
IBML

GPFS: A Parallel File System

Jason Barkes, Marcelo R. Barrios, Francis Cougard, Paul G. Crumley,
Didac Marin, Hari Reddy, Theeraphong Thitayanun

International Technical Support Organization

http://www.redbooks.ibm.com

This book was printed at 240 dpi (dots per inch). The final production redbook with the RED cover will
be printed at 1200 dpi and will provide superior graphics resolution. Please see “How to Get ITSO
Redbooks” at the back of this book for ordering instructions.

SG24-5165-00

SG24-5165-00

IBML International Technical Support Organization

GPFS: A Parallel File System

April 1998

Take Note!

Before using this information and the product it supports, be sure to read the general information
in Appendix G, “Special Notices” on page 219.

First Edition (April 1998)

This edition applies to Version 1 Release 1 of General Paralel File System for AIX (5765-B95) running
Version 2, Release 4 of IBM Parallel System Support Programs for AIX (5765-529), on the IBM
RS/6000 SP, for use with AIX Version 4.2.1 or 4.3.1.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . vii

Tables . ix

Preface . xi
The Team That Wrote This Redbook . xi
Comments Welcome . xii i

Chapter 1. Introduction . 1
1.1 Why GPFS? . 1
1.2 GPFS Overview . 1

1.2.1 Implementation . 3
1.2.2 The GPFS Daemon . 5
1.2.3 Allocation Mechanism . 7
1.2.4 Striping . 10
1.2.5 Replication . 11
1.2.6 Locking Mechanism . 11

Chapter 2. Installation and Configuration 13
2.1 Installation . 13

2.1.1 Hardware Requirements . 14
2.1.2 Software Requirements . 14
2.1.3 Installation Road Map and Checkpoints for Existing Setup . . . 15
2.1.4 GPFS Software Installation . 20
2.1.5 Authorization for Kerberos and Sysctl 22
2.1.6 Tuning and Verifying the Switch 24
2.1.7 Tuning and Verifying Virtual Shared Disk 25
2.1.8 Deleting Old Rollback Files . 25
2.1.9 Creation of Single Virtual Shared Disk for New Installation . . . 26
2.1.10 High Availability Heartbeat Sensitivity 28
2.1.11 The lsof Command (List Open Files) 29

2.2 Configuration . 30
2.2.1 Considerations . 30
2.2.2 Steps of Configuration . 41

Chapter 3. Failover Scenarios . 57
3.1 Hardware Recovery . 57

3.1.1 Node Failure . 57
3.1.2 Network Failure . 64
3.1.3 Disk Failure . 65

3.2 Software Recovery . 66

 Copyright IBM Corp. 1998 iii

3.2.1 Configuration Manager Failure . 67
3.2.2 Stripe Group Manager Failure . 69
3.2.3 Metadata Manager Failure . 72
3.2.4 Token Manager Server Failure . 73

Chapter 4. Migration . 75
4.1 Review of Various File Systems . 75

4.1.1 Compatibility . 75
4.1.2 Other Issues . 77
4.1.3 Access Control . 78

4.2 Migration to GPFS . 78
4.3 Migration Summary . 80

Chapter 5. Applications . 81
5.1 Lotus Notes . 81

5.1.1 GPFS Performance Considerations − 82
5.1.2 Lotus Domino Server on a RS/6000 SP Node Using GPFS 87
5.1.3 Comparison of JFS and GPFS Environments 104
5.1.4 Moving the Lotus Domino Server between RS/6000 SP Nodes 117
5.1.5 Migrating Lotus Domino Server to GPFS 124
5.1.6 When to Run Lotus Domino Server over GPFS 125

5.2 MPI Applications . 126
5.2.1 Synthetic Applications . 126
5.2.2 Summary and Suggestions . 150

5.3 Parallel Sorting of Large GPFS Files 151
5.3.1 I/O Requirements of a Parallel Application 151
5.3.2 Goals of the Current Study . 156
5.3.3 Parallel Sorting Application . 157
5.3.4 Parallel Sorting Algorithm . 158
5.3.5 I/O Requirements of a Parallel Sort Algorithm 162
5.3.6 GPFS Programming Interfaces 163
5.3.7 System Configuration . 164
5.3.8 Description of Experiments . 165
5.3.9 Running Parallel Programs Using IBM Parallel Environment . 168
5.3.10 Results of Experiments . 169
5.3.11 Conclusions . 181

Appendix A. GPFS and Standard AIX Commands 183
A.1 File Commands . 183
A.2 File System Commands . 186

Appendix B. GPFS Maximum File Size and Related Parameters 189

Appendix C. The GPFS Configuration File (mmsdrcfg1) 191

iv GPFS: A Parallel File System

C.1 How to Change the Default Values 195

Appendix D. SSA Configuration . 197

Appendix E. Miscellaneous NotesBench Information 199

Appendix F. How to Get the Examples in This Book 213
F.1 FTP Site . 213
F.2 WWW Site . 213
F.3 LiSt Open File . 213

Appendix G. Special Notices . 219

Appendix H. Related Publications . 223
H.1 International Technical Support Organization Publications 223
H.2 Redbooks on CD-ROMs . 223
H.3 Other Publications . 223

How to Get ITSO Redbooks . 225
How IBM Employees Can Get ITSO Redbooks 225
How Customers Can Get ITSO Redbooks 226
IBM Redbook Order Form . 227

List of Abbreviations . 229

Index . 231

ITSO Redbook Evaluation . 233

Contents v

vi GPFS: A Parallel File System

Figures

 1. GPFS Overview . 3
 2. Mounting GPFS File Systems . 5
 3. File Structure . 9
 4. Partition Setup for Installation . 15
 5. VSD State Transitions . 28
 6. GPFS with Dedicated VSD Servers and RVSD Failover 32
 7. View of roundRobin Striping . 36
 8. View of balancedRandom Striping . 37
 9. View of Random Striping . 38
10. Example Configuration . 41
11. Twin-Tailed Configuration . 58
12. The Future, using GPFS . 82
13. New GPFS File System . 96
14. Local JFS Scenario - High Node . 107
15. Local JFS Scenario - Wide Node . 108
16. GPFS High Node Scenario . 110
17. GPFS Wide Node Scenario . 111
18. Example Output from the Metadata Application (Part I) 128
19. Example Output from the Metadata Application (Part II) 129
20. Function to Determine Measurement Overhead 130
21. Function to Verify Semantics of O_EXCL on open() 131
22. Function That Tests the Two Primary Cases of Contention 132
23. Example Output from the I/O Application (Part 1 of 2) 136
24. Example Output from the I/O Application (Part 2 of 2) 137
25. Setup for IO Application . 139
26. Main Loop of IO Application . 140
27. Use of MPI_Barrier to Synchronize Writes 147
28. Example Using Barriers When Writing /dev/null 148
29. I/O Requirements in an Application 152
30. Parallel Disk I/O Model . 154
31. Parallel Network I/O Model - 1 Client and 8 Servers 155
32. Parallel Network I/O Model - 8 Clients and 8 Servers 156
33. Parallel Sorting Algorithm . 158
34. Initialization Phase of Parallel Sorting Algorithm 159
35. Sampling Phase of Parallel Sorting Application 161
36. Reading, Partitioning, Gathering, Sorting and Output Stages . . . 162
37. Summary of I/O Requirements for Parallel Sorting 163
38. The RS/6000 SP Configuration Used to Run Parallel Sort 165
39. Sample Command to Start a Parallel Application Using poe . . . 168
40. Compute Time Performance in the Sort Application 177
41. Read Time Performance in the Sort Application 177

 Copyright IBM Corp. 1998 vii

42. Write Time Performance in the Sort Application 178
43. Total Time Performance in the Sort Application 178
44. Installing Examples to Recommended Location Using FTP 213

viii GPFS: A Parallel File System

Tables

 1. Installation Road Map . 16
 2. Tunable or Static Factors . 30
 3. New RVSD Commands in PSSP . 59
 4. Marks of Lotus NotesBench for Lotus Notes R4 for All benchmarks 113
 5. GPFS Vs. JFS Metadata Performance Single Node Case (mSec) . 134
 6. GPFS Performance with Multiple Clients (no Barrier) (mSec) . . . 134
 7. GPFS Performance with Multiple Clients (Barrier) (mSec) 135
 8. Write Performance to /dev/null . 140
 9. GPFS Performance from Single Active Client 141
10. GPFS Performance When Using O_SYNC 142
11. GPFS Performance of Create Vs. Overwrite 143
12. GPFS Read Performance from Single Active Client 143
13. GPFS Read Performance from 4 Active Clients (Cold Cache) . . . 144
14. GPFS Read Performance from Active Clients (Warm Cache) . . . 144
15. GPFS Read Performance with 4 Active Clients (Cold Cache) . . . 145
16. GPFS Update Performance from 4 Clients Sharing a File Block . 145
17. GPFS Write Performance from 4 Active Clients 146
18. GPFS Write Performance with O_SYNC from 4 Active Clients . . 146
19. GPFS Write Performance with 4 Clients and 36703 Byte Buffers . 147
20. Summary of Parameters and Their Values Used in the Sort

Experiment . 167
21. Command Line Parameters to Start Parallel Jobs Using POE . . 168
22. Abbreviations Used for the File Systems 170
23. Results for Parallel Sort Application (File Size=32MB) 171
24. Results for Parallel Sort Application (File Size=128MB) 172
25. Results for Parallel Sort Application (File Size=256MB) 173
26. Results for Parallel Sort Application (File Size=32MB) 174
27. Results for Parallel Sort Application (File Size=128MB) 175
28. Results for Parallel Sort Application (File Size=256MB) 176
29. List of AIX File Commands . 183
30. List of AIX File System Commands 186
31. GPFS Maximum File Size and Related Parameters 189

 Copyright IBM Corp. 1998 ix

x GPFS: A Parallel File System

Preface

General Parallel File System for AIX (GPFS) provides the first
implementation of a truly standard parallel file system for the RS/6000 SP.

This redbook describes the installation, configuration, and use of GPFS on
the RS/6000 SP. It provides examples and step-by-step instructions for
installing and configuring GPFS Version 1.1.

A set of common applications and services, such as Lotus Notes Domino
Server, MPI Applications, and NFS Servers, have been tested in this
environment, and the results have been included in the book.

The book was written for people who are looking for guidance and advice on
how to implement GPFS and how to choose the best configuration for each
particular implementation. Those looking for a deeper understanding of
GPFS will also find this book very helpful and detailed.

Although the book is not oriented to providing procedures for problem
determination on GPFS, it contains several hints, tips and workarounds for
common problems or misconfigurations.

After a brief overview and some discussion about the benefits of using GPFS
as the file system of choice for the RS/6000 SP, the book unfolds all the
details about this new product, including migration and compatibility issues.

A parallel file system for the RS/6000 SP has arrived, and this book coveres
it all. Enjoy!

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Marcelo R. Barrios is an Advisory International Technical Support
Organization (ITSO) Specialist for RS/6000 SP at the Poughkeepsie Center.
He writes extensively and teaches IBM classes worldwide on all areas of
RS/6000 SP. Before joining the ITSO, Marcelo worked as an assistant
professor in the Electronics Department of Santa Maria University,
Valparaiso, Chile. In 1993, he joined IBM as a Marketing Specialist in the
RS/6000 Unit, IBM Chile.

 Copyright IBM Corp. 1998 xi

Didac Marin is an IBM-certified AIX Advanced Technical Expert. He has a
degree in Computer Science in Facultat d′ Informatica de Barcelona, at the
Polytechnic University of Catalunya. During the third and the fourth years of
University, he worked in Hewlett-Packard with HP-UX and MPE XL in the
PSO department in Barcelona. For the last three and a half years, Didac
has worked in ISASA (Integracion de Sistemas Abiertos S.A.) with AIX, PSSP
and everything related to these environments. He enjoys mountain hiking in
Spain with his wife.

Francis Cougard is graduate of the ENSIMAG (Grenoble, France)
engineering school. He has been employed by IBM for 12 years. He
worked as an application developer in MVS/DB2 systems in 1985-1986, then
as a presales consultant in midrange systems from 1987-1992. Francis has
been an AIX I/T services specialist in PSS since 1993, and a SP Systems I/T
services specialist since 1997

Jason Barkes is a certified AIX systems specialist in the AIX Systems
Support Center in IBM UK Ltd. He has been employed by IBM for 18
months and has concentrated on AIX and RS/6000. Jason′s previous
experience includes seven years with ICL in the UK where he did a range of
jobs from Customer Engineering, Junior Management to UNIX Systems
Administration and Consultancy on System V and AT+T ES+. He and his
wife enjoy sailing.

Theeraphong Thitayanun is an Advisory IT Specialist, IBM Thailand. He
joined IBM in October 1988 as a Systems Engineer providing second level
support to all VM customers in Thailand. He later transferred to an AIX unit
and is responsible for providing services and supports in all areas of
RS/6000 SP since Oct, 1995. He holds a degree in Computer Engineering
from Chulalongkorn University and, as a Monbusho student, a masters
degree in Information Technology from Nagoya Institute of Technology,
Japan.

Hari Reddy is an Advisory Market Support Representative in the RS/6000
System Technologies group at Dallas System Center. Hari has been with
IBM for 7 years, and he has worked in parallel computing for 10 years. Hari
also conducts parallel programming workshops and consults in parallel
application development.

Paul G. Crumley is a Senior Programmer in IBM ′s Research Division at the
Center for Scalable Computing Solutions, the group that developed many
parts of the SP. Before joining IBM, Paul worked at Transarc, the developer
of DFS and Encina. Previous to that, he led various research projects at the
Information Technology Center at Carnegie Mellon University. The ITC
developed a number of distributed systems, including the AFS file system,

xii GPFS: A Parallel File System

the ATK multimedia GUI system, and AMS, a multimedia messaging system.
Paul also worked on early designs of Shark.

Thanks to the following people for their invaluable contributions to this
project:

Lyle Gayne
Bob Curran
David Shapiro
Radha Kandadai
Michael Schouten
Gili Mendel
Kalyan Gunda
IBM PPS Lab Poughkeepsie

Daniel Mcnabb
Jim Wyllie
IBM Parallel File System Almaden

Robert Walkup
IBM Watson Research

Mike Buick
IBM Dallas System Center

Peter Sohn
IBM RS/6000 SP ISV Integration Poughkeepsie

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on
page 233 to the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com/
For IBM Intranet users http://w3.itso.ibm.com/

• Send us a note at the following address:

redbook@us.ibm.com

Preface xiii

xiv GPFS: A Parallel File System

Chapter 1. Introduction

General Parallel File System for AIX (GPFS) provides global access to files
in the RS/6000 SP. Files created in GPFS can be accessed from every node
that runs GPFS code. For those nodes not running GPFS, files can still be
accessed by using Network File System (NFS).

1.1 Why GPFS?

Whenever a new product comes out, there is a question that comes along
with it. Should I buy and install this new product?

The answer to this question, of course, will not be the same for everybody,
even with a product like a file system, which seems so general and widely
usable. However, before you start thinking about this dilemma, you should
consider the following points.

GPFS is part of a wider offering for the RS/6000 family. This offering
consists of a set of multimedia products, where the distributed or parallel
file system is one of the mechanisms used to deliver data in real time.

Data streaming was the target for the design of Tiger Shark, the ancestor of
GPFS. Since then, many modifications have been made to the file system
structure to integrate this distributed file system into the parallel
environment of the RS/6000 SP.

A parallel file system not only offers performance advantages by eliminating
the limitation of a single server for file services, but also offers a great deal
of flexibility.

With a parallel file system, since all nodes can “see” the file system, it is
easier to move applications from one node to another. This is especially
valid for high availability solutions, where the application is moved if
unrecoverable errors occur in the main server.

Sharing the same file system among several nodes has the benefit of
increasing the maximum I/O bandwidth that otherwise would be limited by
the maximum local I/O bandwidth of the single server.

1.2 GPFS Overview

GPFS is implemented as a standard AIX Virtual File System, which means
that applications using standard AIX VFS calls (such as JFS calls) will run on
top of GPFS without modifications. It also provides a byte-range locking

 Copyright IBM Corp. 1998 1

mechanism, allowing parallel applications to access non-overlapping blocks
of a file with minimal contention.

Although GPFS is a POSIX-compliant file system, some exceptions apply to
this:

• Memory mapped files are not supported in this release.

• The stat() is not fully supported. mtime, atime and ctime returned from
the stat() system call may be updated slowly if the file has recently been
updated on another node.

For more details, refer to General Parallel File System for AIX: Installation
and Administration, SA22-7278.

The file system offers high scalability and high availability by allowing
multiple servers and multiple disks to serve the same file system. If a
server fails, the file system will still be available as long as another server
has access to the disks containing the data and a network path to the client.
If a disk fails, GPFS will continue providing access to the file system as long
as the data contained in the failed disk is not file system metadata but user
data, or as long as it has been replicated. User and file system data can be
replicated or mirrored to provide an even more highly available
environment.

The implementation of GPFS on the RS/6000 SP is based on two key
components: the PSSP High Availability Infrastructure, and the Virtual
Shared Disks. Figure 1 on page 3 shows the relationship between AIX
Logical Volume Manager (LVM), PSSP, Virtual Shared Disk (VSD)
subsystem, Recoverable Virtual Shared Disk (RVSD) subsystem, and GPFS.

2 GPFS: A Parallel File System

Figure 1. GPFS Overview

Each node running GPFS needs access to the data disks which comprise the
local file system. GPFS uses VSD/RVSD to accomplish this and to provide a
highly available environment. RVSD enables RVSD daemons to take over
external disks that are attached directly as part of a loop (for SSA disks) or
twin-tailed (for SCSI or serial disks).

Applications using standard system calls to manipulate files can take
immediate advantage of GPFS. GPFS spreads the data, as equal as
possible, across multiple servers. For more information about migration
and application portability issues, refer to Chapter 4, “Migration” on
page 75.

1.2.1 Implementation
GPFS is implemented as kernel extensions, a multi-threaded daemon, and a
number of commands. The kernel extensions are needed to implement the
Virtual File System layer that presents a GPFS file system to applications as
a local file system. They are also needed to implement the Token Manager
which will provide the locking mechanism.

The multi-threaded daemon provides specific functions within GPFS.
Basically, the daemon provides data and metadata management (such as
disk space allocation, data access, and disk I/O operations). It also
provides security and quotas management.

Chapter 1. Introduction 3

The GPFS daemon runs on every node participating in the GPFS domain,
and may take on different personalities. Since GPFS is not the client-server
type of file system, as NFS or AFS may be seen, it uses the concept of VSD
servers, which are nodes physically connected to the disks. Each node
running GPFS (including VSD servers) will use the Virtual Shared Disk
extensions to access the data disks.

GPFS will work within a system partition, and the nodes in this partition will
be able to access the file systems from everywhere. In order to access the
file systems created in GPFS, nodes need to mount them, like any other file
system. To mount the file system, nodes have two options:

• Nodes running GPFS

For these nodes, mounting a GPFS file system is the same as mounting
any JFS file system. The mounting has no syntax difference with the
local mounting done with JFS. At creation time, GPFS file systems can
be set to be mounted automatically when nodes start up.

• Nodes not running GPFS

For these nodes, GPFS file systems are made available through NFS.
Nodes can mount GPFS file systems the same way they mount any NFS
file system. To specify a GPFS file system and a server, these nodes
must point to any node running GPFS. The GPFS file system must be
exported to these nodes, just like any other local file system made
available via NFS.

Note: This applies not only to nodes that are not running GPFS, but to
any NFS-capable machine.

Figure 2 on page 5 illustrates these two access methods for mounting GPFS
file systems.

4 GPFS: A Parallel File System

Figure 2. Mounting GPFS File Systems

GPFS lets you add/delete nodes and disks from the GPFS domain, which
allows you to scale the file system to fit your needs in terms of processing
or I/O bandwidth.

Because GPFS file systems can be NFS-exported, GPFS offers an alternative
to NFS servers by providing better performance and reliability.

1.2.2 The GPFS Daemon
The GPFS daemon (called mmfsd) runs on every node that is part of the
GPFS domain or pool. This daemon provides several services to the local
node as well as to remote nodes.

The daemon provides the following local services:

• Allocation of disk space to new files.

• Management of file system metadata (manipulation of i-nodes and
indirect blocks).

• Allocation of appropriate locks for data and metadata management.

• Initiation of disk I/O.

• Implementation of security and quotas.

Chapter 1. Introduction 5

However, all these tasks must be carried out in a parallel environment. In
order to keep the consistency and the single view of GPFS file systems, the
daemon implements several additional tasks. The daemon implements
these tasks by assuming personalities.

A single GPFS daemon can assume more than one personality, as follows:

• Configuration Manager

One GPFS daemon in the pool will take this personality, and it is usually
the first daemon to start in the pool (the oldest). The Configuration
Manager is responsible for configuration tasks within the GPFS pool,
such as selecting the Stripe Group Manager for each file system.

• Stripe Group Manager

One GPFS daemon per file system will take this personality. The
Configuration Manager decides which node will act as Stripe Group
Manager for each file system. It processes changes to the state of the
file system, including:

− Adding disks
− Changing disk availability
− Repairing the file system

Mount and unmount processing is performed on both the Stripe Group
Manager and the node requesting the service.

The Stripe Group Manager also controls the allocations, allowing
effective use of disk space and throughput.

Finally, the Stripe Group Manager handles the token requests for file
access, sending them to the Token Manager Server for the specific
mount point.

• Token Manager Server

There is one Token Manager Server per file system, located at the
Stripe Group Manager node. If the Stripe Group Manager is moved to
another node, the Token Manager Server moves with it. The status of
the token is held in two places: on the Token Manager Server and on
the Token Manager (on the requesting node) holding the token.

In each GPFS node, there is a Token Manager, which is a kernel
extension. When an application requires access to a file, it must get a
token. In this situation, there are two possible scenarios:

− The file is local (the file is served by this node).

In this case, the application requests access to the file from the
Token Manager. The Token Manager checks if this file is already
granted to another application, either local or remote. If not, the

6 GPFS: A Parallel File System

Token Manager gets a lock and passes it to the requesting
application, and then informs the Token Manager Server about the
request. If the file has been already granted to other nodes, the
Token Manager will negotiate with those nodes in order to get the
requested token.

− The file is remote (the file is served by another node).

The Token Manager contacts the Token Manager Server for the file
system (always in the same node as the Stripe Group Manager) to
request a token. If other nodes already have the token for this file,
the Token Manager Server will send back the list of nodes having
the token. It is the responsibility of the requesting Token Manager
to negotiate with the nodes in that list to obtain a token.

• Metadata Manager

One GPFS daemon per file will take this personality. A GPFS daemon
may be the Metadata Manager of multiple files. In almost all cases, the
node that has had the file open for the longest period of continuous time
is the Metadata Manager.

Note: All these personalities may be in the same GPFS daemon. However,
for performance reasons, it is advisable to distribute the load of the
different tasks across the pool of nodes. For more details about what
happens if one or several of these services fail within GPFS, refer to
Chapter 3, “Failover Scenarios” on page 57.

1.2.3 Allocation Mechanism
GPFS uses a standard i-node structure for file allocation. An i-node is a
structure which contains file information. Each file has at least one i-node,
and each i-node contains information for only one file.

A GPFS file system consists of a set of disks distributed across the RS/6000
SP and served by VSD servers. When the file system gets created, several
structures are put in place to keep the information about this file system.
The following are the structures needed and created by GPFS for each file
system:

• i-node

Every file on a disk has an i-node. The i-node contains attributes of the
file (size, owner, permissions, and so on), plus the information
necessary to locate the data blocks of the file.

• i-node allocation file

The i-node allocation file represents the availability of i-nodes for the
creation of new files in the file system. This cannot be changed after the

Chapter 1. Introduction 7

file system is created, so careful planning is needed in order to create
enough i-nodes for all the files expected to be created in the file system.

• Block allocation file

The block allocation file is a collection of bits that represent the
availability of disk space within the stripe group. One unit in the
allocation map represents a sub-block (1/32 of the block size) of the file
system.

• Log files

Log files contain all the transactions executed against the file system.
Additional log files may be created if needed. Log files are always
replicated. There are two copies of the log for each executing node.

When a file is created, an i-node is allocated. This i-node will contain the
following (along with other information):

• The owner′s ID
• The owner′s GID
• Permissions (including extended ACL)
• Date/time for creation/last access/last modification
• Number of data replicas
• Number of metadata replicas
• Data itself (for very small files, less than 12 bytes)
• Pointers to data blocks (direct blocks)
• Pointers to indirect blocks (for large files)

Figure 3 on page 9 describes the file structure in a GPFS file system.

8 GPFS: A Parallel File System

Figure 3. File Structure

The i-node size can be chosen when the file system gets created. It can be
as little as 512 bytes, or as big as 4KB. The i-node size will have an impact
on the maximum file size. For exact numbers, refer to Appendix B, “GPFS
Maximum File Size and Related Parameters” on page 189.

If a file is bigger than:

Block Size * ((i-node size - 104) / (# Data Replicas * 6))

bytes,1 then indirect blocks are needed. GPFS supports only one level of
indirection in this release.

1 The header of an i-node is 104 bytes in length. A disk pointer is six bytes in length.

Chapter 1. Introduction 9

Indirect blocks contain pointers to data blocks. Each indirect block can point
to up to

(Indirect Block Size - 44) / (# Metadata Replicas * 6)

data blocks.2

Since all the parameters can be selected when the file system is created,
the maximum file size and the maximum file system size will vary. For a list
of maximum size values, refer to Appendix B, “GPFS Maximum File Size
and Related Parameters” on page 189.

1.2.4 Striping
Each file system consists of a number of VSD disks. The set of disks making
up a file system is called a stripe group. The data and metadata allocation
within this stripe group is done by the Stripe Group Manager, as described
earlier.

GPFS offers three different algorithms for striping data and metadata across
the VSD disks.

• RoundRobin

This is the default method. The data and metadada blocks are written
one on each VSD disk, looping around the stripe group. This method
offers good performance and correct balance of the traffic between the
VSD disks.

• Random

In this method, each block of data or metadata is written on a VSD disk
selected randomly. This method does not assure that the traffic will be
balanced among the VSD disks.

• BalancedRandom

This method is very similar to RoundRobin, with the difference that each
data or metadata block is written to a VSD disk selected randomly.
However, as in the RoundRobin method, the same VSD disk is not
selected until all the disks within the stripe group have been used.

The stripe method is defined per file system. Choosing a correct striping
method is critical for correctly tuning specific applications.

2 These 44 bytes include the indirect block header and trailer.

10 GPFS: A Parallel File System

1.2.5 Replication
Data availability and performance are among the main concerns for any file
system. GPFS environments offer several choices to accomplish these
goals, including replication. As shown in the following chapters, replication
offers a good alternative for providing both data availability and
performance. However, like everything else, replication has a cost, and the
costs are associated with:

• Maximum file size GPFS is able to handle

• Performance effects

GPFS allows up to two copies for data and for metadata. The number of
data and metadata replicas can be set at file or file system level. By
default, data and metadata are not replicated. Only log files are replicated,
keeping two copies per node, as explained earlier.

For replication, GPFS uses the concept of a failure group, which defines
single points of failure. It uses this concept to locate the data and metadata
replicas in different failure groups, and in this way improves file system
availability.

More details about replication can be found at 2.2, “Configuration” on
page 30.

1.2.6 Locking Mechanism
GPFS provides a locking mechanism based on tokens. When a file system
is created, one node within the pool is selected as the Token Manager
Server for that file system (it is always the same node where the Stripe
Group Manager resides). This Token Manager Server will handle all
requests for access to a file in the file system.

Each GPFS client (nodes where the GPFS daemon is running) has a kernel
extension called Token Manager, which is responsible for getting the tokens
requested by local applications.

Tokens can be requested/granted for byte-range or file locking. There are
two kinds of locks: GPFS internal locks, which are file/byterange, and POSIX
locks (fcntl system call), which are available to applications. The POSIX
locks are advisory; the internal locks are enforced.

Chapter 1. Introduction 11

12 GPFS: A Parallel File System

Chapter 2. Installation and Configuration

The General Parallel File System (GPFS) environment is specific to AIX on
the RS/6000 SP. Various software requirements must be installed and
configured correctly before you can create a GPFS file system. Guidelines
are provided in the following sections that enable you to configure the
basics and get you started with GPFS.

This chapter guides you in installing the pre-requisite software products and
helps you get GPFS up and running as quickly as possible. It also focuses
on considerations when configuring different scenarios within your SP
environment.

A background knowledge of Virtual Shared Disk and IBM Recoverable
Shared Disk is advisable. However, because GPFS takes the guesswork out
of the creation of Virtual Shared Disk and IBM Recoverable Virtual Shared
disk by constructing them for you, you should increase your familiarity with
the concepts behind these products. Further information about these
packages can be found in the IBM Parallel System Support Program for AIX:
Managing Shared Disks, SA22-7279.

2.1 Installation

The majority of the GPFS installation work is carried out on the SP nodes.
However, there is a small amount of installation work that needs to be
completed on the Control Workstation. There are many ways of installing
the software and the general use of SMIT for installation work within the SP
framework is not recommended. Instead, you should use the approved
method that is described both here and in the General Parallel File System
for AIX: Installation and Administration Guide, SA22-7278.

The approach documented here is a very methodical way of installing the
packages. There are many ways of completing the installation and you
should follow any on-site procedures already in place. The majority of the
system management and configuration work cannot be performed directly at
the Control Workstation. You will need to be on a GPFS node to execute
most GPFS commands or alternatively you dsh/rsh from the Control
Workstation to execute these commands.

 Copyright IBM Corp. 1998 13

2.1.1 Hardware Requirements
 1. RS/6000 SP

 2. HiPS or SP Switch

 3. Sufficient disk capacity to support file systems and failover scenarios

Any twin-tailed disk supported by the logical volume manager running on
AIX 4.2.1 is a good choice for the configuration of GPFS because the IBM
Recoverable Shared Disk will be able to fully utilize its failover functionality.

2.1.2 Software Requirements
The main software requirements for the GPFS environment and a successful
installation are:

• AIX 4.2.1 or 4.3.1

• Parallel System Support Program 2.4

• IBM Recoverable Virtual Shared Disk 2.1.1

The full details of these products are:

 1. AIX Version 4 Release 2.1 (5765-655 or 5765-C34) or 4.3.1

 2. Parallel System Support Programs for AIX, Version 2 Release 4 or later
(5765-529) with the following options installed:

• SP System Support Package (ssp.basic)

• SP Communication Subsystem Package (ssp.css)

• Group Services High Availability Subsystem (ssp.ha)

• Sysctl (ssp.sysctl)

• SP Centralized Management Interface (ssp.csd.cmi)

• SP VSD Usability Package (ssp.csd.sysctl)

 3. IBM Recoverable Virtual Shared Disk Version 2.1.1 (5765-646) or later
with the following options installed:

• SP High Availability RVSD (rcsd.rvsd)

• SP RVSD Base Package (rcsd.vsd)

14 GPFS: A Parallel File System

2.1.3 Installation Road Map and Checkpoints for Existing Setup

Figure 4. Partition Setup for Installation

The setup shown here is a partition of four SP thin nodes held within a
frame of 16. The partition name is sp2en1 and the nodes are sp2n03,
sp2n04, sp2n07, and sp2n08, respectively. The switch used in this example
was a HiPS switch; however, this is not important as either type of switch is
supported in this release of GPFS. This will be the base for the installation
shown in this part of the book.

Chapter 2. Installation and Configuration 15

The roadmap shown in Table 1 shows you the paths to follow within this
chapter:

Table 1. Installation Road Map

S/W Start Point Refer to:
 Checkpoint:

< AIX 4.2.1
< PSSP 2.4

IBM Parallel System Support Programs for AIX: Installation and
Migration Guide, GC23-3898

Checkpoint: �1� �2�

AIX 4.2.1/4.3.1
PSSP 2.4

2.1.3.2, “Minimal Virtual Shared Disk Installation” on page 19
2.1.3.3, “Minimal IBM Recoverable Virtual Shared Disk Installation” on
page 19
2.1.4, “GPFS Software Installation” on page 20

Checkpoint: �1� �2�

AIX 4.2.1/4.3.1
PSSP 2.4
VSD 2.4

2.1.3.3, “Minimal IBM Recoverable Virtual Shared Disk Installation” on
page 19
2.1.4, “GPFS Software Installation” on page 20

Checkpoint: �1� �2� �3�

AIX 4.2.1/4.3.1
PSSP 2.4
VSD 2.4
RVSD 2.1.1

2.1.4, “GPFS Software Installation” on page 20

Checkpoint: �1� �2� �3� �4�

�1� Check the level of parallel system support program:

� �
sp2en1> lslpp -l ssp.basic
Fileset Level State Description

Path: /usr/lib/objrepos
 ssp.basic 2.4.0.0 COMMITTED SP System Support Package

Path: /etc/objrepos
 ssp.basic 2.4.0.0 COMMITTED SP System Support Package
sp2en1> dsh lslpp -l ssp.basic� �

16 GPFS: A Parallel File System

�2� Check the level of AIX on the Control Workstation and the SP nodes:

� �
sp2en1> oslevel
4.2.1.0
sp2en1> dsh oslevel
sp2n03: 4.2.1.0
sp2n04: 4.2.1.0
sp2n07: 4.2.1.0
sp2n08: 4.2.1.0� �

�3� Check the level of virtual shared disk on the SP nodes:

� �
sp2en1> dsh lslpp -l ssp.csd*
Fileset Level State Description
--

Path: /usr/lib/objrepos
 ssp.csd.hsd 2.4.0.0 COMMITTED SP VSD Data Striping package

(ssp.csd.hsd)
 ssp.csd.sysctl 2.4.0.0 COMMITTED SP VSD USABILITY IMPROVEMENT

(ssp.csd.sysctl)
 ssp.csd.vsd 2.4.0.0 COMMITTED SP IBM Virtual Shared Disk

Package (ssp.csd.vsd)

Path: /etc/objrepos
 ssp.csd.hsd 2.4.0.0 COMMITTED SP VSD Data Striping package

(ssp.csd.hsd)
 ssp.csd.sysctl 2.4.0.0 COMMITTED SP VSD USABILITY IMPROVEMENT

(ssp.csd.sysctl)
 ssp.csd.vsd 2.4.0.0 COMMITTED SP IBM Virtual Shared Disk

Package (ssp.csd.vsd)� �
Check your level of virtual shared disk on the Control Workstation:

� �
sp2en1> lslpp -l ssp.csd*
Fileset Level State Description
--

Path: /usr/lib/objrepos
 ssp.csd.cmi 2.4.0.0 COMMITTED SP Centralized Management
 ssp.csd.vsd 2.4.0.0 COMMITTED SP IBM Virtual Shared Disk

Package (ssp.csd.vsd)

Path: /etc/objrepos
 ssp.csd.vsd 2.4.0.0 COMMITTED SP IBM Virtual Shared Disk

Package (ssp.csd.vsd)� �
If you do not have the virtual shared disk package installed, then follow
2.1.3.2, “Minimal Virtual Shared Disk Installation” on page 19.

Chapter 2. Installation and Configuration 17

�4� Check your level of IBM Recoverable Shared Disk on the SP nodes:

� �
sp2en1> dsh lslpp -l rcsd*
Fileset Level State Description

Path: /usr/lib/objrepos
 rcsd.hahc 2.1.1.0 COMMITTED SP HA Recoverable VSD Package
 rcsd.rvsd 2.1.1.0 COMMITTED SP HA Recoverable VSD Package
 rcsd.vsd 2.1.1.0 COMMITTED SP IBM Recoverable Virtual

Shared Disk base VSD Package

Path: /etc/objrepos
 rcsd.hahc 2.1.1.0 COMMITTED SP HA Recoverable VSD Package
 rcsd.rvsd 2.1.1.0 COMMITTED SP HA Recoverable VSD Package
 rcsd.vsd 2.1.1.0 COMMITTED SP IBM Recoverable Virtual

Shared Disk base VSD Package� �
If you do not have the Virtual Shared Disk package installed, then follow
2.1.3.3, “Minimal IBM Recoverable Virtual Shared Disk Installation” on
page 19.

2.1.3.1 Guidelines to Migrate Virtual Shared Disk Software
A new version of Virtual Shared Disk is shipped with PSSP 2.4 and therefore
ssp.csd* will have to be migrated to the new version.

You will need to unconfigure all your existing Virtual Shared Disks before
installing the new Virtual Shared Disk software. The general steps taken
here are to suspend, stop and unconfigure your Virtual Shared Disks:

� �
sp2en1> dsh suspendvsd -a
sp2en1> dsh stopvsd -a
sp2en1> dsh ucfgvsd -a� �

For more details about these commands and their syntax see IBM Parallel
System Support Program for AIX: Managing Shared Disks, SA22-7279. You
should make sure that they are fully unconfigured with the dsh lsvsd -l
command. You will receive the following error from each of your nodes if
your Virtual Shared Disks have been successfully unconfigured:

� �
sp2en1> dsh lsvsd -l
sp2n03: minor state server lv_major lv_minor vsd-name option size(MB)
sp2n03: lsvsd: 0034-002 Error opening vsd /dev/VSD0.
sp2n04: minor state server lv_major lv_minor vsd-name option size(MB)
sp2n04: lsvsd: 0034-002 Error opening vsd /dev/VSD0.
sp2n07: minor state server lv_major lv_minor vsd-name option size(MB)
sp2n07: lsvsd: 0034-002 Error opening vsd /dev/VSD0.
sp2n08: minor state server lv_major lv_minor vsd-name option size(MB)
sp2n08: lsvsd: 0034-002 Error opening vsd /dev/VSD0.� �

18 GPFS: A Parallel File System

The unconfiguration of the Virtual Shared disks has to be completed before
you install the Parallel Systems Support Program Version 2 Release 4. See
IBM Parallel System Support Programs for AIX: Installation and Migration
Guide, GC23-3898 for further information.

2.1.3.2 Minimal Virtual Shared Disk Installation
The following steps show you a method to install the prerequisite Virtual
Shared Disk package that is required to run GPFS. If you are installing your
SP system from fresh, you may wish to use the /etc/script.cust file to install
your SP nodes.

To perform this installation:

 1. Create a subdirectory on the Control Workstation with the following
command:

mkdir /spdata/sys1/install/pssplpp/PSSP-2.4/vsd

 2. Use smit bffcreate to copy the Virtual Shared Disk software to hard disk
for future installation at the preceding directory. Select all filesets
pertaining to ssp.csd.

 3. Install these filesets at the Control Workstation as follows:

sp2en1> cd /spdata/sys1/install/pssplpp/PSSP-2.4/vsd
sp2en1> installp -agXd ″.″ ssp.csd.cmi ssp.csd.vsd

 4. Install all ssp.csd filesets to the nodes that wil l run GPFS, or Virtual
Shared Disk, or both.

• NFS-export, and then mount the file system to all nodes as follows:

sp2en1> /usr/sbin/mknfsexp -d /spdata/sys1/install/pssplpp/PSSP-2.4 /
-t ro -B

sp2en1> dsh mount sp2en1:/spdata/sys1/install/pssplpp/PSSP-2.4

• Run the installp command on all nodes:

sp2en1> dsh installp -agXd /mnt/vsd ssp.csd.hsd ssp.csd.sysctl /
ssp.csd.vsd

You can now verify your Virtual Shared Disk installation by using lslpp -l
ssp.csd* against the former output.

2.1.3.3 Minimal IBM Recoverable Virtual Shared Disk Installation
Now you must install the IBM Recoverable Virtual Shared Disk software on
your system. To do this, you can use a procedure similar to that described
in 2.1.3.2, “Minimal Virtual Shared Disk Installation.”

Chapter 2. Installation and Configuration 19

This product is a separately Licensed Program Product (LPP); it is not part
of the Parallel Systems Support Program. The main differences in this
procedure are that the only installation work that needs to be carried out is
on your SP nodes and that you will not have to export the directory (it will
already be exported).

The IBM Recoverable Virtual Shared Disk package will have to be installed
on all SP nodes that either contain Virtual Shared Disks as a server or, that
will run the GPFS file system daemon even if you are not running twin-tailed
disks. The reason for this is that the IBM Recoverable Shared Disk software
makes use of the fencevsd and unfencevsd facilities now available in this
release.

To perform this installation:

 1. Check that /spdata/sys1/install/pssplpp/PSSP-2.4 is mounted over /mnt.
If this is not the case, then follow the first part of step 4 in 2.1.3.2,
“Minimal Virtual Shared Disk Installation” on page 19.

 2. Create a subdirectory on the Control Workstation with the following
command:

sp2en1> mkdir /spdata/sys1/install/pssplpp/PSSP-2.4/rvsd

 3. Use smit bffcreate to copy IBM Recoverable Virtual Shared Disk
software to hard disk for future installation at the preceding directory.
Select all filesets pertaining to rcsd.

 4. Install all rcsd filesets to the nodes that wil l run on GPFS, or Virtual
Shared Disk, or both:

sp2en1> dsh installp -agXd /mnt/rvsd all

You can now verify your IBM Recoverable Virtual Shared Disk installation by
using the lslpp -l rcsd* command against the former output.

2.1.4 GPFS Software Installation
The installation of the GPFS software follows the same procedure as the
previous packages documented here.

To perform this installation:

 1. Check that /spdata/sys1/install/pssplpp/PSSP-2.4 is mounted over /mnt.
If this is not the case, then follow the first part of step 4 in 2.1.3.2,
“Minimal Virtual Shared Disk Installation” on page 19.

 2. Create a subdirectory on the Control Workstation with the following
command:

sp2en1> mkdir /spdata/sys1/install/pssplpp/PSSP-2.4/mmfs

20 GPFS: A Parallel File System

 3. Use smit bffcreate to copy the GPFS software to hard disk for future
installation at the preceding directory. Select all filesets pertaining to
mmfs.

 4. Install the single fileset required on the Control Workstation as follows:

sp2en1> installp -agXd /spdata/sys1/install/pssplpp/PSSP-2.4/mmfs mmfs.gpfs

The GPFS daemon does not run on the Control Workstation. Therefore,
only part of the GPFS code needs to be loaded.

