
SG24-5134-00

International Technical Support Organization

http://www.redbooks.ibm.com

All About Tivoli Management Agents

Yoichiro Ishii, Hiroshi Kashima

D
R
A
F
T

All About Tivoli Management Agents

March 1999

SG24-5134-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (March 1999)

This edition applies to the Tivoli program product, "Tivoli Management Framework" Version 3.6 for use
with AIX, Windows NT, Windows 95 and Windows 98.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. OSJB Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special Notices” on page 407.

Take Note!

D
R
A
F
T

Contents

Figures .xi

Tables. xv

Preface . xvii
The Team That Wrote This Redbook . xvii
Comments Welcome . xviii

Chapter 1. Introduction . 1
1.1 Tivoli 3.6 . 2

1.1.1 Advantages of Tivoli 3.6 . 3
1.1.2 Co-Existence of Different Managed Resources. 6

1.2 Overview of Tivoli Management Agent . 7
1.2.1 TMA Introduction . 7
1.2.2 Tivoli Management Agent and Tivoli Desktop 10
1.2.3 Tivoli Management Agent and Command Line Interface 11
1.2.4 Tivoli Management Agent and Web Interface 13
1.2.5 Functions Provided through the Endpoint Web Interface 14

1.3 Advantages of the Tivoli Management Agent 18
1.3.1 Less Disk and Memory Utilization . 19
1.3.2 Increased Scalability with Reduced Complexity 19
1.3.3 Lighten the Load on your TMR Server . 19
1.3.4 Simplifying the Tivoli Object Database . 20
1.3.5 Support of Tivoli Applications . 20
1.3.6 Command Line Interface . 21
1.3.7 MDist Repeater Function . 21
1.3.8 CCMS. 22
1.3.9 Endpoint Web Interface . 22
1.3.10 Simplified Version Upgrade Operations 22
1.3.11 Three-Tiered Structure Improves Performance and Availability. 25
1.3.12 Increased Reliability through Endpoint Login Flexibility. 25
1.3.13 Preloaded TMA. 25
1.3.14 Functions Requiring Managed Nodes . 26

1.4 Management Topology with TMA . 26
1.5 Summary and Future Direction . 28

Chapter 2. Tivoli Ready with Tivoli Management Agent 31
2.1 Overview of Tivoli Ready . 31
2.2 What Is Preloaded TMA? . 32
2.3 Advantage of Preloaded TMA. 34
2.4 Preloaded TMA Packaging . 35
© Copyright IBM Corp. 1998 iii

D
R
A
F
T

2.4.1 Preloaded TMA in Operating Systems and Applications 36
2.4.2 Zipped TMA Code . 36

2.5 Tivoli Ready with TMA Shipping Information. 39
2.6 Future Directions . 39

Chapter 3. Tivoli Management Agent Installation 41
3.1 Planning for TMA . 41

3.1.1 Installation Prerequisites . 41
3.1.2 System Requirements . 42
3.1.3 TMA Planning Considerations . 45

3.2 TMA Installation . 48
3.2.1 Overview of TMA Installation . 48
3.2.2 TMA Installation Comparison . 52
3.2.3 Overview of Installation Options . 57
3.2.4 How to Specify Installation Option . 59
3.2.5 Removing Endpoint Software . 62

3.3 Planning for Mass Installation. 64
3.3.1 Using NT Login Script. 64
3.3.2 Installation Completion Check . 67
3.3.3 TMR Redirection. 72

3.4 Configuring Preloaded TMA . 73
3.4.1 Preloaded TMA for Windows NT (Zipped TMA) 73
3.4.2 Preloaded TMA for Windows NT (Preloaded TMA in OS) 75
3.4.3 Preloaded TMA for UNIX (Zipped TMA Code) 77
3.4.4 Preloaded TMA for AIX (Preloaded TMA in OS) 80

3.5 Using Installation Tools . 83
3.5.1 Using Silent Installation . 83
3.5.2 Using TMASERV . 89

3.6 Error Messages . 94
3.6.1 Deleted Endpoint . 95
3.6.2 Dispatcher Number Conflict . 95

3.7 TMA Implementation Considerations . 96
3.7.1 Installation Considerations . 96
3.7.2 Environment Variables and Files Considerations 100

Chapter 4. Configuring the TMA Environment 105
4.1 Overview of the TMA Login Process. 105

4.1.1 Normal Login . 105
4.1.2 Initial Login . 105
4.1.3 Region Redirect . 111
4.1.4 Isolation . 111

4.2 Overview of Endpoint Policies and Configuration Files 112
4.2.1 allow_install_policy . 112
iv All About Tivoli Management Agents

D
R
A
F
T

4.2.2 select_gateway_policy . 113
4.2.3 after_install_policy . 115
4.2.4 login_policy . 115
4.2.5 Policy Arguments . 116
4.2.6 Policy Exit Code . 117
4.2.7 Applying Policies . 118
4.2.8 Configuration Files . 119

4.3 Customizing EP Policies. 121
4.3.1 Example of allow_install_policy . 121
4.3.2 Example of select_gateway_policy . 122
4.3.3 Example of after_install_policy . 123
4.3.4 Example of login_policy . 125

4.4 Gateway Migration . 128
4.4.1 Migration Completion . 129

4.5 TMR Redirection . 131
4.5.1 Redirectors . 131
4.5.2 How It Works . 131
4.5.3 Simplified Endpoint Configuration . 132
4.5.4 Sharing Endpoint Resources across TMRs. 133

4.6 Conclusion . 133

Chapter 5. Anatomy of TMA Behavior . 135
5.1 Our Test Environment . 135

5.1.1 Our Test Scenario . 136
5.2 Understanding Options to Control Endpoint Login 137
5.3 Tracing TMA Behavior . 138

5.3.1 Using -g Option for Endpoint Initial Login 138
5.3.2 Using -D lcs.login_interfaces Option for Endpoint Initial Login . 139
5.3.3 Using Other Options for Controlling lcfd Daemon 140
5.3.4 Using the wep Command for Modifying Login Information 140
5.3.5 Using Broadcast for Endpoint Login . 143
5.3.6 Using the Web Interface . 146
5.3.7 TMR Redirection. 150

5.4 Understanding TMA Behavior in Unexpected Situations 154
5.4.1 Understanding Initial Login . 154
5.4.2 Understanding Normal Login with Unexpected Situations 163
5.4.3 Migration . 179

5.5 TMA 3.2 and TMA 3.6 . 191
5.5.1 What is Auto Upgrade?. 191
5.5.2 Auto Upgrade of TMA . 192

5.6 Co-Existing Endpoints and EP Gateways on the Same Node 196
5.7 Problem Determination . 197

5.7.1 Generic Problem Determination . 198
 v

D
R
A
F
T

5.7.2 Debugging Information . 198

Chapter 6. TMA and Tivoli Management Applications 211
6.1 Implementation Considerations . 211

6.1.1 Available Applications on the TMA . 211
6.1.2 Planning to Use Tivoli Management Applications with the TMA 212
6.1.3 Dataless Profile Manager and the TMA 214
6.1.4 Endpoint Method Cache Management 217
6.1.5 Endpoint Methods and Tivoli Management Applications 219
6.1.6 Boot_method and Tivoli Management Applications 221
6.1.7 Database Backup and Tivoli Management Applications 223

6.2 Upcall Applications and the TMA . 223
6.2.1 Distributed Monitoring and the TMA . 223
6.2.2 Sentry Engine on TMA . 224
6.2.3 Sentry Gateway Process . 225
6.2.4 Booting Sentry Engine . 226
6.2.5 Distributed Monitoring Method Cache . 228
6.2.6 Distributed Monitoring and Endpoint Methods. 229
6.2.7 Understanding Distributed Monitoring Behavior with TMA. 238
6.2.8 Database Backup and Sentry Monitors on the TMA 242
6.2.9 The wclreng Command and the TMA . 243

6.3 Downcall Applications and the TMA . 246
6.3.1 Software Distribution and TMA . 246
6.3.2 Installation Consideration . 246
6.3.3 MDist Repeater and Endpoint Gateway 247
6.3.4 Software Distribution and Endpoint Method 247
6.3.5 Understanding Software Distribution Behavior with TMA 249

6.4 Other Applications and the TMA . 250

Chapter 7. Advanced Knowledge of the TMA 251
7.1 The wadminep Command. 251

7.1.1 Normal Usage of the wadminep command 251
7.1.2 Administrative Operations with the wadminep Command 251

7.2 TMA and the Tivoli Object Database . 254
7.2.1 Location of Tivoli Object Database . 254
7.2.2 Contents of TMA Databases . 257
7.2.3 The wbkupdb Command and TMA Information 259
7.2.4 Exploring the Tivoli Object Database . 260

7.3 Boot Process . 266
7.3.1 ep_mgr Process . 267
7.3.2 The gateway Process . 268
7.3.3 The lcfd Process for the UNIX Endpoint 268
7.3.4 lcfd.exe Process for NT Endpoint . 268
vi All About Tivoli Management Agents

D
R
A
F
T

7.4 Endpoint Login and Methods . 271
7.5 Endpoint Status File . 279

Chapter 8. Overview of TMA Internals and Application Development281
8.1 Application Design . 281

8.1.1 Tivoli Object Methods . 281
8.1.2 Downcalls and Upcalls . 285
8.1.3 Scalability Considerations for TMA Applications 289

8.2 Introduction to Tivoli ADE Extended IDL . 291
8.2.1 TEIDL Compiler Input . 292
8.2.2 TEIDL Compiler Output . 292
8.2.3 The Stub and the Skeleton . 296
8.2.4 Method Templates . 298
8.2.5 Configuration Script . 299
8.2.6 Building a Client-Server Program . 299

8.3 Tools for Endpoint Applications . 300
8.3.1 LCF Environment for Methods and Tasks 300
8.3.2 LCF Environment for CLIs . 301
8.3.3 Debugging Endpoint Method . 303

8.4 Application Runtime Library . 304
8.4.1 Memory Management . 304
8.4.2 Distributed Exceptions . 305
8.4.3 Sequence Manipulations . 306
8.4.4 File System Input/Output . 307
8.4.5 Logging Functions . 308
8.4.6 ADR Marshalling Functions . 309
8.4.7 IOM Support for Endpoints . 310
8.4.8 Functions for Launching Processes . 311
8.4.9 Miscellaneous Functions . 312

8.5 The Common Porting Layer Runtime Library 312
8.5.1 Binary Tree Search Functions . 312
8.5.2 Directory Entry Functions . 313
8.5.3 UNIX get Functions . 313
8.5.4 printf, fclose, fopen, getc Functions . 314
8.5.5 Temporary File Functions . 314
8.5.6 Callback Functions . 314
8.5.7 Miscellaneous Functions . 315

8.6 Dependencies . 315
8.6.1 The LCF Dependency Mechanism . 316
8.6.2 Usage for Dependencies . 316
8.6.3 The Gateway Repository . 317
8.6.4 Location for Storing Dependencies on the Endpoint 317
8.6.5 The DependencyMgr Object . 318
 vii

D
R
A
F
T

8.6.6 Steps for Managing Dependencies . 318
8.6.7 Using Dependencies to Deploy Tools to Endpoints 318

8.7 TMA Sample Application . 320
8.7.1 Process Sequence . 320
8.7.2 The Source Tree . 322
8.7.3 Source Files . 323
8.7.4 The Upsamp Files . 324
8.7.5 The Downsamp Files . 333
8.7.6 The Export Tree . 341

8.8 Building the Sample Application . 342
8.8.1 Sequence of Steps for Building a TMA Application 343
8.8.2 View the Log Information . 351

Chapter 9. Management Examples Using TMA 359
9.1 Managing Enterprise Environment with TMA 359

9.1.1 Allocation of EP Manager, EP Gateway and EP 359
9.1.2 High Availability Solution for TMR Server 371

9.2 Endpoint Login Interfaces List Configuration 371
9.2.1 Deployment Considerations . 376

9.3 Useful Tools for Using TMA . 377
9.3.1 Endpoint Gateway Migration Tool . 377
9.3.2 Duplicate Endpoint Login Check Tool . 379
9.3.3 Endpoint Status Check Tool . 382

Chapter 10. Tivoli Management Agent Performance Conisderations 385
10.1 TMA Performance Tuning Strategy. 385

10.1.1 Operating System and Network Tuning. 386
10.1.2 TMA Tuning . 386
10.1.3 Tivoli Management Application Tuning 386
10.1.4 Operational Considerations . 387

10.2 TMR and Network Design Approach . 387
10.2.1 Design and Tuning . 388
10.2.2 Design Considerations . 389

10.3 Understanding Parameters for Performance Tuning 389
10.3.1 Endpoint Gateway . 389
10.3.2 Endpoint Manager . 390
10.3.3 Operating System and Network . 391

10.4 Sample Configurations . 392
10.4.1 Endpoint Configuration . 392
10.4.2 Endpoint Gateway Configuration . 392

10.5 Improving Performance of TMA . 393
10.5.1 Endpoint Policy Considerations . 393
10.5.2 MDist Repeater and File Package Source Host 393
viii All About Tivoli Management Agents

D
R
A
F
T

Appendix A. Endpoint Policy Argument Values 395
A.1 Windows 95 . 395
A.2 Windows 98 . 396
A.3 Windows NT . 397
A.4 AIX V4.2 . 398

Appendix B. Making Batch Files . 401
B.1 Upcall Server (Platform) . 401
B.2 Upcall Client (Endpoint) . 402
B.3 Downcall Client (Platform) . 404
B.4 Downcall Server (Endpoint) . 405

Appendix C. Special Notices . 407

Appendix D. Related Publications. 411
D.1 International Technical Support Organization Publications 411
D.2 Redbooks on CD-ROMs . 411

How to Get ITSO Redbooks . 413
How IBM Employees Can Get ITSO Redbooks . 413
How Customers Can Get ITSO Redbooks. 414
IBM Redbook Order Form . 415

List of Abbreviations. 417

Index . 419

ITSO Redbook Evaluation . 423
 ix

D
R
A
F
T

x All About Tivoli Management Agents

D
R
A
F
T

Figures

1. Tivoli Products History . 3
2. Internationalization Implementation of Tivoli 3.6 . 5
3. The EndpointManager Icon on the Tivoli Desktop 11
4. The Endpoint Web Interface . 13
5. The Methods Stored in the Cache on TMA . 15
6. The Network Address Configuration Page. 17
7. Software Version Upgrade in a TMA Environment 24
8. Three-Tiered Management Structure. 27
9. The Tivoli Ready Logo . 31
10. The Directory Tree of Preloaded TMA for Windows NT 33
11. Activating Preloaded TMA . 33
12. Implementing Preloaded TMA Machines . 35
13. How to Use the Zipped TMA Code . 37
14. The Contents of the Zipped TMA Code . 38
15. Integrating Network Management with Systems Management 40
16. Endpoint Manager Icon on the Desktop. 49
17. Create Gateway Panel. 51
18. SIS Dialog for Endpoint Attributes . 60
19. Endpoint Options in InstallShield . 61
20. The Mass Installation with the NT Login Script . 65
21. Output of logchk script . 72
22. The Zipped TMA Images for Each Platform. 74
23. Preloaded TMA for AIX Installation Completion. 82
24. Starting InstallShield . 84
25. Setup Dialog . 84
26. Installation Option Dialog . 85
27. Change Directory Dialog . 85
28. Installation Option Dialog . 86
29. Advanced Configuration Dialog . 86
30. Successfully Installed. 87
31. Installation Timeout . 87
32. Installation Failure . 88
33. Setup Complete Dialog . 88
34. TMASERV Server Environment. 90
35. Windows NT Services Dialog. 92
36. The Tivoli Endpoint-1 NT Service . 98
37. Initial Login Process. 106
38. Finding a Region . 107
39. Gateway Selection (Sequence Chart) . 110
40. Normal Login . 111
© Copyright IBM Corp. 1998 xi

D
R
A
F
T

41. The Endpoint Policies . 112
42. Gateway Selection and New Login Interfaces . 114
43. New Login Interfaces from Endpoint Manager. 114
44. Policies Running on Endpoint Manager. 115
45. Example of after_install_policy (part 1 of2) . 123
46. Example of after_install_policy (part 2 of 2). 124
47. Endpoint Subscription Using Policy . 125
48. Log to Notice Using Policy . 127
49. Gateway Migration . 129
50. ITSO Austin Test Environment for the TMA Project 135
51. The wep Command Used to Modify Endpoint Login Information. 141
52. Browsing the Endpoint Login Information . 142
53. Location Configuration Panel. 147
54. Password Dialog . 148
55. Restart Message . 148
56. Local Configuration Panel after Rescue . 149
57. The Top Level Policy Regions . 150
58. The TMR Redirection. 152
59. The Initial Login when the EP Manager is Unavailable 155
60. Endpoint Initial Login to the Alternate Endpoint Gateway 158
61. One of the Selected Gateways in the Policy is Not Available 160
62. There is No Available Gateway in the select_gateway_policy. 162
63. The Normal Login when EP Manager is Unavailable 164
64. The Recovery from Isolated Situation . 166
65. The Recovery from the Isolated Situation Using Broadcast 168
66. The Isolated Endpoint . 170
67. Issuing Upcall when the EP Gateway is Unreachable 172
68. Issuing Downcall when the Endpoint is Unreachable 175
69. Issuing Upcall when EP Manager is Unavailable. 177
70. Issuing Downcall when EP Manager is Unavailable 178
71. The Endpoint Gateway Migration with the wep Command 180
72. Migration Completion by EP Login. 182
73. Migration Completion by Upcall . 184
74. Migration Completion by Downcall. 186
75. Migration Completion by Isolate Login. 189
76. The Process Flow of the Auto Upgrade Function 194
77. The Location of the TMA Log Files . 199
78. The Combination of the EP Manager, EP Gateway and EP 213
79. The Difference between Dataless and Classic Profile Managers 215
80. The Dataless Profile Manager and Full Managed Node Subscriber 216
81. Endpoint Method Cache Management . 218
82. The Dependency Manager and Endpoint Methods 221
83. The Sentry Engine Process in the NT Task Manager 225
xii All About Tivoli Management Agents

D
R
A
F
T

84. The Sentry Engine Processes . 226
85. The Booting Procedure of the Sentry Engines. 227
86. Sending the Tivoli Notice for the First Time. 229
87. Sending Tivoli Notices Routinely . 231
88. Sending the T/EC Event for the First Time . 232
89. Sending TEC Event Routinely . 233
90. Logging to Endpoint Manager . 235
91. Logging to the Endpoint Gateway . 236
92. Logging to Endpoint . 237
93. The Role of the sentry_gateway Process . 238
94. The Sentry Monitor without the Endpoint Manager 239
95. The Sentry Monitor without Endpoint Gateway . 240
96. Sentry Monitor and Endpoint Gateway Migration 242
97. The wclreng Command and Profile Distribution. 244
98. The wclreng Command and Flush Engine. 245
99. Distributing a File Package . 248
100.Distributing File Package with Migration . 249
101.The epmgr.bdb Database . 255
102.Tivoli Databases for Managing TMA . 256
103.The Contents of Tivoli Object Databases for Managing TMA 257
104.The Endpoint List after the Endpoint Login . 260
105.Accessing the Endpoint Entry in the Tivoli Object Databases. 265
106.Boot Method of Each Process. 267
107.NT Service for Endpoint . 269
108.Tivoli Icon and Logo Mark . 270
109.Tivoli Endpoint Statistic Window . 271
110.Endpoint Initial Login and Methods . 272
111.Remote Call in the Full Framework . 282
112.The Downcall Processes. 286
113.The Upcall Processes . 288
114.CORBA Stub and Skeleton . 297
115.Downcall Sequence of a Sample Application . 320
116.Upcall Sequence of a Sample Application . 321
117.Source Tree. 322
118.The Export Tree . 342
119.The Single TMR Configuration . 360
120.The Advantage of Three-Tiered Structure. 361
121.Creating the Endpoint Gateway on the Endpoint Manager 364
122.Multiple Endpoint Gateways Configuration . 365
123.Creating the Endpoint Gateway on the Endpoint 366
124.Endpoint Gateway Migration Operation . 367
125.Multiple TMR Configuration. 369
126.Multiple TMR Configuration (Primary TMR and Secondary TMR) 370
 xiii

D
R
A
F
T

127.The Multiple Endpoint Gateways Configuration Sample 372
128.The Single TMR Configuration Sample. 373
129.The Classic Multiple TMR Configuration Sample 374
130.The Multiple TMR Configuration Sample . 375
131.Endpoint Status Check with NetView for AIX . 383
132.Performance Tuning Modeling . 385
133.Interactions Between Each System. 388
xiv All About Tivoli Management Agents

D
R
A
F
T

Tables

1. Comparison of the Features of the TMA and the Full Managed Node . . . 18
2. Comparison Between Preloaded TMA and Normal TMA Installation 34
3. Tivoli Ready with TMA Shipping Information . 39
4. Endpoint Support . 53
5. Prerequisites . 53
6. Network Related . 54
7. Installation Options . 55
8. Ease of Use . 55
9. When to Use Endpoint Installation Methods . 56
10. Installation Locations . 58
11. The Overview of the Test Machines . 136
12. The Test Scenario in the TMA Project . 136
13. Case 1: The -g Option Function Test. 139
14. Case 2: The -g Option Function Test. 139
15. Case 3: The wep set gateway Command Test . 142
16. Case 2: The wep set interfaces Command Test 143
17. Case 5: The Broadcasting Test in Multiple EP Gateways Environments 144
18. Case 6: The Broadcasting Test in the Multiple TMR Environment 145
19. Case 7: The bcast_disable Option Function Test 145
20. Case 8: The Endpoint Web Interface Test. 149
21. Case 9: TMR Redirection Test. 151
22. Case 10: The Initial Login when EP Manager is Unavailable 155
23. Case 11: The Initial Login when EP Gateway is Unavailable 157
24. Case 12: The Initial Login when EP Gateway is Unavailable 159
25. Case 13: An Unexpected Situation during EP Gateway Selection 159
26. Case 14: An Unexpected Situation during EP Gateway Selection 161
27. Case 15: The Normal Login when the EP Manager is Unavailable 163
28. Case 16: The Endpoint Isolation . 165
29. Case 17: The Endpoint Isolation . 167
30. Case 18: The Endpoint Isolation . 169
31. Case 19 and 20: Network Becomes Unavailable after Login Completion 171
32. Case 21 and 22: EP Manager is Unavailable after Login Completion . . . 176
33. Case 23: EP Gateway Migration . 179
34. Case 24: Migration Completion by EP Login . 181
35. Case 25: Migration Completion by Upcall . 184
36. Case 26: Migration Completion by Downcall . 186
37. Case 27: Migration Completion by Isolate Login 188
38. The Contents of the gatelog File . 200
39. The Message Contents of the lcfd.log File. 201
40. Available Tivoli Management Applications on the TMA 211
© Copyright IBM Corp. 1998 xv

D
R
A
F
T

41. The Dependency Set for Each Application . 219
42. Sentry Monitor without Endpoint Manager. 239
43. The Sentry Monitor without Endpoint Gateway . 240
44. Sentry Monitor and Endpoint Gateway Migration 241
45. The Sample Configuration of Software Distribution 247
46. Distributing File Package with Migration . 249
47. Tivoli Database Locations . 257
48. TEIDL Output . 292
49. Interpreter Types . 302
50. Memory Management Functions . 304
51. Try/Catch Frame Macros . 305
52. Variable Argument Exceptions. 306
53. Sequence Manipulations . 307
54. File System Input and Output . 307
55. Logging Functions. 308
56. Functions for Launching Processes . 311
57. Miscellaneous Functions. 312
58. Source Files . 323
59. Comparison Between LAN and WAN . 362
xvi All About Tivoli Management Agents

D
R
A
F
T

Preface

The Tivoli Management Agent is delivered in a variety of ways, from
preloaded systems, to being packaged with communications adapters and
operating systems. When a company decides to deploy the Tivoli Framework,
how can they take advantage of the Tivoli Management Agents already
existing on many of their users’ systems? This redbook investigates the
prepackaging of Tivoli Management Agents and documents techniques to
quickly enable these agents and to immediately utilize them in conjunction
with the Tivoli Management Applications.

We will investigate and document how to start the agents, how to have them
automatically insert themselves into a Tivoli Management Region, and how to
have the systems on which they execute added to the appropriate
application's profile managers. This book will help customers, and those who
provide services for customers, build a plan for the rapid deployment of Tivoli
in environments ranging from small to large.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Yoichiro Ishii is an Advisory I/T Specialist at the International Technical
Support Organization, Austin Center. He writes extensively and teaches IBM
classes worldwide on all areas of System Management and Network
Management. Before joining the ITSO in mid-1998, Yoichiro worked in the
technical support department in IBM Japan and supported large government
projects from 1995 to 1998.

Hiroshi Kashima is an Advisory Systems Engineering Specialist in IBM
Japan. He has many years of experience in Networks and Systems
Management, and in Banking Application Development using Java, C++, and
CORBA. His areas of expertise include distributed programming on the AIX
and Windows NT environment. He has written extensively on installation,
configuration, and application programming.

Thanks to the following people for their invaluable contributions to this
project:

Bart Jacob
International Technical Support Organization, Austin Center
© Copyright IBM Corp. 1998 xvii

D
R
A
F
T

Tara Campbell
International Technical Support Organization, Austin Center

Marcus Brewer
International Technical Support Organization, Austin Center

Russell Hill
Tivoli Systems

Victoria Stevens
Tivoli Systems

Rich LaSota
Tivoli Systems

Gene Cherry
Tivoli Systems

Martin Voshell
Tivoli Systems

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 423
to the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
xviii All About Tivoli Management Agents

D
R
A
F
T

Chapter 1. Introduction

The Tivoli Management Framework provides a set of common services and
facilities that enable powerful systems management applications. This
framework provides benefits to developers who want to take advantage of
services and facilities that hide the complexity of the networking environment.
By doing so, the Tivoli Management Framework allows the developer to
concentrate on developing solutions that apply across a wide range of
operating environments.

Likewise, the framework is valuable to those responsible for managing
complex environments because it provides common user interface elements
and hides differences in the operating environments of managed systems.

The Tivoli Framework is based on industry standards, such as the Object
Management Group’s (OMG) Common Object Request Broker Architecture
(CORBA), and has had wide acceptance with a large number of system
management application developers. Designing a framework, such as the
Tivoli Management Framework, requires meeting two (sometimes conflicting)
criteria: stability and extensibility.

Stability provides application developers with confidence that the applications
they develop will continue to run when new versions of the framework
become available. Extensibility provides customers with the knowledge that
the framework can evolve over time to meet their changing requirements.

Version 3.2 of the Tivoli Management Framework introduced major new
extensions to the framework’s architecture. These new extensions included
the Lightweight Client Framework (LCF) architecture. This version of the
framework is a testament to both the stability and extensibility of the Tivoli
product’s architecture. Although the framework at Version 3.2 supported
these extensions, few of the Tivoli Management Applications took advantage
of them until their next release, which was at Version 3.6.

Now that Tivoli 3.6 has been released, and the applications take full
advantage of the new architecture extensions, we have an even more
powerful set of functions and services for distributed systems management.
Version 3.6 of the Tivoli Management Framework and applications can be
installed and configured in the same way as previous versions. In addition,
applications can now take advantage of new client types that run a
component called the Tivoli Management Agent (TMA). Utilizing the TMA with
Version 3.6 provides a new level of extensibility and allows you to scale your
management across the entire enterprise.
© Copyright IBM Corp. 1998 1

D
R
A
F
T

In parallel with the new extensions for Tivoli, Tivoli has announced a
Tivoli Ready logo. This logo on a partner company’s product indicates that
the product has passed rigorous product certification testing by Tivoli. The
Tivoli Management Agent will be provided with and used by Tivoli Ready
products. The management interface provided by the TMA is the preferred
management interface to be used by Tivoli-based management applications.

Therefore, Tivoli Ready products are truly ready to take advantage of Tivoli’s
technologies and to extend the management services of Tivoli software to
manage applications and devices. In Chapter 2, “Tivoli Ready with Tivoli
Management Agent” on page 31, we will talk about Tivoli Ready products in
more detail.

This redbook describes the features and services provided by the TMA in
detail. Solutions and examples of using the TMA are also provided in this
redbook.

1.1 Tivoli 3.6

Version 3.6 of the Tivoli Enterprise products are an extremely strategic set of
products. From now on, we will refer to this set of products as Tivoli 3.6. Tivoli
3.6 encompasses almost all features and services that were provided by the
previous version of the Tivoli products and also extends these features. Tivoli
3.6 provides real extensibility and flexibility for customers.

As we mentioned, LCF architecture was available in Version 3.2 of the Tivoli
Management Framework. However, there were few applications that could
support the LCF Endpoint. In Tivoli 3.6, all Tivoli Management core
applications support the LCF architecture and can run on TMA machines.
2 All About Tivoli Management Agents

D
R
A
F
T

Figure 1. Tivoli Products History

1.1.1 Advantages of Tivoli 3.6
The most significant enhancements across the Tivoli 3.6 product set include:

 • Providing TMA support for applications

 • Support for additional platforms

 • Internationalization

We discuss the details of the TMA throughout the rest of this redbook.
Therefore, this section mainly introduces the other enhancements of Tivoli
3.6.

1.1.1.1 Supporting Many Platforms
Tivoli 3.6 supports many platforms with the TMA. The following are the main
platforms Tivoli 3.6 TMA supports:

 • UNIX

 • Windows NT

 • Windows 98, 95, 3.x

 • Netware 3, 4

 • OS/2

 • AS/400

TME V3.0

Admin V3.0

T/EC V2.6

Sentry V3.0

Inventory V3.0

Courier V3.0

TME10 V3.1

User
Administration
V3.1

T/EC V3.1
Distributed
Monitoring V3.0.2

Inventory V3.1

Software
Distribution
V3.1

Security V3.2

Remote
Control V2.1

Software
Installation
Service V1.0

TME10 V3.2
LCF

Distributed
Monitoring V3.5

Inventory V3.2

Tivoli V3.6
TMA

User
Administration
V3.6

Security V3.6

Distributed
Monitoring V3.6

T/EC V3.6

Software
Distribution
V3.6

Inventory V3.6

Remote
Control V3.6

Software
Installation
Service V3.6

Tivoli
Future Release
Introduction 3

D
R
A
F
T

 • OS/390

As you can see, Tivoli 3.6 supports many platforms—from the PC to the
mainframe. Once the Tivoli Framework is installed, the customer can manage
all system types running the TMA or other Tivoli client software with a single
operation, using the Desktop interface and the CLI. This is because the
framework and applications provide platform independence. This means the
type of target on which a management operation is to be performed is
transparent to the administrator or program initiating the operation.
Therefore, seamless operations become available for multiple platforms in
the Tivoli 3.6 environment. This platform independence is one of the many
benefits provided by the Tivoli architecture.

1.1.1.2 Internationalization
National language support is one of the most important features for
customers who don’t use English, because the user interface is very
important in systems management software. Tivoli 3.6 provides the
internationalization feature using the implementation illustrated in Figure 2 on
page 5.
4 All About Tivoli Management Agents

D
R
A
F
T

Figure 2. Internationalization Implementation of Tivoli 3.6

Previous versions of Tivoli had separate source code for each supported
non-English language. In the internationalization implementation, the Tivoli
products contained hard-coded message catalogs in their source files.
Keeping the source code across all languages at the same level was difficult,
at best. As a result, patch modules were needed for each language’s version.
When these versions were not kept synchronized, it caused a lot of confusion
for the customer.

The internationalized Tivoli 3.6 has one common set of source code with
many language code sets. This means that supporting other languages is
easier and faster than with previous versions of Tivoli. This implementation of
the internationalization feature is similar to the implementation of the IBM AIX
operating system. For example, Figure 2 shows how to load the Japanese
language code set. In this case, we simply set the system language
environment to Japanese, and Tivoli 3.6 displays the Desktop with Japanese

LANG=Ja_JP

Message Catalog

French

Japanese

English
Introduction 5

D
R
A
F
T

characters. All messages are built into message catalogs that are maintained
separately from the source code.

Tivoli 3.6 presently supports the following languages:

 • Chinese

 • English

 • French

 • Japanese

 • Korean

 • Portuguese

1.1.2 Co-Existence of Different Managed Resources
Although the Tivoli Management Agent provides a powerful interface for
managing a wide variety of systems, Tivoli 3.6 still supports the following
types of managed resources used in previous versions, and also keeps
consistency among these different managed resources:

 • Managed Node

 • PC Managed Node

 • Netware Managed Site

It is possible to simply upgrade to Tivoli 3.6 and maintain your current
management architecture using the previous managed resource types. To
take advantage of the TMA in an existing environment that is being upgraded
to Version 3.6, Tivoli provides the Tivoli Migration Toolkit.

This toolkit helps with the creation of managed resources based on the Tivoli
Management Agent (often referred to as Endpoints) and the migration of
profiles and other objects related to the management applications, so they
can take advantage of the new client type.

The TMA replaces the above managed resources, while using a surprisingly
small amount of disk space and memory. As we mentioned, Tivoli 3.6
provides both stability and extensibility to all customers. This redbook is
designed to help Tivoli 3.6 users build a strong understanding of the TMA and
its new architecture.
6 All About Tivoli Management Agents

D
R
A
F
T

1.2 Overview of Tivoli Management Agent

The most visible new feature of Version 3.6 of the Tivoli Management
Framework is the Tivoli Management Agent (TMA), previously called the
Lightweight Client Framework (LCF) Endpoint. The TMA is an extension of
the classic TME 10 Framework that increases scalability of TMRs, while
reducing the hardware and software requirements on the managed systems.
The following sections describe this new architecture and its main
components, including the TMA.

1.2.1 TMA Introduction
The TMA-related extensions to the framework introduce three object types
that represent system roles in a TMR:

 • Endpoint (TMA)

 • Endpoint gateway

 • Endpoint Manager

Although each of the above items logically represents a different system’s
role in the Tivoli environment, it should be noted that a single physical system
can contain more than one of the above object types. That is, one system
could contain an Endpoint Manager, an Endpoint gateway and an Endpoint.
(However, in most environments, Endpoint gateways will reside on different
systems than Endpoint Managers.)

1.2.1.1 Endpoint
The Endpoint is installed on systems to be managed. The Endpoint does not
include any capability to perform management operations on other systems.
That is, like most end-user workstations, these systems will be managed, but
they will not be involved in the management of other nodes. More specifically,
the Endpoint does not provide true Tivoli Desktop or command line interface
so these resources in the network can not be managed from the Endpoint.

The Endpoint function resides in the node to be managed. It runs as a small
daemon, or background task. This daemon is called the lcfd. It is responsible
for executing methods at the request of a managing system. Its only
connection to and knowledge of the rest of the Tivoli world is through an
Endpoint gateway.

When an Endpoint is installed, a minimal number of files are installed on the
managed system. Functionally, the only thing that is installed is the lcfd itself.
When an application invokes a method to be executed on the managed
system (Endpoint), the method is automatically downloaded to the Endpoint
Introduction 7

D
R
A
F
T

and executed by the lcfd. The methods that are downloaded to the Endpoint
are cached at the Endpoint. As long as that method stays in the cache, it
does not need to be downloaded again at a second invocation of the same
method. The cache on the Endpoint is a disk cache. Therefore, it is persistent
across IPLs of the managed system.

1.2.1.2 Endpoint Gateway
The Endpoint gateway is a software component that runs on a full Tivoli
Managed Node, enabling the Managed Node to operate as a gateway
between a cluster of Endpoints and the rest of the TMR. Each TMR can have
multiple Endpoint gateways. The number of gateways will depend on factors
such as available system resources, the number of Endpoints, and network
topology. Currently, one TMR Server can handle up to approximately 200
Endpoint gateways. This limit is actually based on the number of Managed
Nodes that one TMR Server can manage. There is no precise limit to how
many Endpoints one Endpoint gateway can handle. This will depend on
system resources, performance requirements and the type of management
being performed. However, testing has been done that indicates that in many
environments, up to 2000 Endpoints or more may be supported by a single
Endpoint gateway.

The Endpoint gateway performs the following functions:

 • Listens for Endpoint login requests

The Endpoint gateway maintains (with help from the Endpoint Manager) a
list of the Endpoints that it is responsible for. As the Endpoints come
online, they will attempt to login to a specific Endpoint gateway or
broadcast a message searching for an Endpoint gateway. The Endpoint
gateway will receive these transmissions, and if responsible for the given
Endpoint, will proceed with the login process. If the entry of the Endpoint
does not exist in the Endpoint gateway’s list, the Endpoint gateway will
forward the login request to the Endpoint Manager so that an Endpoint
gateway can be assigned to the Endpoint. This Endpoint login procedure
is called initial login. We explain the Endpoint login procedure in detail in
Chapter 5, “Anatomy of TMA Behavior” on page 135.

 • Listens for downcall method requests

Method invocations from other nodes that are targeted as one of the
Endpoints a Endpoint gateway is responsible for will pass through the
Endpoint gateway. For downcalls, the Endpoint gateway is transparent.
When it receives a method invocation targeted for the Endpoint for which it
is the Endpoint gateway, it will pass the method invocation (along with the
8 All About Tivoli Management Agents

D
R
A
F
T

method and any dependencies, if necessary) on to the Endpoint. It will
then wait for any method results and pass them back to the original caller.

 • Listens for Endpoint upcall requests

If the Endpoint needs to invoke an operation on another system, it must
invoke a method on its own Endpoint gateway. The appropriate application
that is stored in the Endpoint gateway will supply the method. This method
will then take advantage of the full function of the Managed Node on which
it resides to resolve the location of the target object and invoke the
appropriate method(s) upon it.

 • MDist Repeater activities

The Endpoint gateways are automatically defined as MDist (multiplex
distribution) repeaters for all of the Endpoints they serve. In the traditional
Tivoli Framework, we defined MDist repeaters using the wrpt command.
The MDist repeater function provides the fan out facility for the distribution
of files and data in the Tivoli environment. Therefore, if the same file is
being distributed to a set of Endpoints using the same Endpoint gateway,
the file only needs to be sent once to the Endpoint gateway, and the
Endpoint gateway will then handle distributing the file to the individual
Endpoints. This gives you the benefit of an intelligent distribution
mechanism with little or no administrative overhead.

1.2.1.3 Endpoint Manager
The Endpoint Manager stores the association between the Endpoint
gateways and Endpoints. Specifically, it performs the following functions:

 • The Endpoint Manager maintains the Endpoint list which keeps track of
every Endpoint in the TMR. This list tracks which Endpoint gateway is
responsible for each of the Endpoints. Based on site-specific settings, the
Endpoint Manager reassigns Endpoints if the Endpoint gateway is
unavailable, and dynamically adds new Endpoints as they appear on the
network. The Endpoint list contains the information necessary to uniquely
identify and manage the Endpoints. This includes:

Name of the Endpoint A user-friendly name for use in
the Tivoli Name Registry (TNR).

Endpoint’s interpreter The string denoting the platform
and operating system of the
Endpoint (such as NT or OS/2).

Object dispatcher identifier (odnum) A unique system identifier for
the Endpoint.
Introduction 9

D
R
A
F
T

Endpoint Gateway The name of the Gateway that is
responsible for communications
with the Endpoint.

 • The Endpoint Manager plays a role in enforcing site-specific system
policies. For example, policies may be put in place that specify which
Endpoint gateway will be assigned to new Endpoints joining the network.
These policies could base their decisions on a variety of information
regarding the Endpoint, which is included in the Endpoint’s initial login
request for a new Endpoint gateway.

1.2.2 Tivoli Management Agent and Tivoli Desktop
In general, during day-to-day activity, the Tivoli administrator will see little
difference when managing systems with the TMA as compared to Managed
Nodes in previous versions. That is, Tivoli applications will fully support the
Endpoint, and you will use the Endpoint as subscribers to profile-based
applications just as you used Managed Nodes in previous versions of the
Tivoli Management Framework.

However, there are some additions and changes to the Tivoli Desktop that the
administrator will notice. For instance, a new icon is added to the Tivoli
Desktop to represent the Endpoint Manager. You can create and delete an
Endpoint gateway from this icon. You may use this Endpoint Manager
resource to view a list of all Endpoint gateways and the Endpoints managed
by each Endpoint gateway.
10 All About Tivoli Management Agents

D
R
A
F
T

Figure 3. The EndpointManager Icon on the Tivoli Desktop

In addition, in the traditional Tivoli environment, Managed Nodes were
displayed as such in the various policy regions. Endpoints do not appear in
policy regions by default. The decision to have them not linked into a policy
region was based on the desire to keep the performance of the Desktop at a
reasonable level, even when thousands of systems are being managed.
However, if desired, you may link an Endpoint with a policy region to have its
icon displayed.

Although the icons representing the systems do not show up by default within
a policy region, Endpoints will be displayed in dialog boxes showing potential
subscribers to profiles and jobs. Therefore, you will still be able to use the
Desktop GUI to manage systems running the TMA.

1.2.3 Tivoli Management Agent and Command Line Interface
Version 3.6 of the Tivoli Management Framework includes commands
specifically related to helping manage Tivoli Management Agents. In this
section, we summarize these commands. Please refer to the Tivoli Framework
Introduction 11

D
R
A
F
T

Reference Manual and the Tivoli Framework Release Notes for detailed information
about these commands.

winstlcf Installs an Endpoint on a UNIX or Windows NT workstation.
For more information on installing an Endpoint, please see
Chapter 3, “Tivoli Management Agent Installation” on page 41.

wsetpm Enables/disables the profile manager to operate in dataless
mode. Since Endpoints don’t include a Tivoli object database,
profile information is not stored on managed systems the way
it is for full Managed Nodes. The profile managers must be
enabled for dataless operation to allow Endpoints as
subscribers. In Chapter 6, “TMA and Tivoli Management
Applications” on page 211, we will talk about the dataless
profile manager in detail.

lcfd Starts the Endpoint daemon (lcfd) on the Endpoint and
installs or removes the daemon as a service on Windows NT.

lcfd.sh Starts the Endpoint daemon (lcfd) on the UNIX Endpoints.

wcrtgate Creates an Endpoint gateway.

wdelgate Deletes an Endpoint gateway.

wgateway Starts, stops and lists the properties of an Endpoint gateway.
This command is also used to synchronize the Endpoint
gateway method cache with that on the TMR Server.

wep Performs actions on the Endpoint information contained in the
Endpoint list maintained by the Endpoint Manager. This
command can list or alter the information related to the
Endpoints.

wadminep Performs a variety of administrative actions on the Endpoints.
In general, once the Endpoints are installed, there is little that
needs to be done to administer the lcfd daemon. However,
this command would be useful when first installing and testing
the Endpoint. Please refer to Chapter 7, “Advanced
Knowledge of the TMA” on page 251 for more information.

wgeteppol Lists the body and the constant values of Endpoint policy
methods. Use this command to extract a current Endpoint
policy method, which you can modify and then replace with
the wputeppol command.

wputeppol Replaces the body of an Endpoint policy method.

We will introduce examples of using most of these commands throughout the
rest of this book.
12 All About Tivoli Management Agents

D
R
A
F
T

1.2.4 Tivoli Management Agent and Web Interface
Version 3.6 of the Tivoli Management Framework includes integrated HTTP
daemons that allow administrators to perform management operations
through a Web browser interface like Netscape Navigator or Microsoft
Internet Explorer. These daemons are automatically installed on TMR
Servers, Managed Nodes and Endpoints. In this part of the book, we will
focus on the Endpoint’s Web server function.

1.2.4.1 Accessing the Endpoint Web Interface
To access the HTTP daemon included in the Endpoint, simply use the URL
that consists of the system name (or IP address) and the port number that the
Endpoint uses for communication with the Endpoint gateway. Normally, the
default port number is 9494. Therefore, to access the Endpoint known as
ishii we use our Web browser to access:

http://ishii.itsc.austin.ibm.com:9494

Our Web browser now displays the Endpoint’s first page, as shown in Figure
4 on page 13.

Figure 4. The Endpoint Web Interface
Introduction 13

D
R
A
F
T

1.2.5 Functions Provided through the Endpoint Web Interface
The Endpoint’s Web server provides very specific information and services to
administrators. The administrator can use a Web browser to query
information about the Endpoint, as well as use it to change its configuration
parameters. There are seven specific pages that display information and
allow an administrator to alter the Endpoint’s configuration parameters. The
following describes the information and operations provided by each page.

LCF Daemon Status Page:
This is the primary page on the Endpoint Web interface. The top half of this
page provides information regarding the Endpoint, including:

 • Version - The version of the lcfd on the Endpoint

 • Interp - The operating system on the Endpoint

 • Hostname - The Endpoint’s host name

 • Gateway - The Endpoint gateway’s address and port number

 • Status - The current status of the Endpoint

 • Last Restart - The date and time that this Endpoint was last started

Most of this information can also be accessed with the wadminep command.

Show Logfile Page:
This page simply displays the contents of the lcfd.log file. Therefore, it is the
same as browsing the lcfd.log file from command line interface. Please refer
to Chapter 7, “Advanced Knowledge of the TMA” on page 251 for more
information about the lcfd.log file.

List Method Cache Page:
It is sometimes useful to be able to see a listing of the methods that are
currently available in the Endpoint method cache. We can get the same
information using the wadminep endpoint_label view_cache_index command as
follows.
14 All About Tivoli Management Agents

D
R
A
F
T

The methods shown on this page would be stored in the cache directories on
the Endpoint. We can confirm this using a tool to browse the directory tree,
such as Windows Explorer, as shown in Figure 5 on page 15.

Figure 5. The Methods Stored in the Cache on TMA

Display Usage Statistics Page:
This page, as its name implies, provides statistics related to the number of
downcalls that have been issued and the hit and miss rate for our method

wadminep ausres12 view_cache_index
Performing browse mode ’view_cache_index’ on endpoint ’ausres12’
Index|Version|Size|Flags|OOC|Hits|TimeLastHit|TimeRead|Prefix|Path|
0|0x35cfa903|9216|00000000|False|1|19 Feb 1999 17:15:24|19 Feb 1999 17:15:24|C:\
Program Files\Tivoli\lcf\dat\1\cache|\bin\w32-ix86\endpoint\msg_bind|
1|0x35b3d8fa|1671|0x000008|True|1|19 Feb 1999 17:15:24|19 Feb 1999 17:15:24|C:\P
rogram Files\Tivoli\lcf\generic\msg_cat\C|\msg_cat\C\GatewayCatalog.cat|
2|0x35b3d91b|1900|0x000008|True|1|19 Feb 1999 17:15:24|19 Feb 1999 17:15:24|C:\P
rogram Files\Tivoli\lcf\generic\msg_cat\fr_FR|\msg_cat\fr_FR\GatewayCatalog.cat|
3|0x35b3d905|2252|0x000008|True|1|19 Feb 1999 17:15:24|19 Feb 1999 17:15:24|C:\P
rogram Files\Tivoli\lcf\generic\msg_cat\ja_JP|\msg_cat\ja_JP\GatewayCatalog.cat|
4|0x35b3d910|1831|0x000008|True|1|19 Feb 1999 17:15:24|19 Feb 1999 17:15:24|C:\P
rogram Files\Tivoli\lcf\generic\msg_cat\pt_BR|\msg_cat\pt_BR\GatewayCatalog.cat|
5|0x35cfa903|194560|00000000|False|1|19 Feb 1999 20:18:59|19 Feb 1999 20:18:59|C
:\Program Files\Tivoli\lcf\dat\1\cache|\bin\w32-ix86\endpoint\admin|

#

Introduction 15

D
R
A
F
T

cache. We can obtain more detailed information regarding the downcall,
downcall history, cache, and so forth, using the wadminep endpoint_label
view_statistics command.

Show Config Setting Page:
This page simply displays the current configuration setting for the Endpoint.
The information presented is made up of information contained in the last.cfg
file and lcf.dat file. More information on these files is presented in Chapter 4,
“Configuring the TMA Environment” on page 105. We can receive similar
information to that presented on this page by using the wadminep
endpoint_label view_config_info command.

Show Trace Log Page:
This page allows the administrator to view the trace log of messages sent and
received at the Endpoint.

Network Address Configuration Page:
The Network Address Configuration page displays information about the
current Endpoint settings, but more importantly, it allows the administrator to
change the configuration of the Endpoint. In the dialog presented for
additional configuration options, you can specify any parameters supported
by the lcfd command. See the Tivoli Framework Reference Manual for more
detailed information on this command and refer to the Chapter 5, “Anatomy of
TMA Behavior” on page 135 for more information about the Endpoint Web
interface.
16 All About Tivoli Management Agents

D
R
A
F
T

Figure 6. The Network Address Configuration Page

For instance, you can use this page to alter the default Endpoint gateway for
the Endpoint. Once you have entered the configuration options and selected
Apply, you will be prompted for a user ID and password. To obtain the proper
http password, the TMR Administrator (who needs senior or super authority)
can issue the wep command as follows:

This will display the current user ID and password for the specified Endpoint.
The default user ID is tivoli. The administrator may also change the current
user ID and password by issuing the following command:

To go back to changing the configuration via this Web page, once the user ID
and password are properly entered, the configuration changes are applied to
the Endpoint and the Endpoint is restarted with the new configuration.

wep ishii get httpd
tivoli:rT!*‘un

wep ishii set httpd userid:password
Introduction 17

D
R
A
F
T

Note that, as described in detail later, changing the default Endpoint gateway
for an Endpoint through the above mechanism does not change policy
enforced by the Endpoint Manager. This only identifies the Gateway the
Endpoint will initially contact to log into the TMR. The Endpoint Manager will
ultimately determine which Gateway will take ownership of the Endpoint.
Making this change through the Web interface is one way of forcing the
Endpoint to perform a new initial login sequence to obtain its Gateway if its
primary Gateway is unavailable.

1.3 Advantages of the Tivoli Management Agent

In general, the TMA can replace the full Managed Node and provide the same
level of manageability to the managed system with far less resource
utilization. However, there are still some differences for some operations, as
shown in the following comparison table.

Table 1. Comparison of the Features of the TMA and the Full Managed Node

Features Tivoli Management Agent Full Managed Node

Disk Approximately 1 MB 1 Approximately 100 MB

Memory Approximately 1 MB Minimum 24 MB

Nodes per TMR Unlimited 200 Nodes

Load of TMR Server Off-loaded Heavy

Object DB None Exist

Tivoli Applications Core Applications Only Full Support

CLI Not Available Full Support

MDist Support Support

CCMS 2 Dataless Profile Manager Profile Manager

Web Interface Support Not Available

Version Upgrade Easy Complicated

Management Topology Three-Tiered Structure Two-Tiered Structure

In this table, we assume a Windows NT Managed Node. The required
resources might be somewhat different on other platforms. Please refer to
the latest Framework Release Notes for detailed information.

Note
18 All About Tivoli Management Agents

D
R
A
F
T

1. By default, the TMA could use up to 20 MB disk space for method cache.
2. Configuration and Change Management System.
3. TMR Server, Endpoint gateway, MDist Repeater, T/EC Server, Software Distribution Filepack Source System, Systems
hosting Tivoli Plus Modules, Systems using CLI Interface.

1.3.1 Less Disk and Memory Utilization
As you can see, the lcfd daemon itself uses only 1 MB of memory and 1 MB
of disk space. Methods which are dynamically downloaded as needed are in
addition to this. However, they are usually relatively small and in the range of
300 KB. On the other hand, the full Managed Node used more resources, and
this additional resource was often a concern when managing end user
systems. In an ideal world, the resources required to manage a system
should be minimal. This difference is one reason the TMA is desirable.

1.3.2 Increased Scalability with Reduced Complexity
Due to the architecture of Managed Nodes and the distributed database
component that they control, a single TMR is typically limited to around 200
Managed Nodes. For environments with more than 200 systems to manage,
the solution was provided through the capability to interconnect TMRs and
manage the resources in one TMR from the other. This solution provided
many benefits, but also came at a cost of increased complexity.

With the new architecture, a single TMR can now support many thousand
Endpoints. Therefore, there will be less of a requirement to interconnect
TMRs, which will simplify your Tivoli deployment. If you have interconnected
TMRs for other reasons, such as geography or organizational requirements,
this is fine. Endpoints can be managed across interconnected TMRs as well.
Please refer to Chapter 5, “Anatomy of TMA Behavior” on page 135 for more
information about interconnected TMRs.

1.3.3 Lighten the Load on your TMR Server
In Version 3.6 of Tivoli, a single TMR Server can manage thousands of
Endpoints. As a result, one might be concerned about the load on the TMR
Server. However, the new architecture is designed to allow Endpoint
gateways to off-load many of the functions formerly performed by the TMR

Server and Client Configurable (Endpoint Login) Fixed

Preloaded Module Support Not Available

T/EC, RIM, and so forth 3 Not Available Full Support

Features Tivoli Management Agent Full Managed Node
Introduction 19

D
R
A
F
T

Server. Therefore, although we have a large increase in the number of
managed systems, the load on the TMR Server may actually decline.

On the other hand, based on the type of management you are performing,
you will want to ensure that your workload is balanced across the Endpoint
gateways in your environment.

1.3.4 Simplifying the Tivoli Object Database
One of the core components of the Tivoli Framework is its distributed object
database. This database is controlled by the TMR Server, but has
components on every Managed Node in the TMR. Most management
operations result in information being written to or accessed from this
distributed database. One of the key limiting factors to the size of a TMR is
the amount of resource it takes to keep this database synchronized and
performing well. In some cases, a database check or backup (using the
wchkdb or wbkupdb commands) could take several hours or more.

This database on each Managed Node could also require a large amount of
disk space. On a managed system, we do not need to consume large
amounts of resources solely for systems management.

One of the key aspects and advantages of the new architecture is that the
TMA does not maintain an object database. This keeps the amount of
resource required on the managed system to a minimum, while simplifying
the management of the object database that is still maintained on the TMR
Server and any remaining Managed Nodes.

In an ideal environment, we would have fewer Managed Nodes, but many
more managed systems through the TMA. With fewer Managed Nodes, the
maintenance required on the object database will be reduced, increasing
performance and reliability. In addition, we achieve these benefits without
losing application functionality.

1.3.5 Support of Tivoli Applications
Although all of the core Tivoli Management Applications now support TMA,
some application functions, and other applications such as Tivoli
Management Modules, still require the function of a Managed Node.
However, over time there will be less and less of a requirement to retain
Managed Nodes in your environment as more applications provide full
support for the TMA.
20 All About Tivoli Management Agents

D
R
A
F
T

1.3.6 Command Line Interface
Another distinguishing difference between Managed Nodes and Endpoints is
the availability of a command line interface. There are a large number of
Tivoli commands to perform management operations from a command line.
These commands allow an administrator to perform complex management
operations and to perform almost anything that could be done via the Desktop
GUI. (Of course, the user of the command line must be a Tivoli administrator
with the proper authority.)

These commands are available on every Managed Node. Even if a Managed
Node were an application server or end user system, the commands are still
installed. Thus, any Managed Node has the potential to become a
management station, which is a workstation from which management
operations are invoked.

The Endpoints was designed to be as small as possible. It was designed to
be a managed system, and not a management workstation. Therefore, the
vast majority of Tivoli commands are not available on Endpoints. For this
reason, some systems frequently accessed by Tivoli administrators may be
best installed as Managed Nodes to provide the management workstation
capability.

This brings up another important point. Endpoints can peacefully coexist with
a Managed Node on the same system. That is, you could install a Managed
Node on a system to allow it to become a management workstation and, at
the same time, install an Endpoint on it for managing that system.

1.3.7 MDist Repeater Function
The MDist repeater function is one of the most powerful functions of the Tivoli
Management environment. The MDist repeater function is provided by the
Tivoli Management Framework. In the TMA environment, the Endpoint
gateway is configured as an MDist repeater automatically when you create
the Endpoint gateway. This repeater will serve any and all Endpoints attached
to that gateway.

In the full Managed Node environment, you need to configure MDist
repeaters using the wrpt command. For the administrator, this is one of the
most important things to do, because most data that are transferred among
the managed resources are sent through an MDist repeater. The placement
and tuning of MDist repeaters is important to the overall performance and
throughput of the TMR.
Introduction 21

D
R
A
F
T

1.3.8 CCMS
Most Tivoli applications work through objects called profiles. Information in
the profile defines the management action to be taken on a managed system.
Managing actions are invoked by distributing these profiles. Profiles and their
subscribers (systems that may receive a profile) are managed by another
Tivoli object called a profile manager. The CCMS subsystem provides the
framework for the operation of profile managers and profiles.

In the traditional framework, profiles were distributed to Managed Nodes and
written to the object database on the Managed Nodes. However, since
Endpoints do not have an object database, operations of the profile
distribution mechanism had to change.

To support the Endpoint that does not have a Tivoli database, CCMS provides
a new profile manager type called a dataless profile manager. In the dataless
profile manager, creating, configuring, and distributing the profile is
absolutely the same as with a normal profile manager, but the main difference
is that the information in the profile would not be written to the database. This
is even true when distributing to a full Managed Node through a dataless
profile manager. We provide more detail about the dataless profile manager
in Chapter 6, “TMA and Tivoli Management Applications” on page 211.

1.3.9 Endpoint Web Interface
The Endpoint Web interface is a tool for configuring and controlling the
Endpoint. It can be a very useful tool for accessing the Endpoint and
potentially fixing problems. This tool is very valuable in cases where one or
more Gateways are unavailable and the Endpoint becomes isolated. The
Endpoint Web interface uses a different authentication mechanism from other
Tivoli clients. That is, other management operations use the Tivoli
administrator roles to determine authority. The Endpoint Web interface is
dependent on a separate user ID and password as discussed earlier. Only
authorized Tivoli administrators have access to this user ID and password,
via the CLI. Please refer to the Chapter 5, “Anatomy of TMA Behavior” on
page 135 for more information.

1.3.10 Simplified Version Upgrade Operations
An important benefit of the TMA environment is the simplicity of upgrading
the level of Tivoli code running on managed systems. For traditional Managed
Nodes, the administrator must plan for and explicitly install patches or new
versions of Tivoli software. Some of this software can be quite large, and in
environments with many Managed Nodes and lower speed communications,
22 All About Tivoli Management Agents

D
R
A
F
T

can take considerable time. Keeping multiple systems at the same level of
software can be a challenge.

However, in the TMA environment, the upgrade process has been greatly
simplified for the following reasons:

 • The TMA uses software installed on the Endpoint gateway. This means
that updated software targeted for Endpoints need only be installed on
Endpoint gateways. The number of Endpoint gateways will typically be a
very manageable number compared to hundreds or thousands of potential
Managed Nodes.

 • The auto upgrade function. Once update software is installed on an
Endpoint gateway, it is automatically downloaded and installed on the
Endpoint the next time the Endpoint uses that particular method. Methods
are typically small and, therefore, should cause no significant overhead or
delay. In addition to application methods, thelcfd daemon itself can be
automatically downloaded and upgraded.

Figure 7 on page 24 shows an overview of the how to upgrade software in a
TMA environment.
Introduction 23

D
R
A
F
T

Figure 7. Software Version Upgrade in a TMA Environment

As you can see, to upgrade the version of the software, you simply upgrade
the software on the Endpoint gateways. Then, the Endpoint attempts to
download the latest software (methods) with the downcall when the Endpoint
detects that the available version is greater than the current version of the
Endpoint method. In the TMA environment, this is not only for software
installation, but also for patch installation.

In the full Managed Node environment, of course, you have to install the
software or patches to all Managed Nodes which are managed by the TMR
Server. However, the Endpoint only uses software that has been installed on
the Endpoint gateway.

The TMA auto-upgrade function enables the lcfd daemon to upgrade itself
automatically. The auto-upgrade function upgrades the Endpoint software
(lcfd) if the available version in the Endpoint gateway is greater than the
current version of the lcfd daemon. We will talk about the auto upgrade in
detail later, so please refer to Chapter 5, “Anatomy of TMA Behavior” on page
135 for more information.

V3.6

V3.6

V3.6

V3.6

V3.6 V3.6

V3.6+

V3.6+

V3.6+

V3.6+

V3.6+

V3.6+

Version Up

Installation

Downcall

Upgrade

Downcall

Endpoint Manager

Endpoint
Gateway

Endpoint

Endpoint Manager

Endpoint
Gateway

Endpoint

Downloading the newest
EP methods automatically
24 All About Tivoli Management Agents

D
R
A
F
T

1.3.11 Three-Tiered Structure Improves Performance and Availability
The new architecture supporting the TMA has changed the management
topology of a TMR from a two-tiered structure to a three-tiered structure. This
is a substantial change, and the three-tiered structure provides new and
improved functions, performance and availability considerations. We will talk
about the TMA management topology in the next section.

1.3.12 Increased Reliability through Endpoint Login Flexibility
In the TMA environment, the relationship between the Endpoint and its
Endpoint gateway is highly configurable. To control how the Endpoint
connects to the TMR and to which Endpoint gateway it will belong, you can
configure the Endpoint login using the following methods:

 • Using the Endpoint policy

 • Using the options for the lcfd daemon

 • Using the Endpoint Web interface

This flexibility means that if the assigned Gateway becomes unavailable, the
Endpoint can be configured to find and log into another available Endpoint
gateway. The TMA architecture is very flexible and makes the overall
management environment more reliable. In the full Managed Node
environment, the Managed Node is installed through and tightly bound to a
single TMR Server. Thus, there may be less flexibility in maintaining the
manageability of a Managed Node.

1.3.13 Preloaded TMA
The Tivoli Management Agent provides many benefits and is easy to maintain
and control. But what about its initial installation on what could potentially
include thousands of systems? Tivoli is working with a large number of
hardware and software vendors to help ensure that the TMA is preloaded on
systems you will purchase in the future.

Having the TMA preloaded is certainly the most powerful means of mass-
Endpoint installation. In a system (for example an OS/2 system) that has an
already preloaded the TMA module, the only operation required will be to
activate the TMA one time. It will then search out and find Endpoint gateways,
initiate the initial login process and join the TMR. All of this, of course, can be
controlled through policy scripts and configuration options. We will talk about
the preloaded TMA in the Chapter 2, “Tivoli Ready with Tivoli Management
Agent” on page 31, as well as other installation options later in this redbook.
Introduction 25

D
R
A
F
T

1.3.14 Functions Requiring Managed Nodes
As we mentioned, the TMA and its three-tiered management structure
provides many new and improved functions. In many cases, it replaces the
full Managed Node better than the prior Tivoli Management Environment.
However, there are still framework and application functions that require the
use of a full Managed Node. These cannot be configured to run on an
Endpoint. For example, the TMR Server, RIM host, T/EC server, Software
Distribution source host and others, still require the function provided by the
full Managed Node. But remember, this does not prevent the installation of
the TMA on these systems. So, you can still manage these systems through
the Endpoint and use the Managed Node capability simply to support the
functions requiring it. When planning how to structure your new TMR, you will
need to consider these restrictions. We provide more information on this topic
in Chapter 6, “TMA and Tivoli Management Applications” on page 211.

1.4 Management Topology with TMA

In Version 3.6 of Tivoli, the management topology changed from a two-tiered
structure to a three-tiered structure. The three-tiered structure mainly
provides the following advantages:

 • Off-loading the TMR Server

 • Increasing the number of systems a single TMR can manage

 • Flexible configuration for Endpoints

 • High availability for Endpoint operations

 • Configuring the MDist repeater automatically

The three-tiered management structure is a natural concept for managing a
large environment. According to this concept, the Endpoint gateway plays the
role of mid-level manager. In other words, the Endpoint gateway takes
responsibility for managing the Endpoints which have logged into the
Endpoint gateway. Therefore, all requests from the Endpoints must be
received by the Endpoint gateway and most of them will be processed by the
Endpoint gateway instead of the TMR Server. Only requests which the
Endpoint gateway cannot handle would be forwarded to the TMR Server
where the TMR Server processes them. In the three-tiered structure, the
manager system for the Endpoints is the Endpoint gateway, so that the
Endpoint must send all requests to the Endpoint gateway.

In the prior TMR structure, the TMR Server had to manage all managed
systems (Managed Nodes). This was a disadvantage when managing a large
environment. In a three-tiered structure, a single Endpoint gateway can
26 All About Tivoli Management Agents

D
R
A
F
T

handle several hundreds of Endpoints and the TMR Server (Endpoint
Manager) can handle up to 200 Endpoint gateways. What does this mean?
This means we can now say there are few limitations to the number of
managed systems in a single TMR. Interconnecting multiple TMRs can still be
a very strategic solution for managing a large environment. However, with
TMA, we have another powerful solution that has become available.

Figure 8. Three-Tiered Management Structure

If you have ever installed a Managed Node, you understand the relationship
between the TMR Server and the Managed Node. Basically, the TMR Server
used to install the Managed Node manages the Managed Node forever
unless you reinstall or reconfigure it. In this situation, if the TMR Server
becomes unavailable, all management operations will be unavailable.

Although we still have a dependency on the TMR Server in a three-tier
architecture, much of the TMR Server’s functions can be off-loaded to a
gateway. The Endpoint has the flexibility to automatically log in through an
alternate gateway if its primary gateway becomes unavailable. In this case,
the available Endpoint gateway is called the alternate gateway. The Endpoint
attempts to log in to the alternate gateway automatically if the Endpoint

Endpoint Manager
(TMR Server)

PC AgentPC AgentPC AgentPC AgentPC Agent
EndpointEndpointEndpointEndpointEndpointEndpointEndpoint

EndpointEndpointEndpointEndpointEndpointEndpointEndpoint

Prior TMR Structure Three-Tiered Structure

TMR Server

Managed Node

Limited Function

Endpoint Gateway
(Managed Node)
Introduction 27

D
R
A
F
T

detects the assigned gateway is unavailable. This is called an isolated login.
But, if you do not install or configure any alternate gateways, the Endpoint will
not be able to receive management operations when the assigned gateway
goes down.

Tivoli Version 3.6 provides improved functions, however, we have to
understand them thoroughly if we want to use them efficiently. From this point
of view, in the three-tiered environment, the following concepts are very
important:

 • TMR Design

 • Management Resource Allocation (EP Manager, EP Gateway, Endpoint)

 • Endpoint Configuration (login interfaces information)

Later in this book, we will talk about the above subjects, as well as provide
hints and tips for implementation.

1.5 Summary and Future Direction

This chapter has shown the major features of the TMA. The TMA has
changed many management operations in the Tivoli management
environment. The TMA implementation is very powerful and will continue to
be enhanced to remove any remaining limits.

For example, Tivoli plans to make the Endpoint gateway independent in the
near future. This means the Endpoint gateway will no longer be required to
exist on a Managed Node. This will increase your configuration options and
potentially leave more resources available for Gateway operations.

As we said at the start of our discussion in this chapter, the Tivoli architecture
provides stability. That is, the applications you have been using can continue
to run in Version 3.6 just as they have before. In addition, you can take
advantage of the benefits provided by the Tivoli Management Agent. Again,
the application functions will be the same as you have become accustomed
to, but they will perform better and be easier to maintain by utilizing the TMA.

Another aspect of the Tivoli architecture is its extensibility. The TMA
demonstrates that the Tivoli architecture is constantly evolving to meet the
demands of its customers.

The rest of this redbook primarily introduces detailed information on how to
plan for, install, control, configure, and use the TMA. The information
presented in this redbook is intended for Tivoli administrators and those
28 All About Tivoli Management Agents

D
R
A
F
T

supporting customers in the management of large distributed system
environments with Tivoli and the Tivoli Management Agent.
Introduction 29

D
R
A
F
T

30 All About Tivoli Management Agents

D
R
A
F
T

Chapter 2. Tivoli Ready with Tivoli Management Agent

Tivoli has announced Tivoli Ready products, which provide effective
enterprise management solutions and powerful competitive advantages for
customers. This chapter introduces Tivoli Ready products and the preloaded
Tivoli Management Agent.

2.1 Overview of Tivoli Ready

From mainframes to desktop PCs, from applications to databases, customers
are building complex IT environments to support their business needs. This
complexity carries significant risks. Unless the complexity is effectively
managed, businesses face downtime and potential lost revenue. This is why
customers invest a lot of time and money in their management systems.

Tivoli management software allows the customer to gain control and improve
the performance of all the resources within their IT environment. With Tivoli
products as a foundation, customers can expect to receive maximum value
from their IT investments. And, return on this investment is even higher when
those IT resources offer immediate, out-of-the-box manageability with Tivoli.

Tivoli works with hundreds of industry-leading hardware and software
vendors to offer tools and products that can be effectively managed and
extend Tivoli’s management features. This new industry, which is built around
openness and cooperation, brings customers real value.

Software and hardware vendors that can provide standards-based integration
with a leading management provider add significant value to their applications
and devices. The Tivoli Ready logo (refer to Figure 9 on page 31) is the
guarantee that products carrying this logo have passed rigorous product
certification testing by Tivoli to ensure their product delivers out-of-the-box
integration with Tivoli Management software. Tivoli Ready certified products
take advantage of key technologies in order to extend the management
services of Tivoli software to their applications and devices.

Figure 9. The Tivoli Ready Logo
© Copyright IBM Corp. 1998 31

D
R
A
F
T

Tivoli tests the Tivoli Ready products in a Tivoli-certification lab to ensure that
integrated applications are dependable, work with the Tivoli Management
software, and interoperate with other Tivoli Ready products. This lab
duplicates a customer’s distributed network environment with a variety of
systems and applications.

The Tivoli Management Agent (TMA), in conjunction with the Tivoli
Framework and Management Applications, provides the customer with the
framework necessary to perform management operations such as software
distribution, inventory, user administration and distributed monitoring. TMA is
already being provided with some Tivoli Ready products. This is called
preloaded TMA or Tivoli Ready with TMA. The preloaded TMA allows the
customer who purchases the preloaded TMA products to immediately use the
management feature provided by Tivoli. In the next section, we introduce the
preloaded TMA and its advantages.

2.2 What Is Preloaded TMA?

As we mentioned above, some Tivoli Ready products already contained TMA
in the their software packages. This means the lcfd daemon already exists
on the user’s hard disk. However, by default, the preloaded TMA engine (the
lcfd daemon) does not start automatically, since it will only be of value if the
Tivoli Framework is installed in the customer’s environment. Therefore, when
the customer has installed Tivoli Ready with TMA products on the machine,
the TMA (lcfd daemon) exists under the C:\Tivoli\lcf (for Windows systems)
directory in an inactive state. The following figure shows the directory tree of
the preloaded TMA for Windows NT. As you can see, the tree structure under
the Tivoli directory is the same as the normal TMA tree structure (refer to
Figure 10 on page 33).
32 All About Tivoli Management Agents

D
R
A
F
T

Figure 10. The Directory Tree of Preloaded TMA for Windows NT

What is the first thing that customers who will use TMA for managing their
systems should do? If the customer wishes for the system to become part of
their Tivoli enterprise, the customer needs to activate or wake-up the lcfd
daemon that has already been installed on the system. This activation
process is easier than the TMA installation process. Normally, each
preloaded TMA product provides the activation method, so the customer just
needs to follow the activation instructions. The following figure shows how to
use the preloaded TMA.

Figure 11. Activating Preloaded TMA

TMA

Install

Activate

Install

TMA

Windows NT CD-ROM Windows NT System

Preloaded TMA
Tivoli Ready with Tivoli Management Agent 33

D
R
A
F
T

As you can see, the preloaded TMA does not need the Endpoint installation
process and the activation process is normally a batch program that is
provided by the preloaded TMA. This process only needs to be performed
once. After this activation, TMA runs on the machine and is configured to
start and log in to the TMR every time the machine is started.

2.3 Advantage of Preloaded TMA

The preloaded TMA makes the installation and configuration process easy
and fast. First of all, the preloaded TMA does not need the installation
process of the Endpoint software. Since the installation process can be a
complicated process in large environments, preloaded TMA improves the
implementation speed and workload dramatically. The following table shows
a comparison between the preloaded TMA and normal TMA installation.

Table 2. Comparison Between Preloaded TMA and Normal TMA Installation

As you can see, preloaded TMA is very powerful when you want to deploy
thousands of systems. By bypassing the installation process, it not only saves
whatever bandwidth might be involved, but avoids any installation errors that
might occur through network or human error. This means the preloaded TMA
is more reliable than the normal TMA installation for mass installations and
can occur independently of network conditions.

Preloaded TMA provides a sample login script which activates and configures
the preloaded TMA. When enabling the TMA for large numbers of installed
systems (or systems just being installed) you could use an NT login script (or
equivalent) to automate the process. The following figure shows how to
configure the machine as part of your Tivoli enterprise environment.

Preloaded TMA Normal TMA Installation

Order TMA Software Not Needed Needed

Network Traffic None Approximate 600 KB per Node

Endpoint Configuration Support Support

Mass Installation Easy Average

Ease of Use High Average
34 All About Tivoli Management Agents

D
R
A
F
T

Figure 12. Implementing Preloaded TMA Machines

1. Create and configure the Endpoint Manager and Endpoint gateways.

2. Activate the preloaded TMAs. As an example, you can use an NT login
script for the mass activation of Windows preloaded TMA machines.

3. The TMA logs in to the appropriate Endpoint gateway, which you
configured during the activation process.

In this case, it is important that you create and configure the Endpoint
Manager and Endpoint gateways before you activate the preloaded TMA
activations. Then, you can activate the preloaded TMA with the appropriate
options. The activation process of the preloaded TMA allows you to specify
the options of the lcfd daemon, so that you can configure and control the
Endpoint login for all of the Endpoints.

2.4 Preloaded TMA Packaging

To satisfy the customer’s requirements, there are actually two different types
of preloaded TMA, as follows:

 • Preloaded TMA in operating systems or applications

Endpoint Manager

Endpoint Gateway

Preloaded TMA Machines

Endpoint Gateway
Activate

lcfd lcfd lcfd lcfd lcfd lcfd

Endpoint
Login

Endpoint
Login

Configure
EPM and EPGW

1

2

33
Tivoli Ready with Tivoli Management Agent 35

D
R
A
F
T

 • Zipped TMA code

The following sections introduce the characteristics of each type of preloaded
TMA.

2.4.1 Preloaded TMA in Operating Systems and Applications
One type of TMA is preloaded on various operating systems or applications.
We primarily talked about this type in the previous sections. As we
mentioned, this type of TMA has already been preloaded on the product’s
CD-ROM, or on the hard disk if the operating system or application is
preloaded on the hardware. Therefore, the customer who buys the operating
system (OS) or application that has preloaded TMA should do the following to
enable TMA:

1. Install the product (OS or application).

2. Activate the TMA.

2.4.2 Zipped TMA Code
Another type is the zipped-code package, which contains the preloaded TMA
images for each platform. This zipped TMA code will be used by the customer
who is planning a large-scale rollout of new machines or disks and uses the
Tivoli Ready packaging to create a Golden Disk. Figure 13 on page 37 shows
how the customer uses the zipped TMA code.
36 All About Tivoli Management Agents

D
R
A
F
T

Figure 13. How to Use the Zipped TMA Code

1. The customer downloads the zipped TMA using the Web or ftp.

2. The customer unzips the zipped TMA on the machine that will be
configured as the preloaded TMA prototype. After the unzip, the preloaded
TMA images for each supported platform appear in the subdirectory.

3. The customer selects the appropriate preloaded TMA image and executes
the batch program provided by the zipped TMA. The preloaded TMA
image is unpacked, and the preloaded TMA configuration processes are
completed. At this time, the lcfd daemon is not started because the zipped
TMA creates a preloaded TMA image. Therefore, the customer needs to
activate the lcfd daemon to use it immediately.

4. If the customer creates a Golden Disk for a large-scale deployment, this
machine can be the prototype for the CD-ROM. If the customer simply
wants to configure this machine as the TMA, the customer needs to
complete the activation operation.

Figure 14 on page 38 shows the contents of the zipped TMA code.

Zipped TMA

WinNT

Win9x

Win3x

Netware

AIX

HP-UX

Solaris

Unzip

Internet

Download
(Web, ftp, e-mail)

TMA

Preloaded TMA

BAT file

Activate

or

Tivoli Ready CD-ROM

1
2

3

4

4

Tivoli Ready with Tivoli Management Agent 37

D
R
A
F
T

Figure 14. The Contents of the Zipped TMA Code

This is an overview of the zipped TMA code. As you can see, the zipped TMA
code is a tool that creates a preloaded TMA machine. The current version of
the zipped TMA code contains the TMA installation image for the following
platforms:

 • AIX V4.x

 • HP-UX V10.x

 • Sun Solaris V2.x

 • Netware V3

 • Netware V4 and V5

 • Windows NT

 • Windows 95 and 98

 • OS/2

The zipped TMA code will be distributed from the Tivoli Web site
(http://www.tivoli.com) and it is free. We provide more details on how to
38 All About Tivoli Management Agents

D
R
A
F
T

activate the preloaded TMA or how to unpack the zipped TMA code in
Chapter 3, “Tivoli Management Agent Installation” on page 41.

2.5 Tivoli Ready with TMA Shipping Information

In this section, we introduce products that are currently shipping with
preloaded TMA.

Table 3. Tivoli Ready with TMA Shipping Information

2.6 Future Directions

The preloaded TMA allows systems to be integrated with the Tivoli
Management Environment easily, even if there are thousands of systems in
the environment. At this time, preloaded TMA is being planned for a variety of
operating systems and applications. However, to manage whole-enterprise
systems consistently using the Tivoli management applications, the
preloaded TMA may someday support networking devices such as routers
and hubs. If this becomes the case, you may see the TMA agent become
integrated with hardware devices as well. Figure 15 on page 40 illustrates this
future direction.

Maker Products

3 Com Fast Ethernet NICs

Novell Netware

Intel Network Management Adaptors, LanDesk
Client Manager

IBM IBM PC300, Intellistation, Netfinity
Servers, ThinkPad, Token Ring TCI
Adaptor, OS/400, OS/390, AIX, OS/2

This shipping information is based on information as of the end of January
1999. This list will continuously be updated. Please check on the latest
information from your Tivoli representative or the Tivoli Web site
(http://www.tivoli.com).

Note
Tivoli Ready with Tivoli Management Agent 39

D
R
A
F
T

Figure 15. Integrating Network Management with Systems Management

In many environments, network management and systems management,
though closely related, are being handled separately due to the available
management product mix. Most customers would prefer to have an integrated
solution for both network and systems management. Tivoli already provides
applications that bring these disciplines close together. When TMA becomes
available on networking devices, seamless management will become a true
reality and customers will be able to reap significant benefits.

WinNT
AIX

Solaris

TMA

Preloaded TMA

TMA

Preloaded TMA

TMR Server

Tivoli Management Environment

TMA

Preloaded TMA

Win9x

TMA

Preloaded TMA

HP-UX

TMA

Preloaded TMA Win3x

TMA

Preloaded TMA

IBM

TMA
Router

Preloaded TMA
IBM

TMA Hub

Preloaded TMA

IBM

TMA
Router

Preloaded TMA
40 All About Tivoli Management Agents

D
R
A
F
T

Chapter 3. Tivoli Management Agent Installation

In this chapter, we discuss the planning and installation of the Tivoli
Management Agent. This chapter includes the following information:

 • Hardware, software, and configuration requirements for Endpoints

 • TMA-related considerations

 • Overview of Endpoint installation and configuration

 • Planning for mass installation

Please refer to the Tivoli Framework Release Notes and the Tivoli Framework
Planning and Installation Guide as complete sources of information.

