
International Technical Support Organization

DATABASE 2 for AIX
Programming Interfaces

May 1996

SG24-4691-00





International Technical Support Organization

DATABASE 2 for AIX
Programming Interfaces

May 1996

SG24-4691-00

IBML



Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xiii.

First Edition (May 1996)

This edition applies to DATABASE 2 Version 2.1.1 for use with the AIX operating system.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader ′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

  Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.



Abstract

This document is unique in its detailed coverage of the different application
programming interfaces that are available for use with DATABASE 2 for AIX. It
focuses on introducing the interfaces and describing how to use each of them.
Sample applications have been provided and discussed with each interface.
These sample applications can be used as a starting point or template for new
applications. Information is provided about each of the interfaces, and
references are made to documentation where further details may be found.

This document was written for the application programmer who is about to
develop a new application that will access DB2 databases. Some knowledge of
application programming and DB2 for AIX is assumed.

(170 pages)

  Copyright IBM Corp. 1996 iii



iv DB2 Programming Interfaces 



Contents

Abstract  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i i i

Special Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii i

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
How This Redbook is Organized . . . . . . . . . . . . . . . . . . . . . . . . . . .  xv
Related Publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
International Technical Support Organization Publications . . . . . . . . . . .  xvi
How Customers Can Get Redbooks and Other ITSO Deliverables . . . . . .  xvi
How IBM Employees Can Get Redbooks and ITSO Deliverables . . . . . . .  xvii
Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Chapter 1. Programming Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Command Line Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
1.3 World Wide Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
1.4 Embedded SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Call Level Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
1.6 Open Database Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
1.7 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2. Command Line Processor . . . . . . . . . . . . . . . . . . . . . . . .  5
2.1 Invoking CLP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Interactive Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
2.1.2 Command Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Batch Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 CLP Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 CLP Options Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

2.3 Using the CLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
2.4 Using CLP in an Application . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Chapter 3. World Wide Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
3.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 DB2 World Wide Web Connection . . . . . . . . . . . . . . . . . . . . .  13
3.1.2 Client/Server Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 DB2 WWW Connection Installation . . . . . . . . . . . . . . . . . . . . . . . .  15
3.3 Setting Up DB2 WWW Connection . . . . . . . . . . . . . . . . . . . . . . . .  20

3.3.1 Internet Server Parameters . . . . . . . . . . . . . . . . . . . . . . . . .  20
3.3.2 DB2 WWW Connection Configuration . . . . . . . . . . . . . . . . . . .  20

3.4 Application Development  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Macro Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Handling Large Objects (LOBs) . . . . . . . . . . . . . . . . . . . . . . .  25

3.5 Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.1 Macro Files Without LOGIN and PASSWORD Variables . . . . . . . .  26
3.5.2 Macro Files With LOGIN and PASSWORD Variables . . . . . . . . . .  26

3.6 Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6.1 CGI Scripts Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
3.6.2 DB2 WWW Macro Example . . . . . . . . . . . . . . . . . . . . . . . . .  32
3.6.3 Using LOBs in a Macro File . . . . . . . . . . . . . . . . . . . . . . . . .  35

Chapter 4. Call Level Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

  Copyright IBM Corp. 1996 v



4.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1 Differences between DB2 CLI and Embedded SQL . . . . . . . . . . .  39
4.1.2 Supported Environments  . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Writing DB2 CLI Applications . . . . . . . . . . . . . . . . . . . . . . . . . .  41
4.2.1 Initialization and Termination . . . . . . . . . . . . . . . . . . . . . . .  42
4.2.2 Transaction Processing  . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Diagnostics and Error Handling . . . . . . . . . . . . . . . . . . . . . . .  47
4.2.4 Data Types and Data Conversion . . . . . . . . . . . . . . . . . . . . .  49

4.3 CLI Application Configuration and Execution . . . . . . . . . . . . . . . . .  52
4.3.1 Setting the DB2 CLI Runtime Environment . . . . . . . . . . . . . . . .  52
4.3.2 Application Development Environment Setup . . . . . . . . . . . . . .  58
4.3.3 Compiling and Linking Applications . . . . . . . . . . . . . . . . . . . .  59
4.3.4 DB2 CLI Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

4.4 Advanced Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.1 Distributed Unit of Work . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
4.4.2 Querying Catalog Tables . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
4.4.3 Using Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.4 Using Compound SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78
4.4.5 Large Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.6 User-Defined Types (UDTs) . . . . . . . . . . . . . . . . . . . . . . . . .  83
4.4.7 Stored Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.1 Querying Catalog Tables . . . . . . . . . . . . . . . . . . . . . . . . . .  86
4.5.2 Using CLOB Locator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

Chapter 5. Open Database Connectivity (ODBC) . . . . . . . . . . . . . . . . . .  93
5.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Configuring ODBC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Configuring ODBC on OS/2 . . . . . . . . . . . . . . . . . . . . . . . . .  94
5.2.2 Configuring ODBC on AIX . . . . . . . . . . . . . . . . . . . . . . . . .  101

5.3 Programming with ODBC . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
5.3.1 Compiling and Linking Applications . . . . . . . . . . . . . . . . . . .  105

5.4 Example ODBC Application Environment . . . . . . . . . . . . . . . . . . .  106
5.4.1 Compiling an ODBC Application . . . . . . . . . . . . . . . . . . . . .  106

Chapter 6. Database Extenders  . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1 The DB2 Relational Extenders Family . . . . . . . . . . . . . . . . . .  110
6.1.2 The Extender, Database and Application Relationship . . . . . . . .  111

6.2 DB2 Text Extender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112
6.2.1 Advantages of the DB2 Text Extender . . . . . . . . . . . . . . . . . .  112
6.2.2 Supported Environments  . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 The DB2 Text Extender Installation . . . . . . . . . . . . . . . . . . . . . .  114
6.3.1 Setting Up the DB2 Text Extender . . . . . . . . . . . . . . . . . . . .  115
6.3.2 Environment Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.3 The SAMPLE Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

6.4 How the DB2 Text Extender Works . . . . . . . . . . . . . . . . . . . . . .  119
6.4.1 Maintaining the Text Index . . . . . . . . . . . . . . . . . . . . . . . .  120
6.4.2 Indexing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5 Administration Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
6.5.1 Administration of the DB2 Text Extender Server . . . . . . . . . . . .  123
6.5.2 Administration of the DB2 Text Extender Client . . . . . . . . . . . .  124
6.5.3 Administration Commands Summary . . . . . . . . . . . . . . . . . .  125

6.6 UDTs and UDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
6.6.1 User Defined Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

vi DB2 Programming Interfaces 



6.6.2 User-Defined Functions . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
6.6.3 Search Arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.7 Creating Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.7.1 Starting the Browse . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135
6.7.2 Browsing Documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.7.3 Ending the Browse . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138
6.7.4 Checking the Browser . . . . . . . . . . . . . . . . . . . . . . . . . . .  138
6.7.5 Return Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.8 Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.8.1 Browse Application Using the DB2 Text Extender Browser . . . . .  139

Appendix A. Sample Applications  . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.1 CLI Example (listcol.c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143
A.2 CLI LOB Example (lookres.c) . . . . . . . . . . . . . . . . . . . . . . . . . .  145
A.3 Text Extender Example (sample1.c) . . . . . . . . . . . . . . . . . . . . . .  148

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Contents vii



viii DB2 Programming Interfaces 



Figures

 1. The Interactive Mode of CLP  . . . . . . . . . . . . . . . . . . . . . . . . . . 5
 2. Submitting Operating System Command from Interactive Mode  . . . . . 6
 3. Command Mode of CLP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
 4. Sample SQL Batch File, clp.sql  . . . . . . . . . . . . . . . . . . . . . . . . . 6
 5. Batch Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
 6. Set the Command Option from the db2profile File  . . . . . . . . . . . . . 8
 7. Setting Command Options by using Flags  . . . . . . . . . . . . . . . . . . 9
 8. A List of the Current Options Settings  . . . . . . . . . . . . . . . . . . . . . 10
 9. Using the Return Code in an Application  . . . . . . . . . . . . . . . . . . . 11
10. DB2 World Wide Web Connection . . . . . . . . . . . . . . . . . . . . . . .  14
11. A Two-Ttier Client/Server Environment . . . . . . . . . . . . . . . . . . . .  14
12. A Three-tier Client/Server Environment . . . . . . . . . . . . . . . . . . . .  15
13. System Management Interface Tool Screen . . . . . . . . . . . . . . . . .  16
14. Software Installation and Maintenance Screen . . . . . . . . . . . . . . .  16
15. Install and Update Software Screen . . . . . . . . . . . . . . . . . . . . . .  17
16. Install/Update Selectable Software (Custom Install) Screen . . . . . . . .  17
17. Install Software Products at Latest Level Screen . . . . . . . . . . . . . .  18
18. Install Software Products at Latest Level Screen . . . . . . . . . . . . . .  18
19. Install Software Products at Latest Level Screen . . . . . . . . . . . . . .  19
20. SOFTWARE to Install Screen . . . . . . . . . . . . . . . . . . . . . . . . . .  19
21. Part of the WWW Server Configuration File . . . . . . . . . . . . . . . . .  21
22. Access List of tmplobs Directory . . . . . . . . . . . . . . . . . . . . . . . .  22
23. Sample of the db2www.ini File . . . . . . . . . . . . . . . . . . . . . . . . .  22
24. Access DB2 Databases from Korn Shell Scripts: dbcols . . . . . . . . . .  27
25. Sample Output from the dbcols Shell Script . . . . . . . . . . . . . . . . .  28
26. Access DB2 Databases from WWW Browsers Using CGI Scripts:

lsdbcols.html  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
27. Access DB2 Databases from WWW Browsers Using CGI Scripts:

lsdbcols.pp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
28. HTML Input Form Used By lsdbcols.html . . . . . . . . . . . . . . . . . . .  31
29. Output from CGI Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
30. Sample DB2 WWW Macro: lsdbcols.d2w . . . . . . . . . . . . . . . . . . .  33
31. Output Screen from Macro File Sample . . . . . . . . . . . . . . . . . . . .  35
32. Using LOBs from DB2 Databases in a Macro File: qemp.d2w . . . . . . .  36
33. First Screen Resulting from the qemp.d2w Macro File . . . . . . . . . . .  37
34. Second Screen Resulting from the qemp.d2w Macro File Shows the

Resume  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
35. Example of a DB2 CLI Environment . . . . . . . . . . . . . . . . . . . . . .  41
36. Basic Tasks in a DB2 CLI Application . . . . . . . . . . . . . . . . . . . . .  42
37. Conceptual View of Initialization and Termination tasks . . . . . . . . . .  43
38. Transaction Processing Task . . . . . . . . . . . . . . . . . . . . . . . . . .  44
39. Return Code and Detailed Diagnostic Sample . . . . . . . . . . . . . . . .  48
40. Information Returned from Calling SQLError() Function . . . . . . . . . .  49
41. Multiple Connections with Concurrent Transactions . . . . . . . . . . . .  66
42. DB2 CLI Functions needed for Multiple Connections . . . . . . . . . . . .  67
43. Multiple Connections with Coordinated Transactions . . . . . . . . . . .  68
44. DB2 CLI Functions Required for Coordinated Transactions . . . . . . . .  69
45. Array Method for Input Parameters . . . . . . . . . . . . . . . . . . . . . .  72
46. DB2 CLI Functions Using Arrays for Input Parameters . . . . . . . . . . .  73
47. Array Method to Retrieve Data . . . . . . . . . . . . . . . . . . . . . . . . .  74
48. DB2 CLI Function Needed for Column-Wise Retrieval . . . . . . . . . . .  75

  Copyright IBM Corp. 1996 ix



49.  DB2 CLI Functions Needed for Row-Wise Retrieval . . . . . . . . . . . .  77
50. Compound SQL Statement Structure . . . . . . . . . . . . . . . . . . . . .  79
51. DB2 CLI Functions Needed for Compound SQL . . . . . . . . . . . . . . .  80
52. Using LOBS with Locators and Files . . . . . . . . . . . . . . . . . . . . .  83
53. Querying Using SQLColumns() . . . . . . . . . . . . . . . . . . . . . . . . .  87
54. The Result of Running listcol . . . . . . . . . . . . . . . . . . . . . . . . . .  88
55. Example Using CLOB Locator: lookres.c . . . . . . . . . . . . . . . . . . .  89
56. Running the lookres.c Sample Program . . . . . . . . . . . . . . . . . . .  91
57. ODBC Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
58. Sample CAE/2 Folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
59. CAE/2 Client Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96
60. Cataloging a Remote Node . . . . . . . . . . . . . . . . . . . . . . . . . . .  97
61. Cataloging a Remote Database . . . . . . . . . . . . . . . . . . . . . . . .  98
62. ODBC Administrator - Data Sources . . . . . . . . . . . . . . . . . . . . . .  99
63. Available ODBC Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100
64. ODBC Data Source and Description . . . . . . . . . . . . . . . . . . . . .  100
65. Sample odbcinst.ini Configuration File . . . . . . . . . . . . . . . . . . .  103
66. Sample odbc.ini Configuration File . . . . . . . . . . . . . . . . . . . . .  104
67. Sample odbcinst.ini Configuration File with INTERSOLV Drivers . . . .  104
68. Sample odbc.ini Configuration File with INTERSOLV Drivers . . . . . .  105
69. Sample DB2 CLI Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . .  106
70. Sample DB2 ODBC Makefile . . . . . . . . . . . . . . . . . . . . . . . . .  107
71. Sample ODBC Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
72. The Relationship between the Extender, the Database and the

Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
73. A Simple Configuration of the DB2 Text Extender . . . . . . . . . . . . .  113
74. Multi-Index Table: A Separate Text Index for Each Text Column . . . .  121
75. Common Index Table: A Common Index for All the Text Columns . . .  122
76. Status Screen When the DB2 Text Extender Server is Up . . . . . . . .  124
77. Status Screen When the DB2 Text Extender Server is Not Running . .  124
78. API Functions Using the DB2 Text Extender Browser . . . . . . . . . . .  137
79. API Functions Using Your Own Browser . . . . . . . . . . . . . . . . . .  137
80. Using Return Codes in an Application . . . . . . . . . . . . . . . . . . .  139
81. Using the DB2 Text Extender Browser: sample1.c . . . . . . . . . . . .  140
82. User Interface to Input Parameters Running sample1.c . . . . . . . . .  141
83. Browsing a Document Using the DB2 Text Extender Browser . . . . .  142
84. Search Result Stored in the Result Table . . . . . . . . . . . . . . . . .  142

x DB2 Programming Interfaces 



Tables

 1. CLP Command Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
 2. CLP Return Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
 3. CLP Return Codes and Command Execution  . . . . . . . . . . . . . . . . 12
 4. An Example of WWW/Internet Server Parameters  . . . . . . . . . . . . . . 20
 5. Using Macro Files and CGI Scripts to Access Databases  . . . . . . . . . 23
 6. The Difference between Auto-Commit and Manual-Commit  . . . . . . . . 47
 7. Possible Return Codes from a DB2 CLI Function  . . . . . . . . . . . . . . 47
 8. SQL Symbolic and Default Data Types  . . . . . . . . . . . . . . . . . . . . 50
 9. Supported Data Conversions  . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10. DB2 Call Level Interface Bind Files . . . . . . . . . . . . . . . . . . . . . .  53
11. DB2 Call Level Interface Configuration Keywords . . . . . . . . . . . . . .  54
12. Considerations When Programming in XLC for AIX . . . . . . . . . . . . .  59
13. Considerations When Programming in CSet++ for OS/2 . . . . . . . . .  59
14. Considerations When Programming in Microsoft Visual C for Windows .  59
15. DB2 CLI Functions: Initialization . . . . . . . . . . . . . . . . . . . . . . . .  60
16. DB2 CLI Functions: Transaction Processing . . . . . . . . . . . . . . . . .  61
17. DB2 CLI Functions: Termination . . . . . . . . . . . . . . . . . . . . . . . .  62
18. DB2 CLI Functions: Information and Setup . . . . . . . . . . . . . . . . . .  62
19. DB2 Call Level Interface Catalog Functions . . . . . . . . . . . . . . . . .  69
20. Four Categories of Extenders . . . . . . . . . . . . . . . . . . . . . . . . .  110
21. DB2 Text Extender Dictionaries . . . . . . . . . . . . . . . . . . . . . . . .  114
22. The Administration Commands Summary . . . . . . . . . . . . . . . . .  125

  Copyright IBM Corp. 1996 xi



xii DB2 Programming Interfaces 



Special Notices

This publication is intended to help the application programmer and the system
administrator decide on the best interface to use when developing new database
applications. The information in this publication is not intended as the
specification of any programming interfaces that are provided by the DATABASE
2 Common Server products. It is a guideline to the use and implementation of
these interfaces. See the PUBLICATIONS section of the IBM Programming
Announcement for DB2 for AIX for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AIX AT
BookManager BookMaster
DATABASE 2 DataJoiner
DB2 DB2/6000
DRDA IBM
MVS/ESA OfficeVision
OS/2 OS/400
SQL/DS VisualAge
VisualGen

  Copyright IBM Corp. 1996 xiii



The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

AMI American Megatrends, Incorporated
Ami Pro Lotus Development Corporation
C + + AT&T, Incorporated
INTERSOLV INTERSOLV Corporation
WordPerfect WordPerfect Corporation
X/Open X/Open Company Limited

Other trademarks are trademarks of their respective companies.

xiv DB2 Programming Interfaces 



Preface

This document is intended to assist an application delveloper who is about to
start development of an application that will access information contained within
DATABASE 2 for AIX databases. It contains descriptions and sample
applications for the different methods that may be used to access database
tables. There is also coverage of the database extender products and
discussion on developing applications that will make use of the extender search
capabilities.

This document is intended as a guideline to help you decide which interface into
DB2 for AIX will best suit your needs. Once the interface has been decided, the
book will prove useful as a starting point for your applications.

How This Redbook is Organized
The redbook is organized as follows:

• Chapter 1, “Programming Interfaces”

This chapter provides an overview to the different programming interfaces
and what factors need to be considered.

• Chapter 2, “Command Line Processor”

The Command Line Processor allows you to enter database commands and
SQL statements from the command prompt. This chapter discusses the
Command Line Processor and how you may use it from within different shell
scripts.

• Chapter 3, “World Wide Web”

The World Wide Web is growing, and it is opening a new way of accessing
databases around the world. DB2 may be accessed through many of the
Web browsers. This chapter discusses the different machanisms used in
accessing DB2 from the Internet and World Wide Web, along with the issues
that must be considered when providing this access.

• Chapter 4, “Call Level Interface”

The call level interface may be used from applications to access databases.
This chapter discusses the Call Level Interface and how it is used.

• Chapter 5, “Open Database Connectivity (ODBC)”

This chapter covers the configuration of the Open Database Connectivity
(ODBC) environment. There are a number of different ways to access DB2
databases using the ODBC interface. This chapter looks at each of these
methods and the configuration required for each method.

• Chapter 6, “Database Extenders”

The database extender products may be used in conjunction with DB2 to
provide some additional functionality. This chapter describes the extender
products and how they are used.

  Copyright IBM Corp. 1996 xv



Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

• Application Programming Guide - for common servers, S20H-4643-01

• API Reference - for common servers, S20H-4984-00

• Call Level Interface Guide and Reference - for common servers, S20H-4644-01

International Technical Support Organization Publications
• Access to the DB2 Family with ODBC, GG24-4333-00

A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

How Customers Can Get Redbooks and Other ITSO Deliverables
Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and
CD-ROMs) and information about redbooks, workshops, and residencies in the
following ways:

• IBMLINK

Registered customers have access to PUBORDER to order hardcopy and to
the REDBOOKS disk to obtain BookManager BOOKs.

• IBM Bookshop  — send orders to:

usib6fpl@ibmmail.com (United States)
bookshop@dk.ibm.com (Outside United States)

• Telephone orders

• Mail Orders  — send orders to:

• Fax — send orders to:

1-800-879-2755 (United States) 0256-478166 (United Kingdom)
354-9408 (Australia) 32-2-225-3738 (Belgium)
359-2-731076 (Bulgaria) 1-800-IBM-CALL (Canada)
42-2-67106-250 (Czech Republic) 45-934545 (Denmark)
593-2-5651-00 (Ecuador) 01805-5090 (Germany)
03-69-78901 (Israel) 0462-73-6669 (Japan)
905-627-1163 (Mexico) 31-20513-5100 (The Netherlands)
064-4-57659-36 (New Zealand) 507-639977 (Panama)
027-011-320-9299 (South Africa)

IBM Publications
P.O. Box 9046
Boulder, CO 80301-9191
USA

IBM Direct Services
Sortemosevej 21,
3450 Allerod
Denmark

1-800-445-9269 (United States) 0256-843173 (United Kingdom)
32-2-225-3478 (Belgium) 359-2-730235 (Bulgaria)
905-316-7210 (Canada) 42-2-67106-402 (Czech Republic)

xvi DB2 Programming Interfaces 



• 1-800-IBM-4FAX (United States only)  — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services

Send note to softwareshop@vnet.ibm.com

• Redbooks Home Page on the World Wide Web

http://www.redbooks.ibm.com/redbooks

• E-mail (Internet)

Send note to redbook@vnet.ibm.com

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM
Announcement Listserver. To initiate the service, send an E-mail note to
announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

593-2-5651-45 (Ecuador) 07032-15-3300 (Germany)
03-69-59985 (Israel) 0462-73-7313 (Japan)
31-20513-3296 (The Netherlands) 064-4-57659-16 (New Zealand)
507-693604 (Panama) 027-011-320-9113 (South Africa)

How IBM Employees Can Get Redbooks and ITSO Deliverables
Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and
CD-ROMs) and information about redbooks, workshops, and residencies in the
following ways:

• PUBORDER  — to order hardcopies in United States

• GOPHER link to the Internet

Type GOPHER
Select IBM GOPHER SERVERS
Select ITSO GOPHER SERVER for Redbooks

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET GG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET GG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

Preface xvii



http://w3.itso.ibm.com/redbooks/redbooks.html

• ITSO4USA category on INEWS

• IBM Bookshop  — send orders to:

USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM
Announcement Listserver. To initiate the service, send an E-mail note to
announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

Acknowledgments
This project was designed and managed by:

Frank Rusconi
International Technical Support Organization, Austin Center

The authors of this document are:

Ada Lau Azurza
IBM Peru

Vera Puspasari S.
Multipolar Corporation, Indonesia

Frank Rusconi
IBM Austin

This publication is the result of a residency conducted at the International
Technical Support Organization, Austin Center.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Calene Janacek
International Technical Support Organization, Austin Center

David Oberstadt
IBM San Jose

Serge Limoges
IBM Toronto

Doug Free
IBM Dallas, Education and Training

Marcus Brewer, Editor
International Technical Support Organization, Austin Center

xviii DB2 Programming Interfaces 



Chapter 1. Programming Interfaces

This chapter looks at the different programming interfaces available for DB2 and
discusses the advantages and disadvantages of using each. These interfaces
are covered in more detail throughout the book. This chapter is designed to give
an overview which should help you decide which interface is best suited for your
environment.

1.1 Overview
There are many factors that can influence your decision on which interface to
use in your DB2 application. These factors might include the level of security
required within the application or how many users are going to use the
application. As an example, you might require an application to perform some
system administration task. This application may only be used once a month by
a skilled database administrator. For this type of application, you would not
invest a large amount of time and resources developing a sophisticated
application. Instead, you might write a script that asks for the basic information
required and then automates the execution of the statements or commands. The
security for this application might be as simple as placing it in a secure directory
where users would not be able to execute it. On the other hand, an application
that has many users of varying skill levels and authorities might require a large
amount of built-in security, or integrity checks, and present the user with help
about the type of information the application requires in order to execute
correctly. This type of application might require many hours to develop and
maintain.

This chapter discusses the following interfaces and looks at the types of
applications they are best suited for:

• Command Line Processor

• World Wide Web

• Embedded SQL

• Call Level Interface

• Open Database Connectivity

• Database Extenders

1.2 Command Line Processor
The Command Line Processor (CLP) is supplied with many of the DB2 for
Common Server products. The CLP enables you to enter any DB2 database
command or SQL statement. The CLP may be used interactively or called from
an application, the most common of which are scripting languages such as Korn,
Bourne or Perl scripts.

Developing an application using the Command Line Processor is quick and
requires little effort by a programmer or system administrator. However, there is
little room for integrity checking of data or error recovery should the application
fail. This is mainly due to the limited amount of diagnostic information returned
by the Command Line Processor.

  Copyright IBM Corp. 1996 1



The Command Line Processor is an extremely useful tool for prototyping your
SQL statements or for use in scripts to perform DB2 administration tasks and
simple SQL statements.

Chapter 2, “Command Line Processor” on page 5, discusses the Command Line
Processor in more detail and how it may be used.

1.3 World Wide Web
First we saw a move to place computers in the homes and offices of people
around the world, and now these computers are being linked together through
the Internet. This growing network of computers is known as the World Wide
Web (WWW), and now we are looking at ways to provide its users with up-to-date
information about our business in a quick and simple manner.

DB2 allows us to provide WWW access to the databases in two ways. The first
method is by using the HyperText Markup Language (HTML) as a front-end to
scripts or other applications that access the databases. This method can be
quite a complicated matter for anything more than simple queries.

The process of using HTML to present SQL queries, or database commands, to
the DB2 server has been made much simpler through the use of the DB2 WWW
Connection Program. The DB2 WWW Connection Program simplifies the process
by automatically passing the required information from DB2 to HTML and from
HTML to DB2 through the use of variables. These variables can be used by SQL
statements to form a query or some other type of SQL statement. The variables
also can be used by HTML to help format the information returned by DB2 when
the statement is executed.

By allowing a database to be accessed from the WWW, you can provide
information to the users on the Internet through a graphical interface, as well as
to anyone who is connected over your own local network. This allows you to
quickly develop graphical applications for users, using little more than basic SQL
and HTML knowledge.

1.4 Embedded SQL
There are many situations where your application may need to perform more
complex tasks than can be handled by a simple shell script or WWW interface.
In these situations, you may need to consider writing your applications in a
particular programming language, such as C or COBOL.

If you choose to use one of these languages, you also have a couple of options
on how the applications are going to allow the users to access the information
contained within the database. One of these options is to use Embedded SQL.

Embedded SQL, as the name implies, refers to placing SQL statements within
your application. These statements are pre-compiled into code for the language
you are using and then compiled into an executable application with the rest of
your program. The advantages of using Embedded SQL is the added flexibility
you have over performing data integrity checking and security checking at the
application level. It is also possible to leave the security or data integrity
checking to the database manager and then code your application to handle any
error situations that may occur due to invalid data or insufficient privilege.

2 DB2 Programming Interfaces 



There are two different types of Embedded SQL, these are:

• Static SQL

• Dynamic SQL

Static SQL is an SQL statement where the statement structure is fully known
when the application is being compiled. This means that the statement can be
optimized and access plans defined during the application′s compilation and
binding. This also means that the creation of the access strategy is not a cost
during execution.

Dynamic SQL statements are not completely known at compilation time and will
need to be optimized and have access plans created during the execution of the
application. This means that applications using dynamic SQL may have higher
overhead during their execution, but they provide the added flexibility of allowing
the user to determine the statement by providing information that will be used in
it. Another benefit of dynamic SQL is that the most recent statistics available
through the runstats utility are used by the optimizer.

Authorization within the database also is determined at different times,
depending on your choice of dynamic or static SQL. Since static SQL statements
are optimized and the access plans determined at compilation, so is the
authorization. This means that if a user is able to execute the application, the
user will inherit the authorization of the user who compiled and bound the
application to the database.

Dynamic SQL does not get bound or optimized during compilation; so access
plans and authorization were determined at run time. This requires the user
executing the application to have the appropriate authorizations on the database
object being accessed.

The features provided with embedded SQL allow the application programmer
greater amounts of control over the way an application interacts with the
database. Although this might be desired, it also leads to greater amounts of
time and resources required to develop and maintain such applications.

1.5 Call Level Interface
Another alternative to using embedded SQL within an application is to use the
Call Level Interface (CLI). The difference is that, instead of placing SQL
statements directly into your application code, you are calling a number of
functions to perform an SQL operation. This method has a number of
advantages over the use of Embedded SQL, but it may also further complicate
your application.

When using the CLI, you do not need to bind your applications to the database,
as is required with embedded SQL. This means than an application accessing
one database may be executed against a different database without the need for
recompilation or binding.

Given that there is no binding to the database, all the CLI SQL will be executed
dynamically. This means that access plans and optimization will be done at run
time, rather than during compilation/binding.

Chapter 1. Programming Interfaces 3



These features make CLI ideal for applications that will execute a large number
of dynamic SQL statements across multiple databases. The application
programmer will have control over data access and can check user
authorizations or leave authorization to the database administrator and handle
error recovery if the user has insufficient authority to perform a requested
operation.

1.6 Open Database Connectivity
Microsoft ′s Open Database Connectivity (ODBC) is similar to the Call Level
Interface in that it is a defined set of function calls that may be used to access
the data contained within a database system.

CLI supports all the core, Level 1 and most of Level 2 ODBC calls. For a
complete listing of the ODBC calls supported by CLI, you should refer to the Call
Level Interface Guide and Reference - for common servers.

Many applications and database vendors support the ODBC interface; so if you
are going to develop an application that will access multiple database systems,
this is one of your options.

1.7 Summary
There are a number of different ways to access DB2 databases and tables. This
book covers the more commonly used interfaces that application developers use
when developing DB2 applications.

There are a number of tools and programming environments, such as those
provided by the VisualAge and VisualGen product families, that are designed to
help you build graphical interfaces into the DB2 database system.

The application development environments available are continually developing
and expanding. This book is designed to give you a basic understanding of the
underlying interfaces that are common to all these development environments
and help you to decide which of the available interfaces is best suited to your
programming needs.

4 DB2 Programming Interfaces 



Chapter 2. Command Line Processor

DB2 Version 2 provides the ability to enter database administration commands
as well as SQL statements via the Command Line Processor. These commands
and/or statements may be entered directly at the command line or supplied
through a file.

The Command Line Processor may be used from different types of scripts, such
as Bourne, Korn, C, or Perl scripts. This chapter shows the different methods
that may be used to call the command line processor using these different
methods.

2.1 Invoking CLP
Command Line Processor (CLP) is a utility provided by DB2 Version 2 which is
an interface to the DB2 engine. You can use the CLP to execute database
utilities, SQL statements and on-line help.

There are several ways to use CLP. They include:

 1. Interactive Mode

 2. Command Mode

 3. Batch Mode

2.1.1 Interactive Mode
We can start CLP in an Interactive Mode by entering the command db2 at the
operating system command prompt. This will place you into the Command Line
Processor and present you with the db2⇒ prompt.

� �
$ db2
(c) Copyright IBM Corporation 1993,1995
Command Line Processor for DB2 SDK 2.1.1

You can issue database manager commands and SQL statements from the
command prompt. For example:

db2 => connect to sample
db2 => bind sample.bnd

For general help, type: ?.
For command help, type: ? command, where command can be
the first few keywords of a database manager command. For example:
 ? CATALOG DATABASE for help on the CATALOG DATABASE command
 ? CATALOG for help on all of the CATALOG commands.

To exit db2 Interactive Mode, type QUIT at the command prompt. Outside
interactive mode, all commands must be prefixed with ′ db2′ .
To list the current command option settings, type LIST COMMAND OPTIONS.

For more detailed help, refer to the On-line Reference Manual.

db2 =>� �
Figure 1. The Interactive Mode of CLP

  Copyright IBM Corp. 1996 5



Using this mode, you are able to write the SQL statements or any database
commands and the results will be automatically formatted and displayed on the
screen. This is useful for proto-typing your SQL statements or commands.

It is possible to execute an operating system command while in the Interactive
Mode. To do this, you have to prefix the operating system command with an
exclamation point (!) as shown in Figure 2. This capability is valid only in the
UNIX and OS/2 environments.

� �
db2 => ! id
uid=6(db2) gid=200(db2adm) groups=1(staff),201(db2usr),204(smadmin)� �

Figure 2. Submitting Operating System Command from Interactive Mode

To end the Interactive Mode, you should enter the quit command at the
Command Line Processor prompt.

2.1.2 Command Mode
In this mode, you submit DB2 commands from the operating system command
prompt. You need to prefix all the commands with db2 as shown in Figure 3.
You will also get the results of the command formatted as output to your screen.

� �
$ db2 ″select * from db2.employee″� �

Figure 3. Command Mode of CLP

This is similar to the Interactive Mode; however, you are also able to utilize any
advanced features of the operating system shell that you are running in, such as
the command recall facility found in many UNIX shells.

It is also necessary to escape any characters that have special meaning in the
UNIX shell you are using. This may be done by either placing a backslash
character () before the special character, or you may enclose the entire DB2
command or statement in double quotes.

2.1.3 Batch Mode
Instead of submitting commands by typing them one by one at the command
prompt, you can also enter all the commands into a file. For example, you could
execute a file, such as the one shown in Figure 4, by executing the command:
db2 -f clp.sql

� �
list database directory
connect to sample
select firstnme, lastname from employee where job=′ CLERK′� �

Figure 4. Sample SQL Batch File, clp.sql

The results from running this file are shown in Figure 5 on page 7.

6 DB2 Programming Interfaces 



� �
$ db2 -f clp.sql

 System Database Directory

 Number of entries in the directory = 2

Database 1 entry:

 Database alias = CELDIAL
 Database name = CELDIAL
 Local database directory = /home/db2
 Database release level = 6.00
 Comment =
 Directory entry type = Indirect

Database 2 entry:

 Database alias = SAMPLE
 Database name = SAMPLE
 Local database directory = /home/db2
 Database release level = 6.00
 Comment =
 Directory entry type = Indirect

Database Connection Information

 Database product = DB2/6000 2.1.1
 SQL authorization ID = DB2
 Local database alias = SAMPLE

FIRSTNME LASTNAME
------------ ---------------
SEAN O′ CONNELL
JAMES JEFFERSON
SALVATORE MARINO
DANIEL SMITH
SYBIL JOHNSON
MARIA PEREZ

6 record(s) selected.

$� �
Figure 5. Batch Mode

As in the Interactive Mode, you can also execute an operating system command
from batch mode by prefixing the operating system command with an
exclamation point (!).

2.2 CLP Options
There are some options that can be set for using the Command Line Processor.
Table 1 shows the options, the description and the default settings.

Table 1 (Page 1 of 2). CLP Command Options

Option
Flag

Description
Default
Setting

-a To display SQLCA data OFF

Chapter 2. Command Line Processor 7



The following rules apply to set the options:

• -option-flag to turn on the option. For example, -c turns on the auto-commit
option.

• -option-flag- or +option-flag to turn off the option. For example, -c- or +c
will turn the auto-commit option off.

• Option flags are not case-sensitive; so you can either use -c or -C.

• Some options, such as -f, -l, -r, and -z, require a file name since these use a
file either for input or output.

Table 1 (Page 2 of 2). CLP Command Options

Option
Flag

Description
Default
Setting

-c To automatically commit SQL statements ON

-ecs To display SQLCODE or SQLSTATE OFF

-f
To read command input from a file instead of from standard
input

OFF

-l To log commands in a history file OFF

-o To display output data and messages to standard output ON

-p
To display a Command Line Processor prompt when in the
interactive input mode

ON

-r To write the report generated by a command to a file OFF

-s
To stop execution if there are errors while executing
commands in a batch file or in Interactive Mode.

OFF

-t
To use a semicolon (;) as the statement termination
character and disable the use of backslash (\) as a line
continuation character.

OFF

-tdx
To define and to use ″x″ as the statement termination
character

OFF

-v To echo command text to standard output OFF

-w To display SQL statement warning message ON

-z
To redirect all output to a file. Similar to the -r option, but
-z includes any messages and error codes with the output

OFF

2.2.1 CLP Options Settings
There are three ways to set the command line options. They are:

 1. Using DB2OPTIONS in the db2profile file

The options that are set from the db2profile will be valid for the entire
session of DB2. Figure 6 shows part of the db2profile file that sets the
command line options.

� �
...
DB2OPTIONS=′ -a +c -l′
export DB2OPTIONS
...� �

Figure 6. Set the Command Option from the db2profi le File

 2. Using the option flags

8 DB2 Programming Interfaces 



You can use a flag at the command line for setting the options when you are
using the Command Mode or Batch Mode. In Command Mode, the options
you set will be valid only for the associated command you submit to DB2.
While in the Batch Mode, the options will be used for all the commands
contained in the batch file.

Figure 7 shows an example of setting a command option using a flag in
Command Mode. On the first and the second command, the Command Line
Processor displays output data and messages to standard output. On the
third command, we use the +o flag option that tells the Command Line
Processor not to display output data and messages. So, even though the
connection is successful, no messages are returned.

� �
$ db2 connect to sample

Database Connection Information

 Database product = DB2/6000 2.1.1
 SQL authorization ID = DB2
 Local database alias = SAMPLE
$ db2 connect reset
DB20000I The SQL command completed successfully.
$ db2 +o connect to sample
$� �

Figure 7. Setting Command Options by using Flags

 3. Using the update command options command

In the Interactive Mode, we use the update command options command to set
new options. This command can also be used from within a command file.
The settings will only be valid for that session. For example, to turn off the
output and display the SQLCA information, you could use the command;

db2⇒ update command options using o OFF a ON

We can see the current settings for the command options by entering the list
command options command either from Interactive, Command, or Batch Mode.
Figure 8 on page 10 shows an example of using this command.

