
International Technical Support Organization

MQSeries Three Tier
Examples for Windows Clients and AIX Servers

March 1996

SG24-4664-00

International Technical Support Organization

MQSeries Three Tier
Examples for Windows Clients and AIX Servers

March 1996

SG24-4664-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xv.

First Edition (March 1996)

This edition applies to Version 1.0 of IBM MQSeries Three Tier for AIX, part numbers 33H2163 and 33H2168,
program number 5765-321.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This redbook describes how to integrate Windows client workstations into an
MQSeries Three Tier (3T) client/server environment. It contains an introduction
into the 3T product, explains its object-oriented three-tier logic, and provides
step-by-step instructions on how to design, build, and test applications.

3T clients (the first tier) run on Windows or OS/2 systems. 3T servers (the
second tier) run on AIX or OS/2 machines. The third tier can be existing
MQSeries programs running in the host or on any platform supported by
MQSeries.

This document describes how to set up a Windows client and an AIX machine for
the development of a 3T application. The client part of the application is a
graphical user interface written in Visual Basic and developed on a Windows
workstation. The applications in the server are either existing MQSeries
programs or MQSeries Three Tier objects written in C.

This redbook was written for those who quickly want to learn what IBM
MQSeries Three Tier is about and how it works. It will be of help for
programmers who have to develop message queuing applications for Windows
workstations and AIX servers. Data conversion between the two platforms is
discussed, too. Some knowledge of DOS, Windows, and AIX is assumed.

Programmers with no knowledge of MQSeries and Visual Basic may wish to use
this publication as a textbook.

(268 pages)

 Copyright IBM Corp. 1996 iii

iv MQ3T Examples for Windows Clients and AIX Servers

Contents

Abstract . i i i

Special Notices . xv

Preface . xvii
How This Document is Organized . xviii
Related Publications . xviii
International Technical Support Organization Publications xix
How Customers Can Get Redbooks and Other ITSO Deliverables xix
How IBM Employees Can Get Redbooks and ITSO Deliverables xx

Acknowledgments . xxiii

Chapter 1. IBM MQSeries Three Tier Overview 1
1.1 The Three Tiers . 2

1.1.1 Run-Time Components . 3
1.1.2 Messages . 4
1.1.3 Message Flow . 5

1.2 3T Facilities . 6
1.2.1 Class Definition Compiler . 6
1.2.2 Application Program Interface . 7
1.2.3 Application Simulator . 8
1.2.4 Test Harness . 8
1.2.5 Job Viewer . 8
1.2.6 Self-Defining Data Manager . 8
1.2.7 Visual Basic Support . 9

1.3 Application Design . 9
1.3.1 The 3T Application Model . 11
1.3.2 The 3T Application Development Process 12
1.3.3 Structured Application Design . 14

Chapter 2. Installation . 15
2.1 AIX Server . 16

2.1.1 MQSeries Base Product . 16
2.1.2 CSD 14 for MQSeries . 21
2.1.3 Creating MQM Objects . 22
2.1.4 MQSeries Three Tier for AIX . 25

2.2 Windows Client for Development . 28
2.2.1 IBM DOS 7.0 . 28
2.2.2 MS Windows Version 3.1 . 29
2.2.3 TCP/IP . 30
2.2.4 MQSeries Windows Client . 34
2.2.5 3T Windows Client . 39
2.2.6 Visual Basic . 40
2.2.7 Visual Basic Support for Windows Clients 41

2.3 Windows Client for Production . 42

Chapter 3. Using Visual Basic . 43
3.1 Introduction . 43
3.2 The SupportPac . 43
3.3 The Visual Basic / MQ3T Interface . 44

 Copyright IBM Corp. 1996 v

3.4 Parameter Passing . 47
3.5 SupportPac Content . 50

3.5.1 Base Functions . 50
3.5.2 Sample Programs . 51
3.5.3 Sample Read Only Code Fragments . 61
3.5.4 A Template for Your Own Program . 63
3.5.5 Run-Time Utility . 64

3.6 Application Programming Interface Calls 64
3.6.1 Types of API Calls . 65
3.6.2 Notes to API Calls . 66

3.7 Using the Visual Basic 3T Sample Programs 67
3.7.1 Preparations on the AIX Server . 67
3.7.2 Preparations on the Windows Client . 71
3.7.3 Running the HELLO1 Sample . 73

Chapter 4. File Transfer Example . 77
4.1 Application Description . 78
4.2 Set Up and Run the MQI Application . 80

4.2.1 Set Up of the Sender Workstation . 80
4.2.2 Set Up of the Receiver Workstation . 83
4.2.3 Running the File Transfer Example . 84

4.3 Set Up and Run the MQ3T Application . 86
4.3.1 Set Up the Sender Workstation . 86
4.3.2 Set Up the Receiver Workstation . 89
4.3.3 Set Up the Windows Workstation . 89
4.3.4 Running the MQ3T File Transfer Example 90

4.4 Developing the MQ3T Application . 94
4.4.1 Defining Class Source Files . 94
4.4.2 Compiling Class Source Files . 97
4.4.3 Routing Messages . 99
4.4.4 Writing the Business Logic . 100
4.4.5 Writing the Presentation Logic . 104
4.4.6 A Software Distribution Application 107

Chapter 5. The Bacon Lettuce and Tomato Sandwich 111
5.1 Requirements . 112
5.2 Business Analysis . 113

5.2.1 Objects and Their Functions . 114
5.2.2 Message Flow between Objects . 116
5.2.3 GUI Prototypes . 118

5.3 3T Design . 121
5.3.1 3T Classes . 121
5.3.2 Messages . 122
5.3.3 Class Descriptions . 127
5.3.4 Rules and Methods . 128

5.4 Design Crosscheck . 139
5.5 Building the GUIs . 141

5.5.1 Project Konrad . 144
5.5.2 Project Luigi . 151
5.5.3 Project Gremlin . 155
5.5.4 Project Repair List . 159
5.5.5 Project Shopping List . 166

5.6 Building the Business Logic . 173
5.6.1 Creating Skeleton Files . 173
5.6.2 Creating The Business Logic . 179

vi MQ3T Examples for Windows Clients and AIX Servers

5.7 System Test . 198

Chapter 6. Data Conversion . 203
6.1 Creating a Conversion DLL for AIX . 205
6.2 Creating a Conversion DLL for OS/2 . 210

Appendix A. Class Source Files for BLT Example 213
A.1 Messages for The BLT Example . 213
A.2 Class Descriptions for The BLT Example 218
A.3 Class Source File for BASKET . 220
A.4 Class Source File for BREADBOX . 223
A.5 Class Source File for FRIDGE . 226
A.6 Class Source File for GREMLIN . 229
A.7 Class Source File for GROCER . 230
A.8 Class Source File for KAREN . 232
A.9 Class Source File for KONRAD . 236
A.10 Class Source File for LUIGI . 238
A.11 Class Source File for MICRO . 240
A.12 Class Source File for REPAIR . 242
A.13 Class Source File for SHOPPING . 243
A.14 Class Source File for TOASTER . 245
A.15 Definitions for Class Source Files . 247
A.16 Definitions for Visual Basic . 249

Appendix B. Summary of MQ3T APIs . 251

Appendix C. Diskette Contents . 257

List of Abbreviations . 259

Index . 261

Contents vii

viii MQ3T Examples for Windows Clients and AIX Servers

Figures

 1. The Three Tier Run-Time Components . 3
 2. The Three Tiers of 3T . 5
 3. Programmer ′s OS/2 Workstation . 9
 4. Programmer ′s Windows Workstation . 10
 5. Programmer ′s AIX Workstation . 10
 6. Project′s Configuration . 15
 7. MQSeries for AIX Installation, Device Selection 17
 8. MQSeries for AIX Installation . 18
 9. Select Root Volume Group (VG) . 22
10. Add a Journaled File System . 23
11. QM.INI File . 24
12. MQSeries 3T for AIX Installation . 25
13. TCP/IP Configure Menu . 31
14. Ping a Host . 34
15. MQSeries for Windows Clients: Files . 35
16. Verify the Host Connection . 38
17. Issue Single MQI APIs . 38
18. MQ3T Icons in Windows Program Manager 40
19. Visual Basic Icons . 41
20. Register a Window with 3T . 44
21. Unregister a Window with 3T . 45
22. Parameter Passing between PL and PLM 47
23. PL (GUI) Receives MQ3T Events . 48
24. PL (GUI) Sends a Message . 49
25. BMQVBX.BAS File . 51
26. Sample HELLO1: HELOGU1W.MAK . 52
27. Sample HELLO1: Visual Basic′s Dialog Box Description 53
28. Sample HELLO1: Display the Window . 53
29. Sample HELLO1: Declarations . 54
30. Sample HELLO1: Display Completion Codes 54
31. Sample HELLO1: Receive Messages from BL 54
32. Sample HELLO1: Process Fixed-length Messages from BL 55
33. Sample HELLO1: Menu Item Close . 55
34. Sample HELLO1: Send a Fixed-length Message to the BL 56
35. Sample HELLO1: Close the Window . 56
36. Sample HELLO1: Exit the Program . 56
37. HELLO1H.BAS and HELLO2H.BAS Files . 58
38. Sample HELLO2: HELOGU2W.MAK . 59
39. Sample HELLO2: Send a Variable-length Message to the BL 59
40. Sample HELLO2: Process Variable-length Messages from BL 60
41. Sample PFCUST: Find Customer GUI . 61
42. Sample PCUST: Customer Details GUI . 62
43. Template GUI Provided with SupportPac 63
44. SPEEDUP Program: GUI . 64
45. Messages for MAKE of HELLO1 Sample 70
46. Options for Modification of the File Transfer Program 77
47. Shell Script File ″foo1.cmd″ . 80
48. Utility ″kil lmqm.cmd″ . 82
49. Shell Script File ″first.cmd″ . 85
50. MQSeries Three Tier Window . 91
51. STRPLM Window . 92

 Copyright IBM Corp. 1996 ix

52. Pop-up: PLM Started . 92
53. STARTJOB Window . 93
54. GUI for File Transfer Program . 93
55. PL Class File ″hellogu1.cs″ . 96
56. Class Header File ″helloms1.ch″ . 96
57. BL Class File ″helob1cx.cs″ . 96
58. Header File ″hello1x.h″ . 96
59. Compiling a Class Source File . 97
60. Command File ″redo″ . 98
61. Routing Messages to ″hellodl1″ . 99
62. Profile with Server and Class Sections . 99
63. Skeleton File ″hellobl1.c″ . 100
64. MQ3T File Transfer: Sender Program (BL) ″hello1x.c″ (Part 1) 101
65. MQ3T File Transfer: Sender Program (BL) ″hello1x.c″ (Part 2) 102
66. MQ3T File Transfer: Declarations . 104
67. MQ3T File Transfer: Exit . 104
68. MQ3T File Transfer: Display the Window 105
69. MQ3T File Transfer: Process an Event Message 105
70. MQ3T File Transfer: User Input . 106
71. MQ3T File Transfer: Send Input Parameters to BL 106
72. Software Distribution Application . 107
73. Profile for Server Supporting Multiple Classes 109
74. Server Profile with Class and Queue Definition 109
75. BLT: Message Flow between You and Your Wife 111
76. BLT: Objects and Message Flow, Production 116
77. BLT: Objects and Message Flow, Maintenance 117
78. BLT: Circular Message Flow . 117
79. GUI Prototype for Konrad . 118
80. GUI Prototype for Gremlin . 119
81. GUI Prototype for Shopping List . 119
82. GUI Prototype for Repair List . 120
83. GUI Prototype for Luigi . 120
84. BLT: Messages in Production Process 122
85. BLT: Messages in Inventory Control Process 123
86. BLT: Messages in Food Order Process 124
87. BLT: Messages in Exception/Maintenance Process 124
88. A Message Description . 126
89. Message Structures . 127
90. Class Descriptions . 127
91. Input File for Design Crosscheck: ″classes.lst″ 139
92. Output File from Design Crosscheck: ″classes.xck″ 140
93. Profile to Start Five PLs . 141
94. Microsoft Visual Basic (design) Window 142
95. Add BMQNTFY.VBX to a Project . 143
96. Add MQ3T Files to a Project . 143
97. Generic Frame and Project Window for BLT 144
98. Konrad ′s Frame at Design and Run Time 145
99. Form_Load Procedure . 146
100. Form_Unload Procedure . 146
101. Quit Procedure . 146
102. Visual Basic: Create a New Procedure 146
103. BLT: Declarations . 147
104. Konrad: BLT Push Button Procedure . 148
105. Konrad: Pizza Push Button Procedure 148
106. BLT: Display Messages in Text Box . 149

x MQ3T Examples for Windows Clients and AIX Servers

107. BLT: Events from MQ3T . 149
108. Konrad: Process Messages . 150
109. Luigi ′s Project File . 151
110. Luigi ′s Frame at Design Time . 152
111. Luigi: Deliver Procedure . 153
112. Luigi: Process PL Events . 154
113. The Gremlin′s Project File . 155
114. The Gremlin′s Frame at Design Time . 156
115. The Gremlin′s Radio Button Procedure 157
116. The Gremlin′s Push Button Procedure 158
117. The Gremlin′s Event Procedure . 159
118. The Repair List′s Project File . 159
119. The Repair List′s Frame at Design Time 160
120. The Repair List′s Declarations . 161
121. BLT: Display Messages in a List Box . 162
122. Repair List: Radio Button Procedure . 162
123. Repair List: Send Inquiry Request . 163
124. Repair List: Send Repair Message . 163
125. Repair List: Process PL Events (Part 1) 164
126. Repair List: Process PL Events (Part 2) 165
127. Shopping List′s Frame at Design Time 166
128. Shopping List: Type a Quantity . 168
129. Shopping List: Radio Button Procedure 168
130. Shopping List: Send Inquiry Message . 169
131. Shopping List: Send an Order to the Grocer 170
132. Shopping List: Process PL Events (Part 1) 171
133. Shopping List: Process PL Events (Part 2) 172
134. Karen ′s Export File . 173
135. Karen ′s C Skeleton File (Part 1) . 175
136. Karen ′s C Skeleton File (Part 2) . 176
137. Karen ′s Make File . 178
138. Karen ′s Method ″bltorder″ . 180
139. Karen ′s Method ″bltmake″ (Part 1 of 2) 181
140. Karen ′s Method ″bltmake″ (Part 2 of 2) 182
141. Karen ′s Method ″bltserve″ . 183
142. Karen ′s Method ″bltnone″ . 183
143. Refrigerator′s Method ″fridge1″ (Part 1) 184
144. Refrigerator′s Method ″fridge1″ (Part 2) 185
145. Refrigerator′s Method ″fridge1″ (Part 3) 186
146. Food Inquiry Method ″foodinq″ . 188
147. Food Delivery Method ″delivery″ . 189
148. Food Preparation Method ″cook″ . 190
149. Grocer ′s Method ″grocer1.c″ (Part 1) . 191
150. Grocer ′s Method ″grocer1.c″ (Part 2) . 192
151. Grocer ′s Method ″grocer1.c″ (Part 3) . 193
152. Common Method ″xclear.c″ . 194
153. Common Method ″xrepair.c″ . 194
154. Common Method ″xignore.c″ . 195
155. Common Method ″xinquiry.c″ . 196
156. Common Method ″xgremlin.c″ . 197
157. BLT: Redo all BLs . 198
158. BLT: Queue Definitions ″bltcoma.tst″ . 199
159. BLT: Profile for Presentation Logic . 200
160. BLT: Profile for Business Logic . 200
161. Message Description with Conversion DLL 203

Figures xi

162. Message Description without Conversion DLL 204
163. Message Structure that Needs Data Conversion 205
164. Data Exit Source File . 205
165. C Source Program for Conversion Conversion Exit (Part 1) 207
166. C Source Program for Conversion Conversion Exit (Part 2) 208
167. Make File MSG100.mak for AIX . 209
168. Make File MSG100.mak for OS/2 . 211
169. MSG100.def File for OS/2 . 211

xii MQ3T Examples for Windows Clients and AIX Servers

Tables

 1. Addresses for TCP/IP Customization . 31
 2. MQREG Parameters . 45
 3. MQSETS Parameters . 46
 4. MQUREG Parameters . 46
 5. MQSEND Parameters . 49
 6. Icons Used for Objects in Visual Basic Support 50
 7. MQQRYE Parameters . 57
 8. MQQRYM Parameters . 57
 9. MQENDE Parameters . 57
10. Files for HELLO1 Sample . 69
11. Files for MQI File Transfer Example . 81
12. Files for MQ3T File Transfer Example . 88
13. Client′s Files for MQ3T File Transfer Example 90
14. Class Descriptions - hellopr1.ch . 95
15. Objects and Their Functions . 114
16. BLT: 3T Classes . 121
17. BLT: Message Summary . 125
18. BLT: Methods for Presentation Logics 129
19. BLT: Rules for Presentation Logics . 131
20. BLT: Methods for Business Logics . 133
21. BLT: Rules for Business Logics . 134
22. MQTIME Parameters . 136
23. Gremlin: Actions and Destinations for Radio Buttons 158
24. Repair List: Actions and Destinations for Radio Buttons 162
25. Shopping List: Actions and Destinations for Radio Buttons 168
26. MQSeries 3T APIs for Visual Basic . 251

 Copyright IBM Corp. 1996 xiii

xiv MQ3T Examples for Windows Clients and AIX Servers

Special Notices

This publication is intended to help application and system programmers with
additional guidance in using the MQSeries Three Tier for AIX product and the
Visual Basic support for Windows clients. The information in this publication is
not intended as the specification of any programming interfaces that are
provided by:

• IBM MQSeries Three Tier for AIX

• IBM MQSeries Three Tier for OS/2

• IBM MQSeries for AIX

• Microsoft Visual Basic Version 3.0

• Microsoft Windows Version 3.1

See the PUBLICATIONS section of the IBM Programming Announcement for the
MQSeries product family for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

 Copyright IBM Corp. 1996 xv

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are
trademarks of Microsoft Corporation.

Other trademarks are trademarks of their respective companies.

AIX AIX/6000
AIXwindows IBM
MQSeries MQSeries Three Tier
Operating System/2 OS/2
RISC System/6000 RS/6000
SUPPORTPAC

xvi MQ3T Examples for Windows Clients and AIX Servers

Preface

This document is intended to help programmers in setting up Windows clients
and AIX servers for both MQSeries Three Tier application development and
production environments. It explains to application developers and designers
how MQSeries Three Tier can be used to quickly design and code fairly complex
applications.

3T clients (the first tier) run on Windows or OS/2 systems. 3T servers (the
second tier) run on OS/2 or AIX machines. The third tier can be existing
MQSeries programs running in the host or on any platform supported by
MQSeries.

MQSeries Three Tier consists of application development facilities and run-time
programs. The development facilities help designing application models,
consisting of classes, the message flow between them, and methods to process
the messages. It simplifies the development of client/server applications. The
run-time programs interface between application and MQSeries, providing
functions such as message routing and automatic triggering.

Through structured programming 3T requires the definition of objects or classes,
each performing a specific task in either the client or server workstation. 3T
classes are not the same as classes in object-oriented programming. However,
they are considered a step in that direction.

This document explains:

• How to set up a Windows workstation for the development of client programs
with a graphical user interface using Visual Basic.

• How to set up a Windows workstation in a production environment.

• How to set up an AIX machine with additional software for the development
of 3T server applications.

• How to integrate existing MQSeries programs into a Three Tier application.

• How to design, write, and test a complex client/server application.

During the course of this book two example applications are developed:

The first example is an existing file transfer application between two RS/6000
machines. It consists of two programs: sender and receiver. These programs
are integrated into an MQSeries Three Tier application, together with a graphical
user interface (GUI) written in Visual Basic. The GUI, running in the client under
Windows Version 3.1, invokes the file transfer between the two RS/6000. This
example explains the options for invoking existing programs from a GUI.

The second example is more complex and demonstrates the 3T development
facilities. Step by step, an application with several classes is designed, written
and tested. This example demonstrates how to make a solid application design
and what the 3T infrastructure saves you on writing code.

With this publication a diskette is provided that contains the code for the various
development steps for the two examples. The readers can execute each step in
their own environment.

 Copyright IBM Corp. 1996 xvii

How This Document is Organized
The document is organized as follows:

• Chapter 1, “IBM MQSeries Three Tier Overview”

This chapter provides a brief overview of MQSeries Three Tier for AIX and
MQSeries Three Tier for OS/2. Both are part of the MQSeries set of
products. This chapter covers the concepts and facilities of 3T and
introduces you to the application model that 3T supports.

• Chapter 2, “Installation”

This chapter describes what software is required for 3T clients and servers,
how to install it, and how to verify the connection between clients and
servers. It discusses how to add the 3T software to an AIX machine and how
to use it for the development of 3T applications. It describes how to install
all software required for a client development system and client production
workstation.

• Chapter 3, “ Using Visual Basic”

This chapter describes the 3T Visual Basic support. It also outlines how to
run the sample programs supplied with the Visual Basic support for Windows
clients.

• Chapter 4, “File Transfer Example”

This chapter describes how an existing AIX file transfer application,
consisting of a sender and a receiver program, is integrated into a Three
Tier application. First, a GUI is added that allows a Windows client to start
the file transfer between two RS/6000 systems. Then the AIX sender
program is modified to use 3T APIs instead of MQI APIs. This allows the
reader to compare a 3T application with an non-3T MQSeries application.

• Chapter 5, “The Bacon Lettuce and Tomato Sandwich”

In this chapter we design an application that consists of several classes that
run in three tiers. The clients run under Windows Version 3.1. The
application requires several client windows that can run on one or more
client workstations. As a server we use an AIX machine. Several business
logic programs are developed. They may run on one or more AIX systems.
The third tier is a program that uses MQI APIs and runs on an AIX machine
as well. This application takes into account messages that are late or never
arrive.

• Chapter 6, “Data Conversion”

This chapter explains how data is converted when messages are exchanged
between PCs and AIX machines. A data conversion program is provided.

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

• MQSeries Clients, SC33-1632-01

• MQSeries Command Reference, SC33-1369

• MQSeries Application Programming Reference, SC33-1370

• MQSeries Installation and System Management Guide, SC33-1371

xviii MQ3T Examples for Windows Clients and AIX Servers

• MQSeries Three Tier Administration Guide, SC33-1451

• MQSeries Three Tier Application Design, SC33-1636

• MQSeries Three Tier Application Programming, SC33-1452

• MQSeries Three Tier Reference Summary, SX33-6098

• Messaging & Queuing Using the MQI, McGraw-Hill Series on Computer
Communications, SR28-5857

International Technical Support Organization Publications
• TCP/IP Tutorial and Technical Overview, GG24-3376

• Examples of Using MQSeries on S/390, RISC System/6000, AS/400 and PS/2,
GG24-4326

• IBM MQSeries Three Tier for OS/2, Experiments and Experiences for
Beginners, SG24-4509

A complete list of International Technical Support Organizatio n publications,
known as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

How Customers Can Get Redbooks and Other ITSO Deliverables
Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and
CD-ROMs) and information about redbooks, workshops, and residencies in the
following ways:

• IBMLINK

Registered customers have access to PUBORDER to order hardcopy, to
REDPRINT to obtain BookManager BOOKs

• IBM Bookshop — send orders to:

usib6fpl@ibmmail.com (USA)
bookshop@dk.ibm.com (Outside USA)

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

1-800-879-2755 Toll free, United States only
(45) 4810-1500 Long-distance charge to Denmark, answered in English
(45) 4810-1200 long-distance charge to Denmark, answered in French
(45) 4810-1000 long-distance charge to Denmark, answered in German
(45) 4810-1600 long-distance charge to Denmark, answered in Italian
(45) 4810-1100 long-distance charge to Denmark, answered in Spanish

IBM Publications
P.O. Box 9046
Boulder, CO 80301-9191
USA

IBM Direct Services
Sortemosevej 21,
3450 Allerod
Denmark

1-800-445-9269 toll-free, United States only
45-4814-2207 long distance to Denmark

Preface xix

• 1-800-IBM-4FAX (USA only) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services

Send note to softwareshop@vnet.ibm.com

• Redbooks Home Page on the World Wide Web

http://www.redbooks.ibm.com/redbooks

• E-mail (Internet)

Send note to redbook@vnet.ibm.com

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM
Announcement Listserver. To initiate the service, send an E-mail note to
announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

How IBM Employees Can Get Redbooks and ITSO Deliverables
Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and
CD-ROMs) and information about redbooks, workshops, and residencies in the
following ways:

• PUBORDER — to order hardcopies in USA

• GOPHER link to the Internet

Type GOPHER
Select IBM GOPHER SERVERS
Select ITSO GOPHER SERVER for Redbooks

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET GG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET GG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks/redbooks.html

• ITSO4USA category on INEWS

• IBM Bookshop — send orders to:

USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

xx MQ3T Examples for Windows Clients and AIX Servers

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM
Announcement Listserver. To initiate the service, send an E-mail note to
announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

Preface xxi

xxii MQ3T Examples for Windows Clients and AIX Servers

Acknowledgments

This project was designed and managed by:

Dieter Wackerow
International Technical Support Organization, Raleigh Center

The authors of this document are:

George Carey
IBM USA

Claudia Degli Esposti
IBM Italy

Simon Miller
IBM Hursley, England

Dieter Wackerow
International Technical Support Organization, Raleigh Center

This publication is the result of a residency conducted at the International
Technical Support Organization, Raleigh Center.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Paul Beaven
John Kelly
Ian McCallion
IBM Hursley

 Copyright IBM Corp. 1996 xxiii

xxiv MQ3T Examples for Windows Clients and AIX Servers

Chapter 1. IBM MQSeries Three Tier Overview

IBM MQSeries Three Tier for OS/2 and IBM MQSeries Three Tier for AIX are
software products, designed by IBM for the message queuing environment. They
are called 3T for short. The products use MQSeries for OS/2 and MQSeries for
AIX, respectively, to send and receive messages.

IBM MQSeries Three Tier lets you build applications which access departmental
data, enterprise data, and inter-enterprise data, residing on many different
systems using the MQSeries Interface. The product helps the user to write
applications that give useful and timely responses even when some systems are
temporarily not available.

IBM MQSeries Three Tier will reduce cost and risk developing MQSeries
distributed applications. It provides a designed way to write client/server
applications on an MQSeries backbone. It aids in creating scalable and
manageable applications that can easily be deployed across the enterprise.

Programmers can concentrate on business applications instead of spending time
on writing ″system code″ that retrieves messages from queues and decides
which piece of ″application code″ to schedule. In MQSeries, a program sends a
message to a queue and other programs must provide the code that retrieves it.
3T, however, provides true application to application connectivity.

IBM MQSeries Three Tier for OS/2 requires a graphical user interface (GUI) to
interact with the user. IBM MQSeries Three Tier for AIX runs in servers only.
There is no front end for AIX machines. However, 3T′s development facilities
apply to both OS/2 and AIX.

Note: For the project covered in this publication we use Windows clients. The
GUIs are developed using Visual Basic.

IBM MQSeries Three Tier enhances the functions of MQSeries. It provides:

• Advanced program triggering and message management, together with an
enhanced application model

• Enhanced GUI integration; links to GUI programming tools, such as IBM
VisualAge(TM) and Microsoft Visual Basic

• Application development tools

The 3T product consists of:

• Development components, such as:

− Class Compiler

− Application Simulator

− Test Harness

• Run-time components for:

− OS/2 clients (called Presentation Logic Manager)

− Windows clients (called Presentation Logic Manager)

− OS/2 servers (called Business Logic Manager)

− AIX servers (called Business Logic Manager)

 Copyright IBM Corp. 1996 1

• Service tools

− Service Level Utility

− Error Log Browser

− Trace utilities

• Sample programs written in C, COBOL, PL/I, VisualAge

Note: Visual Basic support and sample programs are available as a
SupportPac.

1.1 The Three Tiers
The IBM MQSeries Three Tier for OS/2 and IBM MQSeries Three Tier for AIX
products were developed to make it easier for the application developer to write
client/server applications. As the names indicate, the products allow you to
divide the application into three tiers. They are called:

Presentation Logic (PL)

Business Logic (BL)

Data Logic (DL)

Each logic has a distinct purpose. A tier is further subdivided into classes or
objects, each representing a specific piece of work.

The following explains the purpose of the three tiers:

• Presentation Logic (PL)

This is the front end of the application, a graphical user interface that
collects data from the user and displays information for the user. Its purpose
is to interact with the end user and to request services from one or more
servers and/or host systems. However, a PL is not restricted to those tasks.
It can perform any kind of processing, more than the validation of input data.
A PL can simultaneously send several requests to different servers.

Note: Presentation Logics do not run on AIX machines.

• Business Logic (BL)

The second tier is usually running on a server. It processes data on behalf
of the PL client and may require the services of other BLs, residing in the
same or other server machines. A BL may request additional services from
a host. You can have as many BLs as you want in this second tier, each
processing a certain request, such as calculating interest, obtaining
customer data, or updating an account.

• Data Logic (DL)

Usually, the third tier is a host program that obtains data requested by either
a BL or PL from a database. However, a DL does not have to be a host
program; it may run in any server machine and even in the end user′s
workstation. DLs do not use 3T but do use MQSeries. Therefore, they can
run on systems that have MQSeries but not 3T installed. This feature allows
you to include existing MQSeries programs in your application, such as CICS
or IMS applications.

The difference between BL and DL is that a DL processes messages without a
3T header. This enables 3T classes to talk to MQSeries-based programs that
have been written without 3T, but use MQSeries APIs.

2 MQ3T Examples for Windows Clients and AIX Servers

1.1.1 Run-Time Components
Presentation Logics and Business Logics are managed by the run-time programs
supplied with 3T:

• PLM: Presentation Logic Manager (for OS/2 only)

• BLM: Business Logic Manager (for OS/2 and AIX)

These programs act as an interface between PLs and BLs, and MQSeries.
Applications put messages on one or more queues. PLMs and BLMs ensure
that those messages are routed to the correct destination, client or server, and
that the appropriate application program is scheduled.

Figure 1. The Three Tier Run-Time Components

• Presentation Logic Manager

The 3T PLM provides the client functions of MQSeries 3T:

− Sending and receiving MQSeries messages

− Starting up programs containing a PL

If a message arrives at a workstation that should cause a new window to
be displayed, then the PLM responds by starting the program that
implements that window if it is not already running.

− Pre-allocates MQSeries resources and shares them between PL
programs

− Provides 3T APIs for PLMs

− Working storage management

− Error handling and cleanup

For practical reasons the PLM normally uses the MQSeries Client to access
an MQSeries MQM running on a server machine.

• Business Logic Manager

The 3T BLM provides the server functions of MQSeries 3T:

− Sending and receiving MQSeries messages

Chapter 1. IBM MQSeries Three Tier Overview 3

− Scheduling of the appropriate methods (programs) to handle received
messages

− Passing of incoming messages, instance data and other information to
the methods (programs) it schedules

− Provides 3T APIs for BLMs

− Working storage management

− Error handling and cleanup

1.1.2 Messages
Messages sent between PLs and BLs contain 3T headers. Messages sent to or
received from a DL do not have that header. They are automatically added by
the Presentation Logic Manager (PLM) and Business Logic Manager (BLM). 3T
headers are removed when a message is sent to a DL.

There are three types of messages:

• Inform messages are sent when the sender does not expect a response back,
such as broadcast messages.

• Request messages are sent when the receiving class has to perform some
work on behalf of the sender and expects a response back. Usually, this job
is executed in a server or host machine. Each request must have a
response associated with it.

• Response messages carry the result of the requested work back to the
requestor. The receiver of a request message must respond with a reply
message. There is a one-to-one relationship between requests and replies;
3T does not allow multiple reply messages to respond to one request
message.

Note: You can send several requests to different objects. 3T takes care of
receiving the multiple replies and triggering the appropriate program to
process them. You could schedule one program in the case all replies
arrive within a specified time. Another program could be invoked when only
some of the replies arrived in time. You can also trigger programs for each
late reply, if you wish.

Each 3T message has a name. 3T requires that you create for each PL, BL, and
DL a special file, a class source file, that describes which messages can be sent
and received by each class. Class files are written using 3T′s Class Definition
Language (CDL). The product provides a function that reads all class files and
crosschecks the message flow between classes. This ensures, for example, that
each request has a response.

3T messages can be of fixed length or variable length. You define the structures
of a fixed length message in a special structure file. The class compiler of 3T
checks whether or not each fixed length message is defined.

Variable length messages are assembled in sets. The fields in a variable length
message (set) are called elements. 3T provides API calls to one of its features,
the Self-defining Data Manager (SDDM), to work with elements in a set.

3T provides the option to save (known as ″harden″) messages on a hard disk to
ensure that data is delivered in case of a failure.

4 MQ3T Examples for Windows Clients and AIX Servers

Figure 2. The Three Tiers of 3T

1.1.3 Message Flow
Figure 2 shows the way messages can flow between 3T classes. The classes
can reside in the same machine (for example, the end user′s OS/2 workstation),
in different servers, or in main frames.

A PL can communicate with many BLs and DLs, and also with other PLs. A BL
can invoke other BLs and/or DLs and PLs.

3T allows you to set up an application development environment in a local
workstation without actually sending messages over the network.

Chapter 1. IBM MQSeries Three Tier Overview 5

Each class (PL, BL, and DL) can be regarded as an object. The number of
classes (or objects) and messages in an application are not limited. This allows
you to construct applications consisting of many small programs, each of them
performing a specific task. You could write one BL for each message the PL
sends, or have one BL processing all of the messages.

In most cases, each message has to be processed differently, you have to code
a specific function for each message. In 3T, these functions or programs are
known as methods.

At run-time, when a message arrives for a class, the PLM or BLM checks
whether the class is allowed to receive it, and under what conditions. In 3T,
those conditions are called rules. In the class file, you can define a set of rules
for each message.

1.2 3T Facilities
3T is MQSeries. 3T provides features that aid in the design and implementation
of applications. 3T makes application programming simple. When a program
(class) sends a message to another program (class), the message is put on a
queue. All the programmer has to know is the name of the queue; that is, the
same name as the class. The PLM or BLM does the rest of the message
routing. These 3T run-time services automatically trigger the program that has
to receive and process the message.

Note: You must install MQSeries on your workstation.

1.2.1 Class Definition Compiler
For a 3T application, you must create a class source file. You use the Class
Definition Language (CDL) to write it. The class compiler compiles the source
file and creates a binary class file. This binary file is used during run time by
the presentation and business logic managers. You need one class file for each
class.

A class file contains the following information:

• The names and descriptions of all messages sent and received by the class.
Usually, message descriptions are kept in a separate file, since they are
referenced in at least two classes, sender and receiver. Such a message
header file is then included in the class files.

• Class descriptions contain the external attributes of a class, such as class
type (PL, BL, or DL), the names of the messages it can send and receive,
and whether it can recover from a server failure. A class file must contain a
class description of all the classes it communicates with. Therefore, it is
advisable to place this information in a separate file and include it in the
class files.

• The class section describes the specifics of the class the class source file is
written for, such as the names of the classes it can send messages to, and
the name of the file that contains message structures. Also, this section
includes rules for all the incoming messages.

• Rules define what to do when a message arrives. There must be a rule for
each message. A rule can be satisfied when one message arrives (on time
or late), or when it doesn′ t arrive. Also, a rule con be satisfied when some,

6 MQ3T Examples for Windows Clients and AIX Servers

none or all replies arrive (in time, late, or never). Each rule is associated
with a method to process the event.

• Methods describe what program to invoke when a rule is satisfied. These
programs are BLs or PLs, written in C, COBOL or PL/I.

Note: You cannot write a class file for a DL class since DLs are not 3T
programs. However, you must define the DLs you request services from in the
class definition sections of the appropriate class.

After the application design is completed, use the CDL to define the classes and
the message flow between them. At that time you also know how many methods
or programs are required to process the data and what their names are.

The class compiler provides three functions:

 1. It compiles user-written class source files and creates class binary files for
3T′s run-time programs, PLM and BLM.

 2. It provides a crosscheck function that validates your overall application
design by crosschecking all class source files. It checks whether:

• A message has a destination.

• There is a method to process the message.

• A class receives the messages.

• A request has a reply associated with it.

 3. It creates the following files for each business logic:

• A language-dependent skeleton (C, COBOL, PL/I) for each method

• A make file (.MAK) for the compiler

• A definition file (.DEF) for the compiler

Note: Use of the class compiler is described in detail in the following chapters.

1.2.2 Application Program Interface
3T contains a set of APIs for three languages:

• COBOL

• C

• PL/I

In your application programs use the APIs to call 3T functions of the PLM or
BLM. These programs make the necessary calls to the underlying MQI.

There are three categories of API calls:

• Base calls (17) are used to:

− Send requests, replies and information messages

− Write to the log file

− Set timeout values

− Query information about a message, a class, a server, or an instance

• PLM calls (7) are used to:

− Glue 3T to the GUI of a PL

− Query information about an event

Chapter 1. IBM MQSeries Three Tier Overview 7

− Set the state of an instance

− End the Presentation Logic Manager

• SDDM calls (17) are used to invoke functions of the Self-Defining Data
Manager (SDDM). These calls are used to manipulate variable-format data.

1.2.3 Application Simulator
The application simulator is for IBM MQSeries Three Tier for OS/2 only.

This feature allows:

• Selected parts of the application to be modelled prior to any code being
written

• To validate the message flow

• To determine the likely system performance by allowing the system to be
loaded artificially

Note: The Application Simulator is not covered in this publication.

1.2.4 Test Harness
The test harness simplifies testing of MQSeries applications by allowing each
piece to be tested separately. This development tool speeds up thorough testing
of individual application components. It can dramatically reduce development
time.

Note: The Test Harness is not covered in this publication.

1.2.5 Job Viewer
A 3T job is the execution of a 3T application. Typically, an application has
several windows on the screen at the same time. The Job Viewer is
implemented as a 3T class and it:

• Provides a window list of all the windows in the job

• Helps in selecting the window needed to accomplish a task

• Can be used to minimize and maximize windows

The Job Viewer is the first PL started up in an application.

Note: The Job Viewer is not covered in this publication.

1.2.6 Self-Defining Data Manager
The SDDM provides a simple way for the application programmer to build and
manipulate the data of a message. Typically, a method is required to unpack a
received message, then perhaps using its instance data together with the
unpacked data, to build a new message; this is essentially a re-packing
operation.

The SDDM provides a set of APIs to manage variable and fixed length
messages. The SDDM creates a set for each message. The set contains
elements that are data plus header information containing an element identifier,
the length of the element, and the data type (character string or integer). Data
must be in multiples of four bytes.

Note: You may also define the structure of a fixed length message in a structure
file and your application may refer to the fields defined in it.

8 MQ3T Examples for Windows Clients and AIX Servers

Note: Some of the SDDM APIs are covered in the following chapters.

1.2.7 Visual Basic Support
MQSeries 3T Visual Basic support for Windows client is provided as a
SupportPac. It is allows you to use Microsoft′s Visual Basic product to develop
Microsoft Windows 3.1 GUIs for IBM MQSeries Three Tier applications.

You develop presentation logics on the Windows system. Business logics and
class definitions must be developed on either an OS/2 or AIX machine.

Note: How to use the Visual Basic support for 3T is described in Chapter 3, “
Using Visual Basic” on page 43.

1.3 Application Design
The figure below shows what could be installed in an application developer′s
workstation:

Figure 3. Programmer ′s OS/2 Workstation

Notes:

 1. Components shown boxed are supplied with 3T.

 2. Test Harness and Application Simulator run under OS/2 only.

 3. The job viewer runs under OS/2 and Windows.

Chapter 1. IBM MQSeries Three Tier Overview 9

Figure 4. Programmer ′s Windows Workstation

Figure 5. Programmer′s AIX Workstation

10 MQ3T Examples for Windows Clients and AIX Servers

1.3.1 The 3T Application Model
The IBM MQSeries Three Tier application model is a distributed model.
Distributed applications are constructed from fragments of an application code.
In 3T, these programs are called classes. The classes that together make up the
application, can (and generally will) exist on different machines.

Most communication between classes is carried by MQSeries messaging.
Named messages flow from one class to another.

One 3T class addresses another 3T class directly. Classes are not aware of the
underlying queues or queueing mechanisms.

The distributed application design is defined in class definition files (one for each
class). The files contain descriptions of classes, methods, and messages that
flow between classes, and the rules for invoking methods.

3T knows three forms of classes:

• PL class (Presentation Logic)

• BL class (Business Logic)

• DL class (Data Logic)

The model contains the concept of a Data Logic class. This can be an existing
application running on a platform that is accessible via MQSeries messaging. 3T
has no code supporting Data Logic; the purpose of including Data Logic in the
model is one of completeness.

Each class definition is compiled to produce a binary class file which is used by
the 3T run-time components (PLM and BLM) during testing and execution.

BL classes are written in Cobol or C. PL classes are created using a GUI
generator tool or C.

Classes that make up an application can run on machines in different locations.

A class contains one or more methods. Methods are small, self-contained
pieces of code.

The flow of activity between classes is achieved using 3T events, where an event
can be:

• A message arrival (at a PL or BL class) initiated by a MQSEND application
programming interface (API) call in another class (method).

• A PL (GUI) event initiated by the user.

• A timeout maturing, which was originated by a MQTIME API call in the same
class where it will be processed.

Note: The term 3T message refers to a message generated by a 3T application.
This is a particular type of MQSeries message and uses standard MQSeries
products to convey it to the destination class. The translation of class names to
queue names is done by 3T.

When an event occurs, the appropriate method is scheduled by 3T. This is done
by the 3T PLM on a workstation, or the 3T BLM on an application server
machine. 3T makes the decision of what method to run based on three things:

• The class binary file (specifies conditions for scheduling methods)

Chapter 1. IBM MQSeries Three Tier Overview 11

• The content of the class′ input queue

• The instance data for the class

When a method is scheduled it is given the following data:

• The content of the message received that caused the method to be
scheduled

• The instance data

The method runs and can issue API calls to send messages to other classes or
to log data, generate timeouts, etc.

When the method is finished, control is returned to the 3T PLM or 3T BLM. The
class is only activated again if an appropriate 3T event occurs.

1.3.2 The 3T Application Development Process
The following outlines a standard process for the development of 3T applications:

 1. The customer defines the requirements for his application, such as:

• Business requirements. Some of them are:

− High productivity GUI interfaces with multi-window capability.

− Event driven in response to a business activity (for example,
customer arrival, cross-selling opportunity).

− Access to multiple environments (for example, CICS, IMS, DB2).

− Access data from other organizations (for example, credit bureau,
airline).

− Ability to cope with partial network failure (for example, a host or
server does not respond for any reason).

− Ability to detect cross-selling opportunities.

− Allow the user to switch tasks (avoid keeping the customer waiting;
invoke another transaction).

− Type all data into a GUI once and use it to request services from
multiple applications (classes) on multiple platforms.

• Application execution requirements. Some of them are:

− Multiple simultaneous use of business logics

− Modular reusable GUIs, presentation logics and business logics

− Automatic late message processing

− Ability to make multiple non-blocking parallel requests

• Application development requirements. Some of them are:

− Having an application model

− Ability to use object-oriented or procedural design methods

− Use of familiar languages

− Compatibility with existing 4G languages

− Suitability for large scale application production

− Application and testing tools

12 MQ3T Examples for Windows Clients and AIX Servers

• Systems management requirements. Some of them are:

− Ability to deploy

− Version control

− Operational control

− Security

 2. Based on the requirements gathered, the customer:

• Analyses requirements for the application

• Produces specifications that reflect the customer′s requirements

• Makes a high level design (HLD)

 3. The designer maps the HLD into MQSeries 3T by writ ing class definitions,
using his favorite editor. 3T provides the Class Definition Language (CDL) to
name:

• Classes

• Messages that flow between classes

• Triggering rules that schedule the methods in the classes

 4. The designer checks the definition for consistency using the 3T class
compiler.

 5. The designer uses the Application Simulator to investigate the likely
performance of the finished application.

 6. The GUI programmer uses the HLD and class definitions to design the GUIs.
These are built by:

• Using a visual programming tool such as VisualAge

• Writing a PM program

• Writing a Windows program

 7. The BL programmer uses HLD and class definitions to design and build the
Business Logics.

 8. The DL programmer uses HLD and class definitions to design and build the
Data Logics. This may be existing applications that require modification for
the access by MQSeries.

 9. The GUI and BL programmers use the Test Harness to debug their code.

10. The various parts of the application are now assembled on a single machine
and debugged in combination.

11. The parts are copied to several machines and tested.

12. A system test is conducted.

13. A performance test is conducted.

14. The development library data is moved into a production library in
anticipation of deployment.

15. A pilot test is done on life data.

16. A deployment test is conducted.

17. The application is deployed or phased in.

Chapter 1. IBM MQSeries Three Tier Overview 13

1.3.3 Structured Application Design
IBM MQSeries Three Tier for OS/2 encourages object-oriented programming. 3T
objects are not objects as in OOA/OOD; however, they are a step in that
direction.

First define what work shall be done in the three tiers:

• The PL is the front end of the application. Usually, there is one PL per
application. Many instances of the PL can run in the same or different
workstations.

• Typically, the BL is used to manipulate data. A BL does not interact with the
user. However, you can log data to a file or display data on the Business
Logic Manager ′s screen.

A BL receives requests from the PL or from other BLs. In order to perform
its work, the BL can request services from a DL or another BL. A BL can be
written for any platform that supports 3T.

• DLs are 3T classes; however, they run on platforms not supported by 3T.
DLs are written using MQSeries APIs. DLs can be IMS or CICS programs
running in the host or any program not using 3T APIs.

The second step is to define the class topology. Usually, the work assigned to
the BL and DL tiers can be broken into functions, each function performing a
specific task, such as validating input data, reading an address file, or updating
an account.

For each function we write a separate program, called a method. A method
processes one or more named messages or requests. A class can contain one
or more methods.

By structuring the application, defining classes and messages, you can picture
the connections between the various objects. 3T supplies the CDL to write down
the class topology in the class source files. You can use the class compiler to
crosscheck the message flow between classes.

 Diskette

This publication comes with two diskettes. They contain the source code and
all files necessary to run the two applications described in this book.

14 MQ3T Examples for Windows Clients and AIX Servers

Chapter 2. Installation

This chapter describes the installation of the software needed to develop and run
MQSeries Three Tier applications on AIX servers and Windows clients.

For this project we use four systems:

 1. An AIX server for development

This system is used to develop business logic for the server and class files
for the server and the Windows workstations.

 2. An AIX server for test

This system is used as the receiver in the file transfer example between two
AIX machines.

 3. A Windows development workstation

This machine is used to develop and test presentation logic for Windows
Version 3.1. The GUIs are created with Visual Basic Version 3.

 4. A Windows production workstation

This machine is used to test the sample applications developed through the
course of this book. We install only the software required for a production
environment.

Figure 6. Project′s Configuration

The following sections guide you through the installation process for
configuration in Figure 6.

 Copyright IBM Corp. 1996 15

2.1 AIX Server
The AIX server is used to develop most of the 3T application. The following
software is required:

• AIX Version 3.2.5 (base product)

• MQSeries for AIX Version 2.2

• IBM DCE Threads for AIX Version 1.1

• CSD 14 for MQSeries

• MQSeries Three Tier for AIX

• IBM CSet++ for AIX/6000 Version 2

It is assumed that you have an AIX server with all the software but MQSeries
and MQSeries Three Tier installed.

2.1.1 MQSeries Base Product
As a pre-requisite to the use of MQSeries 3T running on any platform, the base
MQSeries software product must be installed and running on the same target
platform, MQSeries server for server functionality or MQSeries client for client
functionality.

The complete installation procedure is given in the MQSeries publication IBM
MQSeries for AIX Version 2 Release 1 System Management Guide, SC33-1373-00.
Pages 19 through 27 deal specifically with this process and give a detailed
description. A synopsized version follows with sizing and procedural
suggestions.

Create a user and group called mqm. You may do this using SMIT as described
in the System Management Guide page 21 or you may enter the commands
directly as follows:

mkuser mqm
mkgroup mqm

Make root a member of the mqm group. Using SMIT for this is best.

Note: You will also have to create a user and group mq3t to install the
MQSeries Three Tier product and make the mq3t user a part of the mqm
group as well. You might wish to do this now as well or you can wait
until you install 3T.

Now pick the device from which you are going to install the base MQSeries
product:

• If you install from a tape insert the tape in the appropriate tape drive.

• If you install from a network software server be sure the appropriate
software server file system is mounted.

To better illustrate, the following is an example of the commands to execute:

If the network file server, NFS, is a node called ″earth″ and the directory which
contains the install image has the path /usr/AIX325C then the standard mount
command to use so that SMIT will execute in its normal fashion to install the
MQSeries Licensed Program Product (lpp) is as follows:

mount earth:/usr/AIX325C /usr/sys/inst.images

16 MQ3T Examples for Windows Clients and AIX Servers

Note: Your system must be known to the file server system; that is, its name
must be in the /etc/hosts file on the node ″earth″ in order for this to work.

You can verify that the mount command worked properly by executing the df
command after which you should see the following line as part of the file
systems displayed.

earth:/usr/AIX325C 409600 317724 22% - - /usr/sys/inst.images

Now to actually install the base MQSeries product use SMIT and select the
menus ′ items in the order illustrated in the following cascading list of selections.

Software Installation & Maintenance
Install / Update Software

Install / Update Selectable Software (Custom Install)
Install Software Products at Latest Available Level

After pressing the Enter key on the final menu item selection the screen in
Figure 7 should appear.

Note: This is a none Motif GUI screen image.

� �
Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

[Entry Fields]
* INPUT device / directory for software [] +

--
| INPUT device / directory for software |
| |
| Move cursor to desired item and press Enter. |
| |
| /dev/rmt0.1 (2.3 GB 8mm Tape Drive) |
| /dev/fd0 (Diskette Drive) |
| /usr/sys/inst.images (Install Directory) |
| |
| F1=Help F2=Refresh F3=Cancel |
| F8=Image F10=Exit Enter=Do |
/=Find n=Find Next

� �
Figure 7. MQSeries for AIX Installation, Device Selection

Select the device to be used for input by pressing the PF4 key to get to the
bottom half of the screen illustrated or type directly between the square brackets
the device to be used. For example,

• For a tape type /dev/rmt0.1.

• If it is a network installed image accessed via the example mount command,
type /usr/sys/inst.images.

In either case, after the device selection is made press the Enter key to proceed.
Then the screen in Figure 8 on page 18 appears.

Chapter 2. Installation 17

� �
Install Software Products at Latest Available Level

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* INPUT device / directory for software /usr/sys/inst.images
* SOFTWARE to install [2.2.0.0 mqm > +
Automatically install PREREQUISITE software? yes +
COMMIT software? yes +
SAVE replaced files? no +
VERIFY Software? no +
EXTEND file systems if space needed? yes +
REMOVE input file after installation? no +
OVERWRITE existing version? no +
ALTERNATE save directory []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 8. MQSeries for AIX Installation

In the area labeled ″SOFTWARE to install″ you can:

• Press the PF4 key again to get a complete list of the software modules that
can be installed in the MQSeries LPP.

Then select the option 1.2.2.0.0 mqm ALL by pressing the PF7 key when the
cursor is positioned to the line (it will appear highlighted).

• Type in the selection manually but it must exactly match the LPP name.

Using the PF4 key and then PF7 key to select is best.

The complete list of LPPs for the base MQSeries product is given below. If you
are tight on disk space or do not wish to clutter your disk file systems with files
that likely will never be used one would individually select only those language
modules that would be used. Once you custom select one LPP item you must
custom select all your LPP items. So either select the ″ALL″ option or select all
the individual items required.

2.2.0.0 mqm ALL
2.2.0.0 mqm.De_DE
2.2.0.0 mqm.Es_ES
2.2.0.0 mqm.Fr_FR
2.2.0.0 mqm.Ja_JP
2.2.0.0 mqm.aix_client
2.2.0.0 mqm.base
2.2.0.0 mqm.books
2.2.0.0 mqm.dos_client
2.2.0.0 mqm.info
2.2.0.0 mqm.os2_client
2.2.0.0 mqm.samples
2.2.0.0 mqm.server
2.2.0.0 mqm.win_client

18 MQ3T Examples for Windows Clients and AIX Servers

Once you have made your selection(s) press Enter and the installation process
will begin. This may take some time so go have a coffee break or do a context
switch to your next asynchronously performable task.

Note: The directory that will be expanded during this installation is /usr/lpp/mqm
and the file system holding it will increase by approximately 35 MB.

The output from processing of this installation should look like the following:

---- start ----
installp -qacFNXd/usr/sys/inst.images \

-f {File Containing Software} 2>&1

Contents of {File Containing Software}:
 mqm 2.2.0.0.all

Verifying requisites...done
Results...

SUCCESSES

Filesets listed in this section passed pre-installation verification
and will be installed.

Selected Filesets

mqm.De_DE 2.2.0.0 # MQSeries Messages - German
mqm.Es_ES 2.2.0.0 # MQSeries Messages - Spanish
mqm.Fr_FR 2.2.0.0 # MQSeries Messages - French
mqm.Ja_JP 2.2.0.0 # MQSeries Messages - Japanese
mqm.aix_client 2.2.0.0 # MQSeries Client for AIX
mqm.base 2.2.0.0 # MQSeries Base Kit for Client...
mqm.books 2.2.0.0 # MQSeries BookManager Books
mqm.dos_client 2.2.0.0 # MQSeries Client for DOS
mqm.info 2.2.0.0 # MQSeries On-line Information
mqm.os2_client 2.2.0.0 # MQSeries Client for OS/2
mqm.samples 2.2.0.0 # MQSeries Samples
mqm.server 2.2.0.0 # MQSeries Server
mqm.win_client 2.2.0.0 # MQSeries Client for Windows

<< End of Success Section >>

The number of restored files is 2.

0503-376 installp: Applying software for the ″usr″ part of product
mqm 2.2.0.0.

...
Restoring files, please wait.
...
The number of restored files is 210.
The files for package xxxxxx are being verified.
This may take several minutes, please wait.
...
...
0503-392 installp: The installation was SUCCESSFUL for the ″root″ part of the

following software products:
mqm.samples 2.2.0.0
mqm.info 2.2.0.0
mqm.books 2.2.0.0
mqm.base 2.2.0.0
mqm.win_client 2.2.0.0
mqm.server 2.2.0.0
mqm.os2_client 2.2.0.0
mqm.dos_client 2.2.0.0
mqm.aix_client 2.2.0.0
mqm.Ja_JP 2.2.0.0
mqm.Fr_FR 2.2.0.0
mqm.Es_ES 2.2.0.0
mqm.De_DE 2.2.0.0

Verifying requisites...done
Results...

Chapter 2. Installation 19

SUCCESSES

Filesets listed in this section passed pre-commit verification
and will be committed.

Selected Filesets

mqm.De_DE 2.2.0.0 # MQSeries Messages - German
mqm.Es_ES 2.2.0.0 # MQSeries Messages - Spanish
mqm.Fr_FR 2.2.0.0 # MQSeries Messages - French
mqm.Ja_JP 2.2.0.0 # MQSeries Messages - Japanese
mqm.aix_client 2.2.0.0 # MQSeries Client for AIX
mqm.base 2.2.0.0 # MQSeries Base Kit for Client...
mqm.books 2.2.0.0 # MQSeries BookManager Books
mqm.dos_client 2.2.0.0 # MQSeries Client for DOS
mqm.info 2.2.0.0 # MQSeries On-line Information
mqm.os2_client 2.2.0.0 # MQSeries Client for OS/2
mqm.samples 2.2.0.0 # MQSeries Samples
mqm.server 2.2.0.0 # MQSeries Server
mqm.win_client 2.2.0.0 # MQSeries Client for Windows

<< End of Success Section >>

0503-379 installp: Committing software for the ″usr″ part of product
mqm 2.2.0.0.