3.1 Planning for TMA

The following sections provide information regarding planning for the Tivoli
Management Agent. This information is based on Version 3.6 of the
framework released in September, 1998. Please refer to the release notes for
this or later versions for the latest information.

3.1.1 Installation Prerequisites
The following is a list of the management objects required to install and use
Endpoints:

 • TMR Server - The Tivoli Management Server component includes the
libraries, binaries, data files, and graphical user interfaces needed to
install and manage the Tivoli environment.

 • Endpoint Manager - The Endpoint Manager runs on the TMR Server. The
Endpoint Manager maintains the information related to known Endpoints
and Endpoint gateways. The Endpoint Manager is automatically installed
on TMR Servers. The Endpoint Manager’s primary role is to assign the
Endpoint to the Endpoint gateway when the Endpoint performs the initial
login. The Endpoint Manager must always be involved if an alternate
Endpoint gateway will be used by an Endpoint. This might occur through
explicit administrative action to migrate an Endpoint from one Gateway to
another, or if an Endpoint attempts another initial login due to its primary
Gateway being unavailable for any reason.

 • Endpoint Gateway - The Endpoint gateway provides the primary interface
between a set of Endpoints and the rest of the TMR. As part of this role, it
also assumes some of the function previously performed by the TMR
Server. By shifting a share of the management processes to the Endpoint
© Copyright IBM Corp. 1998 41

D
R
A
F
T

gateway, the TMR Servers are free to service more managed systems
than with previous versions of Tivoli. A single Endpoint gateway can
support communications with thousands of Endpoints. In Version 3.6 of
the Tivoli Management Framework, Endpoint gateways must be installed
on Managed Nodes.

 • Endpoint - The Endpoints are managed systems taking advantage of the
Lightweight Client Framework. You can gather required management
information from thousands of Endpoint machines and remotely manage
those machines with very little overhead. Another advantage of Endpoints
is the relatively small demand they make on computer resources. The
Endpoint is officially referred to as the Tivoli Management Agent (TMA) in
Version 3.6 of Tivoli, however, it is still often referred to as an Endpoint in
the various documentation, as well as on screen messages and the Tivoli
Desktop.

3.1.2 System Requirements
This section lists the software and hardware system requirements for the
Endpoint. Note that some previously supported versions of operating systems
are no longer supported as Managed Nodes in Version 3.6 of the Tivoli
Management Framework. Specifically, the following versions of operating
systems are no longer supported by Tivoli:

 • HP-UX 9.x

 • AIX 3.x

3.1.2.1 TMR Server and Gateways Requirements
Depending on the number of Endpoints, some additional memory may be
desired.

IBM RS/6000 and PowerPC Systems Running AIX:
 • AIX 4.1.2, 4.1.3, 4.1.4, 4.1.5, 4.2, 4.2.1, 4.3, 4.3.1.

 • Support of AIX is limited to AIX on IBM systems.

 • The libtermcap.a in the bos.compat.termcap.

 • Motif Version 1.2.

 • 99.5 MB of disk space and additional swap space.

 • At least 64 MB (Server) / 32 MB (Gateway) of memory.

Intel 486 or Pentium Systems Running PC Operating Systems
 • Windows NT 3.51with Service Pack 5, Windows NT 4.0, or NT 4.0 with

Service Pack 3
42 All About Tivoli Management Agents

D
R
A
F
T

 • Not supported on NT multi-user add-ons, such as WinDD or Citrix
WinFrame, or on NT machines running the beta release of the Windows
95 shell or New shell

 • 102.5 MB of disk space and additional swap space

 • At least 48 MB (Server) / 24 MB (Gateway) of memory

HP 9000 Systems Running HP-UX
 • HP 9000/700 or 800 series with PA RISC 1.1 or PA RISC 2.0

 • HP-UX 10.01, 10.10, 10.20, or 11.00 with Service Pack 1

 • Motif Version 1.2

 • 145.5 MB of disk space and additional swap space

 • At least 64 MB (Server) / 32 MB (Gateway) of memory

Sun SPARC Systems Running SunOS
 • SunOS 4.1.3, 4.1.4

 • OpenLook with the jumbo OpenWindows patch 100444-62 or Motif
Version 1.2

 • 106.5 MB of disk space and additional swap space

 • At least 48 MB (Server) / 32 MB (Gateway) of memory

Sun SPARC Systems Running Solaris
 • Solaris 2.4 with jumbo patch 101945-23

 • Solaris 2.5, 2.5.1, 2.6

 • OpenLook or Motif Version 1.2

 • 94.5 MB of disk space and additional swap space

 • At least 64 MB (Server) / 32 MB (Gateway) of memory

3.1.2.2 Endpoint Requirements
The Endpoint uses approximately 1 MB of memory.

IBM RS/6000 and PowerPC Systems Running AIX
 • AIX 4.1.2, 4.1.3, 4.1.4, 4.1.5, 4.2, 4.2.1, 4.3, 4.3.1.

 • Support of AIX is limited to AIX on IBM systems.

Intel 486 or Pentium Systems Running PC Operating Systems
 • IBM PC AT-compatible machine

 • Windows 3.1, or Windows for Workgroup 3.11 with the following
WINSOCK compliant stacks:
Tivoli Management Agent Installation 43

D
R
A
F
T

 • FTP Software OnNet16 v2.5

 • Microsoft TCP/IP-32 Version 3.11

 • NetManage Chameleon 4.01, 4.5, or 4.6

 • Windows 95 or Windows 98

 • Windows NT 3.51with Service Pack 5, NT 4.0, or NT 4.0 with Service
Pack 3

 • Not supported on NT multi-user add-ons, such as WinDD or Citrix
WinFrame, or on NT machines running the beta release of Windows 95
shell or New shell

 • Netware 3.11, 3.12, 4.0.1, 4.1, 4.1.1

 • OS/2 3.0 and 4.0 with OS/2 TCP/IP package

HP 9000 Systems Running HP-UX
 • HP 9000/700 or 800 series with PA RISC 1.1 or PA RISC 2.0

 • HP-UX 10.01, 10.10, 10.20, or 11.00

Sun SPARC Systems Running SunOS
 • SunOS 4.1.3, 4.1.4

Sun SPARC Systems Running Solaris
 • Solaris 2.4 with jumbo patch 101945-23

 • Solaris 2.5, 2.5.1, 2.6

The following list identifies the supported platforms listed in the Tivoli
Framework Planning and Installation Guide:

 • AS/400

 • Digital UNIX

 • DG/UX

 • NCR 3000

 • Pyramid MIServer-ES

 • Sequent DYNIX/ptx

 • SCO UnixWare

 • SGI IRIX
44 All About Tivoli Management Agents

D
R
A
F
T

3.1.3 TMA Planning Considerations
Some important considerations related to planning for TMA installation are
described in the following section.

3.1.3.1 Communication Requirements
Tivoli’s distributed architecture is designed to work across a wide variety of
local area, wide area networks, and network topologies. The minimal
requirement is for bidirectional, full-time, interactive TCP/IP lines.

3.1.3.2 DNS and Host Name/IP Address Mapping
The Tivoli service, or daemon, that runs on each client and on the server
must be able to map a machine’s IP address to a host name during the initial
connection process between services. This technique is sometimes known as
reverse-name mapping, and is sometimes not available in a DNS
environment. Mapping between IP addresses and host names or host names
and IP addresses can typically be done using one of the following sources of
data:

 • UNIX /etc/hosts file or NT LMHOST file

 • NIS

 • DNS

With the first two data sources, both forward and reverse name mapping is
available. However, it is possible to configure DNS such that reverse mapping
is not available. Tivoli uses both. You must have reverse mapping from the
TMR Server to the client and from the client to the TMR Server.

3.1.3.3 DHCP (Dynamic Host Configuration Protocol)
The Tivoli Management Framework also supports the use of DHCP for
Endpoint clients. If you have clients that require DHCP support, you must first
configure DHCP in your environment. The Framework does not provide
DHCP. It simply enables you to use DHCP and Tivoli in your environment.

3.1.3.4 Network Address Translation (NAT)
With the increase of Internet addresses worldwide, it is becoming more
difficult for enterprises to assign globally unique IP addresses to each host.
Network Address Translation (NAT) devices are fast becoming a way for
large, multisite enterprises to avoid IP address conflict. Hosts within
enterprises are often partitioned into public and private address spaces. The
NAT device acts as a router between these address spaces with the ability to
translate IP addresses and ports. In the Tivoli environment where thousands
of Endpoint clients may reside in different domains of networks, the NAT
Tivoli Management Agent Installation 45

D
R
A
F
T

device can be used to interconnect these Endpoints to the TMR Servers and
the Endpoint gateways. The Tivoli NAT environment supports dynamic
sharing of public IP addresses. The following are requirements for the NAT
support in the Tivoli environment:

 • The NAT device must act as a router for IP traffic between public and
private networks.

 • The NAT device must act as a proxy DNS server to resolve host name
addresses in each address space.

 • Fully qualified host names must be used for Endpoint gateways when
providing login information.

3.1.3.5 Tivoli Management Regions
To manage thousands of resources that are geographically dispersed, the
Tivoli Framework enables you to logically partition your managed resources
into a series of loosely coupled Tivoli Management Regions (TMRs). There
can be several reasons for creating multiple TMRs and interconnecting them,
such as organizational structure, network topology and security
requirements.

3.1.3.6 Endpoint Gateway Location
The primary function of the Endpoint gateway is to serve as a bridge between
the TMR Server and the Endpoint. By controlling all communications with the
Endpoint and all the operations that run on the Endpoint, the Endpoint
gateway off-loads the work from the TMR Server.

The Endpoint gateway also serves as the MDist repeater site for profile and
software distribution to the Endpoints. Locating Endpoint gateways based on
your network topology has a major effect on the success of these
distributions and the impact of Tivoli operations on your network.

When the information is distributed through the Endpoint gateway to
Endpoints, a single data stream is sent to the Endpoint gateway first. From
there, multiple streams fan out to multiple Endpoints.

Assume that you have two sites, the local site that the TMR Server resides in,
and the remote site including one hundred Endpoints. Also assume they are
connected by relatively slow communication links. If you put the Endpoint
gateway in the local site and attempt to distribute the information to 100
systems located in the remote site, very large data streams will be pushed
through the slow link 100 times.
46 All About Tivoli Management Agents

D
R
A
F
T

However, if the Endpoint gateway is placed in the remote site, close to the
Endpoints, and the data stream crosses the slow line only once and is
pushed to 100 Endpoints using the local area network, overall performance
will obviously be improved. So, putting the Endpoint gateways at the end of
slow links is usually effective for transferring data.

3.1.3.7 Organizing Endpoint Gateways
In the TMA environment, each TMR Server supports up to 200 Managed
Nodes, but each Endpoint gateway can support a larger number of
Endpoints. The three-tiered management structure dramatically increases the
number of managed systems in a single TMR. Planning the architecture of
such an environment becomes one of the key points for a successful
implementation.

In determining the number of Endpoints for an enterprise, it’s important to
consider the quality of service desired. With the addition of the Gateways,
you can support a large number of Endpoints without a performance
decrease. It is important to determine the right balance between the number
of Gateways and Endpoints.

Organize and distribute Endpoint gateways and Endpoints by:

 • Physical location

 • Type of applications running on Endpoints

 • Amount of upcalls / downcalls

This will be a necessary step in planning the proper number and location of
Gateways to support your Endpoints.

3.1.3.8 Endpoint Gateway Overhead
The Endpoint gateway does not have to be a dedicated system. The
performance impact on the Endpoint gateway depends on the number of
Endpoints using the Endpoint gateway and the type of applications running
on the Endpoints. The load on the Endpoint gateway will be greatest when
applications distribute data or make downcalls. For example, an inventory
scan will result in a burst of data coming back to the Endpoint gateway. If you
are concerned about loading the Endpoint gateway, the inventory scan can
be performed at a time when the Endpoint gateway machine is less busy. The
system administrator needs to consider not only the design for the TMR and
the allocation of the management resources, but also how it performs. It
should be noted, that in general, Tivoli recommends that Endpoint gateways
be dedicated to that task.
Tivoli Management Agent Installation 47

D
R
A
F
T

3.1.3.9 Recommended Numbers of Endpoints for Each Gateway
Tivoli recommends no more than 10,000 Endpoints per single TMR and no
more than 2,000 Endpoints per Endpoint gateway. However, keep in mind the
numbers depend heavily on your network configuration and topology. For
example, you may never want to have an Endpoint gateway service 2,000
Endpoints for the same reasons you would never want a Managed Node
repeater servicing that many Endpoints. Therefore, the appropriate numbers
of Endpoints are different for each customer.

3.1.3.10 The Limit of 200 Gateways per TMR
In Version 3.6 of Tivoli Management Framework, the Endpoint gateways must
run on the Managed Node. Due to several factors, including the overhead of
maintaining a distributed database across many nodes, the number of
Managed Nodes supported in a single TMR is about 200. You are still bound
to this limit, and therefore, there is the same limit on the number of Gateways
that can be supported in a single TMR.

3.1.3.11 Firewall Support
Version 3.6 of the Tivoli Endpoint client will not work correctly through
firewalls. A firewall is not supported between the Endpoint gateway and the
Endpoint.

3.2 TMA Installation

The following sections describe the installation of Endpoints and their
prerequisites.

3.2.1 Overview of TMA Installation
To utilize the Tivoli Management Agent, you must have both an Endpoint
Manager and an Endpoint gateway installed and configured properly. In
Version 3.6 of the Tivoli Management Framework, the Endpoint Manager
must run on the TMR Server. The Endpoint gateway must run on a Managed
Node.

3.2.1.1 Endpoint Manager Installation
As we mentioned, the Endpoint Manager is automatically installed when the
TMR Server is installed. We will not review the details of installing the TMR
Server. This is well documented in the Tivoli Framework Planning and
Installation Guide. Once the installation is complete, the Endpoint Manager
will be available. If you are familiar with Version 3.1 of the Tivoli Management
Framework, you will notice only one significant difference on the Tivoli
Desktop in a 3.6 installation: the Endpoint Manager icon.
48 All About Tivoli Management Agents

D
R
A
F
T

Figure 16. Endpoint Manager Icon on the Desktop

From the command line interface, you can verify the Endpoint Manager exists
by issuing the wls command. An example of this command follows:

3.2.1.2 Managed Node Installation
The Endpoint gateways must be created on a Managed Node or on the TMR
Server. Except for very small or test environments, it is typically not
recommneded to install a Gateway on the TMR Server, as this goes against
one of the goals of the architecture which is to off-load the TMR Server. This
means, of course, we have to create the Managed Node, which will be
configured as the Endpoint gateway before the Endpoint gateway installation.
Several ways to install a Managed Node are described in the following
sections:

C:\Tivoli>wls
Notices
Administrators
hiro-region
EndpointManager
Scheduler
C:\Tivoli>
Tivoli Management Agent Installation 49

D
R
A
F
T

Local Installation (NT Managed Node Only)
You can setup the Windows NT Managed Node locally from the Tivoli
Management Framework CD-ROM. After this operation, you can install the
Endpoint gateway using the Desktop interface or the wcrtgate command. Both
operations are able to be performed on the target Managed Node (the
Desktop module should be installed on the target node when you use the
Desktop interface). The commands to install the Managed Node and the
Desktop are:

NT Managed Node setup client

Tivoli Desktop pc/desktop/disk1/setup

Installation from TMR Server
You can install the Managed Nodes remotely from TMR Server. Since you
can install all the Managed Nodes from a single machine, this is one of the
most convenient methods of installing Managed Nodes. The install_client
authorization role for the administrator is required for this operation.

On the Tivoli Desktop, double-click on the policy region icon in which you
want to create the Managed Node. On the policy region window, select the
Create menu to display the Managed Node Installation dialog. You can create
the Managed Node from this dialog. Before you install the framework on
Windows NT systems, you must install the Tivoli Remote Execution Service
(TRIP) on a single NT system in your TMR. If your TMR Server is Windows
NT, this step is performed automatically. Please refer to the Tivoli Framework
Planning and Installation Guide for more information.

The wclient command can also be used to install Managed Nodes remotely
from the TMR Server. Please refer to the Tivoli Framework Reference Manual
for more information.

3.2.1.3 Endpoint Gateway Installation
To install an Endpoint gateway onto an already existing Managed Node, you
can use the following methods. The senior authorization role is required for
these operations.

SIS
Tivoli Software Installation Service (SIS) enables you to install multiple
Endpoint gateways onto multiple systems in parallel. SIS performs a
prerequisite check and user specified prerequisite check if it is defined. SIS
also enables you to install TRIP, a Managed Node, and Tivoli Management
Applications. Please refer to the Tivoli Software Installation Service User’s
Guide for more information.
50 All About Tivoli Management Agents

D
R
A
F
T

Tivoli Desktop
From the Tivoli Desktop interface, right-click the Endpoint Manager icon and
select the Create Gateway menu. A pop-up panel appears and you can
install the Endpoint gateway to the specified Managed Node that has already
been created (refer to the Figure 17).

Figure 17. Create Gateway Panel

wcrtgate Command
The wcrtgate command creates the new Endpoint gateway on the specified
Managed Node. If you do not specify the name of the Managed Node, the
Endpoint gateway is created on the Managed Node from which the command
was invoked. Please refer to the Tivoli Framework Reference Manual for
more information.

3.2.1.4 Endpoint Installation
There are also several ways to install the Endpoints. We introduce them in
this section.

SIS
Tivoli Software Installation Service (SIS) enables you to install Endpoints
onto multiple systems in parallel. SIS performs a prerequisite check and user
specified prerequisite check if defined. Please refer to the Tivoli Software
Installation Service User’s Guide for more information.

winstlcf Command
The winstlcf command installs and launches the Endpoint on one or more
systems. This command can install UNIX and Windows NT Endpoints only.
Since Windows NT does not have a remote execution service, the first
Windows NT Endpoint in the domain must be manually installed using the
InstallShield. You can then use the Endpoint as the proxy to install all other
Tivoli Management Agent Installation 51

D
R
A
F
T

Windows NT Endpoints within the same domain. Please refer to the Tivoli
Framework Reference Manual for more information.

Local Install (InstallShield)
You can locally install and launch the Endpoint on Windows and OS/2
machines. The InstallShield provides the silent installation capability to
automate the installation. Please refer to Chapter 3.5.1, “Using Silent
Installation” on page 83.

NT Login Script
A login script can be used to install and launch the Endpoint when the
Windows or OS/2 user logs into an NT domain. You need to define the login
script configuration on the Windows NT domain controller machine before the
Endpoint installation.

TMASERV
The Tivoli Migration Toolkit provides the TMASERV (Tivoli Management
Agent Login Service) to simplify the Endpoint installation. The TMASERV is
provided as one of the NT services called tmaserv. It enables us to automate
the Endpoint installation onto systems which log into the Windows NT
domain. The TMASERV is similar to the NT login script, but more
sophisticated.

Tivoli Ready with TMA (Preloaded TMA)
As we mentioned in “Tivoli Ready with Tivoli Management Agent” on page 31,
the TMA module has been already installed in some products. These are
called preloaded TMA. The preloaded TMA does not require the installation
process. It requires only the activation process to launch the Endpoint. You
can perform this activation process manually or using a login script.

3.2.2 TMA Installation Comparison
We compare these installation methods to clarify the difference. When you
install Endpoints to a large number of systems, the installation method you
choose becomes very important.

The information we introduce in this section should help you decide the
installation method most appropriate for you, but the Endpoint installation
method you use may depend on a large number of factors.

Note
52 All About Tivoli Management Agents

D
R
A
F
T

3.2.2.1 Supported Platforms for TMA
Supported platform types for the Endpoint are as follows:

Table 4. Endpoint Support

3.2.2.2 Installation Prerequisites
SIS requires at least one Windows NT Managed Node which contains the
TRIP module in the TMR to install the Endpoint software to the target
Windows NT machine that does not contain the TRIP module.

The winstlcf command requires at least one Windows NT Endpoint in the
TMR to install to a target Windows NT machine.

Normally, the TMASERV requires one Windows NT TMR Server and one
TMASERV server, which also has the NT Resource Kit installed. However,
you can use the AIX TMR Server instead of the Windows NT TMR Server if
you perform certain customizations. Please refer to 3.5.2, “Using TMASERV”
on page 89 for more information about the TMASERV.

The preloaded TMA does not officially require any NT Domain Controller, but
if you install many preloaded TMA machines, you may want to use a facility
such as the NT login script feature to activate the preloaded TMAs
automatically.

Table 5. Prerequisites

SIS winstlcf Login
script

TMA
SERV

Local Preload

UNIX O O O

Windows NT O O O O O O

Windows 95/98 O O O O N/A

Windows 3.x O O O O N/A

OS/2 O O O

SIS winstlcf Login
script

TMA
SERV

Local Preload

SIS Server O

One TRIP Machine (NT) O

One NT Endpoint O

NT Domain Controller O O O *1

Windows NT TMR Server O *2
Tivoli Management Agent Installation 53

D
R
A
F
T

1. The NT login script enables you to activate the preloaded TMA
automatically, but it is not mandatory.

2. The AIX TMR Server is also available if you customize.

3. The Windows NT Resource Kit should be installed on the TMASERV
server as a prerequisite.

3.2.2.3 Network Considerations
All of these installation methods utilize a small amout of network bandwidth to
activate the Endpoint because the Endpoint daemon (lcfd) attempts to log
into the Endpoint gateway at the Endpoint installation.

The local installation and preloaded TMA do not require any network traffic to
transfer the installation image. This might be important when installing (or
activating) a large number of machines.

SIS and the winstlcf command are examples of a push operation where
explicit actions on the part of an administrator push the Endpoint code to one
or more systems. When pushing to multiple systems, especially using SIS,
the installation and subsequent initialization and logins may occur in parallel.

The other installation methods are based on the NT login script feature. The
installation image is pulled from a file server, such as an NT domain
controller, when the user logs into the domain and each Endpoint installation
would be performed asynchronously. These installation methods are referred
to as pull operations.

The SIS and the winstlcf command can take advantage of the MDist fan out
function to reduce the network traffic. In other installation methods, a
replicated file server may be used to reduce network traffic on slow links.

Table 6. Network Related

Windows NT TMASERVer O *3

SIS winstlcf Login
script

TMA
SERV

Local Preload

No Traffic to Transfer Image O O

Push from TMR Server O O

Pull from Endpoint O O

MDist Fan Out Function O O

SIS winstlcf Login
script

TMA
SERV

Local Preload
54 All About Tivoli Management Agents

D
R
A
F
T

3.2.2.4 Installation Options
All of these installation methods provide the capability to pass arguments to
the Endpoint daemon (lcfd), so that you can specify any installation options
you require for Endpoint installation. SIS also provides enhanced prerequisite
checking to help ensure a successful installation.

Table 7. Installation Options

3.2.2.5 Ease of Use
Installing an Endpoint using the Endpoint installation methods we are talking
about, typically requires some level of customization. For example, the NT
login script will normally need to be modified for a specific environment.

The TMASERV option provides more function than the simpl NT login script,
but is also somewhat more complex to install and configure.

In contrast, when using SIS, the various installation options can be specified
through the SIS GUI, which may be simpler for a less experienced
administrator.

The winstlcf command might appear to be the simplest option for installing
just a few Endpoints. However, it has many parameters and may provide less
information if the installation fails. Read the latest Tivoli Framework Release
Notes before using the winstlcf command.

Table 8. Ease of Use

Can be Replicated O O

Endpoint should be Started O O

SIS winstlcf Login
script

TMA
SERV

Local Preload

Gateway Address O O O O O O

Disable Broadcast O O O O O O

Installation Location O O O O O O

Prerequisite Check O

SIS winstlcf Login
script

TMA
SERV

Local Preload

Server Setup A B C D N/A N/A

SIS winstlcf Login
script

TMA
SERV

Local Preload
Tivoli Management Agent Installation 55

D
R
A
F
T

A Very Good

B Good

C Average

D Poor

3.2.2.6 When Is It Used?
In this section, we summarize the Endpoint installation methods we have
been discussing:

Table 9. When to Use Endpoint Installation Methods

SIS provides an extensive prerequisite checking feature that checks the
installation prerequisites before installing each product. In addition, SIS
enables you to perform initial prerequisite checking without actually installing
any products. This makes the installation reliable and, as a result, saves
installation time. You can also configure additional prerequisite checks that
are specific to your environment. SIS also has a response file option that
enables you to install Tivoli products from the command line. This feature is
particularly useful when you install a product onto a large number of
machines. SIS creates a installation repository (IR) that stores the Tivoli
products, patches images, and imports the installation images before they
are installed. The installation images imported into the IR can be used many
times.

Client Installation B C A A B A

Failure Management C D D C N/A N/A

Reliability C D C C C C

SIS winstlcf Login
script

TMA
SERV

Local Preload

Small Number of Clients O O O O

Many Clients O O O O O

Mass O O O O

Need Prerequisite Check O O

Use for UNIX and Windows O O

Central Management O

SIS winstlcf Login
script

TMA
SERV

Local Preload
56 All About Tivoli Management Agents

D
R
A
F
T

Therefore, if you install both UNIX Endpoints and Windows Endpoints, we
recommend that you think about SIS first, since it supports not only Windows
but also the UNIX platforms (as compared to an NT login script, for instance).
You can install many Endpoints and other Tivoli products at the same time
and monitor the status of these installations from the SIS console.

However, if you install large numbers of Endpoints onto only Windows
machines, you may want to to use an NT login script. It is the most powerful
installation method in the Windows environment and automates the
installation on new nodes entering the network without requiring administator
action.

If you install just a few Endpoints, the winstlcf command or local installation
should be quick and easy. Note that these installation methods do not provide
prerequisite checking or confirmation that the Endpoint has actually started
and logged into the TMR. A local installation method, such as InstallShield,
depends on the individual at the workstation entering the proper paramters
for their environment.

The preloaded TMA is, of course, the most powerful solution. The Endpoint
module has already been installed so we simply need to activate it. However,
this depends on your environment and situation. If you preload other software
on systems deployed in your environment, you should certainly consider the
preloaded TMA.

3.2.3 Overview of Installation Options
In this section, we introduce the considerations for Endpoint installation
options and other miscellaneous considerations before and during the
Endpoint installation process.

When using SIS to install Endpoints to currently existing Managed Nodes,
SIS automatically sets the alias attribute of the Endpoint to the object ID
(OID) of the Managed Node. The Migration Toolkit uses this alias to help
migrate subscription lists. To set the Endpoint alias manually, you can use
the wsetepalias command provided by the Tivoli Migration Toolkit, or the wep
set alias option. When installing in such an environment, SIS offers a
great advantage in preparing for the migration.

Note
Tivoli Management Agent Installation 57

D
R
A
F
T

3.2.3.1 Installation User
Installing the Endpoint does not require the Tivoli administrator authorization
role required for the installation of other framework components. When you
perform the Endpoint installation, you should log in to the operating system
as:

 • A member of the administrator group on Windows NT

 • The root user on UNIX

3.2.3.2 Installation Locations
The following table shows the default installation directories on the Endpoint
for each supported operating system.

Table 10. Installation Locations

We strongly recommend that you specify the C:\Tivoli\lcf directory as the
Endpoint installation directory instead of C:\Program Files\Tivoli\lcf on the
Windows platform. If you use the directory name including a blank character,
such as C:\Program Files\Tivoli\lcf, some tools may not work correctly. By
default, the Endpoint installation directory contains the blank character.

3.2.3.3 Endpoint Gateway Address
In Version 3.6 of the Tivoli Management Framework, if there are multiple
Gateways on the same subnet, and the Endpoint is allowed to perform the
broadcast for the initial login, several of the Endpoint gateways may receive
the login request and process it. It is better for you to specify the login
interfaces list using the -g option as the installation option. This directs the
Endpoint to contact a specific Gateway instead of broadcasting to find one.

3.2.3.4 Version Dependencies
If you are upgrading your TMR, the TMR Server, Managed Nodes, Endpoint
gateways and Endpoints should be upgraded to Version 3.6 before any other

Target Installation Method Default Location

UNIX Local/winstlcf /opt/Tivoli/lcf

Windows SIS C:\Tivoli\lcf

winstlcf C:\Program Files\Tivoli\lcf

InstallShield C:\Program Files\Tivoli\lcf

Login Script C:\Program Files\Tivoli\lcf

TMASERV C:\Program Files\Tivoli\lcf

Preloaded TMA %SystemDrive%\Tivoli\lcf
58 All About Tivoli Management Agents

D
R
A
F
T

Tivoli applications are upgraded. The Endpoint Manager (TMR Server) and
the Endpoint gateway must be at the same version. The Endpoints can be a
lower version, but the upgrading would be performed automatically at the first
connection to the Endpoint gateway if you configure the auto upgrade
function.

3.2.3.5 Installation Steps
There are two steps to Endpoint installation. One is the installation of the
Endpoint software to the target machine and another is the activation of the
Endpoint daemon process called lcfd (in the Windows environment, the lcfd
process is also activated to display a small icon on your taskbar’s system
tray). The initial login process is performed after the activation. The Endpoint
login process can be a complicated, and we will describe it in detail in
“Configuring the TMA Environment” on page 105 and “Anatomy of TMA
Behavior” on page 135.

3.2.4 How to Specify Installation Option
The Endpoint (lcfd) options which are specified at Endpoint installation are
very important. In a large environment, they are very important because once
you configure the Endpoint options for a mass installation, it is very difficult to
modify the options. From this point of view, you should understand how to
specify the Endpoint installation options. In this section, we introduce an
overview of how to specify the installation options for each Endpoint
installation method. For more detailed information, refer to the appropriate
Tivoli manuals.

3.2.4.1 SIS
SIS provides the following panel to specify the Endpoint installation options.
The Additional Options for Endpoint field passes the configuration arguments
to the lcfd daemon at the activation of the Endpoint.

The most important Endpoint option is the login interface information.
When you install masses of Endpoints in a large environment, you have to
consider the Gateway assignment for each Endpoint. The proper Gateway
assignment makes the installation and initial login more reliable.

Important
Tivoli Management Agent Installation 59

D
R
A
F
T

Figure 18. SIS Dialog for Endpoint Attributes

Please refer to the Tivoli Software Installation Service User’s Guide for more
information.

3.2.4.2 winstlcf Command
The winstlcf command provides command-line options to specify the lcfd
daemon’s parameters as follows:

winstlcf -d C:/Tivoli/lcf -g kodiak+9494 -L "-d3" salmon

where

-d Specifies the target directory where the Endpoint is installed

-g Specifies the IP address or hostname and port number of the
Endpoint gateways

-L Passes the configuration arguments to the lcfd command for
starting the Endpoint

Other options are also available. Please refer to the Tivoli Framework
Reference Manual for more information.

3.2.4.3 Local Install (InstallShield)
There are a few ways to specify the installation options when using the
InstallShield.
60 All About Tivoli Management Agents

D
R
A
F
T

Advanced option display
To specify the options interactively, setup.exe provides the following panel at
the Endpoint installation.

Figure 19. Endpoint Options in InstallShield

setup.iss File for Silent Installation
The InstallShield provides silent installation capability to automate the
installation. You can use silent installation by specifying the -s option (setup
-s). If you use silent installation, you need to modify the default setup.iss file
to specify the installation options that you would like to use in your
environment. The following shows a sample of the setup.iss file:

The szDir specifies the target directory where the Endpoint is installed. The
szEdit3 passes the Endpoint configuration arguments to the lcfd command
for starting the Endpoint.

[SdComponentDialog-0]
szDir=C:\Tivoli\lcf
Component-type=string
Component-count=1
Component-0=TME 10 Endpoint
Result=1

[SdShowDlgEdit3-0]
szEdit1=9494
szEdit2=9494
szEdit3=-d 1 -g kodiak+9494:grizzly+9494
Result=1
Tivoli Management Agent Installation 61

D
R
A
F
T

You can also modify the setup.iss file through the GUI provided by the
setup.exe. For more information to modify the setup.iss file with the GUI,
please refer to “Using Silent Installation” on page 83.

3.2.4.4 Login Script
The login script uses the silent installation capability of InstallShield. If you
would like to specify installation options, follow the instructions for the silent
installation we mentioned.

3.2.4.5 TMASERV
The TMASERV uses the lcf_seed file to specify the installation options. The
following is a sample of the lcf_seed file.

The base_dir specifies the target directory where the Endpoint is installed.
The lcf_opts passes configuration arguments to the lcfd daemon for starting
the Endpoint. Please refer to Chapter 3.5.2, “Using TMASERV” on page 89
for more information.

3.2.4.6 Preloaded TMA
Normally, we use the login script feature to activate the preloaded TMA. If you
would like to specify installation options, modify the script defined in the NT
login script. Please refer to Chapter 3.4, “Configuring Preloaded TMA” on
page 73 for more information.

3.2.5 Removing Endpoint Software
Removing or uninstalling the Endpoint software depends on which operating
system the Endpoint is installed. However, removing the Endpoint software
does not mean deleting the Endpoint entry from the Tivoli object database. To
delete the Endpoint completely, you also have to remove the Endpoint entry
from the Tivoli database using the wdelep command. Again, removing the
Endpoint software is different from deleting the Endpoint from the Tivoli
database.

How to remove the Endpoint software is different for each platform where the
Endpoint is running, so you need to perform specific steps for each case. The
following introduces how to remove the AIX, Windows NT, and Windows
95/98 Endpoints. For removing the Endpoint from other platform types,
please refer to the Tivoli Planning and Installation Guide.

timeout=300
base_dir=c:\Tivoli\lcf
lcf_opts=-d1 -g kodiak+9494:grizzly+9494
62 All About Tivoli Management Agents

D
R
A
F
T

3.2.5.1 AIX
To remove the Endpoint from the AIX:

1. Stop the Endpoint daemon with following command:

/opt/Tivoli/lcf/dat/1/lcfd.sh stop

2. Remove the Endpoint installation directory and subdirectories. The default
location is /opt/Tivoli/lcf.

3. Remove the Endpoint environment directory, and embedded files and
subdirectory. The directory is /etc/Tivoli/lcf. The environment commands
are located in lcf_env.sh and lcf_env.csh.

4. Remove the Endpoint startup entry from /etc/inittab using the following
command:

/etc/rmitab rctma1

5. Remove the /etc/rc.tma1 and /etc/inittab.before.tma1 files.

6. Remove the /etc/Tivoli/*/userlink.htm file.

3.2.5.2 Windows NT/95/98 (Using the uninst.bat Command)
If you can find C:\Tivoli\lcf\uninst.bat command, follow these directions:

1. Stop and remove the Endpoint service by issuing the following command:

C:\Tivoli\lcf\uninst

2. Remove the Endpoint environment directory, subdirectory, and files. The
directory and files are:

C:\Winnt\Tivoli\lcf, lcf_env.sh and lcf_env.cmd (for Windows NT)

C:\Windows\Tivoli\lcf and lcf_env.bat (for Windows 95/98)

3. Remove the c:\Etc\Tivoli\userlink.htm file.

Windows NT/95/98 (Without the uninst.bat Command)

The wlcfinst, the TMASERV and the preloaded TMA do not provide the
uninst.bat utility.

1. Stop and remove the Endpoint service by issuing the following command:

C:\Tivoli\lcf\bin\w32-ix86\mrt\lcfd -r "lcfd"

2. Execute the following command to terminate the lcfep process:

C:\Tivoli\lcf\bin\w32-ix86\mrt\lcfep -s

3. Remove the Endpoint installation directory and subdirectories. The default
location is C:\Tivoli\lcf or C:\Program Files\Tivoli\lcf.
Tivoli Management Agent Installation 63

D
R
A
F
T

4. Remove the Endpoint environment directory, subdirectory, and files. The
directory and files are:

C:\Winnt\Tivoli\lcf, lcf_env.sh and lcf_env.cmd (for Windows NT)

C:\Windows\Tivoli\lcf and lcf_env.bat (for Windows 95/98)

5. Remove the C:\Etc\Tivoli\userlink.htm file.

6. Edit the Windows 95/98 registry (Windows 95/98 only):

 • Start the regedit program using the run program feature.

 • Expand the registry to the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\RunServices key.

 • Delete the lcfd entry.

3.3 Planning for Mass Installation

Installing the Endpoint on a handfull of systems can easily be accomplished
on an individual system basis. However, if you are working with many
Endpoints, meaning more than one hundred, we consider a mass installation.
You should use the Endpoint installation method we introduced, or else install
the preloaded TMA. There are some considerations to remember for mass
installation. In this section, we introduce considerations for performing a
mass installation.

3.3.1 Using NT Login Script
As we mentioned, if you install thousands of Endpoints to Windows
machines, using the NT login script is one of the most powerful ways. In this
section, we introduce an example of a mass installation using the login script.

3.3.1.1 Creating Installation User in NT Domain
The NT login script can be configured for each user in the domain, but it may
be complicated for you to configure the script which performs the Endpoint
installation and specify the Endpoint options for each user in the domain. One
consideration is that for Windows NT, the user under which the installation
process runs must be part of the NT administrator’s group. In this situation,
creating a special installation user is one solution. In this case, create a user
to install the Endpoint, and each machine shares the same user temporarily.
When you create the installation user, we recommend that you configure the
user attributes in the User Properties panel of the Windows NT User Manager
for Domains utility as follows:

User Must Change Password at Next Logon Disable
64 All About Tivoli Management Agents

D
R
A
F
T

User Cannot Change Password Enable

The most important thing here is that each person who uses the machine
where the Endpoint will be installed has to know the installation user and has
to log into the domain as the installation user at least once. Of course, after
the user logs into the domain as the installation user, they can change the
login user from the installation user to the original user by performing a logout
and login. The following figure shows this process.

Figure 20. The Mass Installation with the NT Login Script

1. The user of the machine where the Endpoint will be installed attempts to
log in to the domain as the Endpoint installation user.

2. The domain controller executes the login script defined in the user profile
of the installation user.

3. The login script performs the Endpoint installation process. As a result, the
Endpoint software is installed to the machine and it becomes an Endpoint.
Then it attempts to perform the initial login to the appropriate Endpoint
gateway.

NT Domain

Login Script

Domain Controller

Endpoint

Lo
gi

n

1

2

3Endpoint
Installation

Process

Installation
User
Tivoli Management Agent Installation 65

D
R
A
F
T

3.3.1.2 Sample Login Script
We developed a sample login script for Endpoint mass installation during the
creation of this redbook. This script and its use is described below.

The Endpoint can be installed onto a Windows machine using the login script
when the user logs in to the domain. The login script checks whether the
Endpoint software has already been installed or not and, if necessary,
launches the Endpoint installation process. This script supports Windows
95/98 and Windows NT machines and has the option to report on the
completion of the Endpoint login process to the user. Without this option, the
user cannot know that the Endpoint installation finished successfully or
terminated abnormally on the Endpoint machine. If you enable this option, the
user can check the status of the installation process and the log file (lcfd.log)
if the installation fails.

We will provide detailed information about how to enable the option that
reports on the completion of the Endpoint login process in Chapter 3.3.2.2,
“Completion Checking from Endpoint” on page 69.

REM @echo off
REM
REM Sample LCF logon script. Call this script from the user’s normal logon script.
REM
REM Using logon scripts:
REM 1) Change the SERVER and INSTALLDIR settings to point to the lcf-images directory
REM on the network.
REM 2) On the NT Domain server, copy this script to the scripts directory. By default
REM this directory is ’C:\WINNT\system32\Repl\Import\Scripts’. This script can
REM also be replicated automatically from primary domain controllers, but you can
REM read about that fun stuff yourself.
REM 3) Run the User Manager program, select a user and then select "profile". Enter
REM the name of this script in the "Logon scripts" area.
REM 4) Whenever that user logs in to this domain, this installation script will run
REM on their machine.
REM

REM Script settings - Modify these to your environment
set MAPDRIVE=Y
set SERVER=\\grizzly\exports
set INSTALLDIR=\Tivoli36\lcf
set DESTDIR=c:\Tivoli\lcf
set DESTDIR2=c:\"Program Files"\Tivoli\lcf
set LOGDEST=nul
set ISHIELDOPTS=-s

REM Optional introduction for user
echo Installing Tivoli Lightweight Client Framework > %LOGDEST%

REM Figure out which interp
REM @@changed 98/11/09 ver | find "Windows 95" > nul
ver | find "Windows 9" > nul
if errorlevel 1 goto checkNT
set INTERP=win95
goto install

:checkNT
66 All About Tivoli Management Agents

D
R
A
F
T

ver | find "Windows NT" > nul
if errorlevel 1 goto assume3x
REM @@changed 98/01/05 INTERP=w32-ix86
set INTERP=winnt
goto install

:assume3x
set INTERP=win3x

:install
REM Check for previous installation
if exist %DESTDIR%\bin goto prevInst
if exist %DESTDIR2%\bin goto prevInst

:doit
echo OS Detected as: %INTERP%. > %LOGDEST%

REM Map drive to get to installshield files
net use %MAPDRIVE%: /DELETE > nul
net use %MAPDRIVE%: %SERVER%

REM Execute installshield setup
start %MAPDRIVE%:%INSTALLDIR%\%INTERP%\setup.exe %ISHIELDOPTS%
echo Successfully installed for %USERNAME% > %LOGDEST%

REM Start log checker
REM start sh logchk
goto end

:prevInst
echo Script detects that LCF is already installed > %LOGDEST%

:end
pause

3.3.2 Installation Completion Check
In this section we investigate methods for determining the successful
installation and login of Endpoints. Developing such a method is critical to the
successful automated installation of a large number of Endpoints.

3.3.2.1 Completion Checking by Administrator
In an Endpoint mass installation, how do you know the Endpoint installation
has completed successfully? How do you attempt to install thousands of
Endpoints? The most efficient and simple way to check the status of an

When you install the Endpoint onto the Windows machine, a small icon
appears on the task bar. The lcfep.exe process displays this icon.
However, it is a separate process which is installed and executed
regardless of the success of the actual Endpoint installation and login.
Therefore, do not use the appearance of this icon as an indication of a
successful installation.

Note
Tivoli Management Agent Installation 67

D
R
A
F
T

Endpoint is the wep command. The wep command enables us to check the
existence of the Endpoint and Endpoint gateway. The following shows sample
output of the wep command:

This is probably the first thing to do after installing Endpoints. If the Endpoint
that you attempted to install appears on the output of the wep command, it
means the Endpoint installation is complete and it is working fine. If you
create a shell script using the wep command to check the successful
installation of Endpoints, it can make the installation completion check easy
and effective.

If you would like to check for more detailed information about the Endpoint
which you installed, you can use the Endpoint Web interface or the wadminep
command. They enable you to browse the Endpoint log file. The following
shows a sample output of the Endpoint log file (lcfd.log) by the wadminep
command.

In this output, you can see the following line:

Login to Gateway 9.3.1.210+9494 complete.

/>wep ls
G 1189622596.4.21 grizzly-gateway
G 1189622596.2.19 kodiak-gateway
 1189622596.126.508+#TMF_Endpoint::Endpoint# salmon
G 1189622596.109.19 trout-gateway
G 1189622596.77.14 yi2250d
/>

/>wadminep salmon view_log_file
Performing browse mode ’view_log_file’ on endpoint ’salmon’
Nov 23 15:41:26 1 lcfd CacheInit: Starting new index file: C:\Tivoli\lcf\dat\1\cache\Index.v5
Nov 23 15:41:26 1 lcfd lcfd 5 (w32-ix86)
Nov 23 15:41:26 1 lcfd Binary Dir (load_dir): ’C:\Tivoli\lcf\bin\w32-ix86\mrt’
Nov 23 15:41:26 1 lcfd Library Dir (lib_dir): ’C:\Tivoli\lcf\bin\w32-ix86\mrt’
Nov 23 15:41:26 1 lcfd Dat Dir (run_dir): ’C:\Tivoli\lcf\dat\1’
Nov 23 15:41:26 1 lcfd Cache Dir (cache_loc): ’C:\Tivoli\lcf\dat\1\cache’
Nov 23 15:41:26 1 lcfd Logging to (logfile): ’C:\Tivoli\lcf\dat\1\lcfd.log’ at level 1
Nov 23 15:41:26 1 lcfd Cache limit: ’20480000’
Nov 23 15:41:26 1 lcfd Cache size at initialization: ’0’
Nov 23 15:41:26 1 lcfd Ĥmm... looks like you’re running NT 4.0 (build 1381). Don’t create a console.
Nov 23 15:41:26 1 lcfd node_login: listener addr ’0.0.0.0+9494’
Nov 23 15:42:35 1 lcfd salmon is dispatcher 130 in region 1189622596
Nov 23 15:42:35 1 lcfd write login file ’lcf.dat’ complete
Nov 23 15:42:35 1 lcfd Logging into new gateway...
Nov 23 15:42:36 1 lcfd salmon is dispatcher 130 in region 1189622596
Nov 23 15:42:36 1 lcfd write login file ’lcf.dat’ complete
Nov 23 15:42:36 1 lcfd final pid: 99
Nov 23 15:42:36 1 lcfd Login to gateway 9.3.1.210+9494 complete.
Nov 23 15:42:36 1 lcfd Ready. Waiting for requests (0.0.0.0+9494). Timeout 120.
Nov 23 15:42:36 1 lcfd Spawning: C:\Tivoli\lcf\dat\1\cache\bin\w32-ix86\endpoint\msg_bind.exe, ses: 248be5cb
Nov 23 15:42:46 1 lcfd Spawning: C:\Tivoli\lcf\dat\1\cache\bin\w32-ix86\endpoint\admin.exe, ses: 248be5cd
Nov 23 15:42:47 1 browse Mode = view_log_file
68 All About Tivoli Management Agents

D
R
A
F
T

This means the Endpoint logged into the Endpoint gateway without an error.

3.3.2.2 Completion Checking from Endpoint
We introduced how to check for a successful Endpoint installation from an
administrator’s workstation. However, how can the user who uses the
machine where the Endpoint is installed know if the installation is complete?
Users may sometimes want to know about the Endpoint installation
completion. For these users, we developed a sample tool that enables the
user of the Endpoint to know about the installation status, as we discussed in
Chapter 3.3.1.2, “Sample Login Script” on page 66.

To enable the option that notifies the user regarding the completion of the
Endpoint login process, you should create two scripts in the directory that
contains the login script. By default, this would be the
C:\WINNT\system32\Repl\Import\Scripts directory. You also have to copy the
following files from the Endpoint tools directory of the TMR Server machine
(/usr/local/Tivoli/bin/lcf_bundle/bin/w32-ix86/tools) to the same directory.

 • echo.exe

 • grep.exe

 • ls.exe

 • sh.exe

 • sleep.exe

 • tail.exe

 • xargs.exe

 • win32gnu.dll

The sample consists of two scripts, and the current version of these scripts
only supports the Windows NT Endpoint:
Tivoli Management Agent Installation 69

D
R
A
F
T

Another script is shown below. This script checks the contents of the lcfd.log
file and displays important information on stdout:

#!/bin/sh
#
rd - lcfd.log retrieve script
#
set +x

a_line=$*
set $a_line
LVL=$4
shift;shift;shift;shift;shift
CONTENTS=$*
if [$LVL != "1"];then
exit
fi
set $CONTENTS
#
Level 1 Messages
#

#!/bin/sh
#
logchk - login check script
#
TBIN=//grizzly/netlogon
LOCATION=c:/tivoli/lcf/dat

echo "----- Installation Check Window -----"
while ${TBIN}/sleep 1
do
echo -n "."
CURRENT=‘${TBIN}/ls -tr ${LOCATION} 2>/dev/null|${TBIN}/tail -1‘
if [! "${CURRENT}" = ""];then
break;
fi
done
LCFDLOG=${LOCATION}/${CURRENT}/lcfd.log
echo ""
echo "LCFD log is ${LCFDLOG}"

echo "Waiting for lcfd start "
while ${TBIN}/sleep 1
do
echo -n "."
if [-f ${LCFDLOG}];then
break;
fi
done

echo ""
echo "lcfd started."
echo "Waiting for login complete"

${TBIN}/tail -f -n 1000 ${LCFDLOG} | ${TBIN}/xargs -l1 sh rd
read ch
70 All About Tivoli Management Agents

D
R
A
F
T

Successfully complete
if ["Login to gateway complete." = "$1 $2 $3 $5"];then
echo "$1 $2 $3 $4 $5"
echo "Installation process complete. Please CLOSE this window."
read ch
exit
fi
Login trial to Login Interfaces failed
if ["No gateway found." = "$a_line"];then
echo $a_line
exit
fi
Normal login failure.
if ["gw login failure:" = "$1 $2 $3"];then
echo "Failure for Normal Login"
exit
fi

#
Level 2 Messages
#
Send login packet
if ["net_usend of" = "$1 $2"];then
echo "Try to login $6"
exit
fi
Login attempt message
if ["send_login_dgram: waiting for reply. attempt" = "$1 $2 $3 $4 $5"];then
echo "$5 $6 $7 $8"
exit
fi
Login trial failed and Entering wait loop.
if ["Entering net_wait_for_connection," = "$1 $2"];then
echo "Entering wait loop. $3"
exit
fi
Normal login attempt to Gateway.
if ["Connecting to" = "$1 $2"];then
echo $a_line
exit
fi

When the Endpoint installation and the Endpoint login process completes,
this sample script displays the Endpoint login process information as follows:
Tivoli Management Agent Installation 71

D
R
A
F
T

Figure 21. Output of logchk script

3.3.3 TMR Redirection
Version 3.6 of Tivoli supports the TMR redirection feature. This feature allows
you to configure a special TMR to perform as the master router for the
Endpoint login process across many regions (TMRs).

To redirect the TMR, you need to define the select_gateway_policy script that
specifies the appropriate Gateways for an Endpoint that has requested an
initial login. Normally, the select_gateway_policy script just returns the
candidate Gateways in a single TMR for the Endpoint logging in, but you can
specify an Endpoint gateway belonging to another TMR. This is called the
TMR redirection function.

TMR redirection can simplify the Endpoint configuration process in a large
environment or an environment where the broadcast approach is not
adequate. If you would not like to use the broadcast for the Endpoint login or
the Endpoint login is not completed with the broadcast, some configuration
for the Endpoint login might be necessary for completing the Endpoint login.
Specifying a specific Gateway increases the effort for Endpoint configuration
at initial login and planning for the allocation of resources, the Endpoint
Manager or Endpoint gateways. In this situation, specifying the proper
Gateway for each Endpoint by Gateway name or IP address by the use of
installation options can be complex.

To resolve this problem, you can use the TMR redirection function. In the
TMR redirection, the Endpoint gateway (which works as the master router)
should be reachable from the all Endpoints, even if the Endpoint belongs to
another TMR. If you define the well-known name as the Endpoint gateway
72 All About Tivoli Management Agents

D
R
A
F
T

host name, such as tivoli-gateway, all Endpoint can specify the well-known
name using the -g tivoli-gateway option at the Endpoint initial login. Then the
select_gateway_policy assigns each Endpoint to the appropriate Endpoint
gateway across multiple TMRs. This TMR redirection makes the Endpoint
configuration at the initial login simple and easy.

We will provide more detailed information about TMR redirection in
“Configuring the TMA Environment” on page 105.

3.4 Configuring Preloaded TMA

The preloaded TMA will be provided for several platform types in the near
future. In the previous chapter, “Tivoli Ready with Tivoli Management Agent”
on page 31, we introduced two different types of the preloaded TMA, the
zipped TMA code and preloaded TMA in OS (or application). In this section,
we introduce how to configure the preloaded TMA for each type on the
Windows NT and AIX platform.

3.4.1 Preloaded TMA for Windows NT (Zipped TMA)
As we mentioned, the zipped TMA code will be distributed from the Tivoli
Web site (http://www.tivoli.com). The size of the whole zip file is
approximately 3 MB and preloaded TMA for NT is approximate 600 KB. The
following are instructions for how to unpack and activate the zipped TMA
code on Windows NT.

1. Download the zip file from the Web site http://www.tivoli.com.

2. Locate the zip file in the appropriate directory.

3. Unzip the self-extracting zip file to the appropriate directory. Then, the
subdirectories appear under the directory to which the zip file is extracted.
Each subdirectory corresponds to the various platforms (refer to Figure 22
on page 74).

4. Select the appropriate subdirectory. In this case, select the winnt
subdirectory.

5. Execute the batch file (ntins.bat) in the winnt subdirectory. After executing
the batch file, this machine should be a preloaded TMA machine. This
means that the lcfd daemon has not been started at that time. Therefore,
you need to activate the lcfd to use the TMA immediately.

6. The zipped TMA is installed under the C:\Tivoli\lcf directory. To activate
the Tivoli Authentication Package (TAP), execute the following command:

C:\Tivoli\lcf\bin\w32-ix86\mrt\wlcftap.exe -a
Tivoli Management Agent Installation 73

D
R
A
F
T

Reboot the machine.

7. To add the Tivoli reserved user, execute the following command:

C:\Tivoli\lcf\bin\w32-ix86\mrt\ntconfig.exe -e

8. To start the lcfd daemon, execute the lcfd command with the appropriate
options. This depends on the environment. The following is an example of
the lcfd command:

C:\Tivoli\lcf\bin\w32-ix86\mrt\lcfd.exe -i -g gw_addr+9494 -D
bcast_disabled=1

After this operation, the Tivoli Endpoint is configured as an NT service, so
it allows you to have the lcfd daemon restart each time the machine is
rebooted.

9. If you would like to install the NT taskbar icon, execute the following
command (this operation is optional):

C:\Tivoli\lcf\bin\w32-ix86\mrt\lcfep.exe -x -i

Figure 22. The Zipped TMA Images for Each Platform
74 All About Tivoli Management Agents

D
R
A
F
T

For mass activation, the following sample NT login script is provided by the
zipped TMA code.

C:\Tivoli\lcf\generic\logontma.bat

We will introduce how to activate an Endpoint using the NT login script in the
next section. It is a powerful way to deploy masses of preloaded TMA
machines and activate them.

3.4.2 Preloaded TMA for Windows NT (Preloaded TMA in OS)
As we mentioned, there are two ways to activate the preloaded TMA,
manually or by using an NT login script. This section describes how to use an
NT login script to activate the preloaded TMA for Windows NT. As we
mentioned, since the Endpoint software has already been installed, the
preloaded TMA does not require the installation operation, so the setup
programs, such as InstallShield, are not required. The following sample script
activates the preloaded TMA for Windows NT:

If you have unpacked the zipped TMA code on the machine successfully,
the following HTML files provide the activation instructions and are located
in the C:\Tivoli\TivReady directory. You can refer to it as well during the
activation process.

C:\Tivoli\TivReady\activate.htm
C:\Tivoli\TivReady\Readme.htm

Note
Tivoli Management Agent Installation 75

D
R
A
F
T

The following sample NT login script is provided on the preloaded TMA
machine:

c:\Tivoli\lcf\generic\logontma.bat

3.4.2.1 Activation Instructions
The following shows how to activate the preloaded TMA for Windows NT:

1. On the NT Domain Server, copy the above sample script to the scripts
directory. By default, the directory is:

C:\Winnt\system32\Repl\Import\Scripts.

2. Run the User Manager for Domains utility, select a user and then edit the
Profile definition. Enter the path of the script into the Logon Scripts field.

3. Whenever the user logs in to this domain, the sample activation script runs
on its machine and activates/configures the preloaded TMA.

@echo off
REM Login.bat
REM Silently abort if not running Windows
if "%windir%" == "" goto end

if "%OS%" == "Windows_NT" goto NT
REM Silently abort if not running Windows NT
goto end

:NT
if not exist %SystemDrive%\Tivoli\lcf\bin\w32-ix86\mrt\lcfd.exe goto alert

set LCFOPTS=%1 %2 %3 %4 %5 %6 %7 %8 %9
set LCFROOT=%SystemDrive%\Tivoli\lcf

REM Start TAP
%LCFROOT%\bin\w32-ix86\mrt\wlcftap -a

REM Start the TMA and install it as a service
%LCFROOT%\bin\w32-ix86\mrt\lcfd.exe -i -C %LCFROOT%\dat\1 %LCFOPTS%

set LCFOPTS=
set LCFROOT=

goto end

:alert
echo Could not find the files needed to start the Tivoli Management Agent.
echo Please contact your Tivoli Administrator.
goto end

:end
76 All About Tivoli Management Agents

D
R
A
F
T

The sample script would pass any options of the lcfd command to the lcfd
daemon. Don’t put the parameters directly into the Logon Scripts field of the
Windows NT User Manager for Domain utility, because it does not support the
parameters that are passed to the login script. You should pass the
parameters through another batch script as follows, and specify the script
name in the Logon Scripts field without the parameter.

You can also run this script stand-alone.

3.4.3 Preloaded TMA for UNIX (Zipped TMA Code)
The zipped TMA code can be obtained from the Tivoli Web site. The zip file
includes the preloaded TMA image for AIX platform as well. The preloaded
TMA for AIX is approximately 600 KB. The following are instructions of how to
unpack and activate the zipped TMA code on AIX.

1. Download the zip file from the Tivoli Web site.

2. Locate the zip file in the appropriate directory.

3. Unzip the zip file to the appropriate directory using an unzip utility. The
subdirectories appear under the directory to which the zip file is extracted.

4. Select the aix4 su-directory and copy the aix4-r1tma.tar file to the root
directory (/)on the AIX machine. This tar file contains the following files:

call login "-g grizzly+9494 -D bcast_disable=1 -d2"
Tivoli Management Agent Installation 77

D
R
A
F
T

5. Untar the aix4-r1tma.tar file in the root directory using the following
command:

tar xvf aix4-r1tma.tar

Then, the preloaded TMA code is extracted and this AIX machine will be a
preloaded TMA machine. As you know, the lcfd daemon has not been
started yet at that time, so that you need to activate the lcfd daemon.

6. Change the directory to the /opt/Tivoli/lcf/generic directory:

cd /opt/Tivoli/lcf/generic

7. Execute the autostart script with the appropriate option in the directory as
follows:

Then the following entry is added into the /etc/inittab file:

tar -tvf aix4-r1.tar
drwxr-xr-x 395 40 0 Jan 15 15:29:13 1999 etc/
drwxr-xr-x 395 40 0 Jan 15 15:29:13 1999 etc/Tivoli/
drwxr-xr-x 395 40 0 Jan 15 15:29:13 1999 etc/Tivoli/lcf/
drwxr-xr-x 395 40 0 Jan 15 15:29:13 1999 etc/Tivoli/lcf/1/
-rw-r--r-- 395 40 2953 Sep 25 10:04:54 1998 etc/Tivoli/lcf/1/lcf_env.csh
-rw-r--r-- 395 40 1704 Sep 25 10:05:06 1998 etc/Tivoli/lcf/1/lcf_env.sh
drwxr-xr-x 395 40 0 Jan 15 15:29:13 1999 opt/
drwxr-xr-x 395 40 0 Jan 15 15:29:15 1999 opt/Tivoli/
drwxr-xr-x 395 40 0 Jan 15 15:29:14 1999 opt/Tivoli/lcf/
drwxr-xr-x 395 40 0 Jan 15 15:29:14 1999 opt/Tivoli/lcf/bin/
drwxr-xr-x 395 40 0 Jan 15 15:29:14 1999 opt/Tivoli/lcf/bin/aix4-r1/
drwxr-xr-x 395 40 0 Jan 15 15:29:14 1999 opt/Tivoli/lcf/bin/aix4-r1/mrt/
-rw-r--r-- 395 40 95929 Aug 10 20:31:28 1998 opt/Tivoli/lcf/bin/aix4-r1/mrt/lcfd
drwxr-xr-x 395 40 0 Jan 15 15:29:14 1999 opt/Tivoli/lcf/dat/
drwxr-xr-x 395 40 0 Jan 15 15:29:14 1999 opt/Tivoli/lcf/dat/1/
-rw-r--r-- 395 40 4246 Dec 20 19:19:52 1998 opt/Tivoli/lcf/dat/1/lcfd.sh
drwxr-xr-x 395 40 0 Jan 15 15:29:14 1999 opt/Tivoli/lcf/generic/
-rw-r--r-- 395 40 4874 Oct 06 08:48:44 1998 opt/Tivoli/lcf/generic/as.sh
-rw-r--r-- 395 40 391 Dec 20 19:36:23 1998 opt/Tivoli/lcf/generic/readme
drwxr-xr-x 395 40 0 Jan 15 15:29:14 1999 opt/Tivoli/lcf/lib/
drwxr-xr-x 395 40 0 Jan 15 15:29:14 1999 opt/Tivoli/lcf/lib/aix4-r1/
-rw-r--r-- 395 40 22881 Aug 10 20:31:12 1998 opt/Tivoli/lcf/lib/aix4-r1/libcpl.a
-rw-r--r-- 395 40 43280 Aug 10 20:31:12 1998 opt/Tivoli/lcf/lib/aix4-r1/libdes.a
-rw-r--r-- 395 40 442711 Aug 10 20:31:16 1998 opt/Tivoli/lcf/lib/aix4-r1/libmrt.a
drwxr-xr-x 395 40 0 Jan 15 15:29:16 1999 opt/Tivoli/TivoliReady/
-rw-r--r-- 395 40 3875 Jan 15 10:07:16 1999 opt/Tivoli/TivoliReady/activate.html
drwxr-xr-x 395 40 0 Jan 15 15:29:16 1999 opt/Tivoli/TivoliReady/html/
-rw-r--r-- 395 40 2672 Sep 23 15:46:35 1998 opt/Tivoli/TivoliReady/html/bkgrd3.gif
-rw-r--r-- 395 40 1122 Oct 14 05:20:54 1998 opt/Tivoli/TivoliReady/html/bottom_bar.gif
-rw-r--r-- 395 40 5603 Sep 23 15:46:35 1998 opt/Tivoli/TivoliReady/html/header.gif
-rw-r--r-- 395 40 2034 Sep 23 15:46:38 1998 opt/Tivoli/TivoliReady/html/tivrdy.gif
-rw-r--r-- 395 40 1203 Sep 23 15:46:35 1998 opt/Tivoli/TivoliReady/html/top_bar_index.gif
-rw-r--r-- 395 40 43 Oct 14 04:44:34 1998 opt/Tivoli/TivoliReady/html/white_dot.gif
-rw-r--r-- 395 40 4119 Dec 20 23:49:04 1998 opt/Tivoli/TivoliReady/Readme.html
#

sh /as.sh 1
Performing auto start configuration
#

78 All About Tivoli Management Agents

D
R
A
F
T

The /etc/rc.tma1 file is also created for the auto start configuration. The
following are the contents of the /etc/rc.tma1 file:

After this operation, you can have the lcfd daemon restart each time the
machine is rebooted.

3.4.3.1 Specifying Endpoint Options
In the activation process, to specify the Endpoint options, you need to define
the LCFOPTS environment variable as follows:

The LCFOPTS environment variable is used in the lcfd.sh script each time the
lcfd daemon starts.

rctma1:2:wait:/etc/rc.tma1 > /dev/console 2>&1 # Tivoli Management Agent

#!/bin/sh
#
Start the Tivoli Management Agent
#
if [-f /opt/Tivoli/lcf/dat/1/lcfd.sh]; then
 /opt/Tivoli/lcf/dat/1/lcfd.sh start
fi

In our test environment, we needed to modify some files to configure the
autostart properly. In the as.sh script, you may need to modify the ETRC
environment variable as follows:

ETRC=/opt/Tivoli/lcf/dat/1/lcfd.sh

By default, the lcfd.sh and lcfd command did not have execute
permission, so you may need to execute the following commands:

chmod +x /opt/Tivoli/lcf/dat/1/lcfd.sh
chmod +x /opt/Tivoli/lcf/bin/aix4-r1/mrt/lcfd

The zipped TMA code which we used was not generally available code. It
could depend on which version of the zipped TMA you use, so that you
should check the above items when you use the zipped TMA code.

Note

LCFOPTS=’-g gw_addr+9494 -D bcast_disabled=1’
export LCFOPTS
Tivoli Management Agent Installation 79

D
R
A
F
T

To perform the mass activation, you need to write a shell script that executes
the as.sh script remotely using the rexec or rsh feature. By default, the as.sh
script starts the lcfd daemon with the default options. This means that the
lcfd daemon broadcasts the login request immediately. To specify the
appropriate Endpoint options, your shell script should include the process
which enables the LCFOPTS environment variable in each system.

3.4.4 Preloaded TMA for AIX (Preloaded TMA in OS)
The preloaded TMA in AIX is a little different. The preloaded TMA in AIX is
shipped as the installp format and it is included in the AIX installation
CD-ROM, so that you can handle it as one of the AIX LPPs (Licensed
Program Product). We introduce what is preloaded of TMA on AIX and how to
activate it.

3.4.4.1 What Is Preloaded TMA on AIX?
As we mentioned, the preloaded TMA on AIX is shipped as part of the AIX
installation CD-ROM. In other words, the preloaded TMA in AIX is shipped as
a fileset. The fileset name of the preloaded TMA for AIX is:

Tivoli_Management_Agent.client.rte

This means you can use the lslpp command for installing and uninstalling the
software or browsing the software information. The following is the output of
the lslpp command and shows the files which are shipped as the preloaded
TMA in AIX.

If you have untarred the tar file which contains the preloaded TMA for AIX
code on the AIX machine successfully, the following HTML and readme
files which provide the activation and auto start configuration instructions
are located in the /opt/Tivoli/TivoliReady and /opt/Tivoli/lcf/generic
directory. You can refer to it as well during the activation process.

/opt/Tivoli/TivoliReady/activate.html
/opt/Tivoli/TivoliReady/Readme.html
/opt/Tivoli/lcf/generic/readme

Note
80 All About Tivoli Management Agents

D
R
A
F
T

Therefore, the above files are installed onto the AIX machine as the
preloaded TMA.

3.4.4.2 Activation Instruction
The preloaded TMA for AIX is in the installp format image. To activate it, you
need to install the installp image first, then invoke the shell script which
activates the Endpoint process.

The following steps show how to activate the preloaded TMA for AIX:

1. Install the Tivoli_Management_Agent.client.rte fileset to the AIX machine
using smit. From the smit menu, select the following menu:

smit install
-> Install and Update Software
-> Install and Update from ALL Available Software
-> INPUT device / directory for software
-> SOFTWARE to install

Then press the PF4 key to browse the available software on the CD-ROM.
The following panel appears:

lslpp -f Tivoli_Management_Agent.client.rte
 Fileset File
 --
Path: /usr/lib/objrepos
 Tivoli_Management_Agent.client.rte 3.2.0.0
 /usr/lpp/Tivoli_Management_Agent.client/bin/autostart.sh
 /usr/lpp/Tivoli_Management_Agent.client
 /usr/lpp/Tivoli_Management_Agent.client/productid
 /usr/lpp/Tivoli_Management_Agent.client/bin
 /usr/lpp/Tivoli_Management_Agent.client/Readme.txt

Path: /etc/objrepos
 Tivoli_Management_Agent.client.rte 3.2.0.0
 /opt/Tivoli/lcf/dat/1/lcfd.sh
 /opt/Tivoli/lcf/bin/aix4-r1
 /opt/Tivoli/lcf/dat
 /opt/Tivoli/lcf/lib/aix4-r1
 /opt/Tivoli/lcf/lib/aix4-r1/libcpl.a
 /opt/Tivoli/lcf/bin
 /opt/Tivoli/lcf/lib/aix4-r1/libmrt.a
 /opt
 /opt/Tivoli
 /opt/Tivoli/lcf/lib/aix4-r1/libdes.a
 /opt/Tivoli/lcf
 /opt/Tivoli/lcf/bin/aix4-r1/mrt/lcfd
 /opt/Tivoli/lcf/lib/aix4-r1/libccms_lcf.a
 /opt/Tivoli/lcf/bin/aix4-r1/mrt
 /opt/Tivoli/lcf/dat/1
#

Tivoli Management Agent Installation 81

D
R
A
F
T

From the panel, select the Tivoli Management Agent client software
with the PF7 key and install it.

2. When the installation process completes, the following messages appear
on the smit panel:

Figure 23. Preloaded TMA for AIX Installation Completion

To confirm the installation, you can also use the lslpp command as
follows:

 SOFTWARE to install

 Move cursor to desired item and press F7. Use arrow keys to scroll.
 ONE OR MORE items can be selected.
 Press Enter AFTER making all selections.

 [MORE...11]
 + 5.3.0.0 TotalNET Advanced Server

 Tivoli_Management_Agent.client ALL
 + 3.2.0.0 Management Agent runtime"

 adsm.afs.client.aix42 ALL
 + 3.1.20.3 ADSM Client - AFS File Backup Client

 adsm.api.client.aix42 ALL
 [MORE...161]

 F1=Help F2=Refresh F3=Cancel
 F7=Select F8=Image F10=Exit
 Enter=Do /=Find n=Find Next
82 All About Tivoli Management Agents

D
R
A
F
T

3. At this time, the Endpoint process (lcfd) has not been started yet, so you
have to activate the preloaded TMA for AIX. The preloaded TMA for AIX
provides the autostart script (autostart.sh) and it enables you to have the
Endpoint process (lcfd) restart each time the machine is rebooted.

To activate the preloaded TMA in AIX, invoke the autostart.sh script, the
/etc/inittab file is modified and the lcfd daemon will be started and
restarted each time the machine rebooted. This process is the same as
the zipped TMA code.

3.5 Using Installation Tools

In this section, we introduce some tools that can be useful for Endpoint
installation.

3.5.1 Using Silent Installation
There are two ways to configure the silent installation for the Windows
operating system: one is using the provided (default) configuration file and
another is creating a new configuration file. Normally, the configuration file of
the silent installation is named setup.iss by default. If the product provides the
setup.iss file in the install images, you can modify it directly in order to
configure your silent installation. In Version 3.6 of the Tivoli Management
Framework CD-ROM, the Endpoint software provides the setup.iss file. If you
want to change a small part of the installation defaults, you can modify this
file.

If the product does not provide the setup.iss file, or if you want to change the
sequence of the installation process, you need to create a new setup.iss file.
Since this is normal operation for products which use the InstallShield as the
installation method, you can use this same method to create a new setup.iss
file for other products.

lslpp -ah Tivoli_Management_Agent.client.rte
 Fileset Level Action Status Date Time
 --
Path: /usr/lib/objrepos
 Tivoli_Management_Agent.client.rte
 3.2.0.0 COMMIT COMPLETE 01/21/99 09:41:51
 3.2.0.0 APPLY COMPLETE 01/21/99 09:41:51

Path: /etc/objrepos
 Tivoli_Management_Agent.client.rte
 3.2.0.0 COMMIT COMPLETE 01/21/99 09:42:03
 3.2.0.0 APPLY COMPLETE 01/21/99 09:42:03
#

Tivoli Management Agent Installation 83

D
R
A
F
T

The following are the step-by-step instructions for this process in a Windows
NT Version 4.0 environment.

1. Insert Version 3.6 of the Tivoli Management Framework CD-ROM into the
CD-ROM drive of the system. In this case, the CD-ROM drive is
configured as the D: drive.

2. From the Start menu, select the Run option to display the Run dialog.

3. Enter d:\pc\lcf\winnt\setup -r -f1c:\temp\setup.iss in the Open field.
The c:\temp\setup.iss is the name of the new setup.iss file that you create.
Press OK to run the setup program.

Figure 24. Starting InstallShield

4. The InstallShield shows the TME 10 Endpoint Setup dialog.

Figure 25. Setup Dialog

5. Press the Next button to display the Endpoint Installation option dialog.
84 All About Tivoli Management Agents

D
R
A
F
T

Figure 26. Installation Option Dialog

6. Press the Browse button to change the destination directory.

Figure 27. Change Directory Dialog

7. Enter the path name of the destination directory and press OK.
Tivoli Management Agent Installation 85

D
R
A
F
T

Figure 28. Installation Option Dialog

8. Press the Next button.

Figure 29. Advanced Configuration Dialog

You can specify the lcfd daemon options in the Other field. Press the Next
button to start the Endpoint login process.

9. When the Endpoint login is completed, the following dialog is displayed.
86 All About Tivoli Management Agents

D
R
A
F
T

Figure 30. Successfully Installed

10.You may see the following dialog at this time. It is caused by a kind of
timeout that is detected by the installer, it does not mean the Endpoint
login necessarily failed. You can then press the Next button. The Endpoint
login process is being done in the background. But you don’t need to wait
for login completion. This operation just records your responses to create
the setup.iss file.

Figure 31. Installation Timeout
Tivoli Management Agent Installation 87

D
R
A
F
T

11.If you see the following dialog, the installation may have failed. In this
case, it could be a mistake in the options you specified, so that you should
not continue.

Figure 32. Installation Failure

12.When the Endpoint installation is completed the following dialog is
displayed. Then press the Finish button.

Figure 33. Setup Complete Dialog

You can find the new setup.iss file in the specified directory.
88 All About Tivoli Management Agents

D
R
A
F
T

3.5.2 Using TMASERV
The Tivoli Migration Toolkit provides the tool TMASERV that simplifies the
Endpoint installation. In this section, we introduce the TMASERV and also
provide information about how to use and configure it.

3.5.2.1 What is TMASERV
TMASERV (Tivoli Management Agent Login Service) provides a service that
helps you to automate the Endpoint installation to Windows machines when
they log into a Windows NT domain. TMASERV can install the Endpoint onto
Windows 3.x, Windows 95, Windows 98 and Windows NT systems. Basically,
the TMASERV uses the NT login script feature, but it is more sophisticated
than the normal NT login script. The following are the advantages of the
TMASERV:

 • You can specify the host name on which the Endpoint will be installed in
the configuration file before the installation.

 • You can specify the Endpoint options in the configuration file before the
installation.

The TMASERV consists of the TMASERV server, the TMR Server and the
Windows NT Primary Domain Controller.

Normally, this type of the setup operation does not install the program
module; it just creates the setup.iss file. However, in the case of the
Endpoint software, the Endpoint installation and the activation of the
Endpoint are actually done. Therefore, when you just want to create the
new setup.iss file and do not want to install the Endpoint software to the
machine, you have to remove the Endpoint module from the machine after
you create the new setup.iss file.

Note
Tivoli Management Agent Installation 89

D
R
A
F
T

Figure 34. TMASERV Server Environment

The TMASERV has some prerequisites as follows:

 • The TMR Server running on Windows NT.

 • The Windows NT server machine has the TMASERV software installed.
The Windows NT Resource Kit and Version 3.6 of the Tivoli Framework
should be installed on this machine.

 • The Windows NT Primary Domain Controller to use the NT login script.

The TMASERV requires a Windows NT TMR Server. Using a Windows NT
TMR Server is not a problem, but if you are using an AIX TMR Server, you
need to do a more complicated customization.

This scenario requires following three files, which are installed only on the
TMR Server running Windows NT. You should get them before starting.
These are not installed on AIX:

C:\Tivoli\bin\lcf_bundle\bin\w32-ix86\deploy\dep_aft.exe
C:\Tivoli\bin\lcf_bundle\bin\win95\deploy\dep_aft.exe
C:\Tivoli\bin\lcf_bundle\bin\win31\deploy\dep_aft.exe

Windows NT
NT Resource Kit
Tivoli Framework

TMR Server
TMASERV

Domain Controller

Windows NTWindows NT

EP

Windows

NT Domain
90 All About Tivoli Management Agents

D
R
A
F
T

Note that TMASERV itself should be run on Windows NT.

3.5.2.2 Using TMASERV Service
To install and start the TMASERV service that installs Endpoints during the
login process to the NT domain, follow these steps.

1. Log into the Windows NT system which becomes the TMASERV server
because the user with the Administrator authority has the sufficient Tivoli
roles to invoke the Tivoli IDL calls. This can be any NT system in your
domain. Confirm that the Tivoli Framework is installed and working and
the Windows NT Resource Kit is installed. Also confirm that your
administrative NT user is registered to the TMR as the Administrator.

2. Setup the Tivoli environment using the setup_env command:

C:\winnt\system32\drivers\etc\tivoli\setup_env

3. Copy three files from the \NTLOGON directory in the Tivoli Migration
Toolkit CD-ROM. In this case, the CD-ROM drive is configured as the D:
drive and the target directory is C:\tivoli\bin\w32-ix86\tools\tmaserv. Do
not use a directory name that contains a space such as C:\Program Files.

md C:\tivoli\bin\w32-ix86\tools\tmaserv
cd C:\tivoli\bin\w32-ix86\tools\tmaserv
copy D:\ntlogin\getpsw.exe
copy D:\ntlogin\loaas.exe
copy D:\ntlogin\tmaserv.pl

4. This operation is required only when you are using the AIX TMR Server.
Copy the following files from any Windows NT TMR Server. Note that
source means the Windows NT TMR Server and the target means the
TMASERV server.

Source:
C:\Tivoli\bin\lcf_bundle\bin\w32-ix86\deploy\dep_aft.exe

Target:
C:\Tivoli\bin\w32-ix86\tools\tmaserv\bundles\w32-ix86\dep_aft.exe

Source:
C:\Tivoli\bin\lcf_bundle\bin\win95\deploy\dep_aft.exe

Target:
C:\Tivoli\bin\w32-ix86\tools\tmaserv\bundles\win95\dep_aft.exe

Source:
C:\Tivoli\bin\lcf_bundle\bin\win3x\deploy\dep_aft.exe

Target:
C:\Tivoli\bin\w32-ix86\tools\tmaserv\bundles\win3x\dep_aft.exe
Tivoli Management Agent Installation 91

D
R
A
F
T

Modify the tmaserv.pl script as follows:

 • Open tmaserv.pl scripts with an editor.

 • Search for the word &wTransferFile, and find the following line.

$x = &wTransferFile($source, "$BundleDirectory/$interp");

 • Use the # character to comment it out as follows:

$x = &wTransferFile($source, "$BundleDirectory/$interp");

This line transfers some files from the Windows NT TMR Server, so it is
only for a Windows NT TMR Server.

5. Install the TMASERV service using the following command:

perl tmaserv.pl -install

6. Then the install program asks you the user ID and password. Enter the
user ID and password of the user account that has administrator authority.

7. When the installation is successful, it automatically starts the TMASERV
service and displays the following message:

Service is running.

8. The installation program configures the TMASERV service to start the
service automatically each time the server is rebooted. The Windows NT
service tmaserv is added as follows.

Figure 35. Windows NT Services Dialog

3.5.2.3 Configuring TMASERV Service
To use the TMASERV service efficiently, you need to configure the TMASERV
service.
92 All About Tivoli Management Agents

D
R
A
F
T

Configuring SCANDIR Directory
As we mentioned, the TMASERV service can define the host name which you
want to install the Endpoint. It has the advantage of the TMASERV and better
than normal NT login script. To define the host name, you need to create a file
in the SCANDIR directory that has the same name as the host name of the
system on which you want to install the Endpoint. The contents of this file are
ignored. For example, if you want to install the Endpoint on the system
named kodiak, issue the following command from the directory into which you
copied the tmaserv.pl file. In our environment, it is the
C:\Tivoli\biw32-ix86\tools\tmaserv directory:

echo > SCANDIR\kodiak

This creates the file kodiak in the SCANDIR subdirectory. The TMASERV
service checks the file in this directory every five seconds and if the
TMASERV service finds any file in the directory, it starts to install the
Endpoint on the system that has the same host name as the file name in the
directory.

