
SG24-4838-00

RS/6000 SP High Availability Infrastructure

November 1996

International Technical Support Organization

RS/6000 SP High Availability Infrastructure

November 1996

SG24-4838-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special Notices” on page 313.

First Edition (November 1996)

This edition applies to PSSP Version 2, Release 2 for use with the AIX Version 4 Operating System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Tables . vii

Preface . ix
How This Redbook Is Organized . ix
The Team That Wrote This Redbook . x
Comments Welcome . xii

Chapter 1. Introduction to High Availability Infrastructure 1
1.1 Topology Services . 1

1.1.1 Adapter Membership . 1
1.1.2 Host Membership . 2

1.2 Group Services . 2
1.3 Event Management . 2

Chapter 2. Topology Services . 5
2.1 Topology Services Overview . 6

2.1.1 hatsctrl . 6
2.2 Topology Services Design . 8
2.3 Definitions . 9
2.4 Monitoring and Routing . 11
2.5 Initialization Flow . 12
2.6 AMG Monitoring . 14
2.7 Failure Detection . 15
2.8 Failure of Group Leader and Crown Prince 16
2.9 Topology Services Data Flow . 17
2.10 Partitioning and Topology Services . 18
2.11 Network Connectivity . 19
2.12 Topology Services Tunables . 20
2.13 Topology for RS/6000 SP . 23

Chapter 3. Group Services . 25
3.1 Group Services Introduction . 27

3.1.1 Group Services Objectives . 27
3.1.2 Group Services Schema . 28
3.1.3 Group Concept . 29
3.1.4 Group Services Clients . 30
3.1.5 Group Services Features . 32
3.1.6 Group Services Functional Flow . 34

3.2 Group Services Functional Overview . 36
3.2.1 Group . 36
3.2.2 Protocols . 45
3.2.3 Notifications . 62
3.2.4 Voting . 66
3.2.5 Active Protocol Proposal . 72
3.2.6 Source-Target Group Relationships . 73
3.2.7 Sundered Networks . 76

3.3 Group Services Application Programming Interface (GSAPI) 78
3.3.1 GSAPI Routines . 78
3.3.2 ha_gs_init() . 80
3.3.3 ha_gs_join() . 82
3.3.4 ha_gs_change_state_value() . 84

 Copyright IBM Corp. 1996 iii

3.3.5 ha_gs_vote() . 85
3.3.6 ha_gs_subscribe() . 86
3.3.7 ha_gs_dispatch() . 88
3.3.8 ha_gs_leave() . 89
3.3.9 ha_gs_quit() . 90
3.3.10 GSAPI Design Considerations . 91

3.4 Group Services Administrations . 96
3.4.1 Group Services Processes . 96
3.4.2 Files and Directories . 98
3.4.3 Operations . 101
3.4.4 Group Services Daemon Initialization 116

Chapter 4. Resource Monitors . 119
4.1 Resource Monitor Objectives . 120
4.2 Resources . 121
4.3 Resource Variable . 122
4.4 Resource Variable Name . 123
4.5 Instance Vector . 124
4.6 Resource Variable Types . 125
4.7 Structured Byte String . 127
4.8 Resource Monitors . 128
4.9 Resource Monitor Types . 129
4.10 SP Resource Monitors . 130
4.11 Internal Resource Monitors . 132

Chapter 5. Event Management . 135
5.1 Event Management Objectives . 136
5.2 Event Management Design . 137
5.3 Predicate and Event . 139

5.3.1 Predicate . 139
5.3.2 Event . 140
5.3.3 Resource Variable Observation . 140

5.4 Distributed Event Management . 141
5.5 Event Management Clients . 143
5.6 Event Registration and Notification . 144
5.7 Query . 146
5.8 Client and Peer Communication . 147
5.9 Resource Monitor Communication . 149
5.10 Event Management SDR Classes . 151
5.11 Resource Monitor Definition . 153
5.12 Resource Class Definition . 155
5.13 Resource Variable Definition (SDR) . 157
5.14 Structured Byte String Definition . 160
5.15 Instance Vector Definition . 162
5.16 Event Management Configuration Database 163
5.17 Event Management Application . 165
5.18 Event Manager Configuration Steps . 166
5.19 Event Manager Startup . 168
5.20 Join Group Services . 170
5.21 Read the EMCDB . 172
5.22 Event Manager Runtime Directories . 174
5.23 Event Manager API Files . 176
5.24 Event Manager Control Utilities . 177

5.24.1 Event Manager Control Program . 177
5.24.2 SRC Commands . 179

iv RS/6000 SP HA Infrastructure

5.25 Event Manager API (EMAPI) . 182
5.26 Resource Monitor API . 184
5.27 Perspectives . 187

Chapter 6. Problem Management . 189
6.1 Problem Management Objectives . 190
6.2 Problem Management Design . 191
6.3 Problem Management Daemons . 193
6.4 Problem Management Daemon (pmand) 194
6.5 Command Started from pmand . 196
6.6 Configuration Steps of pmand . 198
6.7 pmandConfig SDR Class . 200
6.8 pmand Control Utilities . 203

6.8.1 pmanctrl . 205
6.8.2 pmandef . 207
6.8.3 pmanquery . 210
6.8.4 lssrc Command . 211

6.9 User-Defined Resource Monitor . 213
6.10 Error Log Resource Variable . 215
6.11 Configuration Steps of pmanrmd . 217
6.12 Configuration File and SDR . 219
6.13 sp_configd . 221
6.14 SNMP SP MIB . 222
6.15 SP Configuration (ibmSPConfig) . 224
6.16 SNMP Traps from the AIX Error Log . 225
6.17 SNMP Traps from Events (ibmSPEMEvent) 227
6.18 sp_configd Control Commands . 229
6.19 sp_configd Control . 230

6.19.1 Configuring Netview for AIX . 230
6.19.2 Configure sp_configd . 231

Chapter 7. VSD/RVSD . 233
7.1 Functional Overview . 235

7.1.1 VSD Architecture . 235
7.1.2 VSD State Transitions . 237
7.1.3 HSD Architecture . 238
7.1.4 Recoverable VSD (RVSD) . 240

7.2 New Features . 242
7.2.1 New VSD Commands . 243
7.2.2 GUI Interface . 248
7.2.3 New RVSD Mechanism . 250

Chapter 8. Performance Toolbox Parallel Extensions 257
8.1 Design Objectives . 258
8.2 PTX/6000 Functional Overview . 261
8.3 PTX Parallel Extensions Functional Overview 263

8.3.1 Parallel Extensions . 265
8.4 PTPE Monitoring Hierarchy . 266

8.4.1 Hierarchy Example . 267
8.5 Installing PTPE . 268
8.6 Configuring PTPE . 270

8.6.1 Determining Hierarchy . 271
8.6.2 Configuring PTPE, Miscellaneous . 272

8.7 Using PTPE . 274
8.8 PTPE and Perspectives . 277

Contents v

8.8.1 How to Use PTPE Perspectives . 278
8.9 Practical Experiences . 284
8.10 PTX/6000 and PTPE, Monitoring Subsystems 285
8.11 PTX/6000 and PTPE, Summary Statistics 286

8.11.1 Sample Output of Summary Statistics 287
8.11.2 Sample Output of 3dmon . 288

Appendix A. Resource Class Definition . 289

Appendix B. ibmSP MIB . 291

Appendix C. Special Notices . 313

Appendix D. Related Publications . 315
D.1 International Technical Support Organization Publications 315
D.2 Redbooks on CD-ROMs . 315
D.3 Other Publications . 315

How To Get ITSO Redbooks . 317
How IBM Employees Can Get ITSO Redbooks 317
How Customers Can Get ITSO Redbooks . 318
IBM Redbook Order Form . 319

List of Abbreviations . 321

Index . 323

vi RS/6000 SP HA Infrastructure

Tables

 1. List of Callback Functions . 65
 2. Functional Role of RS/6000 SP Nodes in the RVSD Configuration . . . 240
 3. RVSD Recovery Scripts Execution Sequence 255
 4. Resource Class Definition. . 289

 Copyright IBM Corp. 1996 vii

viii RS/6000 SP HA Infrastructure

Preface

This redbook provides detailed coverage of the High Availability Infrastructure
functions that were made available with the newest release of PSSP 2.2
software. The book is organized in the form of a technical presentation. It
includes mid-size foils and related text for each foil in the document.

This redbook was written for IBM customers, Business Partners and IBM
technical and marketing professionals to provide them with a detailed
presentation of the different functions and components that are meant to be the
foundation of the whole strategy of highly available clusters across a multivendor
environment.

The book focuses on the following topics:

• PSSP 2.2 High Availability Overview

• Topology Services

• Group Services

• Resource Monitor

• Event Management

• Problem Management

• Virtual Shared Disk and Recoverable Virtual Shared Disk

• Performance Toolbox Parallel Extension

A good knowledge of AIX Version 4 and RS/6000 SP is assumed.

How This Redbook Is Organized
This redbook contains 326 pages. It is organized as follows:

• Chapter 1, “Introduction to High Availability Infrastructure”

This provides an overview of the High Availability Infrastructure of PSSP
Version 2 Release 2. It uses a pictorial diagram to illustrate how the various
components of the infrastructure fit together and the inter-relationships that
exist within the structure.

• Chapter 2, “Topology Services”

This focuses on the new PSSP Version 2 Release 2 topology services which
are the foundation of the high availability infrastructure. It provides details
on the currently supported adapter networks, namely Ethernet and switch
(CSS) networks.

• Chapter 3, “Group Services”

This chapter discusses the rudimentary concepts of group services, which is
one of the critical components of the high availability infrastructure
supported by PSSP Version 2 Release 2. It introduces the definition of
groups and the various protocols associated with the group services
component.

 Copyright IBM Corp. 1996 ix

• Chapter 4, “Resource Monitors”

This chapter describes the Resource Monitor, which is one of the new high
availability services of PSSP Version 2 Release 2 used to monitor the
software and hardware components of a system. The chapter provides
rudimentary definitions and basic presentations of Resource Monitors and
how they relate to Event Management and Performance Toolbox Parallel
Extension.

• Chapter 5, “Event Management”

This chapter describes Event Management, which is one of the new high
availability services of PSSP Version 2 Release 2. It also provides an
introductory presentation on the Resource Monitor and its relationship with
other components. The presentation describes the concepts and
architectural design and operational strategy.

• Chapter 6, “Problem Management”

This chapter describes Problem Management, which is one of the new high
availability services of PSSP Version 2 Release 2. It describes the concepts
and how to exploit this function in the RS/6000 SP system environment. It
provides some examples of the commands and how they are used when
events are triggered in the system.

• Chapter 7, “VSD/RVSD”

This chapter describes the latest release of Virtual Shared Disk (VSD), which
is one of the clients that exploits the new high availability services of PSSP
Version 2 Release 2.

• Chapter 8, “Performance Toolbox Parallel Extensions”

This chapter describes the Performance Toolbox Parallel Extension (PTPE).
It is one of the features of PSSP Version 2 Release 2. This chapter contains
a detailed presentation of this tool and a description of how it is used in a
scalable environment for performance measurement of the various system
components.

• Appendix A, “Resource Class Definition”

This appendix contains a list of the Event Management Resource Classes
that are defined in the SDR as EM_Resouce_Class.

• Appendix B, “ibmSP MIB”

This appendix contains specific object types that are supplied for the ibmSP
MIB.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Poughkeepsie
Center.

Endy Chiakpo is a Project Leader at the International Technical Support
Organization, Pougkeepsie Center. He writes extensively and teaches IBM
classes worldwide on all areas of RS/6000 SP. He holds a B.S. degree in
Physics and a Master of Science degree in Electrical Engineering from Syracuse
University New York. Before joining the ITSO, Endy worked in the IBM
Poughkeepsie Lab in New York, USA.

x RS/6000 SP HA Infrastructure

Peter Kes is a Project Leader at the International Technical Support
Organization, Poughkeepsie Center. He writes extensively and teaches IBM
classes worldwide on all areas of RS/6000 SP. Before joining the ITSO in 1996,
Peter worked in AIX Systems in The Netherlands, as a System Engineer.

Adrian Demeter is an RS/6000 SP specialist at the IT Availability Services
department of IBM Czech, in Prague (Czech Republic). He is responsible for
RS/6000 SP and SMP support in the country, and the first RS/6000 SP and SMP
installations in the country were done by him. He has prepared and taught other
SP and non-SP education courses for customers in the Czech environment. He
has worked at IBM for 3 years. He has 4 years of experience in UNIX and
system engineering. He holds a degree in Electrical Engineering and Technical
Cybernetics from Czech Technical University (CVUT) Prague.

Robert Gambs is a Technical Marketing Support Specialist at the AIX Systems
Center in Westlake, Texas (USA). He is responsible for education, planning,
installation, customer support, and various other aspects of RS/6000 SP, general
RS/6000, and AIX technology. He co-authored the RS/6000 SP Implementation
Workshop, available from IBM Education and Teaching. Robert holds a bachelor
degree in Computer Science with emphasis in Physics from Texas A&M at
Commerce, formerly known as East Texas State University. He has been with
IBM for over four years.

Franz Gerharter-Lueckl is an AIX specialist at IBM Austria. He holds an
engineering degree for a five years study at the TGM Technical School for
communications engineering and electronics. Before joining IBM in 1989, Franz
worked as project leader and programmer for a software house. At IBM, he was
on assignment at the T.J. Watson Research Center for 20 months. During that
time, he was also responsible for the initial releases of LoadLeveler for Sun
Solaris (5765-227) and SGI Irix 5 (5765-228). His areas of expertise include
RS/6000 SP, benchmarks, networking, porting software to HP, SUN, SGI, and AIX
ESA. He is a co-author of two redbooks: PSSP Version 2 Technical Presentation,
SG24-4542; and Scientific and Technical Computing Overview, SG24-4541. Franz
teaches “TCP/IP in a Multivendor Environment” classes for IBM Education.

Yoram Gnat is a senior RS/6000 market specialist in Israel. He has 15 years of
experience in UNIX operating systems. He has worked at IBM for 11 years,
following AIX from Version 2, through Version 3, and up to Version 4. He holds a
Ph.D. degree in Physics from Tel Aviv University, participated in experimental
research projects in high energy physics and published several research
studies. His areas of expertise include AIX, scientific/engineering programming
and optimizations, parallel programming, and TCP/IP communications. He now
also teaches the C programming language and the AIX Operating System.

Yann Guerin is a team leader at the EMEA Parallel Solutions Support Center
(PSSC), in Montpellier (France). He is responsible for RS/6000 SP education
courses and for the coordination of the system administrators team on the other
RS/6000 SP activities of the PSSC (benchmarking, briefing, demonstrations,
customized solutions). He has 12 years of experience in UNIX and project
management.

Hisashi Shirai is an advisory IT specialist at IBM Japan Systems Engineering Co.,
Ltd. in Makuhari (Japan). He is mainly responsible for high availability (HA) of
RS/6000 systems, including RS/6000 SP. He has 4 years of experience in AIX,
and has worked as a team leader of an HA technical support group for two

Preface xi

years. He is also a co-author of the redbook Implementing High Availability on
RS/6000 SP, SG24-4742.

Thanks to the following people for their invaluable contributions to this project:

Marcelo Barrios
International Technical Support Organization, Poughkeepsie Center

IBM PPS Lab Poughkeepsie:
Mike Browne
Deepak Advani
Joseph Banas
Dr. Gili Mendel
Dr. Aruna Ramanan
Michael Schmidt
Ken Briskey
Stephen Tovcimak
James Gilman
Dennis Jurgensen
Tim Race
Robert Gensler Jr.
Peter Badovinatz
Paul Bildzok
Skip Russell
Richard Ferri
Mark Gurevich
Steven Cangemi
William Wajda
Margaret Moran
Bernard King-Smith
Patrick Meehan
John Simpson

IBM US Dallas System Center:
Mark Venator

Comments Welcome
We want our redbooks to be as helpful as possible. Should you have any
comments about this or other redbooks, please send us a note at the following
address:

 redbook@vnet.ibm.com

Your comments are important to us!

xii RS/6000 SP HA Infrastructure

Chapter 1. Introduction to High Availability Infrastructure

� �

� �
This chapter provides an overview of the IBM High Availability Infrastructure
components and the interrelationships that exist within their internal structure.
This infrastructure is made up of three key distributed subsystem components,
namely:

• Topology Services

• Group Services

• Event Management Services

1.1 Topology Services
Topology Services is the foundation of the entire infrastructure and it coordinates
adapter membership and node membership information in the system. This
information is in turn provided to the other subsystem components such as
Group Services.

1.1.1 Adapter Membership
The two types of adapter networks that are currently supported in this release of
PSSP 2.2 are:

• Ethernet Membership

• Switch Membership (CSS)

 Copyright IBM Corp. 1996 1

enMembership The Ethernet membership is considered ″UP″ if the node is
accessible through its Ethernet adapter.

cssMembership The high-speed switch membership is considered to be
″UP″ if the node is accessible through its switch adapter.

1.1.2 Host Memb ership
The host membership provides a view of the state of the processors (nodes) in
the system. A node is considered ″UP″ if there are at least one or more
communication paths to the node. A node is considered ″DOWN″ if there are no
communication paths to it. Refer to Chapter 2, “Topology Services” on page 5
for more details.

1.2 Group Services
The Group Services component of the high availability infrastructure provides a
distributed coordination, messaging, and synchronization service. It supports
subsystems for their coordination of recovery actions but it does not actually
perform the recovery actions. In this release of PSSP, Group Services is
exploited by two other components:

• Recoverable Virtual Shared Disk (RVSD)

• Event Management

A group is defined as a named collection of processes and the name Group
Services could be interpreted as process services. This could be a collection of
processes that are executing on different nodes. Any process may create a new
group, or join an existing group. To create or join an existing group requires a
root access authority.

The high availability services is an open infrastructure that can be exploited by
most users. Group Services provides a set of Application Programming
Interfaces (API) that will enable Independent Software Vendors (ISVs) or other
end users to make use of this infrastructure. Refer to Chapter 3, “Group
Services” on page 25 for more details.

1.3 Event Management
The comprehensive Event Management subsystem monitors system resources
and generates events when a resource changes state. The state of change in a
resource is detected by the application of a predicate. A predicate is akin to a C
program expression (such as X==0). When the predicate is true, an event ID is
generated. There are three main components associated with Event
Management, namely:

• Resource Monitor

• Clients

• Event Management Daemon (EM daemon)

The Resource Monitor supplies resource variables to the Event Management
Daemon through the Resource Monitor Application Programming Interface
(RMAPI). The Resource Monitor does the actual monitoring of system resources.

The clients are programs that define and receive events or query the current
state of resources. This is done through the use of the Event Manager

2 RS/6000 SP HA Infrastructure

Application Interface (EMAPI). The clients are usually local to the EM Daemon
with some exceptions. One good example of a client to Event Management is
the Problem Management described in Chapter 6, “Problem Management” on
page 189.

The Event Management Daemon provides the following major functions:

• Generates events

• Answers queries

• Forwards requests and replies among nodes within an operational domain

Refer to Chapter 5, “Event Management” on page 135 for more details.

Chapter 1. Introduction to High Availabil ity Infrastructure 3

4 RS/6000 SP HA Infrastructure

Chapter 2. Topology Services

� �

� �

This chapter describes the Topology Services subsystem of the new PSSP 2.2
High Availability Infrastructure.

 Copyright IBM Corp. 1996 5

2.1 Topology Services Overview

� �

� �

The Topology Services subsystem provides the foundation for the PSSP 2.2 High
Availability Infrastructure. This subsystem is distributed across all nodes in an
environment and maintains availability information about the nodes and
adapters. This availability information allows Topology Services to provide
routing paths to the Reliable Messaging subsystem. Group Services subscribes
to Topology Services for changes in the availability status of nodes and
adapters.

Topology Services has a dependency on the Control Workstation for SDR
information about the environment. It currently monitors the administrative
Ethernet network and a switch network (if present); other network adapters will
be supported in the future.

The Topology Services daemon is hatsd and is administered by the hatsctrl
program. The log file is located in:

/var/ha/log/hats.< D a y o f M o n t h > . < h h m m s s > . < p a r t i t i o n # > .

2.1.1 hatsctrl
The hatsctrl program contains the following parameters:

-a Configures Topology Services for a node by adding an entry to the
SRC subsystem, updating the SDR, and modifying /etc/services.

6 RS/6000 SP HA Infrastructure

-d Removes Topology Services from SRC, SDR, and /etc/services for a
node.

-c Removes Topology Services configuration for all nodes.

-s Starts hatsd.

-k Stops hatsd.

-t Turns ON tracing for hatsd.

-o Turns OFF tracing for hatsd.

-r Rebuilds the configuration and refreshes the Topology Services
daemon

-h Displays the usage information.

Chapter 2. Topology Services 7

2.2 Topology Services Design

� �

� �

Topology Services provides availability details to Group Services and routing
information to Reliable Messaging. The Topology Services daemons
communicate between nodes to monitor availability and maintain topology
descriptions.

Topology Services′ interaction with Group Services is accomplished with UNIX
Domain Stream Sockets, so that Group Services may detect when a Topology
Service has died prematurely. Group Services subscribes to Topology Services
for status changes in the availability of nodes and adapters in the environment.

From the availability information, Topology Services can build Network
Connectivity Tables to provide routing information to Reliable Messaging. These
tables are maintained in shared memory so that Reliable Messaging may query
them.

The communication between Topology Services daemons is accomplished by
using unreliable data packets. Therefore, these daemons must always validate
the source of these packets and acknowledge receipt to provide a reliable form
of communication.

8 RS/6000 SP HA Infrastructure

2.3 Definitions

� �

� �

The following are several terms that will be used to describe the different
concepts of Topology Services.

Adapter Membership describes the process of monitoring the availability of the
different network adapters defined in the environment. Adapter Membership
Group is an association of adapters that establish their relationship for
monitoring and routing purposes.

Currently, Topology Services only supports Ethernet and switch adapters, but it
will eventually support all types of network adapters.

Node Membership is the process for maintaining node availability information
based on Adapter Membership. The routes and monitoring provided by Adapter
Membership define which nodes can communicate across their different
adapters. If adapters on different nodes are in an Adapter Membership Group,
then the nodes are able to communicate. Nodes may also communicate
indirectly by routing across several different Adapter Membership Groups. This
will be discussed in later sections.

Chapter 2. Topology Services 9

� �

� �

The Group Leader is the adapter of the highest IP address within an Adapter
Membership Group. The Group Leader is responsible for maintaining the
topology and connectivity information of a group and distributing that information
to the other members. The Group Leader will also attempt to recruit other
adapters into the group, or to merge with groups which have a Group Leader
with a higher IP address.

The Crown Prince monitors the availability of the Group Leader and assumes the
leadership role when the Group Leader fails. The Crown Prince has the
second-highest IP address in the group.

A Singleton group is an Adapter Membership Group which contains only one
member. All adapters initialize into a Singleton before they join a larger group.

10 RS/6000 SP HA Infrastructure

2.4 Monitoring and Routing

� �

� �

Topology Services′ two main goals are to monitor node and adapter availability
and to provide routing information to the Reliable Messaging subsystem. These
functions work together with availability monitoring to perform validation on
routes between nodes and to update that information in the subsystem′s
topology. Thus, Reliable Messaging will always have usable routes based on
the latest attempt to send heartbeats over the different segments of that route.

Chapter 2. Topology Services 11

2.5 Initialization Flow

� �

� �

Adapter Membership Groups (AMG) are created and maintained using the
following algorithm:

 1. Each node acquires the machine list from the Control Workstation.

 2. Each adapter initializes itself into a Singleton group.

 3. Group Leaders periodically send proclamations to all lower priority adapters.

 4. Lower priority Group Leaders respond to proclamations made by the higher
priority Group Leaders with a request to join that group.

 5. The Group Leader recognizes requests to join made by lower priority Group
Leaders, and incorporates their group topology.

 6. The Group Leader notifies all members of the newly forming group to
Prepare to Commit the new group topology.

 7. Group members acknowledge receipt of the Prepare to Commit message.

 8. The Group Leader waits for all acknowledgements, then sends a message to
commit the new topology.

 9. Members acknowledge receipt of the commit message.

10. The Group Leader then delivers the new topology to all members.

11. Members will then determine the new Group Leader, Crown Prince, and
Neighbors.

12. All members begin sending and receiving heartbeats from neighbors.

12 RS/6000 SP HA Infrastructure

Group Leaders will continue to periodically send Group Proclaims to any lower
priority adapters that are in their configuration but are not members of their
group.

The monitoring process is only interrupted when modifications to the group
topology are being made, as in the case of an adapter failure.

Chapter 2. Topology Services 13

2.6 AMG Monitoring

� �

� �

Heartbeats are sent from one adapter to the adapter in the group with the next
lower IP address. The adapter with the lowest priority will send its heartbeat to
the Group Leader. All adapters will monitor the neighbor immediately above
them and report any failures to the Group Leader.

14 RS/6000 SP HA Infrastructure

2.7 Failure Detection

� �

� �

This diagram is an example of how the failure of an adapter or node is managed
within an Adapter Membership Group.

 1. Due to either adapter or node failure, Adapter 4 fails to send a HEART_BEAT
message to Adapter 3.

 2. Adapter 3 waits until it has missed four HEART_BEAT messages from
Adapter 4 and then sends a DEATH_IN_FAMILY message to the Group
Leader to indicate the death of Adapter 4. This is step 1 in the foil.

 3. Adapter 3 knows that the Group Leader should be sending a Prepare to
Commit (PTC) message shortly to update the group, but if Adapter 3 does not
see that message after a time, it will send a DISSOLVE_GROUP message to
all members so they will reinitialize themselves and create a new AMG.

 4. The Group Leader wil l send a PTC to all members once it has been notified
of the failure of Adapter 4. This is step 2 in the foil.

 5. Once all PTC_ACK messages have been received, the Group Leader wil l
send a COMMIT and the updated topology information to all members.

 6. Each member wil l update their topology information and determine the
Group Leader, Crown Prince, and Neighbor adapters. This is step 3 in the
foil.

If the Group Leader is the adapter which failed, the Crown Prince will assume
the role of Group Leader and notify the other members of the new topology.

Chapter 2. Topology Services 15

2.8 Failure of Group Leader and Crown Prince

� �

� �

The failure of both the Group Leader and the Crown Prince is a rare event, but it
is possible. It would be handled in the following manner:

 1. Since the Crown Prince has died, it wil l not detect the death of the Group
Leader.

 2. Adapter 4 wil l detect the death of the Crown Prince after eight seconds and
attempt to notify the Group Leader. This is step 1 in the foil.

 3. Adapter 4 expects the Group Leader to respond with a PTC to all members.
When no PTC arrives after approximately five seconds, Adapter 4 realizes
something is critically wrong and notifies the other members in the group to
DISSOLVE. This is step 2 in the foil.

 4. Each member verifies that the DISSOLVE message came from a valid group
member and then proceeds to reinitialize and form a new group which will
not include the old Group Leader and Crown Prince.

As is described here, the last solution an AMG can take when the Group Leader
fails to respond to changes in topology is to dissolve the group and reinitialize
all adapters. Once reinitialized, all adapters will form a new group.

16 RS/6000 SP HA Infrastructure

2.9 Topology Services Data Flow

� �

� �

Topology Services utilizes and creates several levels of information concerning
the adapters and nodes in the environment. Starting with the SDR, each piece is
used to create the next piece, until ultimately a complete Network Connectivity
Table is formed for use by Reliable Messaging. The SDR provides node number
and adapter information about the RS/6000 SP environment, which the Topology
Services builds into a machine list. The machine list is specific to a partition and
always contains the Control Workstation. The SDR is the reason Topology
Services has a dependency on each node being able to communicate with the
CWS.

Topology Services uses the machine list to build Adapter Membership Groups on
the various networks. With the information from the Adapter Membership
Groups, Topology Services can build a topology table and graph to indicate node
connectivity in the environment. Group Services is mainly interested in the
changes to nodes and adapters as they are added and removed from the
topology data.

From the node connectivity, the Network Connectivity Table is developed for use
by Reliable Messaging.

Chapter 2. Topology Services 17

2.10 Partitioning and Topology Services

� �

� �

Separate machine lists will be built for each partition in the RS/6000 SP
environment. The Control Workstation will be included in both machine lists
because each will need to access the SDR. Additionally, the Control Workstation
will run one instance of the Topology Services daemon for each partition so that
it may separate its functions in each partition.

18 RS/6000 SP HA Infrastructure

2.11 Network Connectivity

� �

� �

The Network Connectivity Table is derived from a breadth-first search performed
on the Topology Graph to establish the shortest path between any two nodes.
The diagram illustrates this algorithm for the node pair 1-4. At each node, the
local AMGs are checked to see if the destination node is a member. If it is not,
the search proceeds to another node in the AMG and checks there for the
destination node in those AMGs. This process is repeated until a route is found
from the source node to the destination.

The Network Connectivity Table is maintained by Topology Services in a section
of shared memory so that Reliable Messaging is able to query it when
necessary.

Chapter 2. Topology Services 19

2.12 Topology Services Tunables

� �

� �

Topology Services has three parameters which are tunable, but one of these
parameters affects several other parameters that are used in monitoring. Each
of these tunable values are maintained in the TS_Config object within the SDR.
The Topology Services daemon must be refreshed in order for any changes
made to these values to take effect.

Frequency sets the rate at which heartbeats are sent. The heartbeat send rate is
in seconds and affects the majority of intervals used in Topology Services.

Sensitivity indicates the number of heartbeats that must be missed for an
adapter to be declared unavailable.

Run_FixPri and FixPri_Value set the priority value of the Topology Services
daemon, hatsd. Run_FixPri indicates whether to use the value assigned to
FixPri_Value or the default priority.

Following is a list of the various intervals and thresholds used in the Topology
Services subsystem.

HEARTBEAT_SEND

This is the interval at which heartbeats are sent. It is modifiable by
the frequency value in TS_Config. The default is one second.

20 RS/6000 SP HA Infrastructure

HEARTBEAT_RECV

This is the interval at which heartbeats are declared missing. The
default is 2 * HEARTBEAT_SEND.

STABLE_WAIT

This is the interval during which a group must have no membership
changes before the group becomes stable. The default is 10 *
HEARTBEAT_SEND.

JOIN

This is the interval to wait for a PTC after a JOIN_REQUEST. The
default is 5 * HEARTBEAT_SEND.

JOIN_BATCH

This is the interval a Group Leader waits for additional
JOIN_REQUESTs, after receiving the first, before processing the
requests. The default is 2 * HEARTBEAT_SEND.

PTC_ACK

This is the interval a Group Leader will wait for an acknowledgement
to a PTC. The default is 2 * HEARTBEAT_SEND.

COMMIT_ACK

This is the interval to wait for an acknowledgement to a COMMIT.
The default is 2 * HEARTBEAT_SEND.

COMMIT_BROADCAST_ACK

This is the interval a Group Leader will wait for an acknowledgement
to a COMMIT_BROADCAST. The default is 2 * HEARTBEAT_SEND.

COMMIT

This is the interval to wait for a COMMIT following a PTC. The default
is 5 * HEARTBEAT_SEND.

PROCLAIM

This is the interval between GROUP_PROCLAIM messages. The
default is 5 * HEARTBEAT_SEND.

NODE_CONNECTIVITY

This is the interval between NODE_CONNECTIVITY messages. The
default is 10 * HEARTBEAT_SEND.

GROUP_CONNECTIVITY

This is the interval between GROUP_CONNECTIVITY messages. The
default is 10 * HEARTBEAT_SEND.

NODE_REACHABILITY

This is the interval to wait after receiving a GROUP_CONNECTIVITY
before determining node reachability. The default is 1 *
HEARTBEAT_SEND.

FIBRILLATE

This is the threshold at which an adapter is declared dead. It is
modifiable by the sensitivity value of TS_Config. The default is four
missed heartbeats.

Chapter 2. Topology Services 21

CSS_DOWN

This is the interval to wait after FIBRILLATE threshold on a CSS
adapter before declaring it dead. The default value is 120 seconds.

22 RS/6000 SP HA Infrastructure

2.13 Topology for RS/6000 SP

� �

� �

This diagram illustrates an example of Topology Services with the currently
supported adapter networks in an RS/6000 SP environment. It consists of an
Ethernet adapter network connecting all the nodes including the Control
Workstation, and a switch network (CSS) which only connects the nodes,
excluding the Control Workstation.

There will be two different group leaders, one for the Ethernet adapter network
and the other for the switch network (CSS). The group leader is the node with
the highest IP address in its respective network. It is possible to have one node
serving as the group leader for both networks, and in some cases the group
leaders could be on different nodes (depending on the location of the node with
the highest IP address in the networks).

Chapter 2. Topology Services 23

24 RS/6000 SP HA Infrastructure

Chapter 3. Group Services

� �

� �

Group Services (GS) is a distributed subsystem of the IBM Parallel System
Support Programs (PSSP) V2.2 on the RS/6000 SP. It is one of three subsystems
in the PSSP Version 2 Release 2 that provides a set of high availability services.
For information about the other high availability subsystems, Event Management
and Topology Services, refer to Chapter 5, “Event Management” on page 135
and Chapter 2, “Topology Services” on page 5.

The Group Services subsystem provides a distributed coordination and
synchronization mechanism to other subsystems or to multicomputer (that is,
multinode) applications. You are not required to use Group Services, but it is an
effective way for multicomputer applications or subsystems to exploit the
distributed consistency mechanism to achieve a useful level of fault-tolerance
and high availability.

 Copyright IBM Corp. 1996 25

� �

� �

This chapter covers the following topics on Group Services:

• Introduction to Group Services

• Functional overview of Group Services

• The Group Services Application Programming Interfaces (GSAPI)

• Administration of Group Services

26 RS/6000 SP HA Infrastructure

3.1 Group Services Introduction
This section gives an overview of Group Services.

3.1.1 Group Services Objectives

� �

� �

Applications that can best exploit a multicomputer environment such as RS/6000
SP typically consist of several cooperating processes running on multiple nodes.
These applications are usually vulnerable to node, process, network, and
storage device failures which arise from a combination of hardware failures,
software failures, resource exhaustion, and operator error.

To make such applications highly available, some solution techniques are
required. Such solutions should include the following requirements, as well as
hardware techniques such as multitailed disks and IP-address takeover:

• The ability to detect component (process and node) failures
• The ability to recover from communication partitions
• The coordination of activities among the processes of an application
• The coordination of activities between applications

The Group Services are intended to satisfy these requirements by providing
multicomputer applications or subsystems (which are referred to as clients) with
a general purpose facility for coordinating and monitoring changes to the state of
an application that is running on a set of nodes.

Chapter 3. Group Services 27

3.1.2 Group Services Schema

� �

� �

A Group Services daemon (hagsd) runs on each RS/6000 SP node and on the
Control Workstation. If there is more than one system partition, then one
daemon is executed on the Control Workstation for each partition. Group
Services daemons exchange reliable messages implemented on UDP/IP for their
own protocol messages through the live communication paths. These paths are
provided by Topology Services through the topology graph on the memory. For
more information on topology graph, see Chapter 2, “Topology Services” on
page 5.

28 RS/6000 SP HA Infrastructure

3.1.3 Group Concept

� �

� �

A multicomputer application that may consist of multiple processes running on
multiple RS/6000 SP nodes can use any service which the Group Services
subsystem provides by forming a group.

Any process in a Group Services domain (which is an RS/6000 SP partition in
which Group Services daemons run) can create a new group, and any process in
the domain may ask to become a member of a group to fully enjoy the functions
that Group Services provide. Such a member of a group is referred to as a
provider.

On the other hand, any process in the domain can ask to monitor the group.
This request is called a subscribe request or subscribing to the group. If a
subscribe request is successful, the process becomes a subscriber. A
subscriber is only notified of the group′s activities. A subscriber is not listed in
the membership of a group.

Chapter 3. Group Services 29

3.1.4 Group Services Clients

� �

� �

The term “Group Services clients” is used to refer to both providers and
subscribers. Any process of multicomputer applications or subsystems can be a
Group Services client.

If you are writing a new application or updating an existing application, you can
use the Group Services Application Programming Interfaces (GSAPI) to make the
application act as a Group Services client. By using this GSAPI, you can:

• Coordinate among peer processes.

• Create a “bulletin board” to display the state of your application to other
applications.

• Subscribe to changes in the state of other applications.

The initial release of PSSP Version 2 Release 2 contains the two major Group
Services clients, which are:

• Event Management

• Recoverable Virtual Shared Disk

The other Group Services clients which are currently planned are:

• High Availability Cluster Multi-Processing Parallel Edition (HACMP/PE)

• DB2 Parallel Edition

30 RS/6000 SP HA Infrastructure

Note that no applications or subsystems are forced to use Group Services, and
the Group Services subsystem does not perform subsystem recovery by itself.
By using Group Services abstractions, however, application developers can
avoid having to develop their own synchronization and commit protocols, which
tend to introduce some complexity, errors, and expensive duplications into their
codes.

In addition, application developers are free to use only those abstractions that
are suitable for their application, and do not have to buy into the entire toolkit of
Group Services. For example, developers of applications that have historically
relied on their own methods for fault-tolerance, such as database servers and
transaction monitors, are free to restrict their use of Group Services interfaces to
interapplication coordination services.

Chapter 3. Group Services 31

3.1.5 Group Services Features

� �

� �

Group Services has several features for implementing synchronization within an
application and coordination among applications, as follows:

 1. Group

A group is a collection of individual processes (providers) which need to
provide a distributed service. More details on groups are available in 3.2.1,
“Group” on page 36.

 2. Consistency mechanisms

A Group Services subsystem provides various mechanisms that coordinate
membership and state value changes within a group, as follows:

• Protocols

These are the coordination mechanisms used to modify the group data
(that is, membership list and state value). Group Services provides
these protocols to allow the group members to propose changes, to be
notified of proposed or actual changes, and to react to changes.

• Notification

This is an act of informing a group member of a matter needing
attention, (such as a group state change or proposed change), or of
group membership changes (which would be caused by the loss of a
node containing a group member). Group Services guarantees that all

32 RS/6000 SP HA Infrastructure

notifications in a group are presented to all members of the group in the
same order, by which the consistency of the group data is guaranteed.

• Voting

This is a mechanism to mediate group member changes (such as join or
departure) and group state value changes.

• Active protocol proposals

Group Services guarantees that only one protocol can be executed at
any time; this guarantees the consistency of the group data.

• Source-Target group relationships

Group Services provides some level of synchronization between groups,
and between the consistency mechanisms within a group.

These items are further explained in 3.2, “Group Services Functional
Overview” on page 36.

Note: Group Services does not force any notion of quorum on client groups,
because the requirements for quorum are significantly different for each
group. Subsystems using Group Services can implement their own quorum
handling.

 3. Group Services Application Programming Interfaces (GSAPI)

Any consistency mechanism described in this section can be used by client
processes through the GSAPI. This topic is covered in 3.3, “Group Services
Application Programming Interface (GSAPI)” on page 78.

Chapter 3. Group Services 33

3.1.6 Group Services Functional Flow

� �

� �

This foil illustrates how Group Services clients can get services from a Group
Services subsystem and how a Group Services subsystem works internally.

Group Services client processes, including the Group Services library code,
establish Unix domain socket connections with Group Services daemons after
completing the init request. For the meaning of this request, see 3.3.2,
“ha_gs_init()” on page 80.

A Group Services subsystem consists of several modules, such as:

• Client control module

This module handles the connection with Group Services clients. It also
accepts requests from GS clients and manages them.

• Meta-group control module

Meta-groups are the collection of the Group Services daemons that support
the user groups. This module manages the behavior of Group Services
daemons.

• Topology Services client module

Group Services receives the services from Topology Services through this
module.

34 RS/6000 SP HA Infrastructure

• Name Server module

This module controls Group Services namespace. For details on GS
namespace, see 3.2.1.3, “Group Namespace” on page 42.

• Reliable messaging module

This module provides reliable sequenced delivery of datagrams between
Group Services daemons. It uses the “Topology Graph” on the memory
(which is dynamically updated by Topology Services) to select the network
route.

Group Services itself uses Topology Services for maintaining system topology
information, which includes node and LAN adapter membership information. For
more details of the functions of Topology Services, see Chapter 2, “Topology
Services” on page 5.

Chapter 3. Group Services 35

3.2 Group Services Functional Overview
This section provides an overview of the Group Services functions.

3.2.1 Group
� �

� �

A group is a collection of individual processes, which are also called members or
providers. A group may have its members on multiple nodes, and each node
may have multiple members.

