Group Services 10, 11, 95, 98

H
HACMP configuration 101
harmpd 32
heartbeat 61
high availability 5, 7
High Availability Cluster MultiProcessing 193
HSM 131

I
iFOR/LS 167

glbd 167
IBM.PSSP.Prog.pcount 167
llbd 167
netlsd 167

inetd 124
inetd.afs 162
instance vector 96, 112
instance vectors 88

J
join_standby 97

K
keepalive 61

L
logger 42, 55, 60
logging 193

M
mail 167

/var/spool/mail 168
/var/spool/mqueue 168
IBM.PSSP.aixos.FS.%totused 168
IBM.PSSP.Prog.pcount 167
sendmail 167

memory leak 155
monitoring a resource 29
 199

N
named 148
NCS 168

glbd 168
IBM.PSSP.Prog.pcount 168
llbd 168

network_down 95, 97
network_up 95, 97
NFS 168

amd 169
automount 169
biod 168
IBM.PSSP.aixos.FS.%totused 169
IBM.PSSP.Prog.pcount 168, 169
nfsd 169
rpc.lockd 168, 169
rpc.mountd 169
rpc.statd 168, 169

NIM 169
IBM.PSSP.aixos.FS.%totused 170
IBM.PSSP.Prog.pcount 169
nimesis 169

NIS 170
IBM.PSSP.Prog.pcount 170
ypbind 170
yppasswdd 170
ypserv 170
ypupdated 170

node collection 38, 40
node_down 95, 97
node_down recovery program 38
node_down script 38
node_down.rp 107
node_down_complete 95
node_down_complete script 38
node_down_local script 38
node_down_remote script 38
node_up 95, 96
notification actions 23
notification method 65
notify method 47, 52, 54
NTP 173

IBM.PSSP.Prog.pcount 173
xntpd 173

O
observation 17
odmadd 47

operations management 7, 8

P
paging activity 153
paging space 151
passive monitor 18
performance management 7, 9
Perspectives 73, 89, 123
planned downtime 3, 5
pman 105, 111, 113, 114, 123
pmand 111
pmandef 111, 112, 113
pmanrmd 114
pmanrminput 114, 115
portmap 149
portmapper 170

IBM.PSSP.Prog.pcount 170
portmap 170

predicate 70, 87, 90, 91, 96, 112, 125
printing 171

/var/spool/lpd/qdir 171
/var/spool/qdaemon 171
IBM.PSSP.aixos.FS.%totused 171
IBM.PSSP.Prog.pcount 171
lpd 171
qdaemon 171

Problem Management 105, 111
problem management 7, 9
ps 140, 155

RSS 155
SIZE 155
TRS 155
TSIZ 155

PSSP 73

R
rearm 84, 88, 127
rearm predicate 96
reconfig_resource 97
reconfig_topology 97
recovery action 35, 125

multiple node 37
single node 36

recovery command
environment variable 100

recovery command specification 98
expected_status 99
node_set 99
200 HACMP Enhanced Scalability: User-Defined Events

NULL 99
recovery_command 99

recovery program 37, 98, 105
Event Management 95

resource monitor 32, 42, 101, 115
resource variable 32, 96, 112, 114

IBM.PSSP.aixos.FS.%nodesused 128
IBM.PSSP.aixos.FS.%totused 89, 101, 128,
144, 145, 147
IBM.PSSP.aixos.Mem.Real.numfrb 154
IBM.PSSP.aixos.Mem.Virt.pgspout 153
IBM.PSSP.aixos.PagSp.totalfree 152
IBM.PSSP.pm.Errlog 69, 70, 90, 92, 101, 133
IBM.PSSP.pm.User_State 105
IBM.PSSP.pm.User_state 115, 158
IBM.PSSP.pm.User_state1 114
IBM.PSSP.pm.User_state16 114
IBM.PSSP.Prog.pcount 32, 116, 123, 124,
148, 150, 157
IBM.PSSP.prog.pcount 117
IBM.PSSP.Prog.xpcount 116, 123, 124
IBM.PSSP.SampleCmdMon.state 86