Configuring lcf_seed File
After the TMASERV service is installed, you can find the following file in the
BUNDLES subdirectory.

C:\tivoli\bin\w32-ix86\tools\tmaserv\BUNDLES\lcf_seed

This is the configuration file for TMASERV service. You should change at
least two entries as follows:

The lcf_opt specifies the options for the lcfd daemon, so you can use the
same options as the lcfd command. In this example, the Endpoint (lcfd)
options are defined as follows:

Trace Level Level 1

Endpoint Gateways kodiak and grizzly

Broadcast Disabled

Please refer to the Tivoli Framework Migration Guide for more detail.

3.5.2.4 Creating TMALOGIN.BAT Login Script for Users
In the TMASERV service, the TMALOGIN.BAT script runs when the Windows
user logs into the NT domain. If the system is not already an Endpoint, it

base_dir=C:\Tivoli\lcf
lcf_opt=-d1 -g kodiak+9494:grizly+9494 -D bcast_disable=1
Tivoli Management Agent Installation 93

D
R
A
F
T

installs the Endpoint software to the machine and starts it. Place this file on
the NT Primary Domain Controller. It is run by any machine that connects to
the NT domain.

To install the TMALOGIN.BAT, follow these steps:

1. Log into the NT Primary Domain Controller as the user that has
Administrator authority.

2. Copy the TMALOGIN.BAT file from the \NTLOGIN directory in the Tivoli
Migration Toolkit CD-ROM to the
%SystemRoot%\system32\repl\import\scripts directory (typically
C:\Winnt\system32\repl\import\scripts) on the NT Domain Controller.

3. To set the SERVER variable in the TMALOGIN.BAT file to the name of the
server that you installed the TMASERV on, edit the file, and set the
variable as follows:

set SERVER=yi2250d

4. Set the DESTDIR variable to the installation location of the Endpoint
software as follows.

set DESTDIR=C:\Tivoli\lcf

5. Open the User Manager utility dialog.

6. For each user that should use the login service, follow these steps. Note
that all users should have the Administrator authority.

 • Double-click on the name in the list of users to open the User
Properties dialog.

 • From the User Properties dialog, click the Profile button.

 • From the User Environment Profile dialog, enter the tmalogin.bat
script as the Login script name.

 • Click OK.

 • The next time one of these users logs in, the TMALOGIN.BAT script is
invoked.

3.6 Error Messages

Some error messages associated with Endpoint login failures are cryptic. In
this section, we take a look at some of these messages.
94 All About Tivoli Management Agents

D
R
A
F
T

3.6.1 Deleted Endpoint
After having logged in once, the Endpoint knows its region identity from the
lcf.dat file. This file contains, among other things, the dispatcher number,
which identifies it to its assigned Gateway. When the Endpoint is deleted from
the region using the wdelep command, the product does not remove the TMA
installation on the Endpoint. In particular, the lcf.dat file remains and it now
contains an invalid dispatcher number.

If, following the deletion, the Endpoint attempts to re-login to the region using
this dispatcher number, the ‘ resource not found’ exception will be generated
at the Endpoint Manager and also logged at the Endpoint gateway and the
Endpoint. In this case, the following messages appear in the gatelog file:

3.6.2 Dispatcher Number Conflict
When the message within the TMA architecture fails to satisfy a test of
authenticity, you will see the message like this in the gatelog file:

This most likely indicates that the sender and the receiver have incompatible
security keys. There are some legitimate circumstances in which this can
occur, especially in the prototypical environments in which the product is
being evaluated or various implementation schemes are being tested. One
such circumstance is the dispatcher conflict.

When the message passes from the Endpoint to the Endpoint gateway, the
Endpoint gateway identifies the Endpoint by the dispatcher number in a
cleartext header. It maps this to the key that was generated at the Endpoint
login. If these don’t match at the Endpoint and Endpoint gateway, the
message authentication will fail.

Now, suppose you build up a test TMR and a few Endpoints are installed and
login to the TMR. Later, you decide to replace the TMR for whatever reason,
but the old Endpoints remain where you have installed them. Then, you
create some additional Endpoints in the new TMR. Since it is a new TMR, the
dispatcher numbers start over and one of your new Endpoints may be using

1998/09/04 15:59:49 +06: process_node_login: unwrap_login_info (migrate) failed.
Aborting login for dispatcher 2
 Exception message is: Fri Sep 04 15:59:49 1998 (4): resource ‘’ not found

1998/09/04 16:11:56 +06: process_node_login: unwrap_login_info failed.
Aborting login for dispatcher 3
 Exception message is: decrypt_data: HMAC does not match encrypted data!
Tivoli Management Agent Installation 95

D
R
A
F
T

the same number as the old one. When the old Endpoint attempts to log in,
the Endpoint gateway will think it recognizes the Endpoint by the dispatcher.
However, the key won’t match, hence, the HMAC failure.

Another odnum (Object Dispatcher Number) conflict scenario can arise from
a Tivoli object database restore. The Tivoli database restore may change the
next available odnum such that the Endpoint logging in subsequent to the
restore can receive an odnum which is already assigned to an old Endpoint.
The old Endpoint will see the HMAC failure when trying to log in.

As we mentioned, this message, HMAC error, is a common error in TMA
configurations. Especially in new environments where you may be installing
and reinstalling Endpoints. In the project that resulted in this redbook, we saw
this problem often in our test lab. We usually were able to fix the problem by
carrying out the following steps:

1. Stop the lcfd daemon.

2. Delete the entry of the Endpoint using the wdelep command.

3. Remove the lcf.dat file in the Endpoint.

4. Restart the lcfd daemon with the appropriate the options.

This will change the odnum of the Endpoint so be careful.

3.7 TMA Implementation Considerations

In the TMA environment, as of the writing of this redbook, there are some
restrictions and limitations. To implement or deploy TMA successfully, the
administrators should know about these restrictions. In any case, the
administrator should refer to the latest Tivoli Framework Release Notes when
installing TMA. This section covers some of the more common restrictions
and known bugs that will be resolved in future releases.

3.7.1 Installation Considerations
In this section, we introduce various considerations for Endpoint installation
and operation.

3.7.1.1 Endpoint Naming Syntax
There are different default naming syntaxes used for Endpoints and it
depends on the environment.

In the DNS environment:

hostname.domainname(.unique_number) for Windows 95
96 All About Tivoli Management Agents

D
R
A
F
T

hostname(.unique_number) for Windows 98 / NT

In the Non-DNS environment:

hostname(.unique_number) for Windows 95 / 98 / NT

These results are caused by the socket implementation. You can check the
naming convention using a program that calls the gethostname() function as
follows:

You can specify an arbitrary name to the Endpoint by passing an option of the
lcfd command, lcs.machine_name=<endpoint_label>, when you install the
Endpoint.

A unique number will be added to the end of the Endpoint label name when
the same label name already exists. This sometimes can be caused by an
Endpoint duplicate login.

3.7.1.2 Removing Endpoint Software
When you remove the Endpoint software from the Windows NT machine, you
should check as to whether the Endpoint software has been removed
completely or not. If you do not remove the Endpoint software completely and
then reinstall the Endpoint on the machine, the Endpoint installation process
creates the following NT services on the Windows NT:

// hostname.cpp
// Compile with
// cl hostname.cpp wsock32.lib
#include <iostream.h>
#include <winsock.h>
void main()
{
 WORD wVersionRequested = MAKEWORD(2, 2);
 WSADATA wsaData;
 if (WSAStartup(wVersionRequested, &wsaData) == 0) {
 char buf[255];
 gethostname(buf,sizeof(buf));
 cout << buf << endl;
 WSACleanup();
 }
}

Tivoli Management Agent Installation 97

D
R
A
F
T

Figure 36. The Tivoli Endpoint-1 NT Service

As you can see, the new NT service named Tivoli Endpoint-1 is running even
if the former NT service (Tivoli Endpoint) is running on the same machine as
well. In this case, the Endpoint will normally function normally and the unused
service can be stopped; however, we recommend that you reinstall the
Endpoint as follows:

1. Stop both Endpoint services.

2. Remove the Tivoli Endpoint-1 service using the following command:

C:\Tivoli\lcf\bin\w32-ix86\mrt\lcfd.exe -r lcfd-1

3. Remove the Endpoint software completely.

4. Reinstall the Endpoint software.

3.7.1.3 Broadcast to Different Subnet
Normally, the broadcast occurs within the same sub-network. You can force a
directed broadcast by using lcfd -g option that accepts a colon-delimited list
of IP addresses and ports. Any of these addresses can be a directed
broadcast address. This also enables you to prioritize Gateways for initial
logins.

3.7.1.4 Changing Endpoint Gateway Address
If your environment requires changing the IP address of the Endpoint
gateway, use the following procedure:

1. Change the IP address of the Endpoint gateway and reboot the machine.

2. Run the following command:

wep set gateway -g <gw_name>
98 All About Tivoli Management Agents

D
R
A
F
T

This sets the new IP address for all Endpoints which are currently logging into
the Endpoint gateway. The Endpoints that are not logged in will follow the
isolation scenario as described in the “Configuring the TMA Environment” on
page 105 and the Tivoli Framework Planning and Installation Guide.

3.7.1.5 Login Request in Multiple Endpoint Gateways
If there are multiple Endpoint gateways on the same subnet, and the
Endpoint is allowed to broadcast for the initial login, several of the Endpoint
gateways may receive the request and process it. The result is that one
Endpoint would log into multiple Endpoint gateways. The following shows the
situation we mentioned:

The last login request is honored, and the rest will return HMAC errors on
downcalls and upcalls as follows. (PR-26857)

To avoid this problem, do not rely on broadcast as a means for the Endpoint’s
initial login. Always use the select_gateway_policy or specify the Endpoint
gateway during the Endpoint installation.

3.7.1.6 Binary Policies on Endpoint Gateways
Binary policies do not execute properly on Windows NT Endpoint Managers
and Gateways. (PR-42284) To resolve this problem, you can use the policy
script and invoke the binary in the script.

3.7.1.7 Shutting Down Using the lcfd.sh Command
Shutting down the Endpoint with the lcfd.sh command can produce the
following error. (PR-44063)

/>wep ls
G 1189622596.4.21 grizzly-gateway
 1189622596.323.508+#TMF_Endpoint::Endpoint# salmon.323
G 1189622596.2.19 kodiak-gateway
 1189622596.224.508+#TMF_Endpoint::Endpoint# bass
 1189622596.245.508+#TMF_Endpoint::Endpoint# yi2250d
 1189622596.324.508+#TMF_Endpoint::Endpoint# salmon.324
G 1189622596.195.21 yi2250d-gateway
 1189622596.322.508+#TMF_Endpoint::Endpoint# salmon
/>wep salmon status
unable to determine endpoint status; endpoint may be unreachable.
/>

Dec 08 13:06:36 Q lcfd ** Exception caught in listener() (CNTL_EP): decrypt_data:
HMAC does not match encrypted data!
Tivoli Management Agent Installation 99

D
R
A
F
T

3.7.2 Environment Variables and Files Considerations
In this section, we introduce the environment variables and files for each
operating system.

3.7.2.1 Path Variable (Windows NT)
On a Windows NT system, using the PATH to define your system path makes
NT commands unable to find the right environment and tools (sh.exe). The
method scripts spawned by the oserv will hang. The variable should be set as
Path (mixed-case) instead of PATH (uppercase).

3.7.2.2 windir Variable (Windows 3.x)
Some earlier versions of Windows do not have the windir variable set
correctly. The InstallShield relies on this value. If it is missing, the
InstallShield does not write the msvcrt40.dll file to the Windows directory and
the lcfd daemon does not start correctly. Set the windir variable to the
Windows directory and then run the InstallShield setup, or manually copy the
msvcrt40.dll file to the Windows directory.

3.7.2.3 Installation Location (UNIX)
You cannot install the TMR Server, the Managed Node, or the Tivoli product
into a location in the file system that has a path longer than 120 characters on
a UNIX system. If you must use such a long path, set a symbolic link of the
shorter length that points to the actual directory.

3.7.2.4 /tmp/.tivoli Directory (UNIX)
When you install Tivoli on UNIX, the directory called /tmp/.tivoli is created.
This directory contains several files that are vital to the correct operation of
the oserv. You should not erase this directory or any of its contents unless
directed to do so by your Tivoli support provider. The installations should also
ensure that regularly scheduled disk cleanup jobs (cron or Tivoli jobs) do not
remove this directory.

3.7.2.5 Installation Location and lcf_env.bat Command
Some Tivoli applications download utilities to the Endpoint machines to be
invoked from the command line by users working at those Endpoint
machines. Before invoking such commands, the user must execute the batch
file in the %SystemRoot%\Tivoli\lcf\1\lcf_env.bat to set up the required
environment.

Unable to get process id of the Tivoli LCF daemon (lcfd.pid).
100 All About Tivoli Management Agents

D
R
A
F
T

If the Endpoint is installed in a directory on the Windows 95 host machine that
contains an embedded space, such as Program Files, the batch file in
%SystemRoot%\Tivoli\lcf\1\lcf_env.bat does not set the Path environment
variable correctly. When the set Path=%LCF_BINDIR%;%Path% statement is
executed, the assignment fails with the following message: (PR-44284)

Too many parameters.

To correct this problem, edit the lcf_env.bat file to add quotation marks in the
following line:

set Path="%LCF_BINDIR%";%Path%

To correct this problem remotely for multiple Windows 95 Endpoints, retrieve
a copy of the file to edit with the following command:

wadminep <ep_label> view_file
C:\windows\Tivoli\lcf\%UNID%\lcf_env.bat > my_file.bat

Edit the file as stated above and replace the file with the following command:

wadminep <ep_label> send_file my_file.bat
C:\windows\Tivoli\lcf\%UNID%\lcf_env.bat

If all Windows 95 Endpoint have the same $LCF_DATDIR, replace the file for all
of the Endpoints. Since the lcf_env.bat file contains references to the
Endpoint installation directory path, different lcf_env.bat files must be used
for Endpoints that use different installation directory paths.

3.7.2.6 Long Path Variable
The 16-bit programs (batch files) executed by the Endpoint or the application
that is the client of the Endpoint can fail when the Path environment variable
is too long. The Microsoft Windows 3.1 command interpreter limits the size of
any environment variable string (VAR=VALUE) to 127 characters. With this
limitation, the Path environment value cannot exceed 118 characters in
length. (PR-43537)

The Endpoint automatically sets the Path for processes (lcfd.exe). By
default, the Endpoint adds the following three directories to the Path when it
starts:

 • The path to the Endpoint library directory

 • The path to the Endpoint cache directory

 • The path to the Endpoint tools directory

Most Endpoint programs are 32-bit programs and run correctly with any
setting of the Path. However, problems can arise when a 16-bit program is
Tivoli Management Agent Installation 101

D
R
A
F
T

run and the Path value is greater than the limit supported by Microsoft
Windows 3.1. Examples of Tivoli applications and services that invoke the
16-bit programs are:

 • Tivoli Software Distribution (configuration program scripts)

 • Tivoli Inventory

 • Tivoli Task Library (batch files)

When the Endpoint executes a 16-bit program or batch file, the MS-DOS
command interpreter (COMMAND.COM) is invoked to run the program or batch file.
If the Path value that is passed to the COMMAND.COM is too long, the command
interpreter will fail to execute correctly. The Endpoint will detect this situation
and log the warning to the Endpoint log file (lcfd.log) if the Endpoint
log_threshold level is set to level 1 (the default) or higher. The message
logged is:

ERROR: The Path will be truncated by the command shell

To avoid this problem, install the Endpoint into the Tivoli recommended
default location on the system (C:\Tivoli\lcf). Using this path means that the
three values that are added to the Endpoint path at the start up will not cause
the Path variable to exceed the 118 character limit.

Unfortunately, using a short installation path may not be enough. The
Endpoint also passes the Windows 3.1 system environment (from
AUTOEXEC.BAT) to the child processes. This can cause problems if the
system Path on the user’s machine has been modified to contain additional
entries. This can happen when the user has installed other software
packages on the system that have updated the Path in the AUTOEXEC.BAT.

When the path is too long, perform one of the following:

1. Reinstall the Endpoint to a shorter path on the system.

2. Edit the AUTOEXEC.BAT file. Add the following line:

LASTDRIVE=Z

Create the virtual drives for the long directory names in the Path:

REM SET
PATH=C:\DOS;C:WINDOWS;C:\SOME\OTHER\FOLDER
REM change:
SUBST S: C:\SOME\OTHER\FOLDER
SET PATH=C:\DOS;C:\WINDOWS;S:\

Reboot the machine for the changes to take effect.
102 All About Tivoli Management Agents

D
R
A
F
T

3. Upgrade the Windows 3.1 system to Microsoft Windows 95 or Microsoft
Windows NT. These versions of Windows do not suffer from the Path
limitation problems when running 16-bit programs.

3.7.2.7 Upgrading Windows 95
Upgrading a Windows 95 Endpoint proceeds with a warning asking you to run
the following command:

wadminep <ep_label> remove_endpoint 2

Running this command produces an error message. (PR-45158)

To resolve this problem, from the Start menu, open the Run dialog and run
the regedit command. In the \HKEY_LOCAL_MACHINE|
SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices directory you
will find two entries: lcfd and lcfd1. Remove the lcfd entry.

3.7.2.8 Problems of the winstlcf Command
The winstlcf -L "-n ep_label" command may not work if a port other than
default 9494 is used, or if the Endpoint is being reinstalled and the previous
installation was not completely removed. In this case, the label becomes
hostname+port. (PR-44451)

3.7.2.9 winstlcf Command Problem on Windows NT
Installing an Endpoint on a Windows NT host using the winstlcf command
requires that the target host have the file share named X$, where X is the drive
letter for the %SystemRoot%. The share must have full access granted to the
user account specified in the winstlcf command. Furthermore, if the -d option
is used to specify a non-default target installation directory, that directory
must be on the same drive as %SystemRoot%. If the X$ share is not on the target
host, either create the share before using the winstlcf command, or use
some other means, such as the InstallShield’s setup.exe, to install the
Endpoint. If you wish to install to a non-default target installation directory
that is not on the same drive as %SystemRoot%, use a method other than the
winstlcf command. (PR-43744)

3.7.2.10 winstlcf Command Problem on HP-UX and AIX
The winstlcf command fails when run in asynchronous mode (with the -a
option) on the HP-UX and the AIX machines. The installations complete
successfully and the Endpoints log into their specified Endpoint gateway, but
the configuration directory (/etc/Tivoli/lcf/#) is not created. (PR-44378)
Tivoli Management Agent Installation 103

D
R
A
F
T

3.7.2.11 Problems regarding Batch Command on Windows 95
Batch tasks (*.bat) on the Windows 95 Endpoints do not return non-zero
codes. Therefore, your script could fail and still return a zero code.
(PR-44262)

To avoid this, write your .bat script to echo the failed message to standard
output by using the IF ERRORLEVEL test condition after the commands.

3.7.2.12 Problems Regarding Batch Command on Windows NT
Tasks run from *.bat and *.cmd files on Windows NT 4.0 do not return
information to the standard error or the standard output, even though the
tasks execute successfully.

If you need this output, wrap the *.bat and *.cmd tasks in a sh.exe task, which
returns standard error and standard output information. For example, the
following script wraps the *.bat task:

#!/bin/sh
more > my.bat <<\MAIN_EOF
REM this is a comment
REM put your script ehre
REM for example a directory listing
dir
MAIN_EOF
cmd c/ my.bat

For shell scripts to run on Windows NT Endpoints, you must place the
dependency on the sh.exe on the run_task method of the TaskEndpoint object.
The dependency causes the sh.exe binary to be downloaded whenever the
task is run on the Windows NT Endpoint, if it is not already there. To define
the dependency, please refer to Chapter 8.6.7, “Using Dependencies to
Deploy Tools to Endpoints” on page 318.
104 All About Tivoli Management Agents

D
R
A
F
T

Chapter 4. Configuring the TMA Environment

In the classic Tivoli management environment, the installation process
implicitly determined the TMR to which a managed system belonged and
there was no requirement to explicitly configure the Managed Nodes to
communicate with their TMR Server.

In the TMA environment, the Endpoint must be configured to communicate
with an appropriate Endpoint gateway. To allow for both flexibility and
availability, the association between the Endpoint and the Endpoint gateway
can be dynamically determined and may change if a particular Endpoint
gateway is not available.

In this chapter, we describe how you can control the TMA behavior and
configure it in your TMA environment.

4.1 Overview of the TMA Login Process

When the Endpoint is started, it performs the Endpoint login process to
participate in the TMR. There are two types of logins that the Endpoint
performs: normal login and initial login.

4.1.1 Normal Login
When the Endpoint has already been a member of the TMR, the Endpoint
performs the ’normal login upon startup. The normal login sequence is quite
simple. The Endpoint logs into its assigned gateway and the Endpoint
gateway acknowledges it. During the normal login, communication takes
place only between the Endpoint and Endpoint gateway. The Endpoint sends
subsequent login packets and communicates directly to the Endpoint
gateway listed in the login information (lcf.dat) file. Since the Endpoint
gateway has the Endpoint’s information in its Endpoint list, communications
are established immediately without contacting the TMR Server or the
Endpoint Manager.

4.1.2 Initial Login
As a precondition for TMA operation, the Endpoint must become a member of
the TMR. This process establishes the Endpoint as an active member of its
TMR by assigning it to the Endpoint gateway. When the Endpoint service
begins to run, it attempts to establish its region identity from the lcf.dat file. If
this file does not exist, the Endpoint performs the initial login in order to
establish that identity.
© Copyright IBM Corp. 1998 105

D
R
A
F
T

Three Step Process:
Initial login has the following three major phases:

 • The Endpoint establishes communication with the TMR.

 • The Endpoint Manager selects the Endpoint gateway for the Endpoint.

 • The Endpoint receives its gateway assignment information and performs
the normal login to the assigned gateway.

Figure 37. Initial Login Process

4.1.2.1 Finding a Region
The first step in the initial login process is finding an Endpoint gateway in
the correct TMR. Finding a region means finding an Endpoint gateway to
serve the initial login request. To do this, the Endpoint uses a set of
network addresses configured during the installation process. This set of

OK?

Start

End

Phase1
Establish Communication

with TMR

Phase2
EPM Selects Gateway

Phase3
Normal Login

Exists
lcf.dat?

Yes

No

Yes

No
106 All About Tivoli Management Agents

D
R
A
F
T

addresses is called the login interfaces or the gateway space of the
Endpoint.

The Endpoint tries each address in turn until communication is successful.
For each address, the Endpoint sends a UDP login packet and waits for
the Endpoint gateway to respond by establishing a TCP connection for
reply delivery. If a response is not received, the Endpoint will retry. The
number of times it will retry and the amount of time it will wait between
retries are user configurable through the udp_interval and udp_attempts
parameters of thelcfd daemon. If the Endpoint receives no response after
so many attempts, it moves to the next address in the login interfaces. The
default values are five minutes for the udp_interval and six times for the
udp_attempts.

Figure 38. Finding a Region

Send Login Request

Respond?

Broadcast Login
Request

Respond?

Wait
login_interval

Wait until
udp_interval

udp_attempts?

1

Serch Login I/F

Next
Exists ?

4

4

Yes

No

Yes

No

Yes

No

bcast_disable
=0

Yes

No

Yes

No

Loop Forever

2

3

Configuring the TMA Environment 107

D
R
A
F
T

4.1.2.2 Broadcast
If the entire login interface list is exhausted without establishing TMR
communications, the Endpoint will send its initial login packet to the
broadcast address. You can also place the broadcast address in the login
interfaces list with the -g option of the lcfd daemon as follows:

-g 9.3.1.255

However, this operation is not recommended because the current version of
the Tivoli Management Framework has a restriction related to Endpoint
broadcasting described below. The Endpoint broadcast feature can be
disabled by the bcast_disable=1 parameter of the lcfd daemon.

4.1.2.3 Rescue Failure Endpoint
What happens if the Endpoint fails to log in, even after trying every Endpoint
gateway in it’s login_interfaces and resorting to broadcast. In this case,
multiple situations can be considered. In the following sections we introduce
them.

login_interval
If the Endpoint fails to login, even after trying every Endpoint gateway in it’s
login_interfaces and resorting to broadcast, it pauses for some amount of
time and then tries again. The duration of the pause is governed by the lcfd
daemon parameter login_interval expressed in seconds. By default, this is set
to 1800 (30 minutes). So if the Endpoint failed to log in because its Endpoint
gateway didn't yet exist, or because of a transient routing problem, there is no
problem. It will try again 30 minutes later. Because of this design, you can
deploy the Endpoints at your leisure and bring up the Endpoint gateways,
weeks, months or even years later when you are ready to begin managing
them with the Tivoli Management Environment.

wep Command Options
While the Endpoint is pausing for the login_interval, it is listening for input.
During this time, you can tell it what Endpoint gateway to use or even install
a completely new set of login_interfaces. The wep command supports set
gateway and set interfaces syntax for these purposes. As an extreme
example, assume that your Endpoints have broadcast disabled and that
every Endpoint gateway in their login_interfaces list suddenly crashed. You
can recover from this by setting up new Endpoint gateways and using the wep
command to first migrate Endpoints to the new Endpoint gateways and then
to fix up their notion of assigned gateway and login_interfaces. The set
gateway and set interfaces forms support the -g switch, which tells the
Endpoint gateway to perform these operation for all of its Endpoints.
108 All About Tivoli Management Agents

D
R
A
F
T

However, this is available only for an Endpoint that has performed the initial
login successfully because you have to specify the label of the Endpoint with
the wep set gateway and the wep set interfaces commands, and the Endpoint
has to complete the initial login to get the Endpoint label. So, how can we
modify the assigned gateway or the login_interfaces information for the
Endpoint which has never performed the initial login? We will talk about this
in the next chapter, Chapter 5, “Anatomy of TMA Behavior” on page 135.

4.1.2.4 Missing Features
The administrators and implementors should be aware that Version 3.6 of the
Tivoli Management Framework does not distinguish between the multiple
login requests that can arise from a single Endpoint using broadcast to locate
the region. If multiple Endpoint gateways hear that broadcast request, then
multiple requests will be forwarded to the Endpoint Manager. Since the
Endpoint Manager does not recognize that these are from the same
Endpoint, two Endpoint records will be created in the region. The Endpoint
will still be managed, but it will exist under two labels and its assigned
gateway with respect to the user-expected label is not predictable in advance.
Only one of them (the last login request) is honored and the rest will return
HMAC errors on downcalls and upcalls. If the two Endpoint gateways are in
different TMRs, then the region is similarly undetermined. It is important to
remember that specifying login interfaces and disabling broadcasting are the
primary mechanisms for directing the Endpoint to the appropriate TMR during
the initial login.

However, since most administrators do not enable UDP forwarding at their
routers and each subnet may only have one Endpoint gateways in many
environments, this is thought to be an acceptable risk given the benefits of a
configuration-free environment. Nevertheless, a certain amount of study is a
prerequisite for successful deployment of TMA across the enterprise.

4.1.2.5 Gateway Selection
When the Endpoint gateway receives an initial login request, it is said to be
the Intercepting gateway for that request. The Intercepting gateway forwards
the login request to the Endpoint Manager that is responsible for determining
the best available Endpoint gateway for that Endpoint. The selection process
is user-configurable, and we will describe it in detail later.
Configuring the TMA Environment 109

D
R
A
F
T

Figure 39. Gateway Selection (Sequence Chart)

4.1.2.6 Selected Login Interfaces
As a result of the Endpoint gateway selection process, several candidates for
Endpoint gateways must be identified. These candidates may be different
from the login interfaces given to the Endpoint at install time. This is possible
because the login interfaces are part of the login request that flows between
the Endpoint and the Intercepting gateway. If the Endpoint is later unable to
contact its assigned gateway, it will fall back on the login interfaces list to
reestablish connection with the TMR. This is said to be an isolation login. The
Endpoint Manager assigns the Endpoint gateway, then adds the Endpoint
information and gateway assignment into its Endpoint list. The Endpoint
information is sent to the assigned gateway. The Intercepting gateway
relays the assignment information to the Endpoint. As a result, the Endpoint
performs the normal login to its assigned gateway.

4.1.2.7 First Normal Login
After receiving its gateway assignment from the intercepting gateway, the
Endpoint performs the normal login to its assigned gateway. At this time, the
login policy is run for the first time and the Endpoint codeset is downloaded to
the Endpoint. The Endpoint is now ready to participate in Tivoli management
operations.

Endpoint
Intercepting

Gateway EP Manager

Gateway
Selection Process

UDP Login Request
with Original Login Interfaces

TCP Connect Request

Update Login
Interfaces

2

3

110 All About Tivoli Management Agents

D
R
A
F
T

Figure 40. Normal Login

You can configure boot_methods during the installation of the Endpoint or
during the distribution of application profiles. The boot_method will run every
time the Endpoint logs in to the Endpoint gateway. The boot_method can be
developed using Tivoli ADE. Please refer to Figure 6 on page 211 for more
information about the boot method.

4.1.3 Region Redirect
The Region redirect feature is a special case of the initial login. During the
gateway selection process, it is possible for the user to specify the Endpoint
gateway in another connected TMR. If it does, the gateway assignment is
returned with a special status to tell the Endpoint to start the initial login
process using the specified Endpoint gateway as the new intercepting
gateway. By maintaining a well-known redirector TMR, you can gain some
flexibility in Endpoint installations.

4.1.4 Isolation
When the Endpoint attempts to perform the normal login to its assigned
gateway, for example, it may happen that the assigned gateway is
unreachable. In this case, the Endpoint is said to be isolated. The Endpoint

4

Send Login Request

Respond?

Invoke login_policy

Downcall boot_method
(if defined)

1

Isolated

Download codeset
(1st time only)

Note:This chart does not include the case of migration

Endpoint
Intercepting

Gateway

End

Yes No

RC=0?

Yes

No
Configuring the TMA Environment 111

D
R
A
F
T

falls back to the initial login process of connecting to the TMR via the login
interfaces determined at initial login. This is similar to the initial login except
that for isolation, the Endpoint already exists. Therefore, the new Endpoint
identity is not established. The Endpoint Manager simply performs the
Endpoint gateway selection and returns the gateway assignment to the
Endpoint via the intercepting gateway. Please refer to “TMR Redirection” on
page 131 for more information about the TMR redirection.

4.2 Overview of Endpoint Policies and Configuration Files

You can configure the Endpoint's login behavior and communication patterns
by developing scripts that execute at various times in the process. There are
four such hooks. Of these, the login_policy runs on the Endpoint gateway;
the other three run at the Endpoint Manager. These are the
allow_install_policy, select_gateway_policy and after_install_policy. We will
describe these Endpoint policies in the order in which they execute.

Figure 41. The Endpoint Policies

4.2.1 allow_install_policy
The allow_install_policy, or simply install policy for short, allows you to
terminate the login immediately when the Endpoint Manager receives the
login request from the intercepting gateway. For example, you can decide to
refuse the login request based on the Endpoint's IP address for example. To

EP

EP Manager select_gateway_policy

allow_install_policy

after_install_policy

1

2

3

EP G ateway login_policy 4
112 All About Tivoli Management Agents

D
R
A
F
T

do this, simply exit the script with a non-zero value. You can also use this
policy to perform any pre-login actions you might need.

4.2.2 select_gateway_policy
The select_gateway_policy (SGP for short) is unique in that it is the only
Endpoint policy script that is specified to produce output. The output is a list
of Endpoint gateway object references that is used by the Endpoint Manager
to make the gateway assignment for that Endpoint. The Endpoint Manager
will assign the Endpoint to the first available Endpoint gateway. This same
list is also returned to the Endpoint for use later if the assigned gateway is
unavailable. In this later context, the Endpoint gateway list is called the
’login_interfaces or the gateway space.

The Endpoint policy overrides the Endpoint Manager's default selection
process and it is recommended to use Endpoint policy in multiple gateway
environments. The Endpoint Manager tries to contact each Endpoint
gateway in the order listed in the Endpoint policy script. The first Endpoint
gateway that the Endpoint Manager contacts successfully is the Endpoint
gateway to which the Endpoint is assigned. The intercepting gateway is also
added to the end of the login interfaces list to ensure that the Endpoint has at
least one definite contact. If the Endpoint gateways listed in the script cannot
be contacted, the Endpoint Manager assigns the intercepting gateway to the
Endpoint.

For post 3.6 releases of the Tivoli Management Framework, special
meaning is assigned to the exit code of 6 from the allow_install_policy. In
this case, the Endpoint Manager will instruct the Endpoint gateway to
ignore the login request. This has been used in the field to help manage
some broadcast scenarios.

Note

The variable of LCF_LOGIN_STATUS is also set by the Endpoint Manager. The
value of 2 indicates the Endpoint is isolated. It means that the Endpoint
was unable to contact its assigned gateway. The isolated Endpoint is
automatically migrated to another Endpoint gateway unless the
select_gateway_policy terminates with a non-zero exit status.

Note
Configuring the TMA Environment 113

D
R
A
F
T

Figure 42. Gateway Selection and New Login Interfaces

In the above figure, we tried to clarify how the new login interfaces would be
created after running the Endpoint gateway selection process on the
Endpoint Manager. The following figure (Figure 43 on page 114) shows how
the Endpoint Manager creates the Endpoint gateway list.

Figure 43. New Login Interfaces from Endpoint Manager

GW List
Exists?

Send new_endpoint
Request to Gateway

OK?

Next
GW?

Lookup Gateways
(up to 5) and Append

to Login I/Fs

Append Original Login Interfaces to The End of Login I/Fs

select_gateway_policy

Append Available GW from
SGP to Login I/Fs

Send new_endpoint Request
to Intercepting GW

Yes

No

Yes

No

New Log in In terfaces R esu lt

If S G P re turns G W L ist If SG P returns No G W

Login I/F from EP

EPM Selec ted
G W s

Inte rcepting G WH igh

P riority

Low

A vailable G W s
from SG P

Log in I/F from E P
114 All About Tivoli Management Agents

D
R
A
F
T

4.2.3 after_install_policy
The after_install_policy script is invoked after the gateway assignment is
made but before the Endpoint is notified. Management operations such as a
downcall cannot be invoked on the Endpoint machine at this time. The
standard example for the after_install_policy is to add the Endpoint to a policy
region. This Endpoint policy is run after the initial login only; it will not be run
on subsequent Endpoint logins.

Figure 44. Policies Running on Endpoint Manager

4.2.4 login_policy
This policy is run on the Endpoint gateway upon every normal login and
performs any action you need. For example, the login_policy can be useful
when you configure the auto upgrade function of the Endpoint software. If the
login_policy exits with a non-zero value, the Endpoint login will not fail, but
the Endpoint gateway doesn’t invoke the boot_method (refer to “TMA and
Tivoli Management Applications” on page 211 for more information about the
boot method).

a llo w _ in s ta l l_ p o lic y

R C = 0 ?

s e le c t_ g a te w a y _ p o lic y

R C = 0 ?

G a te w a y S e le c t io n

a f te r_ in s ta ll_ p o lic y

C re a te N e w E P O b je c t

A d d E n d p o in t to
P re fe re d G W C a c h e

L o g in R e q u e s t f ro m In te rc e p t in g G a te w a y

Y e s

N o

R e tu rn to In te rc e p tin g G a te w a y

Y e s

N o

R e tu rn to In te rc e p t in g G a te w a y

R e tu rn to In te rc e p t in g G a te w a y
Configuring the TMA Environment 115

D
R
A
F
T

4.2.5 Policy Arguments
The scripts that are defined in the Endpoint policy all have the same
argument conventions and ship with a default script, exit 0, which means that
no special policy applies. This policy and its functional equivalents are known
as trivial policy. The scripts have the same argument conventions, as
illustrated by the following excerpt from the default Endpoint policy.

These arguments don’t all exist at every point in the process. For example,
the Endpoint IP address ($5) is always defined. However, the object
reference of the Endpoint machine ($2) is not created until after the
allow_install_policy exits with a value of 0. So $2 has the value of OBJECT_NIL
when passed to the allow_install_policy script.

We can run the following script to see all of these arguments in the Windows
and AIX operating system environments.

The same login_policy script is run on all of the Endpoint gateways in the
TMR. This policy doesn’t support the use of binaries.

Note

The following are the command line arguments passed to this script
from the Endpoint Manager.

$1 - The label of the Endpoint machine
$2 - The object reference of the Endpoint machine
$3 - The architecture type of the Endpoint machine
$4 - The object reference of the gateway that the Endpoint logged into
$5 - The ip address of the Endpoint logging in.
$6 - region
$7 - dispatcher
$8 - version
116 All About Tivoli Management Agents

D
R
A
F
T

We will introduce the result of this script for each platform. Please refer to
“Endpoint Policy Argument Values” on page 395 for more information.

4.2.6 Policy Exit Code
In this section, we introduce what information would be logged when the
Endpoint policy exits with a non-zero return code. In this example, we set the
debug level of the Endpoint gateway to 9.

4.2.6.1 Exit with Non-Zero from allow_install_policy
In the case of an exit with a non-zero code from allow_install_policy, the
following messages appear in the epmgrlog file:

The following messages appear in the gatelog file:

#!/bin/sh
LOGFILE=/tmp/policylog
printline() {
 echo ‘date +"%Y/%m/%d %H:%M:%S: ‘ $* >> $LOGFILE
 return
}
printline "[allow_install_policy]"
printline "The label of the ep machine: $1"
printline "The object reference of the ep machine: $2"
printline "The architecture type of the ep machine: $3"
printline "The object reference of the gateway: $4"
printline "The ip address of the ep logging in.: $5"
printline "region: $6"
printline "dispatcher: $7"
printline "version: $8"
printline "LCF_LOGIN_STATUS=${LCF_LOGIN_STATUS}"
#sleep 2
printline "Exitting ..."

exit 0

1998/12/08 10:44:55 +06: exception servicing login:
The allow_install policy script did not execute properly or exited with a non-zero return code.

1998/12/08 10:45:04 +06: failure during login for 9.3.1.193+1066
(salmon,w32-ix86,LFVCN74D2LF7L3YQCPTQ00000584,reg=0,od=0):
The allow_install policy script did not execute properly or exited with a non-zero return code.
Configuring the TMA Environment 117

D
R
A
F
T

4.2.6.2 Exit with Non-Zero from select_gateway_policy
In the case of an exit with a non-zero code from select_gateway_policy, the
following messages appear in the epmgrlog file:

The following messages appear in the gatelog file:

4.2.6.3 Exit with Non-Zero from login_policy
In the case of an exit with a non-zero code from login_policy, the following
messages appear in the gatelog file.

For your reference, the following messages appear in the gatelog file when
the login_policy exits with a 0. As you can see, in this case,
run_ep_boot_methods was executed (refer to “TMA and Tivoli Management
Applications” on page 211 for more information about the boot method).

4.2.7 Applying Policies
The CLIs for manipulating the Endpoint policies are the wputeppol and
wgeteppol commands. The Tivoli Management Framework is installed with
default Endpoint policy scripts. They don’t contain any logic, and simply
return the value of zero to the Endpoint Manager or Endpoint gateway. To
implement useful Endpoint policies for your environment, you need to replace
the default Endpoint policies with your own scripts. The following three basic
steps are required:

 • Retrieve the current Endpoint policy script using the wgeteppol command.

 • Modify this script to add the appropriate logic.

1998/12/08 10:42:25 +06: gateway selection denied with status: 1
1998/12/08 10:42:25 +06: exception servicing login: epmgr select policy had nonzero status

1998/12/08 10:42:34 +06: failure during login for 9.3.1.193+1061
(salmon,w32-ix86,XBH2HN4M7RZK9MRR06G700000567,reg=0,od=0): epmgr select policy had nonzero status

1998/12/08 10:51:50 +02: run_login_policy: Running login policy on endpoint salmon.
1998/12/08 10:51:53 +02: failure during login for 9.3.1.193+1072
(salmon,w32-ix86,58MQVSK1LCN20XDXWYB100000586,reg=1189622596,od=309):
12/08/98 10:51:53 (26): command exited with signal 1, core=FALSE

1998/11/23 15:12:16 +06: run_login_policy: Running login policy on endpoint salmon.
1998/11/23 15:12:19 +06: run_ep_boot_methods: nothing to do.
118 All About Tivoli Management Agents

D
R
A
F
T

 • Replace the current Endpoint policy script as the new script using the
wputeppol command.

The wputeppol and wgeteppol commands take a single parameter specified by
the Endpoint policy whose script you are retrieving or replacing. The script
itself is routed to stdout for the wgeteppol command and read from the stdin
for the wputeppol command. Therefore, you would normally use redirection as
shown in the example below. For more information regarding the wgeteppol
and wputeppol commands, refer to the Tivoli Framework Reference Manual.

When you want to customize the allow_install_policy, invoke the following
command:

wgeteppol allow_install_policy > allow_install_policy.sh

This command will create the file, called allow_install_policy.sh, including the
current policy script. Then this file can be edited to include the logic such as
the samples shown in this section.

After saving the modified shell script, execute the following command to
enable the policy for subsequent Endpoint login processes:

wputeppol allow_install_policy < allow_install_policy.sh

All policy scripts are stored in the Tivoli object databases, so that it is possible
to keep consistency between the Endpoint Manager and Endpoint gateways.
In this way, all Endpoint gateways receive the latest login_policy script. Note
that the same login_policy script would be applied to all Endpoint gateways
in the TMR. If the logic defined in the login_policy depends on a specific
operating system, the login_policy script must have the logic that determines
on which platform it is executing and act accordingly.

4.2.8 Configuration Files
Endpoints would use two files to store configuration information. These files
are located under the dat subdirectory of the Endpoint installation directory
(typically C:\Tivoli\lcf\dat\1).

You don’t have to pass the fully Endpoint policy name to the wputeppol and
wgeteppol commands. Instead, you can pass unique abbreviations. For
example, to retrieve the allow_install_policy you can say:

wgeteppol al

Note
Configuring the TMA Environment 119

D
R
A
F
T

4.2.8.1 lcf.dat File
The lcf.dat file contains the login information related to the Endpoint. Since
this file is a binary file, you cannot edit this file directly. However, when you
start the lcfd daemon you can overwrite certain information in this file using
the lcfd command arguments. Once the Endpoint connects to its assigned
gateway, the Endpoint gateway address, port number, any network aliases
for the assigned gateway and alternate gateway information is stored in the
lcf.dat file.

4.2.8.2 last.cfg File
All other configuration information is stored in the last.cfg file. Once the
Endpoint and Endpoint gateway are connected, for example the initial login
completed, the configuration information is stored in the last.cfg file. For
every subsequent startup, the startup command for the lcfd daemon (lcfd or
lcfd.sh) retrieves the configuration information from the lcf.dat and last.cfg
file. The following is an example of the last.cfg file:

The last.cfg file contains the most recent configuration information. You can
alter this file to affect the options that will be used the next time the Endpoint
is started. For more information, refer to the manual, the Tivoli Framework
Reference Manual.

To modify the configuration of the Endpoint, you can either, edit the last.cfg
file or restart the Endpoint using the startup command (lcfd or lcfd.sh) with
the appropriate arguments. If you start the Endpoint from the command line

lcfd_port=1029
lcfd_preferred_port=9494
gateway_port=9494
log_threshold=2
start_timeout=120
run_timeout=120
lcfd_version=5
logfile=C:\Tivoli\lcf\dat\1\lcfd.log
config_path=C:\Tivoli\lcf\dat\1\last.cfg
run_dir=C:\Tivoli\lcf\dat\1
load_dir=C:\Tivoli\lcf\bin\w32-ix86\mrt
lib_dir=C:\Tivoli\lcf\bin\w32-ix86\mrt
cache_loc=C:\Tivoli\lcf\dat\1\cache
cache_index=C:\Tivoli\lcf\dat\1\cache\Index.v5
cache_limit=20480000
log_queue_size=1024
log_size=1024000
udp_interval=30
udp_attempts=2
login_interval=120
lcs.crypt_mode=196608
120 All About Tivoli Management Agents

D
R
A
F
T

interface using the lcfd or lcfd.sh command, the arguments you specify
override the equivalent entries in the last.cfg file. If you edit the last.cfg file,
the new configuration information would be used when you restart the
Endpoint (lcfd daemon). Once the Endpoint performs the Endpoint login, the
configuration information is stored in the last.cfg file again. You can also use
the Endpoint web interface to modify the contents of the last.cfg file.

4.3 Customizing EP Policies

In this section, we introduce some useful examples of the Endpoint policies
for your reference.

4.3.1 Example of allow_install_policy
The following is an example of the allow_install_policy script. This example
doesn’t allow the Endpoints on the subnet 9.3.2 to log in to the TMR. It also
doesn’t allow the Endpoints that don’t have a host name to perform the
Endpoint login.

The following example allows only the Endpoints found in the file eplist.txt
to perform the Endpoint login:

#!/bin/sh
set -e
#
Don’t allow endpoints from subnet 9.3.2 log into this TMR.
#
SUBNET=‘echo $5 | awk -F"." ’{ print $1"."$2"."$3 }’‘
if ["$SUBNET" = "9.3.2"]; then
 exit 1
fi
#
Don’t allow endpoints who does not have a name
#
if ["$1" = ""]; then
 exit 1;
fi

exit 0
Configuring the TMA Environment 121

D
R
A
F
T

4.3.2 Example of select_gateway_policy
The following example returns all Endpoint gateways that are on the same
subnet as the Endpoint:

#!/bin/sh
#
Allow only the endpoints found in eplist.txt
. /etc/Tivoli/setup_env.sh
while read x
do
if [$1 = $x]; then
exit 0
fi
done < $DBDIR/eplist.txt
exit 1

#!/bin/sh
#
only ep_ip is needed for this example
ep_ip=$5
#
FOUNDONE=FALSE
we just want the subnet of the endpoint
SUBNET=‘echo $ep_ip | cut -d’.’ -f3‘
get all gateways and find ones that are on the same subnet
GATEWAYS=‘wlookup -ar Gateway -o‘
for gwoid in $GATEWAYS
do
 gwproxy=‘idlattr -tg $gwoid proxy Object‘
 mnips=‘wifconfig -h $gwproxy | grep -v Device | awk ’{print $2}’‘
a managed node might have multiple interfaces, so check
each of them if the gateway subnet matches the endpoint
subnet, return gwoid if it matches
 for ip in $mnips
 do
 wsub=‘echo $ip | cut -d’.’ -f3‘
 if [$gwsub -eq $SUBNET]; then
 # echo $gwsub such as ’1189622596.4.21#TMF_Gateway::Gateway#’
 echo $gwoid
 FOUNDONE=TRUE
 fi
 done
done
if you did not find a gateway, and you still want the
endpoint to log in, exit 0, else exit 1
if ["$FOUNDONE" = "TRUE"]; then
 exit 0
else
 exit 1
fi
122 All About Tivoli Management Agents

D
R
A
F
T

4.3.3 Example of after_install_policy
The following example subscribes a new Endpoint to a profile manager that
represents the Endpoints which are of similar architecture type. If the policy
region or profile manager doesn’t exist, this after_install_policy creates them.

Figure 45. Example of after_install_policy (part 1 of2)

#!/bin/sh
#
LCF_POLICY_REGION=LCF-Endpoints
PROFILE_MANAGER=LCF-$3
EP=$1
#
Check to see if our top-level policy region already
exists.If not create it and put it on this administrators
desktop.
#
Disable "exit on error" for this call since we will handle
the failure.
#
set +e
wlookup -r PolicyRegion $LCF_POLICY_REGION > /dev/null
ERR=$?
set -e
if [$ERR -ne 0]; then

ALI=‘objcall 0.0.0 get_security_objid‘
set ‘objcall $ALI get_identity‘
ADMIN="$1"
ADMIN_OID="$2"
wcrtpr -m ProfileManager -a $ADMIN $LCF_POLICY_REGION
idlcall $ADMIN_OID refresh_collection

fi
Configuring the TMA Environment 123

D
R
A
F
T

Figure 46. Example of after_install_policy (part 2 of 2)

After running this policy, the Endpoint would be subscribed to a profile
manager. The following figure (Figure 47) shows an example of a Windows
NT Endpoint (w32-ix86).

#
Check to see if our interp specific profile manager
already exists. If not create it and make it dataless so
that we can subscribe the endpoint to it.
#
Disable "exit on error" for this call since we will handle
the failure.
#
set +e
wlookup -r ProfileManager $PROFILE_MANAGER > /dev/null
ERR=$?
set -e
if [$ERR -ne 0]; then

wcrtprfmgr $LCF_POLICY_REGION $PROFILE_MANAGER
wsetpm -d /Library/ProfileManager/$PROFILE_MANAGER

fi
#
Subscribe the endpoint to the profile manager which
contains the endpoints for that specific interp type.
#
wsub /Library/ProfileManager/$PROFILE_MANAGER @Endpoint:$EP

exit 0
124 All About Tivoli Management Agents

D
R
A
F
T

Figure 47. Endpoint Subscription Using Policy

4.3.4 Example of login_policy
The following example sends a Tivoli notice to the LCF-Endpoints notice
group every time the Endpoint logs in to the Endpoint gateway and
automatically upgrades the Endpoint software (lcfd).
Configuring the TMA Environment 125

D
R
A
F
T

After running this policy, the Tivoli notice would appear in the appropriate
notice group as follows:

#!/bin/sh
#
Invoke the upgrade script to check the current version of
the endpoint software and upgrade if necessary.
BO=‘objcall 0.0.0 self‘
OS=‘objcall $BO getattr oserv‘
INSTALLDIR=‘objcall $OS query install_dir|tr ’\\\\’ ’\’‘
$INSTALLDIR/lcf_bundle/upgrade/upgrade.sh $1 $8 $3
#
LCF_NOTICE_GROUP=LCF_Endpoints
#
Send a notice to LCF endpoint notice group every time this
endpoint logs in.
#
set +e
wlookup -r TMF_Notice $LCF_NOTICE_GROUP > /dev/null
ERR=$?
set -e
if [$ERR -ne 0]; then
 NTFGM=‘wlookup -r Classes TMF_Notice‘
 idlcall -T top $NTFGM \
 TMF_Notice::NoticeManager::create_notice_group \
 ’"’$LCF_NOTICE_GROUP’" 72’
fi
GW=‘idlcall $4 _get_label‘
EPOID=‘wlookup -o -r Endpoint $1‘
wsndnotif $LCF_NOTICE_GROUP Notice << LCF_NOTICE
Endpoint $1 ($EPOID) of interp type $3, logged into gateway
$GW ($4).
LCF_NOTICE
exit 0
126 All About Tivoli Management Agents

D
R
A
F
T

Figure 48. Log to Notice Using Policy

The following example simply logs the Endpoint login information to the log
file, eplogin.log:

#!/bin/sh
#
. /etc/Tivoli/setup_env.sh
LOGFILE=$DBDIR/eplogin.log

printline() {
 echo ‘date +"%Y/%m/%d %H:%M:%S: ‘ $* >> $LOGFILE
 return
}

printline "Endpoint $1 ($5) logs in"
exit 0
Configuring the TMA Environment 127

D
R
A
F
T

4.4 Gateway Migration

You can change the gateway assignments made at initial login. When the
Endpoint changes its gateway assignment from Endpoint gateway A to
Endpoint gateway B, it is said to have migrated from A to B. Use the wep
command to reassign the assigned gateway as follows:

wep ep_label migrate gw_label

where

ep_label Specifies the Endpoint to be migrated

gw_label Specifies the Endpoint gateway to which the Endpoint is
reassigned

Refer to the Tivoli Framework Reference Manual for more information about
the wep command.

The command to migrate the assigned gateway prompts the Endpoint
Manager to update the Endpoint list on both the new assigned gateway and
the formerly assigned gateway. For scalability reasons, and because the
Endpoint may not be reachable at the desired migration time, the Endpoint is
not contacted by default at the time of the migration. Hence, the Endpoint
gateways must expect to receive the normal login requests from the Endpoint
that they no longer manage. When this happens, the formerly assigned
gateway acts as an intercepting gateway during the initial login -- obtaining
the new gateway assignment from the Endpoint Manager and relaying this to
the Endpoint, which then performs the normal login to the new Endpoint
gateway. The Endpoint is said to be ‘ migrating’ until it learns of its new
gateway assignment. The actions undertaken by the Endpoint during this
time are called ‘ migratory’. When the Endpoint learns of its new gateway
assignment, the migration is said to be complete.

The following figure (Figure 49 on page 129) shows the process flow of the
Endpoint gateway migration.
128 All About Tivoli Management Agents

D
R
A
F
T

Figure 49. Gateway Migration

1. Execute the wep migrate command.

2. The delete_endpoint method is issued.

3. Delete the Endpoint from the original Endpoint gateway’s cache.

4. The new_endpoint method issued.

5. Add the new Endpoint to the new Endpoint gateway’s cache.

As you can see, during the Endpoint migration process, there is no
communication with the target Endpoint itself.

4.4.1 Migration Completion
The Endpoint can be told of its new gateway assignment at the time of
migration. By default, the Endpoint doesn’t immediately discover its new
gateway assignment. The Endpoint can make the discovery in one of the
following ways:

 • Performing a management operation (upcall)

 • Performing a management operation (downcall)

EP

salmon

lcf.dat

kodiak

EP Manager

EP Gateway EP Gateway

1

2

kodiak

panda

grizzly

wep salmon migrate grizzly

3

4

5

delete_endpoint new_endpoint

salmon

EP List

salmon

EP List

Migration
Configuring the TMA Environment 129

D
R
A
F
T

 • Endpoint login (such as when the Endpoint is rebooted)

For example, the wep set gateway -e ep label command is a good way to
update the Endpoint after migration. But, it is basically a downcall. Therefore,
it is called a migration completion by downcall.

4.4.1.1 Completion by Migratory Login
The handling of the login request from the migrated Endpoint to its formerly
assigned gateway is similar to the case of the completion by migratory
upcall. The former gateway intercepts the Endpoint's login request, then
obtains the new gateway assignment for the Endpoint from the Endpoint
Manager. This information is forwarded to the Endpoint. The Endpoint then
performs the normal login to its new assigned gateway.

4.4.1.2 Completion by Migratory Upcall
An ’upcall is when the management application running on the Endpoint
invokes a method on the Managed Node hosting its Endpoint gateway. For
security reasons, the method request passes through the Endpoint service
that forwards it to the Endpoint gateway. When the Endpoint is migrating, it
sends the request to the formerly assigned gateway which is considered the
intercepting gateway for the upcall because the Endpoint gateway no longer
manages the Endpoint. The intercepting gateway determines the current
gateway assignment for the Endpoint and returns this to the Endpoint. The
Endpoint performs the normal login and resends the upcall request to the new
assigned gateway. The Endpoint gateway selection process does not occur
at the Endpoint Manager because the migration will normally have occurred
recently.

4.4.1.3 Completion by Migratory Downcall
A downcall is when the management application running on the Endpoint
gateway host invokes a method on the Endpoint. This means the Endpoint
gateway is able to automatically receive the migration information from the
Endpoint Manager, so that a downcall issued by the newly assigned gateway
would reach the Endpoint without a problem. For each downcall, the Endpoint
checks the peer address of the requesting Endpoint gateway. If the address
has changed, the Endpoint makes a note of this and rewrites its lcf.dat file.
The subsequent Endpoint logins and upcalls will proceed normally. If the
address change resulted from a migration, the Endpoint is able to avoid the
failover logic described before in the migratory upcall and login section.
130 All About Tivoli Management Agents

D
R
A
F
T

4.4.1.4 Completion by Isolation Login
If the Endpoint attempts to contact its previous Endpoint gateway prior to
discovering its new gateway assignment, and if the previous Endpoint
gateway is unreachable, then the migration will complete by the isolation
login. At that time, the Endpoint is said to be isolated, so that the Endpoint
would use its login information list (lcf.dat file) and attempt to perform the
Endpoint login to an alternate gateway. If the Endpoint fails to log in to all of
the alternate gateways, the Endpoint attempts to perform the isolated login
using a broadcast packet.

4.5 TMR Redirection

The TMR redirection is one of the solutions for managing multiple TMR
environments, and it makes the Endpoint configuration easy. In this part of
book, we introduce what the TMR redirection is and its advantages.

4.5.1 Redirectors
Version 3.6 of the Tivoli Management Framework supports the feature known
as TMR redirection. This feature allows you to set up a special TMR to
function as the master router for the Endpoint logins across many regions.

4.5.2 How It Works
The normal select_gateway_policy script outputs Endpoint gateway object
references as candidate gateways for the Endpoint logging in. When you
use TMR redirection, nothing changes. Simply output Endpoint gateway

This process is not supported when the NAT device separates gateways
and Endpoints. The NAT environments must rely on upcall and login to
complete the migration process.

Note

The select_gateway_policy is run for isolation logins. Hence, if the
migration is performed via the wep command, and if that migration is
inconsistent with the select_gateway_policy, then the gateway assignment
will change if the migration completes by the isolation login. Of course,
nothing will happen if there is no select_gateway_policy.

Note
Configuring the TMA Environment 131

D
R
A
F
T

object references for Endpoint gateways in any region of your choosing as
follows:

echo ‘wlookup -r Gateway trout-gateway‘

or

echo ‘wlookup -r Gateway trout-gateway#panda-region‘

The Endpoint Manager understands that these references are to Endpoint
gateways in the remote region and will behave accordingly. The only
requirement is that the redirector gateway must be interconnected to all
regions referenced in the policy.

Upon the completion of the select_gateway_policy, when the Endpoint
Manager detects that remote object references have been specified, it simply
rewrites the Endpoint login_interfaces and sets a special flag to tell the
Endpoint about the redirection. This data is relayed back to the Endpoint,
which then behaves as if it had been restarted with the -g x option, where x is
the login_interfaces specified by the redirecting select_gateway_policy.

Note that Endpoint gateway selection did not actually occur. The Endpoint
simply gets a new set of gateways to use as interceptors in the (second
round) initial login process. Once the Endpoint contacts the new region, the
initial login process proceeds as described above. In particular, any
select_gateway_policy in the new region is honored.

If this policy is trivial, the default behavior, as described above, is to make the
intercepting gateway the assigned gateway. In this way, one can manage all
gateway selections from a single policy script. Moreover, one can create the
hierarchy of redirectors to benefit from delegation. You can also create
redirection cycles, so be careful.

4.5.3 Simplified Endpoint Configuration
TMR redirection can simplify Endpoint configuration in environments where
the broadcast approach is not adequate because one does not wish to deploy
an Endpoint gateway in every broadcast space.

If the pure broadcast approach won’t work, some form of Endpoint
configuration is necessary, most likely in the form of using the
login_interfaces. This induces coupling between the original Endpoint
machine configuration (perhaps at the factory) and the planning of the
Endpoint gateway gateways. It may not be possible or desirable to know the
names or addresses of the Endpoint gateways when the Endpoint machine is
initially configured.
132 All About Tivoli Management Agents

D
R
A
F
T

To address this problem, you can choose to configure masses of Endpoints to
look for a well-known name, such as tivoli-gateway. That is, the Endpoint
might be setup such that the Endpoint comes up using the -g tivoli-gateway
command line. The machine called tivoli-gateway could represent a single
machine that is reachable from all Endpoint networks. Or it could represent a
family of machines that serve a similar role in multiple DNS domains. Such a
machine would be a good candidate for the Endpoint gateway in the
redirecting TMR.

4.5.4 Sharing Endpoint Resources across TMRs
The Endpoint, Endpoint gateway and Endpoint Manager resources can be
exchanged across connected TMRs. These resources can be shared to
enable distributing file packages from all Tivoli applications and running any
tasks supported by the Endpoint. Direct management of the Endpoint (such
as migrating Endpoints to new Endpoint gateways or listing the Endpoints
assigned to an Endpoint gateway) must, however, be performed in the
Endpoint’s local TMR. Management commands such as, wgateway, wep, and
wdelep must be run locally.

If you share the Endpoint resource across multiple TMRs, you must also
share the Endpoint Manager resource. The Endpoint gateway resource can
also be shared, but there is little benefit in doing so. We, therefore,
recommend that you do not share the gateway resource.

4.6 Conclusion

The TMA login process is complex. Its features and failure modes must be
studied carefully before attempting any sort of rollout. In the next chapter, we
introduce the detailed behavior of TMA. After reading both chapters, you will
understand TMA behavior well. For example, behaviors such as the login
process, isolation, and migration should become clear.

As we mentioned, TMR redirection or sharing Endpoint resources across
TMRs is an efficient solution in multiple TMR environments. However, you
should consider the TMR design before you install masses of Endpoints
because a single TMR is able to handle several thousands of Endpoints in
Version 3.6 of Tivoli. The important thing here is that the TMR redirection
feature is available only for the multiple TMR environment. We will
introduce TMR design in Chapter 9, “Management Examples Using TMA”
on page 359.

Note
Configuring the TMA Environment 133

D
R
A
F
T

134 All About Tivoli Management Agents

D
R
A
F
T

Chapter 5. Anatomy of TMA Behavior

A detailed understanding of the Endpoint login process and general Endpoint
behavior can be very helpful, especially for problem determination The
previous chapter introduced you to configuring and controlling the Endpoint
login, however, there can be additional considerations that complicate this
process. In this chapter, we provide detailed information regarding the
Endpoint login and Endpoint behavior.

5.1 Our Test Environment

To verify the behavior of the TMA, we performed many tests during the
project that resulted in this redbook. First, we introduced our test
environment. The following figure (Figure 50) shows our environment for
performing the tests we will discuss.

Figure 50. ITSO Austin Test Environment for the TMA Project

ishii2
(EP Manager)

TMR-B

trout
(EP Gateway)

ishii
(EP)

panda
(EP Manager)

kodiak
(EP Gateway)

grizzly
(EP Gateway)

yi2250d
(EP Gateway)

bass
(EP)

salmon
(EP)

TMR-A

trout
(EP Gateway)

We changed the configuration of the host trout a few times, so that trout
appears in both TMRs: TMR-A and TMR-B (depending on the test case).
However, trout is actually just one AIX machine.

Note
© Copyright IBM Corp. 1998 135

D
R
A
F
T

The following table shows an overview of the machines shown in the Figure
50 on page 135.

Table 11. The Overview of the Test Machines

We performed tests covering many scenarios using the above test machines
during our project.

5.1.1 Our Test Scenario
To understand and verify TMA behavior, we assumed many situations in our
test environment. The following table (Table 12 on page 136) shows our
testing cases. We will discuss the results and points of interest for each case
throughout this chapter.

Table 12. The Test Scenario in the TMA Project

Host Name Management Resource Type Operating System

panda TMR Server (Endpoint Manager) AIX V4

ishii2 TMR Server (Endpoint Manager) AIX V4

kodiak Managed Node (Endpoint gateway) AIX V4

trout Managed Node (Endpoint gateway) AIX V4

grizzly Managed Node (Endpoint gateway) Windows NT V4

yi2250d Managed Node (Endpoint gateway) Windows NT V4

bass Endpoint AIX V4

ishii Endpoint Windows NT V4

salmon Endpoint Windows NT V4

Windows 98

Windows 95

Case Category Test

Case 1 -g Option The -g option function test.

Case 2 -g Option The -g option function test.

Case 3 wep Command Modify the assigned gateway.

Case 4 wep Command Modify the login interfaces.

Case 5 Broadcast The broadcast function test.

Case 6 Broadcast The broadcast function test.
136 All About Tivoli Management Agents

D
R
A
F
T

For detailed information regarding each scenario, refer to the following
sections.

5.2 Understanding Options to Control Endpoint Login

There are several ways to control Endpoint login, as we introduced before.
We classified this information to make understanding it easier before we

Case 7 Broadcast The broadcast function test.

Case 8 Web Interface Modify the assigned gateway.

Case 9 TMR Redirection The TMR redirection function test.

Case 10 Initial Login Assume the EP Manager is unavailable.

Case 11 Initial Login Assume the EP gateway is unavailable.

Case 12 Initial Login Assume the EP gateway is unavailable.

Case 13 Initial Login The select_gateway_policy function test.

Case 14 Initial Login The select_gateway_policy function test.

Case 15 Normal Login Assume the EP Manager is unavailable.

Case 16 Normal Login Assume the Endpoint isolation.

Case 17 Normal Login Assume the Endpoint isolation.

Case 18 Normal Login Assume the Endpoint isolation.

Case 19 After Login Completion Issue the upcall.

Case 20 After Login Completion Issue the downcall.

Case 21 After Login Completion Issue the upcall.

Case 22 After Login Completion Issue the downcall.

Case 23 Migration The migration function test.

Case 24 Migration The migration completion by the EP login.

Case 25 Migration The migration completion by the upcall.

Case 26 Migration The migration completion by the downcall.

Case 27 Migration The migration completion by the isolate login.

Case Category Test
Anatomy of TMA Behavior 137

D
R
A
F
T

provide a detailed explanation. The following are options and directions for
controlling the TMA.

lcfd -g Specifies the Endpoint gateway in the login
interface list when the lcfd starts.

lcfd -D lcs.login_interfaces Specifies the Endpoint gateway in the login
interface list when the lcfd starts.

wep set gateway Modifies the assigned gateway.

wep set interfaces Modifies the login interface list.

wep migrate Modifies the Endpoint list located in Endpoint
Manager and Endpoint gateway.

select_gateway_policy The policy executed on the Endpoint Manager
for deciding the assigned gateway and
alternate gateway.

Basically, we combined the above options, then started the lcfd daemon with
the options for testing. We will discuss the result of the tests we performed in
the next few sections.

5.3 Tracing TMA Behavior

In the previous chapter, Chapter 4, “Configuring the TMA Environment” on
page 105, we explained the Endpoint login, how to configure the TMA, how to
control the TMA, and so on. In this section, we will show TMA behavior in a
real environment. All examples introduced in this chapter are based on the
result of tests we performed during our project.

5.3.1 Using -g Option for Endpoint Initial Login
The lcfd has many options for controlling its own behavior. The -g option is
the typical option for controlling the Endpoint initial login, and specifies to
which Endpoint gateway the Endpoint will attempt to perform an initial login.
In this part of the book, we validate the behavior of the lcfd daemon with the
-g option during the initial login. We tested the following two cases regarding
the -g option of the lcfd daemon and received the following results:
138 All About Tivoli Management Agents

D
R
A
F
T

Case 1:
This is a very basic test and the most typical usage for the -g option. To avoid
broadcasting, we should always use the -g option as follows:

Table 13. Case 1: The -g Option Function Test

Case 2:
In this case, we specified the broadcast address of the subnetwork that the
Endpoint was connected to. As you can see from this example, we can
specify the broadcast address using the -g option even if it is different from
the subnetwork which the Endpoint belongs to.

Table 14. Case 2: The -g Option Function Test

5.3.2 Using -D lcs.login_interfaces Option for Endpoint Initial Login
Since the -D lcs.login_interfaces option of the lcfd daemon is the same as the
-g option, there is nothing new to introduce here. Version 3.2 of the Tivoli
Management Framework provided only this option (-D lcs.login_interfaces) to
specify the Endpoint login interfaces. The -g option has been added by
Version 3.6 of the Tivoli Management Framework.

Case 1

Scenario Specify the EP gateway (kodiak) for initial login.

Option lcfd -g kodiak+9494

EP Policy None

Result The EP logged into the EP gateway (kodiak) we specified.

Case 2

Scenario Specify the broadcast address to the same subnetwork.

Option lcfd -g 9.3.1.255

EP Policy None

Result The EP attempted to broadcast to the same subnetwork for initial login.

When you specify the broadcast address as in Case 2, the lcfd daemon
cannot recognize it as the broadcast address. Therefore, the lcfd daemon
attempts to broadcast for the Endpoint login even if you define the
bcast_disabled=1 (disable) option. We don’t recommend that you specify
the broadcast address with the -g option.

Note
Anatomy of TMA Behavior 139

D
R
A
F
T

Normally, we recommend you use the -g option because it is more simple.
However, there is no functional difference between the -D lcs.login_interfaces
and the -g option.

5.3.3 Using Other Options for Controlling lcfd Daemon
There are many options for controlling the lcfd daemon. In this project, we
tested the following options and checked the behavior of the lcfd daemon.

-D log_threshold Defines the level (from 0 to 4) of debug messages
written to the lcfd.log file. This option has the same
function as the -d option.

-D udp_attempts Specifies the number of times the Endpoint will
transmit an initial login request.

-D udp_interval Specifies the number of seconds between Endpoint
initial login request attempts.

-D login_interval Specifies the waiting period before the Endpoint
executes another login attempt. The Endpoint login
attempt will retry indefinitely using this interval value.

All options we tested worked correctly. These options can be defined in the
last.cfg file, setup.iss file or using the Web interface.

5.3.4 Using the wep Command for Modifying Login Information
The wep command provides a feature to modify the assigned gateway
information and the login interfaces list information that is contained in the
lcf.dat file located in the Endpoints.

When you specify the -D lcs.login_interfaces and -g option at the same
time, what happens?

lcfd -D lcs.login_interfaces=kodiak+9494 -g grizzly+9494

The first argument (-D lcs.login_interfaces) is handled first, then the
second argument (-g) is handled. Therefore, the following sample has the
same meaning as the above sample.

lcfd -g kodiak+9494:grizzly+9494

or

lcfd -D lcs.login_interfaces=kodiak+9494:grizzly+9494

Note
140 All About Tivoli Management Agents

D
R
A
F
T

5.3.4.1 What is the lcf.dat File?
The lcf.dat file is created by the lcfd daemon when the Endpoint logs in to the
Endpoint gateway successfully. This file contains two pieces of very
important information regarding the Endpoint login. One is the assigned
gateway information and the other is the login interfaces list information. The
assigned gateway is the Endpoint gateway that the Endpoint has logged into
and the login interfaces list is the list of the alternate gateways where the
Endpoint will attempt to perform the Endpoint login when the assigned
gateway is not available. The wep command modifies this information as
shown in Figure 51.

Figure 51. The wep Command Used to Modify Endpoint Login Information

5.3.4.2 Browsing Endpoint Login Information
How do we browse the Endpoint login information? We can simply use the
Endpoint Web interface to browse the Endpoint login information. To browse
the login information, choose the Network Address Configuration page
from the LCF Daemon Status Page. On this page, the Last known gateway:
field shows the assigned gateway and the Additional gateway location
servers field shows the login interfaces list.

EP

EP Manager

EP Gateway

lcf.dat

kodiak+9494

Assigned Gateway

grizzly+9494
trout+9494

yi2250d+9494

Interfaces List

wep set interfaces -e ep_name wep set gateway -e ep_name
Anatomy of TMA Behavior 141

D
R
A
F
T

Figure 52. Browsing the Endpoint Login Information

5.3.4.3 Testing the wep Command to Modify Login Information
We tested the following two cases regarding the wep set gateway and wep set
interfaces commands to verify the behavior of the lcfd daemon.

Case 3:
We modified the assigned gateway information of the Endpoint (salmon)
using the wep set gateway command, then made sure of the result by using
the Endpoint Web interface.

Table 15. Case 3: The wep set gateway Command Test

Case 3

Scenario Modify the assigned gateway information using the wep command,
then verify the result using the Endpoint web interface.

Command wep set gateway -e salmon

EP Policy None

Result The assigned gateway information was modified correctly.

Assigned Gateway Information

Endpoint Login Interfaces List Information
142 All About Tivoli Management Agents

D
R
A
F
T

Case 4:
This is a simple test and is very similar to Case 3. In this case, we modified
the Endpoint login interfaces list information of salmon, then verified the
result.

Table 16. Case 2: The wep set interfaces Command Test

In this case, if you execute the wep ls command, the following output will
appear.

As you can see, each Endpoint gateway processes the Endpoint login
request. Since the last login request is honored, the other Endpoint entries
are not available. Therefore, the wep ep_label status command returns the
unreachable status.

5.3.5 Using Broadcast for Endpoint Login
As we have mentioned, broadcast should normally be disabled in the
configuration of the TMA. The reason is that the broadcast from the TMA
might affect the network that the TMA is connected to and make the
performance worse. Although, it should be noted that the broadcast packets
are small and sent relatively infrequently. In this project, we tested a few
cases regarding broadcast for understanding the behavior of the TMA.

Case 5:
In this case, we configured three Endpoint gateways on the same
subnetwork before testing. In other words, it was a multiple Endpoint

Case 4

Scenario Modify the login interfaces list information using the wep command, then
verify the result using the Endpoint Web interface.

Command wep set interfaces -e salmon trout+9494

EP Policy None

Result The login interfaces list information was modified correctly.

wep ls
G 1189622596.4.21 grizzly-gateway
 1189622596.323.508+#TMF_Endpoint::Endpoint# salmon.323
G 1189622596.2.19 kodiak-gateway
 1189622596.224.508+#TMF_Endpoint::Endpoint# bass
 1189622596.245.508+#TMF_Endpoint::Endpoint# yi2250d
 1189622596.324.508+#TMF_Endpoint::Endpoint# salmon.324
G 1189622596.195.21 yi2250d-gateway
 1189622596.322.508+#TMF_Endpoint::Endpoint# salmon
wep salmon status
unable to determine endpoint status; endpoint may be unreachable.
Anatomy of TMA Behavior 143

D
R
A
F
T

gateways environment. Then we started to install the TMA (lcfd) with default
options. By default, the broadcast was enabled, so that the lcfd began to
perform broadcast for initial login. Then, several of the Endpoint gateways
received the login request from the Endpoint and processed it, so that one
Endpoint logged in to multiple Endpoint gateways for a single initial login.
Therefore, we can see one Endpoint in multiple Endpoint lists using the wep
ls command. However, only the last login request is honored.

Table 17. Case 5: The Broadcasting Test in Multiple EP Gateways Environments

Case 6:
This case is almost the same as Case 5, but we used broadcasting in a
multiple TMR environment. We configured two TMR servers (Endpoint
Managers) on the same subnetwork and also configured two Endpoint
gateways before testing. Then we started to install the lcfd with the default
options and the lcfd began to perform the broadcast for the initial login. Then,
Endpoint gateways that belong to different TMRs received the login request
from the Endpoint and processed it, so that one Endpoint logged in to multiple
Endpoint gateways for the single initial login. Therefore, we can see one
Endpoint in multiple TMRs using the wep ls command. However, the last login
request processed is honored by the Endpoint. So, even though the Endpoint

Case 5

Scenario Install the lcfd with default option for performing the initial login in the
multiple EP gateways environment.

Option Default (-D bcast_disable=0)

EP Policy None

Result The Endpoint performed the initial login, then several of the EP
gateways received the login request and processed it. Therefore, one
Endpoint was added to more than one EP list. However, only one EP
list had been working correctly.

This behavior is considered a software defect and will be fixed in the next
patch. This is also noted in the Framework Release Notes V3.6 September
1988.

Note
144 All About Tivoli Management Agents

D
R
A
F
T

may show up in multiple TMRs, it is only manageable by the last one. This is
also considered a defect and will be fixed in the near future.

Table 18. Case 6: The Broadcasting Test in the Multiple TMR Environment

Case 7:
In this case, we disabled the broadcast (bcast_disable=1) in the setup.iss
file.Then we started to install the lcfd without the login interface list (-g
option) configuration. Since there was no login interfaces list, the Endpoint
tried to send login requests using the broadcast, but the broadcast was
disabled, so the Endpoint couldn’t send any login requests. In this case, the
Endpoint couldn’t log in to any Endpoint gateways.

Table 19. Case 7: The bcast_disable Option Function Test

Case 6

Scenario Install the lcfd with default option for performing the initial login in the
multiple TMR environment.

Option Default (-D bcast_disable=0)

EP Policy None

Result The Endpoint performed the initial login, then several of the EP
gateways that belong to different TMRs received the login request and
processed it. Therefore, one Endpoint had been added to more than
one EP list and appeared on the both TMRs on the same subnetwork.
However, only one EP list had actually been working correctly.

Case 7

Scenario Define the bcast_disable=1 option (broadcast is disabled) and install
the lcfd for performing the initial login.

Option -D bcast_disable=1

EP Policy None

Result Nothing happens. The Endpoint couldn’t log in to any EP gateway.
Anatomy of TMA Behavior 145

D
R
A
F
T

5.3.6 Using the Web Interface
As an alternative to the wep command, you can use the Web browser to
reconfigure the TMA. The lcfd daemon remains resident, listening on the
default port, even if the Endpoint initial login attempt fails. We can use the
Web browser to access the daemon on the Endpoint and enable the Endpoint
to log into the correct or new Endpoint gateway. To use the Endpoint Web
interface, you will need to know the hostname, port, user ID and password for
the Endpoint. These are all obtainable via the wep command. Use the URL
http://host:port to connect as follows:

http://salmon.itsc.austin.ibm.com:9494

Click on Network Address Configuration. Type in options in the box, just as
you would on the lcfd command line. Click apply.

Case 8:
The following figure shows a sample of the Location Configuration page in
the Endpoint Web interface. In this figure, the status field shows logging in
status and the Last known gateway field shows ???. This means that the
Endpoint is attempting to perform the initial login, but has not completed it
yet. When the Endpoint gateways, which are specified as the
login_interfaces, are not reachable and the broadcast function of the
Endpoint is configured as disabled, this situation can happen.

As you can see from the result of Case 7, you have to define the login
interface information using the -g or -D lcs.login_inrerfaces option when
you define the broadcast as disabled (bcast_disable=1).

When you meet this situation (Case 7), is there any way to resolve it? The
answer is yes. Using the Endpoint Web interface is one solution for this
case. You cannot use the wep command in this case because the Endpoint
has not yet completed the initial login, so the Endpoint doesn’t have the
Endpoint label. We have to specify the Endpoint label for modifying the
login interface information using the wep command.

Note
146 All About Tivoli Management Agents

D
R
A
F
T

Figure 53. Location Configuration Panel

In the above example, we are attempting to modify the login_interfaces
information of the Endpoint because both Endpoint gateways that are
displayed in the Additional gateway location servers field are unreachable. To
add the Endpoint gateway, grizzly (9.3.1.134), into the login_interfaces via
the Endpoint Web interface, you will need a user ID and password. By
default, the user ID is tivoli and the initial password until completion of the
initial login is boss. After the completion of the initial login, the password can
be obtained by the wep command.
Anatomy of TMA Behavior 147

D
R
A
F
T

Figure 54. Password Dialog

Enter the appropriate user ID and password in the dialog box and push OK
The Endpoint will be restarted with the modified configurations. The restart
message will be shown as follows.

Figure 55. Restart Message

After this operation, go back to the Local Configuration page and check the
status field. It should be shown as running. This means the Endpoint has
logged into the Endpoint gateway which is shown in the Last known gateway
field successfully. In this case, we defined the select_gateway_policy and it
returnd some candidates, so that the Additional gateway location server
shows some alternate gateways (refer to the Figure 56 on page 149).
148 All About Tivoli Management Agents

D
R
A
F
T

Figure 56. Local Configuration Panel after Rescue

The summary of the test follows.

Table 20. Case 8: The Endpoint Web Interface Test

Case 8

Scenario Modify the login interfaces list of the Endpoint using the Endpoint Web
interface. In this case, the Endpoint has not completed the initial login
yet.