0503-400 installp: The commit operation was SUCCESSFUL for the ″usr″ part of
the following software products:
mqm.xxxxx 2.2.0.0

...

Finished processing all filesets. (Total time: 13 mins 43 secs).

Installation Summary

Name Fix Id Part Event Result State

mqm.samples USR APPLY SUCCESS APPLIED
mqm.info USR APPLY SUCCESS APPLIED
mqm.books USR APPLY SUCCESS APPLIED
mqm.base USR APPLY SUCCESS APPLIED
mqm.win_client USR APPLY SUCCESS APPLIED
mqm.server USR APPLY SUCCESS APPLIED
mqm.os2_client USR APPLY SUCCESS APPLIED
mqm.dos_client USR APPLY SUCCESS APPLIED
mqm.aix_client USR APPLY SUCCESS APPLIED
mqm.Ja_JP USR APPLY SUCCESS APPLIED
mqm.Fr_FR USR APPLY SUCCESS APPLIED
mqm.Es_ES USR APPLY SUCCESS APPLIED
mqm.De_DE USR APPLY SUCCESS APPLIED
mqm.samples ROOT APPLY SUCCESS APPLIED
mqm.info ROOT APPLY SUCCESS APPLIED
mqm.books ROOT APPLY SUCCESS APPLIED
mqm.base ROOT APPLY SUCCESS APPLIED
mqm.win_client ROOT APPLY SUCCESS APPLIED
mqm.server ROOT APPLY SUCCESS APPLIED
mqm.os2_client ROOT APPLY SUCCESS APPLIED
mqm.dos_client ROOT APPLY SUCCESS APPLIED

Once the installation process completes the MQSeries queue manager(s) and
queues and any other desired or default MQM objects must be created and
configured. Refer to 2.1.3, “Creating MQM Objects” on page 22 for more
information.

Also, you may have to install updates to the base product. When this book was
written the correctional service diskette (CSD) 14 had to be applied for the use of
MQSeries 3T. Refer to 2.1.2, “CSD 14 for MQSeries” on page 21 for more
information.

20 MQ3T Examples for Windows Clients and AIX Servers

2.1.2 CSD 14 for MQSeries
The corrective service diskette (CSD) must be applied for 3T. Download the
CSD14 update file onto your AIX system into an appropriately sized directory
with sufficient available disk space (about 8.5 MB). In the example the directory
is /usr/csd. Remember, per the CSD update notice after binary transferring the
file to disk, rename it to csd14.objbin.

Use the SMIT menu selections to install the updates. The following SMIT menu
selections show the path and directory entry to make. Change the target
directory, of course, if you loaded the file into a different target directory than the
example.

Software Installation & Maintenance
Install / Update Software
Install ALL Software Updates on Installation Media
INPUT device / directory for software [/usr/csd/csd14.ojbin]

The ending output from the update assuming your system was not previously
updated would have output that looks like the following:

Starting SMIT
(Menu screen selected,

FastPath = ″top_menu″ ,
id_seq_num = ″0″,
next_id = ″top_menu″ ,
title = ″System Management″ .)

(Menu screen selected,
FastPath = ″install″ ,
id_seq_num = ″010″,
next_id = ″install″ ,
title = ″Software Installation & Maintenance″ .)

(Menu screen selected,
FastPath = ″install_update″ ,
id_seq_num = ″010″,
next_id = ″install_update″ ,
title = ″Install / Update Software″ .)

(Selector screen selected,
FastPath = ″install_all″ ,
id = ″install_all″ ,
next_id = ″install_all.cmd_header″ ,
title = ″Install ALL Software Updates On Installation Media″ .)

(Dialogue screen selected,
FastPath = ″install_all″ ,
id = ″install_all.cmd_header″ ,
title = ″Install ALL Software Updates On Installation Media″ .)

[Nov 19 1995, 16:42:54]
Command_to_Execute follows below:

>> /usr/lib/instl/sm_inst installp_cmd -T ems -q -a -c -B -g -N -X -d ′ / usr/csd/csd14.objbin′ -S all′ ′

Installation summary:

Name Fix Id Part Event Result State

mqm.aix_client U439048 USR APPLY SUCCESS APPLIED
mqm.base U439048 USR APPLY SUCCESS APPLIED
mqm.dos_client U439048 USR APPLY SUCCESS APPLIED
mqm.os2_client U439048 USR APPLY SUCCESS APPLIED
mqm.samples U439048 USR APPLY SUCCESS APPLIED
mqm.server U439048 USR APPLY SUCCESS APPLIED
mqm.win_client U439048 USR APPLY SUCCESS APPLIED
mqm.aix_client U439048 ROOT APPLY SUCCESS APPLIED
mqm.base U439048 ROOT APPLY SUCCESS APPLIED
mqm.dos_client U439048 ROOT APPLY SUCCESS APPLIED
mqm.os2_client U439048 ROOT APPLY SUCCESS APPLIED
mqm.samples U439048 ROOT APPLY SUCCESS APPLIED
mqm.server U439048 ROOT APPLY SUCCESS APPLIED
mqm.win_client U439048 ROOT APPLY SUCCESS APPLIED

Chapter 2. Installation 21

mqm.win_client U439048 USR COMMIT SUCCESS COMMITTED
mqm.server U439048 USR COMMIT SUCCESS COMMITTED
mqm.samples U439048 USR COMMIT SUCCESS COMMITTED
mqm.os2_client U439048 USR COMMIT SUCCESS COMMITTED
mqm.dos_client U439048 USR COMMIT SUCCESS COMMITTED
mqm.base U439048 USR COMMIT SUCCESS COMMITTED
mqm.aix_client U439048 USR COMMIT SUCCESS COMMITTED
mqm.win_client U439048 ROOT COMMIT SUCCESS COMMITTED
mqm.server U439048 ROOT COMMIT SUCCESS COMMITTED
mqm.samples U439048 ROOT COMMIT SUCCESS COMMITTED
mqm.os2_client U439048 ROOT COMMIT SUCCESS COMMITTED
mqm.dos_client U439048 ROOT COMMIT SUCCESS COMMITTED
mqm.base U439048 ROOT COMMIT SUCCESS COMMITTED
mqm.aix_client U439048 ROOT COMMIT SUCCESS COMMITTED

2.1.3 Creating MQM Objects
The files and structures that are created for a queue manager will be placed by
default into sub-directories of /var/mqm. It will be necessary to have at least 17
MB in the file system containing the directory /var/mqm.

It is wise at this point before going on to create a separate file system that has
/var/mqm as its mount point and has at least 17 MB of free space in it. You
should use SMIT once again to accomplish this choosing the menu items as
follows:

Physical & Logical Storage
File Systems

Add / Change / Show / Delete File Systems
Journaled File Systems

Add a Journaled File System

� �
Journaled File Systems

Move cursor to desired item and press Enter.

Add a Journaled File System
Add a Journaled File System on a Previously Defined Logical Volume
Change / Show Characteristics of a Journaled File System
Remove a Journaled File System

--
| Volume Group Name |
| |
| Move cursor to desired item and press Enter. |
| |
| rootvg |
| |
| F1=Help F2=Refresh F3=Cancel |
| F8=Image F10=Exit Enter=Do |
/=Find n=Find Next

� �
Figure 9. Select Root Volume Group (VG)

Select rootvg volume group and press Enter.

22 MQ3T Examples for Windows Clients and AIX Servers

In the screen in Figure 10 on page 23 change the values for ″SIZE of file system″
and ″MOUNT POINT″ as shown.

� �
Add a Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Volume group name rootvg

* SIZE of file system (in 512-byte blocks) [34000] #
* MOUNT POINT [/var/mqm]
Mount AUTOMATICALLY at system restart? yes +
PERMISSIONS read/write +
Mount OPTIONS [] +
Start Disk Accounting? no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 10. Add a Journaled File System

After this file system has successfully been created you may now proceed to
create a default Message Queue Manager and the other structures used by
MQSeries.

We created a default queue manager, RS60001, with this command:

crtmqm -q RS60001

The parameter -q makes the queue manger the default queue manager.

Press Enter and after a few minutes a successful completion message should
appear.

Note: The default queue manager in the second AIX system is RS60002.

 Hint

The queue manager name can be any 48-character name but convention
says to make your default queue manager name the same as your TCP/IP
host name but all capitals and suffixed with ″.MQM″.

For example, if your system′s TCP/IP host name is ″rabbit″ than you would
name your default queue manager name RABBIT.MQM. So the command
would be written as

crtmqm -q RABBIT.MQM

Chapter 2. Installation 23

Now you need to create the standard default and model queues for your system.
Use the IBM supplied script file amqscoma.tst. in the directory
/usr/lpp/mqm/samp. This file is run using the runmqsc command as follows:

runmqsc < amqscoma.tst > coma.log

The output of the command will be written into the file coma.log. You should
review this file and make sure there are no errors in the creation of any of the
MQSeries objects it was trying to create. A quick way to check if all is well is to
look at the end of the output file:
...
21 MQSC commands read.
0 commands have a syntax error.
0 commands cannot be processed.

Note:

The last three lines show the number of commands processed (21), the number
of commands with syntax errors, and the number of commands that could not be
processed. These should both be zero. If they are not investigate as to why and
correct the problem. Do not continue, however, until you get a clean run on this
file.

The most common reasons that the execution of the command fails are:

• There is not sufficient space allocated for /var/mqm.

• There is a problem with the security/authorization features of MQSeries.
This problem can be circumvented by removing the lines referring to the
authorization services in the file /var/mqm/qmgrs/RABBIT.MQM/qm.ini. This
should only be done, however, if you are working in a protected and
non-production environment.

#***#
#* Module Name: qm.ini *#
#* Type : MQSeries queue manager configuration file *#
Function : Define the configuration of a single queue manager *#
#***#
Service:

Name=AuthorizationService
EntryPoints=9

ServiceComponent:
Service=AuthorizationService
Name=MQSeries.UNIX.auth.service
Module=amqzfu
ComponentDataSize=0

Log:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=1024
LogType=CIRCULAR
LogBufferPages=17
LogPath=/var/mqm/log/RABBIT.MQM/

Figure 11. QM.INI File

24 MQ3T Examples for Windows Clients and AIX Servers

2.1.4 MQSeries Three Tier for AIX
The procedure to install the MQSeries 3T product is identical to that of installing
the base MQSeries product.

� �
Install Software Products at Latest Available Level

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* INPUT device / directory for software /usr/sys/inst.images
* SOFTWARE to install [1.0.0.0 mq3t
Automatically install PREREQUISITE software? yes +
COMMIT software? yes +
SAVE replaced files? no +
VERIFY Software? no +
EXTEND file systems if space needed? yes +
REMOVE input file after installation? no +
OVERWRITE existing version? no +
ALTERNATE save directory []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do� �

Figure 12. MQSeries 3T for AIX Installation

Below is the list of MQ3T LPP′s to select for a custom installation.

1.0.0.0 mq3t ALL
1.0.0.0 mq3t.books
1.0.0.0 mq3t.os2_client_En_US
1.0.0.0 mq3t.os2_client_Es_ES
1.0.0.0 mq3t.os2_client_Fr_FR
1.0.0.0 mq3t.os2_client_Ja_JA
1.0.0.0 mq3t.os2_client_dev
1.0.0.0 mq3t.samples
1.0.0.0 mq3t.server_Es_ES
1.0.0.0 mq3t.server_Fr_FR
1.0.0.0 mq3t.server_Ja_JA
1.0.0.0 mq3t.server_base
1.0.0.0 mq3t.tools
1.0.0.0 mq3t.win_client_En_US
1.0.0.0 mq3t.win_client_Es_ES
1.0.0.0 mq3t.win_client_Fr_FR
1.0.0.0 mq3t.win_client_Ja_JA
1.0.0.0 mq3t.win_client_Ja_JA
1.0.0.0 mq3t.win_client_dev

The output from your MQ3T installation process should be similar to the
following:

---- start ----
installp -qacFNXd/usr/sys/inst.images \

-f {File Containing Software} 2>&1

Contents of {File Containing Software}:

Chapter 2. Installation 25

 mq3t 1.0.0.0.all

Verifying requisites...done
Results...

SUCCESSES

Filesets listed in this section passed pre-installation verification
and will be installed.

Selected Filesets

mq3t.books 1.0.0.0 # AIX Books
mq3t.os2_client_En_US 1.0.0.0 # OS/2 Client Runtime (US Engl...
mq3t.os2_client_Es_ES 1.0.0.0 # OS/2 Client Runtime (Spanish)
mq3t.os2_client_Fr_FR 1.0.0.0 # OS/2 Client Runtime (French)
mq3t.os2_client_Ja_JA 1.0.0.0 # OS/2 Client Runtime (Japanese)
mq3t.os2_client_dev 1.0.0.0 # OS/2 Client Development Tools
mq3t.samples 1.0.0.0 # AIX Server Samples
mq3t.server_Es_ES 1.0.0.0 # AIX Server Runtime messages ...
mq3t.server_Fr_FR 1.0.0.0 # AIX Server Runtime messages ...
mq3t.server_Ja_JA 1.0.0.0 # AIX Server Runtime messages ...
mq3t.server_base 1.0.0.0 # AIX Server Runtime Base
mq3t.tools 1.0.0.0 # AIX Server Development Tools
mq3t.win_client_En_US 1.0.0.0 # Windows Client Runtime (US E...
mq3t.win_client_Es_ES 1.0.0.0 # Windows Client Runtime (Span...
mq3t.win_client_Fr_FR 1.0.0.0 # Windows Client Runtime (French)
mq3t.win_client_Ja_JA 1.0.0.0 # Windows Client Runtime (Japa...
mq3t.win_client_dev 1.0.0.0 # Windows Client Development T...

<< End of Success Section >>

The number of restored files is 2.

0503-376 installp: Applying software for the ″usr″ part of product
mq3t 1.0.0.0.

...
Restoring files, please wait.
The number of restored files is 1115.
The files for package xxxxx are being verified.
This may take several minutes, please wait.
...
0503-391 installp: The installation was SUCCESSFUL for the ″usr″ part of the

following software products:
mq3t.win_client_dev 1.0.0.0
mq3t.win_client_Ja_JA 1.0.0.0
mq3t.win_client_Fr_FR 1.0.0.0
mq3t.win_client_Es_ES 1.0.0.0
mq3t.win_client_En_US 1.0.0.0
mq3t.server_base 1.0.0.0
mq3t.tools 1.0.0.0
mq3t.server_Ja_JA 1.0.0.0
mq3t.server_Fr_FR 1.0.0.0
mq3t.server_Es_ES 1.0.0.0
mq3t.samples 1.0.0.0
mq3t.os2_client_dev 1.0.0.0
mq3t.os2_client_Ja_JA 1.0.0.0
mq3t.os2_client_Fr_FR 1.0.0.0
mq3t.os2_client_Es_ES 1.0.0.0
mq3t.os2_client_En_US 1.0.0.0
mq3t.books 1.0.0.0

0503-377 installp: Applying software for the ″root″ part of product
mq3t 1.0.0.0.

0503-392 installp: The installation was SUCCESSFUL for the ″root″ part of the
following software products:
mq3t.server_base 1.0.0.0

Finished processing all filesets. (Total time: 19 mins 11 secs).

Verifying requisites...done
Results...

SUCCESSES

26 MQ3T Examples for Windows Clients and AIX Servers

Filesets listed in this section passed pre-commit verification
and will be committed.

Selected Filesets

mq3t.books 1.0.0.0 # AIX Books
mq3t.os2_client_En_US 1.0.0.0 # OS/2 Client Runtime (US Engl...
mq3t.os2_client_Es_ES 1.0.0.0 # OS/2 Client Runtime (Spanish)
mq3t.os2_client_Fr_FR 1.0.0.0 # OS/2 Client Runtime (French)
mq3t.os2_client_Ja_JA 1.0.0.0 # OS/2 Client Runtime (Japanese)
mq3t.os2_client_dev 1.0.0.0 # OS/2 Client Development Tools
mq3t.samples 1.0.0.0 # AIX Server Samples
mq3t.server_Es_ES 1.0.0.0 # AIX Server Runtime messages ...
mq3t.server_Fr_FR 1.0.0.0 # AIX Server Runtime messages ...
mq3t.server_Ja_JA 1.0.0.0 # AIX Server Runtime messages ...
mq3t.server_base 1.0.0.0 # AIX Server Runtime Base
mq3t.tools 1.0.0.0 # AIX Server Development Tools
mq3t.win_client_En_US 1.0.0.0 # Windows Client Runtime (US E...
mq3t.win_client_Es_ES 1.0.0.0 # Windows Client Runtime (Span...
mq3t.win_client_Fr_FR 1.0.0.0 # Windows Client Runtime (French)
mq3t.win_client_Ja_JA 1.0.0.0 # Windows Client Runtime (Japa...
mq3t.win_client_dev 1.0.0.0 # Windows Client Development T...

<< End of Success Section >>

0503-379 installp: Committing software for the ″usr″ part of product
mq3t 1.0.0.0.

0503-400 installp: The commit operation was SUCCESSFUL for the ″usr″ part of
the following software products:
mq3t.books 1.0.0.0
mq3t.os2_client_En_US 1.0.0.0
mq3t.os2_client_Es_ES 1.0.0.0
mq3t.os2_client_Fr_FR 1.0.0.0
mq3t.os2_client_Ja_JA 1.0.0.0
mq3t.os2_client_dev 1.0.0.0
mq3t.win_client_En_US 1.0.0.0
mq3t.win_client_Es_ES 1.0.0.0
mq3t.win_client_Fr_FR 1.0.0.0
mq3t.win_client_Ja_JA 1.0.0.0
mq3t.win_client_dev 1.0.0.0
mq3t.server_base 1.0.0.0

0503-380 installp: Committing software for the ″root″ part of product
mq3t 1.0.0.0.

0503-401 installp: The commit operation was SUCCESSFUL for the ″root″ part of
the following software products:
mq3t.server_base 1.0.0.0

Filesets processed: 12 of 17 (Total time: 20 mins 8 secs).

0503-379 installp: Committing software for the ″usr″ part of product
mq3t 1.0.0.0.

0503-400 installp: The commit operation was SUCCESSFUL for the ″usr″ part of
the following software products:
mq3t.server_Es_ES 1.0.0.0
mq3t.server_Fr_FR 1.0.0.0
mq3t.server_Ja_JA 1.0.0.0
mq3t.tools 1.0.0.0
mq3t.samples 1.0.0.0

Finished processing all filesets. (Total time: 20 mins 12 secs).

Chapter 2. Installation 27

Installation Summary:

Name Fix Id Part Event Result State

mq3t.win_client_dev USR APPLY SUCCESS APPLIED
mq3t.win_client_Ja_JA USR APPLY SUCCESS APPLIED
mq3t.win_client_Fr_FR USR APPLY SUCCESS APPLIED
mq3t.win_client_Es_ES USR APPLY SUCCESS APPLIED
mq3t.win_client_En_US USR APPLY SUCCESS APPLIED
mq3t.server_base USR APPLY SUCCESS APPLIED
mq3t.tools USR APPLY SUCCESS APPLIED
mq3t.server_Ja_JA USR APPLY SUCCESS APPLIED
mq3t.server_Fr_FR USR APPLY SUCCESS APPLIED
mq3t.server_Es_ES USR APPLY SUCCESS APPLIED
mq3t.samples USR APPLY SUCCESS APPLIED
mq3t.os2_client_dev USR APPLY SUCCESS APPLIED
mq3t.os2_client_Ja_JA USR APPLY SUCCESS APPLIED
mq3t.os2_client_Fr_FR USR APPLY SUCCESS APPLIED
mq3t.os2_client_Es_ES USR APPLY SUCCESS APPLIED
mq3t.os2_client_En_US USR APPLY SUCCESS APPLIED
mq3t.books USR APPLY SUCCESS APPLIED
mq3t.server_base ROOT APPLY SUCCESS APPLIED
mq3t.books USR COMMIT SUCCESS COMMITTED
mq3t.os2_client_En_US USR COMMIT SUCCESS COMMITTED
mq3t.os2_client_Es_ES USR COMMIT SUCCESS COMMITTED
mq3t.os2_client_Fr_FR USR COMMIT SUCCESS COMMITTED
mq3t.os2_client_Ja_JA USR COMMIT SUCCESS COMMITTED
mq3t.os2_client_dev USR COMMIT SUCCESS COMMITTED
mq3t.win_client_En_US USR COMMIT SUCCESS COMMITTED
mq3t.win_client_Es_ES USR COMMIT SUCCESS COMMITTED
mq3t.win_client_Fr_FR USR COMMIT SUCCESS COMMITTED
mq3t.win_client_Ja_JA USR COMMIT SUCCESS COMMITTED
mq3t.win_client_dev USR COMMIT SUCCESS COMMITTED
mq3t.server_base USR COMMIT SUCCESS COMMITTED
mq3t.server_base ROOT COMMIT SUCCESS COMMITTED
mq3t.server_Es_ES USR COMMIT SUCCESS COMMITTED
mq3t.server_Fr_FR USR COMMIT SUCCESS COMMITTED
mq3t.server_Ja_JA USR COMMIT SUCCESS COMMITTED
mq3t.tools USR COMMIT SUCCESS COMMITTED
mq3t.samples USR COMMIT SUCCESS COMMITTED

2.2 Windows Client for Development
For this project, we install the following software:

• IBM DOS Version 7.0

• Microsoft Windows Version 3.1

• IBM TCP/IP Version 2.1.1

• IBM MQSeries Windows Client

• IBM MQSeries Three Tier Client

• Microsoft Visual Basic Version 3

• MQSeries 3T Support Pack for Visual Basic

2.2.1 IBM DOS 7.0
Insert the first DOS installation diskette in the A-drive, make the A-drive your
current drive and type:

setup

We installed the following optional tools:

• IBM AntiVirus/DOS

• REXX Language Support

28 MQ3T Examples for Windows Clients and AIX Servers

• Central Point Backup (this is a default)

Note: We did not select the DOS Shell.

2.2.2 MS Windows Version 3.1
Insert first diskette in the A-drive, make the A-drive your current drive and type:

setup

The installation program asks you to make choices. We recommend the
following:

• Select Express Setup (Recommended) and press Enter.

• You have to enter your name when prompted.

• Accept the default directory C:\WINDOWS.

• On the printer installation screen select the printer attached to your
workstation. If you have none select No printer installed and press Enter.

• Reboot your system

After the installation of DOS and Windows your directory should look like this:

DOS <DIR> 11-06-95 5:55p
COMMAND COM 52,956 11-17-94 1:00p
WINA20 386 9,349 11-17-94 1:00p
CONFIG OLD 83 11-06-95 6:00p
AUTOEXEC OLD 140 11-06-95 6:00p
WINDOWS <DIR> 11-06-95 6:06p
CONFIG SYS 144 11-06-95 6:22p
AUTOEXEC BAT 176 11-06-95 6:22p

8 file(s) 62,848 bytes

The CONFIG.SYS contains:

FILES=30
BUFFERS=10
DOS=HIGH
DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\DOS\SETVER.EXE
DEVICE=C:\WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER
STACKS=9,256

To allow more space for environment variables we recommend to add this line
to the CONFIG.SYS file:

SHELL=C:\DOS\COMMAND.COM /E:2048 /P

The AUTOEXEC.BAT file contains:

C:\WINDOWS\SMARTDRV.EXE
@ECHO OFF
SET PATH=C:\WINDOWS;C:\DOS;%PATH%
SET TEMP=C:\DOS
C:\DOS\MOUSE.COM
C:\DOS\DOSKEY.COM
SET IBMAV=C:\DOS
CALL C:\DOS\IBMAVDR.BAT C:\DOS\

Chapter 2. Installation 29

2.2.3 TCP/IP
For the communication with the AIX server we selected TCP/IP for DOS and
Windows, Version 2.1.1 and applied the fixes from Corrective Service Diskette
(CSD) Version 2.1.1.4.

2.2.3.1 TCP/IP Installation
Insert the first of four diskettes of the TCP/IP base code in the A-drive, make the
A-drive your current drive and type:

install

We accepted the default directory C:\TCPDOS and selected all components listed
in the Customize Product Installation window, totalling about 11.5 megabytes.
When the install program asks if it shall update the CONFIG.SYS type y.

The TELNET 3270 EMULATOR screen lets you choose a default translation table.
We accepted the default F (US).

Reboot the system before you apply the CSD!

The insert the first of the three CSD diskettes into the A-drive and type:

tcpcsd

Type Y when the following window appears:

� �
IBM TCP/IP for DOS Version 2.1.1
Corrective Service Diskette
July 31, 1995

Your TCPBASE environment variable is set to: C:\TCPDOS\ETC\..

Do you want the Corrective Service applied to the TCP/IP fpr DOS
installed at C:\TCPDOS\ETC\.. (Y, N or Q)
?y

� �

Another screen asks you if you want to save the previous versions. Answer n.

You may also choose to have the online books updated. There are four books
for you to view:

• User′s Guide

• Installation and Administration

• Command Reference

• Programmer ′s Reference

To read the books type tcpread and follow the directions on the subsequent
screens.

30 MQ3T Examples for Windows Clients and AIX Servers

2.2.3.2 TCP/IP Customization
Before you begin with the customization you have to obtain from your network
administrator the following:

At a DOS prompt type:

custom

The first screen you see shows the directories TCP/IP uses. Click on OK or
press Enter.

Then the IBM logo appears. Select Configure from the menu bar. The menu
offers the following choices:

Table 1. Addresses for TCP/IP Customization

Used in this project

IP address for your workstation 9.24.104.107

Host name of the workstation OAKC1

Subnet mask, usually that is... 255.255.255.0

Address of the IP router 9.24.104.1

Domain name server address 9.24.104.108

Domain name itso.ral.ibm.com

The address of the AIX server is 9.24.104.26

NDIS Interfaces
ODI Interfaces
SLIP Interfaces
Routing Information
Name Resolution
Network Services
Auto-start
Ftp User List
NetBIOS
Windows
NDIS Protocol Manager
Exit - Save Changes
Quit - Discard Changes

Figure 13. TCP/IP Configure Menu

To customize the workstation we followed these steps:

Step 1. Select NDIS Interfaces from the menu and fill in the window that wil l be
displayed:

a. Leave ND0 as the default for Interface.

b. Tab to Options and use the space bar to select Enable interface .
An X will appear between the brackets.

 c. Tab to IP Address and enter the address given to you by your LAN
or systems administrator. We were given the IP address
9.24.104.107.

d. Tab to Subnet mask and enter 255.255.255.0.

Chapter 2. Installation 31

e. Tab to Bound adapter, click on the arrow and select an adapter
from the pull-down. Our adapter is an IBM 16/4 Token Ring
Network Adapter. Then press Enter.

f. Click on OK .

Step 2. Now you are prompted to insert the TCP/IP device driver diskette in the
A-drive. Press OK.

Step 3. Click on Routing Information in the menu. In the window displayed
enter two fields:

a. Click on the arrow next to Route Type and double-click on Default
in the pull-down.

b. Tab to Router IP Address and type 9.24.104.1. Then click on OK .

Step 4. Click on Name Resolution in the menu and enter three values in the
window displayed:

a. The host name, that is the name of the workstation that you
configure, is OAKC1.

b. The domain name for our installation is itso.ral.ibm.com.

 c. The domain name server address is 9.24.104.108.

d. Click on OK .

Step 5. Click on Auto-start in the menu and enable TCP/IP by pressing the
space bar or use the mouse and click on the field between the
brackets. Then click on OK .

Step 6. Click on Windows in the menu and then on Yes in the window
displayed. This creates an icon for TCP/IP in the Program Manager
window.

In the subsequent Confirm window click on Yes to have the CUSTOM
program update the SYSTEM.INI file in the Windows directory.

Step 7. When you select NDIS Protocol Manager from the menu the install
program displays the adapter chosen in step 1. Click on OK .

Step 8. Select Exit - Save Changes from the menu. You are presented with
some windows that ask you if you want the AUTOEXEC.BAT and
CONFIG.SYS updated. It is recommended that you let the install
program do this.

Step 9. Reboot your system.

After the installation of TCP/IP your directory contains the following new or
updated entries:

CONFIG SYS 293 11-16-95 6:54p <-- changed
AUTOEXEC BAT 315 11-16-95 6:51p <-- changed
TCPDOS <DIR> 11-16-95 5:29p <-- new
AUTOEXEC BK 176 11-16-95 5:42p <-- backup
AUTOEXEC BK1 279 11-16-95 6:51p <-- backup
CONFIG BK1 144 11-16-95 6:53p <-- backup

32 MQ3T Examples for Windows Clients and AIX Servers

The CONFIG.SYS contains the following changes:

FILES=30
BUFFERS=10
DOS=HIGH
DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\DOS\SETVER.EXE
DEVICE=C:\WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER
STACKS=9,256
DEVICE = C:\DOS\ANSI.SYS
DEVICE = C:\TCPDOS\BIN\PROTMAN.DOS /I:C:\TCPDOS\ETC
DEVICE = C:\TCPDOS\BIN\DOSTCP.SYS
DEVICE = C:\TCPDOS\BIN\IBMTOK.DOS
SHELL=C:\DOS\COMMAND.COM /E:2048 /P

The AUTOEXEC.BAT contains the following changes:

C:\TCPDOS\BIN\NETBIND
SET ETC=C:\TCPDOS\ETC
C:\WINDOWS\SMARTDRV.EXE
@ECHO OFF
REM Old PATH statement
REM set path=c:\windows;c:\dos;%path%
set path=c:\windows;c:\dos;%path%;C:\TCPDOS\BIN;
SET TEMP=C:\DOS
C:\DOS\MOUSE.COM
C:\DOS\DOSKEY.COM
SET IBMAV=C:\DOS
CALL C:\DOS\IBMAVDR.BAT C:\DOS\
CALL TCPSTART

2.2.3.3 Test the Configuration
To verify your TCP/IP configuration select Verify Data from the Verify menu. A
window confirms that you have specified all required items. However, the
program cannot tell you if the values you entered during the customization are
correct.

To test the configuration type at a DOS prompt:

tcpcheck

This program checks if:

• the INET daemon is up

• the ADAPTER works

• the GATEWAY is present

• the NAMESERVER is present

• the NAMESERVER works

At this time you should be able to ″ping″ the server, providing that machine is up
and running. You can do that in two ways: by specifying the host name or the IP
address of the machine you want to ping. The host name of our server is
RS60001. At a DOS prompt type:

ping RS60001

and press Enter. The result should look like this:

Chapter 2. Installation 33

� �
C:\ping RS60001
PING rs60001.itso.ral.ibm.com (9.24.104.26): 56 data bytes
64 bytes from 9.24.104.26: icmp_seq=0 ttl=255 time=0 ms
64 bytes from 9.24.104.26: icmp_seq=1 ttl=255 time=0 ms
64 bytes from 9.24.104.26: icmp_seq=3 ttl=255 time=0 ms
^C

--- RS60001.itso.ral.ibm.com ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/max/avg = 0/0/0 ms

C:\ping 9.24.104.26
PING 9.24.104.26 (9.24.104.26): 56 data bytes
64 bytes from 9.24.104.26: icmp_seq=0 ttl=255 time=0 ms
64 bytes from 9.24.104.26: icmp_seq=1 ttl=255 time=0 ms
^C

� �

Press Ctrl+C to stop the ping.

To ping from Windows, select the TCPIP icon and then the Ping icon. In the Host
menu (shown below) enter the IP address or the server name and click on OK .

Figure 14. Ping a Host

To end the ping program select Exit from the File menu.

There should be no loss of data for the packets.

2.2.4 MQSeries Windows Client
For the installation of MQSeries for clients and servers the publication MQSeries
Clients, SC33-1632 is very helpful.

Note: For MQSeries 3T to work the corrective service diskette CSD 14 must be
applied to MQSeries on the AIX server system.

2.2.4.1 Installation
For the Windows 3.1 client you copy from either an OS/2 or AIX server the 15
files listed in Figure 15 on page 35.

34 MQ3T Examples for Windows Clients and AIX Servers

AMQ9 MSG 30617
AMQCNTBW DLL 74988
AMQCNTBW LIB 2048
AMQCPMNW DLL 40768
AMQCPMNW LIB 1536
AMQCTCPW DLL 89468
AMQCTCPW LIB 2048
CMQC H 50759
CMQCFC H 23021
CMQXC H 14905
MQIC DLL 205300
MQIC LIB 2560
RUNMQFMT EXE 66273

Figure 15. MQSeries for Windows Clients: Files

There are two ways to move these files from the AIX server to the Windows
workstation:

• On the AIX server, you may copy the files to diskette and then copy them
from the diskette into a directory on the workstation′s hard drive.

• Since TCP/IP is working, you may also ″telnet″ to the server and ″ftp″ (use
the file transfer program) the files from the server to the workstation.

Where are the files? The files are in the following directories on your AIX
system:

/usr/lpp/mqm/win_client/dll/*.exe
/usr/lpp/mqm/win_client/dll/*.dll
/usr/lpp/mqm/win_client/lib/*.lib
/usr/lpp/mqm/win_client/msg/*.msg

Transfer via diskette: Transferring the files via diskette requires more typing
than using the file transfer program. You have to enter one command per file
you want to copy, such as:

doswrite -D /dev/rfd0 /usr/lpp/mqm/win_client/bin/runmqfmt.exe runmqfmt.exe
------------ --------------------------- ------------ ------------

diskette AIX directory filename target file

Another way is to write a shell script to write files to a DOS diskette, such as:

cd /usr/lpp/mqm/win_clinet/dll
for i in *
do
doswrite -D /dev/rfd0 $i $i
echo writing $i

done

You have to repeat this for the other directories.

Then copy the files into a directory in your client machine:

C:\>md MQMWIN
C:\>cd MQMWIN
C:\MQMWIN>copy a:*.*

Chapter 2. Installation 35

Transfer using FTP: A better way is to transfer the files using the file transfer
program. You do this from the client workstation. Assume you want to copy the
files for the MQ client into the directory mqmwin.

C:\>:cd mqmwin
C:\>:ftp rs60001
userid: mqm
password::
ftp>cd /usr/lpp/mqm/win_client/dll ftp>prompt off
ftp>mget *.dll

Repeat this for all directories. Change the path statement in your
AUTOEXEC.BAT file to include the new directory:

set path=c:\windows;c:\dos;%path%;C:\TCPDOS\BIN;C:\MQMWIN;C:\

2.2.4.2 Establishing Communications
To establish MQSeries communications between workstation and server you
have to create a channel and a queue in the AIX server. You must have a user
ID on the AIX system. For this project, we use the user IDs root, mqm and mq3t.
All belong to the two user groups mqm and mq3t.

On the server use the runmqsc command to add the channel and the queue:

runmqsc

The command to create a queue called RS60001.FREMOTE to receive messages
from remote systems is as follows:

DEF QL(RS60001.FREMOTE) LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE) DEFPSIST(YES)
1 : DEF QL(HOSTNAME.FREMOTE) LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE) DEFPSIST(YES)

AMQ8006: MQSeries queue created.

You can display the properties of the queue with the following command:

DIS Q(RS60001.FREMOTE) ALL
2 : DIS Q(RS60001.FREMOTE) ALL

AMQ8409: Display Queue details.
DESCR()
PROCESS()
BOQNAME()
INITQ()
TRIGDATA()
QUEUE(RS60001.FREMOTE)
CRDATE(1995-11-09)
CRTIME(16.29.58)
GET(ENABLED)
PUT(ENABLED)
DEFPRTY(0)
DEFPSIST(YES)
MAXDEPTH(5000)
MAXMSGL(4194304)
BOTHRESH(0)
SHARE
DEFSOPT(SHARED)
NOHARDENBO
MSGDLVSQ(PRIORITY)
RETINTVL(999999999)
USAGE(NORMAL)
NOTRIGGER
TRIGTYPE(FIRST)

36 MQ3T Examples for Windows Clients and AIX Servers

TRIGDPTH(1)
TRIGMPRI(0)
QDEPTHHI(80)
QDEPTHLO(20)
QDPMAXEV(ENABLED)
QDPHIEV(DISABLED)
QDPLOEV(DISABLED)
QSVCINT(999999999)
QSVCIEV(NONE)
TYPE(QLOCAL)
DEFTYPE(PREDEFINED)
SCOPE(QMGR)
IPPROCS(1)
OPPROCS(0)
CURDEPTH(0)

The command to create the channel between the workstation (OAKC1) and the
server (RS60001) is as follows:

def chl(OAKC1.TO.RS60001) CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(′ mqm′) +
2 : def chl(OAKC1.TO.RS60001) CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(′ mqm′)

+
like(system.def.svrconn)

: like(system.def.svrconn)
AMQ8014: MQSeries channel created.

Press Ctrl+D to exit RUNMQSC.

In the client workstation add the following environment variable to the
AUTOEXEC.BAT file:

SET MQSERVER=OAKC1.TO.RS60001/TCP/9.24.104.26

The three parameters for the environment variable MQSERVER are:

• OAKC.TO.RS60002 is the name of the SVRCONN channel defined on the AIX
MQSeries server.

• The protocol type of the channel is TCP.

• The AIX server is at IP address 9.24.104.26

For more information on environment variables refer to MQSeries Clients,
SC33-1632.

Note: Unlike OS/2 environment variables have no effect until placed into the
AUTOEXEC.BAT file and the system is rebooted.

2.2.4.3 Verify the Client/Server Connection
To check if communications between workstation and server works you may use
the CL1T program. This program runs under Windows 3.1.

To invoke the program type CL1T in the Run window (providing the program
resides in the root directory of the C drive) and click on OK .

 Diskette

CL1T is supplied on diskette 1 distributed with this book.

Chapter 2. Installation 37

Figure 16. Verify the Host Connection

Ignore the text in the window CL1 - Windows MQI Client Test. When you click on
MQI Test in the menu bar you see the menu of the six functions the program
performs:

Figure 17. Issue Single MQI APIs

Perform the test by issuing the commands in the above order. When you click
on one of the menu items a window appears in which you enter data. The
window disappears when the function executed correctly. Otherwise an error
message will be displayed. For error messages refer to the MQI return codes in
MQSeries for MVS/ESA Messages and Codes, SC33-0819.

Notes:

 1. If you do not type the name of a queue manager the program uses the
default queue manager.

 2. As queue name we use RS60001.FREMOTE. The queue name is case sensitive!

 3. The program lets you specify the number of messages to send and a
message text.

 4. The MQGet function gets all messages in the queue, not only the ones you
sent. Use the NOWAIT Option. WAIT causes the program to stay in a loop
and you will not be able to close and disconnect.

38 MQ3T Examples for Windows Clients and AIX Servers

2.2.5 3T Windows Client
The 3T client support for Windows 3.1 comes on two diskettes. To install it follow
these steps:

Step 1. Bring up Windows

Step 2. Select Run from the File menu.

Step 3. Type a:\install

Step 4. Click on Continue when the Installation window appears.

Step 5. Click on OK in the Install window. Ensure that the option Update
CONFIG.SYS/AUTOEXEC.BAT is checked.

Step 6. Since we install a Windows development workstation click on Select all
in the Install - directories window. That installs the following functions:

• MQSeries Three Tier - Windows Tools

• MQSeries Three Tier - Windows Runtime

• MQSeries Three Tier - Windows Samples

You may change the directory name, if you wish. Click on Install to
begin with the installation.

Step 7. Reboot your system after the installation is completed.

Note: Though we do not plan to use the Windows sample programs they may be
beneficial for reference purposes. To create executables for those C samples
we would have to instal l Visual C++. In this project, however, we use Visual
Basic to create programs running in the client workstations.

The AUTOEXEC.BAT contains the following changes:

C:\TCPDOS\BIN\NETBIND
SET ETC=C:\TCPDOS\ETC
C:\WINDOWS\SMARTDRV.EXE
@ECHO OFF
REM Old PATH statement
REM set path=c:\windows;c:\dos;%path%
set path=c:\windows;c:\dos;%path%;C:\TCPDOS\BIN;C:\MQMWIN;C:\;c:\3TIERW\BIN;
c:\3TIERW\SAMPLES\BIN
SET TEMP=C:\DOS
C:\DOS\MOUSE.COM
C:\DOS\DOSKEY.COM
SET IBMAV=C:\DOS
CALL C:\DOS\IBMAVDR.BAT C:\DOS\
CALL TCPSTART
SET MQSERVER=OAKC1.TO.RS60001/TCP/9.24.104.26
SET INCLUDE=c:\3TIERW\INCLUDE
SET LIB=c:\3TIERW\LIB
SET BMQLOCPATH=c:\3TIERW

You must add the following environment variable to the AUTOEXEC.BAT file or
you get a conversion error (BMQ1332) when sending messages to the AIX
server.

SET BMQCCSID=850

Make sure this environment variable setting matches the AIX system
environment language settings. US English is IBM-850. This environment
variable is needed because presently the AIX code translation does not support

Chapter 2. Installation 39

the MQ3T ″unibyte″ implemented code page number 1004. This tells MQ3T to
use a CCSID 850 translation.

The CONFIG.SYS remains unchanged.

The installation program adds the following directories:

C:3TIERW
+---INCLUDE
+---LIB
+---DATA
+---BIN
+---UCONVTAB
+---ICONV
\---SAMPLES

+---C
| +---HELLO1
| +---HELLO2
| +---HELLO3
| +---HELLO4
| +---HELLO5
| +---HELLO6
| \---JOBVIEW
\---BIN

The Program Manager windows contains three new icons:

Figure 18. MQ3T Icons in Windows Program Manager

2.2.6 Visual Basic
For this project, we use Microsoft Visual Basic for Windows, Standard Edition,
Version 3.0. To install it follow these steps:

Step 1. Bring up Windows

Step 2. Select Run from the File menu.

Step 3. Type a:\setup and press Enter.

Step 4. You have to enter your name when prompted.

Step 5. Accept the directory C:\VB; it wil l be created if it does not exists.

Step 6. Select Complete Installation in the Installation Option window.

40 MQ3T Examples for Windows Clients and AIX Servers

The Visual Basic files are in the directory C:\VB. The installation program has
no need to update the CONFIG.SYS and AUTOEXEC.BAT files.

To start Visual Basic double-click on the Visual Basic icon in the program
manager window. This displays the following window:

Figure 19. Visual Basic Icons

2.2.7 Visual Basic Support for Windows Clients
MQSeries Three Tier Visual Basic Support for Windows Client is provided as a
SupportPac, MA3B. It contains Visual Basic source code to allow MQSeries
Three Tier applications to be written using Visual Basic. Also included are
program fragments il lustrating how the MQSeries Three Tier API is invoked
using Visual Basic. The SupportPac consists of four files:

MA3B PACKAGE General Information

MA3B ANNOUNCE Announce File

MA3B ZIPBIN Visual Basic support and samples etc

LICENSE2 TXT License agreement

This SupportPac extends the range of options for MQSeries Three Tier
customers by enabling the use of Microsoft ′s Visual Basic product. Using this
SupportPac you can use Visual Basic to develop Windows 3.1 Graphical User
Interfaces for IBM MQSeries Three Tier applications.

To install the SupportPac follow these steps:

Step 1. Copy MA3B.ZIP to a temporary directory or diskette.

Step 2. To unzip the file type UNZIP MA3B. This creates the following files:

MA3B ZIP 298862
LICENSE2 TXT 5586
SOURCE <DIR>
INSTALL BAT 701
README WRI 50560

Note: README.WRI is a Windows Write format file that contains
installation instructions. Open this file from the File Manager window.

Step 3. Assuming the files are on a diskette, insert the diskette in the A-drive,
make the A-drive your current drive, and type:

install

The installation program adds the following subdirectories and files:

Chapter 2. Installation 41

C:\3TIERW\VBSUPP\BMQB.BAS
C:\3TIERW\VBSUPP\CMQB.BAS
C:\3TIERW\VBSUPP\BMQVBX.BAS
C:\3TIERW\VBSUPP\OAKCD.BMP
C:\3TIERW\VBSUPP\OAKCU.BMP
C:\3TIERW\VBSUPP\OAKEU.BMP
C:\3TIERW\VBSUPP\OAKMU.BMP
C:\3TIERW\SAMPLES\VB\HELLO1
C:\3TIERW\SAMPLES\VB\HELLO2
C:\3TIERW\SAMPLES\VB\PCUST
C:\3TIERW\SAMPLES\VB\SPEEDUP
C:\3TIERW\SAMPLES\VB\TEMPLATE
C:\3TIERW\README.WRI

Step 4. Before you can use the SupportPac copy the following files into the
WINDOWS\SYSTEM directory:

C:\3TIERW\VBSUPP\BMQNTFY.VBX
C:\3TIERW\VBSUPP\VBRUN300.DLL

Note: VBRUN300.DLL may already be in the directory
WINDOWS\SYSTEM. During Visual Basic installation a copy is placed
in that directory.

2.3 Windows Client for Production
A Windows client that executes presentation logic only requires the following
software:

• IBM DOS Version 7.0

• Microsoft Windows Version 3.1

• IBM TCP/IP Version 2.1.1

• IBM MQSeries Windows Client

• IBM MQSeries Three Tier Client

• The run-time program of Visual Basic

• A subset of the SupportPac of 3T for Visual Basic

• The application

42 MQ3T Examples for Windows Clients and AIX Servers

Chapter 3. Using Visual Basic

MQSeries Three Tier Visual Basic Support for Windows Clients is provided as a
SupportPac, MA3B. This licensed material contains Visual Basic source code
that allows you to use Microsoft′s Visual Basic product to develop Microsoft
Windows 3.1 GUIs for IBM MQSeries Three Tier applications.

Note: You develop Presentation Logics (PLs) on the Windows system. Business
Logics (BLs) must be developed on either an OS/2 or AIX machine. Also, the 3T
class compiler is only available for OS/2 and AIX.

The following sections include material from the SupportPac. How to install the
package is described in section 2.2.6, “Visual Basic” on page 40.

3.1 Introduction
The MQSeries Three Tier (MQ3T) product announced on the 12th September
1995 provides a structured way of developing distributed client/server
applications. MQ3T has been designed to be ″AD Tool Neutral″. This means
that different application development tools can be used to produce the
application parts for MQ3T applications.

One of the key areas of application development for MQ3T is that of producing
the Graphical User Interface (GUI) parts of the distributed application. IBM has
already announced IBM VisualAge V2 support for MQ3T and SupportPac MA3D
extends this support to VisualAge V3. This SupportPac is designed to extend the
range of options for MQ3T customers by enabling the use of Microsoft′s Visual
Basic product. Using this SupportPac you can use Visual Basic to develop
Microsoft Windows 3.1 GUIs for IBM MQSeries Three Tier applications.

3.2 The SupportPac
This SupportPac contains Visual Basic source code to allow MQ3T applications
to be written using Visual Basic. Also included are program fragments
illustrating how the MQ3T API is invoked using Visual Basic.

These fragments have been extracted from a larger application that formed part
of the first MQSeries Three Tier education class.

Also provided are two samples HELLO1 and HELLO2 which are analogous to the
MQ3T C samples. These can be run and used to confirm that the installation has
been successful.

A template program is provided which can form the basis of further code
development. In its initial state, it provides the infrastructure which any MQ3T
Visual Basic program will have, and unmodified, runs in a similar way to
HELLO1. The user is prompted to write their own code.

A speed-up program provides a faster means to start PL programs. The
program is provided which reloads the VBRUN300.DLL and can be used to start
this during Windows startup.

 Copyright IBM Corp. 1996 43

3.3 The Visual Basic / MQ3T Interface
In MQ3T, the GUI parts of an application are called Presentation Logic classes
(PLs). The purpose of the SupportPac MA3B is to produce PLs using Visual
Basic.

Visual Basic PLs interface to the MQ3T Presentation Logic Manager (the PLM).
It is the PLM that notifies the Visual Basic PL when 3T rules have been satisfied
and the associated methods need to be invoked.

When it first starts, the Visual Basic PL needs to identify itself to the PLM, so the
PLM knows how to direct events to the PL. This is achieved when the PL issues
the MQ3T MQREG API registration call. The call supplies the PL′s window
handle and an event ID that the PL wants to associate with events from the PLM.
The handle allows the PLM to send events to the PL through the Windows 3.1
windowing system and the event ID allows the PL to determine that it was the
PLM (not some other part of Windows 3.1) that sent the event.

Whenever the PLM communicates with the Visual Basic application, it will send
the specified event ID to the specified window handle.

The following code registers a PL with the PLM. The procedure is invoked when
the form is loaded.

Sub Form_Load ()

If Command = ″″ Then ′ Check for command-line parameter
MsgBox ″No ClassName passed to program.″, 16, ″PROGRAM TERMINATING″
End

End If

vPLClass = Command ′ Convert string to classname

′ Register class with 3T

MQREG ByVal vPLClass, ���
1, ���
ByVal OAK1.hWnd, ��� all on one line!
ByVal BMQ_NOTIFY, ���
ByVal MQRGO_REMOVE_LIST_ENTRIES, ���
CompCode, Reason

DisplayCompCode ″MQREG″

End Sub

Figure 20. Register a Window with 3T

Note: ″Form_Load″ is obtained from the HELLO1 sample. A parameter
containing the class name must be passed to the PL. Otherwise, the
program terminates.

Table 2 on page 45 lists the parameters for the MQREG API.

44 MQ3T Examples for Windows Clients and AIX Servers

When the PL instance ends it has to unregister itself. The MQUREG API is used
for this purpose. The following code is obtained from the HELLO1 sample and
shows how to end a PL instance and how to unregister it.

Table 2. MQREG Parameters

Parameter Description

ByVal vPLClass
(input)

The name of the 3T PL class that will be associated
with the window handle.
This is the first parameter of the STARTJOB
command. The field is defined in HELLO1H.BAS.

1
(input)

The maximum number of instances the class can
process at one time.
The PLM creates one instance of the PL. However,
several copies of the program may be active at the
same time.

ByVal OAK1.hWnd
(input)

The window handle associated with the class. The
PLM sends PLM event messages for the PL to this
window handle.

ByVal BMQ_NOTIFY
(input)

The message ID that the PLM uses when it posts an
event message to the window handle.
This value is specified in the file BMQVBX.BAS as
WM_USER + 1 (see page 51).

ByVal
MQRGO_REMOVE_LIST_ENTRIES

This positional parameter has no effect under
Windows.

CompCode, Reason The completion and reason codes are listed in the
Application Programming manual.

Sub Close_Click ()

′ common exit path

If vHInst <> 0 Then ′ issue MQSETS only if vHInst is valid �1�
MQSETS ByVal vHInst, ByVal MQSTATE_END, CompCode, Reason

DisplayCompCode ″MQSETS″
End If

′ unregister the previously registered class

MQUREG ByVal vPLClass, ���
ByVal OAK1.hWnd, ��� all on one line
ByVal MQURGO_FORCE, ���
CompCode, Reason ���

DisplayCompCode ″MQUREG″

End ′ end program execution
End Sub

Figure 21. Unregister a Window with 3T

Chapter 3. Using Visual Basic 45

The routine in Figure 21 is invoked when the user exits the application. The
routine issues two 3T APIs:

• MQSETS (MQ Set State)

• MQUREG (MQ UnREGister)

If the window handle is valid a MQSETS API is issued. Setting the instance state
to the value of MQSTATE_END causes the PLM to terminate the instance.

The window handle, vHInst, is not valid (�1�) when the program was run from
within Visual Basic. Since no startjob command was issued there is no instance.

The parameters of the MQSETS API are:

The MQUREG API unregisters the PL. The parameters of the API are:

The routine DisplayCompCode in Figure 30 on page 54, also from the HELLO1
sample, displays the completion and reason codes of 3T APIs in a message box.
The parameter handed over to the routine is the name of the 3T API call.

Table 3. MQSETS Parameters

Parameter Description

ByVal vPLClass
(input)

The name of the class that is associated with the window
handle.
This is the first parameter of the STARTJOB command
and it was saved when the form was loaded (see
Figure 20 on page 44).

ByVal MQSTATE_END
(input)

This value causes the instance to end; the GUI goes
away.
This and other values a state can be set to are defined in
BMQB.BAS and explained on page 161 of the Application
Programming manual.

CompCode, Reason The completion and reason codes are listed in the
Application Programming manual.

Table 4. MQUREG Parameters

Parameter Description

ByVal vPLClass
(input)

The name of the class that is associated with the window
handle.

ByVal OAK1.hWnd
(input)

The handle of the window to unregister.

ByVal MQURGO_FORCE
(input)

This option terminates all instances associated with the
class and window handle. The other option,
MQURGO_NORMAL, does not unregister if the window
handle is associated with any instances.

CompCode, Reason The completion and reason codes are listed in the
Application Programming manual.

46 MQ3T Examples for Windows Clients and AIX Servers

3.4 Parameter Passing
After the Visual Basic application (PL) has registered itself, the PLM will pass the
application an instance handle, which the application then uses for any further
communication with the PLM. The instance handle is passed by the PLM using
the Windows LPARAM variable, with the WPARAM variable indicating what the
PLM is communicating.

However, in Visual Basic, these parameters are not directly accessible, and so it
has been necessary to develop an interface layer between Visual Basic and the
PLM to intercept events, obtain the LPARAM and WPARAM values, and pass
them to the Visual Basic application. This interface layer is implemented as a
Visual Basic Custom Control, or .VBX file.

As well as intercepting the LPARAM and WPARAM variables, it also overcomes
the problems that occur in Visual Basic when the application is displaying a
Modal dialog Box. If a Modal dialog Box is being displayed, Visual Basic will
only allow the application to detect the events that are associated with that
Modal dialog Box (for instance, a Cancel_click, or an Enter_click if the Modal
dialog Box is displaying Cancel and Enter). While Modal dialog Boxes are being
displayed, incoming events from the PLM will be lost.

The MQ3T Custom Control can detect the incoming event from the PLM and will
hold the event until the Visual Basic application has removed the Modal dialog
Box, when the MQ3T Custom Control will pass the event to the application.

Figure 22 summarizes the above.

Figure 22. Parameter Passing between PL and PLM

Once the Visual Basic application (PL) has obtained its Instance ID, it can then
use the other MQ3T API calls to send data (MQSEND) and query/obtain replies
(MQQRYE/MQQRYM). Typically the application will be structured to issue
MQSENDs when the user clicks buttons on the application screen.

Chapter 3. Using Visual Basic 47

The code in Figure 23 on page 48, also obtained from the HELLO1 sample, is
invoked when a PL event occurs, that is when the PL receives a message.

The name of the procedure, OAK1_NewEvent, is hard-coded in the routine
BMQNTFY.VBX. OAK1 is the name of the object that is created when the
oaktree icon is dragged from the Visual Basic Toolbox into the form. NewEvent
is the default name for the procedure associated with that object.

Three parameters are passed from the custom control BMQNTFY to the Windows
event procedure:

 1. The user event ID (message ID) as written in the MQREG call in Figure 20 on
page 44. The value BMQ_NOTIFY is defined in the file BMQVBX.BAS as
WM_USER + 1 (see page 51). When a message with that ID arrives the
procedure OAK1_NewEvent is called.

 2. There are three event message IDs (WPARAM):

• MQPLM_RULE_SATISFIED

• MQPLM_INSTANCE_DELETED

• MQPLM_HWND_UNREGISTERED

A description can be found on page 226 of the Application Programming
guide.

 3. The instance handle (LPARAM) should be saved, since it wil l be used as an
input parameter in other MQ3T API calls. It will tell the PLM which instance
of a class issued the call. Here the instance handle is saved in the field
vHInst. The field is defined in HELLO1H.BAS.