 5. Install all mmfs filesets to the nodes that wil l run the GPFS daemon. If
you intend to install SP nodes as devoted Virtual Shared Disk servers,
you will not have to load the package onto these nodes. You may wish
to create a working collection variable WCOLL to match your GPFS
nodes. Alternatively, you can specify the individual commands from the
dsh command, as follows:

sp2en1> dsh -w sp2n03,sp2n04,sp2n07,sp2n08 installp -agXd /mnt/mmfs all

You can now use the lslpp -l command to verify the installation of the
GPFS filesets on each of your nodes:

� �
sp2en1> dsh -w sp2n03 lslpp -l mmfs*
Fileset Level State Description
--

Path: /usr/lib/objrepos
 mmfs.base.cmds 3.0.0.0 COMMITTED Multimedia File Manager

Commands
 mmfs.base.rte 3.0.0.0 COMMITTED Multimedia File Manager
 mmfs.gpfs.rte 1.1.0.0 COMMITTED GPFS File Manager
 mmfs.msg.en_US 3.0.0.0 COMMITTED Multimedia Server Messages -

U.S. English
 mmfs.util.cmds 3.0.0.0 COMMITTED Multimedia Server Utilities
 mmfs.util.smit 3.0.0.0 COMMITTED Multimedia Server SMIT Panel

 Path: /etc/objrepos
 mmfs.base.rte 3.0.0.0 COMMITTED Multimedia File Manager
 mmfs.gpfs.rte 1.1.0.0 COMMITTED GPFS File Manager

 Path: /usr/share/lib/objrepos
 mmfs.man.en_US.data 3.0.0.0 COMMITTED Multimedia Server Man Pages-

U.S. English� �

Note: At this point you should make sure that the path on your Control
Workstation and your SP nodes includes the following line:

• /usr/lpp/csd/bin

Also insure that this path is set only on your SP nodes:

• /usr/lpp/mmfs/bin

Chapter 2. Installation and Configuration 21

2.1.5 Authorization for Kerberos and Sysctl
Since Virtual Shared Disk and GPFS use sysctl commands, you have to
update the relevant sysctl ACL files. The following screen outputs show you
the root.admin default setup for sysctl. The files must be edited on the
Control Workstation, as well as on the SP nodes. The three files that must
be edited are: /etc/sysctl, /etc/sysctl.vsd.acl, and /etc/sysctl.mmcmd.acl:

• The screen output from /etc/sysctl.acl:

� �
sp2en1> cat /etc/sysctl.acl
#acl#
This sample acl file contains commented out lines for a principal
and an acl file.

_PRINCIPAL root.admin@MSC.ITSO.IBM.COM� �
• The screen output from /etc/sysctl.vsd.acl:

� �
sp2en1> cat /etc/sysctl.vsd.acl
#acl#

These are the users that can issue sysctl_vsdXXX command on this node
Please check your security administrator to fill in correct realm name
you may find realm name from /etc/krb.conf

_PRINCIPAL root@MSC.ITSO.IBM.COM
_PRINCIPAL rcmd@MSC.ITSO.IBM.COM� �

• The screen output from /etc/sysctl.mmcmd.acl:

� �
sp2en1> cat /etc/sysctl.mmcmd.acl
#acl#
These are the users that can issue multinode mmfs commands through sysctl:
_PRINCIPAL root.admin@MSC.ITSO.IBM.COM
_PRINCIPAL root.@MSC.ITSO.IBM.COM
_PRINCIPAL rcmd.@MSC.ITSO.IBM.COM� �

Note: The “ . ” after the user shown here is important for this
installation.

Once you have updated these files, you must refresh sysctl to complete the
database update for the new entries as follows:

sp2en1> dsh sysctl svcrestart

22 GPFS: A Parallel File System

If sysctl svcrestart fails with the following message:

sysctl: 2501-122 svcrestart: Insufficient Authorization.

then it is likely that your files are incorrectly edited or have not been
updated on all the SP nodes and the Control Workstation.

To check your sysctl authorization, first run klist to look at your ticket, and
then run sysctl whoami. To check that you can run the IBM Virtual Shared
Disk commands, issue sysctl sysctl_vsdcheck. You will also need to make
sure that your multi-node commands function correctly. You can do this by
running vsdsklst -a. This command will list information about physical and
logical volume manager states as a view for the Virtual Shared Disk
software.

The following shows sample output on a SP node for vsdsklst -n:

� �
sp2en1> vsdsklst -n 8
Node Number:8; Node Name:sp2n08.msc.itso.ibm.com

Volume group:rootvg; Partition Size:4; Total:250; Free:33
Physical Disk:hdisk0; Total:250; Free:33

Not allocated physical disks:
Physical disk:hdisk1; Total:1.0
Physical disk:hdisk2; Total:2.0GB
Physical disk:hdisk3; Total:2.0GB
Physical disk:hdisk4; Total:2.0GB� �

You can check that GPFS commands are available to use from sysctl as
follows:

� �
sp2en1> dsh sysctl mmremote single
sp2n03: ok
sp2n04: ok
sp2n07: ok
sp2n08: ok� �

Again, if any of these commands fail, you need to check your ACL files. You
should also check file /etc/sysctl.conf and make sure the following lines are
included:

� �
sp2en1> tail -4 /etc/sysctl.conf
Include VSD sysctl_vsd.cmd commands
include /usr/lpp/csd/sysctl/sysctl_vsd.cmds
Include mmfs sysctl commands
include /usr/lpp/mmfs/bin/mmcmdsysctl� �

Chapter 2. Installation and Configuration 23

In addition, you may need to run a kinit on all SP nodes and the Control
Workstation for root.admin.

Sysctl can also be restarted by issuing:

sp2en1> dsh stopsrc -s sysctl
sp2en1> dsh startsrc -s sysctl

You should also stop and restart this daemon on your Control Workstation.
Refer to Parallel System Support Guide or IBM RS/6000 SP Management,
Easy, Lean and Mean, GG24-2563 for further information about kerberos and
sysctl.

2.1.6 Tuning and Verifying the Switch
If you already have Virtual Shared Disk software installed, you must check
the rpoolsize and spoolsize values on each node. The value for both of
these variables is 16777216. These values cannot be set on the Control
Workstation. To check these values run the following:

� �
sp2en1> dsh -w sp2n03 lsattr -El css0
sp2n03: bus_mem_addr 0x04000000 Bus memory address False
sp2n03: int_level 0xb Bus interrupt level False
sp2n03: int_priority 3 Interrupt priority False
sp2n03: dma_lvl 9 DMA arbitration level False
sp2n03: spoolsize 16777216 Size of IP send buffer True
sp2n03: rpoolsize 16777216 Size of IP receive buffer True
sp2n03: adapter_status css_ready Configuration status False� �

If these values are incorrect, you need to change them to 16777216.

If this is a fresh installation, you must also check the level of paging space
available to the system. If you have not customized your system, it is likely
that you will only have a small amount of paging. You must increase the
paging because you are about to pin 32 megabytes of memory. You can
change your value by running:

dsh /usr/lpp/ssp/css/chgcss -l css0 -a rpoolsize=16777216 -a spoolsize=16777216

You can ignore the following messages, which will be returned from each
SP node:

sp2n03: There was customized rpoolsize, and new value != default
sp2n03: There was customized spoolsize, and new value != default

At this point you can follow one of two paths to make your new switch
values active, they are not dynamic. You can either reboot your system or
you can remove and reconfigure your switch adapter on each of your SP
nodes (as shown on SP node sp2n03):

24 GPFS: A Parallel File System

� �
sp2n03> Efence 3
sp2n03> cd /usr/lpp/ssp/css
sp2n03> ./ifconfig css0 down
sp2n03> ./ifconfig css0 detach
sp2n03> ./rc.switch
sp2n03> Eunfence 3� �

If you are running a HiPS switch, then you will probably need to run an
Estart depending on the Eduration set on your system.

2.1.7 Tuning and Verifying Virtual Shared Disk
At this point in the installation, you are required to enter the disk
parameters for each of your SP nodes into the System Data Repository
(SDR). These parameters must be set in order for GPFS to operate
efficiently. These values are set only on the Control Workstation:

vsdnode 3 4 7 8 css0 64 256 256 48 4096 262144 33 61440

You can verify the level of these values by using vsdatalst -n. Also, if you
are already running a Virtual Shared Disk system, you can update these
values with the Virtual Shared Disk command updatevsdnode. For example,
if you need to change the value of your max_buddy_buffers from 16 to the
recommended 33 on all your SP nodes, you must run:

sp2en1> updatevsdnode -n ALL -s 33

The syntax and values for these commands are discussed in greater detail
in Parallel System Support Program for AIX: Managing Shared Disks,
SA22-7279.

2.1.8 Deleting Old Rollback Files
If you issue a Virtual Shared Disk command that operates on multiple SP
nodes (such as createvsd), or a GPFS command (such as mmcrfs) that
updates the VSD configuration, and the command fails, a rollback file will be
created so that a second invocation of that command can resume the last
successful operation. (A command that is issued against multiple SP nodes
fails if any of the nodes cannot execute it). If you later change your
configuration or run a different command, it tries to complete processing
using the rollback file and will fail.

To be sure that here are no rollback files from failed invocations of your
commands, you can delete them using the rm command. The file is found in
/usr/lpp/csd/vsdfiles and is called vsd_rollback.

Any time a command of this nature fails, you need to check for old rollback
files.

Chapter 2. Installation and Configuration 25

2.1.9 Creation of Single Virtual Shared Disk for New Installation
The GPFS relies on several instances before it will start. The instances
include the availability of High Availability services, the switch, and the IBM
Recoverable Virtual Shared Disk daemon.

The last IBM Recoverable Virtual Shared Disk daemon cannot start unless
you have at least one Virtual Shared Disk available to it; therefore, you must
create one manually. You can achieve this through either SMIT,
Perspectives, or from the command line as shown here.

This Virtual Shared Disk does not have to be part of your GPFS
configuration. It can sit on any volume group that has a spare logical
partition. The example shown here is for the creation of a Virtual Shared
Disk in rootvg. The work has to be carried out from the Control Workstation
and creates the Virtual Shared Disk on SP node sp2n03:

sp2en1> createvsd -n 3/:hdisk0/ -g rootvg -s 1

You can then see your Virtual Shared Disk by running:

sp2en1> vsdatalst -v

The -v option shows the Virtual Shared Disk SDR information and looks
similar to:

� �
VSD Table

VSD name Logical volume Global Volume Group minor# option size_in_MB
 ------------------------- ------------------- ------ ------ ----------

vsd1n3 lvvsd1n3 rootvgn3 5 nocache 1� �

You must now configure and start your new Virtual Shared Disk on the SP
nodes as follows:

dsh cfgvsd vsd1n3
dsh startvsd vsd1n3

Check that your Virtual Shared Disk has started correctly:

� �
sp2en1> dsh -w sp2n03 lsvsd -l
sp2n03: minor state server lv_major lv_minor vsd-name option size(MB)
sp2n03: 5 ACT 3 10 12 vsd1n3 nocache 1� �

You can see from the state field that the Virtual Shared Disk is active. You
should check that this is the case for all your SP nodes. The lv_major and
lv_minor values will be zero on the other nodes since the Vitual Shared Disk
does not reside there.

26 GPFS: A Parallel File System

You can now verify that your software has created the Virtual Shared Disk
correctly. You can do this by running the vsdvts test suite. This has to run
on a SP node because it is interactive:

� �
sp2n03> vsdvts vsd1n3
NOTE: This command will change the content of vsd1n3 !!!

Do you want to continue y/n? y
vsdvts: Step 1: Writing file /unix to VSD vsd1n3.
dd if=/unix of=/dev/rvsd1n3 count=256 bs=4096 seek=1
256+0 records in.
256+0 records out.
vsdvts: Step 1 Successful!
vsdvts: Step 2: Reading data back from the VSD.
dd of=/tmp/vsdvts.4550 if=/dev/rvsd1n3 count=256 bs=4096 skip=1
256+0 records in.
256+0 records out.
vsdvts: Step 2 Successful!
vsdvts: Step 3: Verifying data read from the VSD.
dd if=/unix count=256 bs=4096] cmp -s - /tmp/vsdvts.4550
256+0 records in.
256+0 records out.
vsdvts: Step 3 Successful!

VSD Verification Test Suite Successful!� �

Now that you have successfully verified your Virtual Shared Disk, you will
have to suspend, stop and unconfigure the Virtual Shared Disk before
continuing with the configuration of GPFS:

dsh suspendvsd vsd1n3
dsh stopvsd vsd1n3
dsh ucfgvsd vsd1n3

Leave a few minutes between the preceding steps to allow Virtual Shared
Disk software to do its work. Then check that the Virtual Shared Disk has
been unconfigured. If your Virtual Shared Disks have been successfully
unconfigured, you will receive the following error from each of your SP
nodes:

� �
sp2en1> dsh lsvsd -l
sp2n03: minor state server lv_major lv_minor vsd-name option size(MB)
sp2n03: lsvsd: 0034-002 Error opening vsd /dev/VSD0.
sp2n04: minor state server lv_major lv_minor vsd-name option size(MB)
sp2n04: lsvsd: 0034-002 Error opening vsd /dev/VSD0.
sp2n07: minor state server lv_major lv_minor vsd-name option size(MB)
sp2n07: lsvsd: 0034-002 Error opening vsd /dev/VSD0.
sp2n08: minor state server lv_major lv_minor vsd-name option size(MB)
sp2n08: lsvsd: 0034-002 Error opening vsd /dev/VSD0.� �

Chapter 2. Installation and Configuration 27

The Virtual Shared Disk can, of course, be part of your setup. For
experienced users with existing Virtual Shared Disk and IBM Recoverable
Shared Disk, this may be preferable.

Figure 5 shows the transitional states, commands, and types of operations
that can be performed at each level with Virtual Shared Disk:

Figure 5. VSD State Transitions

2.1.10 High Availability Heartbeat Sensitivity
The GPFS daemon utilizes SP high availability services. This increases the
amount of work it has to complete to stabilize the group. The system
default allows for four missed heartbeats in its normal operation. We
recommend that you increase this value from four missed heartbeats to six
because of this increased workload. This increase may still not be enough
if you are using a mixture of nodes with different CPU performance and
load. To check the value, run the following on the Control Workstation;

� �
sp2en1> SDRGetObjects TS_Config
Frequency Sensitivity Run_FixPri FixPri_Value Log_Length

1 4 1 38 5000� �

To change this value, you can run:

28 GPFS: A Parallel File System

� �
sp2en1> SDRChangeAttrValues TS_Config Sensitivity==6

sp2en1> SDRGetObjects TS_Config
Frequency Sensitivity Run_FixPri FixPri_Value Log_Length

1 6 1 38 5000
sp2en1> dsh refresh -s hats
sp2en1> refresh -s sp2en1.hats� �

You must then refresh Topology Services.

2.1.11 The lsof Command (List Open Files)
The lsof utility is very useful in diagnosing unmounting problems not just
within GPFS, but in various different file systems. We recommend that you
install this command on any node running GPFS.

You can acquire a pre-built binary for AIX from:

aixpdslib.seas.ucla.edu

You can get the latest version via anonymous ftp from:

vic.cc.purdue.edu (cd to /pub/tools/unix/lsof)

The inventor of the lsof command is Abell (abe@cc.purdue.edu), Purdue
University Computing Center. For more information about this command,
refer to F.3, “LiSt Open File” on page 213.

Chapter 2. Installation and Configuration 29

2.2 Configuration

This section examines the planning and configuration needed to create and
run a GPFS file system. There are a number of factors that cannot be
changed at a later date once your file system has been created. If these
decisions are incorrect and have a critical impact on your business, you will
have to take the standard UNIX approach to this problem by archiving and
restoring your data. Examples of these “no return” decisions are i-node
size, indirect block size, and the estimated number of nodes to which the
file system will be mounted.

However, many of the decisions are dynamic and can be changed once your
file system is up and running. Examples of this are default replication, file
system automount, and nodes that are available to the file system.

2.2.1 Considerations
Following are the various factors that you must consider when planning your
configuration, including how best to optimize your resources. Table 2
shows the factors that are either tunable or static once the file system has
been created, and indicates where restripe should be considered.

Table 2. Tunable or Static Factors

Factor Tunable Consideration when Tuning Restripe

Block size No

I-node size No

Indirect block size No

Number of I-nodes No

Max number nodes per f i le system No

Nodes available to fi le system Yes <Max number nodes per f i le system Yes

Automount fi le system Yes

Max number metadata replicas No

Def number metadata replicas Yes =<Max number metadata rep l icas Yes

Max number data replicas No

Def number data replicas Yes =<Max number da ta rep l i cas Yes

Stripe method Yes Yes

Number of disks Yes Yes

Number of nodes in GPFS pool Yes Quorum Yes

GPFS starts on boot Yes Switch to be available

Change to GPFS cache Yes Restart GPFS

Quotas on/off Yes

30 GPFS: A Parallel File System

2.2.1.1 Planning Your Nodes
You must consider the following when planning your nodes:

 1. Nodelist

You must prepare a list of the nodes you will run the GPFS daemon on.
The collection of SP nodes is known as the GPFS pool. This list will not
include any node that is a dedicated Virtual Shared Disk server. You do
not have to run GPFS on a node that is acting as a VSD Node server.
The work for GPFS is done at the Virtual Shared Disk device driver layer
of the Virtual Shared Disk client.

This list contains only one line per entry, and the list will contain the
switch hostnames in any of the following formats: short hostname, long
hostname, or IP address.

 Note

Do not at this point identify the nodes by the Ethernet hostname,
because this will result in degraded performance.

An example of the creation of the nodelist is shown in 2.2.2.1, “Create
Your List of SP Nodes Used in the GPFS System” on page 42.

We use directory /var/mmfs as our directory for example configuration
lists. If you do not specify a list of SP nodes when you configure GPFS,
the switch hostnames of all the nodes in the System Data Repository
(SDR) for the partition are added. These names are copied to the
/etc/cluster.nodes file by GPFS. This file cannot be updated manually
and must be identical on all your nodes.

 2. Number of nodes available to a GPFS file system

Each time you create a file system, you must supply the number of SP
nodes available to a GPFS file system. When you create each file
system, we recommand that you overestimate the number of nodes
available to it. Include as many SP nodes as you are likely to expect in
your GPFS file system, plus a margin for error. This information is used
to optimize your file system; therefore, if you over-exaggerate this
number, it will waste resources such as memory. The default value for
this is 32 and this value cannot be changed dynamically.

 3. Virtual Shared Disk to be a stand-alone server or not?

All Virtual Shared Disks created will become available on each of the SP
nodes known to the Virtual Shared Disks. The command vsdatalst -n
shows these nodes. The optimum solution for a setup is to have a
Virtual Shared Disk server on a different node from the SP nodes that
have a GPFS file system mounted. The SP wide node at this time is the

Chapter 2. Installation and Configuration 31

best candidate to take on the responsibility of being a Virtual Shared
Disk server. This will give the minimum amount of interference between
disk processing and your applications.
Figure 6 shows a simple example setup utilizing Virtual Shared Disk,
twin tailed disks, and the IBM Recoverable Shared Disk. This
combination is also used as a configuration example in 2.2.2, “Steps of
Configuration” on page 41:

Figure 6. GPFS with Dedicated VSD Servers and RVSD Failover

 4. Quorum

Quorum for GPFS is performed on a SP node availability basis
determined from the preceding nodelist. The quorum is based on an
availability from “50 percent + 1” of your SP nodes. If quorum is not
met, the GPFS system will not start. Also, if your file systems are
mounted you will not be able to access your file systems until quorum is
met again. You will have to consider this carefully when you are
performing any maintenance work on your SP nodes. You must also
take this into account when you add nodes. When a SP node is added
to your GPFS system, it is seen as not operational and therefore can
affect quorum.

Following are examples of a successful and an unsuccessful addition of
a SP node into the GPFS pool from our original four SP node example:

• Example 1

32 GPFS: A Parallel File System

The quorum for a four node SP system is three SP nodes available
in the GPFS pool. We want to add two new nodes to our pool using
mmaddnode. Once our SP nodes have been added, our new quorum
would be four SP nodes. Therefore, because our original
configuration had four SP nodes available to it, we would have a
sufficient number of SP nodes available to continue functioning.
This example would hold true for the addition of three nodes as well.

• Example 2

Again our quorum for a four node SP system is three. This time we
want to add four nodes into the pool. This attempt would fail
because our new quorum would be set at five SP nodes. The
original configuration only had four SP nodes available to the GPFS
system.

Therefore, to control this point of failure, the best solution is to add a
maximum of three nodes at a time to your pool.

 5. Starting the GPFS system automatically

GPFS can be configured to start automatically when a SP node boots
and then if the GPFS file system is set to mount from the daemon it will
mount automatically as well. You can configure this when you initially
configure GPFS. Automatic startup of GPFS is the recommended
setting. This value is dynamic and can be changed at a later time.

 6. Priority

This is the priority of the daemon as set in the UNIX scheduler. The
default value on the system is set to 40. We recommend that you do not
change this value. The reason for this is that GPFS interacts with SP
High Availability Services, and hatsd and hagsd have only marginally
higher priorities as shown:

� �
sp2n03> ps -el|grep mmfsd

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
240503 A 0 19180 3524 0 40 -- 37ad 7324 * - 0:34 mmfsd

sp2n03> ps -el|grep hagsd
340103 A 0 12914 3524 0 39 -- 1b06 3168 - 0:29 hagsd

sp2n03> ps -el|grep hatsd
4240103 A 0 11884 3524 0 38 -- 2709 9372 * - 14:28 hatsd� �

 7. Node Failure

There are two issues to be considered in case of node failure: metadata
integrity and userdata integrity. GPFS ensures metadata integrity by
automatically protecting you against a non-Virtual Shared Disk server
node failure. This is enabled by GPFS keeping two copies of its logs in

Chapter 2. Installation and Configuration 33

different failure groups. This log is the equivalent of a journal log in a
JFS file system. Any data in memory will be lost, as it is in any file
system.

The userdata integrity issue arises when your GPFS node is also a
Virtual Shared Disk server node. The best scenario here is to use
twin-tailed disks, which will enable you to utilize the facilities of the IBM
Recoverable Shared Disk product to provide failover service to your
disk, to a backup server. This is discussed more in depth in the
following section.

2.2.1.2 Planning Your Disks and Failure Groups
 1. Performance of Disks

When planning your disks, you should plan to evenly distribute the disks
across your Virtual Shared Disk server nodes. This will reduce the
bottlenecks seen in I/O wait states. You should only have one Virtual
Shared Disk per physical disk. This is the default option that is available
to you when you let GPFS create your Virtual Shared Disks for you.

You should also not have Virtual Shared Disks spanning several
physical disks or several Virtual Shared Disks on one physical disk.
This will only degrade performance and make your file systems more
difficult to manage. The type of disk is important and it is generally
recommended that you should be using any type of twin-tailed disk
supported in AIX. The recommended setup would be to use SSA disks;
this would be the ideal solution.

 2. IBM Recoverable Shared Disk

This product gives high availability to your volume groups and Virtual
Shared Disks, and protects your disks against node failure. When a
Virtual Shared Disk is created on a twin-tailed disk, either through GPFS
or manually, you have to specify a primary and backup SP node.

The Virtual Shared Disk is then created over a logical volume in a
volume group. This volume group is imported on each of the Virtual
Shared Disk nodes, but is only varied on and used on the primary node
unless an SP node failure occurs.

The failover process is a complicated process and follows a strict
multiphase protocol to ensure data integrity. However, the basic activity
is that the IBM Recoverable Shared Disk will make the primary node
unavailable, and then vary on the volume group on the backup server
and enable Virtual Shared Disk on that SP node.

 3. Capacity

34 GPFS: A Parallel File System

You should ensure that you have enough disk capacity to encompass
your GPFS file system. The total size of disk space required, as with the
AIX Logical Volume Manager, also depends on the degree of replication,
the type of replication, AIX mirroring and so on that you are
implementing. File system considerations are discussed in more detail
in 2.2.1.4, “File System and File Size Considerations” on page 40.

 4. Disk Failure

You can protect yourself against disk failure as you would in a normal
AIX environment: by using AIX mirroring or a RAID disk subsystem. For
a highly available environment, you might consider using three mirrors.

Replication is the tool available to you from GPFS to protect your data.
There are two types of replication:

• MetaData replication

MetaData replication is used to replicate the control pointers of the
system. MetaData consists mainly of i-node and indirect block
information. The default for replication on the system is one,
therefore no replication occurs. You can have a maximum
replication of two.

• Data replication

Up to two copies of your data can be stored on your disks.

For each additional copy of your data, you must use a different failure
group; this will protect your data. Failure groups are described in more
detail in 6 on page 38.

However, there are considerations that you have to make regarding
performance. Multiple copies have to be written and maintained.
Replication by its very nature limits your maximum file size and
inherently uses more disk space.

 5. Striping

There are three striping methods available to you in GPFS:

The first method of striping is roundRobin, as shown in Figure 7 on
page 36.

Chapter 2. Installation and Configuration 35

Figure 7. View of roundRobin Striping

This is the default option the system will select, and it is
recommended because it gives the best performance. However, if
you add or remove a disk, this option will take the longest of the
three to restripe due to the uniform nature of the stripe. Data blocks
are written to one disk at a time until all disks have received a
block. The next round of writes will then again write a block to each
disk and access the disks in the same order as the first round.

The second method is balancedRandom, as shown in Figure 8 on
page 37.

36 GPFS: A Parallel File System

Figure 8. View of balancedRandom Striping

This option is similar to the first; however, this time the second (and
any subsequent) pass will not write to the disks in the same order.
It will not return to the same disk until all disks have been written to.

Chapter 2. Installation and Configuration 37

The last method available to you is random, as shown in Figure 9.

Figure 9. View of Random Striping

As the title suggests, this is a purely random function. This means
that the GPFS system will write to any disk in any order and could
possibly write to the same disk sequentially. If you are using
replication and you have your failure groups set up, it will not write
to the same disk twice for a replicated copy.

 6. Failure Groups

A failure group is a group of disks that have a common point of failure.
GPFS by default will assign a failure group at the node level for each
disk in the GPFS file system. The reason for this is that the node is
seen as a single point of failure. You will be able to assign a number to
each failure group.

Another type of failure group that is seen from more than a single nodes
point of view is a Virtual Shared Disk that is twin-tailed and available
from two nodes over an IBM Recoverable Shared Disk. Although there
are two nodes, this represents a single failure group.

The default number that GPFS assigns to a failure group is the node
number plus 4000. If you decide that a disk should ignore failure group

38 GPFS: A Parallel File System

consideration, then you can assign it a value of -1. This generally
indicates that a disk has no point of common failure with any other disk.
You will be able to assign a value from -1 to 4000 for your failure groups.
Refer to 2.2.2.4, “Creating Disk Descriptor Files” on page 46 for
examples of failure groups.

2.2.1.3 Cache and Memory Considerations
During installation you will have to consider how much memory you are
going to reserve for cache. This value must not exceed 80% of real
memory. However, this is an unrealistic value for SP nodes with small
amounts of memory, because this is pinned memory. It is reserved only for
the GPFS system and therefore cannot be accessed by other applications.
These values are tunable and can be changed at a later time. They are also
tunable on an SP node basis as well. You will have to restart GPFS if these
values are changed.

Following are the definitions of this cache:

 1. PagePool

The pagepool is used primarily for storage of user data and indirect
blocks. Increasing the size of this page pool allows GPFS to cache
more data for access by applications. The value of this pool can range
from 4MB to 512MB per node. The system default at configuration time
for this value is 20M. When you specify this value, you must specify it
with the letter M, for example, to set your pagepool to a value of 40
megabytes, you must enter 40M.

 2. Mallocsize

This is the area that caches your metaData and control structures.
Applications that reuse files heavily will benefit from an increase in this
cache. The range for this cache is from 2MB to a maximum of 512MB,
with a default of 4M.

As GPFS uses a large amount of pinned memory, you must carefully
consider the amount of memory that your SP nodes have. The amount of
pinned memory that the GPFS daemon utilizes is mallocsize + pagepool. If
you take the system defaults, then mallocsize=20M and pagepool=4M, and then
pinned memory for GPFS is 24MB.

Earlier, we had also set aside an amount of pinned memory for the switch.
This was requested in the rpoolsize and spoolsize, with each being set to 16
megabytes. Therefore, with the GPFS defaults and switch cache, we already
have 56MB set aside just for pinned memory.

Chapter 2. Installation and Configuration 39

More details about GPFS memory usage are discussed in General Parallel
File System for AIX: Installation and Administration, SA22-7278. We
recommend that you have at minimum 128MB of memory for a Virtual
Shared Disk server node, but you should consider using 256MB and higher
for your GPFS servers. However, use your knowledge of your own
application to make the correct decision here.

2.2.1.4 File System and File Size Considerations
The GPFS file system is based on a standard UNIX file system architecture
using i-nodes, indirect blocks, sub-blocks, and full data blocks. Refer to
General Parallel File System for AIX: Installation and Administration,
SA22-7278 and 1.2.3, “Allocation Mechanism” on page 7 in this redbook for
detailed information about these features. The file system offers three block
sizes available: 16KB, 64KB, and 256KB. This gives you a wide scope of
choices for your data′s file size.

In this section we examine two scenarios:

 1. Small Files

If you have small files, you should consider using a 16KB block size.
With this size, you waste as little disk space as possible when storing
your data and you get the best performance for a file system with an
average file size of 16KB and less. The data block is split into 32
sub-blocks, therefore giving you the ability to store more than one file in
a full data block. These files can be as small as one sub-block in size;
in the case of a 16KB, the sub-block would be 512 bytes in size. A
system that stores small files should use the minimum i-node size of 512
bytes. This would keep the loss of disk space to a minimum.

 2. Large Files

When you require large amounts of data in a single read or write
operation, you should opt for the larger block size and also larger
indirect block sizes. This will give you the largest amount of contiguous
disk space. Larger i-node sizes and indirect block sizes will result in
wasted space if small files are written.

If your file sizes are mixed, you should consider one of two options:

• You could choose a block size of 64MB, which would balance the
loss of disk space against reasonable performance from contiguous
disk space.

• You could create more than one file system to support the different
file sizes. (This second option also relies heavily on disk
availability.)

40 GPFS: A Parallel File System

If you choose to replicate your system, logically you will see a decrease in
the amount of space available to you in the file system. Refer to
Appendix B, “GPFS Maximum File Size and Related Parameters” on
page 189 to see what effects the different i-node sizes, block, indirect block
sizes and replication has on your maximum file size and maximum file
system size.

2.2.2 Steps of Configuration
We will now use the preceding considerations to build a GPFS system and
make its file system available for use. We will be using four SP thin nodes
and one SP wide node for this example configuration and each SP node will
have 256mb of memory. Two SP nodes will be Virtual Shared Disk servers
and the other three SP nodes will run the GPFS system and mount the file
system. The five SP nodes sit in a partition named “sp2en1.” The SP nodes
are named; sp2n03, sp2n04, sp2n07, sp2n08 and sp2n09 respectively. We
have four SSA disks available to us; hdisk1, hdisk2 are 2.2 gigabyte drives
and hdisk3, hdisk4 are 4.5 gigabyte drives. Note that hdisk3 and hdisk4 will
be mirrored using AIX.

Note: All commands for GPFS administration must be run as root user and
must be run on an SP node or from dsh.

Figure 10. Example Configuration

Chapter 2. Installation and Configuration 41

Figure 10 shows the setup that will be used to define this GPFS system:.
We will now see how this can be implemented on a GPFS system. All
administration and configuration commands will be run on a SP node in
your GPFS pool of nodes.

2.2.2.1 Create Your List of SP Nodes Used in the GPFS System
As discussed earlier, you must make available to the GPFS system a list of
SP nodes that you will use. In our example, we create this file in directory
/var/mmfs and call it nodes.pool. From our configuration figure, we can see
that only three of our nodes will run the GPFS system; therefore, our list will
only hold these three nodes. (You can, of course, add the other two nodes
into the configuration later.)

We opt to use the short hostnames for our list. As discussed earlier, you
can use a short hostname, long hostname or an IP address. The output
from /var/mmfs/nodes.pool is as follows:

� �
sp2n07> cat /var/mmfs/nodes.pool
sp2sw07
sp2sw08
sp2sw09� �

2.2.2.2 Configuring GPFS with Your Nodelist File
We now use the nodelist file to configure the GPFS system. We configure
the system with default values, with one exception: we specify that the GPFS
daemon should autostart on boot. If this is selected, then the GPFS daemon
will not start until the IBM Recoverable Shared Disk and the switch are
available. We can use one of two options here. We can use the mmconfig
command from the command line:

� �
sp2n07> mmconfig -n /var/mmfs/nodes.pool -A� �

Altertatively, we can use SMIT to configure GPFS. From the command line
we can use a fast path to get to the GPFS main menu using:

• smitty gpfs

This will produce the following output:

42 GPFS: A Parallel File System

� �
GPFS Administration

Move cursor to desired item and press Enter.

GPFS Configuration
GPFS Change Configuration
Prepare Disk Description List File
GPFS Create File System
GPFS Modify File System
GPFS Display status of Disks
GPFS Add Disk(s)
GPFS Delete Disk(s)
GPFS Replace Disk
GPFS Add Node(s)
GPFS Delete Node(s)
GPFS Delete File system

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do� �

From there we can select GPFS Configuration . The fast path to get to this
SMIT panel is:

• smitty mmconfig

You will be presented with the following screen:

� �
Config GPFS File Sys

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
node_file [/var/mmfs/node.pool] /
config_file [] /
Pagepool []
mallocsize []
priority [] #
Auto Load yes +
client_ports [] #
server_port_num [] #
server_kprocs [] #

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

The defaults of this setup are found in the sample configuration file:

Chapter 2. Installation and Configuration 43

• /usr/ lpp/mmfs/samples/mmfs.cfg.sample

The details of the configuration have been entered into a System Data
Repository (SDR) file. This SDR file is placed in directory
/spdata/sys1/sdr/part i t ions/<ip_addr>/f i les and is cal led mmsdrcfg1. This
file cannot be directly edited. You will have to use SDRRetrieveFile
mmsdrcfg1 <output_filename> to view this file. The output from this file will be
almost identical to the sample file /usr/lpp/mmfs/samples/mmfs.cfg.sample.

The SDR file is read every time the GPFS daemon is started on a SP node
to define its working environment. There is a second SDR file of
importance, and this is described in 2.2.2.3, “Starting Your GPFS Daemon.”

2.2.2.3 Starting Your GPFS Daemon
Now that we have configured our GPFS nodes into the SDR, we are able to
inform the GPFS daemon of its environment, and more importantly, the
daemon will be able to work out its quorum. In our example we need to
have two nodes out of the possible three available at all times for the GPFS
quorum to be met. Before we start the GPFS system, however, the following
two requirements must be meet:

 1. The switch must be available.

Use spmon or perspectives to check that the switch is available for the
GPFS nodes; spmon -d is the quickest method to check this. You should
also make sure that availability services are established by running:

� �
sp2n07> lssrc -l -s hags� �

You should see two entries for cssMembership and ha.vsd. If you cannot
start your switch, or if availability services are not available, then refer
to RS/6000 SP: PSSP 2.2 Survival Guide, SG24-4928 for further
information. If ha.vsd is not listed, then see the next heading.

 2. The IBM Recoverable Shared Disk must be running.

You also need to have your RVSD daemon running, and you can check
this on each node by running:

� �
sp2n07> dsh lssrc -g rvsd
sp2n07: Subsystem Group PID Status
sp2n07: rvsd rvsd 23670 active
sp2n07: hc.hc rvsd 28692 active
sp2n08: Subsystem Group PID Status
sp2n08: rvsd rvsd 27828 active
sp2n08: hc.hc rvsd 31432 active� �

At this point the working collective has been exported to the nodelist:

44 GPFS: A Parallel File System

� �
sp2n07> export WCOLL=/var/mmfs/nodes.pool� �

If this resource is unavailable to group services or the daemon is
inactive, check the /etc/inittab for entry:

rvsd:2:once:/usr/lpp/csd/bin/ha_vsd > /dev/console 2>&1

If this entry exists and your rvsd daemon is inactive, you probably have
not rebooted at this point. You can run the following command to
perform a reboot:

� �
sp2n07> dsh /usr/lpp/csd/bin/ha_vsd reset /dev/console 2>&1� �

Notes:

a. In our configuration, we need the IBM Recoverable Shared Disk to
be available on the Virtual Shared Disk server because we use
twin-tailed disks for the file system configuration.

b. You need to be careful running the ha_vsd command if you already
have Virtual Shared Disks active on your system, since this will
recycle your Virtual Shared Disks. This may be the case if you
already use Virtual Shared Disk and not IBM Recoverable Virtual
Shared Disk.

Both groups, cssMembership and ha.vsd, should now appear in the
output from lssrc -l -s hags.

Now that we have the prerequisites for the GPFS system available, we can
start the daemon:

� �
sp2en7> dsh startsrc -s mmfs� �

To check that the daemon has started successfully on each node, you can
check the mmfs log. The file takes two naming formats and sits in directory
/var/adm/ras.

When the daemon is starting, the file is called mmfs.log. If this file
continually exists, then you will experience problems starting up. The file
size will also be seen to cycle from a zero length.

If the daemon is successful and has started, you will see a new log in the
same directory similar to mmfs.log.1997.09.21.13.36.28. The log will look like
the following:

Chapter 2. Installation and Configuration 45

� �
Warning: Host has multiple network interfaces
Using interface 192.168.13.7
Use -h option to override
/usr/lpp/mmfs/bin/installcetm: extension is already loaded
MMFS: 6027-506 /usr/lpp/mmfs/bin/mmfskxload: /usr/lib/drivers/mmfs is already
loaded at 219566092.
MMFS: 6027-310 mmfsd initializing ...
MMFS: 6027-300 mmfsd ready for sessions.� �

The line MMFS: 6027-300 mmfsd ready for sessions. indicates that a quorum
has been met and the GPFS system is now available.

2.2.2.4 Creating Disk Descriptor Files
Now that the GPFS system is available, we can create our file system. We
call our file system /dev/fs1 and we mount this file system over mount point
/gpfs/fs1. Refer to Figure 10 on page 41 and 2.2.2, “Steps of
Configuration” on page 41 to see see the disks we use in this file system.

There are four ways to add disks into a GPFS system:

 1. Prepare a disk descriptor file through SMIT

 2. Prepare a disk descriptor file through an editor like vi

 3. Enter a list of disks into the SMIT GPFS Create File System option

 4. Create a Virtual Shared Disk descriptor file

In the following sections, we describe these methods in more detail.

The first two methods create a file, which we call either /var/mmfs/disk.desc
or /var/mmfs/vsd.desc. For our example, we create the file system without
previsouly created Virtual Shared Disks. We use the first method to show
the creation of a file, and the second method to explain the fields involved,
as follows:

 1. Prepare a disk descriptor file through SMIT.

Enter smitty gpfs to get to the main menu, and then choose option
Prepare Disk Description List File . Then select Create for the first pass
and you will be asked to enter a file name that will be used in the
creation of your file. We choose /var/mmfs/disk.desc. The following
screen is then presented and we entered the following:

46 GPFS: A Parallel File System

� �
Disk Description List Dialog

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
 # Disk Description List File Name /var/mmfs/disk.desc
 # Mode of operation on the DescFile Create
 # DiskDesc′ s Line no
* Hdisk Name [hdisk1] +
Server Name [sp2n03] +
Backup Server Name [sp2n04] +
Diskusage dataAndMetadata +
Failure Group [100] #

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Once this data is entered, you must enter your second disk. This time
we added hdisk2 into the same failure group. You will have to Append
to the disk descriptor list this time; notice the change in the Mode field,
as shown:

� �
Disk Description List Dialog

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
 # Disk Description List File Name /var/mmfs/disk.desc
 # Mode of operation on the DescFile Append
 # DiskDesc′ s Line no
* Hdisk Name [hdisk2] +
Server Name [sp2n04] +
Backup Server Name [sp2n03] +
Diskusage dataAndMetadata +
Failure Group [100] #

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

We are now going to add our final disk known to GPFS into the
descriptor file. As originally stated, this disk will be mirrored and sit in
a separate failure group, which will enable us to use replication in our
file system. There are two options in AIX mirroring. You can mirror at

Chapter 2. Installation and Configuration 47

the Logical Volume (LV) level, or you can now mirror at the Volume
Group level itself, which makes administration an easier task in some
scenarios. Again, you will need to Append to the disk descriptor file as
follows:

� �
Disk Description List Dialog

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
 # Disk Description List File Name /var/mmfs/disk.desc
 # Mode of operation on the DescFile Append
 # DiskDesc′ s Line no
* Hdisk Name [hdisk3] +
Server Name [sp2n03] +
Backup Server Name [] +
Diskusage dataAndMetadata +
Failure Group [101] #

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Note: We did not use a backup server name because it is not available
to the IBM Recoverable Shared Disk. We are also using the default disk
usage dataAndMetadata to store the data. This is the recommended
method of storing data.

You can, of course, split the metadata and data, but you will have to be
extremely careful in setting up your failure groups and your high
availability scenarios to keep the file system on-line. The most likely
scenario for this is when you are using RAID. RAID performs at its
optimum when you are using large block sizes. Therefore, with
metadata being only a fraction of the block size, you may want to place
your metadata on another type of disk (for example, a SSA disk). In this
way, the RAID disks would only have data on them.

Nevertheless, we recommend that the SSA disk supporting the RAID
disk with metadata should also hold a fraction of the data.

48 GPFS: A Parallel File System

 2. Prepare a disk descriptor file through an editor like vi.

You can create this disk descriptor file manually. If we take a look at
the file, we can see how the preceeding fields correspond:

� �
hdisk1:sp2n03:sp2n04:dataAndMetadata:100
hdisk2:sp2n04:sp2n03:dataAndMetadata:100
hdisk3:sp2n03::dataAndMetadata:101� �

Let us break down the definition of each field:

Disk Name:Server Name:Backup Server Name:Data Replication Type:Failure Group
hdisk1: sp2n03: sp2n04: dataAndMetadata: 100

 a. Disk name

This is the name of your device on which you wish to create the
Virtual Shared Disk. As mentioned before, it is recommended that
you have one physical disk per Virtual Shared Disk. If you have
previously created your Virtual Shared Disks, you can also enter the
name here.

The creation of a descriptor file for Virtual Shared Disks is described
in step 2d.

b. Server name

This the name of the Virtual Shared Disk server node.

 c. Backup server name

This field is used when you have twin-tailed disks available and you
require the use of IBM Recoverable Shared Disk to protect your
access to the disk. It is the name of the secondary Virtual Shared
Disk server node. The example shows that hdisk1 will be made
available to sp2n04 using IBM Recoverable Shared Disk in the event
of failure of sp2n03.

d. Data replication type

There are three types available to you:

1) dataAndMetadata (This is the default and is the recommended
data replication type.)

This is the type we chose for our example configuration.

2) dataOnly

3) MetadataOnly

e. Failure Group

Chapter 2. Installation and Configuration 49

We chose two failure groups because we require replication of
hdisk1 and hdisk2 in failure group 100, to mirrored hdisk3 in failure
group 101. If you have more than two failure groups, the replica will
not necessarily be written to the same disk; in this case, GPFS will
decide how to protect your data.

GPFS is able to work out the defaults. However, for a file that describes
physical disks and not Virtual Shared Disks, you will always be required
to enter the server name for the disk as shown:

� �
hdisk3:sp2en3:::101� �

We also could have defaulted the failure group, since this disk is in a
group of its own.