Chapter 2. Command Line Processor 9



� �
db2 => list command options

Command Line Processor Option Settings

 Backend process wait time (seconds) (DB2BQTIME) = 1
 No. of retries to connect to backend (DB2BQTRY) = 60
 Request queue wait time (seconds) (DB2RQTIME) = 5
 Input queue wait time (seconds) (DB2IQTIME) = 5
 Command options (DB2OPTIONS) =

 Option Description Current Setting
------ ---------------------------------------- ---------------
-a Display SQLCA OFF
-c Auto-Commit ON
-e Display SQLCODE/SQLSTATE OFF
-f Read from input file OFF
-l Log commands in history file OFF
-o Display output ON
-p Display interactive input prompt ON
-r Save output to report file OFF
-s Stop execution on command error OFF
-t Set statement termination character OFF
-v Echo current command OFF
-w Display FETCH/SELECT warning messages ON
-z Save all output to output file OFF

� �
Figure 8. A List of the Current Options Settings

Since there are several ways to set the CLP options, the following list indicates
the order in which the final settings will be determined.

 1. The CLP sets up default options.

 2. The CLP reads the CLP options set by the DB2OPTIONS environment
variable. This may be set in the db2profile or in the user′s profile.

 3. Any command line options/flags that were set wil l be read.

 4. Finally, CLP wil l take input from any update command options command used
during a session.

2.3 Using the CLP
Several things that you should consider when using the CLP in either mode are:

• The CLP commands are not case-sensitive.

You can submit the command in either uppercase or lowercase. But there
are some commands that have case-sensitive parameters. For example, the
arguments for the with clause in the change database comment command does
reflect the case.

• The CLP uses the character ″\″ as a line continuation character. It means
that when the CLP finds a ″\″, it will read the next line and concatenate the
characters on both lines. For example:

db2 => select empno, firstnme, midinit, lastname \
db2 (cont.) => from employee \
db2 (cont.) => where job=′ CLERK′

• Special characters, such as $, &, *, (, ), ;, <, >, ?, ′, and ″, can be used
within CLP commands only if you are using the Interactive or Batch Modes.

10 DB2 Programming Interfaces 



If you use these characters in Command Mode, which is an operating system
shell, they may return a syntax error message. This is because the shell
may try to interpret these characters. There are two ways available to
overcome this problem:

 1. Put the statement between quotation marks. For example:

$ db2 ″select * from employee″

 2. Use an escape character, that is ″\″, before the special character. For
example:

$ db2 select \* from employee

• The CLP is not a programming language; so you cannot use any host
variables in your commands.

2.4 Using CLP in an Application
You can use the CLP from many types of UNIX scripts to develop an application.
You could use the C, Korn, or Bourne shell, depending on which script you
prefer.

When you run any CLP commands, a code is returned which indicates success
or failure of the CLP operation. This code is returned to the calling shell or
application. Table 2 lists the possible return codes and their descriptions.

Figure 9 shows a Bourne script that makes use of the return code from the get
database manager configuration command.

Table 2. CLP Return Codes

Code Description

0 DB2 command or SQL statement executed successfully

1 SELECT or FETCH statement returned no rows

2 DB2 command or SQL statement warning

4 DB2 command or SQL statement error

8 Command Line Processor system error

� �
...
db2 get database manager configuration
if [″$?″ = ″0″]

then echo ″OK!″
fi
...� �

Figure 9. Using the Return Code in an Application

The Stop Execution on Command Error option (-s option) affects the execution of
a CLP command depending on the Return Code that resulted from the command.
This effect occurs when the commands are submitted in the Interactive Mode or
from an input file in the Batch Mode. Table 3 on page 12 summarizes how the
-s option affects the execution of a CLP command.

Chapter 2. Command Line Processor 11



Table 3. CLP Return Codes and Command Execution

Return Code -s Option Set +s Option Set

0 (success) execution continues execution continues

1 (no rows selected) execution continues execution continues

2 (warning) execution continues execution continues

4 (DB2 or SQL error) execution stops execution continues

8 (System error) execution stops execution stops

12 DB2 Programming Interfaces 



Chapter 3. World Wide Web

DB2 databases can be accessed through any WWW browser that supports
Version 2.0 of the HyperText Markup Language (HTML). This chapter discusses
the DB2 World Wide Web Connection (DB2 WWW Connection) product and the
different programming languages that enable developers to create Web
applications for accessing DB2 databases. The creation and implementation of
such applications is also discussed here.

3.1 Overview
Internet users are growing in number. More and more people access the World
Wide Web (WWW) to find information they need. These people can be your
customers, your employees, your colleagues, or anyone who needs information
from your company that is stored on your DB2 databases.

With the DB2 WWW Connection product, it is possible to make your DB2
databases available to a user with any of the WWW browsers that are available
today. Access to the DB2 databases is also possible by using Hypertext Markup
Language (HTML) and Common Gateway Interface (CGI) scripts. However, the
DB2 WWW Connection product provides a simpler and more complete interface
into the DB2 databases, with higher levels of functionality than could be achieved
through HTML and CGI scripts alone.

3.1.1 DB2 World Wide Web Connection
DB2 WWW Connection V1 is a product that allows users to create WWW
applications that can access DB2 databases. It has the ability to pass variables
from HTML to SQL and back. And you don′ t need to make any change in the
DB2 database structure.

Application developers who wish to access data in DB2 databases only have to
write Structured Query Language (SQL) statements in macro files or CGI scripts
and combine them with Hypertext Markup Language (HTML) to produce their
applications.

  Copyright IBM Corp. 1996 13



Figure 10. DB2 World Wide Web Connection

3.1.2 Client/Server Environment
DB2 WWW Connection can be used in two client/server environments:

• Two-tier

A two-tier client/server is an environment with a local WWW server on the
same machine as the DB2 server. It can have one or more Web browser
clients.

Figure 11. A Two-Ttier Client/Server Environment

• Three-tier

A three-tier client/server is an environment where a local WWW server with
one or more WWW browser clients accesses remote DB2 servers.

14 DB2 Programming Interfaces 



Your WWW application can access DB2 data on the local WWW server as
well as data on remote database servers connected with Distributed
Database Connection Services (DDCS), Client Application Enabler (CAE) or
DataJoiner. Using DataJoiner, your WWW application can even access
Oracle, SYBASE or other relational and non-relational data sources.

Figure 12. A Three-tier Client/Server Environment

3.2 DB2 WWW Connection Installation
DB2 WWW Connection distribution media contains the following files:

README.AIX Documentation on how to install and set up DB2 WWW
Connection

db2www.pkg Installation configuration file

license International Program License Agreement

The product will be installed in the default directory, /usr/lpp/internet.

To install DB2 WWW Connection, you can use the System Management Interface
Tool (SMIT).

 1. Make sure that you are logged on as root on the server where you wish to
install the product.

Check it by submitting the following commands:

hostname; the result should be your server name.

whoami; the result should be root.

 2. Type the following to begin: smit or smitty

 3. You wil l now see the System Management screen. Place the cursor on
Software Installation and Maintenance, and press Enter .

Chapter 3. World Wide Web 15



Figure 13. System Management Interface Tool Screen

 4. Choose Install and Update Software on the Software Installation and
Maintenance screen.

Figure 14. Software Installation and Maintenance Screen

 5. Choose Install/Update Selectable Software (Custom Install) on the Install and
Update Software screen.

16 DB2 Programming Interfaces 



Figure 15. Install and Update Software Screen

 6. Choose Install Software Products at Latest Level on the Install/Update
Selectable Software (Custom Install) screen.

Figure 16. Install/Update Selectable Software (Custom Install) Screen

 7. Choose Install New Software Product at Latest Level on the Install Software
Products at Latest Level screen.

Chapter 3. World Wide Web 17



Figure 17. Install Software Products at Latest Level Screen

 8. Now, as in Figure 18, type your input device name on the entry field, and
press Enter . If you are not sure what devices are on your system, press F4
to see a list of devices.

Figure 18. Install Software Products at Latest Level Screen

 9. Position the cursor on SOFTWARE to install, and press F4.

18 DB2 Programming Interfaces 



Figure 19. Install Software Products at Latest Level Screen

10. You will see a list of software to install. Select either:

DB2 WWW Connection for DB2 Version 1  if you have DB2/6000 Version 1
or 1.2, or

DB2 WWW Connection for DB2 Version 2  if you have DB2 for AIX Version
2 or higher.

To make a selection, position the cursor on the line you will choose, and
press F7.

Figure 20. SOFTWARE to Install Screen

11. Press Enter  to install the product you choose.

Chapter 3. World Wide Web 19



3.3 Setting Up DB2 WWW Connection
This section describes the procedures needed to set up the DB2 WWW
Connection product. We assume that the World Wide Web/Internet server is
already configured and running on your system.

3.3.1 Internet Server Parameters
Before you continue, you will need to know the following environment
information about your existing WWW server′s configuration.

• WWW server directory

• WWW server document directory

• WWW server image file directory

• WWW server CGI executable programs directory

• DB2 instance name

Table 4 shows the Internet server parameters defined for this example.

In section 3.3.2, “DB2 WWW Connection Configuration,” we will use the values
shown in Table 4.

Table 4. An Example of WWW/Internet Server Parameters

Parameter Description Parameter Value

WWW Server directory /usr/ local/www

WWW Server Document directory /usr/ local/www/pub

WWW Server Image file directory /usr/ local/www/icons

WWW Server CGI executable programs directory /usr/local/www/cgi-bin

DB2 Instance Name db2

3.3.2 DB2 WWW Connection Configuration
By default, your WWW server directory is set to /usr/lpp/internet/server_root if
you are using the IBM Internet Connection Server product. You can determine
what your WWW server directory is by looking at the WWW server configuration
file, which is normally /etc/httpd.conf. There, you will find the ServerRoot
parameter which defines your WWW server′s root directory.

vi /etc/httpd.conf

20 DB2 Programming Interfaces 



� �
# @(#)53 1.9 src/web/etc/httpd.conf, web, web41C, 9535B 6/21/95 10:19:08
#
# COMPONENT_NAME: web httpd.conf
#
# FUNCTIONS:
#
# ORIGINS: 10 26 27
#
# (C) COPYRIGHT International Business Machines Corp. 1995
# All Rights Reserved
# Licensed Materials - Property of IBM
#
# US Government Users Restricted Rights - Use, duplication or
# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
#########################################################################
#
# Sample configuration file for httpd for running it
# as a normal HTTP server.
#
# See:
# <file://localhost/usr/lpp/internet/server_root/pub/ServerDocs/
# index.html>
#
#########################################################################

#
# Set this to point to the directory where you unpacked this
# distribution, or wherever you want httpd to have its ″home″
#
ServerRoot /usr/lpp/internet/server_root

#
# The default port for HTTP is 80; if you are not root you have
# to use a port above 1024; good defaults are 8000, 8001, 8080
#
Port 80

#
#
UserId nobody
GroupId nobody� �

Figure 21. Part of the WWW Server Configuration File

Figure 21 shows part of the /etc/httpd.conf file. The documentation with the IBM
Internet Connection Server product contains sample configuration files for
different types of server environments.

If your WWW server directory is not the default, /usr/lpp/internet/server_root,
then you will need to copy the following files to the new location. For this
example, the server root directory is /usr/local/www.

 1. Copy db2www and db2sql.bnd files to your WWW server CGI executable
program directory.

cp /usr/lpp/internet/server_root/cgi-bin/db2www \
/usr/local/www/cgi-bin

cp /usr/lpp/internet/server_root/cgi-bin/db2sql.bnd \
/usr/local/www/cgi-bin

Chapter 3. World Wide Web 21



 2. Copy db2www.ini and all htm files to your WWW server document root
directory.

cp /usr/lpp/internet/server_root/pub/db2www.ini \
/usr/local/www/pub

cp /usr/lpp/internet/server_root/pub/*.htm \
/usr/local/www/pub

 3. Copy all icon files to your WWW server image directory.

cp /usr/lpp/internet/server_root/icons/* \
/usr/local/www/icons

 4. Create a tmplobs directory under your WWW server document directory, and
make sure that your WWW server has the write access to this directory. The
least access is 770.

mkdir /usr/local/www/pub/tmplobs

chmod 770 /usr/local/www/pub/tmplobs

So, if your WWW server was started by user ID nobody and groupid nobody
(as defined in the /etc/httpd.conf file), the access list of the tmplobs directory
should be at least:

� �
drwxrwx--- 2 nobody nobody 2560 Jan 25 14:11 tmplobs� �

Figure 22. Access List of tmplobs Directory

 5. Create a macro directory under your WWW server CGI executable programs
directory, and copy all .d2w files to this directory.

mkdir /usr/local/www/cgi-bin/MACRO

cp /usr/lpp/internet/db2www/macro/*.d2w \
/usr/local/www/cgi-bin/MACRO

The file db2www.ini is the configuration file for DB2 WWW Connection. It
contains three variables that are described as the following:

MACRO PATH Specifies the directory where the macro files exist

BINDFILE Specifies the location of the bind file for DB2 WWW
Connection

DB2INSTANCE Specifies the DB2 instance name

Figure 23 contains a sample of the db2www.ini file.

� �
MACRO_PATH /usr/local/www/cgi-bin/MACRO
BINDFILE /usr/local/www/cgi-bin/db2sql.bnd
DB2INSTANCE db2� �

Figure 23. Sample of the db2www.ini File

22 DB2 Programming Interfaces 



3.4 Application Development
Many people use the Hypertext Markup Language (HTML) to create WWW
applications. HTML files can be written using any text editor, and they consist of
markup tags used to tell the WWW browser how to display text or images.

An application created using HTML is a static application which will always
display the same information until the source documents have been changed.

To access data in any database, we need an application that can run SQL
statements dynamically. There are two ways to do so:

 1. Using Macro Files

Using macro files, you are able to format the output from SQL queries and
reports by using HTML and macro variables that contain the data returned
by the SQL statement. The complete SQL command is dynamically built with
the user input and then sent to the database. The query results are shown in
a report form defined by the HTML markup.

 2. Using CGI Scripts

CGI script is another way to develop a dynamic WWW application. These
applications are dynamic because the results may change each time the
script is executed. The script itself remains the same.

CGI script can be written using any language that the system supports, such
as C/C++, Fortran or any UNIX shell.

Table 5 summarizes some characteristics of the two ways to access databases
when using DB2 WWW Connection.

Table 5 (Page 1 of 2). Using Macro Files and CGI Scripts to Access Databases

CGI Scripts Macro Fi les

Supported

Languages

• Any UNIX shell

• C / C + +

• COBOL

• Fortran

• PASCAL

• ADA

• Perl

• Any programming language supported by the

plat form

• Macro f i le commands

Other

commands

included

• SQL statements • SQL statements

• HTML commands

Define

Section

• Input var iables • Input and Output variables

HTML Input

Section

• In other program • Imbedded

SQL Section • Dynamic

• Result as a file

• Dynamic

• Result as column and row variables

HTML Output

Section

• Imbedded

• Print the result

• Imbedded

• HTML form as a report

Chapter 3. World Wide Web 23



Table 5 (Page 2 of 2). Using Macro Files and CGI Scripts to Access Databases

CGI Scripts Macro Fi les

Execution • CGI from HTML:

<FORM METHOD=POST 

ACTION=″ / cgi-bin/{CGI Script}″> 

• CGI from URL:

http://{WWW server}/cgi-bin/
{CGI Script}

• Macro f i le from HTML:

<FORM METHOD=POST 

ACTION=″ / cgi-bin/db2www/{macro file}/
{cmd}″> 

• Macro f i le from URL:

http://{WWW server}/cgi-bin/db2www/
{macro file}/{cmd} 

3.4.1 Macro Files
Macro files are written by application developers to create WWW applications.
All macro files should be located in a macro directory on the WWW server. This
macro directory is usually a subdirectory of the CGI directory.

Macro files contain sections that are written using Hypertext Markup Language
(HTML) and Structured Query Language (SQL).

These sections are:

 1. DEFINE Section

This is used to define input and output variables in a macro file. Since the
application will access data on a database, you should define at least the
DATABASE variable.

 2. SQL Section

You will use this section to write an SQL query. You can have many SQL
sections, but each one can only contain one SQL query. Also, you can have
SQL_REPORT and SQL_MESSAGE subsections.

 3. HTML Input Section

In this section, you specify the HTML page used for the input of values
needed to build the SQL query.

 4. HTML Report Section

This section allows you to specify the format to be used for showing the
query results. This section will execute SQL queries defined in each SQL
section.

 5. Comment Section

The comment section allows you to write a description of the macro file. This
is recommended, but is optional.

You can find a macro file template in the directory:

/usr/lpp/internet/db2www/macro

There are two ways you can invoke macro files in HTML documents:

• Using an Anchor reference

< a  r e f = h t t p : / /{WebServer}/cgi-bin/db2www/{macro file}/{cmd}{?}< / a >

• Using an HTML form

< f o r m  m e t h o d ={method}
act ion=ht tp : / /{WebServer}/cgi-bin/db2www/{macro file}/{cmd}{?} >

24 DB2 Programming Interfaces 



Where:

{WWW Server} is your WWW server address.

{macro file} is any macro file written with a .d2w. This file should be saved in
your macro directory.

{cmd} can be input or report to indicate if the macro is to execute as an
input form or execute the report section.

{method} The method determines the way input data is sent to the CGI or
macro. Two methods, get and post, are available. Input using the
get method is appended after the ? in the URL and is limited to
256 characters. As this is a part of the URL, information such as
the user ID and password will be display in the URL location field
and stored in the WWW server′s log files. This can lead to serious
security violations. The other method, post, sends URL
information through standard input, which is not limited in size and
does not suffer the security problems associated with the get
method.

3.4.2 Handling Large Objects (LOBs)
DB2 WWW Connection supports BLOBs, CLOBs and DBCLOBs data types to be
queried from DB2 V2.1 databases. You have to consider limitations such as
resources, special hardware and software requirements. Using LOBs can
quickly consume resources because it is usually a big file. Some LOBs, such as
an audio file, require special hardware and software installed on your machine
in order to run.

LOBs resulting from an SQL query in a macro file will be saved in a file under a
temporary directory named tmplobs. This directory is located under the WWW
server ′s root directory.

The first section of a LOB field in the DB2 WWW macro contains a file signature
of its type; when DB2 WWW Connection recognizes the LOB, the extension is
added to the temporary file so it can be displayed. If not, the temporary file must
be renamed with the appropriate extension (See 3.6.3, “Using LOBs in a Macro
File” on page 35).

Character Large Objects (CLOBs) are assigned a .txt extensions. For Binary
Large Objects (BLOBs), bitmaps are recognized with a .bmp extensions,
graphical image formats with .gif extensions, and tag image file formats with .tif
extensions. Postscript is only identified when contained in BLOBs, not in CLOBs.

Other types are not recognized, and no extension is added.

3.5 Security
Security is one of the most important issues. We need to be sure that we share
our data only with our intended audience. We can have different levels of
security on DB2 WWW Connection applications:

• Authentication

Configure your WWW server configuration file, /etc/httpd.conf, to protect
certain directories on your WWW server, including your DB2 server
directories.

Chapter 3. World Wide Web 25



Use LOGIN and PASSWORD variables on the DB2 WWW Connection
macro files to restrict access to any users. These variables are passed
to DB2 for authentication at the table and column level.

• Encryption

Secured Sockets Layer (SSL) or Secured Hypertext Transfer Protocol
(SHTTP) products can be used to protect authenticated user IDs/passwords
and any document transferred.

• Firewall

IBM ′s NetSP Firewall and other products can also be used.

3.5.1 Macro Files Without LOGIN and PASSWORD Variables
As a relational database, DB2 has an authentication mechanism that uses user
ID and password logins. We can use this authentication mechanism in DB2
WWW Connection applications.

Usually, there are user ID and password parameters in the WWW server
configuration file, /etc/httpd.conf, with nobody specified for use as default values
(see Figure 21 on page 21). When you run an SQL query to access a DB2
database using a DB2 WWW Connection macro file, you will use the user ID and
group specified in the /etc/httpd.conf file as the default connection user ID and
table schema.

This condition might result in some errors with your macro file if you have not
taken this into account. Some typical errors include:

 1. SQL0204N “NOBODY.tablename” is an undefined name

You have to use valid qualifiers to define your SQL query statement;
otherwise NOBODY will be used as the default qualifier.

 2. SQL0551N “NOBODY” does not have the privilege to perform operation
“SELECT” on object “tablename”

You have to grant select privilege to user nobody or any user who intends to
execute this query. This is because the authentication of users is done at the
time of execution.

You should never use a system administration user ID or the instance owner′s
user ID as the default user ID or group ID.

3.5.2 Macro Files With LOGIN and PASSWORD Variables
DB2 WWW Connection has some special variables. Two of them are used to
apply the DB2 authentication mechanism:

LOGIN specifies the user ID which accesses DB2 databases

PASSWORD specifies the password associated with the LOGIN variable

If these two variables are used in the macro file, they will override any value on
the user Id parameter in the WWW server configuration file, /etc/httpd.conf.

You will use LOGIN and PASSWORD variables in your macro file if you want to
share your data only with certain people. Do the following to avoid possible
errors.

• Use specific qualifiers for your tables in the macro file to avoid the SQL
query being executed using LOGIN variables.

26 DB2 Programming Interfaces 



• Revoke SELECT privilege from public and user NOBODY. This will forbid
people who do not have access to data to run the query.

3.6 Examples
The following samples show you how to easily change your Korn shell scripts or
write new ones in WWW browser presentations.

Figure 24 lists a Korn shell script that is intended to receive input data from the
user and then build a query that will execute against a DB2 database. This
script should have execute permission so that it may be used.

� �
#!usr/bin/ksh

# Prompt for database name
#
echo ″″
echo ″Enter database name : \c″ ;  read dbname
if [ ″$dbname″ != ″″ ]
then

# Prompt for User and Password
#
echo ″Enter User Name : \c″ ;  read user
if [ ″$user″ != ″″ ]
then

db2 connect to $dbname user $user
else

db2 connect to $dbname
fi

fi

# Prompt for Table Name and/or Owner
#
echo ″″
echo ″Enter Table Name : \c″ ;  read tname
if [ ″$tname″ = ″″ ]; then tname=′%′; fi

echo ″Enter Table Owner : \c″ ;  read oname
if [ ″$oname″ = ″″ ]; then oname=′%′; fi

# Run Query
#
db2 ″select \

tabname TABLE, tabschema SCHEMA, colname COLUMN, \
typename TYPE, length LENGTH \
from syscat.columns \
where tabname like UCASE(′ $tname%′ )  and \

tabschema like UCASE(′ $oname%′ ) ″� �
Figure 24. Access DB2 Databases from Korn Shell Scripts: dbcols

The results from executing this script can be seen in Figure 25 on page 28.

Chapter 3. World Wide Web 27



� �
Enter Database Name : sample
Enter User Name : guest
Enter password for guest:

Database Connection Information

 Database product = DB2/6000 2.1.1
 SQL authorization ID = GUEST
 Local database alias = SAMPLE

Enter Table Name : employee
Enter Table Owner : db2

TABLE SCHEMA COLUMN TYPE LENGTH
-------------- -------- ----------------- ------------------ -----------
EMPLOYEE DB2 BIRTHDATE DATE 4
EMPLOYEE DB2 BONUS DECIMAL 9
EMPLOYEE DB2 COMM DECIMAL 9
EMPLOYEE DB2 EDLEVEL SMALLINT 2
EMPLOYEE DB2 EMPNO CHARACTER 6
EMPLOYEE DB2 FIRSTNME VARCHAR 12
EMPLOYEE DB2 HIREDATE DATE 4
EMPLOYEE DB2 JOB CHARACTER 8
EMPLOYEE DB2 LASTNAME VARCHAR 15
EMPLOYEE DB2 MIDINIT CHARACTER 1
EMPLOYEE DB2 PHONENO CHARACTER 4
EMPLOYEE DB2 SALARY DECIMAL 9
EMPLOYEE DB2 SEX CHARACTER 1
EMPLOYEE DB2 WORKDEPT CHARACTER 3

14 record(s) selected.� �
Figure 25. Sample Output from the dbcols Shell Script

3.6.1 CGI Scripts Example
The following sample shows you how to call a CGI script from an HTML file.
Using both files, you can access data in the DB2 databases from any WWW
browser.

To test this sample, write and save the lsdbcols.html file, shown in Figure 26 on
page 29, to your WWW server document directory. Also, write and save
lsdbcols.pp, shown in Figure 27 on page 30, in your WWW server CGI executable
programs directory; then input the following:

http://{WWW server}/lsdbcols.html

This is the HTML file that defines the input form and calls the CGI script to run a
query.

28 DB2 Programming Interfaces 



� �
<HTML> �1�

<TITLE>DATABASE 2 for AIX, List Columns</TITLE>

<CENTER><H1>List Columns for Table(s)</H1></CENTER>

<HR>
<P>Complete the following. If no database is selected then
the ″SAMPLE″ database will be used.

<FORM METHOD=POST ACTION=″ /cgi-bin/lsdbcols″> �2�

<PRE> �3�
Database Name_: <INPUT TYPE=TEXT NAME=dbname VALUE=SAMPLE LENGTH=8></INPUT>

User Name_____: <INPUT TYPE=TEXT NAME=user LENGTH=8></INPUT>
User Password_: <INPUT TYPE=PASSWORD NAME=passwd LENGTH=8></INPUT>

<B>NOTE: Enter both User Name and Password or leave both fields blank.</B>

Owner/Schema__: <INPUT TYPE=TEXT NAME=oname LENGTH=8></INPUT>
Table Name____: <INPUT TYPE=TEXT NAME=tname LENGTH=8></INPUT>

<INPUT TYPE=SUBMIT VALUE=″Run Query″> <INPUT TYPE=RESET VALUE=″Reset Query″>
</PRE>
</FORM>
</BODY>
<!---------------------------------------------------------------------->
<CENTER><AUTHOR> �4�
<P>Any comments should be sent to <A HREF=mailto:rusconi@austin.ibm.com>
Frank Rusconi</A>.

<P>Last Update:
Fri Jan 19 16:13:54 CST 1996
</AUTHOR></CENTER>

</HTML>� �
Figure 26. Access DB2 Databases from WWW Browsers Using CGI Scripts: lsdbcols.html

�1�You have to define the title and headers for the form window.

�2�Select the method you wish to use for the URL, post or get. Write the CGI
script file name that will be executed; remember that this file must be in the
cgi-bin directory and made executable with 755 mode.

�3�This section contains all the input fields. These can be text fields, list boxes,
select buttons, or any other definition that HTML allows.

�4�You may also add some references to be linked directly from your form; these
may include other HTML documents or executable programs.

Figure 27 on page 30 lists the CGI file called from lsdbcols.html, which is used
to run the SQL queries.

Chapter 3. World Wide Web 29



� �
#!/usr/bin/ksh �1�

# Set up DB2 environment
. ˜db2/sqllib/db2profile
# Read in options
read INPUT_LINE

echo ″Content-type: text/html″ �2�
echo ″″
echo ″<CENTER><H1>DB2 Query - Results</H1></CENTER>″
echo ″<HR>″
echo ″<PRE>″ �3�

# Prompt for Database
#
dbname=echo $INPUT_LINE | /usr/bin/awk -F′&′ ′{ print $1 }′
dbname=echo $dbname | cut -d= -f2
if [ ″$dbname″ = ″″ ];then dbname=″sample″ ;  fi

# Prompt for User and Password
#
user=echo $INPUT_LINE | /usr/bin/awk -F′&′ ′{ print $2 }′
user=echo $user | cut -d= -f2
if [ ″$user″ != ″″ ]
then

passwd=echo $INPUT_LINE | /usr/bin/awk -F′&′ ′{ print $3 }′
passwd=echo $passwd | cut -d= -f2
db2 connect to $dbname user $user using $passwd

else
db2 connect to $dbname

fi

# Prompt to Table Name and/or Owner
#
oname=echo $INPUT_LINE | /usr/bin/awk -F′&′ ′{ print $4 }′
oname=echo $oname | cut -d= -f2
oname=″$oname%″

tname=echo $INPUT_LINE | /usr/bin/awk -F′&′ ′{ print $5 }′
tname=echo $tname | cut -d= -f2 | tr -d ′ \r′
tname=″$tname%″

# Run Query �4�
#
db2 ″select tabname TABLE, tabschema SCHEMA, colname COLUMN,

typename TYPE, length LENGTH from syscat.columns
where tabname like UCASE(′ $tname′ )  and

tabschema like UCASE(′ $oname′ ) ″

echo ″</PRE>″
exit 0� �

Figure 27. Access DB2 Databases from WWW Browsers Using CGI Scripts: lsdbcols.pp

�1�In this section, you set up the environment. You can run the db2profile
(include its path) to set up default instance, user ID, password, and command
options. Other shell environment variables could be set.

�2�To define title and headers for the query results window, you can use HTML
markup.

30 DB2 Programming Interfaces 



�3�You must read all the input text fields into variables that will be used to
define the query statement.

�4�Finally, you enter the SQL query command. It may contain references to
some or all of the variables you read before.

Figure 28 shows what the HTML screen will look like when you run the CGI
script sample above.

Figure 28. HTML Input Form Used By lsdbcols.html

The output of the query running on lsdbcols.pp is shown in Figure 29 on
page 32.

Chapter 3. World Wide Web 31



Figure 29. Output from CGI Script

3.6.2 DB2 WWW Macro Example
This example shows the input form that requires you to enter values that will
then be used to perform an SQL query. Once you submit the query, the results
will be returned as a HTML document.

To run this macro file, write and save it under your WWW macro directory, and
input the following in the URL:

http://{WWW server}/cgi-bin/db2www/lsdbcols.d2w/input

32 DB2 Programming Interfaces 



� �
%HTML_INPUT{
<HTML>
<TITLE>DATABASE 2 for AIX, List Columns</TITLE> �1�
<CENTER><H1>List Columns for Table(s)</H1></CENTER>
<HR>
<P>Complete the following. If no database is selected then the ″SAMPLE″
database will be used.

<FORM METHOD=POST ACTION=″ /cgi-bin/db2www/lsdbcols.d2w/report″>�2�

<PRE> �3�
Database Name_: <INPUT TYPE=TEXT NAME=DATABASE VALUE=SAMPLE LENGTH=8></INPUT>

User Name_____: <INPUT TYPE=TEXT NAME=LOGIN LENGTH=8></INPUT>
User Password_: <INPUT TYPE=PASSWORD NAME=PASSWORD LENGTH=8></INPUT>

<B>NOTE: Enter both User Name and Password or leave both fields blank.</B>

Owner/Schema__: <INPUT TYPE=TEXT NAME=oname LENGTH=8></INPUT>
Table Name____: <INPUT TYPE=TEXT NAME=tname LENGTH=18></INPUT>

<INPUT TYPE=SUBMIT VALUE=″Run Query″> <INPUT TYPE=RESET VALUE=″Reset Query″>
�4�

</PRE>
</FORM>
</BODY>
<!---------------------------------------------------------------------->
<CENTER><AUTHOR> �5�
<P>Any comments should be sent to <A HREF=mailto:rusconi@austin.ibm.com>
Frank Rusconi</A>.

<P>Last Update:
Wed Jan 24 09:38:32 CST 1996
</AUTHOR></CENTER>
</HTML>
%}

%SQL{ �6�
SELECT tabname TABLE, tabschema SCHEMA, colname COLUMN,

typename TYPE, length LENGTH
FROM syscat.columns
WHERE tabschema like ucase(′ $(oname)%′ )  AND

tabname like ucase(′ $(tname)%′ )

%SQL_REPORT{ �7�
<H2>SQL Report Results</H2>
<TABLE BORDER WIDTH=″100%″>
<TH>$(N1)<TH>$(N2)<TH>$(N3)<TH>$(N4)<TH>$(N5)
%ROW{ �8�
<TR><TD>$(V1)<TD>$(V2)<TD>$(V3)<TD>$(V4)<TD>$(V5)
%}
</TABLE>
%}
%}

%HTML_REPORT{ �9�
%EXEC_SQL
%}� �

Figure 30. Sample DB2 WWW Macro: lsdbcols.d2w

�1� This line defines the header of the WWW page used in the application. All is
written using standard HTML.

�2� This line calls the macro file lsdbcols.d2w, for a report form. We are using
the POST method because it′s safer than GET (See 3.4.1, “Macro Files” on
page 24).

Chapter 3. World Wide Web 33



�3� This part is used to input the values needed to build a query. We are using
LOGIN and PASSWORD variables to pass them to DB2. If a user leaves them
blank, DB2 will take the user ID specified in the WWW server configuration file as
a user ID login to DB2.

�4� This line will show two buttons on the WWW page screen. One has “Run
Query” text on it and the other has “Reset Query” text. If a user clicks on the
Run Query button, the query will be submitted to DB2. And if a user clicks on
Reset Query, the value of the variables will be set to default values.

�5� In this part, we write any text as comments or reference.

All the above parts, �1�, �2�, �3�, �4� and �5�, create the HTML input section.

�6� This part is used to write an SQL query. You can use standard SQL query
statements. DB2 WWW Connection V1 supports SELECT, INSERT, DELETE, and
UPDATE SQL statements.

�7� This part is used to customize how the query results will look on the screen
in HTML format. In this case, we are using tables to list the selected records.
N1, N2, ... N5 are variables which are set by the system. The value of these
variables are the names of columns selected in the SQL query. Nn is valid only
inside the SQL Report section.

�8�Part of SQL Report subsection is the Row subsection. In this subsection, we
define how each row returned by the SQL query will be displayed. We use Vn
variables which are also variables set by the system. The value of V1, V2, ... V5
will change each time a new row is retrieved. These variables are valid only
inside a Row subsection.

�6�, �7� and �8� are the SQL Section, while SQL_REPORT is a subsection. If you
don ′ t have an SQL_REPORT subsection, selected records will be shown in a
default table with column names at the top.

You can also have an SQL_MESSAGE subsection that allows the customization
of error and warning messages in SQL statements.

If you have more than one SQL section in a macro file, name them like this:

%SQL(Statement1){.......

%SQL(Statement2){.......

�9� The HTML Report section is where the query is executed. If you have more
than one SQL Section in your macro file, specify their names in the EXEC_SQL
line:

%EXEC_SQL(Statement1)

%EXEC_SQL(Statement2)

You can define how your WWW screen looks in the HTML Report Section by
using standard HTML. For example, you can give a new title, new header, some
comments and references, or icons that are different from the input page
(defined in HTML Input section).

Not all the sections mentioned in 3.4.1, “Macro Files” on page 24 are used.
Some of them are optional, and if you use them or not depends on your
application design. Also, the order in which you write each section doesn′ t need

34 DB2 Programming Interfaces 



to be the same as this sample. You can write them in any order. Logically, the
HTML Input section will be read first. After variables are submitted by a user,
the application calls the URL written in the ACTION field, as shown in �2�, which
is usually the HTML Report section. The HTML Report section then executes the
SQL query and shows the result on its defined form.

Figure 31 is the output screen from running the above macro file. The input
screen is the same as the CGI script sample which can be seen in Figure 28 on
page 31.

Figure 31. Output Screen from Macro File Sample

3.6.3 Using LOBs in a Macro File
The following sample shows you how to work with LOBs stored in DB2
databases and how to present them in a WWW browser application.

Chapter 3. World Wide Web 35



� �
%define DATABASE=″sample″
%{qemp.d2w Query database to find out employee information.
%}
%define{te=″employee″

tq=″db2″
tp=″emp_photo″
tr=″emp_resume″
docroot=″ / usr/local/www/pub″ �1�
move=%exec ″mv $(docroot)$(V5) $(docroot)$(V5).txt″

%}

%SQL{
select e.empno, e.firstnme, e.lastname, p.picture,

r.resume from $(tq).$(te) e, $(tq).$(tp) p, $(tq).$(tr) r
where e.empno=p.empno and e.empno=r.empno and

e.firstnme =ucase(′ $(InputName)′ )  and
p.photo_format = ′ gif′  and r.resume_format = ′ ascii′  �2�

%SQL_REPORT{
%ROW{
$(move)
<FORM METHOD=″POST″ ACTION=″ / cgi-bin/db2www/qemp.d2w/report″>
<PRE>
Employee No. : $(V1)
First Name : $(V2)
Last Name : $(V3)

Photo :
<P> <IMG SRC=″$(V4)″> �3�
<P> Resume : <a href=″$(V5).txt″>Click here to read $(V3)′ s resume</A>
<br> </PRE>
<INPUT TYPE=″submit″ VALUE=″UPDATE RECORDS″>
<INPUT TYPE=″reset″ VALUE=″RESET VALUES″>
</FORM>
%}
%}

%SQL_MESSAGE{
100 :″<strong>WARNING</strong>:
No employees were found that met your search criteria.<p>″ :  continue
%}
%}

%HTML_INPUT{
<TITLE>DB2 WWW Customer Information Query</TITLE>
<FORM METHOD=″POST″ ACTION=″ / cgi-bin/db2www/qemp.d2w/report″>
<CENTER><H1>EMPLOYEE QUERY FORM</H1></CENTER>
<hr> <PRE>
Employee Name : <INPUT TYPE=″text″ NAME=″InputName″ SIZE=30 VALUE=″DOLORES″>
</PRE> <HR>
<INPUT TYPE=″submit″ VALUE=″QUERY″> <INPUT TYPE=″reset″ VALUE=″RESET″>
</FORM>
<P>
%}

%HTML_REPORT{
<TITLE>DB2 WWW Information Results</TITLE>
<P><H1>EMPLOYEE DATA</H1><P>

%EXEC_SQL
<P> <HR>
%}� �

Figure 32. Using LOBs from DB2 Databases in a Macro File: qemp.d2w

36 DB2 Programming Interfaces 



�1�First, you have to define the directory where the temporary file for LOBs will
be saved docroot=″ /usr/local/www/pub″ . Then rename the file with the correct
extension according to its type move=%exec ″mv $(docroot)$(V5)
$(docroot)$(V5).txt″

�2�Now, build the query statement matching the column with the variable name
defined before (the select for the CLOB field must be in the fifth position in the
query columns).