Sub OAK1_NewEvent (msg As Integer, wp As Integer, lp As Long)

If wp = MQPLM_RULE_SATISFIED Then
vHInst = lp
ProcessPLEvent ByVal lp ′ make call to handle the event

ElseIf wp = MQPLM_HWND_UNREGISTERED Then
End ′ already unregistered, so simply exit

End If

End Sub

Figure 23. PL (GUI) Receives MQ3T Events

When a rule is satisfied then the instance ID is saved in the field vHInst (defined
in HELLO1H.BAS) and another routine, ProcessPLEvent, is called to processes
the event. That routine represents the input side of the Presentation Logic, the
user code that analyses an incoming message and acts on it.

After describing what happens when the PLM sends a message to the PL (GUI)
let us discuss what happens when the PL sends a message to a BL, DL or
another PL.

Usually, such an action is initiated when the user clicks on a button or on a
menu item in the GUI. The following procedure is from the HELLO1 sample. It is
invoked when the user clicks on the menu item ″Hello BL″ and sends a message
to the BL.

48 MQ3T Examples for Windows Clients and AIX Servers

Sub MenuHelloBL_Click ()

Dim BufferMsg As HELLO ′ buffer - NB Don′ t define as String

BufferMsg.message = ″Hello BL Method″
′ send request BLREQUEST to class BLCLASS

MQSEND ByVal vHInst, ���
ByVal BLCLASS, ���
ByVal BLINSTANCE, ���
ByVal BLREQUEST, ��� all on one line!
0, ���
BufferMsg, ���
CompCode, Reason ���

DisplayCompCode ″MQSEND″
End Sub

Figure 24. PL (GUI) Sends a Message

The MQSend API sends the message with the name BLREQUEST to the instance
BLINSTANCE of the class BLCLASS. The following table describes the
parameters:

Table 5. MQSEND Parameters

Parameter Description

ByVal vPLClass
(input)

The field vPLClass contains the name of the 3T PL class
that sends the message.
The name was obtained from the routine in Figure 20 on
page 44. The field is defined in HELLO1H.BAS.

ByVal BLCLASS
(input)

The name of the destination class, ″hellobl1″, is defined in
the file HELLO1H.BAS.

ByVal BLINSTANCE
(input)

The name of the destination instance, ″Beech″, is defined
in the file HELLO1H.BAS.

ByVal BLREQUEST
(input)

This is the name of the message to send. Its name
″BLRequest″ and its structure are defined in
HELLO1.BAS.

0
(input)

This positional parameter is reserved for message
attributes. Message attributes are not used in this
example.

BufferMsg
(input)

This is the buffer that holds the data of the message.
The buffer is defined as HELLO and HELLO is defined in
HELLO1.BAS as:

Global Const HELLOLENGTH = 20
Type HELLO

message As String * HELLOLENGTH
End Type

CompCode, Reason The completion and reason codes are listed in the
Application Programming manual.

Chapter 3. Using Visual Basic 49

3.5 SupportPac Content
The SupportPac code can be separated into five categories:

• Base functions

• Sample programs

• Sample READ ONLY code fragments

• A template for your own programs

• A run-time utility

The file README.WRI describes the SupportPac.

3.5.1 Base Functions
The following files are installed in the support directory:

C:\3TIERW\VBSUPP

3.5.1.1 BMQNTFY.VBX
This is the custom control used to intercept events from the Presentation Logic
Manager destined for PLs. It is required so that the WPARAM and LPARAM
parameters can be passed to the PL.

When developing Visual Basic applications, it is necessary to place this custom
control somewhere on the form being developed. It is an invisible control, so is
not seen at run time.

Also required on the form is the timer control, as this .VBX uses the timer to
retrigger events.

Note: BMQNTFY.VBX must be copied to the \WINDOWS\SYSTEM directory for
correct operation.

3.5.1.2 OAKCU.BMP OAKMU.BMP OAKEU.BMP OAKCD.BMP
These files are bit map support files for the custom control BMQNTFY.

When the custom control is added to a Visual Basic application, the control
appears as an Oak tree.

Table 6. Icons Used for Objects in Visual Basic Support

OAKCU OAKMU OAKEU OAKCD

50 MQ3T Examples for Windows Clients and AIX Servers

3.5.1.3 BMQVBX.BAS
This file defines the event/message ID that is generated by the custom control
BMQNTFY when the PLM sends a message to a PL. It is used by the Visual
Basic application when it registers with the PLM.

The file contains two lines. The event ID is called BMQ_NOTIFY.

Global Const WM_USER = &H400
Global Const BMQ_NOTIFY = WM_USER + 1&

Figure 25. BMQVBX.BAS File

3.5.1.4 BMQB.BAS
This is the Visual Basic equivalent of the MQ3T header file BMQC.H. It contains
all the MQ3T structure definitions and API function prototypes and constants.

3.5.1.5 CMQB.BAS
This is the Visual Basic equivalent of the MQ header file CMQC.H. It contains all
the MQ structure definitions and API function prototypes and constants.

3.5.2 Sample Programs
The SupportPac contains two sample programs, HELLO1 and HELLO2. The
programs are similar to the HELLO programs supplied with MQ3T. The following
files are installed in two directories:

C:\3TIERW\SAMPLES\VB\HELLO1
C:\3TIERW\SAMPLES\VB\HELLO2

Note: A detailed description on how to set up and run the HELLO1 sample can
be found in 3.7, “Using the Visual Basic 3T Sample Programs” on page 67.

3.5.2.1 HELOGU1W.MAK
This file is the project file for a simple sample program that uses fixed-format
messages. The program is similar to the HELLO1 C sample supplied with MQ3T.

This sample can be compiled and the executable file HELLOGU1W.EXE placed in
the 3TIERW\SAMPLES\BIN directory.

To run the client part of HELLO1, start the PLM and issue a STARTJOB message.
The sample will run using a Visual Basic PL instead of the usual C GUI program.

Alternatively with the PLM running, the GUI program can be debugged from
within Visual Basic. Before sending a STARTJOB message, run the sample by
single stepping within Visual Basic. The program will register and a point will be
reached where control is given to the executing program. Notice how the menu
contains a SEND command which is grayed out. Before this can be activated,
the PL needs an instance. Send a STARTJOB message to the program. The
Visual Basic program will receive a message and by single stepping through this
code a handle will be retrieved. The grayed out menu item is then enabled.
Clicking the SEND will send a message to the BL which will respond.

Chapter 3. Using Visual Basic 51

Figure 26. Sample HELLO1: HELOGU1W.MAK

Because the program is executing in Visual Basic, it can be single-stepped, or
run and breakpoints can be set. Individual instructions can be executed and
modified and rerun until correct. When the operation is complete, the program
can be compiled and run in the traditional way with a STARTJOB message
causing the program to be loaded and run. When the program loads, it will
cause the custom control and Visual Basic run-time DLL to load.

You will find it useful to step through this working program to observe its
operation and modify the program dynamically.

 Note

How to compile an run the sample program is described in detail in 3.7.2,
“Preparations on the Windows Client” on page 71.

3.5.2.2 HELLO1.FRM
This sample of code provides the dialog box and simple code to send a fixed
length message to a BL. By comparing the code with the HELLO1 C sample
direct comparisons between C and Visual Basic can be made.

HELLO1.FRM is similar to HELLOGU1.C in the C sample. The following figures
contain the Visual Basic code.

52 MQ3T Examples for Windows Clients and AIX Servers

VERSION 2.00
Begin Form Hello1

BackColor = &H00FFFFFF&
Caption = ″Hello1″
ClientHeight = 1656
ClientLeft = 864
ClientTop = 1884
ClientWidth = 3480
Height = 2400
Left = 816
ScaleHeight = 1656
ScaleWidth = 3480
Top = 1188
Width = 3576
Begin Timer Timer1 �Timer�Icon�

Left = 600
Top = 1200

End
Begin OAK OAK1 �Oaktree�Icon�

Left = 120
Top = 1200

End
Begin Menu MenuFile �Menu�with�2�items�

Caption = ″&File″
Begin Menu MenuHelloBL

 Caption = ″&Hello BL″
 Enabled = 0 ′ False

End
Begin Menu MenuExit

 Caption = ″E&xit″
End

End
End

Figure 27. Sample HELLO1: Visual Basic′s Dialog Box Description

Form_Load is called when Visual Basic loads the form (displays the window).
See also page 44.

Sub Form_Load ()
′ if running from within Visual Basic, select Project...
′ from Options menu and type the ClassName in the
′ command line parameter - eg hellogu1
If Command = ″″ Then ′ check for command-line parameter
MsgBox ″No ClassName passed to program.″, 16, ″PROGRAM TERMINATING″
End

End If

vPLClass = Command ′ convert string to classname

′ register class with MQ3T
MQREG ByVal vPLClass, 1, ByVal OAK1.hWnd, yVal BMQ_NOTIFY, ��� on one

ByVal MQRGO_REMOVE_LIST_ENTRIES, CompCode, Reason ��� line !
DisplayCompCode ″MQREG″

End Sub

Figure 28. Sample HELLO1: Display the Window.
Object: Form, Procedure: Load

Chapter 3. Using Visual Basic 53

Declarations

Option Explicit
Dim CompCode As Long
Dim Reason As Long

Figure 29. Sample HELLO1: Declarations.
Object: General, Procedure: Declarations

DisplayCompCode is called to display MQ3T reason codes.

Sub DisplayCompCode (ByVal OakCall As String)
Dim errtxt As String

′ no previous instance ? - OK (normal operation - not displayed)
If CompCode = MQCC_WARNING And Reason = MQRC_NO_INSTANCE Then Exit Sub

′ check return code and reason to determine if error should be displayed
If CompCode <> MQCC_OK Then
errtxt = ″CC = ″ & CompCode & ″ RC = ″ & Reason
MsgBox errtxt, 48, OakCall

End If
End Sub

Figure 30. Sample HELLO1: Display Completion Codes.
Object: General, Procedure: DisplayCompCode

OAK1_NewEvent is called when the PL receives a message from the PLM. Note
that this is a windows message and not the reply sent by the BL. The reply is
retrieved in the procedure ProcessPLEvent.

Sub OAK1_NewEvent (msg As Integer, wp As Integer, lp As Long)

′ uncomment the next line to get notification of new events
′ MsgBox ″ClassName: ″ & vPLClass, 64, ″NEW EVENT″

If wp = MQPLM_RULE_SATISFIED Then
vHInst = lp
ProcessPLEvent ByVal lp ′ make call to handle the event

ElseIf wp = MQPLM_HWND_UNREGISTERED Then
End ′ already unregistered, so simply exit

End If

End Sub

Figure 31. Sample HELLO1: Receive Messages from BL.
Object: OAK1, Procedure: NewEvent

54 MQ3T Examples for Windows Clients and AIX Servers

ProcessPLEvent is called from NewEvent when a rule is satisfied. It retrieves the
data of the reply message and displays it in a message box. A description of the
APIs is on page 57.

Sub ProcessPLEvent (ByVal HInst As Long)
Dim MQevent As MQevent ′ event structure
Dim MsgParams As MQMP ′ message parameters
Dim BufferLen As Long ′ buffer length
Dim BufferMsg As HELLO ′ buffer -

′ NB Don′ t define as String

′ rule clicked - enable ″Hello BL″ in ″File″ menu
MenuHelloBL.Enabled = True

′ query information about the current event
MQQRYE ByVal HInst, MQevent, CompCode, Reason
DisplayCompCode ″MQQYRE″

′ if the rule is RI_BLREPLY, retrieve the message data and display it
If MQevent.RuleId = RI_BLREPLY Then
BufferLen = MQevent.MaxBufferLength
MQQRYM ByVal HInst, ByVal 1, MsgParams, BufferLen, BufferMsg, CompCode, Reason
DisplayCompCode ″MQQYRM″

′ if the retrieve works, display the message from the BL Manager
If CompCode = MQCC_OK Then
MsgBox BufferMsg.message, 64, PLCLASS

End If
End If

′ end the current event - this enables the PL Manager to post new events
MQENDE ByVal HInst, ByVal MQSTATE_USER, CompCode, Reason
DisplayCompCode ″MQENDE″

End Sub

Figure 32. Sample HELLO1: Process Fixed-length Messages from BL.
Object: General, Procedure: ProcessEvent

Close_Click is invoked when the user clicks on Close from the File menu. See
also page 45.

Sub Close_Click ()
′ common exit path
If vHInst <> 0 Then ′ issue MQSETS only if vHInst is valid
MQSETS ByVal vHInst, ByVal MQSTATE_END, CompCode, Reason
DisplayCompCode ″MQSETS″

End If

′ unregister the previously registered class
MQUREG ByVal vPLClass, ByVal OAK1.hWnd, ByVal MQURGO_FORCE, CompCode, Reason
DisplayCompCode ″MQUREG″

End ′ end program execution
End Sub

Figure 33. Sample HELLO1: Menu Item Close.
Object: General, Procedure: CloseClick

Chapter 3. Using Visual Basic 55

MenuHelloBL_Click is invoked when the user clicks on the Hello BL item from
the File menu. MQSEND sends the message BLRequest to the instance ″Beech″
of the class ″hellobl1″. The values are defined in Figure 37 on page 58.

Sub MenuHelloBL_Click ()
Dim BufferMsg As HELLO ′ buffer - NB Don′ t define as String

BufferMsg.message = ″Hello BL Method″
′ send request BLREQUEST to class BLCLASS
MQSEND ByVal vHInst, ByVal BLCLASS, ByVal BLINSTANCE, ByVal BLREQUEST,

0, BufferMsg, CompCode, Reason
DisplayCompCode ″MQSEND″

End Sub

Figure 34. Sample HELLO1: Send a Fixed-length Message to the BL.
Object: MenuHelloBL, Procedure: Click

Form_Unload is called when the user clicks on Close from the system menu.

Sub Form_Unload (Cancel As Integer)
Close_Click ′ common exit path

End Sub

Figure 35. Sample HELLO1: Close the Window.
Object: Form, Procedure: Unload

MenuExit_Click is called when the user clicks on Exit from the File menu.

Sub MenuExit_Click ()
Close_Click ′ common exit path

End Sub

Figure 36. Sample HELLO1: Exit the Program.
Object: MenuExit, Procedure: Click

The procedure in Figure 32 on page 55 issues three MQ3T API calls:

• MQQRYE (MQ Qeuery Event) stores the properties of the event in the event
structure MQevent. The structure is explained on page 250 of the
Application Programming manual.

• MQQRYM (MQ Queury M essage) stores the properties of the message in the
MQMP structure MsgParams and the message itself in the buffer BufferMsg.
You need this call to gain access to the message data. The MQMP structure
is explained on page 255 of the Application Programming manual.

• MQENDE (MQ End Event) indicates that the program has processed the event
and allows another event to occur.

The following tables describe the parameters of the API calls.

56 MQ3T Examples for Windows Clients and AIX Servers

Table 7. MQQRYE Parameters

Parameter Description

ByVal HInst
(input)

The name of the instance that issues the call. The name
was saved in the OAK1_NewEvent procedure, shown in
Figure 23 on page 48, and passed to the ProcessPLEvent
procedure (Figure 40 on page 60).

MQevent
(input)

This structure contains data that describe the event. This
example refers to two fields in the structure:

• MQevent.RuleId contains the ID of the rule that
caused the event: RI_BLREPLY.

• MQevent.MaxBufferLength contains the size of the
buffer you need to store the longest message.

Refer to page 250 of the Application Programming Guide.

CompCode, Reason The completion and reason codes are listed in the
Application Programming manual.

Table 8. MQQRYM Parameters

Parameter Description

ByVal HInst
(input)

The name of the instance that issues the call. The name
was saved in the OAK1_NewEvent procedure, shown in
Figure 23 on page 48, and passed to the ProcessPLEvent
procedure (Figure 40 on page 60).

ByVal 1
(input)

The number of the message you want to query as defined
in the rule that triggers the event.

MsgParams
(input)

This structure describes the message properties. In this
example we do not use any. Refer to page 255 of the
Application Programming Guide.

BufferLen
(input)

This is the length of the message. It was obtained with
the MQQRYE call (see table above).

BufferMsg
(output)

The buffer that holds the message. In this example we
display the field ″BufferMsg.message″.

CompCode, Reason The completion and reason codes are listed in the
Application Programming manual.

Table 9. MQENDE Parameters

Parameter Description

ByVal HInst
(input)

The name of the instance that issues the call. The name
was saved in the OAK1_NewEvent procedure, shown in
Figure 23 on page 48, and passed to the ProcessPLEvent
procedure (Figure 40 on page 60).

ByVal MQSTATE_USER
(input)

The state of the instance. You may specify any value
except MQSTATE_NEW.

CompCode, Reason The completion and reason codes are listed in the
Application Programming manual.

Chapter 3. Using Visual Basic 57

3.5.2.3 HELLO1H.BAS
This file declares data structures used by the HELLO1.FRM sample application
when communicating with a BL.

HELLO1.BAS, shown in Figure 37, is similar to HELLO1.H in the C sample.

′
′ Rule id for STARTJOB
′
Global Const RI_STARTJOB = 0&

′ Rule IDs for HELLO1
′
Global Const RI_BLREQUEST = 1&
Global Const RI_BLREPLY = 2&
′
′ Classes
′
Global Const PLCLASS = ″hellogu1″
Global Const BLCLASS = ″hellobl1″
′
′ Instances
′
Global Const PLINSTANCE = ″Oak″
Global Const BLINSTANCE = ″Beech″
′
′ Messages
′
Global Const STRTJOB = ″StartJob″
Global Const BLREQUEST = ″BLRequest″
Global Const BLREPLY = ″BLReply″
′
′ Global variables
′
Global vHInst As Long ′ instance handle
Global vPLClass As String * 12 ′ PL classname

=============== The following code is for HELLO1H.BAS ===============
′
′ Hello structure
′
Global Const HELLOLENGTH = 20 ′ message length

Type HELLO ′ user defined type
message As String * HELLOLENGTH ′ message data

End Type

=============== The following code is for HELLO2H.BAS ===============
′
Global Const ID_HELLO_MSG = 1 ′ hello message element id in

′ variable-format message

Figure 37. HELLO1H.BAS and HELLO2H.BAS Files

58 MQ3T Examples for Windows Clients and AIX Servers

Figure 38. Sample HELLO2: HELOGU2W.MAK

3.5.2.4 HELOGU2W.MAK
This file is the project file for a simple sample program that uses variable-format
messages. The program is similar to the HELLO2 C sample supplied with MQ3T.

This sample can be compiled and the executable file HELLOGU2W.EXE placed in
the 3TIERW\SAMPLES\BIN directory.

To run the client part of HELLO2, start the PLM, and issue a STARTJOB
message. The sample will run using a Visual Basic PL instead of the usual C
GUI program.

The difference between HELLO1 and HELLO2 is that HELLO1 sends and receives
fixed length messages while HELLO2 demonstrates how to send and receive
variable length messages.

Sub MenuHelloBL_Click ()
Dim hSet As Long ′ new for HELLO2
Dim NL
Dim Message As String * 16 ′ length of string important in VB

′ create a set for message - new for HELLO2
MQCRTS hSet, ByVal MQSL_DEF_SET_LENGTH, CompCode, Reason
DisplayCompCode ″MQCRTS″

NL = Chr(10) ′ new-line character required by BL
Message = ″Hello BL Method″ & NL
MQADDC ByVal hSet, ByVal ID_HELLO_MSG, ByVal 16, ��� on one

ByVal MQRPLC_YES, CompCode, Reason ��� line !
DisplayCompCode ″MQADDC″

′ send request BLREQUEST to class BLCLASS - changed for HELLO2
MQSEND ByVal vHInst, ByVal BLCLASS, ByVal BLINSTANCE, ��� on one

ByVal BLREQUEST, ByVal 0, ByVal hSet, CompCode, Reason ��� line !
DisplayCompCode ″MQSEND″

End Sub

Figure 39. Sample HELLO2: Send a Variable-length Message to the BL

Chapter 3. Using Visual Basic 59

3.5.2.5 HELLO2.FRM
This sample of code provides the dialog box and simple code to send a
variable-format message to a BL. By comparing the code with the HELLO2 C
sample direct comparisons between C and Visual Basic can be made.
HELLO2.FRM is similar to HELLOGU2.C in the C sample.

MenuHelloBL_Click is invoked when the user clicks on the Hello BL item from
the File menu. The MQ3T API MQCRTS (MQ Create Set) creates a set for the
variable length message. MQADDC (MQ ADD Character string) adds one
character-string element that has the element ID 1. Its length is 16 bytes. Note
that elements must be a multiple of four bytes. MQSEND sends the message
BLRequest to the instance ″Beech″ of the class ″hellobl1″. The values are
defined in Figure 37 on page 58.

ProcessPLEvent is called from NewEvent when a rule is satisfied. It retrieves the
data of the reply message and displays it in a message box. Here the MQQRYM
refers to a set. MQCPYC copies the message element 1 into the message buffer
HelloMsg.

Sub ProcessPLEvent (ByVal HInst As Long)
Dim MQevent As MQevent ′ event structure
Dim MsgParams As MQMP ′ message parameters
Dim BufferLen As Long ′ buffer length

Static HelloMsg As String * 100 ′ new for HELLO2
Dim hSet As Long

′ rule clicked - enable ″Hello BL″ in ″File″ menu
MenuHelloBL.Enabled = True

′ query information about the current event
MQQRYE ByVal HInst, MQevent, CompCode, Reason
DisplayCompCode ″MQQYRE″

′ if the rule is RI_BLREPLY, retrieve the message data and display it
If MQevent.RuleId = RI_BLREPLY Then
BufferLen = MQevent.MaxBufferLength

′ changed for HELLO2
MQQRYM ByVal HInst, 1, MsgParams, BufferLen, hSet, CompCode, Reason
DisplayCompCode ″MQQYRM″

′ if the retrieve works, display the message from the BL Manager
If CompCode = MQCC_OK Then
BufferLen = MQevent.MaxBufferLength

′ new for hello2
MQCPYC hSet, ID_HELLO_MSG, BufferLen, ByVal HelloMsg, CompCode, Reason
DisplayCompCode ″MQCPYC″

MsgBox HelloMsg, 64, PLCLASS ′ changed for hello2
End If

End If

′ end the current event - this enables the PL Manager to post new events
MQENDE ByVal HInst, ByVal MQSTATE_USER, CompCode, Reason
DisplayCompCode ″MQENDE″

End Sub

Figure 40. Sample HELLO2: Process Variable-length Messages from BL

60 MQ3T Examples for Windows Clients and AIX Servers

3.5.2.6 HELLO2H.BAS
This file declares data structures used by the HELLO2.FRM sample application
when communicating with a BL.

HELLO2.BAS is similar to HELLO2.H in the C sample. The file is shown in
Figure 37 on page 58.

3.5.3 Sample Read Only Code Fragments
The following files are installed in two sample directories:

C:\3TIERW\SAMPLES\VB\PFCUST
C:\3TIERW\SAMPLES\VB\PCUST

The code is taken from a larger program, it is not intended to be run in its
present form. Although it is easy to start a Visual Basic program while looking
at the form, the code has been modified to cause a dialog box to be displayed
before the program ends.

Note: DEMOH.BAS, DATADICT.BAS and TRAN.BAS are copied into both
directories.

3.5.3.1 PFCUST.MAK
This project file, allows the PFCUST.FRM form to be loaded into Visual Basic. It
provides the required infrastructure and includes files from the support directory
C:\3TIERW\VBSUPP.

Figure 41. Sample PFCUST: Find Customer GUI

3.5.3.2 PFCUST.FRM
This sample code shows an example of a Find Customer PL form. The user can
enter the name of a customer and then click on a search button.

When the button is clicked, the PL sends a message (using a PLM API) to a
remote database. Subsequently when a reply is received, the PLM notifies that
PL that the reply is available and the PL uses the PLM APIs to retrieve the reply
data, and then displays it for the user.

Chapter 3. Using Visual Basic 61

This source file demonstrates how to invoke the main MQ3T API calls. It also
shows the use of custom control BMQNTFY.VBX, which has been placed on the
form with the name OAK1. The function OAK1_NewEvent is used to detect an
event from the PL Manager.

3.5.3.3 PFCUST.BAS
This file declares data structures used by the Find Customer application when
communicating with BLs and DLs.

3.5.3.4 DEMOH.BAS
This file contains examples of class and instance names, and declares global
variables used in the sample code.

3.5.3.5 DATADICT.BAS
This file contains database constants used in the sample code.

3.5.3.6 TRAN.BAS
This file contains the transaction codes used between the PLs, BLs and DLs.

3.5.3.7 PCUST.MAK
This project file, allows the PCUST.FRM form to be loaded into Visual Basic. It
provides the required infrastructure and includes files from the support directory
C:\3TIERW\VBSUPP.

Figure 42. Sample PCUST: Customer Details GUI

62 MQ3T Examples for Windows Clients and AIX Servers

3.5.3.8 PCUST.FRM
This is a second sample of code that relates to the PFCUST sample above.
When the user highlights one of possibly several matching names identified on
the PFCUST GUI and clicks on the Show button, then the PCUST PL is started.
PCUST.FRM is a Customer Details PL (Visual Basic form) which sends a request
message to recover details about the selected customer. When a reply is
received, the PLM tells the PL (causes the appropriate event to occur) that a
reply is available and the PCUST PL uses the PLM APIs to obtain the customer
details. PCUST then paints the GUI with the received information.

This program demonstrates how to invoke the main MQ3T API calls.

3.5.3.9 PCUST.BAS
This file declares data structures used by the Customer Details application when
communicating with BLs and DLs.

3.5.4 A Template for Your Own Program
The following files are installed in the TEMPLATE directory:

C:\3TIERW\SAMPLES\VB\TEMPLATE

The program can be used as a stepping-stone to writing other Visual Basic GUI
programs. Before using the files in this directory, copy them to a new directory.
Two places where the code needs modifying are displayed in a dialog box and
these can be found easily in TEMPLATE.FRM

Figure 43. Template GUI Provided with SupportPac

3.5.4.1 TEMPLATE.MAK
This file is the project file for a simple template sample program. The program
is similar to the HELLO1 Visual Basic program and can be used as the starting
point for subsequent PL program development.

This sample can be compiled and the executable file TEMPLATE.EXE placed in
the 3TIERW\SAMPLES\BIN directory.

To run the client part of TEMPLATE, start the PLM, and issue a STARTJOB
message (for HELLO1). The sample will run using a Visual Basic PL but instead
of the usual HELLO1 code, the user is requested to add their own code.

Chapter 3. Using Visual Basic 63

3.5.4.2 TEMPLATE.FRM
This sample of code provides the dialog box and simple code to send a
fixed-format message to a BL. Initially the program requests the user to add
their own code, but optionally, fragments from HELLO1 can be run to achieve a
working program.

3.5.4.3 TEMPLATE.BAS
This file declares data structures used by the TEMPLATE.FRM sample
application when communicating with a BL.

3.5.5 Run-Time Utility
The following files are installed in the SPEEDUP directory:

C:\3TIERW\SAMPLES\VB\SPEEDUP

Once this program is running, a STARTJOB messages will cause PLs to start
with an appreciable delay. Providing SPEEDUP is left running, the Visual Basic
Run-time support DLL will be available to start PLs more quickly.

Figure 44. SPEEDUP Program: GUI

3.5.5.1 SPEEDUP.MAK
This file is the project file for a simple speed-up program. This sample can be
compiled and the executable file SPEEDUP.EXE placed in the
3TIERW\SAMPLES\BIN directory. Optionally the program can be copied into the
Windows Startup folder.

3.5.5.2 SPEEDUP.FRM
This sample of code provides a means to load and verify the Custom Control and
Visual Basic run-time DLL. If HELLO1 is run on first starting WINDOWS, there
will be a delay from issuing a STARTJOB message until the PL is visible. The
delay is caused by the HELLO1 sample having to load the Visual Basic Run-time
support DLL. The program executes in the minimized state.

3.6 Application Programming Interface Calls
This section describes the 3T application programming interface (API) calls; they
are listed in alphabetic order. For a more detailed description of each call, refer
to the book MQSeries Three Tier Application Programming, SC33-1452-00.

64 MQ3T Examples for Windows Clients and AIX Servers

3.6.1 Types of API Calls
3T provides the following three types of API calls:

• Base

• Presentation Logic Manager

• Self-Defining Data Manager

3.6.1.1 Base Calls
MQSEND Send a named request or inform message

MQXSEND Send a fully-specified request or inform message

MQRPLY Send a named reply message

MQXRPLY Send a fully-specified reply message

MQTIME Set a timeout

MQLOG Write to the log file

MQQRY Query the server, a class, or an instance

MQQRYM Query a message

3.6.1.2 Presentation Logic Manager Calls
MQREG Register a presentation logic (PL) program

MQUREG Unregister a presentation logic program

MQQRYE Query an event

MQENDE End an event

MQSETS Set the state of an instance

MQENDP End the Presentation Logic Manager

3.6.1.3 Self-Defining Data Manager calls
MQCRTS Create a set

MQADDB Add an element to a set from a buffer

MQADDC Add a character-string element to a set

MQADDI Add an integer element to a set

MQCMPB Compare element data with a buffer

MQCMPC Compare character-string element data with a character string

MQCMPE Compare set elements

MQCMPI Compare integer-element data with an integer

MQCPYB Copy an element into a buffer

MQCPYC Copy character-string element data into a string

MQCPYE Copy an element to another set

MQCPYI Copy integer-element data to an integer

MQDELA Delete all elements from a set

MQDELE Delete an element from a set

MQDELS Delete a set

Chapter 3. Using Visual Basic 65

MQQRYS Query a set

MQVALS Validate set data

The above MQ3T APIs for Visual Basic are defined in BMQB.BAS and are
summarized in Appendix B, “Summary of MQ3T APIs” on page 251.

3.6.2 Notes to API Calls
We want to bring four topics regarding the Visual Basic API calls to your
attention:

3.6.2.1 SDDM Validity Checking
Although the SDDM calls provide limited validity checking of the buffers passed
on the MQADDB, MQCRTS, and MQVALS calls, primarily it is the responsibility
of the application developer to ensure the validity of the buffer. The MQCPYB
call issues a warning if the buffer you specify is too small, but the call will still
complete.

3.6.2.2 SDDM Error Handling
In many error situations, the SDDM API calls attempt to complete, at least
partially. To help them do this, 3T provides a null set handle (MQSH_NULL)
which you can use in the SDDM calls in place of a valid set handle. When the
calls use the null set handle, they return a warning.

3.6.2.3 Visual Basic Calls by Reference or by Value?
Visual Basic defines all calls by reference by default. The ByVal keyword is
used to pass by value. Where a parameter is used only for input, it is declared
ByVal. Strings are always declared ByVal which forces Visual Basic to convert
the internal form of the string (length and string) to a null terminated string as
used by the MQ3T DLL BMQAPICW.DLL which is provided as part of MQ3T for
Windows.

Although the ByVal can be omitted, in the call, the keyword is used by the
sample programs to enhance readability. Except for strings, calls with ByVal
are calls by value, on return from the function, the parameter is not changed.

3.6.2.4 Declarations of Complex Data Types
Some of the API calls make use of complex definitions for PMQCHAR, MQEVENT,
and MQMP which are declared in BMQB.BAS; otherwise all the parameters are
declared as either Any, Long or String.

66 MQ3T Examples for Windows Clients and AIX Servers

3.7 Using the Visual Basic 3T Sample Programs
The MQSeries Three Tier Visual Basic Support for Windows Client includes two
sample programs that show how to use the 3T APIs from Visual Basic.

The samples HELLO1 and HELLO2 are analogous to the MQ3T C samples.
These can be run and used to confirm that the installation has been successful.

The files are in the directory C:\3TIERW\SAMPLES\VB.

Note: There are HELLO1 and HELLO2 directories within C:\3TIERW\SAMPLES\C.
Those examples are written in C. They must be compiled before you can run
them.

3.7.1 Preparations on the AIX Server
The following instructions are applicable for the September 1995 released
version of the MQSeries 3T product. Subsequent versions of MQSeries 3T will
likely not require all the following steps/actions to be performed in order to
make the HELLO1 sample.

Assumptions:

• MQSeries for AIX and MQSeries Three Tier for AIX is installed.

• The MQSeries 3T for AIX installation directory is /usr/lpp/mq3t.

• The MQ3T user directory is /home/mq3t.

Set up and Compile:

The following steps show how to compile the HELLO1 sample on the AIX server:

Step 1. Copy the sample code from the installation directories into your home
directory:

cp /usr/lpp/mq3t/samples/c/hello1/* /home/mq3t

Step 2. Change the owner and group permission on the files. You will need to
be a root user to do this.

su root
password: ????
chown mq3t *
chgrp mq3t *
chmod 755 *
exit

Notes:

a. 755 changes the permission to read/write and execute for the
owner, to read and write for group users, and read and execute for
all other users.

b. Make sure that you are still a root user when you execute the exit
command. Type id and check if the user id is root:

id
uid=0(root) gid=...

Step 3. Ensure that the language environment variable, LANG, is set correctly
to the appropriate user′s language (not a programming language):

LANG=En_US; export LANG

Chapter 3. Using Visual Basic 67

Reboot the system if the change is needed.

Step 4. Ensure that a link is made in the /usr/include directory for the files
bmqc.h and cmqc.h. To check this issue the ls commands below and
see if the results match the line following the command.

ls -la /usr/include/bmqh
lrwxrwxrwx 1 root system ...

/usr/include/bmqc.h -> /usr/lpp/mq3t/include/bmqc.h

ls -la /usr/include/cmqh
lrwxrwxrwx 1 root system ...

/usr/include/cmqc.h -> /usr/lpp/mq3t/include/cmqc.h

Note: The cmqc.h link should have been set up as part of the
MQSeries base installation.

If a link is not done issue one or both of the following commands:

ln -fs /usr/lpp/mq3t/include/bmqc.h /usr/include/bmqc.h
ln -fs /usr/lpp/mq3t/include/cmqc.h /usr/include/cmqc.h

Remember, the syntax for the ln command is:

ln ″real file″ ″phantom file″ .

Step 5. Ensure that the INCLUDE environment variable is set:

INCLUDE=/usr/include ; export INCLUDE

Step 6. Copy or link the file heloms1x.ch to helloms1.ch. To link type:

ln -fs heloms1x.ch helloms1.ch

Step 7. Copy or link the file hello1x.h to hello1.h. To link type

ln -fs hello1x.h hello1.h

Step 8. Proceed to ″make″ all files needed on AIX for the HELLO1 sample code.
You do this by executing the make utility on the file with .mak appended
to it.

make -f hello1cx.mak

Step 9. If you see any errors it is better to start from scratch by deleting all
files in the /home/mq3t/hello1 directory and repeating steps one through
seven.

Step 10. Start the default queue manager:

strmqm

Step 11. Make sure that the queue manager default objects are created. To do
this issue the following command:

runmqsc < amqscoma.tst > coma.log

The file amqscoma.tst is in the directory /usr/lpp/mqm/samp. You
have to issue this command only once.

Step 12. Make sure that the queues for the HELLO samples are created. To do
this issue the following command:

runmqsc < sampcoma.tst > coma1.log

The file is in the directory /usr/lpp/mq3t/samples. You have to issue
this command only once.

68 MQ3T Examples for Windows Clients and AIX Servers

 Important

The queue manager must be running to execute RUNMQSC.

Note: Prior to step 8 you may wish to get a comparison of the files created to
those prior to the ″make″ command in order to better understand what the
″make″ step accomplishes for one. One way to do this is as follows:

 1. Prior to step 8 log the current directory file names:

ls >foo.names

 2. During ″make″ step capture errors into log and view on screen at the same
time:

make -f hello1cx.mak | tee make1.log

 3. Immediately after step 8 log the current directory file names again:

ls >foo1.names

 4. Compare the before and after files names and review.

sdiff foo.names foo1.names

Figure 45 on page 70 illustrates the output that one should see as a result of the
″make″ process in step 8. It would be captured in make1.log if the second step
above was performed.

The following table shows the file comparison of names of files before step 8 and
those created after step 8 as performed according to the note on page 69.

Table 10. Files for HELLO1 Sample

Before the make (step 8) After the make (step 8)

hello1cx.mak
hello1st.h
hello1x.c
hello1x.h

hellogu1.cs

hellopr1.ch

helob1cx.cs
helob1cx.prf
heloms1x.ch

libmain.c

HELLO.MFF
STARTJOB.MFF
hello1.h
hello1cx.mak
hello1st.h
hello1x.c
hello1x.h
hellobl1
hellobl1.c
hellobl1.exp
hellobl1.mak
hellobl1.map
hellobl1.o
hellobl1.u
hellogu1.cb
hellogu1.cs
helloms1.ch
hellopr1.ch
helob1cx.cb
helob1cx.cs
helob1cx.prf
heloms1x.ch
libmain.c
libmain.o
libmain.u

Chapter 3. Using Visual Basic 69

;bmqcc hellogu1.cs

Class Compiler.
Version 1.00.000. Sep 6 1995
(C) Copyright IBM Corporation 1994, 1995.
All rights reserved.

*** Parsing the class source file ′ hellogu1.cs′ ***
........

*** Checking the msgin/msgout of class hellogu1 ***

*** CHECKED ***

*** Creating binary class file ′ hellogu1.cb′ ***

*** CREATED ***
bmqcc /s helob1cx.cs

Class Compiler.
Version 1.00.000. Sep 6 1995
(C) Copyright IBM Corporation 1994, 1995.
All rights reserved.

*** Parsing the class source file ′ helob1cx.cs′ ***
........

*** Checking the msgin/msgout of class hellobl1 ***

*** CHECKED ***

*** Creating binary class file ′ helob1cx.cb′ ***

*** CREATED ***

*** Generating skeleton files ***

*** GENERATED ′ hellobl1.c′ , ′ hellobl1.mak′ and ′ hellobl1.exp′ ***
make -kf hellobl1.mak
xlc_r -g -c -Dsigned= -Dvolatile= -D_Optlink -I. -M libmain.c
xlc_r -g -c -Dsigned= -Dvolatile= -D_Optlink -I. -M hellobl1.c
xlc_r -L. -lXm -lXt -lX11 -L/usr/lpp/mq3t/lib -lbmqapic -e LibMain -bM:SRE -bE:hellobl1.exp

-bmap:hellobl1.map libmain.o hellobl1.o
mv a.out hellobl1

Figure 45. Messages for MAKE of HELLO1 Sample

70 MQ3T Examples for Windows Clients and AIX Servers

3.7.2 Preparations on the Windows Client
The following directories are of interest:

C:\3TIERW\BIN contains 3T executables, such as STRPLMW.EXE, STRJOBW.EXE,
and ENDPLMW.EXE.

C:\3TIERW\VBSUPP contains custom controls and bit maps required for Visual
Basic.

C:\3TIERW\SAMPLES\BIN contains class binary files. This directory is in the
search path, see AUTOEXEC.BAT on page 39.

 Important

All executables and class binary files must be in the directory
\3TIERW\SAMPLES\BIN unless you add your own directory to
the path.

C:\3TIERW\SAMPLES\VB contains subdirectories for the samples, HELLO1 and
HELLO2, and for the code fragments.

The HELLO1 files should be in a directory path as follows:
C:\3TIERW\SAMPLES\VB\HELLO1

C:\3TIERW\SAMPLES\C contains Windows sample programs written in C. We do
not use them because we do not have a C compiler installed in our
Windows workstation. However, we use other files in this directory
to execute the Visual Basic programs.

To look at the HELLO1 sample follow these steps:

• Bring up Visual Basic. You will see a ″Form1″ displayed. Ignore it.

• Select Open Project from the File menu.

• In the Open Project window select hello1 from the directory
c:\3tierw\samples\vb.

• Click on helogu1w.mak and then on OK .

Note: You may minimize the Program Manager window to eliminate it from
the Visual Basic window.

Chapter 3. Using Visual Basic 71

• Click on Project in the Window menu. This displays a window named
HELOGU1W.MAK shown below:

• Click on the View Form push button and you will see the Hello1 window
displayed.

The Hello1 form shows two icons for custom controls:

 1. The icon for BMQNTFY.VBX appears as an oak tree. This is an IBM-created
custom control for 3T.

 2. The icon for the TIMER module appears as a stop watch. TIMER is a
standard Microsoft Visual Basic module.

The two controls are only visible when the form is created, not at run time.

 Important

If the two controls do not appear than make sure that they are in the
standard Visual Basic directory for custom controls, usually
c:\windows\system.

If in the HELLO1 subdirectory an executable file for the Visual Basic GUI does
not exist by the name HELOGU1W.EXE then it needs to be created. Go into
Visual Basic and select the Make .EXE File option from the File menu.

72 MQ3T Examples for Windows Clients and AIX Servers

Make sure the target name is HELOGU1W.EXE. It needs to match this same
name that is the hard coded name in the HELLO1 sample class definitions.

The EXE will be stored in the directory C:\3TIERW\SAMPLES\VB\HELLO1. Since this
directory is not in a path move the EXE into the directory C:\3TIERW\SAMPLES\BIN.

To run the HELLO1 sample you can use the the class binary file HELOGU1W.CB
that is in the directory C:\3TIERW\SAMPLES\BIN. You may also use the .CB file you
created in the server. This file, however, requires that the name of the .EXE is
HELLOGU1.EXE.

3.7.3 Running the HELLO1 Sample
The HELLO1 sample sends a request message to a business logic in the AIX
server. The server responds with a reply message. To run this program follow
these steps:

In the server:

• Start the (default) queue manager:

strmqm

• Start the BLM:

strblm helob1cx.prf

The profile referenced in the strblm command is shown below. The class name
parameter in the profile points to the class binary file ″helob1cx.cb″. This file
contains the class name for the BL, that is ″hellobl1″, defined in ″hello1x.h″.

[SERVER]

ClassNames = helob1cx

Note: The class name is case sensitive!

Chapter 3. Using Visual Basic 73

In the client:

• Click on the MQSeries Three Tier icon in the Program Manager window.

• In the IBM MQSeries Three Tier window click on the STRPLM Utility icon.

• The utility should display the profile and a valid path, e.g.

c:\3tierw\samples\c\hello1\hellogu1.prf

Though this profile belongs to the C sample it will work for the Visual Basic
sample. It contains the following data:

[CLIENT]

ClassNames = hellogu1

The class name parameter in the profile points to the class binary file
″hellogu1.cb″. This file contains the class name for the PL, that is ″hellogu1″,
defined in ″hello1.h″.

Press OK. A message will be displayed when the presentation logic
manager has been started.

• Click on the StartJob Utility icon and enter hellogu1 as class name and any
instance name. Then click on OK .

74 MQ3T Examples for Windows Clients and AIX Servers

The hello1 GUI should appear.

If not, then the HELLOGU1.EXE is not in a path. Move it into the directory
C:\3TIERW\SAMPLES\BIN.

You may check the error log BMQERROR.LOG in the server to find out what
the name of the executable has to be.

• To send a message to the BL in the server click on Hello BL in the File
Menu. You should get a response if the BL in the server is running. If not
check the in BMQERROR.LOG for an error message.

• To end the PLM click on the ENDPLM Utility icon in the IBM MQSeries Three
Tier window. Then select the option Normal or Force and click on OK .

Chapter 3. Using Visual Basic 75

76 MQ3T Examples for Windows Clients and AIX Servers

Chapter 4. File Transfer Example

This chapter describes how an existing file transfer application that transfers
files between two RS/6000 systems is integrated in an MQSeries Three Tier
environment.

The existing sender program gets started with command line arguments. We
want to use a GUI to start the program and reduce the sender logic code
requirements by using MQ3T APIs. Therefore, we have to write a presentation
logic that includes the GUI. In addition, we have to write some code that accepts
the message sent by the presentation logic to start the file transfer. The figure
below shows the options available to us:

Figure 46. Options for Modification of the File Transfer Program

Note: DL* are MQI-enabled programs that do not require an external class
description in 3T since they do not directly communicate with any PL or BL
class.

The purpose of this chapter is to demonstrate the use and benefits of the
MQSeries Three Tier product in conjunction with the base MQSeries software.
By using an example application we hope to accomplish two primary objectives:

 1. We demonstrate what a real l ive MQ3T application would look like that has
some real world complexity but not too much that it would obscure the forest
with the trees.

 Copyright IBM Corp. 1996 77

 2. To show one major benefit of using the MQ3T APIs, namely simplicity via
code reduction of 50% or more for business logic API implementation.

Note: In the following sections we describe the existing sender and receiver
programs and the first modification option highlighted in Figure 46 on page 77.

 Diskette

All example code and files for this demonstration application are included in
diskette 1 shipped with this document.

4.1 Application Description
To illustrate the MQ3T API in conjunction with the MQI API two flavors of the
demo application were created:

• A pure MQSeries MQI implementation of a file transfer application that uses
command line arguments typed in on the AIX sender workstation to control
what files to send and what target platform to send them to.

• The second flavor uses MQ3T APIs and is configured as a PL to BL to DL
three tier application architecture. Here the MQSeries Three Tier
nomenclature is used where PL stands for Presentation Logic, BL is
Business Logic, and DL is the Data Logic components in a three level or
three tier application architecture as used and described in the MQSeries
Three Tier documentation.

For a demonstration of the full functionality of the MQSeries Three Tier product
another demonstration application (Chapter 5, “The Bacon Lettuce and Tomato
Sandwich” on page 111) was devised to show a pure MQ3T example. It
illustrates the OO affinity of MQ3T; the powerful development tools of the product
more completely as well as the development methodology. That being said this
demonstration application should give an excellent feel of the nuts and bolts
requirements for both and MQI and MQ3T application implementation.

Before continuing with the description of the file transfer utility, its set-up and
use it would be best noted at this point that a detailed description (almost line by
line) of the application is given in the book Messaging & Queuing Using the MQI
by Burnie Blakeley, Harry Harris and Rhys Lewis. The example code given and
described in this book in chapter 12, pages 315 to 353, was used as the base
code for the MQI API example.

The sender program was slightly modified for the none-MQ3T version but the
receiver program has extensive additions and modifications to implement
features of the AIX/UNIX operating system. Of course, the MQ3T (BL) sender
program is an extensive modification of the MQI sender version (albeit much
simpler). It is highly recommended that this book and this chapter be read in
conjunction with this demonstration application.

As the names of the application programs imply, mqftp and mqftprtx, the base
application performs a similar function as the TCP/IP utility ″ftp″.

Note: The McGraw Hill version of the receiver program is called ″mqftpr″, the
″mqftprtx″ refers to the added extensions and that it is triggered.

78 MQ3T Examples for Windows Clients and AIX Servers

It does it, however, using the MQSeries MQI or MQ3T API. Though this
application was devised primarily to illustrate the MQSeries APIs it does have
over and above these two very real and practical benefits:

• It can be used between any two systems using the MQSeries software, even
if they are not TCP/IP connected.

• Files can be sent and the target machine does not even have to be up and
running as the files will eventually be transferred automatically when the
MQSeries channels are reconnected.

With a little more imagination you could even add the capability to the receiver
program to fork to the AIX/UNIX command line processor or shell and have it
execute a ″shell″ script file that may have just been sent over by the sending
process. The possibilities of what can now be done with this application
becomes very open ended. This in fact is just what the mqftprtx receiver
program does.

Available on diskette

Diskette 1 distributed with this book has on it several files you can use to set
up this application. Among them are UNIX ″shell″ script files as well as bit
maps and a bit map viewer.

The first flavor (none-3T version) in a nutshell: First you should get the
none-MQ3T version of the application working between two AIX boxes. How to
do this is described further on in this chapter.

• The receiver program is set up to be run when triggered by the MQSeries
Trigger Monitor upon receipt of a message on the designated triggered
queue.

• On the sender AIX platform, run the application using the command line
format of:

mqftp MQMname from_file_name to_file_name

where MQMname is the name of the destination queue manager.

• With this command send over the following files:

 1. The bit map viewer ″xv″

 2. The bit maps ″challenger.gif″ and ″toucan.gif″

 3. A shell script file, for example, ″foo1.cmd″ in Figure 47 on page 80, that
can execute the ″xv″ bit map viewer on the bit map files

The to_file_name in the mqftp command is special. If the receiving program,
mqftprtx.c, finds the name ″conan.cmd″ it performs its ″fork″ function and
executes this ″shell″ command file. It displays the bit maps to the screen or any
screen that has X-windows connectivity capabilities in its domain.

Chapter 4. File Transfer Example 79

clear
echo ″\n\n″
banner MQM ″ & ″ MQ3t
echo ″\n\n″
ls
pwd
id
export DISPLAY=hostname:0;xv $PWD/challenger.gif &
export DISPLAY=hostname:0;xv $PWD/toucan.gif &
export DISPLAY=rs60001:0;xv $PWD/challenger.gif &
id
echo done!

Figure 47. Shell Script File ″foo1.cmd″

The second flavor (3T version) in a nutshell: The MQ3T version goes a step or
two further accomplishing the same task but with a bit more polish and panash.

• The sender program is converted to an MQ3T BL application program. In
the process you will see that the only C code remaining is almost entirely
the required C code to open and read the file that is to be transferred to the
target system.

• Also, instead of having command line input for the parameters of the
sending process we now have an MQ3T PL process running under
DOS/WINDOWS and implemented in MicroSoft Visual Basic sending the
parameters as a request message to the BL process running on AIX.

The BL process in turn processes the PL message and replies with any and
all error messages pertaining to the PL parameter message. If no errors are
found it sends the appropriate files to the appropriate target process which is
the DL receiver program as before and informs the PL process of the
successful completion of this fact.

4.2 Set Up and Run the MQI Application
This section describes:

• How to set up the sender workstation

• How to set up the receiver workstation

• How to run the file transfer demonstration program

4.2.1 Set Up of the Sender Workstation
To load and set up the file transfer programs onto your AIX workstation from the
distributed demonstration diskette, perform the following steps:

Step 1. Load diskette 1 supplied with this book into the AIX diskette drive.

Step 2. Login or sign on to AIX as the mqm user.

Step 3. Examine the diskette contents with the dosdir command.

mqm@rs60001 /usr/mqm> dosdir
CMQAIX
C3TAIX
VB3TWIN
README
...

80 MQ3T Examples for Windows Clients and AIX Servers

Step 4. Create a holding sub-directory for the diskette sub-directory contents.

Step 5. Make this new directory the working directory.

Step 6. Using the dosread command read the cmqaix.z file onto AIX.

Step 7. Make sure it was read by doing an ls command.

Step 8. Uncompress the loaded file.

Step 9. Make sure the uncompress worked by using the ls command.

Step 10. Unpack with tar command the uncompressed file.

Step 11. List the directory contents to make sure all files were unpacked using
the ls command.

The exact commands for the above steps are given below where the dollar sign
preceding each command is the normal AIX/UNIX ″shell″ prompt.

$ mkdir cmqaix
$ cd cmqaix
$ dosread cmqaix/cmqaix.z cmqaix.Z
$ ls
cmqaix.Z
$ uncompress cmqaix.Z
$ ls
cmqaix
$ tar xvf cmqaix

At the end of these steps you will obtain the files in Table 11.

Table 11. Files for MQI File Transfer Example

File name File type Description

Files to be transferred

challenger.gif image bit map of the space shuttle

first.cmd cmd file simple script to test the connection

foo1.cmd cmd file script file, see Figure 47 on page 80

toucan.gif image bit map of a toucan

xv executable file bit map viewer

Files to run the example

mqftp executable file sender MQI program

mqftprtx executable file receiver MQI program

Files to develop the example

ccit.cmd cmd file to compile programs

mqftprtx.c source file receiver MQI program

mqftp.c source file sender MQI program

kshfork executable file included in mqftprtx

Utilities

ki l lmqm cmd file cancels MQM processes

Chapter 4. File Transfer Example 81

The base MQSeries file transfer programs are now successfully installed.

If necessary, change the owner and group of all the files to mqm if not set. Do
this by switching to the root user and using the chown and chgrp commands.
Give all files ″read″ and ″execute″ permissions using chmod and finally exit from
the root user ID.

$ su
root′ s Password: ********
$ chown mqm *
$ chgrp mqm *
$ chmod 755 *
$ exit
$

Two more set-up tasks must be performed on the sender AIX machine. Pointing
to the receiving AIX machine we have to create:

 1. An MQSeries transmission queue

 2. An MQSeries channel

To create a transmission queue using the default naming conventions for
MQSeries, start the MQSeries command line control server by typing:

$ runmqsc
5765-115 (C) Copyright IBM Corp. 1994. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

If the target (receiver) system′s Message Queue Manager′s name is
RS60002.MQM then enter the following command:

df ql(RS60002.MQM) type(xmit) like(system.default.local.queue)

This will create a transmission queue called RS60002.MQM.

If the sender system′s Message Queue Manager′s name is RS60001.MQM and
the TCP/IP name of the receiver system is rs60002 then enter the following
command.

df chl(RS60001.TO.RS60002) chltype(sdr) trptype(tcp) conname(′ rs60002′) +
xmitq(RS60002.MQM) like(system.def.sender) descr(′ Sender side′)

This will create the sender half of the sender/receiver channel between the two
AIX machines.

ps -ef | grep amq
echo
ps -ef | grep -v grep | grep amq | cut -c10-14 | cat >killfoo
for i in cat killfoo
do
echo killing $i;kill $i
done
rm killfoo

Figure 48. Utility ″ki l lmqm.cmd″

82 MQ3T Examples for Windows Clients and AIX Servers

4.2.2 Set Up of the Receiver Workstation
On the receiver side we need to create:

• The receiver half of the channel we just created for the sender
• A triggered target queue
• A process object

The ″runmqsc″ commands to create these objects are:

define chl(RS60001.TO.RS60002) chltype(RCVR) trptype(tcp) +
like(SYSTEM.DEF.RECEIVER) descr(′ Receiver side′)

define ql(′ File.Transfer.Queue′) like (SYSTEM.DEFAULT.LOCAL.QUEUE) +
process(MQFTPRT.P) trigger defpsist(yes) trigtype(DEPTH) +
initq(SYSTEM.DEFAULT.INITIATION.QUEUE)

define process(MQFTPRT.P) like(SYSTEM.DEFAULT.PROCESS) +
descr(′ triggered mqftpr′) applicid(′ / usr/mqm/mqftprtx′)

Alternatively, you may copy these definitions into two files:

• mqftp.def for the sender machine

• mqftprtx.def for the receiver machine

Modify the message queue manager names and channel names if necessary.

In the process definition, with the keyword ″applicid″, you must specify the
directory in which the executable program ″mqftprtx″ is placed on the receiver
AIX machine. In this example it is /usr/mqm.

Notes:

 1. It is imperative that the Message Queue Manger, trigger monitor and
receiver program ″mqftprtx″ are all started in the directory specified in the
APPLICID field of the trigger process definition. In the examples given so far
this would be /usr/mqm. Thus the following commands and program should
all be started from this directory:

• strmqm

• runmqtrm

• mqftprtx

 2. In the File.Transfer.Queue definition, the keyword TRIGTYPE is equal to
DEPTH (DEPTH=1 as a default) and this means that once the queue has
been triggered, the queue manager disables triggering. For this reason, in
the mqftprtx.c program, the trigger is rearmed at the end of the execution. If
the program terminates abnormally the trigger is not rearmed and you need
a MQSC command (ALTER QL) to set the TRIGGER keyword for the queue.

 3. If the mqftprtx program is sent to the receiver AIX system with the ftp utility it
will be necessary to change the mode of the file to be executable after it has
arrived. Use the chmod command and type on the AIX command line:

$ chmod +x mqftprtx

Chapter 4. File Transfer Example 83

4.2.3 Running the File Transfer Example
Once the MQSeries objects for the proper operation of the file transfer program
are in place it is time to start:

 1. The message channel on the sender AIX system

 2. The trigger monitor on the receiver system

Sender: To start the channel, type the following on the sender AIX command
line. A successful completion message should appear once it has started.

$ runmqchl -c RS60001.TO.RS60002 &
5765-115 (C) Copyright IBM Corp. 1994. ALL RIGHTS RESERVED.
Channel program started.