For each group, the Group Services subsystem maintains the following three
group state data:

• A name

A token to uniquely identify each group in the system.

• A membership list

A list of one or more providers. In a group, each provider is identified by its
identifier, which consists of an instance ID and the node number on which
the provider is running.

The Group Services subsystem maintains the list in order of age. The oldest
provider (that is, the first provider to join the group) is at the top of the list,
and the youngest is at the bottom. All of the group′s providers and
subscribers see the same ordering of the list.

Note: The instance ID of a provider is defined by the provider itself when it
joins a group. The ID must be unique on a node for the group.

36 RS/6000 SP HA Infrastructure

• A group state value

A byte field whose length is between 1 and 256 bytes. The state value of a
group is not interpreted by the Group Services subsystems. The default
value is four byte “0”s (zeros).

Chapter 3. Group Services 37

3.2.1.1 Creating a Group
� �

� �

Typically, an application that uses Group Services defines one or more group
names that are known from the beginning to all of the processes that are part of
the application.

During initialization of the application, each process asks to join the group. On
the receipt of the first join request (ha_gs_join subroutine call), the Group
Services subsystem creates the group. The subsequent join requests result in
new providers joining the group.

The first join request creates the group and defines the attributes of the group as
follows, according to the information specified in the join request:

• The name of the group

• An application-defined version code

• The number of phases (one or multiple) for join and failure leave protocols

• A time limit for voting in each phase of an n-phase protocol

This is the number of seconds within which each provider must submit its
vote for each phase of an n-phase join or failure leave protocol. “0” may be
specified, if no time limit is desired.

• A default vote

It is used as a proxy for a provider that fails, or that fails to vote in time (if a
time limit is used). The value of a default vote should be approve or reject.

38 RS/6000 SP HA Infrastructure

• A batch control value to specify how requests may be batched

Join requests may be batched with other join requests, failure leave requests
may be batched with other failure leave requests, or both or neither may be
specified.

• Attributes related to a source-target relationship, if any:

− The name of the source group for this group, which implicates this group
as a target group.

− The number of phases to use for the source-reflection protocols, which
run in the target-group when the source-group changes its state value

− The voting phase time limit for source-reflection protocols, if they are
n-phase

For details on source-target relationship, see 3.2.6, “Source-Target Group
Relationships” on page 73.

All subsequent requests to join this group also include group attributes, and the
information must match the group ′s established attributes. Otherwise, the
subsequent join request is rejected.

A join request also includes the following attributes of the provider who issues it:

• The instance number to be used by this provider

• A local name for this provider (optional)

• A set of callback functions

Join requests are discussed in detail later in this chapter.

Chapter 3. Group Services 39

3.2.1.2 Group Structure
� �

� �

In this chart, we refer to the Group Services daemon on the nodes as hagsd:.
For each group registered with Group Services, one hagsd will be designated as
the Group Leader (GL) for that group. Group Services will maintain replicated
data across the multiple nodes on which the providers reside, so that if the node
containing the GL fails, a new GL for that group is elected from the remaining
nodes.

The chart illustrates a logical structure of two groups, group A and group B. For
group A, node 5 is acting as the GL. On node 6, the hagsd acts as the GL for
group B, but simply as an hagsd for group A. Nodes 2 and 4 have multiple
clients, so the hagsd daemons deal with operations for both groups.

Each GL is responsible for acting as the coordinator for all operations of each
group as follows:

• Managing the group information:

− Membership l ists
− State information

• Managing the group meta-data:

− Nodes (that is, addresses) of clients
− Group protocol information
− Number of phases for providers joining or leaving the group
− Source-Target information for the group
− Default votes for providers
− If reflecting multiple membership change requests, batching is allowed

40 RS/6000 SP HA Infrastructure

• Serializing “simultaneous” protocol proposals

• Recovery actions whenever a group member or hagsd is lost due to process
or node failure:

− If the GL is lost, a new GL must be elected from remaining hagsd
daemons.

− If hagsd is lost, the hagsd needs to be recreated, and the client data from
that node needs to be retrieved from the GL for each group that had a
member on the node where the hagsd was lost.

Note: These functions of GL are invisible to the Group Services clients.

Chapter 3. Group Services 41

3.2.1.3 Group Namespace
� �

� �

It is vital that Group Services be able to keep track of the groups that its clients
want to form. To do this, a Group Services nameserver is established within
each domain. A domain is the set of running nodes within each RS/6000 SP
system partition. The GS nameserver is responsible for keeping track of all
client groups created in that domain. The lowest-numbered running node in the
partition will be elected as a GS nameserver.

To ensure that only one node becomes a GS nameserver, the following process
is followed:

 1. When each GS daemon is connected to Topology Services, it waits for
Topology Services to inform it of which nodes are currently running in this
system partition.

 2. Based on the input from Topology Services, each GS daemon finds the
lowest-numbered running node in the partition. The daemon compares its
own node-number to the lowest-numbered node.

a. If a node is the lowest-numbered node, then it waits for all other running
nodes (listed in the input from Topology Services) to “grovel” to it. This
node is the “putative GS nameserver.” It also waits for a 20 second
coronation timer to expire. This node is in the “NS::ENsState:KAscend”
state.

b. If a node is not the lowest-numbered node, then it starts sending
“grovel” messages to the lowest-numbered node. It will resend this
message every 5 seconds. This node is in the “NS::ENsState:KGrovel”
state.

42 RS/6000 SP HA Infrastructure

 3. Once all running nodes have groveled to the putative GS nameserver, and
its 20 second coronation timer has expired (popped), it then sends an
“insert” message to the nodes. All nodes then must acknowledge (ACK) the
insert. At this point, the putative GS nameserver becomes the established
GS nameserver (the “NS::ENsState:kBecomeNS” state), and it sends a
“commit” message to all nodes (which then go to the
“NS::ENsState:kCertain” state).

 4. At this point, the Group Services domain is established, and requests by
clients to join or subscribe to groups will be processed.

Note: The “NS::ENsState:xxxxxxx” states are mentioned for use in interpreting
the hagsns command output in 3.4.3.1, “Other Utilities” on page 104.

Chapter 3. Group Services 43

3.2.1.4 System-Defined Groups
� �

� �

The Group Services subsystem provides several system-defined groups to which
GS clients can subscribe to keep track of hardware status. The system-defined
groups are:

• Host Membership Group

The Group Services subsystem keeps track of node status to determine
when nodes are no longer reachable. Accordingly, a fully isolated or failed
node triggers notifications to all groups that have one or more providers on
the failed node or nodes.

• Adapter Membership Group (AMG)

The Group Services subsystem also keeps track of the status of Ethernet and
SP Switch adapters, and the status of the adapters is reflected by the Group
Services subsystem in the following two system-defined groups:

− Ethernet Adapter Membership Group

− SP Switch Adapter Membership Group

By subscribing to these groups, a GS client can obtain adapter membership
information.

44 RS/6000 SP HA Infrastructure

3.2.2 Protocols
� �

� �

The work of the Group Services subsystem is accomplished through a variety of
protocols. A protocol is the mechanism which coordinates membership and
state value changes within a group.

Typically, a protocol is executed in the following sequence:

 1. Proposal

Any provider of a group or the Group Services itself can initiate a protocol,
or propose a protocol. If multiple providers submit proposals at the same
time, then only one proposal will be accepted by Group Services. The other
proposals will be returned asynchronously to the providers that proposed
them, with the HA_GS_COLLIDE error code.

 2. Asking vote

If the protocol requires a voting process, (in other words, if the protocol is an
n-phase protocol), then the Group Services asks each member of the group
to vote. Each provider, including the provider who proposed the protocol,
will be notified (n-phase protocol notification), and all providers that have
received the notifications are expected to submit a voting response
(Approve, Reject, or Continue). Voting process will be repeated n-1 times in
the n-phase protocol.

If the protocol is a one-phase protocol, then the protocol is automatically
approved. In this case, no voting process occurs.

Chapter 3. Group Services 45

 3. Voting

Group Services uses a flexible n-phase voting protocol to mediate provider
joins and leaves, and state value changes. Applications or subsystems can
tailor their synchronization and coordination requirements by choosing the
number of phases needed to complete membership or state changes. When
a protocol is proposed, the proposal contains an indication of whether it is
one-phase or n-phase. This is discussed in detail in 3.2.4, “Voting” on
page 66.

 4. Notification of the result

At the end of the protocol, the Group Services subsystem notifies the
providers of the results of the protocol, that is, its approval or rejection. The
updated membership list and state value, if any, are also sent to the
providers.

46 RS/6000 SP HA Infrastructure

� �

� �

Protocols can be grouped into three categories:

• Membership change protocol

These protocols are used when a provider wants to join or leave a group. If
approved, the membership of the group changes. Membership change
protocols include:

− Join
− Leave (also called ″voluntary leave″)
− Failure leave
− Cast-out

Each type of protocol is discussed in the following sections.

• State value change protocol

This protocol is used when a provider wants to change the state value of the
group, but wants to leave the membership unchanged.

• Provider-broadcast message protocol

If this protocol is proposed as one-phase, it allows a provider to broadcast a
message to all other providers in the group, without voting.

If this protocol is proposed as n-phase, it allows a provider to broadcast a
message to the other providers in the group, and also initiates the standard
voting phases.

This protocol does not affect the group membership.

Chapter 3. Group Services 47

• Source-state reflection protocol

This protocol is initiated by Group Services when a source-group has
modified its state value in certain cases. In these cases, target-groups are
notified of the change in the source-group ′s state value through this protocol.
For details about source- or target- group, see 3.2.6, “Source-Target Group
Relationships” on page 73.

48 RS/6000 SP HA Infrastructure

3.2.2.1 GS-Initiated Protocols
� �

� �

As mentioned earlier, protocol proposals are made by either a provider of a
group or the Group Services subsystem itself.

The Group Services-initiated protocol proposals cover the following situations:

• A membership change proposal to join a group made by a potential provider

• A membership change proposal for a failure leave of one or more failed
providers

• A membership change proposal to cast out of one or more providers, due to
Source-Target processing

• A source-state reflection proposal to reflect to a target-group when its
source-group changes its state value through a non-membership change
protocol

The number of phases for these protocols is determined as follows:

• For a join proposal, the provider must specify either a one-phase or an
n-phase join protocol in the group attributes.

• For a failure leave and cast out proposals, the Group Services subsystem
uses the same number of phases that was specified when the group was
created, that is, the number of phases that the first join request specified.

• For source-state reflection protocols, the Group Services subsystem uses the
source-reflection-phases setting to control the number of phases in the group
attributes.

Chapter 3. Group Services 49

3.2.2.2 Provider-Initiated Protocols
� �

� �

Provider-initiated proposals are for the following:

• A membership-change proposal to leave a group is made by a provider in
the group.

• A membership-change proposal to change the group state value is made by
a provider in the group.

• A provider-broadcast message proposal to broadcast a provider-broadcast
message to all providers is made by a provider in the group.

A provider calls a Group Services Application Programming Interface (GSAPI)
subroutine to propose one of these protocols, specifying the number of phases
for the protocol.

50 RS/6000 SP HA Infrastructure

3.2.2.3 Sample Protocol Executions--Join
� �

� �

The next four foils, starting with this page, show the typical proceedings for the
following protocols:

• Join
• Change group status value
• Leave
• Failure leave

A typical scenario for the join protocol is as follows:

 1. A provider of the group issues a join request, that is, a ha_gs_join()
subroutine call.

 2. The Group Services subsystem initiates a join protocol.

 3. When the Group Services subsystem initiates a join protocol, it notifies all
providers, including the “old” providers that are already in the group, as well
as the providers asking to join the group.

Note that if this is the first join request by the first provider of the group, the
Group Services subsystem creates the new group before notifying.

Membership changes may be batched, which means that multiple providers
can be joined to a group for the cost of a single n-phase (or one-phase)
protocol execution, rather than having to repeat the exercise once for every
new provider. This can result in significant performance gains on groups
with a large number of providers, especially if they tend to join
simultaneously.

Chapter 3. Group Services 51

 4. Once the Group Services subsystem has initiated the protocol, the providers
execute it as described in 3.2.2, “Protocols” on page 45

 5. Once voting has completed and the protocol has been approved, the
membership list is changed. If the join is rejected for any reason, the
membership remains unchanged.

 6. All the providers receive an updated membership list, or state value, or both.
They may also receive a provider-broadcast message, if one was included in
the final vote. Subscribers may receive the updated membership list, state
value, or both, depending on their subscription request.

If a join request is rejected, the rejected provider receives a notification that
its application to join the group has been rejected. The existing providers
also receive the notification. The subscribers receive no notification.

52 RS/6000 SP HA Infrastructure

3.2.2.4 Sample Protocol Executions--Change State Value
� �

� �

A typical scenario for a state value change protocol is as follows:

 1. A provider calls a ha_gs_change_state_value() subroutine to propose a state
value change protocol.

 2. The Group Services notifies all providers in the group that voting is
requested for a state value change protocol, if the protocol is an n-phase
protocol. If the protocol is a one-phase protocol, the proposal is
automatically approved.

 3. The voting process continues.

 4. The Group Services subsystem updates the group status value according to
the request, if the protocol has been approved. The status value reverts to
its value at the beginning of the protocol, if the protocol is rejected.

 5. If a state value change is approved, the providers and subscribers receive
the updated state value. In addition, if the group is a source-group, its
target-groups also receive notification of the change.

If the protocol is rejected, the providers receive notification of the rejection.
The subscribers receive no notification, and nothing is reflected to any
target-groups, if they exist.

Chapter 3. Group Services 53

� �

� �

This illustration shows the typical scenario for a state value change protocol with
one-phase, that is, without voting. The protocol is automatically approved.

54 RS/6000 SP HA Infrastructure

3.2.2.5 Sample Protocol Executions--Broadcast
� �

� �

A typical scenario for a broadcast protocol is as follows:

 1. A provider calls a ha_gs_send_message() subroutine to propose a leave
protocol.

 2. The Group Services notifies all providers in the group that voting is
requested for a state value change protocol, if the protocol is an n-phase
protocol. If the protocol is a one-phase protocol, the proposal is
automatically approved.

 3. The voting process proceeds (unless it is a one-phase protocol).

 4. If it is a one-phase protocol, the message contained in the proposal is
broadcasted to all providers. Subscribers receive no notification. If it is an
n-phase protocol:

• If it is approved, and if the group state value was changed during the
voting phases, the providers and subscribers receive the updated state
value.

• If it is approved, but the group state value was not changed during voting
phases, the providers receive notice that the protocol is completed.
Subscribers receive no notification.

• If it is rejected, the state value reverts to its value at the beginning of the
protocol. The providers receive notification of the rejection. The
subscribers receive no notification.

Chapter 3. Group Services 55

3.2.2.6 Sample Protocol Executions--Leave
� �

� �

A typical scenario for a leave protocol is as follows:

 1. A provider calls a ha_gs_leave() subroutine to propose a leave protocol.

 2. The Group Services notifies all providers in the group that voting is
requested for a state value change protocol, if the protocol is an n-phase
protocol. If the protocol is a one-phase protocol, the proposal is
automatically approved.

 3. The voting process continues.

 4. The Group Services subsystem updates the membership list in both cases
where the protocol has been approved and rejected.

 5. If a leave protocol is approved, all remaining providers receive the updated
membership list, updated state value, or both. Subscribers receive the
updated membership list, updated state value, or both, based on their
subscription. The providers targeted by the protocol are sent a final
notification informing them that they are out of the group. However, the
Group Services subsystem does not verify that they receive it.

If the protocol is rejected, it ends the execution of the protocol. However, the
provider who proposed the leave is still removed from the group; that is, the
membership list is updated to show the removal of the targeted providers.
The providers and subscribers receive this updated list. The state value
reverts to its value at the beginning of the protocol.

56 RS/6000 SP HA Infrastructure

3.2.2.7 Sample Protocol Executions--Failure Leave
� �

� �

A typical scenario for a failure leave protocol is as follows:

 1. A Group Services subsystem detects the providers failure by one of or both
of the following events:

• The loss of stream socket connection with the failed providers

• The processor failure notification from Topology Services subsystem

 2. The Group Services subsystem initiates a failure leave protocol.

 3. When the Group Services subsystem initiates a failure leave protocol, it
notifies the remaining providers of the protocol proposal.

Multiple failing providers may be batched into a single failure leave protocol.

 4. Once the Group Services subsystem has initiated the protocol, the providers
execute it as described in 3.2.2, “Protocols” on page 45.

 5. Once voting has completed and the protocol approved, the membership list
is changed. If any provider explicitly votes to REJECT a failure leave
proposal, the execution of the protocol stops. The membership list is
updated to show the removal of the targeted providers. The state value
reverts to its value at the beginning of the protocol.

 6. All the providers receive an updated membership list, state value, or both.
They may also receive a provider-broadcast message, if one was included in
the final vote. Subscribers receive the updated membership list, state value,
or both, depending on their subscription request.

Chapter 3. Group Services 57

If the protocol is rejected, the remaining providers and subscribers receive
the updated list.

58 RS/6000 SP HA Infrastructure

3.2.2.8 Simultaneous Protocols
� �

� �

Because there are multiple providers (including the Group Services subsystem
itself), there are multiple proposals, and proposals may arrive simultaneously.
However, the Group Services subsystem does not execute more than one
protocol at a time in one group, except in the following cases:

• The Group Services subsystem collects all of the joins during the lag time
between the GSAPI subroutine call by a provider and the actual broadcast of
any resultant notification for that subroutine, and issues a single notification.

• Similarly, the Group Services subsystem batches together multiple failure
leaves or cast-outs into a single protocol.

Note: Group Services subsystem can handle multiple protocols independently if
each of them belongs to a different group.

Chapter 3. Group Services 59

� �

� �

The Group Services subsystems handles simultaneous proposals as follows:

• In general, the first proposal to be made after an executing protocol
completes is the one that is chosen to execute next. If multiple providers all
attempt to submit proposals, the Group Services subsystem chooses one
arbitrarily.

• For provider-initiated proposals, all proposals that are not chosen to be
executed immediately are returned to the providers, with an asynchronous
collision error code (HA_GS_COLLIDE).

• All the Group Services subsystem-initiated proposals remain pending until
they have been executed within the group (see 3.2.5, “Active Protocol
Proposal” on page 72). No provider-initiated proposals are accepted until all
of the pending Group Services subsystem-initiated proposals have been
executed. A provider that attempts to submit a proposal receives a
synchronous or asynchronous collision error code.

• When choosing among multiple proposals, the Group Services subsystem
chooses a proposal based on the following priority order:

 1. Failure leaves and cast-outs

 2. Source-state reflection

 3. Joins

 4. Leaves

 5. State value change and provider-broadcast message protocols

60 RS/6000 SP HA Infrastructure

Within these categories, if there are multiple simultaneous proposals of the
chosen type, the Group Services subsystem arbitrarily chooses one of them.

• No provider is allowed to cycle invisibly. If a provider should fail and then
restart and try to join the group, the Group Services subsystem ensures that
the leave of that provider is proposed before the subsequent join of that
provider.

• A rejected provider-initiated protocol is not automatically resubmitted. The
provider must resubmit the protocol, if it is required.

Chapter 3. Group Services 61

3.2.3 Notifications
� �

� �

The notification is a formatted message delivered to the client through the Group
Services client library code (see the foil in 3.1.6, “Group Services Functional
Flow” on page 34). These messages include the following types of notification:

• Protocol proposal and ongoing protocols

These notifications are sent to the providers of a group to indicate that a
multi-phase protocol has been proposed or is in progress (that is, n-phase
protocol notifications).

As a response to these notifications, the Group Services subsystem typically
expects a vote. There are three types of proposals for which these
notifications are sent:

− Membership change protocol proposals
− State value change protocol proposals
− Provider_broadcast message protocol proposals

• Protocol approvals

These notifications are sent to the providers of a group to indicate that a
proposed membership or state value change has been approved. It is also
sent to the subscribers of the group.

• Protocol rejections

These notifications are sent to the providers of a group to indicate that a
proposed membership or state value change has been rejected. Subscribers
are not notified when proposals are rejected.

62 RS/6000 SP HA Infrastructure

• Announcement

These notifications are sent to the providers of a group to announce an item
of interest within the group. They include warnings that the individual
providers are unresponsive or the group is being dissolved.

• Responsiveness

These notifications are sent to each of the providers of a group to determine
whether the provider is active. A provider that does not respond to this
responsiveness check within the time limit (the value of which is specified in
the ha_gs_init() call) is considered to be unresponsive.

All messages are sent in a fault tolerant-manner; that is, providers and
subscribers are guaranteed to receive notifications despite any single network
failure.

Chapter 3. Group Services 63

3.2.3.1 Callback Function
� �

� �

Within the client, Group Services handles work by callback functions. Each
notification, described in 3.2.3, “Notifications” on page 62, will result in one of
the callbacks being executed to handle that notification. When the client library
code has detected that it has received a notification message from Group
Services, it reads the message and determines the type of the notification. It will
then execute the callback function registered to handle that type of notification.

When a GS client initializes itself with a ha_gs_init subroutine call, it may specify
a callback function that will handle responsiveness checks, and a callback
function that will handle a delayed error delivered asynchronously from Group
Services. The other callback functions must be registered at the time the client
attempts to become a provider with a ha_gs_join subroutine call, or a subscriber
with a ha_gs_subscribe subroutine call.

The callback functions that a GS client can define, and the subroutine calls used
to register the callbacks, are listed in Table 1 on page 65.

64 RS/6000 SP HA Infrastructure

Table 1. List of Callback Functions

Callback Function Description GSAPI Subroutine
used to register

Announcement_callback This callback executes when a group announcement
notification is received. The announcements provide
detailed information of abnormal conditions (other
than complete failure) affecting one or more
providers in the group.

ha_gs_init()

Delayed_err_callback This callback executes when a delayed error
notification arrives from the Group Services
subsystem. Delayed errors are asynchronous errors
that occur when a GS client has submitted a protocol
proposal, and the Group Services subsystem later
discovers a problem with the proposal.

ha_gs_init()

N-phase_callback This callback is executed when an n-phase protocol
proposal notification is delivered from Group
Services. In response to this notification, it is
expected that the provider will vote on the proposal
by calling the ha_gs_vote() subroutine.

ha_gs_join()

Protocol_approved_callback This callback is executed when a protocol approved
notification is received. This notification is delivered
after the n-phase protocol has been approved by
voting and after all one-phase protocols (which are
automatically approved).

ha_gs_join()

Protocol_rejected_callback This callback is executed when a protocol rejected
notif ication is received, which occurs after an
n-phase protocol has been rejected by voting.

ha_gs_join()

Responsiveness_callback The responsiveness callback routine is executed
when a responsiveness notification is received from
Group Services. This callback routine is called at
intervals; therefore, in addition to responding to the
Group Services subsystem, the GS client can also
use this routine to perform validity checks on its own
operation or its environment.

ha_gs_init()

Subscriber_callback This callback is executed when subscription
notifications are received. A subscription notification
is delivered when a protocol is approved in a group
to which the process is subscribed and the protocol
modifies the group ′s membership or state value.

ha_gs_subscribe()

Chapter 3. Group Services 65

3.2.4 Voting
� �

� �

Voting is a mechanism to allow group providers to coordinate any actions
requiring synchronization among them. For example, the voting phase allows
each provider to run scripts, issue commands to manipulate resources, or
display graphics on the screen.

Group Services uses a flexible n-phase voting protocol to mediate provider joins
and departures and state value changes. Programmers can tailor their
applications, which have different synchronization and coordination
requirements, by choosing the number of phases needed to complete a
membership or state changes:

• A one-phase protocol is the special case where no voting is allowed. Here,
the proposed membership or state value change is automatically approved
and committed, without voting.

• An n-phase protocol puts the group through at least one phase of voting
before the change can be committed.

After the decision to approve or reject the protocol is made, Group Services
notifies all of the participating providers of the outcome of the agreement (that is,
whether the protocol was approved or rejected).

66 RS/6000 SP HA Infrastructure

� �

� �

When a provider receives an n-phase protocol notification message, it is being
asked to vote on the approval of the proposed change. The provider submits a
vote with ha_gs_vote() call. Voting can occupy any number of phases, based on
the desires of the providers.

For each phase, each provider must provide one of the following vote values:

• APPROVE

The provider approves the proposed change. If all providers vote to Approve
the proposal in the same voting phase, the protocol is approved and the
protocol will be committed.

• CONTINUE

The provider conditionally approves the proposed change, however it wants
to continue to another phase of voting. If at least one provider chooses this
value, the protocol proceeds to another voting phase.

• REJECT

The provider rejects the proposed change. If at least one provider votes to
reject the proposal, the protocol is rejected and ends, regardless of any
other votes.

Chapter 3. Group Services 67

3.2.4.1 Default Vote
� �

� �

Providers normally vote explicitly by responding to Group Services with an
ha_gs_vote() call. Default votes are made implicitly by Group Services as
follows.

A provider may fail to cast an explicit vote for one of the following reasons:

• The provider process (or the node on which it is running) fails

• The provider process fails to vote explicitly within a group-specified voting
time limit

In this case, default votes are applied as if they were specified by the providers,
except in the case of failure leave protocol, in which case the membership list
will be updated to show the removal of the targeted providers regardless of the
default vote value.

The default votes may be either APPROVE or REJECT.

68 RS/6000 SP HA Infrastructure

3.2.4.2 Illustration of Multiphase Protocol
� �

� �

The next three foils illustrate a state change protocol for a group with two
providers (P1 and P2) and two subscribers (S1 and S2). P2 proposes a change
to the group′s state value, and specifies whether the change requires voting
phases or is handled as a single broadcast. Note that although Group Services
is a cluster-wide distributed service, it is presented in the figure as a logically
central service.

A one-phase protocol is invoked when a provider submits a state change
requesting that there be no voting by the providers. The first phase of such a
protocol is also the last phase of the protocol. A one-phase protocol can be
used as reliable ordered broadcast; that is, one where all providers are
guaranteed to receive that broadcast message, and all providers receive the
broadcast messages in the same order.

Chapter 3. Group Services 69

� �

� �

A two-phase state change protocol is essentially the two-phase commit protocol
with a reliable “coordinator.”

70 RS/6000 SP HA Infrastructure

� �

� �

An n-phase state change protocol gives the providers the framework to perform
n-1 rounds of barrier synchronization. For example, a 4-phase protocol yields
three rounds of barrier synchronization: at the end of voting phases one, two,
and three.

 Attention

It is the responsibility of the providers in a group to determine the level of
consistency that is required for managing changes to the group membership
and state value. Programmers should decide the number of phases to be
taken for each protocol according to the strictness of the synchronous
consistency level required.

Chapter 3. Group Services 71

3.2.5 Active Protocol Proposal
� �

� �

Group Services guarantees that only one protocol affecting the group′s
membership or state value can be executed at any time. If more than one
proposal is made within the group simultaneously, then the Group Services
subsystem chooses one for execution, and returns the others to the providers
that submitted them. It is a responsibility of providers to resubmit them for
execution, if appropriate.

This processing is modified for providers joining or leaving the group. In these
cases, the membership protocol to deal with the join or the leave is held until
the currently running protocol has been approved or rejected, and then the
membership change protocol is started immediately.

72 RS/6000 SP HA Infrastructure

3.2.6 Source-Target Group Relationships
� �

� �

The Source-Target facility is intended to provide some level of synchronization
between groups. Normally Group Services does not support inter-group
services, beyond the subscription features. In some cases, however, two groups
are interdependent to the point where one group must ensure that another group
has handled certain situations in a serialized fashion.

If a node crashes, then all groups with providers on that node will be given a
membership change proposal “simultaneously,” and this will cause each group
to immediately begin reacting to this membership change. However, certain
subsystems may not want to process the membership change until after another
group has completed processing this change. Such a relationship exists, for
instance, between the disk recovery subsystem and a distributed database
application on the RS/6000 SP, where the database application must wait for the
disk recovery subsystem to recover from a node failure before it can begin its
recovery. The Source-Target facility can be used in such a case.

A group defines itself as a target-group by listing a source-group name in the set
of group attributes specified on the ha_gs_join() subroutine by each target-group
provider. A source-group is not notified that it has been “sourced” by any
groups.

Chapter 3. Group Services 73

� �

� �

Group Services implement source-target relationships by applying to
source-target groups a set of special behaviors of join and leave processing, as
follows:

• For every node on which a target-group provider wants to run, there must
exist a source-group provider.

• There may be multiple source-group and target-group providers on a node.

If there is no source-group provider on a node, a potential target-group
provider is not allowed to join the target group, and no membership change
is proposed.

− A source-group may have any number of target-groups.

− A target-group may source only one group.

• If the last remaining source-group provider on a node leaves the
source-group, whether voluntarily or involuntarily, then all target-group
providers on that node must leave the target-group.

When the source-group has approved the leave protocol of the last provider,
a membership change is proposed to the target-group as a cast_out of the
affected providers from the target-group. As a failure leave, the cast_out
protocol cannot be rejected.

• If a target-group is running a protocol, and a source-group provider process
fails on a node that also contains a target-group provider, the source-group
runs a failure leave protocol.

In this case, only the process of the source-group provider has failed, not the
node on which it is running. However, once the source-group completes its

74 RS/6000 SP HA Infrastructure

leave protocol, the target-group provider may no longer validly belong to the
target-group.

Therefore, the Group Services subsystem considers the target-group
providers that will be cast-out as having “failed” during the protocol, and
treats them accordingly.

Whatever the outcome of the target-group′s running protocol, once it ends,
the Group Services subsystem immediately initiates a cast-out protocol for
the target-group.

• If a node fails instead of the last source-group provider on a node, then it is
handled in the same way as if the source-group provider itself had failed,
with the source-group completing its protocol before the target-group is
notified. In this case, the target-group receives a cast-out protocol, rather
than a failure leave.

• If a source-group changes its state value during protocols that do not result
in a target-group cast-out (for example, through a state value change
protocol or a voting response during any other n-phase protocol), its
associated target-groups receive the committed state value.

The notification appears to the target-group as a source-state reflection
protocol. The number of phases and a voting time limit are controlled by
values specified in the group attributes.

Since the source-state reflection protocol is initiated by Group Services, it is
always initiated before any pending provider-initiated protocols for the group.
In addition, there is no interface for a provider to request this protocol. It is
automatically initiated as a consequence of a source-group′s state value
change.

 Attention

For a more detailed information about this topic, be sure to refer to Group
Services Programming Guide and Reference, GC28-1675 before writing an
application that will use source-target relationships.

Chapter 3. Group Services 75

3.2.7 Sundered Networks
� �

� �

The Group Services subsystem provides a single group namespace within each
system partition. It is possible for even an RS/6000 SP partition with multiple
networks to become split, given the right set of multiple network failures. In this
case of sundered namespace, the nodes become split in a way that they can no
longer communicate with any nodes on the other side of the split. However, it is
possible for each sundered portion to maintain enough information to reconstruct
the groups that were in existence previously, at least those groups that still have
members within any particular portion.

When a namespace is sundered, it is possible to get two instances of what
should be one group. For example, in a sundered network, two nodes that own
the two tails of a twin-tailed disk could end up on separate sides of the split.
Since the processes of the subsystem coordinating the disk on each node would
believe that the other process had disappeared, the process might want to
activate its tail, which could lead to data corruption. As this example shows, it is
important that each group determine if it needs a form of quorum, and use the
quorum to guide the group when it is ready to perform its services.

Although the Group Services subsystem does not provide a quorum mechanism,
it does provide some assistance to a group when a network is sundered. When
a system partition is sundered, the providers receive membership protocol
proposals from Group Services that all of the providers on the “other side” of
the split have failed. The providers can then execute those protocols as they
normally would, taking into account such factors as quorum to protect resources
as necessary.

76 RS/6000 SP HA Infrastructure

� �

� �

If an RS/6000 SP partition is sundered, it needs to merge again, once the errors
that caused the split are repaired. In such a case, the following scenario takes
place:

 1. When two separate Group Services domains discover each other, then they
will determine which domain has the most nodes.

 2. The domain with the most nodes wil l “surv ive,” and wil l continue with no
notifications.

 3. The domain with the fewest nodes wil l force all clients connected to Group
Services on nodes in the “smallest” domain to lose their connections to
Group Services:

• This will be done by closing the sockets connecting the clients to Group
Services.

• This forces those clients to reinitialize, and to rejoin (or resubscribe) to
their groups.

 4. When these clients reconnect, they will be brought into the fully reconnected
domain.

Chapter 3. Group Services 77

3.3 Group Services Application Programming Interface (GSAPI)

3.3.1 GSAPI Routines

� �

� �

The Group Services Application Programming Interface (GSAPI) contains two
types of subroutines:

 1. Subroutines to issue commands that request an action from the Group
Services (GS) subsystem, which are:

Subroutine Action

ha_gs_init Registers with Group Services.

ha_gs_dispatch Checks for notifications.

ha_gs_join Joins a group as a provider.

ha_gs_leave Leaves a group (as a provider).

ha_gs_change_state_value Proposes a change to the group′s state
values.

ha_gs_vote Votes on a proposed change to a group′s
membership or state value by approving,
rejecting, or continuing.

ha_gs_send_message Sends data to all of the providers in the
group.

78 RS/6000 SP HA Infrastructure

ha_gs_subscribe Subscribes to a group.

ha_gs_unsubscribe Unregisters as a subscriber to a group.

ha_gs_quit Terminates the connection to the Group
Services subsystem.

 2. Subroutines that define callback routines that handle notifications from the
Group Services subsystem, which are:

Subroutine Response

ha_gs_announcement_callback
Responds to an announcement that:

• One or more providers failed a
responsiveness check.

• One or more providers that previously
failed responsiveness checks are now
responding successfully.

• The group is being dissolved.

• The Group Services daemon has died or
is about to die.

• The voting time limit has expired.

ha_gs_delayed_error_callback
Handles an asynchronously presented error.

ha_gs_n_phase_callback Responds to a request for a vote on a
proposed join, leave, cast-out, failure leave, or
group state change request.

ha_gs_protocol_approved_callback
Responds to a notification that a proposal has
been approved.

ha_gs_protocol_rejected_callback
Responds to a notification that a proposal has
been rejected.

ha_gs_responsiveness_callback
Responds to a responsiveness check.

ha_gs_subscriber_callback Receives a notification that a subscribed-to
group ′s membership or state has been
changed.

For the complete description of each GSAPI subroutine, refer to Group Services
Programming Guide and Reference, GC28-1675. In addition, a sample Group
Services client program called sample_schg.c, which is provided with PSSP
Version 2 Release 2, would greatly help you to understand the GSAPI usage and
to write your own Group Services client application. You can find the sample
program source files in the /usr/lpp/ssp/samples/hags directory after installing
PSSP Version 2 Release 2.

Chapter 3. Group Services 79

3.3.2 ha_gs_init()

� �

� �

The next nine foils (including this page) illustrate the function and the usage of
each GSAPI subroutine. Note that not all subroutines are covered.

The ha_gs_init subroutine is used by a process to register itself with GSAPI. The
subroutine establishes a connection between the GSAPI and the process which
has called this subroutine. This subroutine returns synchronously. After the
successful completion of this call, the process will be a GS client which may
become a provider or a subscriber to one or more groups.

The common error case is HA_GS_CONNECT_FAILED , which means that the GS
daemon is not yet accepting requests from GS clients. The clients should retry
the init request call in this case.

Only processes with root authority are allowed to register themselves with the
GSAPI.

The responsiveness control structure is used to specify whether the process
wants the GSAPI to check it periodically for responsiveness and, if so, the
protocol to be used. The GSAPI can always detect the actual exit (intentional or
otherwise) of all GS clients. However, this check allows the GS client to perform
any periodic validity checks on its own operation or environment that might be
needed. If the GS client fails a responsiveness check and it is joined to any
groups as a provider, the other providers in the groups receive an
announcement that a provider has failed its responsiveness protocol.

80 RS/6000 SP HA Infrastructure

The responsiveness protocol is executed only when the GS client is idle (idle
means the client is not involved in a running protocol).

Chapter 3. Group Services 81

3.3.3 ha_gs_join()

� �

� �

The ha_gs_join subroutine is used by a GS client to join a group as a provider. If
the named group does not already exist, it is created.

Information about the join request is supplied through the join request block.
This structure contains the pointers to the group attributes block, which includes
the attributes of the group discussed in 3.2.1.1, “Creating a Group” on page 38.

Upon receipt of the join request, Group Services checks the group attributes. If
the named group already exists, it checks to see that the input group attributes
match those that have already been established for the group. If they do not
match, the HA_GS_BAD_GROUP_ATTRIBUTE error number is returned
asynchronously by the delayed error callback routine.

If the join request is for a new group, Group Services uses the attributes
specified on the join request to establish the new group ′s attributes.

If the asynchronous checks succeed, Group Services initiates a membership
change protocol within the group to enable the provider to join. For the details
of join protocol, see 3.2.2.3, “Sample Protocol Executions--Join” on page 51.

If this subroutine is successful, the provider_token field is set to the token that
identifies this provider ′s connection to the group. The GS client must pass a
copy of this token onto all subsequent GSAPI calls that refer to the group. The

82 RS/6000 SP HA Infrastructure

GSAPI, in turn, passes a copy of the token to the GS client onto all subsequent
callbacks that refer to the group.

Chapter 3. Group Services 83

3.3.4 ha_gs_change_state_value()

� �

� �

The ha_gs_change_state_value subroutine is used by a provider of a Group
Services group to propose a change to the group′s state value.

If another protocol is already in progress, the HA_GS_COLLIDE error number is
returned when the error is detected. Otherwise, the proposal will initiate a
protocol within the group. For details of a change state value protocol, see
3.2.2.4, “Sample Protocol Executions--Change State Value” on page 53.

Information about the state change request is supplied through the state change
request block. This structure includes the following fields:

• gs_num_phases field specifies whether the state change protocols are to be
n-phase or one-phase protocols.

• gs_time_limit field contains the voting phase time limit, in seconds. If “0” is
specified, no time limit is enforced.

• gs_new_state field points to a buffer that contains the proposed new value
for the group′s state.

84 RS/6000 SP HA Infrastructure

3.3.5 ha_gs_vote()

� �

� �

The ha_gs_vote subroutine is used by a provider of a Group Services group to
submit its vote on a proposal during a voting phase of an executing protocol.

When an application has selected an n-phase protocol, providers are expected to
vote on proposed changes to the group. When a vote is requested, the n-phase
callback routine is called for each of the providers, and each of the providers is
expected to return a vote using this subroutine within the time limit (if a time
limit was specified) previously established by the group.

The value of vote_value can take APPROVE, CONTINUE, or REJECT.

If multiple providers, in the same voting phase, submit state value changes,
provider messages, or both, the Group Services subsystem chooses only one of
each. Therefore, if different providers submit different values, the Group
Services subsystem will arbitrary choose the values. Due to this, a group should
use one of the following two approaches to get consistent submissions of state
value changes, provider messages, or both:

• All providers submit same value.

• Only one provider submits values.

Chapter 3. Group Services 85

3.3.6 ha_gs_subscribe()

� �

� �

The ha_gs_subscribe subroutine is used by a GS client to register as a
subscriber for a Group Services group. If the named group does not already
exist, the HA_GS_UNKNOWN_GROUP error number is returned asynchronously.

Note that subscribers are known only to the Group Services subsystem. The
providers of the group and the other subscribers of the group are unaware of
any of the subscribers to the group.

If this subroutine is successful, the subscriber_token field is set to the token that
identifies this subscriber ′s connection to the group. The GS client must pass a
copy of this token on all subsequent GSAPI calls that refer to the group. The
GSAPI, in turn, passes a copy of the token to the GS client on all subsequent
callbacks that refer to the group.

To receive notifications for changes in the list of active nodes or adapters in the
system, the subscriber should specify one of the following constants as the
group name in the gs_subscription_group field in the subscribe request block:

• HA_GS_HOST_MEMBERSHIP_GROUP , for subscriptions to the host
membership group

• HA_GS_ENET_MEMBERSHIP_GROUP , for subscriptions to the Ethernet
adapter membership group

86 RS/6000 SP HA Infrastructure

• HA_GS_CSS_MEMBERSHIP_GROUP , for subscriptions to the SP Switch
adapter membership group

Notifications for host or adapter membership look the same as notifications for
any other group; each active node or adapter is represented as a provider.