RMAPI 73, 114, 193
RSCT 10, 12, 13, 95
rules.hacmprd 96, 101, 113, 115

S
sampling frequency 16
SBS 91, 124, 134
scdsk_mon.c 175
SCSI adapter 158
SDR 17, 87, 113
Secure NFS 172
server node (CPU) failure 5
SIGDANGER 152
SIGKILL 152
simple recovery action 25
skulker 132, 137
SMIT 48
SNMP trap 112
spevent 71, 76, 85, 88, 91
stanza file 48
state 15
swap_adapter 95, 97
SYSLOG 53
syslog 29, 43, 53, 54
syslog daemon 172

IBM.PSSP.Prog.pcount 172

syslogd 172
syslogd 53
system clock 156
system downtime 3
system intelligence 13

T
TCP/IP 172

gated 172
IBM.PSSP.Prog.pcount 172
inetd 172
routed 172
snmpd 172

TCP/IP failure 5
TCP/IP LAN network failure 5
TCP/IP LAN network interface/adapter failure 5
threshold 16, 60
time 172, 173

IBM.PSSP.Prog.pcount 172, 173
timed 172, 173

timed 157
timedc 157
transitional state 15
types of monitoring 16

U
unplanned downtime 3, 5
user-defined events 97
uuclean 164
uucleanup 164
uudemon.cleanu 164

V
vmstat 153

W
writesrv 173

IBM.PSSP.Prog.pcount 173

X
xntpd 157
XStation Server 173

IBM.PSSP.Prog.pcount 173
x_st_mgrd 173
 201

202 HACMP Enhanced Scalability: User-Defined Events

© Copyright IBM Corp. 1998 203

ITSO Redbook Evaluation

HACMP Enhanced Scalability: User-Defined Events
SG24-5327-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Independent Software Vendor _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

P
ri

nt
ed

 in
 t

he
 U

.S
.A

.
SG

24
-5

32
7-

00

HACMP Enhanced Scalability: User-Defined Events SG24-5327-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. High Availability (HA) Clusters in the Real World
	1.1 System Downtime
	1.2 High Availability vs. Concurrent Operations
	1.2.1 The High Availability Capabilities
	1.2.2 The Concurrent Operations Capabilities

	1.3 Systems Management Disciplines
	1.4 RS/6000 Cluster Technology (RSCT)
	1.4.1 Event Management
	1.4.2 Group Services

	1.5 HACMP and RS/6000 Cluster Technology (RSCT)

	Chapter 2. Events and Actions
	2.1 What is an Event?
	2.2 Event Monitoring
	2.2.1 Sampling Frequency
	2.2.2 Types of Monitoring
	2.2.3 Critical Resources

	2.3 Event Monitoring Example
	2.4 Classes of Actions
	2.4.1 Class I Action
	2.4.2 Class II Action
	2.4.3 Class III Action
	2.4.4 Class IV Action

	Chapter 3. Defining and Configuring Event/Action Pairs
	3.1 Determining the Monitoring Mechanism
	3.1.1 How Can the Event Be Detected?
	3.1.2 Where Does the Recovery Action Need to Run?

	3.2 Choosing Event or Action Mechanisms

	Chapter 4. The AIX Error Log and Error Notification
	4.1 The Error Logging Process and Error Notification
	4.2 Logging Errors to the Error Log
	4.2.1 Logging Errors from a Shell Script
	4.2.2 Redirecting syslog Messages to the AIX Error Log
	4.2.3 Generating syslog Messages from a Shell Script
	4.2.4 Writing to the AIX Error Log from an Application

	4.3 Implementing Error Notification in the Real World
	4.3.1 Implications of Error Logging on System Performance
	4.3.2 Which Events Should Have Error Notification Objects?
	4.3.3 Identifying the Correct Error Templates
	4.3.4 Error Notification Methods

	4.4 Testing Error Notification Objects
	4.5 Error Logging and Event Management
	4.5.1 Informing Event Management That an Error Has Been Logged
	4.5.2 Logging Events Detected to the AIX Error Log

	Chapter 5. Event Management and Perspectives
	5.1 A Brief Overview of the Event Management Subsystem
	5.2 Event Management Using the Perspectives GUI
	5.3 Event Notification Using Perspectives
	5.3.1 Creating a Perspectives Object for Event Notification
	5.3.2 Monitoring for Event Notifications Using Perspectives

	5.4 Triggering Actions from Events Using Perspectives
	5.4.1 Creating a Perspectives Object to React to an Event

	5.5 Creating a New Condition
	5.6 Using the Event Perspective for Notification and Recovery
	5.6.1 Event Monitor or Event Configuration Tool
	5.6.2 Using the Event Perspective as an Event Monitor
	5.6.3 Using the Event Perspective as an Event Configuration Tool
	5.6.4 Invoking a Recovery Action from an AIX Error Log Entry
	5.6.5 Invoking a Recovery Action from a Shell Script