$

Note: It is most important that the ″&″ (ampersand) be added to the previous
command or the message channel agent program will be started in the
foreground and will not allow you to get back to the AIX shell without killing it
with a CTRL-C console interrupt.

Receiver: Make sure the MQM is started and then start the trigger monitor as
follows:

$ runmqtrm
.... MQSeries trigger monitor started.

__
.... Waiting for a trigger message

 Watch out!

It is imperative that you do NOT run the trigger monitor in the background as
the shell scripts to be sent across to be executed will not execute if the
trigger monitor is started in the background.

Make sure that the File.Transfer.Queue has triggering enabled. To accomplish
that use the ″runmqsc″ utility and modify the queue characteristic directly as
follows:

$ runmqsc
5765-115 (C) Copyright IBM Corp. 1994. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

alter ql(′ File.Transfer.Queue′) trigger
1 : alter ql(′ File.Transfer.Queue′) trigger

AMQ8008: MQSeries queue changed.

The receiver system should now be ready to receive files/messages from the
sender AIX system. The sender program, mqftp, requires as parameters:

 1. The destination queue manager

 2. The name of the source file

 3. The name of the target file

To actually send a file via the sender program ″mqftp″ to the triggered receiver
program ″mqftprtx″ type the following on the sender AIX machine:

84 MQ3T Examples for Windows Clients and AIX Servers

$ mqftp RS60002.MQM first.cmd conan.cmd
Sender: Processing Completed Normally. Reason was 0
Sender: Queue Close Reason Code was 0
Sender: Disconnect Reason Code was 0
$

The output that appears on the receiving AIX system trigger monitor′s window
look like the following:

� �
/usr/mqm/mqftprtx ″TMC 2File.Transfer.Queue MQFTP
RT.P

/usr/mqm/mqftprtx

RS60002.MQM
″

Usage:
mqftpr

Receiver: Transferring file to conan.cmd
 Processing command file now - with fork
doing nothing
done� �

In the last two lines of the output you can see the execution of the script file
″first.cmd″ which performs two echo commands.

#this is a nothing command file
echo doing nothing
echo done

Figure 49. Shell Script File ″first.cmd″

A bit later, if no further files are sent, the receiving program times out and
terminates with the following message waiting to be awoken again by the trigger
monitor on receipt of a new message/file.

Sender: Processing Completed. Reason was 2033
Sender: Queue Close Reason Code was 0
Sender: Disconnect Reason Code was 0
.... Error starting triggered application.

__
.... Waiting for a trigger message

An error message is displayed by trigger monitor because the receiver program
exits with a reason code greater than zero, namely 2033-no more messages in
the queue. However, this is not a real error.

Now a file named ″conan.cmd″ should exist on the receiver AIX system. It is in
the user ″mqm″ home directory and has the following contents:

#processing completed

This is the result of the receiver program overwriting the command file once it
has been executed, turning this file into a no-op command file so it will not be
executed a second time mistakenly.

Chapter 4. File Transfer Example 85

Now the remaining files should be sent across in the following order:

• mqftp RS60002.MQM xv xv

• mqftp RS60002.MQM challenger.gif challenger.gif

• mqftp RS60002.MQM toucan.gif toucan.gif

• mqftp RS60002.MQM foo1.cmd conan.cmd

 The final file transfer of the foo1.cmd file should give a fairly neat effect of
displaying several UNIX command outputs on the trigger monitor window and
then display nice renditions of the challenger space shuttle and a multi-colored
toucan to both AIX machines.

4.3 Set Up and Run the MQ3T Application
The MQI example was developed to execute a file transfer between two RS6000
machines. For the MQ3T version, we added a GUI program for entering
parameters and starting the file transfer. The GUI program runs on a Windows
3.1 MQ client workstation. This section describes:

• How to set up the sender workstation

• How to set up the receiver workstation

• How to set up the Windows workstation

• How to run the file transfer demonstration program

4.3.1 Set Up the Sender Workstation
To load and set up the file transfer programs onto your AIX workstation from the
distributed demonstration diskette perform the following steps:

Step 1. Load diskette 1 into the AIX diskette drive.

Step 2. Login or sign-on to AIX as the mq3t user.

Step 3. Examine the diskette contents with the dosdir command.

mq3t@rs60001 /homer/mq3t> dosdir
CMQAIX
C3TAIX
VB3TWIN
README
...

Step 4. Create a holding sub-directory for the diskette sub-directory contents.

Step 5. Make this new directory the working directory.

Step 6. Using the dosread command read the c3taix.z file onto AIX.

Step 7. Make sure it was read by doing an ls command.

Step 8. Uncompress the loaded file.

Step 9. Make sure the uncompress worked by using the ls command.

Step 10. Unpack with tar command the uncompressed file.

Step 11. List the directory contents to make sure all files were unpacked using
the ls command.

The exact commands for the steps on page 86 are given below where the dollar
sign preceding each command is the normal AIX/UNIX ″shell″ prompt.

86 MQ3T Examples for Windows Clients and AIX Servers

$ mkdir c3taix
$ cd c3taix
$ dosread c3taix/c3taix.z c3taix.Z
$ ls
c3taix.Z
$ uncompress c3taix.Z
$ ls
c3taix
$ tar xvf c3taix

At the end of these steps you will obtain the files in Table 12 on page 88.

 Note

The File Transfer example has been developed based on the hello1 sample
described in 3.7, “Using the Visual Basic 3T Sample Programs” on page 67.

The base MQ3T file transfer programs are now successfully installed.

If necessary, change the owner and group of all the files to mqm. Switch to the
root user and use the chown and chgrp commands. Give all files read and
execute permissions using chmod and finally exit from the root user ID. The
commands are shown below:

$ su
root′ s Password: ********
$ chown mqm *
$ chgrp mqm *
$ chmod 755 *
$ exit
$

The definitions for the sender AIX machine are the same as for the MQI
example. However, there is one more MQI definition:

You need a remote queue that points to the queue in the receiver machine. The
name of that queue must match the DL class name, HELLODL1. To keep the
definitions independent from those needed by MQ3T you can define an alias
queue name for the remote queue. This allows you to change the destination of
the messages without modifying the MQ3T application or the user input.

The ″runmqsc″ commands to create the remote queue in the sender AIX
machine are:

define qremote(MQFTP) LIKE(SYSTEM.DEFAULT.REMOTE.QUEUE) +
replace descr(′ remote queue pointing to File.Transfer.Queue′) +
rname(′ File.Transfer.Queue′) rqmname(RS60002.MQM) xmitq(RS60002.MQM)

define qalias(′ hellodl1′) targq(MQFTP) replace

Chapter 4. File Transfer Example 87

Table 12. Files for MQ3T File Transfer Example

File name File type Description

Files to be transferred

foo1.cmd cmd file script file, see Figure 47 on page 80

Files to run the example

mqftprtx executable file receiver (DL) program

hellobl1 executable file sender (BL) program

hellogu1.cb class binary file 3T class file for PL

heloblcx.cb class binary file 3T class file for BL

heloblcx.prf profile file startup profile for BLM

Files to develop the example

hello1cx.mak makefile compiles BL class and program files

hellogu1.cs class source file PL class

hello1st.h header file defines message structures

hello1x.c source file BL program in C

hello1x.h header file defines constants

hellobl1.c skeleton file
BL program in C

created with bmqcc /s

helloms1.ch class source file messages

hellopr1.ch class source file external class descriptions

heloblcx.cs class source file BL class

libmain.c dummy file required for compilation

File output of compilation

hellobl1.exp exports created with bmqcc /s

hellobl1.mak makefile for hellobl1.c created with bmqcc /s

hellobl1.map output of compilation

hellobl1.o object file output of compilation

hellobl1.u output of compilation

libmain.o dummy file output of compilation

libmain.u dummy file output of compilation

Utilities

redo cmd file to redo MQ3T compilation

88 MQ3T Examples for Windows Clients and AIX Servers

4.3.2 Set Up the Receiver Workstation
The definitions for the receiver AIX machine are the same as for the MQI
example. You need the same receiver program as for the MQI example,
mqftprtx. Remember that if the mqftprtx program has been sent to the receiver
AIX system via the ftp utility it will be necessary to change the mode of the file to
be executable after it has arrived. Use the chmod command and type on the
command line:

$ chmod +x mqftprtx

The program must be in the directory that was defined in the keyword APPLICID
of the MQI process definition. You can check this by issuing the following
commands:

$ runmqsc
5765-115 (C) Copyright IBM Corp. 1994. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

display process (MQFTPRT.P) applicid
1 : display process(MQFTPRT.P) applicid

AMQ8407: Display Process details.
APPLICID(/usr/mqm/mqftprtx)
PROCESS(MQFTPRT.P)

4.3.3 Set Up the Windows Workstation
To load and set up the Windows 3.1 GUI for the file transfer program follow these
steps:

Step 1. Load diskette 1 into the A-drive.

Step 2. Examine the diskette contents with the dir command.

C:\>dir
CMQAIX
C3TAIX
VB3TWIN
README
...

Step 3. Create directory that wil l hold the contents of the VB3TWIN directory on
the diskette, for example, C:\VB\VB3TWIN, and make it the current
directory.

Step 4. Copy into this directory the files from VB3TWIN directory on the
diskette.

The commands for the above steps follow:

C:\>cd vb
C:\VB>md vb3twin
C:\VB>cd vb3twin
C:\VB\VB3TWIN>copy a:\vb3twin*.*

The directory will contain the files in Table 13 on page 90.

The connection between Windows and AIX machine and the MQ definitions are
the same as described in the ″hello1″ example.

Chapter 4. File Transfer Example 89

Table 13. Client′s Files for MQ3T File Transfer Example

File name File type Description

Files to run the example

RES3TGTC.EXE executable file Presentation Logic (GUI)

HELLOGU1.CB class binary file class file for PL

HELLOGU1.PRF profi le startup profile for PL

Visual Basic files for development

RES3TGTC.MAK Visual Basic project file

RES3TGTC.FRM Visual Basic form (GUI)

BMQNTFY.VBX custom control intercepts 3T events

BMQC.BAS header file 3T definitions

BMQVBX.BAS header file for custom control

CMQC.BAS header file MQ definitions

HELLO1H.BAS header file definitions for GUI

Example

SAMPLE.SET shows environment

4.3.4 Running the MQ3T File Transfer Example
This application executes programs in three machines. The correct sequence of
activation is:

 1. Receiver machine (AIX)

 2. Sender machine (AIX)

 3. Client workstation (Windows)

4.3.4.1 Starting the Receiver
On the receiver AIX machine, start the queue manager and the trigger monitor,
using the commands:

strmqm
runmqtrm

Watch out!

It is imperative that you do not run the trigger monitor in the background as
the shell scripts to be sent across to be executed will not execute if the
trigger monitor is started in the background.

4.3.4.2 Starting the Sender
On the sender AIX machine, start the queue manager and the channel between
sender and receiver using following commands:

$ strmqm
Queue Manager started.
$ runmqchl -c RS60001.TO.RS60002 &
5765-115 (C) Copyright IBM Corp. 1994. ALL RIGHTS RESERVED.
Channel program started.

$

90 MQ3T Examples for Windows Clients and AIX Servers

Watch out again!

It is most important that the ″&″ (ampersand) be added to the previous
command or the message channel agent program will be started in the
foreground and will not allow you to get back to the AIX ″shell″ without kill ing
it with a CTRL-C console interrupt.

Make sure that the File.Transfer.Queue has triggering enabled. This is the queue
from which the receiver program will get the file transferred. Use the ″runmqsc″
utility to enable triggering. Modify the queue characteristics as follows:

$ runmqsc
5765-115 (C) Copyright IBM Corp. 1994. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

alter ql(′ File.Transfer.Queue′) trigger
1 : alter ql(′ File.Transfer.Queue′) trigger

AMQ8008: MQSeries queue changed.

The sender program is not an MQI application any longer, using MQI APIs, but
an MQ3T business logic (BL) using MQ3T APIs. A BL runs under control of a
business logic manager (BLM). To start BLM issue the following command from
the ″c3taix″ directory:

$ strblm helob1cx.prf

Business Logic Manager
Version 1.00.000. Sep 6 1995
(C) Copyright IBM Corporation 1994, 1995.
All rights reserved.

$

The ″helob1cx.prf″ file is the startup profile for BLM. If you wish, add the ″&″
(ampersand) to this command. However, the better choice is to run the program
in foreground, even if it locks the window. This allows you to stop the BLM with
a CTRL-C console interrupt instead of killing the process. The latter may cause
the BLM to hang up and you may have to stop and restart the queue manager to
reset the environment.

4.3.4.3 Starting the Client
In your Windows workstation, bring up Windows and double-click on IBM
MQSeries Three Tier in the Program Manager′s window. This displays the MQ3T
window below:

Figure 50. MQSeries Three Tier Window

Chapter 4. File Transfer Example 91

Use the STRPLM utility to start the Presentation Logic Manager in your
workstation. Double-click on that icon and enter path and name of the profile as
shown in Figure 51 on page 92.

Figure 51. STRPLM Window

The profile tells the PLM what PL classes it has to serve. In this case it has only
one class, hellogu1. The file contains two lines:

[CLIENT]
Classnames = hellogu1

In the STRPLM utility window, click on OK . If the queue manager is running in
the AIX server machine it responds with this pop-up window:

Figure 52. Pop-up: PLM Started

To start the job double-click on the STARTJOB utility in the MQ3T window,
Figure 50 on page 91. Enter here the class name, hellogu1, and any instance
name you like. When you click on OK the GUI for the file transfer example,
Figure 53 on page 93, appears.

92 MQ3T Examples for Windows Clients and AIX Servers

Figure 53. STARTJOB Window

Figure 54. GUI for File Transfer Program

The source file, foo1.cmd is supplied on diskette 1 that accompanies this book.
″hellodl1″ is the name of the class (program) that receives the file. By default,
the class name is also the queue name. Click on the Send To BL push button to
start the file transfer.

When the PL message is received by the sender AIX machine you will see some
messages displayed in the BLM′s window. The messages are displayed by the
BL program. They are the input parameters for the file transfer program that
have been entered in the GUI and the return code of the MQXSEND call issued
by the BL program.

Chapter 4. File Transfer Example 93

� �
PL message arguments:
 dest_class ---hellodl1---
 from_file ---foo1.cmd---
 into_file ---conan.cmd---
 comp code = 0
 reason = 0

� �

The output that appears on the receiving AIX system trigger monitor′s window
looks like the one displayed in the MQI example. This is because the receiver
program, mqftprtx, has not been changed.

� �
/usr/mqm/mqftprtx ″TMC 2File.Transfer.Queue MQFTP
RT.P

/usr/mqm/mqftprtx

RS60002.MQM
″

Usage:
mqftpr

Receiver: Transferring file to conan.cmd
 Processing command file now - with fork
doing nothing
done� �

4.4 Developing the MQ3T Application
In this section we discuss the three programs of the MQ3T file transfer
application in detail. We explain:

• What information we defined in the 3T class files

• How 3T uses the profile to rout messages

• What modifications have been made to the sender program

• How the GUI was developed

4.4.1 Defining Class Source Files
The first step in developing an MQ3T application is to write the class source
files. Each class describes one object involved in the process. A class definition
includes:

• A description of each class the object can exchange messages with

• All messages the class can send and receive

• The names of the methods (programs) that process messages

• Rules that define what method to invoke when a message arrives

94 MQ3T Examples for Windows Clients and AIX Servers

In this file transfer example there are two class source files:

• hellogu1.cs for the presentation logic

• helloblcx.cs for the business logic

The class source files are based on the ″hello1″ sample. However, there are
some changes required, mostly to provide the 3T infrastructure for the DL class.
These changes are marked in the figures on page 96. and explained in the
following notes:

�1� The file bmqc.h is the MQ3T product header file.

�2� The file hello1x.h is the application header file. See also �11�.

�3� The file helloms1.ch contains the message definitions. See also �12�, �13�.

�4� The file hellopr1.ch, shown in Table 14, contains external class definitions.

�5� The ProgName for the PL source file points to the GUI program.

�6� SourceName in the HelloBLMethod points to the sender program hello1x.c.

�7� The method sends the message DLREQUEST to the receiver AIX machine.

�8� The new HelloDL1Method processes replies from the receiver AIX machine.

�9� The BL sends messages to the PL and DL. The destination queue name for
the messages defaults to the class name specified in the DESTINATION
parameter, DLCLASS. The value for DLCLASS is defined in hello1x.h, see �11�.

�10� The new DLReplyRule, with the ID 100, is satisfied when a reply message
from the receiver AIX machine arrives. The rule invokes the method
HelloDL1Method.

�11� The header file hello1x.h contains additional definitions for the DL class.

�12� Since the message is sent from a PC to an AIX machine, data conversion is
necessary. Refer to page 302 of the Application Programming manual.

�13� A pair of messages to be sent between BL and DL is added.

Table 14. Class Descriptions - hellopr1.ch

PLCLASS BLCLASS DLCLASS

CLASSDESC
BEGIN
ClassName PLCLASS
ClassType PL
MsgIn STRTJOB, BLREPLY
MsgOut BLREQUEST

END

CLASSDESC
BEGIN
ClassName BLCLASS

 Harden YES
 ClassType BL
 MsgIn BLREQUEST, DLREPLY
 MsgOut BLREPLY, DLREQUEST

END

CLASSDESC
BEGIN
ClassName DLCLASS
ClassType DL
MsgIn DLREQUEST

 MsgOut DLREPLY
END

Chapter 4. File Transfer Example 95

#include <bmqc.h> �1�
#include ″hello1.h″ �2�

HEADING
BEGIN

Title ″hellogu1 class file″
END
CSINCLUDE ″helloms1.ch″ �3�
CSINCLUDE ″hellopr1.ch″ �4�

METHOD
BEGIN

MethodName HelloGu1Method
MethodType PROGRAM

 ProgName RES3TGTC.EXE �5�
 StartupTime 10
 Interface PULL
 MsgOut BLREQUEST

END

CLASS
BEGIN

 ClassType PL
 ClassName PLCLASS
 Destination BLCLASS
 RULE

BEGIN /* startjob message */
RuleId RI_STARTJOB
RuleName StartJobRule
MethodName HelloGu1Method
MsgIn STRTJOB

END
RULE

BEGIN /* reply from sender */
RuleId RI_BLREPLY
RuleName BLReplyRule
MethodName HelloGu1Method
MsgIn BLREPLY

END
END

Figure 55. PL Class File ″hellogu1.cs″

...
MESSAGE /* PL to BL */

BEGIN
MsgName DLREQUEST
MsgType REQUEST

 OperationCode OC_BLREQUEST
 Format FIXED
 StrucName HELLO
 StrucFile hello1st.h
 StrucLen 60
 ConversionDLL MQFMT_STRING �12�

END
...
MESSAGE /* BL to DL */ �13�

BEGIN
MsgName DLREQUEST
MsgType REQUEST

 OperationCode OC_DLREQUEST
 Format FIXED
 StrucName HELLOD
 StrucFile hello1st.h
 StrucLen 500
END

MESSAGE /* DL to BL */
BEGIN

MsgName DLREPLY
MsgType REPLY

 OperationCode OC_DLREPLY
 Format FIXED
 StrucName HELLOR
 StrucFile hello1st.h
 StrucLen 60
 ConversionDLL MQFMT_STRING

END

Figure 56. Class Header File ″helloms1.ch″

#include <bmqc.h> �1�
#include ″hello1x.h″ �2�

HEADING
BEGIN

Title ″helob1cx class file″
END
CSINCLUDE ″heloms1x.ch″ �3�
CSINCLUDE ″hellopr1.ch″ �4�

METHOD
BEGIN

MethodName HelloBL1Method
MethodType C_LIBRARY
ProgName hellobl1.Method1
SourceName hello1x �6�
MsgOut BLREPLY, DLREQUEST �7�

END
METHOD �8�

BEGIN
MethodName HelloDL1Method
MethodType C_LIBRARY
ProgName hellobl1.Method2
SourceName hello1d

END

CLASS
BEGIN

 ClassName BLCLASS
 Harden YES
 ClassType BL

Destination PLCLASS, DLCLASS �9�
 PingTimeout 10
 RULE �10�

BEGIN /* request from BL */
RuleId RI_BLREQUEST
RuleName BLRequestRule
MethodName HelloBL1Method
MsgIn BLREQUEST

END
RULE

BEGIN /* reply from DL */
RuleId 100
RuleName DLReplyRule
MethodName HelloDL1Method
MsgIn DLREPLY

END
END

Figure 57. BL Class File ″helob1cx.cs″

#include <bmqc.h>
#include ″hello1st.h″ /* message structure */

#define ID_WINDOW 256 /* resource IDs */
#define ID_FILE 300
#define ID_HELLOBL 301
#define ID_EXITPROG 302
#define BLCLASS ″hellobl1″ /* classes */
#define PLCLASS ″hellogu1″
#define DLCLASS ″hellodl1″ �11�
#define PLINSTANCE ″Oak″ /* instances */
#define BLINSTANCE ″Beech″
#define BLREQUEST ″BLRequest″ /* messages */
#define BLREPLY ″BLReply″
#define STRTJOB ″StartJob″

#define WM_PLTEST (WM_USER + 1) /* event message ID */

#define RI_STARTJOB 0 /* rule IDs */
#define RI_BLREQUEST 1
#define RI_BLREPLY 2
#define OC_STARTJOB (MQOC_USER) /* operation codes */
#define OC_BLREQUEST (MQOC_USER + 1)
#define OC_BLREPLY (MQOC_USER + 1)
#define OC_DLREQUEST (MQOC_USER + 2) �11�
#define OC_DLREPLY (MQOC_USER + 3)

Figure 58. Header File ″hello1x.h″

96 MQ3T Examples for Windows Clients and AIX Servers

4.4.2 Compiling Class Source Files
Compile class source files with the MQ3T class compiler bmqcc. This program
parses a class source file (.CS) and generates a class binary file (.CB). The
class binary file is used by the MQ3T run-time program, either a PLM or a BLM.
You may also create skeletons to develop the business logic of the application.

Figure 59 illustrates the compilation of the class source file hellogu1.cs. and the
creation of the skeleton files for the BL. The commands are in bold print.

� �
;bmqcc hellogu1.cs

Class Compiler.
Version 1.00.000. Sep 6 1995
(C) Copyright IBM Corporation 1994, 1995.
All rights reserved.

*** Parsing the class source file ′ hellogu1.cs′ ***
........

*** Checking the msgin/msgout of class hellogu1 ***

*** CHECKED ***

*** Creating binary class file ′ hellogu1.cb′ ***

*** CREATED ***
;bmqcc /s helob1cx.cs

Class Compiler.
Version 1.00.000. Sep 6 1995
(C) Copyright IBM Corporation 1994, 1995.
All rights reserved.

*** Parsing the class source file ′ helob1cx.cs′ ***

*** Checking the msgin/msgout of class hellobl1 ***

*** CHECKED ***

*** Creating binary class file ′ helob1cx.cb′ ***

*** CREATED ***

*** Generating skeleton files ***

*** GENERATED ′ hellobl1.c′ , ′ hellobl1.mak′ and ′ hellobl1.exp′ ***� �
Figure 59. Compiling a Class Source File

Notes:

 1. Ensure that the language environment variable ″LANG″ is set correctly to the
appropriate user′s language, such as:

export LANG=En_US

 2. Ensure that a link is made in the /usr/include directory for the files bmqc.h
and cmqc.h.

The cmqc.h link should have been set up as part of the MQSeries base
installation.

Chapter 4. File Transfer Example 97

For the file bmqc.h, supplied with MQSeries 3T, execute the following
command:

ln -fs /usr/lpp/mq3t/include/bmqc.h /usr/include/bmqc.h

 3. Ensure that the ″INCLUDE″ environment variable is set:

export INCLUDE=/usr/include

 4. Copy or link the file ″heloms1x.ch″ to ″helloms1.ch″:

ln -fs heloms1x.ch helloms1.ch

If you compile with the ″/s″ options the class compiler creates three files:

• hellobl1.c

• hellobl1.mak

• hellobl1.exp

hellobl1.c is a skeleton file that contains one entry point for each of the methods
defined in the class file. In this file you will find two entry points, for the
HelloBL1Method and one for the HelloDL1Method. For each method the
compiler includes an #INCLUDE statement for the file that contains the source
code for the method. This name is specified as SourceName in the source file.

hellobl1.mak is used to compile the BL program. Start the compilation by typing:

make -f hellobl1.mak

The above command compiles the C program only. To compile the class source
file and then C program in one step use the make file supplied on the diskette,
hello1cx.mak. Type the following command:

make -f hello1cx.mak

hellobl1.exp is used for the compilation and contains the following information:

#! hellobl1.a
LibMain
Method1
Method2

The ″redo″ command file included in the diskette can be used to reset the
environment and to run another compilation of all files.

rm *.cb
touch *.h
touch *.ch
make -f hello1cx.mak
echo ″\n″
echo ″Ignore error messages of ′ Cannot Open or Does not exist′ on Log files\n″
cat *.LOG
rm BMQERROR.LOG
echo ″\n″
echo ″Type the following command to start the blm (if hellobl1 was created):\n″
echo ″strblm helob1cx.prf\n″

Figure 60. Command File ″redo″

98 MQ3T Examples for Windows Clients and AIX Servers

4.4.3 Routing Messages
The startup profile for BLM, helob1cx.prf, contains only the SERVER section that
specifies the name of the class binary file (.cb) the BLM has to use.

[SERVER]
ClassNames=helob1cx

According to these definition files the following figure shows how MQ3T routes
the messages (the file transfer in this case) to the destination class hellodl1.

PL - Windows VB BL - RS60001 Sender DL - RS60002 Receiver
┌─────────────────────┐ ┌──────────────────────┐ ┌──″────────────────────┐
│Dest.Class=hellodl1 │ │ Define qremote │ │ ───┐ ┌─── │
│SourceFile=foo1.cmd │──�│ (File.Transfer.Queue)│──�│ └──────┘ │
│TargetFile=conan.cmd │ │ Define qalias 	 │ │ File.Transfer.Queue │
└─────────────────────┘ │ (hellodl1) ─────┘ │ │ Trigger │

└──────────────────────┘ │ Define Process │
│ (MQFTP.P) │
│ /usr/mqm/mqftprtx │
└───────────────────────┘

Figure 61. Routing Messages to ″hellodl1″

Notes:

 1. On the windows client, you are asked to enter a destination class name for
the file transfer, hellodl1.

 2. The receiver program gets messages from a fixed queue, named
File.Transfer.Queue. This queue is triggered and the trigger initiates the
program.

 3. In the sender machine, you have to define a remote queue pointing to to the
File.Transfer.Queue. and an alias queue name to match the name of the DL
destination class. However, you may define only a remote queue called
hellodl1 instead. You can use the alias to keep MQI definitions independent
from the MQ3T application.

If you don′ t want to define remote and alias queues in the sender machine, the
other way to tell MQ3T how to route messages to destination classes is by using
the startup profile. You can add a CLASS section to the ″helob1cx.prf″ file as
shown below:

[SERVER]

ClassNames=helob1cx

[CLASS]

ClassName = hellodl1
QName = File.Transfer.Queue@RS60002.MQM

Figure 62. Profile with Server and Class Sections

With this entry you tell the BLM to route the messages for the destination class
hellodl1 on the queue File.Transfer.Queue owned by the Queue Manager
RS60002.MQM.

Chapter 4. File Transfer Example 99

4.4.4 Writing the Business Logic
The sender MQI program mqftp.c becomes in the MQ3T environment the
business logic. This new sender program hellobl1.c is quite different.

First of all, this program is a skeleton file generated by the Class Compiler. It
contains INCLUDE statements to include the real source code at compile time
(hello1x.c and hello1d.c). Instead of a ″main″ section, this program begins with a
MQENTRY call. In this call MQ3T passes some parameters to the BL program,
such as HInst. This is the handle representing the instance that sent the
message.

#include <bmqc.h>
#include ″hello1st.h″

void MQENTRY Method1(MQHINST HInst,
MQLONG RuleId,
PMQLONG pState,
MQLONG fBLRequest,
HELLO *pBLRequest

)
{

#include ″hello1x.c″

}

void MQENTRY Method2(MQHINST HInst,
MQLONG RuleId,
PMQLONG pState,
MQLONG fDLREPLY,
HELLOR *pDLREPLY

)
{

#include ″hello1d.c″

}

Figure 63. Skeleton File ″hellobl1.c″

The MQI program gets its input parameters (source file, target file, and queue
manager name) from a command entered on the AIX machine. The program
finds them in the argv and argc variables. The MQ3T program receives its input
parameters from the PL in form of a request message. The pointer to that
message is one of the parameters of the MQENTRY section. The structure of
this message is defined in the hellost1.h header file as follows:

typedef struct _HELLO /* hello */
{
MQCHAR mqmname[20];
MQCHAR file_source[20];
MQCHAR file_target[20];

} HELLO;

100 MQ3T Examples for Windows Clients and AIX Servers

Figure 64 on page 101 and Figure 65 on page 102 shows the business logic.
Compare it to the MQI example described in Chapter 12 of Messaging & Queuing
Using the MQI by Burnie Blakeley, Harry Harris and Rhys Lewis.

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include ″hello1x.h″ /* sample header file */
/***/
/* (B) include definitions for MQSeries */
/***/
#include <cmqc.h>

/***/
/* (C) Define constants used in this program */
/***/
#define MAX_FILE_SIZE 150000

HELLOR hellor; /* buffer for MQRPLY */
MQLONG CompCode; /* completion code */
MQLONG Reason; /* reason code */
HELLO My_Rec; /* message structure */

/***/
/* (G) Declare other variables used in the program */
/***/
FILE *fp;
int nbytes = 0;
char dest_class [48];
char from_file [128];
char into_file [128];
char *pc;

struct
 {

char to_file [128];
unsigned int Data_Length;
MQBYTE Buffer [MAX_FILE_SIZE];

 } F_Transfer_Msg ;

pc = strchr (pBLRequest->mqmname,′ ′) ; *pc=′ \0′ ; �1�
pc = strchr (pBLRequest->file_source,′ ′) ; *pc=′ \0′ ;
pc = strchr (pBLRequest->file_target,′ ′) ; *pc=′ \0′ ;

strcpy (dest_class, pBLRequest->mqmname);
strcpy (from_file, pBLRequest->file_source);
strcpy (into_file, pBLRequest->file_target);

printf(″PL message arguments:\n″) ; �2�
printf(″ dest_class ---%s---\n″ , dest_class);
printf(″ from_file ---%s---\n″ , from_file);
printf(″ into_file ---%s---\n″ , into_file);

Figure 64. MQ3T File Transfer: Sender Program (BL) ″hello1x.c″ (Part 1)

�1� The six C instuctions copy the the three input parameters from the message
into three work fields.

�2� Their contents is then displayed on the BLM′s screen.

Chapter 4. File Transfer Example 101

/***/
/* (I) Open the file to be transferred */ �3�
/***/
fp = fopen(from_file,″r″) ;
if (fp == NULL)
{
printf(″Could not open from_file %s\n″ , from_file) ;
strcpy(hellor.message, ″ERROR: Source File Could not be Opened ?″) ;
MQRPLY(HInst, BLREPLY, 0, &hellor.message, &CompCode, &Reason);
*pState = MQSTATE_CLEAR;
return ;

}

/***/
/* Start Building the Message content */
/***/
strcpy (F_Transfer_Msg.to_file, into_file);

/***/
/* (N) Read the data from the file into the message buffer */ �4�
/***/
nbytes = fread(F_Transfer_Msg.Buffer, 1, MAX_FILE_SIZE, fp);
if (nbytes == MAX_FILE_SIZE)

printf(″WARNING: Copy of file may have been truncated\n″) ;

if (nbytes != 0)
{

F_Transfer_Msg.Data_Length = nbytes ;

 /**/ �5�
/* to send the message to the DL Class we use */
/* MQXSEND instead of MQSEND. */
/**/

MQXSEND (HInst,dest_class, 0, MQMT_BMQ_REQUEST, MQOC_USER + 2,
MQOV_DEFAULT, MQMA_FIXED_FORMAT, 0,
(sizeof(F_Transfer_Msg) - MAX_FILE_SIZE + nbytes),
&F_Transfer_Msg, NULL,&CompCode, &Reason);

printf(″ comp code = %d\n reason = %d\n″ , CompCode,Reason);
}

�6�
if (CompCode > 0 && Reason == 5069)

strcpy(hellor.message, ″ERROR: Invalid Destination/Target Class !″) ;
else

strcpy(hellor.message, ″SUCCESS: PL′ s Parameters Processed !″) ;

MQRPLY(HInst, BLREPLY, 0, &hellor.message, &CompCode, &Reason);

/**/
/* (P) Close the file and clear the instance state */
/**/
fclose(fp) ;
*pState = MQSTATE_CLEAR; �7�

Figure 65. MQ3T File Transfer: Sender Program (BL) ″hello1x.c″ (Part 2)

�3�+�4� Both version of the sender program, MQI and MQ3T, have sections to
open and read the file to be sent.

102 MQ3T Examples for Windows Clients and AIX Servers

�5� The difference between the MQI and MQ3T programs lies in the way the
transfer is coded:

• The MQI program issues five MQI calls:

− MQCONN to connect to the queue manager

− MQOPEN to open the destination queue

− MQPUT to send the file

− MQCLOSE to close the queue

− MQDISC to disconnect from the queue manager

• On the other side, the MQ3T program issues only one MQ3T call:

− MQXSEND to send the file

MQXSEND (HInst, /* sending instance */
dest_class, /* destination class */
0, /* destination instance */
MQMT_BMQ_REQUEST, /* message type */
MQOC_USER + 2, /* operation code */
MQOV_DEFAULT, /* operation version */
MQMA_FIXED_FORMAT, /* attribute */
0, /* role */
(sizeof(F_Transfer_Msg) - MAX_FILE_SIZE + nbytes), /*length*/
&F_Transfer_Msg, /* data buffer */
NULL, /* conversion DLL */
&CompCode, &Reason); /* return codes */

In the MQI program, error and informational messages are displayed on the AIX
screen using the ″printf″ function. For the MQ3T program, this makes no sense
since the program has been started from a Windows workstation and the AIX
machine is simply the server that holds the files to be transferred.

Therefore, output messages must be displayed in the GUI on the Windows
machine. So error and informational messages are sent to the PL program
using the MQ3T call MQRPLY. Also, since the PL program sends a REQUEST
message to the BL, the BL must respond with a REPLY message. The GUI (PL)
waits for a this reply message. No more requests can be sent from this interface
until the reply has arrived.

�6� This code sends the reply to the PL. The message contents depend on the
return code from the MQXSEND call.

When a BL program sends a request message, MQ3T intercepts this message,
keeps the MQ3T header, turns the MQ3T keyword MQMT_BMQ_REQUEST into
the MQI keyword MQMT_REQUEST, and puts the message in the MQSeries
queue used by the DL program.

�7� The state MQSTATE_CLEAR allows the BL to accept more messages.

Receiver program

The receiver program is the same for both, the MQI and MQ3T example. It is
not modified for a MQ3T environment since the receiver AIX machine does
not have MQ3T installed. MQ3T considers this program a data logic (DL).

Chapter 4. File Transfer Example 103

4.4.5 Writing the Presentation Logic
The Presentation Logic (and the Presentation Logic Manager) run in a Windows
3.1 workstation. We have chosen Visual Basic to develop the program. IBM
provides the support to ″glue″ a Visual Basic program to MQ3T. This product is
discussed, in detail, in Chapter 3, “ Using Visual Basic” on page 43.

Since the MQ3T file transfer program is based on the ″hello1″ example, most of
the code is shown in Chapter 3. The form (GUI) is shown in Figure 54 on
page 93. The Visual Basic procedures for the form are:

Close_Click Ends the program, see Figure 33 on page 55

DisplayCompCode displays return codes, see Figure 30 on page 54

Exit_cmd_Click Invoked when Exit button is clicked, calls Close_Click

Form_Load Invoked when the form is loaded, see Figure 28 on
page 53, note the modifications in Figure 68 on
page 105.

Form_Unload See Figure 35 on page 56

FromFile_txt_Change Invoked when a source file name is typed

MQMName_txt_Change Invoked when a target class name is typed

OAK1_NewEvent Invoked when an event messages from the PLM
arrives, see Figure 31 on page 54

ProcessPLEvent Processes the reply message sent by the BL (sender
program)

SendMe_cmd_Click Invoked when the Send to BL button is clicked, sends
the request message containing the three input
parameters

ToFile_txt_Change Invoked when a target file name is typed

Option Explicit
 Dim fromfile As String * 20
 Dim tofile As String * 20
 Dim mqmname As String * 20
 Dim REASON As Long
 Dim COMPCODE As Long
 Dim msg
 Dim NL

Figure 66. MQ3T File Transfer: Declarations. This describes the fields for the three input
parameters, a message area, and a field that will contain the ″new l ine″ characters.

Sub Exit_cmd_Click ()
 Close_Click ′ common exit routine from hello1
End Sub

Figure 67. MQ3T File Transfer: Exit. This routine is called when the Exit button is clicked.

104 MQ3T Examples for Windows Clients and AIX Servers

Sub Form_Load ()

fromfile = ″″ ′ clear work fields
tofile = ″″
mqmname = ″″

FromFile_txt.Text = ″″ ′ clear input fields
ToFile_txt.Text = ″″
MQMName_txt.Text = ″″

NL = Chr(13) + Chr(10) ′ NEW LINE control character

vPLClass = ″hellogu1″ ′ class name
′ register class with 3T

MQREG ByVal vPLClass, 1, ByVal OAK1.hWnd, ByVal BMQ_NOTIFY,
ByVal MQRGO_REMOVE_LIST_ENTRIES, COMPCODE, REASON

DisplayCompCode ″MQREG″ ′ display return codes

End Sub

Figure 68. MQ3T File Transfer: Display the Window. This routine is called when the form
is loaded. It initializes the fields defined in Figure 66 before it ″glues″ the GUI to MQ3T.

Note: The MQREG statement must be written on one line!

Sub ProcessPLEvent (ByVal HInst As Long)
Dim MQevent As MQevent ′ event structure
Dim MsgParams As MQMP ′ message parameters
Dim BufferLen As Long ′ buffer length
Dim ReplyMsg As HELLOR ′ buffer - NB Don′ t define as String

′ query information about the current event
MQQRYE ByVal HInst, MQevent, COMPCODE, REASON
DisplayCompCode ″MQQYRE″

′ if the rule is RI_BLREPLY, retrieve the message data and display it
If MQevent.RuleId = RI_BLREPLY Then
BufferLen = MQevent.MaxBufferLength
MQQRYM ByVal HInst, ByVal 1, MsgParams, BufferLen, ReplyMsg, COMPCODE, REASON
DisplayCompCode ″MQQYRM″

′ if the retrieve works, display the message from the BL Manager
If COMPCODE = MQCC_OK Then
MsgBox ReplyMsg.message, 64, ″Message from BL″

End If
End If

′ end the current event -
′ this enables the PL Manager to post new events
MQENDE ByVal HInst, ByVal MQSTATE_USER, COMPCODE, REASON
DisplayCompCode ″MQENDE″

End Sub

Figure 69. MQ3T File Transfer: Process an Event Message. This procedure is called from
OAK1_NewEvent when an event message from the PLM has arrived and a rule has been
satisfied.

Chapter 4. File Transfer Example 105

Sub FromFile_txt_Change () ′ source file name
fromfile$ = FromFile_txt.Text

End Sub

Sub MQMName_txt_Change (0) ′ destination class name
mqmname$ = MQMName_text.Text

End Sub

Sub ToFile_txt_Change () ′ target file name
tofile$ = ToFile_txt.Text

End Sub

Figure 70. MQ3T File Transfer: User Input. One of these routines is invoked when the
user types or changes one of the three input parameters.

Sub SendMe_cmd_Click ()
If Trim(fromfile$) = ″″ Then

msg = ″Source file must be entered!″
MsgBox msg, , ″ERROR″
FromFile_txt.SetFocus
Exit Sub

End If

If Trim(tofile$) = ″″ Then
msg = ″Target file must be entered!″
MsgBox msg, , ″ERROR″
ToFile_txt.SetFocus
Exit Sub

End If

If Trim(mqmname$) = ″″ Then
msg = ″Target Class name must be entered!″ & NL & NL & ″(e.g. hellodl1)″
MsgBox msg, 0, ″ERROR″
MQMName_txt.SetFocus
Exit Sub

End If

Dim buffermsg As HELLO ′ buffer - NB Don′ t define as String

buffermsg.msg_mqmname = mqmname$
buffermsg.msg_from_file = fromfile$
buffermsg.msg_to_file = tofile$

′ send request BLREQUEST to class BLCLASS

MQSEND ByVal vHInst, ByVal BLCLASS, ByVal BLINSTANCE,
ByVal BLREQUEST, 0, buffermsg, COMPCODE, REASON

DisplayCompCode ″MQSEND″
End Sub

Figure 71. MQ3T File Transfer: Send Input Parameters to BL. This routine is invoked
when the Send to BL button is clicked. If all parameters are entered the message is built
and sent to the BL.

106 MQ3T Examples for Windows Clients and AIX Servers

4.4.6 A Software Distribution Application
You could extend the application developed so far and use the BL as a skeleton
for the development of a software distribution application:

• From the Windows workstation, the user initiates the file transfer from the file
server (sender program) to several different target systems.

• After receiving a file, the target machines (receiver program) sends a
confirmation message back to the sender.

• The confirmation message can then be written to a log file to keep track of
the software level installed in each machine.

The log could be kept in either the sender AIX machine or in the Windows
workstation.

Figure 72. Software Distribution Application

We will not develop this program here, rather we discuss ways to route
messages to several different systems. We will explore two possibilities:

• Define classes and queues for all possible target systems in the sender

• Use one target class and modify the queue name in the sender′s profile

4.4.6.1 Using Destination Classes
For every new target machine you want to reach, you have to define one DL
class to MQ3T. You may ″hard code″ the class names or define them in a
header file, such as hello1x.h
...
#DEFINE DLCLASS2 ″hellodl2″
...

Then you have to write the external class descriptions for the new classes. You
may use a class header file such as hellopr1.ch.

Chapter 4. File Transfer Example 107

...
CLASSDESC
BEGIN
ClassName DLCLASS2
ClassType DL
MsgIn DLREQUEST
MsgOut DLREPLY

END
...

You also have to add the new classes to the destination parameters in the class
definition of the sender′s class source file, for example helob1xc.cs.
...
CLASS
BEGIN

 ClassName BLCLASS
 Harden YES
 ClassType BL

Destination PLCLASS, DLCLASS, DLCLASS2
PingTimeout 10

...

The class source file must be compiled with bmqcc.

Next you have to define the remote queue names. You have two options:

• Define a remote queue name and a queue alias

• Insert two CLASS sections in the startup profile for the BLM, helob1cx.prf.

For the first option, use the following runmqsc commands:

define qremote(MQFTP2) LIKE(SYSTEM.DEFAULT.REMOTE.QUEUE) +
replace descr(′ remote queue pointing to File.Transfer.Queue′) +
rname(′ File.Transfer.Queue′) rqmname(RS60003.MQM) xmitq(RS60003.MQM)

define qalias(′ hellodl2′) targq(MQFTP2) replace

Note: By default, the queue name is the same as the class name. When the
sender program hellobl1 sends a file to hellodl2, the BLM inserts the file
(message) into the remote queue MQFTP2.

The second way is to add to the sender program′s profile class sections for all
destinations, as shown in Figure 73 on page 109.

108 MQ3T Examples for Windows Clients and AIX Servers

[SERVER]
ClassNames=helob1cx

[CLASS]

ClassName = hellodl1
QName = File.Transfer.Queue@RS60002.MQM

[CLASS]

ClassName = hellodl2
QName = File.Transfer.Queue@RS60003.MQM

Figure 73. Profile for Server Supporting Mult iple Classes

4.4.6.2 Using the Profile
If you choose to add the destinations to your profile you do not have to change
the sender′s class source file. In the profile (helobl1cx.prf), define:

• A CLASS entry for the destination class hellodl1

• The fully qualified queue name in the target machine
(QName@QMGRName).

In this case you need as many .prf files as there are target machines. You start
the BLM with the appropriate profile, depending on the machine you want to
reach.

With this method, you always enter the destination class hellodl1 in the GUI,
however, you have to start and stop the BLM each time you want to change the
target machine, since you can activate only one Business Logic Manager.

[SERVER]
ClassNames=helob1cx

[CLASS]

ClassName = hellodl1
QName = File.Transfer.Queue@RS60002.MQM

Figure 74. Server Profi le with Class and Queue Definit ion

On the receiver machines you have to replicate the set-up steps described on
pages 83 and 89.

Chapter 4. File Transfer Example 109

110 MQ3T Examples for Windows Clients and AIX Servers

Chapter 5. The Bacon Lettuce and Tomato Sandwich

For a bacon-lettuce-and-tomato sandwich (BLT), you need two pieces of bread,
two pieces of bacon, some lettuce, mayonaise, some tomato slices, and
someone who manufactures it for you. Of course, you need some kitchen
utensils, a toaster, and a microwave to cook the bacon.

You are surprised to read the recipe for a BLT in a book that deals with the
second generation of client/server processing. This is because the construction
of a BLT is easy to understand and yet complex enough to demonstrate the
process of an objected application design that is required for 3T. Also, it may be
considered an example of a home version of order entry and inventory control.

Let us make a first sketch of the scenario. You go home for lunch and you are
hungry. Your wife is home and you ask her to prepare a BLT for you. From a
system design point of view there are two ″objects″, you and your wife, and
messages that flow between you.

Figure 75. BLT: Message Flow between You and Your Wife

Figure 75 shows what messages may be exchanged between you and your wife:

• You send a request message to your wife to request the sandwich.
However, you may try an inform message instead and inform her that you
are hungry.

MQ3T knows three message types: the inform message that the recipient
does not have to respond to, and the request message that must be
answered with a reply message.

• The message coming back to you either carries the BLT or tells you to make
the sandwich yourself or starve.

Usually, that′s all what happens. However, there are two other possibilities to
consider. Your wife may be mad at you and never respond (during your lunch
break), or she got tied up with the telephone and prepares the sandwich too late
for you to eat it.

When you design an application you have to anticipate the unusual. That′s what
programming is all about. You have to deal with messages that are late or never
arrive. The MQ3T infrastructure helps you to do this without much coding.

You could set an alarm clock, and when ten minutes have passed you could go
somewhere else for lunch or call Luigi and order a pizza. Luigi advertises he
will always deliver. But is this true? What do you do if Luigi does not deliver?
You go back to work hungry.

What you read so far is only the tip of the iceberg. The system we design has
many more objects. What, for example, happens when you run out of tomatoes

 Copyright IBM Corp. 1996 111

or when the toaster breaks down? And what if your son, whom your wife sent
for the bacon, forgets and plays with the dog instead? Also, what do you do
when the electricity is shut off? You see, we deal with a rather complex system.
Let us analyze this system, make an application design, and write it down in the
form of a couple of MQ3T programs.

MQ3T Application Development Process

The following sections describe how to design and develop the application
based on the scenario described in section 1.3.2, “The 3T Application
Development Process” on page 12.

5.1 Requirements
Let us describe the demonstration program about the household of Konrad and
his wife Karen as far as lunch is concerned.

The process is event-driven, initiated by Konrad. Konrad ′s lunch break is
limited. Therefore, his lunch must be delivered within a specific time. If, for
whatever reason, Karen does not prepare the sandwich, there must be enough
time left to order a pizza from Luigi next door. Should Luigi not deliver then
Konrad has to go back to work hungry.

Karen has a different set of requirements. When she does not have the food
items she needs to prepare the BLT she has to notify Konrad immediately, so
that he can order a pizza.

Missing food items must be written on a shopping list. This process should be
automated; also consider that any item can either be used up or spoiled.

Once a day the shopping list is sent to the grocer. When the grocer delivers, the
food is stocked and the inventory list is updated. Should the manufacturing
process being held up because of a missing item, it resumes again.

Since Karen is interested in everything going on in the house she wants to be
able to inquire about the status of the food supply and the condition of the
kitchen equipment at any time.

Events, out of Karen′s and Konrad′s control, may spoil the food supply, cause
some equipment to seize operation, or disable communications between
″objects″ involved. The objects may be Karen and Konrad themselves, or the
refrigerator and the other appliances.

After this rough outline let us summarize the application. As said before, the
BLT application is comprised of the manufacturing of a specific sandwich, order
entry and inventory control. As backup for a malfunction in the manufacturing
process an outside vendor is called (to deliver a pizza). The purpose of the
application is threefold:

 1. Lunch has to be prepared within a specified time (production).

 2. The food supply in the household shall be monitored and replenished when
depleted or spoiled (inventory control).

 3. A process for detecting and repairing malfunctioning appliances has to be
developed (maintenance).

112 MQ3T Examples for Windows Clients and AIX Servers

So far we defined three users that can influence or control the business process
We have to build user interfaces for them so that they can interact with the
system. The users and their interfaces are:

• Konrad starts the application when he enters the house and ends it when he
goes back to work. His only purpose is to eat lunch. He initiates the
process be asking Karen for a BLT. If he does not receive it within a
specified time he relies on a vendor to deliver a pizza.

• Karen controls the fully automated manufacturing plant. When a piece of
equipment breaks it is put on the repair list. When a food item is depleted it
is put on the shopping list. She monitors two interfaces:

− The electronic shopping list contains items that have to be bought in
order to the produce the BLT. Karen fills in the quantity to order and
sends it to the grocer.

− The repair list is used to monitor equipment and to initiate any repair.

• Luigi takes orders and delivers.

Note: The grocer is an entity outside our environment and, therefore, not a
″user″ that has a user interface. However, the grocer is an object in our
business design.

To turn this application into a ″computer game″ we add one more user:

• A Gremlin creates events that causes the business to deal with abnormal
situations, such as broken toasters and rotten tomatoes.

The job: For this demonstration, only Konrad initiates the application. He is the
3T job owner. Konrad owns all GUIs (presentation logics) in our scenario, and
all business logics as well. To start the demonstration program we type:

startjob KONRAD any_instance_name

To end the demonstration program we close Konrad′s GUI. Closing Konrad′s
GUI causes all other PLs and BLs that are associated with the job to end, too.

Classes: In this demonstration, we have PL and BL classes, each class
representing one of the objects. The class KONRAD is the job owner.

Note: Class names are case sensitive.

Instances: 3T allows us to create many instances of a class. In this
demonstration, however, we will use only one instance of each class. For
example, there will be only one instance of the class KONRAD. When (the
instance of) KONRAD ends then 3T ends all instances associated with the job.
3T sends a system message to the instances so that some clean up work can be
done.

Note: We could call Konrad′s class ″CUSTOMER″ and use Konrad as an
instance name. Other instances of that class could be Dagwood and Blondie.

5.2 Business Analysis
We will now analyze the requirements and produce specifications for the
application. The specifications will then be used to make a high level design.
Keep in mind that we are going to design a ″computer game″ that contains the
″real″ application and modules that simulate external events. In this section we
define:

Chapter 5. The Bacon Lettuce and Tomato Sandwich 113

• The objects

• The functions performed by each object

• The message flow between objects

• The GUI interfaces

5.2.1 Objects and Their Functions
Table 15 defines the objects and their functions.

Table 15 (Page 1 of 2). Objects and Their Functions

Symbol Object Function

Konrad Konrad is the job owner and starts the process.

• He causes the GUIs for the other PLs to be
displayed.

• He can order BLTs and pizzas.

Luigi • He receives pizza orders from Konrad and
delivers, providing he is not busy or
otherwise distracted.

• He responds to inquiries issued from the
repair l ist.

• The gremlin can keep him from working.

Karen Karen controls the manufacturing process.

• She produces the BLT providing food is
available and the kitchen equipment is in
working order.

• She informs Konrad when she cannot deliver.
• She does not accept any BLT requests when

she is on the phone.
• She responds to inquiries issued from the

repair l ist.

Refrigerator • It supplies and stocks bacon, lettuce and
mayonaise and keeps inventory.

• When an item is used up an order is placed
in the shopping list. From that time on no
requests are accepted until a new food
shipment arrives.

• The gremlin can disable the unit or spoil the
food items.

• It responds to inquiries issued from the
shopping and repair lists.

Vegetable
basket

• It supplies and stocks tomatoes and keeps
inventory.

• It places an entry on the shopping list when it
is out of tomatoes. It only honors requests
when tomatoes are available.

• The gremlin can hide the basket or spoil the
tomatoes.

• It responds to inquiries issued from the
shopping and repair lists.

114 MQ3T Examples for Windows Clients and AIX Servers

Table 15 (Page 2 of 2). Objects and Their Functions

Symbol Object Function

Breadbox • It supplies and stocks bread and keeps
inventory.

• It places an entry on the shopping list when it
is out of bread. It only honors requests when
bread is available.

• The gremlin can spoil the bread or break the
breadbox.

• It responds to inquiries issued from the
shopping and repair lists.

Toaster • It receives bread and returns toast to the
requestor.

• It can be disabled by the gremlin.
• It responds to inquiries issued from the

repair l ist.

Microwave • It receives bacon, cooks it and returns it to
the requestor.

• It can be disabled by the gremlin.
• It responds to inquiries issued from the

repair l ist.

Shopping list The list contains the names of all food items.

• It indicates what items have to be ordered.
• The user must enter a quantity before an

order is sent to the grocer.
• An inquiry function allows to monitor quantity

of the food items in stock.
• The gremlin can erase the shopping list.

Repair l ist This GUI can perform two functions:

• Inquiries allow it to monitor if any kitchen
equipment is working or not working.

• A repair function initiates the repair of
equipment out of order.

Some special functions allow it to reverse
situations inflicted by the gremlin.

Grocer • He receives the shopping list and fills the
order, providing the store is open.

• He delivers the items directly to the
refrigerator, bread and vegetable baskets.

• He responds to inquiries issued from the
repair l ist.

• The gremlin can close the store.

Gremlin The gremlin causes abnormal situations, such as:

• Spoil the food supply
• Disable kitchen equipment
• Close the grocery store
• Send Luigi on a break
• Keep Karen on the phone forever
• Erase the shopping list

Chapter 5. The Bacon Lettuce and Tomato Sandwich 115

Figure 76. BLT: Objects and Message Flow, Production

5.2.2 Message Flow between Objects
Communications between the objects is shown in two figures:

• Figure 76 shows the message flow for:

− The production of the BLT

− The ordering process of food items

− The delivery process of food items

You see that Karen is the central figure in this process. She is, however, not
involved in ordering and delivering food items. The three storage facilities
(breadbox, vegetable basket, refrigerator) deal directly with the shopping list
for ordering and the grocer for deliveries.

• Figure 77 on page 117 shows the message flow for:

− The exceptions that can occur in the process, inflicted by the gremlin.
Equipment can break, food can be spoiled, the grocery may close, Luigi
may be called away, or Karen may receive a phone call that keeps her
busy.

− The process that ″repairs″ equipment, opens grocery again, calls Luigi
back from lunch, and ends Karen′s phone calls.

The solid lines represent the influence of the gremlin and the dotted lines
show the connections to the repair facility.

116 MQ3T Examples for Windows Clients and AIX Servers

Figure 77. BLT: Objects and Message Flow, Maintenance

In Figure 76 on page 116 you can see that Karen sends a message to the
breadbox to request bread. After she received the bread she sends it to the
toaster to be toasted.

One could imagine the scenario in Figure 78. The bread request could be sent
to the breadbox. The breadbox could then send the bread to the toaster which
then sends toast to Karen.

Figure 78. BLT: Circular Message Flow

Chapter 5. The Bacon Lettuce and Tomato Sandwich 117

However, 3T is not designed to work that way if you use request and reply
messages. You could send inform messages around in a circle. Inform
messages, however, cannot be timed. You would never find out if the breadbox
or the toaster is broken.