Chapter 3. Group Services 87

3.3.7 ha_gs_dispatch()

� �

� �

The ha_gs_dispatch subroutine is used by a process to handle messages (also
known as notifications) from GSAPI. The flags provided on input determine
whether the GSAPI performs select on the GSAPI socket and whether the GSAPI
blocks the socket if there are no messages to be read.

The GS client must call this subroutine regularly to communicate with the GSAPI.

88 RS/6000 SP HA Infrastructure

3.3.8 ha_gs_leave()

� �

� �

The ha_gs_leave subroutine is used by a provider of a Group Services group to
leave the group.

Chapter 3. Group Services 89

3.3.9 ha_gs_quit()

� �

� �

When a GS client no longer needs to use the Group Services subsystem, it
should call the ha_gs_quit subroutine to terminate its connection to the Group
Services subsystem. This allows Group Services to release the resources
associated with the GS client.

If the GS client is still joined as a provider to any groups, the Group Services
subsystem notifies the groups that the provider has failed, and the groups
execute a failure leave protocol.

90 RS/6000 SP HA Infrastructure

3.3.10 GSAPI Design Considerations

� �

� �

The GSAPI provides a number of separate callback routines, each of which
expects to receive a different type of notification. However, each notification
block, whose pointer each callback routine receives from each notification, also
specifies its type. For example, the n-phase notification block, which is passed
from n-phase notification to the n-phase callback routine, has the
ha_gs_notification_type field, which is expected to contain a value of
HA_GS_N_PHASE_NOTIFICATION.

This design allows you to code callback routines using either of the following two
strategies, or a combination of the two:

 1. Code a number of specialized callback routines.

This reduces the amount of checking each callback routine must perform
when it receives a notification. You could use this approach if performance
and path length are considerations when your application handles a
notification.

 2. Code a general callback routine that parses the notifications it receives.

This reduces the number of callback routines you need to code, but
increases the amount of work each must do to determine the type of
notification it has received.

Chapter 3. Group Services 91

� �

� �

The following discussion of multiprocessing considerations applies to all callback
routine designs:

• The Group Services subsystem presents all notifications to all providers in a
single group in the same order (but not at the same time). The providers
should try to execute the same callback routines in the same order.

However, only for n-phase protocols does the Group Services subsystem
verify that all of the group′s providers have reached the same execution
point before continuing to the next notification (as discussed in 3.2.4.2,
“Illustration of Multiphase Protocol” on page 69). In other cases, the
providers may not receive and react to the notifications at the same time.

• If GS clients are providers in multiple groups, there is no guarantee that
every provider will receive the notifications from different groups in the same
order.

• For multi-threaded clients, it is assumed that the callback routines are
thread-safe and reentrant (if the same callback routines are specified for
multiple groups), so that the client can process notifications by executing the
callback routines for more than one group at a time.

For single-threaded providers, if they are acting as providers for multiple
groups, they must also be coded to handle simultaneously executing
protocols in all groups.

• In all cases where GS clients are acting as providers in multiple groups, it is
the responsibility of the providers to ensure that they do not create deadlock
situations across groups. An example of a deadlock that could occur is
when one provider blocks before voting, waiting for another provider to take

92 RS/6000 SP HA Infrastructure

some action, and the second provider is blocked on another group protocol,
waiting for the first provider to take some action.

• The Group Services subsystem executes callback routines only on the same
thread or threads that are used to call the ha_gs_dispatch subroutine. The
only exception is the case of a group dissolution notification, for which the
announcement callback routine is called on any thread that is available.

Chapter 3. Group Services 93

� �

� �

To get the best performance from your application, design your application
according to the following guidelines:

• Minimize the number of groups, providers, and nodes your application
requires.

The greater the number of groups, the number of providers joined to those
groups, and the number of nodes across which each group is spread, the
longer it will take to coordinate your application′s activities.

• Minimize the size of the provider-broadcast messages that your application
uses.

The larger the messages, the greater the load on the network, particularly
when a message must be broadcast to every provider in a group and a large
number of subscribers as well.

• Select the batching option to allow the Group Services subsystem to batch
multiple join requests and failure leaves together (see 3.2.2.3, “Sample
Protocol Executions--Join” on page 51 and 3.2.2.6, “Sample Protocol
Executions--Leave” on page 56).

• The actions taken during the barrier synchronizations that are imposed by an
n-phase protocol should be idempotent, that is, they should be designed so
that they can execute one or more times without damage.

Suppose that the providers of an application have been taking external
actions during the barriers that are imposed by a multi-phase protocol, and
that these actions must be completed for the application to be operational.
Now suppose that the protocol is terminated because of a failure.

94 RS/6000 SP HA Infrastructure

If the actions that the providers have already taken are not designed to be
idempotent, the providers must explicitly undo the actions before they restart
the protocol. Such an undo phase can be expensive and may require
additional phases of coordination among the providers.

Chapter 3. Group Services 95

3.4 Group Services Administrations
This section discusses the administration topics associated to Group Services.

3.4.1 Group Services Processes

� �

� �

Group Services consists of two subsystems, hags and hagsglsm. They are
controlled by the System Resource Controller (SRC), which is an AIX feature that
provides mechanisms to define and control subsystems. The two subsystems
belong to a subsystem group called hags.

The Group Services subsystems (hags and hagsglsm) are associated with the
following daemons each:

• hagsd

The hagsd daemon provides most of the services of the Group Services
subsystem, which provides a general purpose facility for coordinating and
monitoring changes to the state of an application that is running on a set of
nodes.

One instance of the hagsd deamon (hagsd.syspar_name) executes on the
Control Workstation for each system partition. An instance of the hagsd
daemon (hagsd) also executes on every node of a system partition.

96 RS/6000 SP HA Infrastructure

• hagsglsmd

The hagsglsmd daemon provides global synchronization services for the SP
Switch adapter membership group.

One instance of the hagsglsmd daemon (hagsglsmd.syspar_name) executes
on the Control Workstation for each system partition. Another instance of
the hagsglsmd daemon (hagsglsmd) also executes on every node of a system
partition.

Client processes need to communicate with a Group Services daemon (hags) that
is executing on the same node on which the client processes are executing. The
client processes accomplish this through the Group Services Application
Programming Interface (GSAPI), using a Unix domain socket. All client
processes that intend to use Group Services services through the GSAPI must
set the environment variable called “HA_SYSPAR_NAME” equal to the system
partition name in which they are executing. This must be done on the nodes, as
well as on the Control Workstation, and the variable must be set before the client
process executes the ha_gs_init() subroutine call.

Chapter 3. Group Services 97

3.4.2 Files and Directories

� �

� �

The Group Services subsystem uses the following directories:

• /usr/ lpp/ssp/bin/

This directory contains the main executable files of the Group Services
subsystem, which are:

hagsd Group Services subsystem daemon

hagsglsmd Group Services subsystem daemon

hagsctrl Group Services subsystem control script

hagscl Utility command (See 3.4.3.1, “Other Utilities” on page 104.)

hagsgr Utility command (See 3.4.3.1, “Other Utilities” on page 104.)

hagsmg Utility command (See 3.4.3.1, “Other Utilities” on page 104.)

hagsns Utility command (See 3.4.3.1, “Other Utilities” on page 104.)

hagspbs Utility command (See 3.4.3.1, “Other Utilities” on page 104.)

hagsvote Utility command (See 3.4.3.1, “Other Utilities” on page 104.)

• /usr/lpp/ssp/lib/libha_gs.a

This is a GSAPI shared library used by a GS client program to obtain the
services of the Group Services subsystem. This is for non-thread-safe
programs.

98 RS/6000 SP HA Infrastructure

• /usr/lpp/ssp/lib/libha_gs_r.a

This is a GSAPI shared library for thread-safe GS client programs.

• /usr/lpp/ssp/include/ha_gs.h

This is a header file for GSAPI.

• /usr/lpp/ssp/samples/hags/

This directory includes a GS client sample program and its related files. For
more details on the sample program, see Group Services Programming
Guide and Reference, GC28-1675.

• /var/ha/lck/

In this directory, the following directories are to ensure a single running
instance of each Group Services daemon and to establish an “instance
number” for each invocation of the daemons:

hags.tid.syspar_name
hagsglsm.tid.syspar_name

syspar_name is the name of the system partition.

• /var/ha/log/

In this directory, Group Services daemons will write trace output during
operation. The names of the files are in the following formats:

hags_<node_number>_<instance_number>.syspar_name
hagsglsm_<node_number>_<instance_number>.syspar_name

where,

− < node_number> is the node number on which the daemon is executing.
− < instance_number> is the instance number of the daemon.
− syspar_name is the name of the system partition.

The daemon will limit the log size to a pre-established number of lines (by
default 10000) and when this limit is reached, it will append “.bak” to the log
and begin a new log. If a “.bak” file already exists, it will be removed, and
the current log will then be renamed.

• /var/ha/run/

In this directory, the following directories are created:

hags.syspar_name
hagsglsm.syspar_name

where, syspar_name is the system partition name. These directories are the
current working directories for the Group Services daemons. Any core files
created when the Group Services daemons abnormally terminate are placed
in these directories. Whenever the Group Services daemons start, they
rename any core files to:

core_<node_number>.<instance_number>

where,

− < node_number> is the node number on which the daemons are
executing.

− < instance_number> is the instance number of the daemons.

Chapter 3. Group Services 99

• /var/ha/soc/

This directory contains the socket files. The following socket file that is used
by the GSAPI to connect to the Group Services daemon is located in this
directory:

hagsdsocket.syspar_name

syspar_name is the system partition name.

100 RS/6000 SP HA Infrastructure

3.4.3 Operations
� �

� �

The hagsctrl is the utility script command used to control the operations of the
Group Services subsystems.

The hagsctrl script is not normally executed from the command line. It is
normally called by the syspar_ctrl command during installation of the system,
boot or reboot of individual nodes, and partitioning or re-partitioning of the
system.

The purpose of the hagsctrl script is to add (configure) the Group Services
subsystems to a system partition. It can also be used to remove the subsystems
from a system partition. The hagsctrl script when combined with these options
performs the following functions:

-a Add the subsystems.

-s Start the subsystems.

-k Stop the subsystems.

-d Delete the subsystems.

-c Clean the subsystems, that is, delete them from all system partitions.

-t Turn tracing on for the subsystems.

-o Turn tracing off for the subsystems.

-r Refresh the subsystems.

-h |? Display a help message for this command.

Chapter 3. Group Services 101

Note that except for the “clean” function, hagsctrl affects the Group Services
subsystems in the current system partition, that is, the partition specified by the
SP_NAME environment variable. For more information about the hagsctrl
command, refer to Command and Technical Reference, GC23-3900.

Since the Group Services subsystems are controlled by SRC, you could use the
startsrc and stopsrc SRC commands to start and stop the Group Services
subsystems as follows:

startsrc -g hags
stopsrc -g hags

Also, by using the lssrc SRC command as follows, operational status can be
obtained from the Group Services daemons:

lssrc [-l] -s hags.<syspar_name>
lssrc [-l] -s hagsglsm.<syspar_name>
lssrc -g hags

If you use the lssrc command with the “-l” flag for the hags subsystem, the
following status information is written to standard out:

• The number of currently connected clients, and their process-IDs (PIDs)

• The status of the Group Services domain

• The node-number on which the GS nameserver is executing

The following line in the output sample indicates that the GS nameserver is
node 0 (the Control Workstation):

Domain established by node 0.

• Statistics for client groups with providers or subscribers on this node

The output of the lssrc command with “-l” on a “regular” node (not the Control
Workstation) is as follows:

� �
lssrc -l -s hags
Subsystem Group PID Status
hags hags 10054 active
 2 locally-connected clients. Their PIDs:
 11848 12378
 HA Group Services domain information:
 Domain established by node 0.
 Number of groups known locally: 2

Number of Number of local
 Group name providers providers/subscribers
cssMembership 6 1 0
ha_em_peers 7 1 0� �

For the same domain, the output from the Control Workstation is as follows:

102 RS/6000 SP HA Infrastructure

� �
lssrc -l -s hags.sp2cw0
Subsystem Group PID Status
 hags.sp2cw0 hags 16164 active
 1 locally-connected clients. Their PIDs:
 18808
 HA Group Services domain information:
 Domain established by node 0.
 Number of groups known locally: 2

Number of Number of local
 Group name providers providers/subscribers
cssMembership 6 0 1
ha_em_peers 7 1 0� �

The only differences in the examples are the subsystem names “hags” on a
node and “hags.sp2cw0” on the Control Workstation, and the “number of local
providers/subscribers” for cssMembership group.

If the lssrc command times out, then the Group Services daemon is probably
unable to properly connect to Topology Services. You can check the status of
the Topology Services subsystem by issuing the following command:

lssrc -g hats

If the status of the Topology Services subsystem is “inoperative,” then you need
to start Topology Services by issuing the following command on each node:

hatsctrl -s

Chapter 3. Group Services 103

3.4.3.1 Other Utilities
� �

� �

The following utility commands can be used to monitor the Group Services
daemons and groups and to get information on how to trouble-shoot the Group
Services subsystems when they are not working properly:

• /usr/lpp/ssp/bin/hagsns

This command provides an SRC-based interface to interrogate the GS
daemon as to its complete GS nameserver status. The status may vary
significantly, depending upon the status of the various GS daemons across a
system partition. The following description does not intend to completely
describe all possible outputs, but it does provide some outputs of this
command to help you understand how this command can be used.

Assume we have a system partition with two nodes and the Control
Workstation:

Partition (CWS) name: sp2cw0
Nodes in partition: 1 (sp2n01) and 5 (sp2n05)

Assume that all nodes have just booted. On the Control Workstation, we
see:

� �
lssrc -l -s hags.sp2cw0
Subsystem Group PID Status
 hags.sp2cw0 hags 50942 inoperative
 1 locally-connected clients. Their PIDs:
 52636
 HA Group Services domain information:
 Domain not established.
 Number of groups known locally: 0� �

104 RS/6000 SP HA Infrastructure

Here, we see that the domain is not established. The hagsns command
should show the following:

� �
hagsns -s hags.sp2cw0
We are: 0.28 domaindId = 0.Nil noNS = 1 inRecovery = 0
NS::ENsState(2):kAscend protocolInProgress = NS::ENsProtocol(0):kNoProtocol
outstandingBroadcast = NS::ENsBroadcast(0):kNoBcast
Process started on Aug 20 20:59:13, (0:0:28) ago. HB connection took (0:0:0).
Our current epoch of certainty started on Aug 20 20:59:13, (0:0:28) ago.
3 UP nodes: 0 1 5
Coronation Timer has popped!
Domain not established for (0:0:28). Waiting to hear from these 2 nodes: 1 5� �

The line that states:

We are: 0.28 domaindId = 0.Nil noNS = 1 inRecovery = 0

specifies that we have no GS nameserver (noNS = 1), but we are not
recovering (inRecovery = 0). Therefore, we have not yet established a GS
nameserver. The domaindId of 0.Nil also means we have not yet established
a GS nameserver.

Note: For the process of establishing the GS nameserver, see 3.2.1.3,
“Group Namespace” on page 42.

The lines that state:

NS::ENsState(2):kAscend protocolInProgress = NS::ENsProtocol(0):kNoProtocol
outstandingBroadcast = NS::ENsBroadcast(0):kNoBcast

specify that this node is in the Ascend GS nameserver state, meaning it is
the lowest-numbered node, and is waiting to collect grovels from all nodes,
so that it can establish itself as the GS nameserver. There is no protocol in
progress.

The line that states:

3 UP nodes: 0 1 5

specifies that Topology Services has told the GS daemon that 3 nodes
(including the Control Workstation) are running.

The line that states:

Coronation Timer has popped!

specifies that the coronation timer has popped, so this node is waiting solely
to collect grovels from all nodes, so that it can establish itself as the GS
nameserver.

The line that states:

Domain not established for (0:0:28). Waiting to hear from these 2 nodes: 1 5

specifies how long this GS daemon has been waiting (HH:MM:SS). It then
lists the nodes from which it is waiting for grovels (in this case, all other
nodes in the system partition).

Assuming we then start Group Services on node 1, we get the following
output:

Chapter 3. Group Services 105

� �
hagsns -s hags.sp2cw0
We are: 0.28 domaindId = 0.Nil noNS = 1 inRecovery = 0
NS::ENsState(2):kAscend protocolInProgress = NS::ENsProtocol(0):kNoProtocol
outstandingBroadcast = NS::ENsBroadcast(0):kNoBcast
Process started on Aug 20 21:43:07, (0:7:2) ago. HB connection took (0:0:0).
Our current epoch of certainty started on Aug 20 21:43:07, (0:7:2) ago.
3 UP nodes: 0 1 5
Coronation Timer has popped!
Domain not established for (0:7:2). Waiting to hear from these 1 node: 5� �

Now the GS daemon on the Control Workstation is waiting only for node 5.

On node 1, the following output from the hagsns command looks a little
different from the output on node 5:

� �
hagsns -s hags.sp2cw0
We are: 1.15 domaindId = 0.Nil noNS = 1 inRecovery = 0
NS::ENsState(2):kGrovel protocolInProgress = NS::ENsProtocol(0):kNoProtocol
outstandingBroadcast = NS::ENsBroadcast(0):kNoBcast
Process started on Aug 20 21:50:02, (0:1:21) ago. HB connection took (0:0:0).
Our current epoch of certainty started on Aug 20 21:50:02, (0:1:21) ago.
3 UP nodes: 0 1 5
Domain not established for (0:1:21). Currently waiting for node 0� �

Here, we are in the Grovel state, with no protocol in progress.

Once Group Services is started on node 5 (with startsrc -s hags), then
Group Services quickly forms a domain and node 0 establishes itself as the
GS nameserver. The following output on the Control Workstation is basically
what was previously shown, with the difference being the list of groups:

� �
hagsns -s hags.sp2cw0
We are: 0.28 domaindId = 0.28 noNS = 0 inRecovery = 0
NS::ENsState(7):kBecomeNS protocolInProgress = NS::ENsProtocol(0):kNoProtocol
outstandingBroadcast = NS::ENsBroadcast(0):kNoBcast
Process started on Aug 20 21:43:07, (0:11:51) ago. HB connection took (0:0:0).
Initial NS certainty on Aug 20 21:54:55, (0:0:3) ago, taking (0:11:47).
Our current epoch of certainty started on Aug 20 21:54:55, (0:0:3) ago.
3 UP nodes: 0 1 5
1.1 ha_em_peers: GL: 0 seqNum: 0 theIPS: 0 1 5 lookupQ:
2.1 cssMembershp: GL: 1 seqNum: 0 theIPS: 1 lookupQ:� �

The following list in this output shows the client groups that have had
providers on nodes join them in this Group Services domain:

1.1 ha_em_peers: GL: 0 seqNum: 0 theIPS: 0 1 5 lookupQ:
2.1 cssMembershp: GL: 1 seqNum: 0 theIPS: 1 lookupQ:

where:

<group_ iden t i f i e r> Is an identifier given to each Group Services group. It
is internally used by Group Services (for example, 1.1,
2.1).

< g r o u p _ n a m e > Is the external name given by the Group Services
clients when they join the group (for example,
ha_em_peers).

< G L > Is the node number of the node on which a ″group
leader″ is executing. The group leader (also called
primary Group Services daemon) controls the
functioning of the group. See 3.2.1.2, “Group
Structure” on page 40.

106 RS/6000 SP HA Infrastructure

< S e q N u m > Is a sequence number for messages within each
group. Each group maintains its own sequence of
message broadcasts. The value shown here is the
group ′s sequence number when it got an update
message from its group leader. A group leader
updates this field at the GS nameserver when it
initially becomes group leader, and periodically
thereafter (about every 20,000 group messages it
sends). It is an internal to Group Services.

< t h e I P S > Is a “list” of nodes which have expressed an interest
in a client group. Normally this results because a
client process has asked to join or subscribe to a
group. A node expresses interest in a group by
sending a “lookup” request to the domain ′s GS
nameserver, and is placed on the theIPS list when the
GS nameserver sends out the response to the lookup.
It is an internal to Group Services.

< l o o k u p Q > Is a “list” of nodes that have sent in lookup requests,
but to which the GS nameserver has not yet sent out a
response. There is only a lookup queue when there is
no group leader for the group, which can happen when
the group is first being formed, or when the group
leader ′s node fails, and group leader recovery is in
progress.

At the same time, the hagsns output on node 1, which is not the GS
nameserver node, is as follows:

� �
hagsns -s hags
We are: 1.15 domaindId = 0.28 noNS = 0 inRecovery = 0
NS::ENsState(6):kCertain protocolInProgress = NS::ENsProtocol(0):kNoProtocol
outstandingBroadcast = NS::ENsBroadcast(0):kNoBcast
Process started on Aug 20 21:50:02, (0:12:54) ago. HB connection took (0:0:0).
Initial NS certainty on Aug 20 21:54:55, (0:8:1) ago, taking (0:4:52).
Our current epoch of certainty started on Aug 20 21:54:55, (0:8:1) ago.
3 UP nodes: 0 1 5� �

Note that no group information is contained in node 1′s output. Since it is
not the nameserver, it does not collect that information.

• /usr/lpp/ssp/bin/hagsmg

This command provides the ordered list of nodes in each “meta-group.” A
meta-group can be thought of as a “shadow” to each client group, with the
following two exceptions:

 1. ZtheNameServerXY meta-group: This is the group used by the GS
nameserver to manage the domain, and should include all active nodes
in the system partition.

 2. theGROVELgroup meta-group: This group is an internal use only group
that never contains any nodes.

Chapter 3. Group Services 107

The output to hagsmg appears as follows:

� �
hagsmg -s hags
2.1 cssMembership: 1 5
1.1 ha_em_peers: 1 5 0
0.Nil ZtheNameServerXY: 1.15 5.6 0.29
0.Nil theGROVELgroup:� �

Similar to hagsns, the first column provides the internal “group_identifier” for
each meta-group. The group_name is the external group name, with the two
exceptions as noted above. Following the group name is the list of nodes
that have been inserted into each meta-group. The first node in the list is
the group leader (GL) for each meta-group. This node controls the operation
of the group by choosing the next protocol to be executed.

The hagsmg output will list only the meta-groups to which that node has been
inserted. On node 0 (the Control Workstation), which knows nothing about
Switch adapter membership group (cssMembership), the output is as follows:

� �
hagsmg -s hags.sp2cw0
1.1 ha_em_peers: 1 5 0
0.Nil ZtheNameServerXY: 1.15 5.6 0.29
0.Nil theGROVELgroup:� �

The nodes are listed in group leader takeover order, which reflects the order
in which they joined the group. If node 1 fails, node 5 will takeover as GS
nameserver, as well as group leader for the ha_em_peers group.

• /usr/lpp/ssp/bin/hagspbs

This command lists the status of the broadcast services subcomponent, an
internal component of Group Services. The output of this command on node
1 when the domain is established is as follows:

� �
hagspbs -s hags
2.1 cssMembership: HWM 3 LWM 3 weAreTheGL
pendingAckCount=0 kNotExpectingAcks pendingRecoverCount=0

1: HWM=0: lastType1=Nil
6: HWM=3: lastType1=Nil

1.1 ha_em_peers: HWM 15 LWM 15 weAreTheGL
pendingAckCount=0 kNotExpectingAcks pendingRecoverCount=0

1: HWM=1: lastType1=Nil
5: HWM=15: lastType1=14
0: HWM=15: lastType1=14

0.Nil ZtheNameServerXY: HWM 7 LWM 7 weAreTheGL
pendingAckCount=0 kNotExpectingAcks pendingRecoverCount=0

1.15 kUp: needDSM: HWM=1: lstTypel=Nil
5.6 kUp: HWM=7: lastType1=Nil
6.29 kUp: HWM=7: lastType1=Nil

0.Nil theGROVELgroup: HWM Nil LWM Nil
pendingAckCount=0 kNotExpectingAcks pendingRecoverCount=0� �

At the same time, there is no activity on node 5, as shown in the following
output of hagspbs command:

108 RS/6000 SP HA Infrastructure

� �
hagspbs -s hags
2.1 cssMembership: HWM 3 LWM 2
pendingAckCount=0 kNotExpectingAcks pendingRecoverCount=0

1: HWM=Nil: lastType1=Nil
6: HWM=1: lastType1=Nil

1.1 ha_em_peers: HWM 15 LWM 14
pendingAckCount=0 kNotExpectingAcks pendingRecoverCount=0

1: HWM=3: lastType1=Nil
5: HWM=3: lastType1=Nil
0: HWM=12: lastType1=Nil

0.Nil ZtheNameServerXY: HWM 7 LWM 6
pendingAckCount=0 kNotExpectingAcks pendingRecoverCount=0

1.15 kUp: HWM=Nil: lstTypel=Nil
5.6 kUp: HWM=Nil: lastType1=Nil
6.29 kUp: HWM=6: lastType1=Nil

0.Nil theGROVELgroup: HWM Nil LWM Nil
pendingAckCount=0 kNotExpectingAcks pendingRecoverCount=0� �

The output lists each group_identifier and group_name. It then lists the
“broadcast sequence numbers” for each group, which consists of a
HighWaterMark (HWM) and a LowWaterMark (LWM) for each group.

In general, these sequence numbers should match for each group on each
node that is inserted in to that group. However, due to delays of messages
getting across the networks, some nodes may not have yet seen all
messages. Assuming the system partition eventually quiets down, all nodes
should eventually catch up. Note that these sequence numbers will not
normally match those displayed by the hagsns command.

The other lines of output have too many possible permutations to go into
now. If one or more groups are running a series of protocols (due to nodes
boots or failures) you can see a large amount of output here. If a group is
hung, or the domain seems hung with a protocol in progress, run this
command on the group′s leader′s node to see which node (or nodes) it may
be waiting for.

• /usr/lpp/ssp/bin/hagscl

This command allows you to dump out information about each client process
currently connected to Group Services. If you remember, the lssrc -l -s
hags command lists the process-IDs (PIDs) of the connected clients. The
hagscl command with long option (-l) allows you to get additional information
as follows:

Chapter 3. Group Services 109

� �
hagscl -l -s hags
Client Control layer summary:
Number of clients connected: 2
Cumulative number of clients connected: 2
Total number of client requests: 2
Number of client hash table conflicts: 0

--
Client: socketFd[9] pid[17076]Total number of Clients: 2
 Client initialized: pid: 17076
Number of local providers/subscribers: 1/0
Responsiveness information for Client: socketFd[9] pid[17076]
Type[type[HA_GS_PING_RESPONSIVENESS]] interval[60] response time limit[5]
Checks done/bypassed[58/0] lastResponse[OK]]
Results(good/bad/late)[58/0/0]
Membership list:
slot info
0 [provider Member token[0] Client: socketFd[9] pid[17076]ProviderId[1/5]
--
Client: socketFd[9] pid[9824]Total number of Clients: 2
 Client initialized: pid: 9824
Number of local providers/subscribers: 1/1
Responsiveness information for Client: socketFd[9] pid[9824]
Type[type[HA_GS_PING_RESPONSIVENESS]] interval[3630] response time limit[10]
Checks done/bypassed[0/0] lastResponse[OK]]
Results(good/bad/late)[0/0/0]
Membership list:
slot info
0 [subscriber Member token[0] Client: socketFd[10] pid[9824]]
0 [provider Member token[0] Client: socketFd[10] pid[9824]ProviderId[0/5]� �

This output expands to describe a number of items:

− The following lines that show:

Client: socketFd[9] pid[9824]Total number of Clients: 2
 Client initialized: pid: 9824

are mostly just a repeat of what hagscl -s hags says, listing the PID and
socket file descriptor. However, information on whether or not the client
is “initialized” is also added. “Initialized” means that the client has
successfully executed ha_gs_init() call.

− The following line shows how many groups this client has joined or
subscribed to:

Number of local providers/subscribers: 1/1

In this case, the client has joined one group and subscribed to one
group.

− The following lines show some information about responsiveness, which
is a periodic check that a GS daemon performs on its clients (see Group
Services Programming Guide and Reference, GC28-1675 for how to
specify this on the ha_gs_init() call):

Responsiveness information for Client: socketFd[9] pid[9824]
Type[type[HA_GS_PING_RESPONSIVENESS]] interval[3630] response time limit[10]
Checks done/bypassed[0/0] lastResponse[OK]]
Results(good/bad/late)[0/0/0]

Here, it echoes the parameters given on ha_gs_init() (type/interval/time
limit) and also displays the number of checks done. In this case, the
interval is 3630 seconds, and the client has not been connected that long.

110 RS/6000 SP HA Infrastructure

− The following lines show the membership list:

Membership list:
slot info
0 [subscriber Member token[0] Client: socketFd[10] pid[9824]]
0 [provider Member token[0] Client: socketFd[10] pid[9824]ProviderId[0/5]

This client is subscribed to one group and joined to another. The
ProviderId is this client′s provider identification in its group. This can be
matched with the hagsgr output to determine the groups the client
actually cares about.

• /usr/lpp/ssp/bin/hagsgr

This command lists the client groups, and the providers and subscribers for
each group. Similar to hagsmg, it only lists the groups to which the node
(where the command is issued) is joined, subscribed, or both.

The output of hagsgr command is as follows:

� �
hagsgr -s hags
Number of: groups: 3

Group slot # [0] Group name[HostMembership] group state[Not Inserted |]
Providers[]
Local subscribers[]

Group slot # [1] Group name[ha_em_peers] group state[Inserted |Idle |]
Providers[[1/1][1/5][1/0]]
Local subscribers[]

Group slot # [2] Group name[!SwitchGroupie!] group state[Idle |]
Providers[[0/1][0/5]]
Local subscribers[[10/5]]

Group slot # [3] Group name[cssMembership] group state[Inserted |Idle |]
Providers[[0/1][0/5]]
Local subscribers[]� �

Group slot is the index of the group in an internal Group Services table.

The format for providers listed is the following:

[provider_instance_number / provider_node_number]

where

− “Provider_instance_number” is specified by the client process when it
joins a group.

− “Provider_node_number” is the node_number on which the client
process is executing.

The providers are shown in the order in which they joined the group,
therefore, the oldest provider is listed first, and the youngest last.

The format for subscribers is similar:

[socket_file_descriptor / subscriber_node_number]

where:

− “Socket_file_descriptor” is the GS daemon′s socket file descriptor that
connects it to the client process that subscribed to the group. Note that
you can use this along with the output from hagscl to determine the PID
of the subscriber, since a node will display only the local subscribers
(those actually executing on the node on which the hagsgr command is
executed).

Chapter 3. Group Services 111

− “Subscriber_node_number” is the node_number on which the subscriber
process is executing, which is always the local node.

The group state field indicates the status of that group, and it is a collection
of separate states concatenated with the “OR” sign:

 1. If it includes “Not Inserted,” then that group is not currently active on this
node, and should have no providers or subscribers.

 2. If it includes “Insert Pending,” then it is attempting to become inserted
into the group. It has sent the GS nameserver a “lookup” and is
awaiting the response, or the response is received, and it is awaiting to
be inserted into the meta-group. You have to use hagsmg or hagspbs to
determine the exact step. This should normally be a temporary state.

 3. If it includes “Inserted,” then that group is currently active on this node,
and it may have providers, subscribers, or both.

If “Inserted” is included, then one of the following is also present:

− “Idle” indicates the group is not currently running a protocol.

− “Running Protocol” indicates the group is running a protocol. The
hagsgr with the long option allows you to see what this protocol is.

− “Needs Priming” indicates a node is attempting to become fully
active in a group, and is waiting to find out the current state
(membership and group state value) of the group. This is normally
temporary.

 4. Other temporary states include “Waiting for BroadcastSent” and
“Resending Requests.” The former indicates the node is in the midst of
sending a broadcast, and the latter indicates that the group′s GL has
failed and the Group Services subsystem is recovering to a new GL.

It is also possible to specify hagsgr for a specific group:

� �
hagsgr -a ha_em_peers -s hags
Number of: groups: 3

Group slot # [1] Group name[ha_em_peers] group state[Inserted |Idle |]
Providers[[1/1][1/5][1/0]]
Local subscribers[]� �

You can also use the long option, which may result in an awesomely verbose
output. The output sample and its explanation are too deep into the internal
of Group Services to go into in this book.

• /usr/lpp/ssp/bin/hagsvote

This command only displays information of groups in the midst of voting
protocols. If no groups are doing anything, you get something similar to the
following:

112 RS/6000 SP HA Infrastructure

� �
hagsvote -s hags
Number of: groups: 4

Group slot # [0] Group name[HostMembership] voting data:
No protocol is currently executing in the group.
--

Group slot # [2] Group name[ha_em_peers] voting data:
No protocol is currently executing in the group.
--

Group slot # [3] Group name[!SwitchGroupie!] voting data:
No protocol is currently executing in the group.
--

Group slot # [3] Group name[!cssMembership!] voting data:
No protocol is currently executing in the group.
--� �

However, the rest of the output was captured when at least one group was
busy.

The hagsvote output also differs depending whether it is issued on the GL
node for a group, or on a non-GL node. It will display a summary of the
collected vote responses if it is on the GL, as well as a list of nodes that
have and have not voted. On non-GL nodes, it can only list the local
providers, and whether they have voted or not.

The short option displays only summary data, while the long option will
display data for each provider (on all nodes) and for all providers of the
group (on the GL node). The hagsgr with the long option shows an active
“join protocol” as follows:

� �
hagsvote -l -s hags
Currently executing protocol: SJoinProtocol: requested by: [provider Member tok
en[0] [remote provider] ProviderId[1/0]]
SVProtocol: state[Submitted+Executing+ExecutingPostBroadcast+ExecutingNeedsVotes
+ExecutingVoteSubmitted+Continuing]
ProtocolToken[11/22]
[proposer:] provider Member token[0] [remote provider] ProviderId[1/0]]
][group:Group name[ha_em_peers]]
Number phases[2] this phase[1]
summary code[0] time limit[60]

[Batching allowed]
Changing count [1] local changing count [0] changers removed count [0]
Have [32] changing member slots, list:
SProvider(ProviderId[1/0]conditionalListPosition[0]
SVSuppMember: token[0] status[NotIn]
 supp ptr : 0x0 group ptr: 0x3004b358 groupListPosition: -1 nodeListPosition: -1
Need Vote/Vote Yet[0/0]
 Last Request:0x30055a58
 [votingParticipant])[end SProvider]

----------------------------� �
On node 0 (the Control Workstation), which is not the GL, the hagsvote output
with the short option followed by the hagsvote output with the long option are
as follows:

� �
hagsvote -a ha_em_peers -s hags.sp2cw0
Number of: groups: 2

Group name[ha_em_peers] voting data:
Not GL in phase [1] of an n-phase protocol of type[Join].
Local voting data:
Local provider count [1] Number not yet voted [0](vote submitted).
 Given vote:[Approve vote]Default vote:[No vote value]� �

Chapter 3. Group Services 113

Here,

Given vote:[Approve vote]Default vote:[No vote value]

indicates that this provider voted to approve the protocol, and did not submit
a default vote value on its vote.

� �
hagsvote -l -a ha_em_peers -s hags.sp2cw0
Number of: groups: 2

Group name[ha_em_peers] voting data:
Not GL in phase [1] of an n-phase protocol of type[Join].
Local voting data:
Local provider count [1] Number not yet voted [0](vote submitted).
 Given vote:[Approve vote]Default vote:[No vote value]
ProviderId Voted? Failed? Conditional?
[1/0] Yes No Yes� �

The long option breaks this down by individual providers, and lists each
provider ′s voting status, failure status, and conditional status. A conditional
provider is the provider involved in a running join protocol.

On the GL node (node 1), the output is as follows:

� �
hagsvote -a ha_em_peers -s hags
Number of: groups: 5

Group name[ha_em_peers] voting data:
GL in phase [1] of an n-phase protocol of type[Join].
Local voting data:
Local provider count [1] Number not yet voted [0](vote submitted).
 Given vote:[Approve vote]Default vote:[No vote value]
Global voting data:
Number of nodes in group [3] Number not yet voted [1]
Given vote:[Approve vote]Default vote:[No vote value]� �

This output initially gives data for its local providers (as does a non-GL
node), which indicates that this node′s provider has voted. It then adds the
Global voting data:, which here summarizes how many nodes need to vote,
and how many have yet to vote. In this case, one node remains to vote.
Also, this summarizes the results of the collected voting (Approve vote) so
far.
The output with the long option (-l) on node 1 is as follow:

� �
hagsvote -l -a ha_em_peers -s hags
Number of: groups: 5

Group name[ha_em_peers] voting data:
Not GL in phase [1] of an n-phase protocol of type[Join].
Local voting data:
Local provider count [1] Number not yet voted [0](vote submitted).
 Given vote:[Approve vote]Default vote:[No vote value]
ProviderId Voted? Failed? Conditional?
[1/0] Yes No Yes
[1/1] Yes No No
Global voting data:
Number of nodes in group [3] Number not yet voted [1]
Given vote:[Approve vote]Default vote:[No vote value]
Nodes that have voted [0 1]
Nodes that have not voted [5]� �

This breaks down the voting to all providers in that have so far submitted
votes, and also breaks it down by node. The line:

Nodes that have not voted [5]

shows that the provider on node 5 has not voted.

114 RS/6000 SP HA Infrastructure

The hagsvote outputs on node 5 are as follows:

� �
hagsvote -a ha_em_peers -s hags
Number of: groups: 4

Group name[ha_em_peers] voting data:
GL in phase [1] of an n-phase protocol of type[Join].
Local voting data:
Local provider count [1] Number not yet voted [1](vote submitted).
 Given vote:[No vote value]Default vote:[No vote value]� �

� �
hagsvote -l -a ha_em_peers -s hags
Number of: groups: 4

Group name[ha_em_peers] voting data:
Not GL in phase [1] of an n-phase protocol of type[Join].
Local voting data:
Local provider count [1] Number not yet voted [0](vote submitted).
 Given vote:[Approve vote]Default vote:[No vote value]
ProviderId Voted? Failed? Conditional?
[1/0] Yes No Yes
[1/5] No No No� �

Note that Global voting data is not shown here, since this node is not a GL.

Chapter 3. Group Services 115

3.4.4 Group Services Daemon Initialization
� �

� �

Normally, the Group Services daemons are started by an entry in the /etc/inittab
file, with the startsrc command. If necessary, the GS daemons can be started
using the hagsctrl script or the startsrc command directly.

The hagsd daemon executes the following steps during its initialization:

 1. Get the number of the node on which it is executing using the
/usr/lpp/ssp/install/bin/node_number command. Node 0 is the Control
Workstation.

 2. Fetch the name of the system partition.

 3. Connect to Topology Services. If the connection cannot be made because
the Topology Services subsystem is not running, then the connection attempt
is scheduled to be made again in one second. This is repeated until the
connection to Topology Services is established. Group Services periodically
writes an AIX error log until this connection is established. Until this time,
no clients may connect to Group Services

 4. Turn the program into a daemon. This includes establishing communications
with the SRC subsystem (in order to return a status information at the
request of SRC commands).

 5. Establish the Group Services “domain. ” The domain is equivalent to the set
of nodes within the RS/6000 SP system partition in which a daemon is
executing. At this point, one of the hagsd daemons establishes itself as the
GS Nameserver. For the process of establishing GS nameserver, see 3.2.1.3,

116 RS/6000 SP HA Infrastructure

“Group Namespace” on page 42. Until the domain is established, no client
requests to join or subscribe to groups will be processed.

 6. Enter the main control loop. This loop waits for requests from clients,
messages from other Group Services daemons, messages from Topology
Services, and requests from the SRC for status.

Chapter 3. Group Services 117

� �

� �

The hagsglsmd daemon executes the following steps during its initialization:

 1. Get the number of the node on which it is executing using the
/usr/lpp/ssp/install/bin/node_number command. Node 0 is the Control
Workstation.

 2. Fetch the name of the system partition.

 3. Connect to Group Services. If the connection cannot be made because the
Group Services subsystem is not running, then the connection attempt is
scheduled to be made again in one second. This is repeated until the
connection to Group Services is established. Group Services periodically
writes an AIX error log entry until this connection is established.

 4. Turn the program into a daemon. This includes establishing communications
with the SRC subsystem (in order to return a status information at the
request of SRC commands).

 5. Get the information about the High Performance Switch (HPS) or SP Switch
adapters (“CSS”) from the hagsd daemon.

 6. Enter the main control loop. This loop waits for requests from clients,
messages from other Group Services daemons, messages from Topology
Services, and requests from the SRC for status.

118 RS/6000 SP HA Infrastructure

Chapter 4. Resource Monitors

� �

� �

This chapter describes the Resource Monitors and gives an explanation of their
basic terminology and architecture.