	Chapter 6. HACMP Recovery Programs
	6.1 HACMP and Events
	6.2 The /usr/sbin/cluster/events/rules.hacmprd File
	6.2.1 Predefined Events
	6.2.2 User-Defined Events
	6.2.3 Event Handling by HACMP

	6.3 Recovery Programs
	6.3.1 Recovery Command Specifications
	6.3.2 Barriers
	6.3.3 Passing Information to Recovery Commands

	6.4 Adding User Events to a HACMP Configuration
	6.4.1 User Events That Have a Specific Resource Monitor
	6.4.2 User Events That Do Not Have a Specific Resource Monitor

	Chapter 7. Other Event Utilities and Functions
	7.1 The Role of CSPOC in Multisystem Event Recovery
	7.1.1 Remote Execution Using the CSPOC Execution Language
	7.1.2 CSPOC Multinode and Single Node "Recovery Programs"
	7.1.3 Considerations for Using CSPOC
	7.1.4 CSPOC Summary

	7.2 The SP Problem Management Subsystem (pman)
	7.2.1 Basic pman Operations
	7.2.2 HACMP and pman Interactions

	7.3 Using IBM.PSSP.pm.User_State Resource Variables
	7.3.1 Creating Script-Based Resource Monitors

	Chapter 8. Common Monitoring Tasks
	8.1 Monitoring Processes
	8.1.1 Recovery Actions for Process Death Events
	8.1.2 Rearm Considerations for Process Death Events

	8.2 File System Space
	8.2.1 Recovery Actions for File System Full Events
	8.2.2 Rearm Considerations for File System Space Events

	8.3 Error Log Entries
	8.3.1 Recovery Actions for Error Log Entry Events
	8.3.2 Rearm Considerations for Error Log Entry Events

	Chapter 9. Common Recovery Actions
	9.1 Freeing Up File System Space
	9.2 Killing Processes

	Chapter 10. The Top Ten Events and Actions
	10.1 Introduction
	10.2 File System Full Events
	10.2.1 The root (/) File System Filling Up
	10.2.2 The /var File System Filling Up
	10.2.3 The /tmp File System Filling Up

	10.3 Process Death Events
	10.3.1 Failure of Domain Nameserver (named) Process
	10.3.2 Failure of Portmapper Process

	10.4 Virtual Memory Events
	10.4.1 Running Out of Paging Space

	10.5 Performance Events
	10.5.1 Excessive Paging Activity
	10.5.2 Memory Leakage in an Application

	10.6 Time Events
	10.6.1 System Clock Wandering

	10.7 Hardware Failures
	10.7.1 Failure of the scsi0 Adapter

	Chapter 11. Sample Events and Actions
	11.1 Components, Events and Possible Responses
	11.1.1 Accounting
	11.1.2 AFS Client
	11.1.3 AFS Server
	11.1.4 Auditing
	11.1.5 BNU/UUCP
	11.1.6 cron Daemon
	11.1.7 DCE/DFS Clients and Servers
	11.1.8 DHCP Client
	11.1.9 DHCP Server
	11.1.10 Domain Name Server
	11.1.11 iFOR/LS
	11.1.12 Mail
	11.1.13 NCS
	11.1.14 NFS Client
	11.1.15 NFS Server
	11.1.16 NIM Server
	11.1.17 NIS Client
	11.1.18 NIS Server (master or slave)
	11.1.19 Portmapper
	11.1.20 Printing
	11.1.21 Secure NFS - see NIS
	11.1.22 syslog daemon
	11.1.23 TCP/IP
	11.1.24 TIME Client (timed)
	11.1.25 TIME Server (master) (NTP)
	11.1.26 TIME Server (master or submaster) (timed)
	11.1.27 writesrv
	11.1.28 XStation Server

	Appendix A. scdsk_mon
	A.1 cfgodm.c
	A.2 cfgodm.h
	A.3 scdsk_mon.c

	Appendix B. Special Notices
	Appendix C. Related Publications
	C.1 International Technical Support Organization Publications
	C.2 Redbooks on CD-ROMs
	C.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	List of Abbreviations
	Index
	ITSO Redbook Evaluation