Option lcfd -g grizzly+9494

EP Policy select_gateway_policy (grizzly, yi2250d)

Result The login interfaces list was modified by the Web interface and the
Endpoint can log into the Endpoint gateway.
Anatomy of TMA Behavior 149

D
R
A
F
T

5.3.7 TMR Redirection
TMR redirection is one of the most effective solutions for managing very large
environments containing more than one TMR. In the previous chapter
(Chapter 4, “Configuring the TMA Environment” on page 105), we introduced
TMR redirection, and we will describe TMA behavior when we configured
TMR redirection configuration in our environment.

5.3.7.1 Interconnected TMRs
First of all, we need to configure interconnected TMRs in our test
environment. It is quite easy and can be configured from the Desktop
interface. After configuring the TMR connections, we can see all managed
resources belonging to both TMRs in the Top Level Policy Regions panel, as
shown in Figure 57.

Figure 57. The Top Level Policy Regions

5.3.7.2 Understanding TMR Redirection
Now we have configured the TMR connections environment. We will now
introduce the result of the our TMR redirection test.

TMR redirection can be configured with both one-way and two-way
connection. You can specify the TMR connection type, one-way or
two-way, on the panel configuring the TMR connection.

Note
150 All About Tivoli Management Agents

D
R
A
F
T

Case 9:
In this case, we introduce the TMR redirection example. Before testing, we
connected one TMR to another TMR with one-way connection. We also
defined the select_gateway_policy in TMR-A for redirecting the TMR when
the Endpoint would attempt to perform the login. Then we started to install the
lcfd daemon for performing the initial login. We will show more detail in
Figure 58 on page 152.

Table 21. Case 9: TMR Redirection Test

Case 9

Scenario Before testing, configure the multiple TMRs and connect TMRs.The
select_gateway_policy for redirecting TMR should also be defined
before this test. Then install lcfd with the following options for
performing the initial login in the multiple TMR environment.

Option -g kodiak+9494
-D bcast_disable=1

EP Policy select_gateway_policy (trout)

Result The Endpoint attempted to perform the initial login to the EP gateway
specified by the -g option . The EP Manager referred to the
select_gateway_policy defined in the TMR-A and found the EP
gateway in the TMR-B. The EP Manager returned the login information
for redirecting to the Endpoint. As a result, the Endpoint logged in to
the EP gateway in the TMR-B. The TMR redirection completed
successfully.
Anatomy of TMA Behavior 151

D
R
A
F
T

Figure 58. The TMR Redirection

1. The Endpoint (salmon) attempted to perform the initial login to the
Endpoint gateway (kodiak) specified first by the -g option.

2. The Endpoint gateway (kodiak) forwarded the login request to the
Endpoint Manager (panda).

3. The Endpoint Manager (panda) received the login request from the
Endpoint (salmon), then referred to the select_gateway_policy defined in
TMR-A and got the candidate for the assigned gateway. The Endpoint
gateway (trout) that the Endpoint Manager (panda) found belonged to
TMR-B, so that the Endpoint Manager (panda) then recognized this login
process as TMR redirection.

4. The Endpoint Manager (panda) sent the request for retrieving the interface
information of the Endpoint gateway (trout).

5. The Endpoint Manager (panda) retrieved the Endpoint gateway’s (trout)
interface information.

6. The Endpoint Manager (panda) sent the network interface information of
the Endpoint gateway (trout) with the directions to use it as the
intercepting gateway (trout) to the original intercepting gateway (kodiak).

EP

EP Manager

EP Gateway

EP Manager

EP Gateway

ishii2panda

troutkodiak

salmon

1

2

3

4

5
6

7 8

9 10

11

select_gateway_policy trout

12

TMR-A TMR-B
152 All About Tivoli Management Agents

D
R
A
F
T

7. The Endpoint gateway (kodiak) relayed the information to the Endpoint
(salmon).

8. The Endpoint (salmon) also recognized the login request was redirected
and began the initial login process again with the new information. The
login request was intercepted by the Endpoint gateway (trout), as
designated in the select_gateway_policy script in the TMR-A.

9. The login request was forwarded to the Endpoint Manager (panda) in
TMR-B.

10.Having no defined Endpoint policy in TMR-B, the Endpoint Manager
(panda) assigned the Endpoint (salmon) to the intercepting gateway
(trout) and sent the new login information to the intercepting gateway
(trout).

11.The intercepting gateway (trout) relayed the login information to the
Endpoint (salmon).

12.As a result, the Endpoint logged in to its assigned gateway (trout).

After you configure TMR redirection, the Endpoint performs the login to the
Endpoint gateway and then the Endpoint is redirected by the Endpoint policy.
The following messages appear in the lcfd.log file. Look at line 9 of the file.
The Endpoint recognizes TMR redirection at that time.
Anatomy of TMA Behavior 153

D
R
A
F
T

5.4 Understanding TMA Behavior in Unexpected Situations

In real environments, the network may sometimes go down or the TMR server
may be unavailable. Then what happens? In this section, we assume these
situations and perform tests regarding them. We analyze the results and
explain the behavior of the TMA.

5.4.1 Understanding Initial Login
In this section, we introduce the Endpoint behavior in an unexpected situation
during the Endpoint initial login.

5.4.1.1 Endpoint Manager is Unavailable during Initial Login
The LCF architecture reduces the TMR Server’s workload, but the TMR
Server is still very important in the Tivoli Management environment. In this
test, we assume the TMR Server becomes unavailable.

Case 10:
In this test, we performed a shutdown of the Endpoint Manager (panda)
before testing. Then we started to install the lcfd with the following options.

Dec 09 11:26:50 Q lcfd send_login_dgram: interval=30 attempts=2
Dec 09 11:26:50 Q lcfd net_usend of 346 bytes to 9.3.1.133+9494. Bcast=0
Dec 09 11:26:50 Q lcfd send_login_dgram: waiting for reply. attempt 1 of 2
Dec 09 11:26:50 Q lcfd net_accept, handle=0x305f60
Dec 09 11:26:57 Q lcfd New connection from 9.3.1.133+2153
Dec 09 11:26:57 Q lcfd Entering net_recv, receive a message
Dec 09 11:26:57 Q lcfd Leaving net_recv: bytes=346, (type=14 session=0)
Dec 09 11:26:57 Q lcfd recv: len=’346’ (code=’14’, session=’0’)
Dec 09 11:26:57 1 lcfd tmr redirect
Dec 09 11:26:57 2 lcfd Trying other login listeners...
Dec 09 11:26:57 Q lcfd send_login_dgram: interval=30 attempts=2
Dec 09 11:26:57 Q lcfd net_usend of 346 bytes to 9.3.1.210+9494. Bcast=0
Dec 09 11:26:57 Q lcfd send_login_dgram: waiting for reply. attempt 1 of 2
Dec 09 11:26:57 Q lcfd net_accept, handle=0x305f60
Dec 09 11:26:59 Q lcfd New connection from 9.3.1.210+33582
Dec 09 11:26:59 Q lcfd Entering net_recv, receive a message
Dec 09 11:26:59 Q lcfd Leaving net_recv: bytes=498, (type=14 session=0)
Dec 09 11:26:59 Q lcfd recv: len=’498’ (code=’14’, session=’0’)
Dec 09 11:26:59 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\1\last.cfg
Dec 09 11:26:59 1 lcfd salmon.117 is dispatcher 117 in region 1588251808
Dec 09 11:26:59 1 lcfd write login file ’lcf.dat’ complete
Dec 09 11:26:59 1 lcfd Logging into new gateway...
Dec 09 11:26:59 Q lcfd login_to_gw
Dec 09 11:26:59 Q lcfd login_gw -> 9.3.1.210+9494
Dec 09 11:26:59 2 lcfd Connecting to ’9.3.1.210+9494’
Dec 09 11:26:59 Q lcfd net_send of 506 bytes, session 117
Dec 09 11:26:59 Q lcfd net_accept, handle=0x305f60
Dec 09 11:26:59 Q lcfd New connection from 9.3.1.210+33583
Dec 09 11:26:59 Q lcfd Entering net_recv, receive a message
Dec 09 11:26:59 Q lcfd Leaving net_recv: bytes=514, (type=14 session=117)
Dec 09 11:26:59 Q lcfd recv: len=’514’ (code=’14’, session=’117’)
Dec 09 11:26:59 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\1\last.cfg
Dec 09 11:26:59 1 lcfd salmon.117 is dispatcher 117 in region 1588251808
Dec 09 11:26:59 1 lcfd write login file ’lcf.dat’ complete
Dec 09 11:26:59 1 lcfd final pid: 120
Dec 09 11:26:59 1 lcfd Login to gateway 9.3.1.210+9494 complete.
154 All About Tivoli Management Agents

D
R
A
F
T

The lcfd attempted to perform the initial login to the Endpoint gateways
specified by the -g option. However, the Endpoint gateways that received
login requests from the Endpoint couldn’t receive any response from the
Endpoint Manager even if the gateway forwarded the request to the Endpoint
Manager, so the initial login failed. As a result, the Endpoint couldn’t log in to
any Endpoint gateways.

Table 22. Case 10: The Initial Login when EP Manager is Unavailable

The following figure (Figure 59 on page 155) shows this situation.

Figure 59. The Initial Login when the EP Manager is Unavailable

Case 10

Scenario Shutdown the EP Manager, then install lcfd for performing the initial
login.

Option lcfd -g trout+9494:kodiak+9494
-D bcast_disable=1

EP Policy None

Result The Endpoint couldn’t log in to any EP gateways.

EP

EP M anager

EP G ateway EP Gateway

1

2

3

4

trout kodiak

panda

Dow n

salm on
Anatomy of TMA Behavior 155

D
R
A
F
T

1. The Endpoint (salmon) attempted to perform the initial login to the
Endpoint gateway (trout) specified by the -g option as the first Endpoint
gateway in the login interfaces list. Trout received the login request from
salmon. The Endpoint (salmon) sent the login request to the Endpoint
gateway (trout) six times every five minutes by default. This depends on
the udp_attempts and udp_interval parameters. The login request is a
UDP packet, so the Endpoint just sends the login request using UDP and
waits for a response from the Endpoint gateway. The Endpoint doesn’t
establish a TCP session between the Endpoint and Endpoint gateway in
this case.

2. The Endpoint gateway (trout) forwarded the login request from salmon to
the Endpoint Manager (panda). This is also a UDP packet. However, the
Endpoint (salmon) couldn’t get any response from the Endpoint Manager
(panda) because the Endpoint Manager (panda) was not available.
Actually, the login request from the Endpoint (salmon) would be forwarded
to the Endpoint Manager (panda) everytime the Endpoint gateway
received the login request from the Endpoint.

3. After sending the login requests (six times every five minutes), salmon
gave up logging in to trout. Then salmon attempted to perform the initial
login to the second Endpoint gateway (kodiak) specified by the -g option.
This process is the same as the process shown in Step 1.

4. The Endpoint gateway (kodiak) forwarded the login request from salmon
to the Endpoint Manager (panda) every time kodiak received the login
request. Since the Endpoint Manager was down, nothing happened. After
sending the login requests (six times every five minutes), the Endpoint
attempts to perform a broadcast to look for an Endpoint gateway if we
don’t define bcast_disable=1 (broadcast is disabled). In this case, we
disabled the broadcast (bcast_disable=1), so that the Endpoint will wait for
a while (20 minutes by default, but it depends on the login_interval
parameter) and retry the initial login to the first Endpoint gateway (trout).
This means these processes (process 1 - 4) will be continued indefinitely
as long as the Endpoint Manager is unavailable.

5.4.1.2 Endpoint Gateway is Unavailable at Initial Login
The Endpoint gateway plays a vital role in the TMA environment. Basically,
all requests issued from the Endpoint would be handled by the Endpoint
gateway, so that at least one Endpoint gateway must be available in the
TMR. But, the relationship between the Endpoint gateway and Endpoint is
really flexible, as you know, and it is completely different from the relationship
between the TMR server and the Managed Node. In this, we assume the
Endpoint gateway where the Endpoint attempts to log in becomes
156 All About Tivoli Management Agents

D
R
A
F
T

unavailable. Since this sort of situation is fairly common, you should
understand the behavior of TMA in this case.

Case 11:
In this test, we specified the alternate Endpoint gateway using the -g option.
Before testing, we made the Endpoint gateway (grizzly) where the Endpoint
would attempt to perform the initial unavailable login. As a result, the
Endpoint gave up attempting to perform the initial login to the first Endpoint
gateway (grizzly), then attempted to perform the initial login to the alternate
Endpoint gateway (kodiak), where no Endpoint policy has been set.

Table 23. Case 11: The Initial Login when EP Gateway is Unavailable

The following figure, Figure 60 on page 158, displays the Endpoint login
process in this case.

Case 11

Scenario Specify the unavailable EP gateway (grizzly) and available EP
gateway (kodiak) as follows.

Option lcfd -g grizzly+9494:kodiak+9494

EP Policy None

Result First of all, the EP attempted to perform initial login to the first EP
gateway (grizzly) specified by the -g option, but it was not available. It
then attempted to perform initial login to the second EP gateway
(kodiak) and logged in successfully.
Anatomy of TMA Behavior 157

D
R
A
F
T

Figure 60. Endpoint Initial Login to the Alternate Endpoint Gateway

1. The Endpoint attempts to perform the initial login to the Endpoint gateway
(grizzly) at first. The Endpoint tried again to send the initial login request to
grizzly until the timeout. By default, timeout is 30 minutes (six times every
five minutes) but you can change the timeout using the udp_attempts and
udp_interval parameters. Then the Endpoint gives up sending the initial
login request to grizzly.

2. After the timeout, the Endpoint attempts to perform the initial login to the
alternate Endpoint gateway (kodiak).

3. The Endpoint gateway (kodiak) forwards the login request to the Endpoint
Manager (panda).

4. Having no defined policy, panda assigns the Endpoint to kodiak and sends
the new login information to kodiak.

5. Kodiak relays the login information to the Endpoint.

6. The Endpoint logs in to its assigned gateway, kodiak.

Case 12:
This case is similar to Case 11. The only difference is we didn’t specify the
alternate Endpoint gateway. As a result, the Endpoint attempted to broadcast

EP

EP Manager

EP Gateway EP Gateway

Down

1 2

3
4

5
6

grizzly kodiak

panda
158 All About Tivoli Management Agents

D
R
A
F
T

after the Endpoint initial login failure to the specified Endpoint gateway
(grizzly) using the -g option.

Table 24. Case 12: The Initial Login when EP Gateway is Unavailable

5.4.1.3 Unexpected Situation during Gateway Selection
This case is both interesting and complicated, however, it is a good example
for understanding the Endpoint initial login. In this case, we defined the
select_gateway_policy for assigning the Endpoint gateway to the Endpoint.

Case 13:
This case helps us to understand how to select the assigned gateway. We
defined the select_gateway_policy that returns two Endpoint gateways as
the candidates for the assigned gateway. In this policy, the first candidate is
grizzly and the second candidate is kodiak. We performed a shutdown of
grizzly, which is the first candidate for the assigned gateway. Then we started
to install the lcfd with the options shown in Table 25 on page 159 for
performing the initial login. We will provide more detail in Figure 61.

Table 25. Case 13: An Unexpected Situation during EP Gateway Selection

Case 12

Scenario Specify only the unavailable EP gateway (grizzly) with the -g option.

Option lcfd -g grizzly+9494

EP Policy None

Result First of all, the EP attempted to perform initial login to the EP gateway
(grizzly) specified by the -g option but it was not available. It then
attempted to perform initial login using broadcast.

Case 13

Scenario Define the select_gateway_policy that returns grizzly as the first
assigned EP gateway and kodiak as the second assigned EP
gateway before testing. We also perform shutdown grizzly before
testing. Then we install the lcfd for performing the initial login.

Option lcfd -g trout+9494
-D bcast_disable=1

EP Policy select_gateway_policy (grizzly, kodiak)

Result The available EP gateway was assigned to the Endpoint by the
select_gateway_policy and the Endpoint logged in to the available EP
gateway.
Anatomy of TMA Behavior 159

D
R
A
F
T

Figure 61. One of the Selected Gateways in the Policy is Not Available

1. The Endpoint (salmon) sent the initial login request to the Endpoint
gateway (trout) specified by the -g option. In this case, trout was the
intercepting gateway. The intercepting gateway (trout) received the login
request from salmon.

2. Trout forwarded the login request to the Endpoint Manager (panda).

3. The Endpoint Manager (panda) referred to the select_gateway_policy and
received two candidates for the assigned gateway.

4. Panda attempted to connect to grizzly, which was the first candidate for
the assigned gateway using the new_endpoint method. But the connection
with grizzly failed.

5. Then panda attempted to connect to kodiak, which was the second
candidate for the assigned gateway using the new_endpoint method and
the Endpoint gateway (kodiak) was connected successfully.

6. As a result, panda assigned the Endpoint to kodiak as the assigned
gateway and returned the login assignment information to the intercepting
gateway (trout).

EP

EP Manager

EP Gateway EP Gateway

1

2

3

4

trout kodiak

panda

Down

salmon

select_gateway_policy

EP Gateway

grizzly

1st : grizzly
2nd : kodiak

56

7 8

Return
160 All About Tivoli Management Agents

D
R
A
F
T

7. The intercepting gateway (trout) then relayed the login information to the
Endpoint (salmon).

8. The Endpoint (salmon) logged in to the assigned gateway (kodiak). This
process is the same as a normal login to kodiak.

Case 14:
This case is similar to Case 13, but we shutdown both Endpoint gateways
that were configured as the first candidate and second candidate for the
assigned gateway in the select_gateway_policy. Therefore, there is no
available Endpoint gateway configured as the candidate for the assigned
gateway in the select_gateway_policy. We will explain how the Endpoint
Manager handled this situation in detail in the next figure, Figure 62 on page
162.

Table 26. Case 14: An Unexpected Situation during EP Gateway Selection

Case 14

Scenario Define the select_gateway_policy that returns grizzly as the first
assigned EP gateway and kodiak as the second assigned EP
gateway before testing. We also perform shutdown grizzly and kodiak
before testing. Then we install the lcfd for performing the initial login.

Option lcfd -g trout+9494
-D bcast_disable=1

EP Policy select_gateway_policy (grizzly, kodiak)

Result Since there was no available EP gateway that configured in the
select_gateway_policy, the Endpoint Manager assigned the
intercepting gateway as the assigned gateway, so that the Endpoint
logged in to the intercepting gateway.
Anatomy of TMA Behavior 161

D
R
A
F
T

Figure 62. There is No Available Gateway in the select_gateway_policy

1. The Endpoint (salmon) sent the initial login request to the Endpoint
gateway (trout) specified by the -g option. In this case, trout was the
intercepting gateway. Then trout received the login request from salmon.

2. Trout forwarded the login request to the Endpoint Manager (panda).

3. The Endpoint Manager (panda) referred to the select_gateway_policy and
got the two candidates for the assigned gateway.

4. Panda attempted to connect to grizzly which was the first candidate for the
assigned gateway, by first using the new_endpoint method. But, the
connection with grizzly failed.

5. Then panda attempted to connect to kodiak, which was the second
candidate for the assigned gateway using the new_endpoint method but it
also failed.

6. As a result, panda assigned the Endpoint (salmon) to trout as the
assigned gateway and returned the login assignment information to the
intercepting gateway (trout).

7. Then the intercepting gateway (trout) relayed the login information to the
Endpoint (salmon).

EP

EP Manager

EP Gateway EP Gateway

1

2

3

4

trout kodiak

panda

Down

salmon

select_gateway_policy

EP Gateway

grizzly

1st : grizzly
2nd : kodiak

5
6

7

8

Return

Down
162 All About Tivoli Management Agents

D
R
A
F
T

8. Finally, the Endpoint (salmon) logged in to the intercepting gateway
(trout). This process is the same as a normal login to trout.

5.4.2 Understanding Normal Login with Unexpected Situations
In this section, we introduce the Endpoint behavior in an unexpected situation
during the Endpoint normal login.

5.4.2.1 Endpoint Manager is Unavailable in Normal Login
We assume the Endpoint Manager is not available when the Endpoint
attempts to perform the normal login. Then, we introduce an example in order
to understand the Endpoint behavior in these situations.

Case 15: In this case, we performed a shutdown of the Endpoint Manager
before testing. Then we re-started the lcfd with the following option for
performing the normal login.

Table 27. Case 15: The Normal Login when the EP Manager is Unavailable

Case 15

Scenario Shutdown the EP Manager, then perform the normal login.

Option lcfd -g trout+9494:kodiak+9494
-D dcast_disable=1

EP Policy None

Result The Endpoint logged in to the assigned gateway (trout).

The Endpoint Manager actually attempts to contact all Endpoint gateways
that are defined in the select_gateway_policy, even if the Endpoint
Manager detects the first candidate is available. As a result, the
unreachable Endpoint gateways at the gateway selection process does
not appear in the login interfaces list.

The Endpoint Manager uses the new_endpoint method to contact the
Endpoint gateway. This means that the Endpoint Manager recognizes
what is unavailable when the Endpoint gateway process (gateway) is
stopped, even if the Endpoint gateway machine is running fine.

Note
Anatomy of TMA Behavior 163

D
R
A
F
T

Figure 63. The Normal Login when EP Manager is Unavailable

1. The Endpoint (salmon) logged in to the assigned gateway (trout).

EP Manager

Down

panda

EP

EP Gateway

1

salmon

trout

In this case, the Endpoint could log in to the assigned gateway without the
Endpoint Manager. However the boot_method had not been executed yet. To
execute the boot_method, the Endpoint Manager should be available. As a
result, the method should be booted from the boot_method because the
Sentry engine will not be started. You can confirm it using the gatelog file in
the Endpoint gateway. When the Endpoint Manager is available, the
following messages will be witten to the gatelog file normally:

1998/11/24 17:24:33 +06: login succeeded for 9.3.1.193+1399
(salmon,w32-ix86,RF+7TTDM068DSHCR6Q4700000537,reg=1189622596,od=163)

1998/11/24 17:24:33 +06: run_login_policy: Running login policy on endpoint
salmon.

1998/11/24 17:24:36 +06: run_ep_boot_methods: nothing to do.

However, when the Endpoint Manager is not available, as in this case, the
run_ep_boot_methods method would not be invoked, so that the third line of
the above list would not be written to the gatelog file.

Note
164 All About Tivoli Management Agents

D
R
A
F
T

5.4.2.2 Understanding Endpoint Isolation
When the Endpoint attempts to perform the normal login to its assigned
gateway, the gateway may be unreachable. In this case, the Endpoint is said
to be isolated. We assume this situation and monitor what happens.

Case 16: To isolate the Endpoint, we stopped the Endpoint gateway after the
initial login had been completed. Then we re-started the lcfd for performing
the normal login to the Endpoint gateway we stopped. We will explain how
the Endpoint recovered from the isolated situation in Figure 64 on page 166.

Table 28. Case 16: The Endpoint Isolation

Case 16

Scenario Perform the shutdown the EP gateway after the initial login is
completed for making the Endpoint isolated. Then we restart the
Endpoint and the Endpoint attemps to perform the normal login.

Option lcfd -g kodiak+9494
-D bcast_disable=1

EP Policy select_gateway_policy (kodiak, trout)

Result The Endpoint attempted to perform the normal login to the assigned
gateway, however, kodiak was not available. Therefore, the Endpoint
has an isolated status. Then the Endpoint attempted to perform the
isolated login to the EP gateway specified in the login interfaces list in
the lcf.dat file and sent the login request to the EP gateway. The
select_gateway_policy was invoked during the login process and
returned the assigned gateway. As a result, the Endpoint logged in to
the EP gateway assigned by the select_gateway_policy.
Anatomy of TMA Behavior 165

D
R
A
F
T

Figure 64. The Recovery from Isolated Situation

1. The Endpoint (salmon) attempted to perform the normal login to the
assigned gateway (kodiak). However, the assigned gateway (kodiak) was
not available. The Endpoint (salmon) attempted to perform the normal
login again until the timeout occurred.

2. After the timeout, the Endpoint (salmon) was considered isolated. Then
the Endpoint (salmon) attempted to send the login request to the Endpoint
gateway (trout), which is contained in the login interfaces list of the lcf.dat
file.

3. The Endpoint gateway (trout) forwarded the login request to the Endpoint
Manager (panda).

4. The Endpoint Manager (panda) received the login request from the
Endpoint (salmon) and referred to the select_gateway_policy. It got two
candidates for the assigned gateway.

5. The Endpoint Manager (panda) attempted to contact the Endpoint
gateway (kodiak), which was the first candidate for the assigned gateway
by first using the new_endpoint method. However, the connection with the
gateway (kodiak) failed.

EP

EP Manager

EP Gateway EP Gateway

1 2

3

4

troutkodiak

panda

Down

salmon

select_gateway_policy 1st : kodiak
2nd : trout

5
6 7

8
9

Login Info

1. kodiak
2. trout
166 All About Tivoli Management Agents

D
R
A
F
T

6. Then the Endpoint Manager attempted to connect to the Endpoint
gateway (trout), which was the second candidate for the assigned
gateway using the new_endpoint method and the Endpoint gateway (trout)
was connected successfully.

7. As a result, the Endpoint Manager (panda) assigned the Endpoint
(salmon) to the Endpoint gateway (trout) as the assigned gateway and
returned the login assignment information to the intercepting gateway
(trout).

8. The intercepting gateway (trout) then relayed the login information to the
Endpoint (salmon).

9. The Endpoint (salmon) logged in to the assigned gateway (trout).

As you can see from the above flow, the isolated Endpoint is normally
migrated automatically to another Endpoint gateway. The following message
appears in the gatelog file during the migration process.

This message will be logged only when the isolated Endpoint attempts to
send the login request.

Case 17:
This case was similar to Case 16, but we defined the broadcast as enabled
(bcast_disable=0) and performed a shutdown to the alternate Gateway (trout),
where no Endpoint policy has been set. Detailed information about this is
shown in the next figure, Figure 65.

Table 29. Case 17: The Endpoint Isolation

Case 17

Scenario Shutdown the assigned gateway and alternate gateway, then perform
the normal login.

Option lcfd -g kodiak+9494
-D bcast_disable=0

EP Policy None

Result The Endpoint was isolated. Then the Endpoint attempted to send the
login request to the alternate gateway gateway, but the alternate
gateway was not available as well. Then the Endpoint attempted to
perform the broadcast for the initial login and logged in to the
intercepting gateway.

1998/11/24 17:24:29 +06: eplogin (0): forwarding isolation login(2)to epmgr
Anatomy of TMA Behavior 167

D
R
A
F
T

Figure 65. The Recovery from the Isolated Situation Using Broadcast

1. The Endpoint (salmon) attempted to perform the normal login to the
assigned gateway (kodiak). However, the assigned gateway (kodiak) was
not available. The Endpoint (salmon) tried again to perform the normal
login until the timeout occurred.

2. After the timeout, the Endpoint (salmon) was considered isolated. Then
the Endpoint (salmon) attempted to send the login request to the alternate
gateway (trout) contained in the login interfaces list of the lcf.dat file.
However, the Endpoint couldn’t receive any response from the Endpoint
gateway (trout). Sending the login request continues until the timeout
occurs.

3. After the timeout, the Endpoint (salmon) attempted to perform the
broadcast for the initial login. Then the login request was intercepted by
the Endpoint gateway (grizzly).

4. The Endpoint gateway (grizzly) forwarded the login request to the
Endpoint Manager (panda).

5. Having no defined Endpoint policy, the Endpoint Manager (panda)
assigned the Endpoint (salmon) to the intercepting gateway (grizzly) and
sent the new login information to the Endpoint gateway (grizzly).

EP

EP Manager

EP Gateway EP Gateway

1
2 3

4

troutkodiak

panda

Down

salmon

EP Gateway

grizzly

5

6

7

Down

Login Info

1. kodiak
2. trout
168 All About Tivoli Management Agents

D
R
A
F
T

6. The Endpoint gateway (grizzly) relayed the login information to the
Endpoint (salmon).

7. The isolated Endpoint (salmon) logged in to its assigned gateway
(grizzly).

Case 18:
This case was also similar to Case 16, but we shutdown all alternate
gateways and no Endpoint policy has been set. Detailed information about
this is shown in the next figure.

Table 30. Case 18: The Endpoint Isolation

Case 18

Scenario Shutdown the assigned gateway and alternate gateway, then perform
the normal login.

Option lcfd -g kodiak+9494
-D bcast_disable=1

EP Policy None

Result The Endpoint was isolated. Then the Endpoint attempted to send the
login request to the EP gateways that were contained in the login
interfaces list but no gateway was available. As a result, the isolated
Endpoint couldn’t log in to any EP gateway.
Anatomy of TMA Behavior 169

D
R
A
F
T

Figure 66. The Isolated Endpoint

1. The Endpoint (salmon) attempted to perform the normal login to the
assigned gateway (kodiak). However, the assigned gateway (kodiak) was
not available. The Endpoint (salmon) tried again to perform the normal
login until the timeout occurred.

2. After the timeout, the Endpoint (salmon) was considered isolated. Then
the Endpoint (salmon) attempted to send the login request to the alternate
gateway (trout) that was contained in the login interfaces list in the lcf.dat
file. But the Endpoint gateway (trout) was also unavailable. The Endpoint
(salmon) tried again to send the login request until the timeout occurred.
After the timeout, the Endpoint would try again to perform processes 1 and
2 every 20 minutes (login_interval).

EP

EP Manager

EP Gateway EP Gateway

1 2

troutkodiak

panda

Down

salmon

Down

Login Info

1. kodiak
2. trout
170 All About Tivoli Management Agents

D
R
A
F
T

5.4.2.3 Unexpected Situation after Endpoint Login Completion
Sometimes the Endpoint Manager or Endpoint gateway may go down, or the
network between the Endpoint Manager and Endpoint gateway or the
Endpoint gateway and Endpoint may go down. In this section, we assume
these situations occurred and verify the behavior of the TMA in these
situations. This result is very useful for designing the TMR and planning the
allocation of resources in your environment.

Case 19 and 20:
These cases assumes the Endpoint gateway becomes unreachable from the
Endpoint after the Endpoint login succeeded. First of all, we configured the
TMA environment in this case. This means the Endpoint logged in to the
Endpoint gateway successfully. Then we disconnected the network between
the Endpoint gateway and the Endpoint. In this situation, we issued an
upcall/downcall. We used our sample programs (refer to Appendix 8,
“Overview of TMA Internals and Application Development” on page 281 for
details) to issue the upcall/downcall from the CLI interface in this test. We
show the behavior of the TMA when we issued the upcall in the next figure.

Table 31. Case 19 and 20: Network Becomes Unavailable after Login Completion

Case 19 and 20

Scenario After the Endpoint login succeeded, we disconnect the network
between the EP gateway and Endpoint. Then we issue the
upcall/downcall.

Option lcfd -g grizzly+9494
-D bcast_disable=1

EP Policy None

Once the initial login is complete, no more initial logins occur. There are
differences between the initial and isolated logins:

 • The allow_install_policy and after_install_policy only run on the initial
login.

 • The communications are encrypted with the private key on non-initial
logins.

Note
Anatomy of TMA Behavior 171

D
R
A
F
T

The following figure shows the TMA behavior when we invoked the upcall
program in this case.

Figure 67. Issuing Upcall when the EP Gateway is Unreachable

1. Before the testing, the Endpoint (salmon) had logged in to the assigned
Gateway (grizzly) successfully. Then we disconnected the network
between the assigned gateway (grizzly) and the Endpoint (salmon). In
this situation, we invoked the upcall-generating program to issue the
upcall to the assigned gateway (grizzly). However, the assigned gateway
(grizzly) was not available at that time. The Endpoint (salmon) couldn’t get

Result Issuing the upcall: The upcall was issued from the Endpoint, but the
Endpoint couldn’t receive any response from the EP gateway. Then
the Endpoint understood the assigned gateway was unavailable. The
Endpoint attempted to perform the isolated login to the alternate
gateway. As a result, the Endpoint recovered from the situation
automatically.

Issuing the downcall: When any downcall is invoked, the EP
gateway must be available, so the downcall can’t be invoked in this
case. The downcall failed.

Case 19 and 20

EP

EP Manager

EP Gateway EP Gateway

1

2

yi2250dgrizzly

panda

Down

salmon

Login Info

1. grizzly
2. yi2250d

upcall Program

3

4

5

6

7

172 All About Tivoli Management Agents

D
R
A
F
T

any response from the assigned gateway (grizzly), so the Endpoint
(salmon) understood the assigned gateway (grizzly) went down. The
Endpoint (salmon) attempted to perform the login to the assigned
gateway (grizzly) to make sure of the assigned gateway’s status, but it
failed.

2. Then the Endpoint (salmon) attempted to perform the initial login to the
alternate gateway (yi2250d) that was contained in the login information of
the lcf.dat file. The Endpoint (salmon) sent the initial login request to the
alternate gateway (yi2250d).

3. The alternate gateway (yi2250d) forwarded the login request to the
Endpoint Manager (panda).

4. Having no defined policy, the Endpoint Manager (panda) assigned the
Endpoint (salmon) to the alternate gateway (yi2250d) and sent the new
login information to the Endpoint gateway (yi2250d).

5. The Endpoint gateway (yi2250d) relayed the login information to the
Endpoint (salmon).

6. The Endpoint (salmon) logged in to its assigned gateway (yi2250d).

When the Endpoint gave up sending the upcall request and attempted to
perform the login to the alternate Endpoint gateway, the following messages
appeared in the lcfd.log file. In this log file, the UPCALL_START request (line 5)
means the upcall program issued the upcall request and sys=10061 (line 13)
means the system is not available.
Anatomy of TMA Behavior 173

D
R
A
F
T
 Case 20:

How is the downcall affected? Figure 68 shows the downcall process flow in
this case.

Nov 25 10:00:31 Q lcfd Entering net_wait_for_connection, timeout=-1 handle=0x305ef0
Nov 25 10:03:29 Q lcfd New connection from 127.0.0.1+2022
Nov 25 10:03:29 Q lcfd Entering net_recv, receive a message
Nov 25 10:03:29 Q lcfd Leaving net_recv: bytes=173, (type=16 session=0)
Nov 25 10:03:29 Q lcfd UPCALL_START request
Nov 25 10:03:29 2 lcfd Connecting to ’9.3.1.134+9494’
Nov 25 10:03:31 1 lcfd node_login: listener addr ’0.0.0.0+9494’
Nov 25 10:03:31 1 lcfd Trying last known gateway ...
Nov 25 10:03:31 Q lcfd login_to_gw
Nov 25 10:03:31 Q lcfd login_gw -> 9.3.1.134+9494
Nov 25 10:03:31 2 lcfd Connecting to ’9.3.1.134+9494’
Nov 25 10:03:32 1 lcfd gw login failure: i=2147483647 : ../../src/comm/netio.c:213 [cti_create_client or
cti_timed_create_client] : loc=3, cls=2, dec=7, sys=10061, tli=0, evt=0
Nov 25 10:03:32 Q lcfd Getting next address in login_to_gw...
Nov 25 10:03:32 Q lcfd login_gw -> 9.3.1.134+9494
Nov 25 10:03:32 2 lcfd Connecting to ’9.3.1.134+9494’
Nov 25 10:03:34 1 lcfd gw login failure: i=0 : ../../src/comm/netio.c:213 [cti_create_client or
cti_timed_create_client] : loc=3, cls=2, dec=7, sys=10061, tli=0, evt=0
Nov 25 10:03:34 2 lcfd Trying other login listeners...
Nov 25 10:03:34 Q lcfd send_login_dgram: interval=30 attempts=2
Nov 25 10:03:34 Q lcfd net_usend of 570 bytes to 9.3.1.134+9494. Bcast=0
Nov 25 10:03:34 Q lcfd send_login_dgram: waiting for reply. attempt 1 of 2
Nov 25 10:03:34 Q lcfd net_accept, handle=0x305ef0
Nov 25 10:04:04 Q lcfd send_login_dgram: recv 1 timed out
Nov 25 10:04:04 Q lcfd net_usend of 570 bytes to 9.3.1.134+9494. Bcast=0
Nov 25 10:04:04 Q lcfd send_login_dgram: waiting for reply. attempt 2 of 2
Nov 25 10:04:04 Q lcfd net_accept, handle=0x305ef0
Nov 25 10:04:34 Q lcfd send_login_dgram: recv 2 timed out
Nov 25 10:04:34 2 lcfd dgram login failure: Timed out
Nov 25 10:04:34 Q lcfd send_login_dgram: interval=30 attempts=2
Nov 25 10:04:34 Q lcfd net_usend of 570 bytes to 9.3.1.149+9494. Bcast=0
Nov 25 10:04:34 Q lcfd send_login_dgram: waiting for reply. attempt 1 of 2
Nov 25 10:04:34 Q lcfd net_accept, handle=0x305ef0
Nov 25 10:04:39 Q lcfd New connection from 9.3.1.149+2691
Nov 25 10:04:39 Q lcfd Entering net_recv, receive a message
Nov 25 10:04:39 Q lcfd Leaving net_recv: bytes=458, (type=14 session=0)
Nov 25 10:04:39 Q lcfd recv: len=’458’ (code=’14’, session=’0’)
Nov 25 10:04:39 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\1\last.cfg
Nov 25 10:04:39 1 lcfd salmon is dispatcher 168 in region 1189622596
Nov 25 10:04:39 1 lcfd Logging into new gateway...
Nov 25 10:04:39 Q lcfd login_to_gw
Nov 25 10:04:39 Q lcfd login_gw -> 9.3.1.149+9494
Nov 25 10:04:39 2 lcfd Connecting to ’9.3.1.149+9494’
Nov 25 10:04:39 Q lcfd net_send of 442 bytes, session 168
Nov 25 10:04:39 Q lcfd net_accept, handle=0x305ef0
Nov 25 10:04:39 Q lcfd New connection from 9.3.1.149+2692
Nov 25 10:04:39 Q lcfd Entering net_recv, receive a message
Nov 25 10:04:39 Q lcfd Leaving net_recv: bytes=458, (type=14 session=168)
Nov 25 10:04:39 Q lcfd recv: len=’458’ (code=’14’, session=’168’)
Nov 25 10:04:39 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\1\last.cfg
Nov 25 10:04:39 1 lcfd salmon is dispatcher 168 in region 1189622596
Nov 25 10:04:39 1 lcfd write login file ’lcf.dat’ complete
Nov 25 10:04:39 1 lcfd final pid: 113
Nov 25 10:04:39 1 lcfd Login to gateway 9.3.1.149+9494 complete.
174 All About Tivoli Management Agents

D
R
A
F
T

Figure 68. Issuing Downcall when the Endpoint is Unreachable

1. When we invoked the downcall program from the Endpoint gateway
(yi2250d), the Endpoint gateway (yi2250d) asked for Endpoint information
from the Endpoint Manager (panda).

2. The Endpoint Manager (panda) returned the information to the Endpoint
gateway (yi2250d).

3. Then, the Endpoint gateway (yi2250d) attempted to issue the downcall
but the Endpoint (salmon) that was the destination of the downcall was
unreachable. Therefore the downcall failed.

Normally, our downcall generating program echos back the input characters.
The following is a sample output of our downcall program:

In this case, when we invoked the downcall generating program from the
command line on the Endpoint gateway, the following communication error
messages were displayed:

EP

EP Manager

EP Gateway EP Gateway

1 2

yi2250d grizzly

panda

Down

salmon

downcall
Program

3

bash$ dsmain 1189622596.173.554+ hahahaha
Making downcall with hahahaha
[HAHAHAHA]bash$
Anatomy of TMA Behavior 175

D
R
A
F
T

Case 21 and 22:
This case is similar to Cases 19 and 20, but one difference is that this case
assumes the Endpoint Manager goes down after the Endpoint login
succeeded. After the Endpoint login succeeded, we performed a shutdown of
the Endpoint Manager machine. Then we issued the upcall/downcall. We
used our sample programs to issue the upcall/downcall as well. We introduce
the behavior of the TMA in this situation in the next figure.

Table 32. Case 21 and 22: EP Manager is Unavailable after Login Completion

The next figure shows the TMA behavior when we invoked the upcall
program.

Case 21 and 22

Scenario After the Endpoint login succeeds, we perform a shutdown of the
Endpoint Manager. Then we issue the upcall/downcall.

Option lcfd -g grizzly+9494
-D bcast_disable=1

EP Policy None

Result Issuing the upcall: The upcall was invoked without problem.

Issuing the downcall: When the downcall is issued, the EP gateway
needs the TMR server for ALI information, so the downcall couldn’t be
invoked in this case. The downcall failed.

bash$ dsmain 1189622596.173.554+ hahahaha
Making downcall with hahahaha
DownSamp Exception: A communications failure occurred: IPC shutdown
Please refer to the TME 10 Framework Planning and Installation Guide, "TME Maint
enance and Troubleshooting" for details on diagnosing communication errors or co
ntact your Tivoli support provider.
176 All About Tivoli Management Agents

D
R
A
F
T

Figure 69. Issuing Upcall when EP Manager is Unavailable

1. Before the testing, the Endpoint (salmon) had logged in to the assigned
gateway (yi2250d) successfully. Then we performed a shutdown of the
Endpoint Manager (panda). In this situation, we invoked the upcall
program to issue the upcall to the assigned gateway (yi2250d).

2. In this case, the Endpoint gateway (yi2250d) performed ALI functions for
the Endpoint (salmon), so that the Endpoint gateway (yi2250d) returned
the result to the Endpoint (salmon) without making a call to the Endpoint
Manager (panda).

Case 22:
The next figure shows the downcall process flow in this case.

EP

EP Manager

EP Gateway EP Gateway

1
2

yi2250d grizzly

panda

Down

salmon

upcall Program
Anatomy of TMA Behavior 177

D
R
A
F
T

Figure 70. Issuing Downcall when EP Manager is Unavailable

1. As we mentioned in the previous case, when we invoked the downcall
program from the Endpoint gateway (yi2250d), the Endpoint gateway
(yi2250d) asked for Endpoint information (ALI) from the Endpoint Manager
(panda). In this situation, the Endpoint Manager (panda) was not
available, so the Endpoint gateway (yi2250d) couldn’t get any information
from the Endpoint gateway (panda). Therefore the downcall failed.

In this case, we invoked the downcall program from the CLI interface on the
Endpoint gateway machine. However, we couldn’t get any response, as is
indicated in the following:

This is a common message in the Tivoli world, especially in situations such as
an unavailable DNS server.

Down

EP

salmon

EP Manager

EP Gateway EP Gateway

1

yi2250d grizzly

panda

downcall
Program

bash$ dsmain 1189622596.173.554+ hahahaha
178 All About Tivoli Management Agents

D
R
A
F
T

5.4.3 Migration
In Chapter 4, “Configuring the TMA Environment” on page 105, we described
what migration is and how it works. In this section, we introduce the behavior
of the Endpoint Manager, Endpoint gateway and Endpoint while the Endpoint
gateway is migrating. We will also talk about the benefit or advantage of
migration in Chapter 9, “Management Examples Using TMA” on page 359.

5.4.3.1 Understanding Migration
As we mentioned, we are able to change the gateway assignment made at
the initial login using the wep command. This is called ’migration’. First of all,
we need to understand the function of the wep command in our environment
and introduce the behavior related to it.

Case 23:
In this case, we attempt to verify what happens when the assigned gateway
is migrating.

Table 33. Case 23: EP Gateway Migration

The following figure shows the processes performed by the wep command
during migration.

Case 23

Scenario Invoke the wep command to perform migration in the multiple EP
gateway Environments.

Option wep salmon migrate yi2250d

EP Policy None

Result The gateway assignment had been changed as we specified.
However, the Endpoint login interface information contained in the
lcf.dat file had not yet been modified at the migration.
Anatomy of TMA Behavior 179

D
R
A
F
T

Figure 71. The Endpoint Gateway Migration with the wep Command

1. To perform the migration, we invoked the wep salmon migrate yi2250d
command from the Endpoint Manager (panda). Then the Endpoint
Manager attempted to modify its Endpoint list. As a result, the database
file located under the $DBDIR/epmgr.bdb directory was updated.

2. The Endpoint Manager issued the delete_endpoint method using the
downcall to delete the entry of the migrated Endpoint from the cache in the
formerly assigned gateway.

3. The formerly assigned gateway deleted the entry of the Endpoint from its
cache.

4. The Endpoint Manager issued the new_endpoint method using the downcall
to add the entry of the migrated Endpoint into the new assigned
gateway’s cache as well.

5. The new assigned gateway adds the entry of the Endpoint into the cache.

When you perform the Endpoint gateway migration using the wep command,
the following messages appear in the epmgrlog file:

EP

salmon

lcf.dat

kodiak

EP Manager

EP Gateway EP Gateway

1

2

kodiak

panda

yi2250d

wep salmon migrate yi2250d

3

4

5salmon

EP List

salmon

EP List

Migration
180 All About Tivoli Management Agents

D
R
A
F
T

5.4.3.2 Understanding Migration Completion
As you can see from Figure 71 on page 180, there was no communication
between the Endpoint gateways and the Endpoint. The Endpoint still had the
previous gateway assignment information when the wep command
completed. How can the Endpoint recognize the new assigned gateway? In
the previous chapter, we described the answer. There are three ways the
Endpoint understands what happens and obtains the new gateway
assignment information. These ways are called migration completion.

 • Completion by the migratory login

 • Completion by the migratory upcall

 • Completion by the migratory downcall

In this section, we describe the migration completion of each case.

Case 24:
In this case, we attempted to perform the migration completion by the
migratory login.

Table 34. Case 24: Migration Completion by EP Login

The following figure shows the detailed processes.

Case 24

Scenario After the migration, to complete the migration by the login, restart the
lcfd for performing the Endpoint login.

Option lcfd -g kodiak+9494
-D bcast_disable=1

EP Policy None

Result The Endpoint attempted to perform the normal login to the formerly
assigned gateway, then the Endpoint recognized the migration
occurred. After that, the Endpoint logged in to the new assigned
gateway.

1998/11/25 17:53:29 +06: get_endpoints: Requesting search for 1189622596.178.508+#TMF_Endpoint::Endpoint#
1998/11/25 17:53:30 +06: migrate 1189622596.178.508+#TMF_Endpoint::Endpoint# -->
1189622596.77.14#TMF_Gateway::Gateway#
1998/11/25 17:53:30 +06: - salmon 1189622596.178.508+#TMF_Endpoint::Endpoint#
1189622596.2.19#TMF_Gateway::Gateway#
1998/11/25 17:53:30 +06: + salmon 1189622596.178.508+#TMF_Endpoint::Endpoint#
1189622596.77.14#TMF_Gateway::Gateway#
1998/11/25 17:53:30 +06: writing epmgr.bdb/1189622596.77.14.bdb for 178
1998/11/25 17:53:30 +06: updating ali map
Anatomy of TMA Behavior 181

D
R
A
F
T

Figure 72. Migration Completion by EP Login

1. We performed the migration with the wep salmon migrate yi2250d
command.

2. Since the Endpoint still kept the previous gateway assignment
information, the Endpoint attempted to perform the normal login to the
formerly assigned gateway (kodiak).

3. The formerly assigned gateway (kodiak) received the login request from
the Endpoint (salmon), but the formerly assigned gateway (kodiak) no
longer manages the Endpoint (salmon), so the Endpoint gateway (kodiak)
obtains the new gateway assignment from the Endpoint Manager
(panda).

4. The new gateway assignment information was returned to the formerly
assigned gateway (kodiak). In this case, of course, the Endpoint gateway
selection process didn’t occur.

5. The formerly assigned gateway (kodiak) forwarded the new assignment
information to the Endpoint (salmon).

6. Then the Endpoint (salmon) recognized the assigned gateway was
changed by the migration and obtained the new assignment information.

EP

EP Manager

EP Gateway EP Gateway

1

2

kodiak

panda

salmon

3
4

5

kodiak

salmon

EP ListEP List

Migration

lcf.dat

yi2250d

yi2250d

6

7

182 All About Tivoli Management Agents

D
R
A
F
T

The Endpoint (salmon) attempted to perform the login to the new assigned
gateway (yi2250d).

7. After the Endpoint login completed, the Endpoint (salmon) modified its
assigned gateway information stored in the lcf.dat file.

In this case, the formerly assigned gateway recognized the migration had
occurred when the formerly assigned gateway received the login request
from the Endpoint. Therefore, the following message appears in the gatelog
file on the formerly-assigned gateway when the formerly assigned gateway
receives the login request from the Endpoint.

The lcfd daemon also writes the following messages to the lcfd.log file when
the new assignment information is returned from the formerly assigned
gateway and attempts to log in to the new assigned gateway.

As you can see, the Endpoint understood the migration had occurred at the
line: endpoint migrated to gateway at 9.3.1.149+9494.

1998/11/25 18:01:48 +06: eplogin (180): forwarding migration login(3)to epmgr

Nov 25 18:09:49 1 lcfd Trying last known gateway ...
Nov 25 18:09:49 Q lcfd login_to_gw
Nov 25 18:09:49 Q lcfd login_gw -> 9.3.1.133+9494
Nov 25 18:09:49 2 lcfd Connecting to ’9.3.1.133+9494’
Nov 25 18:09:49 Q lcfd net_send of 658 bytes, session 180
Nov 25 18:09:49 Q lcfd net_accept, handle=0x306328
Nov 25 18:09:53 Q lcfd New connection from 9.3.1.133+2760
Nov 25 18:09:53 Q lcfd Entering net_recv, receive a message
Nov 25 18:09:53 Q lcfd Leaving net_recv: bytes=674, (type=14 session=0)
Nov 25 18:09:53 Q lcfd recv: len=’674’ (code=’14’, session=’0’)
Nov 25 18:09:53 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\1\last.cfg
Nov 25 18:09:53 1 lcfd salmon is dispatcher 180 in region 1189622596
Nov 25 18:09:53 1 lcfd endpoint migrated to gateway at 9.3.1.149+9494
Nov 25 18:09:53 1 lcfd Trying last known gateway ...
Nov 25 18:09:53 Q lcfd login_to_gw
Nov 25 18:09:53 Q lcfd login_gw -> 9.3.1.149+9494
Nov 25 18:09:53 2 lcfd Connecting to ’9.3.1.149+9494’
Nov 25 18:09:53 Q lcfd net_send of 658 bytes, session 180
Nov 25 18:09:53 Q lcfd net_accept, handle=0x306328
Nov 25 18:09:53 Q lcfd New connection from 9.3.1.149+2988
Nov 25 18:09:53 Q lcfd Entering net_recv, receive a message
Nov 25 18:09:53 Q lcfd Leaving net_recv: bytes=674, (type=14 session=180)
Nov 25 18:09:53 Q lcfd recv: len=’674’ (code=’14’, session=’180’)
Nov 25 18:09:53 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\1\last.cfg
Nov 25 18:09:53 1 lcfd salmon is dispatcher 180 in region 1189622596
Nov 25 18:09:53 1 lcfd write login file ’lcf.dat’ complete
Nov 25 18:09:53 1 lcfd final pid: 105
Nov 25 18:09:53 1 lcfd Login to gateway 9.3.1.149+9494 complete.
Anatomy of TMA Behavior 183

D
R
A
F
T

Case 25:
In this case, we attempted to perform the migration completion by the
migratory upcall.

Table 35. Case 25: Migration Completion by Upcall

The following figure shows the detailed processes.

Figure 73. Migration Completion by Upcall

Case 25

Scenario After the migration, to complete the migration by the upcall, execute
the upcall program on the Endpoint and the Endpoint issues the upcall
to the formerly assigned gateway.

Option lcfd -g kodiak+9494
-D bcast_disable=1

EP Policy None

Result The Endpoint issued the upcall to the formerly assigned gateway, then
the Endpoint recognized the migration occurred. After that, the
Endpoint logged in to the new assigned gateway and issued the upcall
again to the new assigned gateway.

EP

EP Manager

EP Gateway EP Gateway

1

2

kodiak

panda

salmon

upcall Program

3

4 5

kodiak

salmon

EP ListEP List

Migration

lcf.dat

yi2250d

yi2250d

6 7
8

9

10
184 All About Tivoli Management Agents

D
R
A
F
T

1. We performed the migration with the wep salmon migrate yi2250d
command.

2. In this situation, we invoked the upcall program to issue the upcall to the
Endpoint gateway.

3. Since the Endpoint (salmon) still kept the previous gateway assignment
information, the Endpoint attempted to issue the upcall to the formerly
assigned gateway (kodiak).

4. The Endpoint gateway (kodiak) which received the upcall no longer
managed the Endpoint (salmon), so that the formerly assigned gateway
(kodiak) attempted to obtain the new gateway assignment from the
Endpoint Manager (panda).

5. The new gateway assignment information returned to the formerly
assigned gateway (kodiak). In this case, of course, the Endpoint gateway
selection process didn’t occur.

6. The formerly assigned gateway (kodiak) forwarded the new assignment
information to the Endpoint (salmon).

7. Then the Endpoint (salmon) recognized the assigned gateway was
changed by the migration and obtained the new assignment information.
The Endpoint (salmon) attempted to perform the login to the new assigned
gateway (yi2250d).

8. The Endpoint (salmon) also sent the upcall request to the new assigned
gateway (yi2250d).

9. After the Endpoint login completed, the Endpoint (salmon) modified its
assigned gateway information stored in the lcf.dat file.

10.Then the Endpoint (salmon) received the result of the upcall from the new
assigned gateway (yi2250d).

In this case, the following message appears in the gatelog file on the formerly
assigned gateway when the formerly assigned gateway receives the upcall
from the Endpoint.

1998/11/25 17:52:15 +06: servicing migratory upcall for 178
Anatomy of TMA Behavior 185

D
R
A
F
T

Case 26:
In this case, we attempted to perform the migration completion by the
migratory downcall.

Table 36. Case 26: Migration Completion by Downcall

The following figure shows the detailed processes.

Figure 74. Migration Completion by Downcall

Case 26

Scenario After the migration, to complete the migration by the downcall, perform
the downcall operation from the EP Manager and the downcall is
issued from the new assigned gateway to the Endpoint.

Option lcfd -g kodiak+9494
-D dcast_disable=1

EP Policy None

Result The new assigned gateway issued the downcall to the Endpoint, then
the Endpoint recognized the migration occurred, so the Endpoint
modified its assigned gateway information and returned the result of
the downcall to the new assigned gateway.

EP

EP Manager

EP Gateway EP Gateway

1

2

kodiak

panda

salmon

wep salmon status

3

4

5
kodiak

salmon

EP ListEP List

Migration

lcf.dat

yi2250d

yi2250d

6

7

186 All About Tivoli Management Agents

D
R
A
F
T

1. We performed the migration with the wep salmon migrate yi2250d
command.

2. To issue the downcall, we invoked the wep salmon status command on the
Endpoint Manager (panda).

3. The remote invoke request was sent to the new assigned gateway
(yi2250d).

4. The new assigned gateway (yi2250d) issued the downcall to the Endpoint
(salmon).

5. Then the Endpoint (salmon) recognized the assigned gateway was
changed by the migration and modified its assigned gateway information
stored in the lcf.dat file.

6. The Endpoint returned the result of the downcall to the new assigned
gateway (yi2250d).

7. The new assigned gateway (yi2250d) also forwarded the result of the
downcall to the Endpoint Manager (panda).

When the Endpoint recognizes the assigned gateway is changed by
migration and modifies its assigned gateway information, the following
messages appear in the lcfd.log file.

5.4.3.3 Understanding Migration Completion by Isolation Login
We introduced how the migration processes are completed in the previous
sections. These cases assume the formerly assigned gateway is available,
but if the formerly assigned gateway is unreachable when the Endpoint is
migrating, what happens? In this case, the gateway assignment would
depend on the select_gateway_policy if it exists.

Case 27:
In this case, we performed the shutdown of the original assigned gateway,
then we invoked the wep salmon migrate yi2250d command to perform the
migration. At that time, the Endpoint was said to be isolated. We also defined
the select_gateway_policy which was inconsistent with the migration. The
Endpoint attempted to complete the migration by the isolation login. The most
important thing here is which has the priority between the migration or

Nov 25 18:05:40 1 lcfd recording new gateway address 9.3.1.149
Nov 25 18:05:40 1 lcfd write login file ’lcf.dat’ complete
Anatomy of TMA Behavior 187

D
R
A
F
T

select_gateway_policy. We describe the processes of this case in detail in the
next figure.

Table 37. Case 27: Migration Completion by Isolate Login

Figure 75 on page 189 shows the detailed processes.

Case 27

Scenario Shutdown the original assigned gateway before the migration and
define the select_gateway_policy, which returns a different EP
gateway from the new assigned gateway. To complete the migration,
the Endpoint attempts to perform the isolate login.

Option lcfd -g kodiak+9494
-D dcast_disable=1

EP Policy select_gateway_policy (trout)

Result Since the formerly assigned gateway was unreachable, the Endpoint
attempted to perform the isolate login to the alternate gateway. During
the login process, the EP gateway selection occurred by the
select_gateway_policy. As a result, the gateway assignment made at
the migration was changed again by the select_gateway_policy.
Finally, the Endpoint logged in to the EP gateway which was selected
by the select_gateway_policy.
188 All About Tivoli Management Agents

D
R
A
F
T

Figure 75. Migration Completion by Isolate Login

1. We performed the migration with the wep salmon migrate yi2250d
command. At this time, the formerly assigned gateway (kodiak) was
unavailable.

2. The Endpoint (salmon) attempted to perform the normal login to the
Endpoint gateway (kodiak), however, the Endpoint gateway (kodiak) was
not available. The Endpoint (salmon) tried to perform the login until the
timeout occurred. In this situation, the Endpoint (salmon) was considered
isolated.

3. Then the Endpoint (salmon) attempted to perform the login to the alternate
gateway (trout).

4. The alternate gateway forwarded the login request to the Endpoint
Manager (panda).

5. The Endpoint Manager (panda) received the login request and referred to
the select_gateway_policy. The select_gateway_policy returned the new
assigned gateway (trout) information.

6. The new assigned gateway (trout) which the select_gateway_policy
returned was different from the assigned gateway (yi2250d) made at the

EP

EP Manager

EP Gateway EP Gateway1

2
3

4

yi2250dkodiak

panda

salmon

EP Gateway

trout

5

6
7

Down

Migration

lcf.dat
1. kodiak
2. trout

8

select_gateway_policy trout
Return

1. trout

EP List

salmon

EP List

salmon

EP List

9

10
Anatomy of TMA Behavior 189

D
R
A
F
T

migration. As a result, the Endpoint Manager (panda) assigned the
Endpoint (salmon) to the Endpoint gateway (trout) selected by the policy.
The Endpoint Manager (panda) modified its Endpoint list and also updated
the cache on the assigned gateway (yi2250) made at the migration.

7. The Endpoint Manager (panda) returned the gateway assignment
information to the Endpoint gateway (trout).

8. The Endpoint gateway (trout) updated its cache and relayed the
assignment information.

9. Finally, the Endpoint (salmon) logged in to the gateway (trout) assigned
by the select_gateway_policy.

10.The Endpoint (salmon) modified its assigned gateway information stored
in the lcf.dat file.

In this case, the gateway assignment was changed twice, so the following
messages appeared in the epmgrlog file:

As you can see, in this case, the Endpoint didn’t recognize the migration
occurred. For the Endpoint, this case was the same as the isolated login. The
assigned gateway also didn’t recognize that the migration occurred in this

When you perform the migration from Endpoint gateway A to Endpoint g
gatewayateway B, if Endpoint gateway A is not available, what happens?
You can migrate even if the source gateway is unavailable. When Endpoint
gateway A boots, the Endpoint gateway attempts to synchronize its cache
(gwdb.bdb file) and then the Endpoint gateway recognizes the migration
has been performed.

Note

1998/11/25 18:33:11 +06: get_endpoints: Requesting search for 1189622596.184.508+#TMF_Endpoint::Endpoint#
1998/11/25 18:33:11 +06: migrate 1189622596.184.508+#TMF_Endpoint::Endpoint# -->
1189622596.77.14#TMF_Gateway::Gateway#
1998/11/25 18:33:11 +06: - salmon 1189622596.184.508+#TMF_Endpoint::Endpoint# 1189622596.2.19
1998/11/25 18:33:11 +06: + salmon 1189622596.184.508+#TMF_Endpoint::Endpoint#
1189622596.77.14#TMF_Gateway::Gateway#
1998/11/25 18:33:11 +06: writing epmgr.bdb/1189622596.77.14.bdb for 184
1998/11/25 18:33:12 +06: updating ali map
1998/11/25 18:33:14 +06: iom query 1189622596.4.21
1998/11/25 18:33:14 +06: iom query 1189622596.2.19
1998/11/25 18:33:14 +06: iom query 1189622596.109.19
1998/11/25 18:33:14 +06: iom query 1189622596.77.14
1998/11/25 18:33:43 +06: dispatcher 184 logging in with code 2
1998/11/25 18:33:46 +06: gw::new_endpoint(1189622596.2.19) :
1998/11/25 18:33:46 +06: 1189622596.184.508+ assigned to 1189622596.109.19
1998/11/25 18:33:46 +06: - salmon 1189622596.184.508+#TMF_Endpoint::Endpoint#
1189622596.77.14#TMF_Gateway::Gateway#
1998/11/25 18:33:46 +06: + salmon 1189622596.184.508+#TMF_Endpoint::Endpoint# 1189622596.109.19
1998/11/25 18:33:46 +06: writing epmgr.bdb/1189622596.109.19.bdb for 184
1998/11/25 18:33:47 +06: updating ali map
190 All About Tivoli Management Agents

D
R
A
F
T

case, so the following messages appeared in the gatelog file on the formally
assigned gateway when it received the login request from the Endpoint.

5.5 TMA 3.2 and TMA 3.6

Version 3.2 of Tivoli supported the LCF architecture for the first time and
implemented the lcfd daemon as part of the Tivoli Management Framework
services. Now, Version 3.6 of Tivoli is available, so different versions of the
TMA (lcfd) might exist in a single TMR environment. Since the TMA has an
auto upgrade feature, there is nothing to be concerned about. In this section,
we introduce the auto upgrade of the TMA (lcfd) and also verify the auto
upgrade process.

5.5.1 What is Auto Upgrade?
For most of customers, version upgrade issues are a serious problem,
especially in a large environment. This isn’t a problem for the TMA and the
Tivoli Management Applications running on the TMA.

The Endpoint gateways have an upgrade package for upgrading the
Endpoint software under the $BINDIR/../lcf_bundle directory. If the Endpoint
that attempts to log in to the Endpoint gateway is a lower version of the lcfd,
the Endpoint gateway performs an upgrade of the Endpoint software using
the upgrade package the Endpoint gateway stores. This is the auto upgrade
of the TMA.

The auto upgrade is a very clever implementation in the LCF architecture.
The following is an overview of the auto upgrade process.

1. The lcfd attempts to perform the login to the appropriate Endpoint
gateway.

1998/11/25 18:41:32 +06: eplogin (0): forwarding isolation login(2)to epmgr

In this case, we defined the select_gateway_policy, but if the Endpoint
policy didn’t exist, what happens? Of course, the Endpoint would log in to
the newly assigned gateway (yi2250d) and the alternate gateway (trout)
will be the intercepting gateway.

Note
Anatomy of TMA Behavior 191

D
R
A
F
T

2. The Endpoint gateway accepts the login request from the Endpoint and
processes it. The Endpoint gateway also checks the version of the
Endpoint during the login process.

3. If the Endpoint gateway detects a lower version of the Endpoint, the
Endpoint gateway invokes the wadminep command to perform the upgrade
of the Endpoint (lcfd) automatically.

5.5.2 Auto Upgrade of TMA
To enable the auto upgrade the TMA, we need to perform a few simple
configuration steps. In this section we introduce how to enable auto upgrade.

5.5.2.1 How to Enable an Auto Upgrade
We already talked about the Endpoint policy in Chapter 4, “Configuring the
TMA Environment” on page 105. The auto upgrade uses the Endpoint
login_policy executed in the Endpoint gateway at every Endpoint login. The
following two steps enable auto upgrade:

1. Define login_policy, including the upgrade.sh script.

2. Change mode in the upgrade.cntl file from disabled to auto.

Defining Endpoint login_policy:
First, you have to define the Endpoint login_policy including the auto upgrade
logic (upgrade.sh) to enable the auto upgrade (refer to the sample login_policy
shown in The Framework Reference Manual). Put the following line into the
login_policy:

$BINDIR/../lcf_bundle/upgrade/upgrade.sh $1 $8 $3

As we mentioned before, the Endpoint login_policy is invoked on the
Endpoint gateway every time the Endpoint attempts to perform the login to
the gateway even if it is a normal login. After editing the login_policy for
putting the upgrade.sh into the policy, the auto upgrade process should be
invoked every time the Endpoint logs in. As a result, the upgrade.sh would
check the upgrade_mode defined in the upgrade.cntl file, then, if it is configured
as auto mode, the upgrade.sh will upgrade the Endpoint software if the
available version in the EPUPG.INF file is greater than the current version of
the Endpoint.
192 All About Tivoli Management Agents

D
R
A
F
T

Changing Mode of Auto Upgrade Control File:
The Endpoint gateways have a control file for enabling the auto upgrade and
the control file is located at:

/usr/local/Tivoli/bin/lcf_bundle/upgrade/upgrade.cntl

The upgrade.cntl file is a quick way to turn on or off the auto upgrade
function. To enable the auto upgrade function, edit the upgrade.cntl file as
follows. By default, upgrade_mode is disabled.

The upgrade.sh greps the upgrade.cntl file for the word auto and exits if it is
not found. After editing it, the Endpoint gateway performs the auto upgrade

The upgrade.sh script uses the EPUPG.INF file located under the
$BINDIR/../lcf_bundle/bin/<interps>/upgrade directory to decide whether
the available version is greater than the current version of the Endpoint or
not. The following are the contents of the EPUPG.INF file (for Windows NT)
and the version information of this file is used for auto upgrade.

file(bin)=lcfd.exe
file(bin)=lcfep.exe
file(lib)=libmrt.dll
file(lib)=libcpl.dll
file(lib)=libdes.dll
file(lib)=libccms_lcf.dll
file(endpoint->bin)=wlcftap.exe
file(endpoint->bin)=ntconfig.exe
file(endpoint->bin)=libacct.dll
file(endpoint->system)=TivoliAP.dll
file(endpoint->bin)=MSVCRT40.DLL
file(dat)=lcf_env.sh
file(dat)=lcf_env.cmd
file(inf)=EPUPG.INF
current_version=5
previous_version=2.1

Note

AUTO UPGRADE CONTROL FILE
To enable auto upgrade for this gateway, set the mode to ’auto’.
#
#HOW DOES IT WORK?
#The login_policy.sh script is executed each time an endpoint
#logs into the Gateway
#This script executes the upgrade.sh script which
#checks the current version of the endpoint against the available
#version in the lcf_bundle. If upgrade is needed, the upgrade.sh
#script
#executes wadminep in upgrade mode.
#
upgrade_mode=auto
Anatomy of TMA Behavior 193

D
R
A
F
T

process if it is a lower version during the Endpoint initial login process. The
following figure (Figure 76 on page 194) shows the flow of these processes.

Figure 76. The Process Flow of the Auto Upgrade Function

This is a very useful function. We can define only one login_policy in a single
TMR. This means we cannot control the auto upgrade function for each
Endpoint gateway using the login_policy. However, the upgrade.cntl file
allows us to control turning on or off the auto upgrade for each Endpoint
gateway.

login_policy

upgrade.sh

upgrade_mode

EP Version

wadminep

Auto

Disabled

Lower

Higher

Exit

Other Process

Other Process
Auto Upgrade Process
194 All About Tivoli Management Agents

D
R
A
F
T

5.5.2.2 Using Auto Upgrade of TMA
When you configure the auto upgrade and the auto upgrade function
achieves the upgrading process of the TMA, the following messages would
be written in the lcfd.log file. In this case, we performed the upgrade of the
TMA from Version 2.1 to Version 5.

Dec 18 16:57:36 1 lcfd Spawning:
C:\Tivoli\lcf\dat\12181657.228\cache\bin\w32-ix86\endpoint\admin.exe, ses: 04758f29
Dec 18 16:57:36 1 admin Mode = view_interpreter
Dec 18 16:57:38 1 lcfd Spawning:
C:\Tivoli\lcf\dat\12181657.228\cache\bin\w32-ix86\endpoint\admin.exe, ses: 04758f2a
Dec 18 16:57:39 1 admin_rpt extract_header, key = 5
Dec 18 16:57:39 1 admin_rpt extract_header, key = 2.1
Dec 18 16:57:39 1 admin_rpt extract_header, key = lcfd.exe
Dec 18 16:57:39 1 admin_rpt extract_header, key = 2
Dec 18 16:57:39 1 admin_rpt extract_header, key = 90112
Dec 18 16:57:39 1 admin_rpt extract_header, key = lcfep.exe
Dec 18 16:57:39 1 admin_rpt extract_header, key = 2
Dec 18 16:57:39 1 admin_rpt extract_header, key = 108544
Dec 18 16:57:39 1 admin_rpt extract_header, key = libmrt.dll
Dec 18 16:57:39 1 admin_rpt extract_header, key = 1
Dec 18 16:57:39 1 admin_rpt extract_header, key = 210432
Dec 18 16:57:39 1 admin_rpt extract_header, key = libcpl.dll
Dec 18 16:57:39 1 admin_rpt extract_header, key = 1
Dec 18 16:57:39 1 admin_rpt extract_header, key = 15872
Dec 18 16:57:39 1 admin_rpt extract_header, key = libdes.dll
Dec 18 16:57:39 1 admin_rpt extract_header, key = 1
Dec 18 16:57:39 1 admin_rpt extract_header, key = 17920
Dec 18 16:57:39 1 admin_rpt extract_header, key = libccms_lcf.dll
Dec 18 16:57:39 1 admin_rpt extract_header, key = 1
Dec 18 16:57:39 1 admin_rpt extract_header, key = 46592
Dec 18 16:57:39 1 admin_rpt extract_header, key = wlcftap.exe
Dec 18 16:57:39 1 admin_rpt extract_header, key = 0
Dec 18 16:57:39 1 admin_rpt extract_header, key = 29696
Dec 18 16:57:39 1 admin_rpt extract_header, key = ntconfig.exe
Dec 18 16:57:39 1 admin_rpt extract_header, key = 0
Dec 18 16:57:39 1 admin_rpt extract_header, key = 5632
Dec 18 16:57:39 1 admin_rpt extract_header, key = libacct.dll

If you don’t configure anything for auto upgrade, nothing will happen.
Therefore, you have to configure for auto upgrade using the preceding
method if you would like to use this feature. However, we don’t recommend
that you enable the auto upgrade unless you know that an upgrade is
available, because the auto upgrade may affect the performance of the
Endpoint login, especially in very large environment. The upgrade.sh uses
the awk or grep commands, so the impact on the system performance may
be significant. If a hundred Endpoints attempt to perform the login and the
upgrade.sh script runs for each Endpoint, what will happen? The
login_policy will be executed for every Endpoint login. We will talk about
this in more detail in Chapter 10, “Tivoli Management Agent Performance
Conisderations” on page 385.

Note
Anatomy of TMA Behavior 195

D
R
A
F
T

Dec 18 16:57:39 1 admin_rpt extract_header, key = 0
Dec 18 16:57:39 1 admin_rpt extract_header, key = 34816
Dec 18 16:57:39 1 admin_rpt extract_header, key = TivoliAP.dll
Dec 18 16:57:39 1 admin_rpt extract_header, key = 0
Dec 18 16:57:39 1 admin_rpt extract_header, key = 32256
Dec 18 16:57:39 1 admin_rpt extract_header, key = MSVCRT40.DLL
Dec 18 16:57:39 1 admin_rpt extract_header, key = 0
Dec 18 16:57:39 1 admin_rpt extract_header, key = 312832
Dec 18 16:57:39 1 admin_rpt extract_header, key = lcf_env.sh
Dec 18 16:57:39 1 admin_rpt extract_header, key = 0
Dec 18 16:57:39 1 admin_rpt extract_header, key = 1690
Dec 18 16:57:39 1 admin_rpt extract_header, key = lcf_env.cmd
Dec 18 16:57:39 1 admin_rpt extract_header, key = 0
Dec 18 16:57:39 1 admin_rpt extract_header, key = 667
Dec 18 16:57:39 1 admin_rpt extract_header, key = EPUPG.INF
Dec 18 16:57:39 1 admin_rpt extract_header, key = 0
Dec 18 16:57:39 1 admin_rpt extract_header, key = 396
Dec 18 16:57:39 1 admin_rpt extract_header, version = 5, prev_version = 2.1
Dec 18 16:57:39 1 admin_rpt System directory has been determined as ’C:\WINNT’
Dec 18 16:57:41 1 admin_rpt file = C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\lcfd.exe,
type = 2, size = 90112
Dec 18 16:57:42 1 admin_rpt file = C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\lcfep.exe,
type = 2, size = 108544
Dec 18 16:57:45 1 admin_rpt file = C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\libmrt.dll,
type = 1, size = 210432
Dec 18 16:57:47 1 admin_rpt file = C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\libcpl.dll,
type = 1, size = 15872
Dec 18 16:57:47 1 admin_rpt file = C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\libdes.dll,
type = 1, size = 17920
Dec 18 16:57:48 1 admin_rpt file =
C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\libccms_lcf.dll, type = 1, size = 46592
Dec 18 16:57:48 1 admin_rpt file =
C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\wlcftap.exe, type = 0, size = 29696
Dec 18 16:57:50 1 admin_rpt file =
C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\ntconfig.exe, type = 0, size = 5632
Dec 18 16:57:50 1 admin_rpt file =
C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\libacct.dll, type = 0, size = 34816
Dec 18 16:57:51 1 admin_rpt file =
C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\TivoliAP.dll, type = 0, size = 32256
Dec 18 16:57:51 1 admin_rpt file =
C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\MSVCRT40.DLL, type = 0, size = 312832
Dec 18 16:57:56 1 admin_rpt file = C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\lcf_env.sh,
type = 0, size = 1690
Dec 18 16:57:56 1 admin_rpt file =
C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\lcf_env.cmd, type = 0, size = 667
Dec 18 16:57:56 1 admin_rpt file = C:\Tivoli\lcf\bin\w32-ix86\mrt\upgrade\EPUPG.INF,
type = 0, size = 396
Dec 18 16:57:56 1 admin_rpt Removing service = lcfd
Dec 18 16:57:56 1 admin_rpt shutdown_lcfd, process =
C:\Tivoli\lcf\bin\w32-ix86\mrt\lcfd.exe
Dec 18 16:58:06 1 admin_rpt Starting service
Dec 18 16:58:06 1 admin_rpt startup_lcfd, process =
C:\Tivoli\lcf\bin\w32-ix86\mrt\lcfd.exe

5.6 Co-Existing Endpoints and EP Gateways on the Same Node

Sometimes, we may need to configure an Endpoint and Endpoint gateway on
a single machine. The Endpoint and Endpoint gateway can work together on
196 All About Tivoli Management Agents

D
R
A
F
T

a single machine. However, in this case, there are some considerations for
implemention.

By default, the port number that the Endpoint gateway uses and the Endpoint
uses is the same, port 9494. If the Endpoint gateway and Endpoint attempt
to use the same port on a single machine, only the first process is available
and the second will be unavailable because of a port busy error.

Normally, on the UNIX platform, the lcfd daemon starts first, so that the
Endpoint gateway process (gateway) becomes unavailable. Then the
following message appears in the gatelog file:

net_create_remote_server: port 9494 is already in use. Waiting...
gateway boot FAILED: Can’t bind to 0.0.0.0+9494: address is already in use.

If the lcfd daemon cannot open the port 9494, the lcfd daemon writes the
login failure message into the lcfd.log file.

To avoid this situation, you need to configure a different port number for the
Endpoint gateway and the Endpoint which are running on the same machine.
If you change the default port number of the Endpoint gateway, this will affect
all Endpoints which have already logged into the Endpoint gateway.
Therefore, we strongly recommend that you change the port number of the
Endpoint. To change the port number of the Endpoint, you can use the
following methods:

 • The setup.iss file at the Endpoint installation.

 • The last.cfg file.

 • The lcfd daemon option (-P or -D lcfd_port)

5.7 Problem Determination

In this chapter, we have introduced various aspects of Endpoint behavior. To
implement the TMA in a real environment, it is very important to understand
the TMA behavior. However, sometimes you may have a problem which you
have never seen. This section provides an overview of TMA problem
determination and debugging information for resolving problems.

With newer versions of the Tivoli Management Framework (Version 3.6.1),
the port number 9495 is the default port number for the Endpoint. This
means that an Endpoint can be configured on an Endpoint gateway
machine without a conflict.

Note
Anatomy of TMA Behavior 197

D
R
A
F
T

5.7.1 Generic Problem Determination
If an Endpoint could not log into any Endpoint gateways, the points to check
are:

 • Did you create the Endpoint gateway?

 • Is the Endpoint gateway up and reachable?

 • Is it listening on the port expected by the lcfd daemon?

Use the wgateway command to confirm whether the Endpoint gateway is
reachable and which port it is listening on.

To see detailed information, use the gw_label command as follows:

Use the following command to start the Endpoint gateway:

wgateway kodiak-gateway start

If you cannot detect any problem through the above operations, you should
check the log files regarding the TMA. The next part of this section introduces
the log files for TMA problem determination.

5.7.2 Debugging Information
In this section, we classify the debugging information provided by the
Endpoint Manager, Endpoint gateway and Endpoint for making problem
determination easier. This information also helps us to decide which debug
(log) level is the best for normal operation, or tells us what kind of debug
information we can get from the log files, and so on.

C:\>wgateway
Object Name Status
1189622596.4.21 grizzly-gateway u
1189622596.2.19 kodiak-gateway d
1189622596.195.21 yi2250d-gateway u
C:\>

C:\>wgateway kodiak-gateway
Object : 1189622596.2.19#TMF_Gateway::Gateway#
Hostname : kodiak
Port : 9494
Timeout : 300
Debug level : 9
C:\>
198 All About Tivoli Management Agents

D
R
A
F
T

5.7.2.1 Log File Location
In the TMA environment, each of the components, the Endpoint Manager,
Endpoint gateway and Endpoint, have a log file shown in Figure 77 on page
199. These log files help us to trace TMA behavior.

Figure 77. The Location of the TMA Log Files

5.7.2.2 epmgrlog File
The epmgrlog file is located in the $DBDIR/epmgrlog (or
%DBDIR%\epmgrlog for NT) directory of the Endpoint Manager machine.
This log file contains information related to Endpoint Manager behavior, so
you can check what sort of processes have taken place on the Endpoint
Manager. In Version 3.6 of the Tivoli Management Framework, the debug
level of the epmgrlog file is fixed, so we are not able to change the debug
level. The following sample shows the messages logged in the epmgrlog file
when the Endpoint performs the initial login.

