
IBML

MQSeries Version 5
Programming Examples

Dieter Wackerow, RobertGage

International Technical Support Organization

http://www.redbooks.ibm.com

This book was printed at 240 dpi (dots per inch). The final production redbook with the RED cover will
be printed at 1200 dpi and will provide superior graphics resolution. Please see “How to Get ITSO
Redbooks” at the back of this book for ordering instructions.

SG24-5214-00

SG24-5214-00

IBML International Technical Support Organization

MQSeries Version 5
Programming Examples

October 1998

Take Note!

Before using this information and the product it supports, be sure to read the general information
in Appendix I, “Special Notices” on page 265.

First Edition (October 1998)

This edition applies to the following products:

• MQSeries for AIX Version 5

• MQSeries for OS/2 Warp Version 5

• MQSeries for Windows NT Version 5

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . ix

Tables . xi

Preface . xii i
The Team That Wrote This Redbook . xiii
Comments Welcome . xiv

Chapter 1. About MQSeries Version 5 . 1
1.1 Important New Functions of MQSeries Version 5 1

1.1.1 Database Resource Manager . 1
1.1.2 Transaction Coordinator . 1
1.1.3 Distribution Lists . 2
1.1.4 Handling Large Messages . 2
1.1.5 SPX Support . 3

1.2 Enhancement of Existing Functions . 3
1.2.1 Performance . 3
1.2.2 Change in Triggering Rules . 3
1.2.3 Data Conversion and Exits . 4
1.2.4 Channels . 4

1.3 Enhancement of Product Installation and Administration 4
1.3.1 Product Installation . 4
1.3.2 Product Administration . 4

1.4 Enhancement of Application Interface Development 5
1.5 Internet Support . 5
1.6 Enhancement of DCE Security . 5

1.6.1 Message Authentication . 5
1.6.2 Message Encryption . 6
1.6.3 Channel Exits and Data Conversion Exits 6

1.7 Enhancement of Problem Determination 6
1.8 Integration in IBM Software Server Product Package 6
1.9 Integration in IBM Suite NT Product Package 6

Chapter 2. Transaction Coordination . 7
2.1 Units of Work . 8

2.1.1 Local Unit of Work . 8
2.1.2 Global Unit of Work . 8
2.1.3 Mixing Units of Work . 9
2.1.4 The MQBEGIN Verb . 10
2.1.5 Outcome of a Unit of Work . 10

2.2 Database Configuration . 11

 Copyright IBM Corp. 1998 iii

2.2.1 Multiple Databases . 11
2.2.2 Configuring Database Managers 12

2.3 Software . 15
2.3.1 Installation Hints for Windows NT 15
2.3.2 Installation Hints for AIX . 16

2.4 Application Programming Samples . 23
2.4.1 Operational Considerations . 25
2.4.2 The Databases . 26
2.4.3 Objectives of the Examples . 26

2.5 Exercise 1: Setup for XA Coordination 27
2.5.1 Creating a Queue for the Examples 27
2.5.2 Starting DB2 . 27
2.5.3 The DB2 Environment on Windows NT 28
2.5.4 Creating the Databases . 29
2.5.5 Populating the Databases . 30
2.5.6 Grant Database Access to Other Users 30
2.5.7 Creating the XA Switch File . 31
2.5.8 You Need UTIL.C from DB2 . 34

2.6 Hints for Working with the Databases 35
2.6.1 Open a DB2 Command Window on Windows NT 35
2.6.2 Using SQL Command Files . 36
2.6.3 Lookup Information in a Database 36
2.6.4 Drop a Table . 36
2.6.5 Drop a Database . 37
2.6.6 Monitor Database Connections on Windows NT 37

2.7 Exercise 2: Using One XA Resource 40
2.7.1 Building an Executable for Windows NT 41
2.7.2 Building an Executable for AIX . 43
2.7.3 Define the Database to MQSeries 45
2.7.4 What Happens when MQSeries Starts but not DB2 46
2.7.5 Executing the Sample Program . 47
2.7.6 Monitoring Database Transactions 48

2.8 Exercise 3: Understanding Backout . 50
2.8.1 Information about Backout . 50
2.8.2 Program Logic . 52
2.8.3 Writing the Sample Program . 53
2.8.4 Compiling the Sample Program 56
2.8.5 Executing the Sample Program . 56

2.9 Exercise 4: Using Two XA Resources 58
2.9.1 Program Logic . 59
2.9.2 Creating the Executable . 61
2.9.3 Testing the Program . 61

2.10 Exercise 5: Configuration Issues . 63

iv MQSeries Version 5 Programming Examples

Chapter 3. Message Segmentation . 65
3.1 System and Application Segmentation 66

3.1.1 Arbitrary Segmentation . 66
3.1.2 Application Segmentation . 68
3.1.3 What about Existing Programs . 72

3.2 About the Message Segmenting Examples 72
3.3 A Program to Create a Very Large File 74
3.4 Exercise 6: Arbitrary Segmentation . 75

3.4.1 Writing a Program for Arbitrary Segmentation 75
3.4.2 Writing a Program that Reads Logical Messages 76
3.4.3 Compiling the Programs . 77
3.4.4 Creating a Queue . 77
3.4.5 Testing Arbitrary Segmentation . 78
3.4.6 Putting Segments Back Together 80

3.5 Exercise 7: Application Segmentation 82
3.5.1 Writing a Program for Application Segmentation 82
3.5.2 Creating a Queue . 83
3.5.3 Testing Application Segmentation 83
3.5.4 Putting Segments Back Together 86

Chapter 4. Message Groups . 89
4.1 A Simple Grouped Message Scenario 90
4.2 A Scenario for Grouped Segmented Messages 91
4.3 About the Message Grouping Example 92
4.4 Exercise 8: Putting Message Groups 92

4.4.1 Writing a Program that Puts Messages in a Group 92
4.4.2 Writing a Program that Gets Messages of a Group 94
4.4.3 Compile the Programs . 95
4.4.4 Creating a Queue for Exercise 8 96
4.4.5 Putting Messages in a Group . 96
4.4.6 Getting Messages of a Group . 99
4.4.7 Summary . 101

Chapter 5. Remote Administration and Windows NT Security 103
5.1 MQSeries Security Background . 103
5.2 Security Improvements . 104
5.3 Remote Administration Basics . 105
5.4 Exercise 9: Remote Administration in One Machine 107

5.4.1 Enable The Local Default Queue Manager 107
5.4.2 Creating The Second Queue Manager 108
5.4.3 Enable Automatic Startup . 108
5.4.4 Test It Out . 110
5.4.5 Remove the Second Queue Manager 110

5.5 Exercise 10: Remote Administration in a Workgroup 111

Contents v

5.6 Exercise 11: Remote Administration in a Domain 115
5.7 Summary . 115

Chapter 6. Reference Message . 119
6.1 Security Issues . 120
6.2 The Sample Programs . 120

6.2.1 Program Logic for the PUT Program 121
6.2.2 Program Logic for the GET Program 121
6.2.3 Definitions for the Sample Programs 122
6.2.4 Running the Sample Programs 123
6.2.5 More Object Types . 125

6.3 Exercise 12: Building a Reference Message 126
6.3.1 Writing the PUTREF Program . 126
6.3.2 Writing the GETREF Program . 132
6.3.3 Compiling and Testing . 134

6.4 The Reference Message . 135

Chapter 7. Distribution Lists . 141
7.1 Structures that Support Distribution Lists 142
7.2 MQI Extensions to Support Distribution Lists 145
7.3 Error Handling . 147
7.4 Late Fan Out . 148
7.5 Configuration . 149
7.6 Exercise 13: Distribution List . 150

7.6.1 Program Logic . 150
7.6.2 Setup for Distribution List Example 151
7.6.3 Writing a Distribution List Program 152
7.6.4 Executing the Distribution List Example 157

Chapter 8. FastPath Bindings . 159
8.1 Exercise 14: Using Fastpath Bindings 160

8.1.1 Program Logic . 161
8.1.2 The MQCNO Structure . 161
8.1.3 Writing the Program . 161
8.1.4 Comparing Standard and Fastpath Bindings 162

Chapter 9. Multithreading . 165
9.1 MQSeries Support . 165
9.2 The Scope of MQCONN . 167
9.3 Signals . 168
9.4 Exercise 15: A Multithreaded Program 169

Appendix A. Example Using One XA Resource 175

vi MQSeries Version 5 Programming Examples

Appendix B. Example Using Two XA Resources 185
B.1 Main Program AMQSXAG0.C (Modified) 185
B.2 AMQSXAB0.SQC Source Code . 194
B.3 Make Files for IBM Compiler . 198
B.4 Make Files for Microsoft Compiler 199
B.5 Make Files for AIX . 200

Appendix C. Message Segmenting Examples 203
C.1 PUT_SEG1 Performing Arbitrary Segmenting 203
C.2 BCG_SEG1 Browsing only Logical Messages 207
C.3 PUT_SEG2 Performing Application Segmenting 217

Appendix D. Message Grouping Examples 223
D.1 Source of PUT_GRP1 . 223
D.2 Source of BCG_GRP1 . 228

Appendix E. Reference Message Example 237
E.1 Source of PUTREF . 237
E.2 Source of GETREF . 241

Appendix F. Distribution List Example . 245

Appendix G. Fastpath Bindings Example 255

Appendix H. Diskette Contents . 261

Appendix I. Special Notices . 265

Appendix J. Related Publications . 269
J.1 International Technical Support Organization Publications 269
J.2 Redbooks on CD-ROMs . 269
J.3 Other Publications . 269

How to Get ITSO Redbooks . 271
How IBM Employees Can Get ITSO Redbooks 271
How Customers Can Get ITSO Redbooks 272
IBM Redbook Order Form . 273

Index . 275

ITSO Redbook Evaluation . 277

Contents vii

viii MQSeries Version 5 Programming Examples

Figures

 1. Database Client/Server Configurations 11
 2. Coordination of Multiple Databases 12
 3. Queue Manager Configuration File QM.INI 14
 4. Obtain the Universal Database and the SDK 18
 5. DB2 Installer Window on AIX . 19
 6. Install DB2 V5 Window 1 on AIX . 19
 7. Install DB2 V5 Window 2 on AIX . 20
 8. Install DB2 V5 Window 3 on AIX . 20
 9. Create DB2 Services Window on AIX 21
10. Sample Programs Supplied with MQSeries 24
11. SQL File to Create Databases . 29
12. SQL File Populate Databases . 30
13. SQL File to Grant Access to the Databases 31
14. Make File to Create XA-Switch on AIX 33
15. SQL File to View the Databases . 36
16. SQL File to Drop Database Tables . 37
17. Database Director - Tree View . 37
18. Snapshop Monitor (DB2) - Monitored Objects 38
19. Performance Details Window . 38
20. Performance Variables Window . 39
21. Customized Performance Details Window 39
22. Program Logic of Modified Sample AMQSXAS0 40
23. Make File for Microsoft C Compiler on Windows NT 42
24. Make File for IBM C Compiler on Windows NT 42
25. Shell File AMQSXAS0.SH to Build an Executable on AIX 43
26. Make File AMQSXAS0.MAK to Build an Executable on AIX 44
27. Performance Details Window Showing a Committed Transaction . 49
28. Program Logic of Example AMQSXAS1 51
29. SQL Calls in Example AMQSXAS1 . 53
30. Code to Declare a Database . 54
31. Code to Declare a Cursor for Locking Reads from a Database . . . 54
32. Code to Start a Global Unit of Work 54
33. Code of MQGET with Unlimited Wait 55
34. Code to Update a Database . 55
35. Code to Check if a Message Has Been Backed Out 56
36. Performance Details Window with Committed or Rolled Back

Transactions . 57
37. Updating Multiple Databases . 58
38. SQL Calls to Access Two Databases 60
39. Code to Connect to a Database . 60
40. New Fields in the Message Header 73

 Copyright IBM Corp. 1998 ix

41. Program that Creates a Very Large File 74
42. A Message Segment (Arbitrary Segmentation) 79
43. A Reassembled Logical Message (Arbitrary Segmentation) 81
44. A Message Segment (Application Segmentation) 85
45. A Reassembled Logical Message (Application Segmentation) . . . 88
46. A Message Group . 89
47. Getting a Message Group . 95
48. A Message in a Group . 98
49. A Last Message in a Group . 100
50. Granularity Example . 104
51. Remote Administration . 105
52. Message in Dead Letter Queue . 114
53. Reference Message Flow (Sample Programs) 119
54. Defining a Reference Message . 127
55. Open Queue Manager for Inquiry 127
56. Inquire Queue Manager Name and CCSID 129
57. Building a Reference Message . 130
58. Sending a Reference Message . 131
59. Get a Reference Message . 133
60. Extract Filename from Reference Message 133
61. Reference Message Header . 136
62. Reference Message (Part 1) . 138
63. Reference Message (Part 2) . 139
64. Distribution List . 141
65. Stuctures for Distribution Lists . 143
66. Object Record Structure MQOR . 143
67. Response Record Structure MQRR 143
68. Sample Put Message Record Structure MQPMR 144
69. Extensions to the Put Message Options MQPMO 146
70. Extensions to the Object Descriptor MQOD 147
71. Late Fan Out . 149
72. Reading a Distribution List File . 152
73. Creating Object Records . 153
74. Creating Put Message Records . 154
75. Open Target Queues in Distribution List 155
76. Put Message to Distribution List . 156
77. Display Response Record . 157
78. Standard and Fastpath Bindings . 159
79. Using MQCONNX . 162
80. Measureing Elapsed Time . 162
81. The Header File globals.h . 171
82. The Driver Function main.c . 172
83. Function which Constitutes a Thread: mqput.c 173

x MQSeries Version 5 Programming Examples

Tables

 1. Local Unit of Work . 8
 2. Global Unit of Work . 9
 3. Mixing Units of Work . 9
 4. MQBankDB Database Table MQBANKT 26
 5. MQBankDB Database Table MQBankTB 26
 6. MQFeeDB Database Table MQFeeTB 26
 7. Commands to Create XA Switch File 31
 8. Commands to Compile UTIL.C . 35
 9. Commands to Build Executable of AMQSXAS0 41
10. Commands to Compile amqsxas1 . 56
11. Commands to Create Executable that Accesses Two Databases . . 61
12. Commands to Compile BIG.C . 75
13. Commands to Compile Programs for Arbitrary Segmentation . . . 77
14. New Fields in Message Descriptor . 80
15. Commands to Compile put_seg2 . 83
16. New Fields in Message Descriptor . 86
17. Commands to Compile PUT_SEG1 and BCG_SEG1 95
18. New Fields in Message Descriptor . 97
19. Fields in Message Descriptor for a Message Group 101
20. Parameters for AMQSPRM . 124
21. Two Channel Exits . 125
22. Commands to Compile Programs for Reference Message 134
23. Objects for Reference Message . 135
24. Reference Message Contents . 137
25. Queues for Distribution List . 151
26. Commands to Compile DISTL.C . 157
27. Commands to Compile CONN.C and CONNX.C 163
28. Comparison between MQCONN and MQCONNX 163
29. Thread Implementations by Platform 166
30. Compilation Steps for Multithreaded Applications 166
31. Scope of MQCONN in Various Platforms 168
32. Files on Diskette . 261

 Copyright IBM Corp. 1998 xi

xii MQSeries Version 5 Programming Examples

Preface

This redbook helps you to design and develop application programs that use
the features of MQSeries Version 5. MQSeries Version 5 is available for five
platforms, OS/2, AIX, Windows NT, HP-UX and Sun Solaris. Some of the
functions are also available on the AS/400.

This redbook outlines the new features of MQSeries Version 5. It is based
on class exercises for an ITSO workshop. Several practical examples are
presented to demonstrate how to:

• Segment large messages of up to 100MB.

• Group messages for better performance.

• Send messages to multiple destinations using a distribution list.

• Coordinate queueing functions and database updates using a two-face
commit.

• Perform remote administration in a Windows NT workgroup.

• Transfer files to other systems using reference messages.

• Improve performance using fastpath bindings.

• Write multi-threaded programs.

The first chapter contains an overview of the functions released with
MQSeries Version 5. The other chapters are dedicated to specific functions.
They include programming hints and examples. This redbook comes with a
diskette that contains the source code of all examples.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the System Management and Networking ITSO Center, Raleigh.

Dieter Wackerow is the MQSeries expert at the Systems Management and
Networking ITSO Center, Raleigh. His areas of expertise include application
design and development, performance evaluations, capacity planning, and
modelling of computer systems and networks. He also wrote a simulator for
banking hardware and software. He teaches classes and writes on
performance issues, application development and about MQSeries.

Robert Gage is a Sr. Marketing Support Representative with IBM Software
Group, Worldwide Sales and Technical Support/MQSeries.

 Copyright IBM Corp. 1998 xiii

Thanks to the following people for their invaluable contributions to this
project:

David Armitage, IBM Australia

Satish Babu, IBM India

Hany Adel Kaiser, IBM Egypt

Jill Lennon, IBM USA

Marc Luong, IBM France

Geert Van de Putte, IBM Belgium

Matthias Schuette, IBM Germany

Jimmy Tsai, IBM Taiwan

Steve Bolam
Andy Hickson
Brian Homewood
James Wilkinson, IBM Hursley, England

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on
page 277 to the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com/
For IBM Intranet users http://w3.itso.ibm.com/

• Send us a note at the following address:

redbook@us.ibm.com

xiv MQSeries Version 5 Programming Examples

Chapter 1. About MQSeries Version 5

MQSeries Version 5 is interoperable with current and previous releases of
the MQSeries product on all platforms. The Version 5 queue managers will
operate on the Version 2 level for connections to both Version 1 and Version
2 queue managers.

The following MQSeries Version 5 products have been available since
September 1997:

• MQSeries for Windows NT V5.0

• MQSeries for OS/2 V5.0

• MQSeries for AIX V5.0

• MQSeries for HP-UNIX V5.0

• MQSeries for Sun Solaris V5.0

1.1 Important New Functions of MQSeries Version 5

MQSeries Version 5 adds a number of customer requested functions which
will simplify MQSeries installation, application design, system administration
and problem determination.

1.1.1 Database Resource Manager
This is one of most important new features of MQSeries Version 5. The
queue manager is able to coordinate database updates and messaging
activity. With Version 5, a customer application which includes both
MQSeries and SQL activity uses a new API of MQSeries, the MQBEGIN
verb, to register a logical unit of work (LUW). MQSeries and SQL activity
can be committed or backed out atomically, using the MQCMIT or MQBACK
verbs.

Restart resynchronization between MQSeries and coordinated Relational
Data Base Management (RDBM) is provided by MQSeries Database
Message Resource Coordination (DMRC).

Examples are described, in detail, in Chapter 2, “Transaction Coordination”
on page 7.

1.1.2 Transaction Coordinator
MQSeries is designed to work well in conjunction with transaction monitors,
such as CICCS, Encina, etc. Its advantages include scalability, performance,
resource sharing, system administration and system management.

 Copyright IBM Corp. 1998 1

1.1.3 Distribution Lists
The enhanced message distribution carries more business information,
while minimizing use of the network. Multicast customer applications
require the ability to send information to multiple destinations. MQSeries
also provides smart message distribution. This minimizes the amount of
network trafic required to distribute a copy of a single message to multiple
users whose queues reside on a single node.

One MQSeries MQPUT can now be used to send copies of a single message
to multiple destinations with assured delivery to each destination.

Distribution lists allow you to put a message to multiple destinations in a
single MQPUT or MQPPUT1. Multiple queues can be opened using a single
MQOPEN and a message can then be put to each of those queues using a
single MQPUT. Some generic information from the MQI structures used for
this process can be superseded by specific information relating to the
individual destinations included in the destination list. When an MQOPEN
call is issued, generic information is taken from the Object Descriptor
(MQOD). If you specify MQOD_VERSION_2 in the Version field and when a
message is put on the queues (MQPUT), generic information is taken from
the Put Message Options structure (MQPMO) and the Message Descriptor
(MQMD). The specific information is given in the form of Put Message
Records (MQPMR). The Response Records (MQRR) can receive a
completion code and reason code specific to each destination queue.

Examples are described, in detail, in Chapter 7, “Distribution Lists” on
page 141.

1.1.4 Handling Large Messages
With MQSeries Version 5, the maximum message length is 100 MB, up from
4 MB. Non-Version 5 queue managers, such as queue managers running in
MVS/ESA and AS/400 systems are still limited to 4 MB.

1.1.4.1 Message Segmentation and Message Groups
Messages may now be built or retrieved in segments. This is known as
″partial put/get″. This allows application programs to deal with messages
larger than could be stored in a single buffer. It can also be used to group
multiple records into a single MQSeries message.

Examples are described, in detail, in Chapter 3, “Message Segmentation”
on page 65 and Chapter 4, “Message Groups” on page 89.

2 MQSeries Version 5 Programming Examples

1.1.4.2 Reference Message
This is a new feature of the API MQPUT. The message is actually a logical
pointer to external data such as a file, graphical images or other stored
data. MQSeries will move the referenced data in its assured manner, store
it at the receiving site and make the reference available to the target
process in the corresponding new form of the API MQGET.

This work is done by a new IBM-provided MQSeries messages exit. The
program fetches the messages data indicated in the reference message
header and sends it to the remote queue manager. Usually, the remote
queue manager will have the corresponding message exit installed which
writes the incoming message to a file or optionally to a queue.

An example is described in Chapter 6, “Reference Message” on page 119.

1.1.5 SPX Support
IPX and SPX are the proprietary native protocols used on Novell LANs. In
MQSeries Version 5 SPX is a supported transport protocol for the following
platforms and clients: OS/2, Windows NT, DOS, Windows 3.1 and Windows
95.

1.2 Enhancement of Existing Functions

Here are some important enhancements to existing functions:

1.2.1 Performance
MQSeries Version 5 can transmit messages eight times faster than the
previous version.

Applications using fastpath bindings (MQCONNX) run faster than standard
bindings. Chapter 8, “FastPath Bindings” on page 159 provides an example
that lets you measure the performance inprovement.

1.2.2 Change in Triggering Rules
With MQSeries Version 5 the process definition object for channels has been
eliminated. You do NOT need to create a process definition object; the
tranmission queue definition is used instead. When a trigger event occurs,
the transmission queue definition contains information about the application
that processes the message which caused the event. Again, when the
queue manager generates the trigger message, it extracts this information
and places it in the trigger message.

Chapter 1. About MQSeries Version 5 3

1.2.3 Data Conversion and Exits
Several new code pages and languages are now supported. Channel exits
can now also be chained. An example is shown in Chapter 6, “Reference
Message” on page 119.

1.2.4 Channels
New channel attributes have been added. You can define ″fast″ channels, a
heartbeat interval, a batch interval and you can chain channel exits.

1.3 Enhancement of Product Installation and Administration

Installation of the product and its administration is now easier.

1.3.1 Product Installation
During MQSeries installation, default MQSeries objects are automatically
created. The separate execution of MQSeries commands is no longer
required. The MQSC syntax and user interaction are improved for definition
of MQSeries resources and issuing commands.

1.3.2 Product Administration
Administration of MQSeries channels and auto-definition of
server-connection and receiver channels is now supported.

Dynamic definition is provided for receiver and MQI server channels.
Definition is optionally eliminated for processes associated with triggered
channels. Process definitions are still allowed, if desired.

MQI Server channel status is now available. This applies to MQSeries
clients. Channel status is preserved over a restart. Channels which have
failed or were in retry prior to a shutdown appear in that mode following
restart.

One of the new features of MQSeries Version 5 is channel auto-definition.
This means that you don′ t have to define a receiver channel. Try this out by
deleting your receiver channels. Change the queue manager attribute CHAD
to enable this feature. Do not forget that your existing sender channel has a
status record with a message sequence number. Before you test this out,
you should reset the sender channels. In a runmqsc session, type: alter
qmgr chad(enable). This enables the channel auto-definition feature.

4 MQSeries Version 5 Programming Examples

1.4 Enhancement of Application Interface Development

The additional developer feature includes further language support for
C++, Java and PL/1 and interoperabil ity with current and previous
MQSeries versions:

• Lotus Notes link

• SAP R3

• Web Internet Gateway

• Java application

• Support for Encina (by MQSeries on Windows NT)

1.5 Internet Support

MQSeries Version 5 support for the Internet includes:

• Internet Gateway

This provides a bridge between the synchronous world of the World
Wide Web and asynchronous MQSeries applications.

• MQSeries Client for Java

This functions lets you write Java applets that can connect to a queue
manager that runs in the same machine as the Web server.

• MQSeries Bindings for Java

This set of Java classes lets you write server applications using Java
and MQSeries.

• HTML publications

MQSeries manuals are available in HTML format an the product CD.

1.6 Enhancement of DCE Security

Authentication and encryption are supported for both MQSeries server-
to-server and MQSeries client-to-server links. For MQ/Client links, the
message exits are not present, so send/receive exits must be used.

1.6.1 Message Authentication
MQseries security exits, message and send/receive exits are provided for
optional use. The security exits require and use DCE security to provide
authentication of MQSeries partners before any messages are sent or
received.

Chapter 1. About MQSeries Version 5 5

1.6.2 Message Encryption
A choice of either message exits or send/receive exits is provided for
encryption of messages.

1.6.3 Channel Exits and Data Conversion Exits
This prevents system users from running their own set of exits, contrary to
the system administrator′s policy.

1.7 Enhancement of Problem Determination

New means of problem resolution will assist in collecting diagnostic
information to speed problem determination:

 1. New trace functions

 2. Log dump utility

 3. FFST improvements for diagnostic of internal MQSeries problems

 4. Addition of RAS folder to hold diagnostic information

1.8 Integration in IBM Software Server Product Package

IBM Software Server Product package provides a set of common IBM
products for application servers which include DB2, Transaction Server
(CICS, Encina) and MQSeries. By integrating IBM Software Server
standards, MQSeries fits more comfortably into customer application server
solutions that include multiple components.

1.9 Integration in IBM Suite NT Product Package

MQSeries is included in the IBM Suite NT Product Package which contains a
set of IBM software products: DB2, CICS, Encina, Lotus Notes, ADSTAR
Distributed Storage Manager, Netscapes, DCE, LSX Support, IBM
Communications Server.

MQSeries Version 5 Web Page

http://www/software.ibm.com/ts/mqseries/v5

6 MQSeries Version 5 Programming Examples

Chapter 2. Transaction Coordination

MQSeries is already an XA-compliant resource manager. This allows it to
participate in a two-phase commit coordinated by an XA transaction
manager such as CICS, Encina or Tuxedo.

A two-phase commit ensures that updates to resources that belong to
different resource managers can be made with integrity. For example,
consider a CICS transaction that updates both an MQSeries queue and a
table in a DB2 database. For integrity to be maintained, the updates to the
MQSeries queue and the DB2 table must both succeed or both fail.

In MQSeries Version 5, the queue manager is both an XA resource manager
and an XA resource coordinator. When the queue manager is acting as the
XA coordinator it becomes possible to write a mixed MQI and SQL
application and use the MQCMIT verb to commit or the MQBACK verb to
roll back the changes to the queues and databases together.

In this chapter, we provide examples on how to use the transaction monitor
supplied with MQSeries Version 5 for external syncpoint coordination.

Note: You can use the transaction monitor only with a server application.
This support is not available to client applications.

In the following sections we explain:

• What a local and global unit of work is

• What the new verb MQBEGIN does

• What an XA switch file is for and how to create it

• How to tell the queue manager what databases to coordinate

• How to create, populate and work with a database

• How to write and compile programs that update queues and databases

• How to commit and back out transactions

• How to monitor database updates

The examples in this chapter not only describe how to write the code for
transaction coordination but also what to do when something goes wrong.

 Diskette

The source code and the make files for all examples are on the diskette.
Refer to Appendix H, “Diskette Contents” on page 261.

 Copyright IBM Corp. 1998 7

2.1 Units of Work

With MQSeries Version 5, the new verb MQBEGIN is introduced to start a
global unit of work. A global unit of work includes both database and queue
updates while a local unit of work consists of queue updates only. The latter
is the pre-Version 5 unit of work.

2.1.1 Local Unit of Work
Local units of work only update queues that belong to the queue manager
itself. A local unit of work is started by an MQGET, MQPUT or MQPUT1 call
which specifies the corresponding syncpoint option. Subsequent calls which
also specify the syncpoint option are considered to be part of the same unit
of work, until the unit of work is committed or rolled back. Table 1 shows
an example.

Units of work can be committed explicitly by an MQCMIT call, or implicitly
by an MQDISC call. Units of work can be rolled back explicitly by an
MQBACK call, or implicitly if the application terminates without first
disconnecting.

Table 1. Local Unit of Work

MQCONN()
...
MQGET(MQGMO_SYNCPOINT)
...
MQCMIT()
...
MQPUT(MQPMO_SYNCPOINT)
...
MQDISC

2.1.2 Global Unit of Work
Global units of work can update both queues and databases and need to be
started with MQBEGIN. This new verb has been added to the MQI to start a
unit of work that involves other resource managers. These units of work are
global since they update more than just local resources.

After the MQBEGIN call has been issued, local resources can be updated
using MQGET, MQPUT or MQPUT1 calls made under syncpoint. Updates to
databases need to be made using the SQL API provided by the appropriate
database manager. Table 2 on page 9 shows an example.

The method for committing global units of work is the same as for local
units of work. The unit of work can be committed by an MQCMIT or an

8 MQSeries Version 5 Programming Examples

MQDISC call. Alternatively, the unit of work will be rolled back by an
MQBACK call, or if the application terminates without first disconnecting.

Table 2. Global Unit of Work

MQCONN()
...
MQBEGIN()
...
MQGET(MQGMO_SYNCPOINT)
...
EXEC SQL UPDATE
...
MQCMIT()
MQDISC()

2.1.3 Mixing Units of Work
It is possible to write an application that consists of both local and global
units of work.

Units of work that make only queue manager updates can be started using
an MQGET, MQPUT or MQPUT1 call specifying the appropriate syncpoint
option. Units of work that also need to update global resources owned by a
database manager need to be started using an MQBEGIN call. It is also
possible to start a global unit of work that:

• Only updates local queues

• Only updates databases (doesn′ t make any queue updates)

• Doesn′ t make any updates (effectively a no-op)

Table 3 shows one valid and two invalid units of work. There can only be a
single unit of work in existence at one time. It is an error to try to start
another unit of work while there is another already in progress.

Table 3. Mixing Units of Work

Valid Invalid Invalid

MQCONN ()
MQPUT (MQPMO_SYNCPOINT)
MQCMIT ()
...
...
MQBEGIN ()
MQGET (MQGMO_SYNCPOINT)
EXEC SQL UPDATE
MQCMIT ()

MQCONN ()
MQPUT (MQPMO_SYNCPOINT)
...
MQBEGIN ()

MQCONN ()
...
MQBEGIN ()
...
MQBEGIN ()

Chapter 2. Transaction Coordination 9

2.1.4 The MQBEGIN Verb
The MQBEGIN verb has the following syntax:

MQBEGIN (HConn, BeginOptions, CompCode, Reason)

The options structure is provided only for future extensibility. You are
expected to pass the default structure, MQBO_DEFAULT. In a C program,
you may specify a NULL pointer. The call can return the following errors:

• 2121 - MQRC_NO_EXTERNAL_PARTICIPANTS

The queue manager has not been configured with any external resource
managers. A unit of work is still started but it may only involve queue
updates.

• 2122 - MQRC_PARTICIPANT_NOT_AVAILABLE

One of the databases which the queue manager has been configured
with is not available at the moment. A unit of work is still started but it
won ′ t be able to update the unavailable databases.

• 2134 - MQRC_BO_ERROR

The BeginOptions structure is not valid. No unit of work is started.

• 2128 - MQRC_UOW_IN_PROGRESS

A local or global unit of work is already in progress. No new unit of
work is started.

2.1.5 Outcome of a Unit of Work
Two new error responses have been introduced to cater for failures that can
occur during the syncpoint of a unit of work that involves other resource
managers. They can be returned from an MQCMIT, MQDISC or MQBACK.

• 2123 - MQRC_OUTCOME_MIXED

This denotes a failure to commit a unit of work. It indicates that shared
resources are in a potentially inconsistent state. Some of the updates
made within the unit of work were committed whereas others were
rolled back.

You have to look at the queue manager′s error logs for messages
relating to the mixed outcome. The messages identify the resource
managers that are affected. Use procedures local to the affected
resource managers to re-synchronize the resources.

• 2124 - MQRC_OUTCOME_PENDING

This warning can be returned when a database manager becomes
unavailable during the second phase of commit. The database will
remain in doubt until the queue manager re-synchronizes with it when it

10 MQSeries Version 5 Programming Examples

becomes available again. While the database updates remain in doubt,
the possibility of a mixed outcome of a unit of work remains.

2.2 Database Configuration

In general, the queue manager should be able to support any XA-compliant
database manager. Initially, only DB2 (Version 2.1.1) and Oracle (Version
7.3.2) are supported. Refer to the announcement material for more details.

The ability to coordinate global transactions involving updates to databases
is only supported on the queue manager server. Client applications will
receive a runtime error if they issue an MQBEGIN to start a global unit of
work.

Applications must run locally on the same machine as the queue manager.
Updates to databases must also be made on this same machine. These can
be local if the database server is on the same machine as the queue
manager. If the database server resides on a different machine then the
database needs to be accessed through an XA-compliant client feature
provided by the database manager, not the queue manager. Figure 1
shows the two configurations.

Figure 1. Database Client/Server Configurations

2.2.1 Multiple Databases
Coordination of multiple databases is supported. You can include updates
to more than one database within one global unit of work. The databases
may be of the same or different kinds and the database server does not
need to reside in the same machine as the queue manager.

The queue manager places no restrictions upon the number of databases
that can be updated in a unit of work, though it is hard to imagine an
application that will need to update more than two or three databases.

Chapter 2. Transaction Coordination 11

MQSeries is an XA-compliant resource manager and it would be a
reasonable question to ask whether one queue manager can coordinate
updates made to queues owned by another queue manager. This is not
allowed because an application can only connect to a single queue manager
at one time.

Figure 2. Coordination of Mult iple Databases

2.2.2 Configuring Database Managers
There are four steps to perform before a database manager can participate
in global units of work:

 1. Create an XA-switch for the database manager.

 2. Define the database managers in the qm.ini file.

 3. Set the tp_mon_name parameter.

 4. Set database security.

A brief description and an example follows.

Note: For a detailed description refer to MQSeries System Administration,
SC33-1873 and the MQSeries Application Programming Guide, SC33-0807.

2.2.2.1 The XA-Switch
A resource manager′s XA-switch is a DLL or shared library with a single
entry point. When it is called it returns the address of the xa_switch_t
structure for the resource manager. This structure contains the name of the
resource manager, option flags and all the XA function pointers. Since the
programmer does not use this structure we don′ t describe it here; however,
we have to create the XA-switch load file.

12 MQSeries Version 5 Programming Examples

The files to create the XA-switch are in the following directories:

NT mqm\tools\c\samples\xatm

OS/2 mqm\tools\c\samples\xatm

AIX /usr/ lpp/mqm/samp/xatm

The names of the source files for the switch file are:

• For DB2, db2swit.c

• For Oracle, oraswit.c

How to make the switch file is described in 2.5, “Exercise 1: Setup for XA
Coordination” on page 27.

2.2.2.2 The XA Resource Manager Stanza
An XAResourceManager stanza must be added to the QM.INI file. You find
this file in the directory directory \mqm\qmgrs\queue_manager_name.
Figure 3 on page 14 shows a qm.ini file for Windows NT with one resource
manager stanza. The parameters are:

XAResourceManager:
Name=<database_manager_name> <database_name>
SwitchFile=<switch_file_name>
XAOpenString=<database_name>
ThreadOfControl=THREAD

Figure 3 on page 14 shows an example of a qm.ini file that contains one
resource manager stanza.

Chapter 2. Transaction Coordination 13

ExitPath:
ExitsDefaultPath=C:\MQM\exits

Service:
Name=AuthorizationService
EntryPoints=9

ServiceComponent:
Service=AuthorizationService
Name=MQSeries.WindowsNT.auth.service
Module=C:\MQM\bin\amqzfu.dll
ComponentDataSize=0

XAResourceManager:
Name=DB2 MQBANKDB
SwitchFile=c:\MQM\BIN\DB2SWIT.DLL
XAOpenString=MQBANKDB
ThreadOfControl=THREAD

Log:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=256
LogType=CIRCULAR
LogBufferPages=17
LogPath=C:\MQM\LOG\DIETER\

Figure 3. Queue Manager Configuration File QM.INI

Notes:

 1. The database manager name for DB2 is DB2.

 2. The database name and the XAOpenString is either MQBANKDB or
MQFEEDB.

 3. The name of the switch file is db2swit.dll. Specify its path.

 4. For DB2 on OS/2 and Windows, the ThreadOfControl parameter is
always THREAD. Omit this line if you configure MQSeries and DB2 on a
UNIX system.

 Important

You need a separate stanza for each database even if they use the same
resource manager.

14 MQSeries Version 5 Programming Examples

2.2.2.3 The TP_MON_NAME Parameter
This is only required for DB2 on OS/2 and Windows NT. It names
MQMAX.DLL as the library that DB2 uses to call the queue manager. The
DLL resides in the directory \mqm\bin. Make sure you have a LIBPATH for
it. In a DB2 command window, enter this command:

db2=> update dbm cfg using TP_MON_NAME mqmax

2.2.2.4 Database Security
Refer to the documentation provided with the database manager to
determine the security implications of running your database under the XA
model.

2.3 Software

To develop the examples for this book we used the following operating
systems:

• AIX Version 4.1.4.0

• OS/2 Warp Version 4.0

• Windows NT Version 4.0

On all systems we installed the Universal Database Version 5 (DB2) and the
DB2 Software Developer′s Kit from the DB2 Application Developer′s Kit
which is a separate product.

The C samples are written in ANSI C and can be compiled with the following
compilers:

AIX C for AIX Compiler Version 3.1.4 (xlc)

OS/2 IBM VisualAge C++ Version 3.0 for OS/2

NT Microsoft Visual C++ Version 2.0 and Version 3.5.3

IBM VisualAge C++ Version 3.5 for Windows

The COBOL examples have been developed under Windows NT using
VisualAge for COBOL Version 2.1.

2.3.1 Installation Hints for Windows NT
The following tips help you to test the examples provided with this book:

 1. Set up a user ID with the Name Admin and include it in the group
Administrators. The user ID Administrator is one character too long for
MQSeries.

 2. Log on as Admin and use this ID from now on.

Chapter 2. Transaction Coordination 15

 3. Install MQSeries Version 5 and re-boot.

Note: The user ID Admin becomes a member of the group mqm.

 4. Create a default queue manager.

Note: Since Version 5 this includes creating all default objects for that
queue manager.

 5. Install the Universal Database Version 5 and the SDK, and re-boot.

Notes:

a. DB2 Version 2.1.2 will work, too. We used this version from the
Demo Package June 97.

b. With the SDK you install the C samples.

 6. Install one of the C compilers.

If you are using the MicroSoft C compiler, the following environment values
must be added. If you already have the variable, (for example, PATH) add
the value to the end of the existing chain. If it does not exist (for example,
CPU) add the variable and value.

Path C:\MSVC20\bin

Libpath: C:\MSVC20\LIB

Include: C:\MSVC20\INCLUDE

CPU: i386

The ′ i′ should not be capitalized!

Note: The above example is for Microsoft Visual C++ Version 2.0.

The settings for the environment are in the System Properties:

• Select Start , then Settings , then Control Panel .

• Click on System , then on the Environment tab.

• Select System Variable , edit the value and click on Set .

• For a new variable, enter its name, type the value and click on Set .

• When finished, click on Apply and then on OK .

2.3.2 Installation Hints for AIX
The following tips help you to set up your AIX system to test the database
coordination examples:

 1. Log in as root.

16 MQSeries Version 5 Programming Examples

 2. To install the Universal Database and the SDK on your AIX system we
need two files. They are located in the following directories:

• /pub/db2install/db2_v500/aix/gold970815/image_aix.tar

• /pub.db2install/db2_v500/sdk/gold970815/sdk2-unix/image_aix.tar

 3. You can order the products or get them from the internal FTP site
ftp3.torolab.ibm.com as shown Figure 4 on page 18.

Note: This site is for IBM internal use only.

 4. Uncompress the image file with the following command:

rs60001:/home/db2_image > tar -xvf image_aix.tar

 5. Next start the installation process with the following command:

rs60001:/home/db2_image/db2/aix > ./db2setup

 6. In the DB2 Installer window shown in Figure 5 on page 19, select Install .

 7. In the Install DB2 V5 window shown in Figure 6 on page 19, select the
three products marked with an asterisk and then click on OK .

 8. In the second Install DB2 V5 window, shown in Figure 7 on page 20,
select the DB2 Sample Database Source . These examples help you
write DB2 programs.

 9. The next Install DB2 V5 window in Figure 8 on page 20 lets you choose
products from the DB2 Software Developer′s Kit. Select the two
products marked with an asterisk.

10. In the Create DB2 Services window shown in Figure 9 on page 21, type
a user name and a group name. We used db2inst1 and db2iadm.

11. Log off as root and log in as db2inst1.

Chapter 2. Transaction Coordination 17

(1) DB2 DATABASE system file
rs60001:/home/db2_image > ftp ftp3.torolab.ibm.com
Connected to enterprise.torolab.ibm.com.
220 enterprise FTP server (Version wu-2.4(2) Fri Apr 21 16:06:09 CUT 1995) ready.
Name (ftp3.torolab.ibm.com:db2inst1): anonymous
331 Guest login ok, send your complete e-mail address as password.
Password:
230-
230-Welcome to the IBM Toronto Lab FTP server.
230-
230-This server contains various files for Anonymous FTP as well
230-as all the Web documents available on w3.torolab.ibm.com.
230-You are user 9 of a maximum of 200.
230-
230 Guest login ok, access restrictions apply.
ftp> cd /pub/db2install/db2_v500/aix/gold970815
250 CWD command successful.
ftp> dir
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
total 269217
-rw-r--r-- 1 3576 200 1052 Nov 10 14:45 README.FTP
-rw-r--r-- 1 3576 200 190 Sep 11 1997 WARNING.FTP
-rw-r--r-- 1 3576 200 49960960 Sep 11 1997 books_en.tar
-rw-r--r-- 1 3576 200 223641600 Oct 20 20:24 image_aix.tar
-rw-r--r-- 1 3576 200 13881 Sep 11 1997 readme.txt
-rw-r--r-- 1 3576 200 2058240 Sep 11 1997 repl_en.tar
226 Transfer complete.
ftp> bin
200 Type set to I.
ftp> get image_aix.tar
200 PORT command successful.
150 Opening BINARY mode data connection for image_aix.tar (223641600 bytes).

(2) SDK image file
ftp> cd /pub/db2install/db2_v500/sdk/gold970815/sdk2-unix
250 CWD command successful.
ftp> dir
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
total 261275
-rw-r--r-- 1 3576 200 33331200 Sep 12 1997 books_en.tar
-rw-r--r-- 1 3576 200 66744320 Sep 12 1997 image_aix.tar
-rw-r--r-- 1 3576 200 28293120 Sep 12 1997 image_hp.tar
-rw-r--r-- 1 3576 200 27084800 Sep 12 1997 image_sco.tar
-rw-r--r-- 1 3576 200 24453120 Sep 12 1997 image_sgi.tar
-rw-r--r-- 1 3576 200 26931200 Sep 12 1997 image_sinix.tar
-rw-r--r-- 1 3576 200 60692480 Sep 12 1997 image_solaris.tar
-rw-r--r-- 1 3576 200 14518 Sep 11 1997 readme.txt
226 Transfer complete.
ftp> bin
200 Type set to I.
ftp> get image_aix.tar
200 PORT command successful.
150 Opening BINARY mode data connection for image_aix.tar (223641600 bytes).
ftp> bye

Figure 4. Obtain the Universal Database and the SDK

18 MQSeries Version 5 Programming Examples

+------------------------------- DB2 Installer --------------------------------+
| |
| Select Install to select products and their components to install, or |
| select Create to create the DB2 services. |
| |
| |
| To select products and their components, select [�Install...�] |
| Install. |
| |
| To create a DB2 Instance, or the Administration [Create...] |
| Server, select Create. |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| [Close] [Help] |
+--+

Figure 5. DB2 Installer Window on AIX

+------------------------------- Install DB2 V5 -------------------------------+
| |
| Select the products you are licensed to install. Your Proof of |
| Entitlement and License Information booklet identify the products for |
| which you are licensed. |
| |
| To see the preselected components or customize the selection, select |
| Customize for the product. |
| :*: DB2 Client Application Enabler [Customize...] |
| :*: DB2 UDB Workgroup Edition [Customize...] |
| : : DB2 UDB Enterprise Edition : Customize... : |
| : : DB2 Connect Enterprise Edition : Customize... : |
| : : DB2 UDB Extended Enterprise Edition : Customize... : |
| :*: DB2 Software Developer′ s Kit [Customize...] |
| |
| To choose a language for the following components, select Customize for |
| the product. |
| DB2 Product Messages [Customize...] |
| DB2 Product Library [Customize...] |
| |
| |
| [�OK�] [Cancel] [Help] |
+--+

Figure 6. Install DB2 V5 Window 1 on AIX

Chapter 2. Transaction Coordination 19

+------------------------------- Install DB2 V5 -------------------------------+
+--- DB2 Universal Database Workgroup Edition ---------------------------------+
| |
| Required: DB2 Client |
| DB2 Run-time Environment |
| DB2 Engine |
| DB2 Communication Support - TCP/IP |
| DB2 Communication Support - IPX/SPX |
| DB2 Communication Support - SNA |
| DB2 Communication Support - DRDA Application Server |
| Administration Server |
| License Support |
| Optional: [] Open Database Connectivity (ODBC) |
| [] Java Database Connectivity (JDBC) |
| : : Replication |
| :*: DB2 Sample Database Source |
| Code Page Conversion Support: |
| : : Japanese : : Simplified Chinese |
| : : Korean : : Traditional Chinese |
| |
| [Select All] [Deselect All] [Default] |
| [�OK�] [Cancel] [Help] |
+--+

Figure 7. Install DB2 V5 Window 2 on AIX

+------------------------------- Install DB2 V5 -------------------------------+
| |
| Select the products you are licensed to install. Your Proof of |
| Entitlement and License Information booklet identify the products for |
| which you are licensed. |
| |
+--- DB2 Software Developer′ s Kit ---+
| |
| Required: DB2 Client |
| DB2 Application Development Tools (ADT) |
| Optional: [] Open Database Connectivity (ODBC) |
| [] Java Database Connectivity (JDBC) |
| :*: DB2 Sample Applications |
| :*: Create Links for DB2 Libraries |
| |
| [Select All] [Deselect All] [Default] |
| [�OK�] [Cancel] [Help] |
+--+
| DB2 Product Library [Customize...] |
| |
| |
| [OK] [Cancel] [Help] |
+--+

Figure 8. Install DB2 V5 Window 3 on AIX

20 MQSeries Version 5 Programming Examples

+---------------------------- Create DB2 Services -----------------------------+
|+--- DB2 Instance ---+|
	Authentication:	
	Enter User ID, Group ID and Password that will be used for	
	the DB2 Instance.	
	User Name [db2inst1]	
	User ID : : [*] Use default UID	
	Group Name [db2iadm1]	
	Group ID : : [*] Use default GID	
	Password []	
	Verify Password [] [Default]	
	Protocol:	
	Select Customize to change the default [Customize...]	
	communication protocol.	
	[*] Auto start DB2 Instance at system boot.	
	[] Create a sample database for DB2 Instance.	
	[�OK�] [Cancel] [Help]	
+--+		
+--+

Figure 9. Create DB2 Services Window on AIX

12. Add a search path to your DB2 instance user profile:

#
Run $HOME/sqllib/db2profile
#
. $HOME/sqllib/db2profile

13. Add the following line to .profile so that you can run the MQ sample
programs.

#
Add MQM sample execution program
#
PATH=${PATH}:/usr/lpp/mqm/samp/bin:

This completes the installation and the setup.

14. The next time you log in as db2inst1 you may want to display the profile.

Chapter 2. Transaction Coordination 21

� �
AIX Version 4
(C) Copyrights by IBM and by others 1982, 1994.
login: db2inst1
db2inst1′ s Password:
[db2inst1@rs60001]/home/db2inst1 > cat .profile
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:$HOME/bin:/usr/bin/X11:/sbin:.
export PATH
if [-s ″$MAIL″] # This is at Shell startup. In normal
then echo ″$MAILMSG″ # operation, the Shell checks
fi # periodically.
#
Run $HOME/sqllib/db2profile
#
. $HOME/sqllib/db2profile
#
Add MQM sample execution program
#
PATH=${PATH}:/usr/lpp/mqm/samp/bin:${PATH}:/usr/lpp/mqm/inc
PATH=${PATH}:/usr/lpp/db2_01_01_0000/include
export PATH
INCLUDE=/usr/lpp/db2_05_00/include
export INCLUDE
[db2inst1@rs60001]/home/db2inst1 >� �

15. Next, add the DB2 instance user db2inst1 to the mqm group. You may
use smitty to do that.

a. From the smitty menu, select the following:

Security and Users
Groups

Change / Show Characteristics of a Group

b. Type mqm as group name.

 c. In the next screen add db2inst1 to the user list as shown below.

d. You may add dbinst1 to the list of administrators, too.

e. Logoff

22 MQSeries Version 5 Programming Examples

� �
Change Group Attributes

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Group NAME [mqm]
Group ID [200] #
ADMINISTRATIVE group? true +
USER list <hugo,otto,jpc,db2inst1] +
ADMINISTRATOR list [mqm,wkshop1,root,jpc,v> +

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

2.4 Application Programming Samples

Figure 10 on page 24 shows the application programming samples provided
with MQSeries Version 5. They are in the directories:

C \mqm\tools\c\samples\xatm (amqsxa...)