�3�In the report form, you can use a specific viewer for each data type, <IMG
SRC=″$(V4)″> in case of pictures, or let the browser define which kind of data it
will present based on the file extension, <a href=″$(V5).txt″>.

Everything else works as it was explained in 3.6.2, “DB2 WWW Macro Example”
on page 32.

The following figures show the result of running the above macro file. The first
screen is Figure 33. And if you click on the sentence Click here to read
QUINTANA ′s resume , you will have the resume text as seen in Figure 34 on
page 38.

Figure 33. First Screen Resulting from the qemp.d2w Macro File

Chapter 3. World Wide Web 37



Figure 34. Second Screen Resulting from the qemp.d2w Macro File Shows the Resume

38 DB2 Programming Interfaces 



Chapter 4. Call Level Interface

There are several ways to write applications to access DB2 databases. This
chapter discusses writing applications using the DB2 Call Level Interface (DB2
CLI), which is provided in DB2 Version 2. The discussion includes information
about DB2 CLI, how to write the application, what should be considered when
writing applications using CLI, and some examples. The full listing of the code
fragments found in this chapter have been included in Appendix A, “Sample
Applications” on page 143.

4.1 Overview
DB2 Call Level Interface (DB2 CLI) is a callable SQL interface for the DB2 family
of database servers. It provides an alternative way to access DB2 Common
Server databases by using SQL statements through function calls instead of
using embedded SQL in the application. The advantage in using DB2 CLI is that
you do not have to precompile the application, as is required by embedded SQL.
Your application will be more portable since it does not depend on any particular
precompiler. This is because DB2 CLI applications use a common access
package provided with any DB2 for Common Server product. These differences
are discussed in further in 4.1.1, “ Differences between DB2 CLI and Embedded
SQL.”

To access a database, you code function calls with the DB2 CLI to invoke
dynamic SQL statements. DB2 CLI will pass the SQL statements to the database
manager for processing. When coding your application, you need to consider
the data types used in the transactions, the results and deal with error handling.
These areas are covered throughout this chapter.

4.1.1 Differences between DB2 CLI and Embedded SQL
DB2 CLI and Embedded SQL applications are different in the following ways:

• A DB2 CLI application does not need to be precompiled or bound. It uses a
standard set of functions to execute SQL statements at run time.

This is the most important difference because this makes the DB2 CLI
application independent of any particular database product. You do not need
to recompile or bind your DB2 CLI application to access different DB2
databases.

• DB2 CLI generates required cursors automatically, instead of having to
explicitly declare the cursor as required in Embedded SQL applications.

• DB2 CLI does not use the open statement. Executing a SELECT statement
will automatically open a cursor.

• DB2 CLI allows the use of parameter markers in the SQLExecDirect()
function. This is the equivalent of the EXECUTE IMMEDIATE statement in
Embedded SQL.

• DB2 CLI uses the SQLTransact() function call to issue a COMMIT or
ROLLBACK statement.

• DB2 CLI manages environment handles, connection handles and statement
handles. Detailed information about these handles is discussed in 4.2, “
Writing DB2 CLI Applications” on page 41.

  Copyright IBM Corp. 1996 39



• DB2 CLI uses SQLSTATE values defined by the X/Open SQL common
applications environment specification. This ensures the application will get
consistent message handling across different database servers.

DB2 CLI is suited for creating applications in a client/server environment in
which the target database is not known when the application is built. It is also
well suited for applications that require portability, since they do not need to be
precompiled.

DB2 CLI also supports multiple connections to multiple databases or multiple
connections to the same database, since each connection may have its own
commit scope. This can be achieved because DB2 CLI does not need to use
application controls, such as SQLDA and SQLCA, which are typically associated
with Embedded SQL applications. DB2 CLI allocates and controls the necessary
data structures and provides a handle for referencing them. This enables DB2
CLI to create multi-threaded applications where each thread can have its own
connection and a separate commit scope to any other connections or threads.

One consideration when using the DB2 CLI interface is that DB2 CLI applications
do not use static SQL. Static SQL is a statement that is fully known at
precompile time. In contrast to static SQL, a dynamic SQL statement is not fully
known until run time. Only embedded applications will use static SQL.

You may decide to use static SQL in your application because it has the
following characteristics:

• Static SQL may have better performance than dynamic SQL because
dynamic SQL needs more processing time, and the preparation step of
dynamic SQL may cause additional network-traffic at run time.

• In using static SQL, users do not need to have access to the data objects
(such as tables, views, columns, and so on). Instead, the authorization of the
objects are associated with a package and validated at the package binding
time. The privileges of the person who performs the binding of the
application will be used when other users execute it. Other users only need
the execute privilege for the static package.

You might already know the SQL statement and use the SQLExecute() function to
pass the complete SQL statement to the database in a DB2 CLI application. This
will not provide you with any of the features of static SQL because the statement
is still dynamic since access plans and optimization will still need to be
performed at run time.

In some cases, you may need both the advantages of using static SQL and DB2
CLI. This can be achieved because DB2 CLI applications can call stored
procedures on the server that may contain static SQL. How to use stored
procedures in a DB2 CLI application is discussed in 4.4.7, “Stored Procedures”
on page 84.

4.1.2 Supported Environments
To create and use DB2 CLI applications, we need both of the following:

 1. The development tools

DB2 CLI development support is included with DB2 Software Developer′s Kit
(DB2 SDK) products, which consists of the necessary header files, link
libraries, and documentation required to develop both Embedded SQL and

40 DB2 Programming Interfaces 



DB2 CLI applications. You can develop the application using DB2 SDK
installed on a DB2 server or on a DB2 client workstation.

 2. The runtime

DB2 server products and DB2 Client Application Enabler (DB2 CAE) products
support the runtime for DB2 CLI application. The CAE is included as a
component of the SDK product.

Figure 35 shows an example of an OS/2 environment that uses DB2 CLI
applications. Developers use DB2 SDK for OS/2 to write DB2 CLI applications
that run under OS/2. Users can use either DB2 CAE for OS/2 or DB2 for OS/2 to
run the application. This application can access data on DB2 for OS/2, DB2 for
AIX or any other DB2 for Common Server. And if you use Distributed Database
Connection Services (DDCS), the application can also access DB2 for OS/400,
DB2 for MVS/ESA, DB2 for VSE and VM servers, or any Distributed Relational
Database Architecture (DRDA) servers.

Figure 35. Example of a DB2 CLI Environment

4.2 Writing DB2 CLI Applications
Basically, a DB2 CLI application consists of sets of tasks. Each task is carried
out by calling one or more DB2 CLI functions.

In this section, we discuss the basic tasks that apply to all DB2 CLI applications.
There are also general tasks, such as handling diagnostic messages, which
occur throughout an application.

For further reference on the topics covered in this chapter, you should refer to
Call Level Interface Guide and Reference - for common servers.

Chapter 4. Call Level Interface 41



Figure 36. Basic Tasks in a DB2 CLI Application

As shown in Figure 36, the basic tasks in a DB2 CLI application are:

 1. Initialization

 2. Transaction Processing

 3. Termination

Before discussing each task, there is an important term that is used in DB2 CLI,
and that is the term “handle.”

A handle is a variable that refers to a data object controlled by DB2 CLI. By
using handles, DB2 CLI applications do not have to allocate and manage global
variables or data structures, such as the SQLDA or SQLCA, as used in the
Embedded SQL interfaces.

There are three types of handles:

• Environment Handle  refers to the data object that contains information
regarding the global state of the application, such as attributes and
connections.

• Connection Handle  refers to a data object that contains information
associated with a connection to a particular database, such as connection
options, general status information, transaction status, and diagnostic
information. An application requires a connection handle for each
concurrent connection to a database server.

• Statement Handle  refers to the data object that contains information
associated with the execution of a single SQL statement, such as statement
options, dynamic parameters, cursor information, bindings for dynamic
arguments and columns, result values, and status information. Each
statement handle is associated with a connection handle.

4.2.1 Initialization and Termination
The initialization task allocates and initializes the environment and connection
handles, while the termination task will free the allocated handles.

An environment handle must be allocated before a connection can be allocated.
To allocate an environment handle, we use SQLAllocEnv(). To free it, we use
SQLFreeEnv().

42 DB2 Programming Interfaces 



A connection handle is allocated by calling SQLAllocConnect() and freed by
calling SQLFreeConnect().

You have to allocate more than one connection handle in an application if the
application uses concurrent connections to a single database. This is because
each connection needs its own connection handle.

Figure 37 shows a conceptual view of Initialization and Termination tasks.

Figure 37. Conceptual View of Initialization and Termination tasks

4.2.2 Transaction Processing
Transaction Processing is the main task of a DB2 CLI application. It passes SQL
statements to DB2 CLI in order to query or modify the data.

Transaction Processing consists of the following five steps:

 1. Allocating Statement Handle(s)

 2. Preparation and Execution of SQL Statements

 3. Processing Results

 4. Commit or Rollback

 5. Freeing Statement Handle(s)

Figure 38 on page 44 shows each function associated with the above steps.

Chapter 4. Call Level Interface 43



Figure 38. Transaction Processing Task

Allocating Statement Handle(s)

Before executing an SQL statement, an application needs to allocate a statement
handle. A statement handle is allocated by calling the SQLAllocStmt() function.

Preparation and Execution

There are two available methods that can be used in this step:

 1. Prepare then Execute:

In this method, the preparation of a statement is split from the execution.
We use this method when the statement is going to be executed repeatedly,
and the application needs information about the columns in the result set (a
set of row(s) and/or column(s) resulting from a query) before the statement
is executed. Using this method, we do not have to prepare the same
statement more than once.

44 DB2 Programming Interfaces 



 2. Execute Direct:

In this method, we combine the preparation and execution steps into a single
step. We use this method when the statement is going to be executed only
once, and the application does not need the information about the columns
in the result set before the statement is executed. Using this method, we do
not need to call two functions to execute the statement.

The functions used in each method are shown in the Figure 38 on page 44.

Either the Prepare then Execute or Execute Direct method support the use of
parameter markers in an SQL statement. A Parameter marker is a marker used
to indicate the position of an application variable that will be used in an SQL
statement when the statement is executed. This function is similar to the use of
host variables in an Embedded SQL application. The application must bind an
application variable to each parameter marker used in the SQL statement by
calling the SQLBindParameter() or SQLSetParam() functions. The parameter
markers are indicated by “?” characters in the SQL statement and are
referenced sequentially from left to right. For example, if you define an SQL
statement with two parameter markers:

SELECT tabname, tabschema, colname, typename, length \
from syscat.columns where tabname = ? and tabschema = ?

Then you need to call the SQLBindParameter() function for each parameter marker
to be bound, as shown below:

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 10,
0, table_name.s, 10, SQL_NULL_DATA );

SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 10,
0, table_schem.s, 10, SQL_NULL_DATA );

Processing Results

An SQL statement in a DB2 CLI application may be one of the following types:

 1. Processing Query Statement (SELECT, VALUES)

To retrieve rows resulting from a query statement, a DB2 CLI application
generally uses the following steps:

a. Describe the structure of the result set, number of columns, column
types, and lengths

If the statement is generated by the application, it might not use this step
since the application may know the structure of the result set and the
data types of each column.

But if the statement is generated at run time, the application needs to
know the information about the number of columns, the names and data
types of each column in the result set. This information can be obtained
by calling SQLNumResultCols(), SQLDescribeCol() SQLColAttributes() after
preparing or executing the statement.

b. Bind application variables to columns to receive the data

To bind an application variable to a column in the result set, we use
SQLBindCol(). This allows the application to retrieve data on a column
directly into an application variable on the next call of SQLFetch(). You
need to call SQLBindCol() for each column to be retrieved. You can also

Chapter 4. Call Level Interface 45



use this function to determine the C data type to be used in the
application variable.

This step is optional since an application does not bind any columns
when it needs to retrieve columns of large amounts of data in pieces. In
this case, the application uses SQLGetData().

 c. Repeatedly fetch the next row of data and receive it into the bound
variables

In this step, the application calls SQLFetch() to fetch the first or next row
of the result set. If the application has determined the C data type to be
used in the application variable in the SQLBindCol(), data conversion from
SQL data types to C data types occurs here.

d. Retrieve columns that were not previously bound

This step is also an optional step. This step is used when the application
does not bind columns. The function used is SQLGetData(), and the
application needs to call this function for each fetch by using SQLFetch().
As in SQLBindCol(), you can also specify the C data type to be used for
the resulted data.

 2. Processing UPDATE, INSERT and DELETE Statements

There is no action needed in processing the results of modifying data
statements, such as UPDATE, INSERT and DELETE, other than the normal
check for diagnostic messages. You do not have to call any functions to get
the structure of a result set, bind application variables to columns or fetch
data. This is because there is no data returned from these statements. You
may only need to call only the SQLRowCount() function which is used for
obtaining the number of rows affected by the SQL statement.

If the statement is a positioned UPDATE or DELETE, it requires the use of a
cursor, that is, a pointer to a row in the result table of an active query
statement. In DB2 CLI applications, the cursor name is automatically
generated when calling SQLAllocStmt(). To use this cursor in a positioned
UPDATE or DELETE, we call the SQLGetCursorName() function.

 3. Processing Other Statements

Other statements that are not queries or modifying data statements, such as
CREATE, ALTER, GRANT, and REVOKE, do not need further action other than
the normal check for diagnostic messages.

Commit or Rollback

DB2 CLI supports two types of commit mode: auto-commit and manual-commit.
The default commit mode is auto-commit, but we can switch between
auto-commit and manual-commit in an application by calling the SQLSetConnect()
function.

Table 6 on page 47 summarizes the difference between auto-commit and
manual-commit.

46 DB2 Programming Interfaces 



Freeing Statement Handle(s)

This step is used to end processing for a particular statement handle. The
function called is SQLFreeStmt(). We call this function when the statement is not
going to be executed again. It will do one or more of the following:

• Unbind all columns of the result set

• Unbind all parameter markers

• Close any cursors and discard any pending results

• Drop the statement handle and release all associated resources

Table 6. The Difference between Auto-Commit and Manual-Commit

Auto-Commit Manual-Commit

A transaction is an SQL statement which
will be automatically committed at the
end of the statement execution

A transaction is started with the first
access to a database using
SQLPrepare(), SQLExecDirect(), or any
functions that returns a result set and
ends using SQLTransact() to commit or
rollback the transaction

Does not need to call SQLTransact() Must call SQLTransact() to commit or
rollback a transaction

Typically used in a query-only
application

Typically used in an application that
performs updates

4.2.3 Diagnostics and Error Handling
Diagnostic information is used to handle warning and error conditions generated
within a DB2 CLI application by calling a CLI function. DB2 CLI provides two
levels of diagnostic:

 1. Return Codes

The execution of a CLI function causes one or more conditions to be raised.
The basic result of the execution is indicated by a code that is returned by
the called function.

Table 7 below lists all possible return codes that might be generated by a
DB2 CLI function.

Table 7 (Page 1 of 2). Possible Return Codes from a DB2 CLI Function

Return Code Description

SQL_SUCCESS The function completed successfully; no
additional SQLSTATE information is available.

SQL_SUCCES_WITH_INFO The function completed successfully with a
warning or other information. Use SQLError() to
get the other information.

SQL_NO_DATA_FOUND The function returned successfully, but no
relevant data was found. Call SQLError() to
obtain additional information.

SQL_NEED_DATA The application tried to execute an SQL
statement, but DB2 CLI lacks parameter data that
the application had indicated would be passed at
execute time.

Chapter 4. Call Level Interface 47



 2. Detailed Diagnostics

Detailed diagnostics can be accessed by calling one of the following:

• SQLError() which provides diagnostic information associated with the
most recently invoked DB2 CLI function for a particular statement,
connection or environment handle. The information returned by
SQLError() consists of a standardized SQLSTATE, native error code and
a text message.

• SQLGetSQLCA() which provides SQLCA associated with the preparation
and execution of an SQL statement, fetching data or closing a cursor.

DB2 CLI provides a standard set of SQLSTATE values defined by the X/Open
SQL CAE specification. This means that the application will receive consistent
message handling across different database servers (usually different database
servers have different diagnostic message codes).

Figure 39 shows the use of Return Code after calling an SQLConnect() function.
And when it does not return SQL_SUCCESS, it will call SQLError() function to get
additional information about the error.

Table 7 (Page 2 of 2). Possible Return Codes from a DB2 CLI Function

Return Code Description

SQL_ERROR The function failed. Use SQLError() to obtain
SQLSTATE and other information.

SQL_INVALID_HANDLE The function failed due to an invalid input handle
(environment, connection or statement handle)
caused by a programming error. No further
information is available.

� �
rc = SQLConnect(hdbc, dbname, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);
if (rc != SQL_SUCCESS) {

printf(″--- ERROR while connecting to database : %s ---\n″ ,  dbname);
while (SQLError(henv, hdbc, hstmt, sqlstate, &sqlcode, buffer,

SQL_MAX_MESSAGE_LENGTH + 1, &elength) == SQL_SUCCESS){
printf(″ SQLSTATE: %s\n″ ,  sqlstate);
printf(″Native Error Code: %ld\n″ ,  sqlcode);
printf(″%s \n″ ,  buffer);

};
return (SQL_ERROR);
} else {

printf(″\n--- Connected to database : %s ---\n\n″ ,  dbname);
};� �

Figure 39. Return Code and Detailed Diagnostic Sample

Figure 40 on page 49 shows the result of calling SQLError() when using the
sample code listed in Figure 39.

48 DB2 Programming Interfaces 



� �
Enter Database Name : sampler
Enter User Name : db2
Enter Password for db2 : db2
--- ERROR while connecting to database : sampler ---

SQLSTATE: 08001
Native Error Code: -1013
[IBM][CLI Driver] SQL1013N The database alias name or database name
″SAMPLER″ could not be found. SQLSTATE=42705� �

Figure 40. Information Returned from Call ing SQLError() Function

4.2.4 Data Types and Data Conversion
In writing DB2 CLI applications, we have to deal with both SQL data types used
by the database management service (DBMS) and C data types used in the
application. When calling DB2 CLI functions, the application must match C data
types to SQL data types when transferring data between the DBMS and the
application.

To meet the above requirement, DB2 CLI:

• Provides symbolic names for the various data types

• Manages the transfer of data between the DBMS and the application

• Converts data when required (for example, converts a C character string to
an SQL INTEGER type)

Before DB2 CLI performs the data transfer between the DBMS and the
application, we have to identify the source, the target, or both data types by
calling the SQLBindParameter(), SQLBindCol() or SQLGetData() functions. These
functions use the symbolic type names. Table 8 on page 50 lists the SQL data
types in :orrespondence with its Symbolic Data Types and Default C Symbolic
Data Types.

An explanation for each column in the table is as follows:

 1. The SQL Data Type column contains the SQL data type as it appears in the
SQL DDL CREATE statement. The SQL data type is dependent in the DBMS.

 2. The Symbolic SQL Data Type column contains a SQL symbolic name. The
Symbolic SQL Data Type is defined as an integer value which is used by
various functions to identify the SQL data types listed in the SQL Data Type
column.

 3. The Default C Symbolic Data Type column contains the C symbolic name,
which is also defined as an integer value. The symbolic names are used by
various functions to indicate the C data types of the application variables.
We can indicate the C data types by explicitly specifying them in the
arguments of a function or by specifying SQL_C_DEFAULT in the arguments,
which will tell DB2 CLI to take the default C data types based on the SQL
data type of column. For example, the default C data type of SQL_DECIMAL
is SQL_C_CHAR.

Chapter 4. Call Level Interface 49



As mentioned previously, DB2 CLI can also perform data conversion. Table 8
shows only the default data conversions. The SQLBindParameter(), SQLBindCol()
and SQLGetData() functions can be used to convert data not only to the default
data type but also to other data types. Table 9 on page 51 lists all the data type
conversions supported by DB2 CLI.

Table 8. SQL Symbolic and Default Data Types

SQL Data Type Symbolic SQL Data
Type

Default Symbolic C Data
Type

BLOB SQL_BLOB SQL_C_BINARY

BLOB LOCATOR SQL_BLOB_LOCATOR SQL_C_BLOB_LOCATOR

CHAR SQL_CHAR SQL_C_CHAR

CHAR FOR BIT DATA SQL_BINARY SQL_C_BINARY

CLOB SQL_CLOB SQL_C_CHAR

CLOB LOCATOR SQL_CLOB_LOCATOR SQL_C_CLOB_LOCATOR

DATE SQL_DATE SQL_C_DATE

DBCLOB SQL_DBCLOB SQL_C_DBCHAR

DBCLOB LOCATOR SQL_DBCLOB_LOCATOR SQL_C_DBCLOB_LOCATOR

DECIMAL SQL_DECIMAL SQL_C_CHAR

DOUBLE SQL_DOUBLE SQL_C_DOUBLE

FLOAT SQL_FLOAT SQL_C_DOUBLE

GRAPHIC SQL_GRAPHIC SQL_C_DBCHAR

INTEGER SQL_INTEGER SQL_C_LONG

LONG VARCHAR SQL_LONGVARCHAR SQL_C_CHAR

LONG VARCHAR FOR
BIT DATA

SQL_LONGVARBINARY SQL_C_BINARY

LONG VARGRAPHIC SQL_LONGVARGRAPHIC SQL_C_DBCHAR

NUMERIC SQL_NUMERIC SQL_C_CHAR

REAL SQL_REAL SQL_C_FLOAT

SMALLINT SQL_SMALLINT SQL_C_SHORT

TIME SQL_TIME SQL_C_TIME

TIMESTAMP SQL_TIMESTAMP SQL_C_TIMESTAMP

VARCHAR SQL_VARCHAR SQL_C_CHAR

VARCHAR FOR BIT
DATA

SQL_VARBINARY SQL_C_BINARY

VARGRAPHIC SQL_VARGRAPHIC SQL_C_DBCHAR

50 DB2 Programming Interfaces 



For example, by default, the BLOB SQL data type is converted to
SQL_C_BINARY. But BLOB SQL data type can also be converted to
SQL_C_CHAR or SQL_C_BLOB_LOCATOR if you define it. These three data
types are the only C types that the BLOB SQL data type can be converted to.

DB2 CLI supports the use of User-Defined Types (UDTs) which is provided in DB2
Version 2. Data conversion involving UDTs in a DB2 application is covered in
4.4.6, “User-Defined Types (UDTs)” on page 83.

Table 9. Supported Data Conversions

SQL Data Type

S
Q

L
_

C
_

C
H

A
R

S
Q

L
_

C
_

L
O

N
G

S
Q

L
_

C
_

S
H

O
R

T

S
Q

L
_

C
_

T
IN

Y
IN

T

S
Q

L
_

C
_

F
L

O
A

T

S
Q

L
_

C
_

D
O

U
B

L
E

S
Q

L
_

C
_

D
A

T
E

S
Q

L
_

C
_

T
IM

E

S
Q

L
_

C
_

T
IM

E
S

T
A

M
P

S
Q

L
_

C
_

B
IN

A
R

Y

S
Q

L
_

C
_

B
IT

S
Q

L
_

C
_

D
B

C
H

A
R

S
Q

L
_

C
_

C
L

O
B

_
L

O
C

A
T

O
R

S
Q

L
_

C
_

B
L

O
B

_
L

O
C

A
T

O
R

S
Q

L
_

C
_

D
B

C
L

O
B

_
L

O
C

A
T

O
R

BLOB X D X

CHAR D X X X X X X X X X X

CLOB D X X

DATE X D X

DBCLOB X D X

DECIMAL D X X X X X X

DOUBLE X X X X X D X

FLOAT X X X X X D X

GRAPHIC X D

INTEGER X D X X X X X

LONG VARCHAR D X

LONG VARGRAPHIC X X D

NUMERIC D X X X X X X

REAL X X X X D X X

SMALLINT X X D X X X X

TIME X D X

TIMESTAMP X X X D

VARCHAR D X X X X X X X X X X

VARGRAPHIC X D

Note:

D The default data type conversion.

X Other data types conversion.

blank Not a supported data type conversion.

Chapter 4. Call Level Interface 51



4.3 CLI Application Configuration and Execution
Support for DB2 Call Level Interface applications is provided in all of the DB2 for
Common Server Products. The Client Application Enabler provides the runtime
environment, while with the Software Developer′s Kit, you can also perform
application development and testing.

4.3.1 Setting the DB2 CLI Runtime Environment
To successfully access a DB2 database from any DB2 CLI application, you need
to consider the following:

 1. The database (and its node if the database is remote) must be cataloged.
Use the Command Line Processor or DB2 administration tool, if applicable.

For an example, using the CLP interface, assume the TCP/IP protocol is
being used to connect to the remote server:

db2=> CATALOG TCPIP NODE tcpnode REMOTE tcpserv SERVER tcpsvce

To verify if it was successful, you can issue:

db2=> LIST NODE DIRECTORY

� �
Node Directory

Number of entries in the directory = 1

Node 1 entry:

Node name = tcpnode
Comment =
Protocol = TCP/IP
Hostname = tcpserv
Service name = tcpsvce

� �
To catalog the database after cataloging its remote node:

db2=> CATALOG DATABASE tcpdb AS tcpdb AT NODE tcpnode

To verify:

db2=> LIST DATABASE DIRECTORY

� �
Local Database Directory

Number of entries in the directory = 1

Database 1 entry:

Database alias = tcpdb
Database name = tcpdb
Local database directory =
Database release level = 6.00
Comment =
Directory entry type = Remote

� �
To test the connection from the CLP, you can use the command:

db2=> connect to tcpdb

 2. The DB2 CLI bind files must be bound to the database. The bind files
needed by each server are listed in Table 10 on page 53.

52 DB2 Programming Interfaces 



The db2cli.lst file contains the names of the required bind files for DB2 CLI to
connect to DB2 Version 2 servers. The db2cliv1.lst file contains the bind list for
DB2 Version 1 servers.

For DRDA servers, use one of ddcsvm.lst, ddcsmvs.lst, ddcsvse.lst, or ddcs400.lst
bind list files.

To bind these files (using the CLP):

db2=> CONNECT TO tcpdb

db2=> BIND $path/@db2cli.lst

To bind .bnd files, use the following command:

db2=> BIND $path/db2clics.bnd

The $path is required only if .lst or .bnd files are not in sqllib/bnd directory.

DB2 CLI can also be configured using either the Database Director or The DB2
Client Setup administration tool, depending on your platform. Alternatively, you
may edit the db2cli.ini file.

Table 10. DB2 Call Level Interface Bind Files

Bind File Name Package Name Needed by DB2
Common Server

Needed by DRDA
Servers

db2clics.bnd SQLL15xx Yes Yes

db2clirr.bnd SQLL25xx Yes Yes

db2cliur.bnd SQLL35xx Yes Yes

db2clirs.bnd SQLL45xx Yes Yes

db2clinc.bnd SQLL55xx No DB2 for OS/400

db2cliws.bnd SQLL65xx Yes No

db2clims.bnd SQLL75xx No DB2 for MVS/ESA

db2clivm.bnd SQLL85xx No SQL/DS

db2cliv1.bnd SQLLB5xx Version 1 only No

db2cliv2.bnd SQLL95xx Version 2.1 only No

db2clias.bnd SQLLA5xx No DB2 for OS/400

Note:  Where ′xx′ is unique for each platform, such as:

C0 DB2 for AIX
D0 DB2 for OS/2
W0 DB2 Client Application Enabler for Windows

4.3.1.1 Configuring db2cli.ini
The db2cli.ini initialization file is an ASCII file which stores values for the DB2
CLI configuration options. Depending on the platform, it is stored in the following
directory:

sqllib/cfg  for UNIX

sqllib  for OS/2

sqll ib\win  for Windows

The following is an example of a db2cli.ini file with two database alias sections:

Chapter 4. Call Level Interface 53



� �
; Database Alias Section 1.
[MYDB22] �1�
AUTOCOMMIT=0 �2�
TABLETYPE=″ ′ TABLE′ , ′ SYSTEM TABLE′ ″

; Database Alias Section 2. �3�
[MYDB2MVS] �1�
DBNAME=SAAID
TABLETYPE=″ ′ TABLE′ ″
SCHEMALIST=″ ′ USER1′ , CURRENT SQLID,′ USER2′ ″

� �

�1� is called the section header and is represented by the database alias written
between squared brackets.

Each line, such as the one marked �2� (following the section header), is used to
set the CLI parameters. Each keyword is associated with a keyword value, and
these settings are applied only to the database alias named in the section
header. The keywords are not case sensitive; however, their values may be if
they are used as values to compare within a specific query.

When an application connects to a database that is not found in the db2cli.ini file,
the default values are in effect. If you write duplicate entries for a keyword, the
first will be used without any warning. The db2cli.ini options will be used unless
the application overrides them.

You can introduce comment lines by placing a semicolon in the first position of a
new line, as in �3�, and also have blank lines.

For most applications, it′s not necessary to specify these keywords, but they can
be used to:

• Help improve the performance or usability of an application

• Provide support for applications written for a previous version of DB2 CLI

• Provides specific work-arounds for existing ODBC applications

Table 11 shows the keywords that can be defined in the db2cli.ini file, their
possible values and summarizes the way they affect the application behavior.
For further information, refer to Call Level Interface Guide and Reference.

Table 11 (Page 1 of 5). DB2 Call Level Interface Configuration Keywords

Keyword Value

AUTOCOMMIT 1 = on (default)

0  =  o f f

Default AUTOCOMMIT on means that each statement is treated as a complete
transaction. You can set an alternative default, but this will only by used if the
application does not specify another value as part of the program.

You must be careful when overriding this default value because the application
may depend on the default to operate properly.

54 DB2 Programming Interfaces 



Table 11 (Page 2 of 5). DB2 Call Level Interface Configuration Keywords

Keyword Value

BITDATA 1 = repor t  FOR BIT DATA and BLOB data types as binary data types (default)

0 = d isabled

Allows you to specify whether ODBC binary data types SQL_BINARY,
SQL_VARBINARY, SQL_LONGVARBINARY and SQL_BLOB are reported as binary data
types

Only set BITDATA = 0 if you′re sure that columns defined as FOR BIT DATA or
BLOB contain character data, and the application cannot display binary data
columns.

CONNECTTYPE 1 = multiple concurrent connections each with its own commit scope (default)

2 = coordinated connections with multiple databases in the same Distributed
Unit Of Work (DUOW). It works with SYNCPOINT setting to determine if a
Transaction Manager should be used.

See also 4.4.1, “ Distributed Unit of Work” on page 65.

CURRENTFUNCTIONPATH current_function_path

Defines the path used to resolve function and data type references used in
dynamic SQL statements. The default is:

″SYSIBM″ , ″SYSFUN″ , ″X″

Where X is the value of the USER special register. The schema SYSIBM is always
used first, unless specified elsewhere. The order of the schema names
determines the order in which function names will be resolved.

CURRENTSQLID current_sqlid

It ′s valid for DB2 DBMS that support SET CURRENT SQLID (such as DB2 for
MVS/ESA). This allows the end user and applications to name SQL objects
without having to qualify by schema name.

CURSORHOLD 1 = Cursors are not destroyed when the transaction is committed (default).

0 = Cursors are destroyed after commit.

Cursors are always destroyed when transactions are rolled back.

DB2ESTIMATE 0 = Estimates are not returned (default)

large positive number = Is the threshold above which DB2 CLI will display the
window to report estimates. If the value in SQLERRD(4) is greater than
DB2ESTIMATE, the estimates window will appear. The recommended value is
60000.

DB2EXPLAIN 0 = Both off (default)

1 = Explain Snapshot Facility on

2 = Explain Table Information Capture Facility on

3 = Both on

In each case, ′SET CURRENT EXPLAIN SNAPSHOT = YES/NO′ and ′SET CURRENT EXPLAIN
MODE = YES/NO′ are sent to the server to enable or disable each facil ity.

Explain tables must be created before the explain information can be generated
and authorization ID must have INSERT privilege for these tables.

DB2OPTIMIZATION integer value from 0 to 9

Only applies to DB2 Version 2 server. If specified, DB2 CLI will issue the
following statement after a successful connection:

SET CURRENT QUERY OPTIMIZATION integer value

This value represents the level at which the optimizer should operate the SQL
queries. See Adjusting the Optimization Class in the DB2 Administration Guide.

Chapter 4. Call Level Interface 55



Table 11 (Page 3 of 5). DB2 Call Level Interface Configuration Keywords

Keyword Value

DBALIAS dbalias

The maximum length for a database alias name is eight single byte characters. If
you need to specify a longer alias name (to make it meaningful), it can be placed
in the section header written between brackets, and then you must use this
keyword to define the eight character alias name, as in the following example:

; Using a long database alias name
[LongDatabaseName]
DBALIAS=DB2DBXXX

DBNAME dbname

Only used when connecting to DB2 for MVS/ESA and if (base) table catalog
information is requested by the application.

Can be specified to reduce the time it takes for the database to process the
catalog query for table information and reduce the number if tables returned to
the application.

See also TABLETYPE.

GRAPHIC 0 = disabled (default)

1  = enabled

2 = Reports the length of graphic columns returned by SQLDescribe() in number
of bytes rather than in Double-Byte Character Set (DBCS) characters.

Applicable to DB2 CLI/ODBC functions that return length/precision in the output
argument or as part of the result set. Needed for Microsoft Access 1.1 and
Microsoft Query.

LOBMAXCOLUMNSIZE integer greater than 0

It will override the 2 GB (1 GB for DBCLOB) value returned by SQLGetTypeInfo()
for the COLUMN_SIZE column for SQL_CLOB, SQL_BLOB and SQL_DBCLOB data types.

LONGDATACOMPAT 0 = no (default)

References LOB data types as SQL_BLOB, SQL_CLOB and SQL_DBCLOB.

1  =  yes

References LOB data types as SQL_LONGVARCHAR, SQL_LONGVARBINARY and
SQL_LONGVARGRAPHIC.

MAXCONN 0 | positive number

Specifies the maximum number of connections allowed for each CLI application
program. A value of 0 represents no limit; that means your application can open
as many connections as permitted by the system resources.

MODE SHARE (default)

Does not prevent concurrent application processes from executing operations at
the application server.

EXCLUSIVE (Not permitted for DRDA connections)

Prevents concurrent application processes from executing operations at the
application server unless they have the same authorization ID as the user
holding the exclusive lock.

This value may be overridden by the application settings at connect time.

See Lock Table Statement in the SQL Reference.

56 DB2 Programming Interfaces 



Table 11 (Page 4 of 5). DB2 Call Level Interface Configuration Keywords

Keyword Value

MULTICONNECT 0 = fa lse

Each SQLConnect() request by the application will result in a physical database
connection.

1  =  t rue

All connections for the application are mapped to a single physical connection.
All the statements are executed in the same transaction; so a rollback will
rollback all the statements on all the connections for the application.

OPTIMIZEFORNROWS integer

Will append the ′OPTIMIZE FOR n ROWS′ clause to every SELECT statement, where
n is an integer larger than 0. Default is not to append this clause.

PATCH1 {0 |1 |2 |4 |8 |16 |... }

Used to specify a work-around for known problems with 16-bit Windows 3.1 ODBC
applications. If you want the work-around to be additive, add the values together
to form the keyword value. For example, if you need 1, 4 and 8 work-arounds
added, you should write:

PATCH1 = 13

Default is 0; that means without work-arounds.

PWD password

Defines the password to be used if it′s not provided by the application at connect
time.

SCHEMALIST “ ′schema1 ′, ′schema2 ′, ...”

A list of schemas in the database. It replaces the OWNERLIST keyword used in
previous releases (stil l supported but not recommended). See also TABLETYPE.

SYNCPOINT 1 = One phase (default)

Used to commit independently the work done by each database in a multiple
database transaction.

2 = Two phase

Specifies that a Transaction Manager is needed to coordinate two phase commits
among those databases that support this.

This keyword is relevant only if CONNECTTYPE =  2 . See also 4.4.1, “ Distributed
Unit of Work” on page 65.

SYSSCHEMA sysschema

Indicates an alternative schema to be searched in place of the SYSIBM (or
SYSTEM, QSYS2) schemas when DB2 CLI and ODBC catalog function calls are
issued to obtain system catalog information.

It replaces SYSOWNER keyword used in previous releases (still supported but not
recommended).

TABLETYPE “ ′TABLE′ | ,  ′ALIAS ′ | ,  ′VIEW′ | ,  ′INOPERATIVE VIEW′ | ,  ′SYSTEM TABLE′ | ,
′SYNONYM′”

Can be used with DBNAME and SCHEMALIST to limit the number of tables for which
information will be returned.

TRANSLATEDLL X:\PATH\DB2TRANS.DLL

X:\PATH is the directory where DB2 CAE or SDK for Windows products have been
installed. The DB2TRANS.DLL file contains codepage mapping tables.

Chapter 4. Call Level Interface 57



Table 11 (Page 5 of 5). DB2 Call Level Interface Configuration Keywords

Keyword Value

TRANSLATEOPTION database codepage number

Lets TRANSLATEDLL and TRANSLATEOPTION enable the translation of characters from
codepage number to the Windows 1004 codepage when working with DB2 Version
1 servers.

Only two database codepage numbers are supported: 437 and 850. If you specify
any different value, a warning will be returned during the connect request. This
indicates that translation is not possible.

TNXISOLATION  1 = Read Uncommitted (Uncommitted read)

 2 = Read Committed (Cursor Stability) (default)

 4 = Repeatable Read (Read Stability)

 8 = Serializable (Repeatable read)

32 = No Commit (DB2 for OS/400 only)

Words in parenthesis are DB2 equivalents for SQL92 isolation levels.