EP Gateway
gatelog

EP Manager
epm grlog

wgateway gw_nam e set_debug_level

EP

lcfd .log

lcfd -d

1998/11/23 15:14:28 +06: 1189622596.126.508+#TMF_Endpoint::Endpoint# assigned to
1189622596.2.19#TMF_Gateway::Gateway#
1998/11/23 15:14:29 +06: + salmon 1189622596.126.508+#TMF_Endpoint::Endpoint#
1189622596.2.19#TMF_Gateway::Gateway#
1998/11/23 15:14:29 +06: writing epmgr.bdb/1189622596.2.19.bdb for 126
1998/11/23 15:14:30 +06: updating ali map
1998/11/23 15:14:33 +06: update 1189622596.126.508+#TMF_Endpoint::Endpoint#
1998/11/23 15:14:33 +06: rewriting epmgr.bdb/1189622596.2.19.bdb for 126
Anatomy of TMA Behavior 199

D
R
A
F
T

Normally, most of the Endpoint troubles occur at the Endpoint login. For
example, the Endpoint cannot log into any Endpoint gateway. The messages
in the epmgrlog file are logged after the Endpoint gateway receives the
Endpoint login request, so we may not see useful information in the epmgrlog
file if the problem exists between the Endpoint and the gateway.

5.7.2.3 gatelog File
The gatelog file is located in the $DBDIR/gatelog (or %DBDIR%\gatelog for
NT) directory of the Endpoint gateway machine. This log file contains the
information related to Endpoint gateway behavior and we can change the
debug level from 0 to 9 using the wgateway command. The following are
contents for each debug level of the gatelog file.

Table 38. The Contents of the gatelog File

If you attempt to check the log (gatelog) file of the Endpoint gateway, the
Endpoint gateway should be configured at debug level 9 because the
information provided by the default debug level (=0) is not enough to detect
problems. Use the following command to do this.

wgateway kodiak-gateway set_debug_level 9

Debug Level Description

0 Only errors and likely errors are logged. This is the default
and recommended debug level.

1 Things that are exceptional, that may or may not be errors
are logged (warnings).

2 Things that are exceptional, but we aren’t concerned about
them at this time.

3 Verbose communication information, since that's where
most errors are likely to be diagnosed.

4 This debug level doesn’t exist.

5 Verbose boot, database check of the gateway, and Endpoint
login information.

6 Verbose upcall, downcall, and repeater information.

7 Verbose job scheduler information.

8 Verbose gateway cache information.

9 Things that only a gateway developer would want to see.
200 All About Tivoli Management Agents

D
R
A
F
T

This takes effect immediately without restarting the Endpoint gateway. You
can check the gatelog file ($DBDIR/gatelog) to see what sort of processes
have taken place on the Endpoint gateway. The Endpoint initial login
sequence is logged in the gatelog file as follows.

5.7.2.4 lcfd.log File
The lcfd.log file is normally located in the following directory on the Endpoint:

NT C:\Tivoli\lcf\dat\1

UNIX /opt/Tivoli/lcf/dat/1

The contents of the lcfd.log file can be changed by specifying the message
level using the -d or -D log_threshold option with the lcfd daemon. The
following table shows the five levels of messages generated by Endpoints.

Table 39. The Message Contents of the lcfd.log File

Message Level Message Content

0 No message logging.

1998/11/23 15:12:04 +06: sched: got a job
1998/11/23 15:12:04 +06: process_node_login: Endpoint is speaking ECP protocol version 2
1998/11/23 15:12:04 +06: processing login request from 9.3.1.193+1140
(salmon,w32-ix86,G0WCGGLYS6S28XKJ3XKR0000059F,reg=0,od=0)
1998/11/23 15:12:04 +06: eplogin (0): forwarding initial login to epmgr
1998/11/23 15:12:13 +06: login succeeded for 9.3.1.193+1140
(salmon,w32-ix86,G0WCGGLYS6S28XKJ3XKR0000059F,reg=1189622596,od=126)
1998/11/23 15:12:14 +06: reconnect_thread: connection from 9.3.1.193+1141
1998/11/23 15:12:14 +06: tcp server: waiting for connection on 0.0.0.0+9494...
1998/11/23 15:12:14 +06: reader_thread: received data: session=7e, type=13, len=722
1998/11/23 15:12:14 +06: sched: got a job
1998/11/23 15:12:14 +06: process_node_login: Endpoint is speaking ECP protocol version 2
1998/11/23 15:12:14 +06: processing login request from 9.3.1.193+1141
(salmon,w32-ix86,G0WCGGLYS6S28XKJ3XKR0000059F,reg=1189622596,od=126)
1998/11/23 15:12:14 +06: we need to send codeset 1252
1998/11/23 15:12:14 +06: process_node_login: epcache hit
1998/11/23 15:12:14 +06: process_node_login: Updating epcache with new encryption type.
1998/11/23 15:12:14 +06: process_node_login: Updating epcache with new ECP version.
1998/11/23 15:12:14 +06: login succeeded for 9.3.1.193+1141
(salmon,w32-ix86,G0WCGGLYS6S28XKJ3XKR0000059F,reg=1189622596,od=126)
1998/11/23 15:12:14 +06: new_session: 1ea042ff, connecting to 9.3.1.193+9494...
1998/11/23 15:12:14 +06: destroying session 1ea042ff
1998/11/23 15:12:15 +06: gwcache: miss key=<1189622596.1.508,.meth.,write_html>
1998/11/23 15:12:15 +06: gwcache: hit key=<1189622596.1.508,.inh.,>
1998/11/23 15:12:15 +06: gwcache: miss key=<1189622596.1.510,.meth.,write_html>
1998/11/23 15:12:15 +06: gwcache: hit key=<1189622596.1.510,.inh.,>
1998/11/23 15:12:15 +06: gwcache: hit key=<1189622596.1.509,.meth.,write_html>
1998/11/23 15:12:15 +06: gwcache: hit key=<1189622596.1.516#Depends::Mgr#,.attr.,_info>
1998/11/23 15:12:15 +06: downcall: Method body /bin/w32-ix86/endpoint/msg_bind found.
1998/11/23 15:12:15 +06: downcall: dependency /msg_cat/C/GatewayCatalog.cat found.
1998/11/23 15:12:15 +06: downcall: dependency /msg_cat/fr_FR/GatewayCatalog.cat found.
1998/11/23 15:12:15 +06: downcall: dependency /msg_cat/ja_JP/GatewayCatalog.cat found.
1998/11/23 15:12:15 +06: downcall: dependency /msg_cat/pt_BR/GatewayCatalog.cat found.
1998/11/23 15:12:15 +06: idmap: user ($root_user,w32-ix86) -> Administrator
1998/11/23 15:12:15 +06: new_session: 1ea04300, connecting to 9.3.1.193+9494...
1998/11/23 15:12:16 +06: reader_thread: received data: session=1ea04300, type=5, len=60
1998/11/23 15:12:16 +06: destroying session 1ea04300
1998/11/23 15:12:16 +06: run_login_policy: Running login policy on endpoint salmon.
1998/11/23 15:12:19 +06: run_ep_boot_methods: nothing to do.
Anatomy of TMA Behavior 201

D
R
A
F
T

The log file (lcfd.log) of the Endpoint (lcfd daemon) is the most useful when
determining the problems regarding Endpoint behavior. We recommend that
you configure the log_threshold at level 2 to determine the problem because
log_threshold=3 or 4 provides too much detailed information. You can
configure the log_threshold option using the -d 2 option of the lcfd daemon
during the Endpoint installation, or by using the Endpoint Web interface.

In the Endpoint log file, you can check the address of the Endpoint gateway
with which the Endpoint is trying to communicate. The Endpoint initial login
sequence is logged in the lcfd.log file as follows (where log_threshold=2).

Performing browse mode ’view_file’ on endpoint ’salmon’
Nov 23 15:20:19 Q lcfd Entering CacheInit
Nov 23 15:20:19 1 lcfd CacheInit: Starting new index file:
C:\Tivoli\lcf\dat\1\cache\Index.v5
Nov 23 15:20:19 Q lcfd CacheSetPurgeMethod: CACHE_PURGE_OLDEST
Nov 23 15:20:19 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\1\last.cfg
Nov 23 15:20:19 1 lcfd lcfd 5 (w32-ix86)
Nov 23 15:20:19 1 lcfd Binary Dir (load_dir): ’C:\Tivoli\lcf\bin\w32-ix86\mrt’
Nov 23 15:20:19 1 lcfd Library Dir (lib_dir): ’C:\Tivoli\lcf\bin\w32-ix86\mrt’
Nov 23 15:20:19 1 lcfd Dat Dir (run_dir): ’C:\Tivoli\lcf\dat\1’
Nov 23 15:20:19 1 lcfd Cache Dir (cache_loc): ’C:\Tivoli\lcf\dat\1\cache’
Nov 23 15:20:19 1 lcfd Logging to (logfile): ’C:\Tivoli\lcf\dat\1\lcfd.log’ at level 2
Nov 23 15:20:19 1 lcfd Cache limit: ’20480000’
Nov 23 15:20:19 1 lcfd Cache size at initialization: ’0’
Nov 23 15:20:19 Q lcfd Entering lcf_run
Nov 23 15:20:19 1 lcfd ^Hmm... looks like you’re running NT 4.0 (build 1381). Don’t
create a console.
Nov 23 15:20:20 2 lcfd Successful bind to lcfd preferred port 9494
Nov 23 15:20:20 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\1\last.cfg
Nov 23 15:20:20 1 lcfd node_login: listener addr ’0.0.0.0+9494’
Nov 23 15:20:20 2 lcfd No known gateways.
Nov 23 15:20:20 2 lcfd Trying other login listeners...
Nov 23 15:20:20 Q lcfd send_login_dgram: interval=30 attempts=2
Nov 23 15:20:20 Q lcfd net_usend of 402 bytes to 9.3.1.133+9494. Bcast=0
Nov 23 15:20:20 Q lcfd send_login_dgram: waiting for reply. attempt 1 of 2
Nov 23 15:20:20 Q lcfd net_accept, handle=0x305f48
Nov 23 15:20:31 Q lcfd New connection from 9.3.1.133+2470
Nov 23 15:20:31 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:31 Q lcfd Leaving net_recv: bytes=714, (type=14 session=0)
Nov 23 15:20:31 Q lcfd recv: len=’714’ (code=’14’, session=’0’)
Nov 23 15:20:31 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\1\last.cfg
Nov 23 15:20:31 1 lcfd salmon is dispatcher 126 in region 1189622596
Nov 23 15:20:31 1 lcfd write login file ’lcf.dat’ complete

1 Minimal logging. This is the default and recommended
message level.

2 Tracing and moderate output.

3 Detailed information and tight loops.

4 Data buffers. It is too detailed for us to analyze. This is only for
development consideration.

Message Level Message Content
202 All About Tivoli Management Agents

D
R
A
F
T

Nov 23 15:20:31 1 lcfd Logging into new gateway...
Nov 23 15:20:31 Q lcfd login_to_gw
Nov 23 15:20:31 Q lcfd login_gw -> 9.3.1.133+9494
Nov 23 15:20:31 2 lcfd Connecting to ’9.3.1.133+9494’
Nov 23 15:20:31 Q lcfd net_send of 722 bytes, session 126
Nov 23 15:20:31 Q lcfd net_accept, handle=0x305f48
Nov 23 15:20:31 Q lcfd New connection from 9.3.1.133+2471
Nov 23 15:20:31 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:31 Q lcfd Leaving net_recv: bytes=730, (type=14 session=126)
Nov 23 15:20:31 Q lcfd recv: len=’730’ (code=’14’, session=’126’)
Nov 23 15:20:31 2 lcfd Writing GCS file: C:\Tivoli\lcf\dat\1\last.cfg
Nov 23 15:20:31 1 lcfd salmon is dispatcher 126 in region 1189622596
Nov 23 15:20:31 1 lcfd write login file ’lcf.dat’ complete
Nov 23 15:20:31 1 lcfd final pid: 126
Nov 23 15:20:31 1 lcfd Login to gateway 9.3.1.133+9494 complete.
Nov 23 15:20:31 1 lcfd Ready. Waiting for requests (0.0.0.0+9494). Timeout 120.
Nov 23 15:20:31 Q lcfd Entering Listener (running).
Nov 23 15:20:31 Q lcfd Entering net_wait_for_connection, timeout=-1 handle=0x305f48
Nov 23 15:20:31 Q lcfd New connection from 9.3.1.133+2472
Nov 23 15:20:31 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:31 Q lcfd Leaving net_recv: bytes=3592, (type=19 session=513819391)
Nov 23 15:20:31 2 lcfd CNTL_EP_CODESET
Nov 23 15:20:31 Q lcfd Entering Listener (running).
Nov 23 15:20:31 Q lcfd Entering net_wait_for_connection, timeout=-1 handle=0x305f48
Nov 23 15:20:32 Q lcfd New connection from 9.3.1.133+2473
Nov 23 15:20:32 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:32 Q lcfd Leaving net_recv: bytes=589, (type=0 session=513819392)
Nov 23 15:20:32 Q lcfd Entering send_methstat
Nov 23 15:20:32 Q lcfd Entering send_struct
Nov 23 15:20:32 Q lcfd net_send of 52 bytes, session 513819392
Nov 23 15:20:32 Q lcfd Leaving send_struct
Nov 23 15:20:32 Q lcfd Leaving send_methstat
Nov 23 15:20:32 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:32 Q lcfd Leaving net_recv: bytes=85, (type=7 session=513819392)
Nov 23 15:20:32 2 lcfd reading:
C:\Tivoli\lcf\dat\1\cache\bin\w32-ix86\endpoint\msg_bind.exe
Nov 23 15:20:32 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:32 Q lcfd Leaving net_recv: bytes=9226, (type=11 session=513819392)
Nov 23 15:20:32 Q lcfd Entering send_methstat
Nov 23 15:20:32 Q lcfd Entering send_struct
Nov 23 15:20:32 Q lcfd net_send of 52 bytes, session 513819392
Nov 23 15:20:32 Q lcfd Leaving send_struct
Nov 23 15:20:32 Q lcfd Leaving send_methstat
Nov 23 15:20:32 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:32 Q lcfd Leaving net_recv: bytes=95, (type=7 session=513819392)
Nov 23 15:20:32 2 lcfd reading: C:\Tivoli\lcf\generic\msg_cat\C\GatewayCatalog.cat
Nov 23 15:20:32 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:32 Q lcfd Leaving net_recv: bytes=1681, (type=11 session=513819392)
Nov 23 15:20:32 Q lcfd Entering send_methstat
Nov 23 15:20:32 Q lcfd Entering send_struct
Nov 23 15:20:32 Q lcfd net_send of 52 bytes, session 513819392
Nov 23 15:20:32 Q lcfd Leaving send_struct
Nov 23 15:20:32 Q lcfd Leaving send_methstat
Nov 23 15:20:32 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:32 Q lcfd Leaving net_recv: bytes=103, (type=7 session=513819392)
Nov 23 15:20:32 2 lcfd reading: C:\Tivoli\lcf\generic\msg_cat\fr_FR\GatewayCatalog.cat
Nov 23 15:20:32 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:32 Q lcfd Leaving net_recv: bytes=1910, (type=11 session=513819392)
Nov 23 15:20:32 Q lcfd Entering send_methstat
Nov 23 15:20:32 Q lcfd Entering send_struct
Nov 23 15:20:32 Q lcfd net_send of 52 bytes, session 513819392
Nov 23 15:20:32 Q lcfd Leaving send_struct
Nov 23 15:20:32 Q lcfd Leaving send_methstat
Anatomy of TMA Behavior 203

D
R
A
F
T

Nov 23 15:20:32 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:32 Q lcfd Leaving net_recv: bytes=103, (type=7 session=513819392)
Nov 23 15:20:32 2 lcfd reading: C:\Tivoli\lcf\generic\msg_cat\ja_JP\GatewayCatalog.cat
Nov 23 15:20:32 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:32 Q lcfd Leaving net_recv: bytes=2262, (type=11 session=513819392)
Nov 23 15:20:32 Q lcfd Entering send_methstat
Nov 23 15:20:32 Q lcfd Entering send_struct
Nov 23 15:20:32 Q lcfd net_send of 52 bytes, session 513819392
Nov 23 15:20:32 Q lcfd Leaving send_struct
Nov 23 15:20:32 Q lcfd Leaving send_methstat
Nov 23 15:20:32 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:32 Q lcfd Leaving net_recv: bytes=103, (type=7 session=513819392)
Nov 23 15:20:32 2 lcfd reading: C:\Tivoli\lcf\generic\msg_cat\pt_BR\GatewayCatalog.cat
Nov 23 15:20:32 Q lcfd Entering net_recv, receive a message
Nov 23 15:20:32 Q lcfd Leaving net_recv: bytes=1841, (type=11 session=513819392)
Nov 23 15:20:33 Q lcfd setting-up inherit fd. netfd=200
Nov 23 15:20:33 1 lcfd Spawning:
C:\Tivoli\lcf\dat\1\cache\bin\w32-ix86\endpoint\msg_bind.exe, ses: 1ea04300
Nov 23 15:20:33 Q lcfd Entering Listener (running).
Nov 23 15:20:33 Q lcfd Entering net_wait_for_connection, timeout=-1 handle=0x305f48
Nov 23 15:20:33 Q MethInit Entering mrt_run
Nov 23 15:20:33 Q MethInit argv: session_id=1ea04300
Nov 23 15:20:33 Q MethInit Communication timeout set: 120.
Nov 23 15:20:33 Q MethInit Entering comm_reconnect
Nov 23 15:20:33 Q MethInit inherited fd. return from net_associated_fd. ipc=3155416,
netfd=200
Nov 23 15:20:33 Q MethInit Entering run_impl
Nov 23 15:20:33 Q MethInit Entering send_methstat
Nov 23 15:20:33 Q MethInit Entering send_struct
Nov 23 15:20:33 Q MethInit net_send of 52 bytes, session 513819392
Nov 23 15:20:33 Q MethInit Leaving send_struct
Nov 23 15:20:33 Q MethInit Leaving send_methstat
Nov 23 15:20:33 Q MethInit waiting for input args
Nov 23 15:20:33 Q MethInit Entering net_recv, receive a message
Nov 23 15:20:33 Q MethInit Leaving net_recv: bytes=1577, (type=3 session=513819392)
Nov 23 15:20:33 2 MethInit Looking for method: write_html.
Nov 23 15:20:33 Q write_html calling method.
Nov 23 15:20:33 Q write_html method returned.
Nov 23 15:20:33 Q write_html send_results (max/len) 80/6
Nov 23 15:20:33 Q write_html Entering send_methstat
Nov 23 15:20:33 Q write_html Entering send_struct
Nov 23 15:20:33 Q write_html net_send of 60 bytes, session 513819392
Nov 23 15:20:33 Q write_html Leaving send_struct
Nov 23 15:20:33 Q write_html Leaving send_methstat
Nov 23 15:20:33 2 write_html Clean Shutdown write_html.

5.7.2.5 Other Log Files for Debugging TMA Problems
One of the most powerful debugging tools is the wtrace command, so we
strongly recommend that you understand how to use the wtrace command.
The following shows the usage of the wtrace command.

1. Set the trace option using the odadmin trace command. The following
options can be used, but we strongly recommend that you use the odadmin
trace objcalls option.

odadmin trace errors Turns on error tracing.

odadmin trace services Turns on service tracing.

odadmin trace objcalls Turns on object call tracing.
204 All About Tivoli Management Agents

D
R
A
F
T

2. Regenerate the problem.

3. Execute the wtrace -jk $DBDIR > file_name.

4. Turn off the trace with the odadmin trace off.

All methods issued by the management resources appear in the trace output,
so it is very powerful to trace-detect the problem and understand the internal
logic of the TMA environment as well.

5.7.2.6 How to Read wtrace
The following shows a sample output of the wtrace command when the
Endpoint issues an upcall which requests a write message into the log file of
the Sentry monitor.
Anatomy of TMA Behavior 205

D
R
A
F
T

loc-ic 81 M-hdq Extern 806
 Time run: [Wed 02-Dec 17:33:32]

 Object ID: 1189622596.2.605-
 Method: LogToHostFile
 Principal: nobody@lcf (0/-2)
 Path: /aix4-r1/TME/SENTRY/sentry_gateway
 Input Data: (encoded):

 {
 "normal" "c:\" "166" "166" "166" "sp_Diskused_w" "salmon"
 {

 {
 1
 [

 {
 "universal" "Disk space used" 10
 {
 "null" 0 false
 }

 }

]

 }

 }

 {

 {
 1
 [

 {
 "SentEng" "(default result)" 126
 {
 "TMF_Types::_sequence_string_StringList" 19 false

 {
 0
 }

 }

 }

]

 }

 }

 {

 {
 1
 [

 {
 "SentEng" "" 134
 {
 "TMF_Types::_sequence_string_StringList" 19 false

 {
 0
206 All About Tivoli Management Agents

D
R
A
F
T

In this sample, you should focus on the following messages.

loc-ic Refers to the sequential number of the method. In this case,
the number is 81.

Time run Refers to when the method was invoked. In this case, Dec 2nd
17:33:32.

Object ID Refers to the object ID of the object in whose context the
method was invoked.

Method Refers to the name of the method. In this case, the
LogToHostFile method is issued.

Principal Refers to who issued the method. In this case, nobody@lcf
issued the method.

Path Refers to the location (path) of the method. In this case, the
Endpoint issued the method which is located in
/usr/local/Tivoli/bin/aix4-r1/TME/SENTRY/sentry_engine.

 }

 }

 }

]

 }

 }
 "" 912642004 ""
 {

 {
 1
 [

 {
 "Sentry2_0" "(Mbytes)" 55
 {
 "null" 0 false
 }

 }

]

 }

 }
 "Universal" "diskused" 0 "salmon"
 }
 "/tmp/disk.log" "kodiak" "nobody" "nobody" 0
loc-oc 81 19
 Results: (encoded):
 "ok"
Anatomy of TMA Behavior 207

D
R
A
F
T

Input Data Refers to the contents of the data which is passed as the
arguments to the method. In this case, this is the message
which will be written into the log file.

loc-oc Refers to the result of the this method. In this case, the result
of the LogToHostFile method is ok.

This downcall was logged into the gatelog file as well.

The next figure shows a sample output of the wtrace command when the
downcall was issued. This method is issued when the Software Distribution
file package is distributed to the Endpoint.

As we mentioned, this sample shows that the fp_dist method is invoked. In
this case, the principal field shows root user on the TMR Server
(root@ishii2.itsc.austin.ibm.com) because this is the downcall. After the file
package distribution was completed, the result of the fp_dist method (loc-ic
206) was logged into the wtrace output as follows:

This downcall was logged into the gatelog file as well.

1998/12/02 17:33:32 +06: upcall start: from=9.3.1.193+1135, class=SentryGateway, method=LogToHostFil

loc-ic 206 M-ho 1-187 1.5K
 Time run: [Sun 20-Dec 19:51:03]

 Object ID: 1588251808.1.348#TMF_ManagedNode::Managed_Node#
 Method: fp_dist
 Principal: root@ishii2.itsc.austin.ibm.com (0/0)
 Path: /usr/local/Tivoli/bin/aix4-r1/TAS/MANAGED_NODE/fp_endpoint
 Trans Id:
 {
 1588251808:1,1588251808:1,18:88
 },

 {
 1588251808:1,1588251808:1,18:89
 },

 {
 1588251808:1,1588251808:1,18:103
 }
 #3
 Input Data: (binary) (dump suppressed)

loc-oc 206 24
 Results: (encoded):

 {
 0
 }
 0
208 All About Tivoli Management Agents

D
R
A
F
T

1998/12/20 19:51:05 +06: mdist: distribution ID = 1, method = fps_install, size = 0
Anatomy of TMA Behavior 209

D
R
A
F
T

210 All About Tivoli Management Agents

D
R
A
F
T

Chapter 6. TMA and Tivoli Management Applications

In this chapter, we describe considerations for using the Tivoli Management
Applications with the TMA. Basically, the TMA can replace the full Managed
Node, except for in a few cases. In this chapter we will describe Tivoli
application considerations regarding the TMA.

6.1 Implementation Considerations

There are a few considerations for using the Tivoli Management Applications,
such as Distributed Monitoring, Software Distribution and so on, with the
TMA. This section provides information related to Tivoli Management
Applications running on the TMA.

6.1.1 Available Applications on the TMA
First of all, all of the core applications now provide support for the Tivoli
Management Agent. This is a basic matter, but is very important. Although we
will discuss some considerations here, you should refer to the Release Notes
of the Tivoli Management Applications (every Tivoli product should include
the Release Notes) for specific details.

The following table shows the status of the Endpoint support regarding the
principal Tivoli Management Applications.

Table 40. Available Tivoli Management Applications on the TMA

Tivoli Management Application Support for EP Release

Tivoli Distributed Monitoring NetWare EP only V3.5.1 or V3.5.2

Available V3.6

Tivoli Inventory Available V3.6

Tivoli Remote Control Available V3.6

Tivoli Security Management Available V3.6

Tivoli Software Distribution Available V3.6

Tivoli Enterprise Console Available V3.6

Tivoli User Administration Available V3.6

Tivoli Modules Not Available Yet -
© Copyright IBM Corp. 1998 211

D
R
A
F
T

6.1.2 Planning to Use Tivoli Management Applications with the TMA
Before we use the Tivoli Management Applications, we have to understand
the restrictions and prerequisites of TMA implementation for your
management system; then we will make a plan to implement the TMA and the
Tivoli Management Applications. In this section, we discuss how to make a
plan, what to consider, and so on. This information will be required by system
engineers who develop management systems for an enterprise.

6.1.2.1 General Considerations for Using the TMA
The following restrictions and prerequisites should be clear before
implementing the Tivoli Management Applications with the TMA.

The Managed Resource Must Remain a Managed Node:
Some Tivoli management resources still require the services provided by the
full Managed Node. Therefore, if you configure the following management
resources in the TMR, the machines on which they reside must be a
Managed Node.

 • TMR Server

 • Endpoint gateways

 • RIM Hosts

 • MDist Repeaters

 • Tivoli Enterprise Console Server

 • Software Distribution Filepack Source Systems

 • Systems Hosting Tivoli Plus Modules

 • Systems Using the CLI Interface

The Version of the EP Manager, EP Gateway and Endpoint:
The LCF architecture is supported by both Versions 3.2 and 3.6 of Tivoli
Management Framework, however, Version 3.6 of the Endpoint engine (lcfd)
is different from Version 3.2 of the lcfd. Therefore, we have to be aware of
the version of the EP Manager, EP gateway and Endpoint. Basically, the
version of the Endpoint Manager and Endpoint gateway must be the same.

This information is based on the Release Notes as of December 1998. You
should confirm the latest Release Notes when you install the Tivoli
Management Applications on the TMA.

Note
212 All About Tivoli Management Agents

D
R
A
F
T

Therefore, at this time, the following three configuration schemes (see Figure
78 on page 213) are allowed when using the TMA.

Figure 78. The Combination of the EP Manager, EP Gateway and EP

Case 1 This case shows Version 3.6 of the TMA configuration. We
strongly recommend this configuration.

Case 2 This case shows Version 3.2 of the TMA configuration. As we
mentioned before, the Endpoint Manager and Endpoint gateway
must be the same version. Therefore, if you configure Version 3.2
of the Endpoint gateway, the Endpoint Manager and Endpoint
should be the same version, V3.2, because Version 3.2 of the
Endpoint gateway is not able to handle Version 3.6 of the
Endpoint.

Case 3 This case is a little different from the other two cases. Version 3.6
of the Endpoint gateway is able to handle Version 3.2 of the
Endpoint. In other words, Version 3.2 of the Endpoint can log in to
Version 3.6 of the Endpoint gateway. However, Version 3.2 of the
Endpoint will be updated automatically during the Endpoint login
procedure if you have Auto Upgrade configured.

V3.6

EP

EP Manager

EP Gateway

V3.6

V3.6

V3.2

EP

EP Manager

EP Gateway

V3.2

V3.2

V3.6

EP

EP Manager

EP Gateway

V3.6

V3.2

Case-1 Case-2 Case-3
TMA and Tivoli Management Applications 213

D
R
A
F
T

The Applications Should Be Installed on the Endpoint Gateway:
The Tivoli Management Applications that will be used on Endpoints should be
installed on the Endpoint gateway which the Endpoint is logged into.
Therefore, we need to be aware of where the Endpoint is located when
several Endpoint gateways are available in the TMR, when there is more
than one TMR in the network, or when the available applications on each
Endpoint gateway are different. In this situation, you should use the Endpoint
policy (for instance, select_gateway_policy) and control the Endpoint login.
We recommend that you install the same applications to all Endpoint
gateways. This is the simplest solution, and prevents problems that could
occur if an Endpoint should log into a gateway not supporting all of the
applications.

6.1.3 Dataless Profile Manager and the TMA
The dataless profile manager is a new profile manager type associated with
the dataless client (TMA). The dataless profile manager can have the
following subscribers:

 • Endpoints

 • Managed Nodes

 • PC Managed Nodes

 • NIS Domains

 • NetWare Managed Sites

As you can see in the list above, other profile managers cannot be
subscribers to the dataless profile manager. Therefore, the dataless profile
manager cannot be a branch node in a profile manager hierarchy. A dataless
profile manager can only be a leaf node, that is, only have managed systems
as subscribers.

6.1.3.1 What is the Difference between Dataless and Classic?
As you know, the TMA doesn’t have an object database (.dbd file) locally; the
information in the profile created in the dataless profile manager is not written
to the database associated with the next level, even if it is a full Managed
Node (refer to Figure 79 on page 215). Therefore, if you distribute the profile
using the dataless profile manager to full Managed Nodes or Endpoints, the
data is applied directly to the system.

The profile created in the classic profile manager can be locally modified
because the information in the profile is written to the local database of the
full Managed Node. However, the local modification is not a recommended
customization because it makes profile management more complicated, and
214 All About Tivoli Management Agents

D
R
A
F
T

it also makes future migration from a full Managed Node to the TMA more
difficult.

Figure 79. The Difference between Dataless and Classic Profile Managers

Creating a profile in a dataless profile manager and distributing it to a full
Managed Node subscriber is the easiest way to observe the difference
between the dataless and classic profile manager. The following test will
show this:

1. Create the profile manager in dataless mode.

2. Create a Sentry profile in the dataless profile manager and define a full
Managed Node (ishii2, in our example) as the subscriber, as shown in
Figure 80 on page 216.

Dataless Profile Manager

Managed Node Managed Node
Object Database Object Database

Classic Profile Manager

ProfileProfile

Local Modification
TMA and Tivoli Management Applications 215

D
R
A
F
T

Figure 80. The Dataless Profile Manager and Full Managed Node Subscriber

3. Distribute the Sentry profile to the subscriber.

4. Look for the profile we distributed in the database of the subscriber as
follows:

5. You will not see the profile object under the Managed Node, ishii2. This
means the information in the dataless profile was not written to the
database of the subscriber (ishii2). If you create the profile in a classic
profile manager and distribute it to the full Managed Node, you can see
the profile object, as in the following example.

wcd /Administrators/Root_ishii2-region/ishii2-region/ishii2
wls -l
#

216 All About Tivoli Management Agents

D
R
A
F
T

As you can see from the above test, the dataless profile manager is
developed for supporting Endpoint subscribers. However, almost all features
except writing information to the database are the same as the classic profile
manager, for example defining the profile, handling the profile, and so on.

6.1.4 Endpoint Method Cache Management
The Endpoint method cache management is very important to understanding
the TMA implementation. The TMA gives you the framework functions that
are necessary to perform management operations, such as those performed
by Tivoli Management Applications, and these management operations are
processed by calling a method on a managed resource. In the TMA
environment, this design has not changed: the TMA invokes an Endpoint
method for performing management operations on the TMA platform.

The Endpoint methods which will be used by the Endpoint are stored in the
Endpoint gateway. When the TMA performs a management operation, the
TMA automatically determines what is needed to perform the given
management operation. If that Endpoint method already resides on the TMA,
it immediately proceeds with the operation. If not, the TMA downloads the
appropriate Endpoint method from the Endpoint gateway to the TMA with no
operator intervention. In addition, the TMA downloads newer versions as
updates are loaded on the Endpoint gateway. You can gain significant
productivity advances with these management features because the Tivoli
Management software is installed only once on the Endpoint Manager and
Endpoint gateways, with updates performed automatically thereafter. The
following figure shows how the TMA manages the Endpoint method cache.

wls -l
1588251808.1.839#Sentry::All# DM_UNIX@ishii2

For this reason, we strongly recommend you use the dataless profile
manager as follows:

 • You should not create any profiles in the dataless profile manager.

 • The dataless profile managers should be used as subscribers to classic
profile managers for distributing profiles to the Endpoints.

This is the best way to avoid trouble regarding the dataless profile manager
and the Endpoint.

Important
TMA and Tivoli Management Applications 217

D
R
A
F
T

Figure 81. Endpoint Method Cache Management

By default, the Endpoint method cache exists under the
C:\Tivoli\lcf\dat\1\cache directory, and each Endpoint method actually
corresponds to the *.exe file in the PC environment. The Endpoint gateway
stores the Endpoint method under the /usr/local/Tivoli/bin/lcf_bundle directory
and also stores Endpoint method information in the Endpoint gateway
database ($DBDIR/gwdb.bdb file). This information can be synchronized with
the information on the Endpoint Manager ($DBDIR/imdb.bdb file) using the
wgateway gw_name dbcheck command.

The following summary describes how the Endpoint manages the Endpoint
method cache.

 • Once the Endpoint method is stored in the Endpoint method cache, the
Endpoint uses it even if the system is rebooted.

 • Once the Endpoint method is downloaded to the Endpoint method cache,
the Endpoint does not download the same version of the Endpoint
method.

Endpoint Manager

Endpoint Gateway

Endpoint Method Cache

Endpoint

Installation

Downcall

Method

Method Cache Synchronize
(wgateway gw_name dbcheck)
218 All About Tivoli Management Agents

D
R
A
F
T

 • If the Endpoint detects the available version is greater than the current
version of the Endpoint method, the Endpoint downloads the newer
method automatically.

 • When the Endpoint downloads the method, the related methods defined in
the dependency set are also downloaded at the same time. The
dependency set is a list of other files, modules or commands that are
required for the correct operation of the method.

6.1.5 Endpoint Methods and Tivoli Management Applications
The Tivoli Management Applications invoke methods using upcall and
downcall to perform their functions. Which method will be used by a Tivoli
Management Application? The dependency manager handles the methods
for each Tivoli Management Application. The dependency manager exists as
a class object in the Tivoli object database and plays a very important role in
implementing the LCF architecture. We can understand the relationship
between the methods and the Tivoli Management Applications by checking
the dependency manager. We provide detailed information regarding the
dependency manager in Chapter 8, “Overview of TMA Internals and
Application Development” on page 281; so at this time we will only introduce
the relationship between the methods and the Tivoli Management
Applications.

Normally, the dependency set is added to the dependency manager when we
install the Tivoli Management Application (but it is not mandatory, it depends
on the application design). We installed some Tivoli Management
Applications for checking the dependency during the project, and the
following table (Table 41 on page 219) shows the relationship between the
dependency set and the Tivoli Management Applications.

Table 41. The Dependency Set for Each Application

To make sure, you can use the wlookup and wdepset command as follows.

Dependency Set Tivoli Management Application

LCFDepList Distributed Monitoring

courier_lcf Software Distribution

GroupManagement User Administrator

UserManagement
TMA and Tivoli Management Applications 219

D
R
A
F
T

In this case, we invoked the wlookup command. In the TMR, we installed
Distributed Monitoring, Software Distribution and User Administrator. If you
would like to know which methods are included in the dependency set, just
invoke the wdepset command as follows:

wdepset -v 1588251808.1.621

The above example introduces how to display the methods set for Distributed
Monitoring. The output of the wdepset command can be very large, so we
won’t show it now. These methods should be located under the
/usr/local/Tivoli/bin/lcf_bundle directory and loaded to the method cache in
the Endpoint where the application is called for the first time (for instance,
when the Sentry profile is distributed to the Endpoint subscriber for the first
time). The following figure (Figure 82 on page 221) shows the relationship
between the Endpoint methods and the dependency manager.

wlookup -ar DependencyMgr
GroupManagement 1588251808.1.726#Depends::Mgr#
LCFDepList 1588251808.1.621#Depends::Mgr#
NtLcfInst_depset 1588251808.1.523#Depends::Mgr#
UserManagement 1588251808.1.721#Depends::Mgr#
courier_lcf 1588251808.1.810#Depends::Mgr#
msg-bind-catalogs 1588251808.1.516#Depends::Mgr#
task-lcf-base 1588251808.1.513#Depends::Mgr#
task-spawn16 1588251808.1.514#Depends::Mgr#
task-spawn32 1588251808.1.515#Depends::Mgr#
220 All About Tivoli Management Agents

D
R
A
F
T

Figure 82. The Dependency Manager and Endpoint Methods

6.1.6 Boot_method and Tivoli Management Applications
Have you ever used the Sentry monitor on the Endpoint? If so, have you
thought about why the Sentry engine boots automatically every time when the
lcfd daemon starts? You might look at the Startup menu or the Services
menu of the Windows NT machine (for instance, the Windows NT Endpoint).
However, you cannot find any definition regarding the Sentry engine in the
Startup and Services menus. How does the Sentry engine start automatically
every time the lcfd starts?

The lcfd daemon has a boot_method list for starting the methods
automatically when the lcfd boots. The Sentry engine of Distributed
Monitoring is a typical application for using the boot_method list. Therefore,
we introduce an example of how the Sentry engine starts automatically using
the boot_method.

When you distribute the Sentry profile, including a monitor to an Endpoint for
the first time, the boot_method list is created for booting the Sentry engine

DependencyMgr

UserManagement
1588251808.1.721#Depends::Mgr#

/usr/local/Tivoli/bin/lcf_bundle

Method Cache
Endpoint

EP Gateway

EP Manager

Dependency Set

Distribute

Download
TMA and Tivoli Management Applications 221

D
R
A
F
T

automatically every time the lcfd boots. Each boot_method list has a tag for
distinguishing each list from others, so the tag is a kind of an ID. By default,
distributed monitoring uses a tag named Sentry_Boot_1. You can see this by
using the wtrace command during the lcfd booting. The following output of
the wtrace shows that the Endpoint Manager added the new boot_method
named Sentry_Boot_1 for the Sentry engine using the add_boot_method method
(We will talk about the methods under the Endpoint Manager in Chapter 7,
“Advanced Knowledge of the TMA” on page 251). This process should be
performed when you distribute the Sentry profile to the Endpoint for the first
time.

You are also able to confirm the contents of the boot_method list using the wep
command as follows:

The boot_method list can be used for any user applications that run on the
Endpoint as a daemon process, such as the Sentry engine. To define a new
boot_method, you can use the wep boot_method add command. The
boot_method list would be used for a daemon-like process running on the
Endpoint and needs to be executed automatically every time the lcfd boots.
The boot_method information of the Endpoint is managed by the Endpoint
Manager.

loc-ic 299 M-hdoq 2-61 145
 Time run: [Wed 02-Dec 17:26:06]

 Object ID: 1189622596.1.517#TMF_LCF::EpMgr#
 Method: add_boot_method
 Principal: nobody@lcf (-2/-2)
 Path: __epmgr_implid
 Input Data: (encoded):

 {
 1
 [
 "1189622596.239.508+#TMF_Endpoint::Endpoint#"
]

 }
 "Sentry_Boot_1" "1189622596.1.565" "boot_engine"

wep boot_method list Sentry_Boot_1 1189622596.239.508+
Boot Method(s) for Endpoint 1189622596.239.508+
Tag Prototype Object Method Name
Sentry_Boot_1 1189692596.1.565 boot_engine
222 All About Tivoli Management Agents

D
R
A
F
T

6.1.7 Database Backup and Tivoli Management Applications
The backup process is very important in the Tivoli Management environment
in case the data of the Tivoli object database is corrupted. The most reliable
way to recover it is to restore the data from a backup. As you know, the TMA
doesn’t have an object database, so the TMA doesn’t have any data related
to the applications running on the TMA. This is the reason the TMA needs the
dataless profile manager. So where is the data related to the Tivoli
Management Applications and its configurations? The data still exists in the
Tivoli object database (odb.bdb file) even if the applications run on the TMA.
Therefore, normally, information defined in the profiles is backed up using the
wbkupdb command.

6.2 Upcall Applications and the TMA

The Tivoli Management Applications that run on an Endpoint can be
classified into two categories: upcall-oriented applications and downcall-
oriented applications. Amazingly enough, upcall oriented applications mainly
use upcalls, and downcall oriented applications mainly use downcalls.

Normally, upcall applications are more complicated than downcall
applications in their implementation. Distributed Monitoring is a typical upcall-
oriented application and provides a good example. In this section, we focus
on the Distributed Monitoring and introduce considerations and advantages
of how Distributed Monitoring is implemented on the TMA, how Distributed
Monitoring issues upcalls, as well as the interaction between Distributed
Monitoring and the TMA.

6.2.1 Distributed Monitoring and the TMA
Availability applications, for example Distributed Monitoring, Tivoli Enterprise
Console and so on, are the most typical applications for Tivoli customers
because every system administrator would like to monitor the status and
condition of managed systems. Therefore, many Tivoli customers will use
Distributed Monitoring or Tivoli Enterprise Console with TMA. The TMA can

Most of the Tivoli Management Application’s configuration can be backed
up by the wbkupdb command; however, the Distributed Monitoring
application is a little different from others because of the daemon-like
process, the Sentry engine, on each TMA. We will talk about database
backup and Sentry monitors in Section 6.2.8, “Database Backup and
Sentry Monitors on the TMA” on page 242.

Note
TMA and Tivoli Management Applications 223

D
R
A
F
T

replace a full Managed Node; however, there are some differences between
the applications on the TMA and on the full Managed Node. It is very
important to understand the differences, the advantages, and the
considerations for implementing upcall-oriented applications, such as
Distributed Monitoring, on the TMA.

6.2.2 Sentry Engine on TMA
As you know, Distributed Monitoring contains a daemon-like process called
the Sentry engine. It is very unique. The Sentry engine runs on the node that
we are monitoring using a Sentry monitor. Version 3.6 of Tivoli implements
the LCF architecture, and the Sentry engine still exists even on the
Endpoints. To see this, use the Task Manager of Windows NT, and you can
find the Sentry engine as one process, dm_ep_engine.exe. This is shown in
Figure 83 on page 225. The Sentry engine running on the Endpoint
(dm_ep_engine.exe) provides almost the same function as the sentry_engine
process running on the full Managed Node. Basically, the actions that the
Sentry engine performs when the Sentry engine detects specified conditions
are the following, and these can be defined in the Sentry profile.

 • Sending Tivoli Notices

 • Displaying a Pop-up Message

 • Changing Indicator Icon

 • Sending e-mail

 • Logging to File

 • Running Program

 • Sending Tivoli Enterprise Console Event

The interesting thing here is that these actions are performed by the upcall
from the Sentry engine running on the Endpoint. This is very different from
other Tivoli Management Applications. We introduce the information
regarding how the Sentry engine performs the above actions using the upcall
and so on in Section 6.2.7, “Understanding Distributed Monitoring Behavior
with TMA” on page 238.
224 All About Tivoli Management Agents

D
R
A
F
T

Figure 83. The Sentry Engine Process in the NT Task Manager

6.2.3 Sentry Gateway Process
To support the Endpoint, the distributed monitoring provides a new process,
sentry_gateway. The sentry_gateway process runs on the Endpoint gateway
machine and plays the role of the translator between the Endpoint and
Endpoint gateway, so that the sentry_gateway process handles the requests
(upcalls) sent from the Sentry engine (dm_ep_engine.exe) on the Endpoint. The
next figure (Figure 84 on page 226) shows all the processes related to
Distributed Monitoring in the TMA environment.
TMA and Tivoli Management Applications 225

D
R
A
F
T

Figure 84. The Sentry Engine Processes

Later on, we will explain the role of each process related to distributed
monitoring.

6.2.4 Booting Sentry Engine
When the Sentry engine boots, how does the Sentry engine recognize the
monitor already defined and start it? It is a little complicated, but it provides a
good example for understanding the process provided by Distributed
Monitoring. We describe the booting procedure in Figure 85 on page 227.

dp_ep_engine.exe Endpoint

sentry_gateway

sentry_engine
Endpoint Gateway
(Managed Node)

sentry_engine Endpoint Manager
(TMR Server)
226 All About Tivoli Management Agents

D
R
A
F
T

Figure 85. The Booting Procedure of the Sentry Engines

1. When the Endpoint gateway machine boots, the oserv daemon should be
booted automatically from the definition in the /etc/rc.nfs file (for UNIX
machine) or services (for NT machine).

2. The oserv daemon also starts the process defined in the boot_method list.
Normally, if you have installed Distributed Monitoring to the Endpoint
gateway machine, the Endpoint gateway process (gateway) and the Sentry
engine (sentry_engine) should be defined in the boot_method by default,
so that both processes are booted by the oserv daemon at this time.

3. After the Endpoint gateway becomes available, the Endpoint attempts to
perform the login to the appropriate Endpoint gateway (the detailed login
procedure is omitted here).

4. After the Endpoint login is completed, the Endpoint gateway attempts to
invoke a method on the Endpoint Manager remotely for checking the
boot_method list of the Endpoint. If you have already installed any Sentry
monitors onto the Endpoint, the Sentry engine should be defined in the
boot_method list of the Endpoint. Then the Endpoint gateway gets the

sentry_gateway

dm_ep_engine.exe

oserv

sentry_engine gateway

lcfd.exe

/etc/rc.nfs

Endpoint Gateway

Endpoint

1

2

3

4

5

6

7

8

9

10

2 7

4

10

10

Endpoint Manager
TMA and Tivoli Management Applications 227

D
R
A
F
T

information regarding the boot_method list of the Endpoint and recognizes
that the Sentry engine already exists on the Endpoint.

5. The Endpoint gateway invokes the boot_engine method using the downcall
to start the Sentry engine on the Endpoint.

6. The Sentry engine (dm_ep_engine.exe) on the Endpoint is started by the
downcall from the Endpoint gateway at this time.

7. When the Sentry engine boots on the Endpoint, the Endpoint invokes the
GetCollList on the Endpoint gateway using an upcall remotely for
collecting the Sentry monitor information.

8. Then, if the sentry_gateway process is not running, the sentry_gateway
process is booted automatically by the oserv daemon using the Basic
Object Adapter function and provides the information regarding the
enabled Sentry monitors.

9. The Endpoint gets the information regarding the enabled Sentry monitors.
Then the enabled Sentry monitors begin to monitor with the defined
configurations.

10.Finally, the Endpoint invokes the add_boot_method method on the Endpoint
Manager using an upcall and defines the Sentry engine in the boot_method
list of the Endpoint again for the next booting.

To confirm this procedure for yourself, you can use the wtrace, gatelog or
lcfd.log files. In other words, most of the TMA behaviors can be investigated
by examining this information. For more information regarding the wtrace and
log files, refer to Chapter 5, “Anatomy of TMA Behavior” on page 135.

6.2.5 Distributed Monitoring Method Cache
By default, Distributed Monitoring has a cache exclusively for storing
methods under the following directories:

NT C:\Tivoli\lcf\dat\1\lcf\sentry

UNIX /opt/Tivoli/lcf/dat/1/LCF/sentry

One of the reasons why Distributed Monitoring has its own exclusive cache is
that the Sentry engine could use a lot of methods, and the total size of these
methods could be large (approximately 3 MB for a Windows NT Endpoint).

After distributing the Sentry profile to the Endpoint, you can use the Windows
NT Explorer to see the methods loaded into the method cache of Distributed
Monitoring. These methods should be the same as the contents of the
dependency set we explained in Section 6.1.5, “Endpoint Methods and Tivoli
Management Applications” on page 219.
228 All About Tivoli Management Agents

D
R
A
F
T

6.2.6 Distributed Monitoring and Endpoint Methods
As we mentioned, the Distributed Monitoring actions we configure in the
Sentry profile would normally use the upcall. This means the Tivoli Enterprise
Console event or Tivoli notices would be sent from the Endpoint gateway, not
from the Endpoint. This is a very important point for understanding upcall
applications, such as Distributed Monitoring. We introduce some examples of
how Distributed Monitoring invokes a method on the Endpoint gateway.

6.2.6.1 Sending Tivoli Notices
When the Endpoint sends a Tivoli notice to the TMR server, the Endpoint
issues an upcall by invoking the SendNotice method stored in the Endpoint
gateway. Then the Tivoli notice is sent from the Endpoint gateway to the
TMR server. However, the sending procedure is a little different between the
first Tivoli notice and others. We introduce both cases as follows:

Sending the Tivoli Notice for the First Time:
In this case, we assume the Sentry profile that includes the definition of
sending Tivoli notices is distributed to the Endpoint for the first time. To send
the Tivoli notice to the TMR server, the following methods would be invoked.

Figure 86. Sending the Tivoli Notice for the First Time

7

upcall Result

2

3

4

5

1

notice.bdb

Notice

sentry_gateway

QueueConsumer

connect

SendNotice

Queue

dm_ep_engine.exe
1

6
TCP Connection

Endpoint

Endpoint Gateway

Endpoint Manager

5
3

TMA and Tivoli Management Applications 229

D
R
A
F
T

1. When the Sentry monitor detects the condition that should send the Tivoli
notice, the Endpoint issues the upcall for invoking the SendNotice method
on the Endpoint gateway.

2. The SendNotice method is invoked by the upcall from the Endpoint. Then
the other related methods are invoked. To get the monitor collection
information from the Endpoint Manager, the _get_collection method is
invoked by the Endpoint many times, repeatedly.

3. The QueueConsumer method is invoked at that time, and it plays the role of
the queue for the Tivoli notices.

4. After the QueueConsumer method is invoked without error, the Endpoint
gateway returns the result of the upcall issued by the Endpoint.

5. After returning the result of the upcall, the connect method on the TMR
server is invoked remotely from the Endpoint gateway for establishing the
TCP session.

6. The connect method is invoked by the Endpoint gateway, and then the
TCP session is established. This TCP session would be used for sending
the Tivoli notices from the Endpoint to the TMR server.

7. The Endpoint gateway sends the Tivoli notice to the TMR server using the
TCP session.

Sending Tivoli Notices in Normal Cases:
If more than one Tivoli notice has been sent, the sending procedure would be
different after the first Tivoli notice. The following figure shows the sending
procedure in this case.
230 All About Tivoli Management Agents

D
R
A
F
T

Figure 87. Sending Tivoli Notices Routinely

1. When the Sentry monitor detects the condition that should send the Tivoli
notice, the Endpoint issues the upcall for invoking the SendNotice method
on the Endpoint gateway.

2. The SendNotice method is invoked by the upcall from the Endpoint. Then
the information of the Tivoli notice would be transferred to the queue.

3. After the SendNotice method is invoked without error, the Endpoint
gateway returns the result of the upcall to the Endpoint.

4. The Tivoli notice transferred to the queue would be sent by the
sentry_gateway process to the TMR server.

6.2.6.2 Sending Tivoli Enterprise Console Events
When the Endpoint sends a T/EC event to the T/EC server, the Endpoint
issues an upcall for invoking the SendBetterTECevent method stored in the
Endpoint gateway. Then the T/EC event is sent from the Endpoint gateway
to the T/EC server. However, the sending procedure is a little different
between the first T/EC event and other events, which are also sending Tivoli
notices. We introduce both cases as follows:

upcall Result

2

3

4

1

notice.bdb

Notice

sentry_gateway

SendNotice

Queue

dm_ep_engine.exe
1

Endpoint

Endpoint Gateway

Endpoint Manager

2

TMA and Tivoli Management Applications 231

D
R
A
F
T

Sending the T/EC Event for the First Time:
In this case, we assume the Sentry profile that includes the definition of the
sending TEC events is distributed to the Endpoint for the first time. To send
the TEC event to the TEC server, the following methods would be invoked.

Figure 88. Sending the T/EC Event for the First Time

1. When the Sentry monitor detects a condition that should generate a TEC
event, the Endpoint issues the upcall for invoking the SendBetterTEC_Event
method on the Endpoint gateway.

2. The SendBetterTEC_Event method is invoked by the upcall from the
Endpoint. Then the other related methods are invoked. To get the monitor
collection information from the Endpoint Manager, the _get_collection
method is invoked by the Endpoint many times in this sequence.

3. The QueueConsumer method is invoked, and it plays the role of the queue for
the TEC events as well as for Tivoli notices.

4. After the QueueConsumer method is invoked without error, the Endpoint
gateway returns the result of the upcall to the Endpoint.

5. After returning the result of the upcall, the send_event method on the TEC
server is invoked remotely from the Endpoint gateway for sending the

upcall Result

2

3

4

5

1

QueueConsumer

Queue

dm_ep_engine.exe
1

Endpoint

Endpoint Gateway

Tivoli Enterprise
Console Server

SendBetterTEC_Event

send_event

T/EC Event 5

3

sentry_gateway
232 All About Tivoli Management Agents

D
R
A
F
T

TEC event. As a result, the TEC event is sent from the Endpoint gateway
to the TEC server.

Sending TEC events routinely:
If more than one TEC event has been sent, the sending procedure would be
different from the first TEC event. The following figure shows the sending
procedure in this case.

Figure 89. Sending TEC Event Routinely

1. When the Sentry monitor detects the condition that should send the TEC
event, the Endpoint issues the upcall for invoking the SendBetterTEC_Event
method on the Endpoint gateway.

2. The SendBetterTEC_Event method is invoked by the upcall from the
Endpoint. Then the information of the TEC event is transferred to the
queue.

3. After the SendBetterTEC_Event method is invoked without error, the
Endpoint gateway returns the result of the upcall to the Endpoint.

4. After returning the result of the upcall, the send_event method on the TEC
server is invoked remotely from the Endpoint gateway for sending the

upcall Result

2

3

4

1

Queue

dm_ep_engine.exe
1

Endpoint

Endpoint Gateway

Tivoli Enterprise
Console Server

SendBetterTEC_Event

send_event

T/EC Event

2

4

sentry_gateway
TMA and Tivoli Management Applications 233

D
R
A
F
T

TEC event. As a result, the TEC event is sent from the Endpoint gateway
to the TEC server.

6.2.6.3 Logging to File
This action is a little different from the other actions because the Sentry
monitor can write logs to each managed resource, Endpoint Manager (TMR
server), Endpoint gateway (Managed Node), and Endpoint (local disk). In
this section, we introduce each case of logging to files as follows.

Logging to Endpoint Manager:
In this case, we assume the Sentry monitor writes the log to the log file
located on the Endpoint Manager. The following figure shows the logging
procedure.

As you can see, all Tivoli notices and TEC events are sent from the
Endpoint gateway, not from the Endpoint. It is the same for the Tivoli Event
Adapter (NT eventlog file adapter). The Endpoint just issues an upcall for
sending a Tivoli notice or TEC event. It is very important to understand the
relationship between the Endpoint and Endpoint gateway.

Note
234 All About Tivoli Management Agents

D
R
A
F
T

Figure 90. Logging to Endpoint Manager

1. When the Sentry monitor detects the condition that requires it to write log
into the log file located in the Endpoint Manager, the Endpoint issues the
upcall for invoking the LogToHostFile method on the Endpoint gateway.

2. The LogToHostFile method is invoked by the upcall from the Endpoint.
Then the information for logging is transferred to the queue. (If the
QueueConsumer method has not been invoked to get the monitor collection
information from the Endpoint Manager, the _get_collection method is
invoked by the Endpoint many times, and then the QueueConsumer method is
invoked, and then the Tivoli notice is sent to the server.)

3. After the LogToHostFile method is invoked without error, the Endpoint
gateway returns the result of the upcall to the Endpoint.

4. After returning the result of the upcall, the save_buffer method on the TMR
server is invoked remotely from the Endpoint gateway for writing the log
to the TMR server. As a result, the log is written to the log file on the
Endpoint Manager.

upcall Result

2

3

4

1

Queue

dm_ep_engine.exe
1

Endpoint

Endpoint Gateway

Endpoint Manager

LogToHostFile

save_buffer

2

4

Log File

sentry_gateway
TMA and Tivoli Management Applications 235

D
R
A
F
T

Logging to the Endpoint Gateway:
In this case, we assume the Sentry monitor writes logs to the log file located
on the Endpoint gateway. The following figure shows the logging procedure.

Figure 91. Logging to the Endpoint Gateway

1. When the Sentry monitor detects the condition that requires it to write log
information into the log file located in the Endpoint gateway, the Endpoint
issues the upcall for invoking the LogToHostFile method on the Endpoint
gateway.

2. The LogToHostFile method is invoked by the upcall from the Endpoint.
Then the information to be logged is transferred to the queue. (If the
QueueConsumer method has not been invoked to get the monitor collection
information from the Endpoint Manager, the _get_collection method is
invoked by the Endpoint many times, and then the QueueConsumer method is
invoked at that timing as well as sending Tivoli notices.)

3. After the LogToHostFile method is invoked without error, the Endpoint
gateway returns the result of the upcall to the Endpoint.

4. After returning the result of the upcall, the save_buffer method on the
Endpoint gateway is invoked locally for writing the log to the Endpoint

upcall Result

2

3

4

1

Queue

dm_ep_engine.exe
1

Endpoint

Endpoint Gateway

LogToHostFile

save_buffer

2

4
Log File

sentry_gateway

Endpoint Manager
236 All About Tivoli Management Agents

D
R
A
F
T

gateway. As a result, the log is written to the log file on the Endpoint
gateway.

Logging to Endpoint:
In this case, we assume the Sentry monitor writes the log to the log file
located on the Endpoint. The following figure shows the logging procedure.

Figure 92. Logging to Endpoint

1. When the Sentry monitor detects the condition that requires it to write log
into the log file located in the Endpoint, the Sentry engine process
(dm_ep_engine.exe) on the Endpoint attempts to write the log to the log
file.

2. The log is written to the local log file by the Sentry engine. No upcall is
issued in this case.

6.2.6.4 Role of the Sentry Gateway
As you can see, the sentry_gateway process plays the role of the proxy in the
TMA environment. When the sentry_gateway receives the request from the
Endpoint by an upcall, the sentry_gateway invokes the appropriate method
on the full Managed Node, for example the TEC server or TMR Server,
instead of the Endpoint. After the method invocation, the sentry_gateway
returns the result to the Endpoint. It acts as the proxy of the Endpoint Sentry
engine. This implementation is very important for understanding how
Distributed Monitoring supports the TMA.

dm_ep_engine.exe
1

Endpoint

2Log File

Endpoint Gateway

Endpoint Manager
TMA and Tivoli Management Applications 237

D
R
A
F
T

Figure 93. The Role of the sentry_gateway Process

6.2.7 Understanding Distributed Monitoring Behavior with TMA
In this section, we assume some problem situations, for example the network
goes down or the Endpoint gateway becomes unavailable. In this situation,
we determine whether the Sentry monitor can perform the actions configured
in the Sentry profile or not.

6.2.7.1 Case 1: Endpoint Manager is Unavailable
The Endpoint Manager becomes unavailable when the Sentry monitor is
monitoring something on the Endpoint. What happens? To find out, we
performed the following tests.

 • Logging to the Endpoint Manager

 • Logging to the Endpoint gateway

 • Logging to the Endpoint

 • Sending a TEC event to the TEC server

upcall Result

sentry_gateway

dm_ep_engine.exe

Endpoint

Endpoint Gateway

Sentry MethodT/EC Method

Proxy

Full Managed Node
238 All About Tivoli Management Agents

D
R
A
F
T

As a result, logging to the Endpoint gateway and logging to the Endpoint
were still functional even if the Endpoint Manager became unavailable (refer
to Figure 94 on page 239). The next table summarizes the results.

Table 42. Sentry Monitor without Endpoint Manager

In the above table, the "Auto Recover when EP Manager becomes available"
field means the Sentry monitor actions will work correctly again without any
operation when the Endpoint Manager becomes available.

Figure 94. The Sentry Monitor without the Endpoint Manager

6.2.7.2 Case 2: Endpoint Gateway is Unavailable
In this case, we assume the Endpoint gateway becomes unavailable when
the Sentry monitor is monitoring something on the Endpoint. What happens?

Monitor Action Result Auto Recover when EP Manager
becomes available

Logging to EP Manager Not Available Yes

Logging to EP gateway Available -

Logging to Endpoint Available -

Sending T/EC Event Not Available Yes

Down
Endpoint ManagerT/EC Server

EP

Endpoint Gateway Log File

Endpoint
Log File

Logging to EP Gateway

Logging to EP
TMA and Tivoli Management Applications 239

D
R
A
F
T

To discover this, we performed tests as in Case 1. We summarize the results
as follows:

Table 43. The Sentry Monitor without Endpoint Gateway

Figure 95. The Sentry Monitor without Endpoint Gateway

Monitor Action Result Auto Recover when EP Gateway
becomes available

Logging to EP Manager Not Available Yes

Logging to EP gateway Not Available Yes

Logging to Endpoint Available -

Sending T/EC Event Not Available Yes

Endpoint ManagerT/EC Server

EPEndpoint
Log File

Logging to EP

Endpoint Gateway Log File

Down
240 All About Tivoli Management Agents

D
R
A
F
T

6.2.7.3 Case 3: Endpoint Gateway Migration
This case is a little different from the other cases. We assume the Endpoint
gateway has migrated to the alternate gateway when the Sentry monitor is
monitoring something on the Endpoint. What happens? To find out, we
performed the tests as in case 1. We summarize the results as follows:

Table 44. Sentry Monitor and Endpoint Gateway Migration

Monitor Action Result Auto Recover when EP Gateway is
Migrated to Original EP Gateway
again

Logging to EP Manager Available Yes

Logging to EP Gateway Available Yes

Logging to Endpoint Available Yes

Sending T/EC Event Available Yes

In this case, we didn’t configure the alternate gateway. If there is any
alternate gateway, what happens? You should hit upon the answer if you
have already read chapter 5. When the Endpoint attempts to perform the
Sentry monitor action and the Endpoint can’t perform it, the Endpoint
recognizes it is isolated, so the Endpoint tries to connect to an alternate
gateway. This means, if you configure the appropriate alternate gateway,
the Endpoint recovers from this situation automatically. Of course, the
Distributed Monitoring software must be installed to the alternate gateway
before the Endpoint is isolated. But in this case, there is no alternate
gateway; so nothing happens.

Note
TMA and Tivoli Management Applications 241

D
R
A
F
T

Figure 96. Sentry Monitor and Endpoint Gateway Migration

As you can see, the Endpoint configuration is very flexible and absolutely
different from the configuration between the TMR server and Managed Node.
Of course, Distributed Monitoring should be installed to the alternate
gateway as well.

6.2.8 Database Backup and Sentry Monitors on the TMA
When you make a backup of the Tivoli object databases using the wbkupdb
command, and some Sentry monitors are running on the Endpoints, can the
wbkupdb store information about the Sentry monitors running on the
Endpoints? The answer is no. Therefore, if you are forced to do a restore, all
Sentry monitors running on Endpoints are forgotten. This means every time
you restore the databases, you need to distribute all Sentry profiles to all the
Endpoints if you would like to continue monitoring with the configurations you
had when you made the backup.

EP

Log File

Endpoint Manager

T/EC Server

Endpoint
Log File

Logging to EP

Endpoint Gateway

Log File Migration

Log File

T/EC Event

Send T/EC Event Log to File
242 All About Tivoli Management Agents

D
R
A
F
T

6.2.9 The wclreng Command and the TMA
The wclreng command is provided by Distributed Monitoring to clear the
Distributed Monitoring engine. However, you should take care of this
command when you use it for an Endpoint. Sometimes, the wclreng command
disables the Sentry monitor function. Below, we describe the cases when the
Sentry monitor becomes unavailable because of the wclreng command.

6.2.9.1 wclreng Command and Profile Distribution
In Version 3.6, we witnessed some unusual behavior that you should be
aware of. After you clear the Sentry engine on the Endpoint, sometimes no
Sentry profiles can be distributed. This situation may occur when you create
and distribute the profile in a dataless profile manager. The following figure
shows this situation.

When you restore the databases using the wbkupdb -r command, you
should reboot the Endpoint machine or kill the Sentry engine process
(dm_ep_engine.exe) forcibly (not recommend this way), because the Sentry
engine still continues monitoring with the latest configurations even if you
restore the databases. To keep consistency, we recommend you to reboot
the Endpoint machine after restoring the Tivoli object databases.

Note
TMA and Tivoli Management Applications 243

D
R
A
F
T

Figure 97. The wclreng Command and Profile Distribution

1. Distribute the Sentry profile defined in the dataless profile manager to the
Endpoint and the monitor defined in the Sentry profile begins to monitor.

2. Then clear the Sentry engine using the wclreng command.

3. After clearing the engine, modify the Sentry profile in the dataless profile
manager.

4. Then push the profile with an exact copy. After this operation, the profile
seems to be distributed to the Endpoint without problem. But the Sentry
monitor in the profile never monitors anything.

In this situation, there are no error messages in any log files; so it is difficult to
make sense of what happened.

6.2.9.2 wclreng Command and Flush Engine
Here is another abnormal situation that arose in our testing. When you create
the Sentry profile in the dataless profile manager and distribute it to the some
Endpoints, be careful to clear the Sentry engine of the Endpoint using the
wclreng command. Then the profile on all Endpoints will be cleared. The
following figure shows this situation.

wclreng

1 1

2
2

3

4

Modify Profile

3

4

Dataless
Profile Manager

Endpoint
(Sentry Engine)

Endpoint
(Sentry Engine)

Dataless
Profile Manager

Dataless
PM

Dataless
PM
244 All About Tivoli Management Agents

D
R
A
F
T

Figure 98. The wclreng Command and Flush Engine

1. Distribute the Sentry profile defined in the dataless profile manager to
some Endpoints.

2. On one of the Endpoints, clear the Sentry engine using the wclreng
command. Then the profiles distributed to the other Endpoints are deleted
as well.

wclreng
11

2

Endpoint
(Sentry Engine)

Dataless Profile Manager

Endpoint
(Sentry Engine)

Endpoint
(Sentry Engine)

1

As you can see, the wclreng used with a dataless profile manager may
exhibit some problems. To avoid problems, you should keep in mind the
following:

 • It is best to create profiles in classic profile managers and use dataless
profile managers as leaf nodes in your profile manager hierarchy. The
dataless profile manager should be used as a container for Endpoint
subscribers.

 • Be careful when using the wclreng command in the above situation.

Note
TMA and Tivoli Management Applications 245

D
R
A
F
T

6.3 Downcall Applications and the TMA

As we mentioned, the downcall oriented applications are normally simple.
Software Distribution is a typical downcall-oriented application and a good
example for understanding downcall-oriented applications. In this section, we
focus on Software Distribution and discuss the implementation
considerations, how Software Distribution is implemented on the TMA, and
the interaction between Software Distribution and the TMA.

6.3.1 Software Distribution and TMA
The deployment applications are also very popular applications for most
customers, and Software Distribution is one of the most-used applications
chosen from the Tivoli Management Applications suite.

File transfer and data transfer are the most typical subjects of systems
management. Tivoli provides Software Distribution, and Version 3.6 of the
Software Distribution supports the TMA. Basically, the operations are almost
the same as in the previous version of Software Distribution, but there are
some considerations for implementing it on the TMA. In this part of the book,
we introduce the considerations, hints and tips.

6.3.2 Installation Consideration
Software Distribution needs a special module for the Endpoint gateway; so
you have to make sure that you install the module to the gateways that the
Endpoint will be logged in to. The module is shown in the installation panels
as:

TME 10 Software Distribution Gateway, Version 3.6

If you forget to install the Software Distribution Gateway module to the
Endpoint gateway and attempt to distribute any file package to the Endpoint,
the following error messages will appear in the log file for Software
Distribution.

File Package: "Notes_ID"
Operation: install (m=5)
Finished: Wed Sep 30 11:32:43 1998

Source messages:
<none>

ishii:FAILED
Wed Sep 30 11:32:43 CDT 1998 (4): resource ‘/usr/local/Tivoli/bin/
lcf_bundle//bin/w32-ix86/TAS/MANAGED_NODE/fp_endpoint’ not found
================
246 All About Tivoli Management Agents

D
R
A
F
T

6.3.3 MDist Repeater and Endpoint Gateway
The MDist repeater function is one of the most important functions provided
by the Tivoli Management Framework service because data and information
can be transferred through the MDist repeater with the fan-out feature in the
TMR.

The Endpoint gateways are configured as MDist repeaters automatically
when you create them; so you don’t need to do any configuration for the
MDist repeater in the TMA environment. In other words, the Endpoint
gateway has the MDist repeater capability built in. If you are currently using a
Managed Node to repeat for MDist and you then create an Endpoint gateway
on the Managed Node, that Endpoint gateway becomes the MDist repeater.
You can no longer use the Managed Node as an MDist repeater.

At that time, the creating process of the Endpoint gateway removes the
current MDist repeater definitions from the Managed Node; then the creating
process creates the new MDist repeater on the Endpoint gateway. However,
all parameters defined on the former MDist repeater are passed to the new
MDist repeater; so your turning configurations for the former MDist repeater
will be kept.

6.3.4 Software Distribution and Endpoint Method
Software Distribution provides file or data transfer function to any managed
system in the Tivoli Management environment. All operations for Endpoints
would use the downcall. To understand the interaction between the Endpoint
and other managed resources, we introduce the example of the file package
distribution shown in Figure 99. In this example, we are configured as follows
(see Table 45).

Table 45. The Sample Configuration of Software Distribution

Configuration Location

File Source Host Endpoint Gateway (trout)

Destination Host Endpoint (ishii)

Log File Endpoint Manager (ishii2)

Sending Tivoli Notify None
TMA and Tivoli Management Applications 247

D
R
A
F
T

Figure 99. Distributing a File Package

1. When we executed the wdistrib command on the TMR server for
distributing the file package to the Endpoint, the fp_dist method was
invoked on the file package source host remotely.

2. The fp_dist method issued the downcall for starting the Endpoint method.
Then the dependency methods defined in the dependency manager would
be checked and downloaded if the Endpoint method cache did not already
contain them (or the correct version).

3. The lcfd daemon received the downcall from the Endpoint gateway and
invoked the Endpoint method (fp_endpoint.exe) locally.

4. Then the file package was transferred from the Endpoint gateway to the
Endpoint.

5. After transferring the file package, the privileged_write_to_file and
privileged_set_file methods were invoked on the TMR server for logging
the messages to the log file defined in the file package profile.

6. Then the fp_dist method received the result (normal end) from the
Endpoint. If you requested the sending of a Tivoli notice, the Tivoli notice
would be sent to the notification server at this time.

File
Package

Log File

fp_endpoint.exe

downcall

Remote Invoke

Result

1

2

3

4

5
privileged_write_to_file

privileged_set_file

fp_dist

6

Endpoint Manager

Endpoint Gateway
(File Package Source Host)

Endpoint
248 All About Tivoli Management Agents

D
R
A
F
T

6.3.5 Understanding Software Distribution Behavior with TMA
As you know, Software Distribution is a typical downcall-oriented application;
so basically, all components of the TMA environment, Endpoint Manager,
Endpoint gateway and Endpoint must be available when you distribute the
file package to any Endpoints.

Therefore, we assume the Endpoint gateway is migrated to the alternate
gateway before we distribute the file package to the Endpoint. To make sure
of whether the file package is sent to the Endpoint without an error or not, we
performed a test and show the summary of the result as follows.

Table 46. Distributing File Package with Migration

Figure 100. Distributing File Package with Migration

As you can see, the file package distribution was not affected by the Endpoint
gateway migration. However, again, the Software Distribution gateway
software must be installed on both of the Endpoint gateways in this case.

Action Result Auto Recover when EP Gateway is
Migrated to Original EP Gateway
again

Distribute File Package Available Yes

Endpoint Manager

Source
File

Endpoint Gateway

Migration

EPEndpoint File
TMA and Tivoli Management Applications 249

D
R
A
F
T

6.4 Other Applications and the TMA

Each Tivoli Management Application belongs to either the upcall-oriented
application type or downcall oriented-application type because all
applications must use the upcall or downcall to perform the management
operations. Most of the Tivoli Management Applications are
downcall-oriented applications. The following shows other typical applications
for each type.

Upcall Application Event Adapter

Downcall Application User Administrator

Now you have an understanding of how the upcall applications work and how
the downcall applications work. The detail of management operations are
different among the applications; however, the overview of the behavior is
similar. To understand it in detail, the log files (epmgrlog, gatelog, lcfd.log)
and the wtrace should be useful, as in the examples we introduced. In the log
files and in the wtrace output, the most important thing is what methods are
being issued and whether they are upcalls or downcalls.
250 All About Tivoli Management Agents

D
R
A
F
T

Chapter 7. Advanced Knowledge of the TMA

This chapter introduces advanced functions, as well as some undocumented
features of the Tivoli Management Agent. These can prove helpful when
using the TMA or when performing problem resolution.

7.1 The wadminep Command

The wadminep command has many uses. We have already seen how we can
use it to force an upgrade of the lcfd daemon. However, the wadminep
command provides not only the upgrade option, but also many powerful
functions for managing the TMA. Note that many of the parameters we
discuss are currently undocumented. This implies that some of these
parameters may not be available in future releases of this command.

7.1.1 Normal Usage of the wadminep command
Usually, the wadminep command is used for upgrading lcfd process itself as
follows.

wadminep ishii upgrade

In above example, ishii is the label of the Endpoint. If the wadminep command
detects that the version of the lcfd is lower than the available version at its
Endpoint gateway, it upgrades the lcfd executable. Normally, this kind of
upgrade process is executed as part of the Endpoint login_policy script.

7.1.2 Administrative Operations with the wadminep Command
The wadminep command performs many administrative operations on an
Endpoint client. The wadminep command is run from a Managed Node.

7.1.2.1 Authorization
The administrative commands require the admin role for the administrator
with the privilege of root or Administrator on the Endpoint. Browse commands
require the user role.

7.1.2.2 Arguments
The wadminep command is run with the following syntax.

wadminep [-h] endpoint_label command [arguments]

The meaning of the each parameter is as follows:
© Copyright IBM Corp. 1998 251

D
R
A
F
T

-h Display a detailed usage statement listing all the
commands available on wadminep.

endpoint_label Specifies the label of the Endpoint on which the command
will run.

command Specifies the operation to run on the specified endpoint.

7.1.2.3 Administrative Command
The following are the administrative commands we can specify with the
wadminep command.

copy_file old_filename new_filename Copy the old_filename to the
new_filename.

change_file_mode filename mode Change the permissions on the
specified file. This command is
valid on UNIX platforms only.

create_directory dir_name Create the specified directory on
the Endpoint.

exec_process Execute a process on the
Endpoint (blocking mode).

get_file source_file destination_file Retrieve a file from the Endpoint
and write its contents to the
specified destination.

kill_process Stop a process on the Endpoint.

move_file old_filename new_filename Move the old_filename to the
new_filename on the Endpoint.

reboot_system Reboot the specified Endpoint
machine. This command is valid
on Windows platforms only.

reexec_lcfd [config_arg] Stop and restart the Endpoint
daemon (lcfd) process.
Optionally, you can include
arguments from the lcfd
command to restart the Endpoint
daemon with a different
configuration.

remove_file filename Remove the specified file from
the Endpoint.
252 All About Tivoli Management Agents

D
R
A
F
T

rollback Revert the Endpoint back to the
previous version of the Endpoint
software.

send_file source_file destination_file Send the specified file to the
destination_file on the Endpoint.

spawn_process process Spawn the specified process on
the Endpoint (non-blocking
mode).

shutdown_lcfd endpoint_label Stop the Endpoint daemon
process. Use this command with
caution. Shutting down the
Endpoint severs your remote
connection to the Endpoint. You
will have to manually restart the
Endpoint.

upgrade Upgrade the Endpoint with
information stored in the
gateway repository. Use this
option to upgrade to newer
versions of the Endpoint
software.

7.1.2.4 Browse Command
The following are the browse commands we can specify with the wadminep
command.

view_bin_dir Return the location of the binary directory.

view_cache_index Display the Endpoint cache index file.

view_config_info Display the Endpoint configuration contained
in the last.cfg file.

view_directory pathname Display a file list for the specified directory.

view_file filename Display the contents of the specified text file to
the screen.

view_interpreter Return the Endpoint interpreter type.

view_lib_dir Return the location of the library directory.

view_log_file Display the contents of the Endpoint log file.

view_machine_id Display the Endpoint’s unique machine ID.
Advanced Knowledge of the TMA 253

D
R
A
F
T

view_run_dir Return the location of the directory from which
the Endpoint is running.

view_stage_dir Return the location of the staging directory.

view_statistics Display a list of Endpoint statistics including
cache size, cache hits, downcall hits and miss,
downcall history, and amount of time the
Endpoint has been running.

view_system_dir Return the location of the system directory.

view_temp_dir Return the location of the temporary directory.

view_upgrade_log Display the Endpoints of the upgrade history
log.

view_version Display the version of Endpoint code currently
running on the Endpoint.

7.2 TMA and the Tivoli Object Database

Basically, most of the administrative operations for the TMA can be done
using the Desktop or CLI (w commands); however, understanding the Tivoli
object database may help you with problem determination. In this section, we
introduce hints and tips for understanding the TMA and the Tivoli object
database.

7.2.1 Location of Tivoli Object Database
The Endpoint Manager uses both the TNR (Tivoli Name Registry) and its own
private .bdb files to keep the track of the TMA data. To resolve the scale goals
of the TMA architecture with the design of Tivoli’s B-tree implementation,
there is one .bdb file per Endpoint gateway. The following figure shows the
structure of the Tivoli object database in the TMA environment.

Use these commands with caution. They are not officially supported by
Version 3.6 of the Tivoli Management Framework. Only the upgrade option
is officially supported.

Note
254 All About Tivoli Management Agents

D
R
A
F
T

Figure 101. The epmgr.bdb Database

As you can see, this implementation allows us to manage thousands of
Endpoints in a single TMR. The Tivoli object master database (odb.bdb file)
does not contain detailed information regarding the Endpoints. The odb.bdb
database just contains entries for each Endpoint. The detailed information for
each Endpoint, for example the login_interfaces information, are actually
contained in the epmgr.bdb database. The epmgr.bdb database actually
contains the databases (.bdb files) for each Endpoint gateway which is
managed by the Endpoint Manager. The name of this file is the object
reference of the related Endpoint gateway. In addition, as expected, there is
the name registry entry for each Endpoint. Attached to this entry is the object
reference of the assigned gateway.

For example, the following is a sample of the <gw_oid>.bdb file in the
Endpoint Manager.

<GW_OID>.bdb<GW_OID>.bdb

epmgr.bdb

odb.bdb

OID = 0.0.0

Endpoint

Object Object Object Object Object

panda:root(/) ls $DBDIR/epmgr.bdb
1956524575.1.530.bdb 1956524575.2.21.bdb
1956524575.1.530.log 1956524575.2.21.log
panda:root(/)
Advanced Knowledge of the TMA 255

D
R
A
F
T

In this example, 1956524575.1.530 and 1956524575.2.21 are the object
references of the Endpoint gateways which are managed by the Endpoint
Manager. The following figure shows the physical location of each Tivoli
object database for managing the TMA.