COBOL \mqm\tools\cobol\samples\xatm (amq0xa...)

AIX /usr/ lpp/mqm/samp (C and COBOL)

Note: We used modified versions of these programs.

The programs read a message from a queue (under syncpoint), then, using
the information in the message, obtain the relevant data from the database
and update it. The new status of the database is then displayed.

The program logic is as follows:

 1. Use name of input queue from program argument.

 2. Connect to the default queue manager (or optionally supplied name in
the C program) using MQCONN.

 3. Open queue (using MQOPEN) for input while no failures.

 4. Start a unit of work using MQBEGIN.

 5. Get next message (using MQGET) from queue under syncpoint.

Chapter 2. Transaction Coordination 23

Figure 10. Sample Programs Supplied with MQSeries

 6. Get information from databases.

 7. Update information from databases.

 8. Commit changes using MQCMIT.

 9. Print updated information (no message available counts as failure).

10. Close queue using MQCLOSE.

11. Disconnect from queue using MQDISC.

SQL cursors are used in the samples, so that reads from the databases
(that is, multiple instances) are locked while a message is being processed;
thus multiple instances of these programs can be run simultaneously. The
cursors are explicitly opened, but implicitly closed by the MQCMIT call.

The single database samples (AMQSXAS0 and AMQ0XAS0) have no SQL
CONNECT statements and the connection to the database is implicitly made
by MQSeries with the MQBEGIN call.

The multiple database samples (AMQXSAG0, AMQSXAF0, AMQSXAB0) have
SQL CONNECT statements, as some database products allow only one
active connection. If this is not the case for your database product, or if you
are accessing a single database in multiple database products, the SQL
CONNECT statements can be removed.

24 MQSeries Version 5 Programming Examples

2.4.1 Operational Considerations
The queue manager can be started and stopped independently of the
database managers. The queue manager tolerates any or all of the
database managers not being available when it is started. Global
transactions can be started but they will not include those database
managers that are not available. Applications issuing MQBEGIN will receive
the warning 2122, participant not available.

Database managers can be started and stopped independently of the queue
manager. A queue manager does not have to restart itself when a database
manager becomes unavailable. The availability and unavailability of
database managers is reported in the queue manager′s error logs by
messages AMQ7604 and AMQ7625.

When a database manager becomes unavailable the possibility exists that it
may have updates that are still in doubt. That means, the database
manager has been told by the queue manager to prepare to commit, but it
hasn′ t yet received the outcome of the transaction. When database updates
are in-doubt the records that were updated remain locked. So it is
important that in-doubt transactions are resolved as quickly as possible.

The queue manager provides two new commands to manage in-doubt
transactions:

• The dspmqtrn command lists all in-doubt transactions. This also shows
the state of all of the participants in the transaction. The state can be
either:

prepared The resource manager is prepared to commit its
updates.

committed The resource manager has committed its updates.

rolled back The resource manager has rolled back its updates.

participated The resource manager is a participant, but has not
prepared, committed, or rolled back its updates.

• The rsvmqtrn command can be used to instruct the queue manager to
resolve any or all in doubt transactions.

The XA coordinator also makes extensive use of the error logs whenever
something unexpected occurs. Check for AMQS76xx messages. In
particular, look for the following:

AMQ7605 is written whenever a resource manager returns something
unexpected from an XA call.

Chapter 2. Transaction Coordination 25

AMQ7606 is written whenever a resource manager rolls back instead of
committing.

AMQ7607 is written whenever a resource manager commits instead of
rolling back.

2.4.2 The Databases
For the DB2 examples in the book, we create two databases:

• MQBankDB with the tables MQBANKT and MQBANKTB

• MQFeeDB with the table MQFEETB

The database tables contain the initial values shown in Table 4 through
Table 6.

Table 4. MQBankDB Database Table MQBANKT

Name Account Balance

Mr. Jesse James 1 0

Ms. Lona Lovely 2 0

Mrs. Loretta Lonely 3 0

Table 5. MQBankDB Database Table MQBankTB

Name Account Balance Transactions

Mr. Jesse James 1 0 0

Ms. Lona Lovely 2 0 0

Mrs. Loretta
Lonely

3 0 0

Table 6. MQFeeDB Database Table MQFeeTB

Account Fee Due Transaction Fee Transactions

1 0 50 0

2 0 50 0

3 0 50 0

2.4.3 Objectives of the Examples
The remainder of this chapter includes four exercises and database setup
instructions. Their purpose is to have you understand the setup and
configuration of an XA resource manager and the XA coordinator, and the
programming involved. The examples will also point out some of the areas
which can cause problems.

26 MQSeries Version 5 Programming Examples

First, we explain how to set up the environment. This includes creating the
XA-Switch, and configuring both MQSeries and DB2. We will also use a
sample program that contains a logical unit of work which includes both
MQI calls and SQL calls.

In the second exercise, we modify the sample program to gain a clearer
picture of the mechanics of coding a logical unit of work coordinating
resources.

The third exercise expands upon the preceding examples by adding the use
of a second database to the logical unit of work.

Finally, we will make some changes to the configuration that might occur in
real life which should help you understand some of the problems that might
occur.

2.5 Exercise 1: Setup for XA Coordination

In this section, we create the databases, queues and the XA-Switch file
necessary for the other examples. The XA-Switch file is a DLL or shared
library with a single entry point. When called it returns the address of the
xa_switch_t structure for the resource manager. The xa_switch_t structure
contains the name of the resource manager, option flags and all the XA
function pointers.

2.5.1 Creating a Queue for the Examples
Create a queue for the messages that cause database updates. Make sure
that the queue manager is running. Under NT and OS/2 logon as Admin,
and on AIX log in as mqm.

strmqm
runmqsc
def ql(BANK) usage(normal) defpsist(yes)
end

2.5.2 Starting DB2
To work with DB2 use the ID db2inst on AIX or Admin on NT.

On NT, start DB2 with the following command:

db2start

On AIX, type the following command to ensure that DB2 is running:

ps -ef grep | db2

Chapter 2. Transaction Coordination 27

The following is a sample output for this command:

db2inst1 13506 24394 40 09:26:36 pts/5 0:00 ps -ef
db2inst1 15670 25640 0 16:09:26 - 0:07 db2agent (idle)
db2inst1 16430 24870 0 16:09:14 - 0:00 db2resyn

root 17186 1 0 16:09:12 - 0:00 db2wdog
db2inst1 18266 25640 0 16:10:05 - 0:05 db2agent (idle)
db2inst1 21796 17186 0 16:09:12 - 0:01 db2sysc
db2inst1 22826 21796 0 16:09:13 - 0:00 db2tcpcm
db2inst1 23084 21796 0 16:09:13 - 0:00 db2tcpim
db2inst1 24394 34376 1 08:18:23 pts/5 0:01 -ksh
db2inst1 24870 21796 0 16:09:12 - 0:00 db2gds
db2inst1 25640 21796 0 16:09:13 - 0:00 db2ipccm
db2inst1 32708 24394 3 09:26:36 pts/5 0:00 grep db2
db2inst1 37854 25640 0 16:20:03 - 0:01 db2agent (idle)

2.5.3 The DB2 Environment on Windows NT
On Windows NT, you have to enter the DB2 environment before you can
work with databases. To start the DB2 Command Line Processor select:

Start
Programs

DB2 for Windows NT
DB2 Command Line Processor

In the DB2 CLP - db2.exe window, you will see the same information and the
prompt db2 =>.

You are now in the DB2 command environment, which has a special setup
to issue DB2 commands. You want to be in such a window whenever you
want to issue any DB2 commands other than db2start and db2stop.

Note: This default command environment is equivalent to the state you are
in after entering runmqsc in MQSeries.

Since the DB2 commands you need to issue have been put into a script file,
you can ″pipe″ them rather than type them. To do this you need to quit the
command environment to get to a Windows prompt:

db2 => quit
DB200001 The QUIT command completed successfully.
C:\SQLLIB\BIN>

28 MQSeries Version 5 Programming Examples

2.5.4 Creating the Databases
With DB2 started we can now create the databases for the examples. The
three tables are shown in Table 4 on page 26 through Table 6 on page 26.
Log on as user Admin on NT or db2inst1 on AIX.

The db.sql file shown in Figure 11 is the input file for DB2. It contains the
commands to create the two databases, MQBankDB and MQFeeDB, connect
to them one at a time, create the tables, MQBANKT, MQFEETB and
MQFEETB, and disconnect.

create database MQBankDB
connect to MQBankDB
create table MQBankT(Name VARCHAR(40) NOT NULL, Account INTEGER NOT NULL,
Balance INTEGER NOT NULL, PRIMARY KEY (Account))
create table MQBankTB(Name VARCHAR(40) NOT NULL, Account INTEGER NOT NULL,
Balance INTEGER NOT NULL, Transactions INTEGER, PRIMARY KEY (Account))
disconnect MQBankDB

create database MQFeeDB
connect to MQFeeDB
create table MQFeeTB(Account INTEGER NOT NULL, FeeDue INTEGER NOT NULL,
TranFee INTEGER NOT NULL, Transactions INTEGER, PRIMARY KEY (Account))
disconnect MQFeeDB

Figure 11. SQL File to Create Databases

 AIX

When you create a database and do not assign a file system DB2 uses
by default /home as database file system location. For each database 15
MB disk space is required.

To specify the database directory on AIX, modify the two create statements
in Figure 11 as follows:

create database MQBANKDB on /home/db2data
create database MQFeeDB on /home/db2data

To create the databases, issue the db2 command with db.sql (NT) or
dbcreate.sql as input files. While in the DB2 command prompt environment,
type the following:

NT db2 < db.sql

AIX db2 < dbcreate.sql

Note: Make sure that you are in the right directory.

Chapter 2. Transaction Coordination 29

Be patient!

Creating and populating a database takes some time. Several
messages will be displayed. Wait until you see the command prompt
before you proceed.

2.5.5 Populating the Databases
After the databases are created we need to insert some data. To do this we
use the file data.sql shown in Figure 12. This file is also on the diskette.
Enter the following command:

NT db2 < data.sql

AIX db2 < data.sql

connect to MQBankDB

insert into MQBankT values (′ Mr. Jesse James′ , 1 , 0)
insert into MQBankT values (′ Ms. Lona Loveley′ , 2 , 0)
insert into MQBankT values (′ Mrs. Lorretta Lonely′ , 3 , 0)

insert into MQBankTB values (′ Mr. Jesse James′ , 1 , 0 , 0)
insert into MQBankTB values (′ Ms. Lona Loveley′ , 2 , 0 , 0)
insert into MQBankTB values (′ Mrs. Lorretta Lonely′ , 3 , 0 , 0)

disconnect MQBankDB

connect to MQFeeDB

insert into MQFeeTB values (1,0,50,0)
insert into MQFeeTB values (2,0,50,0)
insert into MQFeeTB values (3,0,50,0)

disconnect MQFeeDB

Figure 12. SQL File Populate Databases

2.5.6 Grant Database Access to Other Users
If your user ID did set up the database, you may skip this step. For a
different user, access can be granted the following way.

On Windows NT, type the following commands when in the DB2
environment:

30 MQSeries Version 5 Programming Examples

C:\SQLLIB\BIN>grant connect on MQBankDB to user <UID>
C:\SQLLIB\BIN>grant connect on MQFeeDB to user <UID>

On AIX you can use the file grant.sql shown in Figure 13 and supplied with
this book as input for the following command:

db2 < grant.sql

connect to mqBankdb
grant connect on database to PUBLIC
grant ALL PRIVILEGES on TABLE db2inst1.mqbankt to PUBLIC
grant ALL PRIVILEGES on TABLE db2inst1.mqbanktb to PUBLIC
disconnect mqbankdb

connect to mqFeedb
grant connect on database to PUBLIC
grant ALL PRIVILEGES on TABLE db2inst1.mqfeetb to PUBLIC
disconnect mqFeedb

Figure 13. SQL File to Grant Access to the Databases

2.5.7 Creating the XA Switch File
Now we need to create the XA Switch file. The source for this file is called
db2swit.c and can be found in the following directories:

NT \mqm\tools\c\samples\xatm

AIX /usr/ lpp/mqm/samp/xatm

You will also find a make file and a def file which make compilation fairly
easy. There is a difference in commands depending on which compiler you
are using:

Before you execute any of these commands read the following platform
dependent sections.

Table 7. Commands to Create XA Switch File

Compiler Command

Microsof t V isua l C/C++ nmake -f xaswit.mak db2swit.dll

IBM Visua l Age C/C++ nmake -f xaswiti.mak db2swit.dll

CSe t++ fo r A IX make -f xaswit.mak db2swit

Chapter 2. Transaction Coordination 31

 Note

The XA Switch file is only available in C.

2.5.7.1 AIX
You need to modify the xaswit.mak file in Figure 14 on page 33 for your DB2
library path before you use it.

32 MQSeries Version 5 Programming Examples

#
Name: XASWIT.MAK
#
Description: AIX make file for DB2 and Oracle XA switch files
#
Statement: Licensed Materials - Property of IBM
84H2000, 5765-B73
(C) Copyright IBM Corp. 1997
#
#
To make the DB2 XA switch load file, run the command:-
make -f xaswit.mak db2swit
#
To make the Oracle XA switch load file, run the command:-
make -f xaswit.mak oraswit
#
Note: If your database libraries are in a different directory
to the one listed in the xxxLIBPATH statement, you will
need to alter or add that directory to the statement.

#--
DB2 XA switch file
#--
DB2LIBS=-l db2
#DB2LIBPATH=-L /usr/lpp/db2_00_00/lib
DB2LIBPATH=-L /usr/lpp/db2_05_00/lib

db2swit:
$(CC) -e MQStart $(DB2LIBPATH) $(DB2LIBS) -o $@ db2swit.c

#--
Oracle XA switch file
#--
ORALIBS=-l clntsh -l m
ORALIBPATH=-L $(ORACLE_HOME)/lib -L /usr/lib

oraswit:
xlc_r -e MQStart $(ORALIBPATH) $(ORALIBS) -o $@ oraswit

Figure 14. Make File to Create XA-Switch on AIX

Chapter 2. Transaction Coordination 33

Log in as root and execute the following commands:

 1. cd /usr/ lpp/mqm/samp/xatm.

 2. cp xaswit.mak db2xaswit.mak

 3. vi db2xaswit.mak

You must change DB2LIBPATH to the path where the DB2 library is
stored. The change is highlighted in Figure 14.

 4. make -f db2xaswit.mak db2swit

 5. cp db2swit /usr/ lpp/mqm/bin

2.5.7.2 Windows NT and OS/2
The resulting DLL must be in the path. You may choose where this will
reside. For our purposes we will copy it to \mqm\bin.

copy db2swit.dll c:\mqm\bin

If the user ID that is going to execute the example programs is different from
the one that installed DB2 you have to grant authority as described in 2.5.6,
“Grant Database Access to Other Users” on page 30.

The last part of setup is to tell DB2 the name of the DLL for dynamic
registration purposes. This is the file MQMAX.DLL that comes with
MQSeries. The file must be somewhere in a LIBPATH included directory.
This step is only required on NT and OS/2. If you forget to do it you will get
a DB/2 error referring to ax_reg. This (ax_reg) tells the queue manager that
the resource manager is a participant in the current transaction.

db2 => update dbm cfg using TP_MON_NAME mqmax
db2 => disconnect MQBANKDB
db2 => quit

2.5.8 You Need UTIL.C from DB2
To compile the sample programs you need the routines in the file UTIL.C.
This program uses the header file UTIL.H. You find the files in the following
directories:

NT \sqll ib\samples\c

AIX /usr/lpp/db2_05_00/samples/c

 Note

UTIL.C is only available in C, not in COBOL.

34 MQSeries Version 5 Programming Examples

To compile the program under Windows NT, it may be easier to copy the
util.h header file into the DB2 include library. Issue the following command:

copy c:\sqllib\samples\c\util.h c:\sqllib\include

2.5.8.1 Creating the Object File for UTIL.C
The code is shipped with DB2 and will be linked to the MQSeries sample
programs. Depending on the compiler you use, issue one of the following
commands to create the object file:

You may also include the above in the make files that compile the sample
programs.

Table 8. Commands to Compile UTIL.C

Compiler Command

Microsof t V isua l C/C++ cl util.c /C

IBM Visua l Age C/C++ icc util.c /C

CSe t++ fo r A IX xlc -c util.c -I /usr/lpp/db2_05_00/sample/c

2.6 Hints for Working with the Databases

In this section, we describe some functions and provide some files that will
help you go through the examples in this chapter. The hints are intended
for programmers who want to test their MQSeries/DB2 programs but have
little DB2 experience.

2.6.1 Open a DB2 Command Window on Windows NT
You have two options to open a window that is initialized for DB2:

 1. DB2 Command Window

Start
Programs

DB2 for Windows NT
DB2 Command Window

 2. DB2 Command Line Processor

Start
Programs

DB2 for Windows NT
DB2 Command Line Processor

Type quit

Chapter 2. Transaction Coordination 35

2.6.2 Using SQL Command Files
 1. Start DB2 with the command db2start .

 2. Open a DB2 Command Window (NT).

 3. Type db2 < db.sql > db.out .

This will run the SQL statements in db.sql against the DB2 engine and
write the DB2 responses to the file db.out.

Note: Start DB2 before you run any SQL commands. Otherwise, you will
get an error message.

2.6.3 Lookup Information in a Database
You can connect to a database and look at the table entries at any time. In
a DB2 command window, type the following commands:

DB2
connect to MQBANKDB
select * from MQBANKT
quit

You can also use an input file that contains SQL commands. The file
select.sql in Figure 15 is an example. It displays the contents of the tables
in both databases. Enter the following command:

NT db2 < select.sql

AIX db2 < select.sql

connect to MQBankDB
select * from MQBankT
select * from MQBankTB
disconnect MQBankDB

connect to MQFeeDB
select * from MQFeeTB
disconnect MQFeeDB

Figure 15. SQL File to View the Databases

2.6.4 Drop a Table
The following is an example of deleting the tables in the two databases.
You may enter the commands by hand or use the file tbldrop.sql on the
diskette.

36 MQSeries Version 5 Programming Examples

connect to MQBankDB
drop table MQBankT
drop table MQBankTB
disconnect MQBankDB

connect to MQFeeDB
drop table MQFeeTB
disconnect MQFeeDB

Figure 16. SQL File to Drop Database Tables

2.6.5 Drop a Database
If you want to clean out the database, use the following commands:

drop database MQBankDB
drop database MQFeeDB

You may put the commands into an sql file (dbdrop.sql on the diskette).

2.6.6 Monitor Database Connections on Windows NT
You can use the DB2 Database Director to monitor commits and backouts.
To start the Database Director select Start , Programs , DB2 for Windows NT
and then Database Director . Make sure that the database manager is
running (db2start). The Database Director window is shown in Figure 17.

Figure 17. Database Director - Tree View

Chapter 2. Transaction Coordination 37

The following steps explain how to use it:

 1. Expand the DB2 icon and then the Databases icon.

 2. Select the database you want to monitor and click on it with the right
mouse button. In this example, we use MQBANKDB.

 3. Select Start monitoring from the pop-up menu. This brings up the
Snapshot Monitor window shown in Figure 18.

 4. Minimize the Database Director - Tree View.

Figure 18. Snapshop Monitor (DB2) - Monitored Objects

 5. In the Snapshot Monitor window, double-click on MQBANKDB .

Figure 19. Performance Details Window

 6. From the View menu, select Include performance variables

 7. Select all Displayed items in Figure 20 on page 39 and remove them
with the < button.

38 MQSeries Version 5 Programming Examples

Figure 20. Performance Variables Window

 8. From the Collected list on the left, select the following items and move
them into the Displayed list by clicking on ″ > ″ .

• Commits Attempted

• Rollbacks Attempted

 9. Click on Apply and then on the OK button. The customized Performance
Details window is shown in Figure 21.

Figure 21. Customized Performance Details Window

10. You can now minimize all DB2 windows except the Performance Details
window shown above.

Chapter 2. Transaction Coordination 39

2.7 Exercise 2: Using One XA Resource

This example is based on the program amqsxas0, which is supplied with
MQSeries. The program logic is described in 2.4, “Application Programming
Samples” on page 23.

Figure 22. Program Logic of Modif ied Sample AMQSXAS0

We use the program amqsput to put messages on the queue MQBANK we
created earlier (refer to 2.5.1, “Creating a Queue for the Examples” on
page 27). The program amqsxas0 reads the message from the queue and
processes it. There are three types of messages:

40 MQSeries Version 5 Programming Examples

 1. Valid messages that update the database have the following form:

UPDATE Balance change=$ WHERE Account=n

The command is case-sensitive. After the update, the program then
asks you if you want to commit or back out the transaction. Backed out
messages remain in the queue.

 2. A message with the text BYE ends the program. This message wil l
automatically be backed out. You will be asked whether the message
shall remain in the queue or not. In any case, the program will end.

 3. Any other text constitutes an invalid message that is automatically
backed out. You are asked whether it should be removed from the
queue or not. If you don′ t remove the message the program will end.

2.7.1 Building an Executable for Windows NT
The following explains how to build the executable for amqsxas0 on a
Windows NT system. Remember, every program must be pre-compiled and
bound by DB2.

The sample program source amqsxas0.sqc can be found in the following
directories:

C \mqm\tools\c\samples\xatm (sqc)

COBOL \mqm\tools\cobol\samples\xatm (sqb)

Note: We use a modified version of the program.

Included in the samples you will find .bat files which bind and compile the
programs. Compile the sample program with one of the following
commands:

The parameters of the make file are:

amqsxas0 Source Code file name, without extension (.SQC)

MQBANKDB Database to be used for binding

Got an error? If you are trying this on your system and you get an error it
may be that you are executing this in a standard NT window. Use the DB2
Command Window instead.

Table 9. Commands to Bui ld Executable of AMQSXAS0

Compiler Command

Microsof t V isua l C/C++ msmake amqsxas0 MQBANKDB |more

IBM Visua l Age C/C++ ibmmake amqsxas0 MQBANKDB |more

Chapter 2. Transaction Coordination 41

rem --
rem - Build-File for C (/ C++) Programs w. MS Vis.C++ Compiler -
rem - (W) 10/08/1997 M.Schuette, IBM -
rem - Builds Progr. w. (DB/2) embedded SQL and MQSeries Calls -
rem - For use with MS VC++ 2.0+, DB/2 V2.1.2+, MQSeries V5+ -
rem --
rem Usage: msmake <prog_name> <db_name> <addlibs>

db2 connect to %2
db2 prep %1.sqc bindfile
db2 bind %1.bnd
db2 connect reset

rem Compile and link the program.
rem ????? To build a C++ program, change the source file extension to ′ . cxx′
rem and include the -Tp option.
rem Include other libraries at the end of the link-command !

cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 -I%DB2PATH%\include %1.c
link -debug
:full -debugtype:cv -out:%1.exe %1.obj util.obj db2api.lib mqm.lib %3

Figure 23. Make File for Microsoft C Compiler on Windows NT

rem --
rem - Build-File for C (/ C++) Programs w. IBM Vis.C++ Compiler -
rem - (W) 10/08/1997 M.Schuette, IBM -
rem - Builds Progr. w. (DB/2) embedded SQL and MQSeries Calls -
rem - For use with IBM VA/C++ 3.5+, DB/2 V2.1.2+, MQSeries V5+ -
rem --
rem Usage: ibmmake <prog_name> <db_name> <addlibs>

db2 connect to %2
db2 prep %1.sqc bindfile
db2 bind %1.bnd
db2 connect reset

rem Compile and link the program.
rem ????? To build a C++ program, change the source file extension to ′ . cxx′
rem and include the -Tp option.
rem Include other libraries at the end of the link-command !

icc /Gm /Ti- %1.c /C
ilink %1.obj util.obj db2api.lib mqm.lib %3

Figure 24. Make File for IBM C Compiler on Windows NT

42 MQSeries Version 5 Programming Examples

2.7.2 Building an Executable for AIX
The following explains how to build the executable for amqsxas0 on an AIX
system. Remember, every program must be pre-compiled and bound by
DB2.

The C and COBOL sample program source amqsxas0.sqc can be found in
the following directory:

../usr/lpp/mqm/samp/xatm (sqc and sqb)

Note: For our example, we modified the sample program provided with
MQSeries.

Below you find a shell file and a make file you can use to compile the
programs under AIX. To compile the program follow these steps:

Step 1. Log in as db2inst1 or mqm.

Step 2. Create the shell file in Figure 25: vi amqsxas0.sh.

Step 3. Create the make file in Figure 26 on page 44: vi amqsxas0.mak.

Step 4. chmod + x amqsxas0.sh.

Step 5. amqsxas0.sh (the shell file calls the make file).

#------------------------- amqsxas0.sh ----------------------------#
#
AIX MQSeries Link DB2 Application program
Make file for connect DB2 DataBase
1) Call db2 to pre-compile .sqc
2) Call makefile named is amqsxas0.mak to generate executable
#
#--#
#
echo Connect to DB2 DataBase MQBANKDB
#
db2 connect to MQBANKDB
db2 prep amqsxas0.sqc bindfile
db2 bind amqsxas0.bnd
db2 connect reset
#
echo Call make -f amqsxas0.mak
make -f amqsxas0.mak

Figure 25. Shell File AMQSXAS0.SH to Bui ld an Executable on AIX

Chapter 2. Transaction Coordination 43

#**
#* *
#* amqsxas0.mak: Source file generated by the Class Compiler *
#* 11/29/95 20:39:48 language = C *
#* *
#**
.SUFFIXES:
.SUFFIXES: .o .c

CC = xlc

OBJS= amqsxas0.o util.o
CFLAGS = -g -c -I/usr/lpp/db2_05_00/samples/c /usr/lpp/mqm/inc
#CFLAGS = -g -c -I/usr/lpp/mqm/inc
#CFLAGS = -g -c -Dsigned= -Dvolatile= -D_Optlink -I. -M
#LFLAGS = -L. -lXm -lXt -lX11 -L/usr/lpp/mq3t/lib -lbmqapic -e LibMain -bM:SRE
#--
MQM Library file and seraching path
#--
MQMLIBS=-l mqm
MQMLIBPATH=-L /usr/lpp/mqm/lib
DB2LIBS=-l db2
DB2LIBPATH=-L /usr/lpp/db2_05_00/lib

#HEADERS = /usr/lpp/mqm/inc /usr/lpp/db2_05_00/samples/c
#HEADERDB2 = /usr/lpp/db2_05_00/samples/c

.c.o:
$(CC) $(CFLAGS) $<

all: amqsxas0

util.o: util.c\
$(HEADERS)

amqsxas0.o: amqsxas0.c\
$(HEADERS)

#
Link all Object files
#
amqsxas0: $(OBJS)

$(CC) -o amqsxas0 $(MQMLIBPATH) $(MQMLIBS) $(DB2LIBPATH)\
$(DB2LIBS) $(OBJS)

Figure 26. Make File AMQSXAS0.MAK to Build an Executable on AIX

44 MQSeries Version 5 Programming Examples

2.7.3 Define the Database to MQSeries
To define the database, that is, an XA resource manager to the queue
manager, we have to add a stanza to the qm.ini file. The stanza and an
example are described in 2.2.2.2, “The XA Resource Manager Stanza” on
page 13.

 1. Make sure that the queue manager is stopped. Stop MQSeries
immediately with this command:

endmqm /i <QMgrName>

 2. Define the XA resource manager

This must be done once per DB2 database that is to be accessed by
MQSeries. The queue manager needs some details about the database
it will use as an external XA resource manager. You specify these
details in the queue manager′s qm.ini file in the directories:

NT \ m q m \ q m g r s \ < Q m g r N a m e >

AIX /va r /mqm/qmgrs /<QmgrName>

For this example, fill in the values as follows:

Windows NT

XAResourceManager:
Name=DB2 MQBANKDB
SwitchFile=c:\mqm\bin\db2swit.dll
XAOpenString=MQBANKDB
ThreadOfControl=THREAD

AIX

XAResourceManager:
Name=DB2 MQBANKDB
SwitchFile=/usr/lpp/mqm/bin/db2swit.dll
XAOpenString=MQBANKDB

Notes:

a. In this example we use only one database.

b. The database manager name is DB2 and the name of the database
is MQBANKDB.

 c. Make sure that the path for db2swit.dll is correct.

d. For XAOpenString enter the database name MQBANKDB.

Chapter 2. Transaction Coordination 45

e. For DB2 on OS/2 and Windows, the ThreadOfControl parameter is
always THREAD. Omit this line if you configure MQSeries and DB2
on a UNIX system.

2.7.4 What Happens when MQSeries Starts but not DB2
Before you start the queue manager clear the error log AMQERR01.LOG in
the queue manager′s directory, such as:

\mqm\qmgrs\MyQMgr\errors

If you are doing this on your system and you are sure that you don′ t need it,
simply erase it and MQSeries will create a new one at startup. For this
exercise, follow these steps:

Step 1. Make sure DB/2 is stopped. Issue the command db2stop

Step 2. Now start MQSeries: strmqm [QmgrName]

You see the message MQSeries queue manager started.

Step 3. Now browse the error log using Notepad or whatever other editor
you prefer. You will see several messages. The first is as follows:

AMQ7604: The XA resource manager ′ DB2 MQBANKDB′ was not available
when called for xa_open. The queue manager is continuing without
this resource manager.

There is more to this message and associated actions to try. The
main suggestions are that either the resource manager we named
in our qm.ini file was incorrect (spelling, whatever) or it was simply
not available at the startup. Since we had earlier done a db2stop
the latter suggestion is a strong possibility.

Note: The queue manager does come up. In the error log, you
can see the message AMQ8003 MQSeries queue manager started. It
simply cannot participate in any transactions with the named
resource.

Step 4. Now we ′ l l take a look at what happens when you try to execute the
program amqsxas0 in this state. Execute the following command:

amqsxas0 BANK
Target queue is BANK
MQBEGIN ended with reason code 2122

First of all, notice we are using a new MQSeries call: MQBEGIN.
This is used to start a logical unit of work. If we look in the
MQSeries Application Programming Reference, SC33-1673-03 we
see:

MQRC_PARTICIPANT_NOT_AVAILABLE 2122

46 MQSeries Version 5 Programming Examples

Step 5. There is an easy solution to this problem. Issue the following
command, which should make our participant available:

db2start

Step 6. If you start the program again you will see messages displayed by
the program:

amqsxas0 BANK
Target queue is BANK
Unit of work started

Step 7. Press Ct r l+Break to end the program.

2.7.5 Executing the Sample Program
In order to use the amqsxas0 sample program, it is first necessary to put
some messages on the queue, and we will use amqsput to do that.

Step 1. Start the sample again, with DB2 available this time.

db2start
SQL1063N DB2START processing was successful.
strmqm
MQSeries queue manager started.
amqsxas0 BANK
Target queue is BANK
Unit of work started

Step 2. The transaction program is now waiting for a message. We use
the sample program amqsput to send messages to it. The
amqsxas0 program expects its messages in a certain format. If
you try this on your own do not deviate from the format - it won′ t
work.

The rows in our MQBANKT table are as follows:

In the NT command prompt window we enter:

Account
Number

Account Holder Init ial
Balance

1 Mr. Jesse James 100

2 Ms. Lona Lovely 100

3 Mrs. Loretta Lonely 100

Chapter 2. Transaction Coordination 47

C:\>amqsput BANK
Sample AMQSPUT0 start
target queue is BANK
UPDATE Balance change=50 WHERE Account=3
UPDATE Balance change=50 WHERE Account=2

Step 3. While in the DB2 prompt window where we have amqsxsa0
running we have the following:

C:\Sample2>amqsxas0 BANK
Target queue is BANK
Unit of work started
Account No 3 Balance updated from 100 to 150 Mrs. Lorretta Lonely
Do you want to commit this Update [Yes|No] ?
y
Unit of work successfully completed
Unit of work started
Account No 2 Balance updated from 100 to 150 Ms. Lona Loveley
Do you want to commit this Update [Yes|No] ?
y
Unit of work successfully completed
Unit of work started

Step 4. The program is now coordinating a logical unit of work, or a
transaction, between MQSeries and DB2. In this case MQSeries is
acting both as a resource manager (as is DB2) and a resource
coordinator.

You may commit or back out the unit of work. If you back out, of
course, the transaction remains in the queue.

Step 5. Messages that contain invalid data are automatically backed out.
They remain in the queue. You can remove them from the queue
by answering y when the following question appears:

Remove BACKOUTed message [Yes | No] ?

Step 6. To end the program send a message that contains BYE. This
message will be backed out. The program ends regardless of
whether you remove the message from the queue or not.

2.7.6 Monitoring Database Transactions
You can use the DB2 Performance Monitor to find out how many commits
and backouts have been issued. How to start this utility is described in
2.6.6, “Monitor Database Connections on Windows NT” on page 37.

Use the sample program amqsput to send the message below to amqsxas0:

48 MQSeries Version 5 Programming Examples

C:\>amqsput BANK
Sample AMQSPUT0 start
target queue is BANK
UPDATE Balance change=25 WHERE Account=1

The program amqsxas0 runs in a DB2 Command window and should display
the following:

C:\Sample2>amqsxas0 BANK
Target queue is BANK
Unit of work started
Account No 1 Balance updated from 0 to 25 Mr. Jesse James
Do you want to commit this Update [Yes|No] ?
y
Unit of work successfully completed
Unit of work started

After a while, the Performance Details window will be updated and show the
following information:

Figure 27. Performance Details Window Showing a Committed Transaction

The default interval for updating the window is 20 seconds. You can change
this value. From the Snapshot monitor menu, select Open as settings . In
the subsequent window change the capture interval.

Chapter 2. Transaction Coordination 49

2.8 Exercise 3: Understanding Backout

In the program we executed in the previous example messages remain on
the queue even though you decide to back out the unit of work. Notice what
happens when we choose not to commit the unit of work:

C:\Sample1>amqsxas0 BANK
Target queue is BANK
Unit of work started
Account No 1 Balance updated from 0 to 25 Mr. Jesse James
Do you want to commit this Update [Yes|No] ?
n
MQBACK successfully issued
Unit of work started
Account No 1 Balance updated from 0 to 25 Mr. Jesse James
Do you want to commit this Update [Yes|No] ?
n
MQBACK successfully issued
Unit of work started
Account No 1 Balance updated from 0 to 25 Mr. Jesse James
Do you want to commit this Update [Yes|No] ?

The message stays on the queue and the program loops back to get it
again. In a testing environment this may not be bad, since you can go in
manually and clear the queue. In a production environment you would want
the program to do something to bypass the message, or to check how often
a message had been backed out of a logical unit of work.

In the next example we will take the same program, modify it to check if a
message has been backed out more than twice, then remove the message
from the queue displaying a message that confirms the deletion.
Furthermore, we end the program only with a BYE command. Figure 28 on
page 51 shows the program logic.

2.8.1 Information about Backout
Our first task might be to check out some of the documentation regarding
backout. This can be found in the following documents:

• MQSeries Application Programming Reference, SC33-1673

• MQSeries Command Reference, SC33-1369

The MQSeries Application Programming Guide, SC33-0807-07 contains a
general description of syncpointing, which includes backout.

50 MQSeries Version 5 Programming Examples

Figure 28. Program Logic of Example AMQSXAS1

Information about backout is maintained in the following fields:

• BackoutThreshold (BOTHRESH) in local queue definition

• BackoutRequeue (BOQNAME) in local queue definition

• BackoutCount field in the message descriptor (md)

The BackoutCount field contains the number of times a message has been
backed out. The queue manager does nothing with the threshold and

Chapter 2. Transaction Coordination 51

requeue fields except maintain them. An application could inquire as to
their values and make decisions based on those values and the value of the
backout count.

In our sample we make changes that check to see if a message has been
backed out more than twice, then ask if it should be removed and act
accordingly.

2.8.2 Program Logic
The program understands three messages:

 1. Valid messages contain valid UPDATE commands, such as:

UPDATE Balance change=25 WHERE Account=1

Valid commands can be committed or backed out. Backed out
messages remain in the queue, and the program does not end.

Note: The message text is case-sensitive.

If any of the MQI calls or SQL commands cause an error, the unit of
work will automatically be backed out and the program ends.

When a valid message has been backed out more than two times it is
treated like an invalid message and backed out automatically. The user
decides whether the message remains in the queue or is removed.

 2. The special message to end the program is:

BYE

This message is processed like an invalid command and backed out.
The user can keep the message in the queue or remove it.

Note: This message text is case-sensitive, too.

 3. Any other message is invalid and backed out automatically. The
operator can choose to leave the message in the queue or to remove it.
The program continues and either reads the same message again or
waits for another one to arrive.

Figure 29 on page 53 shows the sequence of the MQI calls and SQL
commands. The program terminates under one of the following conditions:

• If any of the MQI or SQL calls fails

• If a BYE message has been processed

• If the MQCMIT fails

52 MQSeries Version 5 Programming Examples

Valid messages Invalid messages
-------------- ----------------

SQL DECLARE CURSOR
ok not_ok

MQCONN |
ok not_ok

MQOPEN |
ok not_ok

begin loop |
MQBEGIN |

ok not_ok
MQGET |

ok not_ok
backout > 2 ? |

no yes
 invalid command ? |

no yes -------------->|
SQL OPEN CURSOR MQBACK

ok not_ok |
SQL FETCH | remove from queue?

ok not_ok yes no
SQL UPDATE | MQGET |

ok not_ok ok not_ok
commit ? | BYE message?

yes no yes no
| MQBACK | loop
| loop |

MQCMIT |
ok not_ok --------------> MQCLOSE

loop MQDISC
exit

Figure 29. SQL Calls in Example AMQSXAS1

2.8.3 Writing the Sample Program
The complete source code is listed in Appendix A, “Example Using One XA
Resource” on page 175, and you will also find it on the diskette. Here we
describe the important MQI calls and SQL commands used in amqsxas0.sql
and amqsxas1.sql.

Note: Both programs are modified versions of the sample program supplied
with MQSeries.

First, we have to declare the table MQBANKT of the database MQBankDB.
The table contains three fields as shown in Figure 30 on page 54.

Chapter 2. Transaction Coordination 53

EXEC SQL BEGIN DECLARE SECTION;
char name[40];
long account;
long balance;
EXEC SQL END DECLARE SECTION;

Figure 30. Code to Declare a Database

The cursor for locking the reads from the database is declared as follows:

EXEC SQL DECLARE cur CURSOR FOR
SELECT Name, Balance
FROM MQBankT
WHERE Account = :account
FOR UPDATE OF Balance;

Figure 31. Code to Declare a Cursor for Locking Reads from a Database

After connecting to a queue manager and opening the input queue, the
program performs a loop getting messages from the queue until there is a
failure. First, a global unit of work is started:

MQBEGIN (hCon, &bo, &compCode, &reason);
if (reason == MQRC_NONE)

printf(″Unit of work started\n″) ;
else {

printf(″MQBEGIN ended with reason code %li\n″ , reason);
rc = NOT_OK; /* stop reading messages */

}
if (compCode == MQCC_FAILED)

printf(″Unable to start a unit of work\n″) ;

Figure 32. Code to Start a Global Unit of Work

The begin options (&bo) are set to MQBO_DEFAULT. Currently, there are no
other options.

The MQBEGIN call implicitly makes the connection to the database specified
in the XA resource manager stanza in the qm.ini file.

An MQGET with an unlimited wait interval gets a message from the queue.
The code for the get is shown in Figure 33 on page 55.

54 MQSeries Version 5 Programming Examples

memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
msgBufLen = sizeof(msgBuf) - 1;
gmo.Options = MQGMO_WAIT + MQGMO_CONVERT + MQGMO_SYNCPOINT;
gmo.WaitInterval = MQWI_UNLIMITED;
MQGET(hCon, hObj, &md, &gmo, msgBufLen, msgBuf, &msgLen,

&compCode, &reason);

Figure 33. Code of MQGET with Unlimited Wait

The update of the database is done with the statements in Figure 34.

EXEC SQL OPEN cur;
CHECKERR (″OPEN CURSOR″) ;
EXEC SQL FETCH cur INTO :name, :balance;
CHECKERR (″FETCH″) ;

balance += balanceChange;
EXEC SQL UPDATE MQBankT SET Balance = :balance

WHERE CURRENT OF cur;
CHECKERR (″UPDATE MQBankT″) ;
printf (″Account No %li Balance updated from %li to %li %s\n″ ,

account, balance - balanceChange, balance, name);

Figure 34. Code to Update a Database

After that the program prompts you to either commit or back out the
transaction. One of the following two statements will be executed:

MQCMIT(hCon, &compCode, &reason);
MQBACK(hCon, &compCode, &reason);

The sample amqsxas1 is based on amqsxas0 from the previous exercise. It
contains the changes to automatically back out a unit of work when the
message has been backed out three or more times.

The queue manager increases the field BackoutCount in the message
header each time the message has been backed out as part of a unit of
work. The code in Figure 35 on page 56 checks this count in each
message, regardless of whether the message is valid, invalid or contains
BYE.

Chapter 2. Transaction Coordination 55

if (compCode != MQCC_FAILED && rc == OK){

if (md.BackoutCount > 2) {
printf(″The following message has been backed out %li times.

md.BackoutCount);
printf(″%s\n″ ,msgBuf);
rc = NOT_OK; /* Bypass database update */
invCmd = 1; /* Ask whether to delete messag

}
...
}

Figure 35. Code to Check if a Message Has Been Backed Out

Setting the rc to NOT_OK bypasses all code between this point and the
MQBACK. The MQBACK is executed and the message remains in the
queue.

Setting invCmd to 1 causes the program to ask whether the message has to
be removed from the queue or remain there.

2.8.4 Compiling the Sample Program
Compile the program in the same way as you did amqsxas0.sqc. For this
exercise, too, we use only the database MQBankDB. Use one of the
following commands in Table 10.

Note: For AIX, change the program name in the shell and make files from
amqsxas0 to amqsxas1.

Table 10. Commands to Compile amqsxas1

Compiler Command

Microsof t V isua l C/C++ msmake amqsxas1 MQBANKDB |more

IBM Visua l Age C/C++ ibmmake amqsxas1 MQBANKDB |more

CSe t++ fo r A IX chmod +x amqsxas0.sh
amqsxas1.sh
(The shell file calls the make file.)

2.8.5 Executing the Sample Program
To test this application, you need (besides amqsxas1) the sample program
amqsput and the DB2 Performance Monitor.

 1. Make sure that DB2 and the queue manager are started. At any
command prompt type:

56 MQSeries Version 5 Programming Examples

db2start
strmqm

 2. Open a DB2 Command Window and execute the following command:

amqsxas1 BANK

 3. In another DB2 Command Window or in a Command Prompt window
start the program that puts commands for amqsxas1 in the queue BANK:

amqput BANK

 4. Open the Database Director as described in 2.6.6, “Moni tor Database
Connections on Windows NT” on page 37.

 5. Use amqsput to place some valid and invalid messages on the queue
and watch what happens in the amqsxas1 window.

• Commit and back out some messages.

• Use runmqsc to check how many messages are in the queue.

• Use amqsbcg to check the backout count in the message header.

• DB2 reports in the Performance Details window the number of
commits and rollbacks. Figure 36 shows an example.

Figure 36. Performance Details Window with Committed or Rolled Back
Transactions

Chapter 2. Transaction Coordination 57

2.9 Exercise 4: Using Two XA Resources

In a real-world environment there is often more than one database
associated with a transaction. In this section, we explain how to connect a
program to two databases and how to tell MQSeries about it.

To demonstrate this function MQSeries provides three sample programs:

AMQSXAB0.SRC contains functions that access table MQBankTB in
database MQBANKDB.

AMQSXAF0.SRC contains functions that access table MQFeeTB in
database MQFEEDB.

AMQSXAG0.C reads messages from the queue BANK and calls the
functions in the other programs to update the
databases.

The application consists of three programs because you can′ t bind one
program to more than one DB2 database at a time.

Note: For this exercise, we used a modified version of amqsxag0.c.

You can use this exercise to learn:

• How programs and databases behave when transactions are entered

• How to make the second resource known to the queue manager

• How to use the Database Director to monitor the events

Figure 37. Updating Mult iple Databases

58 MQSeries Version 5 Programming Examples

2.9.1 Program Logic
This application consists of three programs and two databases with one
table each. For the big picture, refer to Figure 37 on page 58.

The main program, amqsxag0.c, is similar to the program used in the first
exercise. It waits an unlimited time for a message and understands the
same input:

• UPDATE Balance change=nnn WHERE Account=mmm

• BYE

• Any other stuff is rejected

Note: The first two are valid commands and case-sensitive!

With the UPDATE command, you change the account balance in
MQBANKDB and increase the fee amount in MQFEEDB.

With the BYE command you end the application.

Any other stuff you may type will be treated as an invalid message and
backed out.

All SQL commands are removed from the main program amqsxag0.c and
placed into an .sql file. Since we use two databases, we need two .sql files,
one to work with MQBankDB and the other to work with MQFeeDB.
Figure 38 on page 60 shows in what sequence amqsxag0 executes the MQI
and SQL calls.

This program checks also if the two databases are out of sync. The two
modules amqsxab0 and amqsxaf0 count the number of database updates.
These counters are returned to the main program together with the contents
of the database tables. The program ends when the counters do not match.

Since DB2 allows only one active connection to a database, we have to
connect explicitly to each database. MQCMIT disconnects implicitly.

For example, the main routine calls the function that connects to MQBankDB
with this statement:

rc = ConnectToMQBankDB();

The routine that does the connect is shown in Figure 39 on page 60.

Chapter 2. Transaction Coordination 59

amqsxag0.c amqsxab0.sqc / amqsxaf0.sqc
---------- ---------------------------

MQCONN
MQOPEN

----------------> SQL DECLARE CURSOR for MQBankDB
----------------> SQL DECLARE CURSOR for MQFeeDB

begin loop
MQBEGIN
MQGET

 invalid command ?
no (yes = end)

----------------> SQL CONNECT TO MQBankDB
----------------> SQL OPEN curBank

SQL FETCH curBank
----------------> SQL CONNECT TO MQFeeDB
----------------> SQL OPEN CurFee

SQL FETCH curFee
DB out of sync?

no(yes = end)
----------------> SQL UPDATE MQFeeDB
----------------> SQL CONNECT TO MQBankDB
----------------> SQL UPDATE MQBankDB

commit ?
yes no

MQCMIT MQBACK
loop ...

...

Figure 38. SQL Calls to Access Two Databases

:i2/connect

int ConnectToMQBankDB(void)
{
long rc=OK;
EXEC SQL CONNECT TO MQBankDB;
CHECKERR (″CONNECT TO MQBankDB″) ;
return (rc);

}

Figure 39. Code to Connect to a Database

60 MQSeries Version 5 Programming Examples

2.9.2 Creating the Executable
Depending on the platform and the compiler you use, select one of the
command sequences from Table 11:

Note: Use xxxmake2 to compile and link amqsxag0!

You find the make files for Windows NT and AIX in Appendix B, “Example
Using Two XA Resources” on page 185 and also on the diskette.

Table 11. Commands to Create Executable that Accesses Two Databases

Compiler Command

Microsof t V isua l C/C++ msmake amqsxab0 MQBANKDB |more
msmake amqsxaf0 MQFEEDB |more
msmake2 amqsxag0 amqsxab0.obj amqsxaf0.obj

IBM Visua l Age C/C++ ibmmake amqsxab0 MQBANKDB |more
ibmmake amqsxaf0 MQFEEDB |more
ibmmake2 amqsxag0

CSe t++ fo r A IX chmod +x amqsxag0.sh
amqsxasg.sh
(The shell file calls the make file.)

2.9.3 Testing the Program
To test the program under Windows NT, open two Command Prompt
windows via the DB2 command line processor to initialize the DB2
environment. Make sure you are in the right directory and use the correct
user ID.

In the first window, start DB2, the queue manager, amqsput and then put a
valid UPDATE message on the queue:

db2start
strmqm
amqsput BANK
UPDATE Balance change=25 WHERE Account=3

The first test gives you an error. Start amqsxag0 in the other window and
watch what happens:

Chapter 2. Transaction Coordination 61

amqsxag0 BANK
Target queue is BANK
Unit of work started
--- error report ---
ERROR occured : CONNECT TO MQFeedDB.
SQLCODE : -1248
SQL1248N Database ″″ not defined with the transaction manager. SQLSTATE=42705
--- end error report ---
MQBACK successfully issued

The reason for the error is that the queue manager knows only about the
database MQBankDB. How do we fix that?

Stop the queue manager and add a second XA resource manager stanza to
the qm.ini file as shown below:

Windows NT

XAResourceManager:
Name=DB2 MQBANKDB
SwitchFile=c:\mqm\bin\db2swit.dll
XAOpenString=MQBANKDB
ThreadOfControl=THREAD

XAResourceManager:
Name=DB2 MQFEEDB
SwitchFile=c:\mqm\bin\db2swit.dll
XAOpenString=MQFEEDB
ThreadOfControl=THREAD

AIX

XAResourceManager:
Name=DB2 MQBANKDB
SwitchFile=/usr/lpp/mqm/bin/db2swit.dll
XAOpenString=MQBANKDB

XAResourceManager:
Name=DB2 MQFEEDB
SwitchFile=/usr/lpp/mqm/bin/db2swit.dll
XAOpenString=MQFEEDB

Now start the queue manager again and then the program. You will see
that it works fine. Use the file select.sql in Figure 15 on page 36 to check if
both databases are correctly updated.

62 MQSeries Version 5 Programming Examples

2.10 Exercise 5: Configuration Issues

This exercise is designed to test the impact of a different queue manager
configuration on the behavior of the system.

Let us see what happens when we execute the program amqsxas0 from 2.7,
“Exercise 2: Using One XA Resource” on page 40 using the queue manager
from the previous exercise. Remember, the qm.ini file contains two XA
resource manager stanzas.