 3. Enter a list of disks into the SMIT GPFS Create File Sys menu.

When you select the GPFS Create File System option, you are offered
two choices. Firstly, you can choose:

� �
Get Disk Descriptions From DescFile� �

which is the choice for the first two descriptor files; alternatively you can
choose:

� �
Get Disk Descriptions From DiskDescList� �

and this will require you to add a string of your disks and definitions
directly to the SMIT screen. This process is tricky as you are entering a
lot of data. Our string looked like this:

“hdisk1:sp2n03:sp2n04:dataAndMetadata:100;hdisk2:sp2n04:sp2n03:
dataAndMetadata:100;hdisk3:sp2n03::dataAndMetadata:101”

Your view from the SMIT screen is limited to only a set number of
characters. As you can see, this is a not a simple operation and it is
prone to errors if you are entering a sizable number of disks and
descriptors.

 4. Create a Virtual Shared Disk descriptor file.

If you have already created your Virtual Shared Disks, you can add
these disks to the GPFS file system by creating another descriptor file.
You only need to enter three out of the five fields: disk name (nn in this
case is the Virtual Shared Disk name); data replica type, and failure
group.

50 GPFS: A Parallel File System

Do not stipulate the server or backup server node, because the creation
of the file system will fail. A Virtual Shared Disk descriptor file looks like
the following:

� �
gpfs1n3::::100
gpfs2n4::::100
gpfs3n3::::101� �

2.2.2.5 Creating a GPFS File System from a Disk Descriptor File
You can now use your disk descriptor file to create a file system. You can
enter the GPFS Create File System menu by typing:

smitty mmcrfs

The following example uses the Physical Disk Descriptor File. You must
select the following:

� �
Get Disk Descriptions From DescFile� �

You are then presented with a new SMIT panel from which you are asked to
enter details about your GPFS file system. We select the following values:

� �
Create GPFS File Sys

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* mountpoint [/gpfs/fs1]
* File System devicename [fs1]
* DescFile Name [/var/mmfs/disk.desc] /
NumNodes [16] #
StripeMethod roundRobin +
NumInodes [] #
InodeSize [512] #
AutoMount yes +
BlockSize 256K +
IndirectSize [16384] #
VerifyStripeGroup yes +
Activate Quotas no +

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

The highlighted entries denote the values we entered into the SMIT panel.
In this GPFS version, we are unable to enter replication values through
SMIT; therefore, this file system will have no replication after creation.

Chapter 2. Installation and Configuration 51

The successful creation of the file system looks like the following:

� �
COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

[TOP]
mmcrfs: 6027-1052 Making MMFS filesystem /dev/fs1
createvsd -n 3/4:hdisk2/ -s 2148 -g gpfs2 -v gpfs -T 4 -o nocache
OK:0:defvsd lvgpfs1n3 gpfs2n3b4 gpfs1n3 nocache
mkvsdOK gpfs1n3 2148
createvsd -n 3/4:hdisk3/ -s 2148 -g gpfs3 -v gpfs -T 4 -o nocache
OK:0:defvsd lvgpfs2n4 gpfs3n4b3 gpfs2n4 nocache
mkvsdOK gpfs2n4 2148
createvsd -n 3/:hdisk4/ -s 4296 -g gpfs4 -v gpfs -T 8 -o nocache
OK:0:defvsd lvgpfs3n3 gpfs4n3 gpfs3n3 nocache
mkvsdOK gpfs3n3 4296
/usr/sbin/tscrfs /dev/fs1 -F /tmp/mmcrfsdddo30070 -M 1 -n 32 -R 1 -s roundRobin
-c 0 -p no -w 0

MMFS: 6027-531 The following disks of fs1 will be formatted:
gpfs1n3: size 2199552KB
gpfs2n4: size 2199552KB
gpfs3n3: size 4399104KB

MMFS: 6027-540 Formatting file system ...
MMFS: 6027-572 Completed creation of file system /dev/fs1.

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

Following are the command and command line attributes that are facilitated
with this SMIT:

mmcrfs /gpfs/fs1 fs1 -F /var/mmfs/disk.desc -A yes -n 16

We additionally have asked that the file system will automount on the
startup of the GPFS system, and also that we have the maximum number of
nodes available set to 16 since the GPFS system is unlikely to grow outside
one frame.

The GPFS file system can also be created using a disk descriptor file that
contains a list of Virtual Shared Disks, as already seen. The output from
SMIT on a successful creation of the file system is a little different and looks
like the following:

52 GPFS: A Parallel File System

� �
COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

mmcrfs: 6027-1052 Making MMFS filesystem /dev/fs1
/usr/sbin/tscrfs /dev/fs1 -F /tmp/mmcrfsdddo31996 -M 1 -n 32 -R 1 -s roundRobin
-v no -c 0 -p no -w 0

MMFS: 6027-531 The following disks of fs1 will be formatted:
gpfs1n3: size 2199552KB
gpfs2n4: size 2199552KB
gpfs3n3: size 4399104KB

MMFS: 6027-540 Formatting file system ...
MMFS: 6027-572 Completed creation of file system /dev/fs1.

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

Except for the file name change, the command line arguments for the mmcrfs
command are identical to the previous example.

The example configuration of a GPFS file system requires replication. As
previously mentioned, we cannot add these values from the SMIT panel;
therefore, we have to use the command line option.

Note: You cannot change MaxDataReplicas and MaxMetaDataReplicas after
file system creation. These values are used in the calculation of your
maximum file size and maximum file system size.

We require two replicas of data and metadata. Therefore, the additional
arguments for the mmcrfs command are:

-M 2 -m 2 -R 2 -r 2

The uppercase arguments in this case denote the MAX value, and the
lowercase arguments denote the actual replication at the time of file system
creation. The complete command would therefore look as follows:

mmcrfs /gpfs/fs1 fs1 -F /var/mmfs/disk.desc -A yes -n 16 -M 2 -m 2 -R 2 -r 2

The output from the command is similar to that seen in the SMIT version.

Chapter 2. Installation and Configuration 53

2.2.2.6 Mounting and Checking the GPFS File System
The mounting of a GPFS file system is the same as mounting any file
system: you simply use the mount command on each GPFS node that you
have in the GPFS pool, as shown:

� �
sp2n07> dsh mount /gpfs/fs1� �

The GPFS system manages the stanza that is seen for the file system in
/etc/fi lesystems:

� �
/gpfs/fs1:

dev = /dev/fs1
vfs = mmfs

 nodename = -
 mount = mmfs
 type = mmfs
 options = rw,disks=gpfs1n3;gpfs3n3;gpfs2n4
 account = false� �

Do not modify the stanza manually, because it is changed by the GPFS
daemon and will be overlaid the next time the SDR copy is fetched.

You can now check that the file system is mounted by entering the
traditional df command, which will show you the following:

� �
sp2n07> df
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 16384 2848 83% 1238 31% /
/dev/hd2 532480 5120 100% 8920 14% /usr
/dev/hd9var 106496 44104 59% 507 4% /var
/dev/hd3 131072 46240 65% 90 1% /tmp
/dev/hd1 8192 7840 5% 18 2% /home
/dev/fs1 17596416 17559040 1% 10 1% /gpfs/fs1� �

Alternatively, you can run the GPFS equivalent mmdf:

� �
sp2n07> mmdf fs1
disk disk size failure holds holds in full in
name in KB group metadata data blocks fragments
--------------- --------- -------- -------- ------ --------- ---------
gpfs1n3 2199552 100 yes yes 2194432 416
gpfs2n4 2199552 100 yes yes 2194688 416
gpfs3n3 4399104 101 yes yes 4389376 648

--------- --------- ---------
(total) 8798208 8778496 1480� �

54 GPFS: A Parallel File System

The following screen shows how GPFS views the disk and availability
information:

� �
sp2n07> mmlsdisk fs1
disk driver sector failure holds holds
name type size group metadata data status availability
------------ -------- ------ ------- -------- ----- ------------- ------------
gpfs1n3 disk 512 100 yes yes ready up
gpfs2n4 disk 512 100 yes yes ready up
gpfs3n3 disk 512 101 yes yes ready up� �

You can also check your Virtual Shared Disks at this point:

� �
sp2n07> lsvsd -l
minor state server lv_major lv_minor vsd-name option sizee(MB)
11 ACT 3 0 0 gpfs1n3 nocache 21488
12 ACT 4 0 0 gpfs2n4 nocache 21488
17 ACT 3 0 0 gpfs3n3 nocache 42966� �

In addition, you can also use the GPFS command, mmlsfs, to list your file
system attributes:

� �
sp2n07> mmlsfs fs1
flag value description
---- -------------- ---
 -s roundRobin Stripe method
 -f 8192 Minimum fragment size in bytes
 -i 512 Inode size in bytes
 -I 16384 Indirect block size in bytes
 -m 2 Default number of metadata replicas
 -M 2 Maximum number of metadata replicas
 -r 2 Default number of data replicas
 -R 2 Maximum number of data replicas
 -a 1048576 Estimated average file size
 -n 16 Estimated number of nodes that will mount file system
 -c 0 Maximum concurrent I/O operations per disk
-d gpfs1n3;gpfs2n4;gpfs3n3 Disks in file system
-B 262144 Block size
-Q no Quotas on|off?� �

The file system has now been created and mounted and is available for use.
GPFS has created and configured your Virtual Shared Disks for you and
made them available to the IBM Recoverable Virtual Shared Disk. You will
now have to use AIX mirroring to complete the configuration for hdisk3 and
hdisk4. Other example configurations are available in General Parallel File
System for AIX: Installation and Administration, SA22-7278.

Chapter 2. Installation and Configuration 55

56 GPFS: A Parallel File System

Chapter 3. Failover Scenarios

In order to ensure a highly available file system, GPFS provides capabilities
that enable it to cope with hardware/software failures that can occur in the
system.

This chapter discusses some of the failover scenarios that may happen with
GPFS and describes how GPFS reacts to these failures.

3.1 Hardware Recovery

In this section, we describe the hardware failures that can happen and how
GPFS handles the recovery in each case.

The three hardware components we discuss are:

• The node itself

• The switch connection between nodes

• The disk subsystem

3.1.1 Node Failure
A node in a GPFS file system domain can be classified into:

 1. VSD server node

• VSD server primary node
• VSD server secondary node

 2. Client node

A Virtual Shared Disk (VSD) is a logical volume that can be accessed not
only from the node it belongs to, but also from any other node in the system
partition.

A VSD server is a node that owns a number of VSDs. It reads and/or writes
data to VSDs as requested by client nodes, and transfers the data back,
usually via SP Switch or HiPS Switch.

A client node is a node that requests access to VSDs. It should be noted
that a node can be both a VSD server node and a client node at the same
time.

If a VSD server node fails, access to the data on all VSDs that it owns is
lost. In order to avoid this situation, we implement IBM Recoverable Virtual
Shared Disk (RVSD) and twin-tailed or loop cabling between nodes.

 Copyright IBM Corp. 1998 57

The RVSD concept is to allow not only one node (the VSD server primary
node) to have access to a set of VSDs, but also a second node (the VSD
server secondary node), in case of one of the following fails:

• VSD server primary node

• Switch adapter

• Disk adapter

• Disk or network cables

We achieve this by twin-tailed or loop cabling the disk subsystems between
the VSD server primary node and VSD server secondary node, as shown in
Figure 11.

Figure 11. Twin-Tailed Configuration

Normally, the VSD server secondary node does nothing with those VSDs. In
fact, it cannot access them since they are being held in use by the VSD
server primary node.

RVSD provides protection against node failure by subscribing to Group
Services. When a node fails, RVSD will be informed by Group Services.

If the failed node is a VSD server primary node, RVSD will have the VSD
server secondary node for each VSD perform the necessary functions to
ensure all VSDs on the failed node can still be accessed by the clients.

This is achieved by having the VSD server secondary node take over the
disk subsystems and become the server for those VSDs while the primary
node is unavailable.

58 GPFS: A Parallel File System

When the VSD server primary node comes back, you must use the
vsdchgserver command to switch the server function back to the primary
node yourself.

Thus, with RVSD, the disk subsystem becomes highly available since you
can have continuous access to the VSDs even when the VSD server primary
node is down.

The amount of time required to take over depends mainly on how many
disks RVSD needs to import onto the VSD server secondary node.

Note: RVSD is a prerequisite for GPFS.

You need RVSD even when you do not care about the high availability of
your file systems, or do not plan to use any external disk subsystem. This is
because GPFS needs some commands in RVSD, for example, fencevsd and
unfencevsd, that are necessary to ensure that the integrity of the GPFS file
system will not be compromised.

Table 3 shows some new RVSD commands that are available in PSSP.

Table 3. New RVSD Commands in PSSP

Command Description Usage example

fencevsd To prevent a node from
accessing VSDs.

GPFS uses this to prevent a
GPFS-perceived failed node from
accessing VSDs.

unfencevsd To allow a node to access
VSDs.

GPFS uses this to allow a previously
failed node, that has completed the
recovery process, to access VSDs.

vsdchgserver To swap the duty of the
primary node and secondary
node for a global volume
group.

When the disk adapter fails, RVSD
switches the server function from the
primary node to the secondary node
automatically.

lsfencevsd To show which VSDs are
fenced from which nodes in a
system partit ion.

After a node comes back from recovery,
GPFS uses this to find out which VSDs
has been fenced and will unfence them
so that the node can have access to
those VSDs as usual.

When you plan for GPFS configuration, it is highly recommended that you
implement RVSD and twin-tailed or loop cabling between your VSD servers,
so that the recovery of VSD servers will be done automatically by RVSD.

Chapter 3. Failover Scenarios 59

If you do not implement RVSD and also do not have replicas, some disks in
the stripe group will not be available when a node is down. In this case
whether or not you can still access the data in the file system depends on
what data the missing disks contain.

Sometimes you may not be able to use the file system at all since some
important metadata may reside on the missing disks.

For example, on the following screen we show four VSDs defined for the
koafs file system on four disks, one on each node. When node 13 fails, the
availability status of gpfsvsd3n13 becomes “down.”

Unfortunately, it seems that some important metadata is in this VSD, and
hence we cannot use the koafs file system until node 13 comes up again.

Note: Whenever GPFS determines that continuing the operation may
compromise the integrity of the file system, it will force unmount the file
system so that no one can use it.

Another complication here is that, even when node 13 comes up and you
have started GPFS, the koafs file system still cannot be used. You have to
issue the mmchdisk command to start the disk before it can be used.

� �
sp21n11:/ } mmlsdisk koafs
disk driver sector failure holds holds
name type size group metadata data status availability
------------ -------- ------ ------- -------- ----- ------------- ------------
gpfsvsd1n1 disk 512 -1 yes yes ready up
gpfsvsd2n11 disk 512 -1 yes yes ready up
gpfsvsd3n13 disk 512 -1 yes yes ready down
gpfsvsd4n15 disk 512 -1 yes yes ready up
sp21n11:/ }
sp21n11:/ } mmchdisk koafs start -d ′ gpfsvsd3n13′
MMFS: 6027-560 Scanning file system metadata ...
MMFS: 6027-565 Scanning user file metadata ...
MMFS: 6027-552 Scan completed successfully.
sp21n11:/ }
sp21n11:/ } mmlsdisk koafs
disk driver sector failure holds holds
name type size group metadata data status availability
------------ -------- ------ ------- -------- ----- ------------- ------------
gpfsvsd1n1 disk 512 -1 yes yes ready up
gpfsvsd2n11 disk 512 -1 yes yes ready up
gpfsvsd3n13 disk 512 -1 yes yes ready up
gpfsvsd4n15 disk 512 -1 yes yes ready up� �

60 GPFS: A Parallel File System

Notes:

 1. A disk remains stopped until it is explicitly started by the mmchdisk
command. Restarting the GPFS daemon or rebooting does not restore
normal access to a stopped disk.

 2. It is recommended that if you have to start more than one disk, specify
them all in the same mmchdisk command.

In RVSD, only the secondary node performs the recovery for the primary
node. This means that if the secondary node is down, RVSD takes no action
and therefore, if the primary node fails later, there will be no node to take
over.

However, we can use the Problem Management subsystem to prevent this
from happening by creating a VSD server secondary node “node down”
event that triggers a notification, so that an appropriate action can be taken
to bring the secondary node back as soon as possible.

The following screen shows how to set up the Problem Management
subsystem to detect when a VSD server secondary node fails.

� �
sp2en1:/) vsdatalst -g

VSD Global Volume Group Information
Server Node Numbers

Global Volume Group name Local VG name primary backup eio_recovery
recovery

------------------------------- --------------- ------- ------ ------------

gpfsn3b4 gpfs 3 4
 0 0
rootvgn3 rootvg 3 0
 0 0
sp2en1:/)� �

We have a VSD (gpfsn3b4) that has node 4 as a backup server. We set up
the Problem Management subsystem to notify all users on the Control
Workstation whenever the rvsdd daemon on node 4 fails, as follows:

 1. Set up for Sysctl.

Since the Problem Management subsystem makes use of the Sysctl
facility, you need to modify the file /etc/sysctl.pman.acl to allow
root.admin to execute Problem Management subsystem-related
commands.

You also need to propagate this to every node in the system partition,
as shown in the following screen.

Chapter 3. Failover Scenarios 61

� �
sp2en1:/) cat /etc/sysctl.pman.acl
#acl#

These are the kerberos principals for the users that can configure
Problem Management on this node. They must be of the form as indicated
in the commented out records below. The pound sign (#) is the comment
character, and the underscore (_) is part of the ″_PRINCIPAL″ keyword,
so do not delete the underscore.

#_PRINCIPAL root.admin@PPD.POK.IBM.COM
#_PRINCIPAL joeuser@PPD.POK.IBM.COM
_PRINCIPAL root.admin@MSC.ITSO.IBM.COM
sp2en1:/)
sp2en1:/) pcp -a -p /etc/sysctl.pman.acl /etc/sysctl.pman.acl
sp2en1:/)� �

 2. Define and subscribe the event to the Problem Management subsystem.

Here we register a monitor for the rvsdd process on node 4. So,
whenever this process on node 4 is down, the Problem Management
subsystem will execute the wall command to send the message “rvsd
daemon on secondary node 4 is down...” to all users on the Control
Workstation.

� �
sp2en1:/) pmandef -s RvsdNode4Down \
> -e ′ IBM.PSSP.Prog.xpcount:NodeNum=4;ProgName=rvsdd;UserName=root:X@0==0′ \
> -c ′ wall rvsd daemon on secondary node 4 is down...′ \
> -n 0 -U root
sp2en1:/)� �

 3. Verify the subscription.

62 GPFS: A Parallel File System

� �
sp2en1:/) lssrc -ls pman.sp2en1
Subsystem Group PID Status
 pman.sp2en1 pman 60792 active

 pmand started at: Thu Sep 18 14:14:00 1997
 pmand last refreshed at:
 Tracing is off
 ===
 Events for which registrations are as yet unacknowledged:
 ===
 ===
 Events for which actions are currently being taken:
 ===
 ===
 Events currently ready to be acted on by this daemon:
 ===
 ------------------ RvsdNode4Down ----------------
 Currently ACTIVE
 Client root root.admin@MSC.ITSO.IBM.COM at sp2en0.msc.itso.ibm.c
 om
 Resource Variable: IBM.PSSP.Prog.xpcount
 Instance: NodeNum=4;ProgName=rvsdd;UserName=root
 Predicate: X@0==0
 Command to run: wall rvsd daemon on secondary node 4 is down...
 Has run 0 times
sp2en1:/)� �

 4. Test by simulating the event.

� �
sp2en1:/) dsh -w t04 stopsrc -g rvsd
t04: 0513-044 The stop of the rvsd Subsystem was completed successfully.
t04: 0513-044 The stop of the hc.hc Subsystem was completed successfully.
sp2en1:/)

Broadcast message from root@sp2en0 (tty) at 16:04:27 ...

rvsd daemon on secondary node 4 is down...

sp2en1:/)
� �

A failure of the client node can be addressed similarly.

 Note

In case some special components of GPFS have been running on the
failed node (for example, the Configuration Manager, the Stripe
Group Manager), GPFS recovers these components automatically, so
that the operation of GPFS can continue without any effect from the
failure. (These recoveries are described in 3.2, “Software Recovery”
on page 66.)

Chapter 3. Failover Scenarios 63

3.1.2 Network Failure
Currently, GPFS is supported only in SP frames, and only with an SP
Switch or HiPS Switch as the underlying network connection between
nodes.

When GPFS starts up, it checks whether the switch network is available.
If the switch network is not available, it waits until it becomes available,
and logs the following message in the file mmfs.log in the directory
/var/adm/ras.

� �
6027-1242 mmfs is waiting for switch
6027-1242 mmfs is waiting for switch
6027-1242 mmfs is waiting for switch
.....� �

As soon as the switch network becomes available, the startup process
continues normally.

� �
6027-1242 mmfs is waiting for switch
6027-1242 mmfs is waiting for switch
6027-1242 mmfs is waiting for switch

Warning: Host has multiple network interfaces
Using interface 192.168.14.5
Use -h option to override
/usr/lpp/mmfs/bin/installcetm: /usr/lpp/mmfs/bin/cetm.kext loaded at 0x01aeeb88
Warning: Host has multiple network interfaces
Using interface 192.168.14.5
Use -h option to override
/usr/lpp/mmfs/bin/installcetm: /usr/lpp/mmfs/bin/sharkTM.kext loaded at 0x01b14c74
MMFS: 6027-310 mmfsd initializing ...
MMFS: 6027-300 mmfsd ready for sessions.
mounting /chico
mounting /gpfs/koa2� �

GPFS not only checks the availability of the switch network, but also the
availability of RVSD and Group Services.

If RVSD is not available, it logs the following message:

� �
6027-1242 mmfs is waiting for rvsd
6027-1242 mmfs is waiting for rvsd
6027-1242 mmfs is waiting for rvsd
.....� �

If Group Services is not available, it logs the following message:

64 GPFS: A Parallel File System

� �
6027-1242 mmfs is waiting for hags
6027-1242 mmfs is waiting for hags
6027-1242 mmfs is waiting for hags
.....� �

GPFS checks for these three services every six seconds. In order not to
clutter up the log file, GPFS logs the message the first time it finds one
of these not available. It then logs a message once a minute for five
minutes. After that, it logs a message once every five minutes.

3.1.3 Disk Failure
Though RVSD can provide for higher availability in case of node failure
and disk adapter failure, it does not provide any protection in case the
disk itself fails.

There are several options we can implement to provide higher
availability for the disk subsystem:

• Use of a RAID disk

• Mirroring

• GPFS replication

Using a RAID-5 disk subsystem can provide protection against a single
disk drive failure with a minimal amount of additional investment. The
limitation of this option is that its performance may not meet the
requirement for applications that require a high level of performance.

Also, an additional disk adapter may be needed to provide protection
against disk adapter failure. Moreover, twin-tailed or loop cabling may
also be needed to provide additional protection against node failure.

Mirroring is an attractive option for applications that require high
performance.

Similarly, an additional disk adapter may be needed to provide
protection against disk adapter failure. Also, twin-tailed or loop cabling
may be needed to provide additional protection against node failure.

Chapter 3. Failover Scenarios 65

Notes:

 1. Since PSSP 2.3, RVSD can provide protection against disk adapter
failure by automatically switching the server function to the VSD
server secondary node when it detects that the disk adapter in the
VSD server primary node has failed.

 2. After replacing the failed adapter and powering on the node, you
must use the vsdchgserver command to switch the server function
back to the primary node yourself.

GPFS replication may be a good option for those who are not satisfied
with RAID-5 disk performance and mirroring cost. You can get good
performance from replication by using SSA disks, and you can minimize
cost by replicating only important files.

You can select what you want to replicate: either the data or the
metadata of a file system, or both. You can select up to two replicas for
data and metadata.

Moreover, since GPFS automatically places each replica in different
failure groups, this enables replication to tolerate the failure of a single
disk adapter or a single node without any additional hardware. In
certain cases, it may be even able to tolerate multiple disk adapter or
node failures.

The limitation of replication is that when it is enabled, the maximum file
system size and the maximum file size that can be created in the file
system are reduced significantly. With a replica factor of 2, the
maximum file system size and the maximum file size are reduced by an
approximate factor of 4. Refer to Appendix B, “GPFS Maximum File
Size and Related Parameters” on page 189 for more information.

Also, if the file system is heavily updated, the overhead due to updates
to the replica may become significant and, in some cases, compromise
the previously listed benefits.

3.2 Software Recovery

When a hardware failure occurs that causes a node to be down, mere
hardware recovery is not enough to get the system back since some
GPFS components that were running on that node became unavailable
when the failure happened.

66 GPFS: A Parallel File System

Therefore, in this case we also need to have software recovery. GPFS
automatically handles this recovery to make sure that it still functions
with no interruption to the end users even if failures occur.

In this section, we discuss the following components of GPFS:

• Configuration Manager

• Stripe Group Manager

• Metadata Manager

• Token Manager Server

• Token Manager

We describe what they are, what their responsibilities are, and how
GPFS reacts and recovers in case they fail.

3.2.1 Configuration Manager Failure
Configuration Manager is a component of GPFS that is responsible for
selecting the Stripe Group Manager for each file system. It also
determines whether a quorum exists, which in turn determines whether
the file system can continue to be used.

When a quorum is lost, GPFS unmounts the file system (thus not
allowing it to be used), since there can be cases where problems with
the network cause the GPFS domain to be divided into separate groups.

If GPFS does not force the group with no quorum to stop using the file
system, many groups may try to write to the same metadata and/or file
at the same time, compromising the integrity of the file system.

There is one Configuration Manager per system partition. It is the first
node to join the group MmfsGroup in Group Services. In other words, it
is the oldest node in this group.

To identify the Configuration Manager, issue the following command on
the Control Workstation:

dsh sysctl mmremote clmgr

Chapter 3. Failover Scenarios 67

� �
sp21en0:/ } dsh sysctl mmremote clmgr
n01: sp21n11.msc.itso.ibm.com
n05: sp21n11.msc.itso.ibm.com
n06: sp21n11.msc.itso.ibm.com
n07: sp21n11.msc.itso.ibm.com
n08: sp21n11.msc.itso.ibm.com
n09: sp21n11.msc.itso.ibm.com
n11: sp21n11.msc.itso.ibm.com
n13: sp21n11.msc.itso.ibm.com
n15: sp21n11.msc.itso.ibm.com� �

If the Configuration Manager is down, Group Services will select the
next oldest node in MmfsGroup to become the Configuration Manager.

� �
sp21en0:/ } dsh -w n11 hagsgr -s hags -a MmfsGroup
n11: Number of: groups: 7
n11: Group slot # [5] Group name[MmfsGroup] group state[Inserted |Idle |]
n11: Providers[[1/11][1/9][1/13][1/5][1/8][1/6] ...]
n11: Local subscribers[]
n11:
sp21en0:/ }
sp21en0:/ } dsh -w n11 stopsrc -c -s mmfs
n11: 0513-044 The stop of the mmfs Subsystem was completed successfully.
sp21en0:/ }
sp21en0:/ } dsh sysctl mmremote clmgr
n01: sp21n09.msc.itso.ibm.com
n05: sp21n09.msc.itso.ibm.com
n06: sp21n09.msc.itso.ibm.com
n07: sp21n09.msc.itso.ibm.com
n08: sp21n09.msc.itso.ibm.com
n09: sp21n09.msc.itso.ibm.com
n11: /usr/lpp/mmfs/bin/mmfsadm: mmfs daemon not running
n13: sp21n09.msc.itso.ibm.com
n15: sp21n09.msc.itso.ibm.com
sp21en0:/ }
sp21en0:/ } dsh -w n09 stopsrc -c -s mmfs
n09: 0513-044 The stop of the mmfs Subsystem was completed successfully.
sp21en0:/ }
sp21en0:/ } dsh sysctl mmremote clmgr
n01: sp21n13.msc.itso.ibm.com
n05: sp21n13.msc.itso.ibm.com
n06: sp21n13.msc.itso.ibm.com
n07: sp21n13.msc.itso.ibm.com
n08: sp21n13.msc.itso.ibm.com
n09: /usr/lpp/mmfs/bin/mmfsadm: mmfs daemon not running
n11: /usr/lpp/mmfs/bin/mmfsadm: mmfs daemon not running
n13: sp21n13.msc.itso.ibm.com
n15: sp21n13.msc.itso.ibm.com
sp21en0:/ }� �

By using the hagsgr command, you can get a list of all members in
MmfsGroup. In this case, we see that node 11 is the first one to join the
group, node 9 is the second, node 13 is the third and so on.

68 GPFS: A Parallel File System

If we stop GPFS on node 11 (which is currently the Configuration
Manager) by issuing the stopsrc command, then node 9 (which is the
next oldest node in the group), will become the Configuration Manager.

Similarly, if we stop GPFS on node 9, we will see that node 13, the next
oldest node in the group, becomes the Configuration Manager.

3.2.2 Stripe Group Manager Failure
Each GPFS file system is comprised of a stripe group. A stripe group is
simply a set of disks that belong to this file system.

There is one Stripe Group Manager per file system. The Configuration
Manager selects a Stripe Group Manager for each file system. It tries
not to overload any node in the system by selecting a different node to
act as a Stripe Group Manager for each file system, if possible.

The Stripe Group Manager provides the following services to all nodes
using that file system:

• Processes changes to the state or description of the file system

− Adds/deletes/replaces disks

− Changes disk availability

− Repairs the file system

− Restripes the file system

• Controls disk region allocation

To identify the Stripe Group Manager, issue the following command on
the Control Workstation:

dsh sysctl mmremote sgmgr <device>

Chapter 3. Failover Scenarios 69

� �
sp21en0:/ } dsh sysctl mmremote sgmgr chico
n01: child process exited abnormally
n05: child process exited abnormally
n06: child process exited abnormally
n07: child process exited abnormally
n08: child process exited abnormally
n09: child process exited abnormally
n11: sp21n06.msc.itso.ibm.com
n13: child process exited abnormally
sp21en0:/ }
sp21en0:/ } dsh sysctl mmremote sgmgr koafs2
n01: child process exited abnormally
n05: child process exited abnormally
n06: child process exited abnormally
n07: child process exited abnormally
n08: child process exited abnormally
n09: child process exited abnormally
n11: sp21n07.msc.itso.ibm.com
n13: child process exited abnormally
sp21en0:/ }� �

Only the Configuration Manager is able to reply to this query. Nodes
that are not the Configuration Manager respond with “child process
exited abnormally.”

In this case, the Stripe Group Manager for file system chico is sp21n06
and the Stripe Group Manager for file system koafs is sp21n07.

If needed, you can influence the Configuration Manager regarding the
selection of the Stripe Group Manager by creating a file called
cluster.preferences in the /var/mmfs/etc directory and listing the nodes
that you want to act as a Stripe Group Manager, as shown in the
following example:

� �
sp21en0:/ } dsh -w n11 cat /var/mmfs/etc/cluster.preferences
n11: sp21sw07
n11: sp21sw06
n11: sp21sw05
n11: sp21sw08
sp21en0:/ }� �

 Note

Whenever possible, the Stripe Group Manager should not be running
in a VSD server node, due to AIX kernel heap contention.

70 GPFS: A Parallel File System

Notes:

 1. The preference file tells the Configuration Manager to select the
Stripe Group Manager from this list, if any of the listed nodes are
available when the choice is made. There is no relative priority or
rank among the nodes.

 2. The hostnames listed in this file must be the switch hostname only.
Using other hostnames, for example, the Ethernet one, will not work.

When a Stripe Group Manager is down:

• If you use the preference file, the Configuration Manager selects a
node from that file to be the Stripe Group Manager. If possible, it
selects a node that is not currently a Stripe Group Manager for any
other file system.

• If you do not use the preference file, the Configuration Manager
selects any node. If possible, it selects a node that is not currently a
Stripe Group Manager for any other file system.

� �
sp21en0:/ } dsh sysctl mmremote sgmgr koafs2
n01: child process exited abnormally
n05: child process exited abnormally
n06: child process exited abnormally
n07: child process exited abnormally
n08: child process exited abnormally
n09: child process exited abnormally
n11: sp21n07.msc.itso.ibm.com
n13: child process exited abnormally
sp21en0:/ }
sp21en0:/ } dsh -w n07 stopsrc -c -s mmfs
n07: 0513-044 The stop of the mmfs Subsystem was completed successfully.
sp21en0:/ }
sp21en0:/ } dsh sysctl mmremote sgmgr koafs2
n01: child process exited abnormally
n05: child process exited abnormally
n06: child process exited abnormally
n07: /usr/lpp/mmfs/bin/mmfsadm: mmfs daemon not running
n08: child process exited abnormally
n09: child process exited abnormally
n11: sp21n08.msc.itso.ibm.com
n13: child process exited abnormally
sp21en0:/ }� �

By using the dsh sysctl mmremote sgmgr koafs2 command, you can
identify which node is the Stripe Group Manager for file system koafs2.

You then use the stopsrc -c -s mmfs command to stop GPFS on node 7
(which is currently the Stripe Group Manager for koafs2) to simulate the
Stripe Group Manager failure.

Chapter 3. Failover Scenarios 71

Later, when you use the dsh sysctl mmremote sgmgr koafs2 command
again, you will find that the Stripe Group Manager for file system koafs2
has been changed from node 7 to node 8.

3.2.3 Metadata Manager Failure
There is one Metadata Manager for each open file in the file system. It
is responsible for the integrity of the metadata of that file.

Even though each VSD server node can read and/or write the data to
the disks directly, the update of metadata of a file is restricted to the
node containing the Metadata Manager for that file.

To identify the Metadata Manager for a file, issue the following
commands on the Control Workstation:

dsh -w <node> ls -il <file>
dsh -w <node> mmfsadm dump files|pg

� �
sp21en0:/ } dsh -w n11 ls -il /chico
n11: total 43
n11: 1275 -rw-r--r-- 1 chico notes 1314 Sep 06 16:02 .Xpdefau
n11: 104 -rwxr--r-- 1 chico notes 331 Sep 06 15:54 .profile
n11: 348 -rw------- 1 chico notes 214 Sep 08 11:52 .sh_hist
n11: 92 drwxr-xr-x 7 chico notes 3072 Sep 06 16:38 notesr4
n11: 222 drwxr-xr-x 2 theeraph staff 512 Sep 08 12:44 theeraph
sp21en0:/ }
sp21en0:/ } dsh -w n11 mmfsadm dump files|pg
n11:
n11: Files in stripe group chico:
n11:
n11:
n11: OpenFile: key C0A80406:3411B44A:00000068:FFFFFFFF
n11: status valid, token rf, addr 0x303CCDE8
n11: lock state [(no locks)] flags [], writer 0xFFFFFFFF, wait shark
n11: mutex 0x207D0138, cond 0x207D0188, eventP 0xC5AC408
n11: inode number 104 nlink 1 genNum 1
n11: metanode 192.168.14.1 (other node) token ro lock_state 0x00000000
n11: takeovers 0 surrenders 0
n11:
n11:� �

Find which node is the Metadata Manager for file /chico/.profile by using
the ls -il command. This gives you the i-node number of
/chico/.profile. (In this case, it is 104.)

Then issue the mmfsadm dump files command and start scanning the
output from the desired stripe group. The Metadata Manager for each
file is located under the corresponding i-node number line in the output.
In this case, the Metadata Manager for /chico/.profile is 192.168.14.1.

72 GPFS: A Parallel File System

The Metadata Manager is selected to be the first node that had the file
opened. It continues to provide metadata services for that file until one
of the following events occurs:

• The file is closed everywhere.

• The node fails.

• The node resigns because it needs local resources.

When the Metadata Manager is down, the next node that needs the
metadata service will become the Metadata Manager.

3.2.4 Token Manager Server Failure
Tokens are used to coordinate various activities occurring at the same
time in the file system across nodes to make sure that the integrity of
the file system is not compromised. They are used in much the same
way that locks are used to coordinate the activities on a single node.

There is a Token Manager on every GPFS node. It runs completely in
kernel mode and uses the kernel heap to store its tokens.

When a node wants to access data, it contacts the Token Manager
Server to request a token. The Token Manager Server determines
whether there is any locking conflict among the tokens that have already
been granted and the currently requested one.

If there is no conflict, the Token Manager Server can allow the request
to proceed by granting a token to that node, so that it can continue with
what it wants to do. If there are conflicts, the Token Manager Server
sends a list called a copy set that lists nodes that have conflict locks.

In order to reduce the workload at the Token Manager Server, it is the
responsibility of the requesting Token Manager to negotiate with any
node in the list to obtain the token.

There is one Token Manager Server per file system. It is located on the
same node as the Stripe Group Manager. It is responsible for granting
tokens to the requesting Token Managers.

For the purpose of availability and recoverability, two copies of the token
are kept in the system: one in the Token Manager Server (the server
copy), and one in the Token Manager (the client copy).

When a node is down, all the tokens it had can be recovered by
obtaining the server copy from the Token Manager Server.

Chapter 3. Failover Scenarios 73

When the Token Manager Server is down, the new Token Manager
Server can recover all the tokens that the old Token Manager Server
had by obtaining the client copy from all Token Managers in the GPFS
domain.

74 GPFS: A Parallel File System

Chapter 4. Migration

This chapter discusses issues related to using data stored in a General
Parallel File System(GPFS), including API interface considerations and
performance-related issues.

4.1 Review of Various File Systems

The API and semantics of the BSD Fast File system considerably
influenced UNIX and other similar file systems (for example, in the use
of long file names, file sharing semantics, and so on). Over time, a
variety of specialized file systems have been developed to extend the
features of the BSD implementation.

However, these new features often come at a price. As an example, it
might be possible to speed up some operations if metadata is not
updated as it changes. Even in the BSD implementation, some
operations do not cause some metadata to be updated, in order to save
time.

Many file systems (especially those with special traits such as speed or
network distribution) deviate from traditional local file systems based on
the BSD model in some way. The following section describes how file
systems have traded BSD compatibility for other capabilities.

4.1.1 Compatibility
Listed are some of the trade-offs that have been made in order to bring
special features to file systems.

NFS In NFS there are a number of inconsistencies that can
develop between different clients′ views of the file system.
For example, metadata can be quite stale on an NFS client.
Also, there is no requirement of synchronized times between
clients and servers, so the mtime, ctime and atimes are
difficult to use reliably. The precise order of many events
cannot be determined in an NFS environment (for example,
the O_EXCL is not supported on NFS). Applications must be
prepared to handle more types of failures with NFS than with
local file systems such as JFS. This is primarily a concern
when NFS file systems are mounted with a soft, rather than a
hard, NFS mount.

 Copyright IBM Corp. 1998 75

PIOFS The PIOFS file system conforms to many of the traditional
local file system standards, but in this case compromises
were made in order to allow PIOFS to provide better
performance than traditional file systems. It is possible,
under program control, to relax some consistency checks to
improve performance. If applications are written to the
PIOFS-specific interfaces, they can gain improved
performance.

DFS DFS is a newer distributed file system than NFS. Many ideas
from newer distributed file systems and lessons learned from
problems with NFS have found their way into DFS. DFS
clients are provided with file system semantics that very
closely mimic those found in local file systems such as JFS.

DFS provides synchronization between reads and writes on
the clients. This makes the programmer ′s job much easier
and it is easier to develop correct systems. It is possible to
relax this synchronization, but that requires explicit
manipulation of the system by creating replicas. As with
NFS, the DFS client can have different failure modes than are
possible with a local file system such as JFS.

GPFS GPFS is based on technology that, like DFS, has learned from
its predecessors. While DFS is designed to work well in a
distributed environment, GPFS focuses on very high
performance and use in a more limited distributed
environment. GPFS also closely mimics local file system
semantics, so it is relatively easy to use unaltered
applications on GPFS file systems.

GPFS has one limitation (which is planned to be removed in
a future version) and one exception.

The limitation is that at this time, GPFS files cannot be
mapped into a process′s address space using the
shared/mapped memory facilities, but this restriction should
be lifted in future versions.

The exception is the treatment of mtime, atime and ctime
metadata. In the current implementation, metadata can be
stale for up to 5 seconds.

JFS JFS is IBM′s local file system that is used with AIX systems.
JFS generally works the way a local file system developed
based on the BSD file system is expected to work. JFS
extends the BSD model by using a log to track metadata
changes. This can significantly reduce the amount of time

76 GPFS: A Parallel File System

needed to verify or repair a file system. This capability can
come at the price of more head movement. However, placed
in a system with more than one disk, the log can be placed
on a different device and thus much better performance can
be achieved.

4.1.2 Other Issues
Even if the APIs for two file systems are identical, there can be other
differences in the way a file system performs. Different file systems
behave in special ways when time or location are considered, and often
a particular file system is chosen because of those special traits. Here
are some examples:

NFS The distributed abilities and the large number of operating
systems which contain client and server support are the keys
to NFS success. Even though special code is needed to
create robust systems using NFS, over time this code has
become quite well understood, so this is not as severe a
problem as might be expected.

PIOFS PIOFS is designed to allow special types of nonlinear access
and very high data throughputs in SP environments. The
views facility of PIOFS allows applications to access files in
blocks that correspond to the data structures found in a
program. For example, it is possible to read sequentially
through rows or columns of an array stored in PIOFS.

There is a facility in PIOFS to checkpoint the version of a file.
This allows a snapshot of a file to be saved for later use.
Changes to a file are saved in new space on the disks so the
old version can be retrieved. This is used to checkpoint files
when they are in consistent states so a process can be
restarted, perhaps after a failure. Also, an application could
perform some transformation on the data, and later decide to
go back to the previous version.

PIOFS can be configured to relax some file system semantics
to provide better performance. This is a reasonable trade-off
in many parallel applications since the work of parallelizing
the code can be done in such a way that the application can
guarantee that certain problem situations cannot happen.

DFS DFS provides the same semantics as most local file systems,
like JFS. To reduce many performance costs, DFS caches
data at the local machines. This reduces network traffic and,
in most cases, allows the DFS client quicker access to the

Chapter 4. Migrat ion 77

data. There are cases where the costs associated with these
robust semantics seem high. Still, there is great benefit in
using unaltered applications and for many users, it is easier
to live with these seldom-seen problems (which is only a
problem of speed, not data corruption) in order to run
software more easily.

GPFS In most cases, the operating system resources needed to
provide a particular file system are small compared to those
used by the applications. JFS uses very few system
resources to provide a local file system. Distributed file
systems such as NFS and DFS can consume more resources
for network, memory, local caches and CPU needs. GPFS
can consume a moderate amount of resources on the local
machine. Usually this is a very good trade-off since the
machine has little to do but wait for the data before it can
complete its current task. However, in some cases, these
additional resources might be more significant.

As Frederick Brooks wrote in The Mythical Man Month, “One
has to ask, ‘What does it do?’ What does one get in
ease-of-use and in performance for the dollars spent?” GPFS
provides a very high performance capability with robust
semantics. With GPFS, in most cases any use of system
resources will be more than repaid in improved performance.

4.1.3 Access Control
A wide variety of access control models are found in the variety of file
systems. If you now depend on special access control facilities from a
file system, you will have to verify that the other file system you are
considering utilizing will provide the same level of security.

In addition, if you are at a site that has special security requirements,
refer to the specific details in the product documentation for the
products used in your environment.