 Copyright IBM Corp. 1996 119

4.1 Resource Monitor Objectives

� �

� �

Most of the computer users monitor the hardware and software components of a
system. They often find that the hardware is different than expected, the
software does not behave as expected, and the user application does not use
the system resources in an efficient manner. The results of monitoring lead to
the user′s desire to optimize the system.

The monitored results must be transferred to a higher level of software that
processes the data. The data transfer must be highly efficient, because a
monitor must not load the system with a heavy computing load.

The data obtained from a monitor program is usually distributed to more than
one higher level software through shared memory. Therefore, the interface must
be able to be shared. This interface is published in the standard documentation
delivered with the product. Using a standard interface also allows independent
software vendors to create their software applications and use the standard
system resources in order to achieve the best system performance.

120 RS/6000 SP HA Infrastructure

4.2 Resources

� �

� �

A resource is an entity in the system that provides a set of services. Examples
of resources include hardware entities (such as processors, disk drive, memory,
and adapters), and software entities (such as database subsystems, programs,
and filesystems).

Chapter 4. Resource Monitors 121

4.3 Resource Variable

� �

� �

A higher level structure does not want to understand the internal structure of a
resource. Every resource in a system can be represented by variables. The
variables representing a resource are called resource variables. A resource
variable is simply the representation of an attribute of a resource. Any resource
can be represented by one or more resource variables. For example, the SP
Switch can be represented by input packets, output packets, state, transmit
queue, receive queue, and so on. A representation of a disk can be the number
of write blocks, read blocks, percentage of disk busy, and so on. Resource
variables concerning the CPU types of resources may be the number of
processors on-line, the processor load, and so on. A database application may
produce variables on the database load, database full, and so on.

122 RS/6000 SP HA Infrastructure

4.4 Resource Variable Name

� �

� �

A resource variable name is a series of two or more components separated by a
period. Each component is a character string that begins with an alpha
character. Any component other than the first component may also begin with a
percent sign. The last component of a resource variable name is the resource
attribute. All preceding components represent the name of the resource.

The name represents a hierarchical organization, from the general to the
specific.

An example of a resource variable is as follows:

IBM.PSSP.PRCRS.procs_online
IBM.PSSP.Prog.pcount
IBM.PSSP.Response.Host.state
IBM.PSSP.Response.Switch.state

In order to avoid collisions in the naming of resource variables, the first
component of each variable name is the name of the vendor that supplied the
subsystem. As you can see in the preceding example, for IBM subsystems the
vendor name is IBM. In an IBM subsystem, the second component of resource
variables is the product name containing the subsystem.

Chapter 4. Resource Monitors 123

4.5 Instance Vector

� �

� �

Most of the resources in a system have multiple copies. For example, there is
more than one disk per node, more than one logical volume per node, more than
one CPU per node, more than one instance of a database, and certainly more
than one node.

In order to uniquely identify each copy of a resource, each resource variable in
the system has only one associated instance vector. An instance vector is a set
of elements where each element is a name-value pair. The name is a
description of the element and the value uniquely identifies the copy of a
resource variable. If the resource variable can have only one copy in the entire
system, the instance vector is NULL.

Examples of resource variables and instance vectors follow:

 IBM.PSSP.aixos.Disk.busy (NodeNum=5, Name=hdisk10)
 IBM.PSSP.PRCRS.procs_online (NodeNum=1)
 IBM.PSSP.Prog.pcount (NodeNum=2, UserName=root, ProgName=dbserv)
 IBM.PSSP.Response.Host.state (NodeNum=15)
 IBM.PSSP.Response.Switch.state (NodeNum=2)

Currently, there is a limit of four name-value pairs per instance vector.

124 RS/6000 SP HA Infrastructure

4.6 Resource Variable Types

� �

� �

A resource variable has one of three value types:

Counter This is a value type that monotonically increases.

Quantity This is a value type that fluctuates over time.

State This is a value type that fluctuates over time. Every time it changes
value, it must be observed to avoid missing generating events.

The counter and quantity variables are taken from PTX/6000. The utility in these
two types is that the resource variable can be updated at any frequency
(preferably a high frequency), but it is only necessary to observe their values at
a relatively low frequency (on the order of every 5 or 10 seconds or slower) to
uphold the ability to generate useful events.

State variables, whose values also fluctuate over time, must be observed every
time they change value to avoid missing generating events. While the time
between any two updates of a state variable may be short, on average a state
variable is expected to change at a relatively slow rate. The counter and
quantity variables have data types of:

• Long

• Float

Chapter 4. Resource Monitors 125

The resource variables of type state have data types of:

• Long

• Float

• Structured Byte String (SBS)

The long and float formats are identical to the C language types of the same
names. The Structured Byte String (SBS) is explained in the next section.

The definitions for variables of value type counter and quantity are taken directly
from the Performance Toolbox 1.2 and 2.1 for AIX (PTX/6000) product.

126 RS/6000 SP HA Infrastructure

4.7 Structured Byte String

� �

� �

A Structured Byte String (SBS) is a string of bytes consisting of a four byte (32
bit) header followed by one or more structured fields. The SBS header specifies
the total length of the structured fields that follow.

A structured field consists of a four byte header, followed by a value. The first
two bytes of the header make up the length of the structured field value. The
third byte is a structured field data type, and the fourth byte is an 8-bit serial
number. The structured field type is one of the following:

• Long

• Float

• Character string

• Byte string

Long and float types are the same as in the C language. A character string is
some number of non-zero bytes terminated by a null byte; the NULL byte is
included in the structured field value length. A byte string is some number of
bytes, where each byte may have any value from 0 through 255. The serial
number is a unique value that identifies the structured field. This serial number
is defined by the Resource Monitor that supplies the SBS resource variable for
each structured field. The set of serial numbers defined for the structured byte
string starts with 0 and is contiguous.

Chapter 4. Resource Monitors 127

4.8 Resource Monitors

� �

� �

Resource Monitors are those software components that provide the actual
resource variables to a higher level of manager software. The Resource
Monitors are the system components that understand the structure of resources.
They observe the state of specific system resources and transform that state into
several resource variables. Then the Resource Monitors pass these variables to
the manager software in a highly efficient manner.

The resource variables are passed to the manager software through a Resource
Monitor Application Programming Interface (RMAPI). This interface implements
the System Performance Measurement Interface to transfer resource variables of
type counter and quantity. Resource variables of type state are sent as a
message directly to the manager software. The Performance Toolbox/6000
provides the System Performance Measurement Interface, which is a shared
memory interface. This shared memory provides a mechanism for easily
obtaining operating system resource variables.

Using the shared memory enables the system resource variables of type counter
and quantity to be monitored by more manager softwares, like Performance
Toolbox/6000 or the Event Management. There is a separate chapter dealing
with the Event Management, Chapter 5, “Event Management” on page 135.
Resource variables of type state are directly passed to the manager software.

128 RS/6000 SP HA Infrastructure

4.9 Resource Monitor Types

� �

� �

Depending on the control that is applied in the Resource Monitor logic, there are
two types of Resource Monitors:

Server type

The server type of Resource Monitor expects the manager program to
connect to the Resource Monitor. In this case, after the Resource
Monitor program has started, the manager program sends control
commands to the Resource Monitor. These commands control the
flow of the resource variables. The Resource Monitor can be started
by the manager program, or as a subsystem.

Client Type

The client type of Resource Monitor has the Resource Monitor logic
implemented in a command. This type of Resource Monitor connects
to the manager program to establish communication.

Note: The client type Resource Monitor does not expect control
commands.

Chapter 4. Resource Monitors 129

4.10 SP Resource Monitors

� �

� �

Shipped with the PSSP 2.2 are four external resource monitors. The Resource
Monitors supply data to the Event Manager Daemon. The Event Manager
Daemon is explained in section Chapter 5, “Event Management” on page 135.

IBM.PSSP.harmld

This monitor supplies resource variables from CSS, VSD,
LoadLeveler, processor on-line information, and internal variables of
the harmld daemon. The data is of type counter or quantity, and is
transferred to the Event Manager Daemon through the SPMI shared
memory interface. Therefore, the data is also furnished to the
performance monitoring subsystem. This is a daemon server type.

IBM.PSSP.harmpd

This monitor supplies the resource variables that represent the
number of processes executing a particular program. These
variables can be used to determine if a particular system daemon is
running or not. All variables are of type state and are sent directly to
the Event Manager Daemon. All the variables are of SBS format.
This is a daemon server type.

130 RS/6000 SP HA Infrastructure

IBM.PSSP.hmrmd

This monitor supplies the resource variables that represent the
hardware state of the RS/6000 SP. The resource information is
obtained from the PSSP hardware monitoring subsystem (hardmon).
All the variables are of type state and are transferred to the Event
Manager Daemon directly as a message. This is a daemon server
type.

IBM.PSSP.pmanrmd

This monitor supplies the resource variables provided by the PSSP
Problem Management subsystem. The variables are of type state and
are transferred to the Event Manager Daemon directly as a message.
This is a command-based client type.

Chapter 4. Resource Monitors 131

4.11 Internal Resource Monitors

� �

� �

There are three internal types of Resource Monitors. These Resource Monitors
are internal to the Event Management structure, which is explained in section
Chapter 5, “Event Management” on page 135.

Membership

This monitor supplies the resource variables that represent host
membership and adapter membership states. This information is
obtained directly from the Group Services subsystem by subscribing
to the system groups “hostMembership,” “enMembership,” and
“cssMembership.” This Resource Monitor supplies data into two
resource variables:

• IBM.PSSP.Membership.Node.state

• IBM.PSSP.Membership.LANAdapter.state

The IBM.PSSP.Membership.Node.state resource variable represents
the state of each node. This information is taken from the
nodeMembership group from the Group Services subsystem. The
Group Services receive the information about this group from the
Topology Services subsystem. This resource variable has an
instance vector of node number (NodeNum).

The IBM.PSSP.Membership.LANAdapter.state resource variable
represents the state of communication adapters. This information is

132 RS/6000 SP HA Infrastructure

taken from the enMembership group, and information about the
cssMembership groups is taken from the Group Services subsystem.
The Group Services receive the information about this group from the
Topology Services subsystem. This resource variable has an
instance vector of node number, adapter type, and adapter number
(NodeNum,AdapterType,AdapterNum).

Response

This monitor supplies the resource variables that represent the
information in the SDR classes host_responds and switch_responds.
The resource variables are:

• IBM.PSSP.Response.Host.state

• IBM.PSSP.Response.Switch.state

These resource variables are provided for compatibility with prior
releases of the PSSP.

The IBM.PSSP.Response.Host.state resource variable that represents
the host response information is obtained from the Host Response
Daemon hrd. For the nodes running PSSP at level 2.2, hrd obtains
information about the state of the nodes from the Event Manager
Daemon. The hrd is using the client Event Management API and
receives events from the IBM.PSSP.Membership.LANAdapter.state,
with instance vector (NodeNum=*, AdapterType=en,
AdapterNum=0). For nodes running at a lower level of PSSP than 2.2
(level 2.1 or level 1.2), the hrd obtains information about the state of
nodes from the PSSP Heartbeat (hb) daemon. The information about
the state of the nodes is then put in the
IBM.PSSP.Response.Host.state resource variable. At the same time,
the hrd daemon updates the SDR host_responds class.

The IBM.PSSP.Response.Switch.state is taken directly from the SDR
switch_responds class.

aixos

This monitor supplies the resource variables that represent AIX
Operating System resources like CPU (idle, kern, user, wait), disks,
file systems, LAN, memory, paging space, and processes (runque,
swpque). The aixos Resource Monitor supplies resource variables
IBM.PSSP.aixos.* and uses the System Performance Measurement
Interface shared memory interface.

Chapter 4. Resource Monitors 133

134 RS/6000 SP HA Infrastructure

Chapter 5. Event Management

� �

� �

This chapter describes the Event Management associated with the RS/6000 SP
High Availability Infrastructure.

 Copyright IBM Corp. 1996 135

5.1 Event Management Objectives

� �

� �

The Event Management must meet the requirements of scalable architecture and
efficient notification structure. The Event Management is required to use a
highly available infrastructure in order to coordinate its daemons. The
monitoring subsystems use a standard API to transfer information. The
information is processed and the generated events are passed to the client
software that is interested in them.

136 RS/6000 SP HA Infrastructure

5.2 Event Management Design

� �

� �

The Event Management subsystem provides comprehensive event detection by
monitoring various hardware and software resources.

The Event Management subsystem consists of three types of components:

Event Manager Daemon

The Event Manager Daemon (EMD) is the central program that
receives resource variables from the Resource Monitor, processes
those resource variables and generates events that are transferred to
the clients. The Event Manager Daemon notifies the client programs
that have registered their interest in the events. Events are created
by the Event Manager Daemon based on the state of the resources as
reported from the Resource Monitor. The Event Manager Daemon
uses two interfaces to communicate with client programs and the
Resource Monitor.

Client programs

Client programs are applications or other subsystems that wish to
receive event information when resources change state. Client
programs use an Event Manager Application Programming Interface
(EMAPI) for communication with the Event Manager Daemon. The
clients define events by specifying predicates.

Chapter 5. Event Management 137

Resource Monitors

The Resource Monitors provide resource variables, which represent
the states of the resources to the Event Manager Daemon. The
Resource Monitors provide data to an Event Manager Daemon
located on the same node. Resource Monitors provide their data to
the Event Manager Daemon through the Resource Monitor Application
Programming Interface (RMAPI). This interface is also the way the
Event Manager Daemon controls the Resource Monitor.

There is an information flow from the lower level Resource Monitors to the Event
Manager Daemon. This flow consists of a series of resource variables reported
from the Resource Monitors. The Event Manager Daemon generates events and
notifies client programs about them.

There are also relations from the Event Manager Daemon to other subsystems,
see section 5.4, “Distributed Event Management” on page 141 for more details.

138 RS/6000 SP HA Infrastructure

5.3 Predicate and Event

� �

� �

5.3.1 Predicate
A predicate is a C language-like expression containing a resource variable, in
one or more modified forms. The evaluation result of a predicate is Boolean.
This evaluation occurs each time a resource variable is observed. The form of a
predicate is illustrated in the following example:

predicate:: expression rel_op constant
expression rel_op expression
predicate log_op predicate

In this example, the expression may be a variable name (var_name), or it may
be in the following form:

expression:: var_name
var_name arith_op constant
var_name arith_op expression

The resource variable name (var_name) is represented by an uppercase X. This
uppercase X may be followed by a modifier, as shown in the following example:

var_name:: X
X@var_name_modifier

Chapter 5. Event Management 139

The variable name modifier is one of the following:

X@P This refers to the previous value of the resource variable.

X@R This refers to the raw value.

X@PR This refers to the previous raw value.

X@sbs_sn The sbs_sn has to be substituted by the Structured Byte String field
serial number. The predicate expresses the field value in the
Structured Byte String identified by this serial number.

X@Psbs_sn The sbs_sn has to be substituted by the Structured Byte String field
serial number. The predicate expresses the field value in the
Structured Byte String identified by this serial number, which was
returned from the previous observation.

In the examples, rel_op represents one of the following relational operators:
= = , ! = , < , > , < = , > = .

In the examples, arith_op represents one of the following arithmetic operators: *,
/ , %, +, - .

In the examples, log_op represents one of the following logical operators: &&, ||.

Operators have the same meaning and precedence as in the C language, and
parentheses may be used for grouping, also as in C. Constants are integers or
floating points. The variable modifier R is useful for specifying the raw value
with a resource variable of type counter.

Following are examples of some predicates:

X>90 The Resource Variable is greater than 90.
(X@0!=X@1)&&(X@2<20) The first field (sbs_sn=0) of a structured

byte string is not equal to the second
field (sbs_sn=1) of the structured byte
string, and at the same time, the third
field (sbs_sn=2) of the structured byte
string is less then 20.

The clients specify the predicate.

5.3.2 Event
The predicate is the main input for event generation. An event is generated if
the Boolean evaluation of a predicate results in the value TRUE.

5.3.3 Resource Variable Observation
The resource variables are observed in two ways:

Counter, Quantity

These resource variables are observed at an interval that is
configurable.

State

Resource variables of type state are observed when the value is
received from a Resource Monitor.

140 RS/6000 SP HA Infrastructure

5.4 Distributed Event Management

� �

� �

The Event Management is designed to cooperate with other Event Manager
Daemons in the system. The Event Manager Daemon communicates with Event
Manager Daemons on other nodes in order to provide data to its local clients.
Therefore, a client may register for and receive events about any resource in the
SP system. These communication links are called peers. The peer
communication channels are internal to the Event Management subsystem. The
communication path between Event Manager Daemons is based on the Reliable
Messaging interface. The Reliable Messaging is part of the Topology Services
described in Chapter 2, “Topology Services” on page 5.

The Resource Monitors always connect to the local Event Manager Daemon,
because they use the shared memory interface and UNIX domain sockets to
transfer resource variables to the Event Manager Daemon. If the Resource
Monitors were remote, they would require a high communication load to the
network, and from the communication needs, the CPU performance could be
affected, too.

Note: The Resource Monitors are always local to the Event Manager Daemon.

The clients connect to the Event Manager Daemon. This connection can be local
or remote. The communication between a client and the Event Manager
Daemon is significantly low, because the Event Manager Daemon does not send
every observed resource variable, but sends only the registered events. The
local clients use UNIX domain sockets. The remote clients use TCP internet

Chapter 5. Event Management 141

sockets. The remote clients connect to the Event Manager Daemon only on the
Control Workstation.

The Event Management in the SP system understands a system as a system
partition. Every system partition is a separate operational domain for the Event
Management subsystem. There is only one Event Manager Daemon on each
node. On the Control Workstation, there is one Event Manager Daemon for each
partition.

142 RS/6000 SP HA Infrastructure

5.5 Event Management Clients

� �

� �

The Event Manager Daemon is the high availability structure component that
interfaces with most RS/6000 SP subsystems. The Performance Toolbox/6000
System Performance Measurement Interface is used for transferring data from
the Resource Monitors to the Event Manager Daemon. There is more than one
Resource Monitor supplying resource variables to the Event Management.
These resource variables are observed, and if an event is generated, it is sent to
the registered clients through the EMAPI interface. The EMAPI interface has
connected clients, like the Host Responds daemon. The Perspectives graphical
user interface receives information about the RS/6000 SP system from the Event
Manager Daemon through the EMAPI.

The Problem Management software of the PSSP Version 2 Release 2 uses both
of the interfaces, EMAPI and RMAPI. This software is described in Chapter 4,
“Resource Monitors” on page 119.

From the non-PSSP application, the HACMP PE takes advantage of receiving
events from the Event Manager Daemon. Any recovery software that reacts as
fast as possible on events that have occurred in the system will benefit from the
Event Management architecture.

Chapter 5. Event Management 143

5.6 Event Registration and Notification

� �

� �

This section explains how to determine which client to notify when an event
occurs.

Every client interested in an event has to inform the Event Management
subsystem about its interest in that particular event. The process that an
application or subsystem uses to declare its desire to be notified of these events
is called event registration.

The application or client subsystem provides the following information to the
Event Management subsystem:

• Name of the resource variable from which the event is generated

• Instance vector of the resource variable

Note: This instance vector may be wildcarded.

Each resource variable is optionally defined with a single predicate for event
generation. The application or subsystem may provide predicates to be applied
against the variable instead of the default predicate. These predicates are used
only for the calling application (client).

When an event is generated by applying the predicate to the resource variable,
this event is sent to the clients that registered for that variable with that
predicate. In this way, the Event Manager Daemon notifies the client about an

144 RS/6000 SP HA Infrastructure

event. Clients that registered for a resource variable without specifying
predicates receive events generated by applying the default predicate. Included
with the event information is the current value of the resource variable specified
in the predicate.

Chapter 5. Event Management 145

5.7 Query

� �

� �

In addition to registering and receiving notification about events, the client
subsystem or application may need to get information about the status of the
resource variables, events, predicates, and registrations. The Event
Management interface may query the following information:

• The current value of a resource variable

• A list of defined resource variables and their default predicates

The scope of each of these queries is defined by the specification of the
resource variable name and instance vector.

Note: These specifications may be wildcarded.

146 RS/6000 SP HA Infrastructure

5.8 Client and Peer Communication

� �

� �

The Client Communication Interface provides the logic necessary to send and
receive messages with Event Management clients. The actual communication
mechanism employs UNIX domain sockets of type SOCK_STREAM. This
mechanism ensures reliable communication between clients and the Event
Manager Daemon, including notification that one end of a connection has closed.

If a client is remote, then an internet domain socket of type SOCK_STREAM is
used. The TCP protocol cannot always inform a program in a timely manner that
the remote end of its session has crashed. Therefore, the reliability of remote
connections between clients and the Event Manager Daemon is less than that of
local connections.

During the initialization processing of the Event Manager Daemon, the Client
Communication Interface module establishes a server socket in the UNIX
domain, binding to a name known to clients. If the Event Manager daemon is on
the Control Workstation, this module also establishes a server socket in the
internet domain. The mainline logic of the daemon uses the select() system call
to wait for connection requests from clients on these sockets. When select()
indicates that data is available on any client socket session, this module is
invoked to read the data or to process termination of the client connection. Data
is passed to further Event Manager Daemon internal modules for parsing and
forwarding to the appropriate logic module.

Chapter 5. Event Management 147

The Event Manager Daemon uses the Client Communication Interface module to
send any data to the client.

The Peer Communication Interface provides the logic necessary to send and
receive messages with other Event Manager Daemons in the system.

148 RS/6000 SP HA Infrastructure

5.9 Resource Monitor Communication

� �

� �

The Resource Variable Observation provides the logic necessary to obtain
resource variables from their respective Resource Monitors. The Resource
Monitor sends resource variables to the Event Manager Daemon through the
Resource Monitor Application Programming Interface (RMAPI).

The RMAPI uses one of two mechanisms to actually transfer the data to the
daemon:

• If the resource variable is of type counter or quantity, the data is placed in
the shared memory using the Performance Toolbox/6000 System
Performance Measurement Interface (SPMI).

• If the data is of type state, then the data is sent as a message using the
communication path established between the Event Manager Daemon and
the Resource Monitor.

Resource variables that are located in shared memory are observed (read) by
the Event Manager Daemon in every time period, where the time period is
configurable. Resource variables are then queued to generate events, and they
are also placed into the resource variable cache. The N-1th value is replaced by
the Nth value, and then the new value is stored as the Nth value.

When a resource variable has been observed, a predicate is applied to this
variable and an event may be generated.

Chapter 5. Event Management 149

The Resource Monitor Control module ensures that the Resource Monitor for
each resource variable is running and sending resource variables to the Event
Manager Daemon, unless the Resource Monitor is implemented as a command.
A Resource Monitor that is a daemon can be started by the Event Manager
Daemon. When the resource variables that are supplied by a Resource Monitor
daemon are the target of a Register command, this module checks if the
Resource Monitor is already running. If it is, and the Resource Monitor is not
currently supplying the variables, this module sends an indication to the
Resource Monitor to start sending the variables. If the Resource Monitor is not
running, then it is started by this module.

If the Resource Monitor is incorporated into a subsystem, then the Event
Manager Daemon cannot start the Resource Monitor. If the Resource Monitor is
running, the Resource Monitor Control module sends an indication to the
Resource Monitor to start sending the variables. If the Resource Monitor is not
running, this module periodically checks to see if it is running.

If the Resource Monitor is implemented as a command, it automatically sends its
resource variables to the Event Manager Daemon. This is done so that the
information may be available for later queries.

The Resource Monitor Control module establishes a communication path
between the Event Manager Daemon and the Resource Monitor by using a UNIX
domain socket of type SOCK_STREAM. This communication path is used to
send control messages between the Event Manager Daemon and the Resource
Monitor. It is also used to receive resource variables of type state from the
Resource Monitor.

When there is no longer any interest in a resource variable by any client, the
Resource Monitor Control module sends a control indication to the Resource
Monitor to cease sending resource variables.

150 RS/6000 SP HA Infrastructure

5.10 Event Management SDR Classes

� �

� �

The Event Management subsystem requires information that defines the
resource variables and describes how to obtain them. This information is stored
in the SDR database in the following object classes:

EM_Resource_Monitor

This SDR class contains information about every Resource Monitor
program.

EM_Resource_Class

This class contains information about the common characteristics of
resource variables. This class groups together resource variables
with the same basic characteristics. It references the
EM_Resource_Monitor for the Resource Monitor definitions.

EM_Resource_Variable

This class contains information about all resource variables. It
references the EM_Resource_Class for common characteristics. It is
coupled with EM_Instance_Vector and EM_Structured_Byte_String
classes.

EM_Instance_Vector

This class describes the instance vector for particular resources.

Chapter 5. Event Management 151

EM_Structured_Byte_String

The Structured Byte String variable descriptions are stored in this
class and are referenced from the EM_Resource_Variable class.

152 RS/6000 SP HA Infrastructure

5.11 Resource Monitor Definition

� �

� �

The information about Resource Monitors that may connect to the Event
Manager Daemon is stored in the EM_Resource_Monitor SDR class. Each
Resource Monitor that may supply resource variables to the Event Manager
Daemon has a Resource Monitor definition in the configuration database.
Following are the SDR attributes included in a Resource Monitor definition:

rmName

This is the name of the Resource Monitor definition. This name must
be unique in the database, and it uniquely identifies the SDR object in
the EM_Resource_Monitor class. The rmName is referenced from the
EM_Resource_Class SDR class.

rmPath

This specifies the executable path name of the Resource Monitor, if it
is a daemon that is startable by the Event Manager Daemon. If the
Resource Monitor is not startable by the Event Manager Daemon, this
entry is a NULL string.

rmArguments

This is a string of optional arguments that are passed to the
executable when running the Resource Monitor daemon.

Chapter 5. Event Management 153

rmMessage_file

This specifies the name of the message catalog file for the Resource
Monitor.

rmMessage_set

This specifies the message set within the message catalog.

rmConnect_type

This indicates whether the Event Manager Daemon connects to the
Resource Monitor (“Server”) or the Resource Monitor connects to the
Event Manager Daemon (“Client”).

rmPTX_prefix

This defines the PTX/6000 prefix used to supply data to the PTX/6000
shared memory interface (SPMI).

rmPTX_description

This is a string that contains a comma-separated list of message IDs.
Each ID specifies a message that contains a short description
(maximum 63 bytes) of a PTX context.

rmPTX_asnno

This is an integer that is the ASN.1 number equal to the SNMP
Assigned Enterprise Number for the vendor that supplies the
Resource Monitor. For IBM-supplied Resource Monitors, this value is
2.

The SDR objects for the Resource Monitor definition can be created by SDR
commands (SDRCreateObjects, SDRListObjects, and so on). To create a sample
Resource Monitor, use this example of the SDRCreateObjects command:

SDRCreateObjects EM_Resource_Monitor
′ rmName=IBM.PSSP.SampleDaeMon′ \
′ rmPath=′ $rmpath \
′ rmMessage_file=rmapi_smp.cat′ \
′ rmMessage_set=1′ \
′ rmConnect_type=server′ \
′ rmPTX_prefix=IBM/PSSP.SampleDaeMon′ \
′ rmPTX_description=1,2′ \
′ rmPTX_asnno=2′

rc=$?; echo $rc

154 RS/6000 SP HA Infrastructure

5.12 Resource Class Definition

� �

� �

A class of a resource variable is used to denote the subsystem which manages
the associated resource. In other words, the resource class is used for grouping
resource variables with the same resource characteristics, like supplying
Resource Monitor, observation frequency, and reporting frequency. The actual
name is to be unique within the resource class definition.

The following items are included in a resource class definition:

rcClass

This class name represents a name that uniquely defines the resource
class. The rcClass element is referenced from the
EM_Resource_Variable SDR class.

rcResource_monitor

A string that contains the name of the Resource Monitor definition for
the Resource Monitor that supplies the resource variables in this
class.

rcObservation_interval

The observation interval specifies the amount of time, in seconds,
between each Event Manager Daemon observation of any counter or
quantity resource variables in this class. This value must be greater
than, or equal to, the Reporting Interval.

Chapter 5. Event Management 155

rcReporting_interval

The reporting interval is an integer number that is the amount of time,
in seconds, between each update of any variable of value type
counter or quantity in this class by the corresponding Resource
Monitor.

The value of the Reporting interval may be zero (0) if the design of the Resource
Monitor fixes the interval between variable updates. It may also be zero if the
Resource Monitor is incorporated into a subsystem and the subsystem updates
the variable as part of its normal execution.

The SDR objects for the Resource Class definition can be created by SDR
commands (SDRCreateObjects, SDRGetObjects, and so on). Following is an
example of the SDRCreateObjects command that creates a sample resource class:

SDRCreateObjects EM_Resource_Class
′ rcClass=IBM.PSSP.SampleDaeClass′ \
′ rcResource_monitor=IBM.PSSP.SampleDaeMon′ \
′ rcObservation_interval=10′ \
′ rcReporting_interval=10′

rc=$? ; echo $rc

Following is an example of one of the seventeen resource classes that are
shipped with the PSSP Version 2 Release 2 product:

IBM.PSSP.CSS is a class whose variables are supplied by the
IBM.PSSP.harmld Resource Monitor with a reporting interval
of 5 seconds, and the Event Manager Daemon observes the variables in the
same frequency, that is, every 5 seconds.
For the real resource variables names, see the
EM_Resource_Variable SDR class definition.

Note: For details of the resources classes shipped with PSSP 2.2, see
Appendix A, “Resource Class Definition” on page 289.

156 RS/6000 SP HA Infrastructure

5.13 Resource Variable Definition (SDR)

� �

� �

The purpose of the resource variable definition is to inform the Event
Management subsystem of the possible resource variables it is expected to
manage. Any resource variable specified in the EMAPI call must first be defined
in the configuration database. Items included in the Resource Variable Class
follow:

rvName

This is a resource variable name, as described in section 4.4,
“Resource Variable Name” on page 123.

rvDescription

This is a message ID of the textual description of the semantics of the
variable.

rvValue_type

This is a value type, as described in section 4.6, “Resource Variable
Types” on page 125. The type must be one of counter, quantity, or
state.

rvData_type

This specifies the data type as either long or float. A variable of
value type state may have a data type of Structured Byte String.

Chapter 5. Event Management 157

rvInitial_value

This is the resource variable initial value, which is the value of the
resource variable before it is observed for the first time.

rvClass

This is a resource variable class that points to an EM_Resource_Class
SDR object.

rvPTX_name

This name is used to read and write the variable in the Performance
Toolbox/6000 shared memory (SPMI). This name is only required for
variables of type counter and quantity.

rvPTX_description

This is a string that contains a comma-separated list (with no blanks)
of message IDs. Each ID specifies a message that contains a short
description of a PTX context.

rvLocator

This is a string that contains either an instance vector element name
or a null string. If the instance vector for this resource implies the
resource location, the value of this item is the name of the vector
element whose value is the number of the node that contains the
resource instance. Values of the vector element that is specified by
the rvLocator attribute must be type of integer. If the value of this
item is a null string, the Event Management subsystem must
determine the location of the resource.

rvDynamic_instance

This is a Boolean value, that if TRUE, indicates that instances of this
resource variable are created dynamically by the Resource Monitor
whenever the instance is referenced through the EMAPI.

rvIndex_vector

This is a string that contains either an instance vector element name
or a null string. You cannot specify the same element for both the
rvLocator and the Index_vector fields. Values of the vector element
that is specified in the rvIndex_vector attribute must be of type
integer. Specifying an index vector can improve the performance of
the Event Management subsystem.

The SDR objects for the Resource Variable definition are to be created by SDR
commands (SDRCreateObjects, SDRGetObjects, SDRDeleteObjects, and so on). The
following is an example of creating a resource variable definition into the SDR:

SDRCreateObjects EM_Resource_Variable
′ rvName=IBM.PSSP.SampleDaeMon.StaticVars.static_var1′ \
′ rvLocator=NodeNum′ \
′ rvDescription=3′ \
′ rvValue_type=Quantity′ \
′ rvInitial_value=0′ \
′ rvData_type=long′ \
′ rvPTX_name=StaticVars/static_var1′ \
′ rvPTX_description=7′ \
′ rvPTX_min=0′ \
′ rvPTX_max=500′ \
′ rvClass=IBM.PSSP.SampleDaeClass′ \

158 RS/6000 SP HA Infrastructure

′ rvDynamic_instance=0′
echo $?

Chapter 5. Event Management 159

5.14 Structured Byte String Definition

� �

� �

The Structured Byte String (SBS) is defined in the SDR
EM_Structured_Byte_String class. Each SDR object in this class defines a field
in the Structured Byte String. The Structured Byte String is explained in section
4.7, “Structured Byte String” on page 127. This class consists of five SDR
variables:

sbsVariable_name

This SDR variable specifies the resource variable name, as defined in
the EM_Resource_Variable SDR class.

sbsField_name

This represents the field name. It is a character string unique within
one Structured Byte String.

sbsField_type

The field type is one of:

• long

• float

• cstring

• bstring

160 RS/6000 SP HA Infrastructure

sbsField_SN

This identifies the serial number of the field within a Structured Byte
String.

sbsField_init_value

This defines the initial value of the field. This value is placed in the
resource variable before the first observation.

Chapter 5. Event Management 161

5.15 Instance Vector Definition

� �

� �

The Instance Vector structure, which can be applied to identify the copy of a
resource, is defined in the EM_Instance_Vector SDR class. This class consists of
the following three SDR variables, which identify the instance vector element
structure:

ivResource_name

This is the resource name.

ivElement_name

This is the instance vector element name, like NodeNum, Adapter,
CPU, LV, and so on.

ivElement_description

This is a message ID of a textual description of the instance vector.

162 RS/6000 SP HA Infrastructure

5.16 Event Management Configuration Database

� �

� �

The information from the SDR has to be compiled into a form readable to the
Event Manager Daemon. This is done by issuing the haemcfg command that
resides in the /usr/lpp/ssp/bin directory. This utility compiles the database into
a binary form placed in a file. This file is created in the /spdata/sys1/ha/cfg
directory. This directory is used as a staging directory. The haemcfg utility also
updates the SDR Syspar class with the new version of the configuration. During
the compilation, the previous versions of the configuration files in the staging
area and in the /etc/ha/cfg directory are backed up, and the name of the newly
created file is the previous file name with a time stamp attached to it.

The haemcfg utility can also be run with one of two parameters:

-c

This parameter checks the configuration data in the SDR without
building a database.

-n

This parameter creates a database in the current directory. (The SDR
version string is not updated.)

When the Event Manager Daemon starts up, it checks the SDR Syspar class for
the correct version of the configuration database (EMCDB) and copies the
compiled configuration file from the staging area to its active directory,

Chapter 5. Event Management 163

/etc/ha/cfg. When an Event Manager Daemon starts up on a node, it uses the
haemrcpcdb utility to transfer the file by using the RCP protocol.

164 RS/6000 SP HA Infrastructure

5.17 Event Management Application

� �

� �

When you intend to add your own application, you must perform these steps:

 1. Check for the existence of a Resource Monitor that supplies the requested
data. If there is no such Resource Monitor, you should write a program
using the Resource Monitor API.

 2. Check the configuration of the Event Management in the SDR. If the
resource variable is not present, add your definition into the SDR. Every
resource variable must have a corresponding Resource Class and Resource
Monitor, and if required, the Structured Byte String and Instance Vector
definition must be present, too. Whenever the SDR definition changes, the
EMCDB must be re-created using the haemcfg command, and every Event
Manager Daemon must be restarted in order to synchronize the
configuration across the entire system.

 3. Finally, you can use the Event Management API to register and receive
events from the Event Manager Daemon. You may write your own
application, or choose the Perspectives, Problem Management, or other
existing client software.

Chapter 5. Event Management 165

5.18 Event Manager Configuration Steps

� �

� �

The configuration of the Event Management on an RS/6000 SP system consists of
following steps:

 1. Create SDR objects which uniquely identify the Resource Monitor, Resource
Class, Instance Vector, and Resource Variable. The SDR structure is
explained in section 5.10, “Event Management SDR Classes” on page 151.

 2. Check the SDR for the newly created objects by using the SDRGetObjects
command.

 3. Run the haemcfg command to compile the SDR data to the Event
Management Configuration Database (EMCDB).

 4. Check if the new version of the EMCDB file has been created.

 5. If the Event Management subsystem is not present, create it by issuing the
haemctrl -a command. This command calls the mkssys command to define
the Event Management subsystem to the AIX System Resource Controller.

 6. Start the Event Manager Daemon by issuing the haemctrl -s, or startsrc
command.

 7. Check the Event Manager Daemon for correct functionality by issuing the
commands lssrc, ps -ef, and so on.

166 RS/6000 SP HA Infrastructure

If there is no need to add additional objects to the Event Management
configuration, the following commands are recommended to use for initial
configuration of the Event Management structure:

.

haemctrl -a

This command adds the Event Management subsystem to the
system. The Event Management subsystems are added
automatically when the nodes install. This command is
performed by the syspar_ctrl script on the Control Workstation
during the install process.

syspar_ctrl

The system partition configuration invokes the Event
Management configuration steps.

Chapter 5. Event Management 167

5.19 Event Manager Startup

� �

� �

Normally, the Event Manager Daemon is started by an entry in the /etc/inittab
after reboot:

/etc/inittab:
 haem:2:once:/usr/bin/startsrc -g haem
 > /dev/console 2>&1

If neccesary, the Event Manager Daemon can be started using the haemctrl
command or the startsrc command directly. An example of this use follows:

startsrc:
 /usr/bin/startsrc -g haem

Event Management Control Command (haemctrl):
 /usr/lpp/ssp/bin/haemctrl -s

The daemon executes the following steps during its initialization:

 1. Gets the number of the node on which it is executing using the
/usr/lpp/ssp/install/bin/node_number command. Node 0 is the Control
Workstation.

 2. Fetches the name of the system partition and the EMCDB version string from
the Syspar SDR class.

 3. Fetches the Event Manager Daemon remote client communications port
number from the SP_ports SDR class.

168 RS/6000 SP HA Infrastructure

 4. Turns the program into a daemon. This includes establishing
communications with the AIX System Resource Controller (SRC) subsystem
in order to return status at the request of SRC commands.

 5. Removes from the registration cache all subdirectories for local clients that
no longer exist; this means that if the process ID specified in the
subdirectory name (/var/ha/run/*) cannot be found, it removes the
subdirectory. Subdirectories for remote clients cannot be removed
automatically, since the daemon cannot determine if the remote processes
still exist.

 6. Connects to Group Services (hags). If the connection cannot be made
because the Group Services subsystem is not running, then the connection
attempt is scheduled to be made again in five seconds. This is repeated
until the connection to Group Services is established. Meanwhile, the Event
Manager Daemon initialization continues.

 7. Enters the main control loop. This loop waits for requests from clients,
messages from Resource Monitors and other Event Manager Daemons,
messages from Group Services, and requests from the SRC for status. It
also waits for internal signals that indicate that a function previously
scheduled should now be executed; for example, make another connection
attempt to the Group Services Subsystem. However, client requests and
messages from Resource Monitors and other Event Manager Daemons
(peers) are refused until the Event Manager Daemons successfully join the
daemon peer group “ha_em_peers” and fetch the correct version of the
EMCDB.

Chapter 5. Event Management 169

5.20 Join Group Services

� �

� �

Group Services provides another set of High Availability services. The Event
Management subsystem primarily uses Group Services to monitor the state of
each Event Manager Daemon in its operational domain. This is done by having
each daemon in the domain join a group named ha_em_peers. Group Services
then informs each Event Manager Daemon, in a synchronized fashion, when a
daemon has joined or left the group.

Associated with the group is the group state. This state contains the version
string of the EMCDB version string. From this information, the joining Event
Manager Daemon can discover the version of the EMCDB that the remainder of
the group is using.

After the Event Manager Daemon successfully establishes a connection with
Group Services, it attempts to join the daemon peer group, ha_em_peers. The
join procedure requests a 2-phase voting protocol.

The voting request that is received from Group Services contains the value of
the group state variable. This value represents to the Event Manager Daemon
the configuration database version that is being used in the operational domain
(system partition). If this value is a null string, then the Event Manager Daemon
is the first Event Manager Daemon in its operational domain.

170 RS/6000 SP HA Infrastructure

In the Group Services voting subroutine, the Event Manager Daemon votes
APPROVE. If the group state received from the Group Services is zero, then the
Event Manager Daemon votes APPROVE and proposes a new group state within
the voting subroutine. This group state is always accepted because this Event
Manager Daemon is the only one in the operational domain.