Make sure that DB2 and the queue manager are running and that the queue
BANK is empty. Then start the program amqsxas0 and watch what
happens:

amqsxas0 BANK
Target queue is BANK
Unit of work started
--- error report ---
ERROR occurred : OPEN CURSOR.
SQLCODE : -805
SQL0805N Package ″ADMIN.AMQSXAS0″ was not found. SQLSTATE=51002
--- end error report ---
MQBACK successfully issued

The program did run fine before. However, there are now two external
resource managers defined to the queue manager and amqsxas0 does not
select one.

If more than one XAResourceManager is defined for one queue manager,
then we first have to connect to the correct database before we use it. To
do this we add the following lines to our program just before we open the
cursor:

/**/
/* Get details from database */
/**/
if (rc == OK) {

EXEC SQL CONNECT TO MQBankDB;
CHECKERR (″CONNECT TO MQBankDB″) ;

}
if (rc == OK) {

EXEC SQL OPEN cur;
CHECKERR (″OPEN CURSOR″) ;

}
...

Chapter 2. Transaction Coordination 63

The example program is the same used in Exercise 2. You can find it on the
diskette. The file name is amqsxas2.sqc.

64 MQSeries Version 5 Programming Examples

Chapter 3. Message Segmentation

MQSeries Version 5 introduces the concept of message segmentation.
Message segmentation allows an application to PUT and GET logical
messages that are larger than 4 MB and yet send only physical messages
that are 4 MB or smaller across the network. Of course, using MQSeries
Version 5 you can also send individual messages that are as large as 100
MB, though you may not want to do that because of resources consumed or
because one of the nodes in your MQSeries environment through which
your messages must pass cannot deal with anything larger than 4 MB.

First of all, a few definitions are in order:

Physical Message The basic unit that appears in a queue. It can be a
segment of a logical message, or it can be a complete
message if the message is not segmented.

Logical Message A single unit of application information. This could be
a physical message or several message segments.

Message Segment Part of a logical message. In general a message
segment is created because the logical message the
application wants to send is larger than that which the
queue or the queue manager can accommodate.

Prior to MQSeries Version 5 everything was equal. A physical message
always was the same as a logical message, and a message was never
segmented; therefore each physical message was always a complete logical
message.

In this chapter, we provide an introduction to segmenting and explain
examples that demonstrate how it works. You can find the source code for
the examples in Appendix C, “Message Segmenting Examples” on
page 203 and also on the diskette that comes with this book.

To support segmenting, new flags and fields have been added to some
structures. For the queue manager to recognize the extensions to the
structures you have to set the version number of the structure to 2. The
message header (MQMD) is one of them. MQSeries Version 2 queue
managers don′ t know about the new fields and ignore them. MQSeries
Version 5 queue managers ignore them when the version of the structure is
set to 1.

 Copyright IBM Corp. 1998 65

3.1 System and Application Segmentation

MQSeries Version 5 provides two kinds of message segmentation:

• System or arbitrary segmentation

• Application segmentation

To control message segmentation several new flags have been introduced
and some fields have been added to the message descriptor. We discuss
them in the following sections.

3.1.1 Arbitrary Segmentation
The simplest way is to let MQSeries do the segmentation for you. One
might use it when a message is not too large for the sender ′s or receiver′s
buffers, but perhaps too large for a queue manager or a queue along the
route. The sender does not want to segment the message itself in order to
take account of the limitations of intervening queues or the queue managers
the message passes through.

The queue manager is allowed to segment a message if it is longer than the
maximum message length values specified in MAXMSGL in the queue
manager or the queue. The default for MAXMSGL is 4 MB. The queue
manager splits messages at 16-byte boundaries. That means only the last
segment can be smaller than 16 bytes.

Arbitrary segmentation is transparent to the sending and receiving
applications.

The changes to the programs that send and receive segmented messages
are minimal. The sending application has to inform the queue manager that
it can segment the message if necessary, and the receiving application has
to tell the queue manager to reassemble the message if it has been
segmented.

To allow the queue manager to perform segmenting on its own when the
message exceeds MAXMSGL, specify in the message descriptor:

• md.Version = MQMD_VERSION_2;

• md.MsgFlags = MQMF_SEGMENTATION_ALLOWED;

The receiving application can get each message segment individually or
have the queue manager reassemble the message and return it to the
program after all segments have been received. The queue manager
makes sure that the segments are in the correct order. We deal here with a
version 2 message, of course. Add one parameter to the get message
options:

66 MQSeries Version 5 Programming Examples

• gmo.OPTIONS += MQGMO_COMPLETE_MSG;

Note: If not specified segments are returned individually.

3.1.1.1 A Simple Scenario
The following shows what options have to be set for the MQPUT and MQGET
call:

MQPUT
PMO No options set
MD MQMF_SEGMENTATION_ALLOWED

MQMD_VERSION_2
MQGET
GMO MQGMO_COMPLETE_MSG
MD No options set

Comments:

• The MD Version must be set to MQMD_VERSION_2. This is not the
default. The MD structure is version 2, but the MD Version field is set to
MQMD_VERSION_1 by default for compatibility.

• Since the message is reassembled on MQGET by the queue manager,
the application buffer must be large enough to hold the reassembled
message unless the MQGMO_ACCEPT_TRUNCATED_MSG option is
specified.

• Data conversion, if required, can be done only on the reassembled
message by the getting application. The message is already
reassembled when the exit is called. Data conversion for a segmented
message in the sender channel will fail if the data format is such that
the conversion exit cannot handle incomplete data.

• MQRC_NO_MESSAGE_AVAILABLE (2033) is returned on an MQGET if
none of the segments are available.

• A unit of work is necessary for persistent messages that require
arbitrary segmentation. While MQPUTs and/or MQGETs within a unit of
work cause no problems, the queue manager handles MQPUTs and/or
MQGETs outside a unit of work as follows:

− If no unit of work exists, the queue manager creates one and
commits automatically.

− The error MQRC_UOW_NOT_AVAILABLE (2055) is returned if no unit
of work exists.

Chapter 3. Message Segmentation 67

3.1.2 Application Segmentation
This type of segmentation can be used when the application:

• Wants to control segment boundaries

• Wants to PUT before message generation is completed

• Cannot handle the message size in its buffers

For example, the sender is creating a very large message and wants to start
sending before the generation of the message is complete. This might be
because the message is too large to be handled by the applications. The
advantage of this over sending multiple messages is that the receiver can
GET all the segments in a single operation. Of course, the receiver could
also view them as individual segments before the entire logical message
has arrived.

Another likely scenario is that the application wants to control the segment
boundaries. This might be for any reason including data conversion. An
example may be an order form that consists of a header containing
information such as date and address, and several items specifying the
products to be ordered. The header and each of the items could be sent as
segments.

When you create your own segments specify in the:

• Message descriptor:

− md.Version = MQMD_VERSION_2;

− md.MsgFlags = MQMF_SEGMENT;

− md.MsgFlags = MQMF_LAST_SEGMENT;

• Put message options:

− pmo.Options = MQPMO_LOGICAL_ORDER;

MQPMO_LOGICAL_ORDER indicates that the application issues successive
PUTs to put segments into a logical message. The queue manager
maintains sequence number and offset.

Note: The last segment only may be zero length.

The receiving queue manager reassembles the logical message on behalf of
the getting application. In the receiving program, specify in the get
message option:

• mqgmo.OPTIONS += MQGMO_COMPLETE_MSG;

68 MQSeries Version 5 Programming Examples

This is the only option that causes the queue manager to reassemble
message segments.

All segments must be available before the logical message may be
received. The reason code MQRC_NO_MSG_AVAILABLE (2033) is returned
on the MQGET if all segments comprising the composite logical message
are not available.

Note: For persistent messages, the queue manager can reassemble the
segments only within a unit of work. The persistence of all segments must
be consistent.

3.1.2.1 A Simple Scenario
In the following scenario, the application splits a logical message into three
segments, but it inhibits any further segmentation by the queue manager or
by queue managers the segments pass through. The receiving application
wants to get the complete logical message with a single MQGET.

MQPUT
PMO MQPMO_LOGICAL_ORDER
MD MQMF_SEGMENT (all 3 segments)

MQMF_LAST_SEGMENT (last segment)
MQGET
GMO MQGMO_COMPLETE_MSG
MD No options set

Notes:

 1. MQMF_SEGMENT is optional for the last message.

 2. MQMF_LAST_SEGMENT must be set on the last segment.

Comments:

• The putting application keeps MQPUTting subsequent segments in the
correct order, using the same queue handle for each segment.

• The effect of the MQMF_LOGICAL_ORDER flag is that the queue
manager generates and maintains a group ID, the offset and the
message sequence number in the message descriptor. The putting
application should not set any of these fields. The application is only
responsible for the MD flags such as MQMF_SEGMENT. The
MQMF_LAST_SEGMENT flag terminates the logical message, and a
subsequent MQPUT on the same queue handle will result in a new
logical message with its own unique group ID.

Chapter 3. Message Segmentation 69

• The message descriptor returned by an MQPUT contains the actual
group ID, offset, etc. used for each segment. These can be saved if
necessary for matching incoming segments or error recovery.

• The queue manager automatically generates a single unique group ID
which is used for all the segments comprising a single logical message.

• The presence of any of the group/segmentation flags in the message
descriptor causes a group ID to be generated. The putting application
can only supply its own group ID when MQPMO_LOGICAL_ORDER is
reset.

• It is an error to break the logical sequence, or issue an MQCLOSE
without putting the last segment.

• To put an unsegmented message while in the middle of a logical
sequence, just open another handle to the same queue.

• The Encoding and CCSID of segments should be consistent. Since this
example uses MQGMO_COMPLETE_MSG on the MQGET, these must be
consistent in this case.

• The MD version does not travel with the message. The version of the
MD on return from MQGET is dependent on the version of the MD on
input of the MQGET. If a Version 1 MD is supplied on the MQGET, the
MD2 specific fields are packaged in an MD extension (MDE) and
prepended to the data.

• All messages must be available before the logical message may be
received. The reason code MQRC_NO_MSG_AVAILABLE (2033) is
returned on the MQGET if one or more of the segments are missing.

• If segments of a logical message are found to have different CCSIDs or
Encoding, reassembly of the logical message stops at that point, and all
segments up to that point are returned with a warning and reason code
MQRC_INCONSISTENT_CCSIDS (2243) or ..._ENCODINGS (2244).

3.1.2.2 A Scenario for Getting Individual Segments
The next scenario is different in two aspects:

• MQFM_SEGMENTATION_ALLOWED on the MQPUT allows further
arbitrary segmentation if required.

• The getting application gets the individual segments as they are sent.

70 MQSeries Version 5 Programming Examples

MQPUT
PMO MQPMO_LOGICAL_ORDER
MD MQMF_SEGMENT (1st nd 2nd segment)

MQMF_LAST_SEGMENT (3rd (last) segment)
MQMF_SEGMENTATION_ALLOWED (all segments)

MQGET
GMO MQGMO_LOGICAL_ORDER (all segments)

MQGMO_ALL_SEGMENTS_AVAILABLE (1st segment)
MD No options set

Comments:

• The getting application keeps getting segments using the same queue
handle until the last segment is detected. The last segment is detected
by testing either the MD flags or the GMO SegmentStatus output field to
ascertain if more segments exist before re-iterating the MQGET.

• The effect of the MQGMO_LOGICAL_ORDER flag is that the queue
manager maintains the expected group ID, offset and message
sequence number in the message header. The queue is traversed in
logical order.

• By specifying MQGMO_ALL_SEGMENTS_AVAILABLE, the first segment
will not be returned until all the segments comprising the logical
message are available. Segments of incomplete messages will not be
returned.

• If the MQGMO_LOGICAL_ORDER flag is set without
MQGMO_ALL_SEGMENTS_AVAILABLE, MQGET will iterate through the
segments until a gap in the logical sequence is encountered, resulting in
a MQRC_NO_MSG_AVAILABLE (2033) being returned, despite the
existence of later segments. MQGETs on this queue handle will only
proceed when the missing segment becomes available.

• Another application that does not use MQGM_LOGICAL_ORDER could
remove individual segments even after
MQGMO_ALL_SEGMENTS_AVAILABLE has ascertained their presence,
causing a gap in the logical message. MQGMO_BROWSE_* with
MQGMO_LOCK can be used to lock all segments of the entire message.

• It is an error, and you will get a warning message, if you break the
logical sequence by issuing an MQGET without
MQGMO_LOGICAL_ORDER or closing the queue without getting the last
segment.

Chapter 3. Message Segmentation 71

• If MQGMO_LOGICAL_ORDER is not set, the queue is traversed in
physical order. Individual segments from different logical messages
could be retrieved in any order.

• As the putting application specified MQMF_SEGMENTATION_ALLOWED,
any of the segments may have been further segmented by any queue
manager. Therefore, there may be more gets than there were puts.

• A getting application can use MQMO_MATCH_GROUPID and/or
MQMO_MATCH_OFFSET to more precisely define the expected
message. The group ID and offset fields of the MD are used as input
fields to be matched by the incoming message.

• The returned MD contains precise segment details, such as group ID,
offset and flags. These can be used for error recovery or to forward the
message segment with the original segment information.

3.1.3 What about Existing Programs
You can execute pre-version 5 programs and they will work just as they did
before. The following scenario shows that segmentation is inhibited by
default.

MQPUT
PMO No options set
MD MQMF_SEGMENTATION_INHIBITED

MQGET
GMO No options set
MD No options set

MQMF_SEGMENTATION_INHIBITED is the default. Its value is 0.

3.2 About the Message Segmenting Examples

In this chapter you will find programming examples which demonstrate the
methods available to you to accomplish message segmentation. The first of
these will demonstrate automatic segmentation where the queue manager
determines if and when to segment a message. This is also called arbitrary
segmentation since the program does nothing to control when or where a
message is segmented. In this case you will see that all you really have to
do is allow it to occur; that is, the program needs to tell the queue manager
that it is OK to segment messages.

The second example will show how to code an application that controls
segmentation itself rather than letting the queue manager take care of it
automatically. You may want to do this if you want to control where the
segmentation occurs, for data conversion for example.

72 MQSeries Version 5 Programming Examples

/**/
/* MQMD Structure -- Message Descriptor */
/**/

typedef struct tagMQMD {
 MQCHAR4 StrucId; /* Structure identifier */

MQLONG Version; /* Structure version number */
MQLONG Report; /* Report options */
MQLONG MsgType; /* Message type */
MQLONG Expiry; /* Expiry time */
MQLONG Feedback; /* Feedback or reason code */
MQLONG Encoding; /* Data encoding */
MQLONG CodedCharSetId; /* Coded character set identifier */

 MQCHAR8 Format; /* Format name */
MQLONG Priority; /* Message priority */
MQLONG Persistence; /* Message persistence */
MQBYTE24 MsgId; /* Message identifier */
MQBYTE24 CorrelId; /* Correlation identifier */
MQLONG BackoutCount; /* Backout counter */
MQCHAR48 ReplyToQ; /* Name of reply-to queue */
MQCHAR48 ReplyToQMgr; /* Name of reply queue manager */
MQCHAR12 UserIdentifier; /* User identifier */
MQBYTE32 AccountingToken; /* Accounting token */
MQCHAR32 ApplIdentityData; /* Application data relating to

identity */
MQLONG PutApplType; /* Type of application that puts

the message */
MQCHAR28 PutApplName; /* Name of application that puts

the message */
 MQCHAR8 PutDate; /* Date when message was put */
 MQCHAR8 PutTime; /* Time when message was put */
 MQCHAR4 ApplOriginData; /* Application data relating to

origin */
MQBYTE24 GroupId; /* Group identifier */
MQLONG MsgSeqNumber; /* Sequence number of logical

message within a group */
MQLONG Offset; /* Offset of data in physical msg

from start of logical message */
MQLONG MsgFlags; /* Message flags */
MQLONG OriginalLength; /* Length of original message */
} MQMD;

typedef MQMD MQPOINTER PMQMD;

Figure 40. New Fields in the Message Header

Chapter 3. Message Segmentation 73

It is also possible to accomplish both automatic segmentation and
application determined segmentation within the same program. This will
not be demonstrated in this book.

All of the programming examples are modified versions of programs which
are supplied in the distribution of MQSeries Version 5. The unmodified
programs (which you can find in your ″samples″ directory) are:

amqsput0.c Sample C program that puts messages to a message
queue

amqsget0.c Sample C program that gets messages from a
message queue

amqsbcg0.c Sample C program to read and output both the
message descriptor fields and the message content of
all the messages on a queue

Segmentation uses fields that have been added to the end of the MQMD
structure. Figure 40 on page 73 shows the new fields in bold. We refer to
them in the next exercises.

3.3 A Program to Create a Very Large File

The first task to be accomplished for the exercises to come is to create a
file that will become our message. We create this large message with the
program big.c shown in Figure 41. It creates a file that is 4950 bytes long.

#include <stdio.h>
#include <string.h>

int main(argc, argv)
int argc;
char *argv[];

{
int i = 0;
for (i=1; i < 100; i++)
 printf(″THISISAVERYLARGEFILETOTESTARBITRARYSEGMENTATION!!!″) ;
return(0);
}

Figure 41. Program that Creates a Very Large File

To compile the program use one of the commands in Table 12 on page 75.

74 MQSeries Version 5 Programming Examples

To create the file, simply execute ″big″ piping the output to a flat file called
″very_large_file″.

big > very_large_file

Table 12. Commands to Compile BIG.C

Compiler Command

Microsof t V isua l C/C++ cl big.c

IBM Visua l Age C/C++ icc big.c

CSe t++ fo r A IX xlc big.c -o big

3.4 Exercise 6: Arbitrary Segmentation

The purpose of this exercise is to demonstrate how the new MQSeries
Version 5 queue managers can:

• Take a message which is too big
(either for the queue manager or for the specific queue)

• And automatically segment it

MQSeries breaks the message into smaller messages (called segments)
and sends them wherever the ″too large″ message would have been sent.

The local queue manager at the receiving end puts the pieces back together
and is able to present the ″too large″ message to the GETting application as
though it had never been segmented.

Optionally, the receiving application can also view the segments as
separate messages. When using arbitrary (system-generated) segmentation.
However, it is more common to let MQSeries worry about the details and for
the receiving application to view the message as a whole.

3.4.1 Writing a Program for Arbitrary Segmentation
We modify amqsput0.c and create the program PUT_SEG1. The sample
amqsput0 puts messages on a message queue, and is an example of the
use of MQPUT. PUT_SEG1 allows for the possibility of messages which
exceed those allowed on the queue or queue manager. Messages are sent
to the queue named by a parameter. You may also specify a queue
manager name. Both programs get their input from StdIn.

A complete listing of PUT_SEG1 is in C.1, “PUT_SEG1 Performing Arbitrary
Segmenting” on page 203. The changes are marked in bold. The
necessary modifications to allow arbitrary segmentation are summarized
below:

Chapter 3. Message Segmentation 75

• First we have to allow the program to handle larger messages. So we
change the buffer size from 100 to 5000 bytes.

char buffer[5000]; /* our large message buffer */

• Next, we have to allow the queue manager to perform segmentation.
For segmentation, it uses version 2 of the API functions. So we change
the message header version to 2. We also need to set a flag that allows
the queue manager to segment. Put the following statements
somewhere between the MQOPEN and the MQPUT.

md.MsgFlags = MQMF_SEGMENTATION_ALLOWED;
md.Version = MQMD_VERSION_2 ;

These are all the changes required for arbitrary segmenting. The MQPUT
does not change. However, let us mention that there are new values for the
Options field of the Put Message Options:

• MQPMO_NEW_MSG_ID

• MQPMO_NEW_CORREL_ID

These options relieve the need for the memcpy statements below that cause
MQ to reset MsgId and CorrelId and generate new ones.

memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

3.4.2 Writing a Program that Reads Logical Messages
We modify the program amqsbcg0.c and create GET_SEG1.C. The program
listing is in C.2, “BCG_SEG1 Browsing only Logical Messages” on page 207.
The sample prints out both message descriptor and message text. The
version of amqsbcg supplied with MQSeries Version 5 recognizes the new
fields in the MDMD structure. It was changed from previous releases to
allow the possibility of segmented messages. Specifically the new fields in
the header were added and formatted and the API version was specified:

MsgDesc.Version = MQMD_VERSION_2;

For our purposes we wanted to process only complete messages, not the
individual segments. Therefore we needed the following addition:

GetMsgOpts.Options += MQGMO_COMPLETE_MSG;

Remember, in the PUT program we also had to change the buffer size to
5000 to allow for a single larger message. AMQSBCG0.C already handled
messages up to 32767 bytes long. If a longer message is read it will fail
with the reason ″truncated-msg″.

The modifications to read only complete messages are summarized below:

76 MQSeries Version 5 Programming Examples

 1. Use a version 2 MQMD in case the message is segmented or grouped.

MsgDesc.Version = MQMD_VERSION_2 ;

 2. The function printMD prints the new fields in the MQMD structure with
the following instructions:

printf(″\n GroupId : X′ ″) ;

for (i = 0 ; i < MQ_GROUP_ID_LENGTH ; i++)
printf(″%02X″ ,MDin->GroupId[i]);

printf(″ ′ ″) ;
printf(″\n MsgSeqNumber : ′%d′ ″ , MDin->MsgSeqNumber);
printf(″\n Offset : ′%d′ ″ , MDin->Offset);
printf(″\n MsgFlags : ′%d′ ″ , MDin->MsgFlags);
printf(″\n OriginalLength : ′%d′ ″ , MDin->OriginalLength);

Note: MDin is the pointer to the message descriptor structure.

We will analyze these fields when we test our application.

 3. To get the system to reassemble the message we set the get message
options as follows:

GetMsgOpts.Options += MQGMO_COMPLETE_MSG ;

Note: The new field MatchOptions in the Get Message Options relieves the
need for resetting the MessageID and CorrelID each time.

3.4.3 Compiling the Programs
Compile the programs using one of the compilers in Table 13.

Table 13. Commands to Compile Programs for Arbitrary Segmentation

Compiler Command

Microsof t V isua l C/C++ cl put_seg1.c mqm.lib
cl bcg_seg1.c mqm.lib

IBM Visua l Age C/C++ icc put_seg1.c mqm.lib
icc bcg_seg1.c mqm.lib

CSe t++ fo r A IX xlc put_seg1.c -l mqm -o put_seg1
xlc bcg_seg1.c -l mqm -o bcg_seg1

3.4.4 Creating a Queue
The next thing that needs to be done to set up the environment is to create
a queue in which to put some messages. To do this run the runmqsc
command and enter the following commands:

Chapter 3. Message Segmentation 77

runmqsc
define qlocal(SEGTEST1) like(SYSTEM.DEFAULT.LOCAL.QUEUE) MAXMSGL(500)
end

This new queue called SEGTEST1, is limited to messages of 500 bytes in
length. This is how we force the queue manager to do segmentation for us.
If you look at the size of ″very_large_file″ that we created in 3.3, “A Program
to Create a Very Large File” on page 74, you will see that it is considerably
larger than 500 bytes.

3.4.5 Testing Arbitrary Segmentation
If this is not the first time you have been through the execution of these
programs use the standard sample GET program to clear the queue:

amqsget SEGTEST1 [QMgrName]

Note: The queue manager name is optional; if you are connecting to the
default queue manager you do not need it.

Now use the new put program to put a large message in the queue
SEGTEST1. Make sure that the very large file exists. You should have
created it with the program ″big″ described in 3.3, “A Program to Create a
Very Large File” on page 74.

put_seg1 SEGTEST1 [QMgrName] < very_large_file

The message was too large for our definition of the queue SEGTEST1 (500
bytes) and should have generated 10 physical messages on the queue.
These are the segments. You can prove that with runmqsc:

runmqsc
dis ql(SEGTEST1) curdepth

1 : dis ql(SEGTEST1) curdepth
AMQ8409: Display Queue details.

QUEUE(SEGTEST1) CURDEPTH(10)
end

The standard browse sample program, which does not ask the queue
manager to put all of the segments into a single logical message, displays
the ten segments. Figure 42 on page 79 shows the first of them. We are
especially interested in the new fields added to the MQMD structure printed
in bold.

The messages 2 through 9 are identical with the exception of the offset field
in the MQMD structure. Table 14 on page 80 shows those version 2 fields
for all ten segments. The first nine messages are 496 bytes long and the
tenth 486 which gives us a total of 4950.

78 MQSeries Version 5 Programming Examples

 MQGET of message number 1
****Message descriptor****

 StrucId : ′ MD ′ Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 437
Format : ′ MQSTR ′
Priority : 0 Persistence : 0
MsgId : X′414D5120424741474520202020202020004F000034E2BA5B′
CorrelId : X′00′
BackoutCount : 0
ReplyToQ : ′ ′
ReplyToQMgr : ′ QMGR1 ′
** Identity Context
UserIdentifier : ′ OS2 ′
AccountingToken :
X′013100′
ApplIdentityData : ′ ′
** Origin Context
PutApplType : ′ 4 ′
PutApplName : ′ D:\REDBOOK\PUT_SEG1.EXE ′

 PutDate : ′19980212′ PutTime : ′09011538′
ApplOriginData : ′ ′

GroupId : X′414D5120424741474520202020202020004F010034E2BA5B′
MsgSeqNumber : ′ 1 ′
Offset : ′ 0 ′
MsgFlags : ′ 3 ′
OriginalLength : ′496′

**** Message ****

 length - 496 bytes

00000000: 5448 4953 4953 4156 4552 594C 4152 4745 ′ THISISAVERYLARGE′
00000010: 4649 4C45 544F 5445 5354 4152 4249 5452 ′ FILETOTESTARBITR′
00000020: 4152 5953 4547 4D45 4E54 4154 494F 4E21 ′ ARYSEGMENTATION!′
...
...
000001C0: 2121 5448 4953 4953 4156 4552 594C 4152 ′ ! ! THISISAVERYLAR′
000001D0: 4745 4649 4C45 544F 5445 5354 4152 4249 ′ GEFILETOTESTARBI′
000001E0: 5452 4152 5953 4547 4D45 4E54 4154 494F ′ TRARYSEGMENTATIO′

Figure 42. A Message Segment (Arbitrary Segmentation)

Now let′s look at the new fields in the message descriptor.

Chapter 3. Message Segmentation 79

Table 14. New Fields in Message Descriptor

Field Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Seg7 Seg8 Seg9 Seg10

MsgSeqNumber 1 1 1 1 1 1 1 1 1 1

Offset 0 496 920 1488 1984 2480 2976 3472 3968 4464

MsgFlags 3 3 3 3 3 3 3 3 3 7

OriginalLength 496 496 496 496 486 496 496 496 496 486

The fields contain the following information:

• MsgSeqNumber

This consistently has the value ″1″. Why? Because this field is not used
for segmentation; rather it is used for Message Groups, which is
discussed in another chapter.

• Offset

This determines the position in the logical message that this segment
occupies.

• MsgFlags

For the first segment this has a value of ″3″. Looking at the C header
file, that is equal to the sum of:

MQMF_SEGMENTATION_ALLOWED (value of ″1″) and
MQMF_SEGMENT (value of ″2″).

This is consistent for all of the segments except the final one which has
a value of ″7″. This is the sum of the previous values plus:

MQMF_LAST_SEGMENT (value of ″4″).

• Original Length

You might think this was pertinent here, but looking in the MQSeries
Application Programming Reference, SC33-1673 this field is only relevant
for report messages and in this case we are looking at the original
length of the segment, not the logical message.

3.4.6 Putting Segments Back Together
Finally, to show you how MQSeries Version 5 puts these segments back
together run the modified version of amqsbcg.

Looking at the same fields as in Table 14 there are some differences to note
in Figure 43 on page 81.

• OriginalLength

80 MQSeries Version 5 Programming Examples

 MQGET of message number 1
****Message descriptor****

 StrucId : ′ MD ′ Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 437
Format : ′ MQSTR ′
Priority : 0 Persistence : 0
MsgId : X′414D5120424741474520202020202020004F000034E2BA5B′
CorrelId : X′00′
BackoutCount : 0
ReplyToQ : ′ ′
ReplyToQMgr : ′ QMGR1 ′
** Identity Context
UserIdentifier : ′ OS2 ′
AccountingToken :
X′013100′
ApplIdentityData : ′ ′
** Origin Context
PutApplType : ′ 4 ′
PutApplName : ′ D:\REDBOOK\PUT_SEG1.EXE ′

 PutDate : ′19980212′ PutTime : ′09011538′
ApplOriginData : ′ ′

GroupId : X′414D5120424741474520202020202020004F010034E2BA5B′
MsgSeqNumber : ′ 1 ′
Offset : ′ 0 ′
MsgFlags : ′ 7 ′
OriginalLength : ′4950′

**** Message ****

 length - 4950 bytes

00000000: 5448 4953 4953 4156 4552 594C 4152 4745 ′ THISISAVERYLARGE′
00000010: 4649 4C45 544F 5445 5354 4152 4249 5452 ′ FILETOTESTARBITR′
00000020: 4152 5953 4547 4D45 4E54 4154 494F 4E21 ′ ARYSEGMENTATION!′
...
...
00001330: 4152 4745 4649 4C45 544F 5445 5354 4152 ′ ARGEFILETOTESTAR′
00001340: 4249 5452 4152 5953 4547 4D45 4E54 4154 ′ BITRARYSEGMENTAT′
00001350: 494F 4E21 2121 ′ ION!!! ′

Figure 43. A Reassembled Logical Message (Arbitrary Segmentation)

Chapter 3. Message Segmentation 81

This now has a value of 4950, the size of the logical message. In the
dump of the message all ten segments have been presented to the
program as a single message 4950 bytes long.

• MsgFlags

This now has the value 7, which says that segmentation is allowed, that
this message is a segment, and that it is the last segment. In other
words, this is a complete logical message.

• Offset

This now shows a value of ″0″. This is consistent with the first of our
segments and makes sense if this one segment makes up the entire
message.

3.5 Exercise 7: Application Segmentation

The programmer can control the segmentation of messages within his
application. The local queue manager at the receiving end puts the pieces
back together and is able to present the segmented message to the GETting
application as though it had never been segmented.

The receiving application can also view the segments as separate
messages. When using application segmentation it is common to want to
view the segments at the receiving end BOTH as a complete message AND
as individual segments. To see as a complete message, we use bcg_seg1
from Exercise 6. To see the segments individually, we use amqsbcg which
is one of the MQSeries samples.

3.5.1 Writing a Program for Application Segmentation
We take amqsput0.c, modify it and create PUT_SEG2.C. The modifications
cause the message to be segmented on application defined boundaries.

There are more changes here than in the previous example which used
automatic segmentation. To summarize them briefly:

 1. We change the buffer size so that the buffer can hold our ″very large
message″ from 100 to 5000.

char buffer[1000]; /* message buffer */

 2. Since segmenting uses the new fields in the MQMD structure we have to
tell the queue manager to use the new MQMD version.

md.Version = MQMD_VERSION_2 ;

 3. In the message flags we have to indicate that the physical message is a
segment.

82 MQSeries Version 5 Programming Examples

md.MsgFlags = MQMF_SEGMENT ;

 4. The following statement says to retrieve the messages in logical order.

pmo.Options = MQPMO_LOGICAL_ORDER ;

Without this option segments are retrieved in physical order.

 5. The program splits the large message into five segments. At the end it
sends one extra segment with the flag:

md.MsgFlags = MQMF_LAST_SEGMENT ;

In short, we use Version 2 functions to create segments. We want to
maintain logical order and we put one extra segment in the queue which we
mark as the last segment.

For the complete code refer to C.3, “PUT_SEG2 Performing Application
Segmenting” on page 217.

Compile the program with one of the following commands:

Table 15. Commands to Compile put_seg2

Compiler Command

Microsof t V isua l C/C++ cl put_seg2.c mqm.lib

IBM Visua l Age C/C++ icc put_seg2.c mqm.lib

CSe t++ fo r A IX xlc put_seg2.c -l mqm -o put_seg2

3.5.2 Creating a Queue
The program PUT_SEG2 uses the same ′very_large_file′ we created earlier.
Refer to 3.3, “A Program to Create a Very Large File” on page 74. Next, we
have to create a queue in which to put some messages. To do this run the
″runmqsc″ command and enter the following commands:

runmqsc
define qlocal(SEGTEST2)
end

The new queue is called SEGTEST2. It has the default maximum message
size of 4 MB. Our ″very_large_file″ would fit in a single message, though we
will break it up into 1000-byte segments.

3.5.3 Testing Application Segmentation
You are now ready to test this new program. If you have run the PUT
program before be sure to clear the queue first:

amqsget SEGTEST2 [QMgrName]

Chapter 3. Message Segmentation 83

Note: The queue manager name is optional.

Now run our new PUT_SEG2 program to create the segments:

put_seg2 SEGTEST2 < very_large_file
Sample PUT_SEG2 start
target queue is SEGTEST2
Sample PUT_SEG2 end

The message should have been segmented by our application. We expect
five segments plus one extra one. You can prove that with runmqsc:

runmqsc
dis ql(SEGTEST2) curdepth

1 : dis ql(SEGTEST2) curdepth
AMQ8409: Display Queue details.

QUEUE(SEGTEST2) CURDEPTH(6)
end

We can also verify this by running amqsgbr, the standard sample browse
program that comes with MQSeries.

amqsgbr SEGTEST2
Sample AMQSGBR0 (browse) start

Messages for SEGTEST2
1 <THISISAVERYLARGEFILETOTESTARBITRARYSEGMENTATION!!!>
--- truncated

2 <!THISISAVERYLARGEFILETOTESTARBITRARYSEGMENTATION!!>
--- truncated

3 <!!THISISAVERYLARGEFILETOTESTARBITRARYSEGMENTATION!>
--- truncated

4 <!!!THISISAVERYLARGEFILETOTESTARBITRARYSEGMENTATION>
--- truncated

5 <N!!!THISISAVERYLARGEFILETOTESTARBITRARYSEGMENTATIO>
--- truncated

6 <>
no more messages
Sample AMQSGBR0 (browse) end

The message length of the first four segments is 999 bytes while the fifth is
954 and the last 0, which comes to a total of 4950.

You can see in Table 16 on page 86 that the fields in the message
descriptor relating to segmenting are different from the previous example
featuring arbitrary segmentation. All other fields in the six headers are the
same.

84 MQSeries Version 5 Programming Examples

 MQGET of message number 1
****Message descriptor****

 StrucId : ′ MD ′ Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 437
Format : ′ MQSTR ′
Priority : 0 Persistence : 0
MsgId : X′414D51204247414745202020202020200072000034F1ACAD′
CorrelId : X′00′
BackoutCount : 0
ReplyToQ : ′ ′
ReplyToQMgr : ′ QMGR1 ′
** Identity Context
UserIdentifier : ′ OS2 ′
AccountingToken :
X′013100′
ApplIdentityData : ′ ′
** Origin Context
PutApplType : ′ 4 ′
PutApplName : ′ D:\REDBOOK\PUT_SEG2.EXE ′

 PutDate : ′19980223′ PutTime : ′17065299′
ApplOriginData : ′ ′

GroupId : X′414D51204247414745202020202020200072010034F1ACAD′
MsgSeqNumber : ′ 1 ′
Offset : ′ 0 ′
MsgFlags : ′ 2 ′
OriginalLength : ′999′

**** Message ****

 length - 999 bytes

00000000: 5448 4953 4953 4156 4552 594C 4152 4745 ′ THISISAVERYLARGE′
00000010: 4649 4C45 544F 5445 5354 4152 4249 5452 ′ FILETOTESTARBITR′
00000020: 4152 5953 4547 4D45 4E54 4154 494F 4E21 ′ ARYSEGMENTATION!′
...
...
000003C0: 594C 4152 4745 4649 4C45 544F 5445 5354 ′ YLARGEFILETOTEST′
000003D0: 4152 4249 5452 4152 5953 4547 4D45 4E54 ′ ARBITRARYSEGMENT′
000003E0: 4154 494F 4E21 21 ′ ATION!! ′

Figure 44. A Message Segment (Application Segmentation)

Chapter 3. Message Segmentation 85

As you can see, there are six messages on the queue including our last
(empty) message. To see the details of the messages execute amqsbcg:

amqsbcg SEGTEST2 |more

Figure 44 on page 85 shows the first segment in the queue.

The fields contain the following information:

• MsgSeqNumber

The sequence number remains the same for all messages. Why? It is
because sequence number is used when using message groups. You
can see examples of this in the next chapter.

• Offset

Offset reflects the beginning of a segmented message relative to its
position in the logical message. Our first segment above has an offset
of 0 and a length of 999. Segment 2 has an offset of 999; therefore
segment 2 starts where segment 1 ends, and so on.

• MsgFlags

The flags are always 2 except the last which is 6. The C language
header file cmqc.h tells you that:

MQMF_SEGMENT is defined as 0x00000002L and

MQMF_LAST_SEGMENT is defined as 0x00000004L

The last segment bears both flags which add up to 6.

• OriginalLength

This field is used for report messages and refers to the length of the
original physical message, not the logical message.

Table 16. New Fields in Message Descriptor

Field Seg1 Seg2 Seg3 Seg4 Seg5 Seg6

MsgSeqNumber 1 1 1 1 1 1

Offset 0 999 1998 2997 3996 4950

MsgFlags 2 2 2 2 2 6

OriginalLength 999 999 999 999 954 0

3.5.4 Putting Segments Back Together
Finally, to show how MQSeries pastes these segments back together again
we run our browse program put_seg2:

put_seg2 SEGTEST2

86 MQSeries Version 5 Programming Examples

The reassembled message is shown in Figure 45 on page 88. Let us look
at the fields related to segmenting:

• Offset

The offset is 0. Since the program only sees the logical message there
is only one offset.

• MsgFlags

This is equal to 6. In other words, even though this message is the first
segment we see it is also the last or the complete message.

Note: With arbitrary segmentation, MsgFlags contained 7. The
additional bit for ″segmentation is allowed″ is not set for application
segmentation.

• OriginalLength

This now reflects what the application saw as the complete message or
4950.

Chapter 3. Message Segmentation 87

 MQGET of message number 1
****Message descriptor****

 StrucId : ′ MD ′ Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 437
Format : ′ MQSTR ′
Priority : 0 Persistence : 0
MsgId : X′414D5120514D47523120202020202020C4D2FF3413300100′
CorrelId : X′00′
BackoutCount : 0
ReplyToQ : ′ ′
ReplyToQMgr : ′ QMGR1 ′
** Identity Context
UserIdentifier : ′ bgage ′
AccountingToken :
X′013100′
ApplIdentityData : ′ ′
** Origin Context
PutApplType : ′11 ′
PutApplName : ′ C:\redbook\PUT_SEG2.EXE ′

 PutDate : ′19980306′ PutTime : ′18361497′
ApplOriginData : ′ ′

GroupId : X′414D5120514D47523120202020202020C4D2FF3423300100′
MsgSeqNumber : ′ 1 ′
Offset : ′ 0 ′
MsgFlags : ′ 6 ′
OriginalLength : ′4950′

**** Message ****

 length - 4950 bytes

00000000: 5448 4953 4953 4156 4552 594C 4152 4745 ′ THISISAVERYLARGE′
00000010: 4649 4C45 544F 5445 5354 4152 4249 5452 ′ FILETOTESTARBITR′
00000020: 4152 5953 4547 4D45 4E54 4154 494F 4E21 ′ ARYSEGMENTATION!′
...
...
00001330: 4152 4745 4649 4C45 544F 5445 5354 4152 ′ ARGEFILETOTESTAR′
00001340: 4249 5452 4152 5953 4547 4D45 4E54 4154 ′ BITRARYSEGMENTAT′
00001350: 494F 4E21 2121 ′ ION!!! ′

Figure 45. A Reassembled Logical Message (Application Segmentation)

88 MQSeries Version 5 Programming Examples

Chapter 4. Message Groups

Message groups are new to MQSeries Version 5. In the chapter discussing
message segmentation you saw examples of creating logical messages
which were made up of one or more physical segments. Message groups
are really collections of one or more logical messages. You can think of a
message group as some application-oriented collection of messages. For
example, you might want to process all of the items in an order as a group.

Processing messages in a group gives you the ability to easily process
messages in logical order rather than physical order. It also allows you to
only start processing the group when all of the messages have been
received.

It is possible for a message that is segmented to be part of a group of
messages.

Figure 46. A Message Group

In Figure 46 you see a message group made up of logical messages 1, 2
and 3. Messages 1 and 2 are complete messages which are physical
messages on the queue. Message 3, on the other hand, is a logical
message made up of segments 1 and 2. Segments 1 and 2 are the physical
messages which make up logical message 3 of the message group.

It is possible to put messages under groups and at the same time allow
application segmentation of messages and at the same time allow further
arbitrary (system) segmentation.

 Copyright IBM Corp. 1998 89

Messages in a group will all have the same Group ID which can be
controlled by the application or generated by the queue manager. The
logical sequence of messages in a group is maintained using the message
sequence number field in the message header.

Optionally, the receiving application can take a physical view and see all the
messages regardless of group, and the segments regardless of message.
On the other hand, the receiver can take a logical view and see the
segments only as reassembled messages and view the individual messages
as part of a group.

Note: Persistence of all messages within a group must be consistent.

4.1 A Simple Grouped Message Scenario

This scenario summarizes what has to be done to retrieve messages within
a group in the same order as sent. MQGMO_ALL_MSGS_AVAILABLE can
be used to ensure that all messages in the group are available before any
are retrieved. The group consists of three messages. The following shows
what has to be specified in the put and get statements.

MQPUT
PMO MQPMO_LOGICAL_ORDER
MD MQMD_VERSION_2

MQMF_MSG_IN_GROUP 1st & 2nd message
MQMF_LAST_MSG_IN_GROUP 3rd (last) message
MQMF_SEGMENTATION_ALLOWED all messages

MQGET
GMO MQGMO_COMPLETE_MSG all messages (if segmentation

MQGMO_LOGICAL_ORDER all messages is allowed)
MQGMO_ALL_MSGS_AVAILABLE 1st message

MD No options set

Comments:

• This scenario is similar to the one described in 3.1.2.1, “A Simple
Scenario” on page 69, substituting ″message within group″ for segment.

• The rules regarding messages within groups are very similar to
segments within logical messages, except:

− The MQMF_*_MSG_IN_GROUP replaces MQMF_*_SEGMENT flags.

− The message sequence number field in the message descriptor
replaces the offset for segments. The message sequence number is
incremented by 1 while the offset increments by the segment size.

90 MQSeries Version 5 Programming Examples

− MQGMO_ALL_MSGS_AVAILABLE replaces
MQGMO_ALL_SEGMENTS_AVAILABLE.

− There is no equivalent to MQGMO_COMPLETE_MSG. Messages
within a group are still individual messages.

• The logical sequence when traversing a queue with
MQGMO_LOGICAL_ORDER set follows the physical sequence of first
messages in a group or ungrouped messages, then iterates through the
messages in the group in order of the message sequence number.

• Another application getting the queue without
MQGMO_LOGICAL_ORDER could remove individual messages even
after MQGMO_ALL_MSGS_AVAILABLE has ascertained their presence,
causing a gap in the logical sequence. The browse lock applies only to
multiple segments within a single logical message. There is no
equivalent for grouped messages.

• If the putting application specified MQMF_SEGMENTATION_ALLOWED
any of the messages may have been segmented by any queue manager.
MQGMO_COMPLETE_MSG will ensure that these are reassembled by
the receiving queue manager.

4.2 A Scenario for Grouped Segmented Messages

For this scenario, we assume three messages with three segments each.

MQPUT
PMO MQPMO_LOGICAL_ORDER
MD MQMD_VERSION_2

MQMF_MSG_IN_GROUP + MQMF_SEGMENT Msg 1, Segm 1 & 2
MQMF_MSG_IN_GROUP + MQMF_LAST_SEGMENT Msg 1, Segm 3

MQMF_MSG_IN_GROUP + MQMF_SEGMENT Msg 2, Segm 1 & 2
MQMF_MSG_IN_GROUP + MQMF_LAST_SEGMENT Msg 2, Segm 3

MQMF_LAST_MSG_IN_GROUP + MQMF_SEGMENT Msg 3, Segm 1 & 2
MQMF_LAST_MSG_IN_GROUP + MQMF_LAST_SEGMENT Msg 3, Segm 3

MQGET
GMO MQGMO_LOGICAL_ORDER all messages and segments

MQGMO_ALL_MSGS_AVAILABLE Msg 1, Segm 1
MD No options set

Comments:

• The hierarchy is segments with grouped messages.

Chapter 4. Message Groups 91

• MQMF_LAST_MSG_IN_GROUP must be set for all segments of the last
message.

• MQGMO_ALL_MSGS_AVAILABLE implies
MQGMO_ALL_SEGMENTS_AVAILABLE.

• UOW and CCSIDs should be consistent within a logical message, but
may vary between messages within the group.

4.3 About the Message Grouping Example

In this chapter you will find a programming example written in C which
demonstrates what needs to be done to send and receive messages in
groups. All of the programming examples are modified versions of
programs which are supplied in the distribution of MQSeries Version 5. You
can find the unmodified programs in your ″samples″ directory. The
programs to demonstrate message grouping are:

PUT_SEG1.C This program is a modification of the standard PUT sample
program amqsput0. It builds a group of logical messages
when it puts them on a queue.

BCG_SEG1.C This program is a modification of amqsbcg0 which
browses and prints the headers and details of messages.

A complete listing of the programs is in Appendix D, “Message Grouping
Examples” on page 223. In this exercise, we also demonstrate:

• What happens when we try to read messages of an incomplete group.

• How to read messages that belong to a group regardless of whether all
messages have arrived or not.

4.4 Exercise 8: Putting Message Groups

The purpose of this exercise is to demonstrate how the new MQSeries
Version 5 queue manager puts logical messages in a group and when and
how they are gotten by the receiving application.

4.4.1 Writing a Program that Puts Messages in a Group
The program PUT_GRP1 will be a version of amqsput0.c with the necessary
modifications made to it to cause it to put each entered line as one
message in a group. The final null entry will cause the end of group
message to be sent.

Note: The input buffer is 100 bytes long.

92 MQSeries Version 5 Programming Examples

If you look through the program in D.1, “Source of PUT_GRP1” on page 223
and compare it to the standard amqsput0.c sample you will see four
changes. The additional statements set flags to tell the queue manager that
the program wants to send a group of messages. The parameters are:

• MQMD_VERSION_2

• MQMF_MSG_IN_GROUP

• MQPMO_LOGICAL_ORDER

• MQMF_LAST_MSG_IN_GROUP

Since message grouping uses the additional fields in the message header,
we have to tell the queue manager to use Version 2 of the MD instead of
Version 1 which is the default. We must use Version 2 of the API in order to
use message groups.

md.Version = MQMD_VERSION_2;

For each message in a group you must set a MsgFlag to say that the
message is in a group and that you want to maintain a logical sequence.
Finally, you must finish the group by setting another MsgFlag.

To tell the queue manager that the messages that follow are part of a group
we set the following flag in the message header:

md.MsgFlags = MQMF_MSG_IN_GROUP;

To tell the queue manager that the messages that follow are to be kept in
sequence within the group we set a flag in the put message options:

pmo.Options = MQPMO_LOGICAL_ORDER;

To put all messages but the last in the group we use the standard MQPUT
as shown below. Before the put we reset the message ID and the
correlation ID to get a new one.

memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

MQPUT(Hcon, Hobj, &md, &pmo, buflen, buffer, &CompCode, &Reason);
if (Reason != MQRC_NONE) /* report reason, if any */

printf(″MQPUT ended with reason code %ld\n″ , Reason);

For the last message, we have to set a flag that tells the queue manager
that it is putting the last message in a group.

Note: In this example, the last message is empty.

Chapter 4. Message Groups 93

The code for the MQPUT of the last message follows:

md.MsgFlags = MQMF_LAST_MSG_IN_GROUP;
memcpy (md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy (md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

MQPUT (Hcon, Hobj, &md, &pmo, 0, buffer, &CompCode, &Reason);

if (Reason != MQRC_NONE) /* report reason, if any */
printf(″MQPUT ended with reason code %ld\n″ , Reason);

4.4.2 Writing a Program that Gets Messages of a Group
The program BCG_GRP1 will be a version of amqsbcg0.c with the necessary
modifications made to it to ensure no message is retrieved until all of the
messages in a group are present in the queue.

AMQSBCG0.C was changed in MQSeries Version 5 from previous releases
to allow for the possibility of segmented and/or grouped messages.
Specifically the new fields in the header were added and formatted and the
API version was specified:

MsgDesc.Version = MQMD_VERSION_2;

For our purposes we wanted to process messages only after all of the
messages in a group have arrived on the queue. Additionally, we want to
process the messages in the order they have been put. Therefore, we need
to set the following flags in the get message options:

• MQGMO_LOGICAL_ORDER

• MQGMO_ALL_MSGS_AVAILABLE

The first option tells the queue manager that we want to GET the messages
in the same order that they were PUT, regardless of physical position within
the queue. The second two statements tell the queue manager that we only
want to get a message if all of the messages have been received in the
queue. We only want to use this code on the first message since that is the
only time that all messages will be available.

The code fragment in Figure 47 on page 95 shows how the get program is
written.