4.2 Migration to GPFS

Given all this background, how difficult is it to migrate to GPFS from
some other file system? In most cases, there is nothing special to do
because GPFS is a superset of the capabilities of most file systems you
are currently using. Here are a few specific details:

78 GPFS: A Parallel File System

NFS If an application works with NFS, it should have very little
problem operating in a GPFS environment. One thing you
should do, however, is to look for places where NFS allowed
operations that would have been forbidden in most other file
systems. An example of such an operation is having multiple
processes create a file (open(name, ... | O_EXCL | ... , mode))
at the same time. This might work in NFS, but it will fail in
GPFS. Also, at this time GPFS does not allow
memory-mapped file operations.

JFS Except for memory-mapped operations and relaxed atime,
ctime and mtime updates, most applications that operate
correctly with JFS should run fine with GPFS. However, it is
possible that some programs will behave differently with
GPFS. As an example, a threaded program that relied on
slower file system operations might now fail if GPFS is used,
because it provides data faster than most other file systems.

DFS This is possibly the easiest migration since the applications
should already be capable of operating correctly with a wide
variation in I/O response times. About the only problem you
may encounter is if your system relies on special features of
DFS, such as enhanced access control lists or replication.

PIOFS Depending on what features of PIOFS you use, the migration
effort can range from having to do nothing, to having it be
impossible to perform a migration at all. In particular, PIOFS
supports the use of views on the physical data. This facility
allows an application to access the data in various strides. If
your system depends on this facility, you will have to change
your applications.

An intermediate-sized problem with the migration from PIOFS
can occur if you made extensive use of the PIOFS tuning
facilities. Under some conditions you can achieve better
performance with the current PIOFS product. This can occur
if you turn off the PIOFS checking for problems. At this time,
GPFS does not allow this level of control.

Depending on access patterns, you may find that using GPFS
replication, larger buffers, or network tuning will allow GPFS
to achieve your performance needs. Again, any problems in
this area will be limited to applications whose design is very
closely tied to PIOFS.

Chapter 4. Migrat ion 79

In most cases with default installation parameters, GPFS
should work as fast as, or faster, than PIOFS. In addition,
GPFS does not have as many restrictions on how your
application can use the file system. For example, PIOFS
does not support locking, synchronous I/O (O_SYNC),
non-blocking IO (O_NONBLOCK) and other flags such as
O_NDELAY, O_NOCTTY, O_NSHARE, and so on. Finally,
PIOFS has a few system-level problems such as not honoring
resource limits, not allowing “holes” in files, and requiring
that the root user can freely rsh between nodes.

There are other differences in the way PIOFS works.
Generally, those features allow applications that are willing
to put in file system-specific code to take advantage of
special, high-performance paths to turn off time-consuming
tests in the file system code. Most applications probably will
not want to take on that extra level of responsibility, since the
default performance of GPFS will be good enough.

In many systems PIOFS is used as a large “scratch” space
and GPFS can work just fine as a replacement.

4.3 Migration Summary

In most cases it should be very easy to start to use GPFS in an existing
system. GPFS currently has only one restriction (no shared memory
operations), which should soon be lifted, and one design change (atime,
ctime and mtime are not updated as often as on some other file
systems).

If your application depends on a special characteristic of some other file
system, or if it has quietly been taking advantage of some odd behavior,
you may have to make changes.

As an easy test, if your application runs correctly on both JFS (robust
semantics) and PIOFS (no memory-mapped file I/O), you can be
relatively confident it will move to GPFS without change.

80 GPFS: A Parallel File System

Chapter 5. Applications

This chapter describes the behavior of different applications when using
the GPFS file system. We have included Lotus Notes as a commercial
application since its use of files to manage databases is a good
candidate for a parallel file system, especially if there is a need for
scalability.

MPI applications are also discussed in this chapter, including both
performance information and our test results when using GPFS as the
file system of choice with these applications. The conclusions we
present are based on the experience gathered when running a synthetic
application using GPFS file systems. Appendix F, “How to Get the
Examples in This Book” on page 213 explains how to obtain the code for
this synthetic application.

Finally, we include a sort application written in C, which provided a good
mix of reading and writing tasks that allowed us to draw some
interesting conclusions regarding GPFS behavior in these kinds of
environments.

5.1 Lotus Notes

In this section, we detail how to create and configure a GPFS
environment in a RS/6000 SP system to achieve the best performance
when running Lotus Domino Server Release 4.5. Note that all
performance considerations described in 5.1.1, “GPFS Performance
Considerations − ” on page 82 can be applied to other applications
having similar characteristics to Lotus Domino Server.

The purpose of this topic is to give information about how Lotus Domino
server works on top of GPFS. We only worked with standalone Domino
servers. All the recommendations and procedures we describe are
intended for standalone Domino servers. If you are planning a
multi-Domino server installation in your SP system, refer to the following
URL: http://www.rs6000.ibm.com/resource/technology/NotesSPcfg Here
yopu will will find a great deal of useful information about planning,
installing, and configuring Lotus Domino servers on the RS/6000 SP.

In addition, information is provided about the Notes benchmarks we ran
with different scenarios, and we describe the tool we used, the
configurations of the scenarios, and the results we received.

 Copyright IBM Corp. 1998 81

Finally, we offer guidelines for migrating a current Lotus Domino Server
Release 4.5 installation to a GPFS environment, and describe in which
situations it is advisable to use GPFS for your Lotus Domino Server.

5.1.1 GPFS Performance Considerations −
Domino Server Rel. 4.5

You may ask, how can Lotus Domino Server benefit from GPFS?

Figure 12. The Future, using GPFS

Using GPFS provides the following advantages, as illustrated in
Figure 12.

• It gives transparent access to the Lotus Domino Server databases
and/or program files. Each node of the GPFS cluster is able to
access all Lotus Domino Server databases and program files that
are located in GPFS file systems.

Note: Unfortunately, at this time Lotus Notes is not able to use all
the advantages GPFS offers since Lotus Domino Server Release 4.5

82 GPFS: A Parallel File System

does not allow concurrent access to the Lotus Notes databases (the
last version tested was 4.52). When a Lotus Domino Server
accesses a Lotus Notes database, it locks the database/file.

However, you can change this behavior of the Lotus Domino Server
by not locking any file but instead leaving this task to the GPFS
locking mechanism. In this way, you can avoid having Lotus Notes
replicas in the clusters of Lotus Notes Servers and reduce a great
deal of CPU work and network traffic.

• It allows you to increase the aggregate bandwidth of the Lotus
Domino Server file systems by spreading read/write operations
across multiple disks of the GPFS cluster.

• It allows you to balance the workload across all disks to maximize
their combined throughput.

• It allows you to support large amounts of data and have bigger file
systems when necessary.

• It provides benefits when replicating data. GPFS allows you to have
two copies of your data (even though your first choice should be to
mirror your data). The data can be replicated at file system level or
at file level.

• It provides system maintenance flexibility. You can add or delete
disks when the file systems are mounted. You can also move your
Lotus Domino Server from one node of the cluster to another with a
minimum amount of manual intervention (if you have the necessary
resources), when you need to perform maintenance tasks.

5.1.1.1 Performance Parameters
To achieve optimal performance from Lotus Domino Server running on
top of GPFS, you must customize your GPFS environment. Later in this
section, we present the best values we found for the GPFS parameters
during our tests. These values can change for specific Lotus Notes
configurations.

All these values were tested for standalone Lotus Notes Servers.

• Number of nodes (GPFS file system creation)

This parameter is set at GPFS configuration time and cannot be
changed later.

The default value is 32 nodes.

At the least, this parameter should be set at the maximum number
of nodes you will have in the cluster. If you plan to have less than
32, leave the default value.

Chapter 5. Applications 83

• Stripe Group Manager

According to our tests, you can run the Stripe Group Manager in the
Application server node or in a VSD server node. Nevertheless, you
should check the CPU load.

You can force it by using the /var/mmfs/etc/cluster.preferences file.

 Attention

For more information about how to determine which node is the
Stripe Group Manager for a particular GPFS file system and how
to force it to be in a specific GPFS node of the cluster, refer to
3.2.2, “Stripe Group Manager Failure” on page 69.

• Disk Planning (prior to GPFS configuration)

Before you install and configure GPFS, you must carefully plan
which disks will provide the best solution for your needs. Follow the
general recommendations for GPFS:

− Use dedicated VSD Server nodes. We recommend that you do
not run your Lotus Domino Server on VSD Server nodes.

− You should have one VSD on one disk.

− Balance the disks; that is, try to have the same number of disks
on each node.

− SSA disks should be the default solution.

− Use twin-tailing for improved availability.

• Stripe method (GPFS file system creation)

The default value is round robin and it should be the normally
selected method.

Note: This value can be changed after file system creation.

• File System block size (GPFS file system creation)

For Lotus Domino Server, use a block size of 64KB, which is the
medium block size available in GPFS file systems.

Using a block size of 16KB will result in more efficient use of disk
space, but will provide worse performance.

Using a block size of 256KB wastes disk space and does not provide
better performance.

Note: This value cannot be changed after file system creation.

• I-node (GPFS file system creation)

84 GPFS: A Parallel File System

This is not a determinant parameter. A 1KB i-node size value
should be correct.

Note: This value cannot be changed after file system creation.

• Indirect blocks

This is not a determinant parameter.

For the Lotus Domino Server, use an indirect block size of 8KB.

Note: This value cannot be changed after file system creation.

• Data replication (GPFS file system creation)

Data replication is an excellent high availability solution having easy
and flexible management. It is recommended for mostly read
configurations, since it will improve performance.

Replication can be done at file system level or at file level, and you
can have up to two data replicas of your file or file systems.

Note: This value can be changed after file system creation (only of
max. number of replicas is set to two at file system creation time).

• Metadata replication (GPFS file system creation)

Metadata replication is related to data replication; that is, if you
decide to replicate some data, you should also replicate the
metadata.

Replication can be done at file system level or at file level, and you
can have up to two metadata replicas of your files or your file
systems.

Note: This value can be changed after file system creation (only of
max. number of replicas is set to two at file system creation time).

• maxFilesToCache (GPFS initial configuration)

This refers to the maximum number of i-nodes to cache. This
parameter is an internal GPFS parameter and cannot be modified
with the standard GPFS tools. Refer to Appendix C, “The GPFS
Configuration File (mmsdrcfg1)” on page 191 for details about how
to change this value.

This value must be the maximum number of concurrently accessed
files that you will have in your GPFS file systems. This parameter
can have different values on different nodes. It is very important that
you know the behavior of your applications in each node in order to
set the value for this parameter as correctly as possible in each
node.

Chapter 5. Applications 85

Note: Use the shareware tool described in Appendix F, “How to Get
the Examples in This Book” on page 213 to calculate the maximum
number of concurrently accessed files in the GPFS file systems of
each node.

To activate the changes of this parameter, you must restart GPFS on
the affected node.

• pagepool (GPFS initial configuration)

This refers to the data cache on each node. The default value is
20MB.

This value should be increased. The pagepool is directly related to
the maxFileToCache GPFS parameter. You should try to have a
pagepool of:

 Pagepool

pagepool = BlockSize * Number_of_concurrent_files * 2

Number_of_concurrent_files is the number of files concurrently
accessed in all the GPFS file systems of each particular node.

Refer to Appendix C, “The GPFS Configuration File (mmsdrcfg1)” on
page 191 for details about how to change this value.

 Important

The value of this parameter will be pinned memory on the GPFS
node. If you cannot dedicate the necessary memory in your
node to satisfy the formula, you can set a lower pagepool value.
However, try to be as close as possible to the formula value.

To activate the changes of this parameter, you must restart GPFS on
the affected node.

• mallocsize (GPFS initial configuration)

This refers to the metadata cache on each node. The default value
is 4MB.

This value must be increased by following the rule:

 Mallocsize

mallocsize = 4KB * maxFilesToCache + 2MB

Refer to Appendix C, “The GPFS Configuration File (mmsdrcfg1)” on
page 191 for details about how to change this value.

86 GPFS: A Parallel File System

 Important

The value of this parameter will be pinned memory on the GPFS
node. If you cannot dedicate the necessary memory in your
node to satisfy the formula, you can set a lower mallocsize
value. However, try to be as close as possible to the formula
value.

To activate the changes of this parameter, you must restart GPFS on
the affected node.

• Priority of daemons (GPFS initial configuration)

We recommend that you do not change the priority of GPFS
daemons. Trying to improve the performance of GPFS by increasing
the priority of GPFS daemons can generate unexpected results in
the system. The default should be 40.

To activate the changes of this parameter, you must restart GPFS.

5.1.2 Lotus Domino Server on a RS/6000 SP Node Using GPFS
In order to be able to go through the steps explained in this topic, a
good working knowledge of RS/6000 SP systems, POWERparallel System
Support Programs, and Lotus Domino Server is needed.

The installation process of Lotus Domino Server Release 4.5 is exactly
the same as it is in a standalone AIX system. The only differences are
in the creation and configuration processes of the file systems where
you will place the databases of Lotus Domino Server. Once you have
the file systems up and running, the remaining steps to install the
program files and later the databases are the same as with a
standalone AIX system.

In our implementation, we will install the binaries of Lotus Domino
Server in a local JFS file system and the Domino Server databases in a
GPFS file system. With this configuration, we will be able to start the
Lotus Domino Server in each node where all the GPFS file systems
containing the Domino Server databases are mounted, and which have
locally installed the Lotus Domino Server binaries.

Another possible option would be to install the Domino Server binaries
in a GPFS file system. With this option, you would be able to run the
Lotus Domino Server in each node of the GPFS cluster with only one
installation of the binaries for the entire cluster.

Chapter 5. Applications 87

However, at this time we recommend you do not install the Domino
Server binaries in a GPFS file system because of the impact upon
performance.

 Important

Remember that once the GPFS file system is created, every node of
that GPFS cluster can mount it locally.

5.1.2.1 Creating the AIX JFS File System for the Domino Server
Binaries

 1. Create a new volume group for Domino Server binaries.

If you do not want to create a new volume group for the binaries,
you can skip this step and go to “Create the File System for the
Domino Server Binaries” on page 88.

Log on to the node where you will run Lotus Domino Server as user
root.

Type in the following command:

� �sp21n15:/> smitty mkvg� �
The next screen will be displayed:

� �Add a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
VOLUME GROUP name [notesvg]
Physical partition SIZE in megabytes 4 +

* PHYSICAL VOLUME names [hdisk2] +
Activate volume group AUTOMATICALLY yes +

at system restart?
Volume group MAJOR NUMBER [] +#
Create VG Concurrent Capable? yes +
Auto-varyon in Concurrent Mode? yes +

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

In this example, the volume group is called notesvg and will be
created in hdisk2.

88 GPFS: A Parallel File System

 2. Create the file system for the Domino Server binaries.

The file system for the Domino Server binaries will be /usr/lpp/lotus,
with a size of 150MB.

As root, type the following command:

� �sp21n15:/> smitty crjfs� �
The Add a Journaled File System screen will be displayed.

� �Add a Journaled File System

Move cursor to desired item and press Enter.

Add a Standard Journaled File System
Add a Compressed Journaled File System
Add a Large File Enabled Journaled File System

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do� �

When you select Add a Standard Journaled File System by pressing
the Enter key, the Volume Group Name screen will be displayed:

� �Volume Group Name

 Move cursor to desired item and press Enter.

rootvg
notesvg

 F1=Help F2=Refresh F3=Cancel
F8=Image F10=Exit Enter=Do
/=Find n=Find Next� �

Select the volume group where you want to place the file system, for
example notesvg , and enter the parameters on the Add a Standard
Journaled File System screen:

Chapter 5. Applications 89

� �Add a Standard Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Volume group name notesvg

* SIZE of file system (in 512-byte blocks) [314400] #
* MOUNT POINT [/usr/lpp/lotus]

Mount AUTOMATICALLY at system restart? yes +
PERMISSIONS read/write +
Mount OPTIONS [] +
Start Disk Accounting? no +
Fragment Size (bytes) 4096 +
Number of bytes per inode 4096 +
Allocation Group Size (MBytes) 8 +

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Now you can mount the new file system and install the Domino
Server binaries, or you can continue with the creation of the GPFS
file system for the Domino Server databases.

5.1.2.2 Creating the GPFS File System for the Domino Server
Databases

In this section, we provide an example of a recommended environment
configuration to help you achieve the best results when running your
Lotus Domino Server.

The hardware configuration for this example is:

• Application server node:

− High node
− Six PowerPC 604 processors (112 MHz)
− 512MB RAM

• VSD server node:

− Two wide nodes
− POWER2, 66MHz
− 256MB RAM

• Disks:

− Two loops of four 4.5GB SSA disks shared between the two VSD
server nodes (using only three disks of each loop)

90 GPFS: A Parallel File System

Before creating the GPFS file system, you should be aware of the
following performance considerations:

• The Lotus Domino Server will run in a non-VSD server node in order
to avoid spending time in I/O operations in the Application server
node.

• Each 4.5GB SSA disk will contain only one VSD.

• The I/O load will be completely balanced between the two VSD
server nodes. Each VSD server node will be the VSD server primary
node for three VSDs.

• The three VSDs/disks controlled by each VSD server primary node
will be in a different loop, in order to separate the data traffic in the
loops.

• The binaries will be installed in the local JFS file system of the
Application server node.

Creation of the GPFS File System

 1. To create the VSDs for the GPFS file system:

 Important

• Be sure GPFS is up and running in the cluster.

• Be sure you have all the hardware resources connected and
available on the systems where you will work.

• Before you create the VSDs, you must know exactly which
disks of which nodes you will use for the GPFS file system.
You must also decide which VSD server node will be the VSD
server primary node for each VSD.

• In our example, we follow the previously mentioned
considerations in order to balance the I/O load as much as
possible between the VSD server nodes.

• You can use the new SMIT panels for SSA disks to determine
which loop each SSA disk belongs to, and use the maymap
tool to provide a map of the SSA loops, along with the disk ID
of each SSA disk. For more information about the maymap
tool, refer to Appendix D, “SSA Configuration” on page 197.

Log on to the Control Workstation as user root.

Type in the following command:

� �sp21en0:/> smitty createvsd_dialog� �
Chapter 5. Applications 91

Enter the necessary parameters in the Create a Virtual Shared Disk
screen:

� �Create a Virtual Shared Disk

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Node and Disk Information [13/11:hdisk2/]
* Logical Volume Group Name [lot1]
* Virtual Shared Disk size in Mega Bytes [4296] #

Virtual Shared Disk Option [nocache] +
Number of Virtual Shared Disks per Node []
One Virtual Shared Disk per Node: not cyclic [] +
Virtual Shared Disk Name Prefix [lot1vsd]
Logical Volume Name Prefix [lot1]
Logical Volume Partition Size [8] +#
Logical Volume Mirror Count [1] +#
Logical Volume Stripe Size [] +#

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

In this example, we create the first VSD (out of a total of six) that we
will use in our configuration.

As you can see, the VSD server primary node for this VSD is
sp21n13 and the VSD server secondary node is sp21n11.

The next two VSDs are created in the same way; we only changed
the VG, VSD and LV names, and the name of the disk.

92 GPFS: A Parallel File System

In the next Create a Virtual Shared Disk screen, we create the first
VSD for the other VSD server primary node, as shown:

� �Create a Virtual Shared Disk

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Node and Disk Information [11/13:hdisk9/]
* Logical Volume Group Name [lot5]
* Virtual Shared Disk size in Mega Bytes [4296] #

Virtual Shared Disk Option [nocache] +
Number of Virtual Shared Disks per Node []
One Virtual Shared Disk per Node: not cyclic [] +
Virtual Shared Disk Name Prefix [lot5vsd]
Logical Volume Name Prefix [lot5]
Logical Volume Partition Size [8] +#
Logical Volume Mirror Count [1] +#
Logical Volume Stripe Size [] +#

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

As you can see, the VSD server primary node for this VSD is
sp21n11 and the VSD server secondary node is sp21n13.

The next two VSDs are created in the same way; we only changed
the VG, VSD and LV names, and the name of the disk.

The following screen shows the results of the creation of the six
VSDs:

Chapter 5. Applications 93

� �VSD server nodes:
sp21n11
sp21n13
VG Information:
Command:
sp21en0:/> dsh -w sp21n11 lsvg -o | grep lot
sp21n11: lot7
sp21n11: lot6
sp21n11: lot5
Command:
sp21en0:/> dsh -w sp21n13 lsvg -o | grep lot
sp21n13: lot3
sp21n13: lot2
sp21n13: lot1

LV Information:
Command:
sp21en0:/> dsh -w sp21n11 lsvg -l lot5
sp21n11: lot51n11 jfs 537 537 1 closed/syncd N/A
Command:
sp21en0:/> dsh -w sp21n11 lsvg -l lot6
sp21n11: lot61n11 jfs 537 537 1 closed/syncd N/A
Command:
sp21en0:/> dsh -w sp21n11 lsvg -l lot7
sp21n11: lot71n11 jfs 537 537 1 closed/syncd N/A
Command:
sp21en0:/> dsh -w sp21n13 lsvg -l lot1
sp21n13: lot11n13 jfs 537 537 1 closed/syncd N/A
Command:
sp21en0:/> dsh -w sp21n13 lsvg -l lot2
sp21n13: lot21n13 jfs 537 537 1 closed/syncd N/A
Command:
sp21en0:/> dsh -w sp21n13 lsvg -l lot3
sp21n13: lot31n13 jfs 537 537 1 closed/syncd N/A

� �
 2. Configure the VSDs in all nodes.

Now you must configure and start the six VSDs in order to use them
later to create the GPFS file system. From the Control Workstation,
issue the following command:

� �sp21en0:/> dsh /usr/lpp/csd/bin/cfgvsd ′ lot5vsd1n11 lot6vsd1n11
lot7vsd1n11 lot1vsd1n13 lot2vsd1n13 lot3vsd1n13′� �

 3. Start the VSDs in all nodes.

Once the VSDs are configured (the previous command put these
VSDs in STP state), you can start them. From the Control
Workstation, issue the command:

� �sp21en0:/> dsh /usr/lpp/csd/bin/startvsd ′ lot5vsd1n11 lot6vsd1n11
lot7vsd1n11 lot1vsd1n13 lot2vsd1n13 lot3vsd1n13′� �

 4. Check the VSDs.

94 GPFS: A Parallel File System

Before you create the GPFS file system, check the state of the VSDs
by running the following command from the Control Workstation:

� �sp21en0:/> dsh /usr/lpp/csd/bin/lsvsd -l | grep lot� �
You should see the following screen, with all VSDs in an active
(ACT) state:

� �(previous nodes)

sp21n13: 11 ACT 13 36 1 lot1vsd1n13
nocache 4296
sp21n13: 12 ACT 13 37 1 lot2vsd1n13
nocache 4296
sp21n13: 13 ACT 13 39 1 lot3vsd1n13
nocache 4296
sp21n13: 16 ACT 11 0 0 lot5vsd1n11
nocache 4296
sp21n13: 17 ACT 11 0 0 lot6vsd1n11
nocache 4296
sp21n13: 18 ACT 11 0 0 lot7vsd1n11
nocache 4296

(next nodes)� �
 5. Create the GPFS file system.

As with the VSD configuration, we follow the performance
considerations explained in 5.1.1, “GPFS Performance
Considerations − ” on page 82.

First we create the description file for the new GPFS file system.

 Attention

For more information about creating description files, refer to
2.2.2.3, “Starting Your GPFS Daemon” on page 44 and to General
Parallel File System for AIX: Installation and Administration.

Our description file /tmp/gpfs.lotus contains the following:

� �lot1vsd1n13::::
lot2vsd1n13::::
lot3vsd1n13::::
lot5vsd1n11::::
lot6vsd1n11::::
lot7vsd1n11::::� �

As user root, log on to the node of the GPFS cluster where the
description file /tmp/gpfs.lotus is located.

Issue the following command:

Chapter 5. Applications 95

� �sp21n13:/> /usr/lpp/mmfs/bin/mmcrfs /home/notes lotus -F /tmp/gpfs.lotus
-A yes -B 64K -i 1K -I 8K� �

In our example:

• The mount point will be /home/notes.
• The device name will be lotus.
• The system device file name will be /dev/lotus.
• The DescFile will be /tmp/gpfs.lotus.
• We will mount the file system automatically on the GPFS start.
• The block size will be 64KB.
• The indirect size will be 8KB.
• The i-node size will be 1KB.

Figure 13 shows the new GPFS file system:

Figure 13. New GPFS File System. This figure graphically illustrates al l the system
resources involved in the creation of the GPFS file system.

If the command completes correctly, you will get the following
screen:

96 GPFS: A Parallel File System

� �mmcrfs: 6027-1052 Making MMFS filesystem /dev/lotus
/usr/sbin/tscrfs /dev/lotus -F /tmp/mmcrfsdddo22714 -I 1024 -M 1 -n 32 -R 1 -s
oundRobin -v no -c 0 -f 512 -p no -w 0

MMFS: 6027-531 The following disks of lotus will be formatted:
lot1vsd1n13: size 4399104KB
lot2vsd1n13: size 4399104KB
lot3vsd1n13: size 4399104KB
lot5vsd1n11: size 4399104KB
lot6vsd1n11: size 4399104KB
lot7vsd1n11: size 4399104KB

MMFS: 6027-540 Formatting file system ...
MMFS: 6027-572 Completed creation of file system /dev/lotus.

� �
 6. Mount the GPFS file system.

If you want to mount the new GPFS file system /home/notes on all
nodes of the GPFS cluster, log on to the Control Workstation as user
root and execute the following command:

� �sp21en0:/> dsh mount /home/notes� �
 7. Check the GPFS file system.

Log on to one node of the GPFS cluster and type mmdf lotus. You
will get the next screen:

� �disk disk size failure holds holds in full in
name in KB group metadata data blocks fragments
--------------- --------- -------- -------- ------ --------- ---------
lot7vsd1n11 4399104 4011 yes yes 3713488 2086
lot6vsd1n11 4399104 4011 yes yes 3714256 1926
lot5vsd1n11 4399104 4011 yes yes 3713280 1840
lot3vsd1n13 4399104 4013 yes yes 3713424 2008
lot2vsd1n13 4399104 4013 yes yes 3713456 2057
lot1vsd1n13 4399104 4013 yes yes 3713264 2240

--------- --------- ---------
(total) 26394627 22281168 12159

� �

Next, you should configure the user environment.

The installation of the Domino Server binaries can be done just after the
creation of the local JFS. However, the installation of the Domino Server
databases must be done after the configuration of the user environment.

5.1.2.3 Create and Configure the User Environment
When installing a RS/6000 SP system, you can choose between two
options to manage the users in your system:

• Use PSSP user management with AIX automounter and File
Collections.

Chapter 5. Applications 97

• Not using PSSP user management or using it without AIX
Automounter and File Collections.

For other configurations, it will be necessary to adapt some of the steps
explained here.

To determine whether or not you are using PSSP user management with
AIX automounter and File Collections, issue the following command on
the Control Workstation:

� �
sp21en0:/> splstdata -e� �

You will see the following screen if you are using PSSP user
management with AIX automounter and File Collections:

� �
List Site Environment Database Information

attribute value

control_workstation sp21en0
cw_ipaddrs 9.12.1.137:192.168.4.137:
install_image bos.obj.ssp.421
remove_image false
primary_node 1
ntp_config consensus
ntp_server ″″
ntp_version 3
amd_config true
print_config false
print_id ″″
usermgmt_config true
passwd_file /etc/passwd
passwd_file_loc sp21en0
homedir_server sp21en0
homedir_path /home/sp21en0
filecoll_config true
supman_uid 102
supfilesrv_port 8431
spacct_enable false
spacct_actnode_thresh 80
spacct_excluse_enable false
acct_master 0
cw_has_usr_clients false
code_version PSSP-2.3
layout_dir ″″
authent_server ssp
backup_cw ″″
ipaddrs_bucw ″″
active_cw ″″
cw_lppsource_name aix421� �

98 GPFS: A Parallel File System

If you are not using AIX automounter and File Collections, you will see
the following screen:

� �
List Site Environment Database Information

attribute value

control_workstation sp2en0
cw_ipaddrs 192.168.3.37:192.168.3.38:9.12.1.37
install_image bos.obj.ssp.421
remove_image false
primary_node 1
ntp_config consensus
ntp_server ″″
ntp_version 3
amd_config false
print_config false
print_id ″″
usermgmt_config false
passwd_file /etc/passwd
passwd_file_loc sp2en0
homedir_server sp2en0
homedir_path /home/sp2en0
filecoll_config false
supman_uid 102
supfilesrv_port 8431
spacct_enable false
spacct_actnode_thresh 80
spacct_excluse_enable false
acct_master 0
cw_has_usr_clients false
code_version PSSP-2.3
layout_dir /spdata/sys1/syspar_configs/1nsb0isb/config.4_12/layout.3
authent_server ssp
backup_cw ″″
ipaddrs_bucw ″″
active_cw ″″
cw_lppsource_name aix421� �

The usermgmt_config option is set to false , reflecting that we are not
using the PSSP user management facilities.

Notes:

 1. When using PSSP user management with File Collections, remember
that the supper process updates the File Collections every hour, thus
overwriting any local modification on the nodes. All changes related
to the File Collections done in the Control Workstation will be
updated every hour in the nodes.

 2. The AIX automounter, transparently, is responsible for mounting
each remote user directory in the machine you are logged in to, but
it is your responsibility to allow all nodes to access the remote
directory NFS by exporting the remote directory on the remote node.

Chapter 5. Applications 99

There are important considerations to keep in mind when using the
AIX automounter; these considerations are explained in 5.1.4,
“Moving the Lotus Domino Server between RS/6000 SP Nodes” on
page 117.

Using PSSP user management with AIX automounter and File
Collections:

If you are using PSSP user management with AIX automounter and File
Collections, you should follow the next steps to create a correct
environment for the Lotus Notes users.

 Important

If you want to have more than one Lotus Notes user in order to run
different workstations or different servers, you should repeat these
steps for each new Lotus Notes user.

 1. Create the notes group in the Control Workstation.

Log on to the Control Workstation as user root.

Type:

� �sp21en0:/> mkgroup - ′ A′ notes� �
 2. Create the Lotus Notes user in the Control Workstation.

 Attention

The home directory of the notes user should be on the GPFS file
system previously created for the Domino Server databases.

Log on to the Control Workstation as user root.

Type:

� �sp21en0:/> smitty spmkuser� �
Enter the parameters on the Add a User screen.

100 GPFS: A Parallel File System

� �Add a User

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* User NAME [notes]

User ID [] #
LOGIN user? true +
PRIMARY group [notes] +
Secondary GROUPS [] +
HOME directory [sp21n15:/home/notes]
Initial PROGRAM [] /
User INFORMATION [Lotus Notes User]� �

After the execution of the command, the next screen will appear:

� �COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

spmkuser: 0027-158 Attention: the directory /home/notes on sp21n11 already
exists but has different ownership than the id of the user to be created.
Modify the ownership if that directory does not belong to another user.

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next� �

This warning is normal because on the remote node the new user is
not set up.

 3. Export the remote directory on the remote node.

Log on as user root to the remote node where the home directory of
the new user is located.

Type:

� �sp21n15:/> /usr/sbin/mknfsexp -d ′ / home′ -t ′ rw′ ′ -B′� �
 4. Set the password for the new user.

Log on to the Control Workstation as user root.

Type:

� �sp21en0:/> smitty passwd� �
Enter the user name parameter on the Change a User′s Password
screen and press Enter.

Chapter 5. Applications 101

� �Change a User′ s Password

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
User NAME [notes] +

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

On the next screen, enter the password for the user notes.

� �Changing password for ″notes″
notes′ s New password:

� �
Re-enter the same password.

� �Changing password for ″notes″
notes′ s New password:
Enter the new password again:

� �
Exit SMIT.

 5. Log on the first time.

To avoid having to change the user password more than once when
logging in, we perform the first login from the Control Workstation.

Log on to the Control Workstation as user notes.

After you enter notes′s password, the system will ask you for a new
password, as shown:

102 GPFS: A Parallel File System

� �

AIX Version 4
(C) Copyrights by IBM and by others 1982, 1996.
login: notes
notes′ s Password:
3004-610 You are required to change your password.

Please choose a new one.

notes′ s New password:� �
Enter the password, and then re-enter the same password.

� �

AIX Version 4
(C) Copyrights by IBM and by others 1982, 1996.
login: notes
notes′ s Password:
3004-610 You are required to change your password.

Please choose a new one.

notes′ s New password:
Enter the new password again:� �

 6. Propagate all the information of the new user.

In order to propagate the group and user information to all the
RS/6000 SP nodes as quickly as possible, you must update the
user.admin File Collection in all of them. The supper process does
this update every hour. To force the update of this File Collection,
you must do the following:

Log on to the Control Workstation as user root.

Type:

� �sp21en0:/> dsh /var/sysman/supper update user.admin� �
Note: You must set up your user root environment correctly to
ensure this command will execute correctly.

 7. Set the correct owner/group and permissions on the remote node.

After the group and user information is updated on all the RS/6000
SP nodes, you can set up correctly the owner, group and file
permissions for the home directory of the new user in the remote

Chapter 5. Applications 103

node. If the home directory of the user is the mount point of a file
system, you should first mount the file system.

Log on to the remote node as user root.

Type:

� �sp21n15:/> mount /home/notes� �
After the GPFS file system is mounted, type:

� �sp21n15:/> chown notes.notes /home/notes� �
You should be able to use the default permissions of the directory.

Using PSSP user management without AIX automounter and File
Collections:

If you are not using PSSP user management with AIX automounter and
File Collections, you should set up the new group and the new user
locally in the RS/6000 SP node where you want to run the Lotus Domino
Server. In this case, the process is exactly the same as in a standalone
AIX environment.

With this configuration, the Lotus Domino Server can only run on the
RS/6000 SP node where you created and configured the user
environment.

5.1.2.4 Installing the Domino Server binaries
This procedure is fully explained in Lotus Notes Release 4.5 on AIX
Systems: Installation, Customization and Administration.

5.1.2.5 Installing the Domino Server databases
This procedure is fully explained in Lotus Notes Release 4.5 on AIX
Systems: Installation, Customization and Administration.

Note: Remember that the PATH for this installation must be
/home/notes/notesr4, and it must be in the same node where you
installed the Domino Server binaries.

5.1.3 Comparison of JFS and GPFS Environments
This section provides the information we gathered from the benchmarks
which were run over different configurations: local JFS configurations
and GPFS configurations.

104 GPFS: A Parallel File System

We also ran the same benchmarks for different Application server node
hardware configurations.

 Attention

The tool we used to do these benchmarks is Lotus NotesBench for
Lotus Notes R4.

The benchmark we used in our tests is the Mail and Shared
Database.

The configuration of Lotus NotesBench for Lotus Notes R4 was
exactly the same for all the scenarios.

 Disclaimer

In regard to Lotus NotesBench for Lotus Notes R4:

We choose Lotus NotesBench for Lotus Notes R4 because it is the
standard tool for Lotus Notes benchmarking.

The personnel who installed, configured, and ran the tool were not
certified.

The setup of the benchmarks was done by strictly following the
guidelines given in the NotesBench documentation.

5.1.3.1 Summary of the Tests
We set up and ran Mail and Shared Database benchmarks because we
consider this to be the more common use of Lotus Domino Server. Due
to time restrictions, we were not able to run other benchmarks such as
Groupware A or the Shared Discussion database.

At the end of this section, we provide detailed conclusions about all
tests and results. These conclusions and results can be used as
starting points for applications which behave like Lotus Notes.

5.1.3.2 Objectives
The objectives of the benchmarks were:

• To show the advantages of running Lotus Domino Server on top of
GPFS.

• To describe the best hardware configuration we found for that
purpose.

Chapter 5. Applications 105

• To provide you with the optimal values for all GPFS parameters so
you can achieve the best results when running Lotus Domino Server
on top of GPFS.

• To provide you with additional details about the behavior of GPFS
and Lotus Domino Server running together.

• To determine when it is advisable to use GPFS as the file system
support for Lotus Domino Server, instead of using local JFS.

• To extract as much useful information as possible from the
benchmarks.

5.1.3.3 Hardware and Software Configuration of the Test Scenarios
This section lists the hardware and software used for the benchmarks

First we describe the system drivers, which were the same for all the
benchmarks, without any changes.

Note: We found that the wide nodes were the best I/O performers.

System Drivers

 1. Hardware

• Eight thin nodes with one POWER2 processor (66 MHz). The
parent shared one node with one child.

• 128MB RAM.
• Ethernet (10MB/s).

 2. Software

• AIX 4.2.1.
• Lotus Notes Workstation Release 4.5a.
• The Domino Server binaries were installed in a file system using

internal SCSI disks.
• There was a common NFS directory for the child and result files

of each child and the parent.

Following are the different Server Under Test configurations used during
all our tests:

 1. First scenario: Local JFS configuration with high node

a. Hardware

• High node with six PowerPC 604 processors (112 MHz)

Application server node and I/O server:
• 512MB RAM
• One SSA adapter

106 GPFS: A Parallel File System

• Two loops of four 4.5GB SSA disks

b. Software

• AIX 4.2.1
• PSSP 2.4
• Lotus Notes Domino Server Release 4.5a.
• The Domino Server binaries were installed in a file system in

internal SCSI disks.
• The Domino Server databases were installed in two

filesystems in external SSA disks, in different SSA loops.

Figure 14 illustrates the first scenario.

Figure 14. Local JFS Scenario - High Node. High RS/6000 SP node with 512MB of
RAM, six PowerPC 604 processors, and two loops of four 4.5GB SSA disks in one
SSA adapter.

 2. Second scenario: Local JFS configuration with wide node

a. Hardware

• Wide node with one POWER2 processor (66 MHz)

Application server node and I/O server:
• 512MB RAM
• One SSA adapter

Chapter 5. Applications 107

• Two loops of four 4.5GB SSA disks

b. Software

• AIX 4.2.1
• PSSP 2.4
• Lotus Notes Domino Server Release 4.5a.
• The Domino Server binaries were installed in a file system in

internal SCSI disks.
• The Domino Server databases were installed in two

filesystems in external SSA disks, in different SSA loops.

Figure 15 illustrates the second scenario.

Figure 15. Local JFS Scenario - Wide Node. Wide RS/6000 SP node with 512MB of
RAM, one POWER2 processor, and two loops of four 4.5GB SSA disks in one SSA
adapter.

 3. Third scenario: GPFS configuration with high node

a. Hardware

• High node with six PowerPC 604 processors
• 512MB RAM

Application server node:
• Two wide nodes with one POWER2 processor (66 MHz)

108 GPFS: A Parallel File System

VSD server nodes

256MB RAM on each one

One SSA adapter on each one

Two loops of four 4.5GB SSA disks shared between the two
VSD server nodes

b. Software

• AIX 4.2.1
• PSSP 2.4
• RVSD 2.1.1
• GPFS 1.1
• Lotus Notes Domino Server Release 4.5a.
• The Domino Server binaries were installed in a file system in

internal SCSI disks.
• The Domino Server databases were installed in one GPFS

file system spread in six SSA disks. Each disk contained
one VSD. Each VSD server node was VSD server primary
node for three VSDs, and the three SSA disks of each VSD
server primary node were in a separate loop.

Figure 16 on page 110 illustrates the third scenario.

Chapter 5. Applications 109

Figure 16. GPFS High Node Scenario. High RS/6000 SP node with 512MB of RAM
and six PowerPC 604 processors as Application server node. Two wide RS/6000 SP
nodes with 256MB of RAM and one POWER2 processor as VSD servers. Two loops
of four 4.5GB SSA disks shared between the two VSD server nodes.

 4. Fourth scenario: GPFS configuration with wide node

a. Hardware

• Wide node with one POWER2 processor (66 MHz)
• 512MB RAM

Application server node:
• Two wide nodes with one POWER2 processor (66 MHz)

VSD server nodes

256MB RAM on each one

One SSA adapter on each one

Two loops of four 4.5GB SSA disks shared between the two
VSD server nodes

b. Software

• AIX 4.2.1
• PSSP 2.4
• RVSD 2.1.1

110 GPFS: A Parallel File System

• GPFS 1.1
• Lotus Notes Domino Server Release 4.5a.
• The Domino Server binaries were installed in a file system in

internal SCSI disks.
• The Domino Server databases were installed in one GPFS

file system spread in six SSA disks. Each disk contained
one VSD. Each VSD server node was VSD server primary
node for three VSDs, and the three SSA disks of each VSD
server primary node were in a separate loop.

Figure 17 illustrates the fourth scenario.

Figure 17. GPFS Wide Node Scenario. Wide RS/6000 SP node with 512MB of RAM
and one POWER2 processor as Application server node. Two wide RS/6000 SP
nodes with 256MB of RAM and one POWER2 processor as VSD servers. Two loops
of four 4.5GB SSA disks shared between the two VSD server nodes.

We used these four different configurations during all benchmarks. The
following section describes the procedures we followed to do the tests.

5.1.3.4 Test Methodology
The different configurations of our servers under test were placed under
a load of 750 users using the eight drivers described in the previous
section connected over an Ethernet LAN.

Chapter 5. Applications 111

For the GPFS scenarios, in the servers under test, the GPFS parameters
were varied in order to find the best values.

The operating system parameters in all the systems used (the drivers,
the servers under test and the VSD servers) were defined at the most
appropriate values and were constant for the remaining benchmark
sequences.

The only operating system parameter we changed in the servers under
test was maxuproc=2000.

As you can see from both the figures and the descriptions of the
scenarios, the local JFS I/O configurations were the best ones for Lotus
Domino Server.

In all our benchmarks, the server under test was running standard PSSP
software; no other applications were running.

In the GPFS scenarios, only the RVSD processes and the GPFS
processes were additionally running.

In the local JFS configurations, RVSD and GPFS were stopped.

For all benchmarks, the network traffic was monitored, and in every
benchmark, the network was not a bottleneck.

For all benchmarks, the I/O load, CPU load, processes profiles, and so
on were monitored.

Each time we ran a new benchmark, we restored the initial *.nsf files we
generated by using the following commands:

• notebnch mailinit

• register

5.1.3.5 Explaining the Data Results
This section provides a summarized description of our tests.

We ran monitoring tools during every test in order to determine the
reasons for the behavior of the Lotus Domino Server in each situation.
We used the following tools:

• iostat (I/O)
• vmstat (CPU, paging, process queue)
• sar (CPU multiprocessors)
• tprof (processes profiles)

112 GPFS: A Parallel File System

After we finished each test, we ran the command:

� �
parent:/home/parent> notesnum maildb 8� �

Refer to Appendix E, “Miscellaneous NotesBench Information” on
page 199 for an example of the output that generates this command,
and a description of the content.

Table 4 summarizes the results of our tests.

Table 4. Marks of Lotus NotesBench for Lotus Notes R4 for A l l benchmarks. This table contains
the results of all benchmarks.

Scenario Total Test
Time

(secs.)

Users NotesMark:
Trans/Min

Response
Time

(msecs.)