See Application Processes, Concurrency and Recovery in the DB2 SQL
Reference.

UID user ID

Defines the user ID to be used if it′s not provided by the application at connect
time.

UNDERSCORE 1 = “_” acts as a wildcard matching any one character or none (default)

0 = “_” acts as i tself . Setting this keyword to 0 will result in performance
improvement in cases where object names in the database contain underscores.

This keyword is valid only for versions prior to DB2 Version 2 server; this can use
the ESCAPE clause for the LIKE predicate.

4.3.2 Application Development Environment Setup
DB2 CLI application development support is provided when you install DB2 SDK
products. It requires the same initial runtime setup you defined at 4.3.1, “Setting
the DB2 CLI Runtime Environment” on page 52.

To set up and verify the application development environment, do the following:

 1. Verify the database (and its node if remote server is being used) are
cataloged. Issuing the following commands will list the nodes and databases
that have been cataloged.

db2=> LIST NODE DIRECTORY

db2=> LIST DATABASE DIRECTORY

 2. Verify if connection is possible by issuing the following command:

db2=> CONNECT TO tcpdb USER userId USING password

 3. Verify the appropriate compiler is installed and set up.

 4. Once the connection has been confirmed, you can compile DB2 CLI
applications, as explained in 4.3.3, “ Compiling and Linking Applications” on
page 59.

DB2 CLI includes some example applications in the /samples/cli directory
under your DB2 SDK product installation directory.

58 DB2 Programming Interfaces 



 5. After compilation is finished, without errors, you can execute the new
application.

Section 4.3.4, “ DB2 CLI Functions” on page 60 shows the functions used in DB2
CLI applications.

4.3.3 Compiling and Linking Applications
Since DB2 CLI is defined as a ′C′ and ′C + + ′ Application Programming
Interface, applications can be written in any of those languages, and they also
need to be compiled and linked.

There are some general considerations when programming DB2 CLI
applications:

• The order in which the compiler searches for include (header) files can be
significant if there are two or more files with the same name.

• If you′re building only DB2 CLI applications, always put the DB2 include path
before any other include files in your application.

If building ODBC applications, refer to Chapter 5, “Open Database Connectivity
(ODBC)” on page 93.

Depending on which is your client operating system, you can choose to develop
applications in IBM AIX XLC, IBM CSet++ for OS/2 or Microsoft Visual C.

Table 12, Table 13 and Table 14 show the differences that must be considered
when you work in each application-development environment.

Table 12. Considerations When Programming in XLC for AIX

ini fi le $DB2PATH/cfg/db2cli.ini

source file $DB2PATH/samples/cli/clisampl.c

command file $DB2PATH/samples/cli/clibld

compile xlc -c clisampl.c -I/$DB2PATH/include

l ink xlc -c clisampl clisampl.o /$DB2PATH/lib/libdb2.a -bloadmap:map

Note:

• DB2PATH is the directory where DB2 is installed.

Table 13. Considerations When Programming in C S e t + + for OS/2

ini fi le DB2PATH\db2cli.ini

source file DB2PATH\samples\cli\clisampl.c

command file DB2PATH\samples\cli\clibld.cmd

compile icc -c clisampl.c

l ink link386 /st:128000 /noi /clisampl.obj,clisampl.exe,NUL,db2cli;

Note:

• DB2PATH is the directory where DB2 is installed.

Table 14 (Page 1 of 2). Considerations When Programming in Microsoft Visual C for
Windows

ini fi le DB2PATH\win\db2cli.ini

Chapter 4. Call Level Interface 59



Table 14 (Page 2 of 2). Considerations When Programming in Microsoft Visual C for
Windows

source file DB2PATH\win\samples\cli\clisampl.c

command file DB2PATH\samples\cli\clibld.bat

compile cl -c -ALw -DDB2WIN clisampl.c

l ink link /st:20000 /se:512 clisampw.obj,clisampw.exe,NUL,
llibcewq+db2cliw;

Note:

• DB2PATH is the directory where DB2 is installed.
• llibcewq is the Microsoft Visual C Quick Win library used to allow ANSI C

programs using stdin and stdout to run unchanged.
• DB2WIN is a macro that must be defined (equivalent to #define DB2WIN) in order to

use the DB2 CLI include files.

4.3.4 DB2 CLI Functions
DB2 CLI functions can be grouped depending on which part of the application
they belong to. As we said before, CLI applications can be divided into three
sections: Initialization, Transaction Processing and Termination.

Table 15 shows the functions used in the Initialization section. Table 16 on
page 61 shows the Transaction Processing functions, and Table 17 on page 62
shows the functions used in the Termination section.

Also, there are some other functions that can be used to retrieve information or
set up the environment we are working with. Table 18 on page 62 lists these
functions that can be useful to perform error handling tasks and get diagnostic
information during the Transaction Processing.

Table 15. DB2 CLI Functions: Initialization

Function Description ODBC X/Open DB2

Connecting to a data source

SQLAllocEnv Obtains an environment handle. One environment
handle is used for one or more connections.

Core Core v1.1

SQLAllocConnect Obtains a connection handle. Core Core v1.1

SQLConnect Connects to a specific driver by data source name,
user ID and password.

Core Core v1.1

SQLDriverConnect Connect to a specific driver by connection string or
optionally requests the Driver Manager and driver to
display connection dialogs for the user.

Lvl 1 Lvl 1 v2.1 [a]

SQLSetConnection Sets the current active connection. Only needs to be
used if you are working with Embedded SQL within a
DB2 CLI application with multiple concurrent
connections.

No No v2.1

Note:

• The DB2 column lists the first version of DB2 that supports the function.

• [a] means that runtime for this function is also available in the DB2 CAE for DOS 1.2.

60 DB2 Programming Interfaces 



Table 16 (Page 1 of 2). DB2 CLI Functions: Transaction Processing

Function Description ODBC X/Open DB2

Preparing SQL requests

SQLAllocStmt Allocates a statement handle Core Core V1.1

SQLPrepare Prepares an SQL statement for later execution Core Core V1.1

SQLBindParameter Assigns storage for a parameter in an SQL statement
(ODBC 2.0)

Lvl 1 Lvl 1 V2.1

SQLSetParam Assigns storage for a parameter in an SQL statement
(ODBC 1.0)

Core Core V1.1

SQLParamOptions Specifies the use of multiple values for parameters Lvl 2 Lvl 2 V2.1

SQLGetCursorName Returns the cursor name associated with the
statement handle

Core Core V1.1

SQLSetCursorName Specifies a cursor name Core Core V1.1

Submitting requests

SQLExecute Executes a prepared statement Core Core V1.1

SQLExecDirect Executes a statement (not necessarily prepared) Core Core V1.1

SQLNativeSQL Returns the text of an SQL statement as translated by
the driver

Lvl 2 Lvl 2 V2.1 [a]

SQLNumParams Returns the number of parameters in a statement Lvl
2[a]

Lvl
2[a]

V2.1

SQLParamData Used with SQLPutData() to supply parameter data at
execution time

Lvl 1 Lvl 1 V2.1 [a]

SQLPutData Sends part or all of a data value for a parameter
(useful for long data values)

Lvl 1 Lvl 1 V2.1 [a]

Retrieving results and information about results

SQLRowcount Returns the number of rows affected by an INSERT,
UPDATE or DELETE request

Core Core V1.1

SQLNumResultCols Returns the number of columns in the result set Core Core V1.1

SQLDescribeCol Describes a column in the result set Core Core V1.1

SQLColAttributes Describes attributes of a column in the result set Core Core V1.1

SQLSetColAttributes Sets attributes of a column in the result set No No V2.1

SQLBindCol Assigns storage for a result column and specifies the
data type

Core Core V1.1

SQLFetch Returns a result row Core Core V1.1

SQLExtendedFetch Return multiple result rows Lvl 2 Lvl 2 V2.1

SQLGetData Returns part or all of one column of one row of a
result set (useful for long data values)

Lvl 1 Lvl 1 V1.1

SQLMoreResults Determines whether there are more result sets
available and if so, initializes processing for the next
result set

Lvl 2 Lvl 2 V2.1 [a]

SQLError Returns additional error or status information Core Core V1.1

SQLGetSQLCA Returns the SQLCA associated with a statement
handle

No No V2.1

Large Object Support

SQLBindFileToCol Associates a LOB file reference with a LOB column No No V2.1

Chapter 4. Call Level Interface 61



Table 16 (Page 2 of 2). DB2 CLI Functions: Transaction Processing

Function Description ODBC X/Open DB2

SQLBindFileToParam Associates a LOB file reference with a parameter
marker

No No V2.1

SQLGetLength Gets length of a string referenced by a LOB locator No No V2.1

SQLGetPosition Gets the position of a string within a source string
referenced by a LOB locator

No No V2.1

SQLGetSubString Creates a new LOB locator that references a
substring within a source string (the source string is
also represented by a LOB locator)

No No V2.1

Terminating a statement

SQLFreeStmt Ends statement processing and closes the associated
cursor, discards pending results and optionally frees
all resources associated with the statement handle

Core Core V1.1

SQLCancel Cancels an SQL statement Core Core V1.1

SQLTransact Commit or rollback a transaction Core Core V1.1

Note:

• The DB2 column lists the first version of DB2 that supports the function.

• [a] means that runtime for this function is also available in the DB2 CAE for DOS 1.2.

Table 17. DB2 CLI Functions: Termination

Function Description ODBC X/Open DB2

Terminating a connection

SQLDisconnect Closes the connection Core Core V1.1

SQLFreeConnect Releases the connection handle Core Core V1.1

SQLFreeEnv Releases the environment handle Core Core V1.1

Note:

• The DB2 column lists the first version of DB2 that supports the function.

Table 18 (Page 1 of 2). DB2 CLI Functions: Information and Setup

Function Description ODBC X/Open DB2

Obtaining information about a Driver and Data Source

SQLDataSources Returns a list of available data sources Lvl 2 Lvl 2 V1.1

SQLGetInfo Returns information about a specific driver and data
source

Lvl 1 Lvl 1 V1.1

SQLGetFunction Returns supported driver functions Lvl 1 Lvl 1 V1.1

SQLGetTypeInfo Returns information about supported data types Lvl 1 Lvl 1 V1.1

Setting and retrieving Driver Options

SQLSetEnvAttr Sets an environment option No No V2.1

SQLGetEnvAttr Returns the values of an environment option No No V2.1

SQLSetConnectOption Sets a connection option Lvl 1 Lvl 1 V2.1 [a]

SQLGetConnectOption Returns the value of a connection option Lvl 1 Lvl 1 V2.1 [a]

SQLSetStmtOption Sets a statement option Lvl 1 Lvl 1 V2.1 [a]

62 DB2 Programming Interfaces 



Table 18 (Page 2 of 2). DB2 CLI Functions: Information and Setup

Function Description ODBC X/Open DB2

SQLGetStmtOption Returns a statement option Lvl 1 Lvl 1 V2.1 [a]

Obtaining information about the data sources ′ system tables

SQLColumns Returns the list of column names in specified tables Lvl 1 Lvl 1 V2.1 [a]

SQLForeignKeys Returns a list of column names that define foreign
keys for a table

Lvl 2 Lvl 2 V2.1

SQLPrimaryKeys Returns a list of column names that define the
primary key for a table

Lvl 2 Lvl 2 V2.1

SQLProcedureColumns Returns the list of input and output parameters Lvl 2 Lvl 2 V2.1

SQLProcedures Returns the list of procedure names stored in a
specific data source

Lvl 2 Lvl 2 V2.1

SQLSpecialColumns Returns information about the optimal set of columns
that uniquely identifies a row

Lvl 1 Lvl 1 V2.1 [a]

SQLStatistics Returns statistics about a single table and the list of
its indexes

Lvl 1 Lvl 1 V2.1 [a]

SQLTablePrivileges Returns a list of tables and its privileges Lvl 1 Lvl 2 V2.1

SQLTables Returns a list of table names stored in a specific data
source

Lvl 1 Lvl 1 V2.1 [a]

Note:

• The DB2 column lists the first version of DB2 that supports the function.

• [a] means that runtime for this function is also available in the DB2 CAE for DOS 1.2.

4.4 Advanced Features
To perform special tasks while working with CLI, such as connecting to multiple
databases in a distributed environment, getting information of system catalog
tables, using large objects, or user-defined data types, there are some options or
attributes that must be defined in the application. By changing their values, the
application can change the behavior of DB2 CLI at three levels:

 1. Environment

An environment handle has attributes that affect CLI functions under the
environment defined when the handle was allocated. The application can
specify the value of an attribute by calling the function SQLSetEnvAttr() and
can obtain current values with SQLGetEnvAttr(). You must set up the
environment attributes before the connection handles have been allocated.

 2. Connection

A connection handle has attributes that affect CLI functions under the
connection where they are allocated. Options can be changed considering
that:

• Some options, such as SQL_CURRENT_SCHEMA, can be set any time once the
connection handle is allocated.

• Some options, such as SQL_MAXCONN, SQL_CONNECTTYPE or SQL_SYNC_POINT.,
can be set only before the actual connection is established.

Chapter 4. Call Level Interface 63



• Some options, like SQL_TXN_ISOLATION, can be set only after the
connection is established, but while there are no outstanding
transactions or open cursors.

The application can change the connection options by calling the
SQLSetConnectOption() function and obtain current values with
SQLGetConnectOption().

For detailed information on when each option can be changed, refer to the
SQLSetConnectOption() function in the Call Level Interface Guide and
Reference - for common servers.

 3. Statement

A statement handle has options which will affect the CLI functions that are
executed using this statement handle. You should consider the following:

• Some options can be set currently only to one specific value; this means
that although there are many option values for DB2 CLI they can be set
only to a specific one. That applies to SQL_ASYNC_ENABLE, which is always
off and to SQL_CURSOR_TYPE, set to forward only. An option valid only in
the Windows platform is SQL_QUERY_TIMEOUT.

• Some options, such as SQL_ROWSET_SIZE, SQL_MAX_ROWS and
SQL_MAX_LENGTH, can be set any time after the statement handle has been
allocated.

• Some options can only be set if there is no open cursor on the statement
handle. These include SQL_CONCURRENCY, SQL_CURSOR_HOLD or
SQL_NODESCRIBE.

The application can specify the value of any option by calling the
SQLSetStmtOption() function and obtain the current value with 
SQLGetStmtOption().

For further information on when each option can be changed, refer to
function SQLSetStmtOption() in the Call Level Interface Guide and Reference -
for common servers.

Many applications can use the default options; however, in some situations when
you need to control different environments for users of the same application, you
must change them. DB2 CLI provides two ways to change the defaults at run
time:

 1. You can specify the default attribute value in the connecting string input to
the SQLDriverConnect() function, or

 2. Specify a new default attribute value in a DB2 CLI initialization file.

The DB2 CLI initialization file can change defaults only in that workstation.
Default attributes specified with SQLDriverConnect() override the values in this file
for that particular connection.

The following sections explain the functions and option settings needed to
perform specific tasks.

64 DB2 Programming Interfaces 



4.4.1 Distributed Unit of Work
This section describes how DB2 CLI applications can be written to use
coordinated distributed unit of work. That means that all commits or rollbacks to
multiple database connections are coordinated.

First, you need to consider the SQL_CONNECTTYPE environment attribute, which
controls how the application will operate in a coordinated or uncoordinated
distributed environment. The two possible values are:

SQL_CONCURRENT_TRANS
For multiple concurrent connections to the same database
and to different databases. This is the default.

SQL_COORDINATED_TRANS
For use with multiple databases in one transaction. This
corresponds to the Type 2 CONNECT in Embedded SQL.

Also, you need to consider the SQL_SYNC_POINT option, which has the following
two possible settings:

SQL_ONEPHASE One-phase commit is used when you want to commit the
work done by each database in a multiple database
transaction. This kind of transaction can only have one
database updated; that is, once the first database is
updated in the transaction, the other databases become
read-only, and any attempt to update them within this
transaction will be rejected.

SQL_TWOPHASE Two-phase commit enables multiple database update
within a single transaction.

All connections within an application must have the same SQL_CONNECTTYPE and
SQL_SYNC_POINT setting. The application should set up the environment attributes
as soon as SQLAllocEnv() has been called successfully. The type of the first
connection will determine the type of all subsequent connections. If an
application attempts to change the connect type while there is an active
connection, SQLSetEnvAttr() and SQLSetConnectOption() will return an error.

Figure 41 on page 66 shows the steps to begin multiple connections with
concurrent transactions. When using multiple connections, you can choose to
execute and commit all the transactions for each connection in a group as
shown, or you can mix the execution of the statements for each connection and
commit them at any time to end the transaction in each connection.

Chapter 4. Call Level Interface 65



Figure 41. Multiple Connections with Concurrent Transactions

The CLI functions and attributes needed for developing applications using
multiple connections are shown in Figure 42 on page 67.

66 DB2 Programming Interfaces 



� �
...

rc = SQLAllocEnv(&henv); /* environment handle */

rc = SQLAllocConnect(henv, &hdbc[0]); /* 1st connection */
Prompted_Connect(henv, &hdbc[0]);

rc = SQLAllocConnect(henv, &hdbc[1]); /* 2nd connection */
Prompted_Connect(henv, &hdbc[1]);

/* Transaction Processing: allocate and execute statements */
...

rc = SQLDisconnect(hdbc&hdbc[0]); /* release handles */
rc = SQLDisconnect(hdbc&hdbc[1]);
rc = SQLFreeConnect(hdbc&hdbc[0]);
rc = SQLFreeConnect(hdbc&hdbc[1]);
rc = SQLFreeEnv(henv);
...� �

Figure 42. DB2 CLI Functions needed for Mult iple Connections

Figure 43 on page 68 shows the steps to begin multiple connections with
coordinated transactions. A coordinated transaction means that you must
execute all the statements for each connection before you perform the commit.
You can choose to execute all the statements corresponding to one connection
and then continue with the other connection statements, or execute the
statements for both connections in any order and then perform the commit.

Chapter 4. Call Level Interface 67



Figure 43. Multiple Connections with Coordinated Transactions

The environment and connection handle functions used for coordinated
transactions are shown in Figure 44 on page 69. Note that in coordinated
transactions, it is recommended that you define both SQL_CONNECTTYPE and
SQL_SYNC_POINT values in the application.

68 DB2 Programming Interfaces 



� �
rc = SQLAllocEnv(&henv); /* environment handle */

rc = SQLSetEnvAttr(henv, SQL_CONNECTTYPE, /* set SQL_CONNECTTYPE */
(SQLPOINTER) SQL_COORDINATED_TRANS, 0);

rc = SQLSetEnvAttr(henv, SQL_SYNCPOINT, /* set SQL_SYNCPOINT */
(SQLPOINTER) SQL_ONEPHASE, 0);

rc = SQLAllocConnect(henv, &hdbc[0]); /* 1st connection */
Prompted_Connect(henv, &hdbc&hdbc[0]);
rc = SQLAllocConnect(henv, &hdbc&hdbc[1]); /* 2nd connection */
Prompted_Connect(henv, &hdbc&hdbc[1]);

/* Transaction Processing: allocate and execute statements */
...

rc = SQLDisconnect(hdbc&hdbc[0]); /* release handles */
rc = SQLDisconnect(hdbc&hdbc[1]);
rc = SQLFreeConnect(hdbc&hdbc[0]);
rc = SQLFreeConnect(hdbc&hdbc[1]);
rc = SQLFreeEnv(henv);� �

Figure 44. DB2 CLI Functions Required for Coordinated Transactions

4.4.2 Querying Catalog Tables
In some applications, you might need to display a list of tables or column names
for the select statement to work with. To do so, the application can call the DB2
CLI catalog functions.

These catalog functions provide a generic interface to issue queries and return
consistent result sets through a statement handle. This is conceptually
equivalent to using SQLExecDirect() to execute a select against the system
catalog tables.

After calling these functions, the application can fetch individual rows by using
the function SQLFetch(). Because some of the catalog functions may result in
very complex queries, it is recommended that you save the information returned
rather than making repeated calls to get the same information.

Table 19 lists DB2 CLI catalog functions and their usage. For further
information, refer to the Call Level Interface Guide and Reference Book.

Table 19 (Page 1 of 3). DB2 Call Level Interface Catalog Functions

Function Purpose Usage

SQLColumnPrivileges Returns a list of columns
and associated privileges
for the specified table.

An application may call this function after a call to
SQLColumns() to determine column privilege
information.

It can use the character strings returned in the
TABLE_SCHEM, TABLE_NAME and COLUMN_NAME columns as
input arguments to this function.

Chapter 4. Call Level Interface 69



Table 19 (Page 2 of 3). DB2 Call Level Interface Catalog Functions

Function Purpose Usage

SQLColumns Returns a list of columns
in the specified tables.
The information returned
can be retrieved using the
same functions to fetch
the results of a query.

An application may call this function after a call to
SQLTables() .

It should use the character strings in the
TABLE_SCHEMA and TABLE_NAME columns as input
values.

This function doesn′ t return information on the
columns in a result set, so SQLDescribeCol() or
SQLColAttributes() should be used.

SQLForeignKeys Returns information about
foreign keys for the
specified tables.

Can return a result set containing:

• If szPkTableName contains a table name and
szFkTableName is empty, then the primary key of
a specified table and all the foreign keys that
refer to it is returned.

• If szFkTableName contains a table name and
szPkTableName is empty, then all the foreign keys
in the specified table and the primary keys to
which they refer will be returned.

• If both szFkTableName and szPkTableName contain
table names, then the foreign keys in the table
specified in szFkTableName that refer to the
primary key of the table specified in
szPkTableName is returned. This should be one
key at the most.

SQLPrimaryKeys Returns a list of column
names that define the
primary key for a table.

It will return the primary key columns from a single
table. Search patterns cannot be used to specify the
schema qualifier or the table name.

If the specified table does not contain a primary key,
an empty result set is returned.

SQLProcedureColumns Returns a list of input and
output parameters
associated with a
procedure.

To return such a list, the pseudo catalog table for
stored procedure registration must have been
created and populated.

For further information on this pseudo catalog table,
refer to Pseudo Catalog Table for Stored Procedure
Registration in the Call Level Interface Guide and
Reference Book.

For versions of DB2 servers that do not provide
facilities for a stored procedure catalog, an empty
result set will be returned.

SQLProcedures Returns a list of procedure
names that have been
registered at the server
and match the specified
search pattern.

The same as the SQLProcedureColumns() function.

SQLSpecialColumns Returns unique row
identif ier information
(primary key or unique
index) from a table.

DB2 CLI will return the best row identifier column set
based on its own criterion (there are many ways to
uniquely identify any row in a table). If there is no
column set to uniquely identify a row, an empty
result set is returned.

70 DB2 Programming Interfaces 



Table 19 (Page 3 of 3). DB2 Call Level Interface Catalog Functions

Function Purpose Usage

SQLStatistics Retrieves index
information for a given
table. It also returns the
cardinality and the
number of pages
associated with the table
and the indexes on the
table.

This function returns two types of information:

• Statistics information for the table (if available):

When TYPE column is set to SQL_TABLE_STAT,
returns the number of rows in the table and
number of pages used to store the table.

When the TYPE column indicates an index,
returns the number of unique values in the index
and the number of pages used to store the
indexes.

• Information about each index, where each index
column is represented by one row of the result
set.

SQLTablePrivileges Returns a list of tables
and associated privileges
for each table.

If multiple privileges are associated with any given
table, each privilege is returned as a separate row.

The granularity of each privilege reported may or
may not apply at the column level. For other data
sources, the application must call
SQLColumnPrivileges() to discover if the individual
columns have the same table privileges.

SQLTables Returns a list of table
names and associated
information stored in the
system catalog of the
connected data source.

To determine the type of access permitted, the
application can call SQLTablePrivileges().
Otherwise, the application must be able to handle a
situation where the user selects a table for which
SELECT privileges are not granted.

The catalog table′s columns are defined in a specified order, and in future
releases, other columns may be added to the end of each defined result set.
Applications should be written in a way that will not be affected by these
changes.

Catalog functions have input arguments that are used to either identify or
constrain the amount of information to be returned. CatalogName must always be
a null pointer, with its length set to 0, because DB2 CLI does not support
three-part naming.

You have to be careful in passing input to catalog functions. The following needs
to be considered:

• If treated as ordinary arguments, input will be taken literally and is case
sensitive. The input treated as an ordinary argument identifies the
information desired; so an error results if a null pointer is passed.

• If treated as pattern-values, the input will be used to constrain the size of the
result set by including only matching rows for the where clause. If the
application passes a null pointer, there is no restriction for the query.

If a catalog function has more than one pattern-value input argument, they
are treated as where clauses joined by AND; so the rows shown are only the
ones that meet all the conditions.

An example of using catalog functions for queries can be found in 4.5.1, “
Querying Catalog Tables” on page 86.

Chapter 4. Call Level Interface 71



4.4.3 Using Arrays
When you need to insert, delete or change multiple fields in a data entry form
and send them to the database, DB2 CLI provides an array input method. This
method lets you update all the rows or columns for an INSERT, DELETE, or
UPDATE by using a single SQLExecute() call.

4.4.3.1 Input Parameters
Using the array method involves the binding of parameter markers to arrays of
storage locations with the SQLBindParameter() call. For character and binary
input data, the application uses the maximum input buffer size argument,
cbValueMax, on the SQLBindParameter() call to indicate to DB2 CLI the location of
values in the input array. For other input data types, the length of each element
is assumed to be the size of the C data type (See Table 8 on page 50).

The SQLParamOptions() function is called to specify how many elements are in the
array before the execution of the SQL statement.

Figure 45. Array Method for Input Parameters

Figure 45 shows two methods of executing a statement with m parameters n
times. The method shown on the left calls SQLExecute() once for each set of
parameter values. The array method on the right calls SQLParamOptions() to
specify the number of rows (n) and then calls SQLExecute() only once. Figure 46
on page 73 shows the CLI functions used to insert values using arrays of data.

72 DB2 Programming Interfaces 



� �
...

/* SQL statement */
SQLCHAR stmt[] =

″INSERT INTO product VALUES (?, ?, ?);

/* Input arrays */
SQLINTEGER Prod_Num [NUM_PR] = {

100, 200, 300, 400, 500 };

SQLCHAR Desc [NUM_PR][60] = {
″Product 100″ ,  ″Product 200″ ,  ″Product 300″ ,
″Product 400″ ,  ″Product 500″ };

SQLDOUBLE Price [NUM_PR] = {
50.15, 25.30, 63.25, 28.50, 45.90 };

/* Initialization Section */
rc = SQLAllocEnv(&henv);
rc = DBconnect(henv, &hdbc);

/* Transaction Processing Section */
rc = SQLAllocStmt(hdbc, &hstmt);
rc = SQLPrepare(hstmt, stmt, SQL_NTS);

/* Binding parameters */
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,

SQL_C_LONG, SQL_INTEGER, 0, 0, Prod_Num, 0, NULL);
rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT,

SQL_C_CHAR, SQL_VARCHAR, 60, 0, Desc, 60, NULL);
rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT,

SQL_C_DOUBLE, SQL_DECIMAL,10, 2, Price, 0, NULL);
rc = SQLParamOptions(hstmt, NUM_PR, &pirow);

/* Execute and commit transaction */
rc = SQLExecute(hstmt);
rc = SQLFreeStmt(hstmt, SQL_DROP);
rc = SQLTransact(henv, hdbc, SQL_COMMIT);

/* Termination Section */
rc = SQLDisconnect(hdbc);
rc = SQLFreeConnect(hdbc);
rc = SQLFreeEnv(henv);

...� �
Figure 46. DB2 CLI Functions Using Arrays for Input Parameters

Note that both methods must call SQLBindParameter() once for each parameter
(m). In case of character or binary data, there is no method to specify the size of
each element in the array.

SQLSetParam() must not be used to bind an array storage location to a parameter
marker. The function SQLBindParameter() should be used to perform the binding.

For queries with parameter markers on the WHERE clause, an array of input
values will cause multiple sequential result sets; each one can be processed
before moving on to the next one by calling SQLMoreResults().

Chapter 4. Call Level Interface 73



4.4.3.2 Retrieving a Result Set
Other applications may need to issue a query statement and then execute
SQLFetch() on each row of the result set to move them into application variables.
These variables need to have been bound using SQLBindCol() before this can be
done. Each column or row of the result set that you wish to store must be
fetched into the application. Before you are able to perform the fetch, the
variables you are using must be bound.

This can be done by retrieving multiple rows of data (a rowset) at a time into an
array, instead. SQLBindCol() also assigns storage for application array variables.

Figure 47 shows m columns bound. This means that m calls to SQLBindCol() are
required. You may you select to do n iterations of SQLFetch() or a single
SQLExtendedFetch() call.

Figure 47. Array Method to Retrieve Data

By default, the binding of rows is by column; that is, column-wise. This is
symmetrical to using SQLBindParameter() on the input parameters.

• The first column at the right side of Figure 47 shows the function flows to
column-wise retrieval.

74 DB2 Programming Interfaces 



To work with column-wise retrieval, you must define variables for each
column to be retrieved as an array of data.

After allocating the statement, the application calls SQLSetStmtOption() with
the SQL_ROWSET_SIZE attribute to indicate how many rows to retrieve at a time.
When this value is greater than 1, DB2 CLI knows to treat the deferred output
data pointer and length pointer as pointers to arrays of data and its length.

The application calls SQLExtendedFetch() to retrieve ROWSET_SIZE rows of data
at a time. DB2 CLI uses the maximum buffer size argument, cbValueMax, on
the SQLBindCol() function to determine where to store successive rows of
data in the array. If the number of rows in the result set is greater than the
SQL_ROWSET_SIZE value, you must perform multiple calls to SQLExtendedFetch().

Figure 48 shows the definition of the array structure and the functions used
to retrieve data in column-wise retrieval.

� �
/* SQL statement */

SQLCHAR stmt[] =
″SELECT deptnumb, deptname, id, name FROM staff, org \

WHERE dept=deptnumb AND job = ′ Mgr′ ″ ;
SQLINTEGER deptnumb[ROWSET_SIZE];

/* Variables definition */
SQLCHAR deptname[ROWSET_SIZE][15];
SQLINTEGER deptname_l[ROWSET_SIZE];

 SQLSMALLINT id[ROWSET_SIZE];
 SQLCHAR name[ROWSET_SIZE][10];
 SQLINTEGER name_l[ROWSET_SIZE];

/* Initialization section */
...

/* Transaction Processing */
rc = SQLAllocStmt(hdbc, &hstmt);
rc = SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWSET_SIZE);
rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

/* Binding columns */
rc = SQLBindCol(hstmt, 1, SQL_C_LONG, (SQLPOINTER) deptnumb, 0, NULL);
rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER)

deptname, 15, deptname_l);
rc = SQLBindCol(hstmt, 3, SQL_C_SSHORT, (SQLPOINTER) id, 0, NULL);
rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) name, 10, name_l);

/* Execute SQL */
while ((rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 0,

&pcrow, Row_Stat)) == SQL_SUCCESS) {
for (i = 0; i < pcrow; i++) {
printf(″%8ld %-14s %8d %-9s\n″ ,  deptnumb[i],

deptname[i], id[i], name[i]);
{
if (pcrow < ROWSET_SIZE)

break;
}

rc = SQLFreeStmt(hstmt, SQL_DROP);
rc = SQLTransact(henv, hdbc, SQL_COMMIT);

/* Termination section */
...� �

Figure 48. DB2 CLI Function Needed for Column-Wise Retrieval

Chapter 4. Call Level Interface 75



• The second column at the right side of Figure 47 on page 74 shows the
function flows to row-wise retrieval.

The row-wise binding associates an entire row of the result set with a
structure. This structure is defined as an array of data columns and their
respective lengths.

The application needs to call SQLSetStmtOption() with the SQL_ROWSET_SIZE
attribute to indicate how many rows will be retrieved at a time. It must use
the SQL_BIND_TYPE attribute to set the size of the structure.

DB2 CLI treats the deferred output data pointer, SQLBindCol(), as the address
of the data field for the column in the first element of the array and the
deferred output length pointer as the address of the associated length field of
the column.

To retrieve the data, DB2 CLI uses the structure size provided with the
SQL_BIND_SIZE attribute to determine where to store successive rows in the
array of structures.

Figure 49 on page 77 shows the definition of the array structure and the
functions used to retrieve data in row-wise retrieval.

76 DB2 Programming Interfaces 



� �
/* SQL statement */

SQLCHAR stmt[]
″SELECT deptnumb, deptname, id, name FROM staff, org \

WHERE dept=deptnumb AND job = ′ Mgr′ ″ ;

/* Array definition */
struct {
SQLINTEGER deptnumb_l; /* length */
SQLINTEGER deptnumb; /* value */
SQLINTEGER deptname_l;
SQLCHAR deptname[15];
SQLINTEGER id_l;

 SQLSMALLINT id;
 SQLINTEGER name_l;
 SQLCHAR name[10];

} R[ROWSET_SIZE];
 SQLUSMALLINT Row_Stat[ROWSET_SIZE];
 SQLUINTEGER pcrow;
 int i;

/* Initialization section */
...

/* Transaction Processing */
rc = SQLAllocStmt(hdbc, &hstmt);
rc = SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWSET_SIZE);
rc = SQLSetStmtOption(hstmt, SQL_BIND_TYPE, sizeof(R)/ ROWSET_SIZE);
rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

/* Binding columns */
rc = SQLBindCol(hstmt, 1, SQL_C_LONG, (SQLPOINTER)

&R[0].deptnumb, 0,&R[0].deptnumb_l );
rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER)

R[0].deptname, 15, &R[0].deptname_l);
rc = SQLBindCol(hstmt, 3, SQL_C_SSHORT, (SQLPOINTER)

&R[0].id, 0, &R[0].id_l);
rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER)

R[0].name, 10, &R[0].name_l);

/* Execute SQL */
while ((rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 0,

&pcrow, Row_Stat)) == SQL_SUCCESS) {
for (i = 0; i < pcrow; i++) {
printf(″%8ld %-14s %8d %-9s\n″ ,  R[i].deptnumb,
R[i].deptname,R[i].id,R[i].name);
{
if (pcrow < ROWSET_SIZE)

break;
}

rc = SQLFreeStmt(hstmt, SQL_DROP);
rc = SQLTransact(henv, hdbc, SQL_COMMIT);

/* Termination section */
...� �

Figure 49. DB2 CLI Functions Needed for Row-Wise Retrieval

Chapter 4. Call Level Interface 77



4.4.4 Using Compound SQL
Another way to execute a series of INSERT, UPDATE and DELETE statements in
an efficient way is to use compound SQL. This allows you to group multiple
statements into a single group that can be executed in a single continuous
stream, which reduces network traffic and execution time.

Statements within a compound SQL statement are called sub-statements and
may be any SQL statement that can be prepared dynamically.

Compound SQL statements cannot be nested. There must not be any
dependency between the group of statements in the compound SQL. Also the
correct authorization must be available for all of the individual sub-statements.

A group of compound SQL statements is specified by surrounding these
sub-statements with a BEGIN COMPOUND statement and an END COMPOUND
statement. Using DB2 CLI, a BEGIN COMPOUND statement is called by the
SQLExecDirect() function. Then, SQLExecute() processes the sub-statements, and
finally another SQLExecDirect() calls the END COMPOUND statement.

There are some parameters you can use with BEGIN COMPOUND statement to
define its behavior:

ATOMIC If any of the sub-statements fail, then all the changes made to
the database are undone. This is not supported in DRDA
environments.

NOT ATOMIC Regardless of the failure of any sub-statement, all the changes
made by successful sub-statements in the database will not be
undone.

STATIC Specifies that the input variables for all sub-statements retain
their original value. If one variable is set by more than one
sub-statement, then its value following the compound SQL
statement is set by the last sub-statement.

STOP AFTER FIRST n STATEMENTS
Only n sub-statements will be executed. If omitted, all the
sub-statements are executed.

To finish the compound SQL statement, the END COMPOUND statement can
specify the following option:

COMMIT This option will commit all the sub-statements if they are
executed successfully. The commit applies to the current
transaction, including statements that precede the compound
statement.

In a coordinated distributed connection, where the compound SQL is part of the
transaction, if COMMIT is specified, an error with SQLSTATE 25000 will be returned
(refer to 4.4.1, “ Distributed Unit of Work” on page 65). If COMMIT is not specified
after END COMPOUND, the sub-statements will not be committed unless the
application is operating on auto-commit mode, in which case the commit is
issued at the END COMPOUND statement. See AUTOCOMMIT in Table 11 on
page 54.

Figure 50 on page 79 shows the sequence of function calls needed to execute a
compound SQL statement.

78 DB2 Programming Interfaces 



Figure 50. Compound SQL Statement Structure

Figure 51 on page 80 shows the CLI functions used to execute a compound SQL
with two sub-statements.

Chapter 4. Call Level Interface 79



� �
...

/* Handles and sub-statements definition */
SQLHSTMT hstmt, cmhstmt[2];
SQLCHAR compst[2][512] = {

″INSERT INTO awards (id, award) ″
″SELECT id, ′ Sales Merit′  from staff ″

″WHERE job = ′ Sales′  AND (comm/100 > years)″ ,
″INSERT INTO awards (id, award) ″

″SELECT id, ′ Clerk Merit′  from staff ″
″WHERE job = ′ Clerk′  AND (comm/50 > years)″ ,

};

/* Initialization section */
...