94 MQSeries Version 5 Programming Examples

MsgDesc.Version = MQMD_VERSION_2; /* Version 2 of MD */
GetMsgOpts.Version = MQGMO_VERSION_2; /* Version 2 of GMO */

GetMsgOpts.Options = MQGMO_NO_WAIT;
GetMsgOpts.Options += MQGMO_BROWSE_NEXT;
GetMsgOpts.Options += MQGMO_LOGICAL_ORDER;

/* Loop until MQGET unsuccessful */
for (j = 1; CompCode == MQCC_OK; j++) {

if (j == 1) /* First message only*/
GetMsgOpts.Options += MQGMO_ALL_MSGS_AVAILABLE;

pmdin = memcpy(pmdin, &MsgDesc, sizeof(MQMD));
pgmoin = memcpy(pgmoin, &GetMsgOpts, sizeof(MQGMO));
memset(Buffer,′ ′ , BUFFERLENGTH);

MQGET(Hconn, Hobj, pmdin, pgmoin, BufferLength, Buffer,
&DataLength, &CompCode, &Reason);

if (CompCode != MQCC_OK) {
if (Reason != MQRC_NO_MSG_AVAILABLE)

printf(″\n MQGET %d, failed with CompCode:%d Reason:%d″ ,
j,CompCode,Reason);

else
printf(″\n \n \n No more messages ″) ;

}
else {

/* *** Process the message *** */
}

} /* end of for loop */

Figure 47. Getting a Message Group

4.4.3 Compile the Programs
To compile the program use one of the commands in Table 17.

Table 17. Commands to Compile PUT_SEG1 and BCG_SEG1

Compiler Command

Microsof t V isua l C/C++ cl put_grp1.c mqm.lib
cl bcg_grp1.c mqm.lib

IBM Visua l Age C/C++ icc put_grp1.c mqm.lib
icc bcg_grp1.c mqm.lib

CSe t++ fo r A IX xlc put_grp1.c -l mqm -o put_grp1
xlc bcg_grp1.c -l mqm -o bcg_grp1

Chapter 4. Message Groups 95

4.4.4 Creating a Queue for Exercise 8
Setup for this example is fairly simple. We only need to create a queue in
which to store our messages. Use runmqsc to create the queue GRPTEST1.
Here are the commands:

runmqsc
define qlocal(GRPTEST1) like(SYSTEM.DEFAULT.LOCAL.QUEUE) REPLACE
end

4.4.5 Putting Messages in a Group
In this section, we will test the two programs put_grp1 and bcg_grp1. We
will also use other programs to verify that the queue contains the messages
we expect to be there.

4.4.5.1 Clear the Queue
If this is not the first time you have been through the execution of these
programs use the standard sample get program to clear the queue:

amqsget GRPTEST1 (QMgrName)

Note: The queue manager name is optional. If you connect to the default
queue manager you do not need to specify it.

4.4.5.2 Put an Incomplete Group in the Queue
Now put a group of messages. In this case we will put some messages in
one window and not enter the null line which finishes the group:

D:\redbook> put_grp1 GRPTEST1
Sample put_grp1 start
target queue is GRPTEST1
This is message one of the group
This is message two of the group
This is message three of the group

4.4.5.3 Check What Is in the Queue
There are two ways to verify that there are now three messages on the
queue:

• Using runmqsc and checking the depth of the queue

• Executing the standard browse sample program

Using runmqsc, type the commands shown in bold and you will see that the
current depth of the queue is 3.

96 MQSeries Version 5 Programming Examples

runmqsc
dis ql(GRPTEST3) curdepth

1 : dis ql(GRPTEST3) curdepth
AMQ8409: display Queue details.
Queue(SEGTEST3) CURDEPTH(3)

end

The standard browse sample program will display the text of the three
messages. Execute it and you will get the following output:

D:\redbook> amqsgbr GRPTEST3
Sample AMQSGBR0 (browse) start

Messages for GRPTEST3
1 <This is message one of the group>
2 <This is message two of the group>
3 <This is message three of the group>
no more messages
Sample AMQSGBR0 (browse) end

4.4.5.4 Browse the Messages in the Queue
To see more details of all these messages, headers as well as contents run
the standard amqsbcg sample program:

D:\redbook c:\mqm\tools\c\samples\bin\amqsbcg GRPTEST3

Figure 48 on page 98 shows the header and the text of the first message.

Note: The sample amqsbcg reads physical messages and it does not care
whether they are part of a group or not.

The message ID is different for each message, of course. Table 18 shows
the other message header fields we are interested in for all three messages
of the incomplete group.

Table 18. New Fields in Message Descriptor

Field Msg 1 Msg 2 Msg 3

MsgSeqNumber 1 2 3

Offset 0 0 0

MsgFlags 8 8 8

OriginalLength 32 32 34

Chapter 4. Message Groups 97

 MQGET of message number 1
****Message descriptor****

 StrucId : ′ MD ′ Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 437
Format : ′ MQSTR ′
Priority : 0 Persistence : 0
MsgId : X′414D5120424741474520202020202020005D000034F2E634′
CorrelId : X′00′
BackoutCount : 0
ReplyToQ : ′ ′
ReplyToQMgr : ′ QMGR1 ′
** Identity Context
UserIdentifier : ′ OS2 ′
AccountingToken :
X′013100′
ApplIdentityData : ′ ′
** Origin Context
PutApplType : ′ 4 ′
PutApplName : ′ D:\REDBOOK\PUT_GRP1.EXE ′

 PutDate : ′19980224′ PutTime : ′15243641′
ApplOriginData : ′ ′

GroupId : X′414D5120424741474520202020202020005D010034F2E634′
MsgSeqNumber : ′ 1 ′
Offset : ′ 0 ′
MsgFlags : ′ 8 ′
OriginalLength : ′32 ′

**** Message ****

 length - 32 bytes

00000000: 5468 6973 2069 7320 6D65 7373 6167 6520 ′ This is message ′
00000010: 6F6E 6520 6F66 2074 6865 2067 726F 7570 ′ one of the group′

Figure 48. A Message in a Group

The fields contain the following information:

• MsgFlags

For all messages this has a value of 8. Looking at the C header file, this
is equal to the value of MQMF_MSG_IN_GROUP.

98 MQSeries Version 5 Programming Examples

• MsgSeqNumber

This represents the logical sequence of the messages in the group.

• Offset

This is always 0 since all of our messages are complete logical
messages; there is no segmentation here.

• GroupId

This is the same in all cases. We have one group of messages.

4.4.6 Getting Messages of a Group
At this time, the queue contains three messages. Table 18 on page 97
shows that the third message does not contain the flag
MQMF_LAST_MSG_IN_GROUP. The put program is written in a way that the
last message is put after the user of amqsput presses the Enter key without
typing any message text. The length of the last message is 0.

Let us use the program bcg_grp1 to read the messages in the queue. The
command and its result are shown below:

[D:\redbook]bcg_grp1 GRPTEST3

bcg_grp1 - starts here

 MQOPEN - ′ GRPTEST3′

 No more messages
 MQCLOSE
 MQDISC

So, why are there no messages on the queue? Because we have not
created a message that finishes the group. Going back to the window with
the put_grp1 program running enter a null line to finish the program and go
through the logic which adds another (empty) record to the queue. Then
repeat the execution of bcg_grp1. Now you will see four messages.

Figure 49 on page 100 shows the last segment of the group. Each of the
messages has a different message ID. Table 19 on page 101 shows the
fields in the message headers we are interested in.

Chapter 4. Message Groups 99

 MQGET of message number 4
****Message descriptor****

 StrucId : ′ MD ′ Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 437
Format : ′ MQSTR ′
Priority : 0 Persistence : 0
MsgId : X′414D5120424741474520202020202020005D000034F2E794′
CorrelId : X′00′
BackoutCount : 0
ReplyToQ : ′ ′
ReplyToQMgr : ′ QMGR1 ′
** Identity Context
UserIdentifier : ′ OS2 ′
AccountingToken :
X′013100′
ApplIdentityData : ′ ′
** Origin Context
PutApplType : ′ 4 ′
PutApplName : ′ D:\REDBOOK\PUT_GRP1.EXE ′

 PutDate : ′19980224′ PutTime : ′15302835′
ApplOriginData : ′ ′

GroupId : X′414D5120424741474520202020202020005D010034F2E634′
MsgSeqNumber : ′ 4 ′
Offset : ′ 0 ′
MsgFlags : ′24 ′
OriginalLength : ′ 0 ′

**** Message ****

 length - 0 bytes

00000000: ′ ′

Figure 49. A Last Message in a Group

100 MQSeries Version 5 Programming Examples

The fields contain the following information:

• GroupId

This has the same value for all messages.

• MsgSeqNumber

This is sequential representing the logical order of the messages in the
group.

• MsgFlags

This has the value 8 for all of the messages except the last. 8 is the
value for MQMF_MSG_IN_GROUP. The last message has a decimal
value of 24 which is the equivalent of MQMF_MSG_IN_GROUP plus
MQMF_LAST_MSG_IN_GRP.

• Offset

This always has a value of 0. This is used for segmentation, not for
message groups.

Table 19. Fields in Message Descriptor for a Message Group

Field Msg 1 Msg 2 Msg 3 Msg 4

MsgSeqNumber 1 2 3 4.

Offset 0 0 0 0

MsgFlags 8 8 8 24

OriginalLength 32 32 34 0

4.4.7 Summary
Message groups can be used, as demonstrated here, to maintain a logical
sequence in a logical, application-oriented grouping of messages. You can
also use it to ensure you do not process a message until all of the related
messages have arrived on the queue.

Chapter 4. Message Groups 101

102 MQSeries Version 5 Programming Examples

Chapter 5. Remote Administration and Windows NT Security

In this chapter, we discuss how to administer objects of a different queue
manager in the same workstation, in another workstation in the workgroup,
or another workstation in the domain.

We want to create an environment to administer a remote queue manager
from a local queue manager. We will especially concentrate on the security
issues for this.

To get familiar with remote administration we first create a second queue
manager on our local machine and define all the MQ objects to enable
remote administration. In this stage we will not have any problems with
security, as you will have the same rights for both queue managers. We will
also explore the use of the Service Control Manager. This is a feature of
Windows NT to start programs, such as MQSeries automatically at startup of
the machine.

In the second part of the exercise we set up real remote administration to
another machine. We will consider two situations:

• Both workstations have their own security database; no primary domain
controller is involved. This is the so called workgroup environment.

• Both workstations are member of a Windows NT domain. To be able to
test this, a dedicated primary domain controller is necessary in the
network.

Note: User IDs used with MQSeries must be less than 13 characters and
may not contain spaces. This precludes the use of the default
″Administrator″ user ID.

5.1 MQSeries Security Background

In the previous version of MQSeries for Windows NT, only one security
database was used for checking the authority of users. If the queue
manager was started with a local user ID, then it used only the local
security database. If the queue manager was started with a domain user ID,
only the domain security database was used. Also, the user ID SYSTEM,
which is always defined in Windows NT, was considered a local user ID, and
this made it difficult and less useful to run MQSeries in silent mode as a
Windows NT service.

When MQSeries runs with a domain user ID, then there is only one group
″mqm″ that controls the administration rights for MQSeries. Every user

 Copyright IBM Corp. 1998 103

included in the group ″mqm″ can control all the queue managers in the
whole domain.

5.2 Security Improvements

During installation of MQSeries for Windows NT, the local group ″mqm″ is
created on the machine where MQSeries is installed. This local group can
include any type of principals such as other local groups or global groups.
If MQSeries is installed on a PDC, then the global group ″Domain mqm″ is
created. When you install MQSeries later on a machine in that domain, the
global group ″Domain mqm″ is added to the local group ″mqm″.

MQSeries will search both local and domain security databases, until it can
come to a conclusion. There is thus no longer a difference between
MQSeries running with a local or a domain user ID.

Note: Be aware of performance impact of remote resolution of principals.

Figure 50. Granularity Example

Figure 50 shows three Windows NT systems, a PDC and two servers. Here,
the PDC does not have MQSeries installed. The global group Domain mqm
is created and the user mqadmin is a member of this group. You can insert
any user in this group that needs domain-wide MQSeries administration
authority.

104 MQSeries Version 5 Programming Examples

On both servers, MQSeries is installed. The local groups mqm have been
created during the installation. The groups include the users mq1admin and
mq2admin, respectively. Also included in the two local groups mqm is the
global group Domain mqm which contains the user mqadmin. The user
mqadmin can control both systems. Users that only need administration
authority for a single queue manager should be included in the local group
mqm. In this example, qm1admin can only administer the queue managers
on Server1, and mq2admin can only administer the queue managers on
Server2.

Think of Server1 as a production machine and Server2 as a development
system. In earlier MQSeries versions, this setup was only possible with
locally defined user IDs. It could not be used by domain user IDs.

5.3 Remote Administration Basics

Figure 51. Remote Administration

When using runmqsc in the indirect mode, for example, when you execute:

runmqsc -w 15 RemoteQueueManager,

then the runmqsc program will connect to the default local queue manager
and open the remote queue SYSTEM.ADMIN.COMMAND.QUEUE. Each mqsc
command will be transformed into a command message. Runmqsc puts the
command message on the transmission queue that leads to the remote
queue manager. Thus, that is the first thing to do: create a transmission

Chapter 5. Remote Administration and Windows NT Security 105

queue with the same name as the remote queue manager, or a remote
queue manager alias pointing to a suitable transmission queue.

Messages on a transmission queue will not travel to the remote destination
without a sender channel. And a sender channel needs a receiver channel
on the remote side. That makes two channels to define, one on each end.

The destination is the queue SYSTEM.ADMIN.COMMAND.QUEUE. This
queue is one of the standard queues and should have been defined when
the queue manager was created. In the remote system, the command
server has to be started explicitly with the command:

strmqcsv [QueueManagername]

Note: You do not have to start the command server when you use runmqsc
locally. This is also referred to as direct mode.

The destination queue of the reply message is a temporary queue based on
SYSTEM.MQSC.REPLY.QUEUE. This model queue is also one of the
predefined queues.

The reply message will be put on a transmission queue that leads back to
the sender of the command. We will define this transmission queue and the
sender channel to serve it.

The number 15 in the above command is the number of seconds you want to
wait to receive a reply from the remote location.

To protect our MQSeries resources, the command server executes the
command and puts the reply message with the authority of the sender of the
command. We will give these authorities via inclusion of the sender′s user
ID in the local group ″mqm″.

Note: The command server uses the concept of Alternate User Authority.
The user ID of the originator is found in the message descriptor of the
command message. Therefore, your user ID needs to be defined with the
correct authority in the remote machine. The option
MQPMO_PASS_IDENTYTY_CONTEXT causes your user ID to be put in the
message descriptor of the reply message.

Don′ t forget that MQSeries transforms your user ID to lowercase and
truncates it to 12 characters. It is this user ID that will be presented to the
remote system.

106 MQSeries Version 5 Programming Examples

5.4 Exercise 9: Remote Administration in One Machine

In the following sections, we explain what you have to do to administer
objects of another queue manager that reside in the same machine. For
this exercise, we create two queue managers:

• QMGR1
• QMGR2

5.4.1 Enable The Local Default Queue Manager
First, enable the local queue manager QMGR1 for remote administration.
Create the script file qmgr1.in and define the channels and transmission
queue leading to the second queue manager:

define qlocal(QMGR2) +
usage(xmitq) +
trigger +
trigtype(first) +
initq(SYSTEM.CHANNEL.INITQ) +
replace

define chl(QMGR1.QMGR2) +
chltype(sdr) +
conname(′127.0.0.1(1415)′) +
trptype(tcp) +
xmitq(QMGR2) +
replace

alter qmgr +
chad(enabled)

Execute runmqsc in a command window to define these objects and check
the output with any editor:

runmqsc < qmgr1.mqs > qmgr1.out

Notes:

 1. It is no longer necessary to define a process for starting the channels
automatically. This is an enhancement of Version 5.

 2. Nor is it required to define the receiver channel if you have enabled
another new feature called ″channel autodetect″. It is enabled with the
command ″alter qmgr chad(enabled)″.

 3. As you can see, we specify explicitly the port number for QMGR2. Only
one queue manager (QMGR1 in this example) can use the default port
number 1414.

Chapter 5. Remote Administration and Windows NT Security 107

 4. We are using the TCP/IP ″loopback″ address 127.0.0.1. You could also
use your local hostname.

You find the assigned port numbers in Request for Comment (RFC) 1060.
Some of them are shown in the following Windows NT file:

c:\winnt\system32\drivers\etc\services

5.4.2 Creating The Second Queue Manager
Next, create the second queue manager,QMGR2, and its objects. For this
example, we need also a dead letter queue, which is not automatically
created.

We create the queue manager and start it with the following commands:

crtmqm -u SYSTEM.DEAD.LETTER.QUEUE QMGR2
strmqm QMGR2

Then we create the script file qmgr2.mqs and define the channels and the
transmission queue, and enable channel autodetect:

define qlocal(QMGR1) +
usage(xmitq) +
trigger +
trigtype(first) +
initq(SYSTEM.CHANNEL.INITQ) +
replace

define chl(QMGR2.QMGR1)
chltype(sdr) +
conname(′127.0.0.1(1414)′) +
xmitq(QMGR1) +
trptype(tcp) +
replace

alter qmgr +
chad(enabled)

Execute runmqsc to define these objects and check the output:

runmqsc QMGR2 < qmgr2.mqs > qmgr2.out

5.4.3 Enable Automatic Startup
Enable automatic startup of the two queue managers on your single
machine via the Service Control Manager. To do this follow these steps:

 1. Create a script file startup1.cmd that contains the following commands:

108 MQSeries Version 5 Programming Examples

strmqm [QMGR1]
strmqcsv [QMGR1]
runmqchi -q SYSTEM.CHANNEL.INITQ [-m QMGR1]
runmqlsr -t tcp -p 1414 [-m QMGR1]

 2. Create a script file startup2.cmd that contains the following commands:

strmqm [QMGR2]
strmqcsv [QMGR2]
runmqchi -q SYSTEM.CHANNEL.INITQ [-m QMGR2]
runmqlsr -t tcp -p 1415 [-m QMGR2]

Note: The script files should not have any blank lines or comments. If
something goes wrong, re-create the script file. It can happen that your
editor has inserted control characters in the script file that confuse the
Service Control Manager.

 3. Configure the Service Control Manager:

scmmqm -a -s [full_path]startup1.cmd QMGR1
scmmqm -a -s [full_path]startup2.cmd QMGR2

 4. Go to the Control Panel via Start - Settings - Control Panel, and click on
the Services icon.

a. IBM MQSeries should be in the list.

b. Select it and click on the Startup... button.

 c. A new window wil l appear wherein you configure MQSeries for
automatic startup with no interaction to the desktop using the Admin
user ID.

 5. Reboot the machine.

MQSeries starts under the Admin user ID.

Be patient when you do this

If your machine is short on memory or lacks CPU power, it may take
some time to start two queue managers!

 6. Log on and open a command window.

 7. Verify that both queue managers are active and that the channel
initiators are running.

• For QMGR1, use the following commands:

runmqsc
display ql(SYSTEM.CHANNEL.INITQ)
end

Chapter 5. Remote Administration and Windows NT Security 109

The channel initiator is running when the value for IPPROCS in the
SYSTEM.CHANNEL.INITQ is 1.

• For QMGR2, use the following commands:

runmqsc QMGR2
display ql(SYSTEM.CHANNEL.INITQ)
end

The channel initiator is running when the value for IPPROCS in the
SYSTEM.CHANNEL.INITQ is 1.

 8. Verify that the command server is active. At a command prompt type:

dspmqcsv [QMGR1]
dspmqcsv QMGR2

5.4.4 Test It Out
If everything ran fine after the reboot, then we are ready for ″remote″
administration. Start a runmqsc session to your second queue manager
with the following command:

runmqsc -w 15 QMGR2

Then try a command such as display qmgr.

Note: You should see a slower response time than previously because
channels need to be started on both sides. In fact, the first time you do this
it will go through definition of the channel as well if you have CHAD
enabled. By the way, the channel definitions remain after they have been
automatically defined. The definition process is as permanent as if you had
issued the command.

You may try out some more commands and verify their correct execution.

5.4.5 Remove the Second Queue Manager
You should now be familiar with the MQSeries aspects of remote
administration. The second queue manager is no longer needed for the
remainder of this exercise. It will be used later for different examples. If
you wish to remove it this is how you reconfigure the Service Control
Manager and delete QMGR2. This will save some resources.

 1. Stop the service ″IBM MQSeries″. This can be done via Services in the
Control Panel or with the command:

net stop IBMMQSERIES

 2. Go to the Windows NT Event Viewer (Start - Programs - Administrative
Tools) and verify that both Queue Managers are stopped. You should
see Event Id 8004 for both queue managers in the application log.

110 MQSeries Version 5 Programming Examples

 3. Go to the Windows NT Task Manager (click with the right mouse button
on the task bar) and select the Processes tag. You will see two
instances of runmqlsr are still running. With the new version, there is a
command to stop these processes in a clean way.

 4. Execute the following commands in a command prompt window:

endmqlsr -m [QMGR1]
endmqlsr -m QMGR2

 5. To unload the startup script from the Service Control Manager, type the
following command in a command prompt window:

scmmqm -d QMGR2

 6. Delete the queue manager: dl tmqm QMGR2

 7. We are now ready to restart the service ″IBM MQSeries″. In the
command window, type:

net start IBMMQSERIES

Verify the successful restart by starting a runmqsc session. Eventually, you
may want to delete the objects that refer to QMGR2.

5.5 Exercise 10: Remote Administration in a Workgroup

For this example, we will connect a second real machine. Basically, the
way to enable remote administration is the same as in the previous
example. We need the remote queue manager and agree on the names of
the channels.

If your workstation is a member of a domain, you should now log on locally.
In our case, we log on as mqadmin1, which is part of user group mqm.

 1. We will modify remote1.mqs created in the previous exercise and
change the references to QMGR2 to the name of the remote queue
manager (RQMGR2):

define qlocal(RQMGR2) +
usage(xmitq) +
trigger +
trigtype(first) +
initq(SYSTEM.CHANNEL.INITQ) +
replace

define chl(QMGR1.RQMGR2) +
chltype(sdr) +
conname(′9.24.104.116′) +
xmitq(RQMGR2) +

Chapter 5. Remote Administration and Windows NT Security 111

trptype(tcp) +
replace

define chl(RQMGR2.QMGR1) +
chltype(rcvr) +
trptype(TCP) +
replace

 2. We save the script as remote3.mqs. Of course, if you are doing this you
need to use the correct host name or IP address.

 3. Execute runmqsc to define these objects and check the output:

runmqsc < remote3.mqs > remote3.out

 4. Start a runmqsc session with the remote queue manager and issue any
command.

C:\redbook>runmqsc -w 15 RQMGR2
84H2004,6539-B43 (C) Copyright IBM Corp. 1994, 1997. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

dis qmgr
1 : dis qmgr

AMQ8416: MQSC timed out waiting for a response from the command server.

 No reply!

What went wrong?

 5. First, we verify that our message has been sent. Open a local runmqsc
session and execute the following MQSC command to see if the
message is still on the transmission queue:

dis ql(rqmgr2) curdepth
1 : dis ql(rqmgr2) curdepth

AMQ8409: Display Queue details.
QUEUE(RQMGR2) CURDEPTH(0)

 6. The queue is empty. Now, go to the remote location and verify that your
command has been processed. In a runmqsc session on that machine,
type the MQSC command:

dis ql(SYSTEM.ADMIN.COMMAND.QUEUE) curdepth ipprocs
3 : dis ql(SYSTEM.ADMIN.COMMAND.QUEUE) curdepth ipprocs

AMQ8409: Display Queue details.
QUEUE(SYSTEM.ADMIN.COMMAND.QUEUE) IPPROCS(1)
CURDEPTH(0)

112 MQSeries Version 5 Programming Examples

This is correct. Curdepth should be zero and IPPROCS should be
non-zero.

 7. The next step is to verify the transmission queue to your own queue
manager. In the same runmqsc session, execute the command:

dis ql(qmgr1) curdepth
5 : dis ql(qmgr1) curdepth

AMQ8409: Display Queue details.
QUEUE(QMGR1) CURDEPTH(0)

Look at the current depth. This should be zero.

So, where is the message?

 8. We now look at the current depth of the dead letter queue and see that
it is non-zero!

dis ql(system.dead.letter.queue) curdepth
6 : dis ql(system.dead.letter.queue) curdepth

AMQ8409: Display Queue details.
QUEUE(SYSTEM.DEAD.LETTER.QUEUE) CURDEPTH(1)

This is an intended error to show you how to handle errors and set up
problems in this area. To know why MQSeries has put the message in
the dead letter queue, we will use the MQSeries sample program
AMQSBCG.

 9. In a command window at the remote location execute:

amqsbcg SYSTEM.DEAD.LETTER.QUEUE RQMGR2 > out

10. Open the file ″out″ in an editor. This will show a formatted dump of
each message on the dead letter queue.

For each message on the dead letter queue, the original message is
prefixed with a dead letter header, which is not formatted by the
program. Looking at the message data itself, we then look for the
eye-catcher ″DLH″. After this, there should be the version number ′0100
0000′. The next 4 bytes should show you the reason why this message
has been put on the dead letter queue. We find 07F3 in reverse byte
order (F307). 7F3 in decimal is 2035 which is a normal MQSeries reason
code.

If you find something else when you look at similar messages you may
need to use the Windows NT calculator.

The Application Programming Reference says this means
MQRC_NOT_AUTHORIZED. If you find something other than 7F3, check
out in the manual what it means and correct the error. Please note that
the code you find on that location, can also be a feedback code. The
standard MQSeries defined feedback codes are in the range 256-400 and

Chapter 5. Remote Administration and Windows NT Security 113

 MQOPEN - ′ SYSTEM.DEAD.LETTER.QUEUE′

 MQGET of message number 1
****Message descriptor****

 StrucId : ′ MD ′ Version : 2
Report : 16777216 MsgType : 1
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 437
Format : ′ MQDEAD ′
Priority : 0 Persistence : 0
MsgId : X′414D512052514D475232202020202020C026003513400000′
CorrelId : X′00′
BackoutCount : 0
ReplyToQ : ′ AMQ.1998030614005704 ′
ReplyToQMgr : ′ QMGR1 ′
** Identity Context
UserIdentifier : ′ mqadmin1 ′
AccountingToken :
X′013100′
ApplIdentityData : ′ ′
** Origin Context
PutApplType : ′ 11 ′
PutApplName : ′ C:\MQM\BIN\AMQPCSEA.EXE ′

 PutDate : ′19980306′ PutTime : ′17064278′
ApplOriginData : ′ ′

GroupId : X′00′
MsgSeqNumber : ′ 1 ′
Offset : ′ 0 ′
MsgFlags : ′ 0 ′
OriginalLength : ′252′

**** Message ****

 length - 252 bytes

00000000: 444C 4820 0100 0000 F307 0000 414D 512E ′ DLHó...AMQ.′
00000010: 3139 3938 3033 3036 3134 3030 3537 3034 ′1998030614005704′
00000020: 2020 2020 2020 2020 2020 2020 2020 2020 ′ ′
00000030: 2020 2020 2020 2020 2020 2020 514D 4752 ′ QMGR′
00000040: 3120 2020 2020 2020 2020 2020 2020 2020 ′ 1 ′
00000050: 2020 2020 2020 2020 2020 2020 2020 2020 ′ ′
00000060: 2020 2020 2020 2020 2020 2020 2202 0000 ′ ″ . . . ′
00000070: B501 0000 4D51 4144 4D49 4E20 0B00 0000 ′ •...MQADMIN′
00000080: 8F00 0000 0000 0000 0000 0000 0000 0000 ′ ′
00000090: 0000 0000 0000 0000 0000 0000 3139 3938 ′ 1 9 9 8 ′
000000A0: 3033 3036 3137 3036 3432 3736 0100 0000 ′030617064276....′
000000B0: 2400 0000 0100 0000 2600 0000 0100 0000 ′ $.......&.......′
000000C0: 0100 0000 0000 0000 0000 0000 0200 0000 ′ ′
000000D0: 0300 0000 1000 0000 F903 0000 0100 0000 ′ ù.......′
000000E0: 0400 0000 1C00 0000 C60B 0000 0000 0000 ′ Æ.......′
000000F0: 0800 0000 6469 7320 716D 6772 ′ dis qmgr ′

Figure 52. Message in Dead Letter Queue

are documented in the MQSeries Application Programming Reference,
SC33-1673.

114 MQSeries Version 5 Programming Examples

Now, why did we get a security violation? Because we work in a
Workgroup environment, every machine uses its own local security
database. And, in normal circumstances, our user ID will not be defined
on the remote machine.

11. Start the user manager on the remote machine and create new user
mqadmin1 included in the ″mqm″ group on that machine.

12. Returning to the runmqsc session at your local workstation we try
another command:

dis qmgr qmname
8 : dis qmgr qmname

AMQ8408: Display Queue Manager details.
QMNAME(RQMGR2)

When you do this if you still get no reply, repeat the above problem
handling method to find out about your message.

Note: It may be a good idea to clear the remote dead letter queue with
the MQSC command:

clear ql(SYSTEM.DEAD.LETTER.QUEUE)

5.6 Exercise 11: Remote Administration in a Domain

From an MQSeries point of view, there is no difference in the administration
of queue managers in a workgroup or in a domain. The objects you need
are the same.

For remote administration in a domain, you need to log on to your machine
with a domain user ID.

When the command server on the remote machine checks your authority, it
will find that your user ID is known because all user IDs are centrally
maintained.

To have the correct authority, your domain user ID needs to be included in
the local group ″mqm″ on the remote machine. Or, add your user ID to the
global group ″Domain mqm″ on the PDC and include that global group in the
local group ″mqm″ on the remote machine.

5.7 Summary

In the previous exercises, we have discussed security and remote
administration in a Windows NT environment. However, the same applies
for other platforms.

Chapter 5. Remote Administration and Windows NT Security 115

If you want to administer an AIX queue manager from a Windows machine,
then your Windows user ID will flow to AIX and will be used to check your
authorities, which means at least that your user ID needs to be defined on
AIX, even if you do nothing else on AIX.

If you want to administer an MVS queue manager, you should use the -x
parameter when starting runmqsc. MQSeries on MVS uses a different
command message format and the name of the command queue is
SYSTEM.COMMAND.INPUT. Also, on MVS the command server is started
automatically but it can be stopped.

Note: Do not forget that MVS user IDs are restricted to 8 characters.

Some additional hints:

The following is a list of problems that we have encountered during the
design and test of the exercises.

 1. Common mistake: In Exercise 9, the same port number was used for
both queue managers.

 2. Common mistake: The same objects have been created for both queue
managers, such as:

runmqsc QM1 < qmgr1.mqs > out
runmqsc QM2 < qmgr1.mqs > out
...
...

 3. Channel auto definition:

Do not forget to reset the sender channel before you test this. Normally
the sender/receiver channels have been used in the previous exercise.
The sender channel will have a non-zero message sequence number. If
you delete the receiver channel, then the new one (created by
MQSeries) will have a sequence number of zero.

 4. Another pitfall:

When stopping the service IBM MQSeries, the Service Control Manager
will say that it is stopped, but actually it isn′ t. Some processes are still
running and are stopping asynchronously.

At this time, the user can try to restart the IBM MQSeries service. This
is not possible, but the Service Control Manager will say that the restart
was successful! Always look at the Event Viewer and wait until you see
Event ID 8004, or watch the Task Manager for amq* processes.

116 MQSeries Version 5 Programming Examples

 AMQ08101

If you get AMQ08101 - Unexpected error (...) the re-boot the system.
MQSeries did not clean up properly after you logged off with another
user ID.

Chapter 5. Remote Administration and Windows NT Security 117

118 MQSeries Version 5 Programming Examples

Chapter 6. Reference Message

In this chapter we will demonstrate the usage of a new facility available with
MQSeries Version 5 called reference messages. Looking at Figure 53 you
will see that in order to use reference messages you need to implement
channel exits (3). MQSeries Version 5 provides a sample exit and sample
programs which get and put the reference messages if you want to use
them. The sample programs can be used to move a simple flat file between
two systems with MQSeries servers as depicted in Figure 53.

Figure 53. Reference Message Flow (Sample Programs)

Using reference messages, the sending and receiving programs use a new
structure, the MQRMH or MQ Reference Message Header. The format of
the MQRMH can be found in Figure 61 on page 136. A detailed description
of the fields is in the MQSeries Application Programming Reference,

 Copyright IBM Corp. 1998 119

SC33.1673. The sending program sends only the reference to a file, not the
file itself. Similarly, the receiving program only receives notification of the
arrival of a file via a reference message, not the actual file. It is the sending
MCA which takes care of reading the file and sending it to the receiving
MCA.

6.1 Security Issues

Before implementing reference messages be sure to read MQSeries
Application Programming Guide, SC33-0807 for a complete description of
how it works as well as a description of the security implications of
implementing it. The reference message exit as well as the MCA run under
the security of group mqm. This is most likely different than the authority of
the sending and receiving programs.

6.2 The Sample Programs

There are three sample programs involved here:

amqsprma.exe This is the program which PUTs the reference
message.

amqsgrma.exe This is the program which GETs the reference
message.

amqsxrm.dll This is the exit program which runs on both sides of
the channel and receives the reference message,
reads the file, and sends it across the MCA.

The source files can be found in the directory \mqm\tools\c\samples.

Figure 53 on page 119 illustrates how the three programs are used.

 1. The sending application, amqsprm, puts a reference message on the
remote queue QR. The file that has to be sent is on the hard drive.

 2. Since a remote queue is only the local definition of a queue that belongs
to another queue manager, the message is really put into the
transmission queue for the target queue manager. A transmission
header is prepended which contains the target queue. This information
is obtained from the remote queue definition.

 3. When the message channel agent (MCA) is about to transmit the
message the channel exit routine amqsxrm is called.

 4. This routine reads the file infile.dat from the hard drive and appends it
to the message.

120 MQSeries Version 5 Programming Examples

 5. The message consisting of the reference message header (RMH) and
the data (the file) is transmitted to the receiving channel.

 6. The receiving MCA calls the channel exit routine amqsxrm which stores
the file on the hard drive of the receiving system.

 7. The queue manager puts the reference message (without the data) into
the target queue.

 8. A ″confirm on arrival″ (COA) message is sent to the sending queue
manager. The file may now be deleted.

 9. The target application, AMQSGRM, gets the reference message and
knows now that the file has arrived and is stored in the directory
specified in the reference message header.

6.2.1 Program Logic for the PUT Program
• Parse and validate the input parameters. The parameters are described

in Table 20 on page 124.

• MQCONN to the local queue manager.

• Determine the queue manager′s coded character set ID with MQINQ.

• MQOPEN a model queue for the report messages.

• Create the reference message.

• MQPUT1 the reference message to the target queue.

• While MQGET WAIT returns a message and COA message not received:

 Display contents of exception or COA message.

• MQCLOSE model (temporary dynamic) queue.

• MQDISC from queue manager.

6.2.2 Program Logic for the GET Program
• Extract queue and queue manager names from the trigger message.

• MQCONN to the specified queue manager.

• Obtain the queue manager′s CCSID using MQINQ.

• Open a temporary dynamic queue for the report messages.

• MQOPEN the specified queue.

• While MQGET WAIT returns a message:

 If the message is a reference message check existence of object.

• MQCLOSE the queue.

• MQDISC from the queue manager.

Chapter 6. Reference Message 121

6.2.3 Definitions for the Sample Programs
In order to run the reference messages sample we will use the queue
managers and channel definitions we created in Chapter 5, “Remote
Administration and Windows NT Security” on page 103. Specifically, we will
need to add pointers to the existence and location of the exit program as
well as tell the exit program what kind of file can be handled. In this case
we are going to handle files of the type FLATFILE.

Here is the definition of the sender channel in QMGR1 in the script file
refmsg1.mqs:

define chl(QMGR1.QMGR2) +
chltype(sdr) +
descr(′ Channel to QMGR2′) +
conname(′127.0.0.1(1415)′) +
msgexit(′ d:\mqm\exits\amqsxrm.dll(MsgExit)′) +
msgdata(FLATFILE) +
trptype(tcp) +
xmitq(QMGR2) +
replace

define qr(REFMSG) +
rname(REFMSG) +
rqmname(QMGR2) +
xmitq(QMGR2) +
replace

Notes:

 1. The ″msgexit″ keyword specifies the name and location of the dll, the
executable form required for exit programs in Windows NT and OS/2.

 2. The \mqm\exits directory is the default location for exit programs.

 3. We have also defined a remote queue, REFMSG, which wil l be the
destination queue for our reference message.

The receiving queue manager QMGR2 needs several objects defined. The
script file is refmsg2.mqs.

define chl(QMGR1.QMGR2) +
chltype(rcvr) +
descr(′ Channel from QMGR1′) +
msgexit(′ d:\mqm\exits\amqsxrm.dll(MsgExit)′) +
msgdata(FLATFILE) +
trptype(tcp) +
replace

122 MQSeries Version 5 Programming Examples

define ql(INITQ) +
replace

define process(PROC) +
applicid(′ d:\mqm\tools\c\samples\bin\amqsgrm.exe′) +
replace

define ql(REFMSG) +
initq(INITQ) +
process(PROC) +
trigger +
trigtype(first) +
replace

Notes:

 1. First, notice the corresponding receiver channel definition on queue
manager QMGR2 which points to the same exit program.

 2. The next definition is for the initiation queue, since the sample Get
Reference Message program is designed to be triggered.

 3. The process definition points to the sample Get program.

 4. And finally, there is a definition for our local destination queue which
corresponds to the remote definition on QMGR1.

Now, update both of the queue managers with the new object definitions.
Execute the following commands:

C:\test>runmqsc QMGR1 < refmsg1.mqs > refmsg1.out
C:\test>runmqsc QMGR2 < refmsg2.mqs > refmsg2.out

6.2.4 Running the Sample Programs
After checking the output files for any errors we can proceed to test the
sample programs. Remember that we are using these two queue managers
as they were set up in the previous chapter. That means there are channel
initiators, and listeners already running. We will still need to add the trigger
monitor for QMGR2 (since we are only going to trigger the Get program on
the one queue manager). We do this by entering the following on a
command line prompt:

start runmqtrm -m QMGR2 -q INITQ

AMQSPRM, the put program, has several parameters. They are shown in
Table 20 on page 124.

Chapter 6. Reference Message 123

For our purposes we will need to specify the source, the destination, the
remote queue name and the type of file:

� �
C:\test>amqsprm /i c:\test\refmsg1.mqs

/o d:\junk\xyz.xyz /q REFMSG /t FLATFILE
AMQSPRM starting
Source file is c:\test\refmsg1.mqs
Destination file is d:\junk\xyz.xyz
Destination queue is REFMSG
Object type is FLATFILE
Destination queue manager is
Wait interval is 15 seconds
Reference message has arrived on destination queue
AMQSPRM ending� �

When amqsprm executes it specifies that it wants a COA message back
from amqsgrm on the receiving queue manager. In this case we will wait
for the default 15 seconds for it to arrive.

In the trigger monitor window you will see when the reference message
arrives and whether it has successfully started amqsgrm.

Table 20. Parameters for AMQSPRM

Parameter Description

/m queue-mgr-name Name of local queue manager (optional). Default is
the default queue manager.

/ i source-file Fully qualified name of source file to be transferred.
(required). The name is limited to 256 characters
but this can easily be changed.

/o target-fi le Fully qualified name of file on the destination
systems (optional). The name is limited to 256
characters but this can easily be changed. Default
is the source filename.

/q queue-name Destination queue to which the reference message
is put (required).

/g queue-mgr-name Queue manager on which queue, named in /q
parameter, exists (optiona l). Defaults to the queue
manager specified by the /m parameter or the
default queue manager.

/ t object-type Object type (required). Limited to 8 characters.

/w wait- interval Time (in seconds) to wait for exception and COA
reports. Default is 15 seconds. Minimum value is 1.

124 MQSeries Version 5 Programming Examples

� �
__
Waiting for a trigger message

d:\mqm\tools\c\samples\bin\amqsgrm.exe ″TMC 2REFMSG
PROC

d:\mqm\tools\c\sample
mqsgrm.exe

QMGR2 ″
AMQSGRM starting
Queue manager name is QMGR2
Queue name is REFMSG
File d:\junk\xyz.xyz of type FLATFILE does exist
AMQSGRM ending
End of application trigger.� �

6.2.5 More Object Types
You can create multiple exits to handle different types of data. The sample
program looks to the message data field to determine the type of data it can
process. If we needed a file type other than FLATFILE we could create
another exit and chain it to the first. Chaining is another new feature of
MQSeries Version 5. In order to demonstrate exit chaining we will add
another instance of the same exit program (amqsxrma) which will handle a
new file type: NOTFLAT. We have to alter the channel definition in QMGR1
and the corresponding definition in QMGR2 as shown in Table 21.

Table 21. Two Channel Exits

QMGR1 QMGR2

define chl(QMGR1.QMGR2) +
chltype(sdr) +
trptype(tcp) +
conname(′127.0.0.1(1415)′) +
msgexit(′ d:\mqm\exits\amqsxrm.dll(MsgExit)′ , +
′ d:\mqm\exits\amqsxrm.dll(MsgExit)′) +
msgdata(FLATFILE,NOTFLAT) +
xmitq(QMGR2) +
descr(′ Channel to QMGR2′) +
replace

define chl(QMGR1.QMGR2) +
chltype(rcvr) +
trptype(tcp) +
msgexit(′ d:\mqm\exits\amqsxrm.dll(MsgExit)′ , +
′ d:\mqm\exits\amqsxrm.dll(MsgExit)′) +
msgdata(FLATFILE,NOTFLAT) +
descr(′ Channel to QMGR2′) +
replace

Now we can execute our Put program using file type NOTFLAT as follows:

Chapter 6. Reference Message 125

� �
C:\test>amqsprm /i c:\test\refmsg1.mqs /o d:\junk\yyy.yyy

/q REFMSG /t NOTFLAT
AMQSPRM starting
Source file is c:\test\refmsg1.mqs
Destination file is d:\junk\yyy.yyy
Destination queue is REFMSG
Object type is NOTFLAT
Destination queue manager is
Wait interval is 15 seconds
Reference message has arrived on destination queue
AMQSPRM ending� �

Just in case you want to try some other kind of file, say DUMMY, this is
what you will get:

� �
AMQSGRM starting
Queue manager name is QMGR2
Queue name is REFMSG
File d:\junk\yyy.yyy of type DUMMY could not be found
AMQSGRM ending
End of application trigger.� �

6.3 Exercise 12: Building a Reference Message

This exercise shows you how to build, send and receive a file using a
reference message. For a better understanding of the example and to make
it shorter, some of the parameters are hard-coded. In the real world, the
sending program would receive the necessary information as input
parameters or, at least, interactively as keyboard input.

This sample application consists of two programs, the PUTREF program that
generates the reference message and sends it, and the GETREF program
that receives the reference message and reads the file from disk.
Depending on the MQSeries definitions, both programs can run in the same
or in different machines.

For this example we use the existing channel exit program amqsxrm.

6.3.1 Writing the PUTREF Program
This program sends a file to another queue manager. It contains the
following functions:

• Connect to the default queue manager.

• Use MQINQ to get the queue manager′s name and CCSID.

• Build the reference message.

126 MQSeries Version 5 Programming Examples

• Use MQPUT1 to send the reference and file.

• Disconnect from the queue manager.

The complete listing is in Appendix E, “Reference Message Example” on
page 237. The interesting parts of the program are described below.

6.3.1.1 Defining the Reference Message
We define the reference message as shown below. The structure contains
the reference message header MQRMH (see Figure 61 on page 136) and
two 256-byte fields for paths and names of the source and target file.

 #define MAX_FILENAME_LENGTH 256
 typedef struct tagMQRMHX{

MQRMH ref;
MQCHAR SrcName[MAX_FILENAME_LENGTH];
MQCHAR DestName[MAX_FILENAME_LENGTH];

 } MQRMHX;
 MQRMHX refx = {{MQRMH_DEFAULT}}; /* reference message */

Figure 54. Defining a Reference Message

6.3.1.2 Obtaining the Queue Manager ′s CCSID
After we connect to the default queue manager we get its CCSID and save
it. The CCSID will be stored in the reference message header.

 char BLANK48[MQ_Q_MGR_NAME_LENGTH+1] = ″″ ;
 MQLONG flags;
...
 memcpy(od.ObjectQMgrName,BLANK48,MQ_Q_MGR_NAME_LENGTH);
 flags = MQOO_INQUIRE;
 od.ObjectType = MQOT_Q_MGR;
 MQOPEN(Hcon, /* connection handle */

&od, /* object descriptor */
flags, /* inquiry flags */
&Hobj, /* object handle */
&CC,&Reason); /* completion and reason codes */

 if (CC == MQCC_FAILED)
printf(″MQOPEN queue manager ended with reason code %d\n″ ,Reason);

Figure 55. Open Queue Manager for Inquiry

The MQOPEN requires that the queue manager name in the object
descriptor (od) is blank. Therefore, we move 48 blanks into this field. In the

Chapter 6. Reference Message 127

open flags we indicate that we want to inquire. What to inquire we specify
in the object type.

Note: The default object type is a queue (MQOT_Q).

MQINQ requires us to define arrays for ″selectors″ and for the integer and
character attributes we want to obtain. Selectors specify which attributes of
the object (queue manager, queues of different types and process
definitions) we want to get. For a complete listing refer to the MQSeries
Application Programming Reference, SC33-1673.

�1� In the example shown in Figure 56 on page 129 we want to get the
CCSID which is an integer, and the name of the queue manager which is a
character string. Therefore, we need to define three arrays, each of them
large enough to hold the information:

Selectors This is an array for the selectors. It must contain at least as
many elements as selectors used.

IntArray MQINQ returns in this array all integer attributes. The example
shows two elements even though we request only one.

CharArray MQINQ returns in this array all character attributes,
concatenated. It must be at least as long as the sum of all
attributes. We inquire about the queue manager name which
is 48 bytes long and will fit in the 100-byte array.

�2� Next we have to specify the two selectors in any order. All integer
selectors start with MQIA and all character selectors with MQCA.

�3� In the MQINQ you specify the usual connection handle from the
MQCONN and the object handle from the MQOPEN. We also specify how
many of the specified selectors the MQINQ shall use (2) and the array where
they are specified. We inquire about one integer attribute and one 48-byte
character attribute. We also know that the arrays are large enough for this
API call (two integers and 100 characters).

�4� When the MQINQ call is successful we save the queue manager name
and the CCSID then close the object.

6.3.1.3 Building the Reference Message
Figure 57 on page 130 shows the statements that build a reference
message. To make the program easier to understand all variables are hard
coded.

�1� We define two variables to hold the names and paths of the source and
target files.

128 MQSeries Version 5 Programming Examples

MQLONG Selectors[4]; �1�
MQLONG IntArray[2];
MQCHAR CharArray[100];
...
 MQLONG QMgrCCSID = -1; /* QMgr CCSID */
 char QMName[MQ_Q_MGR_NAME_LENGTH+1] = ″″ ; /* queue manager name*/
...
 Selectors[0] = MQIA_CODED_CHAR_SET_ID; �2�
 Selectors[1] = MQCA_Q_MGR_NAME;
...
 MQINQ(Hcon, Hobj, �3�

2L, /* number of selectors */
Selectors, /* selector array */
1L, /* number of integer selectors */
IntArray, /* integer attributes */
48L, /* length of character attributes */
CharArray, /* character attributes */
&CC,&Reason); /* completion and reason codes */

 if (CC == MQCC_FAILED)
printf(″MQINQ failed with reason code %d\n″ , Reason);

 else {
QMgrCCSID = IntArray[0]; �4�
memcpy(QMName,CharArray,MQ_Q_MGR_NAME_LENGTH);

 }

Figure 56. Inquire Queue Manager Name and CCSID

�2� The hard coded file names are moved into the variables. There are two
backslashes. The C compiler assumes an expression with one backslash to
be an escape character, such as ″\n″. The source file is in the directory
\test and the receiving channel exit puts the file under a different name into
the same directory.

�3� The structure length includes the reference message header and the two
256-byte fields for the filenames. Refer to the definition in Figure 54 on
page 127.

�4� Encoding identifies the representation used for numeric data in the file.
It is set to MQENC_NATIVE. This constant is environment-specific.

�5� We obtained the CCSID with the MQINQ call explained above.

�6� This flag indicates that the reference message represents the last part of
the referenced object.

Chapter 6. Reference Message 129

char infile [MAX_FILENAME_LENGTH+1]; �1�
char outfile[MAX_FILENAME_LENGTH+1];
...
strcpy (infile,″c:\\test\\dw.fil″) ; �2�
strcpy (outfile,″c:\\test\\dw1.txt″) ;
...
refx.ref.StrucLength = sizeof(refx); �3�
refx.ref.Encoding = MQENC_NATIVE; �4�
refx.ref.CodedCharSetId = QMgrCCSID; �5�
refx.ref.Flags = MQRMHF_LAST; �6�
memcpy(refx.ref.Format, MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH); �7�

memcpy(refx.ref.ObjectType,″FLATFILE″ ,sizeof(refx.ref.ObjectType));�8�

memset(refx.SrcName,′ ′ , sizeof(refx.SrcName)+sizeof(refx.DestName));
memcpy(refx.SrcName,infile,strlen(infile)); �9�
memcpy(refx.DestName,outfile,strlen(outfile));

refx.ref.SrcNameLength = strlen(infile); �10�
refx.ref.SrcNameOffset = offsetof(MQRMHX,SrcName);

refx.ref.DestNameLength = strlen(outfile);
refx.ref.DestNameOffset = offsetof(MQRMHX,DestName);

Figure 57. Building a Reference Message

�7� Since the file to be sent contains plain text, we specify MQFMT_STRING.

�8� The object type must match the MsgData specification in the channel
definition. The channel exit program amqsxrma displays that a message of
the object type in the message does not match the object type in the
channel definition.

�9� Before we move the source and target filenames into the reference
message we initialize the two fields with blanks. The filenames are not
null-terminated.

�10� At the end we store the length and offset of the filenames into the
appropriate fields in the RMH.

6.3.1.4 Sending the Reference Message
Figure 58 on page 131 shows the statements to send the reference
message and file to the queue manager QMGR2. Queue manager name
and queue name are hard coded.