Bench1.High/Local JFS(1) 15180 750 1786 153

Bench2.High/Local JFS(2) 19320 750 1766 152

Bench3.Wide/Local JFS(1) 13980 750 1751 1070

Bench4.Wide/Local JFS(2) 14280 750 1714 2127

Bench5.High/GPFS 64K(1) 16200 750 1754 563

Bench6.High/GPFS 64K(2) 18840 750 1749 695

Bench7.High/GPFS 16K(1) 28140 750 1659 2927

Bench8.High/GPFS 64K(Stripe Group
Manager in App. Server)

14760 750 1758 499

 1. Data from local JFS configuration with high node :

The results for the local JFS configuration using the high node as
Application server node were the best ones for the response time;
the NotesMark was the same.

This is because the Mail and Shared Database test does not deal
with heavy I/O usage, and because the local configuration with two
balanced loops of SSA disks is the best one you can have. In a later
section, you will see the results for the same test, but with using
GPFS instead.

The main considerations when comparing these two different
solutions (GPFS versus local) are: with GPFS, two additional layers
(RVSD and GPFS) are run; there is a bigger memory requirement;
there is more CPU consumption by the mmfsd daemon and the Switch
network.

Chapter 5. Applications 113

Refer to Appendix E, “Miscellaneous NotesBench Information” on
page 199 for some average monitoring outputs.

 2. Data from local JFS configuration with wide node :

We make the results for this configuration available so you can
analyze the differences between using GPFS or using local JFS for
one processor machine.

The response time with the wide node is slower than with the high
node because the NotesBench tool is multithreaded and takes
advantage of the SMP architecture in the high node.

The monitoring data does not contain anything of interest. The wide
node was perfectly able to hold the load of the benchmark for 750
users, and the results for this scenario are shown in Table 4 on
page 113.

 3. Data from GPFS configuration with high node :

This is the best implementation for the Lotus Domino Server if you
want to use GPFS as the file server; we found the best values for the
GPFS parameters by using this configuration. (Refer to 5.1.1, “GPFS
Performance Considerations − ” on page 82 for a description of
these values.)

Next, we look at the results of the benchmarks with the following
values in the GPFS parameters:

• Block size 64KB

• I-node size 1KB

• Indirect size 8KB

• maxFilesToCache 2000 (using lsof, refer to F.3, “LiSt Open File”
on page 213 for more information)

• pagepool 80MB

• mallocsize 8MB

• prefetchThreads 48

• worker1Threads 72

• worker2Threads 24

• (The rest of the values were the default values.)

As you can see, we did not follow the rules given in 5.1.1, “GPFS
Performance Considerations − ” on page 82 regarding pagepool
and mallocsize values.

These rules recommend the following sizes:

114 GPFS: A Parallel File System

pagepool = 64KB * 2000 * 2 = 256MB
mallocsize = 4KB * 2000 + 2MB = 10MB

In our system under test, we had 512MB of RAM. When we tried to
define pagepool and mallocsize by following the rules exactly, the
Lotus Domino Server was unable to hold the load of 750 users
because it did not have enough memory for Lotus work. We then
tried different values for pagepool and mallocsize and found that
80MB for pagepool (data cache) and 8MB for mallocsize (metadata
cache) were enough for our environment.

This experience of searching for good values for pagepool and
mallocsize led us to the following conclusions:

a. The benchmark does not need too much data cache.

b. However, the size of the metadata cache is really important.
(This makes sense because we were dealing with about 2000
small/medium files, with sizes ranging from zero to 2.5MB.)

Further details are given in 5.1.3.6, “Conclusions” on page 116.

Refer to Appendix E, “Miscellaneous NotesBench Information” on
page 199 for some average monitoring outputs.

 4. Data from GPFS configuration with wide node :

After determining the best GPFS parameters to use (as described in
5.1.1, “GPFS Performance Considerations − ” on page 82), we tried
to run the same benchmarks in the wide node. However, we found
that the wide node could not hold the same Lotus Domino Server
load when using GPFS. We tried to run the benchmark for 640
users, but in the end it was not able to arrive at a stable state. (We
did not try with less than 640 users.)

The main reason for this result was the high CPU consumption by
the mmfsd daemon when it services data to applications like Lotus
Domino Server.

Refer to Appendix E, “Miscellaneous NotesBench Information” on
page 199 for some average monitoring outputs.

 5. Additional Information

We derived additional information from the third scenario, which ran
Lotus Domino Server on the high node using GPFS.

• Stripe Group Manager

No additional CPU consumption by the mmfsd daemon was
detected on the VSD server node when forcing the Stripe Group

Chapter 5. Applications 115

Manager to be on it. (What is more, we got a slightly better
response time).

Also, no additional CPU consumption by the mmfsd daemon was
detected on the high node when forcing the Stripe Group
Manager to be on it.

• Running the Lotus Domino Server with a block size of 16KB
results in lower performance. Obviously you save some disk
space, but nowadays disks are less expensive.

• Running the Lotus Domino Server with a block size of 256KB did
not improve the performance, and required more pinned
memory (pagepool, mallocsize) and disk space.

5.1.3.6 Conclusions
We reached the following conclusions based on the results of the
benchmarks.

• The GPFS key parameters you must tune correctly in order to
achieve good performance when running Lotus Domino Server using
GPFS are:

− maxFilesToCache
− pagepool
− mallocsize
− prefetchThreads
− worker1Threads
− worker2Threads

• The best Application server node to run the Lotus Domino Server
using GPFS is a multiprocessor node. It is not necessary to have up
to six processors, as we had in our benchmarks; you can improve
performance with just two processors when running Lotus Domino
Server on top of GPFS. As previously mentioned, this is because
the GPFS daemon is a multithreaded daemon, and it takes
advantage of the multiprocessor nodes.

You can try to run your Lotus Domino Server using GPFS in either a
wide or thin node, but the number of concurrent users supported will
decrease and the response time of the server will increase. If you
accept these conditions, then you can do it.

In an Application server node running Lotus Domino Server or
similar applications, the CPU load of the mmfsd daemon is high.

• If the I/O configuration for your Lotus Domino Server can be
implemented in a standalone machine locally, do not use GPFS; in

116 GPFS: A Parallel File System

this case, by using a local I/O configuration, you will get better
performance.

• GPFS is highly scalable. It allows you to spread the entire I/O load
over the VSD server nodes of the GPFS cluster, thus removing the
I/O capacity limitations on the nodes.

• You must balance, as much as possible, the I/O load among the VSD
server nodes of the GPFS cluster. Do the same with the disks inside
each VSD server node.

• You can reduce the memory requirements for GPFS. If possible,
follow the rules explained in 5.1.1.1, “Performance Parameters” on
page 83. You can also reduce the values for pagepool and
mallocsize, but as we have seen, this can impact the performance of
your Lotus Domino Server.

Try to find out from your application how much data cache it will
need. Metadata cache (mallocsize) is directly proportional to the
number of files your application will deal with.

• You can place the Stripe Group Manager in the Application server
node or in VSD server nodes. In our benchmark, we did not detect
any additional CPU load from the Stripe Group Manager. However,
depending on the number of GPFS file systems that GPFS is
managing and the work they are giving to it, you can be forced to
move the Stripe Group Manager to another node of the GPFS
cluster.

• There is high flexibility in managing the GPFS file system resources.
After running the benchmarks, we tested the management facilities.
We found that you can remove or add a disk to the Lotus Domino
Server GPFS file system while the Lotus Domino Server is running.

• Using GPFS replicas provides real benefits. Replicating data and
metadata provides both high availability and performance
improvement for Lotus installations with a heavy read workload
(performing full-text searches, for example).

5.1.4 Moving the Lotus Domino Server between RS/6000 SP Nodes
It is difficult to perform maintenance tasks on a production system that
is already up and running and providing certain services to your users.
However, if the system is running a Lotus Domino Server, you should be
able to maintain the service available for your users, as explained in
this section.

Chapter 5. Applications 117

 Notes

 1. In a GPFS environment, you will benefit from additional flexibility
when moving your Lotus Domino Server between nodes of your
GPFS cluster.

 2. In this section, we use the term primary node for the GPFS node
that is going out of service for maintenance reasons, and backup
node for the GPFS node that will impersonate the primary.

 3. Only TCP/IP procedures are explained.

 1. Hardware requirements:

• One additional node must be available to run the Lotus Domino
Server in the GPFS cluster; this will be the backup node.

• One additional network adapter must be ready to use in the
backup node.

 2. Software installation and configuration requirements:

• Lotus Domino Server binaries must be locally installed in the
backup node.

• The additional network adapter must be configured to allow your
Lotus Notes clients to access the Lotus Domino Server
transparently.

• Depending on how you plan to connect and configure the
network adapter of the backup node, you will need additional
software configuration.

 3. User environment considerations:

If you are not using the AIX automounter and File Collections, you
must replicate the same user configuration you have in the primary
node for the user notes in the backup node.

AIX automounter

As you know, when a user logs on to a node that is not located in
his home directory, the AIX automounter transparently mounts the
remote directory (of the remote node you defined when creating the
user) in the local node. Therefore, if you are moving your Lotus
Domino Server when you log into the backup node as user notes,
the AIX automounter will do this.

To avoid using NFS when running the Lotus Domino Server in the
backup node, you only have to change the actual directory from
/u/notes to /home/notes before you start the Lotus Domino Server.

118 GPFS: A Parallel File System

Following are two different ways to move your Lotus Domino Server
from one GPFS node to another in the same cluster:

• You can use exactly the same TCP/IP configuration of the Lotus
Domino Server network adapter of the primary node.

Follow these steps:

 1. Mount the GPFS file systems containing the Domino Server
databases in the backup node (if it is not already mounted).

 2. Stop the Lotus Domino Server in the primary node.

 3. Set down the Lotus Domino Server network interface of the
primary node.

 4. Set up the same TCP/IP configuration of the Lotus Domino
Server network adapter of the primary node in the additional
network adapter of the backup node.

 5. Start TCP/IP in the Lotus Domino Server network interface of the
backup node.

 6. Log on to the backup node as user notes. (If using AIX
automounter, execute: cd /home/notes.)

 7. Start the Lotus Domino Server in the backup node.

The service is already up.

Example:

− The notes user is didac.

− The home directory is /home/didac in the primary node sp21n15.

− The Domino Server databases directory is /home/didac/notesr4.

− The TCP/IP network interface in the primary node is tr1.

− The backup node is sp21n01.

− The TCP/IP network interface in the backup node is tr0.

 1. Log on to backup node sp21n01 as user root and type in:

� �sp21n01:/> mount /home/didac� �
 2. On the primary node sp21n15, stop your Lotus Domino Server in

your preferred way. For example, if you have the Lotus Domino
Server running in a dedicated window, enter the quit command
in it, as shown:

Chapter 5. Applications 119

� �
Lotus Domino Server (Release 4.5a (Intl) for UNIX) 22/09/97 11:09:12

Server name: didac/IBMITSO
Server directory: /home/didac/notesr4
Elapsed time: 00:01:33
Transactions/minute: Last minute: 0; Last hour: 0; Peak: 0
Peak # of sessions: 0 at
Transactions: 0
Shared mail: Not enabled
Pending mail: 0 Dead mail: 0
>
22/09/97 11:09:49 0 Transactions/Minute, 0 Users
>QUIT� �

 3. On the primary node, as user root, type in:

� �sp21n15:/> ifconfig tr1 down� �
 4. Once the network interface on the primary node is down, set up

the backup interface. If you already have the backup network
interface defined with the same parameters as the primary one,
you only need to bring up the backup network interface as
follows:

Log on to the backup node as user root and type in:

� �sp21n01:/> ifconfig tr0 up� �
However, if the network interface of the backup node is not
already configured, do the following.

Log on to the backup node as user root and type in:

� �sp21n01:/> smitty chinet� �
This screen will be displayed:

� �Available Network Interfaces

 Move cursor to desired item and press Enter.

en0 Standard Ethernet Network Interface
et0 IEEE 802.3 Ethernet Network Interface
TR0 TOKEN RING NETWORK INTERFACE

 F1=Help F2=Refresh F3=Cancel
F8=Image F10=Exit Enter=Do
/=Find n=Find Next� �

After you select the tr0 interface, enter the same parameters you
have in the primary network adapter in the Change / Show a
Token-Ring Network Interface screen:

120 GPFS: A Parallel File System

� �Change / Show a Token-Ring Network Interface

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Network Interface Name tr0
INTERNET ADDRESS (dotted decimal) [9.10.100.3]
Network MASK (hexadecimal or dotted decimal) [255.255.255.0]
Current STATE up
Use Address Resolution Protocol (ARP)? yes
Enable Hardware LOOPBACK Mode? no
BROADCAST ADDRESS (dotted decimal) []
Confine BROADCAST to LOCAL Token-Ring? no

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

 5. After the TCP/IP network interface is up on the backup node, log
on to the backup node as user didac and type in:

� �sp21n01:/home/didac> server� �
After the complete start of the Lotus Domino Server, the Lotus
Notes Service is already up.

The second method of moving your Lotus Domino Server from one GPFS
node to another in the same cluster is as follows:

• You can use a different IP address in the Lotus Domino Server
network adapter of the backup node.

Chapter 5. Applications 121

 Notes

 1. You must set the same hostname in the Lotus Domino Server
network adapter of the backup node as you used in the Lotus
Domino Server network adapter of the primary node. You
can change the IP address, but you cannot change the
hostname.

 2. This procedure can be useful if you need to keep the Lotus
Domino Server TCP/IP network interface up and running in
the primary node during maintenance work.

 3. You can use this procedure only if you have full control of the
name and IP address resolution of your Lotus Notes clients.

 4. The Lotus Notes clients cannot use local name resolution.
They should only be configured to use Domain Name
Services, and you must guarantee each change in the DNS
servers will be noticed in all the Lotus Notes clients.

(In fact, you can perform this procedure, with Lotus Notes
clients resolving names and IP addresses in local, but is your
responsibility to change the local configuration of all your
Lotus Notes clients, which can be difficult and complicated,
depending on your installation.)

 5. If you plan to connect the Lotus Domino Server network
adapter of the backup node in a different subnet of your
organization, you must be completely sure that your Lotus
Notes clients are able to physically and logically access this
subnet (physical path and routing path).

Follow the next steps:

 1. Mount the GPFS file systems containing the Domino Server
databases in the backup node (if it is not already mounted).

 2. Stop the Lotus Domino Server in the primary node.

 3. Set up the TCP/IP of the Lotus Domino Server network adapter
in the backup node.

 4. Start TCP/IP in the Lotus Domino Server network interface of the
backup node.

 5. Change your DNS configuration and REFRESH the named
daemon.

 6. Check the DNS changes. Be sure all the Lotus Notes clients get
the new IP address when asking for the name of the Lotus
Domino Server.

122 GPFS: A Parallel File System

 7. Log on to the backup node as user notes. (If using AIX
automounter, execute cd /home/notes.)

 8. Start the Lotus Domino Server in the backup node. The service
is already up.

Example:

− Notes user is didac.

− The home directory is /home/didac in the primary node sp21n15.

− The Domino Server databases directory is /home/didac/notesr4.

− The TCP/IP network interface in the primary node is tr1.

− The IP address of the Lotus Domino Server in the primary node
is 9.10.100.3.

− The backup node is sp21n01.

− The TCP/IP network interface in the backup node is tr0.

− The IP address of the Lotus Domino Server in the backup node
is 9.10.100.24.

− The actual DNS configuration is as follows.

The file named.data:

� �sp21tr01 99999999 IN A 9.10.100.24
sp21tr15 99999999 IN A 9.10.100.3
Lotus Notes Aliases
DIDAC 99999999 IN CNAME SP21TR15� �

The file named.rev:

� �3 IN PTR sp21tr15.msc.itso.ibm.com.
24 IN PTR sp21tr01.msc.itso.ibm.com.� �

As you see, we used aliases for the name of the Lotus Domino
Server. We recommend you do the same to make your work
easier.

In the following section, we describe only the DNS change steps,
since the remaining steps are exactly the same as in the previous
example.

To change the DNS configuration:

 1. Log on to the DNS server machine as user root.

 2. Using your favorite editor, make the following change in the
named.data file:

Chapter 5. Applications 123

� �sp21tr01 99999999 IN A 9.10.100.24
sp21tr15 99999999 IN A 9.10.100.3
Lotus Notes Aliases
DIDAC 99999999 IN CNAME SP21TR01� �

 3. Now you must update the DNS daemon information. Run the
command:

� �riscserver:/> refresh -s named� �
 4. Verify the DNS change by checking in one of the Lotus Notes

clients, as follows:

� �notesclient:/> host didac
sp21tr01.msc.itso.ibm.com is 9.10.100.24, Aliases: didac.msc.itso.ibm.com� �

Alternatively, you can just ping it:

� �notesclient:/> ping didac
PING sp21tr01.msc.itso.ibm.com: (9.10.100.24): 56 data bytes
64 bytes from 9.10.100.24: icmp_seq=0 ttl=254 time=2 ms
64 bytes from 9.10.100.24: icmp_seq=1 ttl=254 time=2 ms
64 bytes from 9.10.100.24: icmp_seq=2 ttl=254 time=2 ms
64 bytes from 9.10.100.24: icmp_seq=3 ttl=254 time=2 ms� �

5.1.5 Migrating Lotus Domino Server to GPFS
 Attention

There is no way to directly migrate from AIX JFS file systems to
GPFS file systems. Instead, you have to create the new GPFS file
systems and copy all the data from the AIX JFS file systems to the
new GPFS file systems.

5.1.5.1 Migrating from a RS/6000 - AIX Standalone Installation
 1. Migration of the user environment:

Follow the process explained in section 5.1.2.3, “Create and
Configure the User Environment” on page 97 to set up the user
environment in the RS/6000 SP system for Lotus Notes users.

 2. Migration of the file systems:

Install the Domino Server binaries in a local JFS file system in the
GPFS node selected for the migration.

Create the new GPFS file system for the Domino Server databases.

Back up all your JFS file systems where you have the Domino
Server databases, and restore them in the new GPFS file system,
preserving owner, group and permissions.

124 GPFS: A Parallel File System

5.1.5.2 Migrating from a RS/6000 SP Node Standalone Installation
 1. Migration of the file systems:

Install the Domino Server binaries in a local JFS file system in the
GPFS node selected for the migration.

Create the new GPFS file system for the Domino Server databases.

Back up all your JFS file systems where you have the Domino
Server databases, and restore them in the new GPFS file system,
preserving owner, group and permissions.

5.1.6 When to Run Lotus Domino Server over GPFS
The use of Lotus Domino Server over GPFS is recommended in the
following cases:

• When very large I/O capacity is required (that is, when you require
scalability).

If you need to implement a very large Lotus Notes database system,
and the I/O capacity of a standalone machine is insufficient (for
example, in big document databases with a high read load from
clients), GPFS provides a scalable solution for your Lotus Domino
Server

• When you want easy and flexible file system management.

GPFS allows easy and flexible management of the GPFS file system
resources.

− You can add/delete disks even while file systems are being
mounted and applications are being run (and you can combine
this task with replication, if necessary).

− You can add/delete nodes from the cluster.

− You can rebalance a file system across the actual disks.

− You can run administration tasks from any node of the GPFS
cluster.

− You can move the Lotus Domino Server among GPFS nodes
easily.

If these capabilities are important for your installation, GPFS
provides an effective solution.

• When you need high availability.

Because using GPFS allows you to have two data replicas and two
metadata replicas, you can achieve high availability in massive read
environments.

Chapter 5. Applications 125

• Future Improvements.

As shown in Figure 12 on page 82, if Lotus Domino Server modifies
its actual locking behavior (as, say, in a Lotus Domino Server
Parallel Edition), then using GPFS will be the most efficient way to
implement clusters of Lotus Domino Server. In this way, you can
avoid the CPU usage and network traffic of any replicas, as well as
other cluster overhead.

5.2 MPI Applications

In most cases, a user application that runs on the SP can use GPFS in
place of PIOFS or NFS without altering the application. GPFS combines
the shared access of NFS with the high performance of PIOFS. Refer to
Chapter 4, “Migration” on page 75 for more details on migration to
GPFS.

If an application spends significant amounts of time doing I/O, it is
probably worth investing effort to see if different approaches to I/O can
achieve better performance. Two synthetic applications are presented
in this section. The first stresses the metadata part of a file system.
The second exercises the read/write characteristics of a file system to
see how block size, access patterns and other IO parameters affect
performance.

5.2.1 Synthetic Applications
The following two applications were tested on a small SP system. The
system consisted of SP2 thin nodes, an HPS, internal SCSI and 9333 disk
units. All of these components are slower than the currently available
components (P2SC and SMP nodes, SP switch and SSA drives). The
applications are not meant to demonstrate the best possible
performance, but rather the relative performance of various I/O
techniques.

The following file systems were tested:

• /dev/null (for write tests)

• JFS on the internal SCSI disks with logs on a different spindle

• GPFS via the HPS on one server using type internal SCSI disk

• GPFS via the HPS on two servers using type internal SCSI disks

• GPFS via the HPS on one server using type 9333 disk

126 GPFS: A Parallel File System

The tests were run on one, two, and four nodes at a time. Source code
for the synthetic applications is available. Refer to Appendix F, “How to
Get the Examples in This Book” on page 213 for more information.

There are many configuration options for GPFS. The file systems for
these tests used the installation defaults. Many of the tuning trade-offs
are discussed in Chapter 3, “Failover Scenarios” on page 57.

5.2.1.1 Metadata Application
Note: This command is called pmd, but it is in no way related to the
process in the Parallel Environment (POE) which has the same name.

The metadata application will create a number of files, read through the
directory stat()ing the files, and then remove the files. In addition to
these tasks, a background thread can consume the remaining processor
time. The application tells how much time the average open(),
readdir(), stat() and unlink() calls take. The amount of processor
time left for other tasks can be determined by the background thread.

If more than one node is used to run the test, a verification of the
O_CREAT combined with O_EXCL is performed. There is also an option to
force the times at which the metadata operations occur to be
synchronized on different nodes by use of the MPI_Barrier() routine.

The test has two main parts. First, all active nodes create, read/stat and
remove their files in a common directory. Second, each node does the
same creates, read/stats and removes, but the files are stored in a new,
node-specific directory. This allows us to see if contention in the same
directory makes a difference in performance.

This test is similar to some of the operations that would in occur in a
task such as a make on a collection of files that generate small objects or
that is mostly up-to-date. This sort of task would generate many
operations on the metadata parts of the file system.

Figure 18 on page 128 and Figure 19 on page 129 show sample reports
from the metadata application:

Chapter 5. Applications 127

� �
pgc@sp2en0 </u/pgc/ITSO>:
pgc@sp2en0 </u/pgc/ITSO>: ./pmd -procs 1 100 N N /tmp pgc

**** Ran from 1997/10/02 16:07:20 to 1997/10/02 16:07:28 on 1 nodes. ****
./pmd 100 N N /tmp pgc
 Calibration Overhead (removed from stats)
 AVE=1.020067e-05, STDEV=6.238373e-06, MIN=1.000002e-05, MAX=5.799750e-04

The semantics on open() do work as expected

Different file names in same directory:

 Barrier
 AVE=4.324958e-07, STDEV=7.065855e-07, MIN=-1.006804e-07, MAX=4.299324e-06
 Create
 AVE=1.247060e-02, STDEV=3.762534e-03, MIN=7.628649e-03, MAX=2.293027e-02
 Stat
 AVE=1.547759e-03, STDEV=2.809541e-04, MIN=7.537434e-05, MAX=3.515974e-03
 Unlink
 AVE=1.256536e-02, STDEV=3.700915e-03, MIN=9.183749e-03, MAX=2.241187e-02

Same file names in different directory:
 Barrier
 AVE=4.506641e-07, STDEV=7.325762e-07, MIN=-1.006804e-07, MAX=4.224323e-06
 Create
 AVE=1.280494e-02, STDEV=4.435264e-03, MIN=9.383749e-03, MAX=3.384115e-02
 Stat
 AVE=1.642334e-03, STDEV=7.267294e-04, MIN=2.012743e-04, MAX=7.824674e-03
 Unlink
 AVE=1.259110e-02, STDEV=3.830179e-03, MIN=9.144199e-03, MAX=2.315257e-02

wall time = 5.4229, user time = 0.0500, sys time = 0.2700
wall time - (user + system time) = 5.1029 (other system time)
This process got 5.901% of the available CPU time
pgc@sp2en0 </u/pgc/ITSO>:
pgc@sp2en0 </u/pgc/ITSO>:
pgc@sp2en0 </u/pgc/ITSO>: ./pmd -procs 2 100 N N /gpfs52 pgc

**** Ran from 1997/10/02 13:29:37 to 1997/10/02 13:30:49 on 2 nodes. ****
./pmd 100 N N /gpfs52 pgc
 Calibration Overhead (removed from stats)
 AVE=1.013996e-05, STDEV=1.149876e-06, MIN=1.004999e-05, MAX=4.867499e-05

The semantics on open() do work as expected

Different file names in same directory:

 Barrier
 AVE=2.272037e-06, STDEV=3.117955e-06, MIN=-3.997288e-08, MAX=1.341004e-06
 Create
 AVE=1.714458e-01, STDEV=1.176691e-01, MIN=1.340461e-02, MAX=5.157580e-01
 Stat
 AVE=1.869917e-03, STDEV=9.807880e-04, MIN=1.527535e-03, MAX=7.946610e-03
 Unlink
 AVE=2.290273e-01, STDEV=7.354260e-02, MIN=9.951071e-02, MAX=3.666961e-01� �

Figure 18. Example Output from the Metadata Application (Part I)

128 GPFS: A Parallel File System

� �
Same file names in different directory:

 Barrier
 AVE=2.255871e-06, STDEV=3.043095e-06, MIN=-3.997288e-08, MAX=8.335033e-06
 Create
 AVE=2.635205e-02, STDEV=2.503719e-02, MIN=9.509910e-03, MAX=1.264067e-01
 Stat
 AVE=1.537612e-03, STDEV=1.830127e-04, MIN=7.548505e-05, MAX=2.541310e-03
 Unlink
 AVE=1.340832e-01, STDEV=2.113726e-02, MIN=1.000587e-01, MAX=3.000125e-01

wall time = 59.6852, user time = 0.0700, sys time = 0.3500
wall time - (user + system time) = 59.2652 (other system time)
This process got 0.704% of the available CPU time
pgc@sp2en0 </u/pgc/ITSO>:
pgc@sp2en0 </u/pgc/ITSO>:
pgc@sp2en0 </u/pgc/ITSO>: ./pmd -procs 2 100 N T /gpfs52 pgc

**** Ran from 1997/10/02 14:42:24 to 1997/10/02 14:43:58 on 2 nodes. ****
./pmd 100 N T /gpfs52 pgc
 Calibration Overhead (removed from stats)
 AVE=1.024692e-05, STDEV=1.003669e-05, MIN=1.002499e-05, MAX=9.890750e-04

The semantics on open() do work as expected

Different file names in same directory:

 Barrier
 AVE=1.813075e-06, STDEV=2.635863e-06, MIN=-1.469354e-07, MAX=6.803088e-06
 Create
 AVE=1.567091e-01, STDEV=1.071638e-01, MIN=1.220050e-02, MAX=5.199287e-01
 Stat
 AVE=1.703296e-03, STDEV=4.296528e-04, MIN=1.533203e-03, MAX=4.022678e-03
 Unlink
 AVE=2.089606e-01, STDEV=6.224795e-02, MIN=9.995893e-02, MAX=4.109136e-01

Same file names in different directory:

 Barrier
 AVE=2.381076e-06, STDEV=9.157463e-06, MIN=-1.469354e-07, MAX=1.460531e-06
 Create
 AVE=2.733674e-02, STDEV=2.859700e-02, MIN=9.477103e-03, MAX=1.628778e-01
 Stat
 AVE=2.232533e-03, STDEV=1.656475e-03, MIN=7.502808e-05, MAX=1.103763e-02
 Unlink
 AVE=1.577595e-01, STDEV=5.201136e-02, MIN=1.009233e-01, MAX=4.905361e-01

wall time = 60.7456, user time = 51.6200, sys time = 1.2800
wall time - (user + system time) = 7.8456 (other system time)
This process got 87.085% of the available CPU time
pgc@sp2en0 </u/pgc/ITSO>:
pgc@sp2en0 </u/pgc/ITSO>:

� �
Figure 19. Example Output from the Metadata Application (Part II)

Chapter 5. Applications 129

The cost of the overhead of the loops and measurement code is
determined when the test starts. The code in Figure 20 on page 130
shows how this is calculated. The times returned by gettime() is in
units of seconds in the form of a double. This amount of time is
subtracted from individual samples.

� �
/***/
/*
 * this could be a subroutine if needed
 */

#define gettime() MPI_Wtime()

/***/

void
doCalibrateTest(struct statsStuff_t *statP, long N) {
double t;
long i;

for (i = 0 ; i < N ; i++) {
t = gettime();
t = gettime() - t;
insertSample(statP, t);

}
}

/***/

� �
Figure 20. Function to Determine Measurement Overhead

Next, a message indicates whether the semantics of the open system call
using the O_EXCL flag are the same as for a local JFS file system. The
routine in Figure 21 on page 131 is used to determine if the semantics
work as expected.

130 GPFS: A Parallel File System

� �
/***/

void
semanticsTest() {
char buffer•MAXPATHLEN‘;
long i;
long successes;
int rc;
int rcSummed;

successes = 0;

for (i = 0 ; i < loops ; i++) {
sprintf(buffer, ″%s/%s%ld″ , where, prefix, i);
MPI_Barrier(MPI_COMM_WORLD);
rc = open(buffer, O_CREAT | O_EXCL | O_RDWR, S_IRUSR | S_IWUSR);
if (rc < 0) {
rc = 0; /* failed */

} else {
close(rc);
unlink(buffer);
rc = 1; /* succeeded */

}

MPI_Barrier(MPI_COMM_WORLD); /* this should not be needed but... */
rcSummed = -1;
MPI_Reduce(&rc, &rcSummed, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
if (rcSummed == 1) {
successes++; /* this will not be used on any task but task 0 */

}
}

if (successes == loops) {
semanticsWork = 1;

} else {
semanticsWork = 0;

}
}

/***/

� �
Figure 21. Function to Verify Semantics of O_EXCL on open()

The report next shows the statistics for performing the operations in a
single shared directory, and then statistics for per node directories
reported. You can see that the same tasks are done in both cases in
Figure 22 on page 132. However, while the same tests are run in both
cases, the base names are changed. In the second case, directories
must be created and removed.

Chapter 5. Applications 131

� �
/***/

void
doTest(double overhead) {
char buffer•MAXPATHLEN‘;
int rc;

/* do the different filename/same directory case */
sprintf(buffer, ″%s/%s%d_″ , where, prefix, thisTask);
doCreateTest(&createStats1, &barrierStats1, loops, overhead, buffer);
doReadStatTest(&statStats1, &barrierStats1, loops, overhead, where);
doUnlinkTest(&unlinkStats1, &barrierStats1, loops, overhead, buffer);

/* then the same filename/different directory case */
sprintf(buffer, ″%s/%s%d/″ , where, prefix, thisTask);
rc = mkdir(buffer, S_IRUSR | S_IWUSR | S_IXUSR);
if (rc < 0) {
fprintf(stderr, ″problem with mkdir(%s), errno = %d\n″ , buffer, errno);
exit(2);

}

MPI_Barrier(MPI_COMM_WORLD);
doCreateTest(&createStats2, &barrierStats2, loops, overhead, buffer);
doReadStatTest(&statStats2, &barrierStats2, loops, overhead, buffer);
doUnlinkTest(&unlinkStats2, &barrierStats2, loops, overhead, buffer);

rc = rmdir(buffer);
if (rc < 0) {
fprintf(stderr, ″problem with rmdir(%s), errno = %d\n″ , buffer, errno);
exit(2);

}
}

/***/

� �
Figure 22. Function That Tests the Two Primary Cases of Contention

The output ends with information about the amount of wall time, user
space time and system time used by the process. Notice that these last
three statistics are only for the time spent performing the two main
tests. The time needed to initialize the processes, verify the O_EXCL flag,
calculate the statistics and print the results are not counted.

The calibrating subtraction may cause some MIN time values can be
negative in value. Also, depending on the command line arguments,
Barrier will report random values if the barrier functions are not used.

Note the following details from the examples:

• In the first example, shown in Figure 18 on page 128, in the
command line ./pmd -procs 1 100 N N /tmp pgc, the -procs 1 causes

132 GPFS: A Parallel File System

only a single parallel process to run. The first N. on the line
indicates we do not want to issue MPI_Barrier() calls before the
operations. To issue the barrier calls, we would use a B. The
second N indicates we do not want to run the extra thread that will
consume all remaining CPU time on the nodes. If we wanted to run
the extra thread, we would replace that N with a T.

100 files will be created in /tmp, a JFS file system, using the string
pgc to help generate the file names.

• In the second example, each of two nodes is creating 100 files. This
time two parallel processes will be used, no barrier calls are made,
and the extra thread will not execute. The files will be created in
/gpfs52, a GPFS file system using a single VSD server in this case,
and the string pgc is again used to create unique names.

• The third example causes the extra thread to execute, so we can
see how much processor time is used by the GPFS and other
daemons on the nodes.

In the second example, the process used 0.070 + 0.350 = 0.420
seconds of the 59.685 seconds that it took the test to run. Less than
1% of the time was used by the process; the rest went to other
processes and idle or wait time.

In the third example, the process used 51.620 + 1.280 = 52.900
seconds of the 60.746 seconds. Since the extra thread is a
never-exiting loop, we know any CPU time not used by our process
was consumed by other processes on the node. In this case, about
13% of the time was used by these other processes.

• In the JFS case with the extra thread running (not shown), we find
the process gets almost 97% of the CPU. This indicates the base
level of daemon activity on the nodes is about 3% of the CPU
resource. From this we can see that, while doing this kind of work,
the GPFS daemons consume about 10% of the CPU resources on
the node. This is just one example of GPFS usage. Variations from
5 to 25% have been observed.

Keep in mind that on faster nodes the GPFS daemons should use
relatively less CPU.

Now that we have seen what the report describes, let us examine other
results from the metadata application.

5.2.1.2 Metadata Application Results
We first consider the performance of GPFS relative to JFS for the single
node case. In this test, two local JFS file systems are compared to a
GPFS file system that is housed on a remote VSD. One JFS file system

Chapter 5. Applications 133

shares a single disk with its log while the second JFS uses an different
disk. The disk hardware is the same for the JFS and VSD.

Table 5. GPFS Vs. JFS Metadata Performance Single Node Case (mSec)

Operation JFS JFS Diff Log
Disk

GPFS

Files in Common Directory

Create 13.0 12.7 18.6

Readdir/Stat 1.7 1.7 1.6

Unlink 12.6 12.5 91.4

Files in Different Directory

Create 13.6 12.7 16.7

Readdir/Stat 1.7 1.7 1.6

Unlink 12.5 12.5 98.1

Wall Time (sec) 5.6 5.6 29.0

As shown in Table 5, in most cases, with similar disk hardware, the
performance is comparable. In the readdir()/stat(), GPFS is faster
than JFS. The GPFS unlink() case is a good deal slower than the JFS
case. As expected, JFS is a bit faster when the JFS log is placed on a
different disk.

In most tasks, readdir()/stat() operations are done more often than
files are created and deleted. This minimizes the impact of the
create()/unlink() calls.

Table 6 and Table 7 on page 135 show how the performance scales
when multiple clients use GPFS at the same time.

Table 6 (Page 1 of 2). GPFS Performance with Mult iple Clients (no Barrier) (mSec)

Operation 1 Node 2 Nodes 4 Nodes

Files in Common Directory

Create 18.6 180.0 432.0

Readdir/Stat 1.6 1.7 1.7

Unlink 91.4 172.0 609.0

Files in Different Directory

Create 16.7 26.9 36.9

Readdir/Stat 1.6 1.7 1.8

134 GPFS: A Parallel File System

Table 6 (Page 2 of 2). GPFS Performance with Mult iple Clients (no Barrier) (mSec)

Operation 1 Node 2 Nodes 4 Nodes

Unlink 98.1 161.0 345.0

Wall Time (sec) 29.0 68.2 159.4

Table 7. GPFS Performance with Mult iple Clients (Barrier) (mSec)

Operation 1 Node 2 Nodes 4 Nodes

Files in Common Directory

Create 15.6 169.0 353.0

Readdir/Stat 1.6 1.7 3.6

Unlink 89.7 180.0 429.0

Files in Different Directory

Create 18.9 26.2 46.7

Readdir/Stat 1.5 1.7 2.5

Unlink 94.0 159.0 314.0

Wall Time (sec) 28.6 73.2 162.6

In most cases, the performance of readdir()/stat() continues to be
good when more clients are active. This degrades slightly when
barriers are used and the nodes try to do this operation at about the
same instant. When the nodes are not synchronized, they appear to fall
into a pattern that allows better performance.

Note the big increase in the time needed to create a file which occurs
when going from single to multiple node, and all files are using a
common directory. After the big jump when going from one to two
nodes, the performance falls off relatively less when moving from the
two-node to the four-node case.

This does not happen to such a degree when the nodes use
independent directories to reduce contention. Notice how the create
operations take about one-tenth the time when the nodes do not have to
share a directory with other nodes. The unlink() operations do not
degrade to the same degree, but unlink() started with slower operation.

5.2.1.3 Metadata Application Summary
When we look at wall time, we see that as client nodes are added, the
time needed to do metadata operations increases. If your parallel
process must create and delete large numbers of files, you will be better

Chapter 5. Applications 135

off having a single node perform all of these operations. On single
machine applications, GPFS performs quite well. For the very common
readdir()/stat() operations, GPFS outperforms JFS.

Unless your parallel application does an extensive number of file
creates or deletes, you are reasonably safe to ignore changing your
code for GPFS.

5.2.1.4 Read and Write Application
The second application will write() or read() the number of blocks that
are specified on the command line. The size of the I/O operations, as
well as the stride of the operations, can be varied. The file position
offset, memory buffer offset, and the file access pattern can be altered.
As with the metadata application, a thread can be run in the background
to indicate how much processor time is consumed by the file system
code, and MPI_Barrier() can be used to force synchronization between
nodes.

� �
pgc@sp2en0 </u/pgc/ITSO>: ./pio
wrong number of parameters
usage: ./pio N iosize buf_align file_align R|W B|N file

N is number of loops of read()/write()
iosize is size of buffer [0-524288]
buf_align is buffer offset [0-4095]
file_align is file io offset [0-(iosize-1)]
R|W is Read for Write file
B|N is Barrier on io times or No barrier
C|S do IO in chunk or stripe pattern
S|N is use O_SYNC on open()
T|N use a background thread to consume CPU
file is name of file to read()/write()

pgc@sp2en0 </u/pgc/ITSO>:� �
Figure 23. Example Output from the I/O Application (Part 1 of 2)

136 GPFS: A Parallel File System

� �
pgc@sp2en0 </u/pgc/ITSO>:
pgc@sp2en0 </u/pgc/ITSO>: ./pio 8192 4096 0 0 W N S N N /dev/null

**** Ran from 1997/10/06 11:34:30 to 1997/10/06 11:34:31 on 1 nodes. ****
./pio 8192 4096 0 0 W N S N N /dev/null
 Calibration Overhead (removed from stats)
 AVE=5.303538e-06, STDEV=8.214410e-07, MIN=5.224996e-06, MAX=5.982500e-05

 Barrier
 AVE=5.640640e-06, STDEV=8.519675e-07, MIN=5.324997e-06, MAX=3.980000e-05
 IO
 AVE=2.236255e-05, STDEV=8.414528e-06, MIN=2.172499e-05, MAX=6.138500e-04

Wall Time = 000.3352 User Time = 000.2500 System Time = 000.0800
wall time - (user + system time) = 0.0052 (other system time)
This process got 98.436% of the available CPU time
Total data rate was 100.0900Mbytes / second
pgc@sp2en0 </u/pgc/ITSO>:
pgc@sp2en0 </u/pgc/ITSO>:
pgc@sp2en0 </u/pgc/ITSO>: ./pio 8192 524288 0 0 W N S N N /dev/nul

**** Ran from 1997/10/06 11:36:05 to 1997/10/06 11:36:05 on 1 nodes. ****
./pio 8192 524288 0 0 W N S N N /dev/null
 Calibration Overhead (removed from stats)
 AVE=5.351700e-06, STDEV=5.728213e-06, MIN=5.224996e-06, MAX=5.757250e-04

 Barrier
 AVE=5.692780e-06, STDEV=4.328667e-06, MIN=5.474998e-06, MAX=3.643250e-04
 IO
 AVE=2.229261e-05, STDEV=5.120971e-06, MIN=2.172499e-05, MAX=4.595750e-04

Wall Time = 000.3349 User Time = 000.1700 System Time = 000.1700
wall time - (user + system time) = -0.0051 (other system time)
This process got 101.512% of the available CPU time
Total data rate was 12823.2831Mbytes / second
pgc@sp2en0 </u/pgc/ITSO>:
pgc@sp2en0 </u/pgc/ITSO>:
pgc@sp2en0 </u/pgc/ITSO>: ./pio 8192 524288 0 0 W N C N N /dev/nul

**** Ran from 1997/10/06 11:39:00 to 1997/10/06 11:39:00 on 1 nodes. ****
./pio 8192 524288 0 0 W N C N N /dev/null
 Calibration Overhead (removed from stats)
 AVE=5.368165e-06, STDEV=5.630581e-06, MIN=5.224996e-06, MAX=5.591000e-04

 Barrier
 AVE=5.421338e-06, STDEV=4.427061e-06, MIN=5.324997e-06, MAX=3.990500e-04
 IO
 AVE=2.345661e-05, STDEV=7.779135e-05, MIN=2.172501e-05, MAX=6.077775e-03

Wall Time = 000.2927 User Time = 000.2300 System Time = 000.0500
wall time - (user + system time) = 0.0127 (other system time)
This process got 95.655% of the available CPU time
Total data rate was 14672.6857Mbytes / second
pgc@sp2en0 </u/pgc/ITSO>:

� �
Figure 24. Example Output from the I/O Application (Part 2 of 2)

Chapter 5. Applications 137

Figure 23 on page 136 and Figure 24 show example runs of the pio
application. This example simply displays usage information of the
command. In the first example, shown in Figure 24, the pio application
will perform 8192 I/O operations on a buffer of size 4096. The buffer will
be aligned on the VM page and the file position will be aligned on page
boundaries (the 0 0 following 4096). The I/O operations will be writes
because of the W. The W is replaced by R to perform reads.

In this case, we do not use barriers to synchronize the operation on
multiple nodes (there is only one), and we do not use the extra thread or
the O_SYNC. The buffers are written to the file /dev/null.

The C|S parameter is set to S. This causes pio to perform an lseek()
between each I/O, so the buffers are written out in stripes rather than in
a continuous chunk, as would be done if C was used.

The second example, also shown in Figure 24 on page 137, is the same
as the first except that the size of the buffer is 524288 bytes instead of
4096. We can see that the time to do an I/O is about the same in both
cases (2.236e-5 versus 2.229e-5), so the I/O rates are determined by the
number of bytes transferred in each I/O operation.