The second phase of the voting is used to acknowledge the membership of the
Event Manager Daemon in the ha_em_peers group. In the voting protocol, the
Event Manager Daemons vote APPROVE. A daemon join is rejected only if an
existing peer group member is still recovering from a prior termination of the
joining daemon.

If the join procedure is rejected, then the daemon schedules another attempt to
join the group in 15 seconds. The daemon repeatedly attempts to join the group
until it is accepted.

When the Event Manager Daemon has joined the group, it knows the version of
the configuration that is used in the system (operational domain), and is ready to
read the configuration database.

Chapter 5. Event Management 171

5.21 Read the EMCDB

� �

� �

After the Event Manager Daemon successfully joins the ha_em_peers group in
Group Services, the Event Manager Daemon knows the group state variable of
this group and the current membership of this group. The current membership
is a list of all Event Manager Daemons in the operational domain (system
partition). The group state represents the version of the configuration database
that is used by already-running Event Manager Daemons in the operational
domain (system partition).

The Event Manager Daemon compares the group state string received from the
Group Services ha_em_peers group with the configuration database version
string that was read from the Syspar SDR class at the Event Manager Daemon
startup. If the version string in the group state variable is different from the
string read from the SDR Syspar class, then the Event Manager Daemon will use
the version string obtained from the group state variable of the Group Services.
This occurs when the haemcfg utility is used and the utility recreates the EMCDB
on the Control Workstation. In this case, the Event Manager Daemons in the
operational domain still use the previous version of the configuration database,
and they have not been restarted. Every Event Manager Daemon in an
operational domain has to use the same configuration database, and this is the
reason the version string from the group state has priority against the version
string stored in the SDR.

172 RS/6000 SP HA Infrastructure

At this time, the Event Manager Daemon knows about the version of the
configuration database that is used by other Event Manager Daemons in the
operational domain, and attempts to load the same version of the database. The
Event Manager Daemon reads the configuration database (EMCDB)
(/etc/ha/em.syspar_name.cdb) and compares the version of this configuration
database with the version of the configuration database used in the operational
domain (which has been taken from the group state).

If the version of the configuration database corresponds to the version that is
used by the running Event Manager Daemons in the operational domain, then
the configuration database is loaded and the Event Manager Daemon is ready to
accept clients.

If the configuration database is of a different version, then the Event Manager
Daemon copies the configuration database from the staging area on the Control
Workstation. To copy the configuration database, the Event Manager Daemon
calls the haemrcpcdb script that is stored in the /usr/lpp/ssp/install/bin directory.
This script obtains a Kerberos rcmdtgt ticket and uses the Kerberos
authenticated rcp to receive the configuration database file.

After the Event Manager Daemon copies the new EMCDB file from the Control
Workstation, the Event Manager Daemon compares the version of the copied
configuration database with the version string that is used in the system. If the
newly received configuration database is of the version that is used by the Event
Manager Daemons in the system, then the Event Manager Daemon reads the
configuration from this file and continues to enable communications. If the
configuration database received from the Control Workstation is of a different
version than the configuration database version in the running system, then the
Event Manager Daemon will not be configured and clients will not be enabled to
communicate with this Event Manager Daemon.

Chapter 5. Event Management 173

5.22 Event Manager Runtime Directories

� �

� �

The following is the runtime directory structure used by the Event Manager
Daemon:

/var/ha/lck

This directory is where Event Manager Daemon lock files are stored.
In this directory, the file em.RMrmname.syspar_name ensures a single
running instance of a Resource Monitor. The rmname is the name of
the Resource Monitor and syspar_name is the name of the system
partition. On the Control Workstation, there may be several instances
of the same Resource Monitor running, but they are in different
operational domains (system partitions).

When the Resource Monitors attach through the RMAPI to the System
Performance Measurement Interface, they use the file
em.RMrmnameSHm to create a shared memory key.

The file em.haemd.syspar_name is used to ensure that there is a
single running instance of an Event Manager daemon in an
operational domain.

/var/ha/log

This is a log directory. The file em.trace.syspar_name contains the
Event Manager Daemon trace output. The syspar_name is the system

174 RS/6000 SP HA Infrastructure

partition name. The file em.msgtrace.syspar_name contains the Event
Manager daemon message trace output.

The file em.default.syspar_name contains any Event Manager Daemon
error messages that cannot be written to the standard AIX error log.
(Normally all Event Manager Daemon errors are written to the AIX
error log.)

/var/ha/run

In this directory, a haem.syspar_name directory is created, where
syspar_name is the system partititon name. This directory is the
current working directory for the Event Manager daemon. Any core
file created when the Event Manager Daemon abnormally terminates
is placed in this directory. Whenever the Event Manager Daemon
starts, it renames the core file to core.last.

This directory also contains the working directories of any Resource
Monitors started by the Event Manager Daemon. Such directories
have the names of their Resource Monitors.

Finally, this directory contains two other directories, named
Rcache_local and Rcache_remote. These directories contain the
registration cache for local and remote client registration requests.

For each client that establishes communications with the Event
Manager Daemon, a cache subdirectory is created in the appropriate
registration cache directory. This subdirectory has a name of the
form p,s,n,q,i, where p is the process ID of the client, s is the seconds
part of the time when the client established its session with the Event
Manager Daemon, n is the nanoseconds part, q is a session
sequence number, and i is the IP address of the host where the client
is executing. For local clients, the IP address is 0.0.0.0.

Within each subdirectory are several files with numeric names. Each
file contains a registration request. The file name is the event
command group ID of the events within the request.

/var/ha/soc

This directory contains the following socket files:

em.clsrv.syspar_name Used by EMAPI to connect to the Event
Manager daemon.

em.rmsrv.syspar_name Used by client type Resource Monitors
to connect to the Event Manager
daemon.

em.RMrmname.syspar_name Used by the Event Manager daemon to
to connect to the server type resource
monitor specified by rmname.

In all three socket names, syspar_name is the system partition name.

Chapter 5. Event Management 175

5.23 Event Manager API Files

� �

� �

This foil shows include files and library files for the two Event Manager and
Resource Monitor Application Programming Interfaces. The include file for the
EMAPI is the ha_emapi.h file that, from its body, links the ha_emcommon.h and
ha_emapi_base.h files. The include file for the RMAPI interface is ha_rmapi.h.

The EMAPI is a shared library used by a client program to obtain the services of
the Event Management subsystem. This library is delivered in two versions:

• For thread-safe programs (libha_em_r.a)

• For non-thread-safe programs (libha_em.a)

All Event Management include files and library files are links to the files of the
same names in directory /usr/lpp/ssp/lib and /usr/lpp/ssp/include.

Note: The /usr/l ib/l ibSpmi.a is a required file that is part of the PTX/6000
perfagent package. The perfagent must be installed prior to the Event
Management.

176 RS/6000 SP HA Infrastructure

5.24 Event Manager Control Utilities

� �

� �

5.24.1 Event Manager Control Program
The haemctrl (/usr/lpp/ssp/bin/haemctrl) is the Event Manager Daemon control
program. This is a Korn shell executable file that manages the Event Manager
Daemon as a subsystem. This script is normally invoked by the syspar_ctrl
script, which is the interface to system partition-sensitive subsystems. If
necessary, haemctrl can be invoked directly. When invoked directly from the
command line, the SP_NAME environment variable must be set to the
appropriate system partition name.

The following lists all of the haemctrl functions:

haemctrl { -a | -s | -k | -d | -c | -t | -o | -r | -h }
 -a Add Event Management subsystem to this partition
 -s Start Event Management subsystem in this partition
 -k Stop Event Management subsystem in this partition
 -d Delete Event Management subsystem from this partition
 -c Remove Event Management subsystem from all partitions
 -t Start Event Management subsystem trace in this partition
 -o Stop Event Management subsystem trace in this partition
 -r Refresh Event Management subsystem in this partition
 -h Display Usage information

Chapter 5. Event Management 177

5.24.1.1 Add Function
The add function of the haemctrl script first sets the haem port in /etc/services
where the default range of ports is 10000 - 10100 and writes the port number to
the SDR (Syspar_ports), then checks for the existence of the Event Management
subsystem in the AIX System Resource Controller (SRC). If the subsystem does
not exist, the add function creates it with default parameters and parameters
taken from the SDR (port number, partition), using the mkssys command, as
follows:

SRCsubsys:
subsysname = ″haem.syspar_name″
synonym = ″″
cmdargs = ″9.12.1.138″ (CWS IP address/partition)
path = ″ /usr/lpp/ssp/bin/haemd″
uid = 0
auditid = 0
standin = ″ /dev/console″
standout = ″ /dev/null″
standerr = ″ /var/ha/log/em.default.syspar_name″
action = 1
multi = 0
contact = 3
svrkey = 0
svrmtype = 0
priority = 20
signorm = 0
sigforce = 0
display = 1
waittime = 30
grpname = ″haem″

Then an entry to /etc/inittab is created by the mkitab command, as follows:

mkitab ″haem.syspar_name:2:once:
/usr/bin/startsrc -g haem.syspar_name > /dev/console 2>&1″

In the following step, if the haemctrl -a command is run on the Control
Workstation, the SDR database is loaded by haemloadcfg command. Note that the
haemloadcfg command does not replace the already existing SDR objects, but
only creates the objects if they are not present in the SDR. The haemctrl
command does more checking on the validity of the objects created into SDR,
SRC subsystems, inittab, /etc/services, and so on.

5.24.1.2 Start Function
The start function of the haemctrl only starts the haem.syspar_name subsystem
as defined in the AIX System Resource Controller in the ODM database:

startsrc -s haem.syspar_name (on the Control Workstation)
startsrc -s haem (on the RS/6000 SP nodes)

5.24.1.3 Stop Function
The stop function of the haemctrl command only stops the haem.syspar_name
subsystem as defined in the AIX System Resource Controller in the ODM
database:

stopsrc -s haem.syspar_name (on the Control Workstation)
stopsrc -s haem (on the RS/6000 SP nodes)

178 RS/6000 SP HA Infrastructure

5.24.1.4 Delete Function
The delete function of the haemctrl removes the subsystem from the AIX System
Resource Controller (ODM), removes the /etc/services port number entry, and
removes the /etc/initab entry for the Event Manager Daemon startup in the
current partition. The delete function requires that the subsystem requested
must already be stopped.

5.24.1.5 Clean function
The purpose of the clean function of the haemctrl command is similar to the
delete one, but the deletion is done for all partitions in a system. This function
does not remove objects from SDR.

5.24.1.6 Trace Functions
Running the haemctrl command with traceon (-t) makes the Event Manager
Daemon record its steps into the log files em.msgtrace.syspar_name and
em.trace.syspar_name, which are located in the /var/ha/log directory.

The traceoff function of the haemctrl command calls the haemtrcoff -s
haem.syspar_name -a $Tracelist (Tracel ist=al l) . Stopping of the trace mode is
done by applying the traceoff function of the haemctrl command (parameter -o).
The traceoff function of the haemctrl command calls the haemtrcoff -s
haem.syspar_name -a $Tracelist (Tracel ist=al l) .

The haemctrl command is the only command a system adminstrator is expected
to use under normal conditions. The other commands mentioned are called
from the haemctrl command, depending on the specified parameter.

5.24.2 SRC Commands

5.24.2.1 Subsystem Start Command
The startsrc command is called from the haemctrl -s command. This command
is needed to start the Event Management subsystem for the partition specified in
the subsystem name, or to start all Event Management subsystems in the
System Resource Controller (SRC) group. If the system administrator needs to
run this command, you have to check the partition name (syspar_name) and
supply it into the subsystem name you intend to start.

startsrc -s haem.syspar_name

This starts the Event Management subsystem in the syspar_name
partition. If the startsrc command is run on the Control Workstation,
then the subsystem name consists of the haem name followed by a
period and the system partition name. On the RS/6000 SP nodes the
subsystem name is haem. Run the startsrc command on each node
and the Control Workstation.

startsrc -g haem

This starts the Event Manager Daemon for every partition.

Chapter 5. Event Management 179

5.24.2.2 Subsystem Stop Command
Issuing the stopsrc command has similar results to issuing the haemctrl -k
command, because the haemctrl -k command calls the stopsrc -s
haem.syspar_name command. To stop the Event Management subsystem in all
partitions, issue the stopsrc command with the -g parameter (group) and the
SRC group name.

stopsrc -s haem.syspar_name

This stops the Event Management subsystem in the syspar_name
partition. If the stopsrc command is run on the Control Workstation,
then the subsystem name consists of the haem name followed by a
period and the system partition name. On the RS/6000 SP nodes, the
subsystem name is haem. Run the stopsrc command on each node
and the Control Workstation.

stopsrc -g haem

This stops the Event Manager daemon for every partition.

5.24.2.3 List Subsystems Command
The lssrc command is used for diagnosing Event Manager status. The -l
parameter specifies the long format output. This output gives detailed
information on subsystem status, traceflags, EMCDB version, connection to
group services, logical connections, Resource Monitor information, peer daemon
status, and internal daemon counters. The -l parameter cannot be specified with
the -g parameter.

lssrc -s haem.syspar_name

This lists the status of the Event Manager Daemon in the
syspar_name partition. If the lssrc command is run on the Control
Workstation, then the subsystem name consists of the haem name
followed by a period and the system partition name. On the RS/6000
SP nodes, the subsystem name is haem.

lssrc -l -s haem.syspar_name

This lists the status of and detailed information about the Event
Manager Daemon in the syspar_name partition.

lssrc -g haem

This lists the status of all Event Manager Daemons (SRC group
haem).

Following is an example of the detailed output of the lssrc command:

root@sp21cw0 # lssrc -l -s haem.sp21cw0
Subsystem Group PID Status
 haem.sp21cw0 haem 53572 active

Trace flags set: None

 Configuration Data Base version: 838994663,151745024,0(SDR)

 Daemon started on 08/05/96 at 17:19:16.757872384
running 3 days, 20 hours, 45 minutes and 49 seconds

 Daemon connected to group services: TRUE
 Daemon has joined peer group: TRUE
 Daemon communications enabled : TRUE
 Peer count: 5

180 RS/6000 SP HA Infrastructure

 Logical Connection Information
Type LCID FD Node/PID Start Time

 local 0 13 37846 Mon Aug 5 17:20:08 1996
 local 1 16 41058 Mon Aug 5 17:23:27 1996

 Resource Monitor Information
Resource Monitor Name Type FD PID

 IBM.PSSP.harmld server 17 -1
 IBM.PSSP.harmpd server 20 19908
 IBM.PSSP.hmrmd server 18 57556
 IBM.PSSP.pmanrmd client 15 -1
 Membership internal -1 -1
 Response internal -1 -1
 aixos internal -1 -1

 Highest file descriptor in use is 20

 Peer Daemon Status
0 S S 1 - A 2 I A 3 - A 4 - A 5 I A
6 I A 7 - A 8 - A 9 I A 10 - A 11 - A
12 - A 13 I A

 Internal Daemon Counters
CCI connection rejects = 0
RMC connection rejects = 0
HR connection rejects = 0
Retry request message = 0
Retry response message = 0

Chapter 5. Event Management 181

5.25 Event Manager API (EMAPI)

� �

� �

The Event Manager Application Interface (EMAPI) is the mechanism by which an
application registers for and receives events. The EMAPI is also used to query
the Event Management subsystem for information. The API is a
command/response model: the client sends commands and then waits for
asynchronous responses. One command may result in more than one response,
as with events.

A client application must first establish a session with the Event Manager
Daemon. The session validates that the client is permitted to use Event
Management services, and then provides a communication path to the Event
Manager Daemon. If this communication path is lost, it can be regained without
starting another session. When the client no longer needs these services, the
client terminates the session.

The ha_em_start_session() function establishes the session with the Event
Manager Daemon, as follows:

int ha_em_start_session(char *part_name,
struct ha_em_err_blk *em_errb)

The part_name argument represents the partition in the RS/6000 SP
environment. If this argument is NULL, the session is established with the Event
Manager daemon in the current partition. If the client is executing on a node,
then this daemon is the local Event Manager Daemon. If the client is executing

182 RS/6000 SP HA Infrastructure

on the Control Workstation or on a workstation outside of the RS/6000 SP
system, then the partition is determined from the SP_NAME variable.

The function returns a file descriptor that is used to reference the session. If the
return code is -1, then the em_errb structure contains the failure reason and
description.

The restart session subroutine reconnects an existing session to the Event
Manager daemon to which the session was previously connected, as follows:

int ha_em_restart_session(int session_fd,
struct ha_em_err_blk *em_errb)

The session_fd contains the file descriptor returned from the
ha_em_start_session() or ha_em_restart_session(). The subroutine returns the
new file descriptor. The em_errb has the same meaning as before.

The end session subroutine terminates a session with the Event Manager
daemon. This is the last call to the Event Manager Daemon, as follows:

int ha_em_end_session(int session_fd,
struct ha_em_err_blk *em_errb)

The representation of the subroutine inputs are the same as in the
ha_em_restart_session().

All commands are sent to the Event Manager Daemon by using the send
command subroutine, as follows:

int ha_em_send_command(int session_fd,
struct ha_em_cmd_blk *p,
struct ha_em_err_blk *em_errb)

The p argument is a pointer to a command block that specifies the command to
be sent and any additional parameters needed for the daemon to execute the
command. The session_fd and em_errb arguments have the same meaning as
in previous subroutines.

The commands are of the type described in section 5.6, “Event Registration and
Notification” on page 144 and in section 5.7, “Query” on page 146.

All events registered in a single call to the ha_em_send_command() subroutine
can be identified by an event command group ID. This ID can be used to relate
individual event responses back to the command with which they were
registered. The event command group ID can be obtained by calling the get
event command group ID subroutine, as follows:

ha_em_ecgid_t ha_em_get_ecgid(ha_em_eid_t event_id)

The client uses the file descriptor returned by the ha_em_start_session()
subroutine to determine when a response from the Event Manager Daemon has
been received. Once a response has been received, the receive response
subroutine is called, as follows:

int ha_em_receive_response(int session_fd,
struct ha_em_rsp_blk **em_rsp_blk,
struct ha_em_err_blk *em_errb);

If the return value is greater than 0, then a pointer to a buffer containing a
response block is returned. If the return code is 0, then the response was
already processed by the EMAPI. The em_rsp_blk argument points to an area
where the buffer pointer is to be returned.

Chapter 5. Event Management 183

5.26 Resource Monitor API

� �

� �

The Resource Monitor Application Programming Interface (RMAPI) is used by
Event Management Resource Monitors to send resource variables to the Event
Manager Daemon. If the Resource Monitor is not implemented as a command,
the RMAPI is also used for control functions between the Event Manager
Daemon and the Resource Monitor. The RMAPI is designed in anticipation that
a Resource Monitor provides data to these two masters:

• Event Manager Daemon

• Performance Monitoring subsystem

The RMAPI can be used in one of two ways, depending on whether the Resource
Monitor is a command or not. A Resource Monitor implemented as a command
connects to the Event Manager Daemon. Otherwise, the Event Manager Daemon
(and the Performance Monitoring Subsystem) connects to the Resource Monitor.

The RMAPI has the following four categories of operation:

• Initialization

• Session Management

• Variable Update

• Termination

184 RS/6000 SP HA Infrastructure

The RMAPI has two initialization subroutines. The initialize API subroutine is
called by the Resource Monitor to inform the API of its identity and to verify that
this is the only copy of the Resource Monitor that is executing:

int ha_rr_init(char *name, struct ha_em_err_blk *rr_errb)

The make server subroutine creates a server session such that Resource
Monitor managers can connect to the monitor. Resource Monitor managers are
the Event Manager Daemon and the Performance Monitor subsystem. If the
Resource Monitor is not command-based, then this subroutine should be called
after the call to ha_rr_init():

int ha_rr_makserv(int rr_notify_proto, struct ha_em_err_blk *rr_errb)

If the ha_rr_makserv() subroutine is not called, that is, the Resource Monitor is
command-based, the start session subroutine is to be called immediately upon
successful completion of the call to initialize the API subroutine, ha_rr_init():

int ha_rr_start_session(int rr_notify_proto,
struct ha_em_err_blk *rr_errb)

When a file descriptor is returned by the ha_rr_start_session() subroutine, the
socket is ready for reading. The Resource Monitor has to fetch the control
message from the socket by using the get control message subroutine:

int ha_rr_get_ctrlmsg(int session_fd,
struct ha_rr_ctrl_msg **rr_ctrl_msg,
struct ha_em_err_blk *rr_errb)

When a Resource Monitor manager has disconnected or a command-based
Resource Monitor wants to terminate, the Resource Monitor calls the end
session subroutine. This subroutine has the following syntax:

int ha_rr_end_session(int session_fd,
struct ha_em_err_blk *rr_errb)

Each instance of a resource variable known to the Resource Monitor must be
registered. The following two subroutines are used to register and unregister a
resource variable:

int ha_rr_reg_var(struct ha_rr_variable *pv,
int numv,
struct ha_em_err_blk *rr_errb)

int ha_rr_unreg_var(struct ha_rr_variable *pv,
int numv,
struct ha_em_err_blk *rr_errb)

Two commands are used to add or delete resource variables in the RMAPI
interface. The command-based Resource Monitor adds a resource variable to
the RMAPI interface immediately after registering its variable. The daemon- or
subsystem-based Resource Monitor adds its resource variables to the RMAPI
interface after it receives the appropriate control command from the Event
Manager Daemon. The syntax of these subroutines is as follows:

int ha_rr_add_var(int session_fd,
struct ha_rr_variable *pv,
int numv, int add_complete,
struct ha_em_err_blk *rr_errb)

Chapter 5. Event Management 185

int ha_rr_del_var(int session_fd,
struct ha_rr_variable *pv,
int numv,
struct ha_em_err_blk *rr_errb)

If a resource is designed to have a configurable reporting frequency for a class
of resource variables, then the get reporting frequency subroutine is used by the
Resource Monitor to obtain the frequency value. The subroutine has the
following syntax:

int ha_rr_get_freq(char *cname, struct ha_em_err_blk *rr_errb)

Whenever it is time to send variable values to the RMAPI interface, the Resource
Monitor calls the send value subroutine. This subroutine has the following
syntax:

int ha_rr_send_val(struct ha_rr_val *pv,
int numv, int refresh,
struct ha_em_err_blk *rr_errb);

If the Resource Monitor has no values to send within a defined time period, and
the variables are of type counter or quantity, then the touch subroutine must be
called. This subroutine has the following syntax:

int ha_rr_touch(struct ha_em_err_blk *rr_errb)

Termination of a Resource Monitor with its managers is done by the terminate
subroutine. The terminate subroutine has the following syntax:

int ha_rr_terminate(struct ha_em_err_blk *rr_errb)

186 RS/6000 SP HA Infrastructure

5.27 Perspectives

� �

� �

Perspectives is the most frequently used PSSP application that uses the Event
Management EMAPI interface. Perspectives can be started with a launch pad by
the command perspectives, or the Event Management window of the
Perspectives can be started by the command spevent.

The program behind the graphical interface registers for events and receives
notification about occurrence of registered events. The Perspectives
environment also enables the user to monitor resource variables and query
them (Perspectives Event Monitor).

For more information about Perspectives, refer to RS/6000 SP PSSP 2.2 Technical
Presentation, SG24-4868.

Chapter 5. Event Management 187

188 RS/6000 SP HA Infrastructure

Chapter 6. Problem Management

� �

� �

This section describes the Problem Management subsystem included in the
PSSP 2.2 package.

 Copyright IBM Corp. 1996 189

6.1 Problem Management Objectives

� �

� �

Problem Management provides an infrastructure for recognizing and acting on
problem events within the RS/6000 SP system. This infrastructure is based on
an Event Management application that provides an Event Management client
interface (EMAPI) and Resource Monitor interface (RMAPI) without the necessity
of writing C programs that use the Event Management APIs.

The ability to issue an SNMP trap in response to an event allows you to report
problem events occurring in your RS/6000 SP system to a TCP/IP-based Internet
network manager existing on a remote node. The network manager application
is not supplied with the PSSP Version 2 Release 2.

An ibmSP MIB provides a network manager with access to RS/6000 SP
configuration information as well as access to Event Management variables.

190 RS/6000 SP HA Infrastructure

6.2 Problem Management Design

� �

� �

This section describes the Problem Management design and activities performed
by the Problem Management subsystem.

The Problem Management subsystem provides the following functions:

• Providing resource variables to the Event Management subsystem through
the resource monitor API (RMAPI)

• Providing an AIX error log resource variable for AIX error log writes

• Providing client access to the Event Management subsystem on all nodes
and receiving events from the predefined resources

• Running a user-specified command or script for generated events

• Writing to the AIX error log and BSD syslog for received events from the
Event Management

• Generating SNMP traps to SNMP managers from:

− Event Management events

− AIX error log writes for entries marked “Alert=true”

• Providing SNMP access to the last SNMP trap issued from the AIX error log
on each node

• Providing SNMP read access to the RS/6000 SP configuration information

Chapter 6. Problem Management 191

• Providing SNMP access to the last generated event from the Event
Management subsystem for defined subscriptions on the local node

• Providing SNMP access to information about Event Management variables,
and the current values of Event Management variables defined on local the
node

The Problem Management subsystem registers to the Event Management
subsystem for events and is notified by the Event Manager Daemon when an
event occurs. The system administrator can specify an action to be taken when
an event is reported by the Event Management. Examples of events monitored
by default configuration are /tmp 95% full, /var 95% full, and daemons dying.

The Problem Management subsystem is designed to provide a problem reporting
methodology to the enterprise. The enterprise, specifically Netview for AIX or
another SNMP manager, understands the SNMP protocol. Notifying the
enterprise of problems can be achieved by issuing SNMP traps to the SNMP
managers. The SNMP trap management is provided by an SNMP manager, like
Netview for AIX. This design relies on the AIX snmpd daemon for SNMP agent
support. All SNMP agent functions in the RS/6000 SP Problem Management are
implemented as a SMUX peer subagent, sp_configd, of the snmpd daemon.

192 RS/6000 SP HA Infrastructure

6.3 Problem Management Daemons

� �

� �

The Problem Management consists of the following three daemon processes:

pmand

This daemon is the direct interface to the Event Manager Daemon.
The pmand registers for events, receives them, and initiates
appropriate actions. Pmand writes the event response supplied by
the event manager subsystem to a FIFO file. The FIFO is akin to a
pipe.

pmanrmd

This daemon is a Resource Monitor subsystem that supplies data to
the RMAPI Event Management interface. This daemon also
cooperates with the pmand daemon.

sp_configd

This is the third Problem Management daemon. This daemon is
generating SNMP traps to the SNMP manager application, like
Netview for AIX. This daemon reads the data from the FIFO file
(named pipe) and creates an SNMP trap from the data. It also sends
SNMP traps when an alterable entry is posted to the AIX error log. It
replies to the SNMP GET or GET-NEXT requests, and sends the values
of requested variable instances to the requester.

Chapter 6. Problem Management 193

6.4 Problem Management Daemon (pmand)

� �

� �

This section describes the Problem Management Daemon (pmand) functions.

The Problem Management Daemon represents the interface to the Event
Management subsystem to which it connects as a client. Every pmand connects
to the local Event Manager Daemon. The Problem Management Daemon
registers for events. After the pmand has successfully connected to the Event
Manager Daemon and registered for events, it waits for a registered event to
occur. When the event has occurred and the notification is received, the pmand
starts the actions defined in the configuration information.

The actions defined to the Problem Management Daemon can be:

• Run a command.

• Issue an SNMP trap.

• Write to the AIX error log or BSD syslog.

The Problem Management Daemon (pmand) can be configured to run a recovery
or notification command when an event occurs. This command is run on the
node where the pmand is running. The commands can be run concurrently, and
any number of recovery commands can be run simultaneously. Commands are
initiated when the daemon receives a corresponding event from the Event
Manager Daemon, regardless of whether recovery commands are already
running for that or any other event. The system administrator can specify any

194 RS/6000 SP HA Infrastructure

executable program or script. The notify_event sample script may be specified
to send mail to the user running the command on the local node, or the
log_event sample script may be specified to log event information into a
wraparound file.

Each time the pmand starts a process as a reaction to an event, it passes
environment variables to that process.

If an SNMP trap must be generated, the pmand daemon passes the request to
the sp_configd to format and issue an SNMP trap. To identify the event that
occurred, the pmand passes to the sp_configd the trap ID specified in the pmand
configuration. The pmand also passes information about the event. For detailed
information about the SNMP trap generation, see section 6.17, “SNMP Traps
from Events (ibmSPEMEvent)” on page 227.

The system administrator may specify text that gets written to the AIX error log
and BSD syslog when a specific event occurs.

Chapter 6. Problem Management 195

6.5 Command Started from pmand

� �

� �

This section describes the environment that is passed to a command that is
started from the pmand as a reaction to an event.

Each time the pmand starts a process, as a reaction to an event, it passes
environment variables to that process. These environment variables are:

PMAN_HANDLE

This is a handle that uniquely identifies the subscription.

PMAN_PRINCIPAL

This is the name of the Kerberos principal that owns this subscription.

PMAN_RVNAME

This is the resource variable name.

PMAN_IVECTOR

This is the instance vector of the resource variable.

PMAN_PRED

This is the predicate that originated the event.

PMAN_TIME

This is the time stamp indicating the time the Event Manager Daemon
generated the event.

196 RS/6000 SP HA Infrastructure

PMAN_LOCATION

This is the node where the event was generated.

PMAN_RVTYPE

This is long, float, or SBS, depending on whether the type of the
resource variable value is a long integer, a floating point value, or a
Structured Byte String.

PMAN_RVVALUE

This is the value of the resource variable that triggered the event.
This variable exists only if the resource variable is of type long or
float. If the resource variable is of type SBS, the PMAN_RVCOUNT
and PMAN_RVFIELDn are set.

PMAN_RVCOUNT

If the PMAN_RVTYPE is of type Structured Byte String (SBS), then the
resource variable value is composed of one or more structured fields.
The PMAN_RVCOUNT defines the number of fields within the
Structured Byte String.

PMAN_RVFIELDn

If the PMAN_RVCOUNT variable is set (the resource variable is an
SBS), then there are as many PMAN_RVCOUNTn variables as fields
in the Structured Byte String resource variable. The n character in
the PMAN_RVFIELDn represents the field serial number. For
example, if there are three fields in an SBS resource variable, then
the PMAN_RVCOUNT is set to three and there are three variables:
PMAN_RVFIELD0, PMAN_RVFIELD1, and PMAN_RVFIELD2.

Chapter 6. Problem Management 197

6.6 Configuration Steps of pmand

� �

� �

The Problem Management pmand subsystem is an AIX SRC controlled
subsystem. The subsystem must be present in the AIX ODM database. To add
the subsystem, you have to run the pmanctrl -a command. This command calls
the mkssys command to create the subsystem under the AIX SRC and to enter
the subsystem definition into an ODM object. This command also makes an
entry into the /etc/inittab file. This entry will start the Problem Management
subsystem every time the system is restarted.

The Problem Management subsystem is under the control of AIX SRC. To start
the subsystem, issue one of the following commands:

• pmanctrl -s

• startsrc -s | -g <subsystem | group>

The startsrc command, if called with the -s parameter, only starts one
subsystem for the partition specified by the subsystem name. If the startsrc
command is called with -g parameter, every Problem Management daemon is
started. The Problem Management subsystem AIX SRC group name is pman.

If you want to allow non-root users to perform a Problem Management
configuration, you must allow them to have access. To do this, make an entry in
the Kerberos ACL file, /etc/sysctl.pman.acl. If the subscription is defined to write
into the AIX error log, or generate SNMP traps, then the Kerberos principal that
owns the subscription must be listed in the root user ′s $HOME/.klogin file.

198 RS/6000 SP HA Infrastructure

When the pmand is started, it reads its configuration (defined subscriptions) from
the SDR database. The pmand configuration is stored in the pmandConfig SDR
class.

To add new subscriptions, you have to issue the pmandef command, which
creates new SDR objects in the pmandConfig SDR class and updates the pmand
daemon with the new subscription. The pmandef command is described in
section 6.8.2, “pmandef” on page 207.

The pmand subsystem is restarted each time the system is repartitioned. The
syspar_ctrl script invokes the pmanctrl command in order to recreate the
subsystem.

To check the correct state of the pmand subsystem, issue the lssrc command.
This command is described in section 6.8.3, “pmanquery” on page 210.

Chapter 6. Problem Management 199

6.7 pmandConfig SDR Class

� �

� �

The configuration information of the pmand subsystem is stored in the
pmandConfig SDR class. This class contains the following information:

pmNodenumber

This is the node number where the subscription has to be activated.

pmTargetType

This defines the type of the pmTarget information.

pmTarget

This defines the target nodes, or Control Workstation, where the
pmand starts a subscription to the Event Manager Daemon.

pmRvar

This is the registered resource variable.

pmIvec

This specifies the instance vector for the resource variable.

pmPred

This is the predicate used for the registration to the Event Manager
Daemon.

200 RS/6000 SP HA Infrastructure

pmRearmPred

This specifies the rearm predicate used to register for an event.

pmCommand

This is the full path of a program that is started when the event is
generated.

pmCommandTimeout

This is the time limit, in seconds, that the command, started as a
reaction to an event, is expected to run. After this time, the command
is killed by SIGTERM, followed by SIGKILL.

pmHandle

This is a handle that the subscription can be referenced by.

pmPPSlog

If this is different from zero, for every event received, an AIX error log
entry and a BSD syslog entry is written.

pmRearmCommand

This is to define the command to run when rearm events occur.

pmRearmCommandTimeout

This is the rearm command timeout, like the pmCommandTimeout.

pmRearmTrapid

This is the specification of whether an SNMP trap is to be generated
when a rearm command occurs.

pmRearmPPSlog

This specifies whether an AIX error log and BSD syslog entry are to
be generated when a rearm event occurs.

pmUsername

This is the user name that the commands started from pmand use.

pmPrincipal

This is the Kerberos principal of the user.

pmHost

This is the hostname of the system node, where the subscription is
done.

pmActivated

If this is zero, then this subscription is not activated automatically.

pmText

This is text that is written to the AIX error log and BSD syslog when
an event occurs.

pmRearmText

This is text that is written to the AIX error log and BSD syslog when a
rearm event occurs.

pmUserLabel

This is a label text that can be used by a user.

Chapter 6. Problem Management 201

There are also other variables of the pmandConfig class that are present in the
SDR, but they are not configurable:

• pmEventid
• pmThrottle

202 RS/6000 SP HA Infrastructure

6.8 pmand Control Utilities

� �

� �

This is a list of the Problem Management control commands:

pmanctrl

This command is used to control the pmand subsystem as an AIX
SRC subsystem. This command is explained in section 6.8.1,
“pmanctr l” on page 205.

pmandef

This command is used to handle event subscription. A more detailed
explanation is provided in section 6.8.2, “pmandef” on page 207.

pmanquery

This command is used to query the subscriptions initiated by a user.
The command returns an output based on the information in the SDR.

startsrc

The startsrc command is used to start the Problem Management
subsystem. Following are examples of its use:

/usr/bin/startsrc -s pman (on SP nodes)
/usr/bin/startsrc -s pman.syspar_name (on the Control Workstation)
/usr/bin/startsrc -g pman (Starts every Problem Management daemon)

Chapter 6. Problem Management 203

stopsrc

The stopsrc command is a standard AIX SRC command that stops the
subsystem or a group of subsystems. Following are some examples:

/usr/bin/stopsrc -s pman (on SP nodes)
/usr/bin/stopsrc -s pman.syspar_name (on the Control Workstation)
/usr/bin/stopsrc -g pman (Stops every Problem Management daemon)

lssrc

The lssrc command is used to list subsystems and their state. The
lssrc command accepts the -l flag to display long format output. The
following example shows how to use the command:

/usr/bin/lssrc -a
/usr/bin/lssrc -s pman (on the SP nodes)
/usr/bin/lssrc -s pman.syspar_name (on the Control Workstation)
/usr/bin/lssrc -l -s pman.syspar_name (on the Control Workstation)

There are additional commands that are present in the system, but they are
used internally by the Problem Management subsystem:

pmaneventon

This command is used to activate a subscription. This command is
called from the pmandef command; users are not expected to use this
command directly.

pmaneventoff

This command is used to deactivate a subscription. This command is
called from the pmandef command; users are not expected to use this
command directly.

pmanq

This command queries the pmand daemon for the status of a
subscription. This command is called from the pmandef command;
users are not expected to use this command directly.

pmansubscribe

This command creates a subscription to an event. This command is
called from the pmandef command; users are not expected to use this
command directly.

pmanunsubscribe

This command deletes the specified subscription. This command is
called from the pmandef command; users are not expected to use this
command directly.

204 RS/6000 SP HA Infrastructure

6.8.1 pmanctrl

� �

� �

The pmanctrl command is used to control the Problem Management subsystem
as an AIX SRC subsystem. The parameters that specify the type of action to be
performed by this command are the following:

-a/add

This flag specifies the request to create a pmand subsystem for the
current partition.

-s/start

This flag stands for starting the Problem Management subsystem in
the current partition. The subsystem is then started by the startsrc
command.

-k/stop

This flag is the opposite flag of -s/start. The command causes the
Problem Management subsystem to stop.

-d/delete

The delete function causes the Problem Management subsystem to
be deleted from the current partition. The SDR objects are not
deleted.

Chapter 6. Problem Management 205

-c/clean

The clean function causes the Problem Management subsystem to be
deleted from all partitions. The SDR objects are not deleted.

-t/trace

This function of the pmanctrl command turns on tracing for the
Problem Management subsystem. The trace output is in the
/var/adm/SPlogs/pman directory.

-o/traceoff

This turns the trace off.

-r/refresh

The refresh function does nothing at this time.

-h/help

This displays the usage information.

206 RS/6000 SP HA Infrastructure

6.8.2 pmandef

� �

� �

The pmandef command is the mechanism provided for creating Problem
Management subscriptions.

The pmandef command defines:

• What Event Management events to register for

• What actions to take when those events occur

There are three actions the pmand daemon can initiate after the event notification
is received:

• Run a command.

• Issue an SNMP trap.

• Write to the AIX error log or BSD syslog facilities.

The pmandef command is based on Sysctl, which uses Kerberos for user
authentication. All users of the pmandef command must have valid Kerberos
authentication. In addition, the user′s Kerberos principal must be listed in the
/etc/sysctl.pman.acl file on the local node, to store the subscription in the SDR
and on all the nodes that are affected by the new subscription. This enables the
affected Problem Management daemons to be notified of the new subscription.

The information, specified by parameters that have to be supplied with the
command, has the following format: pmandef <arguments>, where the argument
can be the following:

Chapter 6. Problem Management 207

-s handle_name

This specifies that the command is a subscribe request, and the
remaining flags are to define the Problem Management subscription.
The handle_name is an identifier of the subscription.

-d handle_name

This specifies that the registrations identified by the handle_name
should be deactivated.

-a handle_name

This specifies that the subscription specified by the handle_name
should be activated.

-u handle_name

This specifies that the subscription identified by the handle_name
should be removed (unsubscribed).

-q handle_name

This is a query request for the subscription identified by the
handle_name.

Note: The -d, -a, -u, and -q arguments can be followed by the all keyword. You
can also specify the following attributes when creating a new subscription:

-h host1,host2,...

This specifies the hosts that belong to the subscription. Instead of
this parameter, the -N or -n parameter can be specified. These
represent a node group (-N) or a node range (-n).

-e resource_variable:instance_vector:predicate

With this parameter and the attributes that follow it, you can specify
the resource variable, instance vector, and the predicate. These are
explained in section Chapter 4, “Resource Monitors” on page 119.

-r rearm_predicate

This specifies the Event Management rearm predicate.

-c command

This specifies a command to be executed when the event defined by
the -e flag occurs.

-C rearm_command

The rearm_command is the name of the command that is to be run
when the rearm event occurs.

-t trapid

When this flag is specified, an SNMP trap is to be generated when an
event occurs. The “trapid” is the specific trap ID to be used.

-T rearm_trapid

This flag specifies that an SNMP trap is to be generated when a
rearm event occurs, and the rearm_trapid is the specific trap ID to be
used.

208 RS/6000 SP HA Infrastructure

-l log_text

If this flag is specified, an entry is written to the error log and syslog
when the event occurs. The log_text is put into the description of the
log entry.

-L rearm_log_text

If this flag is specified, an entry is written to the error log and syslog
when the rearm event occurs. The rearm_log_text is put into the
description of the log entry.