/* Transaction Processing Section */
rc = SQLAllocStmt(hdbc, &hstmt);

/* Prepare 2 substatements */
for (i = 1; i < 2; i++) {
rc = SQLAllocStmt(hdbc, &cmhstmt[i]);
rc = SQLPrepare(cmhstmt[i], compst[i], SQL_NTS);
rc = SQLExecDirect(hstmt, (SQLCHAR *)

″BEGIN COMPOUND NOT ATOMIC STATIC″ ,  SQL_NTS);

/* Execute 2 substatements and commit transaction */
for (i = 1; i < 2; i++) {
rc = SQLExecute(cmhstmt[i]);
rc = SQLExecDirect(hstmt, (SQLCHAR *)

″END COMPOUND COMMIT″ ,  SQL_NTS);
rc = SQLFreeStmt(hstmt, SQL_DROP);
for (i = 1; i < 2; i++) {
rc = SQLFreeStmt(cmhstmt[i], SQL_DROP);

}
rc = SQLTransact(henv, hdbc, SQL_COMMIT);

/* Termination section */
...� �

Figure 51. DB2 CLI Functions Needed for Compound SQL

When using compound SQL, it is important to remember the following:

• The BEGIN COMPOUND and END COMPOUND statements are executed with
the same statement handle.

• Each sub-statement must have its own statement handle.

• All statement handles must belong to the same connection and have the
same isolation level.

• The sub-statements should be prepared before the BEGIN COMPOUND
statement. That is not necessary in DRDA environments where some
optimization may reduce network flow.

• The statement handles must remain allocated until the END COMPOUND
statement is executed.

• The only functions that may be called using the statement handles allocated
for the compound sub-statements are:

− SQLAllocStmt()

− SQLSetParam()

80 DB2 Programming Interfaces 



− SQLBindParameter()

− SQLParamOptions()

− SQLBindFileToParam()

− SQLParamData()

− SQLExecDirect()

− SQLPrepare()

− SQLExecute()

• SQLTransact() cannot be called for the same connection, or for any connect
requests between BEGIN and END COMPOUND, because commit or rollback
is done at the moment END COMPOUND is called.

• The sub-statements may be executed in any order.

• SQLRowCount() or SQLGetSQLCA() can be called using the same statement
handle as the BEGIN and END COMPOUND statement to get an aggregate
count of the rows affected.

4.4.5 Large Objects
There are three LOB data types currently supported by DB2:

• Binary Large Object (BLOB)

• Character Large Object (CLOB)

• Double-Byte Character Large Object (DBCLOB)

These data types are represented symbolically as SQL_BLOB, SQL_CLOB and
SQL_DBCLOB, respectively. For the default C symbolic name, refer to Table 8 on
page 50.

Managing information contained in large objects within an application could be
considered as requiring large amounts of resource. This is not true with the
correct use of DB2 CLI functions when combined with other concepts such as
locators and direct file input and output.

4.4.5.1 LOB Locators
A LOB (Large Object) locator is a runtime concept, a mechanism that allows an
application to manipulate a large object value in an efficient, random-access
fashion. It is not a persistent type and is not stored in the database; it only
exists within the transaction in which it was created.

A LOB locator is a simple token value that represents a LOB value. It is not a
reference to a column in a row, and there is no operation that could be
performed on a locator that would affect the original LOB value stored in the
row.

An application can retrieve a LOB locator into an application variable using the
SQLBindCol() or SQLGetData() functions, and then it can apply the following DB2
CLI functions to the associated LOB value via the locator:

SQLGetLength() Gets the length of a string that is represented by a LOB
locator.

SQLGetPosition() Gets the position of a search string within a source string
represented by a LOB locator. The search string can also be
represented by a LOB locator.

Chapter 4. Call Level Interface 81



There are three ways in which the locators are implicitly allocated:

• Fetching a bound LOB column to the appropriate C locator type.

• Calling SQLGetSubString() and specifying that the substring be retrieved as a
locator.

• Calling SQLGetData() on an unbound LOB column and specifying the
appropriate C locator type. The C locator type must match the LOB column
type or an error will occur.

The locator can be explicitly freed before the end of the transaction by the FREE
LOCATOR statement which may be called by using the SQLExecDirect() function.

4.4.5.2 Direct File Input and Output
In other cases, when the application needs the entire LOB column value, you
can use direct file input and output for LOBs. The two DB2 CLI LOB file access
functions are:

SQLBindFileToCol()  Associates a LOB column in a result set with a file name.

SQLBindFileToParam()  Associates a LOB parameter marker with a file name.

The file name can be a completed path name (recommended) or a relative file
name, in which case the file is appended to the current path of the client
process.

Use of SQLBindFileToParam() is more efficient than the sequential input of data
segments using SQLPutData() because SQLPutData() uses a temporary file for
data segments before using the SQLBindFileToParam() technique to send the LOB
data value to the server.

Figure 52 on page 83 shows how to retrieve a character LOB.

82 DB2 Programming Interfaces 



Figure 52. Using LOBS with Locators and Files

The left side of Figure 52 shows the use of a locator to extract a character string
from the CLOB column without transferring the entire CLOB to an application
buffer. A LOB locator is fetched for use as an input parameter to search a
substring in the CLOB (See 4.5.2, “Using CLOB Locator” on page 88).

The right side of Figure 52 shows how to fetch a CLOB column into a file. The
file is bound to the CLOB column; so when the row is fetched, the entire CLOB
value is transferred directly to this file.

Not all DB2 servers have Large Object support. To determine if any of the LOB
functions are supported, call SQLGetFunctions() with the appropriate function
name argument value.

4.4.6 User-Defined Types (UDTs)
DB2 Version 2 supports the use of User-Defined Types (UDTs), which means
users can define new distinct data types. There are some rules on how DB2 CLI
handles with the UDTs as the CLI functions can only deal with the built-in data
types.

Chapter 4. Call Level Interface 83



Data Conversion

DB2 CLI will consider the UDTs as its source data type; that is, the data type
used to define the UDT. So all the SQL to C data type conversion which is listed
in Table 8 on page 50 is applied to UDTs. A UDT will have the same default C
type as its source, built-in type.

For example, users define the following UDT:

CREATE DISTINCT TYPE CNUM AS INTEGER WITH COMPARISON

Data conversion will convert the CNUM UDT into SQL_C_LONG data type which
is the default C type for integer.

Column Information

When you use the SQLDescribeCol() function in your application, it will return the
information of the built-in type, not the UDT type.

You can obtain the UDT name by calling SQLColAttributes() with
SQL_COLUMN_DISTINCT_TYPE as the input descriptor argument.

Parameter Marker in a WHERE clause

If you are going to use a parameter marker for the UDT in an SQL statement
with a WHERE clause, you have to use the CAST function in the SQL statement.
The CAST function is used to cast either the parameter marker or the UDT to a
different data type.

Below is an example of using the CAST function with User-Defined Types.

The following table, CUSTOMER, is using the UDT defined above:

CREATE TABLE CUSTOMER (
Cust_Num CNUM NOT NULL,
First_Name CHAR(30) NOT NULL,
Last_Name CHAR(30) NOT NULL,
PRIMARY KEY (Cust_Num) )

The parameter marker cannot take a CNUM data type; so this SQL statement will
not work since the comparison fails due to incompatible data types:

SELECT first_name FROM customer WHERE cust_num = ?

The right SQL statement should be one of the following:

• Casting the column using CNUM to integer:

SELECT first_name FROM customer WHERE cast(cust_num as integer) = ?

• Casting the parameter marker to integer:

SELECT first_name FROM customer WHERE cust_num = cast(? as integer)

4.4.7 Stored Procedures
When working in client/server environments, an application can be designed to
run in two parts: one part on the client and the other part on the server. The
part that runs on the server is called the stored procedure and can be written
using Embedded SQL or DB2 CLI functions.

Some advantages of using stored procedures are:

84 DB2 Programming Interfaces 



• Avoids network transfer of large amounts of data obtained as intermediate
results in a sequence of queries.

• Deploys client database applications into client/server pieces.

• If written in Embedded static SQL:

 1. Performance

As static SQL is prepared at precompile time, there is no overhead of
access plan (package) generation.

 2. Encapsulation

Users do not need to know details about the database objects to access
them.

 3. Security

Users′ access privileges are encapsulated in the package(s) associated
with the stored procedure(s). You don′ t need to grant explicit access to
each database object.

To invoke a stored procedure from a DB2 CLI application, you have to pass the
following CALL statement syntax to SQLExecDirect() or to SQLPrepare() followed
by SQLExecute():

CALL procedure-name (?)

Where procedure-name is the name of the procedure that will be executed in the
DB2 common server. It can take the following forms:

procedure-name
The stored procedure name with no extension. The server
assumes that the function routine name to be executed is
identical to the library name, and that it is in the sqllib/function
directory, by default.

procedure-name!func-name
You can use exclamation mark (!) to specify a library name
identified by procedure-name and the function to be executed.
This allows similar function routines to be in the same stored
procedure library.

/u/db2user/procedure-name!func-name
You can specify the stored procedure library as a full path
name.

(?) This means that arguments for the stored procedure must be
passed using parameter markers. Literals can be used if the
vendor escape call statement is used.

The parameter markers in the call statement are bound to application variables
by using SQLBindParameter(). In order to avoid unnecessary flow of data between
client and server, the application should specify the parameter type of input
arguments as SQL_PARAM_IN and output arguments as SQL_PARAM_OUTPUT.
Arguments used for both input and output have a parameter type of
SQL_PARAM_INPUT_OUTPUT.

Stored procedures can also be invoked by using the Database Application
Remote Interface (DARI) API from clients of any DB2 server, but it can only
access stored procedures on DB2 for Common Server platforms, not those on
Distributed Relational Database Architecture (DRDA) servers.

Chapter 4. Call Level Interface 85



Although stored procedures written in Embedded SQL offer more advantages,
you may wish to move components of the DB2 CLI application to run on the
server, of course implemented as stored procedures written using DB2 CLI.

For further information, refer to CALL statement in the DB2 SQL Reference Book.
A good example of using stored procedures is included in the samples/cli
directory as outsrv.c and outcli.c files.

4.5 Examples
In this section, we explain some examples of DB2 CLI applications. You need to
compile and link the C programs you have written as mentioned in 4.3.3, “
Compiling and Linking Applications” on page 59.

4.5.1 Querying Catalog Tables
An example of a DB2 CLI application that lists the columns for a table is shown
in Figure 53 on page 87. In this example, we are using the SQLColumns() function
to get the column information instead of using an SQL query. The result is
returned in an SQL result set; so we can use the same functions used to retrieve
the result set generated by a query.

The catalog functions are used to obtain information about the data source ′s
system tables (refer to 4.4.2, “Querying Catalog Tables” on page 69). Some
arguments of the catalog functions can use pattern-matching. In this example,
SQLColumns() is using pattern-matching to specify the table schema and the table
name.

Each pattern-matching argument can contain:

• The underscore “_” character which stands for any single character.

• The percent “%” character which stands for any sequence of zero or more
characters.

• The pattern-matching argument is case sensitive.

86 DB2 Programming Interfaces 



� �
...
SQLColumns(hstmt, NULL, 0, table_schem.s, SQL_NTS, �1�

table_name.s, SQL_NTS, (SQLCHAR *)″%″, SQL_NTS);

SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) table_schem.s, 129,
&table_schem.ind); �2�

SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) table_name.s, 129,
&table_name.ind);

SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) column_name.s, 129,
&column_name.ind);

SQLBindCol(hstmt, 6, SQL_C_CHAR, (SQLPOINTER) type_name.s, 129,
&type_name.ind);

SQLBindCol(hstmt, 7, SQL_C_LONG, (SQLPOINTER) & length,
sizeof(length), &length_ind);

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) { �3�
printf(″%-14.14s %-8.8s %-17.17s %-18.18s %-6.6ld\n″ ,
table_name.s, table_schem.s, column_name.s, type_name.s, length);

}
...� �

Figure 53. Querying Using SQLColumns()

Figure 53 shows part of the listcol.c application that calls the SQLColumns()
function �1�.

�2�To be able to use the result set in application variables, we need to bind it.
We call SQLBindCol() to bind the result set to the application variables. The
second argument of SQLBindCol() specifies the number of the column in a
sequential manner from left to right starting at 1. SQLBindCol() returns 17
columns in the result set (refer to the Function chapter in the Call Level Interface
Guide and Reference Book).

�3� Finally, we call SQLFetch() to retrieve any bound columns. The data transfer
from the DBMS to the application occurs when we call this function. As the data
is transfered, data conversions may also occur as defined in the third argument
of SQLBindCol(). In this sample, the data type of the columns, Table Schema,
Table Name, Column Name, and Type Name, will be converted to the
SQL_C_CHAR data type. The data type of Length column will be converted to the
SQL_C_LONG data type.

Running the listcol.c program listed in A.1, “CLI Example (listcol.c)” on page 143
will give the result shown in Figure 54 on page 88.

Chapter 4. Call Level Interface 87



� �
Enter Database Name : sample
Enter User Name : db2
Enter Password for db2 : db2

--- Connected to database : sample ---

Enter Table Schema Name Search Pattern (in uppercase) :
DB%
Enter Table Name Search Pattern (in uppercase) :
EMPL%

TABLE SCHEMA COLUMN TYPE LENGTH
-------------- -------- ----------------- ------------------ ------
EMPLOYEE DB2 EMPNO CHARacter 000006
EMPLOYEE DB2 FIRSTNME VARCHAR 000012
EMPLOYEE DB2 MIDINIT CHARacter 000001
EMPLOYEE DB2 LASTNAME VARCHAR 000015
EMPLOYEE DB2 WORKDEPT CHARacter 000003
EMPLOYEE DB2 PHONENO CHARacter 000004
EMPLOYEE DB2 HIREDATE DATE 000010
EMPLOYEE DB2 JOB CHARacter 000008
EMPLOYEE DB2 EDLEVEL SMALLINT 000005
EMPLOYEE DB2 SEX CHARacter 000001
EMPLOYEE DB2 BIRTHDATE DATE 000010
EMPLOYEE DB2 SALARY DECimal 000009
EMPLOYEE DB2 BONUS DECimal 000009
EMPLOYEE DB2 COMM DECimal 000009
Disconnecting .....� �

Figure 54. The Result of Running listcol

4.5.2 Using CLOB Locator
The following example shows how to search the resume CLOB column in table
EMP_RESUME from the sample database provided with DB2.

First, it presents a list of employee numbers and names. Then, given an
employee number, the application will search the “Interests” section of the
RESUME column by using a LOB locator. Only the result set will be sent from
the database server to the application.

88 DB2 Programming Interfaces 



� �
/* Include files, variables and SQL statements definition */
...
/* Initialization section */
...

/* Transaction Processing section */
rc = SQLAllocStmt(hdbc, &hstmt); �1�
rc = SQLExecDirect(hstmt, stmt1, SQL_NTS);
CHECK_STMT(hstmt, rc);

rc = SQLBindCol(hstmt,1,SQL_C_CHAR,Empno.s,7,&Empno.ind); �2�
rc = SQLBindCol(hstmt, 2,SQL_C_CHAR, Name.s, 30,&Name.ind);
CHECK_STMT(hstmt, rc);

 printf(″\nEmpno Name \n″ ) ; �3�
 printf(″------- ---------------------\n″ ) ;

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {
printf(″%-6s %-30s \n″ ,  Empno.s, Name.s);

}
if (rc != SQL_NO_DATA_FOUND)

check_error(henv, hdbc, hstmt, rc, __LINE__, __FILE__);

rc = SQLFreeStmt(hstmt, SQL_CLOSE); CHECK_STMT(hstmt, rc);
rc = SQLFreeStmt(hstmt, SQL_UNBIND); CHECK_STMT(hstmt, rc);
rc = SQLFreeStmt(hstmt, SQL_RESET_PARAMS); CHECK_STMT(hstmt, rc); .
rc = SQLSetParam(hstmt, 1, SQL_C_CHAR, SQL_CHAR, 7, �4�

0, Empno.s, &Empno.ind);
CHECK_STMT(hstmt, rc);

printf(″\n>Enter an employee number:\n″ ) ;
gets((char *)Empno.s);

rc = SQLExecDirect(hstmt, stmt2, SQL_NTS); �5�
CHECK_STMT(hstmt, rc);
rc = SQLBindCol(hstmt, 1, SQL_C_CLOB_LOCATOR, &ClobLoc1, 0,

&pcbValue);
rc = SQLFetch(hstmt);
rc = SQLAllocStmt(hdbc, &lhstmt); �6�

rc = SQLGetLength(lhstmt, SQL_C_CLOB_LOCATOR, ClobLoc1, �7�
&SLength, &Ind);

rc = SQLGetPosition(lhstmt,SQL_C_CLOB_LOCATOR, ClobLoc1, 0, �8�
(SQLCHAR *)″Interests″, 9, 1, &Pos1, &Ind);

CHECK_STMT(lhstmt, rc);

rc = SQLFreeStmt(lhstmt, SQL_CLOSE); CHECK_STMT(lhstmt, rc);
buffer = (SQLCHAR *)malloc(SLength - Pos1 + 1);
rc = SQLGetSubString(lhstmt,SQL_C_CLOB_LOCATOR,ClobLoc1,Pos1, �9�

SLength - Pos1, SQL_C_CHAR, buffer, SLength - Pos1 +1,
&OutLength, &Ind);

CHECK_STMT(lhstmt, rc);

printf(″\nEmployee #: %s\n %s\n″ ,  Empno.s, buffer);

/* Terminate section */
...� �

Figure 55. Example Using CLOB Locator: lookres.c

The Transaction Processing section begins allocating the statement handle �1�.
Then, it will execute the SQL statement.

Chapter 4. Call Level Interface 89



In order to use the arrays for retrieving data, you must bind them to their
respective columns �2�.

�3� will display the result of the select statement (employee number and name)
stored in the arrays.

The SQLFreeStmt() statements will close the cursor and then bind and reset the
parameters for the first SQL statement executed in order to use the same
statement handle for the second statement.

�4� assigns storage for a new parameter to get the employee number, which is
later prompted for.

�5� executes the second SQL statement. To retrieve its result, the SQLBindCol()
function assigns storage for the LOB column locator and also specifies its type.
Then, the result is retrieved by a fetch function.

�6� allocates a new statement handle for working with the LOB column, while �7�
gets the total length of the LOB column and �8� gets the starting position for the
specific text, the “Interests” section for this example.

The next step is to close the cursor and define a new buffer size to contain the
LOB portion selected.

�9� will search the CLOB locator to find “Interests” and get the substring of
resume from this position to the end. Then, it will print the “Interests” section of
the employee′s resume.

The SQLFreeStmt() statements will free the two statement handles allocated in
the application and its associated resources. Finally, it will commit the
transaction and end with the Termination section.

Run the lookres.c program listed in A.2, “CLI LOB Example (lookres.c)” on
page 145 using sample database as a Server name, and any user ID and
password with SELECT privilege on this database. It will show the following:

90 DB2 Programming Interfaces 



� �
$ lookres
>Enter Server Name:
sample
>Enter User Name:
db2
>Enter Password:
db2
>Connected to sample

Empno Name
------- ---------------------
000130 DOLORES QUINTANA
000140 HEATHER NICHOLLS
000150 BRUCE ADAMSON
000190 JAMES WALKER

>Enter an employee number:
000190

Employee #: 000190
 Interests

ο Wine tasting
ο Skiing
ο Swimming
ο Dancing

>Disconnecting .....
$� �

Figure 56. Running the lookres.c Sample Program

Chapter 4. Call Level Interface 91



92 DB2 Programming Interfaces 



Chapter 5. Open Database Connectivity (ODBC)

Microsoft ′s Open Database Connectivity (ODBC) is found on many platforms. It
provides a standard set of routines that can be used with different types of
database systems. This chapter discusses how ODBC is implemented under
DB2 for AIX and what needs to be done to enable an ODBC application to access
the DB2 databases.

5.1 Overview
The ODBC is a callable SQL interface that has been defined by Microsoft. The
ODBC interface defines the following:

• A set of function calls that implement SQL statements

• The SQL syntax which is based on the X/Open and SAG SQL CAE draft
specification (1991)

• A set of standard error codes

• A standard way to connect and log on to a database management system

• A set of data-type representations

When running in an ODBC environment, there are a number of parts that make
up the connection. These are:

 1. The Application

 2. The ODBC Driver Manager

 3. The Driver

 4. The Data Source

Figure 57 shows the layers or parts in the ODBC environment. You can see
under each layer the owner or application that provides the layer.

Figure 57. ODBC Environment

  Copyright IBM Corp. 1996 93



The Application

The application invokes the ODBC function calls to submit an SQL request, then
retrieveS the results. In order to do this, the application must first request a
connection to the database. Once a connection has been established, the next
step is to send the SQL request. When the request has been processed by the
database manager, the results can be requested by the application. The
application then can pass the results back to the user; or, if an error occurred, it
should process the error condition.

The ODBC Driver Manager

The Driver Manager provides the interface to the application. The functions of
the Driver Manager include:

• Loading and unloading the database driver

• Performing status checking

• Managing multiple connections between applications and databases

• Map database names to a specific driver using the configuration file, odbc.ini

The Driver

The driver implements the ODBC function calls and interacts with the particular
database. The driver will establish the connection to the database and then
submit the SQL requests over the established connection. The driver also
performs any necessary data conversions and maps any messages that may be
returned from the database.

The Data Source

The data source is a database management system. The data source may be a
text file located in a directory, or it may be a relational database management
system, such as DB2, located on a remote server.

As long as the appropriate driver can be loaded, the data source should not
matter to the ODBC application being executed.

5.2 Configuring ODBC
The configuration of your ODBC environment may depend on the platform that
you are using. This section will look at configuring the AIX client and OS/2 client
environments.

5.2.1 Configuring ODBC on OS/2
DB2 Client Application Enabler for OS/2 provides the necessary utilities and
drivers for accessing DB2 databases via ODBC. These databases may be local
if you are running the DB2 Server or DB2 Single-User on the OS/2 machines, or
they may be cataloged, remote databases.

In this example, we will assume that the databases are on a remote DB2 for AIX
Server.

 1. Install Client Application Enabler Code

94 DB2 Programming Interfaces 



The Client Application Enabler code is installed using the install program.
When the installation is complete, you should find the IBM DATABASE 2
folder located on you OS/2 desktop. A sample of the contents of this folder
are shown in Figure 58 on page 95.

Figure 58. Sample CAE/2 Folder

 2. Configure the Client

From the DB2 folder, you can configure the CAE/2 client. By selecting the
Client Setup  application, you will be presented with the screen shown in
Figure 59 on page 96.

Chapter 5. Open Database Connectivity (ODBC) 95



Figure 59. CAE/2 Client Setup

From this screen, you may either select the Assistance button, or use the
menu options listed across the top of the screen. The basic tasks that must
be performed, using either method, is to catalog a node and database.

 3. Catalog the Remote Node

When you select to add a new node through the client setup application, you
will be presented with a screen similar to the one shown in Figure 60 on
page 97. In this example, we are adding a node called GUNDAGAI, using
the TCP/IP protocol and the TCP service name db2. This service must be
added to the TCP/IP services file. You should refer to the DB2 installation
documentation for further details on configuring a TCP/IP service.

96 DB2 Programming Interfaces 



Figure 60. Cataloging a Remote Node

 4. Catalog the Remote Database

Once the node has been cataloged, you will be able to catalog the database.
Figure 61 on page 98 is an example of cataloging the SAMPLE database,
which is located on the server GUNDAGAI.

Chapter 5. Open Database Connectivity (ODBC) 97



Figure 61. Cataloging a Remote Database

It is wise to test the database connection using the Test Database
Connection button on the window. Alternatively, you may test the database
connection at a later date by using the Command Line Processor and the
command, connect to database sample.

To connect to a DB2 server which uses server authentication, you will need
to know a user ID on the server machine and the corresponding password.
Connections from an OS/2 client capitalize the password before it is passed
to the server. Because of this, you need to make sure the AIX user ID has
no lowercase letters in the password.

Once you are able to successfully connect to the database, you can proceed
with defining the database as an ODBC data source.

 5. Run the ODBC Installer

The first step in using ODBC with DB2 is to install the ODBC drivers. This
can be done by executing the ODBC Installer program located in the IBM
DATABASE 2 folder. This will place an ODBC folder on your OS/2 desktop.

 6. Configure the ODBC Data Source and Driver

From the ODBC folder on the OS/2 desktop, you can start the ODBC
Administrator. This application will present you with a screen similar to the

98 DB2 Programming Interfaces 



one shown in Figure 62 on page 99. This screen lists all the ODBC data
sources that are available on your workstation.

Figure 62. ODBC Administrator - Data Sources

To define the DB2 sample database as a data source, you should select the
Add , button. This will present you with a list of the known ODBC drivers that
are available= as shown in Figure 63 on page 100.

You should select the DB2 ODBC driver , and click OK  to continue.

Chapter 5. Open Database Connectivity (ODBC) 99



Figure 63. Available ODBC Drivers

The final step is to select the database you wish to make available as your
data source. The cataloged DB2 database will be listed for you to select
from.

Figure 64. ODBC Data Source and Description

100 DB2 Programming Interfaces 



Once you have selected the data source, your ODBC application should be
able to connect to the database.

In the IBM DATABASE 2 folder on your OS/2 desktop, you also will find a
CLI/ODBC Administrator application. Either this application or the ODBC
Administrator may be used to configure your data sources and set the
different options available.

Once these steps have been completed, you should be ready to access your DB2
database via an ODBC application.

5.2.2 Configuring ODBC on AIX
ODBC applications have not existed on UNIX platforms for as long as they have
existed on the Intel platform. Because of this, some of graphical configuration
tools are not yet available, and the location of the drivers may vary depending
on the supplier of the ODBC drivers being used.

DB2 for AIX provides three different methods for accessing DB2 databases
through the ODBC interface. These methods are:

• Call Level Interface

The Call Level Interface provides support for Level 1 and most Level 2 ODBC
calls.

• DB2 ODBC Drivers

DB2 supplies an ODBC Driver Manager and driver that may be used by your
ODBC applications.

• Other ODBC Drivers

You may use a third-party ODBC Driver Manager and driver for access to
DB2 databases.

Regardless of which driver you choose to install, you still will need to configure
the DB2 Client Application Enabler for AIX so that you are able to access the
server databases.

The Client Application Enabler software is installed in the same manner as other
AIX products, that is, by using the installp command or the smit command.

Once the Client Application Enabler software has been installed, you will need to
perform the following steps:

Log in as the root user to perform the following steps:

 1. Configure a DB2 instance on the client.

Before you configure an instance, you need to create or select a user ID that
will become the instance owner. For this example, we will use the user ID
db2.

To create the instance, you need to issue the command:

/usr/lpp/db2_02_01/instance/db2icrt db2

The user db2 will become the instance owner, and db2′s primary group will
become the system administration group for that instance.

 2. Configure the TCP/IP service being used.

Chapter 5. Open Database Connectivity (ODBC) 101



You will need to determine the service being used by the server machine
that you wish to connect to. This can be found by running the db2 command,
get database manager configuration and checking the value of the ″Service
Name″ variable. You should then find this name in the server′s /etc/services
file. Note down the entry and create an identical entry in the client′s
/etc/services file.

You should note that if Version 1 clients are being used, there will be two
entries in the /etc/services file. Refer to the installation instructions supplied
with DB2 for further information.

Log in as the instance owner to perform the following steps:

 3. Set up the user ′s environment.

You will need to set up the instance owner′s environment. The process to
do this will depend on the shell you are running under.

• For Korn (ksh) or Bourne Shell (bsh, sh)

You will need to include the environment setting from the file
$HOME/sqllib/db2profile. This can be done by executing the following
command or by including it in the file $HOME/.profile:

. $HOME/sqllib/db2profile

• For C Shell (csh)

You will need to include the environment setting from the file
$HOME/sqllib/db2cshrc. This can be done by executing the following
command or by including it in the file $HOME/.login:

source $HOME/sqllib/db2cshrc

 4. Catalog the server node.

Once TCP/IP communications has been established, you may catalog the
server node. This can be done by using the following DB2 command:

$ db2 catalog tcpip node gundagai \
remote gundagai.austin.ibm.com server db2

You can check that the node was cataloged correctly by using the DB2
command:

$ db2 list node directory

 5. Catalog the database.

Once the server node is cataloged, you can then catalog the database. To
catalog the sample database, you can use the following command:

$ db2 catalog database sample as sample at node gundagai

You can check the cataloged database with the command:

$ db2 list database directory

 6. Test the connection to the remote database.

To test the connection, you can try connecting to the sample database. To
connect to a database on a server node, using server authentication, you will
need a valid user ID and password on the server.

To connect to the database, you can use the command:

$ db2 connect to sample user myuserid

You will be prompted for a password, and then a connection message should
be returned.

102 DB2 Programming Interfaces 



Now that the DB2 client is able to connect to databases located on the server
node, the next step is to configure the ODBC environment. The ODBC
configuration used will depend on the ODBC drivers that you are using. The
following sections are guidelines to the setup that may be required.

5.2.2.1 ODBC via the Call Level Interface
For many database connections, the application will establish the environment
and connection settings. It is possible to configure many of the options for a CLI
connection using the db2cli.ini. configuration file. This file is in the directory
sqllib/cfg, which will be found in the DB2 instance owner ′s home directory.

The options that may be set here are discussed in the IBM DATABASE 2 Call
Level Interface Guide and Reference - for common servers. The options set here
may be overridden by the application and are not required for your ODBC
connection to DB2 databases.

Before using the CLI interface, you need to bind the CLI components/packages
to the database, if this has not already been done. The binding process is
discussed in 4.3, “CLI Application Configuration and Execution” on page 52.
This will need to be done once for each database that will be accessed.

Once you have bound the required packages to the database and, optionally, set
up the db2cli.ini file, you are ready to develop ODBC applications that will
access DB2 data sources via the CLI/ODBC interface.

5.2.2.2 ODBC via the DB2 ODBC Drivers
If you have applications that access multiple data sources, you may prefer to
define the ODBC drivers in the odbc.ini file. The odbc.ini file is used by DB2 to
determine the ODBC driver being used for a particular data source. This file will
need to exist in the user′s home directory and be prefixed with a dot (.). You
should also have a file called odbcinst.ini. This also needs to be located in the
user ′s home directory and prefixed with a dot.

The odbcinst.ini file is used by the ODBC Driver Manager to determine which
drivers are available. The example shown in Figure 65 lists the IBM DB2 ODBC
Driver installed and shows where it is located.

[ODBC Drivers]
IBM DB2 ODBC DRIVER=Installed

[IBM DB2 ODBC DRIVER]
Driver=/home/db2/sqllib/lib/db2.o

Figure 65. Sample odbcinst.ini Configuration File

Figure 66 on page 104 is an example of the odbc.ini file. This example lists the
sample database as a data source.

�1� is the list of available ODBC data sources.

�2� is the stanza for the data source SAMPLE, and it provides the location of the
driver �3� and a description of the data source �4�. Other ODBC options for this
data source may be defined in this stanza.

Chapter 5. Open Database Connectivity (ODBC) 103



[ODBC Data Sources] �1�
SAMPLE=IBM DB2 ODBC DRIVER

[SAMPLE] �2�
Driver=/home/db2/sqllib/lib/db2.o �3�
Description=Sample DB2 ODBC Database �4�

Figure 66. Sample odbc.ini Configuration File

5.2.2.3 ODBC via Third-Party Drivers
Configuration of other ODBC drivers may vary depending on the supplier of the
code. In general, the configuration of the driver after it is installed will be similar
to that of the DB2 ODBC Driver.

You will need to list the driver in the odbcinst.ini configuration file, and the data
sources will need to be listed in the odbc.ini file.

Figure 67 shows an example of the odbcinst.ini configuration file with both the
DB2 ODBC Driver and the INTERSOLV ODBC Driver for DB2.

[ODBC Drivers]
IBM DB2 ODBC DRIVER=Installed
INTERSOLV 2.10 DB2=Installed

[IBM DB2 ODBC DRIVER]
Driver=/home/db2/sqllib/lib/db2.o

[INTERSOLV 2.10 DB2]
Driver=/opt/odbc/dlls/qedb208.so
Setup=/opt/odbc/dlls/qedb208.so
APILevel=1
ConnectFunctions=YYN
DriverODBCVer=02.10
FileUsage=0
SQLLevel=1
smProcessPerConnect=Y

Figure 67. Sample odbcinst.ini Configuration File with INTERSOLV Drivers

A sample odbcinst.ini is supplied with the INTERSOLV DataDirect ODBC Pack.
You also will find an example of the odbc.ini file in Figure 68 on page 105.

104 DB2 Programming Interfaces 



[ODBC Data Sources]
SAMPLE=IBM DB2 ODBC DRIVER
qedb2=INTERSOLV DB2 ODBC Driver

[SAMPLE]
Driver=/home/db2/sqllib/lib/db2.o
Description=Sample DB2 ODBC Database

[qedb2]
Driver=/opt/odbc/dlls/qedb208.so
Description=INTERSOLV DB2 ODBC Driver
ServerName=
LogonID=

Figure 68. Sample odbc.ini Configuration File with INTERSOLV Drivers

5.3 Programming with ODBC
Once your ODBC environment has been established, writing an application using
the ODBC library of call is very similar to using the CLI calls. You should read
Chapter 4, “Call Level Interface” on page 39 if you are unfamiliar with
programming applications that use an ODBC/CLI interface.

5.3.1 Compiling and Linking Applications
The compilation and linking of your ODBC applications will depend upon the
ODBC driver that you are using.

Using DB2 Call Level Interface

The compilation and linking of applications that use the CLI library of calls is
discussed in 4.3.3, “ Compiling and Linking Applications” on page 59.

Using ODBC Libraries

DB2 supplies an ODBC library as discussed earlier. The ODBC libraries are
located in the directory sqllib/odbclib/lib, which is under the instance owner ′s
home directory.

The library libodbcinst.a is used by the Driver Manager, and the library libodbc.a
supplies the routines for the ODBC application. If you are using the ODBC
libraries from another source, then you should read the configuration
documentation supplied with the ODBC libraries.

User Environment

You may find that you need to configure some environment variables before your
applications will work in the ODBC environment. The value of these variableS
might vary because of the flexibility of the UNIX environment. The variables
common to most environments are:

LIBPATH This environment variable specifies the directories that will be
searched for libraries. On most UNIX systems, if this variable is not
set, the directories /lib and /usr/lib will be searched.

Chapter 5. Open Database Connectivity (ODBC) 105



PATH This environment variable specifies the directories that will be
searched for executables.

When you are using the Call Level Interface, the libraries will have symbolic
links created in the standard UNIX directories; so you will not be required to
modify environment variables. If you find that these links do not exist, you will
need to run the command /usr/lpp/db2_02_01/cfg/db2ln as the root user.

5.4 Example ODBC Application Environment
The following environments are an example that may be used to to compile and
execute an ODBC application.

5.4.1 Compiling an ODBC Application
To compile an ODBC application, you need to have your environment set so that
all the required libraries and header files can be found by the compiler being
used. The following examples can be used as a guideline to the configurations
required.

DB2 Call Level Interface

If you have created the appropriate library and included file links as previously
discussed, then there are no requirements with DB2 for additional directories to
be included in you compilation environment. However, to illustrate the libraries
and include files being used, these examples will assume the links do not exist.

# Set to DB2 Instance Owner′ s Home Directory
DB2=/home/db2

# Define the Compiler, Loader, Flags and Libraries
CC=xlC
LD=xlC
CCFLAGS=-I$(DB2)/sqllib/include
LDFLAGS=-L$(DB2)/sqllib/lib
CLIBS=-ldb2

# Target Lines
listcol: listcol.o

$(LD) -o $@ $(LDFLAGS) listcol.o $(CLIBS)

Figure 69. Sample DB2 CLI Makefi le

Figure 69 is an example of a makefile that could be used to compile an ODBC
application using the DB2 CLI library. The environment variables that need to be
defined are all included in the file, sqllib/db2profile. This file is located in the
instance owner′s home directory.

No other configuration or setup is required if you are using the CLI functions.

ODBC Libraries

If you decide to use the DB2 ODBC libraries, then the makefile you would use
may look like the one shown in Figure 70 on page 107.

106 DB2 Programming Interfaces 



You also may choose to use another vendor′s ODBC libraries. In this
environment, you would need to be aware of where the software is installed.
Figure 71 on page 107 is an example using the INTERSOLV DataDirect ODBC
Pack. The software is installed in the directory /opt/odbc.

# Set to DB2 Instance Owner′ s Home Directory
DB2=/home/db2

# Define the Compiler, Loader, Flags and Libraries
CC=xlC
LD=xlC
CCFLAGS=-I$(DB2)/sqllib/include
LDFLAGS=-L$(DB2)/sqllib/odbclib/lib
CLIBS=-lodbc

# Target Lines
listcol: listcol.o

$(LD) -o $@ $(LDFLAGS) listcol.o $(CLIBS)

Figure 70. Sample DB2 ODBC Makefile

When using the ODBC libraries, it also may be necessary to include the directory
containing the ODBC libraries in the LIBPATH environment variable. For
example, using the INTERSOLV drivers, you may need to set up the LIBPATH
environment as follows:

$ LIBPATH=/lib:/usr/lib:/opt/odbc/dlls
$ export LIBPATH

# Define the Compiler, Loader, Flags and Libraries
CC=xlC
LD=xlC
CCFLAGS=-I/opt/odbc/include
LDFLAGS=-L/opt/odbc/dlls
CLIBS=-lodbc

# Target Lines
listcol: listcol.o

$(LD) -o $@ $(LDFLAGS) listcol.o $(CLIBS)

Figure 71. Sample ODBC Makefile

Chapter 5. Open Database Connectivity (ODBC) 107



108 DB2 Programming Interfaces 



Chapter 6. Database Extenders

As a powerful database, IBM DATABASE 2 Version 2 stores and manages not
only traditional numeric and character data but also complex data such as
Character Large Objects (CLOB), Binary Large Objects (BLOB) and Double-Byte
Character Large Objects (DBCLOB). To exploit these new complex data types in
your applications, IBM introduces the DB2 Relational Extenders.