Figure 102. Tivoli Databases for Managing TMA

As you can see, the Endpoint gateways have a copy of the <gw_oid>.bdb
database for each Endpoint gateway as a cache. The name of the database
file in the Endpoint gateway is the gwdb.bdb file. The gwdb.bdb database
contains not only a copy of the <gw_oid>.bdb database of the Endpoint
Manager but also other information for the Endpoints which have logged into
the Endpoint gateway. The gwdb.bdb database is synchronized with the
<gw_oid>.bdb database each time the Endpoint gateway boots, and you can
use the wep sync_gateways command for synchronizing the Endpoint
information stored by the Endpoint Manager, Endpoint gateway and Endpoint
(lcf.dat file) manually.

EP Manager

EP Gateway EP Gateway

epmgr.bdb

<gw_oid>.bdb

gwdb.bdb

EP

lcf.dat

TNR

odb.bdb<gw_oid>.bdb

gwdb.bdb
256 All About Tivoli Management Agents

D
R
A
F
T

The Endpoint has a data file for Endpoint login. Actually, this is not a Tivoli
object database, but contains important information for the Endpoint
behavior. The following table shows the actual location of each database.

Table 47. Tivoli Database Locations

In this table, $DBDIR is the /var/spool/Tivoli/<servername>.db directory by
default.

7.2.2 Contents of TMA Databases
To manage a TMA, each database is created, modified and managed by each
managing system, the Endpoint Manager, Endpoint gateway and Endpoint.
The following figure shows an overview of the contents of these databases.

Figure 103. The Contents of Tivoli Object Databases for Managing TMA

Database Location Directory

odb.bdb EP Manager $DBDIR/odb.bdb

gw_oid.bdb $DBDIR/epmgr.bdb/<gw_oid>.bdb

gwdb.bdb EP gateway $DBDIR/gwdb.bdb

lcf.dat Endpoint C:\Tivoli\lcf\dat\1\lcf.dat

EP Manager

EP Gateway EP Gateway

epmgr.bdb

<gw_oid>.bdb

TNR

odb.bdb

<gw_oid>.bdb

EP ListEP List

EP Method
Header Cache

EP List

gwdb.bdb

EP

lcf.dat

Interfaces List

Assigned GW

Cache Cache

EP List

gwdb.bdb

EP Method
Header Cache
Advanced Knowledge of the TMA 257

D
R
A
F
T

odb.bdb This database on the TMR Server contains a lot of
information for managing the whole TMR, and is
considered the master database of the TMR. Most of the
data are for managing full Managed Nodes or PC Agents.
This database contains the Tivoli Name Registry (TNR).
The TNR is a quick lookup table for object labels and
object IDs.

The TNR contains the Endpoint label, Endpoint object ID
and last known Endpoint gateway object ID. A process
(for instance, the wep command) can use this information
in the TNR to look up the assigned gateway by the
Endpoint label. Of course, the label of the Endpoint
gateways and Endpoint Manager are included in the TNR
as well. There are also odb.bdb databases on each
Managed Node, but they do not contain the TNR.

<gw_oid>.bdb This database on the TMR Server contains the Endpoint
list for the Endpoint gateway. The Endpoint Manager is
responsible for managing the Endpoint list and Endpoint
gateway mapping for all Endpoints and Endpoint
gateways in the TMR. Therefore, the Endpoint list is
updated by the Endpoint Manager every time an Endpoint
is added or deleted. The Endpoint list contains the
information about which Endpoints are logging into the
Endpoint gateway and the Endpoint’s information. This
database is located in the
$DBDIR/epmgr.bdb/<gw_oid>.bdb on the Endpoint
Manager.

gwdb.bdb Each Endpoint gateway has a cache of the <gw_oid>.bdb
database that contains only the Endpoints that the
Endpoint gateway is responsible for. This database
consists of two major parts. One is, as we mentioned, a
cache of the Endpoint list which is managed by the
Endpoint Manager. The Endpoint list is read in to the
cache from the Endpoint Manager when the Endpoint
gateway starts. Another is the information about the
Endpoint methods. This is the cache of the imdb.bdb
database of the Endpoint Manager, and it contains the
method header information. This database is located in
the $DBDIR/gwdb.bdb on the Endpoint gateways.

lcf.dat This data file is actually not a Tivoli object database.
However, this data file is very important for the Endpoint
258 All About Tivoli Management Agents

D
R
A
F
T

configuration. The assigned gateway information and the
Endpoint login interfaces list are contained in this data file.
The information included in the lcf.dat file is equivalent to
the login_info structure defined in the mrt_wire_adr.h
header file. If you install Tivoli ADE, you can find this
header file under the
C:\Tivoli\bin\lcf_bundle\include\w32-ix86\mrt directory. We
developed a special program that shows the contents of
the lcf.dat file as follows.

7.2.3 The wbkupdb Command and TMA Information
From the previous section, it should be clear that with the TMA architecture,
new considerations arise with respect to the use of the wbkupdb command.

The wbkupdb command will back up and restore both the name registry and
the Endpoint Manager .bdb files. This is consistent with the historical
semantics of the wbkupdb command. However, it also creates an issue with
TMA management. If you perform a restore, how does that affect the
Endpoints that have logged in since the last backup? The answer is that they
are all forgotten. While not ideal, this is the current behavior of Tivoli 3.6. In
order to work around this, one must manage the TMA data by hand with
respect to the wbkupdb command.

To restore the Endpoint information correctly, when you restore the backup,
you need to restart the oserv daemon (odadmin reexec) of the TMR server. If
you don’t do that, the wep ep_name status command returns the unreachable
status even if you can find the ep_name in the output of the wep ls command.

C:\Tivoli\lcf\dat\1>dumpdat
version=131077
status=1
hostname=salmon
interp=w32-ix86
unique_id=1QGF6G16V4+9Y5YTPXBH0000054E
httpd_password=tivoli:{jgU[-rn
odnum=291
region=1189622596
ep addr=9.3.1.193+1029
gw addr=9.3.1.133+9494
gw_alias addr=9.3.1.133+9494
login i/f addr=9.3.1.133+9494
login i/f addr=9.3.1.134+9494
login i/f addr=9.3.1.149+9494
login i/f addr=9.3.1.133+9494
C:\Tivoli\lcf\dat\1>
Advanced Knowledge of the TMA 259

D
R
A
F
T

7.2.4 Exploring the Tivoli Object Database
The Tivoli object database stores object information, and each object that is
stored in the database has a unique object ID (OID). The format of the Tivoli
object database is proprietary; therefore, we use one of the following ways to
access the entries related to the TMA in the Tivoli object database.

 • Use the Desktop interface

 • Use the w commands

 • Use low-level commands

The Desktop interface provides very limited function for browsing the TMA
entries of the database. We are able to delete a TMA entry from the database
using Desktop (refer to Figure 104).

Figure 104. The Endpoint List after the Endpoint Login

Most of the administrative operations regarding the TMA can be performed
using the w commands. The following w commands are used for modifying or
deleting the TMA entries in the database. The wep command is one of the
most useful and frequently used w commands for TMA operations.

In some cases, the w commands may not provide the level of access we
need. In this case, knowledge of the low-level commands is very useful and
should help you.
260 All About Tivoli Management Agents

D
R
A
F
T

7.2.4.1 Exploring Endpoint Gateway Entries
The resource type Gateway was added for implementing the LCF architecture
and for supporting the TMA. We can check it easily by using the wlookup -R
command. Browsing or modifying the entries under the Gateway resource type
(object) is not so difficult because it is the same as for other resource types,
such as a ManagedNode. The following example shows how to change the label
of the Endpoint gateway.

1. First of all, we need to know the object ID (OID) of the Endpoint gateway.

2. Then we execute the objcall command for browsing all the entries under
the gateway’s OID.

3. Now we can get these attributes of the gateway using the idlattr
command.

4. To change the label of the gateway, we run the idlattr command as
follows:

wlookup -ar Gateway
ishii_gw 1588251808.1.819#TMF_Gateway::Gateway#

objcall 1588251808.1.819 contents
ATTRIBUTE:_BOA_id
ATTRIBUTE:allow_logins
ATTRIBUTE:class_objid
ATTRIBUTE:collections
ATTRIBUTE:debug_level
ATTRIBUTE:flags
ATTRIBUTE:impl_root_a
ATTRIBUTE:interps
ATTRIBUTE:label
ATTRIBUTE:max_concurrent_jobs
ATTRIBUTE:port
ATTRIBUTE:pres_object
ATTRIBUTE:pro
ATTRIBUTE:pro_name
ATTRIBUTE:protos
ATTRIBUTE:proxy
ATTRIBUTE:resource_host
ATTRIBUTE:run_policy
ATTRIBUTE:session_timeout
ATTRIBUTE:skeleton
ATTRIBUTE:sort_name
ATTRIBUTE:state
ATTRIBUTE:the_path

idlattr -t -g 1588251808.1.819 label string
"ishii_gw"

idlattr -t -s 1588251808.1.819 label string ’"new_label"’
Advanced Knowledge of the TMA 261

D
R
A
F
T

As you can see, we can explore the Endpoint gateway object hierarchy using
the objcall or idlattr command.

7.2.4.2 Exploring Endpoint Manager’s Entries
Exploring the entries under the Endpoint Manager object is the same as the
case of the Endpoint gateway object. In this example, we introduce how to
change the max_jobs attribute of the EndpointManager object. The max_jobs
attribute is a value for controlling how many tasks the Endpoint Manager can
handle at the same time. Therefore, in large environments, this value may
affect the throughput for Endpoint logins in the TMR. The default value of the
max_jobs attribute is 20.

1. First of all, we need to know the Endpoint Manager’s object ID (OID). The
wlookup command is our command line interface into the Tivoli Name
Registry (TNR) and can be used for searching the OID of the Endpoint
Manager.

2. For browsing the attributes and methods of the EndpointManager object, we
use the objcall command as follows:

objcall 1588251808.1.517 contents
ATTRIBUTE:_BOA_id
ATTRIBUTE:actions
ATTRIBUTE:add_targets
ATTRIBUTE:after_install_policy
ATTRIBUTE:allow_install_policy
ATTRIBUTE:behavior
ATTRIBUTE:class_objid
ATTRIBUTE:class_type
ATTRIBUTE:collections
ATTRIBUTE:credentials_lookup
ATTRIBUTE:def_policies
ATTRIBUTE:delete_targets
ATTRIBUTE:dialog
ATTRIBUTE:extension
ATTRIBUTE:filters
ATTRIBUTE:impl_name
ATTRIBUTE:impl_type
ATTRIBUTE:indirect
ATTRIBUTE:initialized
ATTRIBUTE:interfaces
ATTRIBUTE:label
ATTRIBUTE:max_iom_records
ATTRIBUTE:max_jobs
ATTRIBUTE:members
ATTRIBUTE:migrate_targets
ATTRIBUTE:pres_object
ATTRIBUTE:pro
ATTRIBUTE:pro_name
ATTRIBUTE:prototypes
ATTRIBUTE:resource_host

wlookup -ar EndpointManager
epmgr_1588251808.1.517 1588251808.1.517
262 All About Tivoli Management Agents

D
R
A
F
T

ATTRIBUTE:run_policy
ATTRIBUTE:select_gateway_policy
ATTRIBUTE:skeleton
ATTRIBUTE:sort_name
ATTRIBUTE:state
ATTRIBUTE:val_policies
ATTRIBUTE:version
METHOD:_get_add_targets
METHOD:_get_credentials_lookup
METHOD:_get_delete_targets
METHOD:_get_max_iom_records
METHOD:_get_max_jobs
METHOD:_get_migrate_targets
METHOD:_get_run_policy
METHOD:_set_add_targets
METHOD:_set_credentials_lookup
METHOD:_set_delete_targets
METHOD:_set_max_iom_records
METHOD:_set_max_jobs
METHOD:_set_migrate_targets
METHOD:_set_run_policy
METHOD:add_boot_method
METHOD:add_gateway
METHOD:after_install_policy
METHOD:allow_install_policy
METHOD:batch_get_cache_info
METHOD:cache_dump
METHOD:create_gateway
METHOD:delete_endpoints
METHOD:delete_gateway_info
METHOD:delete_gateways
METHOD:display_view
METHOD:endpoint_add_backref_optimized
METHOD:endpoint_login
METHOD:endpoint_move_to_policy_region
METHOD:endpoint_remove_backref
METHOD:endpoint_set_label
METHOD:endpoint_view
METHOD:epmgr_boot
METHOD:fixup_tnr
METHOD:gateway_info_dump
METHOD:gateway_is_booting
METHOD:get_endpoint_cache
METHOD:get_endpoint_key_value
METHOD:get_endpoints
METHOD:get_endpoints_by_label
METHOD:get_gateway_info
METHOD:get_number_endpoints
METHOD:get_rpt_format
METHOD:goodbye
METHOD:has_endpoints
METHOD:iom_cache_dump
METHOD:iom_get_endpoint_cache
METHOD:list_boot_methods
METHOD:migrate
METHOD:orphan_gateway
METHOD:register_callback
METHOD:remove_boot_method
METHOD:remove_callback
METHOD:select_gateway_policy
METHOD:set_endpoint_key_value
METHOD:set_gateway_info
METHOD:set_last_gateway
Advanced Knowledge of the TMA 263

D
R
A
F
T

METHOD:sync_gw_epcache
METHOD:test_boot_method
METHOD:update_endpoints
METHOD:update_map

3. For getting the value of the attributes we can use the idlattr command. In
this case we retrieve the max_jobs value as follows.

4. Now, we modify this value from 20 to 30 using the idlattr command.

7.2.4.3 Exploring Endpoint Entries
As we mentioned, the information on the Endpoint is not stored in the
odb.bdb object database; so this case is a little different from the other cases
with the Endpoint gateway and Endpoint Manager.

When the Endpoint Manager needs to map the Endpoint object reference or
the label to its record in the Endpoint Manager .bdb file, it first performs the
name registry lookup to find the assigned gateway. Then it performs a
normal key lookup in the indicated .bdb file. After that, the related cache is
updated if it is needed. The following figure shows this operation.

idlattr -t -g 1588251808.1.517 max_jobs short
20

idlattr -t -s 1588251808.1.517 max_jobs short 30

The max_jobs attribute is not supported by Version 3.6.1 of the Tivoli
Management Framework. Instead of max_jobs, other new attributes are
supported by Version 3.6.1 of the Tivoli Management Framework. Please
refer to the Chapter 10, “Tivoli Management Agent Performance
Conisderations” on page 385 for more information about this subject.

Note
264 All About Tivoli Management Agents

D
R
A
F
T

Figure 105. Accessing the Endpoint Entry in the Tivoli Object Databases

1. In this case, we assume a migration operation. First of all, the Endpoint
Manager performs a TNR lookup to obtain the object reference of the
Endpoint and its assigned gateway, which are related to each other during
the migration by the Endpoint label as follows:

wlookup -r Endpoint ep_label

and

idlcall $TMR.1.26 lookup ’"Endpoint"’ ’"ep_label"’

2. Then the Endpoint Manager updates the indicated <gw_oid>.bdb
database.

3. To keep consistency of the databases, the Endpoint Manager updates the
appropriate cache (gwdb.bdb) as well. In this process, if the Endpoint
Manager needs to update the other databases, for example the lcf.dat or
TNR, the Endpoint Manager updates these databases as well. For
instance, if you execute the wep set gateway or wep set interfaces
command, the Endpoint Manager must update the lcf.dat file.

Accessing Endpoint information is handled somewhat differently. To browse
the Endpoint information stored in the epmgr.bdb database, the Tivoli

<GW_OID>.bdb

TNR

odb.bdb

<GW_OID>.bdb

gwdb.bdb gwdb.bdb

EP
lcf.dat

1

2

3

2

3

3

Endpoint Gateway

Endpoint Manager

Endpoint Gateway
Advanced Knowledge of the TMA 265

D
R
A
F
T

Management Framework provides special commands, such as the wep
command. These commands are available only for the Endpoint or Endpoint
gateway gateways. In other words, most of the w commands do not interact
directly with Endpoints (such as wping).

Since the Endpoint information is not stored in the odb.bdb database, we
cannot access the data under the Endpoint object using the normal objcall or
idlattr commands, which were introduced in the previous section. Therefore,
if you would like to access the Endpoint information, you need to use one of
the following methods.

 • Using the special w commend. (such as, wep)

 • Invoke the method which accesses the Endpoint information using the
idlcall command.

For example, when you change the label of the Endpoint, you can use the
idlcall command to invoke the _set_label method as follows:

where the 1588251808.17.508+ is the object ID of the Endpoint which will be
changed in the label, and the ep_label is the desired label. To change the
Endpoint label, this is the only way because there is no w command to do that.
The information about the Endpoint label is stored in both the TNR and
Endpoint list (epmgr.bdb). In this case, the information is updated by the
_set_label method.

7.3 Boot Process

To support the TMA, processes are run on each of the managing resources.
In this section, we introduce the processes running on the Endpoint Manager,
Endpoint gateway, and Endpoint, and how these processes are started. The
following figure shows how each process starts automatically.

idlcall -T top 1588251808.17.508+ _set_label ’"ep_label"’
266 All About Tivoli Management Agents

D
R
A
F
T

Figure 106. Boot Method of Each Process

7.3.1 ep_mgr Process
The ep_mgr process runs on the TMR Server and plays the role of Endpoint
Manager. This process is executed by the oserv daemon automatically using
its boot_method list when the oserv daemon starts. The oserv daemon is
executed automatically from the definition in the /etc/inittab file when the
system boots. The boot_method list contains the definition of the process,
which is started automatically by the oserv daemon when the oserv daemon
starts. To confirm this, you can check the boot_method definition as follows:

/etc/inittab

/etc/rc.nfs oserv

ep_mgr

boot_method
List

odb.bdb

/etc/inittab

/etc/rc.nfs oserv
boot_method

List
gateway

odb.bdb

lcfd.exe

lcfep.exe

/etc/inittab

/etc/rc.tma1 lcfd

NT Services

Endpoint Manager

Endpoint Gateway

Endpoint (UNIX) Endpoint (NT)

NT Registry

objcall 0.0.0 self
1956524575.1.0
objcall 1956524575.1.0 getattr oserv
1956524575.1.2
objcall 1956524575.1.2 boot_method list
Scheduler
EndpointManager
HTTPd
ActiveDesktopList
#

Advanced Knowledge of the TMA 267

D
R
A
F
T

As you can see, the EndpointManager is defined in the boot_method list of the
Endpoint Manager machine. Therefore, the Endpoint Manager process
(ep_mgr) is executed automatically every time the oserv daemon starts.

The boot_method list is configurable; so you can modify the entry in the
boot_method list using the objcall command if you need to.

7.3.2 The gateway Process
The gateway process runs on the Endpoint gateway and plays the role of the
Endpoint gateway. This process is also executed by the oserv daemon
automatically using its boot_method list when the oserv daemon starts. The
following is the sample of the boot_method list on the Endpoint gateway
machine.

The 1956524575.2.41#TMF_Gateway::Gateway# entry is the definition to start the
Endpoint Gateway process (gateway) automatically.

7.3.3 The lcfd Process for the UNIX Endpoint
The lcfd process runs on the UNIX Endpoint and plays the role of the
Endpoint. This process is executed automatically from the definition in the
/etc/inittab file when the system boots.

When the Endpoint software is installed, the installation process creates an
entry in the /etc/inittab file and /etc/rc.tma1 file to start the lcfd process every
time the system boots.

7.3.4 lcfd.exe Process for NT Endpoint
The lcfd.exe process runs on NT and plays the role of the Endpoint. This
process is executed automatically by the NT Services definition.

When the Endpoint software is installed, the installation process defines the
NT service for the Endpoint (Tivoli Endpoint) to start the lcfd.exe process
every time the system boots. Then the lcfd daemon starts automatically

objcall 0.0.0 self
1956524575.2.0
objcall 1895624683.2.0 getattr oserv
1956524575.2.2
objcall 1895624683.2.2 boot_method list
HTTPd
EventServer
SentryEngine
1956524575.2.41#TMF_Gateway::Gateway#
#

268 All About Tivoli Management Agents

D
R
A
F
T

when the system boots. The following figure shows the configuration dialog
for the NT services. In this figure, the Tivoli Endpoint service is configured as
being automatic.

Figure 107. NT Service for Endpoint

7.3.4.1 lcfep.exe Process
On a Windows Endpoint, the lcfep.exe process is running as well. This
process is executed automatically by the following definition in the Windows
registry.

lcfep:REG_SZ:"C:\Tivoli\lcf\bin\w32-ix86\mrt\lcfep.exe"

You can see the above definition in the following directory of the Windows
registry editor.

\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

The lcfep.exe process displays the Tivoli logo mark when you log into the
Windows system and displays the Tivoli icon in the Windows taskbar as well.
The following figure shows the Tivoli logo mark and icon.
Advanced Knowledge of the TMA 269

D
R
A
F
T

Figure 108. Tivoli Icon and Logo Mark

This process is independent of the lcfd.exe process; so the lcfep.exe starts
and displays the icon even if the lcfd.exe process does not run. So, the
existence of the Tivoli icon is a true indicator of the status of the lcf daemon
itself.

This process can tell display Tivoli Endpoint statistics. To view the Endpoint
statistics, click the Tivoli icon with the right button of the mouse; then select
View Statistics (refer to Figure 109 on page 271). In this operation, the
lcfep.exe process uses a pipe interface to get the information from the lcfd
daemon.

Tivoli Logo Mark Tivoli Icon
270 All About Tivoli Management Agents

D
R
A
F
T

Figure 109. Tivoli Endpoint Statistic Window

7.4 Endpoint Login and Methods

During the Endpoint login process, some methods are invoked when the
Endpoint login completes. In Chapter 5, “Anatomy of TMA Behavior” on page
135, we introduced how the Endpoint takes part in the TMR and how the
Endpoint Manager and Endpoint gateway participate. Basically, each
process corresponds to a method; so understanding which method is invoked
during the Endpoint login helps you to know the internal operations of the
TMA environment. In this section, we introduce the methods that are invoked
during the Endpoint initial login process. The following figure shows the
methods that are invoked in the Endpoint initial login process.
Advanced Knowledge of the TMA 271

D
R
A
F
T

Figure 110. Endpoint Initial Login and Methods

1. The Endpoint sends the initial login request to the appropriate Endpoint
gateway and the Endpoint gateway forwards the login request to the
Endpoint Manager.

2. The Endpoint Manager recognizes that the initial login request arrives and
starts the initial login process by issuing the endpoint_login method as
follows.

select_gateway_policy

allow_install_policy

endpoint_login

new_endpoint

after_install_policy

update_endpoints

login_policy

1

2

3

4

5

6

7

8

9

1 5 7

7

Endpoint Manager

Endpoint Gateway

Endpoint
272 All About Tivoli Management Agents

D
R
A
F
T

3. Then the Endpoint Manager runs the allow_install_policy by issuing the
allow_install_policy method.

loc-ic 53 M-hdoq 2-44 408
 Time run: [Wed 02-Dec 11:45:58]

 Object ID: 1189622596.1.517#TMF_LCF::EpMgr#
 Method: endpoint_login
 Principal: root@panda.itsc.austin.ibm.com (-2/-2)
 Path: __epmgr_implid
 Input Data: (encoded):

 {
 131077 0 "salmon" "w32-ix86" "FWQ7P94KRVTR0T02HHS300000577"
 0
 {
 0
 }
 "NULL" 0 0
 {
 0 1 1
 {
 16 "0x02 0x02 0x25 0x16 0x09 0x03 0x01 0xc1 0x00 0x00 0x00
 0x00 0x00 0x00 0x00 0x00 "
 }

 }

 {
 0 0 0
 {
 0
 }

 }

 {
 0
 }

 {
 2
 [

 {
 0 1 1
 {
 16 "0x02 0x00 0x25 0x16 0x09 0x03 0x01 0x85 0x00 0x00
 0x00 0x00 0x00 0x00 0x00 0x00 "
 }

 }

 {
 0 1 1
 {
 16 "0x02 0x00 0x25 0x16 0x09 0x03 0x01 0x95 0x00 0x00
 0x00 0x00 0x00 0x00 0x00 0x00 "
 }

 }

]

 }

 }
 "1189622596.2.19#TMF_Gateway::Gateway#"
Advanced Knowledge of the TMA 273

D
R
A
F
T

4. After checking the return value of the allow_install_policy, the Endpoint
Manager runs the select_gateway_policy by issuing the
select_gateway_policy method. In this policy, to find the Endpoint gateway,
some lookup operations are invoked.

loc-ic 54 M-H 1-53 252
 Time run: [Wed 02-Dec 11:45:58]

 Object ID: 1189622596.1.517#TMF_LCF::EpMgr#
 Method: allow_install_policy
 Principal: root@panda.itsc.austin.ibm.com (-2/-2)
 Path: /var/spool/Tivoli/panda.db/methghqJya
 Input Data: (encoded):

 {
 8
 [
 "salmon" "OBJECT_NIL" "w32-ix86" "1189622596.2.19#TMF_Gatew
 ay::Gateway#" "9.3.1.193+9494" "1189622596" "0" "5"
]

 }

 {
 1
 [
 "LCF_LOGIN_STATUS=0"
]

 }

 {
 0
 }

loc-ic 55 M-H 1-53 252
 Time run: [Wed 02-Dec 11:46:01]

 Object ID: 1189622596.1.517#TMF_LCF::EpMgr#
 Method: select_gateway_policy
 Principal: root@panda.itsc.austin.ibm.com (-2/-2)
 Path: /var/spool/Tivoli/panda.db/methjZqJyb
 Input Data: (encoded):

 {
 8
 [
 "salmon" "OBJECT_NIL" "w32-ix86" "1189622596.2.19#TMF_Gatew
 ay::Gateway#" "9.3.1.193+9494" "1189622596" "0" "5"
]

 }

 {
 1
 [
 "LCF_LOGIN_STATUS=0"
]

 }

 {
 0
 }
274 All About Tivoli Management Agents

D
R
A
F
T

5. After referring to the select_gateway_policy, the Endpoint Manager
attempts to connect to the Endpoint gateway by issuing the new_endpoint
method. At that time, the epmgr.bdb database is updated if the Endpoint
Manager can connect to the Endpoint gateway, and the Endpoint
Manager assigns the dispatcher number and creates a private key for the
Endpoint.
Advanced Knowledge of the TMA 275

D
R
A
F
T

rem-ic 58 M-H 1-50 715
 Time run: [Sun 31-Jan 17:38:34]

 Object ID: 1956524575.2.21#TMF_Gateway::Gateway#
 Method: new_endpoint
 Principal: root@panda.itsc.austin.ibm.com (0/0)
 Path: __gateway_internals_implid
 Input Data: (encoded):
 "1956524575.5.508+#TMF_Endpoint::Endpoint#" "ishii"
 {
 "C0F7NLVTS1CBVXH4CZDK00000593"
 {
 0
 }
 "OBJECT_NIL" "OBJECT_NIL" "OBJECT_NIL" 0
 {
 15 "0x15 0x5e 0x47 0xcd 0x31 0x92 0x1c 0xd5 0x5a 0xa9 0x78 0x30
 0x6b 0x70 0x00 "
 }
 "w32-ix86"
 {
 54 "0x61 0x84 0x00 0x00 0x00 0x30 0x02 0x04 0x00 0x00 0x00 0x00
 0x02 0x04 0x00 0x00 0x00 0x01 0x02 0x04 0x00 0x00 0x00 0x01 0x61
 0x84 0x00 0x00 0x00 0x18 0x02 0x04 0x00 0x00 0x00 0x10 0x04 0x10
 0x02 0x00 0x25 0x16 0x09 0x35 0xc4 0xd8 0x00 0x00 0x00 0x00 0x00
 0x00 0x00 0x00 "
 }
 "OBJECT_NIL" "tivoli:r)T!*‘un"
 {
 0
 }
 0 0 0 131077
 }

 {
 131077 0 "ishii" "w32-ix86" "C0F7NLVTS1CBVXH4CZDK00000593"
 0
 {
 15 "0x15 0x5e 0x47 0xcd 0x31 0x92 0x1c 0xd5 0x5a 0xa9 0x78 0x30
 0x6b 0x70 0x00 "
 }
 "NULL" 5 1956524575
 {
 0 1 1
 {
 16 "0x02 0x00 0x25 0x16 0x09 0x35 0xc4 0xd8 0x00 0x00 0x00
 0x00 0x00 0x00 0x00 0x00 "
 }

 }

 {
 0 0 0
 {
 0
 }

 }

 {
 0
 }

 {
 1
 [

 {
 0 1 1
 {
 16 "0x02 0x00 0x25 0x16 0x09 0x03 0xbb 0x84 0x00 0x00
 0x00 0x00 0x00 0x00 0x00 0x00 "
 }
276 All About Tivoli Management Agents

D
R
A
F
T

6. Then the Endpoint Manager runs the after_install_policy by invoking the
after_install_policy method.

7. Checking the return value of the after_install_policy. At this time, the
endpoint_login method returns the result of the method invocation; then
the Endpoint Manager runs the update_endpoints method, and the
epmgr.bdb database is finally updated. The update_endpoint method is
invoked each time the Endpoint logs into the Endpoint gateway, even if it
is a normal login.

loc-ic 67 M-H 1-53 287
 Time run: [Wed 02-Dec 11:46:05]

 Object ID: 1189622596.1.517#TMF_LCF::EpMgr#
 Method: after_install_policy
 Principal: root@panda.itsc.austin.ibm.com (-2/-2)
 Path: /var/spool/Tivoli/panda.db/methqdqJyc
 Input Data: (encoded):

 {
 8
 [
 "salmon" "1189622596.234.508+#TMF_Endpoint::Endpoint#"
 "w32-ix86" "1189622596.2.19#TMF_Gateway::Gateway#" "9.3.1.19
 3+9494" "1189622596" "234" "5"
]

 }

 {
 1
 [
 "LCF_LOGIN_STATUS=0"
]

 }

 {
 0
 }
Advanced Knowledge of the TMA 277

D
R
A
F
T

8. The Endpoint receives the gateway assignment and logs into the
appropriate Endpoint gateway.

9. Finally, to run the login_policy, the login_policy method is invoked on the
Endpoint gateway, and the Endpoint initial login has been completed. The
login_policy method is invoked each time the Endpoint logs into the
Endpoint gateway even if it is a normal login.

loc-ic 68 M-hdoq 2-47 420
 Time run: [Wed 02-Dec 11:46:08]

 Object ID: 1189622596.1.517#TMF_LCF::EpMgr#
 Method: update_endpoints
 Principal: root@panda.itsc.austin.ibm.com (-2/-2)
 Path: __epmgr_implid
 Input Data: (encoded):

 {
 1
 [

 {
 "salmon" "1189622596.234.508+#TMF_Endpoint::Endpoint#"

 {
 "FWQ7P94KRVTR0T02HHS300000577"
 {
 0
 }
 "OBJECT_NIL" "OBJECT_NIL" "OBJECT_NIL" 196608
 {
 15 "0x15 0x62 0x48 0x6f 0x7d 0x6f 0x1b 0xa8 0x78 0x43
 0x79 0xf7 0x2c 0xc6 0x00 "
 }
 "w32-ix86"
 {
 54 "0x61 0x84 0x00 0x00 0x00 0x30 0x02 0x04 0x00 0x00
 0x00 0x00 0x02 0x04 0x00 0x00 0x00 0x01 0x02 0x04 0x00
 0x00 0x00 0x01 0x61 0x84 0x00 0x00 0x00 0x18 0x02 0x04
 0x00 0x00 0x00 0x10 0x04 0x10 0x02 0x02 0x25 0x16 0x09
 0x03 0x01 0xc1 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
 "
 }
 "OBJECT_NIL" "tivoli:r)T!*‘un"
 {
 0
 }
 4128 0 0 2
 }

 }

]

 }
278 All About Tivoli Management Agents

D
R
A
F
T

As you can see, the wtrace command provides really detailed and useful
information about the internals of the TMA operations. Most TMA actions can
be checked using the wtrace command.

7.5 Endpoint Status File

The Endpoint provides a status file which contains status information for the
Endpoint. By default, the status file (lcfd.st) should be located in the following
directory.

UNIX /opt/Tivoli/lcf/dat/1

Windows C:\Program Files\Tivoli\lcf\dat\1

The following shows an example of the Endpoint status file.

The status field shows the current status of the Endpoint. This field can
contain the following values.

 • INITIALIZING

 • NORMAL

 • ISOLATED

loc-ic 50 M-H 2-3 252
 Time run: [Wed 02-Dec 11:46:14]

 Object ID: 1189622596.2.19#TMF_Gateway::Gateway#
 Method: login_policy
 Principal: root@panda.itsc.austin.ibm.com (-2/-2)
 Path: /var/spool/kodiak.db/methmvkXUa
 Input Data: (encoded):

 {
 8
 [
 "salmon" "1189622596.234.508+#TMF_Endpoint::Endpoint#"
 "w32-ix86" "1189622596.2.19#TMF_Gateway::Gateway#" "9.3.1.19
 3+9494" "1189622596" "234" "5"
]

 }

 {
 0
 }

 {
 0
 }

state=INITIALIZING
timestamp=Feb:04:22:52:23
lcfdport=9494
Advanced Knowledge of the TMA 279

D
R
A
F
T

 • MIGRATE

 • TMRREDIRECT

 • IGNORED
280 All About Tivoli Management Agents

D
R
A
F
T

Chapter 8. Overview of TMA Internals and Application Development

This chapter provides information about developing applications which
support the TMA, such as:

 • Design considerations

 • TEIDL compiler

 • Programming environment

 • Runtime library for the TMA applications

 • Dependencies

 • Sample programs

 • How to build applications

In this chapter the term LCF (Lightweight Client Framework) is used, as well
as TMA, to follow the Application Development for the Lightweight Client
Framework manual.

8.1 Application Design

As you have read in the previous chapters, the core features of LCF include:

 • Three-tier structure - Endpoint Manager, Endpoint gateway and Endpoint

 • Endpoints - small, dataless clients that have no client database and that
do not have the full Tivoli Framework installed

 • The scalability possible within the LCF environment - one gateway can
manage thousands of Endpoints

An application must be designed and written based on these features. The
application development environment for LCF is very similar to that of the full
framework. However, there are some differences in the method invocation for
the Endpoints. The following sections describe them.

8.1.1 Tivoli Object Methods
The next two sections briefly describe how methods work in both the
traditional Tivoli Management Framework and in LCF.

8.1.1.1 Methods in the Full Framework Environment
In the full Framework Environment (TMR Servers and Managed Nodes), all
methods are invoked in the same way. From any system within the TMR, a
method can be invoked on any other system. The only thing you have to know
© Copyright IBM Corp. 1998 281

D
R
A
F
T

for invocation is the object reference, which consists of the TMR Region
Number, the Dispatcher Number and the Object Number.

Figure 111. Remote Call in the Full Framework

The calling program passes the object reference to the Managed Node. The
TMR Server is used to resolve it through the object dispatcher, locate the
methods for that object, retrieve the method header, and invoke it.

The key point here is that any application on any Managed Node can invoke a
method on any other Managed Node.

8.1.1.2 Methods in the TMA Environment
In the TMA environment, the method invocations are different from the full
Framework environment. The differences are:

1. An application running on the Endpoint can only invoke methods on
objects residing in its gateway. Restricting method requests from an
Endpoint to its gateway allows the Endpoint to be simpler and smaller,
since it does not need to resolve and locate remote objects. For this
reason, an application that will require the Endpoints to manipulate remote
objects needs the Endpoint gateway component. The Endpoint talks to
this Endpoint gateway component, which has full access to the TMR to
invoke the appropriate methods on the target object(s). This design
enables the Endpoint to provide a higher degree of scalability compared
with the previous versions of the Tivoli Management Framework.

TMR Server

Client

Method Request

Managed
Node

Managed
Node

Implementation

Remote Invoke

Local Invoke

ALI Resolve

DB
282 All About Tivoli Management Agents

D
R
A
F
T

2. In LCF, the method calls are different in the case of the upcalls (the
methods invoked from the Endpoint) and the downcalls (the methods
targeted for an object residing on an Endpoint).

3. The Endpoint methods use the tools and services of the Tivoli ADE, but
they are implemented using a special application mini-runtime library
(libmrt) specific to the LCF. The following are the new terms used in the
LCF environment.

LCF Object An object that runs on the Endpoint.

Endpoint Method A method that runs on the Endpoint. The Endpoint
method is invoked as the result of a downcall.

 gateway Method A method that runs on the Endpoint gateway. The
gateway method is usually used as the result of an
upcall made by the Endpoint associated with the
Endpoint gateway.

Downcall The method invocation from the gateway “down” to the
Endpoint.

Upcall The method invocation from an Endpoint "up" to the
Endpoint gateway.
Overview of TMA Internals and Application Development 283

D
R
A
F
T

8.1.1.3 Endpoint Methods
An Endpoint method is a method that runs directly on the Endpoint. It is
implemented using the special application mini-runtime library, libmrt, which
provides a subset of the Tivoli operations.

When the Endpoint method is invoked on an Endpoint, the Endpoint spawner
daemon uses the method executable stored in its cache. If the method is not
in the cache or is not the most current version, the gateway will transfer the

An LCF object is an object running on an Endpoint. LCF object references
have a special form:

R.D.P+ where:

 • R is the TMR number.

 • D is the number of the object dispatchers for the Endpoint.

 • P is the number of the prototype object of the class for which the
method is defined.

 • + indicates the LCF object reference.

The object dispatcher numbers are uniquely identified for the Endpoint.
The TMR server maintains the mapping of the Endpoint dispatcher
numbers to the Endpoint gateway objects so it can route a request to the
appropriate Endpoint gateway.

LCF objects are not created as instances in the object system and do not
have a unique, per-object state maintained for them by the object system.
Therefore, there is no need to create an instance of each object on the
Endpoints as you do in the full Framework. Instead, they are born when the
appropriate prototype object and the appropriate Endpoint dispatcher
numbers are combined in this form. The Endpoint method runs on the
Endpoint without calling the create_instance method.

To make use of LCF objects, the object reference is obtained from the
registry or profile manager in the above form and invoked. The system
locates the appropriate shared state (defined by the prototype object) and
services the method request at the appropriate location.

Because there is no per-object data associated with an object by the
system, applications have to assume responsibility for maintaining their
own persistent store outside the context of the LCF-based services.

Note
284 All About Tivoli Management Agents

D
R
A
F
T

method’s executable to the Endpoint before invoking it. The Endpoint then
adds the method to its cache for future use. The Endpoint methods differ from
full Framework methods in the following ways:

 • The TMA Endpoint is single-threaded. The Endpoint methods must be
single-threaded, and only per-method methods are supported for the
Endpoint methods. That is, each time a method is invoked on the
Endpoint, a new instance of the method executable loads, executes, and
terminates.

 • There is no transaction support for Endpoints in the LCF environment.

 • You must specify dependencies for Endpoint methods. The Endpoint
method may be implemented across several files. Besides the executable
containing the method, the method may require supporting files, such as
shared libraries, message catalogs or other files. These supporting files
are called dependencies and are defined as such in the method's
definition. The Endpoint gateway will ensure that all dependencies for the
method have been downloaded to the Endpoint before invoking the
method.

In the full Framework, only the method body, the binary program or script that
contains the method entry point is stored in the method header. Any
supporting files that the method requires are assumed to be present. This is
true because all binaries, library, message catalogs and so on are installed
on every Managed Node and TMR server.

LCF Endpoints do not have any methods or supporting files present on them
when the Endpoints are initially installed. The method bodies are identified in
the standard method header and are downloaded when they are needed.
Because the dependencies (the supporting files) must also be downloaded
when they are missing, the dependencies must be called out in the Endpoint
method so they can be present when they are needed.

8.1.1.4 Gateway Methods
A gateway method runs on the Endpoint's assigned gateway. It runs as the
result of an upcall request from the Endpoint or as the result of the request
from another Managed Node. Since the Endpoint cannot communicate
directly with other nodes, it must initiate all actions by invoking the upcall on
the gateway method. The gateway method then takes advantage of the full
Tivoli Management Framework to resolve and locate the appropriate target
object(s) and invoke the proper methods.

8.1.2 Downcalls and Upcalls
This section describes the activity involved with upcalls and downcalls.
Overview of TMA Internals and Application Development 285

D
R
A
F
T

8.1.2.1 The Sequence of a Downcall
The process whose method request originates on the Managed Node and is
executed on the Endpoint is called a downcall. The Endpoint receives a
program name to execute, any arguments and runs the program. After the
Endpoint method completes, the Endpoint returns the result back through the
gateway. If the requested Endpoint method does not already exist on the
Endpoint or if the method on the Endpoint is out of date, the method
executable is downloaded to the Endpoint. If the method has dependencies,
they are also downloaded.

The following brief sequence summarizes the downcall from the Managed
Node to the Endpoint:

Figure 112. The Downcall Processes

1. The TMR server maps the dispatcher in the object to the gateway object
ID. The gateway object ID is used to determine which Managed Node the
gateway is running on. In this case, the plus sign (+) in the object
reference designates that the object runs on the Endpoint.

2. The TMR object dispatcher sends the request to the gateway servicing the
Endpoint.

TMR Server

Client

Method Request

Managed
Node

Managed
Node

Implementation

Remote Invoke

Local Invoke

DB

Gateway

lcfd

Downcall

DB

Result
2

3

45

1

Result
5

286 All About Tivoli Management Agents

D
R
A
F
T

3. The gateway resolves the method on the corresponding behavior object
and performs authorization of the invocation by invoking the Tivoli
principal.

4. The method runs on the Endpoint with the downcall. The parameters are
sent; then the method runs, and the MDist data is transmitted from the
gateway if it is needed.

5. The results are passed back to the gateway. The gateway then returns the
results to the caller.

8.1.2.2 The Sequence of Upcall
Not all Endpoint applications need to make upcalls. However, if the Endpoint
application attempts to invoke a method located in a Managed Node, the
Endpoint makes the upcall by calling an IDL compiler-generated stub. Instead
of passing an object reference to the stub function, the caller passes the
class name.

Unlike method invocation in the full Framework, the upcall always runs the
gateway method on the host machine of the gateway. The application that
supports upcalls must provide both the Endpoint code and the gateway upcall
implementation.

The gateway attempts to resolve the method and perform necessary
authorization without making the call to the object dispatcher on the TMR
server. The method header can be retrieved from the method header cache,
as it is for downcalls. The object groups for an LCF object are determined on
a per-Endpoint basis; that is, the Endpoint is placed in a security group, and
all objects on that Endpoint are members of the same security group.

The Endpoint gateway tells the Managed Node object dispatcher to start the
gateway method; the object dispatcher starts the daemon for the method, if
not already started, and the daemon then proceeds. The results are returned
through the gateway daemon back to the Endpoint.

The following figure illustrates the flow-of-control when the Endpoint performs
the upcall by invoking the gateway method.
Overview of TMA Internals and Application Development 287

D
R
A
F
T

Figure 113. The Upcall Processes

1. The Endpoint sends the request to the gateway.

2. If the gateway can resolve the method header, it tells the object dispatcher
on the Managed Node to invoke the method.

3. If it cannot resolve the method header, it goes to the TMR Server to get
the header.

4. When the header is returned to the gateway, the gateway tells the
managed node to invoke the method.

5. The method is invoked on the Managed Node.

6. Results are passed back to the gateway.

7. The gateway passes the results back to the Endpoint.

Each time your application makes an upcall, it contacts lcfd, which seals the
upcall data and sends it to the gateway. The data is sealed so that it cannot
be modified on the wire without detection, but it is visible on the wire. Only
keys in the data are encrypted for privacy.

TMR Server

Implementation

Managed
Node

Client

Upcall

DB

Gateway

DB

Method Request

3

6
Local Invoke

2,4

7

lcfd

1

5

288 All About Tivoli Management Agents

D
R
A
F
T

8.1.2.3 Making Upcalls: Contacting lcfd Daemon
The Endpoint method implementations can make upcalls without contacting
the LCF daemon (lcfd). However, client programs need to contact lcfd
daemon to make upcalls. To contact lcfd daemon, the client program must
know the communication settings that the lcfd daemon uses and be able to
determine the port that the lcfd daemon uses. To run upcalls, you need:

 • The $LCF_DATDIR directory

or

 • The appropriate lcf_env.sh source file. The lcf_env.sh file resides in the
uniquely numbered subdirectory in the known location on each interp.

8.1.2.4 Upcall Authorization
In the full Framework environment, Tivoli uses the operating system user
authentication and then maps operating system users to Tivoli principals.
However, Endpoints may vary in their native functionality. They may not have
a multi-user operating system; they may not be secure, and so on.

To make authentication easier for the application, Endpoints have the
inherent capability to invoke methods that have ANY_ACL in their access
control list (ACL). This is useful for applications that perform asynchronous
upcalls; they can provide benign information to the application. (Examples of
this type of application are Tivoli Distributed Monitoring and Tivoli Inventory.)
The security of applications that choose to take advantage of this feature
must be carefully designed in the following ways:

 • Methods called by Endpoints must have ANY_ACL in their ACL list.

 • Methods called by Endpoints must have high enough roles to invoke
methods.

The application designers should ensure that cascaded object calls
performed by gateway method implementations do not have security risks,
since they can be indirectly invoked by anyone.

8.1.3 Scalability Considerations for TMA Applications
This section discusses considerations to keep in mind when you design
applications for the LCF environment and describes the components of an
LCF application. When designing your LCF application, pay attention to the
following points.

 • The scalability of applications in the LCF. If an operation occurs on one
Endpoint, it probably could occur on hundreds or thousands of Endpoints
at the same time. Design your application to use the scalability features
Overview of TMA Internals and Application Development 289

D
R
A
F
T

that are part of the LCF. This includes, for upcalls, using an upcall
collector daemon to collect and forward data. For downcalls, use the
MDist repeater capability the gateway provides. Please refer to the
Application Development for the Lightweight Client Framework for more
conceptual information about the upcall collector.

 • There is no database or other persistent store on the Endpoints.

 • You must consider the functionality needed on both the client and server
sides of your application.

The fact that Endpoints are dataless affects application design. Except for the
LCF daemon (lcfd) itself, there is no framework application database or other
application-specific state kept on the Endpoint.

The following are the scalability considerations you should keep in mind when
design your LCF application.

 • Minimize the Endpoint application footprint.

 • No persistent store on Endpoints.

 • Data flows to and from the Endpoints.

 • Use the three-tiered design.

8.1.3.1 Minimize Endpoint Application Footprint
Be sure your application's Endpoint code is no larger than it needs to be.
Make full use of libmrt, adding only code that is necessary. Be aware that
your application's size affects the following.

 • Space required on the Endpoint gateway

 • Space and download time for the Endpoint

Method implementations and dependencies are downloaded to Endpoints on
demand. Endpoint binaries and shared libraries are downloaded from the
gateway's implementation repository. The larger they are, the more space is
required on the gateway's implementation repository to store this Endpoint
code. Remember that Endpoint methods and dependencies for each
interpreter type are stored on each gateway.

The larger the Endpoint code, the longer it takes to download methods and
dependencies to Endpoints. After they are downloaded, each binary and
shared library competes for Endpoint disk cache space. This means that, if
the cache is full, a binary or shared library may be removed and have to be
downloaded the next time it is needed.
290 All About Tivoli Management Agents

D
R
A
F
T

8.1.3.2 Storing Data
There should be no state on an Endpoint or gateway unless it is
temporary, transient, or uses the cache. Any Endpoint-specific data that
needs to be accessed by entities other than that Endpoint should not be
stored on the Endpoint. The most common place to store information is in
a RIM repository, although the object database may also be used.

Remember that Endpoints are targets of distributions, sources of events,
and so on. Communicating with Endpoints to find information that has
been stored has a cost: Communication over wide, slow, disparate
networks is expensive.

It is important to minimize the network crossings of data. Data stored
across these networks is difficult to access; if there are external
references to it or copies of it, it is even harder to keep consistent.

8.1.3.3 Data Flow to and from Endpoints
Data sent to multiple Endpoints should use MDist to take advantage of the
MDist repeater fan-out and network bandwidth management capabilities
that are part of the gateway. Because the framework provides no way to
fan-in data, applications that send data “up” should do so in a scalable
manner. Large amounts of data should be sent by only a few Endpoints at
a time. For example, if your application is polling data, do not activate a
poll on more than a few Endpoints at a time.

8.2 Introduction to Tivoli ADE Extended IDL

In the LCF environment, CORBA IDL is used to define object interfaces. It is
the same case with development in the full Framework. The TEIDL compiler
that is used for the full Framework is used in the LCF environment. We will
discuss the TEIDL compiler in this section.

According to the CORBA specification, the purpose of the IDL is to provide a
standard for defining interfaces that client objects call and object
implementations provide. It does not, however, provide a standard for
implementation or installation.

Thus, when you define your interface in IDL, be aware that not only method
implementation, but also a program that generates and installs a class
hierarchy must also be generated.

Tivoli ADE therefore provides the following extensions to the OMG IDL.

 • Implementation
Overview of TMA Internals and Application Development 291

D
R
A
F
T

 • Implementation inheritance

 • Installation and initialization

 • Hierarchical exception classes

These extensions are provided in a parallel, but separate, language: Tivoli
Extended IDL (TEIDL). The grammar for TEIDL follows the same lexical and
syntactic conventions as those specified by CORBA for IDL.

8.2.1 TEIDL Compiler Input
When you develop your application using TEIDL, you should create the
following files that define, implement, and install your interface:

 • The interface definition file, which has a name containing an extension of
.idl.

 • The implementation specification file, which has a name containing an
extension of .imp.

 • The program specification file, which has a name containing an extension
of .prog.

 • The installation specification file, which has a name containing an
extension of .ist.

For more information about TEIDL input files, please refer to 8.7.4.1, “The
IDL Files” on page 324.

8.2.2 TEIDL Compiler Output
When you have defined an IDL interface, you must invoke the TEIDL compiler
to produce the necessary source code for your interface. The TEIDL compiler
produces the following output (excluding the N/A item):

Table 48. TEIDL Output

Name File Name Type Linkage

CORBA TME

Clie
nt

Svr Clie
nt

Svr

Public Header <pfx1>.h CORBA X X X X

t_<pfx1>.h TME X X

Defines Header <pfx1>_defs.h COMMO
N

X X X X
292 All About Tivoli Management Agents

D
R
A
F
T

Auxiliary Header <pfx1>_aux.h COMMO
N

X X X X

Auxiliary Source <pfx1>_aux.c COMMO
N

X X X X

Stub Source <pfx1>_stub.c CORBA X

TME Stub
Wrapper

t_<pfx1>_stub.c TME X

N/A Appl.
Main

X X

Main Program <pfx3>.c COMMO
N

X X

Private Header <pfx1>_imp.h CORBA X X

t_<pfx1>_imp.h TME X

Private Source <pfx1>_imp.c CORBA X X

t_<pfx1>_imp.c TME X

Skeleton Source <pfx2>_skel.c CORBA X X

TME Skeleton
Liner

t_<pfx2>_skel.c TME X

Method Template <pfx2>_meth.c CORBA X

t_<pfx2>_meth.c TME X

Install Script <pfx1>.cfg COMMO
N

Install tar File <pfx1>_ist.tar COMMO
N

IR tar File <pfx1>_ir.tar COMMO
N

Name File Name Type Linkage

CORBA TME

Clie
nt

Svr Clie
nt

Svr
Overview of TMA Internals and Application Development 293

D
R
A
F
T

 • pfx1: prefix of input file name

 • pfx2: prefix of input file name or program name

 • pfx3: program name

The TEIDL compiler produces three sets of files as follows.

 • TME - Used for applications that call Tivoli stubs

 • CORBA - Used for applications that call CORBA stubs

 • Common - Used to implement and install any applications regardless of
which stubs they call

When you design your applications, you have the option of providing clients
that use Tivoli stubs and skeletons or CORBA stubs and skeletons.
Subsequent sections describe the difference between these files.

8.2.2.1 Tivoli (TME 10) Output
Tivoli ADE provides several services that make it easier to write distributed
applications. You should use the TME 10 files generated by the TEIDL
compiler if you plan to use either of these services.

 • TME 10 Nested Transactions

 • TME 10 Exceptions

Please refer to the Framework Service Manual nested transactions and
exceptions.

The TEIDL compiler generates the following TME 10 files.

TME 10 private header Contains private APIs for TME 10 applications

TME 10 method template Contains templates for methods that use TME
10 nested transactions or TME 10 exceptions

TME 10 public header Contains TME 10 APIs for client use

TME 10 private source Contains definitions of accessor and mutator
functions implemented in methods that use

This table contains the CORBA and TME Client/Server linkage requirement
information. This information is for the full Framework side of client/server.
For the Endpoint side, please refer to 8.8.1, “Sequence of Steps for
Building a TMA Application” on page 343.

Note
294 All About Tivoli Management Agents

D
R
A
F
T

TME 10 nested transactions and TME 10
exceptions

TME 10 skeleton liner Contains TME 10 skeleton liners that interface
with the TME 10 CORBA skeleton

TME 10 stub wrapper Contains definitions of TME 10 stub wrappers,
which are declared in the TME 10 public
header

The TME 10 stub wrappers and skeleton liners contain code wrapped around
CORBA stubs and CORBA skeletons. They are thus CORBA compatible and
can call, and be called from, CORBA-compatible stubs.

You should not modify the files listed in this section, except for the TME 10
method template(s). The method template files contain only the required
preprocessor statements and empty method bodies.

Use these template files to implement the methods required for your
application. You need to be aware of the other TME 10 files for the purpose of
compiling and linking your application.

8.2.2.2 CORBA Output
If you do not want to use TME 10 nested transactions or TME 10 exceptions,
you should use the following CORBA files produced by the TEIDL compiler

Private header Contains private APIs for CORBA applications

Method template Contains templates for methods that do not use TME
10 nested transactions or TME 10 exceptions

Public header Contains CORBA APIs for client use

Private source Contains definitions of accessor and mutator functions
implemented in methods that do not use TME 10
nested transactions and TME 10 exceptions

Skeleton source Contains the skeletons for object implementations that
do not use TME 10 nested transactions or TME 10
exceptions

Stub source Contains definitions of stub functions declared in the
CORBA public header

You should not modify the files listed in this section, except for the method
template(s). The method template files contain only the required
preprocessor statements; you use them to implement the methods required
Overview of TMA Internals and Application Development 295

D
R
A
F
T

for your application. You should be aware of the other files for the purpose of
compiling and linking your application.

8.2.2.3 Common Output
The following TEIDL compiler-generated files are used by all applications,
regardless of whether they use TME 10 nested transactions or TME 10
exceptions.

Configuration script Contains the commands necessary to install your
application

Installation tar file Contains information for the installation script

Auxiliary header Contains the following:

 • Function declarations for compiler-generated marshal routines

 • Marshal tables for each IDL operation and attribute

Auxiliary source Contains the following:

 • TypeCode constant definitions

 • Type repository information

 • Definitions of compiler-generated marshal routines

 • Definitions of copy/equal functions for interface types

Defines header Contains #define for operation and attribute names
used by the BOA to locate the correct entry point in
an implementation

Main program The main program for the object implementation

8.2.3 The Stub and the Skeleton
In the CORBA environment, the client program calls the stub routine, and the
server method implementation is called from the skeleton routine. This
communication is managed by the ORB runtime.The following figure
illustrates the flow of the normal remote method call.
296 All About Tivoli Management Agents

D
R
A
F
T

Figure 114. CORBA Stub and Skeleton

The purpose of the CORBA client stub is to manage the transfer of data from
the client program to the ORB and to pass returned data back to the client. In
this sequence, it performs two hidden tasks:

 • Marshals the parameters passed to it as part of request

 • Unmarshals the return data from the object implementation

If you are using TME 10 transactions and exceptions, the stub must also
manage these items. The compiler therefore produces a TME 10 wrapper for
each CORBA-compliant stub, which facilitates the management of TME 10
transactions and exceptions.

The purpose of the CORBA server skeleton is to manage the transfer of data
from the ORB to the object implementation and to manage the return of the
data to the ORB. In this sequence, it performs two additional tasks:

 • Unmarshals the request from the client

 • Marshals the return data from the object implementation

Client

Client Stub

Server
Implementation

Server Skeleton

Object Request Broker

In the CORBA environment, the CORBA method requester is called the
client, and the method implementation that provides service is called the
server. In this case, the client does not mean Endpoint. In the same way,
the server may become a client at the next cascaded call.

Note
Overview of TMA Internals and Application Development 297

D
R
A
F
T

If you are using TME 10 transactions and exceptions, the skeleton must also
manage these items. The compiler therefore produces the TME 10 liner for
each CORBA-compliant skeleton, which facilitates the management of TME
10 transactions and exceptions.

8.2.4 Method Templates
The Tivoli ADE extended compiler produces two C source file templates for
each method specified in your implementation files: a TME 10 template and a
CORBA template. You should implement your method using only one of these
two files.

Before you implement your method, choose the appropriate method template.
If your method uses TME 10 exceptions or TME 10 transactions, implement it
using the TME 10 method template whose name has the following form:
t_<pfx2>_meth.c, where <pfx2> is the name of the implementation file.

If your method does not fit into one of the presented categories, implement it
using the standard CORBA method template whose name has the following
form: imp-file-name_meth.c, where imp-file-name is the name of the
implementation file.

The following code fragment depicts the typical TME 10 method template:

The original IDL file Upcall.idl and the implementation file Upcall.imp are
shown in 8.7.4, “The Upsamp Files” on page 324.

/*
 **
 *
 * File Name: t_Upcall_main_meth.c
 * Tivoli EIDL Compiler (Version 2.0, Date 09/19/97)
 * generated ANSI C Tivoli method implementation File.
 *
 * Edit this file to fill in method implementations.
 **
 */
#include <tivoli/t_Upcall.h>
#include <tivoli/t_Upcall_imp.h>
#include <tivoli/ExException.h>

void t_imp_LCF_iUpcall_method(
 LCF_Upcall _LCF_Upcall,
 Environment *_ev,
 transaction _transaction,
 char * input,
 char ** output) {
}

298 All About Tivoli Management Agents

D
R
A
F
T

The template provides the necessary preprocessor directives and the
operation with a signature which contains the parameter that specifies the
transaction type. The compiler produces the template contents from the
information in your IDL and TEIDL files.

The method template contains the directive to include ExException, which
enables the method to catch and throw exceptions derived from this class.
This is different from the CORBA method template, which does not contain
the reference to any TME 10 exception class.

After you run the TEIDL compiler, you can open the file and edit it using a
standard editor such as vi or emacs. The TEIDL compiler also produces the
complementary header file, but it is complete. Therefore, you don’t need to
modify it.

8.2.5 Configuration Script
When you run the TEIDL compiler, it produces the configuration script which
contains the commands for installing the classes defined in your TEIDL files.
After running the compiler, you should run this script before attempting to
instantiate any classes or initiate requests of any objects.

When you run the script, it will add the appropriate class references to the
library in the Tivoli Management Region (TMR). By these references, when
the service of the class is requested, the ORB can correctly identify the class
and pass the request to it. See the Application Services Manual for
information about TMRs.

After running the script, your class is installed and initialized. You can then
create class instances and initiate requests of those instances as required by
your program.

All Tivoli classes in each TMR are registered in the name registry for the TMR
by the configuration script. The Tivoli Name Registry (TNR) is the primary
means for managing object references, user-friendly names for classes, and
instances of those classes. See the Application Services Manual for more
information about the name registry.

8.2.6 Building a Client-Server Program
Table 48 on page 292 lists the files required to build your client-server
program. You must compile and link indicated sources together to build client
and server application. Please refer to the 8.8, “Building the Sample
Application” on page 342 for more information about the build operation.
Overview of TMA Internals and Application Development 299

D
R
A
F
T

8.3 Tools for Endpoint Applications

The tools needed by applications are included in the Endpoint gateway
repository, $BINDIR/../lcf_bundle/bin/$INTERP/tools. The applications (for
example, the task library) that have need to access the tools such as the
Bourne Shell (sh.exe) and Perl (perl.exe) on the Endpoint must establish the
dependency on the gateway to cause the lcfd daemon to download the
tool(s) on demand.

To establish this dependency, first create a dependency set (with the wdepset
command) and then associate it with a method (with the wchdep command).
For information about how to get tools to the Endpoint, see “Using
Dependencies to Deploy Tools to Endpoints” on page 318.

8.3.1 LCF Environment for Methods and Tasks
This section discusses the available environment when the lcfd daemon
spawns the method or task.

Certain environment variables are exported for the methods and tasks that
the lcfd daemon spawns. When the lcfd daemon spawns a method or task
on the Endpoint, these variables determine the environment in which the
spawned process runs. The following variables, which are set when the lcfd
daemon starts, are available for use by methods and tasks.

LCF_BINDIR Directory for Endpoint binaries.

LCF_CACHEDIR Cache directory for the Endpoint. This directory contains
methods and dependencies that downloaded by the lcfd
daemon for the Endpoint application.

LCF_DATDIR Directory for Endpoint configuration information (last.cfg)
and log files.

LCF_LIBDIR Directory for Endpoint libraries (libmrt, libcpl, and so on).

LCF_TMPDIR Temporary directory. This directory can be used by
methods to store data.

These variables cannot be changed dynamically. All values are in absolute
paths and are obtained from these sources in the following order:

1. The default set: The programmatic defaults are set when the lcfd
daemon starts. The applications cannot change these defaults.

2. The last.cfg file: You can override the default set by the lcfd for
$LCF_CACHEDIR by changing the value in this file; the change is
persistent across the system boots.
300 All About Tivoli Management Agents

D
R
A
F
T

3. The command line: You can override the default set by using the lcfd or
lcfd.sh commands.

The default paths are determined by the install configuration of the product.
The base path which is set in the installation, such as the /Tivoli/lcf, the install
program builds the other paths on this basis. For example, on Windows NT,
when you set the base path to C:\Tivoli\lcf, the defaults would be:

LCF_BINDIR=C:\Tivoli\lcf\bin\w32-ix86\mrt
LCF_LIBDIR=C:\Tivoli\lcf\lib\w23-ix86
LCF_DATDIR=C:\Tivoli\lcf\dat\1
LCF_CACHEDIR=C:\Tivoli\lcf\dat\1\cache
LCF_TEMPDIR=C:\temp

8.3.2 LCF Environment for CLIs
You can setup the environment variables on the Endpoint that enables you to
run CLIs on Endpoints. You set these environment variables by implementing
them in the setup script. These variables can then be used by an application
when it runs on an Endpoint. These variables can also be passed by an
application or by the CLI to the lcfd.

8.3.2.1 Setup Scripts for CLIs on Endpoints
The environment setup file for Endpoints, lcf_env.*, sets up the environment
on the Endpoint so that applications running on the Endpoint can use CLIs,
do upcalls, and so on. These environment variables define directory locations
and other environment information for the LCF Endpoints and are set by the
environment setup scripts, analogous to the setup scripts (setup_env.*) for
the Tivoli management applications. The users don’t need to source the
environment setup script to run the lcfd, but applications need them.

8.3.2.2 Environment Variables Set in the Scripts
The scripts set up environment variables for paths on the Endpoints, such as
the path to the root directory and the directory for libraries. There are two
user-configurable paths on the Endpoint: the LCF root directory (the top
directory of the LCF installation) and the path to the cache directory. When
the lcfd is installed, all other paths are set relative to these directory
locations. The environment variables in the setup scripts contain the
directories that are set relative to the LCF root directory and the cache
directory. The following describe the variables set by the environment setup
scripts.

LCF_BINDIR The directory for Endpoint binaries. Contains lcfd. Set to
$LCFROOT/bin/$INTERP/mrt by the setup script.
Overview of TMA Internals and Application Development 301

D
R
A
F
T

LCF_CATDIR The directory for message catalogs on the Endpoint. Set
to $LCFROOT/msg_cat by the script.

LCF_DATDIR The directory for the Endpoint configuration file (last.cfg)
and the log file.

LCF_LIBDIR The directory for Endpoint libraries (libmrt, libcpl, and so
on). Set to $LCFROOT/lib/$INTERP by the setup script on
platforms (such as UNIX) that use separate search path
environment variables for executables and shared
libraries. Set to $LCF_BINDIR for platforms (such as PCs)
that use the same search path environment variable for
both executables and shared libraries.

LCF_TOOLSDIR The directory, by convention, where the out-of-cache tools
are placed when downloaded to the Endpoint.
LCF_TOOLSDIR is set to $LCFROOT/bin/$INTERP/tools.

LCFROOT The root directory for the Endpoint: the directory in which
the user installed the LCF.

INTERP The interpreter type for the Endpoint. The available values
are shown below.

Table 49. Interpreter Types

Operating System Interpreter Type

AIX 3.2.5 aix3-r2

AIX 4.1.2 through 4.1.5, 4.2, and 4.3 aix4-r1

HP/UX 9.00 through 9.07 hpux9

HP/UX 10.01, 10.10, and 10.20 hpux10

HP/UX 11 hpux10

NetWare 3 nw3

NetWare 4 nw4

OS/2 os2-ix86

OS/390 os390

OS/400 V3R2, V3R7, V4R1, and V4R2 os400

Solaris 2.3, 2.4, 2.5, 2.5.1, and 2.6 solaris2

SunOS 4.1.2, 4.1.3, and 4.1.4 sunos4

Windows NT 3.5.1 and 4.0 w32-ix86
302 All About Tivoli Management Agents

D
R
A
F
T

NLSPATH The directory used by applications to determine the
language to use. $NLSPATH is appended to
$LCF_CATDIR/$L/$N.cat;$NLSPATH by the script.

PATH The path variable. PATH is added to $LCF_BINDIR.

TISDIR Sets to $LCF_DATDIR by the script. At normal login, lcfd
checks to see if it has its codeset file; if not, the gateway
sends it. The codeset file is written to $LCF_DATDIR/xxxx,
where xxxx is the name of the codeset the lcfd requested.
For example, the codeset for a Solaris 2.x box running in
English is ISO88591.

Some platforms use the same search path environment variables for both
executables and shared libraries. Other platforms, such as UNIX, use
separate search path environment variables for the executables and the
shared libraries as follows.

LD_LIBRARY_PATH The variable for the shared libraries on Solaris 2 and
SunOS 4. LD_LIBRARY_PATH is added to
$LCF_LIBDIR.

LIBPATH The variable for the shared libraries on AIX 3.2 and
AIX 4.1. LIBPATH is added to $LCF_LIBDIR.

SHLIB_PATH The variable for the shared libraries on HPUX 9 and
HPUX 10. SHLIB_PATH is added to $LCF_LIBDIR.

8.3.3 Debugging Endpoint Method
There are two ways to debug Endpoint methods in the LCF environment:

 • Use the ADE debugging tools from the full Framework, such as the wdebug
command. With this tool, you can debug one method at a time.

 • Use the -D debug_flags=1 option to start the lcfd. With this option, you can
stop each Endpoint method when it starts and attach the debugger. In this
way, you can debug all methods on the Endpoint. For example, to debug
you can use the command:

lcfd -D debug_flags=1

Windows 3.x win3x

Windows 95 win95

Operating System Interpreter Type
Overview of TMA Internals and Application Development 303

D
R
A
F
T

When each method starts, the lcfd prints to the console the method name,
and the process it starts. It then suspends the methods so you can attach the
debugger.

8.4 Application Runtime Library

The LCF application mini-runtime library (libmrt) contains functions you use
to implement Endpoint methods. This library provides the smallest subset of
library functions needed to implement the LCF method executable for the
Endpoint. Using this special application runtime library helps to keep the
Endpoint portion of the application as small and simple as possible. The
libmrt contains subsets of the following functions provided by the full
Framework:

 • Memory management

 • Distributed exceptions

 • Sequence manipulations

 • File system input/output

 • Logging functions

 • ADR marshalling functions

The following sections summarize the functions available in the libmrt library.

8.4.1 Memory Management
The library provides the subset of memory management functions that works
with either local or global memory:

 • Use local memory for the temporary allocations that are automatically
freed after use.

 • Use global memory for the all allocations that must be persistent.

The table below summarizes the memory management functions available for
Endpoint methods.

Table 50. Memory Management Functions

Routine Name Description

mg_malloc Allocates a block of uninitialized global heap memory

mg_free Frees global memory allocated by mg_malloc
mg_calloc, mg_strdup, or mg_realloc

mg_calloc Allocates a block of global memory, initialized to zero
304 All About Tivoli Management Agents

D
R
A
F
T8.4.2 Distributed Exceptions

Exceptions are used to report the fatal error. You can use the standard
Try/Catch frame macros or the variable argument exception functions to
handle exceptions. The table below shows the Try/Catch frame macros that
you can use.

Table 51. Try/Catch Frame Macros

mg_realloc Reallocates global memory; changes the size of an
allocated block of memory

mg_strdup Copies a string into a new block of memory allocated
with mg_malloc

mg_cleanup Frees all globally allocated memory (mg_*alloc) that
has not been deallocated

ml_create Creates a new local memory heap

ml_malloc Allocates uninitialized local memory

ml_free Frees local memory allocated with the ml_*alloc
functions or with ml_strdup

ml_calloc Allocates local memory, initialized to zero

ml_realloc Reallocates local memory

ml_to_mg Moves memory from local to global

ml_strdup Duplicates string using ml_malloc

ml_destroy Frees all memory in a local memory heap

ml_ex_malloc Allocates uninitialized local memory, in a Try() frame

ml_ex_calloc Allocates local memory, initialized to zero, in a Try()
frame

ml_ex_realloc Reallocates local memory, in a Try() frame

ml_ex_strdup Duplicates string using ml_ex_malloc, in a Try()
frame

Macro Description

Try Starts a new Try/Catch frame

Routine Name Description
Overview of TMA Internals and Application Development 305

D
R
A
F
T

In some cases, you might find it is easier to use the variable argument
(printf-style) exception functions rather than the Try/Catch macros. The table
below shows the variable argument exception functions that you can use.

Table 52. Variable Argument Exceptions

8.4.3 Sequence Manipulations
The data types supported by the IDL do not include variable length arrays.
Instead, you must use the data type called sequence. The sequence consists
of a pointer to an array of the given data type and the count of the number of
elements in the array.

The LCF environment supports a limited subset of functions available to
manipulate sequences, and its usage is slightly different from the one used in
the full Framework. In the full Framework, the sequence APIs are all
implemented as function calls in libraries. You must set all references of
user-defined sequences from the native data type to the sequence_t type. In
the LCF, the sequence APIs are lightweight macros defined in seq.h. In the
LCF, it is no longer necessary to cast from the user-defined type to the
sequence_t type. All the LCF sequence macros allow you to use the

Catch Catches an exception of the given type

CatchAll Catches exceptions of any type

EndTry Ends a Try/Catch frame

Throw Throws an exception

ReThrow Rethrows a caught exception

ev_to_exception Converts an environment to an exception

exception_to_ev Converts an exception to an environment

Routine Description

vaThrow Throws an error message

vaThrowDerived Throws a type of error message

vaMakeException Returns a pointer to the exception

vaAddMsg Appends a new message to an X/Open message

ThrowExErrorMsg Throws a message as an exception

Macro Description
306 All About Tivoli Management Agents

D
R
A
F
T

sequence without setting values to and from sequence_t. The table below
shows the supported sequence macros, where <type> is a typed sequence_t.

Table 53. Sequence Manipulations

8.4.4 File System Input/Output
The LCF supports a set of functions for the file system input and output as the
table below summarizes.

Table 54. File System Input and Output

Sequence Macros Description

Seq_new(size_t size) Creates the sequence of elements
of the size specified in memory

Seq_zero(<type> *seq) Clears the sequence.

Seq_len(<type> *seq) Returns the number of elements in
the sequence specified

Seq_get(<type> *seq, int index) Returns the pointer to the data item
in the sequence for the index
specified.

Seq_add(<type> *seq,
<type> item)

Adds the data item to the end of the
sequence

Seq_remove(<type> *seq,
int index)

Removes the data item from the
sequence

Seq_free_buffer(<type> *seq) Frees the memory allocated for the
buffer portion of the sequence
specified

Routine Description

open_ex Opens a file. Throws an exception
on error

read_ex Reads a file. Throws an exception
on error

write_ex Writes a file. Throws an exception
on error

close_ex Closes a file. Throws an exception
on error
Overview of TMA Internals and Application Development 307

D
R
A
F
T

8.4.5 Logging Functions
The logging utility provides functions that enable you to create multiple logs
to produce print-style messages to the console and to a file as the table
below summarizes.

Table 55. Logging Functions

makedir_ex Makes a directory. Throws an
exception on error

make_path Checks for and builds every
component of the path

does_file_exist Returns true or false

get_file_length_ex Returns the number of bytes in a file

get_open_file_length_ex Returns (in bytes) the size of a file
opened with open_ex

lseek_ex Moves around in a file opened with
open_ex

rename_file_ex Renames a file. Throws an
exception on error

copy_file_ex Copies source path to destination
path and returns the number of
bytes copied. Throws an exception
on error

ep_stream_read Reads an MDist stream

Routine Description

LogInit Creates a new log file. It also backs up the old log
file and allocates resources needed by the log
module.

LogDeinit Deallocates resources set by a call to LogInit.

LogMsg Uses the Tivoli National Language Support (NLS) to
format an internationalized message and then
outputs it to the console and log file

LogSetDefault Maintains a static (private) pointer to the default log
structure

Routine Description
308 All About Tivoli Management Agents

D
R
A
F
T

8.4.6 ADR Marshalling Functions
The abstract data representation (ADR) functions are identical with the full
Framework version, except for the fact that the LCF Endpoint does not have
the interface repository. It does not have the dynamic data type lookup; so all
data types must be present at compile time. If you need IDL types on an
Endpoint, they must be compiled into the application’s module. The Interface
Repository (IR) is a service that provides persistent objects that represent the
IDL information in a form available at run-time. The IR may be used by the
ORB to perform requests. Moreover, using the information in the IR, the
program may encounter an object whose interface was not known when the
program was compiled; yet, it is able to determine what operations are valid
on the object and make an invocation on it. In addition to its role in the

LogGetDefault Returns a pointer to the default log structure

LogSetThreshold Sets the output threshold of the display level of the
requested log

LogGetThreshold Returns the value of the display_threshold for that
log

LogSetOutputStdout Sets the Boolean to output messages to stdout

LogGetOutputStdout Returns the values of the output_stdout for that log

LogSetAppName Sets the identifier to be used in logging messages

LogGetAppName Returns the value of the application name for the
requested log

LogQ Is a wrapped function around LogMsg; it
implements a circular queue in memory of the last
n messages, to be included in exceptions

LogQueueAlloc Allocates the size of the buffer LogQ messages

LogQueueDealloc Shuts down and deallocates memory used for LogQ
buffer

LogQueueGetSize Queries the size of the buffer for LogQ messages

LogQGetBuffer Returns a character array containing the circular
queue of LogQ messages

LogData Formats and logs binary data

Routine Description
Overview of TMA Internals and Application Development 309

D
R
A
F
T

functioning of the ORB, the IR is suitable for storing the additional information
associated with interfaces to the ORB objects. The following data types are
built in to the libmrt:

 • any

 • boolean

 • char

 • double

 • float

 • long

 • octet

 • short

 • string

 • ulong

 • ushort

All the other data types must be written as CORBA IDL type definitions.
Complex types are created with struct, array and sequence keywords. To
register defined types you can use the function:

void adr_type_init(type_repository **types);

8.4.7 IOM Support for Endpoints
The LCF supports the Inter-object Messaging (IOM) capability. It enables
Endpoints to send bulk data "up" through the Endpoint gateway to other
systems in the enterprise. The Endpoints that must spool a large amount of
data back to the server, for example, can use IOM to do this.

IOM is efficient for distributing large amounts of data because it bypasses the
object dispatcher. In the Lightweight Client Framework, the gateway serves
as an IOM proxy; it receives the data from the Endpoint and handles the
distribution to the final destination.

For scalability reasons, IOM should not be used as a convenience tool for
arbitrary Endpoint communication. It should be used only to send large
amounts of data from an Endpoint back up to other systems. The following
functions provide IOM support for Endpoints.

iom_open Opens the IOM channel

iom_send Sends the stream of data over the channel
310 All About Tivoli Management Agents

D
R
A
F
T

iom_close Closes the IOM channel

8.4.8 Functions for Launching Processes
Several functions have been added to launch processes on UNIX and PC
platforms. These functions simplify process launch and give a unified API
across all platforms for performing these types of functions as the table below
shows.

Table 56. Functions for Launching Processes

Routine Description

tiv_create_process Starts a WIN32 process.

tiv_create_process_ui Launches a GUI-based command on a desktop
other than the default desktop of the current
process.

tiv_io_create Creates an array to pass to tiv_spawn as the
argument representing the file handles for stdin,
stdout, and stderr.

tiv_io_destroy Frees a pointer allocated by a call to
tiv_io_create.

tiv_spawn Spawns a process.

tiv_spawn_ui Launches a GUI-based command on a desktop
other than the default desktop of the current
process.

tiv_user_token_create Allocates a pointer to a token that contains
information used by tiv_spawn for launching
processes in the context of another user. Note:
Because setuid is not supported, the public
version in libmrt has no effect.

tiv_user_token_destro
y

Deallocates the token created by calling
tiv_user_token_create. Note: Because setuid is
not supported, the public version in libmrt has no
effect.

tiv_wait Waits for an asynchronously spawned process to
return.
Overview of TMA Internals and Application Development 311

D
R
A
F
T

8.4.9 Miscellaneous Functions
The table below shows miscellaneous functions provided for the Endpoint
applications.

Table 57. Miscellaneous Functions

8.5 The Common Porting Layer Runtime Library

The Common Porting Layer library (libcpl) provides functions that are not
serviced or behave differently in some system platforms. In this section, we
introduce them.

8.5.1 Binary Tree Search Functions
These routines service binary search trees. All comparisons are done with a
user-supplied routine. This routine is called with two arguments, which are
pointers to the elements to be compared. The returned value of this routine is
an integer that depends on the result of comparison between the first and the
second argument, for example less than, equal to or greater than. The

Routine Description

decrypt_data Decrypts application data

encrypt_data Encrypts application data

ep_stream_read Reads an MDist stream.

ioch_recv Receives bytes from the IO channel

mrt_set_method_exit_mode Sets an attribute to create a condition (restart
or reboot) when a method exits

mrt_machine_id Returns the machine ID

mrt_test_dependency Determines if a dependency to a method
has been updated. For use by long-running
methods such as daemons

nw_echo_command_to_con
sole

NetWare only; sends a command line to the
console

set_lang Sets the language to use to bind messages
on the gateway

still_alive Reinitializes the timer on the gateway to
keep the gateway from timing out during an
upcall or downcall
312 All About Tivoli Management Agents

D
R
A
F
T

comparison function does not need to compare every byte; so arbitrary data
may be contained in the elements in addition to the values to be compared.
These functions are as follows.

cpl_tsearch It is used to build and access the tree. If there is a datum in
the tree equal to the value pointed by the argument, the
pointer assumes that datum is returned. Otherwise, the
argument is inserted, and the pointer is returned. As only
pointers are copied, the calling routine must store the data.

cpl_tfind Searches the datum in the tree. The cpl_tfind returns the
pointer to the datum or the NULL pointer if the datum is not
found.

cpl_tdelete Deletes the node from a binary search tree. The cpl_tdelete
returns the pointer to the parent of the deleted node, or a
NULL pointer if the node is not found.

cpl_twalk Traverses a binary search tree. Any node in a tree may be
used as the root for a walk below that node.