Note: The lines between the objects indicate the message flow only, they do not
represent a specific message. Several messages of different types may be
exchanged between objects.

5.2.3 GUI Prototypes
Now we have to decide what graphical user interfaces we need. We use GUIs to
externally manipulate the execution of the application. The five objects that
require a GUI are:

• Konrad

• Luigi

• Shopping list

• Repair list

• Gremlin

For Karen we do not need a GUI since she represents the automated production
process.

Figure 79 through Figure 83 on page 120 show prototypes for the user
interfaces. The GUIs are created with the OS/2 Presentation Manager. Their
final appearance is determined by the GUI programmer. However, in the design
phase we should have a good understanding what function the GUIs initiate and
what kind of information they display:

• All GUIs contain a scrollable area to display messages.

• All actions are initiated with push buttons.

• If an action can be directed to more than one object then radio buttons are
used to identify that object.

Figure 79. GUI Prototype for Konrad

Messages

• BLT is served.
• Pizza is served.
• Too late for BLT (timed out).
• Too late for pizza (timed out).
• BLT arrives too late.
• Pizza arrives too late.

Actions

• Order a BLT
• Order a pizza
• Quit

118 MQ3T Examples for Windows Clients and AIX Servers

Figure 80. GUI Prototype for Gremlin

Messages

The message area could be used to keep
an action log.

Actions

• Send a message to the object
associated with the selected radio
button.

• Quit.

Only one radio button can be selected at
one time.

• ″Spoil″ sets the inventory to 0.

• ″Break″ disables the BL, it does not
end the BLM.

• ″Erase shopping list″ sets all values to
0.

• The other functions disable the PL/BL
but do not end the PLM/BLM.

Figure 81. GUI Prototype for Shopping List

Messages

The message area could be used to keep
an action log:

• Order sent to grocery
• Inquire food item
• No response to inquiry

Input

A quantity must be typed before an order
can be send to the grocery.

Actions

• ″Shop″ sends the shopping list to the
grocery. The radio buttons have no
effect for this function.

• ″Inquire″ checks the quantity of the
item marked by the radio button.
When the response to the inquiry
comes back the value is displayed in
the field ″Stock″.

• Quit.

Only one radio button can be selected at
one time.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 119

Figure 82. GUI Prototype for Repair List

Messages

Message area could be used to keep an
action log, for example:

• Get working
• Inquiring
• No response to inquiry
• Store is closed

Actions

• ″Repair″ tries to activate an object.
• ″Inquire″ checks the status an object.

A radio button must be selected for the
action.

Status

The status of the object or the inquiry is
displayed as follows:

• OK
• Working
• Not responding
• Inquiring ...
• Wait ...

Figure 83. GUI Prototype for Luigi

Messages

• Deliver a pizza
 (Konrad ′s order arrived)

• Luigi is taking a break
 (initiated by the gremlin)

• Luigi is back from his break
 (initiated from the repair list)

Actions

• Send the pizza to Konrad
• Quit

Note: The GUI prototypes have been created using the OS/2 Presentation
Manager.

120 MQ3T Examples for Windows Clients and AIX Servers

5.3 3T Design
Figure 76 on page 116 and Figure 77 on page 117 illustrate the high level
design of the application. We will now map this design into a 3T design.

• We identify and name the classes.

• We define the message flow and name the messages.

• We define the methods that process the messages.

• We specify the rules that invoke the methods.

• We name the methods and the files that contain the source code.

5.3.1 3T Classes
We designed the application having twelve classes, five presentation logics and
seven business logics. We assign to them the names specified in Table 16.

We define all BLs as ″hard″ classes, meaning that all BLs can recover from a
network failure.

For each class we have to create a 3T class source file. Each class source file
contains besides other information ″external descriptions″ of all classes the
class communicates with. Since our application has only twelve classes we can
write the external attributes of all classes in one separate file. That file we will
include into all class source files.

The external attributes of a class are:

• The class name as defined in Table 16

• The class type as specified in Table 16

• A list of all messages the class can receive

• A list of all messages the class can send

• A keyword that defines whether the class is hard or not

Table 16. BLT: 3T Classes

Number Object Class name Type Hard/Soft

1 Konrad KONRAD PL N/A

2 Luigi LUIGI PL N/A

3 Karen KAREN BL hard

4 Refrigerator FRIDGE BL hard

5 Vegetable basket BASKET BL hard

6 Bread box BREADBOX BL hard

7 Toaster TOASTER BL hard

8 Microwave oven MICRO BL hard

9 Shopping list SHOPPING PL N/A

10 Grocer GROCER BL hard

11 Gremlin GREMLIN PL N/A

12 Repair list REPAIR PL N/A

Chapter 5. The Bacon Lettuce and Tomato Sandwich 121

Before we can write the external class descriptions we have to analyze the
message flow and name all messages.

5.3.2 Messages
Figure 76 on page 116 and Figure 77 on page 117 show the message flow
between the twelve classes. Now let us look at each class individually,
determine what messages each class can send and receive, and name them.

5.3.2.1 BLT Production Process
Figure 84 shows the message flow and the messages names used for the
production of the BLT.

Figure 84. BLT: Messages in Production Process

 1. Konrad sends the request message FeedMe to Karen.

 2. Karen sends a wave of three request messages (GetTomato, GetBread,
GetFromFridge) to the vegetable basket, breadbox and refrigerator.

 3. The three classes respond with the reply messages HaveTomato, HaveBread
and HaveFromFridge.

 4. After all three reply messages have arrived in time, Karen sends a second
wave of two request messages (MakeToast and CookBacon).

 5. Toaster and microware send the reply messages HaveToast and HaveBacon.

 6. To end the process Karen does one of the following:

• When the replies from toaster and microwave arrived in time, she sends
the reply message Sandwich to Konrad.

122 MQ3T Examples for Windows Clients and AIX Servers

• If any one of the five objects do not respond in time she sends the reply
message Starve to Konrad.

Note: If the replies to one of the waves (3 and 5) are incomplete all messages
are ignored, the ones that arrived on time and the ones that arrive late.

What is a wave?

When a class sends request messages to several classes then it sends a
″wave″ of messages. The replies to a wave of messages are expected at the
same time and usually processed by one method. A class can send only one
wave of messages at a time.

5.3.2.2 Inventory Control Process
Figure 85 shows the message flow and the messages names used to control,
order and deliver food items.

Figure 85. BLT: Messages in Inventory Control Process

 1. The process is initiated when the inventory of one of vegetable basket,
breadbox or refrigerator is depleted. The OrderMessage is sent to the
shopping list. This is an INFORM message, no response is expected.

 2. The user of the shopping list enters the quantity to order and sends a
FoodOrder message to the grocer. This is an INFORM message, too.

 3. Depending on the number of items ordered the grocer sends one or more
FoodDelivery messages to the basket, breadbox or refrigerator.

 4. At any time, one can send from the shopping list a FoodInquiry message to
one of the classes, which respond with a message of the same name. These
are INFORM messages.

Note: We use INFORM messages to show how the 3T timer function can be
used to check if responses arrive in time.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 123

5.3.2.3 Food Order Process
Figure 86 shows the messages that Konrad can send and receive. Konrad has
two options: he can order a BLT or a pizza.

Figure 86. BLT: Messages in Food Order Process

 1. Konrad sends a request message to Karen to order a BLT.

 2. Karen replies with either a Sandwich or Starve message.

Konrad knows when he will not receive a BLT, he receives either the Starve
message or the timer expires and he receives no message at all.

 3. Except when he is waiting for a BLT, Konrad can send the DeliverPizza
request to Luigi.

 4. Luigi replies with a EatPizza message. To do this the user has to click on a
push button.

5.3.2.4 Exceptions and Maintenance
All classes except Konrad are involved in this process.

Figure 87. BLT: Messages in Exception/Maintenance Process

 1. The gremlin can send a GhostMessage to any object. The action that class
takes depends on the contents of the message. It either disables the object
or sets the inventory to zero.

 2. From the repair list one can inquire the status of any object by sending an
InquiryRequest to it.

 3. The object replies with an InquiryReply. It wil l be indicated in the list when
the reply does not arrive in time.

 4. A RepairMessage activates a disables object.

124 MQ3T Examples for Windows Clients and AIX Servers

Note: We use REQUEST/REPLY messages to show how 3T controls messages
that arrive in time or late.

5.3.2.5 Message Summary
Table 17 summarizes the messages.

Note: In this example we will also process one 3T system message:
MQ_SYSTEM_OWNER_ENDED. This message is sent to all BLs when the
job owner ′s GUI is closed.

System messages are defined in \3TIER2\INCLUDE\bmqsysms.ch. If you
use one of them include this statement in your class source files:

CSINCLUDE ″bmqsysms.ch″ /* 3T system message descriptions */

Table 17. BLT: Message Summary

Name Type Operation Code Role Format Structure

StartJob INFORM OC_STARTJOB FIXED STARTJOB

Show INFORM OC_SHOW FIXED STARTJOB

FeedMe REQUEST OC_SANDWICH FIXED MSG100

Sandwich REPLY OC_SANDWICH FIXED MSG100

Starve REPLY OC_STARVE FIXED MSG100

DeliverPizza REQUEST OC_PIZZA FIXED MSG100

EatPizza REPLY OC_PIZZA FIXED MSG100

GetTomato REQUEST OC_TOMATO 1 FIXED MSG100

HaveTomato REPLY OC_TOMATO 1 FIXED MSG100

GetBread REQUEST OC_BREAD 2 FIXED MSG100

HaveBread REPLY OC_BREAD 2 FIXED MSG100

GetFromFridge REQUEST OC_FRIDGE 3 FIXED MSG100

HaveFromFridge REPLY OC_FRIDGE 3 FIXED MSG100

MakeToast REQUEST OC_TOAST 5 FIXED MSG100

HaveToast REPLY OC_TOAST 5 FIXED MSG100

CookBacon REQUEST OC_BACON 6 FIXED MSG100

HaveBacon REPLY OC_BACON 6 FIXED MSG100

GhostMessage INFORM OC_GHOST FIXED MSG100

RepairMessage INFORM OC_REPAIR FIXED MSG100

InquiryRequest REQUEST OC_INQUIRY FIXED MSG100

InquiryReply REPLY OC_INQUIRY FIXED MSG100

OrderMessage INFORM OC_ORDER FIXED MSG100

FoodInquiry INFORM OC_FOODINQ FIXED MSG100

FoodOrder INFORM OC_FOOD VARIABLE

FoodDelivery INFORM OC_FOOD FIXED MSG100

MQ_SYSTEM_
OWNER_ENDED

INFORM MQOC_SYSTEM_
OWNER_ENDED

FIXED N/

Note:

• All fixed messages are 100 bytes long.
• The message structures are in ″bltstruc.h″.
• System messages are defined in ″bmqsysms.ch″.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 125

After all messages are defined we have to write them in a form 3T can
understand. As an example, we define the GetBread message as follows:

MESSAGE
BEGIN
MsgName GetBread // Message name
MsgType REQUEST // Message type (INFORM, REQUEST, REPLY)

 OperationCode OC_BREAD // Each message must have one
Role 2 // Used to collate the replies
Format FIXED // FIXED or VARIABLE
StrucLen 100 // Message length
StrucName MSG100 // Name of the structure
StrucFile bltstruc.h // File that contains the structure

END

Figure 88. A Message Description

We define all messages that class can send or receive in the class source file for
the class, also the reply messages. We create a header or include a file that
contains all messages used in this application. This file, MESSAGES.CH, is in
Appendix A, “Class Source Files for BLT Example” on page 213 and also on
diskette 2 included with this book.

The operation codes are defined in the header file ″bltdef.h″ as follows:

/**/
/* Operation codes for messages */
/**/
#define OC_STARTJOB (MQOC_USER)
#define OC_SHOW (MQOC_USER + 1)
#define OC_SANDWICH (MQOC_USER + 2)
#define OC_STARVE (MQOC_USER + 3)
#define OC_PIZZA (MQOC_USER + 4)
#define OC_TOMATO (MQOC_USER + 5)
#define OC_BREAD (MQOC_USER + 6)
#define OC_FRIDGE (MQOC_USER + 7)
#define OC_TOAST (MQOC_USER + 8)
#define OC_COOK (MQOC_USER + 9)
#define OC_GREMLIN (MQOC_USER + 10)
#define OC_REPAIR (MQOC_USER + 11)
#define OC_INQUIRY (MQOC_USER + 12)
#define OC_ORDER (MQOC_USER + 13)
#define OC_FOODINQ (MQOC_USER + 14)
#define OC_FOOD (MQOC_USER + 15)
/**/

Note: The operation codes for the system messages are defined in the header
file bmqc.h.

Figure 89 on page 127 shows the contents of the file bltstruc.h that contains the
two message structures used in this demonstration program.

126 MQ3T Examples for Windows Clients and AIX Servers

typedef struct _STARTJOB /* startjob */
{
MQCHAR Buffer[100]

} STARTJOB;

typedef struct _MSG100 /* standard message */
{
MQCHAR message[20];
MQLONG number;
MQLONG value;
MQCHAR filler[72];

} MSG100;

Figure 89. Message Structures

5.3.3 Class Descriptions
For the ″external″ class descriptions we create a header or include file
CLASSES.CH. Each class description contains the information from Table 16 on
page 121 and lists of all messages the class can send and receive.

Note: You do not have to include the names of reply messages in either the
external class descriptions or the methods that send them. The cross reference
check function of the class compiler will produce a warning, however.

For a better understanding, we include all messages in our class source files.

The following shows two class descriptions from the file CLASSES.CH. The
complete listing is in Appendix A, “Class Source Files for BLT Example” on
page 213 and also on diskette 2 accompanying this book.

CLASSDESC // PL: Konrad
BEGIN
ClassName KONRAD
ClassType PL
MsgIn StartJob, Sandwich, Starve, EatPizza
MsgOut FeedMe, DeliverPizza, Show

END

CLASSDESC // BL: Karen
BEGIN
ClassName KAREN
Harden YES
ClassType BL
MsgIn FeedMe,

HaveTomato, HaveBread, HaveFromFridge,
HaveToast, HaveBacon,
GhostMessage, RepairMessage, InquiryRequest,
MQ_SYSTEM_OWNER_ENDED

MsgOut Sandwich, Starve,
GetTomato, GetBread, GetFromFridge,
MakeToast, CookBacon,
InquiryReply

END

Figure 90. Class Descriptions

Chapter 5. The Bacon Lettuce and Tomato Sandwich 127

5.3.4 Rules and Methods
MQ3T requires us to define rules for all messages we want to process. There
are three standard rules for REPLY messages and one rule for INFORM and
REQUEST messages:

 1. One INFORM, REQUEST or REPLY message arrives, or all replies of a wave
arrive in time.

 2. A single REPLY message or at least one of the replies of a wave does not
arrive in time. This is a timed rule that is satisfied when a timer expires.

 3. A REPLY message arrives late. Late messages are treated like INFORM
messages. If you do not specify a rule for a late reply it is thrown away.

Furthermore, you can define rules that depend on the state the instance is in. A
state is a represented by a number. Initially, 3T sets the state of any instance to
the equivalent of MQSTATE_NEW, that is 0. The programmer can change this
state to any other value representing situations such as ″busy″, ″waiting for host
data″, or ″accept input″. For example, a rule can be satisfied when a message
arrives and the instance state is ″not busy″. If the state is ″busy″ the message
remains in the queue.

Each rule is associated with a method. The method defines what piece of code
shall be executed when a rule is satisfied. Several rules may share the same
method.

Each method description contains either a PL program name, such as luigi.exe,
or a BL library and procedure name, such as micro.Inquiry. For BLs, you also
specify the name of the source file that contains the application code, for
example deliver.c.

For both PLs and BLs you can define multiple methods. The code representing
PL methods and the GUI is in one file that becomes the EXE. For BLs, 3T can
create a skeleton for you that contains the entry point for each procedure or
method, and an INCLUDE statement for the source code. All the programmer
writes is the code to process the message(s) for which a rule is satisfied.

State: When an instance is created its state is MQSTATE_NEW (0). The programmer
must set the state to another value before the method ends. To end an instance
set its state to MQSTATE_END (-1). For a PL, the GUI will disappear (and reappear if
a message is in the queue and a rule can be satisfied).

Note: There is no rule what to define first, rules or methods.

5.3.4.1 Rules and Methods for PLs
Since you can have only one executable for a PL (GUI) all messages the PL can
receive are processed by the same windows procedure. You may define as
many methods as you wish, however, each of them must specify the same
program name.

Table 18 on page 129 contains the methods for the PLs of the BLT application.

For an example, let us look at the rules for the PL class KONRAD. We name
eight rules for the four messages the class can receive. Refer to the class
description in Figure 90 on page 127 and Figure 86 on page 124.

128 MQ3T Examples for Windows Clients and AIX Servers

Table 18. BLT: Methods for Presentation Logics

KONRAD LUIGI GREMLIN SHOPPING REPAIR Method Name Program Name Messages

X BLTMethod konrad.exe from Karen

X PizzaMethod konrad.exe from Luigi

X TheMethod luigi.exe all

X TheMethod gremlin.exe all

X TheMethod shopping.exe all

X TheMethod repair.exe all

StartJob This message is sent by the 3T executable STARTJOB.EXE which is
invoked by the startjob command.

RuleName: StartJobRule

MethodName: BLTMethod

Sandwich This message is sent by Karen when the BLT is put together. We
specify three rules for this message, depending on the time the rule
is satisfied:

• In time
• When the timer expires (timeout)

No message arrives!
• After the timer expired (late)

RuleName: SandwichRule1 - in time
SandwichRule2 - timeout
SandwichRule3 - late

MethodName: BLTMethod

Starve This message is sent by Karen when she is unable to produce a BLT,
for example, when she is out of food or when when one of the objects
in the kitchen is not working.

RuleName: StarveRule

MethodName: BLTMethod

EatPizza This message represents a pizza delivery by Luigi. Just like the BLT
the message can arrive in time or late. Another rule is satisfied when
the timer expires.

RuleName: PizzaRule1 - in time
PizzaRule2 - timeout
PizzaRule3 - late

MethodName: PizzaMethod

For Konrad we defined rules that depend on the time a message arrives. For
Luigi we write rules that depend on the state the instance (program) is in.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 129

Luigi accepts pizza orders when he is in one of two states, MQSTATE_NEW (0) and
MQSTATE_CLEAR (1). Luigi ′s instance is created when a DeliverPizza message
arrives. When we process this message we change the state from MQSTATE_NEW
(0) to MQSTATE_BUSY (30). Luigi remains in this state until the Deliver push button
is pressed which causes the EatPizza message to be sent. Then the state is set
to MQSTATE_CLEAR (1); MQSTATE_END (-1) would make the GUI disappear. While Luigi
bakes the pizza his state is MQSTATE_BUSY. Pizza orders that arrive when the state
is not new or clear remain in the queue.

For Luigi we define seven rules but only one method:

DeliverPizza This message is sent by Konrad to order a pizza. We specify two
rules for this message, ensuring that Luigi bakes only one pizza
at a time. The rules are satisfied when the state is:

• MQSTATE_NEW: Luigi′s instance did not exist when the
message arrived.

• MQSTATE_CLEAR: Luigi is waiting for work.

RuleName: LuigiRule1 - first order arrives (MQSTATE_NEW)
LuigiRule2 - another order arrives (MQSTATE_CLEAR)

MethodName: TheMethod

GhostMessage This message is sent by the Gremlin to send Luigi on a break. In
the method, the state is set to either MQSTATE_DISABLED of
MQSTATE_DISABLED_WHILE_BUSY.

RuleName: GremlinRule

MethodName: TheMethod

InquiryRequest This message is sent from the repair list to find out if Luigi is on
a break (disabled), busy or waiting for work. The method
responds with an InquiryReply.

RuleName: InquiryRule

MethodName: TheMethod

RepairMessage This message, sent from the repair list, reverses the state
caused by the gremlin. In the method, the state is set to either
MQSTATE_CLEAR or MQSTATE_BUSY. We define three rules:

RuleName: RepairRule1 - the state is MQSTATE_DISABLED
RepairRule2 - the state is
MQSTATE_DISABLED_WHILE_BUSY
RepairRule3 - in any other state the message will
be ignored

MethodName: TheMethod

3T passes the rule ID in one of the message parameters to the program. In the
program, we check the rule ID to execute the appropriate code. The rule name
is used to set a timer for the rule.

Table 19 on page 131 is the summary of all rules for the PLs.

130 MQ3T Examples for Windows Clients and AIX Servers

Table 19. BLT: Rules for Presentation Logics

Class Message Rule Name Rule ID Remarks

KONRAD

StartJob StartJobRule RI_STARTJOB

Sandwich SandwichRule1 RI_SANDWICH1 in t ime

SandwichRule2 RI_SANDWICH2 not in time

SandwichRule3 RI_SANDWICH3 late

Starve StarveRule RI_STARVE

EatPizza PizzaRule1 RI_PIZZA1 in t ime

PizzaRule1 RI_PIZZA2 not in time

PizzaRule3 RI_PIZZA3 late

LUIGI

DeliverPizza LuigiRule1 RI_PIZZA1 MQSTATE_NEW

LuigiRule2 RI_PIZZA2 MQSTATE_CLEAR

RepairMessage RepairRule1 RI_REPAIR1 MQSTATE_DISABLED

RepairRule2 RI_REPAIR2 MQSTATE_DISABLED_
WHILE_BUSY

RepairRule3 RI_REPAIR3 any other state

REPAIR

InquiryReply RepairRule1 RI_REPAIR_INQ in t ime

RepairRule2 RI_REPAIR_NO not in time

RepairRule3 RI_REPAIR_LATE late

GREMLIN SHOPPING REPAIR

Show ShowRule RI_SHOW display GUI

LUIGI SHOPPING

GhostMessage GremlinRule RI_GREMLIN can occur at any time

InquiryRequest RepairInqRule RI_REPAIR_INQ

SHOPPING

OrderMessage OrderRule RI_ORDER

FoodInquiry FoodRule RI_FOOD_INQ

none TimerRule RI_TIMER Timer set in program

Note: In this example we use rules that:

• are time dependent

• depend on the state of the instance

Refer to page 135.

5.3.4.2 Rules and Methods for BLs
BLs are designed different than PLs. While PLs have only one entry point,
namely is the window procedure for the GUI, BLs have an entry point for each
method. That allows you to write a separate routine for each rule. In this
example, we try to re-use common methods (routines). Table 20 on page 133
contains the methods and the associated programs (SourceName) for the BLs.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 131

The methods perform the following functions:

Sandwich: Karen received a FeedMe request from Konrad and sends a wave
of three messages to request material for the BLT.

MakeBLT: Within a specified time, Karen received either all, some or none of
the material she sent for. If all material is there, she sends a wave
of two messages to have the bacon cooked and the bread toasted.
Otherwise she sends the Starve message to Konrad.

Note: We demonstrate how to process, in one method, a wave of
messages that arrive in time or when the timer expired. Here, two
rules invoke the same method.

ServeBLT: After toast and bacon arrived in time Karen completes her task by
sending the Sandwich message to Konrad.

Note: For the second wave of messages we use two methods. One
is invoked when toast and bacon arrive in time, and the other is
invoked when the timer expires.

NoBLT: Either the toaster or the microwave is not responding in time.
Karen sends the Starve message to Konrad.

Ignore: This method displays all late messages Karen receives. It also
displays RepairMessages if there is nothing to repair.

Gremlin: In this method, the class that receives a GremlinMessage gets
disabled.

Repair: In this method, the class that receives a RepairMessage is put back
in working order.

Deliver: This method replies to Karen′s requests for material. For each of
the three classes, basket, breadbox and refrigerator, we include
different source code. Each class maintains its own inventory file.

Delivery: This method is invoked when the grocer delivers food to the
refrigerator, the bread basket and the bread box.

FoodInquiry: This method processes FoodInquiry messages sent from the
shopping list. It responds with a message of the same name.

Note: These are INFORM messages. We demonstrate how a timer
can be used to check if an instance is responding.

Cook: The same code is used for the toaster and the microwave. We
demonstrate how to find out for which class the message was
intended.

SellFood: The grocer received an order from the shopping list and sends
FoodDeliverymessages to the basket, breadbox and refrigerator.

ClearUp: This method is invoked when a BL receives a system message
saying that the owner, Konrad, has ended. Here the programmer
can write some code to be executed before the BL ends.

132 MQ3T Examples for Windows Clients and AIX Servers

Messages

FeedMe

HaveTomato
HaveBread
HaveFromFridge

HaveBacon
HaveToast
(in t ime)

HaveBacon
HaveToast
(t imeout)

RepairMessage
(when nothing to
repair)
all late Have...

GhostMessage

RepairMessage

InquiryMessage

GetTomato
GetBread
GetFromFridge

FoodDelivery

FoodInquiry

CookBacon
MakeToast

FoodOrder

MQ_SYSTEM_
OWNER_ENDED

Source Name

bltorder

bltmake

bltserve

bltnone

xIgnore

xGremlin

xRepair

xInquiry

basket1
bbox1
fridge1

del ivery

foodinq

cook

grocer1

xClear

Method and
Program Name

Sandwich

MakeBLT

ServeBLT

NoBLT

Ignore

Gremlin

Repair

Inquiry

Deliver

Del ivery

FoodInquiry

Cook

SellFood

ClearUp

GROCER

X

X

X

X

X

TOASTER

X

X

X

X

X

MICRO

X

X

X

X

X

FRIDGE

X

X

X

X

X

X

X

X

BREADBOX

X

X

X

X

X

X

X

X

BASKET

X

X

X

X

X

X

X

X

Table 20. BLT: Methods for Business Logics

KAREN

X

X

X

X

X

X

X

X

X

C
h

a
p

te
r 5

.
T

h
e

 B
a

co
n

 L
e

ttu
ce

 a
n

d
 T

o
m

a
to

 S
a

n
d

w
ich

133

Remarks

MQSTATE_NEW

MQSTATE_CLEAR

in t ime

timeout

late

in t ime

timeout

late

MQ_STATE_DISABLED
no condition for BASKET, BREADBOX, FRIDGE

DISABLED_WHILE_BUSY

other

MQSTATE_NEW

MQSTATE_CLEAR

not MQSTATE_DISABLED

not MQSTATE_DISABLED

Method

Sandwich

MakeBLT

Ignore

ServeBLT

NoBLT

Ignore

Gremlin

Inquiry

Repair

Ignore

ClearUp

Deliver

FoodInquiry

Delivery

Cook

SellFood

Rule ID

RI_SANDWICH1

RI_SANDWICH2

RI_MAKEBLT1

RI_MAKEBLT2

RI_TOMATO

RI_BREAD

RI_FRIDGE

RI_SERVEBLT1

RI_SERVEBLT2

RI_TOAST

RI_BACON

RI_GREMLIN

RI_REPAIR_INQ

RI_REPAIR1

RI_REPAIR2

RI_REPAIR3

RI_SYS_OE

RI_DELIVER1

RI_DELIVER2

RI_FOOD_INQ

RI_FOOD

RI_COOK

RI_SELL

Rule Name

SandwichRule1

SandwichRule2

MakeRule1

MakeRule2

TomatoRule

BreadRule

FridgeRule

ServeRule1

ServeRule2

ToastRule

BaconRule

GremlinRule

InquiryRule

RepairRule1

RepairRule2

RepairRule3

OwnerEndedRule

DeliverRule1

DeliverRule2

FoodInquiry

FoodRule

CookRule

SellRule

Message

Feedme

HaveTomato
HaveBread
HaveFromFridge

HaveTomato
HaveBacon

GremlinMessage

InquiryRequest

RepairMessage

OWNER_ENDED

GetTomato
GetBread
GetFromFridge

FoodInquiry

FoodDelivery

CookBacon
MakeToast

FoodOrder

Table 21. BLT: Rules for Business Logics

Class

KAREN

ALL CLASSES

BASKET BREADBOX FRIDGE

MICRO TOASTER

GROCER

134
M

Q
3

T
 E

xa
m

p
le

s fo
r W

in
d

o
w

s C
lie

n
ts a

n
d

 A
IX

 S
e

rve
rs

In the business logic we use rules that

• are timed

• depend on the state the instance is in

• use roles to correlate messages

Timed rules: For a time dependent message we define either two or three rules.
3T processes the rules in the order they appear in the class source file.

• The first rule is satisfied when the message arrives.

• The second rule is a ″t imed rule″ that is satisfied when the timer expires.

Note: The time is set with the MQTIME API.

• The third rule is satisfied when a reply arrives after the timer has expired.
This rule is optional. 3T discards late replies if no ″late rule″ is defined.

Karen sends two waves of messages, one with three and the other with two
messages. Let us look at the rules defined for the replies to the wave with two
messages. We expect replies from the toaster and the microwave.

RULE �1�
BEGIN // messages arrive (in time)
RuleId RI_SERVEBLT1
RuleName ServeRule1
MethodName ServeBLT
MsgIn HaveToast, HaveBacon

END
RULE �2�
BEGIN // timer expired
RuleId RI_SERVEBLT2
RuleName ServeRule2
MethodName NoBLT
Timed Yes
MsgIn HaveToast PLACEHOLDER,

HaveBacon PLACEHOLDER
END

RULE �3�
BEGIN // toast arrives late
RuleId RI_TOAST
RuleName ToastRule
MethodName Ignore
MsgIn HaveToast LATE

END
RULE �4�
BEGIN // cooked bacon arrives late
RuleId RI_BACON
RuleName BaconRule
MethodName Ignore
MsgIn HaveBacon LATE

END

�1� This is a ″regular″ rule without any dependencies. The rule is satisfied when
both messages are present. It does not matter if this occurs after seconds or
days. If you want to limit the time a method waits for a message (or several
messages) you have to specify a second rule that specifies a timeout.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 135

�2� This rule is a ″t imed″ rule. It is satisfied after the timer has expired,
regardless whether a message is present or not. The timer is set in the method
that sends the request messages:

MQTIME (ByVal HInst, ″ServeRule2″ , ByVal 10, CompCode, Reason);

The parameters for the MQTIME API mean:

The method NoBLT is invoked when no message is present or when only one
message is present. We specify PLACEHOLDER for both messages. In the method
NoBLT, we can check which message (if any) arrived. 3T supplies this
information as a parameter when the procedure is called.

�3� and �4� A rule is satisfied when either the message HaveToast or HaveBacon
arrives after the timer for ServeRule2 (�2�) has expired. If you do not specify a
rule for late replies 3T discards them. You need one rule for each late message
you want to process.

State dependent rules: We can use the state of the instance to control when a
method shall be invoked. For example, Karen accepts the FeedMe message
under two conditions:

• The state is MQSTATE_NEW

• The state is MQSTATE_CLEAR

An instance is in the NEW state when it is created, that means when the first
message arrives. The FeedMe message is not necessarily the first message
Karen receives. The Gremlin could send the first message, or an inquiry could
be initiated from the repair list. The method that processes the first message
sets the state to CLEAR or to DISABLED, if it is a message from the gremlin. For
the FeedMe message we write two rules:

RULE
BEGIN // first BLT request
RuleId RI_SANDWICH1
RuleName SandwichRule1
MethodName Sandwich
State MATCHSTATE MQSTATE_NEW
MsgIn FeedMe

END
RULE
BEGIN // next BLT request
RuleId RI_SANDWICH2
RuleName SandwichRule2
MethodName Sandwich
State MATCHSTATE MQSTATE_CLEAR
MsgIn FeedMe

END

Table 22. MQTIME Parameters

Parameter Description

ByVal HInst The name of the instance the rule is for.

″ServeRule2″ The name of the rule (not the ID) that is timed.

ByVal 10 The time in seconds.

CompCode, Reason The completion and reason codes are listed in the
Application Programming manual.

136 MQ3T Examples for Windows Clients and AIX Servers

SandwichRule1 is satisfied only when FeedMe is the first message Karen
receives. For all other BLT requests SandwichRule2 applies.

Since the class compiler does not let us ″or″ together two conditions
(MQSTATE_NEW | MQSTATE_CLEAR) we have to write two rules, one for each state,
using the condition MATCHSTATE.

Reversibly, toaster and microwave use a rule that is satisfied when a message
arrives and they are not disabled. Therefore we write a rule that is satisfied
when the state does not match a certain condition:

RULE
BEGIN // bread arrives
RuleId RI_COOK
RuleName CookRule
MethodName Cook
State NOTMATCHSTATE MQSTATE_DISABLED
MsgIn MakeToast

END

MakeToast messages that arrive while the toaster is disabled remain in the
queue until the state changes.

For the RepairMessage, that is sent when the user clicks on the Repair button in
the repair list window, we write three rules:

 1. If the state is MQSTATE_DISABLED invoke a method that sets the state to
MQSTATE_CLEAR.

 2. If the state is MQSTATE_DISABLED_WHILE_BUSY invoke a method that sets the
state to MQSTATE_BUSY.

 3. If the instance is in any other state the message is ignored, since there is
nothing to repair. In our BLT sample we invoke the Ignore method that
displays that such a situation occurred.

RULE // Set state to CLEAR
BEGIN
RuleId RI_REPAIR1
RuleName RepairRule1
MethodName Repair
State MATCHSTATE MQSTATE_DISABLED
MsgIn RepairMessage

END
RULE // Set state to BUSY
BEGIN
RuleId RI_REPAIR2
RuleName RepairRule2
MethodName Repair
State MATCHSTATE MQSTATE_DISABLED_WHILE_BUSY
MsgIn RepairMessage

END
RULE // Ignore message (No state!)
BEGIN
RuleId RI_REPAIR3
RuleName RepairRule3
MethodName Ignore
MsgIn RepairMessage

END

Chapter 5. The Bacon Lettuce and Tomato Sandwich 137

As said before, 3T scans the rules in the order they appear in the class source
file. Therefore, the Ignore method can only be invoked if the state of the
instance does not match the states defined in the previously defined rules.

Correlating messages: When Karen sends the two waves of messages she wants
3T to do the correlation of the replies for her. To tell 3T which requests and
replies belong together we use the role keyword in the message. Let us look at
the wave of two messages. The rules are defined on page 135. The messages
are:

MESSAGE // KAREN to TOASTER: make toast
BEGIN
MsgName MakeToast
MsgType REQUEST

 OperationCode OC_TOAST
Role 5

 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
END

MESSAGE // TOASTER to KAREN: here is toast
BEGIN
MsgName HaveToast
MsgType REPLY

 OperationCode OC_TOAST
Role 5

 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
END

MESSAGE // KAREN to microwave: cook bacon
BEGIN
MsgName CookBacon
MsgType REQUEST

 OperationCode OC_COOK
Role 6

 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
END

MESSAGE // Microwave to KAREN: here is the bacon
BEGIN
MsgName HaveBacon
MsgType REPLY

 OperationCode OC_COOK
Role 6

 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
END

We use two roles, 5 and 6. The first role ties MakeToast and HaveToast together,
the second role connects CookBacon and HaveBacon. The roles are only used
when the BLM receives the above messages for Karen.

The classes that receive the messages (toaster and microwave) do not need the
roles. The class compiler displays warning messages telling you that the roles
are ignored for those classes.

138 MQ3T Examples for Windows Clients and AIX Servers

5.4 Design Crosscheck
After the design is completed and the class source files are written, we use the
3T class compiler to check out the design. The crosscheck function tells us
errors, such as:

• A method sends a message but none receives it

• A rule is defined for a message but no method sends it

• A rule is defined but a method is not

To perform the crosscheck you have to create a file that contains a list of all
classes the application uses. For the BLT example, we created the file
classes.lst in Figure 91.

KONRAD
LUIGI
GREMLIN
SHOPPING
REPAIR
KAREN
BASKET
BREADBOX
FRIDGE
TOASTER
MICRO
GROCER

Figure 91. Input File for Design Crosscheck: ″classes.lst″

To invoke the crosschecker type:

bmqcc -x classes.lst

The output will be in the file classes.xck. Figure 92 on page 140 shows
examples of the output. During processing you will see warning messages like
this:

� �
*** Parsing the class source file ′ fridge.cs′ ***

fridge.cs(124): warning: BMQ1439: Role 3 is ignored. Role is ignored for MsgOut
 REPLY messages.

fridge.cs(114): warning: BMQ1439: Role 3 is ignored. Role is ignored for MsgIn
REQUEST messages.

fridge.cs(114): warning: BMQ1439: Role 3 is ignored. Role is ignored for MsgIn
REQUEST messages.

*** Checking the msgin/msgout of class FRIDGE ***

*** CHECKED ***

BMQCC: 3 warning(s) detected

*** Creating binary class file ′ fridge.cb′ ***

*** CREATED ***� �

Chapter 5. The Bacon Lettuce and Tomato Sandwich 139

Roles are used to correlate reply messages in the receiver.

• The first warning (124) is produced because HaveFromFridge is a reply
message that the refrigerator sends. The refrigerator does not need a role.
3T needs it when it receives the message from the refrigerator for Karen to
correlate it with HaveBread and HaveTomato that are sent by from the
breadbox and the vegetable basket.

• The second warning (114) is produced because GetFromFridge is a request
message that the refrigerator receives. 3T needs the role for Karen to match
GetFromFridge with HaveFromFridge.

Notes:

 1. A single request/reply pair does not need a role.

 2. Do not specify roles for INFORM messages.

* * * CROSS REFERENCE LISTING * * *

MESSAGE NAME ATTRIBUTES

CookBacon MessageType = REQUEST, OperationCode = 65545,
OperationVersion = 1, Role = 6,
Format = FIXED, StrucFile = bltstruc.h,
StrucName = MSG100,
StrucLen = 100, ConversionDLL = MSG100,
Senders = KAREN,
Receivers = MICRO.

HaveBacon MessageType = REPLY, OperationCode = 65545,
OperationVersion = 1, Role = 6,
Format = FIXED, StrucFile = bltstruc.h,
StrucName = MSG100,
StrucLen = 100, ConversionDLL = MSG100,
Senders = MICRO,
Receivers = KAREN.

...
* * * POTENTIAL REASON FOR NO MESSAGE FLOW * * *

MESSAGE NAME REASON

CookBacon SEND - This message may not be sent by a BL program.
RECEIVE - NONE

HaveBacon SEND - This message may not be sent by a BL program.
RECEIVE - NONE

StartJob SEND - This message cannot be sent by any class,
because there are no methods defined to send it.
RECEIVE - NONE

Figure 92. Output File from Design Crosscheck: ″classes.xck″

Note: Compile each class file to eliminate syntax errors before you run the
crosscheck.

140 MQ3T Examples for Windows Clients and AIX Servers

5.5 Building the GUIs
We use Visual Basic to build the GUIs for the Windows clients. A description of
the prototypes is in 5.2.3, “GUI Prototypes” on page 118. There are five GUIs
for:

Before we start designing the GUIs and writing the code some preparations have
to be made:

• The class binary files (.CB) for the PLs that have been created on the AIX
machine have to be copied into our Windows workstation. Copy the five files
into a directory that is in the search path in the AUTOEXEC.BAT file on page
51, such as C:\3TIERW\SAMPLES\WIN. The binary files are:

− Konrad.cb

− Luigi.cb

− Gremlin.cb

− Shopping.cb

− Repair.cb

• Create a directory that will hold all files that we need to develop and test the
GUIs: C:\VB\BLT.

• For the GUI development we need a file that contains constants and global
variables. Since we need most of the definitions from the file BLTDEF.H in
A.15, “Definitions for Class Source Files” on page 247, we convert this file
into a Visual Basic file, BLTDEF.BAS, and copy it into the new directory.

• To test a GUI we need a profile to start the PLM. We place this file, shown in
Figure 93, also in the new directory. The class names are case sensitive.
For each of the classes there must be a .CB file in the search path.

Konrad Luigi Gremlin Shopping list Repair l ist

* *
* PLMS.PRF: Startup profile for the PL Manager *
* *

[CLIENT]

ClassNames = KONRAD LUIGI GREMLIN REPAIR SHOPPING
LogLevel = 300

Figure 93. Profile to Start Five PLs

Chapter 5. The Bacon Lettuce and Tomato Sandwich 141

Figure 94. Microsoft Visual Basic (design) Window

When you bring up Visual Basic you will see what is shown in Figure 94.

The project window shows three custom controls (VBX files) that we do not need.
Therefore, we delete them, one at a time. Click on one file name in the Project1
window and then select Remove File from the File menu. The file name
disappears instantly.

For our GUIs we need the 3T custom control BMQNTFY.VBX from the directory
C:\WINDOWS\SYSTEM. To add the 3T custom control to the project select Add file
from the File menu. In the Add File window (Figure 95 on page 143) choose

• Custom Controls from the List Files of Type list box

• C:\WINDOWS\SYSTEM from the Directories list box

When you click on OK , the oaktree icon appears on the bottom of the toolbox.

Next we add to the project three files that contain definitions MQ3T needs. The
files have been installed in the directory C:\3tierw\vbsupp. Figure 96 on
page 143 shows the Add File window for these files.

Using the same method, we add the file BLTDEF.BAS to the project. This file is
in the new \BLT directory.

Note: For the BLT GUIs we create five Visual Basic projects, one for each GUI.
When it compiles, Visual Basic creates one EXE for a project. We will create five
GUI programs that can run in one or five different workstations. Therefore, we
create one (Visual Basic) project for each GUI. This allows us to create five
separate EXEs.

142 MQ3T Examples for Windows Clients and AIX Servers

Figure 95. Add BMQNTFY.VBX to a Project

Figure 96. Add MQ3T Files to a Project

The following explains what has to be done to each of the forms:

• Size the form and make it smaller.

• Change the name of the form:

 1. Click on Name in the Properties window.

 2. Type the new name, for example Konrad, next to the checkmark in the
Properties window.

 3. Click on the checkmark.

This changes the name in the project window instantly.

• Change the title of the form:

 1. Click on Caption in the Properties window.

 2. Type the new caption next to the checkmark, for example, BLT - KONRAD.

• Move timer and the oaktree objects into the form.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 143

3T requires these objects. It does not matter where you place them since
they are invisible during run time.

• Save the project under its new name, Konrad, in the directory C:\VB\BLT.

Figure 97. Generic Frame and Project Window for BLT

5.5.1 Project Konrad
To create this and the other four Visual Basic projects we have to:

• Design the GUI

• Write the Basic code for the events

• Test the program from within Visual Basic (during coding)

• Compile the project when completed

• Test the program

5.5.1.1 Create the GUI for Konrad
We use the frame in Figure 97 as a base and add the following controls:

• A label with the text BLT Application:

Double-click on the Label icon in the toolbox. Move the label from the center
to the top of the frame. Then highlight Caption in the Properties window for
the label and type, next to the checkmark, BLT Application. You may have to
resize the label to make the text fit.

• A label with the text Messages:

This is done in the same fashion as described above.

• A text box to display messages:

This box will be used by the program to display messages.

− Double-click on the Text box icon in the tool box.

− Size the field so that it is wide enough for about 25 characters and high
enough to display about eight lines.

− Set the FontSize Property to 9.6.

− Set the MultiLine Property to True.

144 MQ3T Examples for Windows Clients and AIX Servers

− Set the ScrollBars Property to 2 - vertical.

− Set the TabStop Property to False.

− Make the Text Property blank.

• A label with the text ″Order″ above the command buttons

• Three command (push) buttons:

− Double-click on the Commandbutton icon in the tool box.

− Move the object from the center to the bottom of the form.

− Change the Caption property to BLT, Pizza, and Quit.

− Change the Name property to BLT, Pizza, and Quit.

− Set the TabIndex property to 0, 1, and 2 to allow the user to use the
keyboard instead of the mouse.

Use the mouse to align the buttons on the bottom of the form.

Figure 98 shows how the completed form appears in the Visual Basic design
window (left) and at run-time (right). You could run the program. However, all it
does is tab from one command button to the next.

Figure 98. Konrad′s Frame at Design and Run Time

5.5.1.2 Write Basic Code Used for all PLs
To make the Konrad′s window do something we have to give it life. This is done
by writing some code for the events that we want to handle. Such events occur
when

• The form is loaded.

• A push button is clicked.

• A message arrives.

Form_Load is the procedure that is invoked when the form is loaded, that is
when the GUI appears on the screen. To write code for this event double-click
on the form (but not on a control). You see that this procedure does not contain
any code.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 145

The purpose of this routine is:

• To ensure that a class name was passed to the program

• To register the program with 3T

Sub Form_Load ()
If Command = ″″ Then

MsgBox ″PL requires parameter Class Name.″, 16, ″Input Error″
End

End If

vPLClass = Command ′ Convert string to class name

′ Register with 3T
MQREG ByVal vPLClass, 1, ByVal OAK1.hWnd, ByVal BMQ_NOTIFY,

ByVal MQRGO_REMOVE_LIST_ENTRIES, CompCode, Reason
DisplayCompCode ″MQREG″

End Sub

Figure 99. Form_Load Procedure.

Note: Write the MQREG call in one line!

Form_Unload is executed when all forms of an application are closed.

Sub Form_Unload (Cancel As Integer)
Close_Click ′ common exit path

End Sub

Figure 100. Form_Unload Procedure

Quit_Click is invoked when the third command button, Quit, is pressed. In this
routine we call the procedure ″Close_Click″ by inserting one line:

Sub Quit_Click ()
Close_Click ′ common exit path

End Sub

Figure 101. Quit Procedure

The above programs call two subroutines or procedures, namely Close_Click
and DisplayCompCode. To add a new procedure to the project click on View
Code in the project window KONRAD.MAK and then on New Procedure in the
View menu. In the New Procedure window (Figure 102) type the procedure
name and click on OK . Write the code for the procedure in the window that
appears next.

Figure 102. Visual Basic: Create a New Procedure

146 MQ3T Examples for Windows Clients and AIX Servers

Note: You may copy and paste code from other projects, such as HELLO1.

Close_Click is used to end the instance and unregister the GUI from MQ3T. The
code is shown in Figure 33 on page 55.

DisplayCompCode is used to display MQ3T return codes. The code is shown in
Figure 30 on page 54.

Declarations: We define CompCode and Reason as shown in Figure 29 on
page 54. For Konrad we need a few more declarations, as you can see in
Figure 99 on page 146.

Option Explicit
Dim CompCode As Long ′ return code
Dim Reason As Long ′ return code
Dim NL As String ′ holds new line characters
Dim DSMsg As String ′ buffer to display messages
Dim ij As Long ′ work field
Dim szClass As String ′ class name
Dim szInstance As String ′ instance name

Figure 103. BLT: Declarations

5.5.1.3 Perform the First Test for Konrad
At this time you could test the program from within Visual Basic. To start
Konrad click on Start in the Run menu, or press F5. However, instead of the
form (window) the following error message will be displayed:

How do we provide this parameter? Click on Project in the Options menu and
type the class name KONRAD in the subsequent window, shown below. The class
name is case sensitive! Then press Enter.

Now you can run the program. You can use the Tab keys to tab from one push
button to the next, and you can quit the program. For the other events we still
have to write the code.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 147

5.5.1.4 Write the Basic Code for Konrad
BLT_Click is invoked when the user clicks on the BLT push button. The request
message FeedMe is sent to Karen.

�1� If the user clicks the push button again before Karen replies, the second
MQSEND will fail. You cannot send the same request message twice. You
must wait for either the reply or a timeout.

�2� The timeout value, in seconds, is set with the MQTIME call.

�3� To prevent Konrad from sending a second request and to prevent the
error message (�1�) we can simply disable the pushbuttons.

�4� We display messages in the frame′s text box, and not in message boxes.

Sub BLT_Click ()
Dim msg100 As msg100 ′ message buffer

MQSEND ByVal vHInst, ByVal ″KAREN″ , ByVal szInstance,
ByVal ″FeedMe″, 0 , msg100, CompCode, Reason

�1�
If CompCode = MQCC_FAILED And Reason = MQRC_REPLY_ALREADY_EXPECTED Then
�4�

DSMsg = ″Don′ t ask for a BLT twice″
DS_MLE

Else
DisplayCompCode ″MQSEND″

End If
�2�
MQTIME ByVal vHInst, ByVal ″SandwichRule2″, 10, CompCode, Reason
DisplayCompCode ″MQTIME″
�4�
DSMsg = ″BLT requested. Wait...″
DS_MLE
�3�
BLT.Enabled = False
Pizza.Enabled = False

End Sub

Figure 104. Konrad: BLT Push Button Procedure

Pizza_Click is invoked when the user clicks on the Pizza push button. The
request message DeliverPizza is sent to Luigi. The code is very similar to
BLT_Click.

Sub Pizza_Click ()
...

MQSEND ByVal vHInst, ByVal ″LUIGI″ , ByVal szInstance,
ByVal ″DeliverPizza″, 0 , msg100, CompCode, Reason

If CompCode = MQCC_FAILED And Reason = MQRC_REPLY_ALREADY_EXPECTED Then
DSMsg = ″Don′ t ask for a pizza twice″

...
MQTIME ByVal vHInst, ByVal ″PizzaRule2″, 10, CompCode, Reason

...
DSMsg = ″Pizza requested. Wait...″

...
End Sub

Figure 105. Konrad: Pizza Push Button Procedure

148 MQ3T Examples for Windows Clients and AIX Servers

DS_MLE displays messages in the text box in a GUI. The calling program has to
prepare the message text in the global variable DSMsg. The routine ensures
that the contents of the text box is limited to about 450 characters.

Sub DS_MLE ()
Dim length As Long

NL = Chr(13) + Chr(10) ′ new line
length = Len(Text1.Text) ′ current length
If length > 450 Or length = 0 The

Text1.Text = DSMsg ′ overwrite text
Else

Text1.Text = Text1.Text & NL & DSMsg ′ append text
End If

End Sub

Figure 106. BLT: Display Messages in Text Box

OAK1_NewEvent is invoked when the Visual Basic run-time program receives a
message from the PLM (via BMQNTFY.VBX). Refer to 3.4, “Parameter Passing”
on page 47 for detailed explanations. We use the same routine in all GUIs.

• ProcessPLEvent is called when a rule is satisfied. This routine processes
the message.

• Close_Click is called when the instance has been deleted. This allows us to
unregister and automatically close the window when the job owner ended.

• When the instance has been deleted we unregister it. This happens when
the job owner′s (Konrad′s) window was closed.

• When the instance has been unregistered we simply end the program.

Sub OAK1_NewEvent (msg As Integer, wp As Integer, lp As Long)

If wp = MQPLM_RULE_SATISFIED Then
vHInst = lp
ProcessPLEvent ByVal lp ′ make call to handle the event

ElseIf wp = MQPLM_INSTANCE_DELETED Then
MQUREG ByVal vPLClass, ByVal OAK1.hWnd, ByVal MQURGO_FORCE, CompCode, Reason
DisplayCompCode ″MQUREG″

ElseIf wp = MQPLM_HWND_UNREGISTERED Then
End ′ already unregistered, so simply exit

End If

End Sub

Figure 107. BLT: Events from MQ3T

Chapter 5. The Bacon Lettuce and Tomato Sandwich 149

ProcessPLEvent processes all messages the PL receives from other classes.

Sub ProcessPLEvent (ByVal HInst As Long)
Dim MQevent As MQevent ′ event structure
Dim BufferLen As Long ′ buffer length
Dim msg100 As msg100 ′ buffer - NB Don′ t define as String

�1�
′ query information about the current event
MQQRYE ByVal HInst, MQevent, CompCode, Reason
DisplayCompCode ″MQQYRE″
�2�
Select Case MQevent.RuleId
�3�

Case RI_STARTJOB
�a� szClass = RTrim(MQevent.Classname)

szInstance = RTrim(MQevent.LocalInstanceName)
�b� Konrad.Caption = szClass & ″ / ″ & szInstance

MQENDE ByVal HInst, ByVal MQSTATE_USER, CompCode, Reason
DisplayCompCode ″MQENDE″

�c� MQSEND ByVal HInst, ByVal ″REPAIR″ , ByVAL szInstance,
ByVal ″Show″, 0 , msg100, CompCode, Reason

DisplayCompCode ″MQSEND - 1″
MQSEND ByVal HInst, ByVal ″SHOPPING″ , ByVal szInstance,

ByVal ″Show″, 0 , msg100, CompCode, Reason
DisplayCompCode ″MQSEND - 2″
MQSEND ByVal HInst, ByVal ″GREMLIN″ , ByVal szInstance,

ByVal ″Show″, 0 , msg100, CompCode, Reason
DisplayCompCode ″MQSEND - 3″
Exit Sub

�4�
Case RI_SANDWICH1

DSMsg = ″The BLT is served.″
Case RI_SANDWICH2

DSMsg = ″It is too late for a BLT.″
Case RI_SANDWICH3

DSMsg = ″BLT arrived too late″
Case RI_STARVE

DSMsg = ″Starve!″
Case RI_PIZZA1

DSMsg = ″Pizza is delivered″
Case RI_PIZZA2

DSMsg = ″It is too late for a pizza.″
Case RI_PIZZA3

DSMsg = ″Pizza arrived late.″
End Select
�5�
BLT.Enabled = True
Pizza.Enabled = True

MQENDE ByVal HInst, ByVal MQSTATE_USER, CompCode, Reason
DisplayCompCode ″MQENDE″

End Sub

Figure 108. Konrad: Process Messages.

Note: Write the MQSEND instructions in one line!

�1� We query the event to obtain the rule ID from the event structure MQevent.

150 MQ3T Examples for Windows Clients and AIX Servers

�2� The following statements process the incoming messages. What message
arrived is determined by the rule ID that was defined in the 3T message
descriptions, file messages.ch.

�3� When the STRTJOB message arrives execute thee functions:

�a� We save class name and instance name of Konrad. The instance name,
obtained from the STARTJOB command, is used for all classes in the job.

�b� We change the caption (header line) of the window to include class and
instance names.

�b� To display the repair list, shopping list, and the window for the Gremlin,
we send a Show message to each of the classes. The instance name is the
same as for Konrad.

Note: Luigi ′s window is displayed when he receives the first pizza order.

�4� When any of the other messages arrive we display a message.

�5� Since the BLT or pizza order is completed, either in time or when the timer
expired, we enable the two push buttons in the GUI to allow for more work to be
sent to Luigi or Karen. Then we end the method.

5.5.2 Project Luigi
You can develop the GUI and the code for Luigi in the same fashion as you did
for Konrad. However, since Konrad′s and Luigi′s forms are very similar, you
may copy and change the following files with your favorite editor:

• KONRAD.MAK becomes LUIGI.MAK

• KONRAD.FRM becomes LUIGI.FRM

5.5.2.1 Create the GUI for Luigi
In Luigi′s project file change Konrad to Luigi as marked in Figure 109.

LUIGI.FRM <=== changed
C:\WINDOWS\SYSTEM\BMQNTFY.VBX
C:\3TIERW\VBSUPP\BMQB.BAS
C:\3TIERW\VBSUPP\BMQVBX.BAS
C:\3TIERW\VBSUPP\CMQB.BAS
BLTDEF.BAS
ProjWinSize=105,459,252,204
ProjWinShow=2
Command=″LUIGI″ <=== changed
IconForm=″Luigi″ <=== changed
Title=″LUIGI″ <=== changed
ExeName=″LUIGI.EXE″ <=== changed
Path=″C:″

Figure 109. Luigi′s Project File

In the file LUIGI.FRM change the second and third line:

VERSION 2.00
Begin Form Luigi <=== changed

Caption = BLT - LUIGI <=== changed
...

To work with Luigi′s frame select Open project from Visual Basic′s File menu
and in the subsequent Open Project window select luigi.mak from the C:\VB\BLT

Chapter 5. The Bacon Lettuce and Tomato Sandwich 151

directory. Then click on OK . The following steps outline how to create Luigi′s
frame:

• Delete the push button in the middle:

− Click on the button labelled Pizza and press the Del key. The push
button disappears.

− In the project window click on View Code

− Select the object general and the procedure Pizza_Click This is the
Basic code associated with the deleted push button.

− Delete all the code to erase the procedure.