In the last example in Figure 24 on page 137, the data is written as a
continuous set of blocks rather than as a series of stripes. Since there
is no need to call lseek() between the write() functions, the I/O rate is
even faster. This last test of writes to /dev/null shows how fast AIX can
move data in the best possible conditions.

The report lists the time the command ran, followed by the parameters
that were used. As with the pmd application, the overhead is given. The
statistics on the barrier and I/O times are given in seconds. Again, as
with pmd, the overall test times are given. This application adds a line
to indicate the total data rate, which is calculated by dividing the total
number of bytes by the wall time.

138 GPFS: A Parallel File System

� �
buffer = malloc(iosize + (2 * PAGESIZE)); /* need some space for all*/
if (buffer == NULL) {
fprintf(stderr, ″can′ t malloc() buffer\n″) ;
exit(3);

}
obuffer = (char *) (bufferAlign +

((((long) buffer) / PAGESIZE) * PAGESIZE)
);

if (cS == ′ C′) {
rc = lseek(fileD, ((thisTask * iosize * loops) + fileAlign), SEEK_CUR

} else {
rc = lseek(fileD, ((thisTask * iosize) + fileAlign), SEEK_CUR);

}
if (rc == -1) {
fprintf(stderr, ″can not lseek(), errno = %d\n″ , errno);
exit(3);

}

for (i = 0 ; i < iosize ; obuffer•i++‘ = (0x80 + thisTask)) ; /* page */

� �
Figure 25. Setup for IO Application

The code that sets up the test loop is shown in Figure 25. First a buffer
with the desired alignment is created, and then the initial lseek() is
performed on the file. Finally, all bytes in the buffer are touched to
make sure everything is in real memory.

Chapter 5. Applications 139

� �
for (i = 0 ; i < loops ; i++) {
tBarrier = gettime();
if (bN == ′ B′) {
MPI_Barrier(MPI_COMM_WORLD);

}
t1 = gettime();
if (rW == ′ R′) {
if (read(fileD, obuffer, iosize) != iosize) {
fprintf(stderr, ″could not read(), errno = %d\n″ , errno);
exit(3);

}
} else {
if (write(fileD, obuffer, iosize) != iosize) {
fprintf(stderr, ″could not write(), errno = %d\n″ , errno);
exit(3);

}
}
tIO = gettime() - t1;
tBarrier = t1 - tBarrier;
insertSample(&ioStats, tIO);
insertSample(&barrierStats, tBarrier);

if (cS == ′ S′) {
rc = lseek(fileD, ((numTasks - 1) * iosize), SEEK_CUR);

}
if (rc == -1) {
fprintf(stderr, ″can not lseek(), errno = %d\n″ , errno);
exit(3);

}
}

� �
Figure 26. Main Loop of IO Application

The main loop is shown in Figure 26. If barriers are desired, the node
will delay until all nodes are synchronized. Next, the I/O operation is
performed and if needed, an lseek() is done to get the file pointer to the
proper place to write the next stripe. The times needed to do the
barrier and I/O operations are accumulated. The seek times are not
tracked.

5.2.1.5 Read and Write Application Results

Table 8 (Page 1 of 2). Write Performance to /dev/nul l

Buffer Size (Bytes) Continuous (no
O_SYNC)

(MBytes/sec)

Continuous
(O_SYNC)

(MBytes/sec)

Stripes (lseek, no
O_SYNC)

(Mbytes/sec)

16 0.42 0.42 0.36

32 0.83 0.85 0.71

140 GPFS: A Parallel File System

Table 8 (Page 2 of 2). Write Performance to /dev/nul l

Buffer Size (Bytes) Continuous (no
O_SYNC)

(MBytes/sec)

Continuous
(O_SYNC)

(MBytes/sec)

Stripes (lseek, no
O_SYNC)

(Mbytes/sec)

64 1.70 1.59 1.42

128 3.39 3.40 2.78

256 6.34 6.77 5.76

512 13.53 13.50 11.36

1024 27.12 27.13 23.19

2048 53.07 51.96 45.20

4096 108.90 108.11 87.05

8192 212.95 217.31 184.91

16384 425.27 434.70 370.82

32768 869.15 866.78 694.39

65536 1745.89 1745.64 1455.37

131072 3229.13 3465.16 2953.34

262144 6937.61 6979.96 5926.35

524288 13940.37 13556.64 11144.42

We can see how some of these parameters affect normal AIX by looking
at more results for I/O to /dev/null. Table 8 on page 140 provides a
long list of buffer sizes using three different types of parameters. As
expected, since the marginal cost per byte is zero, performance is
determined by the SVC cost in time. This is true over wide range of
buffer sizes. The use of O_SYNC does not appear to have a significant
effect at the base operating system level. Finally, the need to seek in
the striping case causes a rather large decrease in performance.

The /dev/null gives us a baseline from which we can compare other
cases; /dev/null is an infinitely fast, zero latency device.

The first GPFS case we consider is the simple, one active client node.
Results of writing data to one-disk and two-disk GPFS file systems are
shown in Table 9. The disks are 9333 units.

Table 9 (Page 1 of 2). GPFS Performance from Single Active Client

Block Size (Bytes) O_SYNC 1 Disk
FS(MBytes/sec)

2 Disk FS
(MBytes/sec)

512 NO 1.12 1.29

Chapter 5. Applications 141

Table 9 (Page 2 of 2). GPFS Performance from Single Active Client

Block Size (Bytes) O_SYNC 1 Disk
FS(MBytes/sec)

2 Disk FS
(MBytes/sec)

4096 NO 2.26 2.96

16384 NO 2.44 6.19

65536 NO 1.35 1.35

131072 NO 1.35 5.11

262144 NO 3.13 6.27

524288 NO 3.12 6.23

We can see that at small write sizes, the performance is limited by the
cost of calling write(), while at the large sizes, the performance is
limited by the total bandwidth to the disks. With a block size of 262144,
the two-disk file system is about twice as fast as the single disk system.

It is not clear what is occurring with the intermediate buffer sizes. The
total amount of data that was written was large enough to overflow the
local buffers. The 65536 size case is probably near the point where the
local buffers cannot hold the data and information must start to be
flushed to the physical disks. This will be explored in a later test.

Still, the trend seems clear. To take full advantage of disk performance,
I/O must be performed using large buffers.

We now look at the cost of O_SYNC. The O_SYNC flag causes a process
to block until the data is safely on the disk. This eliminates any
performance benefits that are possible by taking advantage of local
buffers and write-behind algorithms. Results for these tests are shown
in Table 10.

Table 10. GPFS Performance When Using O_SYNC

Block Size (Bytes) O_SYNC (MBytes/sec) no O_SYNC (MBytes/sec)

512 0.0042 1.2229

4096 0.0344 2.2594

16384 0.1344 2.4358

65536 0.4605 1.3499

131072 0.8263 1.3549

262144 2.1242 3.1299

524288 2.5263 3.1209

142 GPFS: A Parallel File System

In this case, we see that the use of O_SYNC causes very serious
performance problems when small sizes are written. By the time we get
to large block sizes, the performance penalty is not so severe.

In the last simple I/O write test, shown in Table 16, we look at the cost of
updating all the metadata structure when a file is created. To observe
this cost, we write a file twice: the first time it is created and the second
time it is overwritten. Table 11 shows that it is considerably less
expensive, in terms of time, to overwrite a file.

Table 11. GPFS Performance of Create Vs. Overwrite

Block Size (Bytes) Create (MBytes/sec) Overwrite
(MBytes/sec)

1st Time Penalty

4096 0.03 0.03 0.0%

65536 0.50 0.54 7.5%

131072 0.93 1.09 14.7%

262144 1.55 2.13 27.2%

524288 1.87 2.47 24.3%

These tests were run with the use of O_SYNC, so the cost of the actual
I/O would be the same in the first and second run. The cost of creating
a new file can be relatively large, so if your application can re-use many
files rather than deleting and creating them, that possibility should be
explored.

Now we consider I/O read performance on a single client node. Here
we consider a number of buffer sizes and measure the performance of a
one- and two-disk file system. Table 12 shows how well the cold cache
read times scale when the second disk is added.

Table 12. GPFS Read Performance from Single Active Client

Block Size (Bytes) 1 Disk FS (MBytes/sec) 2 Disk FS (MBytes/sec)

128 0.26 0.30

4096 3.40 5.48

65536 3.25 3.14

131072 3.18 6.03

262144 3.17 6.01

524288 3.18 6.05

Chapter 5. Applications 143

Again, in this test we see an odd dip in performance at an I/O size of
65536, although the dip is not as pronounced as in the write case. As
expected, with very small sizes such as 128 bytes, the performance is
rather low due to the system call overhead. GPFS is quickly able to
reach the I/O limitation of the physical device and can sustain that level
of performance. This can be a very large benefit for existing AIX utilities
that use moderate-sized I/O buffers. This good read performance
should allow most applications to exploit the parallel disk capabilities of
GPFS with no alteration.

Now we move on to multi-node tests. In these tests, file systems
constructed with two SCSI 2 drives are used.

This time we will look at the read cases first. Table 13 shows what
happens when we try to stress the GPFS file system with parallel reads
and a cold cache on the nodes.

Table 13. GPFS Read Performance from 4 Active Clients (Cold Cache)

Block Size (Bytes) 2 Disk FS (MBytes/sec)

65536 7.02

262144 6.91

In these cases, GPFS can easily keep up with the physical disks. Few
different cases were measured as it is difficult to force the cache to be
empty. The file systems must all be unmounted and then remounted
between each case.

Table 14. GPFS Read Performance from Active Clients (Warm Cache)

Nodes Block Size (Bytes) MBytes/sec

1 65536 37.59

2 65536 80.34

4 65536 163.14

8 65536 346.29

When we look at the warm cache cases in Table 14, we see that warm
cache reads require little or no communication. Once the data is in the
nodes ′ caches, it can very quickly be transferred to the applications.
This should allow GPFS to perform with very low latency if it is used to
distribute system files and project files to a number of nodes in an SP.

144 GPFS: A Parallel File System

Both of the previous tests read the file in a continuous order. This
allows the read-ahead algorithms to determine that it would help
performance to transfer extra information to the node as there is a good
chance it will soon be used. If the read pattern is not sequential, as
would happen if a multi-node parallel process decided to have each
node read a strip of the file, performance drops because the read-ahead
facilities do not figure out what is happening. This is shown in Table 15.

Table 15. GPFS Read Performance with 4 Active Clients (Cold Cache)

Block Size (Bytes) Consecutive (MBytes/sec) Stripes (MBytes/sec)

4096 1.34 0.88

131072 3.60 2.64

262144 3.28 3.29

524288 3.28 2.68

While the use of non-sequential access patterns can cause extra data to
be transferred to a node or can disguise sequential reads and reduce
the effectiveness of read-ahead, even worse performance problems can
occur if writes are done in striped rather than sequential access
patterns. Table 16 shows an example of the difference between
consecutive and striped access patterns.

Table 16. GPFS Update Performance from 4 Clients Sharing a File Block

Access Pattern MBytes/sec

Continuous 3.01

Striped 0.89

The problem with writes is worse than for reads because of the way
GPFS enforces strict semantics. When two nodes try to modify the same
block, one of the nodes must wait until the other node releases the
block. For small block sizes, this can cause performance-robbing
communication between nodes as they negotiate an order for updates.
In this case 4 nodes wrote 65535 bytes pieces of a file that was stored in
a GPFS file system with a 262144 byte block size. This caused the 4
nodes to perform up to 4 negotiations for each file block, reduced GPFS
caching benfit, and increased the number of disk accesses.

Fortunately, for most applications the more general write operation can
take advantage of write-behind capabilities. This works a lot like
read-ahead but in reverse. The extra performance that write-behind
provides is shown in Table 17 on page 146.

Chapter 5. Applications 145

Table 17. GPFS Write Performance from 4 Active Clients

Nodes Block Size (Bytes) MBytes/sec

1 65536 12.25

2 65536 9.18

4 65536 11.75

8 65536 28.47

Though the peak performance does not seem very smooth with an
increase in nodes, it can be seen that the instantaneous write
performance can be much higher than the physical transfer capacity of
the disk devices which in this case is about 6MBytes/sec. The
information is stored in buffers on the nodes and transferred to the disks
at a later time. Of course there are limits to the amount of data that can
stored locally, but for many applications, this local buffer can greatly
increase the I/O performance of applications. As with the read-ahead
case, these buffers allow unaltered applications such as standard AIX
utilities to use most of the performance of GPFS.

Table 18 shows the cost of using the O_SYNC flag on multiple nodes.
As expected, by forcing each write to bypass the local buffers and store
the data on the disks, performance is lost. Fortunately, as nodes are
added, total I/O performance rises. Still, you will only want to use this
flag if it is needed because the performance falls by more than a factor
of 10.

Table 18. GPFS Write Performance with O_SYNC from 4 Active Clients

Nodes Block Size (Bytes) MBytes/sec

1 65536 0.47

2 65536 0.76

4 65536 1.01

8 65536 1.14

All of these examples have used obvious buffer sizes that are powers of
2. When I/O is done with strange buffer sizes, performance can suffer in
odd ways. As an example, consider what happens when multiple nodes
write to a file using buffers of size 36703 bytes. This is shown in
Table 19 on page 147. As with the other write examples, there is a
good deal of negotiation that must be done to guarantee the semantics

146 GPFS: A Parallel File System

of the write. With odd buffer sizes, it is hard to predict how the write
tokens will flow.

Table 19. GPFS Write Performance with 4 Clients and 36703 Byte Buffers

Nodes MBytes/sec

1 23.70

2 7.95

4 36.75

Last, we look at the effect of using MPI barriers to synchronize I/O
operations across many nodes. In Figure 27, we see an example report
from sample test runs with and without MPI barriers. At first glance, it
appears that synchronizing the I/O operations hurts I/O performance
because the performance drops from 3.01MBytes/sec to 1.43MBytes/sec.
In the barrier test, the MPI_Barrier function takes more wall time than
the write operation (10.25e-2 vs. 8.03e-2):

� �
**** Ran from 1997/10/02 18:23:35 to 1997/10/02 18:24:19 on 4 nodes. ****
./pio 500 65516 0 0 W N C N N /gpfs53/junk
 Calibration Overhead (removed from stats)
 AVE=5.630297e-06, STDEV=2.625584e-05, MIN=5.224982e-06, MAX=2.532625e-03

 Barrier
 AVE=6.181100e-06, STDEV=9.799038e-07, MIN=5.674985e-06, MAX=1.057499e-05
 IO
 AVE=8.709669e-02, STDEV=2.239099e-01, MIN=1.097025e-03, MAX=9.233720e-01

Wall Time = 043.5591 User Time = 000.0200 System Time = 000.6400
wall time - (user + system time) = 42.8991 (other system time)
This process got 1.515% of the available CPU time
Total data rate was 3.0081Mbytes / second

**** Ran from 1997/10/02 18:24:35 to 1997/10/02 18:26:07 on 4 nodes. ****
./pio 500 65516 0 0 W B C N N /gpfs53/junk
 Calibration Overhead (removed from stats)
 AVE=5.305732e-06, STDEV=7.892098e-07, MIN=5.224982e-06, MAX=4.487499e-05

 Barrier
 AVE=1.025274e-01, STDEV=2.121575e-01, MIN=1.302000e-04, MAX=1.969075e+00
 IO
 AVE=8.034483e-02, STDEV=1.839963e-01, MIN=1.118950e-03, MAX=7.587111e-01

Wall Time = 091.4426 User Time = 049.9000 System Time = 000.6600
wall time - (user + system time) = 40.8826 (other system time)
This process got 55.292% of the available CPU time
Total data rate was 1.4329Mbytes / second

� �
Figure 27. Use of MPI_Barrier to Synchronize Writes

Chapter 5. Applications 147

Since the total data rate is calculated using wall time it is easy to see
why the data rate falls by more than 50%. On the other hand, 0.1 sec
for an MPI_Barrier operation for four nodes is quite large. As an
example, Figure 28 on page 148 shows that when the I/O is done to
/dev/null, a device with very predictable and high-performance
characteristics, the barriers only take 1.48e-4 seconds.

� �
**** Ran from 1997/10/02 18:24:35 to 1997/10/02 18:26:07 on 4 nodes. ****
./pio 500 65516 0 0 W B C N N /gpfs53/junk
 Calibration Overhead (removed from stats)
 AVE=5.305732e-06, STDEV=7.892098e-07, MIN=5.224982e-06, MAX=4.487499e-05

 Barrier
 AVE=1.025274e-01, STDEV=2.121575e-01, MIN=1.302000e-04, MAX=1.969075e+00
 IO
 AVE=8.034483e-02, STDEV=1.839963e-01, MIN=1.118950e-03, MAX=7.587111e-01

Wall Time = 091.4426 User Time = 049.9000 System Time = 000.6600
wall time - (user + system time) = 40.8826 (other system time)
This process got 55.292% of the available CPU time
Total data rate was 1.4329Mbytes / second

� �
Figure 28. Example Using Barriers When Writing /dev/nul l

The extra time needed to complete the MPI_Barrier is consumed
someplace on the nodes. Given the /dev/null results, we can assume
the extra time occurs due to GPFS daemons which cause some nodes to
be delayed. If your application uses threads and allows the I/O
operations to complete on an independent thread, you might be able to
reduce the effects of highly synchronized I/O operations. Though some
time and performance was consumed by the barrier function, most of
the performance went to GPFS-related daemons.

5.2.1.6 Read and Write Application Summary
This section touches on a wide variety of access patterns, block sizes
and other topics such as the use of synchronized access. Hopefully
these examples give you ideas on ways to get the best performance
possible from your system. In most cases, you will probably have to
experiment to determine the optimal methods for your application′s
access patterns.

When coding for I/O intensive applications, the issues fall in three main
areas:

 1. Issues that are common to many file systems and applications

 2. Issues that are unique to parallel applications

148 GPFS: A Parallel File System

 3. Issues that are unique to parallel applications that use GPFS

Keep the following suggestions in mind when dealing with these areas.

In the first category, we consider the normal ideas such as using read()
and write() over their stream-based counterparts fread() and fwrite() in
most cases. Use large block sizes when possible. Keep the buffers
aligned. Do not use O_SYNC or similar features that reduce the
possibility of low-level parallelism between the I/O and other,
CPU-intensive work. Overwrite existing files when possible to reduce
the manipulation of metadata, and so on.

In the parallel arena, with most parallel file systems it has been better
to have one node do the I/O and redistribute the information across
nodes using MPI or some similar function. Most distributed file systems
do not handle cases of multiple, synchronized client requests very well.
Also, it is often the case that the distributed file systems either cannot
use the SP switch for fast transfers, or even if the switch is available, it
is not used in an efficient manner. As an example, older NFS
implementations were limited to 8K transfers.

The combination of parallel jobs on an SP with GPFS opens new
opportunities as well as hazards. In a high I/O volume application that
uses GPFS, it is important to use large, well-aligned buffers when
possible. If small block records must be used, try to perform all I/O
from one node or a small set of nodes with full block access. This will
reduce the time needed by GPFS to pass the write tokens from node to
node.

When reading data, try to have as many clients active as possible. Also
try to read the data in continuous chunks rather than stripes. As an
example, it is better to have 4 nodes read data in the pattern
1111222233334444, rather than have each node skip around in a pattern
like 1234123412341234. The first pattern is more likely to trigger the
read-ahead algorithms and less likely to transfer unused information to
the nodes in the form of read-ahead blocks or partial blocks. Also, the
first approach saves SVC calls because the lseek() function is not
needed between reads.

Exercise care when partitioning a task across many processors. For
I/O-intensive tasks, it makes sense to take extra time to make sure the
boundaries used to partition a data set across nodes are located on
block sized offsets in the file. The stat() function call on a file will
indicate the block-size to use. This can save much time, especially if
many of the I/O operations will be writes.

Chapter 5. Applications 149

Finally, remember that these measurements were made on relatively
slow SP components. When faster processors are used, the relative
percentage of resources that go to GPFS decreases and the trend favors
the applications.

5.2.1.7 Additional Suggestions from Discussions with the Developers
Here is some additional information from the GPFS developers which
may help you get the best possible performance from GPFS. These
situations are difficult to show in small, simulated applications.

When different parts of a data block are written by different nodes, the
whole block of data must be written from the first node to disk. Then the
modified block is read to the second node so the modifications can be
done. If you know that some other node will soon try to modify a block,
it might make sense to force that block to the VSD server with a fsync()
or through use of the O_SYNC flag. This should only be done if you are
very certain about the access patterns, as these are expensive
operations.

The GPFS file system is actually implemented as daemons that operate
on the same node as the applications that are using the file systems.
The GPFS processes generally do not need too much CPU resource, but
they can consume other resources such as memory, network bandwidth
(important to communication-intensive MPI applications), and cache
memory slots. If your applications are not floating point math-intensive,
you might getter better I/O performance with SMP nodes.

The current GPFS implementation is not able to detect applications that
are reading at constant strides in a file. Future versions should be
better able to detect this condition and use a form of read-ahead to
increase performance.

5.2.2 Summary and Suggestions
In many cases, GPFS will provide very good performance with no
special effort from the programmer or system administrator. These
cases occur with data is read in large chunks that correspond with file
system block sizes, and few metadata changes are required.

Some traditional lore about the best way to achieve high I/O
performance in an MPI environment (which read the data in one node
and use MPI to push the data to other nodes) does not hold true with
GPFS. In most cases GPFS transfer rates increase with the number of
active client nodes. If data can be read or written in large chunks that
do not overlap, it is often better to let each task do its own I/O. This can
be the case even if moderate amounts of data must be read by all the

150 GPFS: A Parallel File System

tasks before processing can start. Bottlenecks associated with file
systems such as NFS are not a large concern in many SP environments
which use GPFS.

The places where special attention is needed include applications that
perform many small writes in areas that might overlap, or when
metadata is changed frequently. These operations force file systems
that maintain robust semantics such as GPFS to do extra work. On a
totally local file system such as JFS, the communication associated with
that work is small, but in a distributed file system such as GPFS, that
cost can be significant if care is not used.

In designing new applications that will use GPFS, try to perform all
metadata operations in one node.

5.3 Parallel Sorting of Large GPFS Files

I/O is an abbreviation for input and output of data. In a general context,
I/O refers to the movement of data between different levels of a memory
hierarchy such as hardware registers, caches, main memory, disk, tape,
remote network storage devices and so on. In this section, we restrict
our discussion of I/O to the movement of data between memory and disk
(either local or remote).

5.3.1 I/O Requirements of a Parallel Application
The need for I/O arises at different stages during the execution of a
program as illustrated in Figure 29 on page 152. These phases are:

• Initialization

• Computation

• Termination

Chapter 5. Applications 151

Figure 29. I/O Requirements in an Application

During the initialization phase, the application needs very high
bandwidth transfer of data from external devices to build
application-specific data structures which are used later during the
computation phase. During the computation phase, the need for I/O
arises due to the following requirements:

• Checkpointing
• Store and fetch intermediate results

Checkpointing involves saving the state of the application at a particular
instance in time so that it can be restarted from that state in the case of
catastrophic failures. For large applications, checkpointing is an
I/O-intensive operation.

The need to store and fetch intermediate results arises when the
application is too large to fit into the main memory. In this case, it is
necessary to move the partial state of the application onto external
devices so that the processor can work on other parts of the program
which need to be completed. The size and frequency of storing and
fetching results can vary from small amounts at high frequency to large
amounts written sporadically.

During the termination of the application, the requirements for storing
the final output for later use can be as massive as those of the
initialization phase.

152 GPFS: A Parallel File System

Now that we have established that some programs need large amounts
of data residing on external I/O devices, it may be useful to know why
we need to transfer the data at very high speeds between the main
memory and the external I/O devices. This is due to the increase in the
power of individual processors by several orders of magnitude as
compared to the improvement in external I/O devices. The ability to
combine several uniprocessors has widened the gap even further. The
combined I/O bandwidth on some of these supercomputers is several
orders of magnitude less than that of their combined processing
capacity. It is precisely this type of disparity which has led some people
to declare that we are in the age of “I/O crisis.”

Some of the approaches which are used to close the gap between
processing speeds and I/O speeds are based upon two popular models:

• The parallel disk I/O model
• The parallel network I/O model

5.3.1.1 Parallel Disk I/O Model
Both the parallel disk I/O model model as well as the parallel network
I/O model are based on the theory that transfer capabilities of slow I/O
devices can be leveraged to achieve a higher sustainable transfer rate
locally at a processor than would otherwise be possible with a single
disk alone.

For example, as shown in Figure 30 on page 154, eight disks with
10MBytes/sec transfer capability may be used to attain 80MBytes/sec
transfer rate from disk to the memory.

Chapter 5. Applications 153

Figure 30. Parallel Disk I/O Model

5.3.1.2 Parallel Network I/O Model
In the parallel network I/O model, a file is striped across multiple
processor nodes as well as the disks within a node.

154 GPFS: A Parallel File System

Figure 31. Parallel Network I/O Model - 1 Client and 8 Servers

For example, as shown in Figure 31, it may be possible to achieve a
320MBytes/sec transfer rate at a local processor when the file system is
striped across eight nodes with four disks on each processor.

Additionally, each of the four different clients could be reading from a
separate processor as shown in Figure 32 on page 156. In other
words, four simultaneous accesses to the file system can be handled.

General Parallel File System (GPFS), as shown in Figure 53, presents
the parallel network I/O model to the user.

Chapter 5. Applications 155

Figure 32. Parallel Network I/O Model - 8 Clients and 8 Servers

This model stripes data transparently across multiple disks and
processors and presents a UNIX file interface to application developers.
This model enables the development of high performance applications
with inherent I/O parallelism by making use of GPFS.

5.3.2 Goals of the Current Study
This section describes an experiment we carried out to explore the
impact of JFS, NFS, and GPFS on the performance of an I/O-intensive
application such parallel file sorting. Two main parameters that are of
interest in this study are the number of application tasks (also called
clients) and the number of I/O servers which cooperatively manage the
I/O system. For example, in JFS there is only one processor which
performs all the I/O tasks. In GPFS, multiple processors can share the
responsibility of managing the I/O subsystem.

156 GPFS: A Parallel File System

The rest of the this chapter is organized as follows. In 5.3.3, “Parallel
Sorting Application” on page 157 a parallel sorting application is
introduced. Some details of the parallel sorting algorithm are discussed
in 5.3.4, “Parallel Sorting Algorithm” on page 158. A summary of its I/O
requirements are outlined in 5.3.5, “I/O Requirements of a Parallel Sort
Algorithm” on page 162. The measures of performance and the
controllable parameters which were used this experiment are discussed
in 5.3.8.1, “Measures of Performance” on page 165. Final results are
presented in 5.3.10, “Results of Experiments” on page 169, along with
some conclusions.

5.3.3 Parallel Sorting Application
Sorting of large data sets is done frequently in database management
and results in a variety of report generation tasks. In large
mass-storage devices, large data files are kept sorted with respect to
certain fields so that on-line queries for data can be processed very
quickly. Sorting large data sets is very I/O- and data-intensive.
Performance of the sort utility provided by a transaction management
system forms one of the fundamental measures of processing power for
the sorting mechanism. Some of the factors which affect the
performance of a sort utility are:

• Sorting algorithm

• Number of disks and processors

• Number of application tasks/processors

• System parameters

Several sorting algorithms with varying time complexity and varying I/O
needs have been proposed in the past. In this study, a variation of the
well-known quicksort algorithm known as sample sort is used to
measure the I/O performance levels which can be achieved when GPFS
is used. Varying the number of processors used to manage the I/O
subsystem and the disks attached to each of these processors located at
each of these processors can result in different levels of I/O
performance. As more processors are put to work on the sorting
problem, it is expected to take less time to complete the job. Finally,
certain system parameters also impact the performance of the sorting
algorithm. For example, a mismatch between the average block size of
the file system and the application may have a drastic impact on the
performance of an application.

Chapter 5. Applications 157

5.3.4 Parallel Sorting Algorithm
Parallel sorting application consists of several tasks operating
concurrently and cooperatively to sort a large dataset. Each of these
tasks executes the steps shown in Figure 33. During the execution,
each task generates results which are shared by other tasks. The file
system is used as a medium to share some of the partial results among
the tasks. Initially, all the data which needs to be sorted is assumed to
be located in a large sequential file accessible to all the tasks. The file
system in which the file resides can be one of the following:

• Journal File System (JFS)

• Network File System (NFS)

• General Parallel File System (GPFS)

{initialization Phase}

{Sampling Phase}

{Reading and Splitting Phase}

{Distribution Phase}

{Final Sorting Phase}

{Output Phase}

Figure 33. Parallel Sorting Algori thm

During the initialization phase, each of the tasks queries the system to
obtain the operating parameters (shown in Figure 34 on page 159).
Some of the important parameters are the number of I/O servers and
the number of tasks participating in the application. The operational
details of the parallel sort algorithm are explained in Figure 35 on
page 161 and Figure 36 on page 162, using a simple illustration.

158 GPFS: A Parallel File System

{Initialization Phase}

 (1) Query environment

N = Number of tasks = 2
S = Size of file = 20
M = Available memory size = 5

(2) Compute

FT = Total number of fragments = S/M = 20/5 = 4
T = Number of splitting keys = FT -1
FA = Average number of partitions/task = FT/N
K = Sampling keys = 2

(3) Task identification = 1,2

(3) For task 1:

Allocation Range = 1 through 10
Allocated fragments = 1 and 2
Range of fragment 1 = 1 through 5
Range of fragment 2 = 6 through 10

(3) For task 2:

Allocation Range = 11 through 20
Allocated fragments = 3 and 4
Range of fragment 3 = 11 through 15
Range of fragment 4 = 16 through 20

Figure 34. Initialization Phase of Parallel Sorting Algori thm

Each record in the file to be sorted consists of a key on which the file
needs to be sorted and some data. It is assumed that the file is too
large to fit into the combined memory of all the processors. This forces
the program to do some I/O during the course of its execution to store
and fetch intermediate results. The parameters file size and memory
size available to the application are used to divide the file into a number
of fragments where each fragment is just big enough to fit into the
memory without causing any paging activity. During reading and
splitting phases, each processor brings one fragment at a time into the

Chapter 5. Applications 159

memory from the file system to perform the splitting as illustrated in
Figure 36 on page 162. The allocation of fragments to a processor is
arbitrary. For the sake of simplicity it is assumed that the first FT/N
fragments, where FT is the total number of fragments and N is the
number of tasks, are allocated to the first processor and the next FT/N
fragments to the next processor and so on.

Once the respective allocation range is determined, it is time for each of
the processors to sample its data for potential candidates as the
splitting keys. Initially, all the processors sample their allocation of the
file at random locations for the key values. The sample size is relatively
small and in the range of 64-1024 depending on the size of the file. The
sampling results are mutually exchanged among the participating tasks
and sorted as shown in Figure 36 on page 162. From the sorted
collection, each task selects the first T splitting keys with a spacing of
sample size between them. These splitting keys are used to split each
fragment into FT partitions.

During the distribution phase, each task stores the partitioned fragment
in a temporary file and saves the pointers to the partitions within a
fragment and exchanges this information with other tasks. After
processing all the fragments assigned to itself, the next step for each of
the application tasks is to process the partitions. Again, the allocation
of partitions to the application is arbitrary. Unlike the fragments each
partition is scattered across the entire file space. The task assigned to
a partition gathers all the pieces by following the pointer information
exchanged during the splitting phase. Once all the pieces of a partition
are collected together, the partition is sorted in memory and output to a
permanent dataset. These steps are illustrated using a simple dataset
in Figure 36 on page 162.

160 GPFS: A Parallel File System

Figure 35. Sampling Phase of Parallel Sorting Application

For example, as shown in Figure 36 on page 162, a fragment is split into
FT partition or buckets (4 in this case). The first FA partitions (2 in this
case), where FA is the average number of partitions, are intended for
processor 1. The next FA partitions (in this case) are intended for
processor 2, and so on. Since only one fragment can be stored in the
memory of a given processor at a time, the partitions obtained from its

Chapter 5. Applications 161

respective fragments are stored in a large file. Clearly, the I/O
requirements are intense during this phase.

Figure 36. Reading, Partit ioning, Gathering, Sorting and Output Stages

5.3.5 I/O Requirements of a Parallel Sort Algorithm
The I/O requirements in the parallel sort algorithm are summarized in
Figure 37 on page 163. During the initialization and sampling stages,
the I/O requirements are small and the access pattern is random.

During reading and splitting phases, fragments are read and partitions
are stored. I/O requirements during these phases are very large and
sequential. During gathering stage, each partition is collected from
different parts of the temporary file, the I/O requirements are medium,
and the access in mostly sequential. Finally, during the final output
phase the I/O requirements are large and sequential in nature. For
example, in order to sort a 250MB dataset, 250MB of data is read from
the input dataset and 250MB of data is written to an intermediate file.
During the gathering phase, 250MB of data is read from the intermediate
file and during the final output phase 250MB of data is written to the
permanent dataset. Altogether, 500MB of data is read and 500MB data
is written during the execution of the parallel sort application. This

162 GPFS: A Parallel File System

measure is used to compute the aggregate bandwidth achieved by the
application.

Figure 37. Summary of I/O Requirements for Parallel Sorting

5.3.6 GPFS Programming Interfaces
Applications access GPFS data using standard AIX system calls and
libraries. Support for large libraries is provided through the use of AIX
64-bit forms of these libraries. See the AIX documentation for details.

GPFS is designed to be compliant with the file system calls specified in
the X/Open standard with the following exceptions:

 1. The following memory mapped calles are not supported in this
release

• mmap
• munmap
• msync
• shmat

Chapter 5. Applications 163

The following calls are used to perform I/O in the parallel sorting
application:

• fopen
• fseek
• fread
• fwrite
• fclose

5.3.7 System Configuration
The configuration of the RS/6000 Scalable PowerParallel (RS/6000 SP)
system used to conduct the parallel sorting experiment, as shown in
Figure 38 on page 165, consists of the following hardware components:

• RS/6000 SP with 16 thin nodes (66 MHz model 390s)

• High Performance Switch

• 7 SSA drives attached to nodes 5 and 6

• 3 9333 drives attached to 3 and 4

The software components of the configuration are:

• AIX 4.2.1

• Parallel Systems Support Programs 2.4

• IBM Parallel Environment for AIX 2.3

• General Parallel File System 1.1

• RVSD 2.1.1

164 GPFS: A Parallel File System

Figure 38. The RS/6000 SP Configuration Used to Run Parallel Sort

5.3.8 Description of Experiments
In this section the measures which are of some interest in the parallel
sorting application and the parameters which may affect these
performance measures are discussed.

5.3.8.1 Measures of Performance
The following measures of performance, as defined, are used:

Write Time The application blocks when it issues a file system call such
as fwrite until the data is copied out of application buffer.
This is the total time spent by the application waiting for the
I/O subsystem to take control of the data when a call such as
the fwrite is issued. The application need not wait until all
the data is written to the disk and is free to proceed as soon

Chapter 5. Applications 165

as the system takes control of the data. This mode of
operation is called asynchronous I/O and is expected to
improve the performance of the application by overlapping
the I/O and computation.

Total Write Bandwidth This measure represents aggregate write
bandwidth achieved by the system and is computed by
dividing the total amount of data written by average total
write time per task.

Read Time The application blocks when it issues a file system call such
as fread until the data is available in the application buffer.
This is the total time spent by the application waiting for the
I/O subsystem to complete the fread operation.

Total Read Bandwidth This measure represents aggregate read
bandwidth achieved by the system and is computed by
dividing the total amount of data read by the average total
read time per task.

Computation Time This measure represents the time spent by the
application in non-I/O activity, which includes compute time,
and is computed as the average of the non-I/O times spent
by each task.

Total Completion Time This is the time to complete application and is
equal to the summation of read time, write time, and non-I/O
time.

5.3.8.2 Parameters
Several factors may influence the performance of the Parallel Sorting
program. These factors are:

Type of File System Used The following file systems are used in this
study:

• Journal File System (JFS)

• Network File System (NFS)

• General Parallel File System (GPFS)

Number of Server Nodes Used in the File System This parameter
represents the number of processors used to serve the file
system. For example, for the configuration with one node
and with seven SSA drives, there are seven disks and only
one server node.

166 GPFS: A Parallel File System

Number of Disks Per Node This parameter determines how many disks
are used on a node. In the configuration used for this study,
six SSA drives are on node 5. When the I/O subsystem is
configured to use only one node and 6 SSA drives, then the
I/O server is configured to run on node five and is allocated
all six drives.

GPFS uses the IBM Recoverable Virtual Shared Disk
technology for device management. IBM Recoverable Virtual
Shared Disk provides transparent access to remote storage
devices. In this study it is assumed that only one disk is
used per Virtual Shared Disk. This ensures that all the
striping on the Virtual Shared Disks is done by GPFS. For the
nodes without any SSA drives, internal drives are used.

Tasks/Processors in the Parallel Sorting Application Number of
processors or processes working in the parallel sorting
application.

Size of the Sort Data Set This is the size of the data set which is sorted
by the parallel sort program. As discussed in 5.3.5, “I/O
Requirements of a Parallel Sort Algorithm” on page 162 for a
dataset of size M bytes, total I/O requirements in this
application are 4M bytes (2M bytes are read and 2M bytes
are written).

5.3.8.3 Summary of the Parameters
The parameters and their values used in this experiment are
summarized in Table 20.

Table 20. Summary of Parameters and Their Values Used in the Sort Experiment

Parameter Name Values used

File system type JFS, NFS, GPFS

Processors in File system 1,4,8,12

Tasks/Processors in the parallel sort program 1,4,8,12

Number of SSA disks per node 1, maximum
allowable

Size of the input data set 32MB, 128MB,
256MB

Some of the combinations of these factors are not applicable. For
example, multiple servers are not used to serve the JFS file system.

Chapter 5. Applications 167

5.3.9 Running Parallel Programs Using IBM Parallel Environment
IBM ′s Parallel Environment provides facilities to write, debug, start, and
monitor parallel applications which use message passing as the main
vehicle for communication and synchronization. A summary of some of
the facilities used in the parallel sort application is given here. For
more details of IBM′s Parallel Environment refer to the relevant
documentation listed in Appendix H, “Related Publications” on
page 223.

5.3.9.1 Starting Parallel Tasks
In order to start a parallel application, the information listed in Table 21
is provided to the program poe supplied by IBM Parallel Environment for
AIX.

Table 21. Command Line Parameters to Start Parallel Jobs Using POE

Description Command line parameter Allowed values

Number of tasks/clients -procs 1 to 12

Communication device -euidevice en0, css0

Communication l ibrary -euidevice us for css0
ip for en0 and css0

List of nodes used -hostfile Path of any file containing a
list of nodes.

Parallel program gpfs_sort

A sample run made in this experiment using 12 tasks to sort a file of
256MB residing in a GPFS file system can be made by typing the
following command on the screen shown in Figure 39.

� �

poe gpfs_sort gpfs_sort 256000000 \
/gpfs/file.input \
/gpfs/file.output \
-procs 12 \
-euidevice en0 \
-euilib ip \
-hostfile hostlist

� �
Figure 39. Sample Command to Start a Parallel Application Using poe

168 GPFS: A Parallel File System

Once all the tasks are started using the IBM Parallel Environment, they
can use the message passing libraries provided by the IBM Parallel
Environment to exchange information. In the parallel sorting application,
most of the information which is shared is exchanged through the file
systems. However, the message passing libraries are used to exchange
some control information such splitting keys and to enforce some
synchronization among the tasks. The following message passing calls
are used in the parallel sorting application:

• MPI_Barrier

• MPI_allgather

For more information about the message passing libraries, refer to the
IBM Parallel Environment documentation listed in Appendix H, “Related
Publications” on page 223.

5.3.10 Results of Experiments
The results of the experiments are presented in two sets of tables and
one set of charts. The first set consists of three tables (shown in
Table 23 on page 171, Table 24 on page 172, and Table 25 on
page 173) to represent the results of running the parallel sort
application on three different file sizes respectively. The three file sizes
used in this experiment are 32MB, 128MB, and 256MB. In each of these
three tables, the data is grouped by the number of clients/tasks used in
the parallel sort application. The parameter, which is the number of
clients, takes values 1, 4, 8, and 12. For each client size up to nine file
systems are used. The abbreviations used to label the file systems in
all the reports and charts are listed in Table 22 on page 170.