The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character. Similarly, although
declared as type pointer-to-character, the value returned should be cast into
type pointer-to-element.

8.5.2 Directory Entry Functions
These functions enable the caller to use these APIs for all platforms without
platform specific implementation details. The functions are:

 •cpl_opendir

 •cpl_readdir

 •cpl_rewinddir

 •cpl_closedir

 •cpl_telldir

 •cpl_seekdir

8.5.3 UNIX get Functions
These are the UNIX system calls that are not provided on other platforms.
The brief description of these functions is as follows.

cpl_getcwd Returns the current working directory of the calling
process.

cpl_getenv Gets environment variables.
Overview of TMA Internals and Application Development 313

D
R
A
F
T

cpl_putenv Puts environment variables.

cpl_getopt Extracts the command line switches and their
arguments from the command line.

cpl_getpass Queries user for a password (string) from t he
standard input. The characters entered by the user are
not echoed.

cpl_gettimeofday Returns the time zone.

cpl_gethostname Returns the host name of the system.

8.5.4 printf, fclose, fopen, getc Functions
Since these functions may not exist on some platforms, the common layer
furnished wrappers for them as follows.

 •cpl_fprintf

 •cpl_fclose

 •cpl_fopen

 •cpl_getc

8.5.5 Temporary File Functions
Not all platforms provide sufficient function in the area of creating and
manipulating temporary files. These APIs work around problems in the native
version of these functions. These APIs are:

cpl_tmpfile Creates a temporary file and returns a pointer to that stream
(like the ANSI/C function).

cpl_tmpman Generates a temporary filename that can be used to open a
temporary file without overwriting an existing file (like the
ANSI/C function).

cpl_tmpdir It is an additional function and enables the application to
query the location of the system temporary directory on the
specific platform.

8.5.6 Callback Functions
Two registration callback functions are provided as a part of the common
porting layer.

 • cpl_register_print_callback: This function registers a function for handling
LCF output messages generated inside libmrt. By default, all libmrt
messages are printed to stdout. However, on the platforms such as
Windows and NetWare, it is more useful to have an application-specific
314 All About Tivoli Management Agents

D
R
A
F
T

way of displaying these messages. The cpl_register_print_callback
function provides this.

 • cpl_register_thread_yield_callback: This function allows an application to
register a callback function that will be called periodically during long
libmrt operations. For example, some LCF operations, such as waiting for
a task to complete or for a communication event to occur, may require that
a program wait inside a libmrt function for an extended period of time.
This can be a problem in single-threaded applications that need to handle
other events during the operation. For example, Windows applications
need to handle OS events for moving and resizing a window.

8.5.7 Miscellaneous Functions
There are other scattered functions that are also included in the Common
Porting Layer.

cpl_fflush Flushes a stream.

cpl_ltoa Converts a long integer from a binary representation
to a string representation.

cpl_THREADyield Yields a timeslice for Windows, Windows 95 or
NetWare platforms.

uname Enables callers to query for the basic information
about the running platform.

stat Macros These are often accompanied by a series of macros
that provide a simple interface to obtain useful
information about files. The following macros are
defined:

 • S_ISDIR: Queries if the file is a directory.

 • S_ISCHR: Queries if the file is a character special device.

 • S_ISFIFO: Queries if the file is a FIFO.

 • S_ISREG: Queries if the file is regular.

wstat Macros Provide information of the wstat macros for use on PC
platforms.

8.6 Dependencies

An Endpoint method may be implemented across several files. Besides the
executable binary, a method may also require supporting files, such as a
shared library, message catalogs, or other software (for example, a Perl
interpreter). This chapter discusses how the files supporting an Endpoint
Overview of TMA Internals and Application Development 315

D
R
A
F
T

method are identified and downloaded from the Endpoint gateway to the
Endpoint to be ready for the method invocations.

On the Managed Node, all binaries, libraries, message catalogs and other
runtime files that a method requires are installed on the Managed Node at
application installation time. The method implementation database only
identifies the method body, the binary program, or script that contains the
method entry point.

The Endpoints, however, do not have any methods or supporting files present
on them when they are initially installed. Method bodies are identified from
the method implementation database and downloaded from the gateway on
demand. The files supporting the method must also be identified and
downloaded from the gateway to the Endpoint.

When an Endpoint application is installed, the method bodies and supporting
files (called dependencies) are copied to each gateway and are stored in the
gateway repository, the $BINDIR/../lcf_bundle directory on the gateway.
When the gateway is called to invoke an Endpoint method for the first time, it
searches its repository for the method body and its dependencies, then
downloads them to the Endpoint.

This section describes the commands to use for managing dependencies in
the LCF environment and provides examples of usage for two commands,
wdepset and wchdep.

8.6.1 The LCF Dependency Mechanism
The Lightweight Client Framework provides the dependency mechanism that
supports downloading method bodies and their supporting files from the
gateway to Endpoints. The dependency mechanism provides the ability to:

 • Specify a set of dependencies for a method

 • Associate those dependencies with that method

 • Download those dependencies when the method needs them

When you install your application, you first create the dependency set (using
the wdepset command) and then associate it with the method header (using
the wchdep command).

8.6.2 Usage for Dependencies
While there are many uses for the dependency mechanism, the following are
three general uses for dependencies.
316 All About Tivoli Management Agents

D
R
A
F
T

 • To download a dependency for use by a method in an application

 • As a part of the product installation, to download utilities for users on the
Endpoint

 • To download tools (principally Windows NT tools) to the Endpoint for use
by an Endpoint application f

This following sections explain how the method uses the dependency
mechanism.

8.6.3 The Gateway Repository
The Endpoint gateway repository is located in the $BINDIR/../lcf_bundle
directory on the Endpoint gateway. When the gateway downloads a file to an
Endpoint, it searches the gateway repository to find the file. For example, if a
method implementation is specified as LCF/test, then the gateway looks for
the actual file in $BINDIR/../lcf_bundle/bin/$INTERP/LCF/test. When the
gateway receives a method invocation on behalf of an Endpoint, the gateway
checks its repository for the dependencies associated with each method. The
dependencies are downloaded to the Endpoint at the same time as the
method body.

Dependency information for methods is stored on the TMR server and is
cached by the gateway. Dependency information consists of the names of
the dependent files and their associated flags specified with the wdepset
command.

When an Endpoint invokes a method, the Endpoint gateway and Endpoint
"converse" to determine if a new version of the method body or any
dependencies need to be downloaded. The Endpoint tells the gateway which
method and dependency versions it has, and the gateway downloads new
versions to the Endpoint if needed.

8.6.4 Location for Storing Dependencies on the Endpoint
When dependencies are downloaded from the gateway to the Endpoint, by
default they are stored in the Endpoint's method cache. The Endpoint's
method cache is the value of the LCF_CACHEDIR environment variable.

Dependencies stored in the Endpoint's method cache may be deleted if the
cache is full and new dependencies are needed to be downloaded. The
default size of the Endpoint method cache is 20.5 MB; it can be changed with
the -D cache_limit option of the lcfd command.
Overview of TMA Internals and Application Development 317

D
R
A
F
T

Dependencies can also be downloaded to a directory other than the
Endpoint’s method cache. These are called out-of-cache dependencies. For
an out-of-cache dependency, you must specify an Endpoint directory when
you specify the dependency set.

In general, specify an out-of-cache location for a dependency such as a tool
that needs to reside permanently on the Endpoint. Unlike dependencies
stored in the Endpoint’s cache directory, dependencies stored in an
out-of-cache location are never deleted.

8.6.5 The DependencyMgr Object
Dependency information is stored on a DependencyMgr object, which honors
the Depends::Mgr IDL interface. You specify this object when you use the
wchdep command to associate a method with its dependency.

You can create a new class to hold your dependency information, but
normally, your class will honor the Depends::Mgr interface.

8.6.6 Steps for Managing Dependencies
The remainder of this chapter discusses the following general steps for
managing dependency sets when you install your product or patch:

1. Use the wdepset command to specify the dependency sets after the script.

wdepset -c ds-depset -a bin LCF/test/upcall

2. Use the wchdep command to associate the dependency set with each
method in the after script.

wchdep @Classes:Downcall @DependencyMgr:ds-depset invoke

3. Use the wgateway gateway_label dbcheck command to synchronize the
Endpoint gateway cache with the TMR server. You do this only once for
all dependency sets, not for each dependency set.

The gateway caches method invocation information when an Endpoint
method is invoked. If an application is modifying the method, you must run
the wgateway gateway_label dbcheck command for all gateways that service
Endpoints.

wgateway kodiak-gateway dbcheck

8.6.7 Using Dependencies to Deploy Tools to Endpoints
Tools needed by applications are included in the gateway repository.
Applications (for example, the task library) that need access to tools such as
318 All About Tivoli Management Agents

D
R
A
F
T

the Bourne Shell (sh.exe) and Perl (perl.exe) on the Endpoint must establish
the dependency for the lcfd to download the tool(s) on demand.

To establish this dependency, first create a dependency set (with the wdepset
command) and then associate it with a method (with the wchdep command).

8.6.7.1 Tools Location
Tools are furnished for both UNIX and Windows NT interpreter types, though
the tools are more likely to be used for Windows NT Endpoints.

For NT, the tools are located in the $BINDIR/../lcf_bundle/bin/w32-ix86/tools
directory. It contains tools such as awk.exe, tail.exe, perl scripts are located
in the lcf_bundle/bin/w32-ix86/tools/lib/perl directory.

For UNIX interpreter types, the tools are located in the
$BINDIR/../lcf_bundle/bin/$INTERP/tools/bin directory. For example, for
solaris2, the tools are located in the
$BINDIR/../lcf_bundle/bin/solaris2/tools/bin directory. The Perl scripts are
located in the lcf_bundle/bin/solaris2/tools/lib/perl directory.

8.6.7.2 Deploying Application Tools to an Endpoint
This example demonstrates how to use dependencies to deploy the tools
(such as bash or Perl) to a Windows NT Endpoint on demand. Use the
wdepset and wchdep commands to pull the tools down to the Endpoint.

1. Create the Dependency:

wdepset -c task-library-tool-base \
-a w32-ix86 bin/w32-ix86/tools/sh.exe +a +p %TOOLS% \
-a w32-ix86 bin/w32-ix86/tools/win32gnu.dll +a +p %TOOLS%

2. Associate the dependency with a method. For example, the following
associates the dependency with the run_task method on the TaskEndpoint
object:

wchdep @Classes:TaskEndpoint \
@DependencyMgr:task-library-tool-base run_task

3. Synchronize the gateway’s method cache with that on the TMR server:

wgateway kodiak-gateway dbcheck

where kodiak-gateway is the name of the Endpoint gateway in our test
environment. Do this for each gateway.
Overview of TMA Internals and Application Development 319

D
R
A
F
T

8.7 TMA Sample Application

This section introduces a simple sample application for your understanding.
The sample application illustrates the following:

 • How to structure an LCF application into Endpoint code, platform code,
and common code (shared by the Endpoint and platform).

 • How to write a downcall program.

 • How to write an upcall program.

 • How to compile, link, and configure programs.

The sample application consists of the following modules.

 • A command that is invoked on the gateway and makes downcalls (dsmain)

 • A downcall method library that runs on the Endpoint (downcall) and
invokes an upcall command (upcall)

 • A command for upcall that runs on the Endpoint (upcall)

 • An upcall method library that runs on the gateway (upmeth)

8.7.1 Process Sequence
The process sequence of the sample application is as follows.

8.7.1.1 Downcall Sequence
Figure 115 shows the downcall sequence.

Figure 115. Downcall Sequence of a Sample Application

main()

dsmain.exe

2

method()

downcall.exe

1

Gateway

Endpoint
320 All About Tivoli Management Agents

D
R
A
F
T

1. The downcall client, dsmain, calls the remote method, method, that is
invoked as a downcall. dsmain sends one string parameter in this downcall.
method is linked in the module downcall.exe.

2. The method, method, simply converts the input string to the uppercase and
returns it to the caller.

8.7.1.2 Upcall Sequence
Figure 116 shows the upcall sequence.

Figure 116. Upcall Sequence of a Sample Application

1. dsmain calls the remote method invoke that is linked in downcall.exe.
Before calling invoke, the gateway downloads dependency upcall.exe to
the Endpoint. Then the downcall will be invoked.

2. The method invoke spawns a new child process with the CLI module
upcall.exe.

3. The invoke method returns the control to dsmain immediately without
waiting for termination of the child process.

4. Upcall.exe calls the method, method, as an upcall. method is linked in the
module upmeth.exe. Upcall sends one string parameter in this upcall.

5. The upcall server simply returns input string to the caller. Upcall.exe logs
the returned message.

main()

dsmain.exe

invoke()

downcall.exe

1

main()

upcall.exe

method()

upmeth.exe

3 4 5

2

Gateway

Endpoint
Overview of TMA Internals and Application Development 321

D
R
A
F
T

8.7.2 The Source Tree
This section discusses the directory and file structure for the sample
application; use a similar structure for an application that has both platform
and Endpoint components. The diagram below shows the structure of the
source tree for the sample application:

Figure 117. Source Tree

Each application has three directories:

Endpoint Contains files unique to the Endpoint side.

Platform Contains files unique to the server side.

Common Contains files common to both Endpoint and server. Note that
no builds take place in this directory; there are no make files.
The common files are referenced by relative path from the
Endpoint and platform directories.

This directory tree has several important advantages:

 • As you develop your application, it enables you to build and test the
Endpoint and server sides independently of each other.

 • It makes porting your application easier; that is, when you are porting your
application to a new platform, you only have to port the Endpoint-side
code.

/src
/upsamp

/common
/endpoint

/src
/platform

/src
/downsamp

/common
/endpoint

/src
/platform

/src
322 All About Tivoli Management Agents

D
R
A
F
T

If necessary, you can use #ifdef ENDPOINT_BUILD in your source files to
distinguish between the TME 10 server-side and the Endpoint-side code. This
is the standard way that Tivoli recommends.

8.7.3 Source Files
This section provides the sample source file information.

The following table lists the files for the sample application by directory
(common, endpoint, and platform):

Table 58. Source Files

8.7.3.1 Files in the Upsamp Directory
The following files are located in the directory used for the Upsamp
application.

upcall.gen The generation file for the upcall sample program. This file is
used to generate idl/ist/imp/prog files automatically using the
sgen utility.

upcall.c The upcall client program that runs on the Endpoint.

Application Directory Files

Upsamp Common common/upcall.gen

Endpoint endpoint/src/upcall.c

Platform platform/src/upmeth.c

platform/src/upcall.init

Downsamp Common common/downcall.gen

Endpoint endpoint/src/downcall.c

Platform platform/src/dsmain.c

platform/src/downcall.init

platform/src/dep

Normally, we use Makefile to compile and link programs. But using
Makefile is hard to understand for our entry-level discussion. So in this
sample application, we do not use Makefile and compile and link
step-by-step.

Note
Overview of TMA Internals and Application Development 323

D
R
A
F
T

upmeth.c The upcall server program that runs on the gateway.

upcall.init The initialization script for the upcall server object.

8.7.3.2 Files in the Downsamp Directory
The following files are located in the directory used for the Downsamp
application.

downcall.gen The generation file for the downcall sample program. This
file is used to generate idl/ist/imp/prog files automatically
using the sgen utility.

downcall.c The downcall server program that runs on the Endpoint.

dsmain.c The downcall client program that runs on the gateway.

downcall.init The initialization script for the downcall server object.

dep The script used to configure dependencies.

8.7.4 The Upsamp Files
This section briefly describes the contents of each file in the sample program,
by directory.

8.7.4.1 The IDL Files
This section describe the IDL files that are common to both Endpoint and
server sides:

 • Upcall.gen

 • Upcall.idl

 • Upcall.imp

 • Upcall.prog

 • Upcall.ist

The Generation File: Upcall.gen
The file Upcall.gen defines the information to generate idl/imp/prog/ist files.
For detail, refer to each file description in the following.

The sgen utility is not documented officially; so if you do not understand all
of these parameters, we do not recommend using it. You can create its
outputs (.idl, .ist, .prog, .imp) manually.

Note
324 All About Tivoli Management Agents

D
R
A
F
TThe IDL Definition File: Upcall.idl

The file Upcall.idl contains the following primary components.

 • A module specification, LCF

 • An interface, Upcall

 • Upcall interface has an operation, method, supported by gateway

 • The method operation has one input parameter, input and one output
parameter, output.

/*
Sample generation source for sgen utility

*/
fname= Upcall

#pragma generate False
#ifdef ENDPOINT_BUILD
include <mrt/stypes.idl>
#else
include <tivoli/TMF_Types.idl>
#endif
#pragma generate True

/* IDL module name */
module= LCF

/* IDL interface name */
interface= Upcall

/* list of methods */
method= method

/* method definition */
void method(in string input, out string output);

/* server execution model */
model=per method

startup=
"tas_init"

interp=default

path= /LCF/test/upmeth

igoo=
acldefault { "any" };
initialize { "$METHODPATH/upcall.init $imp_LCF_iUpcall_CO \

$imp_LCF_iUpcall_BO";};
Overview of TMA Internals and Application Development 325

D
R
A
F
T

This interface constitutes the gateway component of the application. The
code for the Upcall.idl is as follows:

The Implementation File: Upcall.imp
The TEIDL implementation specification is a block of information that
specifies the implementation of a class of objects. The implementation file
describes the class implementation, which includes the following:

 • Whether the class is instantiable

 • The class attributes

 • The class methods

The file Upcall.imp contains the following primary components.

 • A preprocessor directive. The preprocessor directive instructs the
compiler to include the file that contains the interfaces associated with this
implementation.

 • A module specification, imp_LCF

 • An implementation, iUpcall. It is an abstract class. It acts as the base
class for inheritance and cannot be instantiated. It honors the LCF::Upcall
interface.

 • A method, method, has a method implementation.

 • The language, ANSI C. It binds for the method.

#if !defined Upcall_idl
#define Upcall_idl

#pragma generate False
#ifdef ENDPOINT_BUILD
include <mrt/stypes.idl>
#else
include <tivoli/TMF_Types.idl>
#endif
#pragma generate True

/* IDL module name */
module LCF {

 /* IDL interface name */
 interface Upcall {
 /* method definition */
 void method(in string input, out string output);

 };
};
#endif
326 All About Tivoli Management Agents

D
R
A
F
T

The iUpcall class specification describes how the Upcall interface is to be
implemented. The newly specified class will, for example, provide a method
called method, which implements the method operation specified in the Upcall
IDL interface. The code for Upcall.imp is shown below.

The binding keyword specifies whether a method is implemented as a C
program, a shell script, or a command.

ansi C Specifies the implementation of a method as a C

shell Specifies the implementation of a method as a shell script

command Specifies that the method to be supplied with a special helper
execution environment that allows the method to read from
stdin and write to stdout and stderr

The Program File: Upcall.prog
The TEIDL program specification provides additional details about the
implementation. The implementation file does not describe the operating
system process characteristics of class methods. You can, for example,
implement the class methods to start, run, and then to terminate.
Alternatively, you can implement them so that they start and then continue to
run without terminating.

Such implementation details are called the method execution style. The
TEIDL program specification describes the execution style of the class
methods. The file Upcall.prog specifies the following for the method method:

 • A preprocessor directive

 • A module specification, prog_LCF

 • A program specification, Upcall_main

 • Method name, method

#if !defined Upcall_imp
#define Upcall_imp

#include "Upcall.idl"

module imp_LCF {

 implementation abstract class iUpcall honors LCF::Upcall {

 methods { {
 method
 } binding = ansi C; };
 };
};
#endif
Overview of TMA Internals and Application Development 327

D
R
A
F
T

 • Server type. The method method is to be executed as a "per-method"
method; that is, the server executes it and then terminates it.

 • Start-up specification. When the server is first activated, the BOA
executes the functions specified by startup. In this case, it specifies that
when a call is made to method, the server checks to see if tas_init is
running. If not, it launches a process to execute it.

The code for Upcall.prog is shown below:

The server type keyword specifies how the server process is executed.

per method Specifies that the server process execute one method
and then terminate

daemon Specifies a server that is a daemon process

external daemon Specifies a server that is a daemon process not
activated by the ORB

The Installation File: Upcall.ist
When a client initiates a request, the ORB locates the appropriate object
implementation and performs a security check. For this reason, you must
address two issues regarding object installation: location and security. The
TEIDL installation constructs provide a convenient way to address these two
issues.

One set of installation constructs specifies the installation path to one or more
programs. Another set specifies the required authorization for each operation.
The Upcall.ist contains the following specifications.

#if !defined Upcall_prog
#define Upcall_prog

#include "Upcall.imp"

module prog_LCF {

 program Upcall_main for imp_LCF::iUpcall {

 executes {
 method
 } per method;
 startup {
 "tas_init"

 };
 };
};
#endif
328 All About Tivoli Management Agents

D
R
A
F
T

 • A preprocessor directive.

 • A module specification, ist_LCF.

 • An installation specification, istUpcall for the implementation,
imp_LCF::iUpcall with program prog_LCF::Upcall_main.

 • The acldefault keyword specifies the default ACL during the installation,
in this case, it is any.

 • The initialize specifies a user-defined program name and its arguments
to initialize a newly created object. The compiler-generated install script
Upcall.cfg calls this program to initialize an object after the object is
created.

 • The external path specifies the path location as a disk file relative to the
TME 10 bin directory; can be used with the default keyword.

The code for Upcall.ist is shown below:

Installation Preprocessor Directive
The include directive instructs the compiler to include the Upcall.prog
program file, which completes the required file references for the iUpcall
implementation. The following scenario explains the typical compile scheme
for the sample implementation:

1. The installation file is specified as the compiler input using the following
CLI command:

tidlc Upcall.ist

#if !defined Upcall_ist
#define Upcall_ist

#include "Upcall.prog"

module ist_LCF {

 installation istUpcall for imp_LCF::iUpcall with prog_LCF::Upcall_main {

 acldefault { "any" };
 initialize { "$METHODPATH/upcall.init $imp_LCF_iUpcall_CO \

$imp_LCF_iUpcall_BO";};
 external path { {
 method
 } = {
 "default", "/LCF/test/upmeth";
 };
 };
 };
};
#endif
Overview of TMA Internals and Application Development 329

D
R
A
F
T

2. The compiler compiles the installation file as instructed.

3. The include directive in the installation file instructs the compiler to include
the program file (Upcall.prog), and the compiler also compiles the program
file.

4. The include directive in the program file instructs the compiler to include
the implementation file (Upcall.imp), and the compiler also compiles this
file as instructed.

5. The include directive in the implementation file instructs the compiler to
include the interface definition file (Upcall.idl), and the compiler also
compiles this file. If there are any include directives in the interface
definition file, the compiler includes and optionally compiles those files.
Whether the files are compiled or not depends on the usage of the:

#pragma generate

6. The compiler generates (among other things) client files which present the
framework for the application.

It is not a mandatory process, but using the described include scheme is
recommended for simplicity.

8.7.4.2 Endpoint File
This section describes the method for the Endpoint side of the upcall sample.

Upcall.c
Upcall.c contains the implementation for the upcall CLI. It calls the stub,
t_LCF_Upcall_method, and logs some records to the /temp/upcall.log file.
330 All About Tivoli Management Agents

D
R
A
F
T

8.7.4.3 Platform File
This section describes the other files regarding the upcall sample program.

/*
 upcall.c

 Sample upcall client program

*/
#ifdef ENDPOINT_BUILD /* Should be defined */
#include <mrt/tiv_mrt.h>
#endif
#include "t_Upcall.h"
#include "Upcall_aux.h"

int loglevel = 2;
char *upcall_log = "/temp/upcall.log";

int main(int argc, char *argv[])
{
 int error = 0;
 lh_p_t uplh = (lh_p_t)NULL;

 LogQueueAlloc(LOGQUEUEDEFSZ);
 if((uplh = LogInit(upcall_log,"upcall", loglevel,FALSE, LOGDEFSZ)) == NULL) {
 ++error;
 }
 LogSetDefault(uplh);
 LogMsg(1, LOGDEF, genKey(hello), "Starting Upcall");

Try {
 Environment ev_dat;
 char * input_key = (argc > 1) ? argv[1] : NULL;
 char * out_string;

mrt_set_upcall_timeout(60);/* set timeout */
/* Do upcall */

 t_LCF_Upcall_method("Upcall", &ev_dat, 0,
input_key, &out_string);

if (out_string)
 LogMsg(1, LOGDEF, nullKey(),

"out_string=\"%1$s\"", out_string);
mg_free(out_string);/* free returned area */

Catch(Exception, ex) {
 char *m = def_ex_bind(ex);
 LogMsg(1, LOGDEF, nullKey(),

"Upcall test exception: %1$s\n", m);
 mg_free(m);
 ++error;
 }
 EndTry;

LogMsg(1, LOGDEF, genKey(goodbye), "Ending Upcall");
 LogQueueDealloc();
 LogDeinit(uplh);
 exit(error);
}

Overview of TMA Internals and Application Development 331

D
R
A
F
T

Upmeth.c
The Upmeth.c implements the upcall method that runs on the gateway. The
following shows the code for Upmeth.c.

Upcall.init
The Upcall.init is the initialization file called from the TEIDL
compiler-generated configuration script, Upcall.cfg. It sets the class-friendly
name and enables the class.

The first argument passed to the program is the object reference of the newly
created object. This reference is produced by the configuration script in the
form of a Bourne shell variable. The variable takes the form: $module_impl_CO.
module presents the module if one exists. The impl means implementation
(class) name. CO indicates the variable is a class object reference. Additional
arguments are passed to the program exactly as specified as the initialize
keyword in the installation specification file (.ist). The following shows code
for the Upcall.init.

/*

 upmeth.c

 Sample upcall server program

*/
#include "t_Upcall.h"
#include <tivoli/ExException.h>

void t_imp_LCF_iUpcall_method(
 LCF_Upcall _LCF_Upcall,
 Environment * _ev,
 transaction _transaction,
 char *input,
 char **output)
{
/* Return message */
 if (input && input[0]) {
 *output = mg_malloc(64000);
 sprintf(*output, "Message from gateway[%s]",input);
 }
/* If input does not exist, throw exception */
 else {
 Throw(ExSystem_new("Sample Exception from upcall server"));
 }
}

332 All About Tivoli Management Agents

D
R
A
F
T

8.7.5 The Downsamp Files
This section briefly introduces the contents of each file in the sample
program.

8.7.5.1 The IDL Files
This section describes about the IDL files that are common to both that
Endpoint and server sides:

 • Downcall.gen

 • Downcall.idl

 • Downcall.imp

 • Downcall.prog

 • Downcall.ist

The Generation File: Downcall.gen
The file Downcall.gen is similar to the file Upcall.gen. The content of the file is
shown below.

#!/bin/sh -xe
#
Initialization script for sample upcall server
#
if [$# -gt 1]; then
 upsamp_CO=$1
 upsamp_BO=$2
else
 upsamp_CO=$imp_LCF_iUpcall_CO
 upsamp_BO=$imp_LCF_iUpcall_BO
fi

Class friendly name
set_class_name_cli $upsamp_CO "Upcall"

objcall $upsamp_BO om_enable method TRUE TRUE
Overview of TMA Internals and Application Development 333

D
R
A
F
T
 The IDL Definition File: Downcall.idl

The file Downcall.idl defines a module, LCF, and specifies one interface,
Downcall. It specifies two operation, method and invoke, supported by the
Endpoint. The method operation has one input parameter, input and one
output parameter, output. The invoke operation has one input parameter. This
interface constitutes the Endpoint component of the application. The code for
Downcall.idl is shown below:

/*
 Sample generation source for sgen utility

*/
fname= Downcall

#pragma generate False
#ifdef ENDPOINT_BUILD
include <mrt/stypes.idl>
#else
include <tivoli/TMF_Types.idl>
#endif
#pragma generate True

/* IDL module name */
module= LCF

 /* IDL interface name */
 interface= Downcall

 /* list of methods */
 method= method,invoke

 /* method definitions */
 void method(in string input, out string output);
 void invoke(in string input);

 /* server execution model */
 model=per method

 startup=

 interp= default

 path=/LCF/test/Downcall

 igoo=
 acldefault { "any" };
 initialize { "$METHODPATH/downcall.init $imp_LCF_iDowncall_CO \

$imp_LCF_iDowncall_BO";};
334 All About Tivoli Management Agents

D
R
A
F
T

The Implementation File: Downcall.imp
The file Downcall.imp is similar to Upcall.imp. The code for Downcall.imp is
shown below:

The Program File: Downcall.prog
The program file specifies the execution characteristics for methods in a
particular class. In this case, Downcall.prog specifies that the method method
and invoke to be executed as a "per-method" method. The code for
Downcall.prog is shown below:

#if !defined Downcall_idl
#define Downcall_idl

#pragma generate False
#ifdef ENDPOINT_BUILD
include <mrt/stypes.idl>
#else
include <tivoli/TMF_Types.idl>
#endif
#pragma generate True

/* IDL module name */
module LCF {

 /* IDL interface name */
 interface Downcall {

 /* method definitions */
 void method(in string input, out string output);
 void invoke(in string input);
 };
};
#endif

#if !defined Downcall_imp
#define Downcall_imp

#include "Downcall.idl"

module imp_LCF {

 implementation abstract class iDowncall honors LCF::Downcall {

 methods { {
 method,invoke
 } binding = ansi C; };
 };
};
#endif
Overview of TMA Internals and Application Development 335

D
R
A
F
T

The Installation File: Downcall.ist
The Downcall.ist is similar to Upcall.ist. The code for Downcall.ist is shown
below:

8.7.5.2 Endpoint File
This section describes the method for the Endpoint side of the downcall
sample.

Downcall.c
The Downcall.c contains the implementation for the downcall methods method
and invoke that runs on the Endpoint.

#if !defined Downcall_prog
#define Downcall_prog

#include "Downcall.imp"

module prog_LCF {

 program Downcall_main for imp_LCF::iDowncall {

 executes {
 method,invoke
 } per method;
 };
};
#endif

#if !defined Downcall_ist
#define Downcall_ist

#include "Downcall.prog"

module ist_LCF {

 installation istDowncall for imp_LCF::iDowncall with prog_LCF::Downcall_main {

 acldefault { "any" };
 initialize { "$METHODPATH/downcall.init $imp_LCF_iDowncall_CO \

$imp_LCF_iDowncall_BO";};
 external path { {
 method,invoke
 } = {
 "default", "/LCF/test/Downcall";
 };
 };
 };
};
#endif
336 All About Tivoli Management Agents

D
R
A
F
T

/*
 downcall.c

 Sample downcall server program

*/
#include <mrt/tiv_mrt.h>
#include <mrt/sub_proc.h>
#include <mrt/mrtwrap.h>
#include <mrt/mrt_run.h>
#include "t_Downcall.h"

void t_imp_LCF_iDowncall_method(
 LCF_Downcall _LCF_Downcall,
 Environment * _ev,
 transaction _transaction,
 char *input,
 char **output)
{
 LogQ("Entering downcall method");

 if (input != 0 && input[0] != 0) {
 char *p = *output = ml_ex_malloc(strlen(input) + 1);
 memcpy(*output,input,strlen(input) + 1);
 // convert to uppercase and return
 _strupr(*output);
 }
 else {
 vaThrow(CatSpec(none, unknown1), "Exception: unknown input.");
 }
}

void t_imp_LCF_iDowncall_invoke(
 LCF_Downcall _LCF_Downcall,
 Environment * _ev,
 transaction _transaction,
 char *input)
{
 char tmpbuf[255];
 char * argv[3];
 void * ioptr;
 int pid,status;
 TIV_USER_T tuser = 0;
 argv[0] = tmpbuf;
 argv[1] = input;
 argv[2] = 0;
 sprintf(tmpbuf,"%s/cache/bin/w32-ix86/LCF/test/upcall.exe",

mrt_expand_variable("RUN"));
 LogQ("Entering downcall method for invoking upcall");
 ioptr = tiv_io_create(IO_UNUSED,NULL,IO_UNUSED,NULL,IO_UNUSED,NULL);
 if (pid = tiv_spawn(0,argv,0,ioptr,0) == -1)
 LogQ("spawn error");
 LogQ("Exit downcall method for invoking upcall");
}

Overview of TMA Internals and Application Development 337

D
R
A
F
T

8.7.5.3 Platform File
This section describes the other files related to the downcall sample program.

Dsmain.c
The Dsmain.c implements the downcall CLI that runs on the Server. Dsmain
calls stub t_LCF_Downcall_method and t_LCF_Downcall_invoke. The following
shows the code for the Dsmain.c.

/*
 dsmain.c

 Sample downcall client program

*/
#include <stdio.h>
#include <tivoli/ExException.h>
#include <tivoli/tas_init.h>
#include <tivoli/dir.h>
#include <tivoli/tmfthr.h>

#include "t_Downcall.h"
#include "Downcall_aux.h"

int errors = 0;
char msgbuf[2048];

void usage(char *prog)
{
 fprintf(stderr, "Usage: %s Endpoint Message\n", prog);
 exit(1);
}

void do_downcall(char * oid, char * input_string)
{
 Environment ev_dat;
 char * out_string;

 printf("Making downcall with %s\n",input_string);
 t_LCF_Downcall_method(oid, &ev_dat, 0, input_string, &out_string);
 if (out_string) {
 printf("[%s]", out_string);
 ORBfree(&out_string);
 }
}

void do_upcall(char * oid,char * input)
{
 Environment ev_dat;

 printf("Making downcall for invoking upcall\n");
 t_LCF_Downcall_invoke(oid, &ev_dat, 0,input);
}

338 All About Tivoli Management Agents

D
R
A
F
T

char * build_endpoint_object(const char *epname) {
 char *cp, *cp2;
 char oid[500];
 Object endpoint_object, class_object, behavior_object;
 Environment ev;

 endpoint_object = dir_lookup_instance ("Endpoint", epname);
 class_object = dir_lookup_instance ("Classes", "Downcall");
 behavior_object = t_TMF_Root_MetaBase_get_behavior (class_object, &ev, Trans_none);

 /* now build up real oid */
 cp = strchr(strchr(endpoint_object, ’.’) + 1, ’.’) + 1;
 *cp = 0;
 cp = strchr(strchr(behavior_object, ’.’) + 1, ’.’) + 1;
 /* get rid of # stuff if there */
 if ((cp2 = strchr(cp, ’#’)) != 0) cp2 = 0;
 sprintf(oid, "%s%s+", endpoint_object, cp);
 mg_free(endpoint_object);
 mg_free(class_object);
 mg_free(behavior_object);
 return mg_strdup(oid);
}

void main(int argc, char *argv[])
{
 char * oid;
 type_repository *t[1];

 if (argc < 2) {
 usage(argv[0]);
 exit(1);
 }

 t[0] = type_repository_null;

 tmf_init(t); /* Initialize CORBA runtime */
 tmf_client_init(); /* Declare me as a client */
 tas_init(); /* Initialize TAS library (log,...) */
/* invoke normal downcall */
 Try {
 oid = build_endpoint_object(argv[1]);
 do_downcall(oid,argv[2]);
 }

Catch(Exception, ex) {
 fprintf(stderr, "Downcall Exception: %s\n",
 tmf_ex_msg_bind(ex,msgbuf,sizeof(msgbuf)));
 errors++;
 }
 EndTry;
Overview of TMA Internals and Application Development 339

D
R
A
F
T

Downcall.init
The Downcall.init is the initialization file called from the TEIDL
compiler-generated configuration script, Downcall.cfg. It sets the
class-friendly name. The following shows code for the Downcall.init.

dep
The dep is the configuration script that defines dependency. This script
defines dependency set ds-depset and creates a relationship with
Downcall::invoke. This means the upcall CLI will be downloaded by the
gateway before executing the Downcall::invoke.

/* invoke downcall to invoke upcall on the Endpoint */
 Try {
 do_upcall(oid,argv[2]);
 }
 Catch(Exception, ex) {
 fprintf(stderr, "Downcall Exception: %s\n",
 tmf_ex_msg_bind(ex,msgbuf,sizeof(msgbuf)));
 errors++;
 }
 EndTry;

 exit(errors);
}

#!/bin/sh -xe
#
Initialization script for sample downcall server
#
if [$# -gt 1]; then
 downcall_CO=$1
 downcall_BO=$2
else
 downcall_CO=$imp_LCF_iDowncall_CO
 downcall_BO=$imp_LCF_iDowncall_BO
fi

Class friendly name
set_class_name_cli $downcall_CO "Downcall"

echo "LCF downcall test behavior object is $downcall_BO"
340 All About Tivoli Management Agents

D
R
A
F
T

8.7.6 The Export Tree
When the build completes, you find the following subdirectories in both the
platform and Endpoint directories:

export Directory where the entire build is merged. This directory serves
as a collection point for files for all interpreter types, created
during the build.

interp One interp directory for each platform you build on, created during
the build.

src Directory where you checked out the source to build.

All targets should be copied from the build tree to the export directory. Both
the Endpoint side and the server side contain an export directory. The figure
below shows the structure of the export directory for the sample application.

#!/bin/sh
script to configure dependency
#
APP_LABEL=ds-depset
if wlookup -r DependencyMgr $APP_LABEL ; then

wdepset -d @DependencyMgr:$APP_LABEL
fi
wdepset -c $APP_LABEL -a bin LCF/test/upcall
wchdep @Classes:Downcall @DependencyMgr:$APP_LABEL invoke
for gw in ‘wlookup -L -r gateway -a‘
do

set +e
wgateway $gw dbcheck
set -e

done
exit 0
Overview of TMA Internals and Application Development 341

D
R
A
F
T

Figure 118. The Export Tree

 • The bin directory contains the application binaries. In this case, on the
server side it, contains the executable dsmain and upmeth, while on the
Endpoint side, it contains the executable downcall and upcall.

 • The cfg directory contains the scripts and configuration files necessary to
install the application's classes. In this case, it contains the files
Upcall.cfg, Upcall_ir.tar, Upcall_ist.tar, Downcall.cfg, Downcall_ir.tar, and
Downcall_ist.tar.

This directory exists only on the server side, not the Endpoint side.

 • The include directory contains the application's public header files. This
directory exists only on the server side, not on the Endpoint side.

 • The generic directory includes shell scripts for general use of the
application.

8.8 Building the Sample Application

To design the LCF application and write the IDL files, it is important to
understand the components the application requires. For example, for sample
application, there are two separate interfaces in the .idl file:

 • The Upcall is the sample interface for the upcall.

 • The Downcall is the sample interface for the downcall.

Each interface has its own implementation: two different sets of binaries for
the distribution to two different systems. The LCF development process is
different from the full Framework development process, which does not need

/src
/export

/bin
/interp

/generic
/cfg

/interp
/include

/interp
342 All About Tivoli Management Agents

D
R
A
F
T

to know the environment. The sample application illustrates the following
basic steps for writing and building new LCF application.

1. Write the .idl, .imp, .prog, and .ist files for the application to provide
interfaces for each component (server, gateway, Endpoint) of the
application. These files are common to both the Endpoint and server side
of the application and normally reside in the src/app/common directory.

In this sample application, the sgen utility is used to generate those files
automatically and the common directory contains the generated files only.
Generated files will be located in the interp directory.

Determine the parts exclusive to the Endpoint and to each platform and be
sure those files are in their respective directories. In addition, determine
the parts of the code in the application that are common to both the
Endpoint and the platform.

In this sample application, for example, dsmain.c is exclusive to the server
side, and downcall.c is exclusive to the Endpoint side. The Upcall.c is
exclusive to the Endpoint side, and upmeth.c is exclusive to the gateway.

2. Build the files on the server side by running the TEIDL compiler (tidlc) in
the platform directory. Be sure to include the common files when you build
them.

3. The first time you build the server side, the TEIDL compiler produces a
stubbed-out version of the methods, among many other files. For
example, in the sample application, the file t_Upcall_meth.c (the method
template produced by the TEIDL compiler) is copied from the
platform/interp directory to the Endpoint source directory, renaming its file
name to something meaningful. In this case, it is named upmeth.c. This
file contains the C code for the method, method. You should complete this
source code to perform your application process.

4. Build the Endpoint side, using ltid. Notice that you are compiling the IDL
files twice - once for the server side, using tidlc, and once for the
Endpoint side, using ltid. Building LCF applications differs somewhat
from full Framework builds. You build on both the Endpoint and server
sides, rather than in one place. The common files are generated on both
sides (Endpoint and platform), rather than being referenced from the
common area. This is because there are two slight differences in the
application development environments. The two sides also build slightly
differently; the server side uses tidlc, and the Endpoint side uses ltid.

8.8.1 Sequence of Steps for Building a TMA Application
This section provides a step-by-step approach to building the sample
application. We do not use Makefile and use only one operating system. We
Overview of TMA Internals and Application Development 343

D
R
A
F
T

suppose that the platform and Endpoint will be run on Windows NT and using
Microsoft Visual C++ 5.0 to compile and link the application. Also, we use the
following installation directory in this section.

Microsoft Developer Studio C:\DevStudio

Microsoft Visual C++ C:\DevStudio\VC

Tivoli C:\Tivoli

Endpoint C:\Tivoli\lcf

Source file C:\Tivoli\src\upsamp, C:\Tivoli\src\downsamp

Export file C:\Tivoli\src\export

8.8.1.1 Environment Setup
To set the environment, we performed the following command.

1. Set up the compiler environment

C:\DevStudio\vc\bin\vcvars32

2. Start bash

sh

3. Set up the Tivoli Environment

. /winnt/system32/drivers/etc/Tivoli/setup_env.sh

8.8.1.2 Building Upcall Server(Platform)
The following describes how to build the sample application (Upcall server).

1. Create the work directory.

mkdir /Tivoli/src/upsamp/platform/w32-ix86

2. Create .idl, .imp, .prog, .ist files using the sgen utility.

cd /Tivoli/src/upsamp/common
sgen < Upcall.gen

3. Compile IDL inputs.

cd /Tivoli/src/upsamp/platform/w32-ix86
tidlc -I. \

The installation location of the Microsoft Visual C++ and Developer Studio
should not contain blank character such as "Program Files\DevStudio".
Although the default location may be C:\Program Files\DevStudio, you
must use another location, such as C:\DevStudio.

Note
344 All About Tivoli Management Agents

D
R
A
F
T

-I/Tivoli/include/w32-ix86 \
-I/Tivoli/include/generic \
../../common/Upcall.ist

4. Copy generated headers to the export directory.

mkdir -p /Tivoli/src/export/include/w32-ix86/tivoli
install.sh -m 0644 upcall_defs.h \
/Tivoli/src/export/include/w32-ix86/tivoli/upcall_defs.h

install.sh -m 0644 upcall.h \
/Tivoli/src/export/include/w32-ix86/tivoli/upcall.h

install.sh -m 0644 t_upcall.h \
/Tivoli/src/export/include/w32-ix86/tivoli/t_upcall.h

install.sh -m 0644 upcall_aux.h \
/Tivoli/src/export/include/w32-ix86/tivoli/upcall_aux.h

install.sh -m 0644 upcall_imp.h \
/Tivoli/src/export/include/w32-ix86/tivoli/upcall_imp.h

install.sh -m 0644 t_upcall_imp.h \
/Tivoli/src/export/include/w32-ix86/tivoli/t_upcall_imp.h

5. Compile sources.

export CCOPT="-MD -DWIN32 DSTDC_SRC_COMPATIBLE \
-I. \
-I/Tivoli/src/export/include/w32-ix86 \
-I/Tivoli/src/export/include/generic \
-I/Tivoli/src/include/w32-ix86 \
-I/Tivoli/src/include/generic"

cl $CCOPT -c ../src/upmeth.c -Foupmeth.obj
cl $CCOPT -c upcall_main.c -Foupcall_main.obj
cl $CCOPT -c upcall_main_skel.c -Foupcall_main_skel.obj
cl $CCOPT -c upcall_aux.c -Foupcall_aux.obj
cl $CCOPT -c upcall_imp.c -Foupcall_imp.obj
cl $CCOPT -c t_upcall_imp.c -Fot_upcall_imp.obj
cl $CCOPT -c t_upcall_main_skel.c -Fot_upcall_main_skel.obj

6. Link objects.

export LKOPT="/LIBPATH:/Tivoli/lib/w32-ix86
-subsystem:console
libtas.a libtmfimp.a libtmf.a libms.a
libdes.a libthreads.a"

link $LKOPT \
-out:upmeth.exe upmeth.obj \
upcall_aux.obj \
upcall_imp.obj \
upcall_main.obj \
t_upcall_imp.obj \
upcall_main_skel.obj \
t_upcall_main_skel.obj
Overview of TMA Internals and Application Development 345

D
R
A
F
T

7. Copy objects to the export directory.

mkdir -p /Tivoli/src/export/bin/w32-ix86/LCF/test
install.sh -m 0644 upmeth.exe \
/Tivoli/src/export/bin/w32-ix86/LCF/test/upmeth.exe

install.sh -m 0644 upcall.cfg
/Tivoli/src/export/cfg/w32-ix86/tivoli/upcall.cfg
install.sh -m 0644 upcall_ir.tar \
/Tivoli/src/export/cfg/w32-ix86/tivoli/upcall_ir.tar

install.sh -m 0644 upcall_ist.tar \
/Tivoli/src/export/cfg/w32-ix86/tivoli/upcall_ist.tar

install.sh -m 0644 ../src/upcall.init \
/Tivoli/src/export/cfg/w32-ix86/tivoli/upcall.init

8.8.1.3 Building Upcall Client (Endpoint)
The following describes how to build the sample application (Upcall client).

1. Create the work directory.

mkdir /Tivoli/src/upsamp/endpoint/w32-ix86
mkdir /Tivoli/src/upsamp/endpoint/cross

2. Compile the IDL inputs.

cd /Tivoli/src/upsamp/platform/cross
export PATH="c:/tivoli/bin/lcf_bundle/bin/w32-ix86/ade;$PATH"
/Tivoli/bin/lcf_bundle/bin/w32-ix86/ade/ltid -DENDPOINT_BUILD \
-I. \
-I/Tivoli/src/export/include/w32-ix86 \
-I/Tivoli/src/export/include/generic \
-I/Tivoli/bin/lcf_bundle/include/w32-ix86 \
-p ../../common/upcall.ist

3. Compile the source.

export CCOPT="-MD -DWIN32 -DENDPOINT_BUILD -DSTDC_SRC_COMPATIBLE -DPC \
-I. \
-I../cross/. \
-I/Tivoli/bin/lcf_bundle/include/w32-ix86 \
-I/Tivoli/bin/lcf_bundle/include/generic \
-I/Tivoli/include/w32-ix86"

cd ../w32-ix86
cl $CCOPT -c ../src/upcall.c -Foupcall.obj
cl $CCOPT -c ../cross/upcall_aux.c -Foupcall_aux.obj
cl $CCOPT -c ../cross/t_upcall_stub.c -Fot_upcall_stub.obj

4. Link the objects.

export LKOPT="/LIBPATH:/Tivoli/bin/lcf_bundle/lib/w32-ix86 \
-subsystem:console libmrt.a libdes.a libcpl.a"
346 All About Tivoli Management Agents

D
R
A
F
T

link $LKOPT -out:upcall.exe upcall.obj \
upcall_aux.obj \
t_upcall_stub

5. Copy the objects to the export directory.

cp upcall.exe upcall
install.sh -m 0644 upcall \
/Tivoli/export/bin/lcf_bundle/bin/w32-ix86/LCF/test/upcall

8.8.1.4 Upcall Configuration
To invoke the sample program, we performed the following steps.

1. Copy the configuration files to the repository.

mkdir -p /Tivoli/bin/w32-ix86/LCF/test
cp /Tivoli/src/export/cfg/w32-ix86/Tivoli/upcall.* \
/Tivoli/bin/w32-ix86/LCF/test

cp /Tivoli/src/export/cfg/w32-ix86/Tivoli/upcall_*.* \
/Tivoli/bin/w32-ix86/LCF/test

2. Invoke the Configuration Script

/Tivoli/src/export/cfg/w32-ix86/Tivoli/upcall.cfg \
test /Tivoli/bin w32-ix86 LCF

8.8.1.5 Building the Downcall Client (Platform)
The following introduces how to build the sample application (Downcall
client).

1. Create the work directory.

mkdir /Tivoli/src/downsamp/platform/w32-ix86

2. Create .idl, .imp, .prog, .ist files using the sgen utility.

cd /Tivoli/src/downsamp/common
sgen < Downcall.gen

3. Compile the IDL inputs.

The .cfg script can be invoked once. If you want to re-execute the .cfg
script, you should:

1. Unregister the Upcall class

wregister -u -r Classes Upcall

2. Modify the .cfg file. Find the create_class_cli string and change it to the
update_class_cli string.

Note
Overview of TMA Internals and Application Development 347

D
R
A
F
T

cd /Tivoli/src/downsamp/platform/w32-ix86
tidlc -I. \
-I/Tivoli/include/w32-ix86 \
-I/Tivoli/include/generic \
../../common/Downcall.ist

4. Copy the generated headers to the export directory.

mkdir -p /Tivoli/src/export/include/w32-ix86/tivoli
install.sh -m 0644 downcall_defs.h \
/Tivoli/src/export/include/w32-ix86/tivoli/downcall_defs.h

install.sh -m 0644 downcall.h \
/Tivoli/src/export/include/w32-ix86/tivoli/downcall.h

install.sh -m 0644 t_downcall.h \
/Tivoli/src/export/include/w32-ix86/tivoli/t_downcall.h

install.sh -m 0644 downcall_aux.h \
/Tivoli/src/export/include/w32-ix86/tivoli/downcall_aux.h

5. Compile the sources.

export CCOPT="-MD -DWIN32 DSTDC_SRC_COMPATIBLE \
-I. \
-I/Tivoli/src/export/include/w32-ix86 \
-I/Tivoli/src/export/include/generic \
-I/Tivoli/src/include/w32-ix86 \
-I/Tivoli/src/include/generic"

cl $CCOPT -c ../src/dsmain.c -Fodsmain.obj
cl $CCOPT -c downcall_aux.c -Fodowncall_aux.obj
cl $CCOPT -c t_downcall_stub.c -Fot_downcall_stub.obj

6. Link the objects.

export LKOPT="/LIBPATH:/Tivoli/lib/w32-ix86
-subsystem:console
libtas.a libtmfimp.a libtmf.a libms.a
libdes.a libthreads.a"

link $LKOPT \
-out:dsmain.exe dsmain.obj \
downcall_aux.obj \
t_upcall_stub.obj \

7. Copy the objects to the export directory.

install.sh -m 0644 dsmain.exe \
/Tivoli/src/export/bin/w32-ix86/bin/dsmain.exe

install.sh -m 0644 downcall.cfg
/Tivoli/src/export/cfg/w32-ix86/tivoli/downcall.cfg
install.sh -m 0644 downcall_ir.tar \
/Tivoli/src/export/cfg/w32-ix86/tivoli/downcall_ir.tar

install.sh -m 0644 downcall_ist.tar \
/Tivoli/src/export/cfg/w32-ix86/tivoli/downcall_ist.tar
348 All About Tivoli Management Agents

D
R
A
F
T

install.sh -m 0644 ../src/downcall.init \
/Tivoli/src/export/cfg/w32-ix86/tivoli/downcall.init

8.8.1.6 Building the Downcall Server (Endpoint)
The following describes how to build the sample application (Downcall
server).

1. Create the work directory.

mkdir /Tivoli/src/downsamp/endpoint/w32-ix86
mkdir /Tivoli/src/downsamp/endpoint/cross

2. Compile the IDL inputs.

cd /Tivoli/src/downsamp/platform/cross
export PATH="c:/tivoli/bin/lcf_bundle/bin/w32-ix86/ade;$PATH"
/Tivoli/bin/lcf_bundle/bin/w32-ix86/ade/ltid -DENDPOINT_BUILD \
-I. \
-I/Tivoli/src/export/include/w32-ix86 \
-I/Tivoli/src/export/include/generic \
-I/Tivoli/bin/lcf_bundle/include/w32-ix86 \
-p ../../common/downcall.ist

3. Compile the source.

export CCOPT="-MD -DWIN32 -DENDPOINT_BUILD -DSTDC_SRC_COMPATIBLE -DPC \
-I. \
-I../cross/. \
-I/Tivoli/bin/lcf_bundle/include/w32-ix86 \
-I/Tivoli/bin/lcf_bundle/include/generic \
-I/Tivoli/include/w32-ix86"

cd ../w32-ix86
cl $CCOPT -c ../src/downcall.c -Fodowncall.obj
cl $CCOPT -c ../cross/downcall_aux.c -Fodowncall_aux.obj
cl $CCOPT -c ../cross/downcall_main_skel.c -Fodowncall_main_skel.obj
cl $CCOPT -c ../cross/downcall_main.c -Fodowncall_main.obj

4. Link the objects.

export LKOPT="/LIBPATH:/Tivoli/bin/lcf_bundle/lib/w32-ix86 \
-subsystem:console libmrt.a libdes.a libcpl.a"

link $LKOPT -out:downcall.exe downcall.obj \
downcall_aux.obj \
downcall_main_skel.obj \
downcall_main.obj

5. Copy the objects to export directory.

cp downcall.exe downcall
Overview of TMA Internals and Application Development 349

D
R
A
F
T

install.sh -m 0644 downcall \
/Tivoli/export/bin/lcf_bundle/bin/w32-ix86/LCF/test/downcall

8.8.1.7 Downcall Configuration
To invoke the sample program, we performed the following process.

1. Copy the configuration files to the repository.

cp /Tivoli/src/export/cfg/w32-ix86/Tivoli/downcall.* \
/Tivoli/bin/w32-ix86/LCF/test

cp /Tivoli/src/export/cfg/w32-ix86/Tivoli/downcall_*.* \
/Tivoli/bin/w32-ix86/LCF/test

2. Invoke the Configuration Script

/Tivoli/src/export/cfg/w32-ix86/Tivoli/downcall.cfg \
test /Tivoli/bin w32-ix86 LCF

8.8.1.8 Create the Dependency
To create the dependency set, we performed the following steps.

1. Execute the dep script to configure the dependency.

cd /Tivoli/src/downsamp/platform/src
dep

For more information about the dep script, please refer to “dep” on
page 340.

8.8.1.9 Install the Sample Application
Copy all files in the bin directory to the repository from the export directory as
follows.

cp -r /Tivoli/src/export/bin /Tivoli

8.8.1.10 Run the Sample Application
To run the sample application, you can enter the following CLI command from
the server or gateway, and the returned result is shown below.

.cfg script can be invoked once. If you want to re-execute .cfg script, you
should:

1. Unregister the Downcall class.

wregister -u -r Classes Downcall

2. Modify the .cfg file. Find the create_class_cli string and change it to the
update_class_cli string.

Note
350 All About Tivoli Management Agents

D
R
A
F
T

dsmain <ep_name> <any_string>

8.8.2 View the Log Information
After running dsmain.exe, you can view the logged information. In this part of
book, we introduce the logged messages in the log files and also explain the
meaning of the messages.

8.8.2.1 Messages in the lcfd.log File During Downcall
The following messages appear in the lcfd.log file on the Endpoint when we
invoke the sample application.

 • When the dsmain starts, it calls remote method method. The new connection
from the gateway is established.

 • The lcfd daemon receives downcall request and detects that downcall
server module does not exist on its cache.

 • The lcfd responds to the gateway.

 • The gateway downloads the server module, Downcall.exe.

bash$ dsmain hiro "This is sample string"
Making downcall with This is sample string
[THIS IS SAMPLE STRING]Making downcall for invoking upcall
bash$

Dec 17 09:34:27 Q lcfd New connection from 9.3.1.199+1148

Dec 17 09:34:27 Q lcfd Entering net_recv, receive a message
Dec 17 09:34:27 Q lcfd Leaving net_recv: bytes=203, (type=0 session=173464805)
Dec 17 09:34:27 2 lcfd CacheCheckExistence: NotFound:
C:\Tivoli\lcf\dat\1\cache\bin\w32-ix86\LCF\test\Downcall.exe

Dec 17 09:34:27 Q lcfd Entering send_methstat
Dec 17 09:34:27 Q lcfd Entering send_struct
Dec 17 09:34:27 Q lcfd net_send of 52 bytes, session 173464805
Dec 17 09:34:27 Q lcfd Leaving send_struct
Dec 17 09:34:27 Q lcfd Leaving send_methstat

Dec 17 09:34:27 Q lcfd Entering net_recv, receive a message
Dec 17 09:34:27 Q lcfd Leaving net_recv: bytes=85, (type=7 session=173464805)
Dec 17 09:34:27 2 lcfd reading:
C:\Tivoli\lcf\dat\1\cache\bin\w32-ix86\LCF\test\Downcall.exe
Dec 17 09:34:27 Q lcfd Entering net_recv, receive a message
Dec 17 09:34:27 Q lcfd Leaving net_recv: bytes=4618, (type=11 session=173464805)
Overview of TMA Internals and Application Development 351

D
R
A
F
T

 • The lcfd daemon spawns new process and executes the downcall server.

 • The lcfd daemon entering the listening state.

 • According to the gateway’s request, the lcfd daemon invokes the method
method.

 • The method method is called.

 • The following is a only log message that is queued by method.

 • Response to the gateway.

 • Shutdown server. Note that method is "per-method" server type.

Dec 17 09:34:27 Q lcfd setting-up inherit fd. netfd=240
Dec 17 09:34:27 1 lcfd Spawning:
C:\Tivoli\lcf\dat\1\cache\bin\w32-ix86\LCF\test\Downcall.exe, ses: 0a56dce5

Dec 17 09:34:27 Q lcfd Entering Listener (running).
Dec 17 09:34:27 Q lcfd Entering net_wait_for_connection, timeout=-1 handle=0x3565d8

Dec 17 09:34:27 Q MethInit Entering mrt_run
Dec 17 09:34:27 Q MethInit argv: session_id=0a56dce5
Dec 17 09:34:27 Q MethInit Communication timeout set: 120.
Dec 17 09:34:27 Q MethInit Entering comm_reconnect
Dec 17 09:34:27 Q MethInit inherited fd. return from net_associated_fd. ipc=8533344,
netfd=240
Dec 17 09:34:27 Q MethInit Entering run_impl
Dec 17 09:34:27 Q MethInit Entering send_methstat
Dec 17 09:34:27 Q MethInit Entering send_struct
Dec 17 09:34:27 Q MethInit net_send of 52 bytes, session 173464805
Dec 17 09:34:27 Q MethInit Leaving send_struct
Dec 17 09:34:27 Q MethInit Leaving send_methstat
Dec 17 09:34:27 Q MethInit waiting for input args
Dec 17 09:34:27 Q MethInit Entering net_recv, receive a message
Dec 17 09:34:27 Q MethInit Leaving net_recv: bytes=273, (type=3 session=173464805)
Dec 17 09:34:27 2 MethInit Looking for method: method.

Dec 17 09:34:27 Q method calling method.

Dec 17 09:34:27 Q method Entering downcall method

Dec 17 09:34:27 Q method method returned.
Dec 17 09:34:27 Q method send_results (max/len) 80/38
Dec 17 09:34:27 Q method Entering send_methstat
Dec 17 09:34:27 Q method Entering send_struct
Dec 17 09:34:27 Q method net_send of 92 bytes, session 173464805
Dec 17 09:34:27 Q method Leaving send_struct
Dec 17 09:34:27 Q method Leaving send_methstat
352 All About Tivoli Management Agents

D
R
A
F
T

 • When dsmain calls next remote method invoke, new connection is
established from the gateway.

 • The lcfd daemon checks dependencies related to invoke method. The
invoke method itself is in Downcall.exe. Additionally, it checks existence of
upcall.exe that is specified as a dependency of Downcall::invoke as
discussed in previous section.

 • The gateway downloads the dependency, upcall.exe.

 • The lcfd daemon spawns new process and executes upcall client.

 • According to gateway’s request, the lcfd daemon invokes invoke method.

Dec 17 09:34:27 2 method Clean Shutdown method.

Dec 17 09:34:27 Q lcfd New connection from 9.3.1.199+1149

Dec 17 09:34:27 Q lcfd Entering net_recv, receive a message
Dec 17 09:34:27 Q lcfd Leaving net_recv: bytes=282, (type=0 session=173464806)
Dec 17 09:34:27 2 lcfd CacheCheckExistence: Found: C:\Tivoli\lcf\dat\1\cache\bin\w32-ix86\LCF\test\D
Dec 17 09:34:27 2 lcfd CacheCheckExistence: NotFound: C:\Tivoli\lcf\dat\1\cache\bin\w32-ix86\LCF\tes
Dec 17 09:34:27 Q lcfd Entering send_methstat
Dec 17 09:34:27 Q lcfd Entering send_struct
Dec 17 09:34:27 Q lcfd net_send of 52 bytes, session 173464806
Dec 17 09:34:27 Q lcfd Leaving send_struct
Dec 17 09:34:27 Q lcfd Leaving send_methstat

Dec 17 09:34:27 Q lcfd Entering net_recv, receive a message
Dec 17 09:34:27 Q lcfd Leaving net_recv: bytes=83, (type=7 session=173464806)
Dec 17 09:34:27 2 lcfd reading: C:\Tivoli\lcf\dat\1\cache\bin\w32-ix86\LCF\test\upcall.exe
Dec 17 09:34:27 Q lcfd Entering net_recv, receive a message
Dec 17 09:34:27 Q lcfd Leaving net_recv: bytes=4106, (type=11 session=173464806)

Dec 17 09:34:27 Q lcfd setting-up inherit fd. netfd=192
Dec 17 09:34:27 1 lcfd Spawning: C:\Tivoli\lcf\dat\1\cache\bin\w32-ix86\LCF\test\Downcall.exe, ses:
Dec 17 09:34:27 Q lcfd Entering Listener (running).
Dec 17 09:34:27 Q lcfd Entering net_wait_for_connection, timeout=-1 handle=0x3565d8
Overview of TMA Internals and Application Development 353

D
R
A
F
T

 • The invoke method is called.

 • The following line is logged by invoke method.

 • At this timing, invoke method spawns new process and execute upcall.exe
program.

 • Respond to the gateway.

 • Shutdown the "per-method" server invoke.

 • The Upcall.exe connects lcfd daemon.

Dec 17 09:34:27 Q MethInit Entering mrt_run
Dec 17 09:34:27 Q MethInit argv: session_id=0a56dce6
Dec 17 09:34:27 Q MethInit Communication timeout set: 120.
Dec 17 09:34:27 Q MethInit Entering comm_reconnect
Dec 17 09:34:27 Q MethInit inherited fd. return from net_associated_fd. ipc=8533344, netfd=192
Dec 17 09:34:27 Q MethInit Entering run_impl
Dec 17 09:34:27 Q MethInit Entering send_methstat
Dec 17 09:34:27 Q MethInit Entering send_struct
Dec 17 09:34:27 Q MethInit net_send of 52 bytes, session 173464806
Dec 17 09:34:27 Q MethInit Leaving send_struct
Dec 17 09:34:27 Q MethInit Leaving send_methstat
Dec 17 09:34:27 Q MethInit waiting for input args
Dec 17 09:34:27 Q MethInit Entering net_recv, receive a message
Dec 17 09:34:27 Q MethInit Leaving net_recv: bytes=273, (type=3 session=173464806)
Dec 17 09:34:27 2 MethInit Looking for method: invoke.

Dec 17 09:34:27 Q invoke calling method.

Dec 17 09:34:27 Q invoke Entering downcall method for invoking upcall

Dec 17 09:34:27 Q invoke Exit downcall method for invoking upcall

Dec 17 09:34:27 Q invoke method returned.
Dec 17 09:34:27 Q invoke send_results (max/len) 80/6
Dec 17 09:34:27 Q invoke Entering send_methstat
Dec 17 09:34:27 Q invoke Entering send_struct
Dec 17 09:34:27 Q invoke net_send of 60 bytes, session 173464806
Dec 17 09:34:27 Q invoke Leaving send_struct
Dec 17 09:34:27 Q invoke Leaving send_methstat

Dec 17 09:34:27 2 invoke Clean Shutdown invoke.

Dec 17 09:34:27 Q lcfd New connection from 127.0.0.1+1151
354 All About Tivoli Management Agents

D
R
A
F
T

 • The lcfd daemon receives upcall request from upcall.exe.

 • The lcfd daemon sends the upcall request to the gateway.

 • The lcfd daemon waits for next request form anywhere.

8.8.2.2 Messages in the lcfd.log File During Upcall
The following messages also appear in the lcfd.log file on the Endpoint, and
these messages are logged by the upcall.exe.

 • The upcall.exe is invoked on the Endpoint.

 • The Upcall.exe calls the remote method method.

 • To send the upcall request to the gateway, the stub contacts to the lcfd
daemon.

 • The gateway connects to upcall.exe.

Dec 17 09:34:27 Q lcfd Entering net_recv, receive a message
Dec 17 09:34:27 Q lcfd Leaving net_recv: bytes=173, (type=16 session=0)
Dec 17 09:34:27 Q lcfd UPCALL_START request

Dec 17 09:34:27 2 lcfd Connecting to ’9.3.1.199+9494’
Dec 17 09:34:27 Q lcfd net_send of 426 bytes, session 0
Dec 17 09:34:27 Q lcfd Entering send_struct
Dec 17 09:34:27 Q lcfd net_send of 207 bytes, session 116
Dec 17 09:34:27 Q lcfd Leaving send_struct

Dec 17 09:34:27 Q lcfd Entering Listener (running).
Dec 17 09:34:27 Q lcfd Entering net_wait_for_connection, timeout=-1 handle=0x3565d8

Dec 17 09:34:27 1 upcall Starting Upcall

Dec 17 09:34:27 Q upcall Entering t_generic_stub in ecp/upcall.c
Dec 17 09:34:27 Q upcall LCF upcall capability initialized
Dec 17 09:34:27 Q upcall Warning: no upcall user or credential specified

Dec 17 09:34:27 Q upcall contacting lcfd with upcall method
Dec 17 09:34:27 2 upcall Connecting to ’127.0.0.1+9493’
Dec 17 09:34:27 Q upcall Entering send_struct
Dec 17 09:34:27 Q upcall net_send of 173 bytes, session 0
Dec 17 09:34:27 Q upcall Leaving send_struct
Dec 17 09:34:27 Q upcall Entering net_recv, receive a message
Overview of TMA Internals and Application Development 355

D
R
A
F
T

 • The gateway returns a message.

 • The Upcall.exe writes log records and terminates.

8.8.2.3 Messages in the gatelog File
The following messages appear in the gatelog file on the Endpoint gateway
when we invoke the sample application.

 • When dsmain starts, the gateway receives a request.

 • The gateway checks the dependency.

 • The gateway sends the downcall request to the Endpoint.

 • The gateway receives the next request invoke from dsmain.

 • The gateway checks the dependencies.

Dec 17 09:34:27 Q upcall Leaving net_recv: bytes=426, (type=13 session=0)
Dec 17 09:34:27 Q upcall Entering net_wait_for_connection, timeout=0 handle=0x3528a0
Dec 17 09:34:27 Q upcall New connection from 9.3.1.199+1153

Dec 17 09:34:27 Q upcall waiting to send upcall params
Dec 17 09:34:27 Q upcall Entering net_recv, receive a message
Dec 17 09:34:27 Q upcall Leaving net_recv: bytes=28, (type=17 session=173464807)
Dec 17 09:34:27 Q upcall net_send of 48 bytes, session 173464807
Dec 17 09:34:27 Q upcall waiting for upcall results
Dec 17 09:34:27 Q upcall Entering net_recv, receive a message
Dec 17 09:34:28 Q upcall Leaving net_recv: bytes=114, (type=5 session=173464807)

Dec 17 09:34:28 1 upcall out_string="Message from gateway[This is sample string]"
Dec 17 09:34:28 1 upcall Ending Upcall

1998/12/17 09:34:27 +06: sched: got a job

1998/12/17 09:34:27 +06: gwcache: hit key=<1157485836.1.1987,.meth.,method>
1998/12/17 09:34:27 +06: downcall: Method body /bin/w32-ix86/LCF/test/Downcall found.

1998/12/17 09:34:27 +06: new_session: a56dce5, connecting to 9.3.1.199+9493...
1998/12/17 09:34:27 +06: reader_thread: received data: session=a56dce5, type=5, len=92
1998/12/17 09:34:27 +06: destroying session a56dce5

1998/12/17 09:34:27 +06: sched: got a job
356 All About Tivoli Management Agents

D
R
A
F
T

 • The gateway receives the upcall request from the Endpoint.

 • The Upcall::method is called.

1998/12/17 09:34:27 +06: gwcache: hit key=<1157485836.1.1987,.meth.,invoke>
1998/12/17 09:34:27 +06: gwcache: hit key=<1157485836.1.2183#Depends::Mgr#,.attr.,_info>
1998/12/17 09:34:27 +06: downcall: Method body /bin/w32-ix86/LCF/test/Downcall found.
1998/12/17 09:34:27 +06: downcall: dependency /bin/w32-ix86/LCF/test/upcall found.

1998/12/17 09:34:27 +06: new_session: a56dce6, connecting to 9.3.1.199+9493...
1998/12/17 09:34:27 +06: reader_thread: received data: session=a56dce6, type=5, len=60
1998/12/17 09:34:27 +06: destroying session a56dce6

1998/12/17 09:34:27 +06: reconnect_thread: connection from 9.3.1.199+1152
1998/12/17 09:34:27 +06: tcp server: waiting for connection on 0.0.0.0+9494...
1998/12/17 09:34:27 +06: reader_thread: received data: session=74, type=16, len=207

1998/12/17 09:34:27 +06: sched: got a job
1998/12/17 09:34:27 +06: new_session: a56dce7, connecting to 9.3.1.199+1150...
1998/12/17 09:34:27 +06: upcall start: from=9.3.1.199+1150, class=Upcall, method=method
1998/12/17 09:34:27 +06: gwcache: miss key=<1157485836.1.1095,.meth.,method>
1998/12/17 09:34:27 +06: gwcache: hit key=<1157485836.1.1095,.inh.,>
1998/12/17 09:34:27 +06: gwcache: miss key=<1157485836.1.1097,.meth.,method>
1998/12/17 09:34:27 +06: gwcache: hit key=<1157485836.1.1097,.inh.,>
1998/12/17 09:34:27 +06: gwcache: hit key=<1157485836.1.1096,.meth.,method>
1998/12/17 09:34:27 +06: gwcache: miss key=<1157485836.1.1095,.groups.,>
1998/12/17 09:34:28 +06: destroying session a56dce7
Overview of TMA Internals and Application Development 357

D
R
A
F
T

358 All About Tivoli Management Agents

D
R
A
F
T

Chapter 9. Management Examples Using TMA

In this chapter, we introduce some management examples with the TMA and
also discuss solutions for large environments and the tools that we developed
during the project. These tools should be useful for many customers.

9.1 Managing Enterprise Environment with TMA

We discussed the considerations and advantages of the principal Tivoli
Management Applications with the TMA. However, in a customer’s
environment, we have to understand not only the features of the Tivoli
Management Applications, but also the whole design, including the TMR, the
network, and so on. This section provides ideas and know-how for managing
a large-scale environment remotely. The examples used in this explanation
should be useful when you plan, design, or implement the TMA in a
large-scale environment using Tivoli Management Applications.

9.1.1 Allocation of EP Manager, EP Gateway and EP
For managing very large distributed system environments, we need to
carefully consider the TMR design. Version 3.6 of the Tivoli Management
Framework provides a three-tiered management structure and it has made
stable and extensible managing possible. If we can allocate the management
resources to the proper locations, Version 3.6 of the Tivoli Management
Framework also extends the reliability and availability of the management
system.

In this section, we introduce some examples for understanding the most
efficient allocation of the Endpoint Manager, the Endpoint gateway and the
Endpoint. Reading this section should help you make sense of how to
allocate the Endpoint Manager, Endpoint gateway and Endpoint for
managing an enterprise-scale environment.

9.1.1.1 Example 1: Single TMR Configuration
Basically, a single Endpoint gateway can handle up to around 2000 Tivoli
Management Agents (Endpoints) depending on the hardware configuration.
This means a single TMR can manage several thousand Tivoli Management

This section assumes you want to manage a very large environment
remotely using the Tivoli Management Applications with the TMA.

Note
© Copyright IBM Corp. 1998 359

D
R
A
F
T

Agents. It is absolutely different from the prior TMR structure because a
single TMR server could manage only 200 Managed Nodes. This example is
shown in Figure 119, which shows the most simple but efficient configuration.

Figure 119. The Single TMR Configuration

In this example, there are a few important considerations, as follows.

Allocate the EP Gateway and the EPs to the same location:
As we mentioned before, in the LCF architecture, the Endpoint methods are
optimized to require less communication with the TMR server because the
Endpoint gateway performs authentication, location and inheritance (ALI)
functions for the Endpoints. This means if the Endpoint has stored a method
in its cache, the Endpoint can invoke the method without a call to the TMR
server (Endpoint Manager).

For example, Distributed Monitoring runs the Sentry engine as a single
method (process) on the each TMA. This engine monitors and logs the
system conditions on the TMA if you create and distribute the Sentry monitor
to the TMA. In this case, if the network between the Endpoint Manager and
Endpoint gateway goes down, the Sentry monitor, which is running on the

EP EP EP EPEP

Site A

EP EP EP EPEP

Site B

EP EP EP EPEP

Site C

EP EP EP EPEP

Site D

Wide Area Network

Operation Center

EP Gateway

TMR Server
(EP Manager)

EP GatewayEP Gateway

EP Gateway
360 All About Tivoli Management Agents

D
R
A
F
T

Endpoint, should be able to keep monitoring. As you know, the Sentry monitor
cannot run when the network between a TMR server and the Managed Node
goes down, even if the Managed Node is available. The Distributed
Monitoring case is a typical example.

Figure 120. The Advantage of Three-Tiered Structure

Therefore, if possible, the Endpoint gateway and Endpoint should be located
in the same location (such as the same building, branch) connected via LAN
because the LAN is more reliable than the WAN. It may depend on the
customer’s system or business environment, but it improves the availability of
the management system. We will talk about this kind of situation in detail
later.

The most important point here is the location of the Endpoint gateway and
the Endpoints. To improve the performance and reliability of the management
system, we have to consider the appropriate allocation of the Endpoint

Three-Tiered Structure Prior TMR Structure

TMR Server
(EP Manager)

Managed Node
(EP Gateway)

Endpoint

Run program Log to file

Down

Managed Node

Run program Log to file

TMR Server

Down

(TME 10 V3.1)
Management Examples Using TMA 361

D
R
A
F
T

Manager, Endpoint gateways and Endpoints for each customer. The
following table shows a comparison of networks.

Table 59. Comparison Between LAN and WAN

After understanding the characteristics of the networks, we have to consider
the following issues as well:

 • Using the MDist fan out function effectively

 • Improving throughput between the Endpoint gateway and Endpoints

 • Avoiding Endpoint isolation

As you can see from the table, the LAN is more reliable than the WAN and
also faster than the WAN. By default, the Endpoint gateways are configured
as an MDist repeater automatically. This means if we use a slow network like
a WAN between the Endpoint Manager and Endpoint gateway, it would not
cause a serious problem because we can use the MDist fan out function. To
use the MDist fan out function efficiently, the network between the Endpoint
Manager and Endpoint gateway could be configured with a slow link (such as
WAN) and the network between the Endpoint gateway and Endpoint should
be configured with a fast link (such as LAN).

If the network between the Endpoint gateway and Endpoint becomes
unavailable, what happens? As you know, the Endpoint is isolated and
attempts to find other available Endpoint gateways. This could potentially
make management operations confusing. To avoid it, the Endpoint gateway
and Endpoints should be located in the same place and connected to each
other through a LAN. It obviously improves the throughput between the
Endpoint gateway and Endpoints as well.

The Number of Endpoint Gateways in a TMR:
The number of available Endpoint gateways for one Endpoint is a very
important issue in managing very large environments because the Endpoint
is really configurable for Endpoint login. This means that the Endpoint can log
into other available Endpoint gateways that are defined in the Endpoint login
interfaces list, even if the assigned gateway is unreachable. However, if you
do that, you need to configure the Endpoint login interfaces list when you

Local Area Network (LAN) Wide Area Network (WAN)

Speed Fast Slow

Throughput High Low

Reliability High Low
362 All About Tivoli Management Agents

D
R
A
F
T

install the Endpoint; so you should understand the real environment and what
happens when the Endpoint gateway goes down.

From this point of view, the number of available Endpoint gateways should
be at least three in a single TMR. Of course, many available Endpoint
gateways are much better than a few available Endpoint gateways.

Creating an Endpoint Gateway on the TMR Server:
In some cases, this might be recommended for the single TMR configuration,
especially for smaller TMRs. By adding an Endpoint gateway to the TMR
server, this provides another secondary gateway that could be used if the
primary gateways fail. For example, in the following situation where all
Endpoint gateways become unavailable (shown in Figure 121 on page 364),
the Endpoint Manager can be the Endpoint gateway if you created it on the
Endpoint Manager. Normally, the Endpoint Manager (TMR server) is
configured on the most reliable machine, so that this configuration makes the
single TMR environment more reliable. For performance reasons, you may
not want the gateway on the TMR Server to be used in normal operation.

In general, don’t use the broadcast for the Endpoint login. Especially in a
large environment, it could cause a serious problem to other applications or
systems. Therefore, you should configure the broadcast as disabled
(bcase_disable=1) in your environment.

Note
Management Examples Using TMA 363

D
R
A
F
T

Figure 121. Creating the Endpoint Gateway on the Endpoint Manager

9.1.1.2 Example 2: Multiple Endpoint Gateway Configuration
This configuration is one of the most recommended ways to manage a large
environment. There is more than one Endpoint gateway at each site; so each
Endpoint can log into more than one Endpoint gateway through the Local
Area Network (LAN). It provides a higher level of availability when an
assigned gateway becomes unavailable, or when you need to shutdown an
Endpoint gateway machine for some reason (such as for machine
maintenance).

Endpoint Manager
&

Endpoint Gateway

Endpoint Gateway

Endpoint

Endpoint Login

Down Down
364 All About Tivoli Management Agents

D
R
A
F
T

Figure 122. Multiple Endpoint Gateways Configuration

In the TMA environment, the Endpoint gateway plays a very important role
as the mid-level manager. Of course, the Endpoint Manager (TMR server) is
still the most important component in the Tivoli management environment.
However, the Endpoint Manager does not allow us to configure an alternate
Endpoint Manager. In other words, duplicate configuration is not supported
for the Endpoint Manager (TMR server). (Unless of course you use a third
party High Availability project.) But the Endpoint gateway allows us to
configure alternate gateways. To keep high availability, you may want to
consider creating more than one Endpoint gateway at each site.