-x timeout

This flag specifies the time limit, in seconds, for the command
initiated by the event. If the command does not complete within the
specified timeout, a SIGTERM signal is sent to this command. If the
command does not complete within an additional five seconds, a
SIGKILL signal follows.

-X rearm_timeout

This flag specifies the time limit, in seconds, for the command
initiated by the rearm event. If the command does not complete
within the specified timeout, a SIGTERM signal is sent to this
command. If the command does not complete within additional five
seconds, a SIGKILL signal follows.

-U username

This specifies the username that the command and rearm command
use when they run.

-m user_label

This defines a label that may be used by user. This label can be
retrieved by the pmanquery command.

An example of the pmandef command follows:

 pmandef -s program_monitor \
 -e ′ IBM.PSSP.Prog.pcount:NodeNum=1;ProgName=mycmd;UserName=bob:X@0==0′ \
 -r ″X@0==1″ -c ″echo program has stopped > /tmp/myevent.out″\
 -C ″echo program has restarted >/tmp/myrearm.out″

This example causes a write in the /tmp/myevent.out when the mycmd program
ends, and causes a write to the /tmp/myrearm.out when the program restarts.

Chapter 6. Problem Management 209

6.8.3 pmanquery

� �

� �

The pmanquery command is used to query the SDR for a description of a Problem
Management subscription. After a Problem Management subscription definition
has been stored in the SDR by the pmandef command, the pmanquery command
may be used to retrieve the subscription definition. The pmanquery command
prints the details of the subscription definition in a raw format which is intended
to be parsed by other applications. The -q, -a, -d, and -t flags are used to format
the output of the command. The -n and -k flags control the scope of the search
for subscriptions in the SDR.

-n handle_name

The -n flag followed by the handle name or the “all” keyword
searches for Problem Management subscriptions with the specified
handle name that was previously given as the argument to the -s flag
of the pmandef command. The “all” keyword allows any handle name
to be selected by the search of the SDR.

-k Kerberos_name

The -k flag followed by the Kerberos principal name searches for
Problem Management subscriptions owned by the specified Kerberos
principal. If the -k flag is omitted, the caller′s Kerberos principal is
used. The “all” keyword allows any Kerberos principal to be selected
by the search of the SDR.

210 RS/6000 SP HA Infrastructure

Following are examples of the pmanquery command:

pmanquery -n all
pmanquery -n my_handle -k all
pmanquery -n all -k all

Following is an example of the output created by the pmanquery command:

pmActivated:pmHandle:pmRvar:pmIvec:pmPred:
pmCommand:pmCommandTimeout:

pmTrapid:pmPPSlog:pmText:pmRearmPred:
pmRearmCommand:pmRearmCommandTimeout:pmRearmTrapid:
pmRearmPPSlog:pmRearmText:
pmUsername:pmPrincipal:pmHost:
pmTargetType:pmTarget:pmUserLabel

1:Ad_test:IBM.PSSP.pm.User_state1:
NodeNum=*:X@0!=″ ″ : /test/hello2.ad:10:
-1:1:Somebody touched my file!:X@0==″″ :
/test/bye2.ad:10:-1:1:
Somebody deleted my file!:adrian:
adrian.@MSC.ITSO.IBM.COM:sp21cw0:NODE_RANGE:0:

1:Tmp_filling_on_nodes:IBM.PSSP.aixos.FS.%totused:
NodeNum=*;VG=rootvg;LV=hd3:X>75:/test/hello.ad:0
:-1:0: :X<60:
/test/bye.ad:0:-1:0: :
root:root.admin@MSC.ITSO.IBM.COM:
sp21cw0:NODE_RANGE:0:1

6.8.4 lssrc Command
The lssrc command is a standard AIX SRC command that gets the status of a
subsystem, a group of subsystems, or a subserver. When the -l flag is specified,
the lssrc command sends a subsystem request to the AIX SRC daemon to be
forwarded to the subsystem (pmand). The subsystem returns information in a
long format.

The lssrc -l command provides the following status information:

• When pmand was started.

• When pmand was last refreshed.

• Whether tracing is turned on or off. When debug mode is on, all SRC
requests and all events are logged to the /var/adm/SPlogs/pman directory.

• Events for which registrations are as yet unacknowledged.

• Events for which actions are currently being taken.

• Events currently ready to be acted on by this daemon.

An example of the lssrc -l output follows:

lssrc -ls pman.sp21cw0

Subsystem Group PID Status
 pman.sp21cw0 pman 35900 active

 pmand started at: Sat Aug 31 17:56:10 1996
 pmand last refreshed at:
 Tracing is off

Chapter 6. Problem Management 211

===
 Events for which registrations are as yet unacknowledged:
 ===
 ===
 Events for which actions are currently being taken:
 ===
 ===
 Events currently ready to be acted on by this daemon:
 ===
 ------------------ Adrian_test ----------------
 Currently ACTIVE
 Client adrian adrian.@MSC.ITSO.IBM.COM at sp21cw0
 Resource Variable: IBM.PSSP.SP_HW.Node.keyModeSwitch
 Instance: NodeNum=*
 Predicate: X!=0
 Command to run: /test/hello.ad
 Has run 0 times
 Logging on with text: Keymode switch changed FROM normal.
 Rearm predicate: X==0
 Command to run on rearm event: /test/bye.ad
 Has run 0 times
 Logging on for rearm event with text: Keymode switch changed TO
 normal.
 ------------------ Tmp_filling_on_nodes ----------------
 Currently ACTIVE
 Client root root.admin@MSC.ITSO.IBM.COM at sp21cw0
 Resource Variable: IBM.PSSP.aixos.FS.%totused
 Instance: NodeNum=*;VG=rootvg;LV=hd3
 Predicate: X>75
 Command to run: /test/hello.ad
 Has run 0 times
 Rearm predicate: X<60
 Command to run on rearm event: /test/bye.ad
 Has run 0 times

212 RS/6000 SP HA Infrastructure

6.9 User-Defined Resource Monitor

� �

� �

The Event Management Resource Monitor interface is an API that requires users
to write C programs in order to access it. The Problem Management product
offers an interface to create user-defined script-based Resource Monitors as Perl
or shell (Korn-shell, C-shell or Bourne-shell) scripts.

The user-defined programs, or scripts, are any program, script, or UNIX
command. The output of the program has to be a character string.

There are sixteen resource variables defined in the Event Management
subsystem that are dedicated to the user-defined resource monitors. Their
names are IBM.PSSP.pm.User_statenn, where the nn is a number from 1 to 16.
These resource variables are of type Structured Byte String, and consist of a
single character string (cstring). The instance vector for each is NodeNum.

The pmanrmd is a daemon that runs commands at set intervals and causes the
standard output (stdout) of these commands to be provided as the user state
resource variables. One instance of the daemon runs on each node, supplying
variables for that node. On the Control Workstation, there is one instance of
pmanrmd for each partition. This structure corresponds to the instances of Event
Management operational domains.

The pmanrmd updates the configured resource variables by issuing the
pmanrminput command. This command accepts an argument that defines the

Chapter 6. Problem Management 213

resource variable name and the value the resource variable has to be updated
with. The command has the following format:

pmanrminput -a argument -s pman.syspar_name

The argument represents the specification of the resource variable and the value
that has to be inserted in the resource variable. The format of the argument is a
string that consists of the following:

 1. The resource variable name

 2. A delimiter (+)

 3. The resource variable value (character string)

 4. Second delimiter (+)

Following is an example of the pmanrminput command:

pmanrminput -s pman -a ″IBM.PSSP.pm.User_state3+READY+″
pmanrminput -s pman -a ″IBM.PSSP.pm.User_state3+NOT READY+″

Actually, the pmanrminput command calls the pmand subsystem. The pmand
subsystem is directly connected to the RMAPI interface of the Event Manager
Daemon.

214 RS/6000 SP HA Infrastructure

6.10 Error Log Resource Variable

� �

� �

There is an AIX error log variable defined in the Event Management. This
variable is updated by the pmand daemon, which is a client to the Event
Manager Daemon. The error notification is initiated by the AIX error log
notification method, which is configured in the ODM errnotify class. Use the
odmget command to see the ODM error notification objects, for example:

odmget errnotify
odmget -q en_name=″errlog_rm″ errnotify

This errnotify object sets the error daemon to run the errlog_rm script every time
there is an error entry that has specified error type permanent (PERM). The
/usr/lpp/ssp/bin/errlog_rm program updates the IBM.PSSP.pm.Errlog Event
Management resource variable. This resource variable is of Structured Byte
String type, where the fields are of character string (cstring) type. This is a list
of the defined errlog fields:

Serial Number Description

0 Sequence number

1 Error ID

2 Error class

3 Error type

4 Alert flag value

Chapter 6. Problem Management 215

5 Resource name

6 Resource type

7 Resource class

8 Error label

These errors do not generate SNMP traps by default. These errors only update
an Event Management resource variable. Event Management clients may
register for an event based on this resource variable.

216 RS/6000 SP HA Infrastructure

6.11 Configuration Steps of pmanrmd

� �

� �

To configure the pmanrmd subsystem, follow these steps:

 1. Create a configuration file, where you specify each Resource Monitor
program that will supply data to the Event Manager Daemon. The format of
this file is described in section 6.12, “Configuration File and SDR” on
page 219.

 2. The pmanrmd configuration file must be loaded into the SDR by using the
command pmanrmdloadSDR (/usr/lpp/ssp/bin/pmanrmdloadSDR). The
configuration file name is passed to this command as an argument. An
example of this command follows. The configuration file is a user-created
file:

/usr/lpp/ssp/bin/pmanrmdloadSDR /spdata/sys1/pman/user_rm.conf

 3. The SDR is now loaded with the configuration information, and this data is
stored in the pmanrmdConfig SDR class. This command has to be run on
the Control Workstation only. To check the SDR pmanrmdConfig class
objects, issue the SDRGetObjects command as follows:

SDRGetObjects pmanrmdConfig

 4. If the pmanrmd subsystem is not present, use the pmanctrl -a command to
add the subsystem.

Note: This command is used also to create the pmand subsystem. An
example follows:

Chapter 6. Problem Management 217

pmanctrl -a

If the pmanrmd is already running, stop the subsystem by issuing the
pmanctrl -k or the stopsrc -s pmanrm.syspar_name command. The
syspar_name is the system partition name.

 5. At this point, the pmanrmd subsystem is ready to start up. To start it, issue
one of the following commands: pmanctrl -s or startsrc -s
pmanrm.syspar_name. The pmanctrl -s command calls the startsrc command.
The startsrc -s starts the pmanrmd subsystem for the system partition. Its
name is specified in the subsystem name (syspar_name). To start pmand
and pmanrmd subsystems for all partitions, issue the startsrc -g pman
command. The pmanrmd is a Perl command. An example of how to use these
commands follows:

pmanctrl -s

or

startsrc -s pmanrm.syspar_name

or

startsrc -g pman

 6. After completing the previous step, the pmanrmd subsystem should be
running. Check the subsystem by issuing the lssrc or the ps -ef command:

lssrc -g pman

or

lssrc -s pmanrm.syspar_name

or

ps -ef | grep pmanrmd

These steps are performed when the system administrator defines new partitions
to the RS/6000 SP system. The pmanrmd subsystem is configured with an empty
configuration and the pmanrmd process is in a sleeping state. To activate a
configuration, the system administrator must define the Resource Monitor
configuration as it is defined in the next section.

218 RS/6000 SP HA Infrastructure

6.12 Configuration File and SDR

� �

� �

The basic configuration information of the pmanrmd has to be defined in a file
that the user creates following the required format. The format of the
configuration file is similar to the pmand configuration file format. The file
contains stanzas that have the following structure:

TargetType=

This specifies the Target item format. It is one of the following:

• NODE_LIST

• NODE_RANGE

• NODE_GROUP

Target=

This specifies the set of nodes on which the daemons are to be
configured. This can be a list of hostnames, a node range as
specified in the hostlist command, or the name of the node group.

Rvar=IBM.PSSP.pm.User_state nn

This specifies the fully qualified resource variable name as it is
defined in the Event Management configuration. The resource
variables may be one of the sixteen IBM.PSSP.pm.User_statenn
resource variables, where the nn means a number from 1 to 16.
These resource variables are of type character string (cstring).

Chapter 6. Problem Management 219

SampInt=

This specifies the interval, in seconds, between each time a resource
variable is sent to the Event Manager Daemon. This is referred as
the Sampling Interval. The user command is to be run in the intervals
specified here, to send the data to the Event Manager Daemon.

Command=

This specifies the user command that provides the resource
variables. The resource variable is then created from the stdout of
this command.

There is no default configuration file. By default, the pmanrmd comes up, but it
“sleeps” until it is configured. There is a sample configuration file,
pmanrmd.conf.

An example of configuration file follows:

* This will provide a Resource Monitor that will run every 10 seconds
* and will run a user command /test/adrian.pm; its output is a
* character string. This string is supplied every 10 seconds
* to the Event Manager daemon IBM.PSSP.pm.User_state1 resource
* variable. This command runs only on the Control Workstation.
*
TargetType=NODE_RANGE
Target=0
Rvar=IBM.PSSP.pm.User_state1
SampInt=10
Command=/test/adrian.pm
*
* This will provide a Resource Monitor that will run every 10 minutes
* and will provide the most recently changed file in the
* etc filesystem as a string state variable named
* IBM.PSSP.pm.User_state2.
* It runs on all the nodes in the partition.
*
TargetType=NODE_RANGE
Target=0,5-16
Rvar=IBM.PSSP.pm.User_state2
SampInt=600
Command=″ /bin/ls -tl /etc | /bin/head -2 | /bin/grep -v total″
*
* --- *

The configuration file has to be loaded into the SDR. This is done by the
pmanrmdloadSDR command. The SDR object format corresponds to the
configuration file stanzas. The pmrmNodenumber item is the node number of the
host on which the pmanrmd has to instantiate the resource variable.

220 RS/6000 SP HA Infrastructure

6.13 sp_configd

� �

� �

The sp_configd is an SP SNMP proxy agent (sometimes referred to as subagent)
that runs on the Control Workstation and every RS/6000 SP node. The SP proxy
agent provides the following functions:

• A Management Information Base (MIB), ibmSP

• SNMP GET and GET NEXT command support that allows data in the ibmSP
MIB to be accessed by a network manager application

• The creation and transmission of SNMP traps to an installation-defined
network manager application

An SNMP trap is generated when the following events occur on the node while
the sp_configd is running:

• A cold start trap is issued when the agent is activated.

• An enterprise-specific trap is issued when an entry with an ALERT=true
attribute is written to the AIX error log.

• An enterprise-specific trap is issued when a user-specified event is detected
from the Event Management.

Chapter 6. Problem Management 221

6.14 SNMP SP MIB

� �

� �

An ASN.1 MIB (Management Information Base) named ibmSP is provided to
SNMP users. An ASN number consists of integer numbers and is defined in
RFC-1155. The ASN number assigned to the ibmSP MIB can be determined by
looking in the ibmSP MIB.

Every SNMP agent supports a MIB, which is a set of variables (sometimes
referred to as objects) that represent the physical and logical resources of the
managed systems or agent. The MIB is not a database, in the sense of a
monolithic collection of data, but rather it represents dynamic information. The
values of the variable instances are maintained by different system functions
such as the kernel, device drivers, or subsystems running on the node.

The SNMP Manager can read variable instance values through these SNMP
requests:

GET Requests the SNMP agent to retrieve the value of the specified
variable instance and return it to the requester.

GET NEXT Requests the SNMP Agent to retrieve the value of the next variable
instance, after the one specified in the request, and return it to the
manager. This is useful for retrieving tabular information and
multiple variables.

Note: The SNMP SET request is not implemented in the sp_configd design. The
SP MIB consists of the following three groups:

222 RS/6000 SP HA Infrastructure

 1. ibmSPConfig (1.3.6.1.4.1.2.6.117.1)

 2. ibmSPErrlogVars (1.3.6.1.4.1.2.6.117.2)

 3. ibmSPEMVariables (1.3.6.1.4.1.2.6.117.3)

ibmSPConfig

This group defines objects containing SP system configuration
information.

ibmSPErrlogVars

This group consists of a sequence of objects containing information
about the latest error log write that caused an SNMP trap.

ibmSPEMVariables

This group consists of a sequence of objects containing information
about the last Event Management event that caused an SNMP trap.

To view the ibmSP MIB, use the snmpinfo command. This command may be
used in place of a manager client, such as Netview, to view the contents of the
ibmSP MIB. The use of this command requires root authentication. The
following are examples of using the snmpinfo command:

• To dump the contents of the ibmSP MIB located on the host_name in
verbose mode, enter the command:

snmpinfo -m dump -v -h host_name ibmSP

• To dump the contents of the ibmSPConfig group, enter the command:

snmpinfo -m dump -v -h host_name ibmSPconfig

• To get values for the MIB variable instance SPhostnodenumber.0 located on
the local host, enter:

snmpinfo -m get ibmSPhostnodenumber.0

• To get the value for the MIB variable instance following the
ibmSPhostnodenumber.0 variable instance, enter:

snmpinfo -m next ibmSPhostnodenumber.0

Note: A copy of the ibmSP MIB is supplied in Appendix B, “ibmSP MIB” on
page 291.

Chapter 6. Problem Management 223

6.15 SP Configuration (ibmSPConfig)

� �

� �

The RS/6000 SP information that can be retrieved by the SNMP GET and
GET-NEXT requests is stored in the SDR. The RS/6000 SP configuration group
contains the following information:

• The node number of the node on which the queried subagent is running

• The IP address of the system partition in which the queried subagent is
running

• The hostname of the primary control workstation

• The operational state of the primary control workstation

• The hostname of the backup control workstation

• The operational state of the backup control workstation

• The version of the PSSP software

• A table of RS/6000 SP node entries. Each row in the table has an
instantiation index consisting of the IP address of the partition followed by
the number of the node. Each row in the table contains variables identifying
the IP address of the partition, the node number, the frame number, the
lowest slot in the frame occupied by the node, the number of slots occupied
by the node, the reliable hostname of the node, the initial hostname, the
system partition name, and the version of PSSP on the node.

224 RS/6000 SP HA Infrastructure

6.16 SNMP Traps from the AIX Error Log

� �

� �

The snmp_trap_gen method monitors the AIX error log and notifies the
sp_configd daemon to generate SNMP traps for errors that contain the
ALERT=true attribute. This error notification uses the AIX error notification that
is defined in the AIX ODM database by the errnotify class. This error notification
starts a program, which is defined in the errnotify ODM class, whenever the
error log entry contains flags corresponding to the errnotify object specification.
The sp_configdctrl -a command creates the following entry in the errnotify ODM
class:

errnotify:
en_pid = 0
en_name = ″snmp_trap_gen″
en_persistenceflg = 1
en_label = ″″
en_crcid = 0
en_class = ″″
en_type = ″″
en_alertflg = ″TRUE″
en_resource = ″″
en_rtype = ″″
en_rclass = ″″
en_symptom = ″″
en_method = ″ /usr/lpp/ssp/bin/snmp_trap_gen $1″

Chapter 6. Problem Management 225

The following steps describe the flow of events for creating an SNMP trap for an
AIX error log event:

 1. An application writes to the AIX error log.

 2. If the error log entry contains an ALERT=true attribute, the snmp_trap_gen
error notification method runs.

 3. The snmp_trap_gen method uses the sequence number from the error log
entry as input to the errpt -a command to obtain full information about the
event.

 4. snmp_trap_gen places the event information in a FIFO file called
/var/tmp/errlog_entry.

 5. sp_configd reads the FIFO file, parses the information into objects within the
ibmSPErrlogVars group of the ibmSP MIB, and creates a trap from the
objects whose instantiations contain non-null values.

 6. sp_configd sends the trap to the AIX agent, snmpd, which then sends the
trap to network managers specified in the /etc/snmpd.conf file existing on the
node.

The following information is provided in SNMP traps from error logs:

• The enterprise field contains the Object ID (OID) of the sp_configd subagent.
This is the OID assigned to the ibmSP MIB.

• The specific-trap field contains the error ID from the error log entry. This is
the convention expected by Netview when configuring events.

• The variable bindings field.

The variable bindings field contains the following object values paired with their
OIDs:

• Error label
• Error ID
• Error log entry time stamp
• Unique sequence number
• Machine ID parameter
• Node ID parameter
• Error class
• Error type
• Resource name
• Resource class
• Resource type
• Location code of the device
• Vital product data
• Error description
• Probable causes
• User causes
• User actions
• Install causes
• Install actions
• Failure causes
• Failure actions
• Detail data

226 RS/6000 SP HA Infrastructure

6.17 SNMP Traps from Events (ibmSPEMEvent)

� �

� �

The following list is the flow of actions that are necessary to generate an SNMP
trap for an Event Management event:

 1. Use the pmandef command to subscribe to an Event Management event.
Specify the trap ID in the pmandef command.

 2. pmand subscribes to the event as defined in step 1. The event wil l occur on
each node where an action is defined to take place.

 3. pmand writes the contents of the Event Management subsystem-supplied
event response and the user-specified event configuration information into a
FIFO file.

 4. sp_configd reads the data and creates an SNMP trap from it.

 5. sp_configd sends the trap to the SNMP managers specified in the
/etc/snmpd.conf file on the node.

 6. The specific trap ID field in the SNMP trap is set to the trap ID specified in
the pmandef command subscription.

The contents of SNMP traps containing Event Management events are the
following:

• The enterprise field contains the OID of the ibmSP MIB.

• The specific trap field contains the trap ID field from the pmand configuration
for this event.

Chapter 6. Problem Management 227

• The variable bindings field, which contains the following object values paired
with their OIDs:

− Event ID

− Event flags

− Time stamp indicating the time the Event Manager Daemon generated
the event

− Node number and the partition where the event occurred

− The resource variable name

− MIB table and instance information, providing further information about
the variable involved with the event

Note: This information is provided only when the Event Management
variable associated with the event is defined in the node from which the
SNMP trap is issued.

− The value of the resource variable

− The predicate for which the event was triggered

228 RS/6000 SP HA Infrastructure

6.18 sp_configd Control Commands

� �

� �

The sp_configd runs under the AIX System Resource Controller (SRC) control.
The AIX SRC control commands are used to start, stop, and query the state of
the daemon. The startsrc, stopsrc, and lssrc AIX SRC control commands are
available to start, stop, and check the subsystem.

The sp_configdctrl command provides support for the sp_configd daemon which
is similar to that of pmanctrl (see 6.8.1, “pmanctrl” on page 205 and the
sp_configdctrl man page). The sp_configdctrl command provides parameters
for performance-related processing and a trace option. These parameters can
be specified at the spconfigd start with the startsrc command, using the -a
option. To supply attributes to the startsrc command, use the following
example:

startsrc -s sp_configd -a″-T -e120″

The snmpinfo command provides access to the ibmSP MIB, and can be used in
place of a manager, such as Netview for AIX. For detailed information, see the
standard AIX documentation (info) or the snmpinfo manpage.

Chapter 6. Problem Management 229

6.19 sp_configd Control

� �

� �

The configuration of the sp_configd consists of two configuration sections:

• SNMP manager (Netview for AIX) configuration

• sp_configd configuration

6.19.1 Configuring Netview for AIX
If you are using Netview for AIX as the network manager for your RS/6000 SP
system, you must configure it to recognize trap and configuration information.

Performing the following steps configures the SP MIB to be used by Netview for
AIX:

 1. Copy the file /usr/lpp/ssp/config/snmp_proxy/ibmSPMIB.my from an RS/6000
SP node into /usr/OV/snmp_mibs/ibmSP.mib on the node running Netview for
AIX.

 2. Load the MIB using the Netview for AIX menu option Load/Unload MIBs. You
may have to change the file attributes to match other MIB files in this
directory.

 3. You may tailor the information in the traps by using the Trap Customization
selection under the Event/Configuration menu option.

230 RS/6000 SP HA Infrastructure

6.19.2 Configure sp_configd
The SP proxy agents (sp_configd) reside on each managed RS/6000 SP node and
Control Workstation. The sp_configd daemons are configured to be started
automatically whenever AIX is started. The configuration changes necessary to
accomplish this are performed during the installation of the nodes and the
Control Workstation by the sp_configdctrl -a command.

The sp_configd is configured at installation, or at partition configuration. The
configuration is performed by the syspar_ctrl script on every node and the
Control Workstation. The entire configuration of the sp_configd is described in
the following steps:

 1. If you have a management station that listens for traps, place the information
for the trap destination in the /etc/snmpd.conf file on each RS/6000 SP node
and Control Workstation. This step is to be done by the system
administrator.

 2. The sp_configdctrl script modifies the /etc/snmpd.conf file and adds the
RS/6000 SP subagent (sp_configd) to the set of SMUX peers with a smux
record.

 3. The SP MIB file /usr/lpp/ssp/config/snmp_proxy/ibmSPMIB.defs is appended
to the /etc/mibs.def file. (The
/usr/lpp/ssp/config/snmp_proxy/ibmSPMIB.defs file is compiled from
ibmSPMIB.my.)

 4. Information for the new sp_configd subagent is added to the
/etc/snmpd.peers file. The information is the Object ID (OID) of the agent
and the community name (password). The /etc/snmpd.peers file update is
performed by the sp_configdctrl script.

 5. At this point, the snmpd daemon has to be refreshed. This step is performed
by the sp_configdctrl script.

 6. The sp_configdctrl script creates an AIX SRC subsystem, and the sp_configd
is added to the AIX ODM with default parameters. The default parameters
are the following:

SRCsubsys:
subsysname = ″sp_configd″
synonym = ″″
cmdargs = ″-t600″
path = ″ /usr/lpp/ssp/bin/sp_configd″
uid = 0
auditid = 0
standin = ″ /dev/null″
standout = ″ /dev/null″
standerr = ″ /dev/null″
action = 2
multi = 0
contact = 2
svrkey = 0
svrmtype = 0
priority = 20
signorm = 15
sigforce = 15
display = 1
waittime = 20
grpname = ″″

Chapter 6. Problem Management 231

 7. The sp_configdctrl creates an /etc/inittab entry to start the daemon at every
system restart. This entry calls the startsrc command as follows:

sp_configd:2:once:/usr/bin/startsrc -s sp_configd

 8. The sp_configd can be started by issuing the startsrc command, as follows:

/usr/bin/startsrc -s sp_configd

232 RS/6000 SP HA Infrastructure

Chapter 7. VSD/RVSD

� �

� �

IBM Virtual Shared Disk (VSD) is a distributed subsystem that allows application
programs executing on different RS/6000 SP nodes to access a raw logical
volume (LV) as if it were local to each of the nodes.

VSD also provides a device driver that allows application programs to stripe data
across the physical disks in multiple VSDs, thus reducing I/O bottlenecks and hot
spots.

Recoverable Virtual Shared Disk (RVSD) provides high availability to VSD and
VSD applications by detecting and executing the failover of the VSD server node
failure.

 Copyright IBM Corp. 1996 233

� �

� �

This chapter describes the new release of VSD, which is part of PSSP Version 2
Release 2, and RVSD Release 1.2, which is a separately orderable licensed
program.

The first section introduces the functional overview of VSD, data striping device
(HSD), and RVSD. The second section covers the new features in this release of
Parallel System Support Programs.

This chapter does not include details for planning and operating VSD, HSD, and
RVSD. Before you actually install VSD or VSD with RVSD, refer to Managing
Shared Disks: IBM VSD, HSD, and IBM RVSD Licensed Program Release 1.2,
GC23-3849.

234 RS/6000 SP HA Infrastructure

7.1 Functional Overview

7.1.1 VSD Architecture

� �

� �

This figure illustrates a simplified IBM Virtual Shared Disk (VSD) implementation.
The logical volume is local at each of the nodes, called direct client nodes. VSD
software routes I/O requests from the other nodes, called client nodes, to the
direct client node (that is, the VSD server node), and returns results back to the
client nodes. In the figure, node X is the direct client node for the VSD named
“lv_X,” and node Y is the client node for VSD lv_X. For VSD lv_Y, node Y is the
direct client node, and node X is the client node.

The I/O routing is done by the VSD device driver layer that sits on top of the
Logical Volume Manager (LVM) and IP subsystem. The device driver is loaded
as a kernel extension on each node. In this way, logical volumes can be made
globally accessible. Any IP-network defined in SDR can be used for VSD
communications. However, either the High Performance Switch (HPS) or the
Scalable Parallel Switch (SP Switch) (both are defined as css0) is recommended
for the best performance.

The application program interface to a VSD is the character (raw) special device.

Chapter 7. VSD/RVSD 235

 Attention

AIX Journal File System (JFS) on a VSD to be mounted and accessed from
other nodes is not supported in this release.

Each VSD device driver on each node has a single cache buffer, called the LRU
(Least Recently Used) cache, shared by all cacheable VSDs configured on and
served by the node. The cache is used to store the most recently-accessed data
from the cached VSD devices on the server node. The objective is to benefit
from classic cache effect, that is, to minimize physical disk I/O activity. If the
requested data is found in the cache, it is read from the cache, rather than the
corresponding logical volume.

Data in the cache is stored in 4 Kbyte blocks. The content of the cache is a
replica of the corresponding data blocks on the physical disks. The cache
contains only valid data (no dirty blocks). Write-through cache semantics apply:
the write operation is not complete until the data is on the disk.

The LRU cache is not “free” in the sense of performance consideration. There
are overheads that must be paid for each and every access, since the VSD has
no way of knowing which 4 Kbyte accesses are due to bouncing data. For more
details on the performance consideration with the LRU cache, refer to Chapter 5,
“Performance and Tuning Considerations for IBM Virtual Shared Disks and Data
Striping Devices” in Managing Shared Disks: IBM VSD, HSD, and IBM RVSD
Licensed Program Release 1.2, GC23-3849.

236 RS/6000 SP HA Infrastructure

7.1.2 VSD State Transitions

� �

� �

Once VSDs have been defined in the SDR, they can be configured to the system,
moved between states, and monitored with system commands through SMIT
panels or by using the VSD Perspective (see 7.2.2, “GUI Interface” on page 248).

This figure shows the possible states of a VSD and the names of the commands
that move VSDs from one state to another. You need to move VSDs between
states when you change the VSD configuration on a system partition or, if you do
not have the IBM Recoverable Virtual Shared Disk licensed product installed,
when you perform manual recovery after system or network problems.

Chapter 7. VSD/RVSD 237

7.1.3 HSD Architecture

� �

� �

Instead of writing all the data from one I/O request on one VSD at a specific
location, data striping writes or reads blocks of the data on several separate
VSDs. Thus, HSD (Hashed Shared Disk) provides automatic distribution or
partitioning of data across physical disks and nodes, while requiring minimal
administrator intervention. When the data is well-partitioned among the disk
drives, the application can get better performance from the underlying disk
drives.

The HSD driver is a pseudo device driver layer located above the VSD layer. It
is used only as a raw device driver interface with the VSD devices.

Each HSD is defined with a list of VSDs and a stripe size. The stripe size
indicates the maximum size of a block of data to be stored on a single VSD in
one I/O operation. The HSD uses a hash function based on the following
parameters to determine which VSD to place data on:

• The offset in the HSD file

• The number of VSDs defined in the HSD

• The stripe size

Whether or not to use the HSD depends on your configuration of VSDs and the
I/O characteristics of the application programs. If the I/O load to a specific VSD

238 RS/6000 SP HA Infrastructure

is too heavy (a hot spot), you can use HSD to distribute the load to other VSDs
and nodes.

Chapter 7. VSD/RVSD 239

7.1.4 Recoverable VSD (RVSD)

� �

� �

The IBM Recoverable Virtual Shared Disk (RVSD) software lets you use
twin-tailed disks and configure nodes as primary and secondary VSD server
nodes, and provides transparent switch-over to a secondary server if the primary
server node for a set of VSDs fails.

A twin-tailed disk is a disk or group of disks that are attached to two nodes of an
RS/6000 SP. For RVSD, only one of these nodes serves the disks at any time.
The secondary or backup node serves the disks only if the primary node fails or
is powered off.

Note: In this release of RVSD, any twin-tailed disks supported by the Logical
Volume Manager running on AIX V4.1 can be used.

This figure shows a mutual-takeover configuration with a three-node RVSD
cluster. Table 2 shows the functional role of the nodes for each VSD:

Table 2. Functional Role of RS/6000 SP Nodes in the RVSD Configuration

Node The Role for rvsd_X The Role for rvsd_Y

Node_X Primary Direct Client Secondary Direct Client

Node_Y Secondary Direct Client Primary Direct Client

Node_Z Client Client

240 RS/6000 SP HA Infrastructure

� �

� �

If node X fails, node Y will takeover the VSD server for rvsd_X. The recovery is
transparent to an application running on a client node; there is no disruption of
service, only a slight delay while takeover occurs. Now node Y is the VSD
server for both rvsd_X and rvsd_Y.

When node X is rebooted, the RVSD software switches the I/O load back to the
primary server node. RVSD software provides interfaces that enable your
application to be recoverable. For more information on RVSD application
programming interface, see Chapter 4, “Application Programming
Considerations ” in Managing Shared Disks: IBM VSD, HSD, and IBM RVSD
Licensed Program Release 1.2, GC23-3849.

Chapter 7. VSD/RVSD 241

7.2 New Features

� �

� �

This section describes the major new features of VSD (with PSSP Version 2
Release 2) and RVSD Release 1.2, which are:

 1. New commands that allow you to define VSD and HSD configurations,
including identifying secondary direct clients if you have the RVSD licensed
product installed. A new diagnostic tool, vsddiag, which gathers useful
information before calling IBM service with a VSD problem, is also
introduced.

 2. A graphical user interface, Perspectives, has been developed to help you
create and manage VSD and HSD easily.

 3. VSD no longer uses heartbeat directly. Instead, Group Services determines
which nodes are up and operational and manages the recovery process.

242 RS/6000 SP HA Infrastructure

7.2.1 New VSD Commands

� �

� �

New commands introduced in PSSP Version 2 Release 2 are as follows:

• createvsd

You can create a whole configuration of VSDs with a single command,
createvsd, including a secondary direct client node if you have the RVSD
licensed program installed. The syntax of the createvsd command is:

createvsd -n {node_list | ALL }
-s size_in_MB -g volume_group_name
[{-c number_of_vsds_per_node | -L }]
[-o cache | nocache] [-m mirror_count]
[-p lvm_stripe_size] [-v vsd_name_prefix]
[-l lv_name_prefix] [-T lp_size]

The following list describes the parameters of the createvsd command:

− Primary direct client node for the volume group (-n)

This is the node number of the primary direct client node. If you do not
have the RVSD product installed, all direct client nodes are primary
nodes.

If you want to create identical VSDs on all nodes in the system partition,
you can use the ALL parameter.

You can also specify the physical disks you want the volume group and
logical volume to span on each node.

Chapter 7. VSD/RVSD 243

− Secondary direct client node for the volume group (-n)

This is the node number of the secondary direct client node. The
secondary direct client node is only intended for use with the RVSD
product.

− Size in megabytes (-s)

You must specify the size of the VSD in megabytes.

− Volume group name (-g)

VSDs have a local volume group name and a global volume group name.
The local volume group name is the volume group name on the direct
client (or direct clients if a secondary direct client is being defined) and
the global volume group name is the name across the system or system
partition. The createvsd command uses this parameter for the local
volume group name, and from it creates a global volume group name
with the node numbers of the primary and secondary direct client nodes.

The length of the name must be less than or equal to 14 characters.

− The number of VSDs to be created on each node (-c)

This is an optional parameter. If you do not specify it, one VSD definition
will be created on each node in the node list or on each node in the
system partition (if you specified ALL instead of a node_list).

− The cache or nocache option (-o)

Use the cache option only if your application does I/O in 4 Kbyte blocks
aligned on 4 Kbyte disk boundaries, and issues a read immediately
following a write.

Nocache is the default for new VSDs created with the createvsd
command.

− Logical volume manager mirroring count (-m)

The mirroring count sets the number of physical partitions allocated to
each logical partition on the disks. The range is from one to three, and
the default is one.

− Logical volume manager stripe size (-p)

If the node on which the VSD is defined (the direct client node) has more
than one physical disk, you can have the data striped across the disks
for better performance. Specify the stripe size in kilobytes.

− VSD name prefix (-v)

This prefix will be concatenated with the VSD number, primary direct
client node number, and secondary direct client node number (if you
have the RVSD licensed program installed), to form a VSD name that is
unique across the system partition. The last character of this prefix
cannot be a digit.

− Logical volume name prefix (-l)

If you supply this operand, you specify a prefix that overrides the naming
convention applied by the createvsd command.

− Size of the physical and logical partitions in the LVM logical volume
group (-T)

If you specify this option, it must be a power of 2 in the range of 2
through 256. The default is 4.

244 RS/6000 SP HA Infrastructure

To create a volume group that spans hdisk1, hdisk2, and hdisk3 on node 5,
with a backup on node 6, type:

createvsd -n 5/6:hdisk1,hdisk2+hdisk3/ -v DATA

This creates the VSD definition, DATA1n5b6, with logical volume
lvDATA1n6b6 defined on a volume group with the local volume group name
DATA on node 5, imported to node 6. The global volume group name is
DATAn5b6.

• createhsd

Also, you can create a whole configuration of HSD with a single command,
including secondary direct client node for the underlying VSDs if you have
the RVSD licensed program installed. The syntax of the createhsd command
is:

createhsd -n {node_list | ALL }
-s size_in_MB -g volume_group_name
-t stripe_size_in_KB [{-c number_of_vsds_per_node | -A}]
[-o cache | nocache] [-m mirror_count]
[-d hsd_name]
[-l lv_name_prefix] [-S]
[-T lp_size]

The following list describes the parameters of the createhsd command:

− Nodes on which this HSD is to be created (-n)

This is the node number of the underlying VSDs, including the primary
direct client nodes and the secondary direct client nodes.

If you do not have the RVSD product installed, all direct client nodes are
primary nodes.

If you want an HSD that includes identical VSDs on all nodes in the
system partition, you can use the ALL parameter.

You can also specify the physical disks you want the volume group and
logical volume to span on each node.

− Size in megabytes (-s)

This is the usable size, in megabytes, of this HSD. Unless -s is specified,
createhsd adds at least one stripe size to each VSD definition′s size for
each HSD. This protects the first LVM control block (LVCB).

− Volume group name (-g)

VSDs have a local volume group name of the underlying VSDs. The local
volume group name is the volume group name on the direct client (or
direct clients if a secondary direct client is being defined), and the global
volume group name is the name across the system or system partition.
The createhsd command uses this parameter for the local volume group
name, and from it creates a global volume group name with the node
numbers of the primary and secondary direct client nodes.

The length of the name must be less than or equal to 14 characters.

− Stripe size (-t)

The stripe size in kilobytes that this HSD will use. The stripe size must
be a multiple of 4096 bytes and less than or equal to 1 Gbyte.

Chapter 7. VSD/RVSD 245

− The number of VSDs to be created on each node (-c)

This is an optional parameter. If you do not specify it, one VSD definition
will be created on each node in the node list or on each node in the
system partition (if you specified ALL instead of a node_list.)

− The cache or nocache option (-o)

Use the cache option only if your application does I/O in 4 Kbyte blocks
aligned on 4 Kbyte disk boundaries, and issues a read immediately
following a write.

Nocache is the default for new VSDs created with the createvsd
command.

− Logical volume manager mirroring count (-m)

The mirroring count sets the number of physical partitions allocated to
each logical partition on the disks. The range is from one to three, and
the default is one.

− HSD name (-d)

This is the name of the HSD. It will also be used as the name prefix for
the underlying VSDs. The prefix will be concatenated with the VSD
number, primary direct client node number, and secondary direct client
node number (if you have the RVSD licensed program installed) to form
a VSD name that is unique across the system partition. The last
character of this prefix cannot be a digit.

− Logical volume name prefix (-l)

If you supply this operand, you specify a prefix that overrides the naming
convention applied by the createhsd command.

− Skip option (-S)

Specifying -S overrides the default skip option and does not skip the first
stripe to protect the first LVM control block (LVCB).

− Size of the physical and logical partitions in the LVM logical volume
group (-T)

If you specify this option, it must be a power of 2 in the range of 2
through 256. The default is 4.

To create an HSD that stripes data across three identical VSD definitions on
each of three disks in a system partition, type:

createhsd -n 1,3,5 -s 12 -g DATAVG -d DATAHSD

This creates the HSD definition DATAHSD and its underlying VSD definitions:

− DATAHSD1n1 on node 1. The local volume group name on node 1 is
DATAVG. The global volume group name is DATAVGn1. The logical
volume is lvDATAHSD1n1.