• Move the label ″Order″ to the left so that it positioned above the left push
button and change the caption in the ″Label3″ properties window to ″Action″.

• Change the caption of the left push button to ″Deliver″.

Figure 110. Luigi′s Frame at Design Time

5.5.2.2 Write the Basic Code for Luigi
Most of the procedures are the same for all GUIs. For Luigi, we have to modify
or re-code two routines:

Deliver_Click sends the reply message EatPizza to Konrad.

�1� The MQQRY call is issued to obtain the instance description in the structure
MQid. This structure contains the state the instance is in.

�2� If the state is clear then Luigi is waiting for work. When a pizza order arrives
the state is set to busy.

�3� A message from the Gremlin sets Luigi′s state to disabled. If in this state,
Luigi did not receive a DeliverPizza message.

�4� When Luigi is busy, that is he received a DeliverPizza message but did not
deliver yet, and a message from the gremlin arrives the state is set to disabled
while busy baking the pizza. In this state Luigi is not able to deliver.

152 MQ3T Examples for Windows Clients and AIX Servers

�5� Luigi delivers the pizza. The instance state is set to clear. In that state Luigi
can receive more work.

Sub Deliver_Click ()
Dim msg100 As msg100
Dim MQid As MQid
Dim BufferLength As Long
�1�
BufferLength = Len(MQid)
MQQRY ByVal vHInst, ″″ , ByVal MQQRYT_INSTANCE, BufferLength,

MQid, CompCode, Reason
DisplayCompCode ″MQQRY″
�2�
If MQid.InstanceState = MQSTATE_CLEAR Then

DSMsg = ″No pizza order received!″
DS_MLE
Exit Sub

End If
�3�
If MQid.InstanceState = MQSTATE_DISABLED Then

DSMsg = ″Luigi is resting!″
DS_MLE
Exit Sub

End If
�4�
If MQid.InstanceState = MQSTATE_DISABLED_WHILE_BUSY Then

DSMsg = ″Luigi is called away″
DS_MLE
Exit Sub

End If
�5�
MQRPLY ByVal vHInst, ByVal ″EatPizza″, 0 , msg100, CompCode, Reason
DisplayCompCode ″MQRPLY″
DSMsg = ″Pizza is on the way.″
DS_MLE
MQSETS ByVal vHInst, ByVal MQSTATE_CLEAR, CompCode, Reason
DisplayCompCode ″MQSETS″

End Sub

Figure 111. Luigi: Deliver Procedure

ProcessPLEvent processes all messages Luigi can receive:

• DeliverPizza makes Luigi busy.

• GremlinMessage sets Luigi′s state to disabled or disabled while busy.

• RepairMessage resets Luigi′s state to busy or clear.

• RepairInquiry reports Luigi′s state to the repair list.

The following notes refer to Figure 112 on page 154.

�6� The MQQRY call is issued to obtain the instance description in the structure
MQid. This structure contains the state the instance is in.

�7� If the state is new then Luigi′s window just appeared on the screen. We
update the caption in the window′s header with the class and instance names
and set the state to clear. Luigi ′s state in never new again.

�8� We query the current event again and save its new state in wkfld. The state
is used further on in the routine. The field wkfld contains or will contain the
state the instance is in when the procedure exits.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 153

Sub ProcessPLEvent (ByVal HInst As Long)
Dim MQevent As MQevent ′ event structure
Dim BufferLen As Long ′ buffer length
Dim msg100 As msg100 ′ buffer
Dim wkfld As Long ′ to store instance state

�6�
MQQRYE ByVal HInst, MQevent, CompCode, Reason
DisplayCompCode ″MQQRYE″

�7�
If MQevent.InstanceState = MQSTATE_NEW Then

szClass = RTrim(MQevent.Classname)
szInstance = RTrim(MQevent.LocalInstanceName)
Luigi.Caption = szClass & ″ / ″ & szInstance
MQSETS ByVal HInst, ByVal MQSTATE_CLEAR, CompCode, Reason
DisplayCompCode ″MQSETS″

End If

�8�
MQQRYE ByVal HInst, MQevent, CompCode, Reason
DisplayCompCode ″MQQYRE″
wkfld = MQevent.InstanceState

�9�
Select Case MQevent.RuleId
�a� Case RI_PIZZA1, RI_PIZZA2 ′ state = NEW, CLEAR

DSMsg = ″Deliver a pizza!″
wkfld = MQSTATE_BUSY

�b� Case RI_GREMLIN
DSMsg = ″Luigi takes a break.″
If MQevent.InstanceState = MQSTATE_BUSY Then

wkfld = MQSTATE_DISABLED_WHILE_BUSY
Else

wkfld = MQSTATE_DISABLED
End If

�c� Case RI_REPAIR1
DSMsg = ″Luigi is back ...″
wkfld = MQSTATE_CLEAR

Case RI_REPAIR2
DSMsg = ″Luigi is back ...″

wkfld = MQSTATE_BUSY
Case RI_REPAIR3

DSMsg = ″Ignore repair ...″
�d� Case RI_REPAIR_INQ

Select Case MQevent.InstanceState
Case MQSTATE_NEW

msg100.message = ″NEW″
Case MQSTATE_CLEAR

msg100.message = ″CLEAR″
Case MQSTATE_BUSY

msg100.message = ″BUSY″
Case MQSTATE_DISABLED

msg100.message = ″DISABLED″
Case MQSTATE_DISABLED_WHILE_BUSY

msg100.message = ″DISABLED_WHILE_BUSY″
Case MQSTATE_END

msg100.message = ″END″
End Select

DSMsg = ″Inquiry:″ & msg100.message
msg100.number = MQevent.InstanceState
MQRPLY ByVal HInst, ByVal ″InquiryReply″, 0, msg100, CompCode, Rea
DisplayCompCode ″MQRPLY″

End Select
�10�
DSMsg = DSMsg & wkfld
DS_MLE
MQENDE ByVal HInst, ByVal wkfld, CompCode, Reason
DisplayCompCode ″MQENDE″

End Sub

Figure 112. Luigi: Process PL Events

154 MQ3T Examples for Windows Clients and AIX Servers

�9� The rule ID tells us what message has arrived and what the state was when
the message arrived.

�a� Two rules are defined for the DeliverPizza message:

• RI_PIZZA1 is satisfied when Luigi′s state is MQSTATE_NEW

• RI_PIZZA2 is satisfied when Luigi′s state is MQSTATE_CLEAR

The PLM does not invoke this procedure when the DeliverPizza message
arrives and Luigi is in any other state.

�b� The GremlinMessage disables Luigi. The state is set to ″disabled″ or
″disabled while busy″. The latter is true when a DeliverPizza has been
received but the delivery has not been taken place.

�c� Three rules are defined for the RepairMessage:

• RI_REPAIR1 is satisfied when Luigi is disabled.

• RI_REPAIR2 is satisfied when the gremlin disabled Luigi while he was
baking a pizza.

• RI_REPAIR3 is satisfied when Luigi is in any other state. In this case we
ignore the message.

�d� When an InquiryMessage arrives we respond with an InquiryReply that
contains Luigi′s state in two forms, as an integer and as an 20-byte character
string.

�10� We change the state to the value in wkfld and display the new state in
Luigi ′s window.

5.5.3 Project Gremlin
The Gremlin is the simplest presentation logic of all. It sends only one INFORM
message and receives no messages except for the Show message from Konrad
that initially displays the window.

The form contains twelve radio buttons. The selected radio button determines
where the message is sent to. The button number (1 to 12) is sent with the
message. This number denotes what action the receiving program has to
perform.

5.5.3.1 Create the GUI for Gremlin
To create the project for the Gremlin we copy Luigi′s project file and change the
names as shown below:

GREMLIN.FRM <=== changed
C:\WINDOWS\SYSTEM\BMQNTFY.VBX
C:\3TIERW\VBSUPP\BMQB.BAS
C:\3TIERW\VBSUPP\BMQVBX.BAS
C:\3TIERW\VBSUPP\CMQB.BAS
BLTDEF.BAS
ProjWinSize=105,459,252,204
ProjWinShow=2
Command=″GREMLIN″ <=== changed
IconForm=″Gremlin″ <=== changed
Title=″GREMLIN″ <=== changed
ExeName=″GREMLIN.EXE″ <=== changed
Path=″C:″

Figure 113. The Gremlin ′s Project File

Chapter 5. The Bacon Lettuce and Tomato Sandwich 155

You may modify the file GREMLIN.FRM to change the form before you use Visual
Basic to add the radio buttons:

• Change the names in the second and third line.

• Delete the block for the label ″Action″.

• Alter name and caption of the left command button. from ″Deliver″ to ″Enter″

VERSION 2.00
Begin Form Gremlin <=== changed

Caption = BLT - GREMLIN <=== changed
...

Begin CommandButton Enter <=== changed
Caption = ″Enter″ <=== changed
Height = 372
Left = 240
TabIndex = 14
Top = 7200
Width = 852

End

Figure 114. The Gremlin ′s Frame at Design Time

156 MQ3T Examples for Windows Clients and AIX Servers

Now go into Visual Basic and resize the form to fit 14 radio buttons between the
header line and the text box. You may have to make the text box shorter.

Create a frame for the radio buttons first. Change its caption to ″Select an
action″. Inside this frame place the radio buttons as shown in Figure 114 on
page 156.

To create a radio (or option) button:

• Double-click on the option button icon in the toolbox.

• Move the control to the top of the frame and size it to a height of 372. You
see this number in the properties window.

• Change the caption to ″Break breadbox″

• Change the font size to 9.6. You may have to resize the control to make the
text fit.

You may copy the remaining radio buttons:

• Click on the previously created control.

• Press Ctr l+C and then Ctr l+V.

• Answer ″no″ when asked if you want to create a control array.

• Move the control below the previously created one.

• Change the values in the properties window.

Make sure that the tab order is in the order you desire. If not, change that value
in the properties window for the radio and push buttons.

5.5.3.2 Write the Basic Code for Gremlin
Since most of the procedures are the same for all GUIs we have to write very
little code.

To the definition we add the two fields below:
...
Dim action As Integer ′ number of radio button selected
Dim destin As String ′ destination class name

Option1_Click: Into the above fields we store values when the user clicks on a
radio button. The following routine is called when the user chooses to bread the
breadbox.

Sub Option1_Click ()
action = 1 ′ number of radio button selected
destin = ″BREADBOX″ ′ destination class

End Sub

Figure 115. The Gremlin ′s Radio Button Procedure

Double-click on a radio button control and a window appears to what you add
two lines. Table 23 on page 158 specified to what values action and destination
have to be set to.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 157

Enter_Click is called when the user clicks on the Enter button. The routine
sends an INFORM message to the destination class. The radio button number
(action) is the only meaningful field in the message. The receiving classes use
this number to determine what action they have to perform, for example, disable
the breadbox (1) or set its inventory to zero (6).

Note: The instance name from the STARTJOB command is used for all classes.

Table 23. Gremlin: Actions and Destinations for Radio Buttons

Button Procedure Action Destination

Break breadbox Sub Option1_Click 1 BREADBOX

Break basket Sub Option2_Click 2 BASKET

Break microwave Sub Option3_Click 3 MICRO

Break toaster Sub Option4_Click 4 TOASTER

Break refrigerator Sub Option5_Click 5 FRIDGE

Spoil bread Sub Option6_Click 6 BREADBOX

Spoil tomatoes Sub Option6_Click 7 BASKET

Spoil bacon Sub Option8_Click 8 FRIDGE

Spoil lettuce Sub Option9_Click 9 FRIDGE

Spoil mayonaise Sub Option10_Click 10 FRIDGE

Close grocery Sub Option11_Click 11 GROCER

Close Luigi′s Sub Option12_Click 12 LUIGI

Erase shopping list Sub Option13_Click 13 SHOPPING

Distract the cook Sub Option14_Click 14 KAREN

Sub Enter_Click ()

Dim msg100 As msg100 ′ message structure

msg100.number = action ′ radio button number

DSMsg = ″To ″ & destin & ″ button ″ & action
DS_MLE ′ display message

MQSEND ByVal vHInst, ByVal destin, ByVal szInstance,
ByVal ″GremlinMessage″, 0 , msg100, CompCode, Reason

DisplayCompCode ″MQSEND″

End Sub

Figure 116. The Gremlin ′s Push Button Procedure.

Note: Write the MQSEND call in one line!

ProcessPLEvent is called only once, when the Show message from Konrad
arrives. We query the event to obtain the Gremlin′s class and instance names.
We use then to change the window header. The state remains MQSTATE_USER
for the life of the instance.

158 MQ3T Examples for Windows Clients and AIX Servers

Sub ProcessPLEvent (ByVal HInst As Long)
Dim MQevent As MQevent ′ event structure

MQQRYE ByVal HInst, MQevent, CompCode, Reason ′ query event
DisplayCompCode ″MQQYRE″

If MQevent.InstanceState = MQSTATE_NEW Then ′ change caption
szClass = RTrim(MQevent.Classname)
szInstance = RTrim(MQevent.LocalInstanceName)
Gremlin.Caption = szClass & ″ / ″ & szInstance

End If

MQENDE ByVal HInst, ByVal MQSTATE_USER, CompCode, Reason
DisplayCompCode ″MQENDE″

End Sub

Figure 117. The Gremlin ′s Event Procedure

5.5.4 Project Repair List
The repair list PL is used to check the status of other classes and to reverse the
status imposed by the Gremlin. This PL cannot replace spoiled food items,
however. To replenish food items the shopping list has to be used.

You can create the project file in the same fashion as for the other projects, by
copying the .MAK and .FRM files. Let us copy a .MAK file and change the
names as indicated below.

Note: The IconForm is the Name property of the form. Since there will also be a
push button with the name ″Repair″ we decided to give the form the name
″Repairlist″ and the button the name ″Repair″.

REPAIR.FRM <=== changed
C:\WINDOWS\SYSTEM\BMQNTFY.VBX
C:\3TIERW\VBSUPP\BMQB.BAS
C:\3TIERW\VBSUPP\BMQVBX.BAS
C:\3TIERW\VBSUPP\CMQB.BAS
BLTDEF.BAS
ProjWinSize=105,459,252,204
ProjWinShow=2
Command=″REPAIR″ <=== changed
IconForm=″Repairlist″ <=== changed !!!
Title=″REPAIR″ <=== changed
ExeName=″REPAIR.EXE″ <=== changed
Path=″C:″

Figure 118. The Repair List′s Project File

5.5.4.1 Create the GUI for the Repair List
You may also copy a .FRM file and delete all unwanted controls. If you do not
do that and you open the project, Visual Basic displays an error message stating
that it cannot find the file REPAIR.FRM. However, you can easily create it by
selecting New form from the File menu.

In this window we will not display messages in a text box but in a list box.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 159

Figure 119. The Repair List′s Frame at Design Time

If you decide to create the frame from scratch follow these steps:

 1. Size the frame and change the caption as shown in Figure 119.

 2. Create the label with the caption ″BLT Application″.

 3. Move the stopwatch and oaktree controls into the frame.

 4. Create the first radio button and change the following properties:

• Caption: Breadbox

• Font size: 9.6

• Height: 372 (use the mouse)

 5. Create the other radio buttons and change their captions. Use C t r l + C and
Ctrl+V to copy the control and its property.

 6. Create the first text box at the right of the radio button and change the
following properties:

• Text: blank

• Font size: 9.6

• Height: 372 (use the mouse)

• Tabstop: False

• Enable: False

 7. Create the other text boxes. Use C t r l + C and C t r l + V to copy the control and
its property.

160 MQ3T Examples for Windows Clients and AIX Servers

 8. Create the label with the caption ″Messages″.

 9. Create a list box to be used to display messages. Set the Tabstop property
to ″False″.

10. Create three command buttons on the bottom of the screen and change their
captions as shown in Figure 119 on page 160.

A vertical scrollbar appears automatically when the list contains more items
(lines) then it can display.

5.5.4.2 Write the Basic Code for the Repair List
The following routines you can ″copy and paste″ from other projects.

 1. Declarations (Figure 120)

 2. Close_Click (Figure 33 on page 55)

 3. DisplayCompCode (Figure 30 on page 54)

 4. Form_Load (Figure 99 on page 146)

 5. Form_Unload (Figure 100 on page 146)

 6. OAK1_NewEvent (Figure 107 on page 149)

 7. Quit_Click (Figure 101 on page 146)

Modify the declarations so that it includes all fields shown in Figure 120.

Option Explicit
Dim CompCode As Long
Dim Reason As Long
Dim NL As String ′ new line characters
Dim DSMsg As String ′ buffer for message to be displayed
Dim ij As Long ′ work field
Dim szClass As String ′ name of the class
Dim szInstance As String ′ name of the instance
Dim action As Integer ′ action (ratio button number)
Dim save_action As Integer ′ save action
Dim destin As String ′ destination class
Dim SenderC As String ′ class that sent the message (return address
Dim field As Integer ′ work field

Figure 120. The Repair List′s Declarations

The following programs are new or different:

 1. DS_MSG

 2. OptionX_Click (1 through 8)

 3. Inquire_Click

 4. Repair_Click

 5. ProcessPLEvent

DS_MSG displays messages in the list box ″List1″. In the previous projects we
used DS_MLE to display messages in a text box. We allow up to 30 entries in
the list. If the list contains more than that the first entry is removed. The calling
program prepares the message and stores it in the buffer DSMsg.

Note: The scrollbar appears automatically when the list contains more entries
than can be shown in the window.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 161

Sub DS_MSG ()

If List1.ListCount > 30 Then ′ if more than 30 items
List1.RemoveItem 0 ′ delete the first

End If
List1.AddItem DSMsg ′ add to the end

End Sub

Figure 121. BLT: Display Messages in a List Box

Option1_Click through Option8_Click are called when the user clicks on one of
the eight radio buttons. At this time we remember what button was clicked and
to what class the inquiry or repair message has to be sent to. Table 24 shows
the values for action and destin.

Sub Option1_Click ()

action = 1
destin = ″BREADBOX″
Text1.Text = ″″

End Sub

Figure 122. Repair List: Radio Button Procedure

Inquiry_Click is called when the user wants to inquire about the status of the
class selected with the radio button. The following notes refer to the program
shown in Figure 123 on page 163.

�1� Before the message is sent we display the text ″Inquiring...″ in the text box
next to the selected radio button. This shows the user that a message is on its
way and we are waiting for a reply from the class. The field ″action″ contains
the radio button number. It is put in there when a radio button is selected.

�2� The InquiryRequest message is sent to the destination. The message itself
does not contain any data. The receiving program knows what to do when this
message arrives.

�3� We could disabled the push button to avoid that a second inquiry is sent to
the same destination. However, we can find out from the return code of the
second MQSEND if there has been a request message sent and no reply arrived
yet. If we are still waiting for a reply, we display a message in the list box.

Table 24. Repair List: Actions and Destinations for Radio Buttons

Button Procedure Action Destination

Breadbox Sub Option1_Click 1 BREADBOX

Basket Sub Option2_Click 2 BASKET

Microwave Sub Option3_Click 3 MICRO

Toaster Sub Option4_Click 4 TOASTER

Refrigerator Sub Option5_Click 5 FRIDGE

Grocery Sub Option6_Click 6 GROCER

Luigi Sub Option7_Click 7 LUIGI

Karen Sub Option8_Click 8 KAREN

162 MQ3T Examples for Windows Clients and AIX Servers

�4� After the request message has been sent we set the timer. When the timer
expires and no reply has arrived the timeout rule, RepairRule2, is satisfied. The
event procedure in Figure 125 on page 164 shows how this event is handled.

Sub Inquire_Click ()
Dim msg100 As msg100
�1�
Select Case action ′ radio button number

Case 1
Text1.Text = ″Inquiring...″

Case 2
Text2.Text = ″Inquiring...″

Case 3
Text3.Text = ″Inquiring...″

Case 4
Text4.Text = ″Inquiring...″

Case 5
Text5.Text = ″Inquiring...″

Case 6
Text6.Text = ″Inquiring...″

Case 7
Text7.Text = ″Inquiring...″

Case 8
Text8.Text = ″Inquiring...″

Case Else
DSMsg = ″No button selected ″
DS_MSG
Exit Sub

End Select
�2�
MQSEND ByVal vHInst, ByVal destin, ByVal szInstance,

ByVal ″InquiryRequest″, 0 , msg100, CompCode, Reason
�3�
If Reason = MQRC_REPLY_ALREADY_EXPECTED Then

DSMsg = ″Wait up to 30 sec for reply...″
DS_MSG
Exit Sub

Else
DisplayCompCode ″MQSEND″

End If
�4�
MQTIME ByVal vHInst, ByVal ″RepairRule2″, 30, CompCode, Reason
DisplayCompCode ″MQTIME″
save_action = action ′ save value

End Sub

Figure 123. Repair List: Send Inquiry Request.

Note: Write the MQSEND instruction in one line!

Sub Repair_Click ()
Dim msg100 As msg100

DSMsg = ″Get ″ & destin & ″ working″
DS_MSG

MQSEND ByVal vHInst, ByVal destin, ByVal szInstance,
ByVal ″RepairMessage″, 0 , msg100, CompCode, Reason

DisplayCompCode ″MQSEND″
End Sub

Figure 124. Repair List: Send Repair Message.

Note: Write the MQSEND instruction in one line!

Chapter 5. The Bacon Lettuce and Tomato Sandwich 163

Repair_Click is called when the user wants to send the RepairMessage to the
class indicated by the radio button. The field ″destin″ contains the destination′s
class name. It is put in there by a radio button procedure, such as shown in
Figure 122 on page 162. The routine displays a message in the list box.

ProcessPLEvent processes the two messages the PL can receive, namely Show
and InquiryReply.

Sub ProcessPLEvent (ByVal HInst As Long)
Dim MQevent As MQevent ′ event structure
Dim MQmp As MQmp ′ message parameters
Dim BufferLen As Long ′ buffer length
Dim msg100 As msg100 ′ buffer
Dim wkfld As Long ′ value to set state to
�1�
MQQRYE ByVal HInst, MQevent, CompCode, Reason
DisplayCompCode ″MQQYRE″
�2�
If MQevent.RuleId = RI_SHOW Then ′ the form displays

szClass = RTrim(MQevent.ClassName)
szInstance = RTrim(MQevent.LocalInstanceName)
Repairlist.Caption = szClass & ″ / ″ & szInstance
MQENDE ByVal HInst, ByVal MQSTATE_USER, CompCode, Reason
DisplayCompCode ″MQENDE″
Exit Sub

End If
�3�
If MQevent.RuleId = RI_REPAIR_NO Then ′ timeout, no message arrives

field = save_action ′ field number in GUI
DSMsg = ″No response″

�4�
Else ′ a message arrived

BufferLen = MQevent.MaxBufferLength
MQQRYM ByVal HInst, ByVal 1, MQmp, BufferLen, msg100, CompCode, Reason
DisplayCompCode ″MQQRYM″
SenderC = RTrim(MQmp.ClassName) ′ class that sent message
If SenderC = ″BREADBOX″ Then field = 1 ′ field number in GUI
If SenderC = ″BASKET″ Then field = 2
If SenderC = ″MICRO″ Then field = 3
If SenderC = ″TOASTER″ Then field = 4
If SenderC = ″FRIDGE″ Then field = 5
If SenderC = ″GROCER″ Then field = 6
If SenderC = ″LUIGI″ Then field = 7
If SenderC = ″KAREN″ Then field = 8

End If

Figure 125. Repair List: Process PL Events (Part 1)

�1� MQQRYE stores the properties of the current event in MQevent.

�2� We change the window header, set the state to MQSTATE_USER and exit.

�3� In case of a time out there is no message, however, a rule is satisfied. The
saved radio button number tells us to what class the last message was sent.

�4� When the reply arrives we query the message to obtain the message
properties in MQmp. We find out what class sent the message, and store the
corresponding radio button number in a field.

�5� If the reply has arrived in time we display the state of the sending class in
the text field next to the radio button. The state is in the message in the field
″number″. Instead of the number we display some text.

164 MQ3T Examples for Windows Clients and AIX Servers

�5�
If MQevent.RuleId = RI_REPAIR_INQ Then ′ reply to inquiry in time

If msg100.number = MQSTATE_DISABLED Or
msg100.number = MQSTATE_DISABLED_WHILE_BUSY Then
If field = 1 Then DSMsg = ″not usable″ ′ breadbox
If field = 2 Then DSMsg = ″hidden″ ′ basket
If field = 3 Then DSMsg = ″broken″ ′ microwave
If field = 4 Then DSMsg = ″unplugged″ ′ toaster
If field = 5 Then DSMsg = ″door jammed″ ′ refrigerator
If field = 6 Then DSMsg = ″closed″ ′ grocery
If field = 7 Then DSMsg = ″on a break″ ′ Luigi
If field = 8 Then DSMsg = ″on the phone″ ′ Karen

ElseIf MQevent.InstanceState = MQSTATE_BUSY Then
If field = 1 Then DSMsg = ″empty″
If field = 2 Then DSMsg = ″empty″
If field = 3 Then DSMsg = ″unplugged″
If field = 4 Then DSMsg = ″unplugged″
If field = 5 Then DSMsg = ″cleaned out″
If field = 6 Then DSMsg = ″closed″
If field = 7 Then DSMsg = ″cooking″
If field = 8 Then DSMsg = ″working″

Else ′ class is working
DSMsg = ″OK″

End If
�6�
ElseIf MQevent.RuleId = RI_REPAIR_LATE Then ′ reply to inquiry is late

DSMsg = ″responded late″
End If
�7�
Select Case field

Case 1
Text1.Text = DSMsg

Case 2
Text2.Text = DSMsg

Case 3
Text3.Text = DSMsg

Case 4
Text4.Text = DSMsg

Case 5
Text5.Text = DSMsg

Case 6
Text6.Text = DSMsg

Case 7
Text7.Text = DSMsg

Case 8
Text8.Text = DSMsg

End Select
�8�
DSMsg = destin & ″: ″ & msg100.message
DS_MSG
MQENDE ByVal HInst, ByVal MQSTATE_USER, CompCode, Reason
DisplayCompCode ″MQENDE″

End Sub

Figure 126. Repair List: Process PL Events (Part 2)

�6� If the reply is late, we are not interested any more.

�7� These instructions display a text representing the status in the appropriate
text box next to the radio button.

�8� The state is also logged in the list box.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 165

5.5.5 Project Shopping List
The shopping list is used to control the ordering process. It is notified when a
food item is depleted. The text ″order″ appears in the appropriate text box in the
GUI. You can initiate two functions:

• Inquire how many tomatoes, bread, etc. are currently available.

• Type into one or more fields a quantity and send the list to the grocer.

To create the shopping list project we copy the .MAK and .FRM files from the
repair list. In those file we change all occurrences of ″repair″ to ″shopping″.
The form itself we change in Visual Basic.

5.5.5.1 Create the GUI for the Shopping List

Figure 127. Shopping List′s Frame at Design Time

To change the repair list GUI into the shopping list GUI follow these steps:

• Delete all but five radio buttons and change the caption as shown.

• Keep five of the text boxes but make them smaller.

• Add a second column of text boxes.

• Move the controls further down to make room for two labels above the text
boxes.

• Add the two labels ″Order″ and ″Stock″.

• Change caption and name of the left push button to ″Shop″.

• Add the ″Inquire″ button between the two buttons already there.

166 MQ3T Examples for Windows Clients and AIX Servers

Make sure that the TabIndex properties are set as you desire. Set the TabStop
properties for the text boxes in the right column (stock) to ″False″.

The GUI contains two types of text boxes:

• Into the five Order fields the user types the quantity he wants to order. The
data shall be right-justified and the input limited to two digits.

• The five Stock are used to display the number of food items in stock, as the
result of an inquiry. This is a read-only field.

• Set the MultiLine property to True.

• Set the Alignment property to 1-Right Justify.

• Set the FontSize property to 9.6.

• Set the MaxLength property to 2 (order only).

• Set the Enabled property to False (stock only).

You may run the program from inside Visual Basic to test tabbing and keyboard
input.

5.5.5.2 Write the Basic Code for the Shopping List
Since SHOPPING.FRM is a copy of REPAIR.FRM, you should delete the
procedures Option6_Click, Option7_Click, Option8_Click, and Repair_Click. You
find them in the object ″general″.

To the declarations (shown in Figure 120 on page 161) add one line:

Dim msgtxt as String ′ text to display in order column

The following routines remain unchanged:

 1. DS_MSG (Figure 121 on page 162)

 2. Close_Click (Figure 33 on page 55)

 3. DisplayCompCode (Figure 30 on page 54)

 4. Form_Load (Figure 99 on page 146)

 5. Form_Unload (Figure 100 on page 146)

 6. OAK1_NewEvent (Figure 107 on page 149)

 7. Quit_Click (Figure 101 on page 146)

We have to modify or write routines that are invoked when:

• The user enters a quantity.

• A radio button is selected.

• The Inquire button is clicked.

• The Shop button is clicked.

• A message from another class arrives.

These routines are described below.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 167

Text1_Change through Text5_Change get invoked when the user types into one
of the text boxes to order a quantity. The number of digits he can enter is
limited to 2. That is specified in the MacLength property for the text box. The
only instruction blanks out the field when a not-numeric character was entered.

Sub Text1_Change ()
If Not IsNumeric(Text1.Text) Then Text1.Text = ″″

End Sub

Figure 128. Shopping List: Type a Quantity

Option1_Click through Option5_Click are invoked when the user selects a radio
button. We store the number of the radio buttons (0 through 4) and the
destination class name the inquiry message is sent to (providing the user selects
the Inquire push button).

Sub Option1_Click ()
action = 0 ′ radio button number
destin = ″BREADBOX″ ′ destination class
msgtxt = ″bread″ ′ used in other procedures

End Sub

Figure 129. Shopping List: Radio Button Procedure

The value stored in ″action″ is also the product ID, for example, 0 means bread
and 4 means mayonaise.

Inquire_Click sends a FoodInquiry message to either the basket, breadbox, or
refrigerator. This message is an INFORM message. Contrary to REQUEST
messages, such messages cannot be timed. This routine explains how the timer
can be used to check if a response to an INFORM message arrived.

The following comments refer to Figure 130 on page 169.

�1� The two fields are updated when a radio button is selected. The value
stored in msg100.number tells the receiving class what product the inquiry is for.

�2� This message is displayed in the list box. The radio button numbers are
displayed as 1 through 5, not 0 through 4.

�3� The INFORM message is sent to the destination.

�4� We set the timer for 20 seconds. When the timer expires the TimerRule is
satisfied and the PLM sends an event message to the PL. This message is
processed in the ProcessPLEvent procedure.

Table 25. Shopping List: Actions and Destinations for Radio Buttons

Button Procedure Action Destination

Bread Sub Option1_Click 0 BREADBOX

Bacon Sub Option2_Click 1 FRIDGE

Lettuce Sub Option3_Click 2 FRIDGE

Tomatoes Sub Option4_Click 3 BASKET

Mayonaise Sub Option5_Click 4 FRIDGE

168 MQ3T Examples for Windows Clients and AIX Servers

Sub Inquire_Click ()
Dim msg100 As msg100 ′ message buffer
�1�
msg100.number = action ′ radio button number (0-9)
msg100.message = msgtxt ′ product name
�2�
DSMsg = ″Inquiry to ″ & destin & ″ button ″ & action + 1
DS_MLE
�3�
MQSEND ByVal vHInst, ByVal destin, ByVal szInstance,

ByVal ″FoodInquiry″ , ByVal 0, msg100, CompCode, Reason
DisplayCompCode ″MQSEND″
�4�
MQTIME ByVal vHInst, ByVal ″TimerRule″, 20, CompCode, Reason
�5�
If Reason = MQRC_TIMER_ALREADY_SET Then

DSMsg = ″Timer already set...″
DS_MLE

Else
DisplayCompCode ″MQTIME″
End If
�6�
Inquire.Enabled = False

End Sub

Figure 130. Shopping List: Send Inquiry Message.

Note: Write the MQSEND instruction in one line!

�5� You cannot reset the timer before it is expired. We display a message to
inform the user that the inquiry he just sent will not be timed. This happens
when all of these conditions are met:

• The response to the previous inquiry has arrived and enabled the Inquire
button.

• The timer set for this inquiry did not expire yet.

• The user clicks the Inquire button.

�6� This disables the push button until either a response to the inquiry arrives or
the timer expires.

Shop_Click sends a variable length message to the grocer. The message can
contain one to five fields, each field containing a quantity to order. A variable
message is called a set that contains elements. We use API calls to the
Self-defining Data Manager (SDDM) to work with sets and elements. A set can
contains three types of elements:

• Integers

• Character strings

• The contents of a buffer

In this example, we work with integers.

An element consists of a header and data. The data length must be a multiple of
four bytes. The header contains these fields:

• Element type

• Element ID

• Data length (for strings)

Chapter 5. The Bacon Lettuce and Tomato Sandwich 169

Sub Shop_Click ()
Dim hSet As Long ′ variable length message
Dim ik As Long ′ quantity
Dim ij As Long ′ ID for item and loop counter
Dim setlength As Long ′ set length
Dim elements As Long ′ elements in set

DSMsg = ″Order from grocer″
DS_MLE
�1� ′ create a set
MQCRTS hSet, ByVal MQSL_DEF_SET_LENGTH, CompCode, Reason
DisplayCompCode ″MQCRTS″
�2�
For ij = 0 To 4 ′ check 5 entry fields

ik = 0
If ij = 0 And Text1.Text <> ″″ Then ik = CDbl(Text1.Text)
If ij = 1 And Text2.Text <> ″″ Then ik = CDbl(Text2.Text)
If ij = 2 And Text3.Text <> ″″ Then ik = CDbl(Text3.Text)
If ij = 3 And Text4.Text <> ″″ Then ik = CDbl(Text4.Text)
If ij = 4 And Text5.Text <> ″″ Then ik = CDbl(Text5.Text)
If ik > 0 Then ′ a quantity has been entered
�3�
MQADDI ByVal hSet, ByVal ij, ByVal ik, ByVal MQRPLC_YES, CompCode, Reason
DisplayCompCode ″MQADDI″

End If
Next ij
�4�
setlength = 0
MQQRYS ByVal hSet, elements, setlength, 0, CompCode, Reason
DisplayCompCode ″MQQRYS″
DSMsg = ″Set length=″ & setlength & ″ elements=″ & elements
DS_MLE
�5�
If elements > 0 Then

MQSEND ByVal vHInst, ByVal ″GROCER″ , ByVal szInstance,
ByVal ″FoodOrder″ , ByVal 0, ByVal hSet, CompCode, Reason

DisplayCompCode ″MQSEND″
DSMsg = elements & ″ items ordered″

Else
DSMsg = ″No items ordered″

End If
DS_MLE
�6�
MQDELS ByVal hSet, CompCode, Reason
DisplayCompCode ″MQDELS″

End Sub

Figure 131. Shopping List: Send an Order to the Grocer.

Note: Write the MQSEND instruction in one line!

In this example, we use the element ID to identify the five products:

0 = bread 2 = lettuce 4 = mayonaise
1 = bacon 3 = tomatoes

�1� MQCRTS creates a set with the default length. The length of the set is
automatically adjusted when we insert (or remove) elements.

�2� We check all input fields in the form. If they contain a number between 1
and 99 (the input is limited to two digits), we add an element to the set. Since
the input is in character format the number has to be converted to an integer.

170 MQ3T Examples for Windows Clients and AIX Servers

�3� MQADDI add an integer element to the set. The element ID is 0 through 4 (in
ij). The element data is in ik. MQRPLC_YES tells the SDDM to replace an
element with the same ID.

�4� MQQRYS returns the length and the number of elements in the set.

�5� If the user did not enter any quantity in the GUI, the set is not sent to the
grocer. The set must contain at least one element.

�6� We delete the set before we exit the routine.

ProcessPLEvents is called when the PL receives a message from another class
or when a timer expires.

Sub ProcessPLEvent (ByVal HInst As Long)
Dim MQevent As MQevent ′ event structure
Dim MQmp As MQmp ′ message parameters
Dim BufferLen As Long ′ buffer length
Dim msg100 As msg100 ′ buffer
Dim wkfld As Long ′ value to set state to

MQQRYE ByVal HInst, MQevent, CompCode, Reason
DisplayCompCode ″MQQYRE″
�1�
If MQevent.RuleId = RI_SHOW Then ′ form displays

szClass = RTrim(MQevent.ClassName)
szInstance = RTrim(MQevent.LocalInstanceName)
Shoppinglist.Caption = szClass & ″ / ″ & szInstance
MQENDE ByVal HInst, ByVal MQSTATE_USER, CompCode, Reason
DisplayCompCode ″MQENDE″
Exit Sub

End If
�2�
If MQevent.RuleId = RI_GREMLIN Then ′ erase shopping list

Text6.Text = ″″
Text7.Text = ″″
Text8.Text = ″″
Text9.Text = ″″
Text10.Text = ″″
DSMsg = ″List erased...″
DS_MLE
MQENDE ByVal HInst, ByVal MQSTATE_USER, CompCode, Reason
DisplayCompCode ″MQENDE″
Exit Sub

End If

Figure 132. Shopping List: Process PL Events (Part 1)

�1� The Show, sent by Konrad, causes the GUI to be displayed.

�2� The GremlinMessage causes the fields in the GUI to be erased.

�3� MQQRYM retrieves the actual message sent by the other class. If the
retrieve does not work we exit the routine.

�4� The OrderMessage tells the program what food item is depleted.

�5� The FoodInquiry message is the response to an inquiry sent out earlier.

�6� The program is notified when the timer expires.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 171

�3�
If MQevent.RuleId = RI_ORDER Or MQevent.RuleId = RI_FOOD_INQ Then

BufferLen = MQevent.MaxBufferLength
MQQRYM ByVal HInst, ByVal 1, MQmp, BufferLen, msg100, CompCode, Reason

DisplayCompCode ″MQQRYM″
If Reason <> 0 Then

MQENDE ByVal HInst, ByVal MQSTATE_USER, CompCode, Reason
DisplayCompCode ″MQENDE″
Exit Sub

End If
End If
�4�
If MQevent.RuleId = RI_ORDER Then ′ order arrives

DSMsg = ″Order ″ & msg100.message
DS_MLE
Select Case msg100.number

Case 0
Text6.Text = ″order″
Text1.Text = ″″

Case 1
Text7.Text = ″order″
Text1.Text = ″″

Case 2
Text8.Text = ″order″
Text1.Text = ″″

Case 3
Text9.Text = ″order″
Text1.Text = ″″

Case 4
Text10.Text = ″order″
Text1.Text = ″″

End Select
End If
�5�
If MQevent.RuleId = RI_FOOD_INQ Then ′ response to inquiry

DSMsg = ″Response from ″ & RTrim(MQmp.ClassName)
DS_MLE
Inquire.Enabled = True
Select Case msg100.number

Case 0
Text6.Text = msg100.value

Case 1
Text7.Text = msg100.value

Case 2
Text8.Text = msg100.value

Case 3
Text9.Text = msg100.value

Case 4
Text10.Text = msg100.value

End Select
End If
�6�
If MQevent.RuleId = RI_TIMER Then

DSMsg = ″timer expired″
DS_MLE
Inquire.Enabled = True

End If

MQENDE ByVal HInst, ByVal MQSTATE_USER, CompCode, Reason
DisplayCompCode ″MQENDE″

End Sub

Figure 133. Shopping List: Process PL Events (Part 2)

172 MQ3T Examples for Windows Clients and AIX Servers

5.6 Building the Business Logic
We write the methods for the business logic in C language on an AIX machine.

The application uses seven BLs:

We already created the class source files as part of the 3T design, see 5.3, “3T
Design” on page 121. MQ3T helps us in writing a business logic by creating
skeleton files for all languages it supports. As a result, the programmer has to
write only those programs named as SourceName in the methods.

Karen Refrigerator Basket Breadbox Toaster Microwave Grocer

5.6.1 Creating Skeleton Files
For each class definition file, invoke the class compiler with the /s (skeleton)
option, for example:

bmqcc /s karen.cs

The class compiler creates three files for Karen, that are:

karen.c The ″C″ skeleton file that contains INCLUDE statements for all
methods.

karen.mak A make file to compile the business logic.

karen.exp An export file used to create the DLL.

Karen ′s class source file, karen.cs, is listed in A.8, “Class Source File for
KAREN” on page 232. The following figures show the files created for the BL
Karen.

**/
* */
* karen.exp: Source file generated by the Class Compiler */
* 03/11/96 12:07:28 language = C */
* */
**/
#! karen.a
LibMain
Sandwich
Gremlin
Repair
Ignore
Inquiry
MakeBLT
ServeBLT
NoBLT
ClearUp

Figure 134. Karen′s Export File.

Note: This file lists all methods used by the BL. The skeleton file karen.c contains nine
INCLUDE statements, one for each routine.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 173

Since Karen is the most versatile BL we use her skeleton file to explain some of
the functions of the class compiler.

�1� The name of the header file comes from the message definitions, see A.1,
“Messages for The BLT Example” on page 213.

�2� This is the entry point for the FeedMe message from Konrad. The name is
obtained from the method description in the class file:

METHOD
BEGIN // order arrived
MethodName Sandwich
MethodType C_LIBRARY

 ProgName karen.Sandwich
 SourceName bltorder

MsgOut Starve, GetTomato, GetBread, GetFromFridge
END

The parameters for MQENTRY are:

 1. The name of Karen ′s instance

The instance name is specified in Konrad′s MQSEND call.

MQSEND ByVal vHInst, ByVal ″KAREN″ , ByVal szInstance, ByVal FeedMe, .

 2. The ID of the rule that is satisfied

The rule is either RI_SANDWICH1 or RI_SANDWICH2, depending on the rule
the instance is in. The two rules are specified as follows:

RULE RULE
 BEGIN // first BLT request BEGIN // next BLT request

RuleId RI_SANDWICH1 RuleId RI_SANDWICH2
 RuleName SandwichRule1 RuleName SandwichRule2
 MethodName Sandwich MethodName Sandwich
 State MATCHSTATE MQSTATE_NEW State MATCHSTATE MQSTATE_CLEAR
 MsgIn FeedMe MsgIn FeedMe
END END

 3. The state Karen ′s instance is in when the message arrives

According to the rules the state can be one of:

• MQSTATE_NEW

• MQSTATE_CLEAR

 4. A flag that indicates if a message is present or not

• MQMDF_MSG_IS_PRESENT

• MQMDF_MSG_NOT_PRESENT

• MQMDF_MSG_NOT_PRESENT_TIMEOUT

In Karen′s case a message is always present.

 5. The pointer to the message

Since Karen uses a PUSH interface, 3T provides the message data in a
buffer for the programmer ready to use. Data can be accessed with
instructions such as

ij = pFeedMe->number;

�3� We have to write the routine bltorder.c to process the FeedMe message.

Note: Most of the entry points look like the one described above, only the
message name is different.

174 MQ3T Examples for Windows Clients and AIX Servers

/**/
/* */
/* karen.c: Source file generated by the Class Compiler */
/* 02-27-1996 12:02:06a language = C */
/* */
/**/
#include <bmqc.h>
#include ″bltstruc.h″ �1�
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void MQENTRY Sandwich(MQHINST HInst, �2�
MQLONG RuleId,
PMQLONG pState,
MQLONG fFeedMe,
MSG100 *pFeedMe

)
{
#include ″bltorder.c″ �3�

}

void MQENTRY Gremlin(MQHINST HInst,
MQLONG RuleId,
PMQLONG pState,
MQLONG fGremlinMessage,
MSG100 *pGremlinMessage

)
{
#include ″xgremlin.c″

}

void MQENTRY Repair(MQHINST HInst,
MQLONG RuleId,
PMQLONG pState,
MQLONG fRepairMessage,
MSG100 *pRepairMessage

)
{
#include ″xrepair.c″

}

void MQENTRY Ignore(MQHINST HInst,
MQLONG RuleId,
PMQLONG pState,
MQLONG fMessage1, �4�
MSG100 *pMessage1

)
{
#include ″xignore.c″

}

void MQENTRY Inquiry(MQHINST HInst,
MQLONG RuleId,
PMQLONG pState,
MQLONG fInquiryRequest,
MSG100 *pInquiryRequest

)
{
#include ″xinquiry.c″

}

Figure 135. Karen′s C Skeleton File (Part 1)

Chapter 5. The Bacon Lettuce and Tomato Sandwich 175

void MQENTRY MakeBLT(MQHINST HInst, �5�
MQLONG RuleId,
PMQLONG pState,
MQLONG fHaveTomato,
MSG100 *pHaveTomato,
MQLONG fHaveBread,
MSG100 *pHaveBread,
MQLONG fHaveFromFridge,
MSG100 *pHaveFromFridge

)
{
#include ″bltmake.c″

}

void MQENTRY ServeBLT(MQHINST HInst, �6�
MQLONG RuleId,
PMQLONG pState,
MQLONG fHaveToast,
MSG100 *pHaveToast,
MQLONG fHaveBacon,
MSG100 *pHaveBacon

)
{
#include ″bltserve.c″

}

void MQENTRY NoBLT(MQHINST HInst, �7�
MQLONG RuleId,
PMQLONG pState,
MQLONG fHaveToast,
MSG100 *pHaveToast,
MQLONG fHaveBacon,
MSG100 *pHaveBacon

)
{
#include ″bltnone.c″

}

void MQENTRY ClearUp(MQHINST HInst,
MQLONG RuleId,
PMQLONG pState,
MQLONG fMQ_SYSTEM_OWNER_ENDED,
MQPTR pMQ_SYSTEM_OWNER_ENDED

)
{
#include ″xclear.c″

}

Figure 136. Karen′s C Skeleton File (Part 2)

�4� This entry point is different since it does not contain flags and name of a
specific message, rather of any message. The method is called when one of
several rules is satisfied. The programmer has to issue an API call to inquire
what message is present, if he cares. In Karen′s case we issue an MQQRYM
(query message) call to obtain the name of the message and then display it.

176 MQ3T Examples for Windows Clients and AIX Servers

�5� This entry point is generated for a method that expects three messages.

METHOD
BEGIN // material arrives (all or partially)
MethodName MakeBLT
MethodType C_LIBRARY

 ProgName karen.MakeBLT
 SourceName bltmake

MsgOut MakeToast, CookBacon, Starve
END

For the tree messages two rules apply:

 1. All messages are present (left).

 2. None or some of the messages are present and a timer expired (right).

RULE RULE
 BEGIN // on-time arrival BEGIN // timeout

RuleId RI_MAKEBLT1 RuleId RI_MAKEBLT2
 RuleName MakeRule1 RuleName MakeRule2
 MethodName MakeBLT MethodName MakeBLT
 MsgIn HaveTomato, Timed Yes

HaveBread, MsgIn HaveTomato PLACEHOLDER,
HaveFromFridge HaveBread PLACEHOLDER,

END HaveFromFridge PLACEHOLDER
END

When all messages are present the rule on the left is satisfied.

The rule to the right is timed. It is satified when the timer expires, regardless if a
message has arrived or not. The timer is set with an MQTIME API call, such as:

MQTIME (HInst, ″MakeRule2″, 15, &CompCode, &Reason);

Note: Since the same program is invoked when all messages arrive in time and
when the timer expires, the programmer has to write code (in bltmake.c) to find
out what rule was satisfied. How to avoid that is demonstrated with the next
methods.

If we want to process the messages that arrive after the timer has expired, we
must specify an additional rule for each message, such as:

RULE
BEGIN // tomato arrives late
RuleId RI_TOMATO
RuleName TomatoRule
MethodName Ignore
MsgIn HaveTomato LATE

END

In Karen′s case we ignore late messages, however, for demonstration purposes
we display a message, in the routine xignore, saying that a specific message
arrived late.

�6�+�7� Both methods expect two messages:

• ServeBLT is called when all messages arrive on time.

• NoBLT is called when the timer expires and no or only one message is
present.

In this case the programmer does not have to check the rule, as in bltmake.c, to
find out why to method has been called.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 177

#**
#* *
#* karen.mak: Source file generated by the Class Compiler *
#* 03/11/96 12:07:28 language = C *
#* *
#**
.SUFFIXES:
.SUFFIXES: .o .c

CC = xlc_r
CFLAGS = -g -c -Dsigned= -Dvolatile= -D_Optlink -I. -M
LFLAGS = -L. -lXm -lXt -lX11 -L/usr/lpp/mq3t/lib -lbmqapic -e LibMain -bM:SRE

HEADERS = bltstruc.h

.c.o:
$(CC) $(CFLAGS) $<

all: karen

karen.o: karen.c\
bltorder.c\
xgremlin.c\
xrepair.c\
xignore.c\
xinquiry.c\
bltmake.c\
bltserve.c\
bltnone.c\
xclear.c\
$(HEADERS)

libmain.o: libmain.c

karen: libmain.o karen.o karen.exp
$(CC) $(LFLAGS) -bE:karen.exp -bmap:karen.map libmain.o karen.o
mv a.out karen

Figure 137. Karen′s Make File

Notes:

 1. The class compiler includes the header file ″bltstruc.h″. It finds this name in
the message definitions.

 2. The linker uses libraries in mq3t/l ib.

 3. To create a DLL for a class type a command, such as:

make -f karen.c

Use the class compiler to create similar skeleton files for all seven BL classes.

178 MQ3T Examples for Windows Clients and AIX Servers

5.6.2 Creating The Business Logic
Table 20 on page 133 contains the names of all C procedures we need to write
to make the business logic complete. Some routines are specifically for one
class, others are common. A brief discussion follows below.

5.6.2.1 Karen ′s Business Logic
For the BLT production process we write the following programs:

• bltorder.c in Figure 138 on page 180

• bltmake.c in Figure 139 on page 181 and Figure 140 on page 182

• bltserve.c in Figure 141 on page 183

• bltnone.c in Figure 142 on page 183

Karen includes other routines, however, they are common.

bltorder processes the FeedMe message from Konrad. With a wave of three
messages Karen asks for material to build the BLT. She waits up to 50 seconds
for the material to arrive. When the timer expires Karen knows that she will not
be able to produce the BLT in time for Konrad to eat it.

�1� MQQRYM (MQ QueRY Message) obtains the message properties and, since
the buffer length is 0, the length of the message. From the properties structure
we will extract the names of the class and instance that sent the message.

�2� When the API call was not successful we display an error message in the
BLM ′s window and exit the routine. We use this approach for all API calls in all
routines.

�3� Class and instance names in the MQmp structure are padded with blanks.
This routine extracts the significant characters.

�4� The three MQSEND calls send request messages to the basket, breadbox,
and refrigerator to request material.

�5� Karen waits up to 50 seconds for the arrival of the three replies. If the timer
expires and any reply is missing MakeRule2 is satisfied.

�6� After the request messages are sent Karen is busy; she waits for the replies
before she can continue to make the BLT. We set the instance state to
MQSTATE_BUSY to prevent her from accepting more requests. This is
controlled by the BLM.

�7� In this demonstration program we display messages to inform the user of the
state the instance is in. This helps the user to understand how the 3T
infrastructure works.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 179

#include ″bltdef.h″
MQMP MQmp;
MQLONG BufferLength, CompCode, Reason;
MSG100 msg100; /* message buffer */
int length; /* work field */
char *loc; /* work field */
char SenderC [50]; /* sending class */
char SenderI [100]; /* sending instance */
/**/
/* receive request to make BLT */
/**/

BufferLength = 0;
�1� MQQRYM (HInst, 1, /* instance & message number */

&MQmp, /* MQMP structure (output) */
&BufferLength, 0, /* data length (output), */
&CompCode, &Reason); /* return codes */

�2� if (CompCode != MQRC_NONE) {
printf (″MQRYM: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
/**/
/* obtain sender′ s class and instance name (return address) */
/**/
�3� length = strlen MQmp.ClassName); /* sending class */

loc = strchr(MQmp.ClassName,′ ′) ;
if (loc != NULL) length = loc - MQmp.ClassName;
strncpy (SenderC,MQmp.ClassName,length);
SenderC[length] = ′ \0′ ;
length = strlen (MQmp.LocalInstanceName); /* sending instance */
loc = strchr(MQmp.LocalInstanceName,′ ′) ;
if (loc != NULL) length = loc - MQmp.LocalInstanceName;
strncpy(SenderI,MQmp.LocalInstanceName,length);
SenderI[length] = ′ \0′ ;

/**/
/* Request material for BLT */
/**/
�4� MQSEND (HInst, ″BASKET″ , SenderI, ″GetTomato″ ,

0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″MQSEND: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
MQSEND (HInst, ″BREADBOX″ , SenderI, ″GetBread″ ,

0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″MQSEND: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
MQSEND (HInst, ″FRIDGE″ , SenderI, ″GetFromFridge″ ,

0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″MQSEND: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
�5� MQTIME (HInst, ″MakeRule2″, 50, &CompCode, &Reason);

if (CompCode != MQRC_NONE) {
printf (″MQTIME CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
�6� *pState = MQSTATE_BUSY;
�7� printf (″%s %s from %s (%s) State=BUSY\n″ ,

″BL processed ″ , MQmp.MsgName,
SenderC, SenderI);

printf (″Wait up to 50 seconds for material\n″) ;
return;

Figure 138. Karen′s Method ″bltorder″

180 MQ3T Examples for Windows Clients and AIX Servers

#include ″bltdef.h″
MQMP MQmp;
MQLONG BufferLength, CompCode, Reason;
MSG100 msg100; /* message buffer */
unsigned int length;
char *loc;
char SenderC [50]; /* sending class
char SenderI [100]; /* sending instance
char output [120]; /* work/message buffer
char wkfld [50];
/**/
/* Messages arrived, check if material complete */
/**/
�8� strcpy (output,″BL received″) ;

if (fHaveTomato == MQMDF_MSG_IS_PRESENT)
strcat (output,″ tomato,″) ;

if (fHaveBread == MQMDF_MSG_IS_PRESENT)
strcat (output,″ bread,″) ;

if (fHaveFromFridge == MQMDF_MSG_IS_PRESENT)
strcat (output,″ bacon, lettuce, mayo″) ;

if (fHaveTomato == MQMDF_MSG_NOT_PRESENT_TIMEOUT ||
fHaveBread == MQMDF_MSG_NOT_PRESENT_TIMEOUT ||
fHaveFromFridge == MQMDF_MSG_NOT_PRESENT_TIMEOUT)

{
�9� *pState = MQSTATE_CLEAR;

MQRPLY (HInst, ″Starve″, 0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″MQRPLY: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;

}
printf (″%s - timeout. State=CLEAR\n″ , output);
return;

}
�10� else {

switch (*pState) {
case MQSTATE_NEW: strcpy (wkfld,″NEW″) ;

break;
case MQSTATE_CLEAR: strcpy (wkfld,″CLEAR″) ;

break;
case MQSTATE_BUSY: strcpy (wkfld,″BUSY″) ;

break;
case MQSTATE_DISABLED: strcpy (wkfld,″DISABLED″) ;

break;
case MQSTATE_DISABLED_WHILE_BUSY:

strcpy (wkfld,″DISABLED_WHILE_BUSY″) ;
break;

case MQSTATE_END: strcpy (wkfld,″END″) ;
}
printf (″%s. State=%s\n″ , output, wkfld);

}
/**/
/* Material complete */
/**/

BufferLength = 0;
�1� MQQRYM (HInst, 1, /* instance & message number */

&MQmp, /* MQMP structure (output) */
&BufferLength, 0, /* data length (output) */
&CompCode, &Reason); /* return codes */

if (CompCode != MQRC_NONE) {
printf (″MQQRYM: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}

Figure 139. Karen′s Method ″bltmake″ (Part 1 of 2)

Chapter 5. The Bacon Lettuce and Tomato Sandwich 181

/**/
/* obtain sender′ s instance name (return address) */
/**/

length = strlen (MQmp.LocalInstanceName); /* sending instance */
�3� loc = strchr(MQmp.LocalInstanceName,′ ′) ;

if (loc != NULL) length = loc - MQmp.LocalInstanceName;
strncpy (SenderI,MQmp.LocalInstanceName,length);
SenderI[length] = ′ \0′ ;

/**/
/* Toast bread and cook bacon */
/**/
�11� MQSEND (HInst, ″TOASTER″ , SenderI, ″MakeToast″ ,

0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″MQSEND: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
MQSEND (HInst, ″MICRO″ , SenderI, ″CookBacon″ ,

0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″MQSEND: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
�12� MQTIME (HInst, ″ServeRule2″, 50, &CompCode, &Reason);

if (CompCode != MQRC_NONE) {
printf (″MQTIME CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
printf (″BL is cooking, wait for up to 10 seconds...\n″) ;
return;

Figure 140. Karen′s Method ″bltmake″ (Part 2 of 2)

bltmake is called when Karen receives replies from the basket, breadbox, or
refrigerator. This routine is called when the replies arrive in time and when the
timer expires and no or some messages are present. We could write a separate
methods for MakeRule1 and MakeRule2.. This approach is demonstrated in the
next two figures, bltnone and bltserve.