If your environment or customer environment does not allow you to configure
two Endpoint gateways at each site, the following can be a solution for this
situation:

Site A

Site B Site C

Site D

Wide Area Network

Operation Center

TMR Server
(EP Manager)

EP EP EP EPEP

EP
Gateway

Primary Secondary

EP EP EP EPEP

EP
Gateway

Primary Secondary

EP EP EP EPEP

EP
Gateway

Primary Secondary

EP EP EP EPEP

EP
Gateway

Primary Secondary
Management Examples Using TMA 365

D
R
A
F
T

Figure 123. Creating the Endpoint Gateway on the Endpoint

As you can see, in this case, the Endpoint gateway is created on the
Endpoint. The Endpoint gateway, which is created on the Endpoint, will be
used only for an emergency because the load of the Endpoint gateway
process is not low. Recall that Endpoint gateways must reside on Managed
Nodes. So the Endpoint you choose, must also be installed as a Managed
Node. Though since you won’t use the Managed Node interface for managing
the system, the overhead involved will not be very much.Therefore, when you
define this configuration, you should take care to select the machine on which
the Endpoint gateway is created.

In this configuration, you have to take care of the port number which the
Endpoint and Endpoint gateway used on a single machine as well. By
default, the Endpoint and Endpoint gateway attempt to use the same port
number, 9494. If you don’t correct this, a port busy error will occur when the
Endpoint or Endpoint gateway attempts to open the port and the process
which opens the port successfully first becomes available. Of course, the
process which cannot open the port is not available. This just depends on the
timing. For no logical reason, the Endpoint process usually opens the port
9494 successfully first in our environment.

EP

EP Gateway

EP Gateway

EP

EP EP

EP Gateway

EP Gateway

EP

EP

Down

Endpoint
Login

Endpoint
Login
366 All About Tivoli Management Agents

D
R
A
F
T

Figure 124. Endpoint Gateway Migration Operation

In the multiple Endpoint gateways configuration, we recommend that you
configure the primary Endpoint gateway and the secondary Endpoint
gateway at each site as shown in Figure 124. Usually, when both Endpoint
gateways are working fine, half of the Endpoints at the site are managed by
the primary Endpoint gateway and the rest of the Endpoints are managed by
the secondary Endpoint gateway. However, when the primary Endpoint
gateway is needed to be shutdown for maintenance or the primary Endpoint
gateway goes down, the secondary Endpoint gateway manages all
Endpoints in the site.

In a real environment, we sometimes need to shutdown the Endpoint
gateway machine for machine maintenance. For this operation, we developed
a tool that migrates the Endpoints that have logged into the specified
Endpoint gateway to the another Endpoint gateway specified as the
argument. We will introduce this tool in the section “Useful Tools for Using
TMA” on page 377.

9.1.1.3 Example 3: Multiple TMR Configuration
A multiple TMR configuration is another solution for managing a large
environment. In the two-tiered management structure environment, it was the
only solution for managing a large environment, because a single TMR server
can manage only about 200 Managed Nodes. However, in the three-tiered
management structure, as we mentioned, there are multiple solutions for
managing the large environment, and the multiple TMR configuration is one
of these solutions. To implement the multiple TMR configuration, we have to
connect two TMRs. However, this increases the complexity of your

EP EPEP EP EP

Primary Secondary

EP EPEP EP EP

Primary Secondary

Endpoint
Gateway

Endpoint
GatewayDown

Migration
Management Examples Using TMA 367

D
R
A
F
T

environment. For this reason we don’t strongly recommend that you
implement the multiple TMR configuration. Particularly in a large
environment, the information and data that are managed and stored in the
Tivoli object databases are very large. In such a situation, it is more difficult to
keep the consistency of the databases in the multiple TMR environment.

The following figure shows an example of a multiple TMR configuration. In
this case, each TMR server is configured as equal. In other words, each TMR
server is managing almost the same number of Endpoint gateways and
Endpoints. This configuration is a classic configuration for multiple TMR
environments. This configuration might be implemented in the following
situations:

 • There are two geographically dispersed locations with somewhat
autonomous management organizations.

 • The customer has already implemented a multiple TMR configuration
using the prior version of Tivoli and migrates to Version 3.6 of Tivoli using
TMA.

 • To off-load TMR servers in large environments.
368 All About Tivoli Management Agents

D
R
A
F
T

Figure 125. Multiple TMR Configuration

The following figure shows another example of the multiple TMR
configuration. In this case, one TMR server is configured to contain the
managed resources and the other controls the management applications.
This type of configuration is often referred to as a hub and spoke, since the
applications are maintained on the hub TMR and managed resources could
be members of one or more spoke TMRs.

Site D

Wide Area Network

EP EPEP

EP Gateway

Operation Center

TMR Server
(EP Manager)

EP EPEP

EP Gateway

EP EPEP

EP Gateway

EP EPEP

EP Gateway

EP EPEP

EP Gateway

EP EPEP

EP Gateway
Site A

Site B

Site C

Site E

Site F

Wide Area Network

Operation Center

TMR Server
(EP Manager)

TMR Connection

TMR-A TMR-B
Management Examples Using TMA 369

D
R
A
F
T

Figure 126. Multiple TMR Configuration (Primary TMR and Secondary TMR)

In this case, when the primary TMR server (Endpoint Manager) becomes
unavailable, the secondary TMR server (Endpoint Manager) can take over
managing TMAs from the primary server if you define the appropriate
Endpoint login interfaces list. This sample configuration gives you high
availability for managing thousands of TMAs.

EP EP EP EPEP

Site A

EP EP EP EPEP

Site B

EP EP EP EPEP

Site C

EP EP EP EPEP

Site D

Wide Area Network

Operation Center

EP Gateway

Primary
TMR Server

(EP Manager)

EP GatewayEP Gateway

EP Gateway

T/EC Server EP Gateway

Secondary
TMR Server

(EP Manager)

TMR
Connection

TMR-A

TMR-B
370 All About Tivoli Management Agents

D
R
A
F
T

9.1.2 High Availability Solution for TMR Server
As you know, unfortunately, the TMR server can be a single point of failure
even with Version 3.6 of Tivoli. In this chapter, we introduced some examples
to improve the availability for managing TMAs.

To duplicate the TMR server function completely, you need to use software
which provides high availability functions. IBM HACMP for AIX is such a
product. This kind of software normally needs special hardware to duplicate
the hard disk or perform heartbeating, so that there are some considerations
when you implement such a solution.

The High Availability software allows you to take over not only the hardware,
but also the applications which run on the primary server. If you implement
the high availability solution using software in the sample configuration which
we introduced, the management system can be extremely reliable.

9.2 Endpoint Login Interfaces List Configuration

The Endpoint login interfaces list is the most important option for the
Endpoint because it affects the Endpoint gateway selection. Another
important configuration for the Endpoint gateway selection is the
select_gateway_policy policy. This policy allows you to configure the
assigned gateway automatically when the Endpoint Manager and Endpoint
gateways are working correctly. However, if the Endpoint Manager in the
primary TMR becomes unavailable, or all Endpoint gateways become
unavailable in the primary TMR, the select_gateway_policy may not be used
for the Endpoint gateway selection.

To take over managing the TMAs from the primary server to the secondary
server, as in this case, you need not only to define the appropriate
Endpoint login interfaces list, but also disable the Endpoint gateway
process in the primary TMR. Then the Endpoint will have an isolated
status, so that it attempts to perform an initial login to the Endpoint
gateways which are defined in its login interfaces list. If the Endpoint
gateway in the secondary TMR is defined in the Endpoint login interfaces
list, the Endpoint logs into the Endpoint gateway in the secondary TMR.
After the takeover, the Endpoints can be managed by the secondary TMR
server using Tivoli Management Applications. Of course, the profiles used
by the applications should be defined in the secondary TMR as well.

Note
Management Examples Using TMA 371

D
R
A
F
T

In this case, we assume that broadcast is configured as disabled. If we define
only one Endpoint gateway in the Endpoint login interfaces list and then the
Endpoint gateway becomes unavailable, what happens? The Endpoint
cannot log into any Endpoint gateways unless the assigned gateway
becomes available. Of course, the Endpoint cannot use the
select_gateway_policy in this case because the Endpoint needs to use the
broadcast for finding an intercepting gateway, but the broadcast is configured
as disabled. From this point of view, you have to configure the appropriate
Endpoint login interfaces list, especially in a large environment.

Example 1 Multiple Endpoint Gateways:
The following figure shows an example of one recommended TMR design for
managing TMAs in a large environment. In this case, for backup purposes,
we created the Endpoint gateway in the operation center where the Endpoint
Manager is located. The TEC server is configured on a different machine
from the Endpoint Manager for improved performance.

Figure 127. The Multiple Endpoint Gateways Configuration Sample

Site A

Site B Site C

Site D

Wide Area Network

Operation Center

TMR Server
(EP Manager)

EP EP EP EPEP

EP
Gateway

Primary Secondary

EP EP EP EPEP

EP
Gateway

Primary Secondary

EP EP EP EPEP

EP
Gateway

Primary Secondary

EP EP EP EPEP

EP
Gateway

Primary Secondary

T/EC ServerBackup
EP Gateway

1 2

3 4
372 All About Tivoli Management Agents

D
R
A
F
T

In this example (Figure 127 on page 372), we indicate the recommended
Endpoint login interface list shown in the figure by the arrow. The following
are the Endpoint gateways that should be configured as the alternate
gateway in the login interfaces list:

1. The primary Endpoint gateway in the same site.

2. The secondary Endpoint gateway in the same site.

3. The backup Endpoint gateway in the operation center.

4. The Endpoint gateway that is created on the Endpoint Manager.

Example 2 Single TMR:
This example shows a simple TMR design. To improve availability, we
recommend you create more Endpoint gateways in the TMR. In this case,
the recommended login interfaces configuration is shown in Figure 128.

Figure 128. The Single TMR Configuration Sample

1. The Endpoint gateway at the same site.

2. The Endpoint gateway that is created on the Endpoint Manager.

EP EP EP EPEP

Site A

EP EP EP EPEP

Site B

EP EP EP EPEP

Site C

EP EP EP EPEP

Site D

Wide Area Network

Operation Center

EP Gateway

TMR Server
(EP Manager)

EP GatewayEP Gateway

EP Gateway 1

2

Management Examples Using TMA 373

D
R
A
F
T

Example 3 Multiple TMR Configuration:
This example shows the classic multiple TMR design. To improve availability,
we recommend that you create an Endpoint gateway in each TMR. In this
case, the recommended login interfaces configuration is shown in Figure 129.

Figure 129. The Classic Multiple TMR Configuration Sample

1. The Endpoint gateway at the same site.

2. The Endpoint gateway that is created on the Endpoint Manager in the
same TMR (TMR-A).

3. The Endpoint gateway that is created on the Endpoint Manager in another
TMR (TMR-B).

It is important to note that in the case where an Endpoint logs in into a
gateway in a different TMR, it will have a different OID and therefore the
current profile manager subscriber lists will not work to manage the Endpoint.
If you decide to implement this back up scenario, you will need to put
Endpoint policy scripts in place that will automatically create new subscriber

Site D

Wide Area Network

EP EPEP

EP Gateway

Operation Center

TMR Server
(EP Manager)

EP EPEP

EP Gateway

EP EPEP

EP Gateway

EP EPEP

EP Gateway

EP EPEP

EP Gateway

EP EPEP

EP Gateway
Site A

Site B

Site C

Site E

Site F

Wide Area Network

Operation Center

TMR Server
(EP Manager)

TMR Connection

TMR-A TMR-B

1

2 3
374 All About Tivoli Management Agents

D
R
A
F
T

lists as Endpoints failover to the backup TMR. This could be complicated and
should be implemented with care.

Example 4 Multiple TMR Configuration:
This example shows a multiple TMR design. To improve availability, we
recommend that you create one more Endpoint gateway in each site. In this
case, the recommendable login interface configuration is shown in Figure 130
on page 375.

Figure 130. The Multiple TMR Configuration Sample

1. The Endpoint gateway at the same site.

2. The Endpoint gateway that is created on the Endpoint Manager in the
same TMR (TMR-A).

3. The backup Endpoint gateway in another TMR (TMR-B).

4. The Endpoint gateway that is configured on the Endpoint Manager in
another TMR (TMR-B).

EP EP EP EPEP

Site A

EP EP EP EPEP

Site B

EP EP EP EPEP

Site C

EP EP EP EPEP

Site D

Wide Area Network

Operation Center

EP Gateway

Primary
TMR Server

(EP Manager)

EP GatewayEP Gateway

EP Gateway

T/EC Server EP Gateway

Secondary
TMR Server

(EP Manager)

TMR
Connection

TMR-A

TMR-B

1

23 4
Management Examples Using TMA 375

D
R
A
F
T

9.2.1 Deployment Considerations
When you deploy many Endpoints in your environment, to create the login
interface list for each Endpoint, you will select one of the following ways:

 • -g option

 • select_gateway_policy

Each way has its own considerations.

9.2.1.1 Using the -g Option
This is the most typical way to create the login interfaces list for each
Endpoint, however, if you deploy large numbers of Endpoints, it can be
complicated and difficult because you need to specify the appropriate
Endpoint gateways with the -g option for each Endpoint. When you plan the
deployment, you should consider this, depending on the number of Endpoints
that you will deploy and how many days you can spend. This method does
not increase the Endpoint Manager’s load.

9.2.1.2 Using select_gateway_policy
This is the most powerful way to automate creating the login interfaces list for
each Endpoint, especially for mass deployment. However, if you use the
select_gateway_policy to create the login interfaces list for each Endpoint,
you need to consider the following issues:

 • Endpoint naming syntax

 • Endpoint Manager’s load

To simplify the select_gateway_policy script, you must define the Endpoint
naming syntax before deployment. In this naming syntax, the Endpoint name
should correspond to the physical location of the Endpoint. This makes the
select_gateway_policy simple and easy.

If you deploy large numbers of Endpoints this way, you should not deploy all
Endpoints at the same time. Depending on the overhead involved in your
select_gateway policy, you may be putting an extensive load on the Endpoint

In each case, you may be able to define the Endpoint gateway located in
another site in the Endpoint login interfaces. However, normally you should
not do that because it makes the Endpoint configuration more complicated.
This might require customizing the login interface list for each set of
Endpoints.

Note
376 All About Tivoli Management Agents

D
R
A
F
T

Manager. You need to understand these considerations and plan for a phased
deployment, if needed.

9.3 Useful Tools for Using TMA

In this section, we introduce the tools which we developed during the
development of this redbook. These tools may help you to manage a large
environment.

9.3.1 Endpoint Gateway Migration Tool
This tool allows you to migrate all Endpoints that have already logged into the
Endpoint gateway (A) to the Endpoint gateway (B). This operation is useful
when you need to shutdown the Endpoint gateway machine for maintenance
and so on. Figure 124 on page 367 shows operations the tool can perform.
As we mentioned before, in this case, the migration can be performed even if
the Endpoint gateway (A) is down.

9.3.1.1 How to Use the Tool
Normally, the tool is used with two arguments as follows:

mig_tool to_gw from_gw

where

mig_tool The file name of the tool.

to_gw The label of the Endpoint gateway which will manage the
Endpoints to be migrated.

from_gw The label of the Endpoint gateway which is managing the
Endpoints to be migrated.

In this tool, you can specify the Endpoints which you would like to migrate to
another Endpoint gateway in a configuration file (eplist.txt). Then you don’t
need to specify the second argument (form_gw option).

#!/bin/sh
#
mig script
#
#$1 : Gateway Label that migrate to
#$2 : Gateway Label that migrate from
#If you do not specify $2, this script read ’./eplist.txt’ file
#and migrate all EPs listed in that file.
#If you specify $2, this script create ’./eplist.txt’ file.
#
#set -x
EPLIST="./eplist.txt"

if ["$1" = "$2"]; then
Management Examples Using TMA 377

D
R
A
F
T

echo "Invalid parm."
exit 1

fi

GWTO=$1
GWFROM=$2

from_exists=0
to_exists=0
wgateway | while read li
do

set $li
if ["$2" = "$GWFROM"];then

from_exists=1
elif ["$2" = "$GWTO"]; then

to_exists=1
fi

done

if [$to_exists = 0] ; then
echo "Invalid gateway"
exit 1

fi
if [! "$GWFROM" = ""] && [$from_exists = 0]; then

echo "Invalid gateway"
exit 1

fi

if ["$GWFROM" = ""]; then
echo Migrate to $GWTO according to $EPLIST

else
echo Migrate $GWFROM to $GWTO

fi
echo "Press ENTER to start:"
read ch

if ["$GWFROM" = ""]; then
while read li
do

echo wep $li migrate $GWTO
wep $li migrate $GWTO

wep $li status >/dev/null
done < $EPLIST

else
target=0
rm -f $EPLIST
wep ls | while read li
do

set $li
if [$1 = ’G’];then

if [$3 = $GWFROM];then
target=1

else
target=0

fi
else

if [$target = 1]; then
echo wep $2 migrate $GWTO
wep $2 migrate $GWTO

wep $2 status >/dev/null
echo $2 >> $EPLIST

fi
fi
378 All About Tivoli Management Agents

D
R
A
F
T

done
fi

9.3.2 Duplicate Endpoint Login Check Tool
The Endpoint duplicate login is one of the most typical and complicated
problems with Endpoint installation. During a mass installation of Endpoints,
conditions often cause this to occur. Therefore, it is very important to
understand the duplicate login, how to detect it and how to fix it. In this
section, we explain what is an Endpoint duplicate login and also introduce the
tool to check for a duplicate login.

9.3.2.1 What Is Endpoint Duplicate Login?
Sometimes, we can see an Endpoint duplicate login. This means one
Endpoint machine is registered several times into the Tivoli database. As a
result, there are multiple Endpoint entries for a single Endpoint machine in
the Tivoli database. You can confirm this by using the wep command, and
more than one Endpoint label appears for a single Endpoint machine. The
Endpoint duplicate login occurs in the following situations:

 • The Endpoint broadcasts the login request and multiple Endpoint
gateways process it.

 • The Endpoint detects communication timeout before receiving
acknowledgment from the Endpoint gateway. The Endpoint attempts to
perform the login to another Endpoint gateway even if the former
Endpoint gateway has processed the login request.

 • The Endpoint's local configuration file (lcf.dat) is deleted without deleting
the Endpoint object information from the Endpoint Manager. If you don't
delete object information using the wdelep command, the new Endpoint
object information is created at the next initial login of the Endpoint, then
the Endpoint duplicate login occurs.

To detect the Endpoint duplicate login, we developed the following sample
script. This sample detects the duplicate login and then asks you whether to
delete the object or not.

#!/bin/sh
AUTOANS=""# y for all yes, n for all no, "" for interactive mode
TMP_EP=eplist.txt
TMP_IP=iplist.txt
TMP_DOWN=downep.txt
prt=print# ’echo’ for Windows
CONS=‘tty‘# Could not use stdin as console with ’here document’
#set -x
function ask_yesno
{

echo $* "?"
if ["$AUTOANS" = ""]; then
read ch < $CONS
Management Examples Using TMA 379

D
R
A
F
T

elif ["$AUTOANS" = "y"]; then
echo "y"
ch="y"

else
echo "n"
ch="n"

fi
if ["$ch" = "y"] || ["$ch" = "Y"]; then

return 1
else

return 0
fi

}
function ask_enter
{

echo $*
if ["$AUTOANS" = ""]; then

read ch < $CONS
fi

}

function chk_alive
{

rm -f $TMP_DOWN
grep $ip $TMP_EP|awk ’{print $1}’ | while read li
do

wep status command sometimes returns ’alive’ for failure endpoint.
#wep $li status >/dev/null 2>&1

wadminep $li view_version >/dev/null 2>&1
if [$? = 0]; then

echo "$li UP"
else

echo "$li DOWN"
Log EP label for wdelep_ep function

echo $li >> $TMP_DOWN
fi

done
}

#
function wdelep_ep
{

cat $TMP_DOWN |xargs -t wdelep
}

echo "Creating Endpoint List"
wep ls|grep Endpoint|awk ’{print $2}’|xargs -n1 -iLABEL \

sh "$prt -n \"LABEL \";wep LABEL|grep address|awk ’{print \$2}’" > $TMP_EP

echo "Creating IP Address list"
cat $TMP_EP|awk ’{print $2}’|sort|uniq > $TMP_IP

echo "Checking Duplicate Login"
while read ip
do

count=0
epcount=‘grep $ip $TMP_EP|wc -l‘
if (($epcount > 1));then

echo "Followings are duplicated:"
grep $ip $TMP_EP|awk ’{print $1}’
echo "Checking existence"
ping -c1 ‘echo $ip|awk -F’+’ ’{print $1}’‘ >/dev/null
if [$? = 0]; then
380 All About Tivoli Management Agents

D
R
A
F
T

ask_yesno "Would you like to check which one is alive now"
if [$? = 1]; then

chk_alive $ip
ask_yesno "Would you like to wdelep all of down endpoint"
if [$? = 1]; then

wdelep_ep $ip
fi

fi
else

ask_enter " Endpoint maybe down. Press Enter."
fi

fi
done < ${TMP_IP}

rm -f ${TMP_EP} ${TMP_IP} ${TMP_DOWN}

As we mentioned, this script detects the duplicate login and ask you whether
to delete it or not. If you would like to delete it, you specify y as the answer.
Then the script executes the wadminep command to check the actual status of
the Endpoint (active or not) and if the Endpoint is not reachable, the script
ask you again whether to delete or not. Then if you answer y to this question,
the script executes the wdelep command to delete the entry of the Endpoint.

The AUTOANS variable enables you to operate in the non-interactive mode.
Specify AUTOANS="y" to answer y to all of the questions or specify AUTOANS="n"
to answer n to all questions. The following shows sample instructions of this
tool:

Creating Endpoint List
Creating IP Address list
Checking Duplicate Login
Followings are duplicated:
salmon.353
salmon
salmon.351
Checking existence
Endpoint maybe down. Press Enter.
Followings are duplicated:
.374
.373
.372
Checking existence
Would you like to check which one is alive now ?
y
.374 DOWN
.373 DOWN
.372 DOWN
Would you like to wdelep all of down endpoint ?
y
wdelep .374 .373 .372
Management Examples Using TMA 381

D
R
A
F
T

9.3.3 Endpoint Status Check Tool
In your management environment, if you are using an SNMP-based network
management tool, such as NetView for AIX, this tool should be useful. The
NetView for AIX performs status polling every five minutes, so that NetView
can detect if the network interface is down. However, NetView cannot detect
if the lcfd daemon is down, because the network interface can be available
even if the lcfd daemon becomes unavailable. In this situation, the following
tool is useful.

#!/bin/ksh

wep ls | awk ’/Endpoint/ {print $2}’ | while read li
do
wep $li status > /dev/null 2>&1

if [$? != 0];
then

wsnmptrap -h netview 1.3.6.1.4.1.2.6.900 6 1 \
1.3.6.1.4.1.2.6.900.1 OctetString Endpoint_Down_$li

fi
done

If you use the NetView for AIX, you can implement the following management
system using this tool.
382 All About Tivoli Management Agents

D
R
A
F
T

Figure 131. Endpoint Status Check with NetView for AIX

1. Create the Sentry Monitor which defines the Endpoint status tool in the run
program field.

2. The Endpoint status tool should be executed at every interval and check
the status of the Endpoint.

3. If the Endpoint status tool detects an unavailable Endpoint, then it sends
the SNMP trap to NetView for AIX using the wsnmptrap command.

4. The NetView for AIX receives the SNMP trap and displays the event in the
event console. You need to define the event configuration or ruleset of the
NetView for AIX before the whole operation.

NetView for AIX provides an excellent network topology map on the display,
so this kind of solution should be useful in a large environment.

Managed Node

Distributed Monitoring Endpoint Status Check

Send SNMP Trap

NetView GUI

1

2

3

4
Endpoint

Endpoint

NetView for AIX Endpoint Gateway

Endpoint Gateway
Management Examples Using TMA 383

D
R
A
F
T

384 All About Tivoli Management Agents

D
R
A
F
T

Chapter 10. Tivoli Management Agent Performance Conisderations

Performance can be a key issue in enterprise systems management
applications. The three-tiered management structure is designed to improve
the performance and throughput in a Tivoli environment. However, to
optimize the advantages of the three-tiered structure, you need to understand
how to design your TMA environment and take actions to tune the
performance. In this chapter, we introduce an overview of performance tuning
in the TMA environment.

10.1 TMA Performance Tuning Strategy

To improve performance and throughput in the TMA environment, what
should you do first? This is a very difficult question because it depends on
many factors. The two most common approaches for improving performance
in the Tivoli Management environment includes:

 • Parameter Tuning (for each machine)

 • Design Approach (for whole management system)

To understand parameter tuning, we can look at the following model which
consists of six layers. As you can see, each layer depends on an upper or
lower layer. In each layer, there are many ways to improve performance.

Figure 132. Performance Tuning Modeling

Operations

Tivoli Management
Applications

Tivoli Management
Framework

Middleware (Database)

Network (TCP/IP)

Operating System

Network

Network

Standard

Depends on Environment
© Copyright IBM Corp. 1998 385

D
R
A
F
T

10.1.1 Operating System and Network Tuning
In real environments, of course, the relationship between each layer is
complicated, so it is not in practice as simple as the above model. However,
we can say that the Tivoli Management Framework runs on each operating
system, for example AIX, Windows NT, or Windows98, and uses the network
protocol (TCP/IP) provided by each system. Tuning the operating system and
network is important for all distributed applications inlcuding Tivoli. For
instance, for the RIM (RDBMS Interface Module) server performance tuning,
the tuning of OS parameters, network parameters and RDBMS parameters is
as important as tuning the RIM parameters themselves.

It is the same for TMA performance tuning. The system and network
performance affects the TMA performance a lot. Network performance is
really important in the Tivoli management environment. Network tuning is
more standardized than the upper layer tuning because so many applications
depend on it and the concepts are well understood by most network
administrators.

10.1.2 TMA Tuning
After tuning the OS or network, to improve TMA performance, we need to
consider tuning the Endpoint Manager, Endpoint gateway and Endpoint. This
normally depends on each environment. The following list summarizes the
some of the more common considerations:

 • How many Endpoints are running under a single Endpoint gateway?

 • The hardware specifications of the Endpoint Manager and Endpoint
gateways (such as CPU or memory).

 • The network design and speed.

 • The TMR design.

 • The applications running on the TMA (such as Software Distribution).

 • Endpoint policy.

If you use Software Distribution, the MDist repeater tuning should be very
important for performance and throughput. As you can see, it is very
complicated. You have to understand the above dependencies and consider
the most efficient way to improve TMA performance.

10.1.3 Tivoli Management Application Tuning
This depends on several environmental factors as well. In this book, we will
not talk about tuning the Tivoli Management Applications, however, in most
386 All About Tivoli Management Agents

D
R
A
F
T

cases, how to optimize the Tivoli Management Applications is the same
regardless if using Managed Nodes or TMAS Endpoints.

10.1.4 Operational Considerations
It is important to understand how Tivoli and the tivoli applications will be used
and under what conditions. Understanding this, can help you to optimize the
performance for your given environment.

For example, in a classroom system, all Endpoints might attempt to perform a
login at the same time (when the class begins). This is very important
information for the administrator. If you understand this situation before the
TMA implementation, you can anticipate and possibly avoid problems

As another example, if you use Software Distribution, it is important to know
how many files are distributed in a day, how many targets you have, and how
large the files are. For example, if you distribute many large files, you should
not necessarily send them to all systems at the same time.

Operational considerations may not improve the throughput dynamically,
however, defining operational procedures based on the environment may
help keep the throughput and performance within expectations even if the
number of Endpoints increase.

10.2 TMR and Network Design Approach

In the previous section, we talked about performance tuning strategy by
parameter tuning for each machine. However, in most environments, each
system is connected via the network and working together. Therefore, the
design of the whole management system is really important for performance
tuning rather than tuning individual managed systems. The following figure
represetns the interaction between each system.
Tivoli Management Agent Performance Conisderations 387

D
R
A
F
T

Figure 133. Interactions Between Each System

What you should consider next is how each box (system) can work together
efficiently.

10.2.1 Design and Tuning
The design of the whole system is as important as tuning each system.
Normally, the design of the management system would be considered in the
early planning phase. This means that once you decide the design, it is very
difficult to change it after the implementation. What about parameter tuning?
Normally, it can be done as an on-going exercise after the implementation.
The most important thing to remember is that it is much more difficult to

Network

Operations

Tivoli Management
Applications

Tivoli Management
Framework

Middleware (Database)

Network (TCP/IP)

Operating System

TMR Server

Operations

Tivoli Management
Applications

Tivoli Management
Framework

Middleware (Database)

Network (TCP/IP)

Operating System

Managed Node

Operations

Tivoli Management
Applications

Tivoli Management
Framework

Middleware (Database)

Network (TCP/IP)

Operating System

Endpoint

Operations

Tivoli Management
Applications

Tivoli Management
Framework

Middleware (Database)

Network (TCP/IP)

Operating System

Endpoint

Operations

Tivoli Management
Applications

Tivoli Management
Framework

Middleware (Database)

Network (TCP/IP)

Operating System

Endpoint

Operations

Tivoli Management
Applications

Tivoli Management
Framework

Middleware (Database)

Network (TCP/IP)

Operating System

EP Gateway

Operations

Tivoli Management
Applications

Tivoli Management
Framework

Middleware (Database)

Network (TCP/IP)

Operating System

Endpoint
388 All About Tivoli Management Agents

D
R
A
F
T

change the design once you have begun the implement of the management
system in a large environment.

10.2.2 Design Considerations
In Chapter 9, “Management Examples Using TMA” on page 359, we talked
about the TMR design and management examples. Basically, this information
should be useful for tuning performance and throughput as well.

The following should be considered in the design phase for improving the
performance in a large environment:

 • TMR Design.

 • Network Design.

 • How many Endpoints are managed in the TMR?

 • MDist Repeater Allocation.

 • RIM Server Allocation.

 • TEC Server Allocation.

10.3 Understanding Parameters for Performance Tuning

In the TMA environment, there are some tuning parameters for each
management resource. In this section, we introduce the parameters which
affect the performance of the TMA environment.

10.3.1 Endpoint Gateway
You can configure the maximum number of concurrent jobs on the Endpoint
gateway as follows. This depends on the environment, so be careful when
you change it.

idlcall <gw_oid> _set_max_concurrent_jobs value

max_concurrent_jobs Sets the maximum number of concurrent jobs the
Endpoint gateway can run. This setting, which
controls the number of threads running in the
Endpoint gateway, is the mechanism for
controlling the resources (such as CPU and
memory) the Endpoint gateway uses. The default
setting for max_concurrent_jobs is 200.

A job consists of an Endpoint login, upcall or downcall. An MDist distribution
consists of one job for the input stream and one job for each Endpoint it is
being distributed to. Each job runs in its own thread. If the
Tivoli Management Agent Performance Conisderations 389

D
R
A
F
T

max_concurrent_jobs is exceeded, the job request goes on a wait queue. When
there is a slot open, the Endpoint gateway starts the job as a thread. Hence,
if the Endpoint gateway is busy, you don’t get hard failures, but the quality of
service suffers. If you notice that service is poor through a particular Endpoint
gateway, you can create one or more additional Endpoint gateways in order
to spread the load.

You can configure the network related parameters on the Endpoint gateway
as well. It also depends on the environment and Tivoli Management
Applications, so be careful when you change it. You can change this value
using the wrpt command. This value is available for the Endpoint Manager as
well.

net_load Specifies the maximum amount of data (in KB per
second) that the parameter will send to the
network for each distribution.

max_conn Specifies the maximum number of simultaneous
parallel client connections initiated by the repeater
during a distribution.

10.3.2 Endpoint Manager
You can define thenumber of concurrent jobs on the Endpoint Manager, as
well. This depends on the environment, so be careful when you change it.
You can change this value using the idlattr command, as follows. Refer to
Chapter 7, “Advanced Knowledge of the TMA” on page 251 for more
information.

idlattr -t -s 1588251808.1.517 max_jobs short value

max_jobs Sets the maximum number of concurrent jobs on the Endpoint
Manager. The default value is 20.
390 All About Tivoli Management Agents

D
R
A
F
T

10.3.3 Operating System and Network
Tuning the OS and network, obviously is very operating system dependent.
The following are very common parameters for system and network tuning.

Paging Space You should customize this value. This is the most easy
and steady way to improve performance.

nice value Specifies the priority for each process. It is available on
the AIX system. This value is dangerous, so you must
refer to a manual of the AIX system if you change it.

mbuf Specifies the maximum memory to be used for the
network. It will be pinned in the real memory, so be careful
when you change it. Before changing it, you should check
the output of the netstat -m or netstat -v command.

tx_que_size Specifies the transmit queue size of the adapter card. It is
available on AIX systems.

rx_que_size Specifies the receive queue size of the adapter card. It is
available on AIX systems.

These are only typical parameters, so when you customize the system and
network parameter, refer to the appropriate manual of the system.

In Version 3.6.1 of the Tivoli Management Framework, the max_jobs is not
supported. Instead of max_jobs, the following parameters are supported by
Version 3.6.1 of the Tivoli Management Framework.

max_install Determines the number of maximum allow_install_policy
scripts.

max_sgp Governs the number of select_gateway_policy scripts.

max_after Constructs the number of after_install_policy scripts.

These parameters control the number of respective policy scripts that the
Endpoint Manager will run at the same time. All three default to 10, and
thus at any given time, there are a maximum of 30 scripts that can run on
the Endpoint Manager. These can be set using:

idlattr -t -s <epmgr_oid> <attr_name> short value

Note
Tivoli Management Agent Performance Conisderations 391

D
R
A
F
T

10.4 Sample Configurations

In this section, we introduce a sample configuration for an Endpoint gateway
and Endpoint. Again, this depends on the environment, so check your
environment before implementing.

10.4.1 Endpoint Configuration
The following are the recommended configurations for the Endpoint:

log_threshold Set level 0 (default). You can use the -d option as
well.

dcast_disabled Set disabled (bcast_disabled=1).

lcs.login_interfaces Specifies at least two Endpoint gateways, hopefully
more than three. Refer to Chapter 9, “Management
Examples Using TMA” on page 359 for more
information.

10.4.2 Endpoint Gateway Configuration
The configuration of the Endpoint gateway depends a great deal on the
environment. The following is a very common configuration. We recommend
you to configure as follows:

set_debug_level We recommend you set the debug level to 0. The debug
level of the Endpoint gateway defines what information
is logged into the $DBDIR/gatelog file. The debug level
0 means that it only logs errors of the Endpoint gateway
into the gatelog file. This improves performance and
ensures that the size of the gatelog file doesn’t become
large quickly. To change the Endpoint gateway’s debug
level from the CLI, you can use the following command:

You can use the wgateway command to set the debug level as well.

wlookup -o -r Gateway -a | while read oid
do

idlcall $oid _set_debug_level 0
done

wgateway <gw_label> set_debug_level [0-9]
392 All About Tivoli Management Agents

D
R
A
F
T

10.5 Improving Performance of TMA

We provided an overview of the performance tuning in the Tivoli Management
environment, so in this section we will introduce hints and tips for improving
performance.

10.5.1 Endpoint Policy Considerations
The Endpoint policy is a very useful way to manage Endpoints efficiently.
However, it also expends resources to the Endpoint Manager and Endpoint
gateways. Sometimes it may cause a performance problem, so that you
should take care when using Endpoint policy.

We introduced the auto upgrade function of the TMA in Chapter 5, “Anatomy
of TMA Behavior” on page 135. It allows us to upgrade the Endpoint software
automatically. This should be a very useful function. However, to enable this
function, upgrade.sh must be configured in the login_policy. This means that
the auto upgrade function will be run every time the Endpoint logs into the
Endpoint gateway even if the upgrade process does not occur. Moreover, the
upgrade.sh includes the awk or grep command. The awk or grep commands are
useful tools but they expend much more resource than other commands. If
many Endpoints attempt to log into the Endpoint gateway at the same time,
upgrade.sh will be executed for each Endpoint and the upgrade process will
not occur on most of the Endpoints. This is really bad for performance tuning.

If you use the auto upgrade function, you should use it only when the
Endpoint gateway is upgraded because then the contents under the
$DBDIR/../bin/lcf_bundle directory should be upgraded as well. To modify the
Endpoint policy, you can use the wgeteppol and wputeppol commands.

Auto upgrade is a typical case. The Endpoint policy can have an adverse
affect on performance. To avoid this, you should take care of the following:

 • Avoid using many awk or grep commands in Endpoint policy.

 • Use a C program instead of the shell script, if possible, in the Endpoint
policy.

 • Don’t define an Endpoint policy if ti is not needed (like auto upgrade). It
should be defined only when needed.

10.5.2 MDist Repeater and File Package Source Host
If you use Software Distribution, you have to take care of the configuration of
the file package source host of Software Distribution. As you know, the file
package source host still needs the full Managed Node function, so it should
Tivoli Management Agent Performance Conisderations 393

D
R
A
F
T

be configured on a full Managed Node. When you create a file package, the
source host should be configured as an MDist repeater. The reason you
should do this is for performance. If the source host is configured as an MDist
repeater, the file package will be sent to the other MDist repeaters directly
when the file package is distributed, but if the source host is not an MDist
repeater, it will take another, less efficient route.

To create and configure the MDist repeater, you can use the wrpt command.
394 All About Tivoli Management Agents

D
R
A
F
T

Appendix A. Endpoint Policy Argument Values

In this appendix, we show the argument values that the Enpoint policy returns
for each platform.

A.1 Windows 95

The following are the argument values that the Endpoint policy returns on
Windows 95.
© Copyright IBM Corp. 1998 395

D
R
A
F
T

A.2 Windows 98

The following are the argument values that the Endpoint policy returns on
Windows 98.

1998/12/07 14:41:27: [allow_install_policy]
1998/12/07 14:41:27: The label of the ep machine: salmon.itsc.austin.ibm.com
1998/12/07 14:41:27: The object reference of the ep machine: OBJECT_NIL
1998/12/07 14:41:27: The architecture type of the ep machine: win95
1998/12/07 14:41:27: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/07 14:41:27: The ip address of the ep logging in.: 9.3.1.193+9494
1998/12/07 14:41:27: region: 1189622596
1998/12/07 14:41:27: dispatcher: 0
1998/12/07 14:41:27: version: 5
1998/12/07 14:41:27: LCF_LOGIN_STATUS=0
1998/12/07 14:41:29: Exitting ...
1998/12/07 14:41:30: [select_gateway_policy]
1998/12/07 14:41:30: The label of the ep machine: salmon.itsc.austin.ibm.com
1998/12/07 14:41:30: The object reference of the ep machine: OBJECT_NIL
1998/12/07 14:41:30: The architecture type of the ep machine: win95
1998/12/07 14:41:30: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/07 14:41:30: The ip address of the ep logging in.: 9.3.1.193+9494
1998/12/07 14:41:30: region: 1189622596
1998/12/07 14:41:30: dispatcher: 0
1998/12/07 14:41:30: version: 5
1998/12/07 14:41:30: LCF_LOGIN_STATUS=0
1998/12/07 14:41:32: Exitting ...
1998/12/07 14:41:33: [after_install_policy]
1998/12/07 14:41:34: The label of the ep machine: salmon.itsc.austin.ibm.com
1998/12/07 14:41:34: The object reference of the ep machine:
1189622596.301.508+#TMF_Endpoint::Endpoint#
1998/12/07 14:41:34: The architecture type of the ep machine: win95
1998/12/07 14:41:34: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/07 14:41:34: The ip address of the ep logging in.: 9.3.1.193+9494
1998/12/07 14:41:34: region: 1189622596
1998/12/07 14:41:34: dispatcher: 301
1998/12/07 14:41:34: version: 5
1998/12/07 14:41:34: LCF_LOGIN_STATUS=0
1998/12/07 14:41:36: Exitting ...
1998/12/07 14:41:47: [login_policy]
1998/12/07 14:41:47: The label of the ep machine: salmon.itsc.austin.ibm.com
1998/12/07 14:41:47: The object reference of the ep machine:
1189622596.301.508+#TMF_Endpoint::Endpoint#
1998/12/07 14:41:47: The architecture type of the ep machine: win95
1998/12/07 14:41:47: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/07 14:41:47: The ip address of the ep logging in.: 9.3.1.193+9494
1998/12/07 14:41:47: region: 1189622596
1998/12/07 14:41:47: dispatcher: 301
1998/12/07 14:41:47: version: 5
1998/12/07 14:41:47: LCF_LOGIN_STATUS=
1998/12/07 14:41:49: Exitting ...
396 All About Tivoli Management Agents

D
R
A
F
T

A.3 Windows NT

The following shows the argument values that the Enpoint policy returns on
Windows NT.

1998/12/07 14:34:30: [allow_install_policy]
1998/12/07 14:34:30: The label of the ep machine: salmon
1998/12/07 14:34:30: The object reference of the ep machine: OBJECT_NIL
1998/12/07 14:34:30: The architecture type of the ep machine: win95
1998/12/07 14:34:30: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/07 14:34:30: The ip address of the ep logging in.: 9.3.1.193+9494
1998/12/07 14:34:30: region: 1189622596
1998/12/07 14:34:30: dispatcher: 0
1998/12/07 14:34:31: version: 5
1998/12/07 14:34:31: LCF_LOGIN_STATUS=0
1998/12/07 14:34:33: Exitting ...
1998/12/07 14:34:33: [select_gateway_policy]
1998/12/07 14:34:33: The label of the ep machine: salmon
1998/12/07 14:34:33: The object reference of the ep machine: OBJECT_NIL
1998/12/07 14:34:33: The architecture type of the ep machine: win95
1998/12/07 14:34:33: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/07 14:34:33: The ip address of the ep logging in.: 9.3.1.193+9494
1998/12/07 14:34:33: region: 1189622596
1998/12/07 14:34:33: dispatcher: 0
1998/12/07 14:34:33: version: 5
1998/12/07 14:34:33: LCF_LOGIN_STATUS=0
1998/12/07 14:34:35: Exitting ...
1998/12/07 14:34:38: [after_install_policy]
1998/12/07 14:34:38: The label of the ep machine: salmon
1998/12/07 14:34:38: The object reference of the ep machine:
1189622596.300.508+#TMF_Endpoint::Endpoint#
1998/12/07 14:34:38: The architecture type of the ep machine: win95
1998/12/07 14:34:38: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/07 14:34:38: The ip address of the ep logging in.: 9.3.1.193+9494
1998/12/07 14:34:38: region: 1189622596
1998/12/07 14:34:38: dispatcher: 300
1998/12/07 14:34:38: version: 5
1998/12/07 14:34:38: LCF_LOGIN_STATUS=0
1998/12/07 14:34:40: Exitting ...
1998/12/07 14:34:51: [login_policy]
1998/12/07 14:34:51: The label of the ep machine: salmon
1998/12/07 14:34:51: The object reference of the ep machine:
1189622596.300.508+#TMF_Endpoint::Endpoint#
1998/12/07 14:34:51: The architecture type of the ep machine: win95
1998/12/07 14:34:51: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/07 14:34:51: The ip address of the ep logging in.: 9.3.1.193+9494
1998/12/07 14:34:51: region: 1189622596
1998/12/07 14:34:51: dispatcher: 300
1998/12/07 14:34:52: version: 5
1998/12/07 14:34:52: LCF_LOGIN_STATUS=
1998/12/07 14:34:54: Exitting ...
Endpoint Policy Argument Values 397

D
R
A
F
T

A.4 AIX V4.2

The following are the argument values that the Endpoint policy returns on AIX
V4.2.

1998/12/07 13:49:50: [allow_install_policy]
1998/12/07 13:49:50: The label of the ep machine: salmon
1998/12/07 13:49:50: The object reference of the ep machine: OBJECT_NIL
1998/12/07 13:49:50: The architecture type of the ep machine: w32-ix86
1998/12/07 13:49:50: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/07 13:49:50: The ip address of the ep logging in.: 9.3.1.193+9494
1998/12/07 13:49:50: region: 1189622596
1998/12/07 13:49:50: dispatcher: 0
1998/12/07 13:49:50: version: 5
1998/12/07 13:49:50: LCF_LOGIN_STATUS=0
1998/12/07 13:49:52: Exitting ...
1998/12/07 13:49:52: [select_gateway_policy]
1998/12/07 13:49:52: The label of the ep machine: salmon
1998/12/07 13:49:52: The object reference of the ep machine: OBJECT_NIL
1998/12/07 13:49:52: The architecture type of the ep machine: w32-ix86
1998/12/07 13:49:52: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/07 13:49:52: The ip address of the ep logging in.: 9.3.1.193+9494
1998/12/07 13:49:52: region: 1189622596
1998/12/07 13:49:52: dispatcher: 0
1998/12/07 13:49:52: version: 5
1998/12/07 13:49:52: LCF_LOGIN_STATUS=0
1998/12/07 13:49:54: Exitting ...
1998/12/07 13:49:56: [after_install_policy]
1998/12/07 13:49:56: The label of the ep machine: salmon
1998/12/07 13:49:56: The object reference of the ep machine:
1189622596.299.508+#TMF_Endpoint::Endpoint#
1998/12/07 13:49:56: The architecture type of the ep machine: w32-ix86
1998/12/07 13:49:56: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/07 13:49:56: The ip address of the ep logging in.: 9.3.1.193+9494
1998/12/07 13:49:56: region: 1189622596
1998/12/07 13:49:56: dispatcher: 299
1998/12/07 13:49:56: version: 5
1998/12/07 13:49:56: LCF_LOGIN_STATUS=0
1998/12/07 13:49:58: Exitting ...
1998/12/07 13:50:09: [login_policy]
1998/12/07 13:50:09: The label of the ep machine: salmon
1998/12/07 13:50:09: The object reference of the ep machine:
1189622596.299.508+#TMF_Endpoint::Endpoint#
1998/12/07 13:50:09: The architecture type of the ep machine: w32-ix86
1998/12/07 13:50:09: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/07 13:50:09: The ip address of the ep logging in.: 9.3.1.193+9494
1998/12/07 13:50:09: region: 1189622596
1998/12/07 13:50:09: dispatcher: 299
1998/12/07 13:50:09: version: 5
1998/12/07 13:50:09: LCF_LOGIN_STATUS=
1998/12/07 13:50:11: Exitting ...
398 All About Tivoli Management Agents

D
R
A
F
T

1998/12/10 13:21:09: [allow_install_policy]
1998/12/10 13:21:09: The label of the ep machine: bass
1998/12/10 13:21:09: The object reference of the ep machine: OBJECT_NIL
1998/12/10 13:21:09: The architecture type of the ep machine: aix4-r1
1998/12/10 13:21:09: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/10 13:21:09: The ip address of the ep logging in.: 9.3.1.209+9494
1998/12/10 13:21:09: region: 1189622596
1998/12/10 13:21:09: dispatcher: 0
1998/12/10 13:21:09: version: 5
1998/12/10 13:21:09: LCF_LOGIN_STATUS=0
1998/12/10 13:21:11: Exitting ...
1998/12/10 13:21:11: [select_gateway_policy]
1998/12/10 13:21:11: The label of the ep machine: bass
1998/12/10 13:21:11: The object reference of the ep machine: OBJECT_NIL
1998/12/10 13:21:11: The architecture type of the ep machine: aix4-r1
1998/12/10 13:21:11: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/10 13:21:12: The ip address of the ep logging in.: 9.3.1.209+9494
1998/12/10 13:21:12: region: 1189622596
1998/12/10 13:21:12: dispatcher: 0
1998/12/10 13:21:12: version: 5
1998/12/10 13:21:12: LCF_LOGIN_STATUS=0
1998/12/10 13:21:14: Exitting ...
1998/12/10 13:21:15: [after_install_policy]
1998/12/10 13:21:15: The label of the ep machine: bass
1998/12/10 13:21:15: The object reference of the ep machine:
1189622596.345.508+#TMF_Endpoint::Endpoint#
1998/12/10 13:21:15: The architecture type of the ep machine: aix4-r1
1998/12/10 13:21:15: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/10 13:21:15: The ip address of the ep logging in.: 9.3.1.209+9494
1998/12/10 13:21:15: region: 1189622596
1998/12/10 13:21:15: dispatcher: 345
1998/12/10 13:21:15: version: 5
1998/12/10 13:21:15: LCF_LOGIN_STATUS=0
1998/12/10 13:21:17: Exitting ...
1998/12/10 13:21:34: [login_policy]
1998/12/10 13:21:34: The label of the ep machine: bass
1998/12/10 13:21:34: The object reference of the ep machine:
1189622596.345.508+#TMF_Endpoint::Endpoint#
1998/12/10 13:21:34: The architecture type of the ep machine: aix4-r1
1998/12/10 13:21:34: The object reference of the gateway: 1189622596.2.19#TMF_Gateway::Gateway#
1998/12/10 13:21:34: The ip address of the ep logging in.: 9.3.1.209+9494
1998/12/10 13:21:34: region: 1189622596
1998/12/10 13:21:34: dispatcher: 345
1998/12/10 13:21:34: version: 5
1998/12/10 13:21:34: LCF_LOGIN_STATUS=
1998/12/10 13:21:36: Exitting ...
Endpoint Policy Argument Values 399

D
R
A
F
T

400 All About Tivoli Management Agents

D
R
A
F
T

Appendix B. Making Batch Files

In this appendix, we show the making of the batch files that are used for the
sample programs of the Endpoint applications.

B.1 Upcall Server (Platform)

The following batch file is used for the upcall server program at the make
process.

#!/bin/sh
Make script to compile upcall server
ClassName=Upcall
ProdName=LCF
OName=test
GWMain=upmeth
#
ROOT=c:/Tivoli
SRC=${ROOT}/src
#
Install
#
function install() {
echo $1 $2
if [! -d $2]; then
mkdir -p $2
fi
rm -f $2/$1
install.sh -m 0644 $1 $2/$1
}

#
Compile
#
export CCOPT="-MD -DWIN32 \
-DSTDC_SRC_COMPATIBLE \
-I. \
-I${SRC}/export/include/w32-ix86 \
-I${SRC}/export/include/generic \
-I${ROOT}/include/w32-ix86 \
-I${ROOT}/include/generic"

function cl_source() {
rm -f $1.obj
cl $CCOPT -c $2$1.c -Fo$1.obj
}

#
Main
#
if [! -d ../w32-ix86]; then
mkdir -p ../w32-ix86
fi
cd ../../common
create idl/ist/prog/imp files
sgen < ${ClassName}.gen

cd ../platform/w32-ix86
© Copyright IBM Corp. 1998 401

D
R
A
F
T

IDL compile
tidlc -I. \
-I${ROOT}/include/w32-ix86 \
-I${ROOT}/include/generic \
../../common/${ClassName}.ist

install ${ClassName}_defs.h ${SRC}/export/include/w32-ix86/tivoli
install ${ClassName}.h ${SRC}/export/include/w32-ix86/tivoli
install t_${ClassName}.h ${SRC}/export/include/w32-ix86/tivoli
install ${ClassName}_aux.h ${SRC}/export/include/w32-ix86/tivoli
install ${ClassName}_imp.h ${SRC}/export/include/w32-ix86/tivoli
install t_${ClassName}_imp.h ${SRC}/export/include/w32-ix86/tivoli
#install ${ClassName}.idl ${SRC}/export/include/w32-ix86
#install ${ClassName}.ist ${SRC}/export/include/w32-ix86
#install ${ClassName}.imp ${SRC}/export/include/w32-ix86
#install ${ClassName}.prog ${SRC}/export/include/w32-ix86

cl_source $GWMain ../src/./
cl_source ${ClassName}_main
cl_source ${ClassName}_main_skel
cl_source ${ClassName}_aux
cl_source ${ClassName}_imp
cl_source t_${ClassName}_imp
cl_source t_${ClassName}_main_skel

export LKOPT="/LIBPATH:${ROOT}/lib/w32-ix86
-subsystem:console
libtas.a libtmfimp.a libtmf.a libms.a
libdes.a libthreads.a"

link $LKOPT \
-out:$GWMain.exe $GWMain.obj \
${ClassName}_aux.obj ${ClassName}_imp.obj ${ClassName}_main.obj \
t_${ClassName}_imp.obj ${ClassName}_main_skel.obj t_${ClassName}_main_skel.obj

install $GWMain.exe ${SRC}/export/bin/w32-ix86/${ProdName}/${OName}
install ${ClassName}.cfg ${SRC}/export/cfg/w32-ix86/tivoli
install ${ClassName}_ir.tar ${SRC}/export/cfg/w32-ix86/tivoli
install ${ClassName}_ist.tar ${SRC}/export/cfg/w32-ix86/tivoli
cd ../src
install ${ClassName}.init ${SRC}/export/cfg/w32-ix86/tivoli

B.2 Upcall Client (Endpoint)

The following batch file is used for the upcall client program.

#!/bin/sh
make script to compile upcall client
#
ClassName=Upcall
#
ROOT=c:/Tivoli
SRC=${ROOT}/src
LCFROOT=${ROOT}/bin/lcf_bundle
#
ProdName=LCF
OName=test
#
Install
#
function install() {
402 All About Tivoli Management Agents

D
R
A
F
T

if [! -d $2]; then
mkdir -p $2
fi
rm -f $2/$1
install.sh -m 0644 $1 $2/$1
}

#
Compile
#
export CCOPT="-MD -DWIN32 -DENDPOINT_BUILD -DSTDC_SRC_COMPATIBLE -DPC \
-I. \
-I../cross/. \
-I${LCFROOT}/include/w32-ix86 \
-I${LCFROOT}/include/generic \
-I${ROOT}/include/w32-ix86"
function cl_source() {
rm -f $1.obj
cl $CCOPT -c $2$1.c -Fo$1.obj
}

#
Main
#
if [! -d ../w32-ix86]; then
mkdir -p ../w32-ix86
fi
if [! -d ../cross]; then
mkdir -p ../cross
fi

IDL compile
cd ../cross
Set PATH to ADE for Endpoint
export PATH="c:/tivoli/bin/lcf_bundle/bin/w32-ix86/ade;$PATH"
${LCFROOT}/bin/w32-ix86/ade/ltid \
-DENDPOINT_BUILD \
-I. \
-I${SRC}/export/include/w32-ix86 \
-I${SRC}/export/include/generic \
-I${LCFROOT}/include/w32-ix86 \
-p ../../common/${ClassName}.ist

cd ../w32-ix86
cl_source ${ClassName} ../src/./
cl_source ${ClassName}_aux ../cross/./
cl_source t_${ClassName}_stub ../cross/./

#msvcrt.lib kernel32.lib advapi32.lib netapi32.lib user32.lib
#oldnames.lib libmrt.a libdes.a libcpl.a wsock32.lib wsock32.lib advapi32.lib
export LKOPT="/LIBPATH:${LCFROOT}/lib/w32-ix86 \
-subsystem:console \
libmrt.a libdes.a libcpl.a"

link $LKOPT -out:${ClassName}.exe \
${ClassName}.obj \
${ClassName}_aux.obj \
t_${ClassName}_stub

cp ${ClassName}.exe ${ClassName}
install ${ClassName} ${SRC}/export/bin/lcf_bundle/bin/w32-ix86/${ProdName}/${OName}
Making Batch Files 403

D
R
A
F
T

B.3 Downcall Client (Platform)

The following batch file is used for the downcall client program at the make
process.

#!/bin/sh
Make script to compile downcall client
#
ClassName=Downcall
GWMain=dsmain
#
ROOT=c:/Tivoli
SRC=${ROOT}/src
#
Install
#
function install() {
echo $1 $2
if [! -d $2]; then
mkdir -p $2
fi
rm -f $2/$1
install.sh -m 0644 $1 $2/$1
}

#
Compile
#
export CCOPT="-MD -DWIN32 \
-DSTDC_SRC_COMPATIBLE \
-I. \
-I${SRC}/export/include/w32-ix86 \
-I${SRC}/export/include/generic \
-I${ROOT}/include/w32-ix86 \
-I${ROOT}/include/generic"

function cl_source() {
rm -f $1.obj
cl $CCOPT -c $2$1.c -Fo$1.obj
}

#
Main
#
if [! -d ../w32-ix86]; then
mkdir -p ../w32-ix86
fi
cd ../../common
create idl/ist/prog/imp files
sgen < ${ClassName}.gen

cd ../platform/w32-ix86
IDL compile
tidlc -I. \
-I${ROOT}/include/w32-ix86 \
-I${ROOT}/include/generic \
../../common/${ClassName}.ist

install ${ClassName}_defs.h ${SRC}/export/include/w32-ix86/tivoli
install ${ClassName}.h ${SRC}/export/include/w32-ix86/tivoli
install t_${ClassName}.h ${SRC}/export/include/w32-ix86/tivoli
install ${ClassName}_aux.h ${SRC}/export/include/w32-ix86/tivoli
404 All About Tivoli Management Agents

D
R
A
F
T

#install ${ClassName}_imp.h ${SRC}/export/include/w32-ix86/tivoli
#install t_${ClassName}_imp.h ${SRC}/export/include/w32-ix86/tivoli
#install ${ClassName}.idl ${SRC}/export/include/w32-ix86
#install ${ClassName}.ist ${SRC}/export/include/w32-ix86
#install ${ClassName}.imp ${SRC}/export/include/w32-ix86
#install ${ClassName}.prog ${SRC}/export/include/w32-ix86

cl_source $GWMain ../src/./
cl_source ${ClassName}_aux
cl_source t_${ClassName}_stub

export LKOPT="/LIBPATH:${ROOT}/lib/w32-ix86
-subsystem:console
libtas.a libtmfimp.a libtmf.a libms.a
libdes.a libthreads.a"

link $LKOPT \
-out:$GWMain.exe $GWMain.obj \
${ClassName}_aux.obj t_${ClassName}_stub.obj \

install $GWMain.exe ${SRC}/export/bin/w32-ix86/bin
install ${ClassName}.cfg ${SRC}/export/cfg/w32-ix86/tivoli
install ${ClassName}_ir.tar ${SRC}/export/cfg/w32-ix86/tivoli
install ${ClassName}_ist.tar ${SRC}/export/cfg/w32-ix86/tivoli
cd ../src
install ${ClassName}.init ${SRC}/export/cfg/w32-ix86/tivoli

B.4 Downcall Server (Endpoint)

The following batch file is used for the downcall server program during the
make process.

#!/bin/sh
Make script to compile downcall serever
#
ClassName=Downcall
#
ROOT=c:/Tivoli
SRC=${ROOT}/src
LCFROOT=${ROOT}/bin/lcf_bundle
#
ProdName=LCF
OName=test
#
Install
#
function install() {
if [! -d $2]; then
mkdir -p $2
fi
rm -f $2/$1
install.sh -m 0644 $1 $2/$1
}

#
Compile
#
export CCOPT="-MD -DWIN32 -DENDPOINT_BUILD -DSTDC_SRC_COMPATIBLE -DPC \
-I. \
-I../cross/. \
-I${LCFROOT}/include/w32-ix86 \
Making Batch Files 405

D
R
A
F
T

-I${LCFROOT}/include/generic \
-I${ROOT}/include/w32-ix86"
function cl_source() {
rm -f $1.obj
cl $CCOPT -c $2$1.c -Fo$1.obj
}

#
Main
#
if [! -d ../w32-ix86]; then
mkdir -p ../w32-ix86
fi
if [! -d ../cross]; then
mkdir -p ../cross
fi

IDL compile
cd ../cross
Set PATH to ADE for Endpoint
export PATH="c:/tivoli/bin/lcf_bundle/bin/w32-ix86/ade;$PATH"
${LCFROOT}/bin/w32-ix86/ade/ltid \
-DENDPOINT_BUILD \
-I. \
-I${SRC}/export/include/w32-ix86 \
-I${SRC}/export/include/generic \
-I${LCFROOT}/include/w32-ix86 \
-p ../../common/${ClassName}.ist

cd ../w32-ix86
cl_source ${ClassName} ../src/./
cl_source ${ClassName}_aux ../cross/./
cl_source ${ClassName}_main_skel ../cross/./
cl_source ${ClassName}_main ../cross/./
#cl_source ${ClassName}_imp ../cross/./
#cl_source t_${ClassName}_imp ../cross/./
#cl_source t_${ClassName}_main_skel ../cross/./

export LKOPT="/LIBPATH:${LCFROOT}/lib/w32-ix86 \
-subsystem:console \
msvcrt.lib kernel32.lib advapi32.lib netapi32.lib user32.lib \
oldnames.lib libmrt.a libdes.a libcpl.a wsock32.lib wsock32.lib advapi32.lib"
link $LKOPT -out:${ClassName}.exe \
${ClassName}.obj \
${ClassName}_aux.obj \
${ClassName}_main_skel.obj \
${ClassName}_main.obj
#${ClassName}_imp.obj \
#t_${ClassName}_imp.obj \
#t_${ClassName}_main_skel.obj \

cp ${ClassName}.exe ${ClassName}
install ${ClassName} ${SRC}/export/bin/lcf_bundle/bin/w32-ix86/${ProdName}/${OName}
406 All About Tivoli Management Agents

Appendix C. Special Notices

This publication is intended to help technical users and customers of Tivoli
products to understand more about the Tivoli Management Framework. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by the Tivoli Management
Framework. See the PUBLICATIONS section of the IBM Programming
Announcement for the Tivoli Management Framework for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
them into the customer’s operational environment. While each item may have
© Copyright IBM Corp. 1998 407

been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

IBM  AIX
NetView RISC System/6000
OS/390 AS/400
OS/2
408 All About Tivoli Management Agents

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.
Special Notices 409

410 All About Tivoli Management Agents

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 413.

D.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177

Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022

Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038

Lotus Redbooks Collection SBOF-6899 SK2T-8039

Tivoli Redbooks Collection SBOF-6898 SK2T-8044

AS/400 Redbooks Collection SBOF-7270 SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040

RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041

RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043

Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1998 411

412 All About Tivoli Management Agents

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

 • PUBORDER – to order hardcopies in the United States

 • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

 • REDBOOKS Category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
© Copyright IBM Corp. 1998 413

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Online Orders – send orders to:

 • Telephone Orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • On the World Wide Web

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
414 All About Tivoli Management Agents

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 415

416 All About Tivoli Management Agents

List of Abbreviations

APA All Points Addressable

CORBA Common Object
Request Broker
Architecture

DHCP Dynamic Host
Configuration Protocol

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

IR Installation Repository

LCF Lightweight Client
Framework

LPP Licensed Program
Process

NAT Network Address
Translation

OMG Object Management
Group

TMA Tivoli Management
Agent

TMR Tivoli Management
Region

TNR Tivoli Name Registry

TRIP Tivoli Remote
Execution Service
© Copyright IBM Corp. 1998
 417

418 All About Tivoli Management Agents

Index

A
abbreviations 417
abstract data representation 309
acronyms 417
activation 33, 76
after_install_policy 115, 123
allow_install_policy 112, 121
alternate Gateway 27
assigned Gateway 128
auto upgrade 23, 191

B
backup 223, 242, 259
boot_method 221, 227, 267
broadcast 108, 143

C
cache 8
CCMS 22
code set 5
Common Object Request Broker Architecture
(CORBA) 1, 291, 295
Configuration Files

last.cfg 16, 120
setup.iss 61, 83

CORBA 1

D
Database Files

.bdb 255, 258
epmgr.bdb 255, 265
gwdb.bdb 256, 258
lcf.dat 16, 105, 120, 141, 258
odb.bdb 255, 258

dataless profile manager 22, 214, 243
Dependency 315
dependency 9, 219
dependency manager 219, 318
Desktop 10
DHCP 45
dispatcher number 95
Distributed Monitoring 223, 229
© Copyright IBM Corp. 1998
DNS 45
downcall 8, 15, 24, 130, 174, 178, 246, 286, 321
download 8, 24
duplicate login 379

E
Endpoint 7, 12, 42, 392
Endpoint Gateway 8, 12, 41, 46, 50, 261, 268,
317, 389, 392
Endpoint list 9
Endpoint login 25, 130, 271
Endpoint Manager 8, 9, 41, 48, 262, 267, 390
Endpoint policy 12, 112, 121, 393
Endpoint web interfac 141
Endpoint web interface 13, 22, 146

F
firewall 48
fun out 9

G
Gateway assignment 113

H
HMAC error 96, 109
HTTP daemon 13

I
IDL 291
Initial Login 8
initial login 105, 154, 156
installation directory 58
installation repository 56
installp 80
InstallShield 52, 57, 60
intercepting Gateway 109
internationalization 4
Inter-object Messaging 310
Inventory 47
isolation 112, 131, 165, 187

L
LCF 1
lcfd daemon 7, 24, 138, 191, 289, 300, 303
419

Lightweight Client Framework 1, 7
Log Files

epmgrlog 199
gatelog 200, 356
lcfd.log 14, 68, 201, 351

login interfaces 107, 113, 371
login script 52, 62, 64, 75
login_interval 108
login_policy 115, 125, 192

M
Managed Node 6, 8, 18, 19, 49, 212, 281
mass installation 34, 64
MDist repeater 9, 21, 247, 362, 394
method 7, 217, 247, 271, 281, 282, 284, 285, 298
method cache 12, 14, 15, 217, 228
mid-level manager 26
migration 128, 179, 241, 249, 367, 377
migration completion 129, 181

N
Netware Managed Site 6
Network Address Translation 45
normal login 105, 163

O
object database 223, 254
Object Management Group 1
OMG 1

P
PC Managed Node 6
performance 8, 385
policy arguments 116
policy exit code 117
preloaded TMA 25, 32, 34, 37, 52, 57, 73
profile manager 12

R
RIMserver 26

S
select_gateway_policy 72, 113, 122, 131, 159,
187, 371
Sentry engine 224, 226

Sentry monitor 242
Sentry profile 215, 221, 224, 242
SIS 51, 56, 59
skeleton 296
SNMP trap 383
Software Distribution 246
Software Installation Service 50
stub 296
subscriber 123

T
T/EC event 231
T/EC server 26
TEIDL 292
template 298
three-tiered structure 25, 26, 359
Tivoli 3.6 2, 3
Tivoli Commands

idlattr 262
lcfd 12, 16
lcfd.sh 12
objcall 262
wadminep 12, 14, 16, 251
wbkupdb 20, 223, 242, 259
wchdep 316, 318
wchkdb 20
wclient 50
wclreng 243
wcrtgate 12, 50, 51
wdebug 303
wdelep 62
wdelgate 12
wdepset 219, 316, 318
wep 12, 17, 68, 108, 128, 140, 142, 179,
222, 256
wgateway 12, 198, 218
wgeteppol 12, 118
winstlcf 12, 51, 57, 60
wls 49
wputeppol 12, 118
wrpt 21, 394
wsetepalias 57
wsetpm 12
wtrace 204

Tivoli Management Agent (TMA) 1, 7, 18, 28, 32,
42
Tivoli Management Application 10, 211, 386
420 All About Tivoli Management Agents

Tivoli Management Framework 1, 7, 11, 21
Tivoli Migration Toolkit 6, 52, 57, 89
Tivoli Nama Registry (TNR) 9
Tivoli Name Registry (TNR) 258
Tivoli notice 125, 229
Tivoli Ready 2, 31
Tivoli Ready logo 31
Tivoli Ready with TMA 32
Tivoli Remote Execution Service 50
TMASERV 52, 62, 89
TMR 8, 26, 46, 72, 359, 367
TMR redirection 72, 131, 150
TMR Server 8, 26, 41, 48, 281
TMR server 8
topology 26
two-tiered structure 25, 26

U
udp_attempts 107
udp_interval 107
UNIX 12
upcall 9, 130, 171, 176, 223, 287, 289, 321
URL 13

W
web browser 13
Windows NT 12

Z
zipped TMA code 36, 73, 77
 421

422 All About Tivoli Management Agents

© Copyright IBM Corp. 1998 423

ITSO Redbook Evaluation

All About Tivoli Management Agents
SG24-5134-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.

SG24-5134-00

A
ll A

bout T
ivoli M

anagem
ent A

gen
ts

S
G

24-5134-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	1.1 Tivoli 3.6
	1.1.1 Advantages of Tivoli 3.6
	1.1.2 Co-Existence of Different Managed Resources

	1.2 Overview of Tivoli Management Agent
	1.2.1 TMA Introduction
	1.2.2 Tivoli Management Agent and Tivoli Desktop
	1.2.3 Tivoli Management Agent and Command Line Interface
	1.2.4 Tivoli Management Agent and Web Interface
	1.2.5 Functions Provided through the Endpoint Web Interface

	1.3 Advantages of the Tivoli Management Agent
	1.3.1 Less Disk and Memory Utilization
	1.3.2 Increased Scalability with Reduced Complexity
	1.3.3 Lighten the Load on your TMR Server
	1.3.4 Simplifying the Tivoli Object Database
	1.3.5 Support of Tivoli Applications
	1.3.6 Command Line Interface
	1.3.7 MDist Repeater Function
	1.3.8 CCMS
	1.3.9 Endpoint Web Interface
	1.3.10 Simplified Version Upgrade Operations
	1.3.11 Three-Tiered Structure Improves Performance and Availability
	1.3.12 Increased Reliability through Endpoint Login Flexibility
	1.3.13 Preloaded TMA
	1.3.14 Functions Requiring Managed Nodes

	1.4 Management Topology with TMA
	1.5 Summary and Future Direction

	Chapter 2. Tivoli Ready with Tivoli Management Agent
	2.1 Overview of Tivoli Ready
	2.2 What Is Preloaded TMA?
	2.3 Advantage of Preloaded TMA
	2.4 Preloaded TMA Packaging
	2.4.1 Preloaded TMA in Operating Systems and Applications
	2.4.2 Zipped TMA Code

	2.5 Tivoli Ready with TMA Shipping Information
	2.6 Future Directions

	Chapter 3. Tivoli Management Agent Installation
	3.1 Planning for TMA
	3.1.1 Installation Prerequisites
	3.1.2 System Requirements
	3.1.3 TMA Planning Considerations

	3.2 TMA Installation
	3.2.1 Overview of TMA Installation
	3.2.2 TMA Installation Comparison
	3.2.3 Overview of Installation Options
	3.2.4 How to Specify Installation Option
	3.2.5 Removing Endpoint Software

	3.3 Planning for Mass Installation
	3.3.1 Using NT Login Script
	3.3.2 Installation Completion Check
	3.3.3 TMR Redirection

	3.4 Configuring Preloaded TMA
	3.4.1 Preloaded TMA for Windows NT (Zipped TMA)
	3.4.2 Preloaded TMA for Windows NT (Preloaded TMA in OS)
	3.4.3 Preloaded TMA for UNIX (Zipped TMA Code)
	3.4.4 Preloaded TMA for AIX (Preloaded TMA in OS)

	3.5 Using Installation Tools
	3.5.1 Using Silent Installation
	3.5.2 Using TMASERV

	3.6 Error Messages
	3.6.1 Deleted Endpoint
	3.6.2 Dispatcher Number Conflict

	3.7 TMA Implementation Considerations
	3.7.1 Installation Considerations
	3.7.2 Environment Variables and Files Considerations

	Chapter 4. Configuring the TMA Environment
	4.1 Overview of the TMA Login Process
	4.1.1 Normal Login
	4.1.2 Initial Login
	4.1.3 Region Redirect
	4.1.4 Isolation

	4.2 Overview of Endpoint Policies and Configuration Files
	4.2.1 allow_install_policy
	4.2.2 select_gateway_policy
	4.2.3 after_install_policy
	4.2.4 login_policy
	4.2.5 Policy Arguments
	4.2.6 Policy Exit Code
	4.2.7 Applying Policies
	4.2.8 Configuration Files

	4.3 Customizing EP Policies
	4.3.1 Example of allow_install_policy
	4.3.2 Example of select_gateway_policy
	4.3.3 Example of after_install_policy
	4.3.4 Example of login_policy

	4.4 Gateway Migration
	4.4.1 Migration Completion

	4.5 TMR Redirection
	4.5.1 Redirectors
	4.5.2 How It Works
	4.5.3 Simplified Endpoint Configuration
	4.5.4 Sharing Endpoint Resources across TMRs

	4.6 Conclusion

	Chapter 5. Anatomy of TMA Behavior
	5.1 Our Test Environment
	5.1.1 Our Test Scenario

	5.2 Understanding Options to Control Endpoint Login
	5.3 Tracing TMA Behavior
	5.3.1 Using -g Option for Endpoint Initial Login
	5.3.2 Using -D lcs.login_interfaces Option for Endpoint Initial Login
	5.3.3 Using Other Options for Controlling lcfd Daemon
	5.3.4 Using the wep Command for Modifying Login Information
	5.3.5 Using Broadcast for Endpoint Login
	5.3.6 Using the Web Interface
	5.3.7 TMR Redirection

	5.4 Understanding TMA Behavior in Unexpected Situations
	5.4.1 Understanding Initial Login
	5.4.2 Understanding Normal Login with Unexpected Situations
	5.4.3 Migration

	5.5 TMA 3.2 and TMA 3.6
	5.5.1 What is Auto Upgrade?
	5.5.2 Auto Upgrade of TMA

	5.6 Co-Existing Endpoints and EP Gateways on the Same Node
	5.7 Problem Determination
	5.7.1 Generic Problem Determination
	5.7.2 Debugging Information

	Chapter 6. TMA and Tivoli Management Applications
	6.1 Implementation Considerations
	6.1.1 Available Applications on the TMA
	6.1.2 Planning to Use Tivoli Management Applications with the TMA
	6.1.3 Dataless Profile Manager and the TMA
	6.1.4 Endpoint Method Cache Management
	6.1.5 Endpoint Methods and Tivoli Management Applications
	6.1.6 Boot_method and Tivoli Management Applications
	6.1.7 Database Backup and Tivoli Management Applications

	6.2 Upcall Applications and the TMA
	6.2.1 Distributed Monitoring and the TMA
	6.2.2 Sentry Engine on TMA
	6.2.3 Sentry Gateway Process
	6.2.4 Booting Sentry Engine
	6.2.5 Distributed Monitoring Method Cache
	6.2.6 Distributed Monitoring and Endpoint Methods
	6.2.7 Understanding Distributed Monitoring Behavior with TMA
	6.2.8 Database Backup and Sentry Monitors on the TMA
	6.2.9 The wclreng Command and the TMA

	6.3 Downcall Applications and the TMA
	6.3.1 Software Distribution and TMA
	6.3.2 Installation Consideration
	6.3.3 MDist Repeater and Endpoint Gateway
	6.3.4 Software Distribution and Endpoint Method
	6.3.5 Understanding Software Distribution Behavior with TMA

	6.4 Other Applications and the TMA

	Chapter 7. Advanced Knowledge of the TMA
	7.1 The wadminep Command
	7.1.1 Normal Usage of the wadminep command
	7.1.2 Administrative Operations with the wadminep Command

	7.2 TMA and the Tivoli Object Database
	7.2.1 Location of Tivoli Object Database
	7.2.2 Contents of TMA Databases
	7.2.3 The wbkupdb Command and TMA Information
	7.2.4 Exploring the Tivoli Object Database

	7.3 Boot Process
	7.3.1 ep_mgr Process
	7.3.2 The gateway Process
	7.3.3 The lcfd Process for the UNIX Endpoint
	7.3.4 lcfd.exe Process for NT Endpoint

	7.4 Endpoint Login and Methods
	7.5 Endpoint Status File

	Chapter 8. Overview of TMA Internals and Application Development
	8.1 Application Design
	8.1.1 Tivoli Object Methods
	8.1.2 Downcalls and Upcalls
	8.1.3 Scalability Considerations for TMA Applications

	8.2 Introduction to Tivoli ADE Extended IDL
	8.2.1 TEIDL Compiler Input
	8.2.2 TEIDL Compiler Output
	8.2.3 The Stub and the Skeleton
	8.2.4 Method Templates
	8.2.5 Configuration Script
	8.2.6 Building a Client-Server Program

	8.3 Tools for Endpoint Applications
	8.3.1 LCF Environment for Methods and Tasks
	8.3.2 LCF Environment for CLIs
	8.3.3 Debugging Endpoint Method

	8.4 Application Runtime Library
	8.4.1 Memory Management
	8.4.2 Distributed Exceptions
	8.4.3 Sequence Manipulations
	8.4.4 File System Input/Output
	8.4.5 Logging Functions
	8.4.6 ADR Marshalling Functions
	8.4.7 IOM Support for Endpoints
	8.4.8 Functions for Launching Processes
	8.4.9 Miscellaneous Functions

	8.5 The Common Porting Layer Runtime Library
	8.5.1 Binary Tree Search Functions
	8.5.2 Directory Entry Functions
	8.5.3 UNIX get Functions
	8.5.4 printf, fclose, fopen, getc Functions
	8.5.5 Temporary File Functions
	8.5.6 Callback Functions
	8.5.7 Miscellaneous Functions

	8.6 Dependencies
	8.6.1 The LCF Dependency Mechanism
	8.6.2 Usage for Dependencies
	8.6.3 The Gateway Repository
	8.6.4 Location for Storing Dependencies on the Endpoint
	8.6.5 The DependencyMgr Object
	8.6.6 Steps for Managing Dependencies
	8.6.7 Using Dependencies to Deploy Tools to Endpoints

	8.7 TMA Sample Application
	8.7.1 Process Sequence
	8.7.2 The Source Tree
	8.7.3 Source Files
	8.7.4 The Upsamp Files
	8.7.5 The Downsamp Files
	8.7.6 The Export Tree

	8.8 Building the Sample Application
	8.8.1 Sequence of Steps for Building a TMA Application
	8.8.2 View the Log Information

	Chapter 9. Management Examples Using TMA
	9.1 Managing Enterprise Environment with TMA
	9.1.1 Allocation of EP Manager, EP Gateway and EP
	9.1.2 High Availability Solution for TMR Server

	9.2 Endpoint Login Interfaces List Configuration
	9.2.1 Deployment Considerations

	9.3 Useful Tools for Using TMA
	9.3.1 Endpoint Gateway Migration Tool
	9.3.2 Duplicate Endpoint Login Check Tool
	9.3.3 Endpoint Status Check Tool

	Chapter 10. Tivoli Management Agent Performance Conisderations
	10.1 TMA Performance Tuning Strategy
	10.1.1 Operating System and Network Tuning
	10.1.2 TMA Tuning
	10.1.3 Tivoli Management Application Tuning
	10.1.4 Operational Considerations

	10.2 TMR and Network Design Approach
	10.2.1 Design and Tuning
	10.2.2 Design Considerations

	10.3 Understanding Parameters for Performance Tuning
	10.3.1 Endpoint Gateway
	10.3.2 Endpoint Manager
	10.3.3 Operating System and Network

	10.4 Sample Configurations
	10.4.1 Endpoint Configuration
	10.4.2 Endpoint Gateway Configuration

	10.5 Improving Performance of TMA
	10.5.1 Endpoint Policy Considerations
	10.5.2 MDist Repeater and File Package Source Host

	Appendix A. Endpoint Policy Argument Values
	A.1 Windows 95
	A.2 Windows 98
	A.3 Windows NT
	A.4 AIX V4.2

	Appendix B. Making Batch Files
	B.1 Upcall Server (Platform)
	B.2 Upcall Client (Endpoint)
	B.3 Downcall Client (Platform)
	B.4 Downcall Server (Endpoint)

	Appendix C. Special Notices
	Appendix D. Related Publications
	D.1 International Technical Support Organization Publications
	D.2 Redbooks on CD-ROMs

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