Chapter 5. Applications 169

Table 22. Abbreviations Used for the File Systems

Label Description

JFS-1-disk Journal File System with one server and one
SSA disk

JFS-6-disk Journal File System with one server and 6
SSA disks

NFS-1-disk Network File System with one SSA disk

NFS-6-disk Network File System with six SSA disks

GPFS-1-SRVR-1-disk General Parallel File System with one server
and one SSA disk

GPFS-1-SRVR-6-disk General Parallel File System with one server
and six SSA disks

GPFS-4-SRVR-1-disk General Parallel File System with four servers
and one SSA disk

GPFS-8-SRVR-1-disk General Parallel File System with 8 servers
and one SSA disk

GPFS-12-SRVR-1-disk General Parallel File System with 12 servers
and one SSA disk

170 GPFS: A Parallel File System

Table 23. Results for Parallel Sort Application (File S ize=32MB)

Fi le S i z e = 3 2 M B

C
li

e
n

ts

F
il

e
S

ys
te

m

R
e

a
d

T
im

e
(s

e
c

)

R
e

a
d

B
a

n
d

w
id

th

W
ri

te
T

im
e

(s
e

c
)

W
ri

te
B

a
n

d
w

id
th

C
o

m
p

u
te

T
im

e
(s

e
c

)

T
o

ta
l

T
im

e
(s

e
c

)

1 JFS-1-disk 7.4 8.7 10.3 6.2 53.6 71.3

JFS-6-disk 10.2 6.2 2.8 22.7 53.9 67.0

NFS-1-disk 23.7 2.7 13.9 4.6 51.8 89.4

NFS-6-disk 19.9 3.2 9.1 7.0 52.0 80.9

GPFS-1-SRVR-1-disk 18.9 3.4 17.0 3.8 56.6 92.5

GPFS-1-SRVR-6-disk 19.5 3.3 16.3 3.9 54.0 89.9

GPFS-4-SRVR-1-disk 20.3 3.1 20.5 3.1 50.70 91.5

GPFS-8-SRVR-1-disk 20.0 3.2 20.5 3.1 50.6 91.2

GPFS-12-SRVR-1-disk 20.9 3.1 21.6 3.0 50.6 93.0

4 JFS-1-disk 4.9 13.2 0.6 104.6 55.9 61.3

JFS-6-disk 1.1 56.6 0.5 136.1 55.5 57.1

NFS-1-disk 7.8 8.3 5.3 12.0 41.9 55.0

NFS-6-disk 8.0 8.0 5.0 12.8 29.2 42.2

GPFS-1-SRVR-1-disk 22.7 2.8 15.0 4.3 19.4 57.1

GPFS-1-SRVR-6-disk 8.3 7.7 6.9 9.3 17.7 32.9

GPFS-4-SRVR-1-disk 13.5 4.7 8.4 7.6 30.5 52.4

GPFS-8-SRVR-1-disk 11.4 5.6 8.0 8.0 18.2 37.5

GPFS-12-SRVR-1-disk 10.4 6.2 5.8 11.0 20.1 36.3

8 NFS-1-disk 6.1 10.6 6.3 10.1 30.0 42.4

NFS-6-disk 5.3 12.1 3.3 19.3 25.7 34.3

GPFS-1-SRVR-1-disk 19.9 3.2 9.4 6.8 22.7 52.0

GPFS-1-SRVR-6-disk 7.9 8.1 3.6 17.8 15.2 26.8

GPFS-4-SRVR-1-disk 10.5 6.1 6.0 10.6 23.3 39.8

GPFS-8-SRVR-1-disk 9.1 7.1 3.2 19.8 19.8 32.1

GPFS-12-SRVR-1-disk 7.9 8.1 3.8 17.0 25.4 37.1

12 NFS-1-disk 8.2 7.8 8.6 7.5 25.0 41.8

NFS-6-disk 6.6 9,7 3.1 21.0 25.6 35.2

GPFS-1-SRVR-1-disk 17.4 3.7 6.4 9.9 30.2 54.1

GPFS-1-SRVR-6-disk 5.9 10.9 6.6 9.7 19.9 32.4

GPFS-4-SRVR-1-disk 10.8 5.9 8.7 7.3 31.2 50.8

GPFS-8-SRVR-1-disk 7.7 8.4 5.9 10.9 18.6 32.1

GPFS-12-SRVR-1-disk 6.7 9.6 6.4 9,9 20.9 34.0

Chapter 5. Applications 171

Table 24. Results for Parallel Sort Application (File Size=128MB)

Fi le S i z e = 1 2 8 M B

C
li

e
n

ts

F
il

e
S

ys
te

m

R
e

a
d

T
im

e
(s

e
c

)

R
e

a
d

B
a

n
d

w
id

th

W
ri

te
T

im
e

(s
e

c
)

W
ri

te
B

a
n

d
w

id
th

C
o

m
p

u
te

T
im

e
(s

e
c

)

T
o

ta
l

T
im

e
(s

e
c

)

1 JFS-1-disk 62.3 4.1 17.2 14.9 244.0 323.5

JFS-6-disk 50.7 5.1 7.9 32.4 244.0 302.6

NFS-1-disk 130.9 1.9 87.3 2.9 245.2 464.5

NFS-6-disk 108.4 2.4 66.8 3.8 243.5 418.8

GPFS-1-SRVR-1-disk 115.3 2.2 69.6 3.7 251.7 436.7

GPFS-1-SRVR-6-disk 121.6 2.1 68.3 3.7 251.6 441.6

GPFS-4-SRVR-1-disk 152.7 1.7 86.9 2.9 251.9 491.4

GPFS-8-SRVR-1-disk 168.4 1.5 90.0 2.8 252.9 511.3

GPFS-12-SRVR-1-disk 175.2 1.5 93.9 2.7 250.3 519.4

4 JFS-1-disk 78.6 3.3 11.9 21.4 276.0 366.5

JFS-6-disk 78.0 3.3 10.0 25.6 264.4 352.4

NFS-1-disk 156.8 1.6 70.8 3.6 189.1 416.7

NFS-6-disk 100.9 2.5 27.3 9.4 175.2 303.4

GPFS-1-SRVR-1-disk 139.8 1.8 38.1 6.7 84.3 262.2

GPFS-1-SRVR-6-disk 50.6 5.1 30.3 8.4 81.7 162.7

GPFS-4-SRVR-1-disk 77.8 3.3 33.1 7.7 90.4 201.3

GPFS-8-SRVR-1-disk 63.3 4.0 29.2 8.8 84.9 177.4

GPFS-12-SRVR-1-disk 63.3 4.0 25.5 10.1 94.0 182.7

8 NFS-1-disk 200.3 1.3 31.4 8.2 155.6 387.3

NFS-6-disk 91.2 2.8 22.4 11.4 174.2 287.8

GPFS-1-SRVR-1-disk 130.6 2.0 37.5 6.8 69.1 237.2

GPFS-1-SRVR-6-disk 37.8 6.8 14.0 18.2 60.1 112.0

GPFS-4-SRVR-1-disk 58.4 4.4 20.6 12.4 64.4 143.5

GPFS-8-SRVR-1-disk 51.7 5.0 13.0 19.6 55.2 119.9

GPFS-12-SRVR-1-disk 37.3 6.9 15.0 17.1 62.5 114.9

12 NFS-1-disk 148.9 1.7 38.3 6.7 195.4 382.6

NFS-6-disk 63.2 4.1 17.3 14.8 185.4 265.9

GPFS-1-SRVR-1-disk 113.9 2.2 39.9 6.4 68.7 222.5

GPFS-1-SRVR-6-disk 33.3 7.7 13.4 19.2 48.6 95.3

GPFS-4-SRVR-1-disk 50.5 5.1 17.0 15.0 77.9 145.4

GPFS-8-SRVR-1-disk 31.1 8.2 15.8 16.2 67.4 114.3

GPFS-12-SRVR-1-disk 30.1 8.5 19.6 13.0 47.0 96.7

172 GPFS: A Parallel File System

Table 25. Results for Parallel Sort Application (File Size=256MB)

Fi le S i z e = 2 5 6 M B

C
li

e
n

ts

F
il

e
S

ys
te

m

R
e

a
d

T
im

e
(s

e
c

)

R
e

a
d

B
a

n
d

w
id

th

W
ri

te
T

im
e

(s
e

c
)

W
ri

te
B

a
n

d
w

id
th

C
o

m
p

u
te

T
im

e
(s

e
c

)

T
o

ta
l

T
im

e
(s

e
c

)

1 JFS-1-disk 113.5 4.5 40.4 12.7 630.5 784.5

JFS-6-disk 106.2 4.8 18.7 27.3 628.5 753.6

NFS-1-disk 272.2 1.9 214.5 2.4 631.0 1117.7

NFS-6-disk 211.5 2.4 162.7 3.1 629.2 1003.6

GPFS-1-SRVR-1-disk 350.2 1.5 140.4 3.6 642.7 1133.4

GPFS-1-SRVR-6-disk 374.9 1.4 139.0 3.7 637.9 1151.9

GPFS-4-SRVR-1-disk 472.7 1.1 179.4 2.9 646.1 1298.4

GPFS-8-SRVR-1-disk 510.4 1.0 186.4 2.7 645.8 1342.7

GPFS-12-SRVR-1-disk 533.8 1.0 193.5 2.6 655.2 1382.6

4 JFS-1-disk 111.0 2.4 20.2 25.3 663.8 895.1

JFS-6-disk 141.8 3.6 10.3 49.5 666.4 818.6

NFS-1-disk 508.0 1.0 99.8 5.1 387.2 995.0

NFS-6-disk 265.9 1.9 64.3 8.0 395.2 725.4

GPFS-1-SRVR-1-disk 349.3 1.5 56.7 9.0 228.9 635.0

GPFS-1-SRVR-6-disk 139.5 3.7 33.0 15.5 221.8 394.4

GPFS-4-SRVR-1-disk 219.0 2.3 30.4 16.8 214.1 463.5

GPFS-8-SRVR-1-disk 173.6 3.0 40.7 12.6 220.4 434.7

GPFS-12-SRVR-1-disk 173.1 3.0 44.0 11.6 222.1 439.1

8 NFS-1-disk 550.9 0.9 71.2 7.2 333.2 955.3

NFS-6-disk 353.9 1.4 53.3 9.6 251.9 659.1

GPFS-1-SRVR-1-disk 416.2 1.2 50.8 10.1 160.7 627.7

GPFS-1-SRVR-6-disk 105.9 4.8 27.3 18.7 123.0 256.2

GPFS-4-SRVR-1-disk 192.4 2.7 20.9 24.5 144.0 357.3

GPFS-8-SRVR-1-disk 139.7 3.7 33.1 15.5 144.0 316.9

GPFS-12-SRVR-1-disk 120.2 4.3 29.3 17.5 146.7 296.3

12 NFS-1-disk 588.7 0.9 75.9 6.7 273.3 938.0

NFS-6-disk 388.3 1.3 48.0 10.7 229.9 666.2

GPFS-1-SRVR-1-disk 402.6 1.3 37.6 13.6 163.9 604.0

GPFS-1-SRVR-6-disk 99.9 5.1 16.3 31.5 105.7 221.9

GPFS-4-SRVR-1-disk 177.9 2.9 28.4 18.0 125.3 331.6

GPFS-8-SRVR-1-disk 115.4 4.4 20.2 25.3 103.4 239.0

GPFS-12-SRVR-1-disk 103.3 5.0 25.3 20.2 129.7 258.3

The second set of tables also consists of three tables to represent the
results of using three file sizes: 32MB, 128MB, and 256MB. This set is
presented in Table 26 on page 174, Table 27 on page 175, and
Table 28 on page 176. In each of these three tables, the performance
data for a given type of file system is grouped together. Nine file
systems are used for each of the client sizes.

Chapter 5. Applications 173

Table 26. Results for Parallel Sort Application (File S ize=32MB)

Fi le S i z e = 3 2 M B

F
il

e
S

ys
te

m

C
li

e
n

ts

R
e

a
d

T
im

e
(s

e
c

)

R
e

a
d

B
a

n
d

w
id

th

W
ri

te
T

im
e

(s
e

c
)

W
ri

te
B

a
n

d
w

id
th

C
o

m
p

u
te

T
im

e
(s

e
c

)

T
o

ta
l

T
im

e
(s

e
c

)

JFS-1-disk 1 7.4 8.7 10.3 6.2 53.6 71.3

4 4.9 13.2 0.6 104.6 55.9 61.3

JFS-6-disk 1 10.2 6.2 2.8 22.7 53.9 67.0

4 1.1 56.6 0.5 136.1 55.5 57.1

NFS-1-disk 1 23.7 2.7 13.9 4.6 51.8 89.4

4 7.8 8.,3 5.3 12.0 41.9 55.0

8 6.1 10.6 6.3 10.1 30.0 42.4

12 8.2 7.8 8,6 7.5 25.0 41.8

NFS-6-disk 1 19.9 3.2 9.1 7.0 52.0 80.9

4 8.0 8.0 5.0 12.8 29.2 42.2

8 5.3 12.1 3.3 19.3 25.7 34.3

12 6.6 9,7 3.1 21.0 25.6 35.2

GPFS-1-SRVR-1-disk 1 18.9 3.4 17.0 3.8 56.6 92.5

4 22.7 2.8 15.0 4.3 19,4 57.1

8 19.9 3.2 9.4 6.8 22.7 52.0

12 17.4 3.7 6.4 9.9 30.2 54.1

GPFS-1-SRVR-6-disk 1 19.5 3.3 16.3 3.9 54.0 89.9

4 8.3 7.7 6.9 9.3 17.7 32.9

8 7.9 8.1 3.6 17.8 15.2 26.8

12 5.9 10.9 6.6 9.7 19.9 32.4

GPFS-4-SRVR-1-disk 1 20.3 3.1 20.5 3.1 50.7 91.5

4 13.5 4.7 8.4 7.6 30.5 52.4

8 10.5 6.1 6.0 10.6 23.3 39.8

12 10.8 5.9 8.7 7.3 31.2 50.8

GPFS-8-SRVR-1-disk 1 20.0 3.2 20.5 3.1 50.6 91.2

4 11.4 5.6 8.0 8.0 18.2 37.5

8 9.1 7.1 3.2 19.8 19.8 32.1

12 7.7 8.4 5.9 10.9 18.6 32.1

GPFS-12-SRVR-1-disk 1 20.9 3.1 21.6 3.0 50.6 93.0

4 10.0 6.2 5.8 11.0 20.1 36.3

8 7.9 8.1 3.8 17.0 25.4 37.1

12 6.7 9.6 6.4 9.9 20.9 34.0

174 GPFS: A Parallel File System

Table 27. Results for Parallel Sort Application (File Size=128MB)

Fi le S i z e = 1 2 8 M B

F
il

e
S

ys
te

m

C
li

e
n

ts

R
e

a
d

T
im

e
(s

e
c

)

R
e

a
d

B
a

n
d

w
id

th

W
ri

te
T

im
e

(s
e

c
)

W
ri

te
B

a
n

d
w

id
th

C
o

m
p

u
te

T
im

e
(s

e
c

)

T
o

ta
l

T
im

e
(s

e
c

)

JFS-1-disk 1 62.3 41.1 17.2 14.9 244.0 323.5

4 78.6 3.3 11.9 21.4 276.0 366.6

JFS-6-disk 1 50.7 5.1 7.9 32.4 244.0 302.6

4 78.0 3.3 10.0 25.6 264.4 352.4

NFS-1-disk 1 131.9 1.9 87.3 2.9 245.2 464.5

4 156.8 1.6 70.8 3.6 189.1 416.7

8 200.3 1.3 31.4 8.2 155.6 387.3

12 148.9 1.7 38.3 6.7 195.4 382.6

NFS-6-disk 1 108.4 2.4 66.8 3.8 243.5 418.8

4 100.9 2.5 27.3 9.4 175.2 303.4

8 91.2 2.8 22.4 11.4 174.2 287.8

12 63.2 4.1 17.3 14.8 185.4 265.9

GPFS-1-SRVR-1-disk 1 115.3 2.2 69.6 3.7 251.7 436.7

4 139.8 1.8 38.1 6.7 84.3 262.2

8 130.6 2.0 37.5 6.8 69.1 237.2

12 113.9 2.2 39.9 6.4 58.7 222.5

GPFS-1-SRVR-6-disk 1 121.6 2.1 68.3 3.7 251.6 441.6

4 50.6 5.1 30.3 8.4 81.7 162.7

8 37.8 6.8 14.0 18.2 60.1 112.0

12 33.3 7.7 13.4 19.2 48.6 95.3

GPFS-4-SRVR-1-disk 1 152.7 1.7 86.9 2.9 251.9 491.4

4 77.8 3.3 33.1 7.7 90.4 201.3

8 58.4 4.4 20.6 12.4 64.4 143.5

12 50.5 5.1 17.0 15.0 77.9 145.4

GPFS-8-SRVR-1-disk 1 168.4 1.5 90.0 2.8 252.9 511.3

4 63.3 4.0 29.2 8.8 84.9 177.4

8 51.7 5.0 13.0 19.6 55.2 119.9

12 31.1 8.2 15.8 16.2 67.4 114.3

GPFS-12-SRVR-1-disk 1 175.2 1,5 93.9 2.7 250.3 519.4

4 63.3 4.0 25.5 10.1 94.0 182.7

8 37.3 6.9 15.0 17.1 62.5 114.9

12 30.1 8.5 19.6 13.0 47.0 96.7

Chapter 5. Applications 175

Table 28. Results for Parallel Sort Application (File Size=256MB)

Fi le S i z e = 2 5 6 M B

F
il

e
S

ys
te

m

C
li

e
n

ts

R
e

a
d

T
im

e
(s

e
c

)

R
e

a
d

B
a

n
d

w
id

th

W
ri

te
T

im
e

(s
e

c
)

W
ri

te
B

a
n

d
w

id
th

C
o

m
p

u
te

T
im

e
(s

e
c

)

T
o

ta
l

T
im

e
(s

e
c

)

JFS-1-disk 1 113.5 4.5 40.4 12.7 630.5 784.5

4 211.0 2.4 20.2 25.3 663.8 895.1

JFS-6-disk 1 106.2 4.8 18.7 27.3 628.5 753.6

4 141.8 3.6 10.3 49.5 666.4 818.6

NFS-1-disk 1 272.2 1.9 214.5 2.4 631.0 1117.9

4 508.0 1.0 99.8 5.1 387.2 995.0

8 550.9 0.9 71.2 7.2 333.2 955.3

12 588.7 0.9 75.9 6.7 273.3 938.0

NFS-6-disk 1 211.5 2.4 162.7 3.1 629.2 1003.6

4 265.9 1.9 64.3 8.0 395.2 725.5

8 353.9 1.4 53.3 9.6 251.9 659.1

12 388.3 1.3 48.3 10.7 229.9 666.2

GPFS-1-SRVR-1-disk 1 350.2 1.5 140.4 3.6 642.7 1133.4

4 349.3 1.5 56.7 9.0 228.9 635.0

8 416.2 1.2 50.8 10.1 160.7 627.7

12 402.6 1.3 37.6 13.6 163.9 604.0

GPFS-1-SRVR-6-disk 1 374.9 1.4 139.0 3.7 637.9 1151.9

4 139.5 3.7 33.0 15.5 221.8 394.4

8 105.9 4.8 27.3 18.7 123.0 256.2

12 99.9 5.1 16.3 31.5 105.7 221.9

GPFS-4-SRVR-1-disk 1 472.7 1.1 179.4 2.9 646.1 1298.4

4 219.0 2.3 30.4 16.8 214.1 463.5

8 192.4 2.7 20.9 24.5 144.0 357.3

12 177.9 2.9 28.4 18.0 125.3 331.6

GPFS-8-SRVR-1-disk 1 510.4 1.0 186.4 2.7 645.8 1342.7

4 173.6 3.0 40.7 12.6 220.4 434.7

8 139.7 3.7 33.1 15.5 144.0 316.9

12 115.4 4.4 20.2 25.3 103.4 239.0

GPFS-12-SRVR-1-disk 1 533.8 1.0 193.5 2.6 655.2 1382.6

4 173.1 3.0 44.0 11.6 222.1 439.1

8 120.2 4.3 29.3 17.5 146.7 296.3

12 103.3 5.0 25.3 20.2 129.7 258.3

The data in tables Table 26 on page 174, Table 27 on page 175,
Table 28 is also shown in a graph form in the following figures:

176 GPFS: A Parallel File System

Figure 40. Compute Time Performance in the Sort Application

Figure 41. Read Time Performance in the Sort Application

Chapter 5. Applications 177

Figure 42. Write Time Performance in the Sort Application

Figure 43. Total Time Performance in the Sort Application

5.3.10.1 Compute Time Performance
The entry under the heading Compute time shown in all the tables and
the charts indicates the non-I/O time spent by each task to do work
related to sorting. In the case of a single task this measure quantifies
the total amount of work an application has to do outside of I/O to do

178 GPFS: A Parallel File System

sorting. When multiple tasks/clients are used, this measure indicates
the elapsed time to complete the non-I/O work by the parallel
application. For example, in order to achieve linear speed-up, if a
sorting application with one client takes 600 seconds to do sorting, a
12-client application should take 50 seconds to complete the job. In
practice, linear speed-up is hard to achieve due to synchronization and
replication overhead. For example, as shown in Table 23 on page 171
and Figure 40 on page 177 a single client sorts a GPFS file of size
256MB residing on 8 servers in 645 seconds. A parallel application with
8 clients sorts the same file in 220 seconds, achieving a speed-up of 3
instead a linear speed-up of 8. JFS configurations are tested with
1-client and 4-client configurations and do not show any speed-up since
all the clients share the same processor.

5.3.10.2 Read Time Performance
The entries under the heading read time represent the time that the
application has to wait after issuing an fread call to get the data from the
external devices. In the current implementation the application is
blocked until the data is available in the application defined data areas.
It would be an interesting extension of the current work to investigate
potential performance gains that may be realized by hiding the delay
incurred to get the data by letting the application perform other useful
work.

The following observations can be made by examining the results
recorded for the read time measure:

 1. Single application task/client scenarios

• Both JFS configurations perform significantly better than any
other file system configurations.

• More complex configurations resulted in worse read time
performance.

• Multi-disk configurations, as expected, are always better than
their single disk counterparts.

 2. Multiple application task/client scenarios

• All GPFS configurations with multiple Virtual Shared Disk
servers including the case of single physical processor serving
multiple Virtual Shared Disk servers, showed dramatic reduction
in read time.

• Among the GPFS configurations, the configuration with one
server and 6 SSA disks turned out to be a strong contender for a
small number of application clients and showed only slightly
worse performance than its multinode counterparts when larger
number of clients are used.

• The experiments conducted with 12 application clients showed
that NFS-1-disk results in the worst read time performance, and
the most complex and expensive GPFS configuration results in
the best read time performance.

Chapter 5. Applications 179

5.3.10.3 Write Time Performance
The entries under the heading write time represent the time application
has to wait after issuing an fwrite call to get the data from the
application buffer into the system buffers. The return from the fwrite call
does not mean that the data is actually written to the disk. This feature
of the AIX system improves the performance of the application by hiding
the delay involved in writing the data behind any unrelated and useful
processing the application can do while the data transfer is in progress.
Since this is the common mode of write operation this feature of the AIX
Operating System is not turned off in this study. It would be an
interesting extension of this work to observe the write performance with
this feature turned off.

The following observations can be made by examining the results
recorded for the write time measure:

 1. Single application task/client scenarios

• Both JFS configurations performed significantly better than any
other file system configurations.

• NFS with one disk configuration performed significantly worse
than any other file system configurations.

• Multidisk configurations resulted in better performance across
all file systems using single processor as server than the same
systems with a single disk.

• The performance of GPFS configurations exhibited an inverse
relationship to their cost and complexity. For example,
GPFS-12-SRVR-1-Disk resulted in significantly worse
performance than GPFS-1-SRVR-1-Disk.

 2. Multiple application task/client scenarios

• All file system configurations showed dramatic reduction in write
time.

• More complex GPFS file system configurations resulted in more
reduction in write time than their less complex counterparts for
smaller number of clients. For a larger number of clients, more
complex GPFS configurations seem to perform better.

• It is interesting to see that the performance of
GPFS-1-SRVR-7-Disk configuration is very close to that of more
complex configurations.

5.3.10.4 Total Completion Time Performance
The total completion time is the summation of the I/O time and compute
time. All configurations showed improvement in this measure as the
number of clients increase. This can be explained from the fact that the
total amount non-I/O work is very large compared to the I/O time and all
the file systems showed improvement in the compute time as more
clients are added. This improvement masked the significant
degradation in the read time in the case for NFS file systems. For
complex GPFS configurations the variation in the total completion time
statistic is not very significant. For example, the completion times for

180 GPFS: A Parallel File System

the GPFS-12-SRVR-1-Disk and GPFS-8-SRVR-1-Disk configurations are
258 seconds and 238 seconds, respectively. Further investigations with
a larger client set are needed to see if more complex configurations
justify the additional cost and complexity.

5.3.11 Conclusions
The following conclusions can be drawn from the results of this
experiment:

 1. For the single-node configuration, JFS clearly outperforms other file
systems.

 2. NFS seems to be a contender for distributed systems with a small
number of clients accessing the file system. As the number of
clients increases, the performance of NFS degrades rapidly and it is
not an alternative for file systems which serve large number of
remote clients.

 3. GPFS configurations based on a single node with a single disk
seems to perform significantly better than the two NFS
configurations (the one with a single disk and the one with multiple
disks).

 4. It is interesting to see that the GPFS configuration based on a single
processor with multiple disks is a strong contender for most of the
scenarios used in this study.

 5. For systems with a small number of clients, larger GPFS
configurations do not seem to be strong contenders.

 6. The benefits of larger GPFS configurations seem to surface quickly
even as very small number of clients access the file system. This is
due to the fact that requests from the clients can be processed in
parallel by multiple servers in the GPFS configuration.

 7. Even for the small number of clients used in the parallel sort
application, the GPFS configuration with 12 servers exhibited better
performance than smaller configurations.

Chapter 5. Applications 181

182 GPFS: A Parallel File System

Appendix A. GPFS and Standard AIX Commands

This appendix provides a list of equivalences between AIX and GPFS file
system commands.

A.1 File Commands

Table 29 lists GPFS and AIX files manipulation commands.

Table 29 (Page 1 of 3). List of AIX File Commands

Command Action On GPFS File Comments

backup -i Backs up files by
name

OK

backup Back up file systems
by inode

NO Message backup:
0511-028 Not a
native fi le system.

cat Concatenates and
displays

OK

chgrp Changes the group
ownership

OK

chmod Changes the
permission modes

OK

chown Changes the
ownership

OK

cksum Checks checksum
and byte count

OK

copy,cp Copies OK From,to and inside
GPFS file system.

cpio Archives(-o),
Restores(-i)

OK From,to and inside
GPFS file system.

dd Converts and copy OK Do not try to dd the
complete fi le system
(/dev/fs1) to another
type of file system
because of
differences in the
superblock,
metadata, and data
structures.

del Deletes with
confirmation

OK

 Copyright IBM Corp. 1998 183

Table 29 (Page 2 of 3). List of AIX File Commands

Command Action On GPFS File Comments

fi le Determines fi le type OK

fileplace Determine file
placement in a
fs,lv,pv with space
efficiency and
fragmentation
information

NO Message: could not
identify device which
contains ′ f i le_name ′.

fuser Gives information
about processes
using specific files

NO Does not give any
information on
processes using files
inside a GPFS file
system (lsof does not
give more
information).

ln Links files inside a
file system

OK

ls Lists files included in
a directory
with/without statistics

OK

ln -s Links files between
different fi le systems

OK From,to and inside
GPFS file system.

m v Moves files OK From,to and inside
GPFS file system.

pax Archives(-w),
Restores(-r)

OK From,to and inside
GPFS file system.

restore -xd Restores by name (a
backup by name
archive)

OK From,to and inside
GPFS file system.

restore Restores by inode (a
backup by inode
archive)

OK To a GPFS file
system.

rm Removes files and
directories

OK

split Splits a file into
pieces

OK

sum Displays the
checksum and block
count of a file

OK

184 GPFS: A Parallel File System

Table 29 (Page 3 of 3). List of AIX File Commands

Command Action On GPFS File Comments

sum Displays the
checksum and block
count of a file

OK

tar Archives(-c),
Restores(-x) files

OK

touch Updates access and
modification time of
a file

OK

Appendix A. GPFS and Standard AIX Commands 185

A.2 File System Commands

Table 30 lists GPFS and AIX file system commands.

Table 30 (Page 1 of 3). List of AIX File System Commands

Command Action On GPFS file Comments

chfs Changes attributes of
a file system

Use mmchfs Do not use this
command with GPFS
file systems because
mmfs SDR files are
not updated by this
command. Use
mmchfs instead.

crfs Adds a file system Use mmcrfs Do not use this
command with GPFS
file systems because
mmfs SDR files are
not updated by this
command. Use
mmcrfs, instead.

defragfs Reorganizes data
inside a file system

NO Message defragfs:
0506-408 failure in
opening device
/dev/fs1.

df Reports information
about space on file
systems

OK, but... Updates on the file
systems made by
other VSD nodes are
not refreshed
immediately on a
VSD nodes. Use
mmdf fs_name instead.
mmdf can be used on
an unmounted file
system.

dumpfs Dumps file system
information

NO Message: 0506-013
cannot read
superblock on
/dev/fs1. There is no
equivalent command
for GPFS file
systems.

186 GPFS: A Parallel File System

Table 30 (Page 2 of 3). List of AIX File System Commands

Command Action On GPFS file Comments

f i lemon Gives usage
information of fs lv
pv vg

OK, but... Does not give any
file system
information on GPFS
file system, only
gives informations
on underlying lvs.

ff Lists file names and
statistics for a file
system

NO Message:
Filesystem Helper:
0506-0519 device
open failed. Use du
instead.

fsck Checks file system
consistency and does
repairs

Use mmfsck Message: fsck:
0506-035 /dev/fs1 is
not a known file
system. Use mmfsck
fs_name instead.
mmfsck cannot be
used on a mounted
file system.

fsdb Debugs file systems Use mmlsfs Messages:
WARNING and
FATAL_ERROR
reading superblocks.
Use mmlsfs fs_name
instead. (Command
fsdb is only adapted
to jfs.)

istat Examines i-node
numbers

OK, but... Only istat f_name.
When entering istat
inode_number device
Message: istat:
0506-013 cannot read
superblock on
/dev/fs1.

lsfs Displays the
characteristics of file
systems

OK

mount Makes a file system
available for use

OK

rmfs Removes a file
system and
underlying logical
volume

Use mmdelfs Never use this
command. Use
mmdelfs instead.

Appendix A. GPFS and Standard AIX Commands 187

Table 30 (Page 3 of 3). List of AIX File System Commands

Command Action On GPFS file Comments

rrestore Restores a file
created with backup
command from a
remote location

OK

xlvm vsm application
enabling GUI storage
management

NO No template exists
yet for taking GPFS
file system into
account.

188 GPFS: A Parallel File System

Appendix B. GPFS Maximum File Size and Related Parameters

Table 31 (Page 1 of 2). GPFS Maximum File Size and Related Parameters

(B) Block Size (I) Indirect Size (i) I-Node Size
(M , D) Max imum

Replication

Approx.
Max imum Fi le

Size

Approx.
Max imum Fi le

System Size

16KB 512 512
1 85MB 58GB

2 21MB 14GB

16KB 1KB 512
1 178MB 115.7GB

2 44MB 28.9GB

16KB 4KB 512
1 735MB 478.4GB

2 184MB 119.6GB

16KB 16KB 512
1 2.8GB †1TB

2 741MB 482.3GB

64KB 4KB 512
1 2.8GB †1TB

2 735MB †1TB

64KB 4KB 1KB
1 6.3GB †1TB

2 1.6GB †1TB

64KB 4KB 2KB
1 13.3GB †1TB

2 3.3GB †1TB

64KB 16KB 512
1 11.3GB †1TB

2 2.8GB †1TB

64KB 16KB 1KB
1 25.5GB †1TB

2 6.4GB †1TB

64KB 16KB 2KB
1 53.8GB †1TB

2 13.5GB †1TB

64KB 32KB 512
1 22.6GB †1TB

2 5.7GB †1TB

64KB 32KB 1KB
1 51GB †1TB

2 12.8GB †1TB

64KB 32KB 2KB
1 107.8GB †1TB

2 26.9GB †1TB

256KB 16KB 512
1 45.2GB †1TB

2 11.3GB †1TB

256KB 16KB 4KB
1 442.3GB †1TB

2 110.6GB †1TB

256KB 32KB 512
1 90.5GB †1TB

2 22.6GB †1TB

 Copyright IBM Corp. 1998 189

Table 31 (Page 2 of 2). GPFS Maximum File Size and Related Parameters

(B) Block Size (I) Indirect Size (i) I-Node Size
(M , D) Max imum

Replication

Approx.
Max imum Fi le

Size

Approx.
Max imum Fi le

System Size

256KB 32KB 4KB
1 885.9GB †1TB

2 221.5GB †1TB

Note: † When a combination of parameters yields to a maximum file system size greater than one terabyte (1 TB), consider

one terabyte (1 TB) as the maximum file system size.

190 GPFS: A Parallel File System

Appendix C. The GPFS Configuration File (mmsdrcfg1)

This file is stored in the SDR and it is partition-sensitive. It provides a set of
parameters taken by the GPFS daemon at startup time. The following is a
description of each one of the variables set in this file.

 Note

GPFS is absolutely dependent on this file. No modification should be
made to this file without a complete understanding of what effect that
change will have in the GPFS environment.

Sample configuration file

Numbers may end with a single letter:
k or K meaning 1024
m or M meaning 1048576 (1024*1024)

######## Memory / Shared Segment Configuration ########

The pagepool and malloc area will always reside in pinned memory.
pagepool 20M
mallocsize 4M

Maximum number of files to cache. The default value is 1000. This number
will be reduced to a number that takes no more than about 50% of mallocsize.
If the number of concurrently open files is bigger, then the number of cached
files will exceed this value.
maxFilesToCache 200

######## Multi-node configuration ########

The following parameters are used to configure Tiger Shark to allow
multiple file system nodes to simultaneously access files stored on
the same set of shared disks, for example on SP/2 using virtual shared
disks (VSD).

Change this to yes to enable multi-node file systems
multinode yes

Inter-node communication configuration
tscTcpPort 6667 # Tcp port number

Setting tscWorkerPool to zero disables inter-node communication.
tscWorkerPool 10 # Number of worker threads

 Copyright IBM Corp. 1998 191

If wait4RVSD is yes, then before becomes ready for service, the
mmfsd daemon waits for RVSD to become active.
This flag is meaningfull only in the presence of Group Services.
wait4RVSD no

The default Group Service names are: MmfsGroup and MmfsRecGroup
Use these parameters to override the default group names.
This is necessary when more than one group of nodes running
separate MMFS clusters in the same SP partition.
Names may be up to 16 characters long.
group newmmfsgroupname
recgroup newmmfsrecgroupname

To use a file other than /etc/cluster.nodes as a node list.
nodelist new-file-name

To specify a file other than /var/mmfs/etc/cluster.preferences
as a node list of preferred administration nodes.
nodeprefs new-file-name

The next three parameters control the maximum degree of multiprogramming
within the mmfsd daemon. The value of the ′ prefetchThreads′ parameter
controls the maximum possible number of threads dedicated to prefetching
data for files that are read sequentially. The actual degree of
parallelism for prefetching is determined dynamically by the daemon.
The ′ worker1Threads′ parameter controls the maximum number of threads
that are used to handle sequential writebehind, as well as some other
operations associated with data access. This value should be 150% of
the value of ′ prefetchThreads′ . The ′ worker2Threads′ parameter controls
the maximum number of threads that are used to handle miscellaneous
operations, mainly those involving directories (open, stat, mkdir, etc.).
This parameter should be set to 50% of the value for the ′ prefetchThreads′
parameter. The minimum values for all 3 parameters is 1, and the maximums
are 48, 72, and 24, respectively.
prefetchThreads 24
worker1Threads 36
worker2Threads 12

Timeout to assign a new stripe group manager after the old one
has resigned or failed. Defualt value is 600 seconds.
If a new stripe manager that functions cannot be assigned within
this timeout period, the config manager will broadcast a message
saying that there is no manager for this sg, and force all nodes to
panic this SG. Timer resets when a stripe group manager notifies the
config manager that it actually has mounted the SG.
takeovertimeout 600

192 GPFS: A Parallel File System

######## Problem determination Configuration ########

Tracing of individual classes of events/operations can be activated by
adding ″trace <trace-class> <trace level>″ lines below.
trace all 0

The ′ crashdump′ keyword controls how much data from mmfs is
included in a system dump, should AIX crash. A value of 0 disables
putting any mmfs data in system dumps. A value of 1 dumps
the prefix and the malloc area of the shared segment. Higher values
are reserved for future use to dump additional data areas.
crashdump 0

The ′ dataStructDump′ keyword controls whether mmfs will produce a
formatted dump of its internal data structures into a file named
internaldump.<daemon pid>.signal whenever it aborts.
The following entry can either be a directory name in which the file
will reside, or otherwise a boolean value. When given a positive
boolean value the directory defaults to /tmp/mmfs.
dataStructureDump yes

The ′ dataStructDumpOnSGPanic′ keyword controls whether mmfs will
produce a formatted dump of its internal data structures into
a file named internaldump.<daemon pid>.<sgname> whenever a stripe
group is panicked.
The following entry can either be a directory name in which the file
will reside, or otherwise a boolean value. When given a positive
boolean value the directory defaults to /tmp/mmfs.
Note that on real-time systems, one SG panic dumping may cause glitches
on other SGs, and therefore is not recommended for production.
dataStructureDumpOnSGPanic yes

The ′ assertOnStructureError′ keyword controls whether mmfs will
assert and make a dump when an internal file structure error is detected.
The structure error is always logged to the AIX error log.
assertOnStructureError no

######## Real-Time Configuration ########

Performance of IBM Multimedia Server for AIX can be improved by pinning the
master process, and giving it a priority higher than the time-slicer.

The ′ priority′ keyword sets the Unix dispatching priority of the daemon
process to the given value.
Recommendations:
Real-time systems should set this value to 4 (range 1-15)

Appendix C. The GPFS Configuration File (mmsdrcfg1) 193

Non-real-time systems should set this value to 40 (range 16-64)
priority 40

To enable pinning change the value of the ′ pindaemon′ parameter to yes.
pindaemon no

The ′ pinmaster′ keyword allows tuning the size of the stack and heap (data)
area of the master process that need to be pinned if pindaemon is enabled.
If mmfsd fails with an assertion in cortn.C when pindaemon is enabled,
try incrementing the value for ′ data:′ .
pinmaster stack:256K data:4096K

The ′ stickypool′ keyword indicates how much of pagepool should be
available for block 0 of files with the sticky-bit on.
If the value is 0, this feature is disabled.
stickypool 0

######## Node Override Configuration ########

In a multi-node configuration, it may be desirable to configure some
nodes differently than others. This can be accomplished by placing
separate, potentially different, copies of the mmfs.cfg file on each
node. However, since maintaining separate copies of the configuration
file on each node will likely be more difficult and error prone,
the same effect can be achieved via node overrides wherein a single
mmfs.cfg file is replicated on every node.
##
A node override is introduced by a line containing a node name or list
of node names in square brackets. The node names used are those
listed in the /etc/cluster.nodes file. All parameter specifications
that follow will apply only to the listed nodes. A ″•common“″ line
ends a section of node overrides. For example the following fragment:
##
pagepool 30M
##
[tiger5,tiger6]
pagepool 10M
##
[tiger9]
pagepool 64M
##
[common]
stickypool 2M
##
configures the page pool on most nodes as 30 megabytes. However,
on tiger5 and tiger6 the page pool is configured with a smaller
page pool of 10 megabytes. On tiger9 the page pool is configured

194 GPFS: A Parallel File System

with a larger page pool of 64 megabytes. Lines after the ″•common“″ line
again apply to all nodes ie every node will have a sticky pool of 2M.

C.1 How to Change the Default Values

To change the values in the GPFS configuration files, use the following
steps:

 1. Retrieve the file from the SDR.

Make sure you are working with the right partition:

[spcw:/tmp]# SDRRetrieveFile mmsdrcfg1 /tmp/mmsdrcfg1

 2. Edit the file and change the appropriate variable(s).

 3. Restore the file into the SDR.

[spcw:/tmp]# SDRReplaceFile /tmp/mmsdrcfg1 mmsdrcfg1

 4. Restart the GPFS daemon on the nodes.

Appendix C. The GPFS Configuration File (mmsdrcfg1) 195

196 GPFS: A Parallel File System

Appendix D. SSA Configuration

With the maymap tool, you can generate a draw of the SSA loops of the SSA
nodes. In the same draw you have a disk identifier which will help you to
know which disks belong to which loop.

You will need this information when creating the VSDs for the GPFS file
system in order to define the appropriate VSD server primary node for each
VSD.

IBM employees can obtain a maymap package from:

TOOLS SENDTO YKTVMV TOOLS AIXTOOLS GET MAYMAP PACKAGE

The maymap package will be sent to your virtual reader as a compressed
tar file.

A maymap output example is shown on the following page.

 Copyright IBM Corp. 1998 197

Following is an example of maymap output:

� �

MAYMAP Version v1.98f 21-Mar-97 16:10 : Colonial SSA Network Map Utility
Written by Lee Sanders - Copyright (C)IBM 1994/1995 - IBM Internal Use Only

maymap: No IPN Node Number for ssa0 obtained from ODM.
maymap: Getting default IPN Node Number
maymap: Default IPN Node Number = 0x80
maymap: Number was greater than 100. Using default

Colonial Card: ssa0 [Node 0x80] [Bus: 0] [Slot: 5]
Time Out Period set to 120

Device ssa0 [Node 0x80] - 8 DriverPhysical resources reported
Allicat/SSA = 0664 S1H ... Starfire/Scorfire SSA = DFHC (Model Varies)

Scorpion/SSA = DCHC (Model Varies)

.-------. .--------. .RESERVED. .--------. .RESERVED.
|sp21n11| |Mystery | |DFHC C4B| |DFHC C4B| |DFHC C4B|
|Node 80|---|?? ?? ??|---|AC7E5D69|---|AC9E14EA|---|AC9DD09B|---.
|Port A1| |SSA Node| |RAMSC081| |RAMSC081| |RAMSC081| |
.-------. .--------. .--------. .--------. .--------. |

.--.
| .RESERVED.
| |DFHC C4B|
.--|AC7C546A|---.

|RAMSC081| |
.--------. |

.-------. |
|sp21n11| |
|Node 80|----------------.
|Port A2|
.-------.
.-------. .--------. .--------. .--------. .--------.
|sp21n11| |DFHC C4B| |DFHC C4B| |DFHC C4B| |DFHC C4B|
|Node 80|---|AC9DCAFB|---|AC9E2A48|---|AC7E5DDB|---|AC9E17CE|---.
|Port B1| |RAMSC081| |RAMSC081| |RAMSC081| |RAMSC081| |
.-------. .--------. .--------. .--------. .--------. |

.--.
| .--------.
| |Mystery |
.--|?? ?? ??|---.

|SSA Node| |
.--------. |

.-------. |
|sp21n11| |
|Node 80|----------------.
|Port B2|
.-------.� �

198 GPFS: A Parallel File System

Appendix E. Miscellaneous NotesBench Information

Further details about NotesBench can be found at URL:

http://www.notesbench.org

Mail and Shared DatabaseTest Script

 * Pause a random interval so multiple processes are staggered
 * well
 pause 0-3min
 beginloop
 * Open mail database
 changeto [MailServer]!!mail[#].nsf mail4.ntf
 * Open the current view
 open
 entries 1 20
 * Wait 5-10 seconds to peruse the view
 pause 5-10sec
 * Open 5 documents in the mail file and read each for 10-20
 * seconds
 navigate 1
 pause 10-20sec
 navigate 1
 pause 10-20sec
 navigate 1
 pause 10-20sec
 navigate 1
 pause 10-20sec
 navigate 1
 pause 10-20sec
 * Categorize 2 of the documents
 getall
 stamp 2
 * Compose 2 new mail memos/replies (taking 1-2 minutes to
 * write them)
 pause 1-2min
 sendmessage [NormalMessageSize][NumMessageRecipients][NthIteration]
 add 1
 pause 1-2min
 add 1
 * Stare at the view for 5-10 seconds and mark a few
 * documents deleted
 pause 5-10sec
 * Delete the documents which are marked for deletion (as
 * part of closing)
 getall

 Copyright IBM Corp. 1998 199

 delete 2
 * Close the view
 close
 * Pause at the desktop for 4-8 minutes while having a
 * meeting in office
 pause 4-8 min
 *
 * Open a discussion database
 changeto [MailServer]!!testdisc.nsf discuss4.ntf
 * Open the current view
 open
 entries 1 20
 * Wait 5-10 seconds to peruse the view
 pause 5-10sec
 * Page down the view 2 times spending 3-10 seconds to read
 * each window
 entries 21 20
 pause 3-10sec
 entries 41 20
 pause 3-10sec
 * Set the unread list to a randomly selected 30 documents
 unread 30
 * Open next 3 unread documents and read each for 10-30
 * seconds
 navigate 1 next_unread
 pause 10-30sec
 navigate 1 next_unread
 pause 10-30sec
 navigate 1 next_unread
 pause 10-30sec
 * Close the view
 close
 * Pause at the desktop for 4-8 minutes while having a
 * meeting in office
 pause 4-8min
 *
 * Repeat entire sequence all over again (go back to
 * beginloop statement)
 rewind

200 GPFS: A Parallel File System

Child notes.ini file

� �
DEBUG_OUTFILE=/log/res1
ResultsDirectory=/log
NodeName=Child1
Tmp=/tmp
NthIteration=6
NormalMessageSize=1000
NumMailNotesPerUser=100
NumMessageRecipients=3
NumSharedNotes=100� �

Parent notes.ini file

� �
NodeName=Parent
ResultsDirectory=/log
DEBUG_OUTFILE=/log/parent.dmp
Tmp=/tmp
NumClients1=100
NumClients2=100
NumClients3=100
NumClients4=100
NumClients5=100
NumClients6=100
NumClients7=100
NumClients8=50
NthIteration=6
NormalMessageSize=1000
NumMailNotesPerUser=100
NumMessageRecipients=3
NumSharedNotes=100� �

Appendix E. Miscellaneous NotesBench Information 201

Output example of the NotesBench command: notesnum maildb 8

� �
09/19/97 11:06:59 PM (Notes Version: 145 - UNIX) /opt/lotus/notes/latest/ibmpow/
notesnum maildb 8
Reading results file - /log/res0 ...