This chapter gives you a brief, general description of what the Industry
Relational Extenders are by presenting the DB2 Text Extender as the first
member of the DB2 Relational Extenders. Other extenders that include image,
audio, video, and fingerprint capability will be made available.

6.1 Overview
With the emergence of new complex data types, such as CLOBs, BLOBs, and
DCBLOBs, it becomes necessary to create applications that can use and
manage these new data types. These complex data types must be able to be
searched, accessed and manipulated through the standard SQL statements from
within your applications. For example, an application searches a video clip
based on its attributes, such as the length, the frame rate, the number of the
frames, and so on.

The DB2 Relational Extenders are a set of IBM products that help users of DB2
Version 2 to exploit the large object (LOB) data types. The DB2 Relational
Extenders make use of some of the supported features in DB2 Version 2 in the
following ways:

• The DB2 Relational Extenders exploit DB2 Version 2′s support for large
objects.

• The DB2 Relational Extenders define new data types and functions for image,
audio, video, and text objects using the DB2 Version 2′s built-in support for
User-Defined Types (UDT) and User-Defined Functions (UDF).

• The DB2 Relational Extenders use DB2 Version 2′s triggers to provide
integrity checking across database tables to ensure the referential integrity
of multimedia data.

• The DB2 Relational Extenders exploit the client/server model of DB2.

The DB2 Relational Extenders can help users by:

• Improving application development productivity and reducing the complexity
of the application since users do not need to define data types and functions
in the application. Data types and functions for LOBs are already defined by
the extenders.

• Ensuring data consistency because users will use the same set of UDTs and
UDFs defined by the extenders.

• Creating queries for any data types. Users can access LOBs data and
traditional data together by writing only one SQL statement. That is because
UDFs defined by the DB2 Relational Extenders can be invoked in the same
way as other SQL functions.

• Managing the security, integrity and recovery protection of the LOBs since
the objects processed by the extenders are also stored in DB2 databases.

  Copyright IBM Corp. 1996 109



6.1.1 The DB2 Relational Extenders Family
As a general definition, extenders can be classified into four categories:

 1. Cross-industry, mult imedia extenders

 2. Cross-industry, non-multimedia extenders

 3. Industry specific, mult imedia extenders

 4. Industry specific, non-multimedia extenders

Some examples of extenders in each category are shown in Table 20.

The difference between:

• Cross-industry and Industry specific extenders is that Cross-industry
extenders provide data types that are applicable to many different industries,
while Industry specific extenders provide complex data types that have
unique characteristics to match the requirements of a specific industries.

• Multimedia and non-multimedia differ in the data types that are supported.
The multimedia provides the storage and processing of multimedia data
types, while the non-multimedia extenders support more traditional data
types.

For example, a fingerprint might have the same format for its storage as a static
image of multimedia data. But, the attributes of a fingerprint are specific and
may reflect an important piece of information in law enforcement applications.
The Fingerprint Extender will provide a search function that can give the
maximum performance and selectivity while identifying a fingerprint from a large
number of similar prints.

IBM provides the following Cross-Industry Extenders:

• DB2 Text Extender

• DB2 Audio Extender

• DB2 Image Extender

• DB2 Video Extender

And supports the following Industry Specific Extender:

• The DB2 Fingerprint Extender

Table 20. Four Categories of Extenders

Cross-Industry Industry Specific

Multimedia Text

Audio

Image

Video

Fingerprint

Medical

...

Non-multimedia Scientific Functions

Conversion Functions

...

Financial

...

110 DB2 Programming Interfaces 



6.1.2 The Extender, Database and Application Relationship
As mentioned in 6.1.1, “The DB2 Relational Extenders Family” on page 110,
there are several types of extenders. Each extender product has its own set of
UDTs, UDFs and triggers which are specific for its purpose. For example, the
DB2 Text Extender has a specific facility to do efficient text searching on a text
document, while the DB2 Video Extender has a distinct facility to do the same
efficient searching but based on the color contained in the specific time frame or
some other video attributes.

Figure 72 shows the relationship between the Relational Extenders, the database
and the application in a client/server model.

Figure 72. The Relationship between the Extender, the Database and the Application

There can be more than one extender product installed on a server and in use
by an application. The application program uses the appropriate UDFs provided
by a particular extender for a specific data type corresponding to the extender
product. The application uses these UDFs in its SQL statements for processing
the data on a table column.

As shown in Figure 72, an extender product consists of the following items:

 1. User-Defined Types (UDT)

The extender provides some UDTs that will be used by the extender′s Use-
Defined Functions.

 2. User Define Functions (UDF)

These are the new SQL functions provided by the extenders that you can use
for searching data.

 3. Triggers

Triggers are used to maintain the internal structure or indexes of a complex
data type, such as maintaining a log of changes to the tables or a periodic
update of the index tables.

 4. Administration

The administration component provides the commands to perform
administrative operations associated with each extender. For example,
establishing and maintaining indexing or pre-indexing data.

Chapter 6. Database Extenders 111



The extenders usually provide a command line interpreter (similar to the
Command Line Processor of DB2) to submit the administration commands.

 5. Client Functions

These are Application Programming Interface (API) functions used at the
extender client. These functions are written in a programming language (for
example, C or C++) according to the client platform. These functions can
be called in C programs to perform useful manipulation operations on their
data once it has been transferred to the client application.

 6. Graphical User Interface (GUI)

For some extenders, a Graphical User Interface has been included. This
helps to simplify the administration tasks.

6.2 DB2 Text Extender
In this chapter, we discuss the DB2 Text Extender, which is the first member of
the DB2 Relational Extenders family.

The DB2 Text Extender extends the work of SQL statements to search for
information on unstructured text stored in a DB2 database.

6.2.1 Advantages of the DB2 Text Extender
The DB2 Text Extender allows application programs to have full-text retrieval
capabilities in their SQL queries for text documents. Using the DB2 Text
Extender, an application can perform the following tasks.

• Search through many large text documents.

• Access any kind of text documents, including word-processing documents in
their original native form.

• Search for documents that contain specific text that can be defined using one
of the following search methods:

− Synonym  search, where the result may be documents which contain not
only the exact word specified but also synonyms of this word.

− Proximity  search, where the result are documents that have words which
are in close proximity to each other or are within a sentence of each
other.

− Boolean  search, where the documents are selected because they contain
or do not contain the specified words.

− Wildcard  search, using front, middle or end masking for words and
characters.

• Search for documents written in various languages. If a linguistic index was
defined, a different type of linguistic processing will be used, depending on
the document′s language. Some of these types are:

− Word and sentence separation

− De-hypenation

− Sentence-begin processing

− Normalization of terms to a standard form, with no capital letters and
changing accented letters to a form without accents

112 DB2 Programming Interfaces 



− Reducing terms to their base form. For example, ″mice″ is reduced to
″mouse″

− Decomposition of compound words

− Stop-word filtering eliminating insignificant words from the index

− Part-of-speech filtering where only nouns, verbs and adjectives are
indexed

6.2.2 Supported Environments
The DB2 Text Extender is client/server software; so part of the product is
installed on the client, and another part is installed on the server.

• The main part of the DB2 Text Extender, which is called the Text Extender
Server, is installed in the same machine as the DB2 Server product.

• The client part of the DB2 Text Extender, that is the Text Extender Utilities,
must be installed on a machine which has the DB2 Client product on it. The
DB2 Text Extender Client communicates with the DB2 Text Extender Server
via the DB2 client connection.

The currently supported server platform for the DB2 Text Extender is AIX, while
the client components can be installed either on AIX or OS/2 clients.

Figure 73 shows a simple configuration of the DB2 Text Extender environment.

Figure 73. A Simple Configuration of the DB2 Text Extender

Chapter 6. Database Extenders 113



6.3 The DB2 Text Extender Installation
The DB2 Text Extender is included with the DB2 Cross-Industry Extender
products; however, you need to use the DB2 Cross-Industry Extenders package
to install the DB2 Text Extender.

To install the DB2 Text Extender in AIX, you can use the System Management
Interface Tool (SMIT):

 1. If you are going to install the Text Extender Server, login as root at the
server where you want to install the product.

 2. Enter smit or smitty at the command prompt.

 3. Select the Software Installation and Maintenance option.

 4. Select Install and Update Software from the Software Installation and
Maintenance screen.

 5. Select Install/Update Selectable Software (Custom Install) from the Install
and Update Software screen.

 6. Select Install Software Products at Latest Level from the Install/Update
Selectable Software (Custom Install) screen.

 7. Select Install New Software Product at Latest Level from the Install Software
Products at Latest Level screen.

 8. Type your input device name on the entry fields, and press Enter . You can
press F4 to see a list of devices available on your machine.

 9. From the list of products available in db2tx_01_01_0000, select:

• Browser, if you are planning to use the DB2 Text Extender browser

• Common Modules for Client and Server

• English (US) Documentation

• Language dictionary and stop words, in the language you prefer

• Search Service for DB2/6000 Text Extender

10. After you make your selections, press Enter  to install the product. When you
are prompted for confirmation of the installation, press Enter  to confirm. The
installation will take a few seconds.

11. If you are installing the client components, you can install more than one
dictionary. These dictionaries are installed automatically when you install
the server components. To install a dictionary at the client, repeat steps 2
through 8, and select the language dictionary you need from the dictionaries
available on Table 21. Installing a dictionary will automatically install the
stop words for this language.

Table 21 (Page 1 of 2). DB2 Text Extender Dictionaries

Dictionary Language

db2tx_01_01_0000.dic.Da_DK Danish

db2tx_01_01_0000.dic.NI_NL Dutch

db2tx_01_01_0000.dic.En_GB English (U.K.)

db2tx_01_01_0000.dic.En_US English (U.S.)

db2tx_01_01_0000.dic.Fi_FI Finnish

114 DB2 Programming Interfaces 



12. If you want to install the online information for the DB2 Text Extender, repeat
the steps 2 through 8, and select db2tx_01_01_0000.doc.En_US .

Table 21 (Page 2 of 2). DB2 Text Extender Dictionaries

Dictionary Language

db2tx_01_01_0000.dic.Fr_FR French

db2tx_01_01_0000.dic.Fr_CA French (Canada)

db2tx_01_01_0000.dic.De_DE German

db2tx_01_01_0000.dic.De_CH German (Swiss)

db2tx_01_01_0000.dic.Is_IS Icelandic

db2tx_01_01_0000.dic.It_IT Italian

db2tx_01_01_0000.dic.No_NO Norwegian

db2tx_01_01_0000.dic.Pt_PT Portuguese

db2tx_01_01_0000.dic.Es_ES Spanish and Catalan

db2tx_01_01_0000.dic.Sv_SE Swedish

db2tx_01_01_0000.dic All supported language

6.3.1 Setting Up the DB2 Text Extender
After the server product is installed on your machine, do the following:

 1. Establish the DB2 Cross-Industry Extenders instance .

To do this, you need to perform the following:

a. Login as root.

b. Go to the instance directory of the DB2 Cross-Industry Extenders product.

cd /usr/lpp/dmb_10/instance

 c. Run dmbinstance.

./dmbinstance instance ID

where instance ID is an existing DB2 instance user ID or a user ID that
will be associated with a DB2 instance.

The DB2 Cross-Industry Extenders will create the dmb directory under
/u/instanceid directory. You should not create any files under the /dmb
directory since this directory will be deleted whenever you remove the
instance.

While running this command, you will be prompted for the following:

• If you want to make the instance ID a DB2 instance owner. This
question will be prompted only if the instance ID supplied is not a
DB2 instance owner. If you do not want instance ID to be a DB2
instance owner, it cannot be a DB2 Text Extender instance owner.

• If you want to create an instance for the DB2 Cross-Industry
Extenders for the specified instance ID. Answer yes if you are
installing or planning to install later, all the products in the DB2
Cross-Industry Extenders.

• If you want to create an instance for the DB2 Text Extender for the
specified instance ID. It is the same as using the db2txinstance
command to create an instance only for the DB2 Text Extender.

Chapter 6. Database Extenders 115



• If you want to create an instance for a previous DB2 Fingerprint
Extender installation. Your answer will not affect the installation of
the DB2 Cross-Industry Extenders.

d. Logout.

 2. Establish the instance environment for DB2 Cross-Industry Extenders

To set up the instance environment, perform the following tasks:

a. Log in as instance ID

b. Edit the login profile of the instance ID:

vi .profile

Add the following lines to the login profile:

• If you are using the C shell:

setenv LANG En_US

source dmb/dmbcshrc

• If you are using the Korn or Bourne shell:

export LANG=En_US

. dmb/dmbprofile

The dmbcshrc and dmbprofile are shell scripts that contain statements
used to set the path in your operating system and to set the environment
variables for the DB2 Cross-Industry Extenders use.

There is also a db2txprofile file where you can set up the DB2 Text
Extender environment variables. If you are using the DB2 Text Extender,
you can choose to run the db2txprofile; if not, the dmbprofile has a line
pointing to run db2txprofile. Refer to 6.3.2, “Environment Variables” on
page 117 for detailed information about the DB2 Text Extender
environment variables.

 c. Logout

 3. Create a local search service

You need to perform this step only when installing the DB2 Text Extender
Server. To create the local search service, do the following:

a. Login as instanceid

b. Enter this command:

DB2TXCFG ssrv-name port max-tasks avail-tasks time

where

ssrv-name The search service name, which is the instanceid in
uppercase letters.

port The TCP/IP port used by the clients to make a
connection to this search service. It must be the same
port used by DB2 clients to connect to the database.

• If you were creating a Text Extender instance for a
user who is not a DB2 instance owner, you must
have been asked to create a DB2 instance for this
user. At this time, the definition of a TCP/IP service
is added at the end of the etc/services file. Use the
port number corresponding to this service.

116 DB2 Programming Interfaces 



• If the user was a DB2 instance owner, use the
TCP/IP service port number defined for this instance
in the etc/services file.

max-tasks The maximum number of tasks that can be handled by
the service at the same time. The valid value is a
number between 1-100. The higher you set this value,
the slower the system runs. But if you set this value too
low, not all the clients can make a search at the busy
time. So you have to consider the number of clients you
have and the percentage of that number which may do a
search at the same time.

avail-tasks The number of tasks to be started in advance to handle
future requests. The valid value is a number between
1-10. The value for this parameter must be lower or
equal to the number set for max-tasks.

time The time that a search service task remains occupied
without receiving any request from a client. The valid
value is a number between 100-99900. After this time,
the connection to the client is terminated so other clients
can use the service. If you consider the queries are
often complex, set the time to 600 or more. Otherwise,
you can set it to 100.

To get help information about this command, enter the command:

db2txcfg

To display the current configuration, enter the command:

db2txcfg -d

After installing the client product in your machine, you can connect to the server
using the DB2 Client product and run your applications using the DB2 Text
Extender Utilities.

6.3.2 Environment Variables
The environment variables for DB2 Text Extender are defined in the following
files:

• db2txcshrc for the C shell

• db2txprofile for the Korn shell and the Bourne shell

These files are located in the /home/$DB2TX_INSTOWNER/db2tx directory.
Some administration commands require parameters that are mentioned in these
files. These files set the default values of some parameters to be used by the
DB2 Text Extender. If you are submitting the commands without specifying the
value of the parameters, DB2 Text Extender will use the default value from
these files.

To use these environment variables files, you can run them at the command
prompt. But it is recommended for your convenience to run the files
automatically during login by adding the shell script on your login profile (refer
to 6.3.1, “Setting Up the DB2 Text Extender” on page 115). .

Chapter 6. Database Extenders 117



The environment variables are the following:

 1. DB2TX_INSTOWNER

This is the login name of the AIX user that owns the instance.

 2. DB2TX_INSTOWNERHOMEDIR

This is the home directory of the instance owner.

 3. DB2TX_CCSID

This is the default Coded Character Set Identifier that is used to determine
the codepage of the text document. It must be the same used by the
database.

To determine the codepage being used by a DB2 database, you should look
at the database configuration. This can be displayed using the command:

db2 get database configuration for <database-name>

The currently supported codepages are:

819 Latin

850 Latin

813 Greece

874 Thailand

912 Czech, Croatia, Hungary, Poland, Servia (Latin), Slovenia, Slovakia

915 Bulgaria, FYR Macedonia, Servia (Cyrillic), Russia

920 Turkey

1046 Arabia

1089 Arabia

 4. DB2TX_FORMAT

This is the default format of the text documents that is needed for the index.
The initial setting is TDS; that is flat ASCII. The current supported formats
are:

TDS Flat ASCII

AMI Ami Pro Architecture Version 4

FFT IBM Final Form Text: Document Content Architecture

RFT IBM Revisable Form Text: Document Content Architecture

RTF Microsoft Rich Text Format Version 1

WP5 WordPerfect (OS/2 and Windows) Versions 5.0, 5.1 and 5.2

MSWORD Microsoft Word Versions 5.0 and 5.5

 5. DB2TX_LANGUAGE

This is the default dictionary name. The initial setting is US_ENGLISH. Other
dictionaries provided by the DB2 Text Extender are:

BRAZILIAN CAN_FRENCH CATALAN
DANISH DUTCH GERMAN
FINNISH FRENCH ICELANDIC
ITALIAN BM_NORWEGIAN NN_NORWEGIAN
BMNN_NORWEGIAN SWEDISH PORTUGUESE
SWISS_GERMAN SPANISH UK_ENGLISH

118 DB2 Programming Interfaces 



 6. DB2TX_INDEXDIR

This is the directory that will be used to store the index. The initial setting is
/home/$DB2TX_INSTOWNER/db2tx/indices.

 7. DB2TX_INDEXTYPE

This is the default index type to be used if you do not specify it when
creating the index. The initial setting is LINGUISTIC.

 8. DB2TX_UPDATEFREQ

This is the setting for the frequency of the index update. The initial setting is
NONE, and you must execute the UPDATE INDEX command each time you want
the index to be updated.

Below is an example of using the frequency setting for the index update:

min(50) d(1,3,5) h(12,17) m(0)

The index will be updated every Monday, Wednesday, and Friday at 12:00
(noon) and 17:00 (5 p.m.) only when there would is minimum of 50 text
documents to be indexed recorded in the log table (refer to 6.4.1,
“Maintaining the Text Index” on page 120).

 9. DB2TX_UPDATEINDEX

This is the variable to determine whether the first index is done immediately
after the index is created (UPDATE) or later, according to the frequency
setting of the index update (NONE). The initial setting is UPDATE.

6.3.3 The SAMPLE Table
The DB2 Text Extender provides a script to create a SAMPLE table to test the
product. This script is create_sample, and it is located in the
/home/$DB2TX_INSTOWNER/db2tx/samples directory. To run this script, enter
the following:

create_sample database

where database is the name of a DB2 database existing in the DB2 Server. If
you do not specify the database name, the command will use the default
database defined by the DB2DBDFT parameter in the db2profile file.

The create_sample script will do the following:

 1. Connect to the database

 2. Create the DB2TX.SAMPLE table

 3. Enable a text column named COMMENT on DB2TX.SAMPLE

 4. Create the index

This table is used in the example programs presented in 6.8, “Examples” on
page 139.

6.4 How the DB2 Text Extender Works
In order to perform quick and efficient searching, there are several things that
DB2 Text Extender creates and maintains. This section describes what they are
and what are they used for.

Chapter 6. Database Extenders 119



6.4.1 Maintaining the Text Index
Before you can use the DB2 Text Extender with your databases, you must enable
your database, your table, and your text column to be used by the DB2 Text
Extender. These are some of the administration tasks that you must perform as
explained in 6.5, “Administration Tasks” on page 123.

At the time you enable the database, table, and column, the DB2 Text Extender
creates the following tables, views and columns, which are used to maintain the
text index.

• Catalog View

The Catalog view created by the DB2 Text Extender contains the information
about the tables and columns that are enabled for the Text Extender. The
catalog view is called TEXTCOLUMNS and is needed to process the user
requests.

You can use SQL statements to view data in the Catalog view, but you
cannot modify it. Data in the Catalog view is updated as follows:

− New entries will be added when you enable new tables or columns.

− Existing entries are updated when you change the index setting using the
CHANGE INDEX SETTING command.

− Existing entries will be removed whenever you disable tables or columns
to be used by the DB2 Text Extender.

• Log Table

The Log table is required to keep the information about the changes of text
documents in an enabled table. The extender uses triggers to update log
tables whenever text documents are added, updated or deleted from the
table. This ensures that these documents will be indexed at the next
indexing time.

• Handle Column

A handle column is a column created by the DB2 Text Extender. It is added
to the table that has the enabled column. Each enabled column has one
handle column which contains the text handles associated to the enabled
column. The information stored in a text handle is:

− The document ID

− The name and location of the associated index

− The document information: the format, the CCSID and the language

6.4.2 Indexing
Indexing is something important to be considered in an information retrieval
system since it allows the system to perform queries more efficiently. The
system will not search through the whole text of documents, just the index.

A text index is a list that consists of significant words extracted from the text
documents. Each word is stored together with the information about the
document that contains it. Insignificant words, such as ″and″, ″the″ and ″of″, are
not indexed. To avoid these words from being indexed, DB2 Text Extender has a
list called stop words which consists of all the insignificant words.

There are two steps involved in the indexing process:

120 DB2 Programming Interfaces 



 1. Recording text documents that need to be indexed in a log table

This is an automatic process done by DB2 triggers whenever you insert,
update or delete a text document in a column.

 2. Indexing text documents listed in the log table

This step is performed periodically. In this step, the significant words of the
documents inserted or changed in the column are added to the index, and
the words of those documents that were deleted from the column are
removed from the index.

6.4.2.1 Multi-index and Common-Index Tables
Something that needs to be considered before enabling the text table to be used
by the DB2 Text Extender is whether to use a multi-index table or a
common-index table.

Multi-index Table

A multi-index table is a table which has a separate text index for each text
column. Using multi-index table gives you flexibility because you can create
different types of indexes for each text column, set a different periodic time for
updating the index, and create different directories for storing the index. Since
index processing may consume a large amount of time and resource, having a
multi-index table allows you to spread this activity over a period of time by
setting different times for updating each index.

Figure 74 shows the indexes and log tables for a multi-index table.

Figure 74. Multi-Index Table: A Separate Text Index for Each Text Column

Common-index Table

A common-index table is a table which has one text index common to all the text
columns in that table. The advantage of a common-index table is that it is easier
to maintain. If you have to change the index characteristic, you only need to
make the changes once.

Figure 75 on page 122 shows the index and log table for a common-index table.

Chapter 6. Database Extenders 121



Figure 75. Common Index Table: A Common Index for A l l the Text Columns

6.4.2.2 Types of Indexes
The DB2 Text Extender provides three types of indexes. You need to know these
types of indexes before you perform the ENABLE TEXT COLUMN command discussed
in 6.5, “Administration Tasks” on page 123. You can change the type of index
currently used at any time if you think that it is not suitable anymore. When you
change the type of an index on a column, the DB2 Text Extender performs the
following tasks:

 1. Deletes the existing index

 2. Creates a new empty index

 3. Adds the entries for all the text documents in the column to the log table for
re-indexing

The index update will be done accordingly with the DB2TX_UPDATEFREQ and
DB2TX_UPDATEINDEX variables.

The three types of indexes provided by the DB2 Text Extender are:

 1. Linguistic Index

In a linguistic index, words are reduced to their base form before being
stored in an index. This linguistic processing is also applied when a user
queries against a linguistic index. It means that the search word is also
reduced to its base form.

For example, to store in the index the word ″mice″, it is reduced to ″mouse″.
And when you submit a query using ″mice″ as the search word, it is also
reduced to ″mouse″ before the search begins.

Some advantages of using the linguistic index are:

• It requires the least amount of disk space.

• You can search using any variations of a word, which will give you the
same results.

The linguistic index needs more time to do indexing and searching as
compared with a precise index because of the previous process of reducing
the word to its base form.

 2. Precise Index

In a precise index, words are indexed exactly as they appear in the text
documents. It means that they are case-sensitive. The same linguistic

122 DB2 Programming Interfaces 



process is applied to the search words in queries, which will give results
only for the exact same words.

The advantages of using a precise index are:

• You can use masking characters in the queries which will broaden the
search. For example, the search word ″comp*″ will find ″compress″,
″compiler″ and so on.

• You can be more precise in your search.

• The indexing and retrieval is faster because there is no reduction
process.

This type of index requires more disk space for the index because every
word that has a different form is indexed separately.

 3. Dual Index

A dual index is a combination of linguistic index and precise index. Each
word is indexed in three forms:

• Normalized form  — a standard form of words in all lower-case letters and
without accents.

• Base form  — the infinitive form of words.

• Precise form  — the exact form of words as they are in the text
documents.

The main advantage of using a dual index is its flexibility. You can choose to
use either a linguistic or precise search in the query statements.

Because each word is indexed in three forms, this type of index requires the
most amount of disk space and is the slowest for indexing and searching.

6.5 Administration Tasks
We can divide the administration tasks into those that are used for the
administration of the Text Extender Server and those used for the Text Extender
Client.

6.5.1 Administration of the DB2 Text Extender Server
You can issue the administration commands from the operating system prompt.

Basically, the administration of the server consists in performing the following
tasks:

 1. Start the Text Extender server:

a. Log in using the user ID of the DB2 Text Extender instance owner (refer
to the DB2TX_INSTOWNER variable in 6.3.2, “Environment Variables” on
page 117).

b. Enter the following at the command prompt:

db2txstart password

where password is the password of the DB2 Text Extender instance
owner user ID.

When the DB2 Text Extender Server start is completed, you will receive
the message:

The requested operation completed successfully.

Chapter 6. Database Extenders 123



 2. Display the status of the DB2 Text Extender Server:

db2txstatus

If the DB2 Text Extender Server is already started, you will get a screen
similar to Figure 76.

� �
$ db2txstatus

SearchManager status for service: DB2

SearchManager controller is running

SearchManager administration task running: no

SearchManager communication service is running

SearchManager communication details
0 client(s) busy.
10 client(s) ready for connection.
0 client(s) not yet created.

The requested operation completed successfully.� �
Figure 76. Status Screen When the DB2 Text Extender Server is Up

But if the DB2 Text Extender has not been started yet, you will get the
messages shown in Figure 77.

� �
$ db2txstatus

SearchManager status for service: DB2

SearchManager controller is not running

SearchManager communication service is not running
The requested operation completed successfully.� �

Figure 77. Status Screen When the DB2 Text Extender Server is Not Running

 3. Stop the DB2 Text Extender Server:

db2txstop

When the DB2 Text Extender Server stop is completed, you will receive the
message:

The requested operation completed successfully.

6.5.2 Administration of the DB2 Text Extender Client
The tasks involved in the administration of the DB2 Text Extender Vlient are:

• Preparing the text documents for searching, such as enable a database, a
table and a column to be used by the DB2 Text Extender.

• Maintaining the index, such as update, recreate or change the settings of an
index.

• Getting information, such as the information about index settings, text
settings for a column, environment variables settings, and the enabled status
of databases, tables and columns.

• Working with the DB2 Text Extender Catalog views.

124 DB2 Programming Interfaces 



• Releasing text that has been prepared to be used by the DB2 Text Extender,
such as disable a column, a table or a database.

Before you enter any administration command, be sure that the DB2 Text
Extender Server is already running. The administrator can check it by entering
db2txstatus as mentioned in 6.5.1, “Administration of the DB2 Text Extender
Server” on page 123.

As in DB2, you can submit the administration commands either from the
operating system command prompt by prefixing the command with db2tx or from
the Command Line Processor provided by the DB2 Text Extender. To start the
DB2 Text Extender Command Line Processor, you enter the following at the
operating system command prompt:

db2tx

The DB2TX prompt will be displayed, and all the commands entered from this
prompt will be interpreted as DB2 Text Extender commands.

db2tx⇒

Enter quit to exit the DB2 Text Extender Command Line Processor.

Because the administration tasks involve a lot of indexing process, you need to
make your decisions about:

• The type of index you are going to use

• Whether to use a multi-index table or a common-index table

• The directory where you are going to store the index

• The Coded Character Set Identifiers (CCSID), the languages, and the formats
of the text in which you intend to search

You can check the default values of type of index, index directory, CCSID,
language, and format of text on the db2txprofile file (refer to 6.3.2, “Environment
Variables” on page 117). You do not need to specify these values in your
commands if they are already defined as the default values.

6.5.3 Administration Commands Summary
Table 22 lists the available commands for the DB2 Text Extender administration.

Table 22 (Page 1 of 3). The Administrat ion Commands Summary

Command Purpose Note

? Command Line Processor help.

CONNECT TO Connects to a database. Without submitting this command, the DB2 Text Extender
will try to connect to the default database specified by the
DB2DBDFT environment variable.

ENABLE
DATABASE

Prepares a database to be used by
the DB2 Text Extender.

The DB2 Text Extender will:

• Declare UDFs and UDTs to DB2

• Create a catalog view called TEXTCOLUMNS

Chapter 6. Database Extenders 125



Table 22 (Page 2 of 3). The Administrat ion Commands Summary

Command Purpose Note

ENABLE TEXT
TABLE

Prepares a text column for use by
Text Extender.

Run this command if you want to use
common index.

Skip this command if you want to use
multi-index.

The DB2 Text Extender will:

• Create an empty text index

• Create an empty log table

• Create triggers to update the log table

Specify the type of index, the frequency of updates and the
directory to store the index; otherwise the DB2 Text
Extender will use the default values on db2txprofile.

ENABLE TEXT
COLUMN

Prepares a column to be used by the
DB2 Text Extender.

The DB2 Text Extender will:

• Create an index

• Create a log table

• Set the document information, such as the format, the
CCSID and the language

• Add a handle column to the table

Specify the type of index, the frequency of updates and the
directory to store the index (if you are using multi-index);
otherwise the DB2 Text Extender will use the default values
on db2txprofile.

UPDATE INDEX Updates an index immediately. Use this command to update an index without waiting for
the next periodic indexing time.

Specify the handle-column name for updating column in a
multi-index table.

RECREATE
INDEX

Recreates a damaged text index. The DB2 Text Extender will:

• Delete an existing index

• Create a new index

The indexing can begin immediately or when the next
schedule for periodic indexing time was specified,
according to the UPDATEINDEX keyword.

CHANGE INDEX
SETTING

Changes the characteristics of an
index.

You can change either the index type, the update frequency
or the directory name where the index is stored.

If you change the index type or the directory name, the
DB2 Text Extender will:

• Delete an existing index

• Create a new index

GET STATUS Displays the enabled status of
databases, tables and columns.

GET
ENVIRONMENT

Displays the current settings of the
DB2 Text Extender environment
variables.

GET INDEX
SETTINGS

Displays the characteristics of an
index.

GET TEXT INFO Displays the text settings of a text
column.

DISABLE TEXT
COLUMN

Disables a text column to be used by
the DB2 Text Extender.

The DB2 Text Extender will:

• Delete the index for this column (if it uses a multi-index)

• Delete the log table (if it uses a multi-index)

• Delete triggers used to maintain the log table

• Set the contents of the handle column to null

126 DB2 Programming Interfaces 



Table 22 (Page 3 of 3). The Administrat ion Commands Summary

Command Purpose Note

DISABLE TEXT
TABLE

Disables a table to be used by the
DB2 Text Extender.

The DB2 Text Extender will:

• Delete the index (if it uses a common-index) or delete
all the indexes for the text columns in this table (if it
uses multi-index)

• Delete the common log table (if it uses a
common-index) or delete all the log tables (if it uses a
multi- index)

• Delete the triggers used to maintain the deleted log
tables

• Set the contents of the handle columns to null

DISABLE
DATABASE

Disables a database to be used by the
DB2 Text Extender.

The DB2 Text Extender will:

• Delete the catalog view created for this database

• Delete the declaration of the DB2 Text Extender′s UDTs
and UDFs from this database

• Delete all the indexes for the text tables or text
columns in this database

• Delete the log tables and triggers

• Delete the contents of all the column handles

The ENABLE TEXT COLUMNS supports only VARCHAR, LONG VARCHAR or
CLOB text columns to be used by the Text Extender. If your text column is in a
different data type, such as a User-Defined Type, you need to create a
User-Defined Function to convert the User-Defined Type used in your text
column.

The User-Defined Function should have your User-Defined Type as its input and
VARCHAR, LONG VARCHAR or CLOB type as its output.

To enable the column, you need to put the FUNCTION parameter in the ENABLE
TEXT COLUMNS statement. For example:

db2tx ″ENABLE TEXT COLUMN table-name text-column-name
FUNCTION function-name
HANDLE handle-column name
...

where:

table-name The name of your table

text-column-name The text column to be enabled

function-name The User-Defined Function used to convert the text column
from the unsupported data type to the supported data type

handle-column-name The handle column name

6.6 UDTs and UDFs
In this section, we discuss the UDTs and UDFs that are provided by the DB2 Text
Extender and show some examples of how to use these functions. To clarify the
examples in this section, the structure of the table we use in the examples is
shown below.

Chapter 6. Database Extenders 127



CREATE TABLE db2tx.sample (
forum VARCHAR(30),
date TIMESTAMP,
author VARCHAR(50),
subject VARCHAR(100),
ref_date TIMESTAMP,
ref_author VARCHAR(100),
comment LONG VARCHAR)

This is the table sample that you might have already created after installing the
DB2 Text Extender, as explained in 6.3.3, “The SAMPLE Table” on page 119.

6.6.1 User Defined Types
The DB2 Text Extender provides specific UDTs used in some of the DB2 Text
Extender UDFs:

 1. DB2TEXTH

The source data type of DB2TEXTH is VARCHAR(60) FOR BIT DATA.

This UDT is used as the data type for the handle columns. It is a
variable-length string that contains the information needed for indexing the
text document. The information stored in it is:

• A document ID

• The name of the server where the text is to be indexed

• The name of the index

• Information about the text document

The INIT_TEXT_HANDLE and HANDLE functions return this data type.

 2. DB2TEXTHLISTP

The source data type of DB2TEXTHLISTP is VARCHAR(16) FOR BIT DATA.

DB2TEXTHLISTP is a text handle list pointer. That is a pointer to a list of text
handles associated with text documents found by a search.

The HANDLE_LIST function returns this data type.

6.6.2 User-Defined Functions
The DB2 Text Extender also provides UDFs. To use these UDFs in SQL
statements, you must add “DB2TX” to the function path. Issue the following
command from the DB2 Command Line Processor:

SET CURRENT FUNCTION PATH = ″DB2TX″ ,  current function path

where current function path is the function path already set up before you submit
this command. You can write “current function path” for this parameter.

To see the current function path setup, enter the following using the DB2
Command Line Processor:

VALUES CURRENT FUNCTION PATH

You need to set the current function path each time you connect to a database.
An alternative way to use UDFs without having to set the current function path is
by explicitly specifying the qualifier name of the function. For example, using the
DB2TX.CONTAINS function instead of CONTAINS.

128 DB2 Programming Interfaces 



All the examples of SQL statements in this section are invoked from the
interactive mode of CLP. Otherwise, the parameters written between quotation
marks must be written as follows:

For (..., ′ ″ compress″ ′ )  write (..., ′ \″compress\″ ′ )

The following are the UDFs that are provided by the DB2 Text Extender and
some examples of how to use these functions within SQL statements.

 1. CCSID

This function is used to get the CCSID from a text handle which is set for
each column when you enable a text column.

For example:

SELECT distinct CCSID(commenthandle) FROM db2tx.sample

The result is:

1
-----------

850

1 record(s) selected.

It means that the CCSID used for the text handle “commenthandle” is 850.

 2. CONTAINS

This function is used to search for text within the documents. It will return
an integer value of 1 if the document contains the text and 0 if the document
does not contain the text.

The following SQL statement shows you how to use the CONTAINS function:

SELECT date, subject \
FROM db2tx.sample \
WHERE contains (commenthandle, ′ ″ compress″′)=1

This SQL statement will give you a list of the dates and subjects of all the
documents that have the term “compress” in the text referred by the handles
in the column COMMENTHANDLE, as follows:

� �
DATE SUBJECT
--------------------- ---------------------------------------------------
07-28-16.58.53.000000 numerous questions ...
07-28-19.20.48.000000 numerous questions ...

 2 record(s) selected.� �
 3. FORMAT

Use this command to do one of the following:

a. To get the format of the document specified in a text handle.

SELECT distinct format(commenthandle) \
FROM db2tx.sample

b. To change the format specification in a document′s text handle.

For example:

UPDATE db2tx.sample \
SET commenthandle=format(commenthandle,′ AMI′ )

 4. HANDLE

Chapter 6. Database Extenders 129



Returns a text handle selected by sequence number from a list of text
handles. Its data type is DB2TEXTH.

For example:

SELECT HANDLE(HANDLE_LIST(commenthandle,′ ″ compress″ ′ ) ,1 )  \
FROM db2tx.sample \
WHERE CONTAINS (commenthandle,′ ″ compress″′)=1

This function is used mostly with HANDLE_LIST, NO_OF_MATCHES and
RANK to perform complex SQL statements which can improve the
performance of the text searches. Refer to Improving search performance in
Database 2 Text Extender: Administration and Programming.

 5. HANDLE_LIST

This function is used to search for text documents using a search term. The
returned value is a DB2TEXTHLISTP data type that points to a list of text
handles for the found documents. The list will be empty if there is no text
document found. You can use the NO_OF_DOCUMENTS function to find out
whether the list is empty or not.