130 MQSeries Version 5 Programming Examples

...
 od.ObjectType = MQOT_Q; �1�
 strncpy(od.ObjectName, ″REFMSG″ , sizeof(od.ObjectName));
 strncpy(od.ObjectQMgrName, ″QMGR2″ , sizeof(od.ObjectQMgrName));

 pmo.Options = MQPMO_FAIL_IF_QUIESCING; �2�

 md.MsgType = MQMT_DATAGRAM; �3�
 memcpy(md.Format,MQFMT_REF_MSG_HEADER,(size_t)MQ_FORMAT_LENGTH);

MQPUT1(Hcon, �4� /* connection handle */
&od, /* object descriptor for queue */
&md, /* message descriptor */
&pmo, /* options */
sizeof(refx), /* buffer length */
&refx, /* buffer */
&CC, &Reason); /* completion and reason codes */

if (Reason != MQRC_NONE)
printf(″MQPUT1 ended with reason code %d\n″ , Reason);

Figure 58. Sending a Reference Message

�1� Since we used the od structure for the MQINQ above, we have to
change the object type from queue manager to queue (MQOT_Q). The
object name, that is the name of the remote queue, is REFMSG. The target
queue manager is QMGR2.

�2� The put message option specifies that the MQPUT1 shall fail when it is
issued while the queue manager is shutting down.

�3� Since we do not expect a reply, we define the reference message as a
datagram. We also tell the receiving queue manager that the (beginning of
the) message is a reference message header. The header gets converted
when MQGMO_CONVERT is specified in the MQGET call.

�4� MQPUT1 is used to send the message. The buffer length is the length of
the reference message only. It does not include the length of the file.

Note: The reference message as it appears in the transmission queue is
described in 6.4, “The Reference Message” on page 135.

Chapter 6. Reference Message 131

6.3.2 Writing the GETREF Program
This program receives the reference message and checks if the file is
present. The program reads one message from the queue REFMSG and
ends. A message is printed if the message is not a reference message. It
contains the following functions:

• Connect to the queue manager QMGR2.

• Open the queue REFMSG.

• Get a message from the queue.

• If the message is a reference message:

− Extract name and path of the file from the message.

− Check if the file exists.

• Close the queue.

• Disconnect from the queue manager.

The complete listing is in E.2, “Source of GETREF” on page 241. The
interesting parts of the program are described below.

�1� Message and correlation ID are set to nulls so that the queue manager
gets the first message from the queue.

�2� In the get message options we direct the queue manager to convert the
data in the reference message to be converted. The queue manager
converts when the CCSID and Encoding values specified in the message
descriptor (md) differ from the values in the message header of the
message on the queue.

Note: CCSID and Encoding are input/output fields. If the conversion cannot
be performed, the message data is returned not converted and CCSID and
Encoding in the message descriptor (md) are set to the values for the not
converted message.

�3� The Encoding field identifies how numeric values are represented in the
application message data. It is set to MQENC_NATIVE, the default for the
programming language and machine. This field is used when
MQGMO_CONVERT is specified.

�4� This field is also used when MQGMO_CONVERT is specified. It applies
to character data in the application message data. MQCCSI_Q_MGR causes
the CCSID of the queue manager to be used.

132 MQSeries Version 5 Programming Examples

 MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
 char Buffer[1000];
 MQLONG DataLen; /* length of message */
...
memcpy(md.MsgId,MQMI_NONE,sizeof(md.MsgId)); �1�
memcpy(md.CorrelId,MQCI_NONE,sizeof(md.CorrelId));

gmo.Options = MQGMO_WAIT +
MQGMO_CONVERT + �2�
MQGMO_ACCEPT_TRUNCATED_MSG;

gmo.WaitInterval = 5000; /* 5 seconds wait interval */

md.Encoding = MQENC_NATIVE; �3�
md.CodedCharSetId = MQCCSI_Q_MGR; �4�

MQGET(Hcon,Hobj, /* connection and queue handle */
&md, /* message descriptor */
&gmo, /* get options */
sizeof(Buffer), /* buffer size */
&Buffer, /* buffer address */
&DataLen, /* data length (output) */
&CC,&Reason);

Figure 59. Get a Reference Message

char Filename[256];
 FILE *File; /* file structure */
 MQRMH *pMQRMH; /* Pointer to MQRMH structure */
 char *pObjectName; /* Object name */
...
pMQRMH = (MQRMH*)&Buffer; /* overlay MQRMH on MQGET buffer */

...
pObjectName = (char*)&Buffer + pMQRMH -> DestNameOffset;
memset(Filename,0,sizeof(Filename));
strncpy(Filename,pObjectName,

((size_t)(pMQRMH->DestNameLength) >= sizeof(Filename))
? (size_t)(sizeof(Filename) -1)
: (size_t)(pMQRMH -> DestNameLength));

Figure 60. Extract Filename from Reference Message

Figure 60 shows how you can extract the target filename from the reference
message. In our example, we put first the source filename and then the
target filename after the header.

Chapter 6. Reference Message 133

Note: The reference message is described, in detail, in 6.4, “The Reference
Message” on page 135.

6.3.3 Compiling and Testing
Compile the programs using one of the compilers in Table 22.

Make sure that you have created the objects in Table 23 on page 135. If
not, create two queue managers and the objects with the following
commands:

QMGR1 crtmqm /q /u SYSTEM.DEAD.LETTER.QUEUE QMGR1
strmqm
runmqsc < qmgr1.in > qmgr1.out

QMGR2 crtmqm /q /u SYSTEM.DEAD.LETTER.QUEUE QMGR2
strmqm QMGR2
runmqsc QMGR2 < qmgr2.in > qmgr2.out

Check for errors in the output files.

Copy the exit program amqsxrm.dll from the \mqm\tools\c\samples\bin
directory into \mqm\exits.

To execute the programs, enter the commands below:

QMGR1 start runmqchi -q SYSTEM.CHANNEL.INITQ
start runmqlsr -t tcp -p 1414
putref

QMGR2 start runmqchi -q SYSTEM.CHANNEL.INITQ -m QMGR2
start runmqlsr -t tcp -p 1414 -m QMGR2
getref

Table 22. Commands to Compile Programs for Reference Message

Compiler Command

Microsof t V isua l C/C++ cl putref.c mqm.lib
cl getref.c mqm.lib

IBM Visua l Age C/C++ icc putref.c mqm.lib
icc getref.c mqm.lib

CSe t++ fo r A IX xlc putref.c -l mqm -o putref
xlc getref.c -l mqm -o getref

134 MQSeries Version 5 Programming Examples

Table 23. Objects for Reference Message

QMGR1 QMGR2

define qremote (REFMSG) +
rname(REFMSG) rqmname(QMGR2) +
xmitq(QMGR2) +
replace

define qlocal (QMGR2) +
usage(xmitq) +
trigger trigtype(first) +
initq(SYSTEM.CHANNEL.INITQ) +
replace

define chl (QMGR1.QMGR2) +
chltype(sdr) +
conname(′127.0.0.1(1415)′) +
trptype(tcp) xmitq(QMGR2) +
descr(′ send reference message′) +

msgexit(′ c:\mqm\exits\amqsxrm.dll(MsgExit)′) +
msgdata(FLATFILE) +
replace

alter qmgr chad(enabled)

define ql(REFMSG) +
replace

define qlocal (QMGR1) +
usage(xmitq) +
trigger trigtype(first) +
initq(SYSTEM.CHANNEL.INITQ) +
replace

define chl(QMGR1.QMGR2) +
chltype(rcvr) +
trptype(tcp) +
descr(′ receive reference message′) +

 msgexit(′ c:\mqm\exits\amqsxrm.dll(MsgExit)′) +
msgdata(FLATFILE) +
replace

alter qmgr chad(enabled)

define chl (QMGR2.QMGR1) +
chltype(sdr) +
conname(′127.0.0.1(1414)′) +
trptype(tcp) xmitq(QMGR1) +
replace

File Name: qmgr1.in File Name: qmgr2.in

6.4 The Reference Message

If you want to use reference messages in your own programs you will have
to include a new structure called MQRMH, or the MQ Reference Message
Header. The structure is shown in Figure 61 on page 136. You can find
details concerning this structure in the MQSeries Application Programming
Reference, SC33-1673.

Figure 62 on page 138 and Figure 63 on page 139 show a message that is
put on the transmission queue (printed with AMQSBCG).

The first part is the transmission header (XQH). In the message, you
recognize the name of the destination queue (REFMSG) and the destination
queue manager (QMGR2).

The xmit header is followed by the message header (MD). AMQSBCG
formatted the contents of the message descriptor at the beginning of the
output. Note the format ″MQHREF″ in line x′80′ in the header.

Chapter 6. Reference Message 135

/**/
 /* MQRMH Structure -- Reference Message Header */
 /**/

 typedef struct tagMQRMH {
 MQCHAR4 StrucId; /* Structure identifier */

MQLONG Version; /* Structure version number */
MQLONG StrucLength; /* Total length of MQRMH, including

strings at end of fixed fields,
but not the bulk data */

MQLONG Encoding; /* Data encoding */
MQLONG CodedCharSetId; /* Coded character set identifier */

 MQCHAR8 Format; /* Format name */
MQLONG Flags; /* Reference message flags */

 MQCHAR8 ObjectType; /* Object type */
MQBYTE24 ObjectInstanceId; /* Object instance identifier */
MQLONG SrcEnvLength; /* Length of source environment

data */
MQLONG SrcEnvOffset; /* Offset of source environment

data */
MQLONG SrcNameLength; /* Length of source object name */
MQLONG SrcNameOffset; /* Offset of source object name */
MQLONG DestEnvLength; /* Length of destination environment

data */
MQLONG DestEnvOffset; /* Offset of destination environment

data */
MQLONG DestNameLength; /* Length of destination object

name */
MQLONG DestNameOffset; /* Offset of destination object

name */
MQLONG DataLogicalLength; /* Length of bulk data */
MQLONG DataLogicalOffset; /* Low offset of bulk data */
MQLONG DataLogicalOffset2;/* High offset of bulk data */
} MQRMH;

Figure 61. Reference Message Header

The reference message header (RMH) starts at x ′01AC′. Table 24 on
page 137 shows the fields and their contents. The RMH is followed by the
256-byte fields that contain path and name of the source and target files.

136 MQSeries Version 5 Programming Examples

Table 24. Reference Message Contents

Length Name Contents

MQCHAR4 StrucId ″RMH ″

MQLONG Version 1

MQLONG StrucLength x26C = 620

MQLONG Encoding x222 = 546

MQLONG CCSID x1B5 = 437

MQCHAR8 Format ″MQSTR ″

MQLONG Flags 1 = MQRMHF_LAST

MQCHAR8 ObjectType ″FLATFILE″

MQBYTE24 ObjectInstanceId nulls

MQLONG SrcEnvLength

MQLONG SrcEnvOffset

MQLONG SrcNameLength x0E = 14 is length of ″c:\test\dw.fil″

MQLONG SrcNameOffset x6C = 108 (RMH + 1)

MQLONG DestEnvLength

MQLONG DestEnvOffset

MQLONG DestNameLength x0F = 15 is length of ″c:\test\dw1.txt″

MQLONG DestNameOffset x16C = 364 (RMH + 1 + 256)

MQLONG DataLogicalLength

MQLONG DataLogicalOffset

MQLONG DataLogicalOffset2

Chapter 6. Reference Message 137

****Message descriptor****

 StrucId : ′ MD ′ Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 437
Format : ′ MQXMIT ′
Priority : 0 Persistence : 0
MsgId : X′414D5120514D47523120202020202020A9C2C93523100000′
CorrelId : X′414D5120514D47523120202020202020A9C2C93513100000′
BackoutCount : 0
ReplyToQ : ′ ′
ReplyToQMgr : ′ QMGR1 ′
** Identity Context
UserIdentifier : ′ wackerow ′
AccountingToken :
X′013100′
ApplIdentityData : ′ ′
** Origin Context
PutApplType : ′ 7 ′
PutApplName : ′ QMGR1 ′

 PutDate : ′19980806′ PutTime : ′20353201′
ApplOriginData : ′ ′

GroupId : X′00′
MsgSeqNumber : ′ 1 ′
Offset : ′ 0 ′
MsgFlags : ′ 0 ′
OriginalLength : ′ -1′

**** Message **** length = 1048 bytes

--------> Transmission Header (104 bytes)

00000000: 5851 4820 0100 0000 5245 464D 5347 2020 ′ XQHREFMSG ′
00000010: 2020 2020 2020 2020 2020 2020 2020 2020 ′ ′
00000020: 2020 2020 2020 2020 2020 2020 2020 2020 ′ ′
00000030: 2020 2020 2020 2020 514D 4752 3220 2020 ′ QMGR2 ′
00000040: 2020 2020 2020 2020 2020 2020 2020 2020 ′ ′
00000050: 2020 2020 2020 2020 2020 2020 2020 2020 ′ ′
00000060: 2020 2020 2020 2020 ------------------- ′ MD′

Figure 62. Reference Message (Part 1)

138 MQSeries Version 5 Programming Examples

--------> Message Header (324 bytes)

00000060: ------------------- 4D44 2020 0100 0000 ′ MD′
00000070: 0000 0000 0800 0000 FFFF FFFF 0000 0000 ′ ′
00000080: 2202 0000 B501 0000 4D51 4852 4546 2020 ′ ″ . . . Á...MQHREF ′
00000090: 0000 0000 0000 0000 414D 5120 514D 4752 ′ AMQ QMGR′
000000A0: 3120 2020 2020 2020 A9C2 C935 1310 0000 ′1 Ì5....′
000000B0: 0000 0000 0000 0000 0000 0000 0000 0000 ′ ′
000000C0: 0000 0000 0000 0000 0000 0000 2020 2020 ′ ′
000000D0: 2020 2020 2020 2020 2020 2020 2020 2020 ′ ′
000000E0: 2020 2020 2020 2020 2020 2020 2020 2020 ′ ′
000000F0: 2020 2020 2020 2020 2020 2020 514D 4752 ′ QMGR′
00000100: 3120 2020 2020 2020 2020 2020 2020 2020 ′1 ′
00000110: 2020 2020 2020 2020 2020 2020 2020 2020 ′ ′
00000120: 2020 2020 2020 2020 2020 2020 7761 636B ′ wack′
00000130: 6572 6F77 2020 2020 0131 0000 0000 0000 ′ erow .1......′
00000140: 0000 0000 0000 0000 0000 0000 0000 0000 ′ ′
00000150: 0000 0000 0000 0000 2020 2020 2020 2020 ′ ′
00000160: 2020 2020 2020 2020 2020 2020 2020 2020 ′ ′
00000170: 2020 2020 2020 2020 0B00 0000 433A 5C74 ′C:\t′
00000180: 6573 745C 7075 7472 6566 2E65 7865 2020 ′ est\putref.exe ′
00000190: 2020 2020 2020 2020 3139 3938 3038 3036 ′ 19980806′
000001A0: 3230 3335 3332 3031 2020 2020 --------- ′20353201 RMH ′

--------> Reference Message Header (108 bytes)

000001A0: ----------------------------- 524D 4820 ′20353201 RMH ′
000001B0: 0100 0000 6C02 0000 2202 0000 B501 0000 ′ l...″ . . . Á...′
000001C0: 4D51 5354 5220 2020 0100 0000 464C 4154 ′ MQSTRFLAT′
000001D0: 4649 4C45 0000 0000 0000 0000 0000 0000 ′ FILE............′
000001E0: 0000 0000 0000 0000 0000 0000 0000 0000 ′ ′
000001F0: 0000 0000 0E00 0000 6C00 0000 0000 0000 ′ l.......′
00000200: 0000 0000 0F00 0000 6C01 0000 0000 0000 ′ l.......′
00000210: 0000 0000 0000 0000 ------------------- ′ c:\test\′

--------> Reference Message Data (2 x 256 bytes)

00000210: ------------------- 633A 5C74 6573 745C ′ c:\test\′
00000220: 6477 2E66 696C 2020 2020 2020 2020 2020 ′ dw.fil ′

all blanks
00000310: 2020 2020 2020 2020 633A 5C74 6573 745C ′ c:\test\′
00000320: 6477 312E 7478 7420 2020 2020 2020 2020 ′ dw1.txt ′

all blanks
00000410: 2020 2020 2020 2020 ′ ′

Figure 63. Reference Message (Part 2)

Chapter 6. Reference Message 139

140 MQSeries Version 5 Programming Examples

Chapter 7. Dis tribution Lists

MQSeries Version 5 adds a distribution list feature. This means that instead
of opening one queue to PUT a message, you can now open a list of
queues. The queue manager will put messages on each of the queues in
the list and will distribute the messages in an intelligent manner.

Figure 64. Distribution List

Looking at Figure 64, we see four queue managers that reside in three
different machines. Each of the queue managers owns several queues. Let
us assume that an application running in the first machine wants to put the
same message in all of the queues in all three machines. The application
can put a message to multiple destinations with a single MQPUT or
MQPUT1.

The MQSeries distribution list facility provides a means where the
application can optimize the performance of putting a message to multiple
queues. The major performance benefit comes when the messages are put
to multiple remote destinations of which two or more resolve to the same
transmission queue. Under these conditions multiple logical messages can
be compressed into a single physical message. The single physical
message is then sent across the channel and expanded into multiple
physical messages by the receiving channel. This is known as late fan out.

Distribution lists are dynamic. The lists are managed by the application.

 Copyright IBM Corp. 1998 141

7.1 Structures that Support Distribution Lists

To support distribution lists, three structures are provided. They are:

MQOR The MQ object record is a structure that is used to specify a
single destination queue in the form of a queue/queue manager
pair. An array of these structures is called a distribution list. It
is addressed via the Version 2 object descriptor.

MQRR The MQ response record structure is used to receive the
completion code and reason code resulting from the open or put
operation for a single destination queue. By providing an array
of these structures on the MQOPEN and MQPUT calls it is
possible to determine the completion codes and reason codes for
all queues in a distribution list. The array of these structures
should have the same number of elements as the MQOR array.
It is addressed via the Version 2 object descriptor and message
options.

MQPMR The MQ put message record structure is used to override certain
properties in the message header. The array should contain as
many elements as there are destinations. It is addressed via the
Version 2 message descriptor or the Version 2 MQPMO. The
MQPMR allows you to specify different values for each
destination in a distribution list.

This stucture does not have a fixed layout. The fields in this
structure are optional, and the presence or absence within each
field is indicated by the flags in the PutMsgRecFields in the
MQPMO. The PutMsgRecField can contain one or more values
of:

 1. MQPMRF_MSG_ID

 2. MQPMRF_CORREL_ID

 3. MQPMRF_GROUP_ID

 4. MQPMRF_FEEDBACK

 5. MQPMRF_ACCOUNTING_TOKEN

The application is expected to define its own PMR structure and
then set the bits in the PutMsgRecFields to indicate which fields
the stucture contains.

Figure 66 on page 143 through Figure 68 on page 144 show the new
structures (in C) and Figure 65 on page 143 shows how they are tied
together. The new fields in the MQOD and MQPMR are shown in Figure 69
on page 146 and Figure 70 on page 147.

142 MQSeries Version 5 Programming Examples

Figure 65. Stuctures for Distribution Lists

/**/
/* MQOR Structure -- Object Record */
/**/
typedef struct tagMQOR {

MQCHAR48 ObjectName; /* Object name */
MQCHAR48 ObjectQMgrName; /* Object queue manager name */

 } MQOR;
typedef MQOR MQPOINTER PMQOR;

Figure 66. Object Record Structure MQOR

/**/
/* MQRR Structure -- Response Record */
/**/
typedef struct tagMQRR {

MQLONG CompCode; /* Completion code for queue */
MQLONG Reason; /* Reason code for queue */

 } MQRR;
typedef MQRR MQPOINTER PMQRR;

Figure 67. Response Record Structure MQRR

Chapter 7. Distr ibution Lists 143

/**/
/* MQPMR Structure -- Put Message Record */
/**/
typedef struct tagMQPMR {

MQBYTE24 MsgId; /* Message ID */
MQBYTE24 CorrelId /* Correlation ID */
MQBYTE24 GroupId /* Group ID */
MQLONG Feedback; /* Feedback or reason code */
MQBYTE32 AccountingToken; /* Accounting token */

 } MQPMR;

Figure 68. Sample Put Message Record Structure MQPMR

If you want to give each message a different message ID and feedback you
would define this structure:

typedef struct tagMQPMR {
MQBYTE24 MsgId;
MQLONG Feedback;

} MQPMR;

To tell the queue manager what the fields are in the structure specify in the
put message options:

pmo.PutMsgRecFields = MQPRMF_MSG_ID | MQORMF_FEEDBACK;

144 MQSeries Version 5 Programming Examples

7.2 MQI Extensions to Support Distribution Lists

This section describes what changes have been made to the APIs to support
distribution lists. Programming examples are in 7.6, “Exercise 13:
Distribution List” on page 150.

MQOPEN MQOPEN is extended to allow an array of queue/queue
manager names (MQORs) to be passed and an array of
completion/reason codes to be returned.

MQPUT MQPUT is extended to allow an array of message attributes
(MQPMRs) to be passed and an array of reason codes to be
returned.

MQPUT1 MQPUT1 is extended to allow an array of MQORs and an
array of MQPMRs to be passed and an array of MQRRs to
be returned.

MQCLOSE MQCLOSE does not allow an array of completion/reason
codes to be returned. If one of the destinations fails to
close then MQCLOSE will return one of the failing
responses.

New fields have been added to the object descriptor MQOD and the put
message options MQPMO. Both structures have a Version 2. The
extensions to these structures allow the information in the MQOR, MQRR
and MQPMR structures to be passed to the MQI. The structures can be
addressed either by pointer or offset. Normally programs written in
languages with good pointer support, such as C would use the pointer field.
Languages with poor pointer support, such as COBOL would use the offset
field. The offset is the offset from the start of the structure in which the
offset field is defined.

Figure 69 on page 146 and Figure 70 on page 147 show the MQOD and
MQPMO structures. The new fields are shown in bold. For the queue
manager to recognize the new fields, the version number of the structures
must be 2, for example:

pmo.Version = MQPMO_VERSION_2;
od.Version = MQOD_VERSION_2;

Chapter 7. Distr ibution Lists 145

/**/
/* MQPMO Structure -- Put Message Options */
/**/

typedef struct tagMQPMO {
 MQCHAR4 StrucId; /* Structure identifier */

MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action

of MQPUT or MQPUT1 */
MQLONG Timeout; /* Reserved */
MQHOBJ Context; /* Object handle of input queue */
MQLONG KnownDestCount; /* Number of messages sent

successfully to local queues */
MQLONG UnknownDestCount; /* Number of messages sent

sucessfully to remote queues */
MQLONG InvalidDestCount; /* Number of messages that could

not be sent */
MQCHAR48 ResolvedQName; /* Resolved name of destination

queue */
MQCHAR48 ResolvedQMgrName; /* Resolved name of destination

queue manager */
MQLONG RecsPresent; /* Number of put message records

or response records present */
MQLONG PutMsgRecFields; /* Flags indicating which MQPMR

fields are present */
MQLONG PutMsgRecOffset; /* Offset of first put message record

from start of MQPMO */
MQLONG ResponseRecOffset;/* Offset of first response record

from start of MQPMO */
MQPTR PutMsgRecPtr; /* Address of first put message

record */
MQPTR ResponseRecPtr; /* Address of first response record */

 } MQPMO;
typedef MQPMO MQPOINTER PMQPMO;

Figure 69. Extensions to the Put Message Options MQPMO

146 MQSeries Version 5 Programming Examples

/**/
/* MQOD Structure -- Object Descriptor */
/**/
typedef struct tagMQOD {
 MQCHAR4 StrucId; /* Structure identifier */

MQLONG Version; /* Structure version number */
MQLONG ObjectType; /* Object type */
MQCHAR48 ObjectName; /* Object name */
MQCHAR48 ObjectQMgrName; /* Object queue manager name */
MQCHAR48 DynamicQName; /* Dynamic queue name */
MQCHAR12 AlternateUserId; /* Alternate user identifier */
MQLONG RecsPresent; /* Number of object records present */
MQLONG KnownDestCount; /* Number of local queues opened

successfully */
MQLONG UnknownDestCount; /* Number of remote queues opened

successfully */
MQLONG InvalidDestCount; /* Number of queues that failed to

open */
MQLONG ObjectRecOffset; /* Offset of first object record

from start of MQOD */
MQLONG ResponseRecOffset;/* Offset of first response record

from start of MQOD */
MQPTR ObjectRecPtr; /* Address of first object record */
MQPTR ResponseRecPtr; /* Address of first response record */

 } MQOD;
typedef MQOD MQPOINTER PMQOD;

Figure 70. Extensions to the Object Descriptor MQOD

7.3 Error Handling

APIs that use distribution lists can have one of three results:

 1. The request succeeds.

CompCode = MQCC_OK, Reason = MQRC_OK

 2. The request is partially successful.

CompCode = MQCC_WARNING, Reason = MQRC_MULTIPLE_REASONS

 3. The request fails.

CompCode = MQCC_FAILED, Reason = MQRC_*

The MQRR structure is optional on MQOPEN, MQPUT and MQPUT1. If the
application wishes to handle errors then it should use MQRRs.

Chapter 7. Distr ibution Lists 147

When an MQI verb operates against multiple destinations then it can fail on
a per destination basis. The MQRR structure is provided to allow a list of
completion/reason codes to be returned.

If the operation is successful for all the destinations in the list, or if the
operations fails for the same reason for all the destinations in the list then a
single completion/reason code is returned in the usual manner.

If the operation should work for some destinations in the list, but not for
others, a warning with the reason MQRC_MULTIPLE_REASONS is returned.
The MQRR array must be interrogated to determine if and why the operation
failed for each destination. If the operation fails for all destinations, but not
for the same reason, then the completion code is MQRC_FAILED and the
reason code is MQRC_MULTIPLE_REASONS.

7.4 Late Fan Out

The example in Figure 71 on page 149 shows that an application puts a
message to Q1, Q2 and Q3 using a single MQPUT to a distribution list. Two
messages will be created:

• One on the transmission queue for QmgrX (XQX)

• One on the transmission queue for QmgrY (YQY)

The message in transmission queue XQX will be prepended by both an
MQXQH and an MQDH. Since the message on transmission queue YQY is
destined for only one queue, it is prepended by an MQXQH only.

The physical message on the transmission queue XQX consists of:

 1. MQXQH

 2. MQDH

 3. MQOR array

 4. MQPRM array

 5. Message data

When a message is sent to multiple destinations using a distribution list the
queue manager attempts to condense the messages into the minimum
number of physical messages.

In order for two or more messages to be combined into a single physical
message the following must be possible:

• The messages must resolve to the same xmit queue.

148 MQSeries Version 5 Programming Examples

Figure 71. Late Fan Out

• The message attributes must be identical, such as priority and
persistence (which may be specified ″as queue definition″).

• The size of the message must allow for the destribution list header and
MQOR/MQPMR arrays to be prepended.

7.5 Configuration

Before a queue manager can send a distribution list format message over a
channel it must be sure that the receiving queue manager understands this
type of message. When the MCAs bind they exchange information which
includes whether or not the receiving MCA supports distribution lists. The
receiving MCA uses the queue manager′s DISTL attribute to determine if
distribution list format messages are supported.

A queue manager passes messages to an MCA by putting them on a
transmission queue. A queue manager will only put a distribution list format
message on a transmission queue if that transmission queue has the DISTL
attribute set to indicate that the partner to the MCA servicing that
transmission queue supports distribution lists. When the MCAs bind, the
sending MCA determines if the DISTL attribute is set correctly (resetting if
necessary).

Chapter 7. Distr ibution Lists 149

 Attention

When a transmission queue is created the DISTL attribute defaults to
NO, which means that any messages put before the channel first binds
will not be in distribution list format.

If you reconfigure your system, for example, to reroute messages, then it is
possible for messages in distribution list format to exist on a transmission
queue which is being serviced by an MCA whose partner does not support
such messages. In this case the sending MCA detects that it has read a
distribution list format message that would not be understood by the partner
MCA and it expands the message into multiple messages on the
transmission queue. The ordering of the messages on the transmission
queue is lost. There is also a performance penalty.

7.6 Exercise 13: Distribution List

The sample program DISTL puts messages from the standard input device
and puts these messages to a list of message queues stored in a predefined
text file called distlist.txt. The first line in the file is for the queue name and
the second is for the queue manager name. With one MQPUT call, a
message is put into all target queues defined in the distribution list
(distlist.text). The distribution list is dynamic; you can add or remove
queues.

For this application, you need the following:

 1. The program DISTL that distributes the messages

 2. The file distlist.txt that contains the distribution list in the form of
queue/queue manager pairs

 3. The file DISTL.TST that contains the queue definitions

7.6.1 Program Logic
• Read file distlist.txt that contains the distribution list and place the

entries in an array.

• Put the distribution list into an MQOR structure.

• Connect to a queue manager.

• MQOPEN target queues for OUTPUT.

• Get messages from StdIn until NULL line is read.

− Add each line to each target queue.

− Each text line becomes a datagram message.

150 MQSeries Version 5 Programming Examples

− The ″new line″ characters are removed.

− If a line is longer than 99 characters it is broken up into 99-character
pieces. Each piece becomes the content of a datagram message.

− If the length of a line is a multiple of 99 plus 1 (for example, 199), the
last piece will only contain a new-line character and so it will
terminate the input.

− The program displays a message if there is a reason code other
than MQRC_NONE.

− It stops if there is an MQI completion code of MQCC_FAILED.

• MQClose target queues.

• Disconnect from queue manager.

• Free up resources.

7.6.2 Setup for Distribution List Example
This example uses a text file called distlist.txt which contains names of
queues and queue managers. Each name must be written in a separate
line; the queue name must be first. Here is an example:

DISTQ.1
QMGR1
DISTQ.2
QMGR1
DISTQ.3
QMGR2
DISTQ.4
QMGR2

Of course, the queues specified in the above distribution list must be
defined. In this example, we create two script files, one for QMGR1 and
another for QMGR2:

Define the queues with runmqsc using the two script files as input:

QMGR1 runmqsc QMGR1 < distl1.mqs

QMGR2 runmqsc QMGR2 < distl2.mqs

Table 25. Queues for Distribution List

QMGR1 QMGR2

def ql(DISTQ.1)
def ql(DISTQ.2)

def ql(DISTQ.3)
def ql(DISTQ.4)

Chapter 7. Distr ibution Lists 151

Note: The example program attempts to connect to the queue manager
associated with the first queue specified in the file distlist.txt. If that fails
then it tries to reach the next queue manager(s) it finds in the file.

7.6.3 Writing a Distribution List Program
This distribution list program DISTL.C is in Appendix F, “Distribution List
Example” on page 245. The code necessary to put messages to a
distribution list are outlined below.

static struct ObjectInfoType{
char ObjName[40];
char ObjQMgrName[40];

};
struct ObjectInfoType DistList[10];
...
 FILE *dl; /* distribution list file */
 int i=0; /* number of entries */

if (NULL == (dl = fopen(″DistList.txt″ , ″r″)))
printf(″\n Unable to open the data file!″) ;

else
{
while (!feof(dl)) { /* read queue name */
fgets(DistList[i].ObjName,40,dl);
DistList[i].ObjName[strlen(DistList[i].ObjName)-1] = ′ \0′ ;

/* read queue manager name */
fgets(DistList[i].ObjQMgrName,40,dl);
DistList[i].ObjName[strlen(DistList[i].ObjQmgrName)-1] = ′ \0′ ;
i += 1;

}
i -= 1; /* number of items in distlist */
fclose(dl);
}

Figure 72. Reading a Distribution List File

Figure 72 shows how the file distlist.txt is read and a list of queue/queue
manager pairs is built and put into an array. The index variable ″ i″ wil l
contain the number of entries in the distribution list.

Limitations:

• Queue and queue manager names can be up to 40 characters long.

• The distribution list is limited to up to 10 entries.

152 MQSeries Version 5 Programming Examples

In the example in Appendix F, “Distribution List Example” on page 245 this
code is a procedure that is called with the statement:

NumQueues = ReadDistList();

Figure 73 shows how to copy a distribution list into an MQOR (object
record) structure.

PMQRR pRR=NULL; /* Pointer to response records */
pOR = (PMQOR)malloc(NumQueues * sizeof(MQOR));
...
 for(Index = 0 ; Index < NumQueues ; Index ++) {

strncpy((pOR+Index)->ObjectName,
DistList[Index].ObjName,
(size_t)MQ_Q_NAME_LENGTH);

strncpy((pOR+Index)->ObjectQMgrName,
DistList[Index].ObjQMgrName,
(size_t)MQ_Q_MGR_NAME_LENGTH);

 }

Figure 73. Creating Object Records

Notes:

 1. The field NumQueues contains the number of entries in the distribution
list. The maximum is 10.

 2. The structure DistList is defined as follows:

static struct ObjectInfoType{
char ObjName[40];
char ObjQMgrName[40];

};
struct ObjectInfoType DistList[10];

 3. At the end of the program, free the pOR structure with the statement:

if (NULL != pOR) free (pOR);

In this example we use both object records (MQOR) and response records
(MQRR) for the return codes and put message records (MQPRM) to specify
separate message and correlation IDs. You have to define and allocate
those structures and free the memory before you end the program. These
are new MQSeries Version 5 structures. This is done with the following
statements:

Chapter 7. Distr ibution Lists 153

PMQRR pRR=NULL; /* Pointer to response records */
PMQOR pOR=NULL; /* Pointer to object records */
...
pRR = (PMQRR)malloc(NumQueues * sizeof(MQRR));
pOR = (PMQOR)malloc(NumQueues * sizeof(MQOR));
pPMR = (pPutMsgRec)malloc(NumQueues * sizeof(PutMsgRec));
...
if (NULL != pOR) free (pOR);
if (NULL != pRR) free (pRR);
if (NULL != pPMR) free (pPMR);

How to define the put message records is shown in Figure 74.

The use of put message records (PMRs) allows some message attributes to
be specified on a per destination basis. These attributes then override the
values in the MD for a particular destination.

typedef struct
{
MQBYTE24 MsgId; �1�
MQBYTE24 CorrelId;

} PutMsgRec, *pPutMsgRec;
pPutMsgRec pPMR=NULL; /* Pointer to put msg records */

MQLONG PutMsgRecFields=MQPMRF_MSG_ID | MQPMRF_CORREL_ID; �2�
...
pPMR = (pPutMsgRec)malloc(NumQueues * sizeof(PutMsgRec)); �3�

Figure 74. Creating Put Message Records

The function provided by this example program does not require the use of
PMR′s but they are used by the program simply to demonstrate their use.

�1� The program chooses to provide values for MsgId and CorrelId on a per
destination basis.

�2� The PutMsgRecFields in the PMO indicates what fields are in the array
addressed by PutMsgRecPtr in the PMO. In our example we have provided
the MsgId and CorrelId and so we must set the corresponding MQPMRF_
bits.

�3� The program allocates memory for the PMRs for all destinations. Don′ t
forget to free them.

154 MQSeries Version 5 Programming Examples

After connecting to a queue manager we have to open the queues defined
in the distribution list. Figure 75 on page 155 shows the statements to do
that.

...
od.Version = MQOD_VERSION_2 ; /* must be version 2 MQOD */
od.RecsPresent = NumQueues ; /* number of object/resp recs */
od.ObjectRecPtr = pOR; /* address of object records */
od.ResponseRecPtr = pRR ; /* number of object records */

O_options = MQOO_OUTPUT /* open queue for output */
+ MQOO_FAIL_IF_QUIESCING; /* (but not if MQM stopping) */

MQOPEN(Hcon, /* connection handle */
&od, /* object descriptor for queue */
O_options, /* open options */
&Hobj, /* object handle */
&OpenCode, &Reason); /* return codes */

if (OpenCode == MQCC_FAILED) {
printf(″Unable to open any queue for output\n″) ;

}
else
if (Reason == MQRC_MULTIPLE_REASONS) {

print_responses(″MQOPEN″ , pRR, NumQueues, pOR);
}
else
if (Reason != MQRC_NONE) {

printf(″MQOPEN returned CompCode=%ld, Reason=%ld\n″ ,
OpenCode, Reason);

}

Figure 75. Open Target Queues in Distribution List

The MQOPEN call returns the completion and reason codes and in the
MQRR structure a reason code for each of the queues in the distribution list.

If the completion code is MQCC_FAILED then all of the destinations in the
list failed to open.

If some destinations opened and others failed to open then the completion
code will be set to MQCC_WARNING.

The reasons in the response records are only valid if the reason code
returned is MQRC_MULTIPLE_REASONS. If any other reason is reported

Chapter 7. Distr ibution Lists 155

then opening all destination queues in the list completed or failed with the
same reason.

You can print the reason codes in the MQRR structure with the routine
shown in Figure 77 on page 157.

pmo.RecsPresent = NumQueues ; /* number of queues */
pmo.Version = MQPMO_VERSION_2 ; /* V2 of put message options*/
pmo.PutMsgRecPtr = pPMR ; /* PMR structure */
pmo.PutMsgRecFields = PutMsgRecFields; /* fields in PMR */
pmo.ResponseRecPtr = pRR ; /* RR structure */
...

/* fill PMR structures */
for(Index = 0 ; Index < NumQueues ; Index ++) { �1�

memcpy((pPMR+Index)->MsgId,MQMI_NONE,
sizeof((pPMR+Index)->MsgId));

memcpy((pPMR+Index)->CorrelId, MQCI_NONE,
sizeof((pPMR+Index)->CorrelId));

}
memcpy(md.Format, MQFMT_STRING, /* character string format */

(size_t)MQ_FORMAT_LENGTH); �2�

MQPUT(Hcon, Hobj, /* connection and object handles */
&md, /* message descriptor */
&pmo, /* default options (datagram) */
buflen, /* buffer length */
buffer, /* message buffer */
&CompCode, Reason); /* completion amd reason codes */

Figure 76. Put Message to Distribution List

Figure 76 shows the statements that put a message on multiple queues.
The example in Appendix E, “Reference Message Example” on page 237
uses a loop to put several messages. The following code fragment,
however, puts only one message. The message is in the variable ″buffer″,
its length in ″buflen″.

�1� The purpose of these instructions is to show how to put data into the
PMR structure. You probably would use something other than MQMI_NONE
and MQCI_NONE.

�2� The messages in the example are character strings.

The function in Figure 77 on page 157 is usually called when a reason of
MQRC_MULTIPLE_REASONS is received. The reasons relate to the queue
at the equivalent ordinal position in the MQOR array.

156 MQSeries Version 5 Programming Examples

static void print_responses(char * comment,
PMQRR pRR,
MQLONG NumQueues,
PMQOR pOR);

...
print_responses(″MQCONN″ , pRR, Index, pOR); /* call */
...
static void print_responses(char * comment,

PMQRR pRR,
MQLONG NumQueues,
PMQOR pOR)

{
 MQLONG Index;
 for(Index = 0 ; Index < NumQueues ; Index ++) {

if(MQCC_OK != (pRR+Index)->CompCode) {
printf(″%s for %.48s(%.48s) returned CompCode=%ld, Reason=%ld\n″

comment,
(pOR+Index)->ObjectName,
(pOR+Index)->ObjectQMgrName,
(pRR+Index)->CompCode,
(pRR+Index)->Reason);

}
 }
}

Figure 77. Display Response Record

7.6.4 Executing the Distribution List Example
First compile the program with one of the commands in Table 25 on
page 151

Then run it and check the result in two of our destination queues as follows.
Call the program and enter three messages to be sent to all queues:

Table 26. Commands to Compile DISTL.C

Compiler Command

Microsof t V isua l C/C++ cl distl.c mqm.lib

IBM Visua l Age C/C++ icc distl.c mqm.lib

CSe t++ fo r A IX xlc distl.c -l mqm -o distl

Chapter 7. Distr ibution Lists 157

� �
C:\distl>distl
This is message 1
This is message 2
This is message 3

C:\distl>amqsget DISTQ.4 QMGR2
Sample AMQSGET0 start
message <This is message 1>
message <This is message 2>
message <This is message 3>
no more messages
Sample AMQSGET0 end

C:\dist>amqsget DISTQ.2 QMGR1
Sample AMQSGET0 start
message <This is message 1>
message <This is message 2>
message <This is message 3>
no more messages� �

158 MQSeries Version 5 Programming Examples

Chapter 8. FastPath Bindings

MQSeries Version 5 adds a new way for an application or a message
channel agent to connect to the queue manager: the API MQCONNX. When
you use MQCONNX you have the option of choosing either standard
bindings or fast path bindings. Fast path bindings means that your
application becomes a part of the queue manager; there is no boundary set
up between your application and the queue manager. This means that the
performance of a GET or PUT call is greatly enhanced. It also means that
the integrity of the queue manager could be comprimised if your application
is not well behaved. There are restrictions placed on a fast path application
that are detailed in the MQSeries Application Programming Guide,
SC33-0807.

Figure 78. Standard and Fastpath Bindings

Figure 78 shows the local queue manager agent running as a separate
thread and then running in the same process as the application. The first
case is the default: standard binding. The application runs faster using
fastpath bindings because the agent process does not need an interface to
access the queue manager.

Note: Fastpath applications must be well behaved, that is, thoroughly
tested. If you encounter a problem with your application run it with standard
bindings (MQCONN instead of MQCONNX) before you call support.

 Copyright IBM Corp. 1998 159

If you use fastpath applications do not:

• Send asynchronous signals, such as sigkill

• Schedule timer interrupts

• Call ″abort()″

• Force stop a fastpath channel

• On Windows NT, never terminate from the task list

Otherwise, the queue manager may be left in an undefined state and should
be recycled.

If a fastpath application ends without closing an object (MQCLOSE), the
object will remain open until the queue manager is ended. If the application
ends without an MQDISC, the queue manager cannot free resources.

The user of a fastpath application must be ″mqm″. On UNIX, uid and gid
must be ″mqm″. Fastpath applications cannot be CICS applications.

End fastpath applications before ending the queue manager or shutting
down the operating system. ″endmqm -p″ will attempt to kill fastpath
applications which are still running.

8.1 Exercise 14: Using Fastpath Bindings

In this chapter we will see two programs that are identical except that one
will use the MQCONN call with standard bindings and the other will use the
MQCONNX call with fast path bindings to show the difference in
performance as well as what you need to do in a program to use fast path
bindings. When you use MQCONNX you will need to add a connection
options structure to the call which specifies what type of connection you will
use.

The two programs measure CPU time used by the MQPUT to put ″n″
non-persistent messages on the queue.

MCA ′s can also use fastpath bindings. This is done on a global basis in the
QM.INI file in the MQBINDTYPE parameter of the CHANNELS stanza. It is
not possible to select fast path bindings for some channels and standard
bindings for others. You should remember that if you are using fast path
bindings on a channel that any exits you have will have the same integrity
exposures mentioned above.

160 MQSeries Version 5 Programming Examples

8.1.1 Program Logic
The logic of both progams is exactly the same, except that they differ in the
way they connect to the queue manager:

• Take the number of messages to be put from the command line
parameter.

• Connect to the queue manager using either MQCONN or MQCONNX.

• Open the queue INPUT.QUEUE for output.

• Get the CPU time.

• Put ″n″ fixed hard coded messages to the queue using MQPUT.

• Get the CPU time again.

• Calculate the actual time taken to put these n messages.

• Close the queue and disconnect from the queue manager.

Note: To remove the messages from the queue you can use amqsget.
Alternatively, you may start runmqsc and use the command ″clear
ql(INPUT.QUEUE)″.

8.1.2 The MQCNO Structure
The MQ connect option structure is shown below:

typedef struct tagMQCNO {
MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of MQCONNX */
} MQCNO;
typedef MQCNO MQPOINTER PMQCNO;

There are two connect options:

• MQCNO_STANDARD_BINDING or MQCNO_NONE

• MQCNO_FASTPATH_BINDING

8.1.3 Writing the Program
The source of the program CONNX.C is in Appendix G, “Fastpath Bindings
Example” on page 255. The code for CONN.C is only on the diskette. The
only difference between the two programs is the way they connect to the
queue manager. Figure 79 on page 162 shows how to use CONNX. Some
interesting fragments of the code are described below.

Chapter 8. FastPath Bindings 161

MQCNO ConnectOpt; /* Options to control the CONNX */
...

strcpy(ConnectOpt.StrucId, MQCNO_STRUC_ID);
ConnectOpt.Version = MQCNO_VERSION_1;
ConnectOpt.Options = MQCNO_FASTPATH_BINDING ;

MQCONNX(QMName, /* queue manager */
&ConnectOpt,
&Hcon, /* connection handle */
&CompCode, /* completion code */
&CReason); /* reason code */

Figure 79. Using MQCONNX

Figure 79 shows how the connect options are set to use fastpath bindings.

Figure 80 shows the code that measures the time for ″n″ puts to the queue
INPUT.QUEUE.

double Time1, Time2, Timediff;
...

Time1 = (double) clock();
Time1 = Time1/CLOCKS_PER_SEC;

Insert code to put some messages

Time2 = (double) clock();
Time2 = Time2/CLOCKS_PER_SEC;

Timediff = Time2-Time1;
printf(″\nThe elapsed time = %f seconds.″ , Timediff);

Figure 80. Measureing Elapsed Time

8.1.4 Comparing Standard and Fastpath Bindings
First, compile the two programs using one of the compilers shown in
Table 27 on page 163.

In order to test the two programs we have to create a queue. The queue
name INPUT.QUEUE is hard coded. You can use runmqsc and execute the
command:

def ql(INPUT.QUEUE)

162 MQSeries Version 5 Programming Examples

To get accurate measurements make sure that the queue is cleared
between runs.

Then execute CONN and CONNX, each with 100 and 1000 messages and
compare the differences in CPU time.

� �
C:\test>conn 100
Target queue is INPUT.QUEUE
The elapsed time = 0.310000 seconds

======> clear the queue

C:\test>connx 100
Target queue is INPUT.QUEUE

The elapsed time = 0.070000 seconds.
C:\redbook>connx 100
Target queue is INPUT.QUEUE

The elapsed time = 0.070000 seconds.� �

As you can see the savings in elapsed time when processing non-persistent
messages can be substantial. Your performance improvement will
obviously vary from these depending on what your application, hardware,
and software mix is. The important fact here is that using fastpath bindings
is an option which can substantially affect performance. Once again, be

Table 27. Commands to Compile CONN.C and CONNX.C

Compiler Command

Microsof t V isua l C/C++ cl conn.c mqm.lib
cl connx mqm.lib

IBM Visua l Age C/C++ icc conn.c mqm.lib
icc connx.c mqm.lib

CSe t++ fo r A IX xlc conn.c -l mqm -o conn
xlc connx.c -l mqm -o connx

Table 28. Comparison between MQCONN and MQCONNX

Program Message count Elapsed time Difference

CONN 100 .31

CONNX 100 .07 77%

CONN 1000 2.133

CONNX 1000 .821 62%

Chapter 8. FastPath Bindings 163

well aware of the possible integrity issues presented in the MQSeries
Application Programming Guide, SC33-0807 prior to using fastpath bindings.

164 MQSeries Version 5 Programming Examples

Chapter 9. Multithreading

Multithreading is the paradigm of programming which exploits the
existence of pockets of concurrency in applications. Threads or lightweight
processes attempt to use the inherent parallelism of applications to provide
better handling of the system. Threads are new concepts and are widely
getting accepted as de facto standards used in medium-sized and large
applications where the possibility of concurrency is greater. However, this
is dependent on the nature of the application and the algorithms used.
GUI-based applications, specifically use multithreading effectively to
simulate parallelism and event-based programs find it useful to employ
threads. The user finds better response time and does not really have to
wait for one event to finish before getting to other tasks. In this scenario it
is essential that a middle-tier product like MQSeries provide multithreading
support which would mean that developers can build more responsive
applications for users. Also, the advent of kernel multithreading support in
almost all operating systems give applications low-level support for
multithreaded programs.

MQSeries supports the use of its APIs in multithreaded applications. The
MQSeries V5 release includes thread safe libraries that can be used to
develop concurrent applications. This could increase the effectiveness and
performance of your system utilizing all the advantages of multithreading.
In fact, MQSeries internally uses multithreading to perform its functions. In
this chapter we discuss the various considerations that we need to take
while using MQSeries calls in multithreaded applications. We also discuss
what cannot be achieved with multithreading.

9.1 MQSeries Support

MQSeries Version 5 is available on five platforms: AIX, Windows NT, HP-UX,
Sun Solaris and OS/2. All libraries in these platforms are thread safe, so
they are ready for multithreaded applications.

Let us now discuss the support per platform and look at what is provided
and how to use it.

Table 29 on page 166 summarizes the support by platform in MQSeries
Version 5 products.

 Copyright IBM Corp. 1998 165

UNIX came out with the POSIX standards implementation. Windows NT and
OS/2 have user-level thread implementation of the POSIX standard but
these are third party software.

To make a multithreaded MQSeries application truly portable, we need to
use the POSIX threads or Pthreads library with MQSeries calls. Strictly
speaking, the underlying thread environment should really not affect the
operation of MQSeries. But the field of multithreading is still very nascent.
So it would be advisable to use products which are supported by IBM so
that problems can be handed over to IBM Support for their advice.

We now look at the compilation steps used to build multithreaded
applications. The step is different for each platform. This is due to the
inconsistency in the implementation of threads across the platforms and the
MQSeries model for that platform.

Table 30 summarizes the compilation steps for the various platforms.

Table 29. Thread Implementations by Platform

Platform Thread Implementation

AIX DCE threads

Windows NT Windows NT native threads

HP-UX DCE threads

Sun Solaris Solaris native threads and POSIX threads

OS/2 OS/2 native threads

Note:

Third party POSIX libraries are available for Windows NT, and OS/2 comes with
a POSIX library. They could be used, too.