Min Start Time = 09/19/97 05:46:02 PM Max Stop Time = 09/19/97 10:57:01 PM
Total Test Errors = 0
Total Test Time = 18660 sec

Calibration: Users = 100 NotesMark = 235 Response Time = 644 msec (09/
19/97 05:46:00 PM to 09/19/97 10:57:00 PM)

Reading results file - /log/res1 ...

Reading results file - /log/res2 ...

Reading results file - /log/res3 ...

Reading results file - /log/res4 ...

Reading results file - /log/res5 ...

Reading results file - /log/res6 ...

Reading results file - /log/res7 ...

Reading results file - /log/res8 ...

Min Start Time = 09/19/97 05:46:02 PM Max Stop Time = 09/19/97 11:00:48 PM
Total Test Errors = 0
Total Test Time = 18840 sec

Test Run: Users = 750 NotesMark = 1749 Response Time = 695 msec (09/
19/97 06:32:00 PM to 09/19/97 10:57:00 PM)

The test run/calibration response time ratio is 1.08.

Warning: The calibration file /log/res0 does not exist.
: /log/res1 will be used as a calibration file
(i.e., res1 will be copied to res0)

Note : Successfully copied res1 to res0...continuing with roll up

Note: Poller Data not collected. Either the Poller was not run, or the
Poller Data file ′ / log\pout′ was deleted� �

The following section provides summaries of monitoring data in different
scenarios.

202 GPFS: A Parallel File System

Local JFS configuration with high node

Following are summaries of system monitoring during various tests when
running 750 users (taken from peak time):

• iostat

� �
iostat 5

tty: tin tout avg-cpu: % user % sys % idle % iowait

0.0 533.4 8.4 4.1 42.5 45.1

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdisk16 10.6 108.8 15.0 256 288
hdisk17 9.0 97.6 12.4 296 192
hdisk18 2.6 36.8 5.6 168 16
hdisk20 32.0 225.5 33.8 420 708
hdisk22 3.0 44.0 7.0 148 72
hdisk23 8.0 55.2 10.6 172 104� �

• vmstat

� �
vmstat 5

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
1 1 67914 124 0 0 2 33 88 0 755 1481 251 8 3 58 31
0 2 67914 122 0 2 8 113 248 0 837 2694 451 14 5 38 42
1 1 67914 124 0 1 3 51 160 0 801 2414 500 12 5 52 31
1 1 67914 142 0 1 3 59 146 0 783 1745 299 9 5 54 32
0 1 67914 143 0 1 4 69 170 0 798 1874 296 9 4 43 43
1 1 67914 135 0 0 9 84 268 0 826 2576 477 14 5 45 36
1 1 67914 123 0 1 6 47 189 0 849 2306 420 12 5 37 46
1 3 67914 148 0 6 41 130 532 0 994 2778 680 14 7 4 75
1 2 67914 125 0 1 3 77 238 0 922 2314 560 12 6 3 80
0 1 67914 124 0 0 3 48 125 0 816 2174 436 11 4 45 40� �

Appendix E. Miscellaneous NotesBench Information 203

• sar

� �
sar -P ALL 5

AIX sp21n01 2 4 00091241A400 09/20/97

12:21:09 cpu %usr %sys %wio %idle

15:37:16 0 14 5 30 52
1 12 6 29 53
2 6 4 31 59
3 10 2 31 58
4 7 3 32 58
5 5 1 32 62
- 9 3 31 57

15:37:21 0 12 6 24 58
1 10 5 24 61
2 8 5 25 62
3 15 4 23 58
4 4 2 29 65
5 6 1 28 65
- 9 4 25 61� �

204 GPFS: A Parallel File System

GPFS configuration with high node

Following are summaries of system monitoring during various tests when
running 750 users (taken from peak time):

• iostat

� �
iostat

VSD server sp21n11

tty: tin tout avg-cpu: % user % sys % idle % iowait

0.0 171.4 0.6 11.4 20.4 67.6

(We only show you the three disks/VSDs for which this node is
VSD primary server)

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk6 35.8 614.6 25.0 1447 1626
hdisk7 38.8 769.2 28.6 1443 2403
hdisk8 36.2 568.0 27.4 1185 1655

VSD server sp21n13

tty: tin tout avg-cpu: % user % sys % idle % iowait

0.0 171.1 0.8 11.2 22.4 65.7

(We only show you the three disks/VSDs for which this node is
VSD primary server)

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk3 31.3 568.5 24.8 1273 1575
hdisk4 29.1 598.4 23.0 2156 842
hdisk2 43.7 934.9 31.9 2489 2195� �

Appendix E. Miscellaneous NotesBench Information 205

• vmstat

� �
vmstat

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 2 1 75398 15982 0 0 0 0 0 0 923 7824 4678 25 25 50 0
 3 1 75398 15992 0 0 0 0 0 0 921 6781 4051 22 23 55 0
 1 1 75396 15984 0 0 0 0 0 0 895 5774 3275 21 19 60 0
 3 1 75396 15983 0 0 0 0 0 0 947 7728 4455 25 26 49 0
 2 1 75395 15985 0 0 0 0 0 0 897 5737 3126 21 19 60 1
 1 1 75395 15988 0 0 0 0 0 0 886 4919 2580 20 16 64 0
 2 1 75395 15984 0 0 0 0 0 0 910 6059 3425 22 20 58 0
 2 1 75395 15988 0 0 0 0 0 0 868 5113 2877 20 18 62 0
 3 1 75395 15985 0 0 0 0 0 0 900 6477 3672 23 21 56 0
 2 1 75395 15986 0 0 0 0 0 0 860 5123 2769 19 16 65 0
 2 1 75395 15998 0 0 0 0 0 0 864 5380 3117 18 19 63 0
 2 1 75395 15989 0 0 0 0 0 0 930 6558 3883 23 22 55 0

Note.
We get this output from vmstat for one minute during all the test period:
(just mention it !!)

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
35 1 75847 15505 0 0 0 0 0 0 1046 9454 12656 29 53 18 0
37 1 75847 15498 0 0 0 0 0 0 1030 10439 11668 30 50 20 0
15 1 75845 15499 0 0 0 0 0 0 1047 9069 10004 28 44 28 0
12 1 75845 15499 0 0 0 0 0 0 1034 10148 9860 33 43 25 0
 4 1 75845 15499 0 0 0 0 0 0 1146 11037 8345 31 38 31 0� �

• sar

� �
sar -P ALL

21:49:15 0 19 15 0 66
1 18 17 0 65
2 13 12 0 75
3 13 12 0 75
4 13 9 0 79
5 9 9 0 82
- 14 12 0 74

21:49:25 0 23 24 0 53
1 23 22 0 55
2 24 18 0 58
3 18 18 0 64
4 17 14 0 69
5 17 14 0 69
- 20 18 0 61� �

206 GPFS: A Parallel File System

• tprof

� �
tprof -k -x sleep 300

(Initial section file __prof.all)
Process PID TID Total Kernel User Shared Other
======= === === ===== ====== ==== ====== =====

wait 1806 1807 21108 21108 0 0 0
wait 1548 1549 19735 19735 0 0 0
wait 1290 1291 19054 19054 0 0 0
wait 1032 1033 18113 18113 0 0 0

 wait 516 517 17212 17212 0 0 0
 wait 774 775 17086 17086 0 0 0
 update 23840 23013 3223 1414 1 1808 0

mmfsd 21750 18299 2354 1191 1117 46 0
tprof 29112 248533 1707 375 1270 62 0

 router 23326 67923 1252 584 1 667 0
mmfsd 21750 110495 1082 647 349 86 0
mmfsd 21750 179953 1055 591 386 78 0
mmfsd 21750 29741 972 551 354 67 0
mmfsd 21750 109463 941 571 321 49 0

(Summary section file __prof.all)
Process FREQ Total Kernel User Shared Other
======= === ===== ====== ==== ====== =====

wait 6 112308 112308 0 0 0
server 740 41074 17816 428 22830 0
mmfsd 57 27136 16482 9120 1534 0
update 1 3223 1414 1 1808 0
router 2 1798 789 4 1005 0
tprof 1 1707 375 1270 62 0
gil 4 1657 1657 0 0 0

hatsd 3 891 742 85 64 0
trace 1 270 270 0 0 0

swapper 1 165 165 0 0 0
sadc 1 132 128 4 0 0� �

Appendix E. Miscellaneous NotesBench Information 207

• tprof (cont.)

� �
(Subroutine section file __prof.all)

Subroutine Ticks % Source Address Bytes
============= ====== ====== ======= ======= =====

.waitproc 108526 56.9 ../../../../../src/bos/kernel/proc/dispatc
h.c 60576 244

.xbcopy 5204 2.7 misc.s 149468 284
.e_block_thread 1559 0.8 ../../../../../src/bos/kernel/proc/sleep2.

c 174976 1088
.ep_block_thread 1363 0.7 ../../../../../src/bos/kernel/proc/sleep3.

c 55992 1064
.exbcopy_ppc 1149 0.6 misc_ppc.s 748736 188
.disable_lock 1124 0.6 low.s 36868 764

.kwakeup 891 0.5 ../../../../../src/bos/kernel/proc/sleep.c
 157788 408

.simple_unlock 857 0.4 low.s 39168 512
.sc_flih 844 0.4 low.s 14024 260

.threaddata_sc 769 0.4 low.s 16996 7580
.simple_lock 751 0.4 low.s 38144 1024

.xmalloc 555 0.3 ../../../../../src/bos/kernel/ldr/xmalloc.
c 1064104 1604

.thread_unlock 547 0.3 ../../../../../src/bos/kernel/proc/sleep3.

� �

GPFS configuration with wide node

Following are summaries of system monitoring during various tests when
running 750 users (taken from peak time):

This screen contains the monitoring data of the wide node during the error
period.

208 GPFS: A Parallel File System

• vmstat

� �
vmstat 2

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
110 0 67533 140 0 1 12 12 12 0 291 3224 7223 62 38 0 0
302 0 67544 130 0 3 8 8 12 0 321 4199 6961 67 33 0 0
15 0 67563 127 0 4 10 12 13 0 277 4081 5356 64 36 0 0
18 0 67615 127 0 2 26 28 41 0 310 4236 7171 64 36 0 0
24 0 67623 129 0 3 8 8 8 0 314 4217 6160 64 36 0 0
43 0 67662 124 0 7 22 24 28 0 304 4598 7102 62 38 0 0
15 0 67672 140 0 3 13 16 18 0 311 3223 7804 58 42 0 0
295 0 67676 136 0 0 0 0 0 0 314 3293 9989 58 42 0 0
299 0 67680 138 0 1 3 4 4 0 300 3562 8449 65 35 0 0
292 1 67711 131 0 0 7 12 12 0 350 3721 7097 53 47 0 0
284 0 67753 136 0 0 11 24 25 0 341 3502 9667 58 42 0 0
283 0 67780 128 0 2 6 12 13 0 318 3492 6423 64 36 0 0
272 0 67788 136 0 0 4 8 12 0 318 3375 7596 60 40 0 0
23 0 67792 131 0 0 0 0 0 0 303 2998 8410 52 48 0 0
10 0 67796 133 0 1 3 4 4 0 382 3203 6743 62 38 0 0
15 0 67811 134 0 0 8 8 8 0 353 2801 9670 56 44 0 0
19 0 67818 134 0 0 4 4 4 0 340 2578 7393 62 38 0 0
27 0 67822 134 0 2 4 4 4 0 341 2811 8122 56 44 0 0

Note:
In the run queue you can see the mmfsd threads and the Lotus Notes threads.� �

Appendix E. Miscellaneous NotesBench Information 209

• tprof

� �
tprof -k -x sleep 300

(Initial section file __prof.all)

Process PID TID Total Kernel User Shared Other
======= === === ===== ====== ==== ====== =====
mmfsd 19996 23021 449 186 244 19 0
mmfsd 19996 12087 384 180 189 15 0
mmfsd 19996 27691 352 158 179 15 0
mmfsd 19996 26689 259 111 135 13 0
mmfsd 19996 134385 249 110 130 9 0
mmfsd 19996 20517 246 99 137 10 0
mmfsd 19996 21575 224 89 124 11 0
hatsd 14168 15471 213 176 31 6 0
update 18888 38319 207 69 0 138 0
router 10438 66657 199 89 0 110 0

(Summary section file __prof.all)
Process FREQ Total Kernel User Shared Other
======= === ===== ====== ==== ====== =====
server 512 7583 3623 44 3916 0
mmfsd 22 3331 1538 1640 153 0
router 2 313 120 2 191 0
hatsd 3 233 196 31 6 0
update 1 207 69 0 138 0

PID.25012 1 168 27 141 0 0
gil 4 53 53 0 0 0

 swapper 1 25 25 0 0 0
amgr 3 23 12 0 11 0
trace 1 20 20 0 0 0
adminp 1 15 4 0 11 0

Note:
The processes: server, update, router, amgr, sched and adminp, are Lotus
Notes server processes.� �

210 GPFS: A Parallel File System

• tprof (cont.)

� �
(Subroutine section file __prof.all)

Subroutine Ticks % Source Address Bytes
============= ====== ====== ======= ======= =====
.unlock_enable 2165 18.0 low.s 37636 508

.xbcopy 563 4.7 misc.s 194724 188
.trchook 152 1.3 trchka.s 63868 468

.threaddata_sc 125 1.0 low.s 16844 7732
.sc_flih 116 1.0 low.s 14004 240
.sys_call 84 0.7 low.s 14244 392

.lockl 82 0.7 low.s 44224 512
.unlockl 64 0.5 low.s 45312 1712

.disable_lock 62 0.5 low.s 36868 764
.xmfree 51 0.4 ../../../../../src/bos/kernel/ldr/xmalloc.

c 938372 1812
.v_relpages 48 0.4 ../../../../../src/bos/kernel/vmm/POWER/v_

relsubs.c 110268 588
.xmalloc 40 0.3 ../../../../../src/bos/kernel/ldr/xmalloc.

c 941308 1608
.simple_lock 38 0.3 low.s 38144 1024

 .e_block_thread 36 0.3 ../../../../../src/bos/kernel/proc/sleep2.
c 168820 1044

.simple_unlock 33 0.3 low.s 39168 512
.cs 31 0.3 low.s 13408 416� �

Appendix E. Miscellaneous NotesBench Information 211

212 GPFS: A Parallel File System

Appendix F. How to Get the Examples in This Book

The examples in this publication are available through the ITSO FTP site or
at the World Wide Web.

F.1 FTP Site

The files are available for anonymous FTP from www.redbooks.ibm.com. To
retrieve the files using FTP, you must have access to the Internet. If you do,
use the following procedure:

� �
#
mkdir /usr/local
cd /usr/local
ftp www.redbooks.ibm.com
ftp> bin
ftp> cd /redbooks/SG245165
ftp> get sg245165.tar.Z
ftp> quit
#
uncompress sg245165.tar.Z
tar xvf sg245165.tar
rm sg245165.tar
#� �

Figure 44. Installing Examples to Recommended Location Using FTP

F.2 WWW Site

The examples can also be downloaded using the World Wide Web. The URL
www.redbooks.ibm.com provides details on the procedure.

 Note:

These examples have been tested on pre-release versions of GPFS.
They may not be suitable for use in a particular environment, and are
not supported by IBM in any way. IBM is not responsible for your use of
these examples.

F.3 LiSt Open File

 Copyright IBM Corp. 1998 213

lsof (LiSt Open Files) version 4
(revision 4.16)

**
| The latest release of lsof is always available via anonymous ftp |
| from vic.cc.purdue.edu. Look in pub/tools/unix/lsof. |
**

**
* IMPORTANT! This README file explains how the lsof tar file is *
* assembled -- it′ s a ″wrapper″ tar file. Please read the *
* explanation of its naming and construction, immediately *
* following the initial list of supported dialects. *
**

Lsof version 4 lists open files for running Unix processes. It is
a descendent of ofiles, fstat, and lsof versions 1, 2, and 3. It
has been tested on these UNIX dialects.

AIX 4.1.•45“ and 4.2•.1“
BSDI BSD/OS 2.1 and 3.0 for Intel-based systems
DC/OSx 1.1 for Pyramid systems
Digital UNIX (DEC OSF/1) 2.0, 3.2, and 4.0
FreeBSD 2.1.•67“, 2.2 and 3.0 for Intel-based systems
HP-UX 9.x and 10.20
IRIX 5.3, 6.2,6.3, and 6.4
Linux 2.0.30, 2.1.2•89“, 2.1.3•45“, and 2.1.42 for Intel-

based systems
NetBSD 1.2 for Intel and SPARC-based systems
NEXTSTEP 3.1 for NEXTSTEP architectures
OpenBSD 2.0 and 2.1 for Intel-based systems
Reliant UNIX 5.43 for Pyramid systems
RISC/os 4.52 for MIPS R2000-based systems
SCO OpenServer Release 3.0 and 5.0.x for Intel-based

systems
SCO UnixWare 2.1.•12“ for Intel-based systems
Sequent PTX 2.1.9, 4.2.1, and 4.•34“
Solaris 2.•345“, 2.5.1, and 2.6-Beta_UpdateII
SunOS 4.1.x
Ultrix 4.2

Lsof 4 may work on older versions of these dialects, but hasn′ t
been tested there. Lsof versions 2 and 3 are still available and
may provide older dialect version support. See the notes on them
in this file.

214 GPFS: A Parallel File System

The pub/tools/unix/lsof/contrib directory on vic.cc.purdue.edu also
contains information on other ports.

Version 4 of lsof is distributed as gzip′ d and compressed tar archives
in the files:

ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/lsof.tar.gz
and
ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/lsof.tar.Z

These files are links to the current distribution, whose name
includes the revision number:

ftp://vic.cc.purdue.edu/pub/tools/unix/lsof_<rev>_W.tar.gz
and
ftp://vic.cc.purdue.edu/pub/tools/unix/lsof_<rev>_W.tar.Z

<rev> is the revision number -- e.g., 4.16. The _W′ ′ marks the
tar file as a wrapper -- the source tar file is inside the wrapper.
(A tar file with a .gz′ ′ suffix is gzip′ d; .Z′ ′ , compressed.)
The wrapper method is used to join instruction and PGP certificate
files with their source tar file. The PGP certificate file
authenticates the source tar file.

When the wrapper tar is gunzip′ d or uncompressed, and its tar
contents are extracted, these files are produced in the current
directory where the extraction was performed:

00.README.FIRST contains introductory distribution
information.

README.lsof_<rev> contains instructions for the
security-conscious on how to be
sure that no one has tampered with
the tar file.

 RELEASE_SUMMARY_<rev> is this file.

lsof_<rev>.tar is a tar file, containing the lsof
sources. When extracted with tar
it creates a subdirectory in the
current directory where the extraction
was performed, named lsof_<rev>.
The lsof source files will be found in
lsof_<rev>.

 lsof_<rev>.tar.asc is a PGP certificate, authenticating

Appendix F. How to Get the Examples in This Book 215

the lsof_<rev>.tar file. See the
README.lsof_<rev> file for more
information on PGP authentication of
lsof_<rev>.tar.

If you′ ve obtained this file and an lsof distribution from a mirror
site, please be aware that THE LATEST VERSION OF LSOF IS AVAILABLE
VIA ANONYMOUS FTP FROM VIC.CC.PURDUE.EDU (128.210.15.16) IN THE
PUB/TOOLS/UNIX/LSOF DIRECTORY.

(If you need a copy of gunzip, look for it at prep.ai.mit.edu in
pub/gnu.)

* The July 22, 1997 revision (4.14): improves Solaris VxFS support;
cleans up typos and confusion in Configure -help output; adds
00DIALECTS, containing UNIX dialect version numbers, for use by
Configure and the man page.

* The August 15, 1997 revision (4.15): better aligns Configure
-help output; improves Solaris VxFS handling; adds TCP/TPI state
information to socket file output; removes special commands for
Solaris 2.6 Beta test from Configure.

* The September 25, 1997 revision (4.16): adds the reporting of
TCP/TPI queue lengths (all dialects) and window sizes (Solaris
only); adds the -T option to deselect or select TCP/TPI info
reporting; fixes anomalies in socket file SIZE/OFF reporting
for some dialects; fixes a bug in service name range handling;
forces use of non-BSD Pyramid C compiler; adds support for Linux
glibc2; adds information to 00FAQ; distributes Kapil Chowksey′ s
<kchowksey@hss.hns.com> Perl 5 script, using lsof, that implements
an identd server; changes IRIX 6.4 xfs_inode guess.

Read the 00.README.FIRST in the lsof distribution first. Read the
00DIST distribution file for more details on feature additions and
bug fixes. The 00README distribution file gives background and
installation information. The 00FAQ file contains a list of
frequently asked questions and their answers. The 00DCACHE file
explains device cache file path formation. The 00PORTING file
contains information on porting lsof to other Unix dialects. The
00QUICKSTART file gives q quick introduction to using lsof. The
distribution files lsof.8 (nroff source) and lsof.man (nroff
formatted output) contain the manual page for lsof; it is the only
other documentation besides the source code (it′ s included).

216 GPFS: A Parallel File System

Version 4 Binaries
==================

Version 4 binaries for some revisions, dialects, and platforms may
be found in pub/tools/unix/lsof/binaries. Check the README files
for exact descriptions. Check the dialect-specific Makefiles for
installation instructions. CHECKSUMS and PGP certificates are
provided for authentication.

Please think very carefully before you decide to use a binary from
this distribution instead of making your own from the sources.
Here are some points to consider:

1. Lsof must run setgid or setuid. Are you willing to trust
that power to a binary you didn′ t construct yourself?

2. Lsof binaries may be generated on a system whose configuration
header files differ from yours. Under Digital UNIX (DEC OSF/1),
for example, lsof includes header files from the machine′ s
configuration directory, /sys/<name>. Are you willing to gamble
that your configuration directory′ s header files match the ones
used to compile lsof?

3. Lsof is often configured with specific options that are
determined from the configuration of the system on which it is
configured -- e.g., DECnet for Ultrix, Solaris patch level,
dynamic loader libraries, etc. Are you sure that the lsof
binary you retrieve will have been configured for your system?
If you get a binary that is misconfigured for you, it may not
work at all.

If you haven′ t already guessed, I believe firmly that you should
retrieve sources and build your own binary. If you still want to
use the distribution binaries, please authenticate what you retrieved
with the PGP certificates; please compare checksums, too.

Version 4 Checksums
===================

Security checksums -- both MD5 and sum(1) -- for revisions of lsof
version 4 are contained in the README.lsof_<rev> files in the
wrapper tar files of pub/tools/unix/lsof.

PGP Certificates
================

Appendix F. How to Get the Examples in This Book 217

The lsof source tar and binary files are accompanied by PGP
certificates in files that have an ″asc″ extension. The certificates
are signed with my public key, which may be found in the file:

ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/Victor_A_Abell.pgp

My key is also available via public key servers and:

http://www-rcd.cc.purdue.edu/abe/

Old Dialect Support
===================

Remnants of source code and binaries for dialects for which lsof
once provided support may be found on vic.cc.purdue.edu in:

ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/OLD/binaries
and
ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/OLD/dialects

Dialects no longer supported include:

CDC EP/IX
Motorola V/88
Novell UnixWare
Pyramid DC/OSx
Sequent DYNIX

Vic Abell <abe@cc.purdue.edu>
September 25, 1997

218 GPFS: A Parallel File System

Appendix G. Special Notices

This publication is intended to help both RS/6000 SP specialists and general
users who want to make use of a parallel file system. The information in
this publication is not intended as the specification of any programming
interfaces that are provided by General Parallel File Systems for AIX. See
the PUBLICATIONS section of the IBM Programming Announcement for
General Parallel File Systems for AIX for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM ′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the
mutual use of the information which has been exchanged, should contact
IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and
integrate them into the customer′s operational environment. While each

 Copyright IBM Corp. 1998 219

item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained
elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this
document should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

AIX BookManager
IBM LoadLeveler
NetView POWERparallel
PowerPC 604 PROFS
RS/6000 SP
SP2 System/390

220 GPFS: A Parallel File System

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

Appendix G. Special Notices 221

222 GPFS: A Parallel File System

Appendix H. Related Publications

The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this redbook.

H.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 225.

• RS/6000 SP PSSP 2.3 Technical Presentation, SG24-2080

• RS/6000 SP PSSP 2.2 Technical Presentation, SG24-4868

• RS/6000 SP High Availability Infrastructure, SG24-4838

• RS/6000 SP PSSP 2.2 Survival Guide, SG24-4928

• RS/6000 SP Monitoring: Keeping It Alive, SG24-4873

• RS/6000 SP: Problem Determination Guide, SG24-4778

• RS/6000 SP System Management: Easy, Lean, and Mean, GG24-2563

H.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037

H.3 Other Publications

These publications are also relevant as further information sources:

• IBM General Parallel File System for AIX: Installation and Administration
Guide, SA22-7278 (in press)

• IBM Parallel System Support Programs for AIX: Managing Shared Disks,
SA22-7279

 Copyright IBM Corp. 1998 223

• IBM Parallel System Support Programs for AIX: Administration Guide,
GC23-3897

• IBM Parallel System Support Programs for AIX: Installation and
Migration Guide, GC23-3898

• IBM Parallel System Support Programs for AIX: Diagnosis and Messages
Guide, GC23-3899

• IBM Parallel System Support Programs for AIX: Command and Technical
Reference, GC23-3900

• IBM Parallel System Support Programs for AIX: Event Management
Programming Guide and Reference, SC23-3996

• IBM Parallel System Support Programs for AIX: Group Services
Programming Guide and Reference, SC28-1675

• AIX Versions 3.2 and 4 Performance Tuning Guide, SC23-2365

224 GPFS: A Parallel File System

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The
latest information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

For a list of product area specialists in the ITSO: type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks/

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

 Copyright IBM Corp. 1998 225

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• Online Orders — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Web Site http://www.redbooks.ibm.com/
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

226 GPFS: A Parallel File System

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 227

228 GPFS: A Parallel File System

List of Abbreviations

ACL access control list

AIX Advanced Interactive
Executive

AMG adapter membership
group

ANS abstract notation syntax

APA all points addressable

API application
programming interface

BIS boot-install server

BSD Berkeley Software
Distribution

BUMP bring-up microprocessor

CP crown prince

CPU central processing unit

CSS communication
subsystem

CW control workstation

DB database

EM event management

EMAPI Event Management
Application
Programming Interface

EMCDB Event Management
Configuration Database

EMD Event Manager Daemon

EPROM erasable programmable
read-only memory

FIFO first in - first out

GB gigabytes

GL group leader

GPFS General Parallel File
System for AIX

GS group services

GSAPI Group Services
Application
Programming Interface

GVG global volume group

hb heart beat

HPS High Performance
Switch

hrd host respond daemon

HSD hashed shared disk

IBM International Business
Machines Corporation

IP Internet Protocol

ISB intermediate switch
board

ISC intermediate switch chip

ITSO International Technical
Support Organization

JFS journal fi le system

LAN local area network

LCD l iquid crystal display

LED l ight emitter diode

LRU least recently used

LSC l ink switch chip

LVM logical volume manager

MB megabytes

MIB management
information base

MPI message passing
interface

MPL message passing library

MPP massively parallel
processors

NIM network installation
manager

NSB node switch board

NSC node switch chip

 Copyright IBM Corp. 1998 229

OID object ID

ODM object data manager

PE parallel environment

PID process ID

PROFS Professional Office
System

PSSP Parallel System Support
Program

PTC prepare to commit

PTPE Performance Toolbox
Parallel Extensions

PTX/6000 Performance
Toolbox/6000

RAM random access memory

RCP remote copy protocol

RM resource monitor

RMAPI Resource Monitor
Application
Programming Interface

RPQ request for product
quotation

RSI remote statistics
interface

RVSD recoverable virtual
shared disk

SBS structured byte string

SDR System Data Repository

SMP symmetr ic
mult iprocessors

SNMP system network
management protocol

SPDM SP Data Manager

SPMI System Performance
Measurement Interface

SRC system resource
control ler

SSI single system image

TS topology services

TCP/IP Transmission Control
Protocol/Internet
Protocol

UDP User Datagram Protocol

VSD virtual shared disk

VSM visual system
management

230 GPFS: A Parallel File System

Index

Special Characters
/etc/sysctl.pman.acl 61
/var/adm/ras/mmfs. log 64
/var/mmfs/etc/cluster.preferences 70

A
abbreviations 229
acronyms 229
AFS

See Andrew File System
AIX Level 17
Andrew File System 4
Applications

Limit inteference 32
Planning 39, 40

Automatic startup 33

B
BalancedRandom 10
Benefits 82
bibliography 223
Block size 114
Buddy Buffers i

C
Cache 39
Capacity of disks 34
CLMGR

See Configuration Manager
Commands

bffcreate 19
cfgvsd 26
chgcss 24
createvsd 26
df 54
Efence 25
Eunfence 25
fencevsd 59
ha_vsd 45
hagsgr 68

Commands (continued)
ifconfig 25
installp 19, 20
lsattr 24
lsfencevsd 59
lslpp 16, 17, 18, 19, 21
lsof 29, 214
lssrc 44, 45
lsvsd 18, 26, 27, 55
mmchdisk 60
mmconfig 42
mmcrfs 52, 53, 96
mmdf 54, 97
mmfsadm dump fi les 72
mmlsdisk 55, 61
mmlsfs 55
mmremote 23
mount 54
notebnch 112
notesnum 113
oslevel 17
pmandef 62
rc.switch 25
register 112
SDRChangeAttrValues 28
SDRGetObjects 28
smitty 42, 43, 46
startsrc 24, 45
stopsrc 24
stopvsd 18, 27
supper 103
suspendvsd 18, 27
sysctl 23
sysctl mmremote clmgr 67
sysctl mmremote sgmgr 69
 sysctl svcrestart 22
ucfgvsd 18, 27
unfencevsd 59
updatevsdnode 25
vsdatalst 26, 31
vsdchgserver 59
vsdnode 25
vsdsklst 23

 Copyright IBM Corp. 1998 231

Commands (continued)
vsdvts 27

Configuration
block size 84, 114
Cache 39
Capacity of disks 34
data replication 85
Disk Failure 35
Example 41
Failure Groups 38
i-node size 84, 114
indirect size 85, 114
mallocsize 86, 114, 115, 116, 117
maxFilesToCache 85, 114, 116
metadata replication 85
Node Failure 33
Nodelist 31
Nodes 31
Number of nodes 83
pagepool 86, 114, 115, 116, 117
Performance of Disk 34
Planning disks for Lotus 84
prefetchThreads 114, 116
priority of daemons 87
Replication 117, 126
Stripe Group Manager 115, 117
Stripe Group Manager and Lotus Notes 84
Stripe method 84
Striping 35
Virtual Shared Disk Server 31
worker1Threads 114, 116
worker2Threads 114, 116

Configuration Manager 6, 67, 69, 70
Definition 6

copy set 73

D
Daemons

hagsd 33
hatsd 33
mmfsd 33, 116
named 122, 124

Description file 95
Directories

/spdata/sys1/install/pssplpp/PSSP-2.4 19, 20,
21

Directories (continued)
/usr/lpp/csd/bin 21
/usr/ lpp/mmfs/bin 21
/var/adm/ras 45
/var/mmfs 31, 42

Disk Descriptor 46
Disk Failure 35
Disks

Capacity 34
Failure 35
Performance 34
Planning disks for Lotus 84

Domain Name Service 122

E
errpt Messages
examples 213

F
Failure groups 35, 38, 66
fencevsd 59
File system tree scanning
Files

/dev/fs1 46, 54
/etc/cluster.nodes 31
/etc/inittab 45
/etc/script.cust 19
/etc/sysctl 22
/etc/sysctl.acl 22
/etc/sysctl.conf 23
/etc/sysctl.mmcmd.acl 22
/etc/sysctl.pman.acl 61
/etc/sysctl.vsd.acl 22
/gpfs/fs1 46, 54
/usr/lpp/csd/vsdfi les/vsd_rollback 25
/usr/ lpp/mmfs/samples/

mmfs.cfg.sample 43
/var/adm/ras/mmfs. log 64
/var/mmfs/disk.desc 46
/var/mmfs/etc/cluster.preferences 70
/var/mmfs/nodes.pool 42, 44
/var/mmfs/vsd.desc 46
cluster.preferences 84
Large Files 40
mmfs.log 45

232 GPFS: A Parallel File System

Files (continued)
named.data 123
named.rev 123
Small Files 40
sysctl.mmcms.acl 22
Virtual Shared Disk

Decriptor File 50
Fragmentation

G
General Parallel File System

Allocation mechanism 7
Block allocation file 8
Configuration Manager 6
copy set 73
Creation 51
Daemon 4, 5
failure groups 66
i-node aloocation file 7
Implementation 3
Introduction 1
List 54
Locking mechanism 11
Log files 8
Metadata Manager 7
Mount 54
Mounting 5
Overview 1
programming interfaces 163
quorum 67
replicas 60, 66
Replication 11, 66
Restrictions 2
Software Installation 20
Software level 21
Startup 45
stripe group 60, 69, 72
Stripe Group Manager 6
Striping 10
Token Manager 6
Token Manager Server 6
Why GPFS? 1

GPFS
See General Parallel File System

Group Services 45, 64
MmfsGroup 67

H
hagsgr 68
Hardware Requirements 13
High Availabil i ty Infrastructure 2
how to get examples 213

I
i-node 7, 84
I-node size 114
I-node table updating
IBM Recoverable Virtual Shared Disk 57, 59,

64, 65
Backup Server Name 49
Requisite level 18

IBM Recoverable Virtual Shared Disk Software
Level 18

installp 21
Indirect block 85
Indirect size 114
Installation

AIX level 17
General Parallel File System 20
Hardware requirements 13
IBM Recoverable Shared Disk 19
Installation roadmap 16
Number of nodes 83
Software requirements 14
Virtual Shared Disk 19

Installation Roadmap 16

J
JFS

See Journaled File System
Journaled File System 4

L
lock 73
Locking 11
Logical Volume manager
Logs

See System Logs
Lotus Notes Domino Server

Comparing JFS versus GPFS 104
Conclusions about the benchmarks 116

Index 233

Lotus Notes Domino Server (continued)
Comparing JFS versus GPFS (continued)

configuration of the test scenarios 106
Data from scenario 1 113
Data from scenario 2 114
Data from scenario 3 114
Data from scenario 4 115
Data results 112
Extra information 115
General information 105
Lotus NotesBench for Lotus Notes R4 105
Mail and Shared database 113
mail init 112
maxuproc 112
mmfsd 113
notebnch 112
NotesMark 113
notesnum 113
Objectives of benchmarks 105
register 112
Shared Discussion database test 105
Summary of the tests 105
table of benchmark results 113
Test methodology 111

GPFS Benefits 82
Implementation using GPFS 87

Check GPFS file system 97
Check VSDs 94
configuration VSDs 94
creation of GPFS file system 95
Creation of VSDs 91
file system for binaries 88
GPFS file system for databases 90
mount GPFS file system 97
Start VSDs 94

Installation of Data Bases 104
Installation of program files 104
Migration from JFS 124

Migration from a RS/6000 SP node 125
Migration from RS/6000 - AIX 124

Moving the Server between nodes 117
different IP address 121
Domain Name Service 122
Same TCP/IP configuration 119

Performance Parameters 83
block size 84, 114
data replication 85
i-node size 84, 114

Lotus Notes Domino Server (continued)
Performance Parameters (continued)

indirect size 85, 114
mallocsize 86, 114, 115, 116, 117
maxFilesToCache 85, 114, 116
metadata replication 85
Number of nodes 83
pagepool 86, 114, 115, 116, 117
Planning disks 84
prefetchThreads 114, 116
priority of daemons 87
Replication 117, 126
Stripe Group Manager 84, 115, 117
Stripe method 84
worker1Threads 114, 116
worker2Threads 114, 116

user environment 97
AIX automounter 98, 100, 118
File Collections 98, 100
group creation 100
supper 103
User creation 100

When to use GPFS 125
lsfencevsd 59
lsof command 214

M
Mail and Shared database 199
Mallocsize 39, 86, 114, 115, 116, 117

Memory 40
maxFilesToCache 85, 114, 116
maymap 91, 198
Memory

Pinned memory 39
Metadata Manager 7, 72, 73

Definition 7
Migrat ion

Lotus Notes migration to GPFS 124
mirror ing 65
mmchdisk 60
mmfsadm dump fi les 72
MmfsGroup 67
mmlsdisk 61
mounting fi le systems 5

234 GPFS: A Parallel File System

N
named 122, 124
Network File System 4
NFS

See Network File System
Node Failure 33
Nodelist 31
Nodes 31
Number of nodes 83

P
PagePool 39, 86, 114, 115, 116, 117
Parallel File Sorting

description 157
I/O experiments 165
I/O performance 169
I/O requirements 162
il lustration 158
running POE jobs 168

Parallel Systems Support Program
Requisite level 16

Parallel Systems Support Program Level 16
Parameters

block size 84, 114
Block sizes 40
data replication 85
Failure Groups 38
i-node size 84, 114
indirect size 85, 114
Mallocsize 39, 86, 114, 115, 116, 117
maxFilesToCache 85, 114, 116
metadata replication 85
Number of nodes 83
PagePool 39, 86, 114, 115, 116, 117
prefetchThreads 114, 116
priority of daemons 87
Replication 35, 117, 126
Stripe Group Manager 115, 117
Stripe method 84
worker1Threads 114, 116
worker2Threads 114, 116

PATH Variable 21
Pinned memory 39
Planning

block size 84, 114

Planning (continued)
Cache 39
Capacity of disks 34
data replication 85
Disk Failure 35
Failure Groups 38
i-node size 84, 114
indirect size 85, 114
mallocsize 86, 114, 115, 116, 117
maxFilesToCache 85, 114, 116
metadata replication 85
Node Failure 33
Nodes 31
Number of nodes 83
pagepool 86, 114, 115, 116, 117
Performance of Disks 34
Planning disks for Lotus 84
prefetchThreads 114, 116
priority of daemons 87
Replication 117, 126
Stripe Group Manager 115, 117
Stripe Group Manager and Lotus Notes 84
Stripe method 84
Striping 35
Virtual Shared Disk Server 31
worker1Threads 114, 116
worker2Threads 114, 116

Planning disks 84
pmandef 62
POSIX 2
prefetchThreads 114, 116
priority of daemons 87
Problem Management subsystem 61
PSSP

See Parallel Systems Support Program

Q
Quorum 67

Definition 32
Examples 32, 33

R
RAID-5 disk subsystem 65
Random 10

Index 235

replicas 60, 66
Replication 11, 66, 117, 126

algori thm 158
Data 35
data replication 85
Descriptor File 49
Metadata 35
metadata replication 85

RoundRobin 10
RVSD

See IBM Recoverable Virtual Shared Disk

S
SDR

See System Data Repository
SGMGR

See Stripe Group Manager
Software Requirements 14
stripe group 60, 69, 72
Stripe Group Manager 6, 67, 69, 70, 71, 73, 84,

115, 117
Definition 6
Stripe Group Manager and Lotus Notes 84

Stripe method 84
balancedRandom 36
random 38
roundRobin 35

Striping 10
Switch 14
switch network 64
sysctl mmremote clmgr 67
sysctl mmremote sgmgr 69
System Data Repository

File System Information 54
Heartbeat sensit ivity 28
VSD Node information 25

System Logs
mmfs.log 45

T
Tiger Shark 1
token 11, 73, 74
Token Manager 6, 73, 74

Definition 6

Token Manager Server 6, 74
Definition 6

Tuning
block size 84, 114
data replication 85
i-node size 84, 114
indirect size 85, 114
mallocsize 86, 114, 115, 116, 117
maxFilesToCache 85, 114, 116
metadata replication 85
mmfsd 116
Number of nodes 83
pagepool 86, 114, 115, 116, 117
Planning disks for Lotus 84
prefetchThreads 114, 116
priority of daemons 87
Replication 117, 126
Stripe Group Manager 115, 117
Stripe Group Manager and Lotus Notes 84
Stripe method 84
worker1Threads 114, 116
worker2Threads 114, 116

Twin tailed disks 14
twin-tailed or loop cabling 57, 65

U
unfencevsd 59

V
Virtual Shared Disk 57

Creation 13, 26
Requisite level 17
Server 31

Virtual Shared Disk Software Level 17
VSD

See Virtual Shared Disk
VSD client node 57, 72
VSD server node 57
VSD server primary node 57, 58
VSD server secondary node 57, 58
vsdchgserver 59

236 GPFS: A Parallel File System

W
worker1Threads 114, 116
worker2Threads 114, 116

Index 237

238 GPFS: A Parallel File System

ITSO Redbook Evaluation

GPFS: A Parallel File System
SG24-5165-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1998 239

S
G

2
4

-5
1

6
5

-0
0

P
rin

te
d

in
 t

he
 U

.S
.A

.

GPFS: A Parallel File System SG24-5165-00

IB
M

L

	UNKNOWN
	Contents
	Figures
	Tables
	Preface
	Chapter 1. Introduction
	Chapter 2. Installation and Configuration
	Chapter 3. Failover Scenarios
	Chapter 4. Migration
	Chapter 5. Applications
	Appendix A. GPFS and Standard AIX Commands
	Appendix B. GPFS Maximum File Size and Related Parameters
	Appendix C. The GPFS Configuration File (mmsdrcfg1)
	Appendix D. SSA Configuration
	Appendix E. Miscellaneous NotesBench Information
	Appendix F. How to Get the Examples in This Book
	Appendix G. Special Notices
	Appendix H. Related Publications
	How to Get ITSO Redbooks
	List of Abbreviations
	Index

	Special Characters
	A
	B
	C
	E
	F
	D
	H
	I
	G
	J
	L
	M
	N
	P
	Q
	R
	S
	U
	V
	T
	W
	ITSO Redbook Evaluation