For example, to get the pointer to the list of the text handles for the
documents containing the word ″compress″:

SELECT HANDLE_LIST(commenthandle,′ ″ compress″ ′ )  \
FROM db2tx.sample \
WHERE CONTAINS (commenthandle,′ ″ compress″′)=1

This pointer is accessible only within the scope of the SQL statement using
this function.

If you run this statement from the CLP, you will get the following:

� �
1
------------------------------
x′312018C0D8000000022018C378047900′
x′312018C0D8000000022018C378047900′

2 record(s) selected.� �
 6. INIT_TEXT_HANDLE

This function is used to set the format and language to values that are
different from the previous format and language set by the default
environment variables or set when you enable a text column.

For example, you enable a column with the following settings:

ENABLE TEXT COLUMN db2tx.sample \
COMMENT HANDLE commenthandle \
INDEXTYPE dual \
LANGUAGE us_english \
FORMAT tds

But then, you want to insert a new data which is not using US_ENGLISH as
its language nor TDS as its format. So, you insert the data using the
following command:

INSERT INTO db2tx.sample \
(forum, comment, commenthandle) \
VALUES (′ db2tx.cforum′ ,  ′ If you have a problem ...′ ,  \
init_text_handle(′ AMI′ ,  ′ FRENCH′ )

 7. LANGUAGE

130 DB2 Programming Interfaces 



The LANGUAGE function is used to perform the following tasks:

• To get the language of the document specified in a text handle.

For example:

SELECT distinct language(commenthandle) FROM db2tx.sample

• To change the language specification in a document′s text handle and to
get the changed text handle.

For example:

UPDATE db2tx.sample \
SET commenthandle=language(commenthandle,′ FRENCH′ )

 8. NO_OF_DOCUMENTS

This function is used to get the number of items in a list of text documents
found by a search. It returns an integer value which is the number of entries
found in a list of text handles.

The parameter of this function is an expression with a DB2TEXTHLISTP data
type, which is returned by calling the function HANDLE_LIST. The list result
from the HANDLE_LIST function exists only within the scope of an SQL
statement; so you have to use this function in the same SQL statement as
the HANDLE_LIST function.

For example, to know how many documents contain the word ″compress″,

SELECT NO_OF_DOCUMENTS(HANDLE_LIST(commenthandle,′ ″ compress″ ′ ) )  \
FROM db2tx.sample \
WHERE CONTAINS(commenthandle,′ ″ compress″′)=1

 9. NO_OF_MATCHES

Depending on the input parameters, NO_OF_MATCHES has two different
functions:

• To determine how many matches are found in a text document. The
function will return an integer value. For example:

For example, to select the documents which contain the word
“compress” one or more times:

SELECT date, subject \
FROM db2tx.sample \
WHERE no_of_matches(commenthandle, ′ ″ compress″′) > 0 

• To return the number of matches from a handle in a list of text. This
function is not yet supported.

10. RANK

Depending on the input parameters, RANK has two different functions:

• To determine the rank value of a text document that has been returned
by a search. The function will return a DOUBLE value between 0 and 1,
indicating the number of matches found in the document in relation to
the document′s size.

For example:

SELECT date DATE, rank(commenthandle,′ ″ compress″ ′ )  RANK \
FROM db2tx.sample ORDER BY RANK

• To get the rank value from a handle in a list of text handles. This
function is not yet supported.

Chapter 6. Database Extenders 131



11. REFINE

When a search finds too many occurrences, it can be useful to narrow or
refine the search by combining the initial search argument with a second one
in a Boolean AND relationship. With this function, you can take the two
search arguments and get a LONG VARCHAR data type value consisting of
the two input parameters connected by the AND operator.

Before using the REFINE function, you need to perform the following two
steps:

a. Create a table for the old search arguments:

CREATE TABLE previous_searches \
(step INT, \
searchargument LONG VARCHAR) 

b. Search with the first search argument, ″compress″ for example:

SELECT comment \
FROM db2tx.sample \
WHERE CONTAINS (commenthandle,′ ″ compress″′)=1 

And insert this search argument into the table PREVIOUS_SEARCHES:

INSERT INTO previous_searches \
VALUES (1,′ ″ compress″ ′ )  

Now, you are ready to refine the search. Assume that you want to refine the
search by combining the previous search term with the word ″compiler″:

WITH LAST_STEP(step_max) \
AS (SELECT MAX(step) \

FROM previous_searches),
LAST_SEARCH(last_search)
AS (SELECT searchargument \

FROM previous_searches, last_step \
WHERE step = step_max)

SELECT comment \
FROM db2tx.sample, last_search \
WHERE CONTAINS (commenthandle, \

REFINE (last_search,′ ″ compiler″′))=1 

You can insert the refined search argument into the PREVIOUS_SEARCHES
table for use by further searches.

Another way to refine search results without using the REFINE function is by
storing the result in a temporary table and making the new search against
this table. However, depending on the number of qualifying terms, this
method may be less efficient.

6.6.3 Search Arguments
Some functions, such as CONTAINS, NO_OF_MATCHES, RANK, and HANDLE_LIST, require
search arguments. There are several ways to specify a search argument in a
function, they are:

 1. Searching for several terms.

You need to combine the terms you are searching for, using commas.

For example:

CONTAINS(commenthandle, ′ ( ″compiler″,  ″DB2″,  ″compress″)′)=1

 2. Searching using Boolean operators AND, OR and NOT.

132 DB2 Programming Interfaces 



You use Boolean operators in your search arguments. For example:

CONTAINS(commenthandle, ′ ″ compress″ |  ″compiler″′)=1

There are some considerations when using more than one Boolean operator
in a search argument. The DB2 Text Extender evaluates Boolean operators
from left to right, but the logical AND (&) operator binds stronger than the
logical OR (|) operator.

For example:

″DB2″ & ″compiler″ |  ″compress″ & ″zip″

will be evaluated as:

(″DB2″ & ″compiler″)  |  (″compress″ & ″zip″)

You must use parentheses to change the order, for example:

″DB2″ & (″compiler″ |  ″compress″) & ″zip″

The NOT operator is used to exclude particular terms from the search.

For example:

(″compress″,  ″compiler″) & NOT ″DB2″

The NOT operator, cannot be used with IN SAME SENTENCE AS, IN SAME
PARAGRAPH AS or SYNONYM FORM OF clauses.

 3. Searching for a term in a dual index.

In a dual index, you can search for the exact form of a word or its variations.
Variations of one term can be its plural form, its past tense form, and so on.
To determine whether you want to search using the exact form or the
variations, you need to specify the following:

To search for the occurrences of ″utility″:

CONTAINS(commenthandle, ′ PRECISE FORM OF ″utility″′)=1

To search for variations of ″utility″:

CONTAINS(commenthandle, ′ STEMMED FORM OF ″utility″′)=1

 4. Searching using character-masking.

The DB2 Text Extender uses two-character masking:

Underscore (_) Which represents one character in a search term

Percent (%) Which represents any number of arbitrary characters

When you want to search for a term that includes one of the masking
characters, you need to use an escape character. Specify it using the
ESCAPE keyword.

For example, to find the term ″10% interest″ using ″!″ as the escape
character:

CONTAINS(commenthandle, ′″10!% interest″ ESCAPE ″!″′)=1

 5. Searching for terms in the same sentence or paragraph.

You can search for several terms that occur in one sentence or paragraph,
such as:

CONTAINS(commenthandle, ′ ″ compress″ \
IN SAME SENTENCE AS ″DB2″′) = 1

CONTAINS(commenthandle, ′ ″ compress″ \
IN SAME PARAGRAPH AS ″DB2″ AND ″compiler″′) = 1

Chapter 6. Database Extenders 133



 6. Searching for synonyms of terms.

If you use a linguistic or dual index, you can search for a term and its
synonyms. The DB2 Text Extender provides a dictionary that lists synonyms
for many terms. The default dictionary is always US_English. To search for
synonyms of a term:

CONTAINS(commenthandle, ′ SYNONYM FORM OF UK_ENGLISH ″book″′)=1

You do not need to specify ″US_ENGLISH″ if you want to use the US_English
dictionary.

6.7 Creating Applications
The DB2 Text Extender provides API functions to enable applications to use the
extender utilities. Some of these API functions require a database connection
handle, obtained from the SQLConnect() function, as an input parameter. This
restricts the use of these API functions only to DB2 CLI applications. They
cannot be used in Embedded SQL applications. But API functions can be used in
mixed applications which use both CLI and Embedded SQL. Refer to the  Call
Level Interface Guide and Reference - for common servers on how to write mixed
applications.

The APIs provided by the DB2 Text Extender are:

 1. API that enables a search function:

• DesGetSearchResultTable()

This function is used to search through text documents using a search
argument. It can find the text handle data, rank and number of matches,
and write this information to the result table (see 6.7.1, “Starting the
Browse” on page 135 for details about the result table).

 2. APIs that enable browse functions:

• DesGetBrowseInfo()

This function is needed to get a pointer to browse information. This
pointer is used in the DesStartBrowseSession() function to highlight the
found terms.

• DesStartBrowseSession()

The purpose of this function is to open a browse session for browsing
text documents. Users will be prompted for a user ID and password
login for authorization.

• DesBrowseDocument()

If you are using the Text Extender browser to display a text document,
you will need to call this function which will start the DB2 Text Extender
browser. The search terms will be highlighted.

• DesOpenDocument()

This function prepares the text document that corresponds to the handle
returned from the DesStartBrowseSession() function. It will highlight the
information and return a document handle used for calling the
DesGetMatches().

• DesGetMatches()

134 DB2 Programming Interfaces 



This function is used to obtain a pointer to a data stream containing the
highlighted information for the text document described by a document
handle.

• DesCloseDocument()

We use this function to close a text document that was opened by the
DesOpenDocument() function and to release the storage used during the
return of document text and the highlighted information.

• DesEndBrowseSession()

This function is used to end a browse session and to release the storage
allocated for the browse session.

• DesFreeBrowseInfo()

The purpose of this function is to free the storage allocated for the
browse information by the DesGetBrowseInfo().

For further information about the DB2 Text Extender ′s API functions, such as the
arguments and their data types, the syntax, and so on, refer to the DATABASE 2
Text Extender: Administration and Programming.

When you create an application using the DB2 Text Extender′s API functions, you
need to do the following:

 1. Include the des_ext.h file in the program. This file is provided by the DB2
Text Extender and is located in the /include subdirectory of your
/home/$DB2TX_INSTOWNER/db2tx directory or in the Text Extender
installation directory (/usr/lpp/db2tx_01_01_0000/include).

 2. Compile your application either using the C or C + + language.

xlC -I/$DB2TX_INSTOWNER/include -I/$DB2TX_INSTOWNER/db2tx/include $1.c

where

$DB2TX_INSTOWNER The home directory of the DB2 Text Extender instance
owner

$1 The name of the application program

 3. Link the library libdescl.a to your application. This library is located in the
/lib subdirectory of the DB2 Text Extender installation directory.

xlC -o $1 $1.o -ldb2 -L/home/db2/sqllib/lib \
-ldescl -L/usr/lpp/db2tx_01_01_0000/lib -lc

Basically, there are three parts of an application that will browse an extender
document. These are:

 1. Starting the browse

 2. Browsing documents

 3. Ending the browse

6.7.1 Starting the Browse
To start a browse, you need to perform the following steps:

 1. Get the browse information

To get the browse information, we can use one of the following functions:

a. Get Browse Information

Chapter 6. Database Extenders 135



The function used is DesGetBrowseInfo(). This function returns a pointer
to the browser information which consists of a list of all the terms to be
highlighted. The browser information is needed to start a browse
session.

b. Get Search Result Table

The DesGetSearchResultTable() function is used by an application
program to establish a connection to the database and to search for
terms in a particular text column. The result of the search contains the
text handles in each document found. This data is stored in a table
named the Result Table which must be created before calling the
function by using the following structure:

• TEXTHANDLE with DB2TEXTH type

• RANK with DOUBLE type

• MATCHES with INTEGER type

Any user who will run an application using this function must have at
least the DELETE, INSERT, and SELECT privilege on the result table used
by the application. This is because each time you call the function, the
following steps are performed:

1) Any existing rows in the result table are deleted.

2) The results of running DesGetSearchResultTable() function are
inserted into the result table.

3) The application performs SELECT tasks on the result table.

All these steps are done using the DB2 user ID and password
authorization provided in the DesGetSearchResultTable() input function.

Using the DesGetSearchResultTable() function in an application may be
faster than using the UDFs provided by the DB2 Text Extender when
working in a text-only query. This is because the API function goes
directly to the server to get the rank and number of matches, and it loops
only for the number of matching documents found. The
DesGetSearchResultTable() function can be used only on base tables.
They are tables created using the CREATE TABLE statement.

 2. Start a Browse Session

The application uses the DesStartBrowseSession() function to start a browse
session. This function gets a pointer to the browse information either from
the DesGetBrowseInfo() or the DesGetSearchResultTable() function. And it
returns a browse session handle that is required by the other browse
functions.

6.7.2 Browsing Documents
To browse the documents found in the search, you can use the DB2 Text
Extender Browser or use your own browser.

6.7.2.1 Using the DB2 Text Extender Browser
Figure 78 on page 137 shows the order of functions used in an application that
browses text using DB2 Text Extender ′s browser.

136 DB2 Programming Interfaces 



Figure 78. API Functions Using the DB2 Text Extender Browser

In this step, the application uses the DB2 Text Extender browser by calling the
DesBrowseDocument() function. The browser will display the text document
specified by the text handle and present the search terms highlighted (refer to
6.8.1, “Browse Application Using the DB2 Text Extender Browser” on page 139).
The application can call this function several times for different text documents
within one browse session.

6.7.2.2 Using Your Own Browser
Figure 79 shows the steps to use your own browser in a browse application.

Figure 79. API Functions Using Your Own Browser

The following steps are needed when you want to use your own browser:

Chapter 6. Database Extenders 137



 1. Open a Document

We use the DesOpenDocument() function to open a document. The purpose of
this function is to prepare the text document corresponding with the text
handle, get the document text and highlight the information. One of the
inputs for this function is a pointer to the browse session handle resulting
from starting a browse session. The output of this function is a document
handle that will be used in the DesGetMatches() function.

 2. Get Matches

The DesGetMatches() function will return a pointer to the highlighted
information for the text document in the form of a data stream. The
application then parses the data stream and processes it using the user′s
own browser.

The data stream returned from DesGetMatches() is only a portion of the
stream which indicates the length of the portion in the structure. The
DesGetMatches() function will be called repeatedly until the entire text
document is obtained. At that time, an indicator will be returned.

 3. Close a Document

The text document, which was previously opened by the DesGetMatches()
function, is closed by calling the DesCloseDocument() function. The allocated
storage used during the retrieval of the text document, and the highlighted
information, is also freed.

6.7.3 Ending the Browse
The following steps are used to end a browse:

 1. End a Browse Session

To end a browse session, we use the DesEndBrowseSession() function. This
function will end a browse session that was started by
DesStartBrowseSession() and release the storage allocated for this particular
browse session.

 2. Free the Browse Information

The storage allocated for the browse information is released by calling the
DesFreeBrowseInfo() function.

6.7.4 Checking the Browser
Before running your applications using the DB2 Text Extender Browser or your
own browser, you should verify the following:

• Check that you have the appropriate privileges to use the browser, such as
having execute permission in the browser files. For the DB2 Text Extender
Browser, veri fy <inst_name>/db2tx/bin f i les.

• If you are getting the message:

Message catalog files not found

Verify the environment variable LANG and the executable permission in the
<inst_name>/db2tx/msg f i les.

• If you are getting the error message:

DES0369N The browse process was started but did not respond
in an appropriate time.

138 DB2 Programming Interfaces 



Verify the system variable DISPLAY that must be set up to use the graphic
mode. For example:

export DISPLAY=tx8.itsc.austin.ibm.com:0

6.7.5 Return Codes
As in DB2 Call Level Interface functions, the DB2 Text Extender may also return
a code that tells whether an error occurred while processing the function or not.
Refer to the DATABASE 2 Text Extender: Administration and Programming
manual for detailed information on each return code.

Figure 80 shows an example of how to use the return codes in an application.

� �
...
 DESrc = DesGetSearchResultTable

( hdbc, pTableName, TableNameLength, pColumnName,
ColumnNameLength, srchArg, pColumnName,
ArgumentLength, pResultTableName, ResultNameLength,
pSchemaName, SchemaNameLength, SearchOption,
BrowseOption, &BrowseInfo, &ErrorMessage);

 switch (DESrc) {
case RC_SUCCESS:

break;
case RC_SE_DICTIONARY_NOT_FOUND:

WARNrc = RC_SE_DICTIONARY_NOT_FOUND;
break;

case RC_SE_STOPWORD_IGNORED:
WARNrc = RC_SE_STOPWORD_IGNORED;
break;

case RC_SE_CONFLICT_WITH_INDEX_TYPE:
WARNrc = RC_SE_CONFLICT_WITH_INDEX_TYPE;
break;

case RC_SE_NO_DATA:
terminateDB ( henv, hdbc );
return(DESrc);

default:
}

 ...� �
Figure 80. Using Return Codes in an Application

6.8 Examples
The following examples will show you how to write browse applications using the
DB2 Text Extender functions to search in LOB columns.

6.8.1 Browse Application Using the DB2 Text Extender Browser
The Figure 81 on page 140 contains a fragment of the sample1.c application.
This application uses the DB2 Text Extender Browser to present the information
found in the sample table. The complete code of sample1.c is included in A.3,
“Text Extender Example (sample1.c)” on page 148.

Chapter 6. Database Extenders 139



� �
...

/* Call DesGetSearchResultTable �1�
*------------------------------*/
DESrc = DesGetSearchResultTable

( hdbc, pTableName, TableNameLength, pColumnName,
ColumnNameLength, srchArg, ArgumentLength,
pResultTableName, ResultNameLength, pSchemaName,
SchemaNameLength, SearchOption, BrowseOption,
&BrowseInfo, &ErrorMessage);

/* Use the Return Code Messaging �2�
*-------------------------------*/
...

if (BrowseOption == DES_NO_BROWSE) { �3�
DESrc = terminateDB ( henv, hdbc );
if (WARNrc != RC_SUCCESS)

return (WARNrc);
return(DESrc);

}

/* Start a browse session �4�
/*-----------------------*/

DESrc = DesStartBrowseSession ( BrowseInfo, (char *) pUserId, DES_NTS,
(char *) pPassword, DES_NTS,
&BrowseSession, &ErrorMessage);

if (DESrc != RC_SUCCESS) {
printf ( ″Error message: %s\n″ ,  ErrorMessage);
DesFreeBrowseInfo (BrowseInfo );
return(DESrc);

}

/* Browse a document �5�
/*------------------*/

DESrc = DesBrowseDocument( BrowseSession, (SQLCHAR *) pHandle,
HandleLength, &WindowHandle, &ErrorMessage);

if (DESrc != RC_SUCCESS) {
printf ( ″Error message: %s\n″ ,  ErrorMessage);
if (RC_SUCCESS != (rc = DesEndBrowseSession (BrowseSession)))

printf (″ DesEndBrowseSession returned %d\n″ , rc);
DesFreeBrowseInfo (BrowseInfo );
return(DESrc);

}

/* End the browse session �6�
/*-----------------------*/

DESrc = DesEndBrowseSession (BrowseSession);
if (DESrc != RC_SUCCESS) {

DesFreeBrowseInfo (BrowseInfo );
return(DESrc);

}
DESrc = DesFreeBrowseInfo (BrowseInfo );
if (DESrc != RC_SUCCESS) {

return(DESrc);
}

if (WARNrc != RC_SUCCESS)
return (WARNrc);
return(DESrc);

}
...� �

Figure 81. Using the DB2 Text Extender Browser: sample1.c

140 DB2 Programming Interfaces 



�1� First step is calling the DesGetSearchResultTable() function to establish the
connection and getting the pointer to the browse information.

�2� You can process the return code as shown in the example in Figure 80 on
page 139.

�3� Ends the connection if the DES_NO_BROWSE option is chosen. At this point,
the result table has been updated with the result of the search.

�4� Start the browse session by calling the DesStartBrowseSession() function.
The first parameter, BrowseInfo, is taken from the DesGetSearchResultTable()
pointer. If the browser is not responding, an error handling routine frees the
browse session (refer to 6.7.4, “Checking the Browser” on page 138 for possible
causes for why the browser may not be responding).

�5� The DB2 Text Extender Browser uses the information of the browse session
started to browse the selected document.

�6� Ends the browse session and frees the resources allocated for this particular
session.

Figure 82 is the interface to input parameters to the browse application, and the
result is presented by the DB2 Text Extender Browser in a window like that
shown in Figure 83 on page 142.

� �
Enter the database name
celdial

Enter the user ID
db2

Enter the password
db2

Enter the table name
SAMPLE

Enter the handle column name
COMMENTHANDLE

Enter the result table name
RESULT

Enter the schema name of the result table
DB2

Enter the search option
DES_RANKANDMATCH

Enter the browse option
DES_BROWSE

Enter the search argument
″compress″

� �
Figure 82. User Interface to Input Parameters Running sample1.c

Chapter 6. Database Extenders 141



Figure 83. Browsing a Document Using the DB2 Text Extender Browser

To check the information stored in the result table, you can perform the
following SELECT from the CLP:

SELECT * FROM db2.result 

The result should be similar to the output shown in Figure 84.

� �
TEXTHANDLE RANK MATCHES
------------------------------------- ----------------------- -----------
x′4131000173F712E2CFA10000020 . . . +1.90977560414150E-001 2
x′4131000173F712E2DBB . . . . . . . +2.10666504772403E-001 2

2 record(s) selected.� �
Figure 84. Search Result Stored in the Result Table

142 DB2 Programming Interfaces 



Appendix A. Sample Applications

This appendix contains a complete listing of the sample applications used within
this book.

A.1 CLI Example (listcol.c)
/*********************************************************************
**
** Source File Name = listcol.c
**
**********************************************************************/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include ″sqlcli.h″
#include ″sqlcli1.h″

#define MAX_UID_LENGTH 15
#define MAX_PWD_LENGTH 15

/*******************************************************************
** main
*******************************************************************/
int
main( int argc, char * argv[] )
{

SQLCHAR dbname[SQL_MAX_DSN_LENGTH + 1];
SQLCHAR uid[MAX_UID_LENGTH + 1];
SQLCHAR pwd[MAX_PWD_LENGTH + 1];

SQLHENV henv;
SQLHDBC hdbc;
SQLHSTMT hstmt;
SQLRETURN rc;

struct { SQLINTEGER ind;
SQLCHAR s[129];

} table_schem, table_name, column_name, type_name;

SQLINTEGER length_ind;
SQLINTEGER length;

SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];
SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];
SQLINTEGER sqlcode;
SQLSMALLINT elength;

SQLAllocEnv(&henv);

printf(″Enter Database Name : ″ ) ;
gets((char *) dbname);
printf(″Enter User Name : ″ ) ;
gets((char *) uid);
printf(″Enter Password for %s : ″ ,  uid);
gets((char *) pwd);

  Copyright IBM Corp. 1996 143



SQLAllocConnect(henv, &hdbc);

rc = SQLConnect(hdbc, dbname, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

if (rc != SQL_SUCCESS) {
printf(″---ERROR while connecting to database : %s ---\n″ ,  dbname)
while (SQLError(henv, hdbc, hstmt, sqlstate, &sqlcode, buffer,

SQL_MAX_MESSAGE_LENGTH + 1, &elength) == SQL_SUCCESS) {
printf(″ SQLSTATE: %s\n″ ,  sqlstate);
printf(″Native Error Code: %ld\n″ ,  sqlcode);
printf(″%s \n″ ,  buffer);

};
return (SQL_ERROR);

} else {
printf(″\n--- Connected to database : %s ---\n\n″ ,  dbname);

};

SQLAllocStmt(hdbc, &hstmt);

printf(″Enter Table Schema Name Search Pattern (in uppercase) :\n″ ) ;
gets((char *)table_schem.s);
printf(″Enter Table Name Search Pattern (in uppercase) :\n″ ) ;
gets((char *)table_name.s);

SQLColumns(hstmt, NULL, 0, table_schem.s, SQL_NTS,
table_name.s, SQL_NTS, (SQLCHAR *)″%″, SQL_NTS);

SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) table_schem.s, 129,
&table_schem.ind);

SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) table_name.s, 129,
&table_name.ind);

SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) column_name.s, 129,
&column_name.ind);

SQLBindCol(hstmt, 6, SQL_C_CHAR, (SQLPOINTER) type_name.s, 129,
&type_name.ind);

SQLBindCol(hstmt, 7, SQL_C_LONG, (SQLPOINTER) & length,
sizeof(length), &length_ind);

/* Fetch each row, and display */

printf(″ \n″ ) ;
printf(″ \n″ ) ;
printf(″TABLE SCHEMA COLUMN TYPE

LENGTH\n″ ) ;
printf(″-------------- -------- ----------------- ------------------

------\n″ ) ;

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {
printf(″%-14.14s %-8.8s %-17.17s %-18.18s %-6.6ld\n″ ,
table_name.s, table_schem.s, column_name.s, type_name.s, length);

} /* endwhile */

SQLFreeStmt(hstmt, SQL_DROP);

144 DB2 Programming Interfaces 



SQLTransact(henv, hdbc, SQL_COMMIT);

printf(″Disconnecting .....\n″ ) ;
SQLDisconnect(hdbc);

SQLFreeConnect(hdbc);

SQLFreeEnv(henv);

return (SQL_SUCCESS);
 } /* end main */

A.2 CLI LOB Example (lookres.c)
/*********************************************************************
**
 ** Source File Name = lookres.c %I%
 **
 **********************************************************************/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include ″sqlcli.h″
#include ″sqlcli1.h″
#include ″samputil.h″

#define MAX_STMT_LEN 255
#define ROWSET_SIZE 10

SQLCHAR server[SQL_MAX_DSN_LENGTH + 1];
SQLCHAR uid[MAX_UID_LENGTH + 1];
SQLCHAR pwd[MAX_PWD_LENGTH + 1];

/*******************************************************************
** main
*******************************************************************/
int
main( int argc, char * argv[] ) {

SQLHENV henv;
SQLHDBC hdbc;

 SQLHSTMT hstmt, lhstmt;
 SQLRETURN rc;
 SQLCHAR stmt1[] =

″SELECT employee.empno, firstnme || lastname as name ″
″FROM employee, emp_resume ″
″WHERE employee.empno = emp_resume.empno ″

″AND resume_format = ′ ascii′ ″ ;
SQLCHAR stmt2[] =

″SELECT resume FROM emp_resume ″
″WHERE empno = ? AND resume_format = ′ ascii′ ″ ;

SQLCHAR stmt3[] = ″FREE LOCATOR ?″ ;
struct {

SQLINTEGER ind;
SQLCHAR s[30];

} Name;
struct {

SQLINTEGER ind;

Appendix A. Sample Applications 145



SQLCHAR s[7];
} Empno;

SQLINTEGER ClobLoc1;
SQLINTEGER pcbValue;
SQLINTEGER SLength;
SQLUINTEGER Pos1;
SQLINTEGER OutLength, Ind;
SQLCHAR * buffer;

INIT_UID_PWD;

rc = SQLAllocEnv(&henv);
if (rc != SQL_SUCCESS)

return (terminate(henv, rc));
rc = DBconnect(henv, &hdbc);
if (rc != SQL_SUCCESS)

return (terminate(henv, rc));

rc = SQLAllocStmt(hdbc, &hstmt);
CHECK_DBC(hdbc, rc);

rc = SQLExecDirect(hstmt, stmt1, SQL_NTS);
CHECK_STMT(hstmt, rc);

rc = SQLBindCol(hstmt, 1,SQL_C_CHAR, Empno.s, 7,&Empno.ind);
CHECK_STMT(hstmt, rc);
rc = SQLBindCol(hstmt, 2,SQL_C_CHAR, Name.s, 30,&Name.ind);
CHECK_STMT(hstmt, rc);

printf(″\nEmpno Name \n″ ) ;
printf(″------- ---------------------\n″ ) ;
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf(″%-6s %-30s \n″ ,  Empno.s, Name.s);
}
if (rc != SQL_NO_DATA_FOUND)

check_error(henv, hdbc, hstmt, rc, __LINE__, __FILE__);

rc = SQLFreeStmt(hstmt, SQL_CLOSE); CHECK_STMT(hstmt, rc);
rc = SQLFreeStmt(hstmt, SQL_UNBIND); CHECK_STMT(hstmt, rc);
rc = SQLFreeStmt(hstmt, SQL_RESET_PARAMS); CHECK_STMT(hstmt, rc);

rc = SQLSetParam(hstmt, 1, SQL_C_CHAR, SQL_CHAR, 7,
0, Empno.s, &Empno.ind);

CHECK_STMT(hstmt, rc);

printf(″\n>Enter an employee number:\n″ ) ;
gets((char *)Empno.s);

rc = SQLExecDirect(hstmt, stmt2, SQL_NTS);
CHECK_STMT(hstmt, rc);

rc = SQLBindCol(hstmt, 1, SQL_C_CLOB_LOCATOR, &ClobLoc1, 0,
&pcbValue);

CHECK_STMT(hstmt, rc);

rc = SQLFetch(hstmt);
CHECK_STMT(hstmt, rc);

rc = SQLAllocStmt(hdbc, &lhstmt);

146 DB2 Programming Interfaces 



CHECK_DBC(hdbc, rc);

rc = SQLGetLength(lhstmt, SQL_C_CLOB_LOCATOR, ClobLoc1,
&SLength, &Ind);

CHECK_STMT(lhstmt, rc);

rc = SQLGetPosition(lhstmt, SQL_C_CLOB_LOCATOR, ClobLoc1, 0,
(SQLCHAR *)″Interests″, 9, 1, &Pos1, &Ind);

CHECK_STMT(lhstmt, rc);

rc = SQLFreeStmt(lhstmt, SQL_CLOSE); CHECK_STMT(lhstmt, rc);

buffer = (SQLCHAR *)malloc(SLength - Pos1 + 1);

rc = SQLGetSubString(lhstmt, SQL_C_CLOB_LOCATOR, ClobLoc1, Pos1,
SLength - Pos1, SQL_C_CHAR, buffer, SLength - Pos1 +1,
&OutLength, &Ind);

CHECK_STMT(lhstmt, rc);

printf(″\nEmployee #: %s\n %s\n″ ,  Empno.s, buffer);

rc = SQLFreeStmt(hstmt, SQL_UNBIND); CHECK_STMT(hstmt, rc);
rc = SQLFreeStmt(hstmt, SQL_RESET_PARAMS); CHECK_STMT(hstmt, rc);
rc = SQLFreeStmt(hstmt, SQL_CLOSE); CHECK_STMT(hstmt, rc);

rc = SQLSetParam(hstmt, 1, SQL_C_CLOB_LOCATOR,
SQL_CLOB_LOCATOR, 0, 0, &ClobLoc1, NULL);

CHECK_STMT(hstmt, rc);

rc = SQLExecDirect(hstmt, stmt3, SQL_NTS);
CHECK_STMT(hstmt, rc);

rc = SQLFreeStmt(hstmt, SQL_DROP); CHECK_STMT(hstmt, rc);
rc = SQLFreeStmt(lhstmt, SQL_DROP); CHECK_STMT(lhstmt, rc);

rc = SQLTransact(henv, hdbc, SQL_COMMIT);
CHECK_DBC(hdbc, rc);

printf(″>Disconnecting .....\n″ ) ;
rc = SQLDisconnect(hdbc);
CHECK_DBC(hdbc, rc);

rc = SQLFreeConnect(hdbc);
CHECK_DBC(hdbc, rc);

rc = SQLFreeEnv(henv);
if (rc != SQL_SUCCESS)

return (terminate(henv, rc));

return (SQL_SUCCESS);
}

Appendix A. Sample Applications 147



A.3 Text Extender Example (sample1.c)
/**********************************************************************
**
** Source File Name = sample1.c %I%
**
***********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <des_ext.h>

int get_text_handle ( SQLHENV henv,
SQLHDBC hdbc,
char* pHandle,
DESSMALLINT* pHandleLength,
char * pSchemaName,
DESSMALLINT SchemaNameLength,
char * pResultTableName,
DESSMALLINT ResultNameLength,
DESSEARCHOPTION SearchOption);

int initialize ( SQLHENV *henv,
SQLHDBC *hdbc,
SQLCHAR *pdbName,
SQLCHAR *pUserId,
SQLCHAR *pPassword);

void getInputData ( char *pTableName,
DESSMALLINT *pTableNameLength,
char *pColumnName,
DESSMALLINT *pColumnNameLength,
char *srchArg,
DESSMALLINT *pArgumentLength,
char *pResultTableName,
DESSMALLINT *pResultNameLength,
char *pSchemaName,
DESSMALLINT *pSchemaNameLength,
DESSEARCHOPTION *pSearchOption,
DESBROWSEOPTION *pBrowseOption);

void printSqlErrMsg ( SQLHENV henv,
SQLHDBC hdbc,
SQLHSTMT hstmt);

int terminateDB ( SQLHENV henv,
SQLHDBC hdbc );

int
main (int args, char *argv[])
 {

/*------------------------------------------------------------------------*/
/* Declarations */
/*------------------------------------------------------------------------*/
DESRETURN DESrc = RC_SUCCESS;
SQLRETURN SQLrc = RC_SUCCESS;
SQLRETURN WARNrc = RC_SUCCESS;

148 DB2 Programming Interfaces 



SQLRETURN rc = RC_SUCCESS;

SQLHENV henv = SQL_NULL_HENV;
SQLHDBC hdbc = SQL_NULL_HDBC;

SQLCHAR dbName [18+1];
SQLCHAR pUserId [ 8+1];
SQLCHAR pPassword [18+1];

DESMESSAGE ErrorMessage;

char pTableName[18+1];
DESSMALLINT TableNameLength = DES_NTS;
char pColumnName[18 +1];
DESSMALLINT ColumnNameLength = DES_NTS;
char srchArg [1000];
DESSMALLINT ArgumentLength = DES_NTS;
char pResultTableName[18+1];
DESSMALLINT ResultNameLength;
char pSchemaName [8 +1];
DESSMALLINT SchemaNameLength;
DESSEARCHOPTION SearchOption;
DESBROWSEOPTION BrowseOption;

 DESBROWSEINFO BrowseInfo ;
 DESBROWSESESSION BrowseSession;
 char pHandle[256];
 DESSMALLINT HandleLength ;

 DESWINDOWHANDLE WindowHandle;

 /*------------------------------------------------------------------------*/
/* Program logic */
/*------------------------------------------------------------------------*/

/*------------------------------------------------------------------------*/
/* Get input data for connection to the database */
/*------------------------------------------------------------------------*/
printf(″\nEnter the database name \n″ ) ;
scanf(″%s″ ,dbName);

printf(″\nEnter the user ID \n″ ) ;
scanf(″%s″ ,  pUserId);

printf(″\nEnter the password\n″ ) ;
scanf(″%s″ ,  pPassword);

/*------------------------------------------------------------------------*/
/* Initialize the database */
/*------------------------------------------------------------------------*/
DESrc = initialize ( &henv, &hdbc, dbName, pUserId, pPassword);

if (DESrc != RC_SUCCESS) {
printf(″ initialize ..... %d \n″ ,  SQLrc );
return (DESrc);

}

/*------------------------------------------------------------------------*/
/* Get input for DesGetSearchResultTable */

Appendix A. Sample Applications 149



/*------------------------------------------------------------------------*/
getInputData ( pTableName, &TableNameLength,

pColumnName, &ColumnNameLength,
srchArg, &ArgumentLength,
pResultTableName, &ResultNameLength,
pSchemaName, &SchemaNameLength,
&SearchOption, &BrowseOption);

/*------------------------------------------------------------------------*/
/* Call DesGetSearchResultTable */
/*------------------------------------------------------------------------*/
DESrc = DesGetSearchResultTable

( hdbc, /* in CLI connection handle */
pTableName, /* in name of target table */
TableNameLength, /* in length of table name */
pColumnName, /* in name of target column */
ColumnNameLength, /* in length of column name */
srchArg, /* in search argument */
ArgumentLength, /* in search argument length */
pResultTableName, /* in name of result table */
ResultNameLength, /* in length of result table */
pSchemaName, /* in schema */
SchemaNameLength, /* in schema length */
SearchOption, /* in search option */
BrowseOption, /* in browse option */
&BrowseInfo, /* out browsing information */
&ErrorMessage);

switch (DESrc) {
case RC_SUCCESS:

break;
case RC_SE_DICTIONARY_NOT_FOUND:

WARNrc = RC_SE_DICTIONARY_NOT_FOUND;
break;

case RC_SE_STOPWORD_IGNORED:
WARNrc = RC_SE_STOPWORD_IGNORED;
break;

case RC_SE_CONFLICT_WITH_INDEX_TYPE:
WARNrc = RC_SE_CONFLICT_WITH_INDEX_TYPE;
break;

case RC_SE_NO_DATA:
terminateDB ( henv, hdbc );
return(DESrc);

default: /* an error occurred */
printf ( ″Error message: %s\n″ ,  ErrorMessage);
terminateDB ( henv, hdbc );
return(DESrc);

}

if (BrowseOption == DES_NO_BROWSE) {
DESrc = terminateDB ( henv, hdbc );
if (WARNrc != RC_SUCCESS)

return (WARNrc);
return(DESrc);

}

/*------------------------------------------------------------------------*/
/* Get a handle from the result table */
/* If the search option is DES_RANK, get the one with the highest rank */