− DATAHSD2n3 on node 3. The local volume group name on node 3 is
DATAVG. The global volume group name is DATAVGn3. The logical
volume is lvDATAHSD2n3.

− DATAHSD3n5 on node 5. The local volume group name on node 5 is
DATAVG. The global volume group name is DATAVGn5. The logical
volume is lvDATAHSD3n5.

The usable HSD size is 12 Mbyte.

246 RS/6000 SP HA Infrastructure

• vsddiag

This command displays information about VSDs that can help you determine
their status and collect information that helps IBM service representatives
diagnose system problems.

Note: The vsddiag command can only be used when no VSD I/O is in
progress.

 Attention

In order to issue commands such as createvsd that operate on multiple
nodes, you must have Kerberos authority and sysctl authorization.

For a complete description of these commands, refer to Command and Technical
Reference, GC23-3900.

Chapter 7. VSD/RVSD 247

7.2.2 GUI Interface

� �

� �

Once VSDs have been defined in the SDR, they can be managed easily with the
Perspectives graphical user interface, a part of the PSSP Version 2 Release 2.

To bring up the VSD Perspective initial panel, type spvsd or select the VSD icon
from the Perspectives main panel.

With VSD Perspective, you can:

• Display or register the setup information in the SDR required for each node
before you create VSDs or HSDs, such as:

− VSD Adapter Name
− Initial cache buffer count
− Maximum cache buffer count
− Number of outstanding logical volume read/write requests
− Minimum buddy buffer size
− Number of buddy buffers
− Request block count
− Maximum IP message size
− Level of parallelism

See Managing Shared Disks: IBM VSD, HSD, and IBM RVSD Licensed
Program Release 1.2, GC23-3849, for the description of each parameter.

248 RS/6000 SP HA Infrastructure

• Run verification write tests on VSDs.

• Move the state of VSDs.

• Monitor the status of the VSD nodes.

• Add a client to an existing VSD configuration.

• Display information about VSD clients, such as:

− Name of the VSD
− Node number on which this client is configured
− Minor number of this client
− State of the VSD
− VSD client reads
− VSD client writes
− Owner

The information is displayed on the client attributes notebook page.

• Display information about HSD clients, such as:

− Name of the HSD
− Node number on which this client is configured
− Minor number of this client
− Stripe size
− VSD client reads
− VSD client writes
− Owner

• Display VSD and HSD statistics, such as :

− Number of local logical read and write operations
− Number of remote logical read and write operations
− Number of client logical read and write operations
− Number of physical reads and writes
− Number of cache hits for read
− Number of 512 Kbyte blocks read and written

• Reset VSD and HSD statistics.

• Run VSD diagnostics.

For the details on operating VSD Perspectives, refer to RS/6000 SP PSSP 2.2
Technical Presentation, SG24-4868 or Managing Shared Disks: IBM VSD, HSD,
and IBM RVSD Licensed Program Release 1.2, GC23-3849.

Note: The monvsd tool is no longer available.

Chapter 7. VSD/RVSD 249

7.2.3 New RVSD Mechanism

7.2.3.1 RVSD Versions 1.0/1.1

� �

� �

This figure shows the components of RVSD Release 1.0 and 1.1. RVSD spawns
three user level daemons on each node: HB, HA, and HC.

The heartbeat subsystem is comprised of all heartbeat daemons across a
partition. It is responsible for detecting node status: up or down. When the
status of nodes changes, the heartbeat daemon (HB) performs a two-phase
commit protocol for the new node membership to guarantee that all nodes will
follow an identical sequence of events. When all HB daemons agree on the new
membership, each will notify its local HA daemon of the of the new node group.

Once notified by HB, the HA daemon will synchronize the running of recovery
scripts that will flip VSD servers (if needed) or move VSDs to the stop state (in
the case where a server is not available). Note that while this synchronization
occurs, HB may detect more changes in the group. The HA daemon is designed
to handle such scenarios and synchronize compound recovery.

Once HA completes its recovery for the VSD subsystem, the HC daemon is
notified that the group membership has changed. HC in turn, will notify its client
that the group has changed, if needed (the HC daemon may or may not have a
client connected to it on a given node).

250 RS/6000 SP HA Infrastructure

Note that the heartbeat subsystem is also responsible for determining if quorum
is reached. Quorum is computed by the following equation:

(number_of_nodes/2)+1

If the number of nodes that are considered by HB to be up is greater than or
equal to quorum, then the group is considered active. Within an active group,
the HA daemon runs scripts to bring to the active (ACT) state, to every VSD that
has a server. If at any time quorum is lost, the HA daemon will run scripts to
bring all VSDs into the stopped (STP) state. This is to eliminate the possibility
that two nodes will try to access the same disk in the case of network partitions.

Chapter 7. VSD/RVSD 251

7.2.3.2 RVSD Version 1.2
� �

� �

RVSD Release 1.2 no longer includes the heartbeat subsystem as its component.
Instead, RVSD uses the Topology Services deamon, heartbeatd, which is the
component of the PSSP Version 2 Release 2 that keeps track of which nodes are
available.

The Group Services daemon hagsd runs on every VSD node and receives
availability information from the heartbeatd daemon. It uses this information to
keep track of changes in process groups. Group Services daemon also
manages group subscriptions, notification of membership list changes, and other
message broadcasts.

The two major subsystems of RVSD, the VSD recovery driver (also called ha)
and Connection Manager (also called hc), are both clients of Group Services,
and exploit the Group Services functions.

Notes:

 1. The ha.vsd shown in this figure is the name of the group consisting of the ha
subsystems. It is also the name of the script that starts had daemon, which
implements the ha function.

 2. The hc.vsd shown in this figure is the name of the script that starts the hcd
daemon, which implements the hc function. The name of the group
specifically used by hc subsystems is hc.

The ha depends on Group Services to:

• Determine group membership.

252 RS/6000 SP HA Infrastructure

• Store group state (active versus inactive as determined by ha).

• Queue pending membership changes.

• Expose membership and state changes consistently.

• Order proposed membership changes to expose failures first.

• Expose all known “simultaneous” departures together.

• Expose all known “simultaneous” joins together.

• Provide serialization primitives (group voting), and detection of failures
during voting.

The ha itself will:

• Maintain the membership and local node environment variables.

• Invoke the UP/DOWN scripts during voting.

• Interface to the AIX System Resource Controller (SRC) as a reliable daemon.

• Perform error logging.

• Handle group activation with quorum.

The hc depends on Group Services to:

• Determine and expose group membership consistently.

• Manage group state.

• “Source” ha membership and state changes.

The hc itself will:

• Handle group activation based on the hagroup state.

• Report current membership to its client.

• Perform “liveness” test (ping) on its client.

• Run the activate and deactivate scripts to start and kill its client as
necessary.

• Interface to the SRC as a reliable daemon.

• Perform error logging.

For the details on Topology Services and Group Services, see Chapter 2,
“Topology Services” on page 5 and Chapter 3, “Group Services” on page 25.

In addition, you can use Performance Toolbox Parallel Extensions (PTPE) to
monitor the status of VSD, for example, I/O statistics, queued I/O requests
waiting for a cache block, or rejected I/O requests. For details on how to use
PTPE, see Chapter 8, “Performance Toolbox Parallel Extensions” on page 257.

Chapter 7. VSD/RVSD 253

7.2.3.3 RVSD Semantics
� �

� �

RVSD provides the following four script files that are executed by had daemon
when the status of any VSD nodes changes:

• vsd.UP1

This script is called first on the VSD primary direct client node after it is
booted.

• vsd.UP2

This script is called after completion of vsd.UP1 script on the VSD primary
direct client node.

• vsd.DOWN1

This script is called on the VSD secondary direct client node (that is, backup
VSD server) after the VSD primary direct client fails, or on the VSD primary
direct client node on which the VSD server function is stopped.

• vsd.DOWN2

This script is called after the completion of the vsd.DOWN1 script.

The following table shows a sample scripts execution flow:

254 RS/6000 SP HA Infrastructure

Table 3. RVSD Recovery Scripts Execution Sequence

VSD Nodes Status Scripts Executed on P Scripts Executed on S VSD State

1. P and S stopped Stopped

2. P starts vsd.UP1 P

vsd.UP2 P
Suspended

Act ive

2. S starts vsd.UP1 S

vsd.UP2 S

vsd.UP1 S

vsd.UP2 S
Suspended

Act ive

3. P fails vsd.DOWN1 P

vsd.DOWN2 P
Suspended

Act ive

4. P starts vsd.UP1 P

vsd.UP2 P

vsd.UP1 P

vsd.UP2 P
Suspended

Act ive

Note:

In this table, “P” stands for Primary direct client node (that is, primary VSD server), and “S” stands for
Secondary direct client node (that is, backup VSD server).

Chapter 7. VSD/RVSD 255

256 RS/6000 SP HA Infrastructure

Chapter 8. Performance Toolbox Parallel Extensions

� �

� �

This chapter describes the Performance Toolbox Parallel Extensions.
Performance Toolbox Parallel Extensions (PTPE) is a performance monitor for
RS/6000 SP systems. PTPE builds on the capabilities of the Performance
Toolbox for AIX, adding new monitoring functions that are specifically for the
RS/6000 SP system.

PTPE provides four functions:

 1. Summary performance statistics . These are the performance statistics
available through the Performance Toolbox, summarized per group of nodes,
and eventually, summarized for the entire SP.

 2. Subsystem statistics . SP-specific subsystems are monitored through this
interface for LoadLeveler, Virtual Shared Disk, and the Switch (SP or HiPS).

 3. Archiving . The process where statistics are stored on the local node for
later use in a spreadsheet, for analysis, or for storage in a database.

 4. PTPE Application Programming Interface . This allows the statistics collected
by PTPE to be accessed through customer applications using the PTPE API
subroutines.

This chapter will cover these topics, as well as the installation and configuration
of PTPE. Collection examples are provided at the end of this chapter.

 Copyright IBM Corp. 1996 257

8.1 Design Objectives

� �

� �

The design objectives behind PTPE correlate with the design objectives of the
High Availability Infrastructure: Topology Services, Group Services, and Event
Management. The High Availability Infrastructure is dependent on the existence
of a pool of information reflecting the status of hardware and subsystems, and
will eventually reflect the status of software and processes. Rather than
inventing a completely new information provider of that kind, the advantages and
infrastructure of Performance Toolbox for AIX were selected to provide the
information necessary to enable a High Availability Infrastructure.

The three main objectives for the development of PTPE are:

 1. Collecting SP-specific performance data

 2. Providing an RS/6000 SP runtime operations monitor

 3. Providing tools for data analysis and data relationship analysis

PAIDE/6000, the agent component of Performance Toolbox, is used as the
statistics database for the High Availability Infrastructure. When availability
needs to be implemented, statistics data of the involved subsystems must be
available in order to take appropriate actions on failures. When the Event
Manager client requests the status of the switch subsystem, the request is
directed to the Event Manager cache on the local node. The Event Manager
cache is regularly updated from the shared memory controlled by PAIDE/6000.

258 RS/6000 SP HA Infrastructure

The PAIDE/6000 shared memory is fed by the Resource Monitor. PAIDE/6000
plays a fundamental part in the whole design of PSSP V2.2.

Performance Toolbox Parallel Extensions is built on top of the functionality of
PAIDE/6000. Looking at the design objectives again, PTPE enables a system
administrator to:

• Collect SP-specific performance data. This criteria is satisfied by
implementing two different monitoring schemes:

 1. Collecting summary statistics. By grouping nodes together logically, a
whole group of nodes collect performance statistics, and one group
manager collects all that data. This creates a new set of performance
statistics called the summary statistics.

 2. Collecting subsystem statistics. The High Availability Infrastructure
software already collects and uses subsystem statistics. However, the
way in which PTPE uses this information is slightly different in nature.
When monitoring subsystem information, a user wants to see regularly
refreshed statistics data. The Event Manager requests the Resource
Monitor to give regular updates about subsystems, but requests updates
on VSD only every 10 seconds. A user investigating the VSD subsystem
may request information on a more frequent basis, for instance, every 5
seconds. Through the xmperf program, PTPE allows a user to monitor
with a monitoring frequency as small as 1 second. The High Availability
Infrastructure is based on event-driven information retrieval. Information
retrieval happens based on monitoring intervals, defined in the SDR
class EM_Resource_Class. This means that the information in the
shared memory does not always reflect the actual status, that is, statistic
value.

• Act as the RS/6000 SP runtime operations monitor. When trying to display
performance statistics through the Performance Manager, larger RS/6000 SP
systems (greater than 24 nodes) cannot be displayed in the same 3dmon
window. By collecting summary statistics of groups of nodes, the display
window can be decreased dramatically, without losing important information
about the performance status of the group. A monitored group will develop
a performance pattern. When this pattern is different from the previous
moments, the group can be examined on an individual basis.

• Perform data analysis and data relationship analysis. PTPE implements a
method to archive data and to manipulate that archived data, so that
relational analysis can be performed. In xmperf, the azizo program allows a
system administrator to do analysis only on data that is recorded. If
performance statistics are influenced by data other than the recorded
statistics, the relationship is lost. PTPE provides an API which allows a
programmer to write applications to analyze the archived data. The archive
can contain all available statistics, but may also be restricted to a selected
number of statistics.

Because the High Availability Infrastructure depends on the PAIDE/6000
functionally, PAIDE/6000 is shipped automatically as a component of PSSP V2.2.

An additional advantage of this enhanced packaging structure is the changed
pricing related to the Performance Toolbox. Previously, PAIDE/6000 had to be
purchased per node individually, and for the Performance Toolbox Manager
there was a one-time charge for the managing machine (usually the Control
Workstation). Now, PAIDE/6000 is shipped at no cost with PSSP V2.2, so only the

Chapter 8. Performance Toolbox Parallel Extensions 259

managing applications are required to be purchased to harvest the advantages
of the Performance Toolbox infrastructure. The two Licensed Program Products
that explore the data collected by PAIDE/6000 are:

 1. Performance Manager/6000 for AIX

 2. Performance Toolbox Parallel Extensions for AIX. PTPE is a feature of PSSP
Version 2.2.

Both products are available for a one-time charge, and there is a charge for
each RS/6000 SP system PTPE is used on.

Also, when using Performance Toolbox for AIX, displaying individual
performance statistics for more than 16 to 24 nodes can prove difficult, certainly
when you use the 3D monitor. PTPE is designed so that the system
administrator can configure groups of nodes that logically belong together. Each
of these groups of nodes represent a particular function and particular behavior
pattern in their usage.

Note: Grouping in the PTPE sense is not related to the other RS/6000 SP
grouping functions.

By grouping functionally similar nodes together, a system administrator can now
concentrate on monitoring groups of nodes rather than monitoring nodes
individually. If a group′s behavior changes over time, the monitoring can then
concentrate on monitoring the members of the group, since the normal
Performance Toolbox functionality will be available as well.

This functionality of PTPE and PAIDE/6000 and Performance Manager/6000
enables a system administrator to:

 1. Collect performance statistics.

 2. Collect summary performance statistics.

 3. Collect RS/6000 SP specific subsystem statistics.

 4. Monitor RS/6000 SP operations.

 5. Store and archive statistics for data analysis and relationship analysis.

 6. Write customized applications using the PTPE API.

260 RS/6000 SP HA Infrastructure

8.2 PTX/6000 Functional Overview

� �

� �

The Performance Toolbox for AIX consists of the Performance Manager/6000 and
PAIDE/6000; they are also called the manager and the agent, respectively.

Usually, the PAIDE/6000 component (the agent) is installed on all machines or
nodes that require monitoring. The agent software monitors local application
and AIX performance statistics. These statistics are only collected when
requested, that is, when a local or remote data consumer requests performance
statistics from a particular machine. It is at this time that the agent software
starts collecting data and allocates a piece of shared memory in which the
statistics are stored. After a time out period, the shared memory segment is
cleared and freed.

Performance statistics are provided locally by the xmservd program, which is
started by inetd on the request of a data consumer. The data is stored in shared
memory through the System Performance Measurement Interface (SPMI). The
SPMI is an API which can also be used by other applications that provide
monitoring information. Such an application is called a Dynamic Data Supplier
(DDS). A Dynamic Data Supplier is functionally similar to the function supplied
by the xmservd application, but it monitors application-related monitoring
statistics. In the High Availability Infrastructure, both the Resource Monitor and
the Event Manager interface with the SPMI.

Chapter 8. Performance Toolbox Parallel Extensions 261

Local and remote data consumers can access the shared memory, that is, the
stored statistics, by using the Remote Statistics Interface (RSI). The RSI API
allows you to access more than one xmservd daemon, and thus allows you to
monitor a cluster of machines at the same time.

262 RS/6000 SP HA Infrastructure

8.3 PTX Parallel Extensions Functional Overview

� �

� �

As previously mentioned, the Parallel Extensions to Performance Toolbox
performs the following functions:

 1. Collecting SP-specific performance data . SP-specific performance data is
currently implemented for the following subsystems:

• The Switch

• LoadLeveler

• VSD

One of the tasks in the High Availability Infrastructure in PSSP V2.2 is to
monitor subsystems and hardware. This task is performed by the Resource
Monitor component. Particularly, the harmld daemon provides this
information and feeds the subsystems performance statistics through the
Dynamic Data Supplier and SPMI interface into shared memory.

This information can be used to monitor through the Performance Manager
software, but it is specifically used for the High Availability Infrastructure.
The Event Manager (haem) reads this information from the shared memory
segment to feed the subsystems responsible for providing information about
the hardware and software status of the RS/6000 SP system.

 2. SP runtime monitoring . The second part of the Parallel Extensions is built
from the idea that a system administrator should have a global view of the
RS/6000 SP performance behavior. Also, given the large number of nodes in

Chapter 8. Performance Toolbox Parallel Extensions 263

bigger RS/6000 SP systems, it is humanly impossible to view all nodes at the
same time from, for instance, the 3dmon application. Runtime monitoring
can be accomplished by summarizing performance statistics of individual
nodes and displaying the summaries of groups of nodes rather than
individual nodes. The summary statistics are collected by Data Manager
nodes from individual collector nodes by the spdmcold daemon (the RS/6000
SP Data Manager COLlector Daemon). The spdmcold daemon communicates
with its collectors, the spdmspld daemons (the RS/6000 SP Data Manager
SamPLer Daemon) by way of a private protocol.

On top of the Data Manager nodes (summarizing collected statistics for
groups of nodes), the Data Manager nodes are also summarized. The
summary statistics of the Data Managers are collected and summarized at a
higher level by the Central Coordinator. This will be discussed in more
detail later in this chapter.

Both spdmcold and spdmspld respectively feed and read from the shared
memory segment by way of the SPMI interface. Contrary to other remote
data consumers, the spdmcold daemon does not use the RSI interface;
however, xmperf and 3dmon, as part of the Performance Manager software, do
use the RSI interface.

 3. Data Analysis and Data Relationship Analysis . Performance Manager
provides the ability to analyze performance data with azizo. However, azizo
can only analyze data that was collected from the recordings of a monitoring
console. This means that if a statistic is influenced by a statistic that was not
recorded, the relationship will never be found. Also, analysis is restricted to
derivatives like maximum, minimum, and average statistics.

In order to be able to find statistic relationships, all collected data should be
recorded and archived. The archive created by PTPE is created on every
node. The analysis tools are provided through the PTPE API interface. So,
using this API, relational statistics can be retrieved from the archive by
writing applications.

The shared memory segment that is allocated by the Performance Agent
software will be extended for the RS/6000 SP specific statistics. If no other Data
Supplier, like the harmld daemon, is running at that moment, then the extended
shared memory segment is created by the ptpertm program (PTPE RunTime
Manager). This program is invoked during the startup of xmservd from inetd, by
specifying this program as a supplier program in the /etc/perf/xmservd.res file.
The entry that appears in the /etc/xmservd.res file should look like this:

supplier: /usr/lpp/ptpe/ptpertm -p

Also, this program makes sure that if the harmld daemon is not running, it is
started. The harmld daemon is part of the Resource Monitor. All statistics
provided by PTPE and the harmld daemon will be fed into this extended shared
memory segment and are readable by local data consumers through the SPMI
interface and by remote data consumers through the RSI interface.

264 RS/6000 SP HA Infrastructure

8.3.1 Parallel Ext ensions

� �

� �

Performance statistics provided by the performance agent are stored in a shared
memory segment. These statistics are either a quantity value or a ratio value.
For instance, a value like TCP/sndtotal represents the number of packets sent in
the last sampling interval, and thus this value is a quantity. The value
CPU/glwait represents a ratio, or a percentage, of the time the CPU is waiting for
I/O.

All performance statistics provided by the extended shared memory segment
also represent values for specific actions. These actions are:

 1. provide , this value represents whether this statistic is available for
monitoring on the node. The PTPE subsystem knows about all statistics, and
thus all statistics are represented in the shared memory segment. If a
statistic cannot be found on the node, the provide flag is set to off or 0. This
flag will be referenced by subroutines from the PTPE API, when the statistic
value is referenced by an application. If the provide flag is 0, the requesting
subroutine knows not to expect data of this statistic.

 2. forward , this value tells the SPDM sampler daemon to forward this statistic
to its Data Manager. Forward values can be 0 or 1.

 3. archive , this value is set when this statistic needs to be archived. Forward
values can be 0 or 1.

The system administrator can configure this behavior in the file: /etc/perf/ptpe.cf.

Chapter 8. Performance Toolbox Parallel Extensions 265

8.4 PTPE Monitoring Hierarchy

� �

� �

In order to set up an environment that allows you to collect summary statistics,
PTPE must be configured with a monitoring hierarchy. The first tier consists of
the Data Collector nodes. The collector nodes provide the performance statistics
for the local subsystems and pass on performance statistics to the next tier: the
Data Manager tier. The Data Manager can collect performance statistics for as
many nodes as you wish; however, generally Data Managers collect
performance statistics for up to 16 nodes. Of course, there may be situations
where an RS/6000 SP system will have more than 16 nodes. Grouping
considerations are discussed later in this chapter.

The Data Manager tier reports to the highest level in the hierarchy, the Central
Coordinator tier. The Central Coordinator collects the summary data of the Data
Managers and summarizes the Data Managers′ performance statistics of the
Data Managers. The summarized performance statistics that are provided by
the Central Coordinator represent the total performance overview of one RS/6000
SP system. The performance statistics values that come from the Central
Coordinator do not make sense for individual components of the RS/6000 SP, but
provide a global impression. This information could be further investigated by
sub-analyzing the underlying layers, such as the Data Managers.

266 RS/6000 SP HA Infrastructure

8.4.1 Hierarchy Example

� �

� �

Creating a sampling hierarchy will strongly depend on the way your RS/6000 SP
works and how it is configured. Scientific usage of a system differs completely
from the way a LAN Consolidation RS/6000 SP works. Later in this chapter, the
specific hierarchy configuration methods are discussed in more detail.

In the example shown above, the hierarchy is configured in a six-node RS/6000
SP system. The system is logically divided into two hierarchy groups, both
reporting to their own Data Managers. The Data Managers are also Data
Collectors. When looking at the first group (nodes 1, 2, and 3), node 3 is
assigned as the Data Manager of that group. All three spdmspld daemons on the
node communicate to the spdmcold daemon on node 3. The spdmspld daemon on
nodes 1 and 2 communicate through the network while the spdmspld daemon on
node 3 communicates locally.

Both Data Managers, nodes 3 and 6, report their summary statistics to the
Central Coordinator, node 4. The basic rule in assigning a Central Coordinator
is that this node cannot also be a Data Manager. The Central Coordinator
communicates to its Data Managers exclusively through the network.

Chapter 8. Performance Toolbox Parallel Extensions 267

8.5 Installing PTPE

� �

� �

Now, in PSSP V2.2, the PAIDE/6000 is a prerequisite of a component in the PSSP
software: ssp.ha, the High Availability Infrastructure software. The PAIDE/6000
software will be shipped at the same time the PSSP software is ordered. Also,
for PSSP V2.2, the software is of level PAIDE/6000 V2.2. Normally, this level of
software would be configured for AIX V4.2 configurations. However, this level is
also supported for AIX 4.1.4 systems and up.

This new way of packaging also changes the pricing structure of the PAIDE/6000
product. Previously, the PAIDE/6000 software had a one-time charge per node.
Now PSSP V2.2 comes with PAIDE/6000 at no charge, independent from the
number of nodes.

To fully harvest the PAIDE/6000 functionality, two products can be purchased on
a one-time charge basis:

 1. Performance Manager , which provides the applications xmperf, 3dmon, exmon
and azizo. There is a charge for each machine the Performance Manager is
running on.

 2. Performance Toolbox Parallel Extensions , which is charged per RS/6000 SP
system, and is a feature of the PSSP V2.2 software.

In order to use the PTPE functionality on the entire system, PTPE needs to be
installed on all nodes. This requires approximately 4 MByte of storage on each
node.

268 RS/6000 SP HA Infrastructure

� �

� �

After completing the installation of PTPE on the Control Workstation, the
installation process created two new SDR classes in each configured and active
partition. The new SDR classes are:

 1. SPDM. This class stores the information related to this partition and the
characteristics of the Central Coordinator. Also, the sampling rate of
collecting and archiving is stored in this file.

 2. SPDM_NODES. All reporting Data Managers and Reporters belonging to this
partition are listed in this class.

Also, a file is created in each partition′s file directory, containing all the
performance statistics that a Data Manager can expect from its reporters. This
file is called SPDM_STATS.

Chapter 8. Performance Toolbox Parallel Extensions 269

8.6 Configuring PTPE

� �

� �

As discussed before, the hierarchy of a PTPE configuration strongly depends on
the usage of the RS/6000 SP system. Therefore, the hierarchy configuration
command understands three methods of configuring a hierarchy:

 1. Frame ptpehier -f configures a hierarchy based on the frame layout of the
RS/6000 SP system. Each frame contains a group of nodes reporting to a
Data Manager.

 2. Ethernet ptpehier -e configures a hierarchy that reflects the Ethernet
subnetting in the RS/6000 SP. Each Ethernet subnet is configured as one
group of nodes reporting to a Data Manager. Each subnet Data Manager
reports to a Central Coordinator.

 3. Interactively ptpehier -i -c nodexyz < /tmp/input configures a hierarchy
according to the input file /tmp/input and with a Central Coordinator node
nodexyz.

270 RS/6000 SP HA Infrastructure

8.6.1 Determining Hierarchy

� �

� �

When configuring the hierarchy with flags -e or -f, the Data Manager and the
Central Coordinator are randomly selected. When configuring a hierarchy with
flags -e, -f, or -i, the Central Coordinator can be set specifically with the -c flag.
When configuring the hierarchy with ptpehier -i, the nodes listed in the input file
are assigned to their respective roles. The format should look as follows:

{
sp21n04
sp21n05
}
{
sp21n06
sp21n07
}

In this example, the hierarchy consists of two groups of nodes. The Data
Manager of each of the groups is the node listed at the top of each group. In
this example, nodes sp21n04 and sp21n06 would become Data Managers. If the
-c flag is provided, the Central Coordinator will be the node listed with the flag.
Otherwise, one of the remaining nodes will become the Central Coordinator. A
Data Manager cannot be a Central Coordinator.

Chapter 8. Performance Toolbox Parallel Extensions 271

8.6.2 Configuring PTPE, Miscellaneous

� �

� �

PTPE does not cross partition boundaries. This means that setting up a
hierarchy is determined by the way the system is partitioned. There are
scenarios that a system administrator should be aware of when the RS/6000 SP
system is (or will be) partitioned.

The scenarios are based on newly-delivered systems. The default partition,
when configuring the SDR for the first time, will be a total system; that is, all the
nodes will be in one partition. When the PTPE hierarchy is configured, this
partition is referenced and accordingly reflected in the PTPE hierarchy.

When the system administrator decides to change the partitioning of the RS/6000
SP system, the PTPE hierarchy will not be updated. It will work as if nothing
happened to the system. But when the PTPE hierarchy needs to be
re-established, the ptpehier command only references the partitions. This
means that the old PTPE hierarchy cannot be reconfigured. So when a system
undergoes partitioning, the PTPE hierarchy should be reconfigured accordingly.

In order to manage the PTPE configuration and to issue control commands, such
as to start or stop collections, the user ID should be configured with a primary
group named perfmon. This group is automatically created when installing
PTPE. If no propagation mechanism is used for user administrative configuration
files, the nodes may have different group IDs for the perfmon group. Make sure
that each node will eventually get updated with similar group IDs.

272 RS/6000 SP HA Infrastructure

Finally, the supported machines in a PTPE hierarchy can be only nodes listed in
the SDR. So the Control Workstation cannot be a part of the monitoring
hierarchy.

Chapter 8. Performance Toolbox Parallel Extensions 273

8.7 Using PTPE

� �

� �

When the RS/6000 SP system is partitioned, each partition should be configured
with its own hierarchy, with each partition represented by a designated Central
Coordinator. There are two ways to configure and control the PTPE monitoring
hierarchy:

 1. Using the command line interface, with commands like ptpehier and
ptpectrl.

 2. With the Performance Toolbox Perspectives tool. This tool is to be used
when the ssp.perfmon.gui fileset is installed on the Control Workstation. The
Perspectives launch pad will show a perfmon icon after installation of
ssp.perfmon.gui. Later in this chapter, the Perspectives interface for
Performance Toolbox will be discussed in detail.

With the command line interface, the monitoring hierarchy in each partition can
be managed and controlled by:

• Setting the SP_NAME environment variable

• Using the ptpectrl command

274 RS/6000 SP HA Infrastructure

� �

� �

PTPE will cause extra overhead on the total RS/6000 SP system. Through the
Performance Toolbox Parallel Extensions, approximately 500 statistics are
collected and manipulated, on top of the statistics already monitored through
Performance Toolbox. Also, the Resource Monitor subsystem in the High
Availability Infrastructure monitors 82 extra subsystem statistics. In order to
minimize the impact of this overhead, PTPE allows a system administrator to
select the statistics for monitoring. The file /etc/perf/ptpe.cf can be used to set
up a selected number of monitored statistics. This file originates in the LPP
directory of PTPE: /usr/lpp/ptpe/samples. The general format of this
configuration file is:

Stat/substat:x,y

When PTPE feeds summary statistics into the shared memory segment, the full
annotation of the statistic is:

DDS/IBM/PSSP.harmld/CSS/nobufs

or

DDS/IBM/PTPE_sum/DDS/IBM/CPU/glwait

In /etc/perf/ptpe.cf, the statistics do not need to be listed in the long format. It is
sufficient to provide the subsystem′s real statistic, like CPU/glwait, or a wildcard,
as in the foils example of CPU/*. Or, if a system administrator is only interested
in the CPU summary statistics, the ptpe.cf can contain only the line:

DDS/IBM/PTPE_sum/DDS/IBM/CPU/*:1,0

Chapter 8. Performance Toolbox Parallel Extensions 275

The configuration part following the colon tells the PTPE software how to react to
the statistic just listed:

• The x-position represents the collection action.

• The y-position represents the archive action.

When x =0, then collection is false. When x =1, then collection is true. When
y =0, then archiving is false. When y =1, then archiving is true.

The following chart depicts the relationship between the ptpe.cf file configuration
and the values of provide, forward, and archive in the shared memory segment.

Figure 1. Shared Memory

276 RS/6000 SP HA Infrastructure

8.8 PTPE and Perspectives

� �

� �

Configuration and the control of PTPE can also be performed through the
Perspectives interface. Perspectives is a new consolidated Graphical User
Interface that was developed for PSSP V2.2. The Perspectives application for
PTPE can be launched from the Perspectives menu (invoked through the
perspectives command), but it can also be launched directly from the command
line with spperfmon. The PTPE GUI is shipped with the ssp.perfmon.gui fileset.

In the following section, the configuration and control of PTPE will be covered
step by step, similar to what already has been covered with command line
programs.

Chapter 8. Performance Toolbox Parallel Extensions 277

8.8.1 How to Use PTPE Perspectives

� �

� �

When starting the spperfmon application, the window that shows is empty,
provided no hierarchy is stored in the SDR. The performance monitor
Perspectives interface has three window areas:

 1. The action buttons in the top of the window: Window, Action, View, Options
and Help.

 2. The action icons in the icon bar of the window. Depending on which pane is
active in the Perspectives window, the number of action icons will be
different. Always present are the following icons:

• The Sort Object icon which allows objects in a certain pane to be
displayed according to a certain sorting rule, for instance by node
number.

• The Select All icon.

• The Deselect All icon.

• The Notebook icon which provides detailed information on selected
objects, either a node, a system partition, or a hierarchy member.

 3. The pane windows area , which can contain three views:

• The hierarchy

• The nodes

• The system partitions

278 RS/6000 SP HA Infrastructure

The way in which the perfmon Perspectives application works is to select a
partition in which to work (compare this with setting the SP_NAME variable
to a partition name), then select a node, and finally select the role the
selected node is going to play in the hierarchy.

The number of icons in the icon area depend on the active panes. The
following list shows the panes and their associated icons:

a. Hierarchy pane

• Remove Data Manager

• Remove Central Coordinator

b. Nodes pane

• Filter Objects

• Remove Active Filter

 c. Partition pane

• Select Central Coordinator

• Select Data Manager

• Select Data Reporter

Chapter 8. Performance Toolbox Parallel Extensions 279

� �

� �

When the System Partition pane and the Nodes pane are added to the workshell,
one node must take the role as Central Coordinator. Select a node and click on
the Central Coordinator icon to set its role.

280 RS/6000 SP HA Infrastructure

� �

� �

If the Central Coordinator is selected, the next tier can now be defined by again
selecting a node in the nodes pane, and assigning a Data Managers role to the
selected node. When the Data Manager tier is defined, the Data Reporters can
be assigned to their roles. Select nodes from the nodes pane, and activate their
roles by clicking on the Data Reporter icon.

Chapter 8. Performance Toolbox Parallel Extensions 281

� �

� �

When the role selection is finished, the hierarchy pane graphically shows the
hierarchy.

Rather than selecting nodes individually from the actions associated to the
pulldown Action button, the hierarchy could also be defined by selecting the
Create using Ethernet button. All options available through the command line
interface are available in the perfmon Perspectives application as well.

Also, after the hierarchy is defined, you can use the Actions button to start the
collecting of data, the archiving of the statistics, or both.

282 RS/6000 SP HA Infrastructure

� �

� �

The Window button contains the actions for saving the configuration into the
SDR.

Objects in the respective panes can be presented in several ways. The View
button allows actions to change the objects′ appearance in the panes. Window
styles, like colors and fonts, can now be selected. This is not possible from the
Tcl-based spmon application. These window styles can be saved and retrieved
later, when the perfmon Perspectives application is invoked again.

Finally, as expected from all X/Motif applications, extensive help is available
through the Help button.

Chapter 8. Performance Toolbox Parallel Extensions 283

8.9 Practical Experiences

� �

� �

If for any reason, a situation like the one depicted in the foil occurs, the solution
shown is the best way to recover. Other solutions may lead to inconsistencies in
the data or configuration.

284 RS/6000 SP HA Infrastructure

8.10 PTX/6000 and PTPE, Monitoring Subsystems

� �

� �

This figure shows the path an operator has to follow from the Performance
Manager software to add statistics to a remote or local console while monitoring
RS/6000 SP subsystem statistics.

Chapter 8. Performance Toolbox Parallel Extensions 285

8.11 PTX/6000 and PTPE, Summary Statistics

� �

� �

This figure shows the path that can be followed when adding PTPE summary
statistics to a local or remote console.

286 RS/6000 SP HA Infrastructure

8.11.1 Sample Output of Summary Statistics

� �

� �

This figure shows the CPU statistics output of four nodes and their Data
Manager. The CPU statistics measured are CPU/wait, CPU/kernel, and
CPU/user. The top node represents the Data Manager, showing the summary
statistics of the four node consoles below the Data Manager. The top console
provides more information about the four node cluster in terms of overall usage
and efficiency than one could retrieve by investigating the node consoles
individually.

Chapter 8. Performance Toolbox Parallel Extensions 287

8.11.2 Sample Output of 3dmon

� �

� �

This output shows an example similar to the one in 8.11.1, “Sample Output of
Summary Statistics” on page 287, now displayed from the 3dmon program. In
order to make 3dmon understand the statistics provided by the DDS protocol, the
/usr/lpp/perfmgr/3dmon.cf file needs to be updated. Depending on the host-set
you choose to display, you must apply changes to the selected section in the
3dmon.cf file, for example, in the small host-set or the large host-set. In this
example, the small host-set was changed so that it only monitors and displays
the CPU and summary CPU statistics. The 3dmon file looks similar to the
following:

wildcard: hosts
CPU/glkern
CPU/gluser
CPU/glwait
DDS/IBM/PTPE_sum/CPU/glkern
DDS/IBM/PTPE_sum/CPU/gluser
DDS/IBM/PTPE_sum/CPU/glwait

Of course, as mentioned before, if the PTPE_sum statistics are not found on a
node, the ptpertm program will set the value for provide to 0, and thus does not
show on the 3dmon display.

288 RS/6000 SP HA Infrastructure

Appendix A. Resource Class Definition

This appendix contains a list of the Event Management Resource Classes that
are defined in the SDR as EM_Resouce_Class.

:

Table 4. Resource Class Definition.. This table lists the Event Management Resource Classes that are
defined in the default EM_Resource_Class SDR class.

rcClass rcResource_monitor rcObservation_interval rcReporting_interval

IBM.PSSP.CSS IBM.PSSP.harmld 5 5

IBM.PSSP.HARMLD IBM.PSSP.harmld 30 30

IBM.PSSP.LL IBM.PSSP.harmld 250 250

IBM.PSSP.Membership Membership 0 0

IBM.PSSP.PRCRS IBM.PSSP.harmld 86400 86400

IBM.PSSP.Prog IBM.PSSP.harmpd 0 0

IBM.PSSP.Response Response 0 0

IBM.PSSP.SP_HW IBM.PSSP.hmrmd 0 0

IBM.PSSP.VSD IBM.PSSP.harmld 10 10

IBM.PSSP.aixos.CPU aixos 15 0

IBM.PSSP.aixos.Disk aixos 30 0

IBM.PSSP.aixos.FS aixos 60 0

IBM.PSSP.aixos.LAN aixos 40 0

IBM.PSSP.aixos.Mem aixos 15 0

IBM.PSSP.aixos.PagSp aixos 30 0

IBM.PSSP.aixos.Proc aixos 60 0

IBM.PSSP.pm IBM.PSSP.pmanrmd 0 0

 Copyright IBM Corp. 1996 289

290 RS/6000 SP HA Infrastructure

Appendix B. ibmSP MIB

This appendix contains specific object types that are supplied for the ibmSP MIB.