Table 30 (Page 1 of 2). Compilation Steps for Multithreaded Applications

Platform Compilation Steps

AIX Use cc_r compiler which automatically sets on multithreading switches
and link with libmqm_r.a for server applications and libmqic _r.a for
client applications.

xlc_r appname.c -o appname -lmqm_r for server applications

xlc_r appname.c -o appname -lmqic_r for client applications

Windows NT Use Microsoft Visual C++ compiler and l ink with mqm.l ib for server
applications and mqic32.lib for client applications.

cl appname.c /l ink mqm.lib for server applications

cl appname.c /link mqic32.lib for client applications

166 MQSeries Version 5 Programming Examples

Table 30 (Page 2 of 2). Compilation Steps for Multithreaded Applications

Platform Compilation Steps

HP-UX Use the supported ANSI C compiler and link with libmqm_r.sl for server
applications and libmqic_r.sl for client applications.

cc -Aa -D_HPUX_SOURCE -o appname appname.c -lmqm_r for server
applications

cc -Aa -D_HPUX_SOURCE -o appname appname.c -lmqic_r for client
applications

Solaris Use Sun Workshop′s C compiler, use the -mt switch indicating to the
compiler that you wish to create a multithreaded application. The
MQSeries libraries to link to do not change.

cc -o appname appname.c -mt -lmqm -lmqmcs -lmqmzse -lsocket -ldl
-lnsl for server applications

cc -o appname appname.c -mt -lmqic -lmqmcs -lmqmzse -lsocket -ldl
-lnsl for client applications

OS/2 Use IBM Visual Age for C++ compiler. Use the switch /Gm+ to
indicate a multithreaded application. The MQSeries libraries to link to
do not change.

icc /Gm+ appname.c mqm.lib for server applications

icc /Gm+ appname.c mqic.l ib for client applications

Note:

In AIX and HP-UX, the multithreaded libraries of MQSeries are postfixed with an _r standing for
re-entrant. This is from DCE terminology.

MQSeries for Sun Solaris has only multithreaded libraries. So if you are not using threads and
use MQI calls, you still need to exercise the -mt option for compilation. If you don′ t do so you
should get a core dump in MQCONN.

9.2 The Scope of MQCONN

The connection to the queue manager in an application is through an
HCONN data type. Any call made to MQSeries following an MQCONN
should use the valid HCONN generated by the MQCONN call. This HCONN
value represents the key to accessing MQSeries objects required for
conducting transactions. So it is essential and worthwhile to have a precise
knowledge of the scope of the HCONN value to enable us to use MQSeries
in multithreaded applications.

Table 31 on page 168 summarizes the scope of the HCONN variable.

Chapter 9. Mult i threading 167

The table leads us to the following conclusion: The applications cannot use
one HCONN across threads. So each thread in an application which needs
to talk to a queue manager object will have to perform an MQCONN and get
a valid HCONN handle before progressing on its correspondence with the
queue manager. HCONN used across threads will be rendered useless and
the MQI call which uses another thread′s HCONN will return an
MQRC_HCONN_ERROR.

In Java, due to the inherent multithreading nature of the Java Virtual
Machine the code actually executes in different threads depending on
invocation, usage and design. So the scope for the handle has been
relaxed in Java and you can share handles across threads. This means that
at initialization you could connect to the queue manager and use this handle
in multiple threads concurrently. A typical design would be to use the Java
applet′s init() function to achieve the connection to the queue manager and
use individual threads to achieve the application objectives.

Note: MQSeries on UNIX systems cannot connect to different queue
managers on different threads of an application. So an application can
connect to only one queue manager at a given instance of execution. If an
MQCONN is attempted while the application (any thread) is connected to a
queue manager already, MQI returns
MQRC_ANOTHER_Q_MGR_CONNECTED. However, during the life cycle of
the application, it can connect to as many queue managers as it pleases.

Table 31. Scope of MQCONN in Various Platforms

Platform Scope for MQCONN

UNIX (AIX, HP-UX and Solaris) Thread

Windows NT Thread

OS/2 Thread

Java Application

Note: Java being platform independent merits a separate column for its
uniqueness.

9.3 Signals

MQI sets handlers for SIGSEGV, SIGBUS and SIGALRM during every MQI
call. User handlers are suspended for the duration of the MQI call. So if the
application wishes to set handlers for these signals, they should be set
process wide before an MQI call is made. This will enable the possibility of
MQSeries giving control to the application′s handler when possible. In the
case of specific conditions like crashes MQSeries will terminate and may

168 MQSeries Version 5 Programming Examples

not allow cleanup of the application′s resources. In this situation the
problem will have to be resolved with IBM Support.

Another point that should be kept in mind is the time of establishing the
appropriate signal handlers. If a thread is doing the job of establishing the
signal handler, there should not be any other threads issuing MQI calls. In
such a situation, the MQSeries handler will be overridden and the handlers
may pass these signals into the MQSeries code leading to unpredictable
results depending on the status of the MQI call and the state of the various
application threads.

If an MQSeries signal handler gets a signal for a thread that is not currently
in MQSeries code, it attempts to find the handler established by the
application (before it called MQSeries) and pass the signal to that handler.
However, it may not be possible to pass all aspects of the call to the signal
handler.

Signal handlers cannot make MQI calls. This could fail in two ways
depending on other threads and the operating system restrictions:

• If another MQI function is active, MQRC_CALL_IN_PROGRESS is
returned.

• If no other MQI function is active, it is likely to fail because of the
operating system restrictions on which calls can be issued from within a
handler.

Note: If a signal handler calls exit(), MQSeries backs out uncommitted
messages under syncpoint as usual and closes any open queues.

9.4 Exercise 15: A Multithreaded Program

In this section, we present a C example of a simple multithreaded
application for a UNIX (AIX) system.

UNIX platforms provide a similar interface to threads and for this reason the
example should hold good for proprietary thread implementations. For this
example, we use the POSIX threads library popularly known as Pthreads.

Notes:

 1. DCE thread implementation came out of the ongoing POSIX standard
which is not yet completed, so the interface is the same for both DCE
and POSIX threads. For a detailed description of the differences refer to
C programming books available in book stores.

 2. Solaris native threads are slightly different in their interface. For
example, pthread_create in the POSIX notation corresponds to

Chapter 9. Mult i threading 169

thr_create. The manuals suggest that the difference between the two
implementations in terms of the interface only involves extra features.

The following UNIX example is the simplest one possible. Consider the
scenario to send messages to two queues belonging to one queue manager.
This is normally done with the following algorithm:

• Connect to the queue manager.

• Open queue 1.

• Put messages into queue 1.

• Close queue 1.

• Open queue 2.

• Put messages into queue 2.

• Close queue 2.

• Disconnect from the queue manager.

It might be possible that the application which serves queue 1 may be down
and the application servicing queue 2 may be up and running. In this
scenario it would make sense to issue the MQPUT to the second queue first.
But the application will not want the overhead of finding out which
applications are up and running (in whatever way). In this scenario, threads
could be used to provide concurrent MQPUTs to the queues. The threaded
application will resemble this algorithm:

• Start thread 1 to put messages in queue 1.

• Start thread 2 to put messages in queue 2.

• Wait for the threads to complete their operations or go ahead with other
tasks.

Each thread would execute the following functions:

• Connect to the queue manager.

• Open queue.

• Put messages into queue.

• Close queue.

• Disconnect from the queue manager.

• End thread.

Concurrency of operations ensures that MQPUTs take place simultaneously.
So the overall system′s performance comes up in the situation when one of

170 MQSeries Version 5 Programming Examples

the queue service providers is down. Normal operations where both service
providers are up is not affected in any way.

The C program code is presented in the following files:

main.c Figure 82 on page 172

This is the main driver function which calls threads for its
operations.

mqput.c Figure 83 on page 173

This is a slightly modified version of the MQSeries sample
amqsput0.c used to:

• Perform a connection to a queue manager (the default
queue manager in this case).

• Open the queue whose name is specified in the arguments
to the function.

• Put the messages.

• Close the queue and disconnect from the queue manager.

globals.h Figure 81

This is a header file containing a declaration of the functions
and debug hooks.

#ifndef GLOBALS_H_
#define GLOBALS_H_

#ifdef _DEBUG
#define debug(a) printf(a)
#else
#define debug(a)
#endif

void * mqput(void *);
#endif

Figure 81. The Header File globals.h

Chapter 9. Mult i threading 171

#include <stdio.h>
#include <pthread.h>
#include ″globals.h″

main()
{

pthread_t thread1, thread2;
pthread_attr_t thread1_attr, thread2_attr;
char queue1[40]=″One.Queue″ ;
char queue2[40]=″Another.Queue″ ;
void * returnval;

debug(″In main\n″) ;

pthread_attr_init(&thread1_attr);
pthread_attr_setdetachstate(&thread1_attr,PTHREAD_CREATE_UNDETACHED);
pthread_attr_init(&thread2_attr);
pthread_attr_setdetachstate(&thread2_attr,PTHREAD_CREATE_UNDETACHED);

debug(″Creating Thread 1\n″) ;
if(pthread_create(&thread1,&thread1_attr,mqput,(void *)queue2))
{
perror(″pthread_create″) ;
exit(2);
}

debug(″Creating Thread 2\n″) ;
if(pthread_create(&thread2,&thread2_attr,mqput,(void *)queue2))
{
perror(″pthread_create″) ;
exit(2);
}

debug(″Threads Created\n″) ;

debug(″Wait for the Threads to complete\n″) ;
if (pthread_join(thread1,&returnval))
{
perror(″pthread_join″) ;
exit(2);
}
printf(″The Thread 1 returned with code : %d\n″ , (int)returnval);
if (pthread_join(thread2,&returnval))
{
perror(″pthread_join″) ;
exit(2);
}
printf(″The Thread 2 returned with code : %d\n″ , (int)returnval);
debug(″Threads are joined\n″) ;
exit(0);

}

Figure 82. The Driver Function main.c

172 MQSeries Version 5 Programming Examples

#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h> /* includes for MQI */
#include ″globals.h″ /* thread globals */

void* mqput(void *queue)
{
 /* Declare MQI structures needed */

MQOD od = {MQOD_DEFAULT}; /* Object descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message descriptor */

 MQPMO pmo = {MQPMO_DEFAULT}; /* Put message options */

MQHCONN Hcon; /* Connection handle */
 MQHOBJ Hobj; /* Object handle */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */
 MQLONG CompCode; /* Completion code */
 MQLONG OpenCode; /* MQOPEN completion code */
 MQLONG Reason; /* Reason code */
 MQLONG CReason; /* Reason code for MQCONN */
 MQLONG buflen; /* Buffer length */

char buffer[100]; /* Message buffer */
char QMName[40]=″ ″ ; /* Default queue manager */

debug(″MQPUT start\n″) ;

MQCONN(QMName, &Hcon, &CompCode, &CReason); /* Connect */
if (CompCode == MQCC_FAILED) /* Failed ? */
{
printf(″MQCONN ended with reason code %ld\n″ , CReason);
pthread_exit((void **) CReason);

}
 /* Use parameter as the name of the target queue */

strncpy(od.ObjectName, (char *)queue, (size_t)MQ_Q_NAME_LENGTH);
printf(″target queue is %s\n″ , od.ObjectName);

 /* Open the target message queue for output */
O_options = MQOO_OUTPUT + MQOO_FAIL_IF_QUIESCING;
MQOPEN(Hcon, &od, O_options, &Hobj, &OpenCode, &Reason);
if (Reason != MQRC_NONE) /* Failed ? */

printf(″MQOPEN ended with reason code %ld\n″ , Reason);
if (OpenCode == MQCC_FAILED)
{
printf(″unable to open queue for output\n″) ;
pthread_exit((void**) Reason);

}
CompCode = OpenCode; /* use MQOPEN result for initial test */

Figure 83 (Part 1 of 2). Function which Constitutes a Thread: mqput.c

Chapter 9. Mult i threading 173

/* Put message into the required Queue */
memcpy(md.Format, MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));

memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

strcpy(buffer,″This message should make sense to the other application″) ;
buflen=strlen(buffer);

MQPUT(Hcon, Hobj, &md, &pmo, buflen, buffer, &CompCode, &Reason);

if (Reason != MQRC_NONE) /* Failed ? */
{

printf(″MQPUT ended with reason code %ld\n″ , Reason);
}

 /* Close the target queue (if it was opened) */
if (OpenCode != MQCC_FAILED)
{
C_options = 0;

MQCLOSE(Hcon, &Hobj, C_options, &CompCode, &Reason);

if (Reason != MQRC_NONE)
{
printf(″MQCLOSE ended with reason code %ld\n″ , Reason);

}
}

 /* Disconnect from MQM if not already connected */
if (CReason != MQRC_ALREADY_CONNECTED)
{
MQDISC(&Hcon, &CompCode, &Reason);

if (Reason != MQRC_NONE)
{
printf(″MQDISC ended with reason code %ld\n″ , Reason);

}
}

debug(″Sample MQPUT end\n″) ;
pthread_exit((void **) 0);

 }

Figure 83 (Part 2 of 2). Function which Constitutes a Thread: mqput.c

174 MQSeries Version 5 Programming Examples

Exercise 3: amqsxas0.sqc

Appendix A. Example Using One XA Resource

/**/
/* */
/* Program name: AMQSXAS0.SQC */
/* CHANGED 10/09/1997 M.Schuette, IBM Germany */
/* Description: Sample SQC program for MQ coordinating XA-compliant database */
/* managers. */
/* */
/* Changes : - Unlimited wait for new messages */
/* - New command message BYE ends the programm */
/* - If invalid commands are sent user may delete the messages */
/* - User is asked whether to commit successful changes or not */
/* */
/* Parameters: - Name of the message queue (required) */
/* - Queue manager name (optional) */
/* */
/**/
/* Includes */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>

#include <sqlca.h> /* SQL Communication Area */
#include <sqlenv.h> /* SQL DB environment API */
#include ″util.h″ /* SQL error checking utils */

#include <cmqc.h> /* MQI */

/**/
/* Defines */
/**/

#define OK 0 /* define OK as zero */
#define NOT_OK 1 /* define NOT_OK as one */

/**/
/* Define macro for checking if SQL call resulted in an error */
/**/

#define CHECKERR(CE_STR) rc = check_error(CE_STR, &sqlca)

 Copyright IBM Corp. 1998 175

Exercise 3: amqsxas0.sqc

/**/
/* Define and declare an SQLCA (SQL Communication Area) structure */
/**/
EXEC SQL INCLUDE SQLCA;

/*****************************/
int main(int argc, char *argv[]) /* ----- START OF MAIN ----- */

/*****************************/
{

/***/
/* MQI structures */
/***/
MQOD od = {MQOD_DEFAULT}; /* object descriptor */
MQMD md = {MQMD_DEFAULT}; /* message descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
MQBO bo = {MQBO_DEFAULT}; /* begin options */
/***/
/* MQI variables */
/***/
MQLONG rc=OK; /* return code */
MQHCONN hCon; /* handle to connection */
MQHOBJ hObj; /* handle to object */
char QMName[50]=″″ ; /* default QM name */
MQLONG options; /* options */
MQLONG reason; /* reason code */
MQLONG connReason; /* MQCONN reason code */
MQLONG compCode; /* completion code */
MQLONG openCompCode; /* MQOPEN completion code */
char msgBuf[100]; /* message buffer */
MQLONG msgBufLen; /* message buffer length */
MQLONG msgLen; /* message length received */
/***/
/* Other variables */
/***/
char *pStr; /* ptr to string */
int gotMsg; /* got message from queue */
int committedUpdate; /* committed update */
long balanceChange; /* balance change */
int invCmd; /* Invalid Message */
int bye; /* bye command received, quit*/
char ch[10]; /* for keycheck */
/***/
/* SQL host declarations */
/***/
EXEC SQL BEGIN DECLARE SECTION;
char name[40]; /* name */
long account; /* account number */
long balance; /* balance */
EXEC SQL END DECLARE SECTION;

176 MQSeries Version 5 Programming Examples

Exercise 3: amqsxas0.sqc

/***/
/* First check we have been given correct arguments */
/***/
if (argc != 2 && argc != 3){

printf(″Input is: %s ′ queue name′ ′ queue manager name′ . \n″
″Note the queue manager name is optional\n″ , argv[0]);

exit(99);
} /* endif */

if (argc == 3) /* use the queue manager */
strcpy(QMName, argv[2]); /* name supplied */

/***/
/* Declare the cursor for locking of reads from database */
/***/
EXEC SQL DECLARE cur CURSOR FOR

SELECT Name, Balance
FROM MQBankT
WHERE Account = :account
FOR UPDATE OF Balance;

CHECKERR (″DECLARE CURSOR″) ;
if (rc != OK)

exit(0); /* no point in going on */

/***/
/* Connect to queue manager */
/***/
MQCONN(QMName, &hCon, &compCode, &connReason);

if (compCode == MQCC_FAILED){
printf(″MQCONN ended with reason code %li\n″ , connReason);
exit((int) connReason);

}

/***/
/* Use input parameter as the name of the target queue */
/***/
strncpy(od.ObjectName, argv[1], (size_t) MQ_Q_NAME_LENGTH);
printf(″Target queue is %s\n″ , od.ObjectName);

Appendix A. Example Using One XA Resource 177

Exercise 3: amqsxas0.sqc

/***/
/* Open the target message queue for input */
/***/
options = MQOO_INPUT_AS_Q_DEF + MQOO_FAIL_IF_QUIESCING;

MQOPEN(hCon, &od, options, &hObj, &openCompCode, &reason);

if (reason != MQRC_NONE)
printf(″MQOPEN ended with reason code %li\n″ , reason);

if (openCompCode == MQCC_FAILED){
printf(″Unable to open queue for input\n″) ;
rc = openCompCode; /* stop further action */

} /* endif */

/***/
/* Get messages from the message queue, loop until there is a failure */
/***/
while (compCode != MQCC_FAILED && rc == OK){

/**/
/* Set flags so that we can back out if something goes wrong and not */
/* lose the message. */
/**/
gotMsg = 0; /* set flag to FALSE */
committedUpdate = 0; /* set flag to FALSE */
invCmd=0; /* clear flag for invalid command received */
bye=0; /* BYE - Command received; let′ s quit progr. */
/**/
/* Start a unit of work */
/**/
MQBEGIN (hCon, &bo, &compCode, &reason);

if (reason == MQRC_NONE){
printf(″Unit of work started\n″); }

else{
printf(″MQBEGIN ended with reason code %li\n″ , reason);
/***/
/* If we get a reason code and only a warning on the compCode, there */
/* is something wrong with one or more of the resource managers so */
/* stop looping and sort it out, whatever the compCode. */
/***/
rc = NOT_OK; /* stop looping */

}

if (compCode == MQCC_FAILED)
printf(″Unable to start a unit of work\n″) ;

178 MQSeries Version 5 Programming Examples

Exercise 3: amqsxas0.sqc

/**/
/* Get message off queue */
/**/
if (rc == OK){

/***/
/* In order to read the messages in sequence, MsgId and CorrelID */
/* must have the default value. MQGET sets them to the values for */
/* the message it returns, so re-initialise them before every call */
/***/
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

/***/
/* Setup for the MQGET */
/***/
msgBufLen = sizeof(msgBuf) - 1;
gmo.Options = MQGMO_WAIT + MQGMO_CONVERT + MQGMO_SYNCPOINT;
gmo.WaitInterval = MQWI_UNLIMITED;

MQGET(hCon, hObj, &md, &gmo, msgBufLen, msgBuf, &msgLen,
&compCode, &reason);

if (reason != MQRC_NONE){
if (reason == MQRC_NO_MSG_AVAILABLE)

printf(″No more messages\n″) ;
else{

printf(″MQGET ended with reason code %li\n″ , reason);

if (reason == MQRC_TRUNCATED_MSG_FAILED)
compCode = MQCC_FAILED; /* stop looping */

}
}
else gotMsg = 1; /* set flag to TRUE, message read */*/

} /* endif */

Appendix A. Example Using One XA Resource 179

Exercise 3: amqsxas0.sqc

/**/
/* Process the message received */
/**/
if (compCode != MQCC_FAILED && rc == OK){

/***/
/* Check if message has been backed out more than 2 times */
/***/
if (md.BackoutCount > 2) {

printf(″The following message has been backed out %li times.\n″ ,
md.BackoutCount);

printf(″%s\n″ ,msgBuf);
rc = NOT_OK; /* Bypass database update */
invCmd = 1; /* Ask whether to delete message */

}

msgBuf[msgLen] = ′ \0′ ; /* add string terminator */
pStr = strstr(msgBuf, ″UPDATE Balance change=″) ;
if (pStr != NULL){

pStr += sizeof(″UPDATE Balance change=″) -1;
sscanf(pStr, ″%li″, &balanceChange);

}
else{

pStr = strstr(msgBuf, ″BYE″) ;
if (strstr(msgBuf, ″BYE″) != NULL){

printf(″BYE-Message received...″) ;
bye=1;

}
else

printf(″Invalid Command received: %s\n″ , msgBuf);
invCmd=1;
rc = NOT_OK; /* stop looping anyway */

} /* endif */

if (rc == OK){
pStr = strstr(msgBuf, ″Account=″) ;
if (pStr != NULL){

pStr += sizeof(″Account=″) -1;
sscanf(pStr, ″%li″, &account);

}
else{

printf(″Invalid command received: %s\n″ , msgBuf);
invCmd=1;
rc = NOT_OK; /* stop looping */

}
} /* endif */

180 MQSeries Version 5 Programming Examples

Exercise 3: amqsxas0.sqc

/***/
/* Get details from database */
/***/
if (rc == OK){

EXEC SQL OPEN cur;
CHECKERR (″OPEN CURSOR″) ;

}
if (rc == OK){

EXEC SQL FETCH cur INTO :name, :balance;
CHECKERR (″FETCH″) ;

}

/***/
/* Update the bank balance */
/***/
if (rc == OK){

balance += balanceChange; /* alter balance */
EXEC SQL UPDATE MQBankT SET Balance = :balance

WHERE CURRENT OF cur;
CHECKERR (″UPDATE MQBankT″) ;

if (rc == OK){
printf(″Account No %li Balance updated from %li to %li %s\n″ ,

account, balance - balanceChange, balance, name);
/***/
/* We are going to commit the update so even if something goes */
/* wrong now, the message has been used so don′ t back out. */
/***/
printf(″Do you want to commit this Update [Yes|No] ?\n″) ;
gets(ch);
if (ch[0]==′ Y′ | | ch[0]==′ y′) {

committedUpdate = 1; /* set flag to TRUE */
/***/
/* Note: the cursor will be implicitly closed by the MQCMIT. */
/***/
MQCMIT(hCon, &compCode, &reason);
if (reason == MQRC_NONE)

printf(″Unit of work successfully completed\n″) ;
else{

printf(″MQCMIT ended with reason code %li completion code ″
″%li\n″ , reason, compCode);

rc = NOT_OK; /* stop looping */
}

} /* endif (Y || y) */
} /* endif rc == OK */

} /* endif rc == OK -> update balance */
} /* endif process message received */

Appendix A. Example Using One XA Resource 181

Exercise 3: amqsxas0.sqc

/**/
/* If we got the message but something went wrong, back out so that we */
/* don′ t lose the message (valid but not committed, invalid and BYE) */
/**/
if (gotMsg && !committedUpdate){

MQBACK(hCon, &compCode, &reason);
if (reason == MQRC_NONE)

printf(″MQBACK successfully issued\n″) ;
else

printf(″MQBACK ended with reason code %li\n″ , reason);
} /* endif */

/**/
/* If reason for backout was an invalid command or a BYE message ask */
/* whether the message shall remain in the queue or not. */
/**/
if (invCmd){

printf(″Remove BACKOUTed-Message [Yes]No] ? /n″) ;
gets(ch);
if (ch[0]==′ Y′ | | ch[0]==′ y′) {

gmo.Options = MQGMO_WAIT + MQGMO_CONVERT + MQGMO_NO_SYNCPOINT;
MQGET(hCon, hObj, &md, &gmo, msgBufLen, msgBuf, &msgLen,

&compCode, &reason);
if (reason != MQRC_NONE){

if (reason == MQRC_NO_MSG_AVAILABLE)
printf(″\nMessage NOT FOUND !\n″) ;

else{
printf(″\nRemove failed, MQGET ended with reason code %li\n″ , reason);
if (reason == MQRC_TRUNCATED_MSG_FAILED)
compCode = MQCC_FAILED; /* stop looping */

}
}
else{
printf(″\nMessage successful removed.\n″) ;
compCode = MQCC_OK;
/* if (!bye) rc=OK; moved */

}
} /* endif Y || y */
if (!bye) rc=OK; /* Only a BYE message ends the program */

} /* endif invCmd */
} /* endwhile */

182 MQSeries Version 5 Programming Examples

Exercise 3: amqsxas0.sqc

/***/
/* Close queue if opened */
/***/
if (openCompCode != MQCC_FAILED){

options = 0; /* no close options */
MQCLOSE(hCon, &hObj, options, &compCode, &reason);
if (reason != MQRC_NONE)

printf(″MQCLOSE ended with reason code %li\n″ , reason);
} /* endif */

/***/
/* Disconnect from queue manager if not already connected */
/***/
if (connReason != MQRC_ALREADY_CONNECTED){

MQDISC(&hCon, &compCode, &reason);
if (reason != MQRC_NONE)

printf(″MQDISC ended with reason code %li\n″ , reason);
}
return 0;

 } /* end of MAIN */

Appendix A. Example Using One XA Resource 183

Exercise 3: amqsxas0.sqc

184 MQSeries Version 5 Programming Examples

Exercise 4: amqsxag0.c

Appendix B. Example Using Two XA Resources

This example consists of three programs and make files for AIX, IBM C and Microsoft C
compilers. The programs are:

• The main program AMQSXAG0.C

• The program AMQSXAB0.SQL to access MQBankDB

• The program AMQSXAF0.SQL to access MQFeeDB

Note: Since the two sql files are identical with the exception of the database name we
include only amqsxab0.sql in this appendix.

B.1 Main Program AMQSXAG0.C (Modified)

static char *sccsid = ″@(#) samples/c/xatm/amqsxag0.c, tranmgr;
/**/
/* */
/* Program name: AMQSXAG0 */
/* Description: Sample C program for MQ coordinating XA-compliant database */
/* managers. */
/* Statement: Licensed Materials - Property of IBM */
/* (C) Copyright IBM Corp. 1997 */
/*Modified by M.Schuette */
/**/
/* Includes */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <cmqc.h> /* MQI */
/**/
/* Defines */
/**/
#define OK 0 /* define OK as zero */
#define NOT_OK 1 /* define NOT_OK as one */
/**/
/* Function prototypes for SQL routines in AMQSXAB0.SQC and AMQSXAF0.SQC */
/**/
int DeclareMQBankDBCursor(void);
int DeclareMQFeeDBCursor(void);
int ConnectToMQBankDB(void);
int ConnectToMQFeeDB(void);
int GetMQBankTBDetails(char *name, long account, long *balance,

 Copyright IBM Corp. 1998 185

Exercise 4: amqsxag0.c

long *transactions);
int GetMQFeeTBDetails(long account, long *feeDue, long *tranFee,

long *transactions);
int UpdateMQBankTBBalance(long balance, long transactions);
int UpdateMQFeeTBFeeDue(long feeDue, long transactions);

/*****************************/
int main(int argc, char *argv[]) /* ----- START OF MAIN ----- */

/*****************************/
{

/***/
/* MQI structures */
/***/
MQOD od = {MQOD_DEFAULT}; /* object descriptor */
MQMD md = {MQMD_DEFAULT}; /* message descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
MQBO bo = {MQBO_DEFAULT}; /* begin options */

/***/
/* MQI variables */
/***/
MQLONG rc=OK; /* return code */
MQHCONN hCon; /* handle to connection */
MQHOBJ hObj; /* handle to object */
char QMName[50]=″″ ; /* default QM name */
MQLONG options; /* options */
MQLONG reason; /* reason code */
MQLONG connReason; /* MQCONN reason code */
MQLONG compCode; /* completion code */
MQLONG openCompCode; /* MQOPEN completion code */
char msgBuf[100]; /* message buffer */
MQLONG msgBufLen; /* message buffer length */
MQLONG msgLen; /* message length received */

/***/
/* Other variables */
/***/
char *pStr; /* ptr to string */
long balanceChange; /* balance change */
char name[40]; /* name */
long account; /* account number */
long balance; /* balance */
long transactions; /* transactions */
long temp; /* temporary variable */
long feeDue; /* fee due */
long tranFee; /* transaction fee */
int gotMsg; /* got message from queue */

186 MQSeries Version 5 Programming Examples

Exercise 4: amqsxag0.c

int committedUpdate; /* committed update */
int invCmd; /* Invalid Message */
int bye; /* bye command received; quit*/
char ch[10]; /* for keycheck */

/***/
/* First check we have been given correct arguments */
/***/
if (argc != 2 && argc != 3)
{

printf(″Input is: %s ′ queue name′ ′ queue manager name′ . \n″
″Note the queue manager name is optional\n″ , argv[0]);

exit(99);
} /* endif */

if (argc == 3) /* use the queue manager */
strcpy(QMName, argv[2]); /* name supplied */

/***/
/* Connect to queue manager */
/***/
MQCONN(QMName, &hCon, &compCode, &connReason);

if (compCode == MQCC_FAILED) {
printf(″MQCONN ended with reason code %li\n″ , connReason);
exit((int) connReason);

} /* endif */
/***/
/* Use input parameter as the name of the target queue */
/***/
strncpy(od.ObjectName, argv[1], (size_t) MQ_Q_NAME_LENGTH);
printf(″Target queue is %s\n″ , od.ObjectName);

/***/
/* Open the target message queue for input */
/***/
options = MQOO_INPUT_AS_Q_DEF + MQOO_FAIL_IF_QUIESCING;

MQOPEN(hCon, &od, options, &hObj, &openCompCode, &reason);

if (reason != MQRC_NONE)
printf(″MQOPEN ended with reason code %li\n″ , reason);

if (openCompCode == MQCC_FAILED) {
printf(″Unable to open queue for input\n″) ;
rc = openCompCode; /* stop further action */

} /* endif */

Appendix B. Example Using Two XA Resources 187

Exercise 4: amqsxag0.c

/***/
/* Declare the cursors for locking of reads from databases */
/***/
if (rc == OK)

rc = DeclareMQBankDBCursor();
if (rc == OK)

rc = DeclareMQFeeDBCursor();

/***/
/* Get messages from the message queue, loop until there is a failure */
/***/
while (compCode != MQCC_FAILED && rc == OK)
{

/**/
/* Set flags so that we can back out if something goes wrong and not */
/* lose the message. */
/**/
gotMsg = 0; /* set flag to FALSE */
committedUpdate = 0; /* set flag to FALSE */
invCmd=0; /* set flag to FALSE */

/**/
/* Start a unit of work */
/**/
MQBEGIN (hCon, &bo, &compCode, &reason);

if (reason == MQRC_NONE)
{

printf(″Unit of work started\n″) ;
}
else
{

printf(″MQBEGIN ended with reason code %li\n″ , reason);
/***/
/* If we get a reason code and only a warning on the compCode, there */
/* is something wrong with one or more of the resource managers so */
/* stop looping and sort it out, whatever the compCode. */
/***/
rc = NOT_OK; /* stop looping */

} /* endif */

if (compCode == MQCC_FAILED)
printf(″Unable to start a unit of work\n″) ;

188 MQSeries Version 5 Programming Examples

Exercise 4: amqsxag0.c

/**/
/* Get message off queue */
/**/
if (rc == OK)
{

/***/
/* In order to read the messages in sequence, MsgId and CorrelID */
/* must have the default value. MQGET sets them to the values for */
/* the message it returns, so re-initialise them before every call */
/***/
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
/***/
/* Set up some things for the MQGET */
/***/
msgBufLen = sizeof(msgBuf) - 1;
gmo.Options = MQGMO_WAIT + MQGMO_CONVERT + MQGMO_SYNCPOINT;
gmo.WaitInterval = MQWI_UNLIMITED; /* old=15 sec limit for waiting */

MQGET(hCon, hObj, &md, &gmo, msgBufLen, msgBuf, &msgLen,
&compCode, &reason);

if (reason != MQRC_NONE)
{

if (reason == MQRC_NO_MSG_AVAILABLE)
{

printf(″No more messages\n″) ;
}
else
{

printf(″MQGET ended with reason code %li\n″ , reason);

if (reason == MQRC_TRUNCATED_MSG_FAILED)
compCode = MQCC_FAILED; /* stop looping */

} /* endif */
}
else
{

gotMsg = 1; /* set flag to TRUE */
} /* endif */

} /* endif */

Appendix B. Example Using Two XA Resources 189

Exercise 4: amqsxag0.c

/**/
/* Process the message received */
/**/
if (compCode != MQCC_FAILED && rc == OK){

msgBuf[msgLen] = ′ \0′ ; /* add string terminator */
pStr = strstr(msgBuf, ″UPDATE Balance change=″) ;
if (pStr != NULL){

pStr += sizeof(″UPDATE Balance change=″) -1;
sscanf(pStr, ″%li″, &balanceChange);

}else{
pStr = strstr(msgBuf, ″BYE″) ;
if (strstr(msgBuf, ″BYE″) != NULL){

printf(″BYE-Message received...″) ;
bye=1;

}else{
printf(″Invalid Command received: %s\n″ , msgBuf);

}
invCmd=1;
rc = NOT_OK; /* stop looping anyway */

} /* endif */
if (rc == OK){

pStr = strstr(msgBuf, ″Account=″) ;
if (pStr != NULL){

pStr += sizeof(″Account=″) -1;
sscanf(pStr, ″%li″, &account);

}else{
printf(″Invalid command received: %s\n″ , msgBuf);
invCmd=1;
rc = NOT_OK; /* stop looping */

} /* endif */
} /* endif */

/***/
/* Note only actively connected to one database at a time */
/***/
/***/
/* Get details from databases */
/***/
if (rc == OK)

rc = ConnectToMQBankDB();
if (rc == OK)

rc = GetMQBankTBDetails(name, account, &balance, &transactions);

if (rc == OK)
rc = ConnectToMQFeeDB();

if (rc == OK)
rc = GetMQFeeTBDetails(account, &feeDue, &tranFee, &temp);

190 MQSeries Version 5 Programming Examples

Exercise 4: amqsxag0.c

if (rc == OK)
{

/**/
/* The number of transactions to the two databases should be */
/* identical, stop if not. */
/**/
if (temp != transactions)
{

printf(″Databases are out of step !\n″) ;
rc = NOT_OK; /* stop looping */

} /* endif */
} /* endif */

/***/
/* Update the bank balance */
/***/
if (rc == OK)
{

transactions++; /* bump no of transactions */
balance += balanceChange; /* alter balance */
feeDue += tranFee; /* alter fee due */

rc = UpdateMQFeeTBFeeDue(feeDue, transactions);

if (rc == OK) /* must now connect back to */
rc = ConnectToMQBankDB(); /* other database */

if (rc == OK)
rc = UpdateMQBankTBBalance(balance, transactions);

if (rc == OK)
{

printf(″Account No %li Balance updated from %li to %li %s\n″ ,
account, balance - balanceChange, balance, name);

printf(″Fee Due updated from %li to %li\n″ ,
feeDue - tranFee, feeDue);

/***/
/* We are going to commit the update so even if something goes */
/* wrong now, the message has been used so don′ t back out. */
/***/
committedUpdate = 1; /* set flag to TRUE */

Appendix B. Example Using Two XA Resources 191

Exercise 4: amqsxag0.c

/***/
/* Note: the cursor will be implicitly closed by the MQCMIT. */
/***/
MQCMIT(hCon, &compCode, &reason);

if (reason == MQRC_NONE)
{

printf(″Unit of work successfully completed\n″) ;
}
else
{

printf(″MQCMIT ended with reason code %li completion code ″
″%li\n″ , reason, compCode);

rc = NOT_OK; /* stop looping */
} /* endif */

} /* endif */
} /* endif */

} /* endif */

/**/
/* If we got the message but something went wrong, back out so that we */
/* don′ t lose the message. */
/**/
if (gotMsg && !committedUpdate)
{

MQBACK(hCon, &compCode, &reason);

if (reason == MQRC_NONE)
printf(″MQBACK successfully issued\n″) ;

else
printf(″MQBACK ended with reason code %li\n″ , reason);

} /* endif */

if (invCmd){ /* if the reason for backout was a wrong message, we may clear it */
printf(″Remove BACKOUTed-Message [Yes]No] ?″) ;
gets(ch);
if (ch[0]==′ Y′]] ch[0]==′ y′) {

/* Delete the message, anyway. */
/* therfore, a simple get will do it, options are : */
gmo.Options = MQGMO_WAIT + MQGMO_CONVERT + MQGMO_NO_SYNCPOINT;
MQGET(hCon, hObj, &md, &gmo, msgBufLen, msgBuf, &msgLen,

&compCode, &reason);
if (reason != MQRC_NONE){

if (reason == MQRC_NO_MSG_AVAILABLE){
printf(″\nMessage NOT FOUND !\n″) ;

}else{
printf(″\nRemove failed, MQGET ended with reason code %li\n″ , reason);
if (reason == MQRC_TRUNCATED_MSG_FAILED)

192 MQSeries Version 5 Programming Examples

Exercise 4: amqsxag0.c

compCode = MQCC_FAILED; /* stop looping */
} /* endif */

}else{
printf(″\nMessage successful removed.\n″) ;
compCode=MQCC_OK;
if (!bye) rc=OK;

} /* endif */
} /* endif */

} /* endif */
} /* endwhile */

/***/
/* Close queue if opened */
/***/
if (openCompCode != MQCC_FAILED)
{

options = 0; /* no close options */

MQCLOSE(hCon, &hObj, options, &compCode, &reason);

if (reason != MQRC_NONE)
printf(″MQCLOSE ended with reason code %li\n″ , reason);

} /* endif */

/***/
/* Disconnect from queue manager if not already connected */
/***/
if (connReason != MQRC_ALREADY_CONNECTED)
{

MQDISC(&hCon, &compCode, &reason);

if (reason != MQRC_NONE)
printf(″MQDISC ended with reason code %li\n″ , reason);

} /* endif */

return 0;
/*****************************/

} /* ------ END OF MAIN ------ */
/*****************************/

Appendix B. Example Using Two XA Resources 193

Exercise 4: amqsxab0.sqc

B.2 AMQSXAB0.SQC Source Code

static char *sccsid = ″@(#) samples/c/xatm/amqsxab0.sqc, tranmgr, p000, p000-L970806;
/**/
/* */
/* Program name: AMQSXAG0 */
/* Description: Sample C program for MQ coordinating XA-compliant database */
/* managers. */
/* Statement: Licensed Materials - Property of IBM */
/* (C) Copyright IBM Corp. 1997 */
/* */
/* Module Name: AMQSXAB0.SQC */
/* Description: Functions to access MQBankTB table in MQBankDB database */
/* Function: These functions provide access to MQBankTB table in MQBankDB */
/* database, they are called from AMQSXAG0.C */
/* */
/**/
/* Includes */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <sqlca.h> /* SQL Communication Area */
#include <sqlenv.h> /* SQL DB environment API */
#include ″util.h″ /* SQL error checking utils */

/**/
/* Defines */
/**/
#define OK 0 /* define OK as zero */

/**/
/* Define macro for checking if SQL call resulted in an error */
/**/
#define CHECKERR(CE_STR) rc = check_error(CE_STR, &sqlca)

/**/
/* Define and declare an SQLCA (SQL Communication Area) structure */
/**/
EXEC SQL INCLUDE SQLCA;

194 MQSeries Version 5 Programming Examples

Exercise 4: amqsxab0.sqc

/**/
/* SQL host declarations */
/**/
EXEC SQL BEGIN DECLARE SECTION;
static char hName[40]; /* name */
static long hAccount; /* account number */
static long hBalance; /* balance */
static long hTransactions; /* transactions */
EXEC SQL END DECLARE SECTION;

/**/
/* Function: DeclareMQBankDBCursor */
/* Description: Declare MQBankDB cursor */
/* */
/* Input Parameters: none */
/* Output Parameters: None */
/* Returns: int rc - return code from SQL command */
/**/
int DeclareMQBankDBCursor(void)
{

long rc=OK; /* return code */
/***/
/* Declare the cursor for locking of reads from database */
/***/
EXEC SQL DECLARE curBank CURSOR FOR

SELECT Name, Balance, Transactions
FROM MQBankTB
WHERE Account = :hAccount
FOR UPDATE OF Balance, Transactions;

CHECKERR (″DECLARE CURSOR″) ;
return(rc);

}
/**/
/* Function: ConnectToMQBankDB */
/* Description: Connect to MQBankDB database */
/* */
/* Input Parameters: none */
/* Output Parameters: None */
/* Returns: int rc - return code from SQL command */
/**/
int ConnectToMQBankDB(void)
{

long rc=OK; /* return code */
EXEC SQL CONNECT TO MQBankDB;
CHECKERR (″CONNECT TO MQBankDB″) ;
return(rc);

}

Appendix B. Example Using Two XA Resources 195

Exercise 4: amqsxab0.sqc

/**/
/* Function: GetMQBankTBDetails */
/* Description: Get MQBankTB table details for supplied account number */
/* */
/* Input Parameters: long account - Account */
/* Output Parameters: char *name - Name */
/* long *balance - Balance */
/* long *transactions - Transactions */
/* Returns: int rc - return code from SQL command */
/**/
int GetMQBankTBDetails(char *name, long account, long *balance,

long *transactions)
{

long rc=OK; /* return code */

/***/
/* Copy calling function variable to SQL host variable */
/***/
hAccount = account;

EXEC SQL OPEN curBank;
CHECKERR (″OPEN CURSOR″) ;

if (rc == OK)
{

EXEC SQL FETCH curBank INTO :hName, :hBalance, :hTransactions;
CHECKERR (″FETCH″) ;

} /* endif */

/***/
/* Copy SQL host variables to calling function variables */
/***/
if (rc == OK)
{

strcpy(name, hName);
*balance = hBalance;
*transactions = hTransactions;

} /* endif */

return(rc);
}

196 MQSeries Version 5 Programming Examples

Exercise 4: Make Files

/**/
/* Function: UpdateMQBankTBBalance */
/* Description: Update MQBankTB table Balance for the current cursor */
/* */
/* Input Parameters: long balance - Balance */
/* long transactions - Transactions */
/* Output Parameters: none */
/* Returns: int rc - return code from SQL command */
/**/
int UpdateMQBankTBBalance(long balance, long transactions)
{

long rc=OK; /* return code */

/***/
/* Copy calling function variables to SQL host variables */
/***/
hBalance = balance;
hTransactions = transactions;

EXEC SQL UPDATE MQBankTB SET Balance = :hBalance,
Transactions = :hTransactions

WHERE CURRENT OF curBank;
CHECKERR (″UPDATE MQBankTB″) ;

return(rc);
}

Appendix B. Example Using Two XA Resources 197

Exercise 4: Make Files

B.3 Make Files for IBM Compiler

ibmmake.bat

rem --
rem - Build-File for C (/ C++) Programs w. IBM Vis.C++ Compiler -
rem - (W) 10/08/1997 M.Schuette, IBM -
rem - Builds Progr. w. (DB/2) embedded SQL and MQSeries Calls -
rem - For use with IBM VA/C++ 3.5+, DB/2 V2.1.2+, MQSeries V5+ -
rem --
rem Usage: ibmmake <prog_name> <db_name> <addlibs>

db2 connect to %2
db2 prep %1.sqc bindfile
db2 bind %1.bnd
db2 connect reset

rem Compile and link the program.
rem ????? To build a C++ program, change the source file extension to ′ . cxx′
rem and include the -Tp option.
rem Include other libraries at the end of the link-command !

icc /Gm /Ti- %1.c /C
ilink %1.obj util.obj db2api.lib mqm.lib %3

ibmmake2.bat

rem --
rem - Build-File for C (/ C++) Programs w. IBM Vis.C++ Compiler -
rem - (W) 10/08/1997 M.Schuette, IBM / Dieter -
rem - Builds Progr. w. (DB/2) embedded SQL and MQSeries Calls -
rem - For use with IBM VA/C++ 3.5+, DB/2 V2.1.2+, MQSeries V5+ -
rem --
rem Usage: ibmmake <prog_name> <db_name> <addlibs>

rem db2 connect to %2
rem db2 prep %1.sqc bindfile
rem db2 bind %1.bnd
rem db2 connect reset

rem Compile and link the program.
rem ????? To build a C++ program, change the source file extension to ′ . cxx′
rem and include the -Tp option.
rem Include other libraries at the end of the link-command !

icc /Gm /Ti- %1.c /C
ilink %1.obj util.obj db2api.lib mqm.lib amqsxab0.obj amqsxaf0.obj

198 MQSeries Version 5 Programming Examples

Exercise 4: Make Files

B.4 Make Files for Microsoft Compiler

msmake.bat

rem --
rem - Build-File for C (/ C++) Programs w. MS Vis.C++ Compiler -
rem - (W) 10/08/1997 M.Schuette, IBM -
rem - Builds Progr. w. (DB/2) embedded SQL and MQSeries Calls -
rem - For use with MS VC++ 2.0+, DB/2 V2.1.2+, MQSeries V5+ -
rem --
rem Usage: msmake <prog_name> <db_name> <addlibs>

db2 connect to %2
db2 prep %1.sqc bindfile
db2 bind %1.bnd
db2 connect reset

rem Compile and link the program.
rem ????? To build a C++ program, change the source file extension to ′ . cxx′
rem and include the -Tp option.
rem Include other libraries at the end of the link-command !

cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 -I%DB2PATH%\include %1.c
link -debug:full -debugtype:cv -out:%1.exe %1.obj util.obj db2api.lib mqm.lib %3

msmake2.bat

rem --
rem - Build-File for C (/ C++) Programs w. MS Vis.C++ Compiler -
rem - (W) 10/08/1997 M.Schuette, IBM -
rem - Build-File without DB/2-Preprocessing / Binding -
rem --
rem Usage: msmake <prog_name> <addobj1> <addobj2>

rem Compile and link the program.
rem ????? To build a C++ program, change the source file extension of %1 to ′ . cxx′
rem and include the -Tp option.
rem Include other libraries at the end of the link-command !

cl -Z7 -Od -c -W2 -D_X86_=1 -DWIN32 -I%DB2PATH%\include %1.c
link -debug:full -debugtype:cv -out:%1.exe %1.obj util.obj db2api.lib mqm.lib %2 %3

Appendix B. Example Using Two XA Resources 199

Exercise 4: Make Files

B.5 Make Files for AIX

Shell File amqsxag0.sh

#--#
#
AIX MQSeries Link DB2 Application program
Make file for connect DB2 DataBase
First call db2 to preCompiler .sqc
Second call makefile named is amqsxas0.mak to generate executable
module
#
#--#
#
#
echo Connect to DB2 DataBase MQBANKDB
#
#
db2 connect to MQBANKDB
db2 prep amqsxab0.sqc bindfile
db2 bind amqsxab0.bnd
db2 connect reset

db2 connect to MQFEEDB
db2 prep amqsxaf0.sqc bindfile
db2 bind amqsxaf0.bnd
db2 connect reset
#
echo Call make -f amqsxag0.mak
make -f amqsxag0.mak

Make File amqsxag0.mak

#**
#* *
#* amqsxag0.mak: Source file generated by the Class Compiler *
#* 11/29/95 20:39:48 language = C *
#* *
#**
.SUFFIXES:
.SUFFIXES: .o .c

CC = xlc

OBJS= amqsxag0.o amqsxab0.o amqsxaf0.o util.o
CFLAGS = -g -c -I/usr/lpp/db2_05_00/samples/c /usr/lpp/mqm/inc

200 MQSeries Version 5 Programming Examples

Exercise 4: Make Files

#CFLAGS = -g -c -I/usr/lpp/mqm/inc
#CFLAGS = -g -c -Dsigned= -Dvolatile= -D_Optlink -I. -M
#LFLAGS = -L. -lXm -lXt -lX11 -L/usr/lpp/mq3t/lib -lbmqapic -e LibMain -bM:SRE
#--
MQM Library file and seraching path
#--
MQMLIBS=-l mqm
MQMLIBPATH=-L /usr/lpp/mqm/lib
DB2LIBS=-l db2
DB2LIBPATH=-L /usr/lpp/db2_05_00/lib

#HEADERS = /usr/lpp/mqm/inc /usr/lpp/db2_05_00/samples/c
#HEADERDB2 = /usr/lpp/db2_05_00/samples/c

.c.o:
$(CC) $(CFLAGS) $<

all: amqsxag0

amqsxag0.o: amqsxag0.c\
$(HEADERS)

amqsxab0.o: amqsxab0.c\
$(HEADERS)

amqsxaf0.o: amqsxaf0.c\
$(HEADERS)

util.o: util.c\
$(HEADERS)

#
Link all Object files
#

amqsxag0: $(OBJS)
$(CC) -o amqsxag0 $(MQMLIBPATH) $(MQMLIBS) $(DB2LIBPATH)\
$(DB2LIBS) $(OBJS)

Appendix B. Example Using Two XA Resources 201

Exercise 4: Make Files

202 MQSeries Version 5 Programming Examples

Exercise 6: PUT_SEG1.C

Appendix C. Message Segmenting Examples

This appendix lists the three programs used in Exercise 6 and Exercise 7 to explain
arbitrary and application segmentation:

• PUT_SEG1.C (a modification of amqsput0.c) demonstrates arbitrary segmentation.

• BCG_SEG1.C (a modification of amqsbcg0.c) demonstrates how to get only complete
logical messages.

• PUT_SEG2.C (a modification of amqsput0.c) is an example for application segmentation.