�8� We check the message data flag to find out if a message is present or not. If
one of the replies is missing then we know that the timer has expired.

�9� Since Karen knows that she cannot build the BLT she sends the Starve
message to Konrad. The state is set to CLEAR so that she can accept future
FeedMe messages.

�10� We obtain the state the instance is in and display a message in the BLM′s
window to inform the user about the progress of the BLT production process.

�11� Here Karen sends the second wave of messages to the toaster and
microwave.

�12� Karen waits up to 10 seconds for the replies from the kitchen equipment.

182 MQ3T Examples for Windows Clients and AIX Servers

#include ″bltdef.h″
MSG100 msg100; /* message buffer */
MQLONG CompCode, Reason;

�13� *pState = MQSTATE_CLEAR;
�14� MQRPLY (HInst, ″Sandwich″, 0, &msg100, &CompCode, &Reason);

if (CompCode != MQRC_NONE)
printf (″MQRPLY: CC %d reason %d\n″ , CompCode, Reason);

else
printf(″BL delivers BLT and ends. State=CLEAR\n″) ;

Figure 141. Karen′s Method ″bltserve″

bltserve is called when the replies from both microwave and toaster arrive.

�13� Since the BLT production is completed we set the instance state to CLEAR.
This enables Karen to accept more requests.

�14� Karen sends the Sandwich to Konrad. If Konrad receives it on time or late
is not of her concern. Since FeedMe is a request message she must respond
with a reply.

#include ″bltdef.h″
MSG100 msg100; /* message buffer */
MQLONG CompCode, Reason;

�15� MQRPLY (HInst, ″Starve″, 0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE)

printf (″MQRPLY: CC %d reason %d\n″ , CompCode, Reason);
else

printf(″ BL cannot make BLT, BL ends. State=%d\n″ , *pState);
*pState = MQSTATE_CLEAR;

Figure 142. Karen′s Method ″bltnone″

bltnone is called when the timer expired and at least one of the replies from the
microwave or toaster are not present.

�15� Since the BLT production cannot be completed Karen sends the Starve
message to Konrad. She must respond with a reply. The state is set to clear to
allow for future FeedMe messages.

5.6.2.2 Business Logic for Basket, Breadbox and Refrigerator
The specific routines for the three objects that hold the material for the BLT look
very similar. The routines are:

basket1.c processes requests from Karen

bbox1.c processes requests from Karen

fridge1.c processes requests from Karen

delivery.c processes deliveries from the grocer

foodinq.c replies to inquiries from the shopping list

Since the program for the refrigerator is more complex than the other (the
refrigerator holds three items instead of one) we discuss it in more detail.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 183

#include ″bltdef.h″
MQMP MQmp;
MQLONG BufferLength, CompCode, Reason;
MSG100 msg100; /* message buffer */
char wkfld[50];
char SenderC [50]; /* sending class */
char SenderI [100]; /* sending instance */
unsigned int length;
char *loc;
int ik;
/**/
/* File names for inventory */
/**/
char fnbasket[] = ″basket.dat″ ; �1�
char fnfridge[] = ″fridge.dat″ ;
char fnbread[] = ″breadbox.dat″ ;
char fn[20]; /* file name */
FILE *fp;
long inventory[5];
/**/
/* receive request to deliver tomato */
/**/
�2� BufferLength = 0;

MQQRYM (HInst, 1, &MQmp, &BufferLength, 0, &CompCode, &reason); */
if (CompCode != MQRC_NONE) {

printf (″BL - MQRYM: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
/**/
/* obtain sender′ s class and instance name (return address) */
/**/
�3� length = strlen (MQmp.ClassName);

loc = strchr(MQmp.ClassName,′ ′) ;
if (loc != NULL) length = loc - MQmp.ClassName;
strncpy (SenderC,MQmp.ClassName,length);
SenderC[length] = ′ \0′ ;
length = strlen (MQmp.LocalInstanceName);
loc = strchr (MQmp.LocalInstanceName,′ ′) ;
if (loc != NULL) length = loc - MQmp.LocalInstanceName;
strncpy(SenderI,MQmp.LocalInstanceName,length);
SenderI[length[= ′ \0′ ;

�4� switch (*pState) {
case MQSTATE_NEW: strcpy (wkfld,″NEW″) ;

break;
case MQSTATE_CLEAR: strcpy (wkfld,″CLEAR″) ;

break;
case MQSTATE_BUSY: strcpy (wkfld,″BUSY″) ;

break;
case MQSTATE_DISABLED: strcpy (wkfld,″DISABLED″) ;

break;
case MQSTATE_DISABLED_WHILE_BUSY:

strcpy (wkfld,″DISABLED_WHILE_BUSY″) ;
break;

case MQSTATE_END: strcpy (wkfld,″END″) ;
}
printf (″%s %s from %s (%s) State=%s\n″ ,

″BL received ″ , MQmp.MsgName, SenderC, SenderI, wkfld);

Figure 143. Refrigerator′s Method ″fridge1″ (Part 1)

184 MQ3T Examples for Windows Clients and AIX Servers

/**/
/* Check if file exists. If not, create it. */
/**/
�5� strcpy (fn, fnfridge); /* file name */

if ((fp = fopen(fn,″r″)) == NULL) {
if ((fp = fopen(fn,″w″)) == NULL) {

printf(″Cannot create file %s. Abort.\n″ , fn);
*pState = MQSTATE_END;
return;

}
for (ik = 0; ik < 5; ik++)

inventory[ik] = 5; /* initial value */
ik = fwrite (inventory, sizeof(long), 5, fp);
printf(″File %s created with 3 X 5 items.\n″ , fn);

}
fclose (fp);

/**/
/* read file and check availibility */
/**/
�6� if ((fp = fopen(fn,″r+″)) == NULL) { /* for update */

printf (″Problem opening file %s\n″ , fn);
*pState = MQSTATE_END;
return;

}
ik = fread (inventory, sizeof(long), 5, fp);
inventory[1] = inventory[1] - 1;
inventory[2] = inventory[2] - 1;
inventory[4] = inventory[4] - 1;
rewind (fp);
ik = fwrite (inventory, sizeof(long), 5, fp);
fclose (fp);

Figure 144. Refrigerator′s Method ″fridge1″ (Part 2)

�1� Each of the classes, refrigerator, basket, and breadbox keep the inventory in
a file. To simplify the code each file contains five fields, even though they are
not all used in every class. If applicable, the five fields contain in binary form:

inventory[0] - bread inventory[1] - bacon
inventory[2] - lettuce inventory[3] - tomatoes
inventory[4] - mayonaise

�2� MQQRYM (MQ QueRY Message) obtains the message properties and (since
the buffer length is 0) the length of the message. From the properties structure
we will extract the names of the class and instance that sent the message.

�3� Class and instance names in the MQmp structure are padded with blanks.
This routine extracts the significant characters. We could hard-code the ″return
address″ since only Karen could have sent the message. It is, however,
necessary to get the instance name, since this name can change every time
Konrad is started.

�4� We obtain the status the instance is in to display it in the BLM′s window.

�5� If the inventory file does not exist we create it. Initially, there will be five of
each item in stock. The routine sets all five fields to 5, even only one or, in the
refrigerator ′s case, three are ever used.

�6� This code decreases the inventory. For the refrigerator, three fields are
updated, for the basket and breadbox it would be one.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 185

/**/
/* order when inventory depleted */
/**/
�7� if (inventory[1] == 0) {

msg100.number = 1; /* bacon */
MQSEND (HInst, ″SHOPPING″ , SenderI, ″OrderMessage″ ,

0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″MQSEND: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
�8� *pState = MQSTATE_BUSY;

printf(″Ordered bacon. State=%d\n″ , *pState);
}
if (inventory[2] == 0) {

msg100.number = 2; /* lettuce */
MQSEND (HInst, ″SHOPPING″ , SenderI, ″OrderMessage″ ,

0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″MQSEND: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
*pState = MQSTATE_BUSY;
printf(″Ordered lettuce. State=%d\n″ , *pState);

}
if (inventory[4] == 0) {

msg100.number = 4; /* mayonaise */
MQSEND (HInst, ″SHOPPING″ , SenderI, ″OrderMessage″ ,

0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″MQSEND: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
*pState = MQSTATE_BUSY;
printf(″Ordered mayonaise. State=%d\n″ , *pState);

}
�9� if (*pState != MQSTATE_BUSY) {

*pState = MQSTATE_CLEAR;
strcpy (wkfld,″CLEAR″) ;

}
else strcpy (wkfld,″BUSY″) ;

/**/
/* return reply message */
/**/
�10� MQRPLY (HInst, ″HaveFromFridge″, 0, &msg100, &CompCode. &Reason);

if (CompCode != MQRC_NONE) {
printf(″MQRPLY: completion code %d reason %d\n″ ,

CompCode, Reason);
*pState = MQSTATE_END;
return;

}
printf(″%s: %d bacon, %d lettuce, %d mayo, State=%state=%s\n″ ,

″Items delivered, portions left″ ,
inventory[1], inventory[2], inventory[4wkfld)

Figure 145. Refrigerator′s Method ″fridge1″ (Part 3)

186 MQ3T Examples for Windows Clients and AIX Servers

�7� Immediately after an item is delivered we check if the inventory is depleted.
In case of the refrigerator we have to check three items. Into the OrderMessage
we store the item number, 0 through 4, and send it to the shopping list.

�8� If an item is depleted we set the instance state to BUSY. This prevents the
instance from accepting more requests. The state is set to clear when a delivery
arrives from the grocer.

�9� If the object contains inventory we set the state to CLEAR and allow more
requests to be processed.

�10� The reply is sent to Karen. At the end a message is displayed to tell the
user about the status of the instance.

foodinq is included in the business logic for all three objects. Many sections of
the program are the same as in fridge1.c. The identical sections of the
programs are not included in the figures below, however, references to the code
in fridge1.c are made.

�11� The shopping list sends one FoodInquiry message for one item at a time.
The field ″number″ contains the item ID, that is 0 through 4. Depending on this
number we select the inventory file to be read.

�12� If the file does not exist we report back zero.

�13� If the file exists we obtain the inventory and store it in the FoodInquiry
message we send back.

�14� We receive a FoodInquiry message and we send a message with the same
name and structure back to the shopping list.

delivery is invoked when basket, breadbox, or refrigerator receive more food
from the grocer. The grocer sends one FoodDelivery message for each item he
delivers. If the shopping list contains bacon, lettuce and mayonaise, the
refrigerator would receive three messages.

�15� The field ″number″ in the message contains the item ID. The item ID
determines what file to update.

�16� The field ″value″ in the message contains the quantity the grocer delivers.
The quantity is added to the inventory.

�17� After a delivery the state is set to CLEAR. It may have been BUSY when
there was no inventory left. For the refrigerator we have to take in account that
it holds three items. Its state is set to CLEAR when all three items are available.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 187

...
/* definitions */

�Same�as�1�on�page�184�
...
int ij, ik;
static char *szFood[] = { ″bread″ , ″bacon″ , ″lettuce″ , ″tomatoes″ , ″mayonaise″}
/**/
/* receive inventory inquiry */
/**/
...
�Same�as�2�on�page�184�
...
/**/
/* obtain sender′ s class and instance name (return address) */
/**/
...
�Same�as�3�on�page�184�
...
/**/
/* setup variables (message can be from one of three classes) */
/**/
�11� ij = pFoodInquiry->number; /* food item 0 - 4); */

if (ij == 0) strcpy (fn,fnbread);
else
if (ij == 3) strcpy (fn,fnbasket);
else strcpy (fn,fnfridge);
if (*pState == MQSTATE_NEW) *pState = MQSTATE_CLEAR;

switch (*pState) { /* get current state */
...

�Same�as�4�on�page�184�
...

printf (″Received %s for %s State=%s\n″ ,
MQmp.MsgName, szFood[ij], wkfld);

/**/
/* check if file exists */
/**/
�12� if ((fp = fopen(fn,″r″)) == NULL) {

printf(″Inventory file %s does not exist.\n″ , fn);
msg100.value = 0;
msg100.number = ij;

}
/**/
/* read file and check inventory */
/**/
�13� else {

ik = fread (inventory, sizeof(long), 5, fp);
msg100.value = inventory[ij];
msg100.number = ij;
fclose (fp);

}
/**/
/* send message to SHOPPING list */
/**/
�14� MQSEND (HInst, SenderC, SenderI, ″FoodInquiry″ ,

0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″MQSEND: CC %d reason %d\n″ , CompCode, Reason);
*pState = MQSTATE_END;
return;

}
printf(″Inventory: %d %s \n″ , msg100.value, szFood[ij]);

Figure 146. Food Inquiry Method ″foodinq″

188 MQ3T Examples for Windows Clients and AIX Servers

...
/*definitions*/

�Same�as�1�on�page�184�
...
/**/
/* Setup variables (message can be from one of three classes) */
/**/
�15� ij = pFoodDelivery->number; /* food item 0 - 4) */

if (ij == 0) strcpy (fn,fnbread); /* select file name */
else
if (ij == 3) strcpy (fn,fnbasket);
else strcpy (fn,fnfridge);

...
�Same�as�4�on�page�184�

...
printf (″Received %d portions of %s. State=%s\n″ ,

pFoodDelivery->value, pFoodDelivery->message, wkfld);
/**/
/* Check if file exists. If not, create it. */
/**/
...

�Same�as�5�on�page�185�
...
/**/
/* Read file and update inventory */
/**/

if ((fp = fopen(fn,″r+″)) == NULL) { /* for update */
printf (″Problem opening file %s\n″ , fn);
return;

}
ik = fread (inventory, sizeof(long), 5, fp);

�16� inventory[ij] = inventory[ij] + pFoodDelivery->value;
rewind (fp);
ik = fwrite (inventory, sizeof(long), 5, fp);
fclose (fp);

/**/
/* Change state from BUSY (= wait for food) to CLEAR */
/* Note: The refrigerator must have all three items! */
/**/
�17� il = 1;

if (ij != 0 && ij != 3) /* not basket and not breadbox */
if (inventory[1] < 1) il = 0; /* no bacon in fridge */
if (inventory[2] < 1) il = 0; /* no lettuce in fridge */
if (inventory[4] < 1) il = 0; /* no mayo in fridge */

if (il == 1)
if (*pState == MQSTATE_BUSY) { *pState = MQSTATE_CLEAR;

strcpy (wkfld, ″CLEAR″) ;
}

printf(″File %s updated: %d portions of %s available. State=%s\n″ ,
fn, inventory[ij], pFoodDelivery->message, wkfld);

Figure 147. Food Delivery Method ″del ivery″

Chapter 5. The Bacon Lettuce and Tomato Sandwich 189

5.6.2.3 Business Logic for Microwave and Toaster
The two classes share one specific routine that is called when Karen sends the
MakeToast or CookBacon message. Just as for the previous routines, much of
the code is common.

There is one special situation to solve, however. The same routine cook.c is
used in two different classes. Each class sends a different reply to Karen.
Therefore, we have to find out who we are in order to send the correct message
back.

We use the MQQRYT_CLASS parameter in the MQQRY (MQ QueRY) API to
obtain the MQcld structure. This stucture contains the class name. If the class
name starts with a ″T″ it must be the toaster.

For this instance we set the state the MQSTATE_END after its work is done. The
instance ends and is ″new″ when the next request arrives.

...
�Same�definitions�as�before,�except�for:�
...
MQCLD MQcld; /* class parameters */
/**/
/* receive request to cook or toast */
/**/

*pState = MQSTATE_END;
...

�Same�as�2�on�page�184�
...
/**/
/* obtain sender′ s class and instance name (return address) */
/**/
...

�Same�as�3�on�page�184�
...
/**/
/* reply to sender */
/**/

BufferLength = sizeof (MQcld);
MQQRY (HInst, 0, MQQRYT_CLASS, &BufferLength,

&MQcld, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″BL - MQQRY: CC %d reason %d\n″ , CompCode, Reason);
return;

}
if (MQcld.ClassName[0] == ′ T′)

MQRPLY (HInst, ″HaveToast″, 0, &msg100, &CompCode, &Reason);
else

MQRPLY (HInst, ″HaveBacon″, 0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″MQRPLY: CC %d reason %d\n″ , CompCode, Reason);
return;

}
printf (″%s from %s (%s) processed. State=END.\n″ ,

MQmp.MsgName, SenderC, SenderI);

Figure 148. Food Preparation Method ″cook″

190 MQ3T Examples for Windows Clients and AIX Servers

5.6.2.4 Business Logic for The Grocer
The grocer receives a FoodOrder message from the shopping list and sends one
FoodDelivery message for each item he delivers. The FoodOrder is a variable
length message set and can contain one to five elements. Each element
contains a quantity. The element ID functions as the item ID (0 through 4).

#include ″bltdef.h″ �1�
MQHSET hSet; /* message set */
MQLONG BufferLength; /* length of the set */
MQLONG elements; /* number of elements in the set */
MQMP MQmp; /* message properties structure */
MQLONG CompCode, Reason; /* return codes */
char SenderC [50]; /* class to deliver to */
char SenderI [50]; /* instance name */
MQLONG DescLength=0; /* buffer length for an element */
PMQELIL pdStruct=NULL; /* SDDM - integer list element */
MQLONG eType; /* SDDM - type of element */
MQLONG eLength; /* SDDM - length of element */
MQLONG eId; /* SDDM - ID of element */
#define ID_ZERO 0 /* SDDM - 0 = deliver bread */
#define ID_ONE 1 /* SDDM - 1 = deliver bacon */
#define ID_TWO 2 /* SDDM - 2 = deliver lettuce */
#define ID_THREE 3 /* SDDM - 3 = deliver tomato */
#define ID_FOUR 4 /* SDDM - 4 = deliver mayonaise */
MQLONG quantity; /* SDDM - value from element */
MSG100 msg100; /* structure for delivery message */
MQLONG p; /* work field for loop control */
unsigned int length; /* work field */
char *loc; /* work pointer */
char wkfld[25]; /* work field */
/**/
/* Receive a set containing 1 to 5 food orders */
/**/
�2� *pState = MQSTATE_END;

BufferLength = 0;
MQQRYM (HInst, 1, &MQmp, &BufferLength, 0, &CompCode, &Reason); */
if (CompCode != MQRC_NONE) {

printf (″Error - MQRYM: CC %d reason %d\n″ , CompCode, Reason);
return;

}
/**/
/* Obtain sender′ s instance name (used in food delivery message) */
/**/

length = strlen (MQmp.LocalInstanceName); /* sending instance */
loc = strchr(MQmp.LocalInstanceName,′ ′) ;
if (loc != NULL) length = loc - MQmp.LocalInstanceName;
strncpy(SenderI,MQmp.LocalInstanceName,length);
SenderI[length] = ′ \0′ ;

Figure 149. Grocer′s Method ″grocer1.c″ (Part 1)

.�1� Since several new definitions are needed. Most of them are for the use of
the Self-Defining Data Manager (SDDM) and referred to later in the text.

�2� When the work is done we end the instance by setting its state to
MQSTATE_END.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 191

/**/
/* Query the set */
/**/
�3� BufferLength = 0;

MQQRYS (hFoodOrder, /* set handle */
 &elements, /* number of elements */

&BufferLength, /* buffer length */
NULL, /* buffer (N/A) */
&CompCode, &Reason); /* return codes */

if (CompCode != MQRC_NONE) {
printf (″Error - MQQRYS: CC %d reason %d\n″ , CompCode, Reason);
return;

}
printf(″Received %s with %d item(s)\n″ , MQmp.MsgName, elements);

/**/
/* Find the length of the structure and allocate space for it */
/**/
�4� DescLength = 0;

MQCPYB (hFoodOrder, MQEID_ELEMENT_LIST, &DescLength, NULL,
&CompCode, &Reason);

if (CompCode != MQRC_NONE) {
printf (″Error - MQCPYB(1): CC %d reason %d\n″ , CompCode, Reason);
return;

}
�5� pdStruct = malloc(DescLength);
/**/
/* Re-issue the call to get the structure */
/**/
�6�

MQCPYB (hFoodOrder, MQEID_ELEMENT_LIST, &DescLength, pdStruct,
&CompCode, &Reason);

if (CompCode != MQRC_NONE) {
printf (″Error - MQCPYB(2): CC %d reason %d\n″ , CompCode, Reason);
free (pdStruct);
return;

}
/* printf(″Elements in Values array: %d\n″ , pdStruct->Count); */

Figure 150. Grocer′s Method ″grocer1.c″ (Part 2)

�3� We use the MQQRYS (MQ QueRY Set) API to find out what the message (set)
contains. The call returns two values:

• The buffer length

• The number of elements in the set

�4� We use a special function of the MQCPYB (MQ CoPY element into Buffer)
call to obtain a list of all elements in the set. The call returns the length of the
list in DescLength. Since the buffer length (DescLength) is set to zero, the buffer
is not referred to and we can specify NULL in its position.

�5� The programmer must allocate memory for the element list.

�6� The MQCPYB call is issued again, with buffer length and buffer address
specified. The PMQELIL structure contains the element list. The structure is
described on page 240 of the Application Programming manual. The values field
of this structure contains the following information for each field in the set:

• Element type

• Element length

• Element identifier

192 MQ3T Examples for Windows Clients and AIX Servers

/**/
/* Parse the structure */
/**/
�7�

for (p = 0; p < pdStruct->Count; p++)
{

eType = pdStruct->Values[p++];
eLength = pdStruct->Values[p++];
eId = pdStruct->Values[p];

�8�
switch (eId)
{

case ID_ZERO:
strcpy (SenderC, ″BREADBOX″) ;
strcpy (wkfld, ″bread″) ;
break;

case ID_ONE:
strcpy (SenderC, ″FRIDGE″) ;
strcpy (wkfld, ″bacon″) ;
break;

case ID_TWO:
strcpy (SenderC, ″FRIDGE″) ;
strcpy (wkfld, ″lettuce″) ;
break;

case ID_THREE:
strcpy (SenderC, ″BASKET″) ;
strcpy (wkfld, ″tomatoes″) ;
break;

case ID_FOUR:
strcpy (SenderC, ″FRIDGE″) ;
strcpy (wkfld, ″mayonaise″) ;
break;

}
/***/
/* Obtain quantity to deliver from element */
/***/

�9�
MQCPYI (hFoodOrder, eId, &quantity, &CompCode,&Reason);
if (CompCode != MQRC_NONE) {

printf (″Error - MQCPYI: CC %d reason %d\n″ , CompCode, Reason);
free (pdStruct);
return;

}
/* printf(″Deliver to %s\n″ , SenderC); */
/***/
/* Send delivery message */
/***/

�10�
msg100.number = eId; /* item number */
msg100.value = quantity; /* quantity */
strcpy (msg100.message, wkfld); /* item name */
MQSEND (HInst, SenderC, SenderI, ″FoodDelivery″ ,

0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE)

printf (″MQSEND: CC %d reason %d\n″ , CompCode, Reason);
else

printf(″Deliver to %s %d portions of %s\n″ ,
SenderC, quantity, wkfld);

}
�11�

free (pdStruct);

Figure 151. Grocer′s Method ″grocer1.c″ (Part 3)

Chapter 5. The Bacon Lettuce and Tomato Sandwich 193

Note: We need the element identifier to tell us what item was ordered. We use
the element ID as the product ID.

�7� The element list is an array of ″triplets″. Each triplet describes the type,
length and ID of each element in the set. This is described in Usage note 5 of
the MQCPYB API call on page 139 of the Application Programming Guide.

�8� The element ID (product ID) says what product is ordered and where to ship
it.

�9� MQCPYI (MQ CoPY Integer) copies the quantity from the set and into the
field quantity.

�10� Item ID and quantity are stored into the fixed length message FoodDelivery
and sent to either the breadbox, basket, or refrigerator.

�11� After all orders are filled we free the space allocated for the element
structure.

5.6.2.5 Common Business Logic Programs
The following programs are used by (almost) all classes:

 1. xclear

 2. xrepair

 3. xignore

 4. xinquiry

 5. xgremlin

xclear is called when the BLM ends. MQ3T sends a system message that allows
the user to do some cleanup.

#include ″bltdef.h″
printf(″BLM ended, clear up...\n″) ;

Figure 152. Common Method ″xclear.c″

xrepair process the RepairMessage sent by the repair list.

/**/
/* xrepair: enable class */
/**/
#include ″bltdef.h″

printf (″Working again ...\n″) ;
if (*pState == MQSTATE_DISABLED_WHILE_BUSY) *pState = MQSTATE_BUSY;
else if (*pState == MQSTATE_DISABLED) *pState = MQSTATE_CLEAR;
else if (*pState == MQSTATE_NEW) *pState = MQSTATE_CLEAR;

Figure 153. Common Method ″xrepair.c″

194 MQ3T Examples for Windows Clients and AIX Servers

xignore displays all messages that the application does not care about. The
purpose of this routine is to show the user what messages are ignored, such as
late replies.

/**/
/* xignore: discard messages */
/**/
MQMP MQmp; /* message properties */
MQLONG BufferLength;
char SenderC [50]; /* sending class */
char SenderI [100]; /* sending instance */
unsigned int length;
char *loc;
MQLONG CompCode, Reason; /* completion codes */
/**/
/* get message properties */
/**/

BufferLength = 0;
MQQRYM (HInst, /* instance of BL */

1, /* first message */
&MQmp, /* MQMP structure (output) */
&BufferLength, /* data length (output) */
0, /* data area (N/A) */
&CompCode, &Reason); /* return codes */

if (CompCode != MQRC_NONE) {
printf (″Ignore: MQRYM: CC %d reason %d\n″ , CompCode, Reason);
return;

}
/**/
/* obtain sender′ s class and instance name */
/**/

length = strlen (MQmp.ClassName); /* sending class */
loc = strchr(MQmp.ClassName,′ ′) ;
if (loc != NULL) length = loc - MQmp.ClassName;
strncpy (SenderC,MQmp.ClassName,length);
SenderC&;brk.length] = ′ \0′ ;
length = strlen (MQmp.LocalInstanceName); /* sending instance */
loc = strchr(MQmp.LocalInstanceName,′ ′) ;
if (loc != NULL) length = loc - MQmp.LocalInstanceName;
strncpy(SenderI,MQmp.LocalInstanceName,length);
SenderI[length] = ′ \0′ ;

/**/
/* display message and end */
/**/

printf (″%s %s from %s (%s)\n″ ,
″BL ignores ″ , MQmp.MsgName, SenderC, SenderI);

printf (″ State=%d Rule=%d, MsgType=%d OpCode=%d\n″ ,
*pState, RuleId, MQmp.MsgType, MQmp.OperationCode);

if (*pState == MQSTATE_NEW) *pState = MQSTATE_END;

Figure 154. Common Method ″xignore.c″

Chapter 5. The Bacon Lettuce and Tomato Sandwich 195

xinquiry processes InquiryRequest messages from the repair list. It responds by
reporting back the instance state.

MQMP MQmp;
MQLONG BufferLength, CompCode, Reason;
char SenderC [50];
char SenderI [100*rbrk.;
char wkfld [50];
unsigned int length;
char *loc;
MSG100 msg100;
/**/
/* Get properties of inquiry REQUEST message */
/**/

BufferLength = 0;
MQQRYM (HInst, 1, &MQmp, &BufferLength, 0, &CompCode, Reason); */
if (CompCode != MQRC_NONE) {

printf (″BL - MQRYM: completion code %d reason %d\n″ ,
CompCode, Reason);

*pState = MQSTATE_END;
return;

}
/**/
/* Get sender′ s class and instance names */
/**/

length = strlen (MQmp.ClassName); /* sending class */
loc = strchr(MQmp.ClassName,′ ′) ;
if (loc != NULL) length = loc - MQmp.ClassName;
strncpy (SenderC,MQmp.ClassName,length);
SenderC[length] = ′ \0′ ;
length = strlen (MQmp.LocalInstanceName); /* sending instance */
loc = strchr(MQmp.LocalInstanceName,′ ′) ;
if (loc != NULL) length = loc - MQmp.LocalInstanceName;
strncpy(SenderI,MQmp.LocalInstanceName,length);
SenderI[length] = ′ \0′ ;

/**/
/* Change state IF this is first message the instance receives */
/**/

if (*pState == MQSTATE_NEW) *pState = MQSTATE_CLEAR;
/**/
/* Reply with state */
/**/

switch (*pState) {
case MQSTATE_NEW: strcpy (wkfld,″NEW″) ;

break;
case MQSTATE_CLEAR: strcpy (wkfld,″CLEAR″) ;

break;
case MQSTATE_BUSY: strcpy (wkfld,″BUSY″) ;

break;
case MQSTATE_DISABLED: strcpy (wkfld,″DISABLED″) ;

break;
case MQSTATE_DISABLED_WHILE_BUSY:

strcpy (wkfld,″DISABLED_WHILE_BUSY″) ;
break;

case MQSTATE_END: strcpy (wkfld,″END″) ;
}
strcpy (msg100.message,wkfld);
msg100.number = *pState;
MQRPLY (HInst, ″InquiryReply″, 0, &msg100, &CompCode, &Reason);
if (CompCode != MQRC_NONE) {

printf (″MQRPLY: completion code %d reason %d\n″ ,
CompCode, Reason);

*pState = MQSTATE_END;
return;

}
printf (″Reply to %s from %s (%s): State=%s\n″ ,

MQmp.MsgName, SenderC, SenderI, wkfld);

Figure 155. Common Method ″xinquiry.c″

196 MQ3T Examples for Windows Clients and AIX Servers

xgremlin is called when the Gremlin sends a message to disable a class or to
set the inventory of an item to zero.

 #include ″bltdef.h″
 int ij, ik;
 long inventory[5];
 char * fnbasket=″basket.dat″ ;
 char * fnfridge=″fridge.dat″ ;
 char * fnbread=″breadbox.dat″ ;
 char fn[20];
 char wkfld[50];
 FILE *fp;
/**/
/* Find out if disable or spoil, */
/* for spoil set file name and item number in file */
/**/

ik = pGremlinMessage->number; /* ghost radio button 1 to 14 */
printf (″radio button is %d\n″ , ik);
ij = -1;

 if (ik == 6) { strcpy (fn, fnbread); /* bread */
ij = 0;
strcpy (wkfld, ″bread portions″) ; }

 if (ik == 7) { strcpy (fn, fnbasket); /* tomatoes */
ij = 3;
strcpy (wkfld,″tomatoes″) ; }

 if (ik == 8) { strcpy (fn, fnfridge); /* bacon */
ij = 1;
strcpy (wkfld, ″bacon portions″) ; }

 if (ik == 9) { strcpy (fn, fnfridge); /* lettuce */
ij = 2;
strcpy (wkfld, ″lettuce portions″) ;}

 if (ik == 10) { strcpy (fn, fnfridge); /* mayonaise*/
ij = 4;
strcpy (wkfld, ″mayonaise portions″); }

/**/
/* Disable: radio buttons 1 - 5 and 11 - 14 */
/**/

if (ij == -1) {
printf (″The gremlin strikes again....\n″) ;
if (*pState == MQSTATE_BUSY) *pState = MQSTATE_DISABLED_WHILE_BUSY;
else *pState = MQSTATE_DISABLED;
return;

}
/**/
/* Spoil: return of file does not exist */
/**/

if ((fp = fopen(fn,″r+″)) == NULL) {
if (*pState == MQSTATE_NEW) *pState = MQSTATE_CLEAR;
printf(″File %s does not exist, nothing to spoil.\n″ , fn);
return;

}
/**/
/* Spoil: set inventory to 0 */
/**/

ik = fread (inventory, sizeof(long), 5, fp);
printf(″File %s, %s spoiled: %d\n″ , fn, wkfld, inventory[ij]);
inventory[ij] = 0;
rewind (fp);
ik = fwrite (inventory, sizeof(long), 5, fp);
fclose (fp);

/**/
/* set state to ″disabled″ */
/**/

if (*pState == MQSTATE_DISABLED) { *pState = MQSTATE_DISABLED_WHILE_BUSY;
strcpy (wkfld, ″DISABLED_WHILE_BUSY″) ;

}
else { *pState = MQSTATE_BUSY;

strcpy (wkfld,″BUSY″) ;
}

Figure 156. Common Method ″xgremlin.c″

Chapter 5. The Bacon Lettuce and Tomato Sandwich 197

5.7 System Test
The application consists of:

• Five Visual Basic programs in the Windows workstation

• Seven C programs in the AIX workstation

The C programs are compiled error free, and for the Visual Basic programs we
made error free EXE files. To recompile all files on the AIX machine you may
use the command file ″redo″ shown below. The routine clears all queues, too.

rm *.cb
rm *.exp
rm *.dat
touch *.h
touch *.ch
bmqcc konrad.cs
bmqcc luigi.cs
bmqcc gremlin.cs
bmqcc repair.cs
bmqcc shopping.cs
bmqcc /s karen.cs
bmqcc /s basket.cs
bmqcc /s breadbox.cs
bmqcc /s fridge.cs
bmqcc /s toaster.cs
bmqcc /s micro.cs
bmqcc /s grocer.cs
make -f konrad.mak
make -f luigi.mak
make -f gremlin.mak
make -f repair.mak
make -f shopping.mak
make -f karen.mak
make -f basket.mak
make -f breadbox.mak
make -f fridge.mak
make -f micro.mak
make -f toaster.mak
make -f grocer.mak
runmqsc < clearq.in

Figure 157. BLT: Redo all BLs

The queue manager resides in the AIX server. The Windows workstation has a
″server connection″ to the RS/6000.

On the server we executed the following runmqsc command to create a channel
between the Windows client and the AIX server:

def chl (OAKC1.TO.RS60001) CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(′ mqm′) +
like(system.def.svrconn)

In the client workstation we added to the AUTOEXEC.BAT file:

SET MQSERVER=OAKC1.TO.RS60001/TCP/9.24.104.26

198 MQ3T Examples for Windows Clients and AIX Servers

**/
* File: BLTCOMA.TST */
* Description: Sample MQSC source defining MQM queues */
* For use with BLT sample */
**/
* Default Oak Queues */
**/

DEFINE QMODEL(′3TClient′) REPLACE +
SHARE +
DESCR(′ Default 3T Client Model Queue′)

DEFINE QLOCAL(′3TEXQ′) REPLACE +
DESCR(′ Default Oak Exception Queue′)

DEFINE QLOCAL(′3TWAQ′) REPLACE +
DESCR(′ Default Oak WorkArea Queue′)

**/
* Queues for use with BLT sample */
**/

DEFINE QLOCAL(′ KAREN′) REPLACE +
DESCR(′ Queue for BL KAREN′)

DEFINE QLOCAL(′ LUIGI′) REPLACE +
DESCR(′ Queue for PL LUIGI′)

DEFINE QLOCAL(′ BASKET′) REPLACE +
DESCR(′ Queue for BL BASKET′)

DEFINE QLOCAL(′ BREADBOX′) REPLACE +
DESCR(′ Queue for BL BREADBOX′)

DEFINE QLOCAL(′ TOASTER′) REPLACE +
DESCR(′ Queue for BL TOASTER′)

DEFINE QLOCAL(′ MICRO′) REPLACE +
DESCR(′ Queue for BL MICRO′)

DEFINE QLOCAL(′ FRIDGE′) REPLACE +
DESCR(′ Queue for BL FRIDGE′)

DEFINE QLOCAL(′ GREMLIN′) REPLACE +
DESCR(′ Queue for PL GREMLIN′)

DEFINE QLOCAL(′ REPAIR′) REPLACE +
DESCR(′ Queue for PL REPAIR′)

DEFINE QLOCAL(′ SHOPPING′) REPLACE +
DESCR(′ Queue for PL SHOPPING′)

DEFINE QLOCAL(′ GROCER′) REPLACE +
DESCR(′ Queue for BL GROCER′)

**/
* END OF BLTCOMA */
**/

Figure 158. BLT: Queue Definitions ″bltcoma.tst″

The file bltcoma.tst contains all queues required for the BLT application. To add
the queues issue the command:

runmqsc < bltcoma.tst

Note: We work with local queues only, BLs and PLs use the same queue
manager in the AIX server.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 199

Before we can begin our system test we have to prepare some more files:

• One profile for all PLs

• A profile for each of the BLs

* *
* PLMS.PRF: Startup profile for the PL Manager *
* *

[CLIENT]

ClassNames = KONRAD LUIGI GREMLIN REPAIR SHOPPING
LogLevel = 300

Figure 159. BLT: Profile for Presentation Logic

Note: The class names are case sensitive!

* *
* KAREN.PRF: Startup profile for the BLM for KAREN *
* *

[SERVER]

ClassNames = KAREN
LogLevel = 300

Figure 160. BLT: Profi le for Business Logic

For each BL we need a file as the one shown above. The only difference is the
class name.

Note: When log level is set to 300 all error messages will be recorded in the file
BMQERROR.LOG.

In the server, you can start the BLMs in the foreground or in the background. If
you start them in the background, all messages will be displayed in one window.
The ″&″ at the end of the command starts the BLM in the background. You may
use the following commands:

strblm KAREN.prf &
strblm FRIDGE.prf &
strblm BASKET.prf &
strblm BREADBOX.prf &
strblm TOASTER.prf &
strblm MICRO.prf &
strblm GROCER.prf

In the client, go into windows and use the MQ3T icons to start the BLMs. You
have to execute two functions as shown in the following two figures:

 1. strplm
 2. startjob

200 MQ3T Examples for Windows Clients and AIX Servers

Four GUIs should appear on the screen. Remember, Luigi ′s window appears
when he receives the first pizza order. Arrange the windows and explore MQ3T!

 Diskette

All files are included on the second diskette.

Chapter 5. The Bacon Lettuce and Tomato Sandwich 201

202 MQ3T Examples for Windows Clients and AIX Servers

Chapter 6. Data Conversion

An MQ Three Tiers application works in a multiplatform client/server
environment. Hence, the programs that comprise your application should be
able to run:

• In its entirety in a stand-alone machine

• Distributed on different machines of different types

Executing parts of an application on a different platform raises the data
conversion issue. Between different platforms, you can find different code pages
and different number formats. On the RS/6000 and PC platforms (that are
currently the only platforms supported by MQ3T) the number formats are
different.

MQSeries uses the following fields in conjunction with data conversion:

• In the Message Descriptor is a parameter called Format that identifies the
format of the message. The format field can have one of the following three
values:

 1. MQFMT_NONE if you don ′ t mind the format of the message

 2. MQFMT_STRING as the standard MQ format for string messages

 3. The name of a user-defined format that must be no longer than 8
characters and must match the name of the user data exit routine (upper
case).

• In the MQGET API you can specify the MQGMO_CONVERT option if your
message needs a data conversion.

MQ3T exploits MQSeries data conversion method shielding the coding steps and
requires that in the definition of the messages the parameter ConversionDLL is
filled with the name of the library to use to convert the code pages and number
format of the data.

The library name must contain eight characters or fewer. You need to specify
this parameter when you send fixed-format messages (from a MQ3T point of
view) between two classes on different types of computers.

If you don′ t specify a conversion DLL for a fixed-format message, the Class
Compiler assumes the name to be the first 8 characters of StructName field in
the message description.

MESSAGE
BEGIN
MsgName BLREQUEST
MsgType REQUEST

 OperationCode OC_BLREQUEST
 Format FIXED
 StrucName HELLO
 StrucFile hello1st.h
 StrucLen 60

ConversionDLL MQFMT_STRING
END

Figure 161. Message Description with Conversion DLL

 Copyright IBM Corp. 1996 203

For a variable-format message, you don′ t need a conversion library. The
Self-Defining Data Manager (SDDM) does the conversion for you.

Data conversion is needed for the messages between the BL program on the AIX
machine and the PL program on the Windows machine.

In the File Transfer example, we use the standard MQSeries format,
MQFMT_STRING, since the message contains only three character strings,
namely the names of the source file, target file, and destination class. Each field
is 20 bytes long.

Data conversion is executed in the AIX machine since it is the server and that is
where the Queue Manager runs. The MQFMT_STRING format conversion is
standard in MQSeries. It is performed by the Queue Manager without any exit.

For messages between BL program and DL program (DLREQUEST) no
conversion is necessary, since each program runs on a RS/6000 machine.
Figure 162 shows the description of the message used to transfer a file from one
AIX machine to another. However, you would need data conversion if the DL
program were on a PC.

MESSAGE
BEGIN
MsgName DLREQUEST
MsgType REQUEST
OperationCode OC_DLREQUEST
Format FIXED
StrucName HELLOD
StrucFile hello1st.h
StrucLen 500

END

Figure 162. Message Description without Conversion DLL

If you have a MQ3T application that sends or receives messages that contain
other data types than strings, and you want to make it portable add the
ConversionDLL parameter to the message definition section.

How does the data conversion work?

• Outgoing messages:

When MQ3T sends a fixed-length message, the 3T run-time program (PLM or
BLM) puts the name of the conversion DLL in the message descriptor. No
conversion is done on the sender′s side.

• Incoming messages:

PLM and BLM use the MQGET call to get messages for the PLs and BLs they
support. This API performs the conversion if:

 1. The message came from another platform.

 2. The message descriptor contains a conversion DLL.

 3. The conversion DLL is available.

MQ3T always puts the DLL name in the message descriptor. You get an
error message if the DLL cannot be found.

Note: When the environment doesn′ t require any conversion no action is taken.

204 MQ3T Examples for Windows Clients and AIX Servers

6.1 Creating a Conversion DLL for AIX
In the BLT example, almost all messages are fixed-format messages with a
user-defined structure that contains strings and integers. Therefore, a data
conversion exit has to be written by the user.

This is the user-defined structure MSG100:

 typedef struct _MSG100
{

MQCHAR messages [20]
MQLONG number;
MQLONG value;
MQCHAR filler [72]

 } MSG100;

Figure 163. Message Structure that Needs Data Conversion

The steps to create a data conversion exit routine on an AIX machine (we use a
RS/6000 as the server) are as follows:

Step 1. Copy the ″C″ file structure in a separate file.

Step 2. Use the Create Data Conversion Exit Util ity, crtmqcvx, to generate a
subroutine that uses standard libraries to convert the C structure. The
command to invoke the utility is:

crtmqcvx <struct file> <output file>

If the structure is in the file MSG100.str and you type the command
below then you create the file MSG100.out that is shown in Figure 164.

crtmqcvx MSG100.str MSG100.out

MQLONG Convert_MSG100(
PMQBYTE *in_cursor,
PMQBYTE *out_cursor,
PMQBYTE in_lastbyte,
PMQBYTE out_lastbyte,
MQHCONN hConn,
MQLONG opts,
MQLONG MsgEncoding,
MQLONG ReqEncoding,
MQLONG MsgCCSID,
MQLONG ReqCCSID,
MQLONG CompCode,
MQLONG Reason)

{
MQLONG ReturnCode = MQRC_NONE;

 ConvertChar(20); /* message */
 AlignLong();

ConvertLong(1); /* number */
AlignLong();
ConvertLong(1); /* value */

 ConvertChar(72); /* filler */

 Fail:
return(ReturnCode);

 }

Figure 164. Data Exit Source File

Chapter 6. Data Conversion 205

Step 3. Copy the MQSeries sample program amqsvfcx.c in a file named
MSG100.c. The name of the file must be in uppercase! Use the
following command:

cp /usr/lpp/mqm/samp/amqsvfcx.c MSG100.c

Step 4. Edit the MSG100.c file and follow the instructions in the file. Comments
guide you in where to insert the subroutine in Figure 164 on page 205
and where to make changes.

The following notes refer to the conversion routine in Figure 165 on
page 207 and Figure 166 on page 208.

�1� Insert here the functions prototypes for the functions produced by
the data conversion utility program.

�2� Change the entry point name to EntryPointMSG100.

�3� Change the entry point name to EntryPointMSG100.

�4� Change the call to the subroutine.

�5� Change function name.

�6� Insert the functions produced by the data conversion exit utility
program.

Step 5. Make a copy of the sample makefile helloxx.mak and call it
MSG100.mak. Use the following command:

cp /usr/lpp/mq3t/samples/c/helloxx.mak MSG100.mak

Step 6. Edit the new ″C″ makefile and change:

• The name of the source file to MSG100.c

• The name of the object file to MSG100.o

• The name of the export file to MSG100.exp

• The entry point function name to EntryPointMSG100

The changes are marked in the Figure 167 on page 209.

Step 7. Copy the sample file hellox.exp in a file called MSG100.exp using the
command:

copy /usr/lpp/mq3t/samples/c/hellox.exp MSG100.exp

This file is required to compile the data exit.

Step 8. In the .exp file, replace the EntryPointFunctionName with the name of
the subroutine. MSG100.exp contains only this line:

EntryPointMSG100

Step 9. Run the compilation using the command

make -f MSG100.mak

Step 10. Copy the generated files MSG100 and MSG100_r into the /usr/ l ib
directory using the commands:

cp MSG100 /usr/lib
cp MSG100_r /usr/lib

206 MQ3T Examples for Windows Clients and AIX Servers

 #include <cmqc.h> /* For MQI datatypes */
 #include <cmqxc.h> /* For MQI exit-related definitions */
 #include <amqsvmha.h> /* For sample macro definitions */
 /**/
 /* Insert the functions prototypes for the functions produced by */
 /* the data conversion utility program. */
 /**/
MQLONG Convert_MSG100(�1�

PMQBYTE *in_cursor,
PMQBYTE *out_cursor,
PMQBYTE in_lastbyte, �part�1�of�MSG100.out�
PMQBYTE out_lastbyte, �on�page�205�
MQHCONN hConn,
MQLONG opts,
MQLONG MsgEncoding,
MQLONG ReqEncoding,
MQLONG MsgCCSID,
MQLONG ReqCCSID,
MQLONG CompCode,
MQLONG Reason);

 MQDATACONVEXIT EntryPointMSG100; �2�
 /**/
 /* The name of the function is not actually used to call the */
 /* conversion exit BUT it must be marked as the entry point using */
 /* the -e option during linking. */
 /**/
 void MQENTRY EntryPointMSG100(�3�
 PMQDXP pDataConvExitParms, /* Data-conversion exit parameter */

/* block */
PMQMD pMsgDesc, /* Message descriptor */

 MQLONG InBufferLength, /* Length in bytes of InBuffer */
PMQVOID pInBuffer, /* Buffer containing the unconverted */

/* message */
 MQLONG OutBufferLength, /* Length in bytes of OutBuffer */

PMQVOID pOutBuffer) /* Buffer containing the converted */
/* message */

 {
 MQLONG ReturnCode = MQRC_NONE;
 MQHCONN hConn = pDataConvExitParms->Hconn;
 MQLONG opts = pDataConvExitParms->AppOptions;
 PMQBYTE in_cursor = pInBuffer;
 PMQBYTE out_cursor = pOutBuffer;

PMQBYTE in_lastbyte = (PMQBYTE)pInBuffer + InBufferLength - 1;
PMQBYTE out_lastbyte = (PMQBYTE)pOutBuffer + OutBufferLength - 1;

 MQLONG MsgEncoding = pMsgDesc->Encoding;
 MQLONG ReqEncoding = pDataConvExitParms->Encoding;
 MQLONG MsgCCSID = pMsgDesc->CodedCharSetId;
 MQLONG ReqCCSID = pDataConvExitParms->CodedCharSetId;
 MQLONG CompCode = pDataConvExitParms->CompCode;
 MQLONG Reason = pDataConvExitParms->Reason;
 /**/

/* Insert calls to the code fragments to convert the format′ s */
/* structure(s) here. */
/**/

ReturnCode = Convert_MSG100(�4�
&in_cursor,
&out_cursor,
in_lastbyte,
out_lastbyte,
hConn,
opts,
MsgEncoding,
ReqEncoding,
MsgCCSID,
ReqCCSID,
CompCode,
Reason);

/**/
/* Check whether the conversion succeeded or failed and return */
/* the values required by the caller. */
/**/

Figure 165. C Source Program for Conversion Conversion Exit (Part 1)

Chapter 6. Data Conversion 207

if (ReturnCode == MQRC_NONE)
{
pDataConvExitParms->ExitResponse = MQXDR_OK;

 pDataConvExitParms->CompCode = MQCC_OK;
 pDataConvExitParms->Reason = ReturnCode;
 /**/

/* If the message had not been truncated then return its new */
/* length. */
/* Warning - this assumes that out_cursor has been set up to */
/* point to the end of the message. Routines produced by the */
/* data conversion exit utility will do this BUT if you are */
/* writing your own routines ensure it is updated or the */
/* message could end up with a zero length and appear not to */
/* get converted! */
/**/
if (Reason != MQRC_TRUNCATED_MSG_ACCEPTED) {
pDataConvExitParms->DataLength = out_cursor

- (PMQBYTE)pOutBuffer;
} /* end if */

}
/**/
/* If conversion failed for lack of data or lack of output buffer */
/* but the message had been truncated then indicate success but */
/* do not adjust the values of Reason, CompCode or DataLength. */
/**/
else if ((Reason == MQRC_TRUNCATED_MSG_ACCEPTED) &&

((ReturnCode == MQRC_TRUNCATED_MSG_ACCEPTED) ||
(ReturnCode == MQRC_CONVERTED_MSG_TOO_BIG)))

{
pDataConvExitParms->ExitResponse = MQXDR_OK;

}
/**/
/* Otherwise indicate that conversion of the message data failed. */
/**/
else {
pDataConvExitParms->ExitResponse = MQXDR_CONVERSION_FAILED;

 pDataConvExitParms->CompCode = MQCC_WARNING;
 pDataConvExitParms->Reason = ReturnCode;

} /* end if */
return;

 }
 /**/
 /* Insert the functions produced by the data conversion exit */
 /* utility program. */
 /**/

MQLONG Convert_MSG100(�5�
PMQBYTE *in_cursor,
PMQBYTE *out_cursor,
PMQBYTE in_lastbyte,
PMQBYTE out_lastbyte,
MQHCONN hConn,
MQLONG opts,
MQLONG MsgEncoding,
MQLONG ReqEncoding,
MQLONG MsgCCSID,
MQLONG ReqCCSID,
MQLONG CompCode,
MQLONG Reason)

{
MQLONG ReturnCode = MQRC_NONE; �6�

 ConvertChar(20); /* message */
 AlignLong();
 AlignLong(); �part�2�of�MSG100.out�
 ConvertLong(1); /* number */ �on�page�205�
 AlignLong();
 ConvertLong(1); /* value */
 ConvertChar(72); /* filler */
Fail:
 return(ReturnCode);
}

Figure 166. C Source Program for Conversion Conversion Exit (Part 2)

208 MQ3T Examples for Windows Clients and AIX Servers

#***
PROJECT = MSG100
BUILDPATH = .
LIBPATH = $(BUILDPATH)
COMMONPATH = $(BUILDPATH)
OSSPATH = $(BUILDPATH)
PROJECTPATH = $(BUILDPATH)

#***

INCLUDEPATH = -I/usr/lpp/mqm/inc

LFLAGSST = -L$(LIBPATH) -lXm -lXt -lX11 -bM:SRE \
-e EntryPointMSG100 -lmqm \
-bE:$(PROJECTPATH)/MSG100.exp \
-bmap:$(PROJECT).map

LFLAGSMT = -L$(LIBPATH) -lXm -lXt -lX11 -bM:SRE \
-e EntryPointMSG100 -lmqm_r \
-bE:$(PROJECTPATH)/MSG100.exp \
-bmap:$(PROJECT).map

CC = xlc_r

DEFINES = -D_XOPEN_SOURCE -DXTFUNCPROTO -DAIX -D_AIX -DPOSIX_SOURCE -DUNIX \
-DNOTCXX -DLAKES_AIX -DLAKES -DCOMMON \
-DOAK_SKEL -DOAK_XCHECK -DOAK_AIX

CFLAGS = -c -Dsigned= -Dvolatile= -D_Optlink

#***

HEADERS =

SOURCES = MSG100.c

OBJECTS = MSG100.o

#***

all: $(PROJECT) $(PROJECT)_r

$(PROJECT): $(OBJECTS)
 rm -rf $(PROJECT)
 $(CC) $(LFLAGSST) $(OBJECTS)
 mv a.out $(PROJECT)
 chmod g+w $(PROJECT)

$(PROJECT)_r: $(OBJECTS)
 rm -rf $(PROJECT)_r
 $(CC) $(LFLAGSMT) $(OBJECTS)
 mv a.out $(PROJECT)_r
 chmod g+w $(PROJECT)_r
.c.o:
 $(CC) $(CFLAGS) $(DEFINES) $(INCLUDEPATH) $<

Figure 167. Make File MSG100.mak for AIX

The files MSG100 and MSG100_r are the data conversion exit. There are two
programs:

• MSG100 is loaded in a basic environment.

• MSG100_r is loaded in a DCE threaded environment.

Chapter 6. Data Conversion 209

If the data conversion exits are in a mixed DCE and non-DCE environment the
queue manager will detect the calling environment and load the appropriate
object.

It is important to copy the two files into the /usr/lib directory in order to make
them visible and executable by every application that needs this kind of
conversion, even if it is a client application.

In the BLT environment described in this book the data exit has to be on the AIX
machine, because the client exploits the MQ services of the server. However, if
the application is split between different machines a data exit is necessary on
every machine that receives messages with the MSG100 format.

6.2 Creating a Conversion DLL for OS/2
The steps to build a data conversion exit on a OS2 machine are similar to those
required for the AIX machine. There are, however, differences in the directory
names.

Step 1. Copy the ″C″ file structure into a separate file.

Step 2. Use the Create Data Conversion Exit Util ity, crtmqcvx, to generate a
subroutine that uses standard libraries to convert the C structure.

If the structure is in the file MSG100.str and you type the command
below than you create the file MSG100.out that is shown in Figure 164
on page 205.

crtmqcvx MSG100.str MSG100.out

The output file is the same as for AIX, shown in Figure 164 on
page 205.

Step 3. Copy the sample file amqsvfc2.c from the MQSeries C samples into a
file named MSG100.c. Use the following command:

copy d:\mqm\tools\c\samples\amqsvfc2.c MSG100.c

Step 4. Edit MSG100.c and follow the guidelines in the file. These comments
show how to insert the subroutine that has been generated before.

Step 5. Copy the sample makefile hellox2.mak into a file called MSG100.mak.
Use the following command:

copy d:\3tier2\samples\hellox2.mak MSG100.mak

Step 6. Edit the new makefile and change the file names as shown in
Figure 168 on page 211.

Step 7. Copy the file hellox.def from the MQ3T samples into a new file and call
it MSG100.def. Use the following command:

copy d:\3tier2\samples\hellox.def MSG100.def

This file is required to compile the data exit.

Step 8. Change in the .def file the EntryPointFunctionName as shown in
Figure 169 on page 211.