-- Licensed Materials - Property of IBM
--
-- 5765-529
--
-- (C) Copyright IBM Corp. 1996 All Rights Reserved.
--
-- US Government Users Restricted Rights - Use, duplication or disclosure
-- restricted by GSA ADP Schedule Contract with IBM Corp.
--
-- Script Name: ibmSPMIB.my
--
-- Description:
-- definition of the ibmSP mib.
--
-- ″@(#)49 1.13 src/ssp/snmp_proxy/ibmSPMIB.my, probmgmt, ssp_rloc,
-- rloct7d6 9/6/96 11:15:01″

IBMSP-MIB DEFINITIONS ::= BEGIN

IMPORTS
Counter, Gauge, TimeTicks, IpAddress, DisplayString, enterprises

 FROM RFC1155-SMI
 TRAP-TYPE
 FROM RFC1215;

ibm OBJECT IDENTIFIER ::= { enterprises 2 }

ibmProd OBJECT IDENTIFIER ::= { ibm 6 }

ibmSP OBJECT IDENTIFIER ::= { ibmProd 117 }

--
--

-- IBM SP MIB

--

ibmSPConfig OBJECT IDENTIFIER ::= { ibmSP 1 }

ibmSPhostnodenumber OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

″A number from 0 to the total number of slots. It identifies
the relative node number assigned to this processor.″

::= { ibmSPConfig 1 }

ibmSPhostpartaddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory

 Copyright IBM Corp. 1996 291

DESCRIPTION
″ip address assigned to the system partition in which this host
resides. If this host is acting as a control workstation (i.e.
the value of ibmSPhostnodenumber.0 is 0), this will be the ip
address of the default partition.″

::= { ibmSPConfig 2 }

ibmSPCWScodeversion OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The ssp release that is installed on the control workstation.
Values are of the form 2.0, 2.1, etc. A NULL value means the
release is not known.″

::= { ibmSPConfig 3 }

ibmSPprimaryCWSname OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″hostname of the primary control workstation.″
::= { ibmSPConfig 4 }

ibmSPprimaryCWSoperstatus OBJECT-TYPE
SYNTAX INTEGER {

up(1),
down(2)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION
″operational state of the primary control workstation.″
::= { ibmSPConfig 5 }

ibmSPbackupCWSname OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″hostname of the backup control workstation.″
::= { ibmSPConfig 6 }

ibmSPbackupCWSoperstatus OBJECT-TYPE
SYNTAX INTEGER {

up(1),
down(2)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION
″operational state of the backup control workstation.″
::= { ibmSPConfig 7 }

ibmSPSystemTable OBJECT-TYPE
SYNTAX SEQUENCE OF IbmSPNodeEntry
ACCESS not-accessible
STATUS mandatory

292 RS/6000 SP HA Infrastructure

DESCRIPTION
″A list of SPNodeEntrys.″
::= { ibmSPConfig 8 }

ibmSPNodeEntry OBJECT-TYPE
SYNTAX IbmSPNodeEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
″Identifies a processor node residing in an SP frame.″
INDEX { ibmSPpartitionaddr, ibmSPnodenumber }
::= { ibmSPSystemTable 1 }

IbmSPNodeEntry ::=
SEQUENCE {

 ibmSPpartitionaddr
IpAddress,

 ibmSPnodenumber
INTEGER,

 ibmSPframenumber
INTEGER,

ibmSPslotnumber
INTEGER,

 ibmSPslotsused
INTEGER,

 ibmSPinitialhostname
 DisplayString,
 ibmSPreliablehostname
 DisplayString,
 ibmSPsysparname
 DisplayString,
 ibmSPcodeversion
 DisplayString
 }

ibmSPpartitionaddr OBJECT-TYPE
 SYNTAX IpAddress
 ACCESS read-only

STATUS mandatory
DESCRIPTION
″ip address assigned to the partition in which this node resides.″
::= { ibmSPNodeEntry 1 }

ibmSPnodenumber OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

″A number from 1 to the total number of slots. It identifies
 the relative node number assigned to the processor.″

::= { ibmSPNodeEntry 2 }

ibmSPframenumber OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

″A number from 1 to the number of frames. It identifies
 the number of the frame in which the processor node resides.″

Appendix B. ibmSP MIB 293

::= { ibmSPNodeEntry 3 }

ibmSPslotnumber OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

″A number from 1 to the number of slots in a frame. It
dentifies the number of the first slot occupied by the
processor node within the frame.″

::= { ibmSPNodeEntry 4 }

ibmSPslotsused OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

″A number from 1 to two. It identifies the number of slots
occupied by the processor.″

::= { ibmSPNodeEntry 5 }

ibmSPinitialhostname OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION

″The initial hostname assigned to the node during the SP customization
phase.″
::= { ibmSPNodeEntry 6 }

ibmSPreliablehostname OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION

″The hostname associated with the SP ethernet.″
::= { ibmSPNodeEntry 7 }

ibmSPsysparname OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION

″The name of the system partition containing this processor
node.″
::= { ibmSPNodeEntry 8}

ibmSPcodeversion OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The ssp release that is installed on the processor node.
Values are of the form 2.0, 2.1, etc. A NULL value means the
release is not known.″

::= { ibmSPNodeEntry 9 }

-- The format of traps containing errlog entries whose tmplates
-- are defined with ′ Alert=yes′ .

294 RS/6000 SP HA Infrastructure

-- ibmSPErrlogTrap TRAP-TYPE
-- ENTERPRISE ibmSP
-- VARIABLES { ibmSPellabel, ibmSPelidentifier, ibmSPeldatetime,
-- ibmSPelsequencenum, ibmSPelmachineid, ibmSPelnodeid,
-- ibmSPelclass, ibmSPeltype, ibmSPelresource,
-- ibmSPelrscclass, ibmSPelrsctype, ibmSPellocation,
-- ibmSPelvpd, ibmSPetdescription, ibmSPetprobcauses,
-- ibmSPetusercauses, ibmSPetuseraction, ibmSPetinstcauses,
-- ibmSPetinstaction, ibmSPetfailcauses, ibmSPetfailaction,
-- ibmSPetdetaildata}
-- DESCRIPTION
-- ″These traps contain the contents of errlog entries formatted
-- into objects defining the contents of the errlog entry.
-- Since any single errlog entry does not contain all of the
-- fields defined in the collection of errlog templates, when a
-- object contains a null value, it will not be included in the
-- trap.″
-- ::= ibmSPelidentifier.0

ibmSPErrlogVars OBJECT-TYPE
SYNTAX SEQUENCE OF IbmSPErrlogEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
″A single SPNodeErrlogEntry.″
::= { ibmSP 2 }

IbmSPErrlogEntry ::=
SEQUENCE {

 ibmSPellabel
DisplayString,

 ibmSPelidentifier
DisplayString,

 ibmSPeldatetime
DisplayString,

ibmSPelsequencenum
DisplayString,

 ibmSPelmachineid
DisplayString,

 ibmSPelnodeid
DisplayString,

 ibmSPelclass
DisplayString,

 ibmSPeltype
DisplayString,

 ibmSPelresource
DisplayString,

 ibmSPelrscclass
DisplayString,

 ibmSPelrsctype
DisplayString,

 ibmSPellocation
DisplayString,

 ibmSPelvpd
DisplayString,

 ibmSPetdescription
DisplayString,

 ibmSPetprobcauses

Appendix B. ibmSP MIB 295

DisplayString,
 ibmSPetusercauses

DisplayString,
 ibmSPetuseraction

DisplayString,
 ibmSPetinstcauses

DisplayString,
 ibmSPetinstaction

DisplayString,
 ibmSPetfailcauses

DisplayString,
 ibmSPetfailaction

DisplayString,
 ibmSPetdetaildata

DisplayString
 }

ibmSPellabel OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only

STATUS mandatory
DESCRIPTION
″The label associated with the error identifier defined by
the ibmSPelidentifier object.″

::= { ibmSPErrlogVars 1 }

ibmSPelidentifier OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A unique identifier defining the type of error entry written
to the system error log existing on the host from which the
trap originated.″

::= { ibmSPErrlogVars 2 }

ibmSPeldatetime OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A timestamp identifying the time that this error log entry
was written to the system error log. It is of the form:
day month day_of_month hour:min:sec″

::= { ibmSPErrlogVars 3 }

ibmSPelsequencenum OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A decimal number which is the sequence number assigned to this
 entry. This is the value specified on the -l switch of the
errpt command used to obtain the trap data on the host from
which the trap originated.″

::= { ibmSPErrlogVars 4 }

ibmSPelmachineid OBJECT-TYPE
SYNTAX DisplayString

296 RS/6000 SP HA Infrastructure

ACCESS read-only
STATUS mandatory
DESCRIPTION
″A decimal number which is the machine ID of the host on which
the trap originated. This is the value returned by the AIX
′ uname -m′ command when issued on the host from which the trap
originated.″

::= { ibmSPErrlogVars 5 }

ibmSPelnodeid OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″An alpha-numeric string which is the node ID of the host on
which the trap originated. This is the value returned by the AIX
′ uname -m′ command when issued on the host from which the trap
originated.″

::= { ibmSPErrlogVars 6 }

ibmSPelclass OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″An alphabetic string which is the error class of this entry:
H (hardware), S (software), O (errlogger command messages).″

::= { ibmSPErrlogVars 7 }

ibmSPeltype OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″An alphabetic string which is the severity of the error entry:
′ PEND′ (impending loss of availability), ′ PERF′ (unacceptable
performance degradation), ′ PERM′ (permanent), ′ TEMP′ (temporary)
, ′ UNKN′ (unknown).″

::= { ibmSPErrlogVars 8 }

ibmSPelresource OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The resource name associated with the error. For hardware
errors this is a device name, for software errors this is
the name of the failing executable, for operator command
messages this is ′ OPERATOR′ . ″

::= { ibmSPErrlogVars 9 }

ibmSPelrscclass OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The resource class associated with the error. For hardware
errors this is a device class (or ′ NONE′) . ″

Appendix B. ibmSP MIB 297

::= { ibmSPErrlogVars 10 }

ibmSPelrsctype OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The resource type associated with the error. For hardware
errors this is a device type (or ′ NONE′) , for software errors
(when specified) this is an LPP.″

::= { ibmSPErrlogVars 11 }

ibmSPellocation OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″For hardware errors, information about the location of the
failing device (or ′ NONE′) . ″

::= { ibmSPErrlogVars 12 }

ibmSPelvpd OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″IBM or user supplied vital product data.″
::= { ibmSPErrlogVars 13}

ibmSPetdescription OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″Error description.″
::= { ibmSPErrlogVars 14}

ibmSPetprobcauses OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″Probable causes of the error.″
::= { ibmSPErrlogVars 15 }

ibmSPetusercauses OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″User actions which may have caused the error.″
::= { ibmSPErrlogVars 16 }

ibmSPetuseraction OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″Recommended actions the user may take to correct the error.″

298 RS/6000 SP HA Infrastructure

::= { ibmSPErrlogVars 17 }

ibmSPetinstcauses OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″Installation causes of the error.″
::= { ibmSPErrlogVars 18 }

ibmSPetinstaction OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″User actions which may have been performed during installation
to cause the error.″

::= { ibmSPErrlogVars 19 }

ibmSPetfailcauses OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A list of candidates which may be the source of the error.″
::= { ibmSPErrlogVars 20 }

ibmSPetfailaction OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A list of reccommended actions which may be taken to correct
the possible failures.″

::= { ibmSPErrlogVars 21 }

ibmSPeldetaildata OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″Detailed data about this particular error.″
::= { ibmSPErrlogVars 22 }

ibmSPEMVariables OBJECT IDENTIFIER ::= { ibmSP 3 }

-- The format of traps containing errlog entries whose tmplates
-- are defined with ′ Alert=yes′ .

-- ibmSPEMEventTrap TRAP-TYPE
-- ENTERPRISE ibmSP
-- VARIABLES { ibmSPEMEventID, ibmSPEMEventFlags, ibmSPEMEventTime,
-- ibmSPEMEventLocation, ibmSPEMEventPartitionAddress,
-- ibmSPEMEventVarsTableName, ibmSPEMEventVarsTableInstanceID,
-- ibmSPEMEventVarName, ibmSPEMEventVarValueInstanceVector,
-- ibmSPEMEventVarValuesTableInstanceID,
-- ibmSPEMEventVarValue, ibmSPEMEventPredicate
-- }
-- DESCRIPTION

Appendix B. ibmSP MIB 299

-- ″These traps contain the contents of events generated from the
-- PSSP Event Manager. The events have been formatted
-- into objects defining the contents of the event and where
-- the variable pertaining to the event and its value are located
-- in the ibmSP mib.
-- ::= ibmSPEMEventID.0

ibmSPEMEvent OBJECT-TYPE
SYNTAX SEQUENCE OF IbmSPEMEventEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
″A single IbmSPEMEventEntry.″
::= { ibmSPEMVariables 1 }

IbmSPEMEventEntry ::=
SEQUENCE {

 ibmSPEMEventID
INTEGER,

 ibmSPEMEventFlags
INTEGER,

 ibmSPEMEventTime
TimeTicks,

ibmSPEMEventLocation
INTEGER,

 ibmSPEMEventPartitionAddress
IpAddress,

 ibmSPEMEventVarsTableName
DisplayString,

 ibmSPEMEventVarsTableInstanceID
DisplayString,

 ibmSPEMEventVarName
DisplayString,

 ibmSPEMEventVarValueInstanceVector
DisplayString,

 ibmSPEMEventVarValuesTableInstanceID
DisplayString,

 ibmSPEMEventVarValue
DisplayString,

 ibmSPEMEventPredicate
DisplayString

 }

ibmSPEMEventID OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only

STATUS mandatory
DESCRIPTION
″The trap identifier assigned to the occurence of the Event.″
::= { ibmSPEMEvent 1}

ibmSPEMEventFlags OBJECT-TYPE
SYNTAX INTEGER {

re-arm(1),
false-predicate(2),
unregister-event(4)

}
ACCESS read-only
STATUS mandatory

300 RS/6000 SP HA Infrastructure

DESCRIPTION
″EM Flags.″
::= { ibmSPEMEvent 2}

ibmSPEMEventTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
″Elapsed time between the activation of the SP proxy sub-agent
and the occurence of the event.″

::= { ibmSPEMEvent 3}

ibmSPEMEventLocation OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The number of the SP node from which the event was generated.″
::= { ibmSPEMEvent 4}

ibmSPEMEventPartitionAddress OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The ip address of the SP partition from which the event was
generated.″

::= { ibmSPEMEvent 5}

ibmSPEMEventVarsTableName OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The name of the table in the SP MIB in which contains the variable
 definition objects.″
::= { ibmSPEMEvent 6}

ibmSPEMEventVarsTableInstanceID OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The instance identifier used to locate the row in the table named
 by the ibmSPEMEventVarsTableName object value which contains
 further information about the EM Event variable definition.″
::= { ibmSPEMEvent 7}

ibmSPEMEventVarName OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The name of the EM variable about which the event is recorded.″
::= { ibmSPEMEvent 8}

ibmSPEMEventVarValueInstanceVector OBJECT-TYPE
SYNTAX DisplayString

Appendix B. ibmSP MIB 301

ACCESS read-only
STATUS mandatory
DESCRIPTION
″The instantiation vector of the EM variable instance that resulted
in the event.″

::= { ibmSPEMEvent 9}

ibmSPEMEventVarValuesTableInstanceID OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The instance identifier used to locate the row in the
 ibmSPEMVarValuesTable identifying for which instantiation of the named
 EM variable the value is reported. This is used to obtain the current
 variable value in the table to see if it has changed since the time
 the trap was issued.

 When the value of the ibmSPEMEventLocation object does not match
 the number of the node on which the agent generating the trap is
 running, the value for this object will be null. In this case, the node
 whose node number is in the ibmSPEMEventLocation object must be
 queried to obtain the current value of the variable instance named
 by objects ibmSPEMEventVarName and ibmSPEMEventVarValueInstanceVector.
 This is accomplished by first obtaining the value of the index into
 the ibmSPEMVarValuesTable from the table named in the
 ibmSPEMEventVarsTableName object using the instance value from the
 ibmSPEMEventVarsTableInstanceID. If the value of the
 ibmSPEMEventVarsTableName object is ibmSPEMNodeDepVarsTable′ , the
 ibmSPEMNodeDepVarCurValueIndex object has the index number. If the
 value of the ibmSPEMEventVarsTableName is ′ ibmSPEMNodeIndepVarsTable′ ,
 the ibmSPEMNodeIndepVarCurValueIndex object has the index number.
 The derived index number is then encoded as an instance, followed by
 the encoded value of the ibmSPEMEventVarValueInstanceVector to obtain
 the current value of the ibmSPEMVarValue object.″
::= { ibmSPEMEvent 10}

ibmSPEMEventVarValue OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The value of the variable instance at the time of the event.″
::= { ibmSPEMEvent 11}

ibmSPEMEventPredicate OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The predicate string which caused the event.″
::= { ibmSPEMEvent 12}

ibmSPEMNodeDepVarsTable OBJECT-TYPE
SYNTAX SEQUENCE OF IbmSPEMNodeDepVarEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
″A table of node-dependent EM Variable attributes. Variables

302 RS/6000 SP HA Infrastructure

in this table are only instantiated on the node containing the
resource monitor. See the ibmSPEMNodeDepVarLocator object
description.″

::= { ibmSPEMVariables 2 }

ibmSPEMNodeDepVarEntry OBJECT-TYPE
SYNTAX IbmSPEMNodeDepVarEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
″The attributes of an event manager variable. Each octet of
the variable-length index string is encoded in a separate
sub-identifier. The number of the sub-identifiers in the index
is IMPLIED.″

INDEX { ibmSPEMNodeDepVarName }
::= { ibmSPEMNodeDepVarsTable 1 }

IbmSPEMNodeDepVarEntry ::=
SEQUENCE {

 ibmSPEMNodeDepVarName
 DisplayString,
 ibmSPEMNodeDepVarDescr
 DisplayString,
 ibmSPEMNodeDepVarType
 DisplayString,
 ibmSPEMNodeDepVarDataType
 DisplayString,
 ibmSPEMNodeDepVarSBSFormat
 DisplayString,
 ibmSPEMNodeDepVarInitValue
 DisplayString,
 ibmSPEMNodeDepVarCurValueIndex
 INTEGER,
 ibmSPEMNodeDepVarClass
 DisplayString,
 ibmSPEMNodeDepVarVecElDefn
 DisplayString,
 ibmSPEMNodeDepVarVecElDescr
 DisplayString,
 ibmSPEMNodeDepVarPTXName
 DisplayString,
 ibmSPEMNodeDepVarDefPred
 DisplayString,
 ibmSPEMNodeDepVarEventDescr
 DisplayString,
 ibmSPEMNodeDepVarLocator
 DisplayString,
 ibmSPEMNodeDepVarOrderGroup
 DisplayString
 }

ibmSPEMNodeDepVarName OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only

STATUS mandatory
DESCRIPTION
″A resource variable name as defined to the Event Manager.″
::= { ibmSPEMNodeDepVarEntry 1 }

Appendix B. ibmSP MIB 303

ibmSPEMNodeDepVarDescr OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A description of the variable, including its semantics.″
::= { ibmSPEMNodeDepVarEntry 2 }

ibmSPEMNodeDepVarType OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″One of the strings Counter, Quantity or State.″
::= { ibmSPEMNodeDepVarEntry 3 }

ibmSPEMNodeDepVarDataType OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″One of the strings long, float or SBS. SBS is only permitted
for a variable of the type State. If the value of this
object is SBS, then the definitions of the structured fields
that comprise the structured byte string contained in the
ibmSPEMNodeDepVarSBSFormat object.″

::= { ibmSPEMNodeDepVarEntry 4 }

ibmSPEMNodeDepVarSBSFormat OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″If the ibmSPEMNodeDepVarDataType object with the corresponding
instance id has a value of SBS, then this object describes the
structured fields within the variable. Included for each structured
field is the structured field name, followed by an equal sign,
followed by the data type for the field. The structured fields
are defined sequentially beginning with sequence number 0.″

::= { ibmSPEMNodeDepVarEntry 5 }

ibmSPEMNodeDepVarInitValue OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The initial value of a resource variable before it is observed
for the first time.″

::= { ibmSPEMNodeDepVarEntry 6 }

ibmSPEMNodeDepVarCurValueIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
″An index into the ibmSPEMVarValuesTable table to locate value
instances for this variable.″

::= { ibmSPEMNodeDepVarEntry 7 }

304 RS/6000 SP HA Infrastructure

ibmSPEMNodeDepVarClass OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The name of the class to which this resource variable belongs.″
::= { ibmSPEMNodeDepVarEntry 8 }

ibmSPEMNodeDepVarVecElDefn OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The name(s) of instantiation vector elements associated with the
resource variable.″

::= { ibmSPEMNodeDepVarEntry 9 }

ibmSPEMNodeDepVarVecElDescr OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A description of the instantiation vector elements associated with
the resource variable.″

::= { ibmSPEMNodeDepVarEntry 10 }

ibmSPEMNodeDepVarPTXName OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The name used to read and write the resource variable in the PTX
shared memory.″

::= { ibmSPEMNodeDepVarEntry 11 }

ibmSPEMNodeDepVarDefPred OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The default predicate to be applied to the resource variable.″
::= { ibmSPEMNodeDepVarEntry 12 }

ibmSPEMNodeDepVarEventDescr OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A description of the event generated by the application of the
default predicate.″

::= { ibmSPEMNodeDepVarEntry 13 }

ibmSPEMNodeDepVarLocator OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The name of the vector element whose value is the number of the
node containing the variable instance.″

Appendix B. ibmSP MIB 305

::= { ibmSPEMNodeDepVarEntry 14 }

ibmSPEMNodeDepVarOrderGroup OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The name of an Availability group. All events generated by the
default predicates of resource variables within this order group
name are guaranteed ordered delivery with respect to one
another.″

::= { ibmSPEMNodeDepVarEntry 15 }

ibmSPEMNodeIndepVarsTable OBJECT-TYPE
SYNTAX SEQUENCE OF IbmSPEMNodeIndepVarEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
″A table of node-independent EM Variable attributes. No EM Locator
element is defined for these variables so the location of the
resource monitor is unknown within the partition. Variables
in this table are only instantiated on the Control Work Station.
See the ibmSPEMNodeDepVarLocator object description.″

::= { ibmSPEMVariables 3 }

ibmSPEMNodeIndepVarEntry OBJECT-TYPE
SYNTAX IbmSPEMNodeIndepVarEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
″The attributes of an event manager variable. Each octet of
the variable-length index string is encoded in a separate
sub-identifier. The number of the sub-identifiers in the index
is IMPLIED.″

INDEX { ibmSPEMNodeIndepPartaddr, ibmSPEMNodeIndepVarName }
::= { ibmSPEMNodeIndepVarsTable 1 }

IbmSPEMNodeIndepVarEntry ::=
SEQUENCE {

 ibmSPEMNodeIndepPartaddr
 IpAddress,
 ibmSPEMNodeIndepVarName
 DisplayString,
 ibmSPEMNodeIndepVarDescr
 DisplayString,
 ibmSPEMNodeIndepVarType
 DisplayString,
 ibmSPEMNodeIndepVarDataType
 DisplayString,
 ibmSPEMNodeIndepVarSBSFormat
 DisplayString,
 ibmSPEMNodeIndepVarInitValue
 DisplayString,
 ibmSPEMNodeIndepVarCurValueIndex
 INTEGER,
 ibmSPEMNodeIndepVarClass
 DisplayString,
 ibmSPEMNodeIndepVarVecElDefn
 DisplayString,

306 RS/6000 SP HA Infrastructure

 ibmSPEMNodeIndepVarVecElDescr
 DisplayString,
 ibmSPEMNodeIndepVarPTXName
 DisplayString,
 ibmSPEMNodeIndepVarDefPred
 DisplayString,
 ibmSPEMNodeIndepVarEventDescr
 DisplayString,
 ibmSPEMNodeIndepVarOrderGroup
 DisplayString
 }

ibmSPEMNodeIndepPartaddr OBJECT-TYPE
 SYNTAX IpAddress
 ACCESS read-only

STATUS mandatory
DESCRIPTION
″ip address assigned to the system partition in which the
this resource variable resides.″

::= { ibmSPEMNodeIndepVarEntry 1 }

ibmSPEMNodeIndepVarName OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A resource variable name as defined to the Event Manager.″
::= { ibmSPEMNodeIndepVarEntry 2 }

ibmSPEMNodeIndepVarDescr OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A description of the variable, including its semantics.″
::= { ibmSPEMNodeIndepVarEntry 3 }

ibmSPEMNodeIndepVarType OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″One of the strings Counter, Quantity or State.″
::= { ibmSPEMNodeIndepVarEntry 4 }

ibmSPEMNodeIndepVarDataType OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″One of the strings long, float or SBS. SBS is only permitted
for a variable of the type State. If the value of this
object is SBS, then the definitions of the structured fields
that comprise the structured byte string contained in the
ibmSPEMNodeIndepVarSBSFormat object.″

::= { ibmSPEMNodeIndepVarEntry 5 }

ibmSPEMNodeIndepVarSBSFormat OBJECT-TYPE
SYNTAX DisplayString

Appendix B. ibmSP MIB 307

ACCESS read-only
STATUS mandatory
DESCRIPTION
″If the ibmSPEMNodeIndepVarDataType object with the corresponding
instance id has a value of SBS, then this object describes the
structured fields within the variable. Included for each structured
field is the structured field name, followed by an equal sign,
followed by the data type for the field. The structured fields
are defined sequentially beginning with sequence number 0.″

::= { ibmSPEMNodeIndepVarEntry 6 }

ibmSPEMNodeIndepVarInitValue OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The initial value of a resource variable before it is observed
for the first time.″

::= { ibmSPEMNodeIndepVarEntry 7 }

ibmSPEMNodeIndepVarCurValueIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
″An index into the ibmSPEMVarValuesTable table to locate value
instances for this variable.″

::= { ibmSPEMNodeIndepVarEntry 8 }

ibmSPEMNodeIndepVarClass OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The name of the class to which this resource variable belongs.″
::= { ibmSPEMNodeIndepVarEntry 9 }

ibmSPEMNodeIndepVarVecElDefn OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The name(s) of instantiation vector elements associated with the
resource variable.″

::= { ibmSPEMNodeIndepVarEntry 10 }

ibmSPEMNodeIndepVarVecElDescr OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A description of the instantiation vector elements associated with
the resource variable.″

::= { ibmSPEMNodeIndepVarEntry 11 }

ibmSPEMNodeIndepVarPTXName OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory

308 RS/6000 SP HA Infrastructure

DESCRIPTION
″The name used to read and write the resource variable in the PTX
shared memory.″

::= { ibmSPEMNodeIndepVarEntry 12 }

ibmSPEMNodeIndepVarDefPred OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The default predicate to be applied to the resource variable.″
::= { ibmSPEMNodeIndepVarEntry 13 }

ibmSPEMNodeIndepVarEventDescr OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A description of the event generated by the application of the
default predicate.″

::= { ibmSPEMNodeIndepVarEntry 14 }

ibmSPEMNodeIndepVarOrderGroup OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The name of an Availability group. All events generated by the
default predicates of resource variables within this order group
name are guaranteed ordered delivery with respect to one
another.″

::= { ibmSPEMNodeIndepVarEntry 15 }

ibmSPEMVarValuesTable OBJECT-TYPE
SYNTAX SEQUENCE OF IbmSPEMVarValuesEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
″A table of current EM Variable values. Variables.″
::= { ibmSPEMVariables 4 }

ibmSPEMVarValuesEntry OBJECT-TYPE
SYNTAX IbmSPEMVarValuesEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
″The current value of an event manager variable instantiation.
The value of the ibmSPEMVarValueIndex is assigned when the
SP sub-agent (sp_configd) is initialized; it is contained in the
ibmSPEMNodeDepVarCurValueIndex object within the ibmSPNodeDepVarsTable
(if the variable is node-dependent) or in the
ibmSPEMNodeIndepVarCurValueIndex object within the
ibmSPEMNodeIndepVarTable (if the variable is node-independent).

Each octet of the variable-length ibmSPEMVarValueInstanceVector value
string is encoded in a separate sub-identifier, preceded by its
length which may be 0 if its value is null. A 0 length indicates
the function represented by the EM variable is not being monitored.″

INDEX { ibmSPEMVarValueIndex, ibmSPEMVarValueInstanceVector }

Appendix B. ibmSP MIB 309

::= { ibmSPEMVarValuesTable 1 }

IbmSPEMVarValuesEntry ::=
SEQUENCE {

 ibmSPEMVarValueIndex
 INTEGER,
 ibmSPEMVarValueInstanceVector
 DisplayString,
 ibmSPEMVarValuePartaddr
 IpAddress,
 ibmSPEMVarValueName
 DisplayString,
 ibmSPEMVarValue
 DisplayString
 }

ibmSPEMVarValueIndex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only

STATUS mandatory
DESCRIPTION
″An index used as part of the instance id to identify the
object instance containing the current value of an EM
resource variable instance ″

::= { ibmSPEMVarValuesEntry 1}

ibmSPEMVarValueInstanceVector OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The instantiation vector elements associated with the
resource variable.″

::= { ibmSPEMVarValuesEntry 2}

ibmSPEMVarValuePartaddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
″ip address assigned to the system partition in which the
this resource variable resides.″

::= { ibmSPEMVarValuesEntry 3}

ibmSPEMVarValueName OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″A resource variable name as defined to the Event Manager.″
::= { ibmSPEMVarValuesEntry 4}

ibmSPEMVarValue OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-only
STATUS mandatory
DESCRIPTION
″The current value of a resource variable.″
::= { ibmSPEMVarValuesEntry 5}

310 RS/6000 SP HA Infrastructure

END

Appendix B. ibmSP MIB 311

312 RS/6000 SP HA Infrastructure

Appendix C. Special Notices

This publication is intended to help IBM customers, Business Partners, and IBM
System Engineers and other RS/6000 SP specialists who are involved in Parallel
System Support Programs (PSSP) Version 2 Release 2 projects, including
education of RS/6000 SP professionals responsible for installing, configuring, and
administering PSSP Version 2 Release 2. The information in this publication is
not intended as the specification of any programming interfaces that are
provided by Parallel System Support Programs. See the PUBLICATIONS section
of the IBM Programming Announcement for PSSP Version 2 Release 2 for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

 Copyright IBM Corp. 1996 313

You can reproduce a page in this document as a transparency, if that page has
the copyright notice on it. The copyright notice must appear on each page being
reproduced.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo
are trademarks or registered trademarks of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other trademarks are trademarks of their respective companies.

AIX AIX/6000
AIXwindows DB2/6000
HACMP/6000 IBM
LoadLeveler NetView
POWER Architecture Power PC 604
POWERparallel PowerPC 604
POWER2 Architecture RS/6000
Scalable POWERparallel Systems SP
SP2 9076 SP2

314 RS/6000 SP HA Infrastructure

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How To Get ITSO
Redbooks” on page 317.

• PSSP Version 2 Technical Presentation, SG24-4542

• RS/6000 SMP Servers Architecture, SG24-2583

• RS/6000 SP PSSP 2.2 Technical Presentation, SG24-4868

D.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RISC System/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RISC System/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

D.3 Other Publications
These publications are also relevant as further information sources:

• PSSP Installation and Migration Guide, GC23-3898

• PSSP Diagnosis and Messages Guide, GC23-3899

• PSSP Command and Technical Reference, GC23-3900

• Group Services Programming Guide and Reference, GC28-1675 (to be
available by year end 1996)

• PSSP System Planning Guide, GC23-3902

 Copyright IBM Corp. 1996 315

316 RS/6000 SP HA Infrastructure

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Copyright IBM Corp. 1996 317

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1) 415 855 43 29 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

318 RS/6000 SP HA Infrastructure

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

• Please put me on the mailing list for updated versions of the IBM Redbook Catalog.

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How To Get ITSO Redbooks 319

320 RS/6000 SP HA Infrastructure

List of Abbreviations

ACL Access Control List

AIX Advanced Interactive
Executive

AMG Adapter Membership Group

ANS Abstract Notation Syntax

APA all points addressable

API Application Programming
Interface

BIS Boot-Install Server

BSD Berkeley Software
Distribution

BUMP Bring-Up Microprocessor

CP Crown Prince

CPU Central Processing Unit

CSS Communication Subsystem

CWS Control Workstation

EM Event Management

EMAPI Event Management
Application Programming
Interface

EMCDB Event Management
Configuration Database

EMD Event Manager Daemon

EPROM Erasable Programmable Read
Only Memory

FIFO First In - First Out

Gb Gigabytes

GL Group Leader

GS Group Services

GSAPI Group Services Application
Programming Interface

hb heart beat

HPS High Performance Switch

hrd host respond daemon

HSD Hashed Shared Disk

IBM International Business
Machines Corporation

IP Internet Protocol

ISB Intermediate Switch Board

ISC Intermediate Switch Chip

ITSO International Technical
Support Organization

JFS Journal File System

LAN Local Area Network

LCD Liquid Crystal Display

LED Light Emitter Diode

LRU Least Recently Used

LSC Link Switch Chip

LVM Logical Volume Manager

Mb Megabytes

MIB Management Information
Base

MPI Message Passing Interface

MPL Message Passing Library

MPP Massively Parallel Processors

NIM Network Installation Manager

NSB Node Switch Board

NSC Node Switch Chip

OID Object ID

ODM Object Data Manager

PE Parallel Environment

PID Process ID

PROFS Professional Office System

PSSP Parallel System Support
Program

PTC Prepare to Commit

PTPE Performance Toolbox Parallel
Extensions

PTX/6000 Performance Toolbox/6000

RAM Random Access Memory

RCP Remote Copy Protocol

RM Resource Monitor

RMAPI Resource Monitor Application
Programming Interface

RPQ Request for Product
Quotation

RSI Remote Statistics Interface

RVSD Recoverable Virtual Shared
Disk

SBS Structured Byte String

SDR System Data Repository

SMP Symmetric Mult iprocessors

SNMP System Network Management
Protocol

SPDM SP Data Manager

 Copyright IBM Corp. 1996 321

SPMI System Performance
Measurement Interface

SRC System Resource Controller

SSI Single System Image

TS Topology Services

TCP/IP Transmission Control Protocol
/ Internet Protocol

UDP User Datagram Protocol

VSD Virtual Shared Disk

VSM Visual System Management

322 RS/6000 SP HA Infrastructure

Index

Special Characters
/etc/perf/ptpe.cf 265
/etc/perf/xmservd.res 264
/usr/lpp/ssp/include/ha_gs.h 99
/usr/lpp/ssp/lib/l ibha_gs_r.a 99
/usr/lpp/ssp/lib/l ibha_gs.a 98
/usr/lpp/ssp/samples/hags/ 99

A
abbreviations 321
acronyms 321
Adapter membership 1
± query 203
± start 203
± stop 203
archive 265

B
bibliography 315

C
callback function 64
central coordinator 266, 267, 270, 271
command 203
command started from pmand 196
configuration fi le 217, 219
configuration file and SDR 219
configuration steps of pmand 198
configuration steps of pmanrmd 217
configuring PTPE 272
control commnads 203
Control Workstation 273
createhsd 244
createvsd 243
CSS membership 1

D
data collector 266
data manager 266, 267, 270
data reporter 267
direct client 235

pr imary 240
secondary 240

Distributed Event Management 141

E
EM_Instance_Vector 162
EM_Resource_Class 259
EM_Structured_Byte_String 160

EMAPI 143
errnoti fy 215, 225
error log 215, 225
error log resource variable 215
Ethernet membership 1
event 140, 227
Event Management 135, 227
Event Management application 165
Event Management clients 143
Event Management configuration database 163
Event Management configuration steps 166
Event Management design 137
Event Management objectives 136
Event Management SDR classes 151
Event Manager API 182
Event Manager API files 176
Event Manager control util it ies 177
Event Manager daemon 141, 142

operational domain 142
part i t ion 142

Event Manager runtime directories 174
Event Manager startup 168
event registration and notif ication 144

F
forward 265

G
GL

See group, leader
group 29, 36

attributes of 38
concept 29
creating 38
leader 40
membership l ist 36
meta-group 34, 107, 112
name 36
namespace 42
provider 29
source 39
state value 37
structure 40
subscriber 29
system-defined 44

Ethernet adapter membership 44
Host membership 44
SP Switch adapter membership 44

target 39
Group Services 25

administrations 96
Application Programming Interface (GSAPI)

See GSAPI

 Copyright IBM Corp. 1996 323

Group Services (continued)
clients 30
daemon init ialization 116
features 32
files and directories 98
functional flow 34
introduction 27
nameserver 42
objectives 27
operations 101
processes 96
schema 28
subsystems 96

hags 96
hagsd 96, 98
hagsglsm 96
hagsglsmd 97, 98

uti l i t ies 104
GS

See Group Services
GS nameserver

See Group Services, nameserver
GSAPI 78

design considerations 91
ha_gs_announcement_callback subroutine 79
ha_gs_change_state_value subroutine 78, 84
ha_gs_delayed_error_callback subroutine 79
ha_gs_dispatch subroutine 78, 88
ha_gs_init subroutine 78, 80
ha_gs_join subroutine 78, 82
ha_gs_leave subroutine 78, 89
ha_gs_n_phase_callback subroutine 79
ha_gs_protocol_approved_callback subroutine 79
ha_gs_protocol_rejected_callback subroutine 79
ha_gs_quit subroutine 79, 90
ha_gs_responsiveness_callback subroutine 79
ha_gs_send_message subroutine 78
ha_gs_subscribe subroutine 79, 86
ha_gs_subscriber_callback subroutine 79
ha_gs_unsubscribe subroutine 79
ha_gs_vote subroutine 78, 85

H
HA 250, 252
ha.vsd 252
hagscl 98, 109
hagsctrl 98, 101
hagsgr 98, 111
hagsmg 98, 107
hagsns 98, 104
hagspbs 98, 108
hagsvote 98, 112
HB 250
HC 250, 252
hc.vsd 252
High Availabil i ty Infrastructure 258
host responds 143

HSD 234
architecture 238

I
ibmSP 222
ibmSPConfig 222, 224
ibmSPEMEvent 227
ibmSPEMVariables 222
ibmSPErrlogVars 222
instance vector 124, 162
instance vector definition 162
Internal Resource Monitors 132

J
join Group Services 170

L
lssrc 203, 211, 215

M
MIB 222, 224, 230

N
Netview for AIX 230
notif ication 62

announcement 63
protocol approvals 62
protocol proposal and ongoing protocols 62
protocol rejections 62
responsiveness 63

O
ODM 225

P
PAIDE/6000 259, 260, 268
part i t ion 272
Performance Manager 268
Performance Toolbox Parallel Extensions 257, 268
Performance Toolbox/6000 143
Perspectives 187, 274
pmanctr l 203, 205, 217
pmand 203, 227
pmand control uti l i t ies 203
pmandConfig SDR class 200
pmandef 203, 207, 227
pmaneventoff 204
pmaneventon 204
pmanq 204
pmanquery 210
pmanrmd 217, 219
pmanrmdConfig 215

324 RS/6000 SP HA Infrastructure

pmanrmdloadSDR 217
pmansubscribe 204
pmanunsubscribe 204
predicate 139
predicate and event 139
pricing 268
Problem Management 189
Problem Management daemon 194
Problem Management daemons 193
Problem Management design 191
Problem Management objectives 190
proposal 45
protocol 45, 47

broadcast 55
failure leave 57
GS-initiated 49
join 51
leave 56
membership change 47

cast-out 47
failure leave 47
join 47
leave 47

n-phase 71
one-phase 69
provider-broadcast message 47
provider-init iated 50
simultaneous 59
source-state reflection 48, 75
state value change 47, 53
state value change (one-phase) 54
two-phase 70

provide 265
PTPE

3dmon 288
configuring 270, 272
DDS 261
design 258
functional overview 263
hierarchy 266, 267, 271
installation 269
install ing 268
monitoring subsystems 285
parallel extensions 265
Perspectives 277, 278, 280, 281, 282, 283
practical experiences 284
PTX/6000 261
RSI 261
SPMI 261
summary statist ics 286, 287
using 274, 275
xmservd 261

ptpectrl 274
ptpehier 271
PTX/6000 261

Q
quantity 265
query 146, 210, 211

client and peer communication 147
quorum 33, 76

R
rat io 265
read the EMCDB 172
Recoverable VSD

See RVSD
reliable messaging 141
resource class definition 155
Resource Monitor API 184
Resource Monitor communication 149
Resource Monitor definition 153
Resource Monitor objectives 120
Resource Monitor types 129
Resource Monitors 119, 128
resource variable 122, 160, 215
resource variable definit ion 157
resource variable name 123
resource variable types 125
resources 121
RVSD 233

S
SDR 160, 162, 215, 217, 219, 224, 269

SDR class 162
SDR classes 160

SNMP 221
SNMP GET 224
SNMP GET-NEXT 224
SNMP SP MIB 222
SNMP trap 225, 227
SNMP traps from events 227
SNMP traps from the AIX error log 225
snmpd 230
snmpinfo 222, 224
source-state reflection 49
Source-Target group relationships 73
SP configuration 224
SP Resource Monitors 130
sp_configd 221, 227, 230
sp_configd control 230
sp_configd control commands 229
sp_configd design 221
sp_configdctrl 229
SP_NAME 274
SPDM 269
SPDM_NODES 269
SPDM_STATS 269
spdmcold 264, 267
spdmspld 264, 267
SPMI 263

Index 325

ssp.ha 268
ssp.perfmon.gui 274
startsrc 203, 215
stopsrc 203, 215
Structured Byte String 127, 160
Structured Byte String definition 160
sundered networks 76
Switch membership 1
syspar_ctrl 230
System Performance Measurement Interface 143

T
Topology Services 5, 141

U
user-defined Resource Monitor 213
using PTPE 275

V
vote 45

default 68
voting 46, 66
VSD 233

architecture 235
state transitions 237

vsd.DOWN1 254
vsd.DOWN2 254
vsd.UP1 254
vsd.UP2 254
vsddiag 247

X
xmservd 261

326 RS/6000 SP HA Infrastructure

IBML

Printed in U.S.A.

SG24-4838-00