C.1 PUT_SEG1 Performing Arbitrary Segmenting

/**/
 /* Program name: PUT_SEG1 (based on AMQSPIT0.C) */
 /* Description: Sample C program that puts messages to */
 /* a message queue (example using MQPUT) */
 /* Statement: Licensed Materials - Property of IBM */
 /* (C) Copyright IBM Corp. 1994, 1997 */
 /**/
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <cmqc.h>

 int main(int argc, char **argv)
 {
 /**/
 /* Declare file and character for sample input */
 /**/

FILE *fp;
/* MQI structures: */

MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
MQHCONN Hcon; /* connection handle */

 MQHOBJ Hobj; /* object handle */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */
 MQLONG CompCode; /* completion code */
 MQLONG OpenCode; /* MQOPEN completion code */
 MQLONG Reason; /* reason code */
 MQLONG CReason; /* reason code for MQCONN */
 MQLONG buflen; /* buffer length */

char buffer[5000]; /* our large message buffer */
char QMName[50]; /* queue manager name */

 Copyright IBM Corp. 1998 203

Exercise 6: PUT_SEG1.C

printf(″Sample PUT_SEG1 start\n″) ;
if (argc < 2)
{
printf(″Required parameter missing - queue name\n″) ;
exit(99);

}
/**/

 /* Connect to queue manager */
 /**/

QMName[0] = 0; /* default */
if (argc > 2)
strcpy(QMName, argv[2]);

MQCONN(QMName, /* queue manager */
&Hcon, /* connection handle */
&CompCode, /* completion code */
&CReason); /* reason code */

/* report reason and stop if it failed */
if (CompCode == MQCC_FAILED)
{
printf(″MQCONN ended with reason code %ld\n″ , CReason);
exit((int)CReason);

}

/**/
 /* Use parameter as the name of the target queue */
 /**/

strncpy(od.ObjectName, argv[1], (size_t)MQ_Q_NAME_LENGTH);
printf(″target queue is %s\n″ , od.ObjectName);

/**/
 /* Open the target message queue for output */
 /**/

O_options = MQOO_OUTPUT /* open queue for output */
+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */

MQOPEN(Hcon, /* connection handle */
&od, /* object descriptor for queue */
O_options, /* open options */
&Hobj, /* object handle */
&OpenCode, /* MQOPEN completion code */
&Reason); /* reason code */

/* report reason, if any; stop if failed */
if (Reason != MQRC_NONE) {
printf(″MQOPEN ended with reason code %ld\n″ , Reason);

}
if (OpenCode == MQCC_FAILED) {
printf(″unable to open queue for output\n″) ;

204 MQSeries Version 5 Programming Examples

Exercise 6: PUT_SEG1.C

}
/**/

 /* Read lines from the file and put them to the message queue */
 /* Loop until null line or end of file, or there is a failure */
 /**/

CompCode = OpenCode; /* use MQOPEN result for initial test */
fp = stdin;

memcpy(md.Format, /* character string format */
MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

/**/
/* Allow segmentation by the system */
/**/
md.MsgFlags = MQMF_SEGMENTATION_ALLOWED;
md.Version = MQMD_VERSION_2;

while (CompCode != MQCC_FAILED)
{
if (fgets(buffer, sizeof(buffer), fp) != NULL)
{
buflen = strlen(buffer); /* length without null */
if (buffer[buflen-1] == ′ \n′) /* last char is a new-line */
{
buffer[buflen-1] = ′ \0′ ; /* replace new-line with null */
--buflen; /* reduce buffer length */

}
}
else buflen = 0; /* treat EOF same as null line */

/**/
/* Put each buffer to the message queue */
/**/
if (buflen > 0)
{
memcpy(md.MsgId, /* reset MsgId to get a new one */

MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, /* reset CorrelId to get a new one */

MQCI_NONE, sizeof(md.CorrelId));

MQPUT(Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&pmo, /* default options (datagram) */
buflen, /* buffer length */
buffer, /* message buffer */
&CompCode, /* completion code */
&Reason); /* reason code */

Appendix C. Message Segmenting Examples 205

Exercise 6: BCG_SEG1.C

if (Reason != MQRC_NONE) /* report reason, if any */
printf(″MQPUT ended with reason code %ld\n″ , Reason);

}
else /* satisfy end condition when empty line is read */
CompCode = MQCC_FAILED;

}

/**/
 /* Close the target queue (if it was opened) */
 /**/

if (OpenCode != MQCC_FAILED)
{
C_options = 0; /* no close options */
MQCLOSE(Hcon, /* connection handle */

&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE) /* report reason, if any */
printf(″MQCLOSE ended with reason code %ld\n″ , Reason);

}

/**/
 /* Disconnect from MQM if not already connected */
 /**/

if (CReason != MQRC_ALREADY_CONNECTED)
{
MQDISC(&Hcon, /* connection handle */

&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE) /* report reason, if any */
printf(″MQDISC ended with reason code %ld\n″ , Reason);

}

/**/
/* END OF PUT_SEG1 */
/**/
printf(″Sample PUT_SEG1 end\n″) ;
return(0);

 }

206 MQSeries Version 5 Programming Examples

Exercise 6: BCG_SEG1.C

C.2 BCG_SEG1 Browsing only Logical Messages

/**/
/* Program name: BCG_SEG1 */
/* Description : Sample program to read and output both the message */
/* descriptor fields and the message content of all the */
/* messages on a queue. */
/* (Based on amqsbcg0.c.; modified to tell the queue */
/* manager to only deal with logical messages.) */
/* Statement: Licensed Materials - Property of IBM */
/* (C) Copyright IBM Corp. 1994, 1997 */
/* */
/* */
/* Function : This program is passed the name of a queue manager */
/* and a queue. It then reads each message from the */
/* queue and outputs the following to the stdout */
/* - Formatted message descriptor fields */
/* - Message data (dumped in hex and, where */
/* possible, character format) */
/* */
/* Restriction : This program is currently restricted to printing */
/* the first 32767 characters of the message and will */
/* fail with reason ′ truncated-msg′ if a longer */
/* message is read */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#include <locale.h>
#include <cmqc.h>

#define CHARS_PER_LINE 16 /* Used in formatting the message */
#define BUFFERLENGTH 32767 /* Max length of message accepted */

/**/
/* Function name: printMD */
/* Description: Prints the name of each field in the message */
/* descriptor together with it′ s contents in the */
/* appropriate format viz: */
/* integers as a number (%d) */
/* binary fields as a series of hex digits (%02X) */
/* character fields as characters (%s) */
/**/
void printMD(MQMD *MDin)
{

Appendix C. Message Segmenting Examples 207

Exercise 6: BCG_SEG1.C

int i;

printf(″\n****Message descriptor****\n″) ;
printf(″\n StrucId : ′%.4s′ ″ , MDin->StrucId);
printf(″ Version : %d″ , MDin->Version);
printf(″\n Report : %d″ , MDin->Report);
printf(″ MsgType : %d″ , MDin->MsgType);
printf(″\n Expiry : %d″ , MDin->Expiry);
printf(″ Feedback : %d″ , MDin->Feedback);
printf(″\n Encoding : %d″ , MDin->Encoding);
printf(″ CodedCharSetId : %d″ , MDin->CodedCharSetId);
printf(″\n Format : ′%.*s′ ″ , MQ_FORMAT_LENGTH, MDin->Format);
printf(″\n Priority : %d″ , MDin->Priority);
printf(″ Persistence : %d″ , MDin->Persistence);
printf(″\n MsgId : X′ ″) ;

for (i = 0 ; i < MQ_MSG_ID_LENGTH ; i++)
printf(″%02X″ ,MDin->MsgId[i]);

printf(″ ′ ″) ;
printf(″\n CorrelId : X′ ″) ;

for (i = 0 ; i < MQ_CORREL_ID_LENGTH ; i++)
printf(″%02X″ ,MDin->CorrelId[i]);

printf(″ ′ ″) ;
printf(″\n BackoutCount : %d″ , MDin->BackoutCount);
printf(″\n ReplyToQ : ′%.*s′ ″ , MQ_Q_NAME_LENGTH,

MDin->ReplyToQ);
printf(″\n ReplyToQMgr : ′%.*s′ ″ , MQ_Q_MGR_NAME_LENGTH,

MDin->ReplyToQMgr);
printf(″\n ** Identity Context″) ;
printf(″\n UserIdentifier : ′%.*s′ ″ , MQ_USER_ID_LENGTH,

MDin->UserIdentifier);
printf(″\n AccountingToken : \n X′ ″) ;

for (i = 0 ; i < MQ_ACCOUNTING_TOKEN_LENGTH ; i++)
printf(″%02X″ ,MDin->AccountingToken[i]);

printf(″ ′ ″) ;
printf(″\n ApplIdentityData : ′%.*s′ ″ , MQ_APPL_IDENTITY_DATA_LENGTH,

MDin->ApplIdentityData);
printf(″\n ** Origin Context″) ;
printf(″\n PutApplType : ′%d′ ″ , MDin->PutApplType);
printf(″\n PutApplName : ′%.*s′ ″ , MQ_PUT_APPL_NAME_LENGTH,

MDin->PutApplName);
printf(″\n PutDate : ′%.*s′ ″ , MQ_PUT_DATE_LENGTH, MDin->PutDate);
printf(″ PutTime : ′%.*s′ ″ , MQ_PUT_TIME_LENGTH, MDin->PutTime);

208 MQSeries Version 5 Programming Examples

Exercise 6: BCG_SEG1.C

printf(″\n ApplOriginData : ′%.*s′ \n″ , MQ_APPL_ORIGIN_DATA_LENGTH,
MDin->ApplOriginData);

printf(″\n GroupId : X′ ″) ;

for (i = 0 ; i < MQ_GROUP_ID_LENGTH ; i++)
printf(″%02X″ ,MDin->GroupId[i]);

printf(″ ′ ″) ;
printf(″\n MsgSeqNumber : ′%d′ ″ , MDin->MsgSeqNumber);
printf(″\n Offset : ′%d′ ″ , MDin->Offset);
printf(″\n MsgFlags : ′%d′ ″ , MDin->MsgFlags);
printf(″\n OriginalLength : ′%d′ ″ , MDin->OriginalLength);

} /* end printMD */

/**/
/* Function name: main */
/* Description: Connects to the queue manager, opens the queue, */
/* then gets each message from the queue in a loop */
/* until an error occurs. The message descriptor */
/* and message content are output to stdout for */
/* each message. Any errors are output to stdout */
/* and the program terminates. */
/**/
int main(int argc, char *argv[])
{
/* */
/* variable declaration and initialisation */
/* */
int i = 0; /* loop counter */
int j = 0; /* another loop counter */

/* variables for MQCONN ******/
 MQCHAR QMmgrName[MQ_Q_MGR_NAME_LENGTH];
MQHCONN Hconn = 0;

 MQLONG CompCode,Reason,OpenCompCode;

/* variables for MQOPEN ******/
 MQCHAR Queue[MQ_Q_NAME_LENGTH];
MQOD ObjDesc = { MQOD_DEFAULT };

 MQLONG OpenOptions;
 MQHOBJ Hobj = 0;

/* variables for MQGET ******/
MQMD MsgDesc = { MQMD_DEFAULT };
PMQMD pmdin ;
MQGMO GetMsgOpts = { MQGMO_DEFAULT };

 PMQGMO pgmoin;

Appendix C. Message Segmenting Examples 209

Exercise 6: BCG_SEG1.C

PMQBYTE Buffer;
 MQLONG BufferLength = BUFFERLENGTH;
 MQLONG DataLength;

/* variables for message formatting *****/
 int ch;
 int overrun; /* used on MBCS characters */
 int mbcsmax; /* used for MBCS characters */
 int char_len; /* used for MBCS characters */
char line_text[CHARS_PER_LINE + 4]; /* allows for up to 3 MBCS bytes overrun */

 int chars_this_line = 0;
 int lines_printed = 0;
 int page_number = 1;

 /* */
/* Use a version 2 MQMD incase the */
/* message is Segmented/Grouped */
/* */
MsgDesc.Version = MQMD_VERSION_2 ;

/* */
/* Initialise storage */
/* */

 pmdin = malloc(sizeof(MQMD));
pgmoin = malloc(sizeof(MQGMO));
Buffer = malloc(BUFFERLENGTH);

/* */
/* determine locale for MBCS handling */
/* */

 setlocale(LC_ALL,″″) ; /* for mbcs charactersets */
mbcsmax = MB_CUR_MAX; /* for mbcs charactersets */

/* */
/* Handle the arguments passed */
/* */
printf(″\nAMQSBCG0 - starts here\n″) ;

 printf(″**********************\n ″) ;

if (argc < 2)
{
printf(″Required parameter missing - queue name\n″) ;
printf(″\n Usage: %s QName [QMgrName]\n″ ,argv[0]);
return 4 ;

}

/**/
/* */

210 MQSeries Version 5 Programming Examples

Exercise 6: BCG_SEG1.C

/* Connect to queue manager */
/* */
/**/
QMmgrName[0] = ′ \0′ ; /* set to null default QM */
if (argc > 2)
strcpy(QMmgrName, argv[2]);

strncpy(Queue,argv[1],MQ_Q_NAME_LENGTH);

/* */
/* Start function here.... */
/* */
MQCONN(QMmgrName,

&Hconn,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{
printf(″\n MQCONN failed with CompCode:%d, Reason:%d″ ,

CompCode,Reason);
return (CompCode);

}

/* */
/* Set the options for the open call */
/* */

OpenOptions = MQOO_BROWSE;

/* @@@@ Use this for destructive read */
/* instead of the above. */
/* OpenOptions = MQOO_INPUT_SHARED; */
/* */

strncpy(ObjDesc.ObjectName, Queue, MQ_Q_NAME_LENGTH);

printf(″\n MQOPEN - ′%.*s′ ″ , MQ_Q_NAME_LENGTH,Queue);
MQOPEN(Hconn,

&ObjDesc,
OpenOptions,
&Hobj,
&OpenCompCode,
&Reason);

if (OpenCompCode != MQCC_OK)
{
printf(″\n MQOPEN failed with CompCode:%d, Reason:%d″ ,

Appendix C. Message Segmenting Examples 211

Exercise 6: BCG_SEG1.C

OpenCompCode,Reason);

printf(″\n MQDISC″) ;

MQDISC(&Hconn,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{
printf(″\n failed with CompCode:%d, Reason:%d″ ,

CompCode,Reason);
}

return (OpenCompCode);
}

printf(″\n ″) ;
/* */
/* Set the options for the get calls */
/* */
GetMsgOpts.Options = MQGMO_NO_WAIT ;

/* @@@@ Comment out the next line for */
/* destructive read */

GetMsgOpts.Options += MQGMO_BROWSE_NEXT ;

/**/
/* */
/* Get the system to re-assemble all segments */
/* */
/**/

GetMsgOpts.Options += MQGMO_COMPLETE_MSG ;

/* */
/* Loop until MQGET unsuccessful */
/* */
for (j = 1; CompCode == MQCC_OK; j++)

{
/* */
/* Set up the output format of the report */
/* */
if (page_number == 1)
{
lines_printed = 29;
page_number = -1;

212 MQSeries Version 5 Programming Examples

Exercise 6: BCG_SEG1.C

}
else
{
printf(″\n ″) ;
lines_printed = 22;

}

/* */
/* Reset the message descriptor to the required */
/* defaults and initialize the buffer to blanks */
/* */

/* ????? There is a new field in the Get Message Options */
/* which relieves the need for resetting the MessageID */
/* and CorrelID each time. Do you know what it is? */
/* ANSWER: MatchOptions */

pmdin = memcpy(pmdin, &MsgDesc, sizeof(MQMD));
pgmoin = memcpy(pgmoin, &GetMsgOpts, sizeof(MQGMO));
memset(Buffer,′ ′ , BUFFERLENGTH);

MQGET(Hconn,
Hobj,
pmdin,
pgmoin,
BufferLength,
Buffer,
&DataLength,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{
if (Reason != MQRC_NO_MSG_AVAILABLE)
{
printf(″\n MQGET %d, failed with CompCode:%d Reason:%d″ ,

j,CompCode,Reason);
}
else
{
printf(″\n \n \n No more messages ″) ;

}
}
else
{
/* Print the message */
/* */
printf(″\n ″) ;

Appendix C. Message Segmenting Examples 213

Exercise 6: BCG_SEG1.C

printf(″\n MQGET of message number %d ″ , j);
/* */
/* first the Message Descriptor */
printMD(pmdin);

/* */
/* then dump the Message */
/* */
printf(″\n ″) ;
printf(″\n**** Message ****\n ″) ;
Buffer[DataLength] = ′ \0′ ;
printf(″\n length - %d bytes\n ″ , DataLength);
ch = 0;
overrun = 0;
do
{
chars_this_line = 0;
printf(″\n%08X: ″ ,ch);
for (;overrun>0; overrun--) /* for MBCS overruns */
{
printf(″ ″) ; /* dummy space for characters */
line_text[chars_this_line] = ′ ′ ;

/* included in previous line */
chars_this_line++;
if (overrun % 2)
printf(″ ″) ;

}
while ((chars_this_line < CHARS_PER_LINE) &&

(ch < DataLength))
{
char_len = mblen((char *)&Buffer[ch],mbcsmax);
if (char_len < 1) /* badly formed mbcs character */
char_len = 1; /* or NULL treated as sbcs */

if (char_len > 1)
{ /* mbcs case, assumes mbcs are all printable */
for (;char_len >0;char_len--)
{
if ((chars_this_line % 2 == 0) &&

(chars_this_line < CHARS_PER_LINE))
printf(″ ″) ;

printf(″%02X″ ,Buffer[ch]);
line_text[chars_this_line] = Buffer[ch];
chars_this_line++;
ch++;

}
}
else
{ /* sbcs case */

214 MQSeries Version 5 Programming Examples

Exercise 6: BCG_SEG1.C

if (chars_this_line % 2 == 0)
printf(″ ″) ;

printf(″%02X″ ,Buffer[ch]);
line_text[chars_this_line] =

isprint(Buffer[ch]) ? Buffer[ch] : ′ . ′ ;
chars_this_line++;
ch++;

}
}

/* has an mbcs character overun the usual end? */
if (chars_this_line > CHARS_PER_LINE)

overrun = chars_this_line - CHARS_PER_LINE;

/* pad with blanks to format the last line correctly */
if (chars_this_line < CHARS_PER_LINE)
{
for (;chars_this_line < CHARS_PER_LINE;

chars_this_line++)
{
if (chars_this_line % 2 == 0) printf(″ ″) ;
printf(″ ″) ;
line_text[chars_this_line] = ′ ′ ;

}
}

/* leave extra space between colums if MBCS characters possible */
for (i=0;i < ((mbcsmax - overrun - 1) *2);i++)
{
printf(″ ″) ; /* prints space between hex represention and character */

}

line_text[chars_this_line] = ′ \0′ ;
printf(″ ′%s′ ″ , line_text);
lines_printed += 1;
if (lines_printed >= 60)
{
lines_printed = 0;
printf(″\n ″) ;

}
}
while (ch < DataLength);

} /* end of message received ′ else′ */

} /* end of for loop */

printf(″\n MQCLOSE″) ;

Appendix C. Message Segmenting Examples 215

Exercise 6: BCG_SEG1.C

MQCLOSE(Hconn,
&Hobj,
MQCO_NONE,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{
printf(″\n failed with CompCode:%d, Reason:%d″ ,

CompCode,Reason);
return (CompCode);

}

printf(″\n MQDISC″) ;
MQDISC(&Hconn,

&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{
printf(″\n failed with CompCode:%d, Reason:%d″ ,

CompCode,Reason);
return (CompCode);

}

return(0);
}

216 MQSeries Version 5 Programming Examples

Exercise 7: PUT_SEG2.C

C.3 PUT_SEG2 Performing Application Segmenting

/**/
 /* Program name: PUT_SEG2 */
 /* (Based on AMQSPUT0.C) */
 /* Description: Sample C program that puts messages to */
 /* a message queue (example using MQPUT) */
 /* Statement: Licensed Materials - Property of IBM */
 /* (C) Copyright IBM Corp. 1994, 1997 */
 /* Function: */
 /* PUT_SEG2 is a sample C program to put messages on a message */
 /* queue, and is an example of the use of MQPUT. */
 /* Changed to appliacation-segment large messages */
 /**/
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <cmqc.h>

 int main(int argc, char **argv)
 {

/* Declare file and character for sample input */
FILE *fp;

 /* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
MQHCONN Hcon; /* connection handle */

 MQHOBJ Hobj; /* object handle */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */
 MQLONG CompCode; /* completion code */
 MQLONG OpenCode; /* MQOPEN completion code */
 MQLONG Reason; /* reason code */
 MQLONG CReason; /* reason code for MQCONN */
 MQLONG buflen; /* buffer length */

char buffer[1000]; /* ????? message buffer */
char QMName[50]; /* queue manager name */

printf(″Sample PUT_SEG2 start\n″) ;
if (argc < 2)
{
printf(″Required parameter missing - queue name\n″) ;
exit(99);

}

Appendix C. Message Segmenting Examples 217

Exercise 7: PUT_SEG2.C

/**/
 /* Connect to queue manager */
 /**/

QMName[0] = 0; /* default */
if (argc > 2)
strcpy(QMName, argv•2‘);

MQCONN(QMName, /* queue manager */
&Hcon, /* connection handle */
&CompCode, /* completion code */
&CReason); /* reason code */

if (CompCode == MQCC_FAILED)
{
printf(″MQCONN ended with reason code %ld\n″ , CReason);
exit((int)CReason);

}
/**/

 /* Use parameter as the name of the target queue */
 /**/

strncpy(od.ObjectName, argv[1], (size_t)MQ_Q_NAME_LENGTH);
printf(″target queue is %s\n″ , od.ObjectName);

/**/
 /* Open the target message queue for output */
 /**/

O_options = MQOO_OUTPUT /* open queue for output */
+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */

MQOPEN(Hcon, /* connection handle */
&od, /* object descriptor for queue */
O_options, /* open options */
&Hobj, /* object handle */
&OpenCode, /* MQOPEN completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE)
printf(″MQOPEN ended with reason code %ld\n″ , Reason);

if (OpenCode == MQCC_FAILED)
printf(″unable to open queue for output\n″) ;

/**/
 /* Read lines from the file and put them to the message queue */
 /* Loop until null line or end of file, or there is a failure */
 /**/

CompCode = OpenCode; /* use MQOPEN result for initial test */
fp = stdin;

memcpy(md.Format, /* character string format */
MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

218 MQSeries Version 5 Programming Examples

Exercise 7: PUT_SEG2.C

 md.Version = MQMD_VERSION_2 ;

/**/
 /* Set the MsgFlag to show this message is a segment */
 /**/
md.MsgFlags = MQMF_SEGMENT ;

 /**/
 /* This says to retrieve the messages in logical order */
 /* Without this option segments are retrieved in physical order */
 /**/
pmo.Options = MQPMO_LOGICAL_ORDER ;

while (CompCode != MQCC_FAILED)
{
if (fgets(buffer, sizeof(buffer), fp) != NULL)
{
buflen = strlen(buffer); /* length without null */
if (buffer[buflen-1] == ′ \n′) /* last char is a new-line */
{
buffer[buflen-1] = ′ \0′ ; /* replace new-line with null */
--buflen; /* reduce buffer length */

}
}
else buflen = 0; /* treat EOF same as null line */

/**/
/* */
/* Put each buffer to the message queue */
/* */
/**/
if (buflen > 0)
{
memcpy(md.MsgId, /* reset MsgId to get a new one */

MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, /* reset CorrelId to get a new one */

MQCI_NONE, sizeof(md.CorrelId));

MQPUT(Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&pmo, /* default options (datagram) */
buflen, /* buffer length */
buffer, /* message buffer */
&CompCode, /* completion code */
&Reason); /* reason code */

Appendix C. Message Segmenting Examples 219

Exercise 7: PUT_SEG2.C

if (Reason != MQRC_NONE)
printf(″MQPUT ended with reason code %ld\n″ , Reason);

}
else
{

 /**/
 /* We add one last (empty) segment with the last_segment */
 /* specified in the message descriptor */
 /**/

md.MsgFlags = MQMF_LAST_SEGMENT ; /* indicate the LAST */

memcpy(md.MsgId, /* reset MsgId to get a new one */
MQMI_NONE, sizeof(md.MsgId));

memcpy(md.CorrelId, /* reset CorrelId to get a new one */
MQCI_NONE, sizeof(md.CorrelId));

MQPUT(Hcon, /* connection handle */
 Hobj, /* object handle */

&md, /* message descriptor */
 &pmo, /* default options (datagram) */

0, /* ????? buffer length */
buffer, /* message buffer */
&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE)
printf(″MQPUT ended with reason code %ld\n″ , Reason);

CompCode = MQCC_FAILED; /* satisfy end condition when empty line is read */
}

}
/**/

 /* Close the target queue (if it was opened) */
 /**/

if (OpenCode != MQCC_FAILED)
{
C_options = 0; /* no close options */
MQCLOSE(Hcon, /* connection handle */

&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE)
printf(″MQCLOSE ended with reason code %ld\n″ , Reason);

}
/**/

220 MQSeries Version 5 Programming Examples

Exercise 7: PUT_SEG2.C

 /* Disconnect from MQM if not already connected */
 /**/

if (CReason != MQRC_ALREADY_CONNECTED)
{
MQDISC(&Hcon, /* connection handle */

&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE)
printf(″MQDISC ended with reason code %ld\n″ , Reason);

}

/**/
/* */
/* END OF PUT_SEG2 */
/* */
/**/
printf(″Sample PUT_SEG2 end\n″) ;
return(0);

 }

Appendix C. Message Segmenting Examples 221

Exercise 7: PUT_SEG2.C

222 MQSeries Version 5 Programming Examples

Exercise 8: PUT_GRP1.C

Appendix D. Message Grouping Examples

This appendix lists the two programs used in Exercise 8 to explain message groups.

• PUT_GRP1.C (a modification of amqsput0.c) demonstrates how to put messages in a
group.

• BCG_GRP1.C (a modification of amqsbcg0.c) shows how to ensure that no message is
retrieved until all messages in a group are present.

D.1 Source of PUT_GRP1

/**/
 /* Program name: put_grp1 */
 /* Description: Sample C program that puts messages to */
 /* a message queue (example using MQPUT) */
 /* Statement: Licensed Materials - Property of IBM */
 /* (C) Copyright IBM Corp. 1994, 1997 */
 /* Function: */
 /* put_grp1 is a sample C program to put messages on a message */
 /* queue, and is an example of the use of MQPUT. */
 /* Changed to PUT grouped messages */
 /**/
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <cmqc.h>

 int main(int argc, char **argv)
 {

FILE *fp;

MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
MQHCONN Hcon; /* connection handle */

 MQHOBJ Hobj; /* object handle */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */
 MQLONG CompCode; /* completion code */
 MQLONG OpenCode; /* MQOPEN completion code */
 MQLONG Reason; /* reason code */
 MQLONG CReason; /* reason code for MQCONN */
 MQLONG buflen; /* buffer length */

char buffer[100]; /* message buffer */
char QMName[50]; /* queue manager name */

 Copyright IBM Corp. 1998 223

Exercise 8: PUT_GRP1.C

printf(″Sample put_grp1 start\n″) ;
if (argc < 2)
{
printf(″Required parameter missing - queue name\n″) ;
exit(99);

}
/**/

 /* Connect to queue manager */
 /**/

QMName[0] = 0; /* default */
if (argc > 2)
strcpy(QMName, argv[2]);

MQCONN(QMName, /* queue manager */
&Hcon, /* connection handle */
&CompCode, /* completion code */
&CReason); /* reason code */

/* report reason and stop if it failed */
if (CompCode == MQCC_FAILED)
{
printf(″MQCONN ended with reason code %ld\n″ , CReason);
exit((int)CReason);

}
/**/

 /* Use parameter as the name of the target queue */
 /**/

strncpy(od.ObjectName, argv[1], (size_t)MQ_Q_NAME_LENGTH);
printf(″target queue is %s\n″ , od.ObjectName);

/**/
 /* Open the target message queue for output */
 /**/

O_options = MQOO_OUTPUT /* open queue for output */
+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */

MQOPEN(Hcon, /* connection handle */
&od, /* object descriptor for queue */
O_options, /* open options */
&Hobj, /* object handle */
&OpenCode, /* MQOPEN completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE)
printf(″MQOPEN ended with reason code %ld\n″ , Reason);

if (OpenCode == MQCC_FAILED)
printf(″unable to open queue for output\n″) ;

224 MQSeries Version 5 Programming Examples

Exercise 8: PUT_GRP1.C

/**/
 /* Read lines from the file and put them to the message queue */
 /* Loop until null line or end of file, or there is a failure */
 /**/

CompCode = OpenCode; /* use MQOPEN result for initial test */
fp = stdin;
memcpy(md.Format, /* character string format */

MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

/**/
 /* We will use MQ API Version 2 function */
 /**/
md.Version = MQMD_VERSION_2 ;
/**/

 /* Tell the queue manager that the messages that follow are */
 /* part of a group */
 /**/
md.MsgFlags = MQMF_MSG_IN_GROUP ;
/**/

 /* Tell the queue manager that the messages that follow are */
 /* to be kept in sequence within the group. */
 /**/
pmo.Options = MQPMO_LOGICAL_ORDER ;

while (CompCode != MQCC_FAILED)
{
if (fgets(buffer, sizeof(buffer), fp) != NULL)
{
buflen = strlen(buffer); /* length without null */
if (buffer[buflen-1] == ′ \n′) /* last char is a new-line */
{
buffer[buflen-1] = ′ \0′ ; /* replace new-line with null */
--buflen; /* reduce buffer length */

}
}
else buflen = 0; /* treat EOF same as null line */

/**/
/* Put each buffer to the message queue */
/**/
if (buflen > 0)
{
memcpy(md.MsgId, /* reset MsgId to get a new one */

MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, /* reset CorrelId to get a new one */

MQCI_NONE, sizeof(md.CorrelId));

Appendix D. Message Grouping Examples 225

Exercise 8: PUT_GRP1.C

MQPUT(Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&pmo, /* default options (datagram) */
buflen, /* buffer length */
buffer, /* message buffer */
&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE)
printf(″MQPUT ended with reason code %ld\n″ , Reason);

}
else
{

/**/
 /* Put out one last (empty) message to end the group */
 /**/

md.MsgFlags = MQMF_LAST_MSG_IN_GROUP ;

memcpy(md.MsgId, /* reset MsgId to get a new one */
MQMI_NONE, sizeof(md.MsgId));

memcpy(md.CorrelId, /* reset CorrelId to get a new one */
MQCI_NONE, sizeof(md.CorrelId));

MQPUT(Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&pmo, /* default options (datagram) */
0, /* ????? buffer length */
buffer, /* message buffer */
&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
printf(″MQPUT ended with reason code %ld\n″ , Reason);

}
CompCode = MQCC_FAILED; /* satisfy end condition when empty line is read */

}
}

226 MQSeries Version 5 Programming Examples

Exercise 8: PUT_GRP1.C

/**/
 /* Close the target queue (if it was opened) */
 /**/

if (OpenCode != MQCC_FAILED)
{
C_options = 0; /* no close options */
MQCLOSE(Hcon, /* connection handle */

&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
printf(″MQCLOSE ended with reason code %ld\n″ , Reason);

}
}
/**/

 /* Disconnect from MQM if not already connected */
 /**/

if (CReason != MQRC_ALREADY_CONNECTED)
{
MQDISC(&Hcon, /* connection handle */

&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
printf(″MQDISC ended with reason code %ld\n″ , Reason);

}
}
/**/
/* END OF put_grp1 */
/**/
printf(″Sample put_grp1 end\n″) ;
return(0);

 }

Appendix D. Message Grouping Examples 227

Exercise 8: BCG_GRP1.C

D.2 Source of BCG_GRP1

/**/
/* Program name: bcg_grp1 */
/* Description : Sample program to read and output both the */
/* message descriptor fields and the message content */
/* of all the messages on a queue */
/* Statement: Licensed Materials - Property of IBM */
/* (C) Copyright IBM Corp. 1994, 1997 */
/* */
/* Changed to browse message groups */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#include <locale.h>
#include <cmqc.h>

#define CHARS_PER_LINE 16 /* Used in formatting the message */
#define BUFFERLENGTH 32767 /* Max length of message accepted */

/**/
/* Function name: printMD */
/* Description: Prints the name of each field in the message */
/* descriptor together with it′ s contents in the */
/* appropriate format viz: */
/* integers as a number (%d) */
/* binary fields as a series of hex digits (%02X) */
/* character fields as characters (%s) */
/**/
void printMD(MQMD *MDin)
{

int i;
printf(″\n****Message descriptor****\n″) ;
printf(″\n StrucId : ′%.4s′ ″ , MDin->StrucId);
printf(″ Version : %d″ , MDin->Version);
printf(″\n Report : %d″ , MDin->Report);
printf(″ MsgType : %d″ , MDin->MsgType);
printf(″\n Expiry : %d″ , MDin->Expiry);
printf(″ Feedback : %d″ , MDin->Feedback);
printf(″\n Encoding : %d″ , MDin->Encoding);
printf(″ CodedCharSetId : %d″ , MDin->CodedCharSetId);
printf(″\n Format : ′%.*s′ ″ , MQ_FORMAT_LENGTH, MDin->Format);
printf(″\n Priority : %d″ , MDin->Priority);
printf(″ Persistence : %d″ , MDin->Persistence);
printf(″\n MsgId : X′ ″) ;

228 MQSeries Version 5 Programming Examples

Exercise 8: BCG_GRP1.C

for (i = 0 ; i < MQ_MSG_ID_LENGTH ; i++)
printf(″%02X″ ,MDin->MsgId[i]);

printf(″ ′ ″) ;
printf(″\n CorrelId : X′ ″) ;

for (i = 0 ; i < MQ_CORREL_ID_LENGTH ; i++)
printf(″%02X″ ,MDin->CorrelId[i]);

printf(″ ′ ″) ;
printf(″\n BackoutCount : %d″ , MDin->BackoutCount);
printf(″\n ReplyToQ : ′%.*s′ ″ , MQ_Q_NAME_LENGTH,

MDin->ReplyToQ);
printf(″\n ReplyToQMgr : ′%.*s′ ″ , MQ_Q_MGR_NAME_LENGTH,

MDin->ReplyToQMgr);
printf(″\n ** Identity Context″) ;
printf(″\n UserIdentifier : ′%.*s′ ″ , MQ_USER_ID_LENGTH,

MDin->UserIdentifier);
printf(″\n AccountingToken : \n X′ ″) ;

for (i = 0 ; i < MQ_ACCOUNTING_TOKEN_LENGTH ; i++)
printf(″%02X″ ,MDin->AccountingToken[i]);

printf(″ ′ ″) ;
printf(″\n ApplIdentityData : ′%.*s′ ″ , MQ_APPL_IDENTITY_DATA_LENGTH,

MDin->ApplIdentityData);
printf(″\n ** Origin Context″) ;
printf(″\n PutApplType : ′%d′ ″ , MDin->PutApplType);
printf(″\n PutApplName : ′%.*s′ ″ , MQ_PUT_APPL_NAME_LENGTH,

MDin->PutApplName);
printf(″\n PutDate : ′%.*s′ ″ , MQ_PUT_DATE_LENGTH, MDin->PutDate);
printf(″ PutTime : ′%.*s′ ″ , MQ_PUT_TIME_LENGTH, MDin->PutTime);
printf(″\n ApplOriginData : ′%.*s′ \n″ , MQ_APPL_ORIGIN_DATA_LENGTH,

MDin->ApplOriginData);
printf(″\n GroupId : X′ ″) ;

for (i = 0 ; i < MQ_GROUP_ID_LENGTH ; i++)
printf(″%02X″ ,MDin->GroupId[i]);

printf(″ ′ ″) ;
printf(″\n MsgSeqNumber : ′%d′ ″ , MDin->MsgSeqNumber);
printf(″\n Offset : ′%d′ ″ , MDin->Offset);
printf(″\n MsgFlags : ′%d′ ″ , MDin->MsgFlags);
printf(″\n OriginalLength : ′%d′ ″ , MDin->OriginalLength);

} /* end printMD */

Appendix D. Message Grouping Examples 229

Exercise 8: BCG_GRP1.C

/**/
/* Function name: main */
/* Description: Connects to the queue manager, opens the queue, */
/* then gets each message from the queue in a loop */
/* until an error occurs. The message descriptor */
/* and message content are output to stdout for */
/* each message. Any errors are output to stdout */
/* and the program terminates. */
/**/
int main(int argc, char *argv[])
{
/* */
/* variable declaration and initialisation */
int i = 0; /* loop counter */
int j = 0; /* another loop counter */

/* variables for MQCONN ******/
 MQCHAR QMmgrName[MQ_Q_MGR_NAME_LENGTH];
MQHCONN Hconn = 0;

 MQLONG CompCode,Reason,OpenCompCode;

/* variables for MQOPEN ******/
 MQCHAR Queue[MQ_Q_NAME_LENGTH];
MQOD ObjDesc = { MQOD_DEFAULT };

 MQLONG OpenOptions;
 MQHOBJ Hobj = 0;

/* variables for MQGET ******/
MQMD MsgDesc = { MQMD_DEFAULT };
PMQMD pmdin ;
MQGMO GetMsgOpts = { MQGMO_DEFAULT };

 PMQGMO pgmoin;
 PMQBYTE Buffer;
 MQLONG BufferLength = BUFFERLENGTH;
 MQLONG DataLength;

/* variables for message formatting *****/
 int ch;
 int overrun; /* used on MBCS characters */
 int mbcsmax; /* used for MBCS characters */
 int char_len; /* used for MBCS characters */
char line_text[CHARS_PER_LINE + 4];

 int chars_this_line = 0;
 int lines_printed = 0;
 int page_number = 1;

230 MQSeries Version 5 Programming Examples

Exercise 8: BCG_GRP1.C

/* Use a version 2 MQMD in case the */
/* message is Segmented/Grouped */
/* */
MsgDesc.Version = MQMD_VERSION_2 ;

/* */
/* Initialise storage */

 pmdin = malloc(sizeof(MQMD));
pgmoin = malloc(sizeof(MQGMO));
Buffer = malloc(BUFFERLENGTH);

/* determine locale for MBCS handling */
/* */

 setlocale(LC_ALL,″″) ; /* for mbcs charactersets */
mbcsmax = MB_CUR_MAX; /* for mbcs charactersets */

/* Handle the arguments passed */
/* */
printf(″\nbcg_grp1 - starts here\n″) ;

 printf(″**********************\n ″) ;

if (argc < 2)
{
printf(″Required parameter missing - queue name\n″) ;
printf(″\n Usage: %s QName [QMgrName]\n″ ,argv[0]);
return 4 ;

}
/**/
/* Connect to queue manager */
/**/
QMmgrName[0] = ′ \0′ ;
if (argc > 2)
strcpy(QMmgrName, argv[2]);

strncpy(Queue,argv[1],MQ_Q_NAME_LENGTH);

MQCONN(QMmgrName,
&Hconn,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{
printf(″\n MQCONN failed with CompCode:%d, Reason:%d″ ,

CompCode,Reason);
return (CompCode);

}

Appendix D. Message Grouping Examples 231

Exercise 8: BCG_GRP1.C

/* Set the options for the open call */
/* */
OpenOptions = MQOO_BROWSE;

/* @@@@ Use this for destructive read */
/* instead of the above. */
/* OpenOptions = MQOO_INPUT_SHARED; */
/* */
strncpy(ObjDesc.ObjectName, Queue, MQ_Q_NAME_LENGTH);

printf(″\n MQOPEN - ′%.*s′ ″ , MQ_Q_NAME_LENGTH,Queue);
MQOPEN(Hconn,

&ObjDesc,
OpenOptions,
&Hobj,
&OpenCompCode,
&Reason);

if (OpenCompCode != MQCC_OK)
{
printf(″\n MQOPEN failed with CompCode:%d, Reason:%d″ ,

OpenCompCode,Reason);

printf(″\n MQDISC″) ;

MQDISC(&Hconn,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
printf(″\n failed with CompCode:%d, Reason:%d″ ,

CompCode,Reason);
return (OpenCompCode);

}
printf(″\n ″) ;
/* */
/* Set the options for the get calls */
/* */
GetMsgOpts.Options = MQGMO_NO_WAIT ;

/* @@@@ Comment out the next line for */
/* destructive read */
GetMsgOpts.Options += MQGMO_BROWSE_NEXT ;

232 MQSeries Version 5 Programming Examples

Exercise 8: BCG_GRP1.C

/**/
/* Use MQ API Version 2 Function */
/**/
GetMsgOpts.Version = MQGMO_VERSION_2 ;

/**/
/* Create a sequence number for ALL messages */
/**/
GetMsgOpts.Options += MQGMO_LOGICAL_ORDER ;
/* */
/* Loop until MQGET unsuccessful */
/* */
for (j = 1; CompCode == MQCC_OK; j++)

{
/* */
/* Set up the output format of the report */
/* */
if (page_number == 1)
{
lines_printed = 29;
page_number = -1;

}
else
{
printf(″\n ″) ;
lines_printed = 22;

}
/**/
/* Set ALL_MSGS_AVAILABLE for the FIRST message only */
/**/

if (j == 1)
GetMsgOpts.Options += MQGMO_ALL_MSGS_AVAILABLE ;

/* */
/* Reset the message descriptor to the required */
/* defaults and initialize the buffer to blanks */
/* */
pmdin = memcpy(pmdin, &MsgDesc, sizeof(MQMD));
pgmoin = memcpy(pgmoin, &GetMsgOpts, sizeof(MQGMO));
memset(Buffer,′ ′ , BUFFERLENGTH);

MQGET(Hconn,
Hobj,
pmdin,
pgmoin,
BufferLength,
Buffer,
&DataLength,

Appendix D. Message Grouping Examples 233

Exercise 8: BCG_GRP1.C

&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{
if (Reason != MQRC_NO_MSG_AVAILABLE)
{
printf(″\n MQGET %d, failed with CompCode:%d Reason:%d″ ,

j,CompCode,Reason);
}
else
{
printf(″\n \n \n No more messages ″) ;

}
}
else
{
/* Print the message */
/* */
printf(″\n ″) ;
printf(″\n MQGET of message number %d ″ , j);
/* */
/* first the Message Descriptor */
printMD(pmdin);

/* */
/* then dump the Message */
/* */
printf(″\n ″) ;
printf(″\n**** Message ****\n ″) ;
Buffer[DataLength] = ′ \0′ ;
printf(″\n length - %d bytes\n ″ , DataLength);
ch = 0;
overrun = 0;
do
{
chars_this_line = 0;
printf(″\n%08X: ″ ,ch);
for (;overrun>0; overrun--) /* for MBCS overruns */
{
printf(″ ″) ; /* dummy space for characters */
line_text[chars_this_line] = ′ ′ ;

/* included in previous line */
chars_this_line++;
if (overrun % 2)
printf(″ ″) ;

}
while ((chars_this_line < CHARS_PER_LINE) &&

234 MQSeries Version 5 Programming Examples

Exercise 8: BCG_GRP1.C

(ch < DataLength))
{
char_len = mblen((char *)&Buffer[ch],mbcsmax);
if (char_len < 1) /* badly formed mbcs character */
char_len = 1; /* or NULL treated as sbcs */

if (char_len > 1)
{ /* mbcs case, assumes mbcs are all printable */
for (;char_len >0;char_len--)
{
if ((chars_this_line % 2 == 0) &&

(chars_this_line < CHARS_PER_LINE))
printf(″ ″) ;

printf(″%02X″ ,Buffer[ch]);
line_text[chars_this_line] = Buffer[ch];
chars_this_line++;
ch++;

}
}
else
{ /* sbcs case */
if (chars_this_line % 2 == 0)
printf(″ ″) ;

printf(″%02X″ ,Buffer[ch]);
line_text[chars_this_line] =

isprint(Buffer[ch]) ? Buffer[ch] : ′ . ′ ;
chars_this_line++;
ch++;

}
}

/* has an mbcs character overun the usual end? */
if (chars_this_line > CHARS_PER_LINE)

overrun = chars_this_line - CHARS_PER_LINE;

/* pad with blanks to format the last line correctly */
if (chars_this_line < CHARS_PER_LINE)
{
for (;chars_this_line < CHARS_PER_LINE;

chars_this_line++)
{
if (chars_this_line % 2 == 0) printf(″ ″) ;
printf(″ ″) ;
line_text[chars_this_line] = ′ ′ ;

}
}

/* leave extra space between colums if MBCS characters possible */
for (i=0;i < ((mbcsmax - overrun - 1) *2);i++)

Appendix D. Message Grouping Examples 235

Exercise 8: BCG_GRP1.C

{
printf(″ ″) ; /* prints space between hex represention and character */

}

line_text[chars_this_line] = ′ \0′ ;
printf(″ ′%s′ ″ , line_text);
lines_printed += 1;
if (lines_printed >= 60)
{
lines_printed = 0;
printf(″\n ″) ;

}
}
while (ch < DataLength);

} /* end of message received ′ else′ */

} /* end of for loop */

printf(″\n MQCLOSE″) ;
MQCLOSE(Hconn,

&Hobj,
MQCO_NONE,
&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{
printf(″\n failed with CompCode:%d, Reason:%d″ ,

CompCode,Reason);
return (CompCode);

}

printf(″\n MQDISC″) ;
MQDISC(&Hconn,

&CompCode,
&Reason);

if (CompCode != MQCC_OK)
{
printf(″\n failed with CompCode:%d, Reason:%d″ , CompCode,Reason);
return (CompCode);

}
return(0);

}

236 MQSeries Version 5 Programming Examples

Exercise 12: PUTREF.C

Appendix E. Reference Message Example

This appendix lists the two programs used in Exercise 12.

• PUTREF.C creates and sends the reference message.

• GETREF.C reads the reference message and file.