150 DB2 Programming Interfaces 



/*------------------------------------------------------------------------*/
DESrc = get_text_handle ( henv, hdbc,

pHandle, &HandleLength,
pSchemaName, SchemaNameLength,
pResultTableName, ResultNameLength,SearchOption);

if (DESrc != RC_SUCCESS) {
printf ( ″\nget_text_handle: DESrc = %d\n″ ,DESrc);
terminateDB ( henv, hdbc );
return(DESrc);

}

DESrc = terminateDB (henv, hdbc);

/*------------------------------------------------------------------------*/
/* Start a browse session */
/*------------------------------------------------------------------------*/
DESrc = DesStartBrowseSession ( BrowseInfo,

(char *) pUserId, DES_NTS,
(char *) pPassword, DES_NTS,
&BrowseSession,
&ErrorMessage);

if (DESrc != RC_SUCCESS) {
printf ( ″Error message: %s\n″ ,  ErrorMessage);
DesFreeBrowseInfo (BrowseInfo );
return(DESrc);

}

/*------------------------------------------------------------------------*/
/* Browse a document */
/*------------------------------------------------------------------------*/
DESrc = DesBrowseDocument( BrowseSession,

(SQLCHAR *) pHandle,
HandleLength,
&WindowHandle,
&ErrorMessage);

if (DESrc != RC_SUCCESS) {
printf ( ″Error message: %s\n″ ,  ErrorMessage);
if (RC_SUCCESS != (rc = DesEndBrowseSession (BrowseSession)))

printf (″ DesEndBrowseSession returned %d\n″ ,rc);
DesFreeBrowseInfo (BrowseInfo );
return(DESrc);

}

/*------------------------------------------------------------------------*/
/* End the browse session */
/*------------------------------------------------------------------------*/
DESrc = DesEndBrowseSession (BrowseSession);

if (DESrc != RC_SUCCESS) {
DesFreeBrowseInfo (BrowseInfo );
return(DESrc);

}

DESrc = DesFreeBrowseInfo (BrowseInfo );
if (DESrc != RC_SUCCESS) {

return(DESrc);

Appendix A. Sample Applications 151



}

if (WARNrc != RC_SUCCESS)
return (WARNrc);

return(DESrc);
 }

/*=============================================================================
 * Get the text handle having highest rank or highest match
 * (if applicable) from the previous text search
 *============================================================================*/
int get_text_handle ( SQLHENV henv,

SQLHDBC hdbc,
char* pHandle,
DESSMALLINT* pHandleLength,
char * pSchemaName,
DESSMALLINT SchemaNameLength,
char * pTableName,
DESSMALLINT TableNameLength,
DESSEARCHOPTION SearchOption)

 {

SQLRETURN SQLrc = RC_SUCCESS;
SQLHSTMT hstmt;
SQLINTEGER docHdlLenTemp;
SQLINTEGER lengthIn;
SQLINTEGER lengthOut;
unsigned short rank;
unsigned long matchinfo;

char t [ 18 +1];
char s [ 8 +1];

char SqlStmtMsk[] =″SELECT texthandle from \″%s\″ .\″%s\″ ″;
char SqlStmtMskMI[]=″SELECT texthandle,″

″ rank from \″%s\″ .\″%s\″ order by 2″ ;

char SqlStmt [sizeof(SqlStmtMskMI)+8+18 +1];

/*------------------------------------------------------------------------*/
/* Build the SQl statement */
/*------------------------------------------------------------------------*/
if (SchemaNameLength == DES_NTS)

strcpy (s ,pSchemaName );
else {

memset (s, ′ \0′ ,  8 +1);
memcpy (s ,pSchemaName ,SchemaNameLength );

}

if (TableNameLength == DES_NTS)
strcpy (t ,pTableName );

else {
memset (t, ′ \0′, 18 +1);
memcpy (t ,pTableName ,TableNameLength );

}

if ( SearchOption == DES_TEXTHANDLEONLY || SearchOption == DES_MATCH )

152 DB2 Programming Interfaces 



sprintf ( (char *) SqlStmt, (char *)SqlStmtMsk ,s,t);
else

sprintf ( (char *) SqlStmt, (char *)SqlStmtMskMI ,s,t);

/*------------------------------------------------------------------------*/
/* Alloc the statement and execute it */
/*------------------------------------------------------------------------*/
SQLrc = SQLAllocStmt (hdbc, &hstmt) ;
if (SQLrc != RC_SUCCESS) {

printSqlErrMsg (henv, hdbc, SQL_NULL_HSTMT);
return(SQLrc);

}

SQLrc = SQLExecDirect (hstmt, (SQLCHAR *) SqlStmt, SQL_NTS);
if (SQLrc != RC_SUCCESS) {

printSqlErrMsg (henv, hdbc, hstmt);
SQLFreeStmt(hstmt,SQL_DROP);
return(SQLrc);

}

/*------------------------------------------------------------------------*/
/* Bind the column */
/*------------------------------------------------------------------------*/
SQLrc = SQLBindCol (hstmt, 1, SQL_C_BINARY,

(SQLPOINTER)pHandle,
DES_MAX_TEXT_HANDLE_LENGTH+1,
&docHdlLenTemp);

if (SQLrc != RC_SUCCESS) {
printSqlErrMsg (henv, hdbc, hstmt);
SQLFreeStmt(hstmt,SQL_DROP);
return(SQLrc);

}

if ( SearchOption == DES_RANK || SearchOption == DES_RANKANDMATCH) {
lengthIn = sizeof (double);
SQLrc = SQLBindCol (hstmt, 2, SQL_C_DOUBLE, &rank,

lengthIn, &lengthOut);
if (SQLrc != RC_SUCCESS) {

printSqlErrMsg (henv, hdbc, hstmt);
SQLFreeStmt(hstmt,SQL_DROP);
return(SQLrc);

}
}

SQLrc = SQLFetch (hstmt);
if (SQLrc != RC_SUCCESS ) {
if ( SQLrc != SQL_NO_DATA_FOUND)
printSqlErrMsg (henv, hdbc, hstmt);

SQLFreeStmt(hstmt,SQL_DROP);
return(SQLrc);
}

SQLrc = SQLFreeStmt(hstmt,SQL_DROP);
if (SQLrc != RC_SUCCESS) {

printSqlErrMsg (henv, hdbc, hstmt);
return(SQLrc);

}

Appendix A. Sample Applications 153



*pHandleLength = docHdlLenTemp;
return (RC_SUCCESS);

 }

/*=============================================================================
 * Terminate the database
 *============================================================================*/
int terminateDB ( SQLHENV henv,

SQLHDBC hdbc)
{

SQLRETURN SQLrc = SQL_SUCCESS;

/*------------------------------------------------------------------------*/
/* free all of DB */
/*------------------------------------------------------------------------*/
if (SQL_SUCCESS != (SQLrc = SQLDisconnect ( hdbc)))

printSqlErrMsg (henv, hdbc, SQL_NULL_HSTMT);

if (SQL_SUCCESS != (SQLrc = SQLFreeConnect(hdbc)))
printSqlErrMsg (henv, hdbc, SQL_NULL_HSTMT);

if (SQL_SUCCESS != (SQLrc = SQLFreeEnv(henv)))
printSqlErrMsg (henv, SQL_NULL_HDBC, SQL_NULL_HSTMT);

return (SQLrc);
}

/*=============================================================================
 * Initialize
 *============================================================================*/
int initialize ( SQLHENV *henv,

SQLHDBC *hdbc,
SQLCHAR *dbName,
SQLCHAR *pUserId,
SQLCHAR *pPassword )

 {
SQLRETURN SQLrc = RC_SUCCESS;

SQLrc = SQLAllocEnv (henv);
if (SQLrc != SQL_SUCCESS) {

printf(″ SQLAllocEnv ..... %d \n″ ,  SQLrc );
return (SQLrc);

}

SQLrc = SQLAllocConnect (*henv, hdbc);
if (SQLrc == SQL_ERROR) {

printSqlErrMsg (*henv, SQL_NULL_HDBC, SQL_NULL_HSTMT);
terminateDB ( *henv, SQL_NULL_HDBC );
return (SQLrc);

}

SQLrc = SQLConnect ( *hdbc, dbName, SQL_NTS, pUserId, SQL_NTS,
pPassword, SQL_NTS );

if (SQLrc != SQL_SUCCESS) {
printSqlErrMsg (*henv, *hdbc, SQL_NULL_HSTMT);
terminateDB ( *henv, *hdbc );

154 DB2 Programming Interfaces 



return (SQLrc);
}

return (SQLrc);
}

/*=============================================================================
 * Get input data
 *============================================================================*/
void getInputData ( char *pTableName,

DESSMALLINT *pTableNameLength,
char *pColumnName,
DESSMALLINT *pColumnNameLength,
char *srchArg,
DESSMALLINT *pArgumentLength,
char *pResultTableName,
DESSMALLINT *pResultNameLength,
char *pSchemaName,
DESSMALLINT *pSchemaNameLength,
DESSEARCHOPTION *pSearchOption,
DESBROWSEOPTION *pBrowseOption)

{

char option[30];
int j;

printf(″\nEnter the table name \n″ ) ;
scanf( ″%s″ ,  pTableName);
*pTableNameLength = DES_NTS;

printf(″\nEnter the handle column name \n″ ) ;
scanf( ″%s″ ,  pColumnName);
*pColumnNameLength = DES_NTS;

printf(″\nEnter the result table name \n″ ) ;
scanf( ″%s″ ,  pResultTableName);
*pResultNameLength = SQL_NTS;

printf(″\nEnter the schema name of the result table\n″ ) ;
scanf( ″%s″ ,  pSchemaName);
*pSchemaNameLength = SQL_NTS;

printf(″\nEnter the search option \n″ ) ;
scanf( ″%s″ ,  option);
for (j = 0 ; j < strlen(option) ; j++)

option[j] = (char) toupper((int) option[j]);

if (strcmp(option,″DES_TEXTHANDLEONLY″)== 0)
*pSearchOption = DES_TEXTHANDLEONLY;

if (strcmp(option,″DES_RANK″)== 0)
*pSearchOption = DES_RANK;

if (strcmp(option,″DES_MATCH″)== 0)
*pSearchOption = DES_MATCH;

if (strcmp(option,″DES_RANKANDMATCH″)== 0)
*pSearchOption = DES_RANKANDMATCH;

printf(″\nEnter the browse option \n″ ) ;
scanf( ″%s″ ,  option);
for (j = 0 ; j < strlen(option) ; j++)

Appendix A. Sample Applications 155



option[j] = (char) toupper((int) option[j]);

if ( strcmp(option, ″DES_NO_BROWSE″) == 0)
*pBrowseOption = DES_NO_BROWSE;

if ( strcmp(option, ″DES_BROWSE″) == 0)
*pBrowseOption = DES_BROWSE;

printf(″\nEnter the search argument \n″ ) ;
scanf( ″%s″ ,  srchArg);
*pArgumentLength = DES_NTS;

 }

/*=============================================================================
 * Print an SQL error message
 *============================================================================*/
void printSqlErrMsg ( SQLHENV henv,

SQLHDBC hdbc,
SQLHSTMT hstmt)

{
SQLCHAR SqlState [6];
SQLINTEGER NativeError;
SQLCHAR ErrorMsg [SQL_MAX_MESSAGE_LENGTH+1];
SQLSMALLINT ErrorMsgLen;

SQLError ( henv, hdbc,hstmt,SqlState,
&NativeError , ErrorMsg , SQL_MAX_MESSAGE_LENGTH,
&ErrorMsgLen );

printf(″\nAn SQL error occurred\n″ ) ;
printf(″SQL state : %s \n″ ,  SqlState);
printf(″Native error : %d \n″ ,NativeError);
printf(″Error message: %s \n″ ,ErrorMsg);

return;
}

156 DB2 Programming Interfaces 



List of Abbreviations

APA all points addressable

API Application Programming
Interface

BLOB Binary Large Object

CAE Client Application Enabler

CCSID Coded Character Set
Identif ier

CGI Common Gateway Interface

CLI Command Line Interface

CLOB Character Large Object

CLP Command Line Processor

DARI Database Application Remote
Interface

DBMS Database Management
Service

DBCLOB Double-Byte Character Large
Obejct

DDCS Distributed Database
Connection Services

DRDA Distributed Relational
Database Architecture

DUOW Distributed Unit of Work

GUI Graphical User Interface

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

LOB Large Object

OBDC Outboard Device Controller

ODBC Open Database Connectivity

PROFS Professional Office System

SMIT System Management
Interface Tool

SQL Structured Query Language

SQLCA Structured Query Language
Communications Area

SQLDA Structured Query Language
Data Area

SSL Secured Sockets Layer

UDF User-Defined Function

UDT User-Defined Type

  Copyright IBM Corp. 1996 157



158 DB2 Programming Interfaces 



Index

A
abbreviations 157
access plans 3
acronyms 157
ACTION 35
ALTER 46
anchor reference 24
API 112
array input 72
arrays 72
atomic 78
audio 109
Authentication 25, 26
authorization 3, 40
auto-commit 8
autocommit 78
avail-tasks 117

B
batch mode 6, 11
batch mode, CLP 5
begin compound 78
bind 39, 53
binding 3
BLOB 25, 81, 109
Bourne 1, 5

C
C 2
C locator type 82
CAE 15
Call Level Interface 1, 3
Call Level Interface (CLI)

Advanced Features 63
Arrays 72
Catalog Tables 69, 86
CLOB Locator 88
Compilation 59
Compound SQL 78
Configuration 52
Configuring db2cli.ini 53
Data Conversion 49
Data Types 49
Development Environment 58
Diagnostics 47
Distributed Unit of Work 65
Embedded SQL and CLI 39
Error Handling 47
Examples 86
Execution 52
File Input/Output 82
Function 60

Call Level Interface (CLI) (continued)
Init ialization 42
Input Parameters 72
Large Objects 81
Linking 59
LOB Locators 81
Overview 39
Retrieving a Result Set 74
Runtime Environment 52
Stored Procedures 84
Supported Environments 40
Termination 42
Transaction Processing 43
User-Defined Types (UDTs) 83
Writing 41

callable SQL 39
cast 84
casting 84
catalog 96, 97

database 97
node 96

catalog view 120
catalogs 69
CCSID 125, 129
CGI 13, 23, 28
change index setting 120, 126
CLI 39
Client Setup 95
Client/Server Environment 14
CLOB 25, 81, 109
CLOB locator 88
CLP options 7
COBOL 2
codepages 118
column, handle 120
Command Line Processor 1
Command Line Processor (CLP)

Application 11
Batch Mode 6
Command Mode 6
Interactive Mode 5
Invoking 5
Options 7
Settings 8
Using 10

command mode 6
command mode, CLP 5
Commands

ALTER 46
BEGIN COMPOUND 78
CALL 86
CATALOG DATABASE 52, 102
CATALOG TCPIP NODE 52, 102
change index setting 120, 126

  Copyright IBM Corp. 1996 159



Commands (continued)
commit 46
CONNECT 52
connect to 98, 125
CREATE 46
CREATE DISTINCT TYPE 84
db2 5
db2icrt 101
db2ln 106
db2tx 125
db2txcfg 116, 117
db2txinstance 115
db2txstart 123
db2txstatus 124
db2txstop 124
DELETE 46, 78
diable text table 127
disable database 127
disable text column 126
dmbinstance 115
enable database 125
enable text column 126
enable text table 126
END COMPOUND 78
fetch 11
get database manager configuration 11, 102
get environment 126
get index settings 126
get status 126
get text info 126
GRANT 46
hostname 15
INSERT 46, 78
list command options 9
LIST DATABASE DIRECTORY 52
LIST NODE DIRECTORY 52
recreate index 126
REVOKE 46
rollback 46
select 11, 45
SET CURRENT SQLID 55
smit 15
UPDATE 46, 78
update command options 9
update index 126
VALUES 45
values current function path 128
whoami 15

commit 39, 43, 46, 78
Common Gateway Interface 13
common-index table 121
compound SQL 78
concurrent transactions 66
configuration file, WWW server 20
Configuration/Environment Variables

AUTOCOMMIT 54
BINDFILE 22
BITDATA 55

Configuration/Environment Variables (continued)
CONNECTTYPE 55
CURRENTFUNCTIONPATH 55
CURRENTSQLID 55
CURSORHOLD 55
DB2ESTIMATE 55
DB2EXPLAIN 55
DB2INSTANCE 22
DB2OPTIMIZATION 55
DB2OPTIONS 8, 10
db2profile 30
DBALIAS 56
GRAPHIC 56
LOBMAXCOLUMNSIZE 56
LOGIN 26, 34
LONGDATACOMPAT 56
MACRO PATH 22
MAXCONN 56
MODE 56
MULTICONNECT 57
OPTIMIZEFORNROWS 57
PASSWORD 26, 34
PATCH1 57
PWD 57
ROWSET_SIZE 75
SCHEMALIST 57
SQL_BIND_SIZE 76
SQL_BIND_TYPE 76
SQL_CONCURRENCY 64
SQL_CONCURRENT_TRANS 65
SQL_CONNECTTYPE 63, 65, 68
SQL_COORDINATED_TRANS 65
SQL_CURRENT_SCHEMA 63
SQL_CURSOR_HOLD 64
SQL_CURSOR_TYPE 64
SQL_MAX_LENGTH 64
SQL_MAX_ROWS 64
SQL_MAXCONN 63
SQL_NODESCRIBE 64
SQL_QUERY_TIMEOUT 64
SQL_ROWSET_SIZE 64, 76
SQL_SYNC_POINT 63, 65, 68
SQL_TXN_ISOLATION 64
SYNCPOINT 57
SYSSCHEMA 57
TABLETYPE 57
TNXISOLATION 58
TRANSLATEDLL 57, 58
TRANSLATEOPTION 58
UID 58
UNDERSCORE 58

connect to 125
Connection Handle 42, 63
contains 129, 132
CREATE 46
cross-industry 110
CSet++  fo r  OS/2 59

160 DB2 Programming Interfaces 



cursors 39

D
DARI 85
data conversion 84
data source 103
Data Types 49
Data Types, Symbolic 49
Data-Types

BLOB 50, 51
CHAR 50, 51
CHAR FOR BIT DATA 50
CLOB 50, 51
CLOB LOCATOR 50
DATE 50, 51
DBCLOB 50, 51
DBCLOB LOCATOR 50
DECIMAL 50, 51
DOUBLE 50, 51
FLOAT 50, 51
GRAPHIC 50, 51
INTEGER 50, 51
LOCATOR 50
LONG 50
LONG VARCHAR 51
LONG VARCHAR FOR BIT DATA 50
LONG VARGRAPHIC 51
NUMERIC 50, 51
REAL 50, 51
SMALLINT 50, 51
SQL_BINARY 50, 55
SQL_BLOB 50
SQL_BLOB_LOCATOR 50
SQL_C_BINARY 50, 51
SQL_C_BLOB_LOCATOR 50, 51
SQL_C_CHAR 50, 51
SQL_C_CLOB_LOCATOR 50
SQL_C_DATE 50
SQL_C_DBCHAR 50
SQL_C_DBCLOB_LOCATOR 50
SQL_C_DOUBLE 50
SQL_C_FLOAT 50
SQL_C_LONG 50
SQL_C_SHORT 50
SQL_C_TIME 50
SQL_C_TIMESTAMP 50
SQL_CHAR 50
SQL_CLOB 50
SQL_CLOB_LOCATOR 50
SQL_DATE 50
SQL_DBCLOB 50
SQL_DBCLOB_LOCATOR 50
SQL_DECIMAL 50
SQL_DOUBLE 50
SQL_FLOAT 50
SQL_GRAPHIC 50
SQL_INTEGER 50
SQL_LONGVARBINARY 50, 55

Data-Types (continued)
SQL_LONGVARCHAR 50
SQL_LONGVARGRAPHIC 50
SQL_NUMERIC 50
SQL_REAL 50
SQL_SMALLINT 50
SQL_TIME 50
SQL_TIMESTAMP 50
SQL_VARBINARY 50, 55
SQL_VARCHAR 50
SQL_VARGRAPHIC 50
TIME 50, 51
TIMESTAMP 50, 51
VARCHAR 50, 51
VARCHAR FOR BIT DATA 50
VARGRAPHIC 50, 51

Database Application Remote Interface 85
database director 53
Database Extenders 1

administrat ion 111, 123, 124
Advantages 112
Browse Application 139
browser 136, 137
browsing 135, 136, 138
Client 124
Command Summary 125
Common-Index Tables 121
creating applications 134
DB2 Text Extender 112
Environment Variables 117
Environments 113
Examples 139
Extender Family 110
Index types 122
Indexing 120
installation 114
Multi- index 121
Overview 109
Relationships 111
return codes 139
SAMPLE Table 119
search arguments 132
Server 123
Setup 115
Text Index 120
User Defined Types 128
User-Defined Functions 127, 128
User-Defined Types 127

DataJoiner 15
DB2 CAE 41
DB2 Call Level Interface 39
DB2 Client Application Enabler 41
DB2 for Common Server 1
DB2 SDK 41
DB2 Software Developers Kit 41
DB2 WWW Connection 13
DB2 WWW Connection Program 2

Index 161



db2cli.ini 53, 103
refid-idty.SQL_BLOB 55

db2cli.lst 53
db2clias.bnd 53
db2clics.bnd 53
db2clims.bnd 53
db2clinc.bnd 53
db2clirr.bnd 53
db2clirs.bnd 53
db2cliur.bnd 53
db2cliv1.bnd 53
db2cliv1.lst 53
db2cliv2.bnd 53
db2clivm.bnd 53
db2cliws.bnd 53
db2cshrc 102
db2icrt 101
db2ln 106
DB2OPTIONS 8, 10
db2profile 8, 30, 102
db2sql.bnd 21
DB2TEXTH 128
DB2TEXTHLISTP 128, 130
db2tx 125
DB2TX_CCSID 118
DB2TX_FORMAT 118
DB2TX_INDEXDIR 119
DB2TX_INDEXTYPE 119
DB2TX_INSTOWNER 117, 118, 123
DB2TX_INSTOWNERHOMEDIR 118
DB2TX_LANGUAGE 118
DB2TX_UPDATEFREQ 119, 122
DB2TX_UPDATEINDEX 119, 122
db2txcfg 116, 117
db2txcshrc 117
db2txinstance 115
db2txprofi le 116, 117
db2txstart 123
db2txstatus 124
db2txstop 124
db2win macro 60
db2www 21
db2www.ini 22
DBCLOB 25, 81, 109
DBMS 49
DDCS 15, 41
ddcs400.lst 53
ddcsmvs.lst 53
ddcsvm.lst 53
ddcsvse.lst 53
DELETE 46
des_ext.h 135
DesBrowseDocument() 134, 137
DesCloseDocument() 135, 138
DesEndBrowseSession() 135
DesFreeBrowseInfo() 135, 138
DesGetBrowseInfo() 134, 136

DesGetMatches() 134, 138
DesGetSearchResultTable() 134, 136
DesOpenDocument() 134, 138
DesStartBrowseSession() 134, 138
diagnostic information 1
diagnostics 41, 47, 48

error handling 47
dictionary 114
disable database 127
disable text column 126
disable text table 127
Distributed Database Connection Services 41
dmb 115
dmbcshrc 116
dmbinstance 115
dmbprofi le 116
docroot 37
dr iver 93, 103
driver manager 93
dual index 123
DUOW 55, 65
dynamic execution 3
Dynamic SQL 3, 23, 39, 40

E
Embedded SQL 1, 2, 39, 40, 42, 45
enable database 125
enable text column 126
enable text table 126
encapsulation 85
encryption 26
end compound 78
Environment Handle 42
ESCAPE 58
escape character 11
execute direct 45

F
fetch 11
file signature 25
fingerprint 109
firewall 26
forms, HTML 24
Functions 39

contains 129, 132
db2texthlistp 130
DesBrowseDocument 134, 137
DesCloseDocument 135, 138
DesEndBrowseSession 135
DesFreeBrowseInfo 135, 138
DesGetBrowseInfo 134, 136
DesGetMatches 134, 138
DesGetSearchResultTable 134, 136
DesOpenDocument 134, 138
DesStartBrowseSession 134, 138
init_text_handle 130
language 130, 131

162 DB2 Programming Interfaces 



Functions (continued)
no_of_documents 130, 131
rank 131
refine 132
SQLAllocConnect 43, 60
SQLAllocEnv 42, 60
SQLAllocStmt 44, 46, 61, 80
SQLBindCol 45, 49, 61, 76, 81
SQLBindCol() 45, 46
SQLBindFileToCol 61
SQLBindFileToParam 62, 81, 82
SQLBindParameter 45, 49, 61, 72, 73, 81
SQLCancel 62
SQLColAttributes 45, 61, 84
SQLColumnPrivileges 69
SQLColumns 63, 70, 86
SQLConnect 48, 60, 134
SQLDataSources 62
SQLDescribeCol 61, 84
SQLDisconnect 62
SQLDriverConnect 60, 64
SQLError 47, 48, 61
SQLExecDirect 39, 47, 61, 69, 78, 81, 82
SQLExecute 40, 61
SQLExecute() 81
SQLExtendedFetch 74, 75
SQLExtentFetch 61
SQLFetch 45, 46, 61, 69, 74
SQLForeignKeys 63, 70
SQLFreeConnect 43, 62
SQLFreeEnv 42, 62
SQLFreeStmt 47, 62
SQLGetConnectOption 62, 64
SQLGetCursorName 46, 61
SQLGetData 46, 49, 61, 81, 82
SQLGetEnvAttr 62, 63
SQLGetFunction 62
SQLGetInfo 62
SQLGetLength 62, 81
SQLGetPosition 62, 81
SQLGetSQLCA 48, 61, 81
SQLGetStmtOption 63, 64
SQLGetSubString 62, 82
SQLGetTypeInfo 62
SQLMoreResults 61, 73
SQLNativeSQL 61
SQLNumParams 61
SQLNumResultCols 61
SQLParamData 61, 81
SQLParamOptions 61, 72, 81
SQLPrepare 47, 81
SQLPrepart 61
SQLPrimaryKeys 63, 70
SQLProcedureColumns 63, 70
SQLProcedures 63, 70
SQLPutData 61
SQLRowCount 46, 61, 81
SQLSetColAttributes 61

Functions (continued)
SQLSetConnection 60
SQLSetConnectOption 62, 64, 65
SQLSetCursorName 61
SQLSetEnvAttr 62, 63, 65
SQLSetParam 45, 61, 73, 80
SQLSetStmtOption 62, 64, 75, 76
SQLSpecialColumns 63, 70
SQLStatistics 63, 71
SQLTablePrivileges 63, 71
SQLTables 63, 71
SQLTransact 39, 47, 62, 81

G
get environment 126
get index settings 126
get method 25, 29
get status 126
get text info 126
GRANT 46
GUI 112

H
handle 42, 129
handle column 120
HANDLE_LIST 128, 130
handle, text 120
host variables 11
HTML 2, 13, 23, 24, 28
HTML forms 24
HTML Languages 23
httpd.conf 25
HyperText Markup Language 2, 13

I
IBM Internet Connection Server 20
icons 22
image 109
index, dual 123
index, linguistic 122
index, precise 122
indexing 111, 120
init_text_handle 130
init ial ization 42
INSERT 46
install 95
installp 101
instance 101

group 101
owner 101

instance ID 115
instance name 20
INSTERSOLV 107
integer 49
integrity checking 1

Index 163



Interact ive Mode 11
interactive mode, CLP 5
Internet 2
INTERSOLV 104
isolation level 80

K
Korn 1, 5

L
language 130, 131
Large Objects 25
libodbc.a 105
libodbcinst.a 105
LIBPATH 105, 107
LIKE 58
linguistic index 122
listcol.c 87
LOB Locators 81
log commands 8
log table 120
LOGIN 26, 34
lsdbcols.html 29
lsdbcols.pp 31

M
macro directory 22
macro fi le 25
macro fi les 13, 23

comment section 24
define section 23, 24
docroot 37
example 32
execution 24
file signature 25
HTML 24
HTML input section 23, 24
HTML report section 24
input variables 23
LOB 35
LOGIN 34
method 29
output 35
PASSWORD 34
SQL section 23, 24
SQL_MESSAGE 34
SQL_REPORT 34
Supported Languages 23
template. 24
variables 26, 34

makefi le 106
max-tasks 117
method 25
Microsoft Visual C 59
multi-index table 121

mult imedia 110
mult iple connections 65

N
NetSP 26
NO_OF_DOCUMENTS 130, 131
node 52
normalize 123
not atomic 78

O
ODBC 4
ODBC installer 98
ODBC Level 1 4
ODBC Level 2 4
odbc.ini 103, 104
odbcinst.ini 103, 104
Open Database Connectiviry 4
Open Database Connectivity 1
Open Database Connectivity (ODBC)

AIX Configuration 101
application 93, 94
Call Level Interface 106
compilation 105
Compiling 105, 106
Configuration 94
data source 93, 94, 98, 103
DB2 ODBC Drivers 103
dr iver 93, 94, 98, 103
driver manager 93, 94
environment 105
Example Environment 106
installer 98
instodbc.ini 104
libraries 105
Lining 105
linking 105
ODBC via CLI 103
odbc.ini 103, 104
odbcinst.ini 103
OS/2 Configuration 94
Overview 93
Programming 105
Third-Party Drivers 104
work-around 54

P
parameter marker 45
PASSWORD 26, 34
PATH 106
performance 85
Perl 1, 5
port 116
post method 25, 29
precise index 122

164 DB2 Programming Interfaces 



precompile 39
preparation and execution 43
prepare 44
previous_searches 132
procedure name 85
Programming Interfaces

Call Level Interface 3
Command Line Processor 1
Embedded SQL 2
Open Database Connectivity 4
Overview 1
Summary 4
World Wide Web 2

prototyping SQL 6

Q
qemp.d2w 37
query 45

R
RANK 131
recompile 39
recreate index 126
referential integrity 109
REFINE 132
remote servers 14
result processing 43
result set 74
return code 12
return codes 47
REVOKE 46
rollback 39, 43, 46

S
SAG 93
Sample Applications

CLI Example 143
CLI LOB Example 145
Text Extender Example 148

Searching 112, 116
Boolean 112
linguistic 112
Proximity 112
service 116
Synonym 112
Wildcard 112

Secured Hypertext Transfer Protocol 26
Secured Sockets Layer (SSL) 26
Security 25, 85
select 11
SERVER 52
Server directories 20
Server Parameters 20
ServerRoot 20
service name 101

services 117
SHTTP 26
smit 101
special characters 10
SQL_C_CHAR 49
SQL_C_DEFAULT 49
SQL_DECIMAL 49
SQL_ERROR 48
SQL_INVALID_HANDLE 48
SQL_MESSAGE 34
SQL_NEED_DATA 47
SQL_NO_DATA_FOUND 47
SQL_REPORT 34
SQL_SUCCES_WITH_INFO 47
SQL_SUCCESS 47, 48
SQLAllocConnect() 43
SQLAllocEnv() 42
SQLAllocStmt() 44, 46
SQLBindCol() 45, 46, 49
SQLBindParameter() 45, 49
SQLCA 7, 9, 42
SQLCODE 8
SQLColAttributes() 45
SQLConnect 134
SQLConnect() 48
SQLDA 42
SQLDescribeCol() 45

or 45
SQLError() 47, 48
SQLExecDirect() 39, 47
SQLExecute() 40
SQLFetch() 45, 46
SQLFreeConnect() 43
SQLFreeEnv() 42
SQLFreeStmt() 47
SQLGetCursorName() 46
SQLGetData() 46, 49
SQLGetSQLCA() 48
SQLNumResultCols() 45

 refid-ifuns.SQLNumResultCols 45
SQLPrepare() 47
SQLRowCount() 46
SQLSetParam() 45
SQLSTATE 8, 40, 48
SQLTransact() 39, 47
SSL 26
Statement Handle 42, 43, 64
static 78
Static SQL 3, 40
stop words 120
Stored Procedures 84
sub-statements 78
Symbolic Data Types 49
SYNCPOINT 55

DBNAME 56
synonyms 134

Index 165



T
table, common index 121
table, log 120
table, multi-index 121
TCP/IP protocol 52
termination 42
text handle 120
text index 120
TEXTCOLUMNS 120
three-part naming 71
tmplobs 25
tmplobs directory 22
transaction processing 42, 43
tr iggers 109, 111

U
UDF 109, 111, 128
UDT 83, 109, 111, 128
Universal Resource Locator (see URL) 25
UPDATE 46
update index 126
URL 25
User-Defined Functions 109
User-Defined Types 109

V
values current function path 128
variables 23
video 109
view, catalog 120
VisualAge 4
VisualGen 4

W
wildcard 58
World Wide Web 2
World Wide Web (WWW)

Application Development 23
CGI Scripts 28
Client/Server Environment 14
Common Gateway Interface (CGI) 13
DB2 WWW Connection 13
DB2 WWW Connection Configuration 20
DB2 WWW Macro Example 32
Examples 27
Installation 15
Internet Server Parameters 20
Large Objects (LOBs) 25
LOBs in Macro′s 35
LOGIN Variable 26
Macro Files 24
Overview 13
PASSWORD Variable 26
Security 25
Setup 20

World Wide Web (WWW) (continued)
Three-tier 14
Two-tier 14
World Wide Web 1, 2

WWW 2, 13
WWW Browser 13
WWW Server 25

X
X/Open 93
xlC for AIX 59

166 DB2 Programming Interfaces 



ITSO Redbook Evaluation

International Technical Support Organization
DATABASE 2 for AIX
Programming Interfaces
May 1996

Publication No. SG24-4691-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

____
____
____
____
____

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

____
____
____
____
____

Please answer the following questions:

a) Are you an employee of IBM or its subsidiaries: Yes____ No____

b) Do you work in the USA? Yes____ No____

c) Was this redbook published in time for your needs? Yes____ No____

d) Did this redbook meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this redbook?

What other redbooks would you like to see published?

Comments/Suggestions: ( THANK YOU FOR YOUR FEEDBACK! )

Name Address

Company or Organizat ion

Phone No.



Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Redbook Evaluation
SG24-4691-00 IBML 

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department JN9B, Building 045
Internal Zip 2834
11400 BURNET ROAD
AUSTIN TX
USA 78758-3493

Fold and Tape Please do not staple Fold and Tape

SG24-4691-00





IBML 

Printed in U.S.A.

SG24-4691-00


	DATABASE 2 for AIX Programming Interfaces
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	How This Redbook is Organized
	Related Publications
	International Technical Support Organization Publications
	How Customers Can Get Redbooks and Other ITSO Deliverables
	How IBM Employees Can Get Redbooks and ITSO Deliverables
	Acknowledgments

	Chapter 1. Programming Interfaces
	Overview
	Command Line Processor
	World Wide Web
	Embedded SQL
	Call Level Interface
	Open Database Connectivity
	Summary

	Chapter 2. Command Line Processor
	Invoking CLP
	Interactive Mode
	Command Mode
	Batch Mode
	CLP Options
	CLP Options Settings
	Using the CLP
	Using CLP in an Application

	Chapter 3. World Wide Web
	Overview
	DB2 World Wide Web Connection
	Client/ Server Environment
	DB2 WWW Connection Installation
	Setting Up DB2 WWW Connection
	Internet Server Parameters
	DB2 WWW Connection Configuration
	Application Development
	Macro Files
	Handling Large Objects (LOBs)
	Security
	Macro Files Without LOGIN and PASSWORD Variables
	Macro Files With LOGIN and PASSWORD Variables
	Examples
	CGI Scripts Example
	DB2 WWW Macro Example
	Using LOBs in a Macro File

	Chapter 4. Call Level Interface
	Overview
	Differences between DB2 CLI and Embedded SQL
	Supported Environments
	Writing DB2 CLI Applications
	Initialization and Termination
	Transaction Processing
	Diagnostics and Error Handling
	Data Types and Data Conversion
	CLI Application Configuration and Execution
	Setting the DB2 CLI Runtime Environment
	Application Development Environment Setup
	Compiling and Linking Applications
	DB2 CLI Functions
	Advanced Features
	Distributed Unit of Work
	Querying Catalog Tables
	Using Arrays
	Using Compound SQL
	Large Objects
	User- Defined Types (UDTs)
	Stored Procedures
	Examples
	Querying Catalog Tables
	Using CLOB Locator

	Chapter 5. Open Database Connectivity (ODBC)
	Overview
	Configuring ODBC
	Configuring ODBC on OS/ 2
	Configuring ODBC on AIX
	Programming with ODBC
	Compiling and Linking Applications
	Example ODBC Application Environment
	Compiling an ODBC Application

	Chapter 6. Database Extenders
	Overview
	The DB2 Relational Extenders Family
	The Extender, Database and Application Relationship
	DB2 Text Extender
	Advantages of the DB2 Text Extender
	Supported Environments
	The DB2 Text Extender Installation
	Setting Up the DB2 Text Extender
	Environment Variables
	The SAMPLE Table
	How the DB2 Text Extender Works
	Maintaining the Text Index
	Indexing
	Administration Tasks
	Administration of the DB2 Text Extender Server
	Administration of the DB2 Text Extender Client
	Administration Commands Summary
	UDTs and UDFs
	User Defined Types
	User- Defined Functions
	Search Arguments
	Creating Applications
	Starting the Browse
	Browsing Documents
	Ending the Browse
	Checking the Browser
	Return Codes
	Examples
	Browse Application Using the DB2 Text Extender Browser

	Appendix A. Sample Applications
	A.1 CLI Example (listcol. c)
	A.2 CLI LOB Example (lookres. c)
	A.3 Text Extender Example (sample1. c)

	List of Abbreviations
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	N
	K
	L O
	M
	P
	Q
	R
	S
	T
	X
	U
	V
	W
	ITSO Redbook Evaluation