E.1 Source of PUTREF

/**/
/* */
 /* PUTREF: Put a Reference Message */
 /* */
 /**/
 #include <stdio.h>
 #include <stddef.h>
 #include <stdlib.h>
 #include <string.h>
 #include <ctype.h>
 #include <cmqc.h>
 /**/
 /* Constants */
 /**/
 #define MAX_FILENAME_LENGTH 256

 /**/
 /* typedefs */
 /**/
 typedef struct tagMQRMHX{

MQRMH ref;
MQCHAR SrcName[MAX_FILENAME_LENGTH];
MQCHAR DestName[MAX_FILENAME_LENGTH];

 } MQRMHX;
 MQRMHX refx = {{MQRMH_DEFAULT}}; /* reference message */
/**/
/* MQ Variables */
/**/
MQHCONN Hcon; /* connection handle */
char QMName[MQ_Q_MGR_NAME_LENGTH+1] = ″″ ; /* queue manager name */

 MQLONG CC; /* completion code */
 MQLONG Reason; /* reason code */
MQOD od = {MQOD_DEFAULT}; /* object descriptor */

 MQHOBJ Hobj = MQHO_UNUSABLE_HOBJ; /* object handle */
MQMD md = {MQMD_DEFAULT}; /* message descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options*/

 Copyright IBM Corp. 1998 237

Exercise 12: PUTREF.C

/**/
/* Program Variables */
/**/
 MQLONG QMgrCCSID = -1; /* QMgr CCSID */
 char infile[MAX_FILENAME_LENGTH+1];
 char outfile[MAX_FILENAME_LENGTH+1];
/**/
 /* Fields for MQINQ */
 /**/
 MQLONG flags;
 MQLONG Selectors[4];
 MQLONG IntArray[2];
 MQCHAR CharArray[100];
char BLANK48[MQ_Q_MGR_NAME_LENGTH+1] = ″″ ;

 /**/
 /* */
 /* Program */
 /* */
 /**/
 int main(int argc, char **argv)
 {

printf(″Start PUTREF\n″) ;
strcpy (infile,″c:\\test\\dw.fil″) ;
strcpy (outfile,″c:\\test\\dw1.txt″) ;
printf(″Input=%s, output=%s\n″ , infile, outfile);

/**/
 /* Connect to queue manager */
 /**/

MQCONN(QMName, /* queue manager */
&Hcon, /* connection handle */
&CC,&Reason); /* completion and reason codes */

if (CC == MQCC_FAILED) {
printf(″MQCONN ended with reason code %d\n″ , Reason);
return(1);

}
/**/

 /* Use MQINQ to get queue manager′ s name and CCSID */
 /**/
 memcpy(od.ObjectQMgrName,BLANK48,MQ_Q_MGR_NAME_LENGTH);

flags = MQOO_INQUIRE;
od.ObjectType =MQOT_Q_MGR;
MQOPEN(Hcon, /* connection handle */

&od, /* object descriptor */
flags, /* inquiry flags */
&Hobj, /* object handle */
&CC,&Reason); /* completion and reason codes */

238 MQSeries Version 5 Programming Examples

Exercise 12: PUTREF.C

if (CC == MQCC_FAILED) {
printf(″MQOPEN queue manager ended with reason code %d\n″ ,Reason);
goto PGM_DISC;

}
Selectors[0] = MQIA_CODED_CHAR_SET_ID;
Selectors[1] = MQCA_Q_MGR_NAME;
MQINQ(Hcon, Hobj,

2L, /* number of selectors */
Selectors, /* selector array */
1L, /* number of integer selectors */
IntArray, /* integer attributes */
48L, /* length of character attributes */
CharArray, /* character attributes */
&CC,&Reason); /* completion and reason codes */

if (CC == MQCC_FAILED) {
printf(″MQINQ failed with reason code %d\n″ , Reason);

}
else {

QMgrCCSID = IntArray[0];
memcpy(QMName,CharArray,MQ_Q_MGR_NAME_LENGTH);
printf (″CCSID=%ld QMGR=%s<\n″ ,QMgrCCSID, QMName);

}

MQCLOSE(Hcon, &Hobj, MQCO_NONE, &CC, &Reason);
if (CC == MQCC_FAILED) {

printf(″MQCLOSE after MQINQ failed with %d\n″ , Reason);
goto PGM_DISC;

}
if (QMgrCCSID == -1) goto PGM_DISC;

/**/
 /* Build the reference message */
 /**/
 refx.ref.StrucLength = sizeof(refx);
 refx.ref.Encoding = MQENC_NATIVE;

refx.ref.CodedCharSetId = QMgrCCSID;
refx.ref.Flags = MQRMHF_LAST;
memcpy(refx.ref.Format, MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

memcpy(refx.ref.ObjectType,″FLATFILE″ ,sizeof(refx.ref.ObjectType));

memset(refx.SrcName,′ ′ , sizeof(refx.SrcName)+sizeof(refx.DestName));

memcpy(refx.SrcName,infile,strlen(infile));
memcpy(refx.DestName,outfile,strlen(outfile));

refx.ref.SrcNameLength = strlen(infile);
refx.ref.SrcNameOffset = offsetof(MQRMHX,SrcName);

Appendix E. Reference Message Example 239

Exercise 12: PUTREF.C

refx.ref.DestNameLength = strlen(outfile);
refx.ref.DestNameOffset = offsetof(MQRMHX,DestName);
/**/

 /* Put reference message on queue */
 /**/

/**/
/* Set up object descriptor, pmo, and message header */
/**/

od.ObjectType = MQOT_Q;

strncpy(od.ObjectName, ″REFMSG″ , sizeof(od.ObjectName));

strncpy(od.ObjectQMgrName, ″QMGR2″ , sizeof(od.ObjectQMgrName));

pmo.Options = MQPMO_FAIL_IF_QUIESCING;

memcpy(md.Format,MQFMT_REF_MSG_HEADER,(size_t)MQ_FORMAT_LENGTH);

md.MsgType = MQMT_DATAGRAM;
/**/
/* Use MQPUT1 to put the message to the xmitq */
/**/

MQPUT1(Hcon, /* connection handle */
&od, /* object descriptor for queue */
&md, /* message descriptor */
&pmo, /* options */
sizeof(refx), /* buffer length */
&refx, /* buffer */
&CC, &Reason); /* completion and reason codes */

if (Reason != MQRC_NONE)
printf(″MQPUT1 ended with reason code %d\n″ , Reason);

/**/
 /* Disconnect from queue manager and end program */
 /**/
PGM_DISC:

MQDISC(&Hcon, /* connection handle */
&CC,&Reason); /* completion and reason codes */

if (Reason != MQRC_NONE) {
printf(″MQDISC ended with reason code %d\n″ , Reason);

}
printf(″End of PUTMSG\n″) ;
return(0);

 }

240 MQSeries Version 5 Programming Examples

Exercise 12: GETREF.C

E.2 Source of GETREF

/**/
/* */
 /* GETREF: Get a Reference Message */
 /* */
 /**/
 #include <stdio.h>
 #include <stdlib.h>
 #include <stddef.h>
 #include <string.h>
 #include <ctype.h>
 #include <cmqc.h>
 /**/
 /* Variables */
 /**/

MQHCONN Hcon; /* connection handle */
 MQHOBJ Hobj; /* object handle */
 MQLONG CC = MQCC_OK; /* completion code */
 MQLONG Reason; /* reason code */
 MQLONG CompCode = MQCC_OK; /* completion code */
 MQLONG oo; /* MQOPEN options */

MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
char Buffer[1000];

 MQLONG DataLen; /* length of message */
 char Filename[256];

FILE *File; /* file structure */
 MQRMH *pMQRMH; /* Pointer to MQRMH structure */

char *pObjectName; /* Object name */
char ObjectType[sizeof(MQCHAR8)+1];
/**/
/* */
/* Program */
/* */
/**/

 int main(int argc, char **argv)
 {

printf(″Start GETREF\n″) ;

/**/
 /* Connect to queue manager QMGR2 */
 /**/

MQCONN(″QMGR2″ , /* queue manager */
&Hcon, /* connection handle */
&CC, &Reason); /* completion and reason codes */

if (CC == MQCC_FAILED) {

Appendix E. Reference Message Example 241

Exercise 12: GETREF.C

printf(″MQCONN ended with %d\n″ , Reason);
return(1);

}
/**/
/* Open the queue REFMSG */
/**/
strncpy(od.ObjectName,″REFMSG″ , (size_t)MQ_Q_NAME_LENGTH);
oo = MQOO_FAIL_IF_QUIESCING +

MQOO_INPUT_AS_Q_DEF;

MQOPEN(Hcon /* connection handle */
,&od /* object descriptor for queue */
,oo /* options */
,&Hobj /* object handle */
,&CC, &Reason);

if (CC == MQCC_FAILED) {
printf(″MQOPEN ended with %d\n″ ,Reason);
goto PGM_DISC;

}
/**/
/* Get one message from the queue */
/**/
gmo.Options = MQGMO_WAIT +

MQGMO_CONVERT +
MQGMO_ACCEPT_TRUNCATED_MSG;

gmo.WaitInterval = 5000; /* 5 seconds wait interval */

memcpy(md.MsgId,MQMI_NONE,sizeof(md.MsgId));
memcpy(md.CorrelId,MQCI_NONE,sizeof(md.CorrelId));

md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;
printf(″Wait up to 5 seconds...\n″) ;
MQGET(Hcon,Hobj, /* connection and queue handle */

&md, /* message descriptor */
&gmo, /* get options */
sizeof(Buffer), /* buffer size */
&Buffer, /* buffer address */
&DataLen, /* data length (output) */
&CC,&Reason);

if (CC == MQCC_FAILED) {
if (Reason == MQRC_NO_MSG_AVAILABLE)

printf(″No message available\n″) ;
else

printf(″MQGET failed with %d\n″ , Reason);
goto PGM_CLOSE;

242 MQSeries Version 5 Programming Examples

Exercise 12: GETREF.C

}

if (memcmp(md.Format,MQFMT_REF_MSG_HEADER,(size_t)MQ_FORMAT_LENGTH))
{

printf(″Not a reference message, format=%s\n″ ,md.Format);
goto PGM_CLOSE;

}

pMQRMH = (MQRMH*)&Buffer; /* overlay MQRMH on MQGET buffer */

/**/
/* Extract fully qualified name from MQRMH structure. */
/**/

pObjectName = (char*)&Buffer + pMQRMH -> DestNameOffset;
memset(Filename,0,sizeof(Filename));
strncpy(Filename,pObjectName,

((size_t)(pMQRMH->DestNameLength) >= sizeof(Filename))
? (size_t)(sizeof(Filename) -1)
: (size_t)(pMQRMH -> DestNameLength));

/**/
/* Extract object type from MQRMH structure */
/**/

memset(ObjectType,0,sizeof(ObjectType));
strncpy(ObjectType,pMQRMH->ObjectType,sizeof(pMQRMH->ObjectType));

/**/
/* Check if file exists */
/**/

File = fopen(Filename,″r″) ;

if (File == NULL) {
printf(″File %s of type %s could not be found\n″ ,

Filename,ObjectType);
}
else {

printf(″File name is %.48s\n″ ,Filename,ObjectType);
fclose(File);

}
/**/
/* Close the queue */
/**/

PGM_CLOSE:
MQCLOSE(Hcon,&Hobj,MQCO_NONE, &CC, &Reason);

if (CC == MQCC_FAILED)
printf(″MQCLOSE ended with %d\n″ , Reason);

Appendix E. Reference Message Example 243

Exercise 12: GETREF.C

/**/
 /* Disconnect from queue manager and end the program */
 /**/
PGM_DISC:

MQDISC(&Hcon,&CC, &Reason);

if (CC == MQCC_FAILED)
printf(″MQDISC ended with %d\n″ , Reason);

printf(″GETREF ends\n″) ;
return (0);

 }

244 MQSeries Version 5 Programming Examples

Exercise 13: DISTL.C

Appendix F. Distribution List Example

/*--*/
/* */
 /* Program Name : Distl.c */
 /* */
 /*--*/

/* ---
Include Header Files.
--- */

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <cmqc.h> /* includes for MQI */

/* ---
Constant value definitions
--- */

#define DIST_LIST_LENGTH 10
#define MAX_NAME_LENGTH 40

/* ---
Function Prototypes
--- */

static int ReadDistList(void);
static void print_usage(void);
static void print_responses(char * comment

, PMQRR pRR
, MQLONG NumQueues
, PMQOR pOR);

/* ---
Global variable definitions.
--- */

static struct ObjectInfoType{ /* struct to hold the queue and */
char ObjName[MAX_NAME_LENGTH]; /* the queue manager name */
char ObjQMgrName[MAX_NAME_LENGTH];

};

struct ObjectInfoType DistList[DIST_LIST_LENGTH];
/* array to hold the dist. list */

/*--*/
/* This function is to read the target queue and queue manager */
/* names from the distlist.txt file and place them into the array */
/*--*/

 Copyright IBM Corp. 1998 245

Exercise 13: DISTL.C

static int ReadDistList()
{
int i=0;
FILE *dl; /* Distribution List */

if (NULL == (dl = fopen(″DistList.txt″ , ″r″)))
printf(″\n Unable to open the data file !!″) ;

else
{
while (!feof(dl)) {
fgets(DistList[i].ObjName,MAX_NAME_LENGTH,dl);
DistList[i].ObjName[strlen(DistList[i].ObjName)-1] = ′ \0′ ;

fgets(DistList[i].ObjQMgrName,MAX_NAME_LENGTH,dl);
DistList[i].ObjQMgrName[strlen(DistList[i].ObjQMgrName)-1] = ′ \0′ ;
i += 1;

}
i -= 1;
fclose(dl);

}

return(i);
}
/* ---

Main C function
--- */

 int main(int argc, char **argv)
 {

typedef enum {False, True} Bool;

 /* Declare file and character for sample input */
 FILE *fp;

 /* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
/** note, the program uses defaults where it can **/

MQHCONN Hcon; /* connection handle */
 MQHOBJ Hobj; /* object handle */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */
 MQLONG CompCode; /* completion code */
 MQLONG OpenCode; /* MQOPEN completion code */
 MQLONG Reason; /* reason code */
 MQLONG buflen; /* buffer length */

char buffer[100]; /* message buffer */

246 MQSeries Version 5 Programming Examples

Exercise 13: DISTL.C

 MQLONG Index ; /* Index into list of queues */
 MQLONG NumQueues ; /* Number of queues */

PMQRR pRR=NULL; /* Pointer to response records */
PMQOR pOR=NULL; /* Pointer to object records */
Bool DisconnectRequired=False;/* Already connected switch */
Bool Connected=False; /* Connect succeeded switch */

/*--*/
/* The use of Put Message Records (PMR′ s) allows some message */
/* attributes to be specified on a per destination basis. These */
/* attributes then override the values in the MD for a particular */
/* destination. */
/* The function provided by this program does not require */
/* the use of PMR′ s but they are used by the program simply to */
/* demonstrate their use. */
/* The program chooses to provide values for MsgId and CorrelId */
/* on a per destination basis. */
/*--*/
typedef struct
{
MQBYTE24 MsgId;
MQBYTE24 CorrelId;
} PutMsgRec, *pPutMsgRec;
pPutMsgRec pPMR=NULL; /* Pointer to put msg records */

/*--*/
/* The PutMsgRecFields in the PMO indicates what fields are in */
/* the array addressed by PutMsgRecPtr in the PMO. */
/* In our example we have provided the MsgId and CorrelId and so */
/* we must set the corresponding MQPMRF_... bits. */
/*--*/
MQLONG PutMsgRecFields=MQPMRF_MSG_ID] MQPMRF_CORREL_ID;

/* Read the targer queues from the text file. */
/* Number of Queue/QueueMgr name pairs */

NumQueues = ReadDistList();

/*--*/
 /* Allocate response records, object records and put message */
 /* records. (new MQSeries structures) */
 /*--*/

pRR = (PMQRR)malloc(NumQueues * sizeof(MQRR));
pOR = (PMQOR)malloc(NumQueues * sizeof(MQOR));
pPMR = (pPutMsgRec)malloc(NumQueues * sizeof(PutMsgRec));

Appendix F. Distribution List Example 247

Exercise 13: DISTL.C

if((NULL == pRR)]] (NULL == pOR)]] (NULL == pPMR))
{
printf(″%s(%d) malloc failed\n″, __FILE__, __LINE__);
exit(99);

}
/*--*/
/* */

 /* Copy the queue list into the MQOR structure */
 /* */
 /*--*/

for(Index = 0 ; Index < NumQueues ; Index ++)
{
strncpy((pOR+Index)->ObjectName

, DistList[Index].ObjName
, (size_t)MQ_Q_NAME_LENGTH);

strncpy((pOR+Index)->ObjectQMgrName
, DistList[Index].ObjQMgrName
, (size_t)MQ_Q_MGR_NAME_LENGTH);

}
/*--*/

 /* Connect to queue manager */
 /* */
 /* Try to connect to the queue manager associated with the */
 /* first queue, if that fails then try each of the other */
 /* queue managers in turn. */
 /* */
 /*--*/

for(Index = 0 ; Index < NumQueues ; Index ++)
{
MQCONN((pOR+Index)->ObjectQMgrName, /* queue manager */

&Hcon, /* connection handle */
&((pRR+Index)->CompCode),/* completion code */
&((pRR+Index)->Reason)); /* reason code */

if ((pRR+Index)->CompCode == MQCC_FAILED)
{
continue;

}
if ((pRR+Index)->CompCode == MQCC_OK)
{
DisconnectRequired = True ;

}
Connected = True;
break ;

}
/*--*/
/* Print any non zero responses */
/*--*/

248 MQSeries Version 5 Programming Examples

Exercise 13: DISTL.C

print_responses(″MQCONN″ , pRR, Index, pOR);

/*--*/
/* If we failed to connect to any queue manager then exit. */
/*--*/
if(False == Connected)
{
printf(″unable to connect to any queue manager\n″) ;
exit(99) ;

}
/*--*/
/* */

 /* Open the target message queue for output */
 /* */
 /*--*/

od.Version = MQOD_VERSION_2 ;
od.RecsPresent = NumQueues ; /* number of object/resp recs */
od.ObjectRecPtr = pOR; /* address of object records */
od.ResponseRecPtr = pRR ; /* Number of object records */
O_options = MQOO_OUTPUT /* open queue for output */

+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
MQOPEN(Hcon, /* connection handle */

&od, /* object descriptor for queue */
O_options, /* open options */
&Hobj, /* object handle */
&OpenCode, /* MQOPEN completion code */
&Reason); /* reason code */

/*--*/
/* report reason(s) if any; stop if failed. */
/* */
/* Note: The reasons in the response records are only valid if */
/* the MQI Reason is MQRC_MULTIPLE_REASONS. If any other */
/* reason is reported then all destinations in the list */
/* completed/failed with the same reason. */
/* If the MQI CompCode is MQCC_FAILED then all of the */
/* destinations in the list failed to open. If some */
/* destinations opened and others failed to open then */
/* the response will be set to MQCC_WARNING. */
/* */
/*--*/
if (Reason == MQRC_MULTIPLE_REASONS)
{
print_responses(″MQOPEN″ , pRR, NumQueues, pOR);

}
else
{
if (Reason != MQRC_NONE)

Appendix F. Distribution List Example 249

Exercise 13: DISTL.C

{
printf(″MQOPEN returned CompCode=%ld, Reason=%ld\n″

, OpenCode
, Reason);

}
}

if (OpenCode == MQCC_FAILED)
{
printf(″unable to open any queue for output\n″) ;

}
/*--*/
/* */

 /* Read lines from the file and put them to the message queue */
 /* Loop until null line or end of file, or there is a failure */
 /* */
 /*--*/

CompCode = OpenCode; /* use MQOPEN result for initial test */

fp = stdin;

pmo.Version = MQPMO_VERSION_2 ;
pmo.RecsPresent = NumQueues ;
pmo.PutMsgRecPtr = pPMR ;
pmo.PutMsgRecFields = PutMsgRecFields ;
pmo.ResponseRecPtr = pRR ;
while (CompCode != MQCC_FAILED)
{
if (fgets(buffer, sizeof(buffer), fp) != NULL)
{
buflen = strlen(buffer); /* length without null */
if (buffer[buflen-1] == ′ \n′) /* last char is a new-line */
{
buffer[buflen-1] = ′ \0′ ; /* replace new-line with null */
--buflen; /* reduce buffer length */

}
}
else buflen = 0; /* treat EOF same as null line */
/*--*/
/* */
/* Put each buffer to the message queue */
/* */
/*--*/
if (buflen > 0)
{
for(Index = 0 ; Index < NumQueues ; Index ++)
{
memcpy((pPMR+Index)->MsgId

250 MQSeries Version 5 Programming Examples

Exercise 13: DISTL.C

, MQMI_NONE
, sizeof((pPMR+Index)->MsgId));

memcpy((pPMR+Index)->CorrelId
, MQCI_NONE
, sizeof((pPMR+Index)->CorrelId));

}
memcpy(md.Format, /* character string format */

MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);
MQPUT(Hcon, /* connection handle */

Hobj, /* object handle */
&md, /* message descriptor */
&pmo, /* default options (datagram) */
buflen, /* buffer length */
buffer, /* message buffer */
&CompCode, /* completion code */
&Reason); /* reason code */

/*--*/
/* report reason(s) if any; stop if failed. */
/*--*/

if (Reason == MQRC_MULTIPLE_REASONS)
{
print_responses(″MQPUT″ , pRR, NumQueues, pOR);

}
else
{
if (Reason != MQRC_NONE)
{
printf(″MQPUT returned CompCode=%ld, Reason=%ld\n″

, OpenCode
, Reason);

}
}

}
else /* satisfy end condition when empty line is read */
CompCode = MQCC_FAILED;

}
/*--*/
/* */

 /* Close the target queue (if it was opened) */
 /* */
 /*--*/

if (OpenCode != MQCC_FAILED)
{
C_options = 0; /* no close options */
MQCLOSE(Hcon, /* connection handle */

&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */

Appendix F. Distribution List Example 251

Exercise 13: DISTL.C

&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
printf(″MQCLOSE ended with reason code %ld\n″ , Reason);

}
}
/*--*/
/* */

 /* Disconnect from MQM if not already connected */
 /* */
 /*--*/
 if (DisconnectRequired==True)
 {

MQDISC(&Hcon, /* connection handle */
&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
printf(″MQDISC ended with reason code %ld\n″ , Reason);

}
}
/*--*/
/* */
/* END OF PROGRAM */
/* */
/*--*/
if(NULL != pOR)
{
free(pOR) ;

}
if(NULL != pRR)
{
free(pRR) ;

}
if(NULL != pPMR)
{
free(pPMR) ;

}
return(0);

 }
/*--*/
/* */
/* Function: Print MQI responses from the ResponseRecord array. */
/* */

252 MQSeries Version 5 Programming Examples

Exercise 13: DISTL.C

/* Notes: This function is typically called when a reason of */
/* MQRC_MULTIPLE_REASONS is received. */
/* The reasons relate to the queue at the equivalent */
/* ordinal position in the MQOR array. */
/*--*/
static void print_responses(char * comment

, PMQRR pRR
, MQLONG NumQueues
, PMQOR pOR)

{
MQLONG Index;
for(Index = 0 ; Index < NumQueues ; Index ++)
{
if(MQCC_OK != (pRR+Index)->CompCode)
{
printf(″%s for %.48s(%.48s) returned CompCode=%ld, Reason=%ld\n″

, comment
, (pOR+Index)->ObjectName
, (pOR+Index)->ObjectQMgrName
, (pRR+Index)->CompCode
, (pRR+Index)->Reason);

}
}

}

Appendix F. Distribution List Example 253

Exercise 13: DISTL.C

254 MQSeries Version 5 Programming Examples

Exercise 14: CONNX.C

Appendix G. Fastpath Bindings Example

/*--*/
/* */
 /* Program name: CONNX.C */
 /* */
 /*--*/
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <time.h>
 #include <cmqc.h>

 int main(int argc, char **argv)
 {
 /* Declare MQI structures needed */

MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */

MQHCONN Hcon; /* connection handle */
 MQHOBJ Hobj; /* object handle */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */
 MQLONG CompCode; /* completion code */
 MQLONG OpenCode; /* MQOPEN completion code */
 MQLONG Reason; /* reason code */
 MQLONG CReason; /* reason code for MQCONN */
 MQLONG buflen; /* buffer length */

char buffer[100]; /* message buffer */
char QMName[50]; /* queue manager name */

int NumOfMsgs;
int Count;

 double Time1, Time2, Timediff;
 char Str[5];

MQCNO ConnectOpt; /* Options to control the CONNX */

/*--*/
/* */

 /* Try to get the number of messages to be put */
 /* */
 /*--*/

if (argc == 2)
{
NumOfMsgs = atoi(argv[1]);

 Copyright IBM Corp. 1998 255

Exercise 14: CONNX.C

QMName[0] = 0;
}
else if (argc == 3)
{
NumOfMsgs = atoi(argv[1]);
strcpy (QMName, argv[2]);

}
else {
printf(″\nInvalid number of Parameters″) ;
printf(″\nUsage : <Program Name> <Number of Msgs> [QMgrName]″) ;
exit(99);

}
/*--*/
/* */

 /* Connect to queue manager */
 /* */
 /*--*/

 strcpy(ConnectOpt.StrucId, MQCNO_STRUC_ID);
ConnectOpt.Version = MQCNO_VERSION_1;
ConnectOpt.Options = MQCNO_FASTPATH_BINDING ;

MQCONNX(QMName, /* queue manager */
&ConnectOpt,
&Hcon, /* connection handle */
&CompCode, /* completion code */
&CReason); /* reason code */

/* report reason and stop if it failed */
if (CompCode == MQCC_FAILED)
{
printf(″MQCONN ended with reason code %ld\n″ , CReason);
exit((int)CReason);

}

/*--*/
/* */

 /* Specify the target output queue */
 /* */
 /*--*/

strncpy(od.ObjectName, ″INPUT.QUEUE″ , (size_t)MQ_Q_NAME_LENGTH);
printf(″Target queue is %s\n″ , od.ObjectName);

/*--*/
/* */

 /* Open the target message queue for output */
 /* */
 /*--*/

256 MQSeries Version 5 Programming Examples

Exercise 14: CONNX.C

O_options = MQOO_OUTPUT /* open queue for output */
+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */

MQOPEN(Hcon, /* connection handle */
&od, /* object descriptor for queue */
O_options, /* open options */
&Hobj, /* object handle */
&OpenCode, /* MQOPEN completion code */
&Reason); /* reason code */

/* report reason, if any; stop if failed */
if (Reason != MQRC_NONE)
{
printf(″MQOPEN ended with reason code %ld\n″ , Reason);

}

if (OpenCode == MQCC_FAILED)
{
printf(″unable to open queue for output\n″) ;

}

CompCode = OpenCode; /* use MQOPEN result for initial test */

memcpy(md.Format, /* character string format */
MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

strcpy(buffer, ″This is a test message.″) ;
buflen = strlen(buffer); /* length without null */

/*--*/
/* */
/* Setting the time before doing the MQPUT messages */
/* */
/*--*/
Time1 = (double) clock();
Time1 = Time1/CLOCKS_PER_SEC;

for (Count=1; Count<=NumOfMsgs; Count++)
{
/*--*/
/* */
/* Trying to put n number of messages on the queue */
/* */
/*--*/

memcpy(md.MsgId, /* reset MsgId to get a new one */
MQMI_NONE, sizeof(md.MsgId));

Appendix G. Fastpath Bindings Example 257

Exercise 14: CONNX.C

memcpy(md.CorrelId, /* reset CorrelId to get a new one */
MQCI_NONE, sizeof(md.CorrelId));

MQPUT(Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&pmo, /* default options (datagram) */
buflen, /* buffer length */
buffer, /* message buffer */

 &CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
printf(″MQPUT ended with reason code %ld\n″ , Reason);

}
}
/*--*/
/* */
/* Getting the time after doing n MQPUT */
/* */
/*--*/
Time2 = (double) clock();
Time2 = Time2/CLOCKS_PER_SEC;

Timediff = Time2-Time1;
printf(″\nThe elapsed time = %f seconds.″ , Timediff);

/*--*/
/* */

 /* Close the target queue (if it was opened) */
 /* */
 /*--*/

if (OpenCode != MQCC_FAILED)
{
C_options = 0; /* no close options */
MQCLOSE(Hcon, /* connection handle */

&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
printf(″MQCLOSE ended with reason code %ld\n″ , Reason);

}

258 MQSeries Version 5 Programming Examples

Exercise 14: CONNX.C

}
/*--*/
/* */

 /* Disconnect from MQM if not already connected */
 /* */
 /*--*/

if (CReason != MQRC_ALREADY_CONNECTED)
{
MQDISC(&Hcon, /* connection handle */

&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
printf(″MQDISC ended with reason code %ld\n″ , Reason);

}
}
return(0);

 }

Appendix G. Fastpath Bindings Example 259

Exercise 14: CONNX.C

260 MQSeries Version 5 Programming Examples

Appendix H. Diskette Contents

The diskette contains the examples developed in this book. Table 32 lists
the directories and the file names.

Table 32 (Page 1 of 3). Files on Diskette

File name Description

\dbsetup 2.5, “Exercise 1: Setup for XA Coordination” on page 27

data.sql Data to populate the databases

db.sql Create databases (NT)

dbcreate.sql Create databases (AIX)

dbdrop.sql Drop the databases

db2swit.c XA switch source code

db2swit.def XA switch definition

db2swit.dll XA switch for NT (4096 bytes)

grant.sql Grant database access to other users

select.sql Look at the contents of the database tables

tbldrop.sql Drop the tables in the databases

util.c From \SQLLIB\samples\c

util.h From \SQLLIB\samples\c

xa.h XA switch header

xaswit.mak Make file XA switch for MS compiler

xaswiti.mak Make file XA switch for IBM compiler

\DBex1 2.7, “Exercise 2: Using One XA Resource” on page 40

amqsxas0.sqc Source for database update program

util.obj Object file for NT

qm.ini Sample qm.ini with one XA resource stanza

ibmmake.bat Make file for IBM compiler

msmake.bat Make fi le for Microsoft compiler

amqsxas0.sh Shell for compile under AIX

amqsxas0.mak Make file for compile under AIX

\DBex2 2.8, “Exercise 3: Understanding Backout” on page 50

amqsxas1.sqc Source file for database update program

util.obj Object file for NT

 Copyright IBM Corp. 1998 261

Table 32 (Page 2 of 3). Files on Diskette

File name Description

ibmmake.bat Make file for IBM compiler

msmake.bat Make fi le for Microsoft compiler

amqsxas1.sh Shell for compile under AIX

amqsxas1.mak Make file for compile under AIX

\DBex3 2.9, “Exercise 4: Using Two XA Resources” on page 58

amqsxab0.sqc Contains routines to access MQBankDB

amqsxaf0.sqc Contains routines to access MQFeeDB

amqsxag0.c Main program

amqsxag0.exe Executable

amqsxag0.mak Make file for AIX

amqsxag0.sh Shell file for AIX

ibmmake.bat Compile the SQC files with IBM compiler (NT)

ibmmake2.bat Compile and link C file with IBM compiler (NT)

msmake.bat Compile the SQC files with MS compiler (NT)

msmake2.bat Compile and link C file with MS compiler (NT)

select.sql SQL file to view databases

util.obj Object file for NT

\DBex4 2.10, “Exercise 5: Configuration Issues” on page 63

amqsxas2.sqc Source code

ibmmake.bat Build executable with IBM compiler for NT

msmake.bat Build executable with MS compiler for NT

util.obj Object file for NT

\Exer1 3.4, “Exercise 6: Arbitrary Segmentation” on page 75

bcg_seg1.c Program demonstrating arbitrary segmentation

big.c Program that creates a ′very large fi le ′

put_seg1.c Program that reassembles a logical message

\Exer2 3.5, “Exercise 7: Application Segmentation” on page 82

bcg_seg2.c Program demonstrating application segmentation

\Exer3 4.4, “Exercise 8: Putting Message Groups” on page 92

put_grp1.c Program that puts messages in a group

bcg_grp1.c Program that reads messages of a group after all messages of
the group have arrived

262 MQSeries Version 5 Programming Examples

Table 32 (Page 3 of 3). Files on Diskette

File name Description

\Secu 5.4, “Exercise 9: Remote Administration in One Machine” on page 107

qmgr1.in Objects for queue manager QMGR1

qmgr2.in Objects for queue manager QMGR2

startup1.cmd Startup commands for QMGR1

startup2.cmd Startup commands for QMGR2

\Refmsg 6.3, “Exercise 12: Building a Reference Message” on page 126

dw.fil The file to be transmitted

getref.c Program that gets the reference message

getref.exe Executable

putref.c Program that builds and sends the reference message

putref.exe Executable

qmgr1.in Objects for queue manager QMGR1

qmgr2.in Objects for queue manager QMGR2

\Distl 7.6, “Exercise 13: Distribution List” on page 150

distl.c Program that uses a distribution list

distlist.txt File that contain the distribution list

distl.tst Queue definitions

\Connx 8.1, “Exercise 14: Using Fastpath Bindings” on page 160

conn.c Program that measures time using standard bindings

conn.exe Executable

connx.c Program that measures time using fastpath bindings

connx.exe Executable

Appendix H. Diskette Contents 263

264 MQSeries Version 5 Programming Examples

Appendix I. Special Notices

This publication is intended to help application programmers to use the
functions provided with the MQSeries Version 5 products. The information
in this publication is not intended as the specification of any programming
interfaces that are provided by MQSeries for OS/2 Version 5, MQSeries for
AIX Version 5 and MQSeries for Windows NT Version 5. See the
PUBLICATIONS section of the IBM Programming Announcement for
MQSeries Version 5 for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM ′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk,
NY 10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the
mutual use of the information which has been exchanged, should contact
IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee

 Copyright IBM Corp. 1998 265

that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at
their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely
coincidental.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

ADSTAR AIX
AS/400 CICS
DB2 DB2 Connect
DB2 Universal Database DRDA
FFST IBM
MQ MQSeries
MVS MVS/ESA
OS/2 VisualAge

266 MQSeries Version 5 Programming Examples

Other company, product, and service names may be trademarks or
service marks of others.

Appendix I. Special Notices 267

268 MQSeries Version 5 Programming Examples

Appendix J. Related Publications

The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this redbook.

J.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 271.

• MQSeries Backup and Recovery, SG24-5222

• Using MQSeries on the AS/400, SG24-5236

• Connecting the Enterprise to the Internet with MQSeries and VisualAge
for Java, SG24-2144

• Examples of Using the TME 10 Module for MQSeries, SG24-2134

• MQSeries for Windows Version 2.1 in a Mobile Environment, SG24-2103

• Application Developoment with VisualAge for Smalltalk and MQSeries,
SG24-2117

• Internet Application Development with MQSeries and Java, SG24-4896

• Examples of Using MQSeries on WWW, SG24-4882

J.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037

J.3 Other Publications

These publications are also relevant as further information sources:

• MQSeries Application Programming Guide, SC33-0807

 Copyright IBM Corp. 1998 269

• MQSeries Application Programming Reference, SC33-1673

• MQSeries Command Reference, SC33-1369

• MQSeries System Administration, SC33-1873

270 MQSeries Version 5 Programming Examples

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The
latest information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

• PUBORDER — to order hardcopies in the United States

• Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLCAT REDPRINT
TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

• REDBOOKS Category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be
published this way. The intent is to get the information out much quicker than the formal
publishing process allows.

 Copyright IBM Corp. 1998 271

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• Online Orders — send orders to:

• Telephone Orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

• On the World Wide Web

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be
published this way. The intent is to get the information out much quicker than the formal
publishing process allows.

I B M M A I L Internet
In United States: usib6fpl at ibmmail us ib6fp l@ibmmai l .com

In Canada: caibmbkz at ibmmai l lmannix@vnet . ibm.com

Outside North America: dk ibmbsh at ibmmai l bookshop@dk. ibm.com

United States (toll free) 1-800-879-2755

Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)

(+45) 4810-1320 - Danish

(+45) 4810-1420 - Dutch

(+45) 4810-1540 - English

(+45) 4810-1670 - Finnish

(+45) 4810-1220 - French

(+45) 4810-1020 - German

(+45) 4810-1620 - Ital ian

(+45) 4810-1270 - Norwegian

(+45) 4810-1120 - Spanish

(+45) 4810-1170 - Swedish

I B M Publ icat ions

Publications Customer Support

P.O. Box 29570

Raleigh, NC 27626-0570

USA

I B M Publ icat ions

144-4th Avenue, S.W.

Calgary, Alberta T2P 3N5

Canada

IBM Direct Services

Sortemosevej 21

DK-3450 Allerød

Denmark

United States (toll free) 1-800-445-9269

Canada 1-403-267-4455

Outside North America (+45) 48 14 2207 (long distance charge)

Index # 4421 Abstracts of new redbooks

Index # 4422 IBM redbooks

Index # 4420 Redbooks for last six months

Redbooks Web Site ht tp : / /www.redbooks. ibm.com/

IBM Direct Publ icat ions Catalog ht tp : / /www.e l ink . ibml ink . ibm.com/pbl /pb l

272 MQSeries Version 5 Programming Examples

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 273

274 MQSeries Version 5 Programming Examples

Index

Numerics
2033 67, 69, 70, 71
2055 67
2121 10, 25
2122 10, 47
2123 10
2124 10
2128 10
2134 10
2243 70
2244 70

A
administrat ion 4, 103
AIX 1, 15

installation 16
qm.ini 62

all segments available 71
alternate user authority 106
AMQ08101 116
AMQ0XAS0 24
AMQ7604 25, 46
AMQ7605 25
AMQ7606 26
AMQ7607 26
AMQ7625 25
AMQ8003 46
amqsgbr 84
amqsgrm 120
amqsprm 120
amqsprm parameters 124
AMQSPUT 61
AMQSXAB0 24
AMQSXAF0 24
AMQSXAS0 24, 47
amqsxrm 120
AMQXSAG0 24
application interface 5
application programmin samples
application programming samples 23

amqsgrm 120

application programming samples (continued)
amqsprm 120
AMQSXAG0 58
AMQSXAS0 40
AMQSXAS1 50
AMQSXAS2 63
amqsxrm 120
configuration issues 63
database coordination 24
distribution list 150
objectives 26
reference message 120, 126
setup for XA coordination 27
understanding backout 50
using one XA resource 40
using two XA resources 58

application progrmming samples
mult i threading 169

application segmentation 66, 68
example 82

arbitrary segmentation 66
example 75

automatic startup 108

B
backout 48, 50
backout count 51, 55

check 56
backout requeue 51
backout threshold 51
BCG_GRP1 94
BCG_SEG1.C 92
begin options 10, 54
bibl iography 269
build file 42
build reference message 130

C
C compilers 15
CCSID 70, 127, 129, 132

 Copyright IBM Corp. 1998 275

CHAD 4
channel auto definition 4
channel exit 6, 122

mult iple 125
channel exit chaining 125
CHECKERR 55
clear queue 115
clients and DB2 11
COA 121
code examples

backout count 56
build reference message 130
create large file 74
create MQOR 153
create MQPMR 154
database connect 60
declare cursor 54
declare database 54
define reference message 127
display response record 157
measure t ime 162
MQBEGIN 54
MQCONNX 162
MQGET unlimited wait 55
MQINQ queue manager 129
open qmgr for inquiry 127
open target queues 155
put distribution list 156
read distribution list fi le 152
resource managers 62
send reference message 131
update database 55

command line processor 35
command server 106
command window 35
commit 37, 48

backout 37
global UOW 8

competion codes
2033 69

compile
amqsxas0 on AIX 43
amqsxas0 on NT 41
amqsxas1 56
mult i threaded 166
programs using two XA resources 61
UTIL.C 35

compile (continued)
XA switch file 31

complete message 67, 69, 76
completion code

2033 70
2243 70
2244 70

completion codes
2033 67, 71
2055 67
2121 10, 25
2122 10, 46
2123 10
2124 10
2128 10
2134 10

configure
database 11, 63
database managers 12
distribution list 149
multiple databases 11
Service Control Manager 109

confirm on arrival 121
connect options 161
control panel 109
conversion exit 6
correlation ID 132
create database 29
create large file 74
create queue 27
create switch file 31

D
data conversion 67
database

cl ient/server 11
configuration 11
configure 63
connect 36
create 29
define to MQ 45
drop database 37
drop table 36
example 26
grant access 30
heterogeneous 12

276 MQSeries Version 5 Programming Examples

database (continued)
hints 35
homogeneous 12
lookup information 36
monitor 37, 48
MQBankDB 26
MQFeeDB 26
mult iple 11
populate 30
select 36
update mult iple 58
used in examples 26

database coordination 7
database director 37
database manager 25

becomes unavailable 25
database resource manager 1
database security 15
DB2 11

client 11
command environment 28
command line processor 35
command window 35
database director 37
does not start 46
download 18
environment 28
installation 15
not started 46
performance details 39
script files 28
snapshot monitor 38

db2start 27, 36, 47
db2stop 28, 46
db2swit.c 13
db2swit.dll 14
DCE security 5
default port 107
default queue manager 16
define reference message 127
diskette contents 261
DISTL attribute 149
distribution list 2, 141

code 152
configuration 149
create MQOR 153
create MQPRM 154

distribution list (continued)
display response record. 157
error handling 147
example 150
late fan out 148
open target queues 155
put messages 156
read file 152
structures 142

drop database 37
drop table 36
dspmqtrn 25

E
encoding 70, 129, 132
encryption 6
enhancements 3
environment sett ings 16
error log 10, 25
event 9004 110
exercises

application segmentation 82
arbitrary segmentation 75
configuration issues 63
message group 92
mult i threading 169
reference message 126
remote administrat ion

domain 115
one machine 107
workgroup 111

setup for XA coordination 27
understanding backout 50
using one XA resource 40
using two XA resources 58

exit chaining 125
exit program 122

F
fastpath bindings 159, 160

G
get individual segments 70

Index 277

GETREF 132
global unit of work 8, 9
grant access to database 30
group ID 70
group name 22
grouped segmented messages 91

H
heterogeneous database 12
hints (database) 35
homogeneous database 12
HP-UNIX 1
HTML publications 5

I
IBMMQSERIES 110
in doubt 11, 25
in doubt transactions 25
inconsistent CCSIDs 70
install DB2 15
installation 4

hints for AIX 16
hints for Windows NT 15

Internet Gateway 5
Internet support 5
IPPROCS 110

J
Java 5, 168

L
large file 74
large messages 2
last segment 69, 80
late fan out 141, 148
local unit of work 8
lock 71
locked records 25
logical message 65
logical order 68, 69, 71
lookup information in database 36
loopback address 108

M
make file

SQC (AIX) 44
SQC (IBM C) 42
SQC (Microsoft C) 42
XA switch 33

match group ID 72
match offset 72
maximum message length 66
MAXMSGL 66
MD version 70
measure t ime 162
message

authentication 5
exit 122
flags 86
groups 2, 89
header 73
length 65
scenario for group 90
segment 65
segmentation 2, 65
sequence number 80, 86

message ID 132
message in group 90
mixed outcome 10
mixed unit of work 9
monitor database 37, 48
MQBACK 7, 9, 10
MQBankDB 26
MQBEGIN 8, 10, 24

example 54
MQBINDTYPE 160
MQBO_DEFAULT 10
MQCCSI_Q_MGR 132
MQCLOSE

distribution list 145
MQCMIT 7, 10, 24
MQCNO structure 161
MQCONN

scope 167
MQCONNX 159

example 162
MQDISC 9, 10
MQENC_NATIVE 129, 132

278 MQSeries Version 5 Programming Examples

MQFeeDB 26
MQFMT_STRING. 130
MQGET 8
MQGMO_ACCEPT_TRUNCATED_MSG 67
MQGMO_ALL_MSGS_AVAILABLE 91
MQGMO_COMPLETE_MSG 67
MQGMO_CONVERT 131, 132
MQGMO_LOCK 71
MQGMO_LOGICAL_ORDER 91
MQI extensions 145
MQINQ 128
MQMAX.DLL 15
MQMD structure 73
MQMD_VERSION_2 66
MQMF_LAST_SEGMENT 68
MQMF_SEGMENT 68
MQMF_SEGMENTATION_ALLOWED 66
MQOD

Version 2 structure 147
MQOPEN

distribution list 145
for MQINQ 127

MQOR 142
structure 143

MQPMO
Version 2 structure 146

MQPMO_LOGICAL_ORDER 68
MQPMO_NEW_CORREL_ID 76
MQPMO_NEW_MSG_ID 76
MQPMR 142

structure 144
MQPUT 8

distribution list 145
MQPUT1 8, 131

distribution list 145
MQRMH

structure 136
MQRR 142

structure 143
MQSeries 1

Bindings for Java 5
Client for Java 5
mult i threading 165

msgexit 122
 multiple database samples 24

mult iple databases 11
multiple destinations 141
mult iple exits 125
mult iple reasons 148, 155
mult i threading 165

N
net start 111
net stop 110
new functions 1
no message available 71
not authorized 113
number of databases 11

O
object descriptor 147
object type 122, 125
objective

database examples 26
offset 80, 86
old programs 72
operational considerations 25
Oracle 11
oraswit.c 13
original length 80, 86
OS/2 1
OS/2 Warp 15
outcome of UOW 10

P
participant not available 47
performance 3, 141, 150, 159, 163
performance details 39
physical message 65
platforms 1
populate database 30
port 107
POSIX 166
problem determination 6
process definition 3
program logic

AMQSXAG0 (two XA Resources) 59
AMQSXAS0 (one XA Resource) 40
AMQSXAS1 (one XA Resource) 50

Index 279

program logic (continued)
database coordination 23
MQSeries sample programs 24

PUT_GRP1 92
PUT_SEG1.C 92
PUTREF 126

Q
qm.ini 13, 45, 62, 160

AIX 62
Windows NT 62

queue manager 25

R
reference message 3, 119

a simple example 126
definition (C) 127
definitions 122
header 135
object type 125
running the sample 123
sample programs 120

remote administrat ion 103
basics 105

resolve in doubt transactions 25
resource coordination 7
resource coordinator 7
resource manager 7
resource manager stanza 13
rsvmqtrn 25

S
scmmqm 109
security 103

database 15
reference message 120

security improvements 104
segmentation 65

get individual segments 70
put back together 80
scenario 69

segmentation allowed 66, 70
select (database) 36

selector 128
send reference message 131
Service Control Manager 103, 109
setup for XA coordination 27
shell file

for DB2 on AIX 43
signal handler 169
signals 168
single database samples 24
snapshot monitor 38
software 15
SPX 3
SQL

declare section 54
open 55
select 54

SQL API 8
SQL command files 36

create databases 29
drop database tables 37
grant access 31
populate databases 30
view database contents 36

SQL CONNECT 24
SQL cursor 24
SQL1063N 47
standard bindings 159
stanza 13
start

command line processor 28
DB2 27

state of participants 25
strmqcsv 106
strmqm 46
structure version 65
Sun Solaris 1
syncpoint option 8
system segmentation 66

T
task list 160
TCP/IP

loopback 108
port 108

thread safe 165

280 MQSeries Version 5 Programming Examples

ThreadOfControl 14, 45, 46, 62
threads 165
TP_MON_NAME 15
transaction coordination 7
transaction coordinator 1
triggering rules 3
truncated message 67
two-phase commit 7

U
unit of work 8
unlimited wait 55
user (fastpath bindings) 160
user ID 15, 106
using SQL command files 36
UTIL.C 34

V
version (structures) 65
version 2 2, 66, 145
version 5 1
very large fi le 74

W
Windows NT 1, 15

DB2 environment 28
installation 15
qm.ini 62

X
XA coordination

setup 27
XA resource

using one 40
using two 58

XA resource coordinator 7
XA resource manager 7
XA switch 12

create 31
make file 33

XA-compliant 7
XAOpenString 13

XAResourceManager stanza 13
AIX example 45, 62
example 14
NT example 45, 62

xatm 13

Index 281

282 MQSeries Version 5 Programming Examples

ITSO Redbook Evaluation

MQSeries Version 5 Programming Examples
SG24-5214-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
__Customer __Business Partner __Solution Developer __IBM employee
__None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1998 283

S
G

2
4

-5
2

1
4

-0
0

P
rin

te
d

in
 t

he
 U

.S
.A

.

MQSeries Version 5 Programming Examples SG24-5214-00

IB
M

L

	UNKNOWN
	MQSeries Version 5
	Programming Examples

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. About MQSeries Version 5
	Important New Functions of MQSeries Version 5
	Database Resource Manager
	Transaction Coordinator
	Distribution Lists
	Handling Large Messages
	SPX Support
	Enhancement of Existing Functions
	Performance
	Change in Triggering Rules
	Data Conversion and Exits
	Channels
	Enhancement of Product Installation and Administration
	Product Installation
	Product Administration
	4 Enhancement of Application Interface Development
	5 Internet Support
	Enhancement of DCE Security
	Message Authentication
	Message Encryption
	Channel Exits and Data Conversion Exits
	7 Enhancement of Problem Determination
	8 Integration in IBM Software Server Product Package
	Integration in IBM Suite NT Product Package

	Chapter 2. Transaction Coordination
	1 Units of Work
	Local Unit of Work
	Global Unit of Work
	Mixing Units of Work
	The MQBEGIN Verb
	Outcome of a Unit of Work
	2 Database Configuration
	Multiple Databases
	Configuring Database Managers
	3 Software
	Installation Hints for Windows NT
	Installation Hints for AIX
	4 Application Programming Samples
	Operational Considerations
	The Databases
	Objectives of the Examples
	Exercise 1: Setup for XA Coordination
	Creating a Queue for the Examples
	Starting DB2
	The DB2 Environment on Windows NT
	Creating the Databases
	Populating the Databases
	Grant Database Access to Other Users
	Creating the XA Switch File
	You Need UTIL. C from DB2
	Hints for Working with the Databases
	Open a DB2 Command Window on Windows NT
	Using SQL Command Files
	Lookup Information in a Database
	Drop a Table
	Drop a Database
	Monitor Database Connections on Windows NT
	Exercise 2: Using One XA Resource
	Building an Executable for Windows NT
	Building an Executable for AIX
	Define the Database to MQSeries
	What Happens when MQSeries Starts but not DB2
	Executing the Sample Program
	Monitoring Database Transactions
	Exercise 3: Understanding Backout
	Information about Backout
	Program Logic
	Writing the Sample Program
	Compiling the Sample Program
	Executing the Sample Program
	Exercise 4: Using Two XA Resources
	Program Logic
	Creating the Executable
	Testing the Program
	Exercise 5: Configuration Issues

	Chapter 3. Message Segmentation
	1 System and Application Segmentation
	Arbitrary Segmentation
	Application Segmentation
	What about Existing Programs
	2 About the Message Segmenting Examples
	3 A Program to Create a Very Large File
	Exercise 6: Arbitrary Segmentation
	Writing a Program for Arbitrary Segmentation
	Writing a Program that Reads Logical Messages
	Compiling the Programs
	Creating a Queue
	Testing Arbitrary Segmentation
	Putting Segments Back Together
	Exercise 7: Application Segmentation
	Writing a Program for Application Segmentation
	Creating a Queue
	Testing Application Segmentation
	Putting Segments Back Together

	Chapter 4. Message Groups
	1 A Simple Grouped Message Scenario
	2 A Scenario for Grouped Segmented Messages
	3 About the Message Grouping Example
	Exercise 8: Putting Message Groups
	Writing a Program that Puts Messages in a Group
	Writing a Program that Gets Messages of a Group
	Compile the Programs
	Creating a Queue for Exercise 8
	Putting Messages in a Group
	Getting Messages of a Group
	Summary

	Chapter 5. Remote Administration and Windows NT Security
	MQSeries Security Background
	Security Improvements
	Remote Administration Basics
	Exercise 9: Remote Administration in One Machine
	Enable The Local Default Queue Manager
	Creating The Second Queue Manager
	Enable Automatic Startup
	Test It Out
	Remove the Second Queue Manager
	Exercise 10: Remote Administration in a Workgroup
	Exercise 11: Remote Administration in a Domain
	7 Summary

	Chapter 6. Reference Message
	Security Issues
	2 The Sample Programs
	Program Logic for the PUT Program
	Program Logic for the GET Program
	Definitions for the Sample Programs
	Running the Sample Programs
	More Object Types
	3 Exercise 12: Building a Reference Message
	Writing the PUTREF Program
	Writing the GETREF Program
	Compiling and Testing
	4 The Reference Message

	Chapter 7. Distribution Lists
	1 Structures that Support Distribution Lists
	2 MQI Extensions to Support Distribution Lists
	3 Error Handling
	4 Late Fan Out
	Configuration
	6 Exercise 13: Distribution List
	Program Logic
	Setup for Distribution List Example
	Writing a Distribution List Program
	Executing the Distribution List Example

	Chapter 8. FastPath Bindings
	Exercise 14: Using Fastpath Bindings
	Program Logic
	The MQCNO Structure
	Writing the Program
	Comparing Standard and Fastpath Bindings

	Chapter 9. Multithreading
	1 MQSeries Support
	2 The Scope of MQCONN
	Signals
	Exercise 15: A Multithreaded Program

	Appendix A. Example Using One XA Resource
	Appendix B. Example Using Two XA Resources
	B. 1 Main Program AMQSXAG0. C (Modified)
	B. 2 AMQSXAB0. SQC Source Code
	B. 3 Make Files for IBM Compiler
	B. 4 Make Files for Microsoft Compiler
	B. 5 Make Files for AIX

	Appendix C. Message Segmenting Examples
	C. 1 PUT_ SEG1 Performing Arbitrary Segmenting
	C. 2 BCG_ SEG1 Browsing only Logical Messages
	C. 3 PUT_ SEG2 Performing Application Segmenting

	Appendix D. Message Grouping Examples
	D. 1 Source of PUT_ GRP1
	D. 2 Source of BCG_ GRP1

	Appendix E. Reference Message Example
	E.1 Source of PUTREF
	E.2 Source of GETREF

	Appendix F. Distribution List Example
	Appendix G. Fastpath Bindings Example
	Appendix H. Diskette Contents
	Appendix I. Special Notices
	Appendix J. Related Publications
	J.1 International Technical Support Organization Publications
	J.2 Redbooks on CD- ROMs
	J.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Index
	ITSO Redbook Evaluation