Step 9. Compile the user exit using this command:

nmake MSG100.mak

Step 10. Copy the generated file MSG100.dll into mqm ′s dll directory:

copy MSG100.dll d:\mqm\dll

210 MQ3T Examples for Windows Clients and AIX Servers

.SUFFIXES:

.SUFFIXES: .obj .c

CC = icc /c /Ge- /Ms /Q /Ti+
LINK = LINK386 /DEBUG /NOE /NOD /NOI /ALIGN:16 /EXEPACK /M
/BASE:0x10000

.c.obj:
$(CC) -Fo$*.obj $*.c

all: MSG100.dll

MSG100.lnk: MSG100.mak
echo MSG100.obj > $*.lnk
echo $*.dll >> $*.lnk
echo $*.map >> $*.lnk
echo mqmvx.lib+ >> $*.lnk
echo dde4mbs.lib+ >> $*.lnk
echo os2386.lib >> $*.lnk
echo MSG100.def >> $*.lnk
MSG100.obj: MSG100.C\

$(HEADERS)

MSG100.dll: $*.lnk MSG100.obj
$(LINK) @$*.lnk

Figure 168. Make File MSG100.mak for OS/2

LIBRARY MSG100 INITINSTANCE TERMINSTANCE

PROTMODE

DESCRIPTION ′ Sample Data Conversion Exit for MSG100 Structure′

CODE SHARED
DATA NONSHARED MULTIPLE

HEAPSIZE 4096
STACKSIZE 8192

EXPORTS
EntryPointMSG100 @1

Figure 169. MSG100.def File for OS/2

Note: For more information about data conversion exits refer to pages 270
through 280 of the Distributed Queue Management Guide for MQSeries and to the
MQ Three Tier Application Design manual for the ConversionDLL parameter.

Chapter 6. Data Conversion 211

212 MQ3T Examples for Windows Clients and AIX Servers

messages.ch

Appendix A. Class Source Files for BLT Example

This appendix contains the class source files and definitions for the BLT
example.

A.1 Messages for The BLT Example
File name: messages.ch

/**/
/* */
/* Messages.CH: Include for Class Source Files - Messages */
/* */
/**/
MESSAGE // StartJob message
BEGIN
MsgName StartJob
MsgType INFORM

 OperationCode OC_STARTJOB
 Format FIXED
 StrucLen 100
 StrucName STARTJOB
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // Show windows
BEGIN
MsgName Show
MsgType INFORM

 OperationCode OC_SHOW
 Format FIXED
 StrucLen 0
END

MESSAGE // KONRAD to KAREN: ask for BLT
BEGIN
MsgName FeedMe
MsgType REQUEST

 OperationCode OC_SANDWICH
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // KAREN to KONRAD: here is the BLT
BEGIN
MsgName Sandwich
MsgType REPLY

 OperationCode OC_SANDWICH
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // KAREN to KONRAD: cannot make BLT
BEGIN
MsgName Starve
MsgType REPLY

 OperationCode OC_STARVE
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

 Copyright IBM Corp. 1996 213

messages.ch

MESSAGE // KONRAD to LUIGI: order pizza
BEGIN
MsgName DeliverPizza
MsgType REQUEST

 OperationCode OC_PIZZA
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
END

MESSAGE // LUIGI to KONRAD: here is the pizza
BEGIN
MsgName EatPizza
MsgType REPLY

 OperationCode OC_PIZZA
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
END

MESSAGE // KAREN to vegetable basket
BEGIN
MsgName GetTomato
MsgType REQUEST

 OperationCode OC_TOMATO
 Role 1
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // Vegetable basket to KAREN
BEGIN
MsgName HaveTomato
MsgType REPLY

 OperationCode OC_TOMATO
 Role 1
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // KAREN to bread box: get bread
BEGIN
MsgName GetBread
MsgType REQUEST

 OperationCode OC_BREAD
 Role 2
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // bread box to KAREN: have bread
BEGIN
MsgName HaveBread
MsgType REPLY

 OperationCode OC_BREAD
 Role 2
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

214 MQ3T Examples for Windows Clients and AIX Servers

messages.ch

MESSAGE // KAREN to FRIDGE: get mayo, bacon, lettuce
BEGIN
MsgName GetFromFridge
MsgType REQUEST

 OperationCode OC_FRIDGE
 Role 3
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // FRIDGE to KAREN: here is it
BEGIN
MsgName HaveFromFridge
MsgType REPLY

 OperationCode OC_FRIDGE
 Role 3
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // KAREN to TOASTER: make toast
BEGIN
MsgName MakeToast
MsgType REQUEST

 OperationCode OC_TOAST
 Role 5
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // TOASTER to KAREN: here is toast
BEGIN
MsgName HaveToast
MsgType REPLY

 OperationCode OC_TOAST
 Role 5
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // KAREN to microwave: cook bacon
BEGIN
MsgName CookBacon
MsgType REQUEST

 OperationCode OC_COOK
 Role 6
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // Microwave to KAREN: cooked
BEGIN
MsgName HaveBacon
MsgType REPLY

 OperationCode OC_COOK
 Role 6
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

Appendix A. Class Source Files for BLT Example 215

messages.ch

MESSAGE // Message to/from gremlin
BEGIN
MsgName GhostMessage
MsgType INFORM

 OperationCode OC_GREMLIN
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // Message to/from repair list
BEGIN
MsgName RepairMessage
MsgType INFORM

 OperationCode OC_REPAIR
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // Message from repair list
BEGIN
MsgName InquiryRequest
MsgType REQUEST

 OperationCode OC_INQUIRY
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // Message to repair list
BEGIN
MsgName InquiryReply
MsgType REPLY

 OperationCode OC_INQUIRY
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // to shopping list: Order more
BEGIN
MsgName OrderMessage
MsgType INFORM

 OperationCode OC_ORDER
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

MESSAGE // Inquiry to/from shopping list
BEGIN
MsgName FoodInquiry
MsgType INFORM

 OperationCode OC_FOODINQ
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

216 MQ3T Examples for Windows Clients and AIX Servers

messages.ch

MESSAGE // Shopping list to grocer
BEGIN
MsgName FoodOrder
MsgType INFORM

 OperationCode OC_FOOD
 Format VARIABLE
END

MESSAGE // Grocer to others
BEGIN
MsgName FoodDelivery
MsgType INFORM

 OperationCode OC_FOOD
 Format FIXED
 StrucName MSG100
 StrucFile bltstruc.h
 ConversionDLL MSG100
END

Appendix A. Class Source Files for BLT Example 217

classes.ch

A.2 Class Descriptions for The BLT Example
File name: classes.ch

/**/
/* */
/* External class descriptions for the BLT example */
/* */
/**/
CLASSDESC // PL: Konrad
BEGIN
ClassName KONRAD
ClassType PL
MsgIn StartJob, Sandwich, Starve, EatPizza
MsgOut FeedMe, DeliverPizza, Show

END
CLASSDESC // PL: Luigi′ s pizza place
BEGIN
ClassName LUIGI
ClassType PL
MsgIn DeliverPizza,

GhostMessage, RepairMessage, InquiryRequest
MsgOut EatPizza, InquiryReply

END
CLASSDESC // BL: Karen
BEGIN
ClassName KAREN
Harden YES
ClassType BL
MsgIn FeedMe, HaveFromFridge,

HaveTomato, HaveBread, HaveToast, HaveBacon,
GhostMessage, RepairMessage, InquiryRequest,
MQ_SYSTEM_OWNER_ENDED

MsgOut Sandwich, Starve, GetFromFridge,
GetTomato, GetBread, MakeToast, CookBacon,
InquiryReply

END
CLASSDESC // BL: vegetable basket
BEGIN
ClassName BASKET
Harden YES
ClassType BL
MsgIn GetTomato, FoodInquiry,

GhostMessage, RepairMessage, InquiryRequest, FoodDelivery,
MQ_SYSTEM_OWNER_ENDED

MsgOut HaveTomato, InquiryReply, OrderMessage, FoodInquiry
END

CLASSDESC // BL: bread box
BEGIN
ClassName BREADBOX
Harden YES
ClassType BL
MsgIn GetBread, FoodInquiry,

GhostMessage, RepairMessage, InquiryRequest, FoodDelivery,
MQ_SYSTEM_OWNER_ENDED

MsgOut HaveBread, InquiryReply, OrderMessage, FoodInquiry
END

218 MQ3T Examples for Windows Clients and AIX Servers

classes.ch

CLASSDESC // BL: refrigerator
BEGIN
ClassName FRIDGE
ClassType BL
Harden Yes
MsgIn GetFromFridge, FoodInquiry,

GhostMessage, RepairMessage, InquiryRequest, FoodDelivery,
MQ_SYSTEM_OWNER_ENDED

MsgOut HaveFromFridge, InquiryReply, OrderMessage, FoodInquiry
END

CLASSDESC // BL: toaster
BEGIN
ClassName TOASTER
Harden YES
ClassType BL
MsgIn MakeToast,

GhostMessage, RepairMessage, InquiryRequest,
MQ_SYSTEM_OWNER_ENDED

MsgOut HaveToast, InquiryReply
END

CLASSDESC // BL: microwave
BEGIN
ClassName MICRO
Harden YES
ClassType BL
MsgIn CookBacon,

GhostMessage, RepairMessage, InquiryRequest,
MQ_SYSTEM_OWNER_ENDED

MsgOut HaveBacon, InquiryReply
END

CLASSDESC // PL: gremlin
BEGIN
ClassName GREMLIN
ClassType PL
MsgIn Show
MsgOut GhostMessage

END
CLASSDESC // PL: repair list
BEGIN
ClassName REPAIR
ClassType PL
MsgIn Show, InquiryReply
MsgOut RepairMessage, InquiryRequest

END
CLASSDESC // PL: shopping list
BEGIN
ClassName SHOPPING
ClassType PL
MsgIn Show, OrderMessage, FoodInquiry, GhostMessage
MsgOut FoodInquiry, FoodOrder

END
CLASSDESC // DL: grocery
BEGIN
ClassName GROCER
ClassType BL
Harden Yes
MsgIn FoodOrder,

GhostMessage, RepairMessage, InquiryRequest,
MQ_SYSTEM_OWNER_ENDED

MsgOut FoodDelivery, InquiryReply
END

Appendix A. Class Source Files for BLT Example 219

basket.cs

A.3 Class Source File for BASKET
File name: basket.cs

/**/
/* */
/* Class Source file for BL: Vegetable Basket */
/* */
/**/
#include <bmqc.h>
#include ″bltdef.h″

HEADING
BEGIN
Title ″Class File for vegetable basket″

END

CSINCLUDE ″bmqsysms.ch″ // 3T system message descriptions
CSINCLUDE ″messages.ch″ // message descriptions
CSINCLUDE ″classes.ch″ // class descriptions

METHOD
BEGIN
MethodName Deliver
MethodType C_LIBRARY

 ProgName basket.Deliver
 SourceName basket1
 MsgOut HaveTomato, OrderMessage
END

METHOD
BEGIN

 MethodName Delivery
 MethodType C_LIBRARY
 ProgName basket.Delivery
 SourceName delivery
END

METHOD
BEGIN

 MethodName Ignore
 MethodType C_LIBRARY
 ProgName basket.Ignore
 SourceName xIgnore
END

METHOD
BEGIN // Gremlin message
MethodName Gremlin
MethodType C_LIBRARY

 ProgName basket.Gremlin
 SourceName xGremlin
END

METHOD
BEGIN // repair message
MethodName Repair
MethodType C_LIBRARY

 ProgName basket.Repair
 SourceName xRepair
END

METHOD
BEGIN // inquiry message
MethodName Inquiry
MethodType C_LIBRARY

 ProgName basket.Inquiry
 SourceName xInquiry
 MsgOut InquiryReply
END

220 MQ3T Examples for Windows Clients and AIX Servers

basket.cs

METHOD
BEGIN // inquiry message
MethodName FoodInquiry
MethodType C_LIBRARY

 ProgName basket.FoodInquiry
 SourceName foodinq
 MsgOut FoodInquiry
END

METHOD
BEGIN // owner ended message
MethodName ClearUp
MethodType C_LIBRARY

 ProgName basket.ClearUp
 SourceName xClear
END

CLASS // BL: Vegatable basket
BEGIN
ClassType BL
ClassName BASKET

 Destination KAREN, REPAIR, SHOPPING
 Harden Yes
 PingTimeout 10
 RULE

BEGIN // give a tomato
RuleId RI_DELIVER1
RuleName DeliverRule1
MethodName Deliver
State MATCHSTATE MQSTATE_NEW
MsgIn GetTomato

END
RULE
BEGIN // give a tomato
RuleId RI_DELIVER2
RuleName DeliverRule2
MethodName Deliver
State MATCHSTATE MQSTATE_CLEAR
MsgIn GetTomato

END
RULE
BEGIN // Gremlin message arrives
RuleId RI_GREMLIN
RuleName GremlinRule
MethodName Gremlin
MsgIn GhostMessage

END
RULE // INFORM message
BEGIN
RuleId RI_REPAIR1
RuleName RepairRule1
MethodName Repair
State MATCHSTATE MQSTATE_DISABLED
MsgIn RepairMessage

END
RULE // INFORM message
BEGIN
RuleId RI_REPAIR2
RuleName RepairRule2
MethodName Repair
State MATCHSTATE MQSTATE_DISABLED_WHILE_BUSY
MsgIn RepairMessage

END

Appendix A. Class Source Files for BLT Example 221

basket.cs

RULE // ignore message when any other state
BEGIN
RuleId RI_REPAIR3
RuleName RepairRule3
MethodName Ignore
MsgIn RepairMessage

END
RULE
BEGIN
RuleId RI_REPAIR_INQ
RuleName InquiryRule
MethodName Inquiry
MsgIn InquiryRequest

END
RULE
BEGIN
RuleId RI_FOOD_INQ
RuleName FoodInqRule
MethodName FoodInquiry
MsgIn FoodInquiry

END
RULE
BEGIN // more tomatos arrived
RuleId RI_FOOD
RuleName FoodRule
MethodName Delivery
MsgIn FoodDelivery

END
RULE
BEGIN
RuleId RI_SYS_OE
RuleName OwnerEndedRule
MethodName ClearUp
MsgIn MQ_SYSTEM_OWNER_ENDED

END
END

222 MQ3T Examples for Windows Clients and AIX Servers

breadbox.cs

A.4 Class Source File for BREADBOX
File name: breadbox.ch

/**/
/* */
/* Class Source file for BL: bread box */
/* */
/**/
#include <bmqc.h>
#include ″bltdef.h″

HEADING
BEGIN
Title ″Class File for the bread box″

END

CSINCLUDE ″bmqsysms.ch″ // 3T system message descriptions
CSINCLUDE ″Messages.ch″ // message descriptions
CSINCLUDE ″Classes.ch″ // class descriptions

METHOD
BEGIN
MethodName Deliver
MethodType C_LIBRARY

 ProgName breadbox.Deliver
 SourceName bbox1
 MsgOut HaveBread, OrderMessage
END

METHOD
BEGIN

 MethodName Delivery
 MethodType C_LIBRARY
 ProgName breadbox.Delivery
 SourceName delivery
END

METHOD
BEGIN

 MethodName Ignore
 MethodType C_LIBRARY
 ProgName breadbox.Ignore
 SourceName xIgnore
END

METHOD
BEGIN // Gremlin message
MethodName Gremlin
MethodType C_LIBRARY

 ProgName breadbox.Gremlin
 SourceName xGremlin
END

METHOD
BEGIN // repair message
MethodName Repair
MethodType C_LIBRARY

 ProgName breadbox.Repair
 SourceName xRepair
END

METHOD
BEGIN // inquiry message
MethodName Inquiry
MethodType C_LIBRARY

 ProgName breadbox.Inquiry
 SourceName xInquiry
 MsgOut InquiryReply
END

Appendix A. Class Source Files for BLT Example 223

breadbox.cs

METHOD
BEGIN // inquiry message
MethodName FoodInquiry
MethodType C_LIBRARY

 ProgName breadbox.FoodInquiry
 SourceName foodinq
 MsgOut FoodInquiry
END

METHOD
BEGIN // owner ended message
MethodName ClearUp
MethodType C_LIBRARY

 ProgName breadbox.ClearUp
 SourceName xClear
END

CLASS // BL: bread box
BEGIN
ClassType BL
ClassName BREADBOX

 Destination KAREN, REPAIR, SHOPPING
 Harden Yes
 PingTimeout 10
 RULE

BEGIN // request for bread
RuleId RI_BREAD1
RuleName BreadRule1
MethodName Deliver
State MATCHSTATE MQSTATE_NEW
MsgIn GetBread

END
RULE
BEGIN // request for bread
RuleId RI_BREAD2
RuleName BreadRule2
MethodName Deliver
State MATCHSTATE MQSTATE_CLEAR
MsgIn GetBread

END
RULE
BEGIN // Gremlin message arrives
RuleId RI_GREMLIN
RuleName GremlinRule
MethodName Gremlin
MsgIn GhostMessage

END
RULE
BEGIN
RuleId RI_REPAIR1
RuleName RepairRule1
MethodName Repair
State MATCHSTATE MQSTATE_DISABLED
MsgIn RepairMessage

END
RULE
BEGIN
RuleId RI_REPAIR2
RuleName RepairRule2
MethodName Repair
State MATCHSTATE MQSTATE_DISABLED_WHILE_BUSY
MsgIn RepairMessage

END

224 MQ3T Examples for Windows Clients and AIX Servers

breadbox.cs

RULE
BEGIN
RuleId RI_REPAIR3
RuleName RepairRule3
MethodName Ignore
MsgIn RepairMessage

END
RULE
BEGIN
RuleId RI_REPAIR_INQ
RuleName InquiryRule
MethodName Inquiry
MsgIn InquiryRequest

END
RULE
BEGIN
RuleId RI_FOOD_INQ
RuleName FoodInqRule
MethodName FoodInquiry
MsgIn FoodInquiry

END
RULE
BEGIN // bread delivery
RuleId RI_FOOD
RuleName FoodRule
MethodName Delivery
MsgIn FoodDelivery

END
RULE
BEGIN
RuleId RI_SYS_OE
RuleName OwnerEndedRule
MethodName ClearUp
MsgIn MQ_SYSTEM_OWNER_ENDED

END
END

Appendix A. Class Source Files for BLT Example 225

fridge.cs

A.5 Class Source File for FRIDGE
File name: fridge.ch

/**/
/* */
/* Class Source file for BL: Refrigerator */
/* */
/**/
#include <bmqc.h>
#include ″bltdef.h″

HEADING
BEGIN
Title ″Class File for refrigerator″

END

CSINCLUDE ″bmqsysms.ch″ // 3T system message descriptions
CSINCLUDE ″Messages.ch″ // message descriptions
CSINCLUDE ″Classes.ch″ // class descriptions

METHOD
BEGIN
MethodName Deliver
MethodType C_LIBRARY

 ProgName fridge.Deliver
 SourceName fridge1
 MsgOut HaveFromFridge, OrderMessage
END

METHOD
BEGIN

 MethodName Delivery
 MethodType C_LIBRARY
 ProgName fridge.Delivery
 SourceName delivery
END

METHOD
BEGIN

 MethodName Ignore
 MethodType C_LIBRARY
 ProgName fridge.Ignore
 SourceName xignore
END

METHOD
BEGIN // Gremlin message
MethodName Gremlin
MethodType C_LIBRARY

 ProgName fridge.Gremlin
 SourceName xGremlin
END

METHOD
BEGIN // repair message
MethodName Repair
MethodType C_LIBRARY

 ProgName fridge.Repair
 SourceName xrepair
END

METHOD
BEGIN // inquiry message
MethodName Inquiry
MethodType C_LIBRARY

 ProgName fridge.Inquiry
 SourceName xinquiry
 MsgOut InquiryReply
END

226 MQ3T Examples for Windows Clients and AIX Servers

fridge.cs

METHOD
BEGIN // inquiry message
MethodName FoodInquiry
MethodType C_LIBRARY

 ProgName fridge.FoodInquiry
 SourceName foodinq
 MsgOut FoodInquiry
END

METHOD
BEGIN // owner ended message
MethodName ClearUp
MethodType C_LIBRARY

 ProgName fridge.ClearUp
 SourceName xClear
END

CLASS // BL: Microwave
BEGIN
ClassType BL
ClassName FRIDGE

 Destination KAREN, REPAIR, SHOPPING
 Harden Yes
 PingTimeout 10
 RULE

BEGIN // deliver 3 items
RuleId RI_FRIDGE1
RuleName FridgeRule1
MethodName Deliver
State MATCHSTATE MQSTATE_NEW
MsgIn GetFromFridge

END
RULE
BEGIN // deliver 3 things
RuleId RI_FRIDGE2
RuleName FridgeRule2
MethodName Deliver
State MATCHSTATE MQSTATE_CLEAR
MsgIn GetFromFridge

END
RULE
BEGIN // Gremlin message arrives
RuleId RI_GREMLIN
RuleName GremlinRule
MethodName Gremlin
MsgIn GhostMessage

END
RULE
BEGIN
RuleId RI_REPAIR1
RuleName RepairRule1
MethodName Repair
State MATCHSTATE MQSTATE_DISABLED
MsgIn RepairMessage

END
RULE
BEGIN
RuleId RI_REPAIR2
RuleName RepairRule2
MethodName Repair
State MATCHSTATE MQSTATE_DISABLED_WHILE_BUSY
MsgIn RepairMessage

END

Appendix A. Class Source Files for BLT Example 227

fridge.cs

RULE
BEGIN
RuleId RI_REPAIR3
RuleName RepairRule3
MethodName Ignore
MsgIn RepairMessage

END
RULE
BEGIN
RuleId RI_REPAIR_INQ
RuleName InquiryRule
MethodName Inquiry
MsgIn InquiryRequest

END
RULE
BEGIN
RuleId RI_FOOD_INQ
RuleName FoodInqRule
MethodName FoodInquiry
MsgIn FoodInquiry

END
RULE
BEGIN // more food is delivered
RuleId RI_FOOD
RuleName FoodRule
MethodName Delivery
MsgIn FoodDelivery

END
RULE
BEGIN
RuleId RI_SYS_OE
RuleName OwnerEndedRule
MethodName ClearUp
MsgIn MQ_SYSTEM_OWNER_ENDED

END
END

228 MQ3T Examples for Windows Clients and AIX Servers

gremlin.cs

A.6 Class Source File for GREMLIN
File name: gremlin.ch

/***/
/* */
/* Class Source file for PL: GREMLIN */
/* */
/***/
#include <bmqc.h>
#include ″bltdef.h″

HEADING
BEGIN
Title ″Class File for Gremlin″

END

CSINCLUDE ″bmqsysms.ch″ // 3T system message descriptions
CSINCLUDE ″Messages.ch″ // message descriptions
CSINCLUDE ″Classes.ch″ // class descriptions

METHOD
BEGIN
MethodName TheMethod
MethodType PROGRAM

 ProgName gremlin.exe
 StartupTime 10
 Interface PULL
 MsgOut GhostMessage
END

CLASS // PL: GREMLIN
BEGIN
ClassType PL
ClassName ″GREMLIN″

 Destination ″BASKET″ , ″BREADBOX″ , ″FRIDGE″ , ″TOASTER″ , ″MICRO″ ,
″LUIGI″ , ″KAREN″ , ″GROCER″ , ″SHOPPING″

RULE
BEGIN // start Gremlin
RuleId RI_SHOW
RuleName ShowRule
MethodName TheMethod
MsgIn Show

END
END

Appendix A. Class Source Files for BLT Example 229

grocer.cs

A.7 Class Source File for GROCER
File name: grocer.ch

/**/
/* */
/* Class Source file for BL: Grocer */
/* */
/**/
#include <bmqc.h>
#include ″bltdef.h″

HEADING
BEGIN
Title ″Class File for grocer″

END

CSINCLUDE ″bmqsysms.ch″ // 3T system message descriptions
CSINCLUDE ″Messages.ch″ // message descriptions
CSINCLUDE ″Classes.ch″ // class descriptions

METHOD
BEGIN
MethodName SellFood
MethodType C_LIBRARY

 ProgName grocer.SellFood
 SourceName grocer1
 MsgOut FoodDelivery
END

METHOD
BEGIN // Gremlin message
MethodName Gremlin
MethodType C_LIBRARY

 ProgName grocer.Gremlin
 SourceName xGremlin
END

METHOD
BEGIN // repair message
MethodName Repair
MethodType C_LIBRARY

 ProgName grocer.Repair
 SourceName xRepair
END

METHOD
BEGIN // inquiry message
MethodName Inquiry
MethodType C_LIBRARY

 ProgName grocer.Inquiry
 SourceName xInquiry
 MsgOut InquiryReply
END

METHOD
BEGIN // owner ended message
MethodName ClearUp
MethodType C_LIBRARY

 ProgName grocer.ClearUp
 SourceName xClear
END

230 MQ3T Examples for Windows Clients and AIX Servers

grocer.cs

CLASS // BL: Grocer
BEGIN
ClassType BL
ClassName GROCER

 Destination REPAIR, FRIDGE, BASKET, BREADBOX
 Harden Yes
 PingTimeout 10
 RULE

BEGIN // Order arrives
RuleId RI_SELL
RuleName SellRule
MethodName SellFood
State NOTMATCHSTATE MQSTATE_DISABLED
MsgIn FoodOrder

END
RULE
BEGIN // Gremlin message arrives
RuleId RI_GREMLIN
RuleName GremlinRule
MethodName Gremlin
MsgIn GhostMessage

END
RULE
BEGIN
RuleId RI_REPAIR1
RuleName RepairRule1
MethodName Repair
MsgIn RepairMessage

END
RULE
BEGIN
RuleId RI_REPAIR_INQ
RuleName InquiryRule
MethodName Inquiry
MsgIn InquiryRequest

END
RULE
BEGIN
RuleId RI_SYS_OE
RuleName OwnerEndedRule
MethodName ClearUp
MsgIn MQ_SYSTEM_OWNER_ENDED

END
END

Appendix A. Class Source Files for BLT Example 231

KAREN.cs

A.8 Class Source File for KAREN
File name: karen.ch

/**/
/* */
/* Class Source file for BL: KAREN */
/* */
/**/
#include <bmqc.h>
#include ″bltdef.h″

HEADING
BEGIN
Title ″Class File for KAREN - Main BL″

END

CSINCLUDE ″bmqsysms.ch″ // 3T system message descriptions
CSINCLUDE ″Messages.ch″ // message descriptions
CSINCLUDE ″Classes.ch″ // class descriptions

METHOD
BEGIN // order arrived
MethodName Sandwich
MethodType C_LIBRARY

 ProgName karen.Sandwich
 SourceName bltorder

MsgOut Starve, GetTomato, GetBread, GetFromFridge
END

METHOD
BEGIN // material arrives (all or partially)
MethodName MakeBLT
MethodType C_LIBRARY

 ProgName karen.MakeBLT
 SourceName bltmake

MsgOut MakeToast, CookBacon, Starve
END

METHOD
BEGIN // all material cooked
MethodName ServeBLT
MethodType C_LIBRARY

 ProgName karen.ServeBLT
 SourceName bltserve
 MsgOut Sandwich
END

METHOD
BEGIN // some material cooked (timeout)
MethodName NoBLT
MethodType C_LIBRARY

 ProgName karen.NoBLT
 SourceName bltnone
 MsgOut Starve
END

METHOD
BEGIN

 MethodName Ignore
 MethodType C_LIBRARY
 ProgName karen.Ignore
 SourceName xignore
END

232 MQ3T Examples for Windows Clients and AIX Servers

KAREN.cs

METHOD
BEGIN // Gremlin message
MethodName Gremlin
MethodType C_LIBRARY

 ProgName karen.Gremlin
 SourceName xGremlin
END

METHOD
BEGIN // repair message
MethodName Repair
MethodType C_LIBRARY

 ProgName karen.Repair
 SourceName xRepair
END

METHOD
BEGIN // inquiry message
MethodName Inquiry
MethodType C_LIBRARY

 ProgName karen.Inquiry
 SourceName xInquiry
 MsgOut InquiryReply
END

METHOD
BEGIN // owner ended message
MethodName ClearUp
MethodType C_LIBRARY

 ProgName karen.ClearUp
 SourceName xClear
END

CLASS // BL: KAREN
BEGIN
ClassType BL
ClassName KAREN

 Destination KONRAD, BREADBOX, FRIDGE, MICRO, TOASTER, BASKET, REPAIR
 Harden Yes
 PingTimeout 10
 RULE

BEGIN // first BLT request
RuleId RI_SANDWICH1
RuleName SandwichRule1
MethodName Sandwich
State MATCHSTATE MQSTATE_NEW
MsgIn FeedMe

END
RULE
BEGIN // next BLT request
RuleId RI_SANDWICH2
RuleName SandwichRule2
MethodName Sandwich
State MATCHSTATE MQSTATE_CLEAR
MsgIn FeedMe

END
RULE
BEGIN // Gremlin message arrives
RuleId RI_GREMLIN
RuleName GremlinRule
MethodName Gremlin
MsgIn GhostMessage

END

Appendix A. Class Source Files for BLT Example 233

KAREN.cs

RULE // INFORM message
BEGIN
RuleId RI_REPAIR1
RuleName RepairRule1
MethodName Repair
State MATCHSTATE MQSTATE_DISABLED
MsgIn RepairMessage

END
RULE // INFORM message
BEGIN
RuleId RI_REPAIR2
RuleName RepairRule2
MethodName Repair
State MATCHSTATE MQSTATE_DISABLED_WHILE_BUSY
MsgIn RepairMessage

END
RULE // ignore message when any other state
BEGIN
RuleId RI_REPAIR3
RuleName RepairRule3
MethodName Ignore
MsgIn RepairMessage

END
RULE // reply when in any state
BEGIN
RuleId RI_REPAIR_INQ
RuleName InquiryRule
MethodName Inquiry
MsgIn InquiryRequest

END
RULE
BEGIN // material arrives in time
RuleId RI_MAKEBLT1
RuleName MakeRule1
MethodName MakeBLT
MsgIn HaveTomato, HaveBread, HaveFromFridge

END
RULE
BEGIN // material arrives incomplete (timeout)
RuleId RI_MAKEBLT2
RuleName MakeRule2
MethodName MakeBLT
Timed Yes
MsgIn HaveTomato PLACEHOLDER,

HaveBread PLACEHOLDER,
HaveFromFridge PLACEHOLDER

END
RULE
BEGIN // tomato arrives late
RuleId RI_TOMATO
RuleName TomatoRule
MethodName Ignore
MsgIn HaveTomato LATE

END
RULE
BEGIN // bread arrives late
RuleId RI_BREAD
RuleName BreadRule
MethodName Ignore
MsgIn HaveBread LATE

END

234 MQ3T Examples for Windows Clients and AIX Servers

KAREN.cs

RULE
BEGIN // fridge delivers late
RuleId RI_FRIDGE
RuleName FridgeRule
MethodName Ignore
MsgIn HaveFromFridge LATE

END
RULE
BEGIN // BLT is ready to serve
RuleId RI_SERVEBLT1
RuleName ServeRule1
MethodName ServeBLT
MsgIn HaveToast, HaveBacon

END
RULE
BEGIN // toast / bacon incomplete (timeout)
RuleId RI_SERVEBLT2
RuleName ServeBLT
MethodName NoBLT
Timed Yes
MsgIn HaveToast PLACEHOLDER,

HaveBacon PLACEHOLDER
END

RULE
BEGIN // toast arrives late
RuleId RI_TOAST
RuleName ToastRule
MethodName Ignore
MsgIn HaveToast LATE

END
RULE
BEGIN // cooked bacon arrives late
RuleId RI_BACON
RuleName BaconRule
MethodName Ignore
MsgIn HaveBacon LATE

END
RULE
BEGIN
RuleId RI_SYS_OE
RuleName OwnerEndedRule
MethodName ClearUp
MsgIn MQ_SYSTEM_OWNER_ENDED

END
END

Appendix A. Class Source Files for BLT Example 235

KONRAD.cs

A.9 Class Source File for KONRAD
File name: konrad.ch

/**/
/* */
/* Class Source file for PL: KONRAD */
/* */
/**/
#include <bmqc.h>
#include ″bltdef.h″

HEADING
BEGIN
Title ″Class File for KONRAD″

END

CSINCLUDE ″bmqsysms.ch″ // 3T system message descriptions
CSINCLUDE ″Messages.ch″ // message descriptions
CSINCLUDE ″Classes.ch″ // class descriptions

METHOD
BEGIN
MethodName BLTMethod
MethodType PROGRAM

 ProgName konrad.exe
 StartupTime 10
 Interface PULL

MsgOut FeedMe, DeliverPizza, Show
END

METHOD
BEGIN
MethodName PizzaMethod
MethodType PROGRAM

 ProgName konrad.exe
 StartupTime 10
 Interface PULL
END

CLASS // PL for KONRAD
BEGIN
ClassType PL
ClassName KONRAD

 Destination KAREN, LUIGI, GREMLIN, REPAIR, SHOPPING
 RULE

BEGIN // startjob
RuleId RI_STARTJOB
RuleName StartJobRule
MethodName BLTMethod
MsgIn StartJob

END
 RULE

BEGIN // BLT arrives on time
RuleId RI_SANDWICH1
RuleName SandwichRule1
MethodName BLTMethod
MsgIn Sandwich

END
RULE
BEGIN // timer for BLT expired
RuleId RI_SANDWICH2
RuleName SandwichRule2
MethodName BLTMethod
MsgIn Sandwich PLACEHOLDER
Timed YES

END

236 MQ3T Examples for Windows Clients and AIX Servers

KONRAD.cs

RULE
BEGIN // BLT arrives late
RuleId RI_SANDWICH3
RuleName SandwichRule3
MethodName BLTMethod
MsgIn Sandwich LATE

END
RULE
BEGIN // cannot make a BLT
RuleId RI_STARVE
RuleName StarveRule
MethodName BLTMethod
MsgIn Starve

END
RULE
BEGIN // pizza arrives on time
RuleId RI_PIZZA1
RuleName PizzaRule1
MethodName PizzaMethod
MsgIn EatPizza

END
RULE
BEGIN // timer for pizza expired
RuleId RI_PIZZA2
RuleName PizzaRule2
MethodName PizzaMethod
MsgIn EatPizza PLACEHOLDER
Timed YES

END
RULE
BEGIN // pizza arrives late
RuleId RI_PIZZA3
RuleName PizzaRule3
MethodName PizzaMethod
MsgIn EatPizza LATE

END
END

Appendix A. Class Source Files for BLT Example 237

LUIGI.cs

A.10 Class Source File for LUIGI
File name: luigi.ch

/***/
/* */
/* Class Source file for PL: LUIGI Pizza Place */
/* */
/***/
#include <bmqc.h>
#include ″bltdef.h″

HEADING
BEGIN
Title ″Class File for LUIGI′ s Pizza Place″

END

CSINCLUDE ″bmqsysms.ch″ // 3T system message descriptions
CSINCLUDE ″Messages.ch″ // message descriptions
CSINCLUDE ″Classes.ch″ // class descriptions

METHOD
BEGIN
MethodName TheMethod
MethodType PROGRAM

 ProgName luigi.exe
 StartupTime 10
 Interface PULL
 MsgOut EatPizza, InquiryReply
END

CLASS // PL: LUIGI′ s pizza place
BEGIN
ClassType PL
ClassName ″LUIGI″

 Destination ″KONRAD″ , ″REPAIR″
 RULE

BEGIN // first pizza order arrives
RuleId RI_PIZZA1
RuleName LuigiRule1
MethodName TheMethod
State MATCHSTATE MQSTATE_NEW
MsgIn DeliverPizza

END
RULE
BEGIN // next pizza order arrives
RuleId RI_PIZZA2
RuleName LuigiRule2
MethodName TheMethod
State MATCHSTATE MQSTATE_CLEAR
MsgIn DeliverPizza

END
RULE
BEGIN // Gremlin message arrives
RuleId RI_GREMLIN
RuleName GremlinRule
MethodName TheMethod
MsgIn GhostMessage

END

238 MQ3T Examples for Windows Clients and AIX Servers

LUIGI.cs

RULE
BEGIN // repair message arrives
RuleId RI_REPAIR1
RuleName RepairRule1
MethodName TheMethod
State MATCHSTATE MQSTATE_DISABLED
MsgIn RepairMessage

END
RULE
BEGIN // repair message arrives
RuleId RI_REPAIR2
RuleName RepairRule2
MethodName TheMethod
State MATCHSTATE MQSTATE_DISABLED_WHILE_BUSY
MsgIn RepairMessage

END
RULE // in all other states ignore the message
BEGIN
RuleId RI_REPAIR3
RuleName RepairRule3
MethodName TheMethod
MsgIn RepairMessage

END
RULE // inquiry request message arrives
BEGIN
RuleId RI_REPAIR_INQ
RuleName RepairInqRule
MethodName TheMethod
MsgIn InquiryRequest

END
END

Appendix A. Class Source Files for BLT Example 239

micro.cs

A.11 Class Source File for MICRO
File name: micro.ch

/**/
/* */
/* Class Source file for BL: Microwave */
/* */
/**/
#include <bmqc.h>
#include ″bltdef.h″

HEADING
BEGIN
Title ″Class File for microwave″

END

CSINCLUDE ″bmqsysms.ch″ // 3T system message descriptions
CSINCLUDE ″Messages.ch″ // message descriptions
CSINCLUDE ″Classes.ch″ // class descriptions

METHOD
BEGIN
MethodName Cook
MethodType C_LIBRARY

 ProgName micro.Cook
 SourceName cook
 MsgOut HaveBacon
END

METHOD
BEGIN // Gremlin message
MethodName Gremlin
MethodType C_LIBRARY

 ProgName micro.Gremlin
 SourceName xGremlin
END

METHOD
BEGIN // repair message
MethodName Repair
MethodType C_LIBRARY

 ProgName micro.Repair
 SourceName xRepair
END

METHOD
BEGIN // inquiry message
MethodName Inquiry
MethodType C_LIBRARY

 ProgName micro.Inquiry
 SourceName xInquiry
 MsgOut InquiryReply
END

METHOD
BEGIN // owner ended message
MethodName ClearUp
MethodType C_LIBRARY

 ProgName micro.ClearUp
 SourceName xClear
END

240 MQ3T Examples for Windows Clients and AIX Servers

micro.cs

CLASS // BL: Microwave
BEGIN
ClassType BL
ClassName MICRO

 Destination KAREN, REPAIR
 Harden Yes
 PingTimeout 10
 RULE

BEGIN // raw bacon arrives
RuleId RI_COOK
RuleName CookRule
MethodName Cook
State NOTMATCHSTATE MQSTATE_DISABLED
MsgIn CookBacon

END
RULE
BEGIN // Gremlin message arrives
RuleId RI_GREMLIN
RuleName GremlinRule
MethodName Gremlin
MsgIn GhostMessage

END
RULE
BEGIN
RuleId RI_REPAIR1
RuleName RepairRule1
MethodName Repair
MsgIn RepairMessage

END
RULE
BEGIN
RuleId RI_REPAIR_INQ
RuleName InquiryRule
MethodName Inquiry
MsgIn InquiryRequest

END
RULE
BEGIN
RuleId RI_SYS_OE
RuleName OwnerEndedRule
MethodName ClearUp
MsgIn MQ_SYSTEM_OWNER_ENDED

END
END

Appendix A. Class Source Files for BLT Example 241

repair.cs

A.12 Class Source File for REPAIR
File name: repair.ch

/***/
/* */
/* Class Source file for PL: REPAIR */
/* */
/***/
#include <bmqc.h>
#include ″bltdef.h″

HEADING
BEGIN
Title ″Class File for repairman″

END
CSINCLUDE ″bmqsysms.ch″ // 3T system message descriptions
CSINCLUDE ″Messages.ch″ // message descriptions
CSINCLUDE ″Classes.ch″ // class descriptions

METHOD
BEGIN
MethodName TheMethod
MethodType PROGRAM

 ProgName repair.exe
 StartupTime 10
 Interface PULL
 MsgOut RepairMessage, InquiryRequest
END

CLASS // PL: REPAIR
BEGIN
ClassType PL
ClassName ″REPAIR″

 Destination ″BASKET″ , ″BREADBOX″ , ″FRIDGE″ , ″TOASTER″ , ″MICRO″ ,
″LUIGI″ , ″KAREN″ , ″GROCER″

RULE
BEGIN // start program
RuleId RI_SHOW
RuleName ShowRule
MethodName TheMethod
MsgIn Show

END
RULE
BEGIN // repair response
RuleId RI_REPAIR_INQ
RuleName RepairRule1
MethodName TheMethod
MsgIn InquiryReply

END
RULE
BEGIN // no repair response
RuleId RI_REPAIR_NO
RuleName RepairRule2
MethodName TheMethod
MsgIn InquiryReply PLACEHOLDER
Timed YES

END
RULE
BEGIN // late repair response
RuleId RI_REPAIR_LATE
RuleName RepairRule3
MethodName TheMethod
MsgIn InquiryReply LATE

END
END

242 MQ3T Examples for Windows Clients and AIX Servers

shopping.cs

A.13 Class Source File for SHOPPING
File name: shopping.ch

/**/
/* */
/* Class Source file for PL: Shopping list */
/* */
/**/
#include <bmqc.h>
#include ″bltdef.h″

HEADING
BEGIN
Title ″Class File for shopping list″

END

CSINCLUDE ″bmqsysms.ch″ // 3T system message descriptions
CSINCLUDE ″Messages.ch″ // message descriptions
CSINCLUDE ″Classes.ch″ // class descriptions

METHOD
BEGIN
MethodName TheMethod
MethodType PROGRAM

 ProgName shopping.exe
 StartupTime 10
 Interface PULL
 MsgOut FoodInquiry, FoodOrder
END

CLASS
BEGIN

 ClassType PL
 ClassName SHOPPING
 Destination BASKET, FRIDGE, BREADBOX, GROCER
 RULE

BEGIN // start program
RuleId RI_SHOW
RuleName ShowRule
MethodName TheMethod
MsgIn Show

END
RULE
BEGIN
RuleId RI_ORDER
RuleName OrderRule
MethodName TheMethod
MsgIn OrderMessage

END
RULE
BEGIN
RuleId RI_FOOD_INQ
RuleName FoodRule
MethodName TheMethod
MsgIn FoodInquiry

END
RULE
BEGIN
RuleId RI_TIMER
RuleName TimerRule
MethodName TheMethod
Timed YES

END

Appendix A. Class Source Files for BLT Example 243

shopping.cs

RULE
BEGIN // Gremlin message arrives
RuleId RI_GREMLIN
RuleName GremlinRule
MethodName TheMethod
MsgIn GhostMessage

END
END

244 MQ3T Examples for Windows Clients and AIX Servers

toaster.cs

A.14 Class Source File for TOASTER
File name: toaster.ch

/**/
/* */
/* Class Source file for BL: toaster */
/* */
/**/
#include <bmqc.h>
#include ″bltdef.h″

HEADING
BEGIN
Title ″Class File for the toaster″

END

CSINCLUDE ″bmqsysms.ch″ // 3T system message descriptions
CSINCLUDE ″Messages.ch″ // message descriptions
CSINCLUDE ″Classes.ch″ // class descriptions

METHOD
BEGIN
MethodName Cook
MethodType C_LIBRARY

 ProgName toaster.Cook
 SourceName cook
 MsgOut HaveToast
END

METHOD
BEGIN // Gremlin message
MethodName Gremlin
MethodType C_LIBRARY

 ProgName toaster.Gremlin
 SourceName xGremlin
END

METHOD
BEGIN // repair message
MethodName Repair
MethodType C_LIBRARY

 ProgName toaster.Repair
 SourceName xRepair
END

METHOD
BEGIN // inquiry message
MethodName Inquiry
MethodType C_LIBRARY

 ProgName toaster.Inquiry
 SourceName xInquiry
 MsgOut InquiryReply
END

METHOD
BEGIN // owner ended message
MethodName ClearUp
MethodType C_LIBRARY

 ProgName toaster.ClearUp
 SourceName xClear
END

CLASS // BL: toaster
BEGIN
ClassType BL
ClassName TOASTER

 Destination KAREN, REPAIR
 Harden Yes
 PingTimeout 10

Appendix A. Class Source Files for BLT Example 245

toaster.cs

RULE
BEGIN // bread arrives
RuleId RI_COOK
RuleName CookRule
MethodName Cook
State NOTMATCHSTATE MQSTATE_DISABLED
MsgIn MakeToast

END
RULE
BEGIN // Gremlin message arrives
RuleId RI_GREMLIN
RuleName GremlinRule
MethodName Gremlin
MsgIn GhostMessage

END
RULE
BEGIN
RuleId RI_REPAIR1
RuleName RepairRule1
MethodName Repair
MsgIn RepairMessage

END
RULE
BEGIN
RuleId RI_REPAIR_INQ
RuleName InquiryRule
MethodName Inquiry
MsgIn InquiryRequest

END
RULE
BEGIN
RuleId RI_SYS_OE
RuleName OwnerEndedRule
MethodName ClearUp
MsgIn MQ_SYSTEM_OWNER_ENDED

END
END

246 MQ3T Examples for Windows Clients and AIX Servers

bltdef.h

A.15 Definitions for Class Source Files
File name: bltdef.h

/**/
/* */
/* Definitions for PL and BL */
/* */
/**/
/* User states for rules */
/**/
#define MQSTATE_BUSY 30
#define MQSTATE_DISABLED 31
#define MQSTATE_DISABLED_WHILE_BUSY 33
/**/
/* Rule IDs for classes */
/**/
#define RI_STARTJOB 0 /* start job owner KONRAD */
#define RI_SHOW 1 /* KONRAD: initiate other PLs */

/* PLs : shows GUI */
#define RI_TIMER 5 /* SHOP : invokes timer method */

#define RI_SANDWICH1 11 /* KONRAD: BLT arrives on time */
/* KAREN : BLT order arrives, state=NEW */

#define RI_SANDWICH2 12 /* KONRAD: BLT does not arrive, timed out */
/* KAREN : BLT order arrives, state=CLEAR */

#define RI_SANDWICH3 13 /* KONRAD: BLT arrives late */
#define RI_PIZZA1 15 /* KONRAD: pizza arrives on time */

/* LUIGI : pizza order arrives, state=NEW */
#define RI_PIZZA2 16 /* KONRAD: pizza does not arrive, timed out */

/* LUIGI : pizza order arrives, state=CLEAR */
#define RI_PIZZA3 17 /* KONRAD: pizza arrives late */
#define RI_STARVE 19 /* KONRAD: BLT cannot be made */

#define RI_MAKEBLT1 20 /* KAREN: all material arrived in time */
#define RI_MAKEBLT2 21 /* KAREN: material arrived incomplete */
#define RI_TOMATO 22 /* KAREN: tomato arrived late */
#define RI_BREAD 23 /* KAREN: bread arrived late */
#define RI_FRIDGE 24 /* KAREN: items from fridge arrived late */
#define RI_SERVEBLT1 25 /* KAREN: everthing cooked in time */
#define RI_SERVEBLT2 26 /* KAREN: not everthing cooked in time */
#define RI_TOAST 27 /* KAREN: toast arrived late */
#define RI_BACON 28 /* KAREN: bacon arrived late */

#define RI_DELIVER1 30 /* BASKET: tomato requested, state=NEW */
#define RI_DELIVER2 31 /* BASKET: tomato requested, state=CLEAR */
#define RI_BREAD1 32 /* BBOX : bread requested, state=NEW */
#define RI_BREAD2 33 /* BBOX : bread requested, state=CLEAR */
#define RI_FRIDGE1 34 /* FRIDGE: items requested, state=NEW */
#define RI_FRIDGE2 35 /* FRIDGE: items requested, state=CLEAR */

#define RI_COOK 40 /* MICRO : received bacon to cook */
/* TOASTER: received bread to toast */

#define RI_GREMLIN 50 /* all: disable the instance */
#define RI_REPAIR1 51 /* all: enable when state=DISABLED */
#define RI_REPAIR2 52 /* all: enable when state=BUSY+DISABLED */
#define RI_REPAIR3 53 /* all: ignore message */
#define RI_REPAIR_INQ 55 /* REPAIR: reply to inquiry arrived */

/* others: inquiry request arrived */
#define RI_REPAIR_NO 56 /* REPAIR: no response to inquiry (timeout) */
#define RI_REPAIR_LATE 57 /* REPAIR: late response to inquiry */

Appendix A. Class Source Files for BLT Example 247

bltdef.h

#define RI_ORDER 60 /* SHOP : received item to put on list */
#define RI_FOOD_INQ 61 /* SHOP : received response to inquiry */

/* FRIDGE: received food inquiry request */
/* BASKET: same */
/* BBOX : same */

#define RI_FOOD 62 /* FRIDGE: food items are delivered */
/* BASKET: same */
/* BBOX : same */

#define RI_SELL 63 /* GROCER: message to deliver food arrived */
#define RI_SYS_OE 111 /* BLs : Konrad ended */
/**/
/* Operation codes for messages */
/**/
#define OC_STARTJOB (MQOC_USER)
#define OC_SHOW (MQOC_USER + 1)
#define OC_SANDWICH (MQOC_USER + 2)
#define OC_STARVE (MQOC_USER + 3)
#define OC_PIZZA (MQOC_USER + 4)
#define OC_TOMATO (MQOC_USER + 5)
#define OC_BREAD (MQOC_USER + 6)
#define OC_FRIDGE (MQOC_USER + 7)
#define OC_TOAST (MQOC_USER + 8)
#define OC_COOK (MQOC_USER + 9)
#define OC_GREMLIN (MQOC_USER + 10)
#define OC_REPAIR (MQOC_USER + 11)
#define OC_INQUIRY (MQOC_USER + 12)
#define OC_ORDER (MQOC_USER + 13)
#define OC_FOODINQ (MQOC_USER + 14)
#define OC_FOOD (MQOC_USER + 15)
/**/

248 MQ3T Examples for Windows Clients and AIX Servers

bltdef.bas

A.16 Definitions for Visual Basic
File name: bltdef.bas

′ **
′
′ Definitions for PL and BL
′
′ **
′ User states for rules
′ **
Global Const MQSTATE_BUSY = 30&
Global Const MQSTATE_DISABLED = 31&
Global Const MQSTATE_DISABLED_WHILE_BUSY = 33&
′ **
′ Rule IDs for classes
′ **
Global Const RI_STARTJOB = 0& ′ start job owner KONRAD */
Global Const RI_SHOW = 1& ′ KONRAD: initiate other PLs */

′ PLs : shows GUI */
Global Const RI_TIMER = 5& ′ SHOP : invokes timer method */

Global Const RI_SANDWICH1 = 11& ′ KONRAD: BLT arrives on time */
′ KAREN : BLT order arrives, state=NEW */

Global Const RI_SANDWICH2 = 12& ′ KONRAD: BLT does not arrive, timed out */
′ KAREN : BLT order arrives, state=CLEAR */

Global Const RI_SANDWICH3 = 13& ′ KONRAD: BLT arrives late */
Global Const RI_PIZZA1 = 15& ′ KONRAD: pizza arrives on time */

′ LUIGI : pizza order arrives, state=NEW */
Global Const RI_PIZZA2 = 16& ′ KONRAD: pizza does not arrive, timed out */

′ LUIGI : pizza order arrives, state=CLEAR */
Global Const RI_PIZZA3 = 17& ′ KONRAD: pizza arrives late */
Global Const RI_STARVE = 19& ′ KONRAD: BLT cannot be made */

Global Const RI_GREMLIN = 50& ′ all: disable the instance */
Global Const RI_REPAIR1 = 51& ′ all: enable when state=DISABLED */
Global Const RI_REPAIR2 = 52& ′ all: enable when state=BUSY+DISABLED */
Global Const RI_REPAIR3 = 53& ′ all: ignore message */
Global Const RI_REPAIR_INQ = 55& ′ REPAIR: reply to inquiry arrived */

′ others: inquiry request arrived */
Global Const RI_REPAIR_NO = 56& ′ REPAIR: no response to inquiry (timeout) */
Global Const RI_REPAIR_LATE = 57& ′ REPAIR: late response to inquiry */
Global Const RI_ORDER = 60 ′ SHOP: received item to put on list
Global Const RI_FOOD_INQ = 61 ′ SHOP: received response to inquiry
′ **
′ Global variables
′ **
Global vPLClass As String * 12 ′ PL class name
Global vHInst As Long ′ instance handle

Type MSG100
message As String * 20
number As Long
value As Long
filler As String * 72

End Type

Appendix A. Class Source Files for BLT Example 249

bltdef.bas

250 MQ3T Examples for Windows Clients and AIX Servers

APIs

Appendix B. Summary of MQ3T APIs

Table 26 (Page 1 of 6). MQSeries 3T APIs for Visual Basic

API Parameter Declared Description

MQADDB ByVal HSet Long Set handle

ByVal BufferLength Long Length (in bytes) of the
Buffer area

Buffer Any Buffer that holds the
element

ByVal Replace Long Replace existing element

pCompCode Long Completion code

pReason Long Reason code

MQADDC ByVal HSet Long Set handle

ByVal ElementId Long Identifier of the element

ByVal StringLength Long Length of the
character-string data

pString String The character-string data

ByVal Replace Long Replace existing element

pCompCode Long Completion code

pReason Long Reason code

MQADDI ByVal HSet Long Set handle

ByVal ElementId Long Identifier of the element

ByVal XInteger Long The integer data

ByVal Replace Long Replace existing element

pCompCode Long Completion code

pReason Long Reason code

MQCMPB ByVal HSet Long Set handle

ByVal ElementId Long Identifier of the element

ByVal BufferLength Long Length (in bytes) of the
buffer area

Buffer Any Buffer for comparison

pResult Long Result of comparison

pCompCode Long Completion code

pReason Long Reason code

MQCMPC ByVal HSet Long Set handle

ByVal ElementId Long Identifier of the element

ByVal StringLength Long Length (in bytes) of the
string

ByVal pString Long Character string for
comparison

pResult Long Result of comparison

pCompCode Long Completion code

pReason Long Reason code

 Copyright IBM Corp. 1996 251

APIs

Table 26 (Page 2 of 6). MQSeries 3T APIs for Visual Basic

API Parameter Declared Description

MQCMPE ByVal HSet1 Long Handle of the first set

ByVal HSet2 Long Handle of the second set

ByVal ElementId1 Long ID of element in first set

ByVal ElementId2 Long ID of element in second
set

pResult Long Result of comparison

pCompCode Long Completion code

pReason Long Reason code

MQCMPI ByVal HSet Long Set handle

ByVal ElementId Long Identifier of the element

ByVal XInteger Long The integer

pResult Long Result of comparison

pCompCode Long Completion code

pReason Long Reason code

MQCPYB ByVal HSet Long Set handle

ByVal ElementId Long Identifier of the element

pBufferLength Long Length (in bytes) of the
buffer area

Buffer Any The buffer to which the
element is to be copied

pCompCode Long Completion code

pReason Long Reason code

MQCPYC ByVal HSet Long Set handle

ByVal ElementId Long Identifier of the element

pStringLength Long Length (in bytes) of the
string

ByVal pString Long The buffer to which the
element is to be copied

pCompCode Long Completion code

pReason Long Reason code

MQCPYE ByVal HSetSource Long Handle of source set

ByVal HSetDestination Long Handle of destination set

ByVal SourceElement Long ID of source element

ByVal DestinationElement Long ID of destination element

ByVal Replace Long Replace existing element

pCompCode Long Completion code

pReason Long Reason code

252 MQ3T Examples for Windows Clients and AIX Servers

APIs

Table 26 (Page 3 of 6). MQSeries 3T APIs for Visual Basic

API Parameter Declared Description

MQCPYI ByVal HSet Long Set handle

ByVal ElementId Long ID of the element

pInteger Long Integer copied from the
element

pCompCode Long Completion code

pReason Long Reason code

MQCRTS pHSet Long Set handle

ByVal SetLength Long Initial length (in bytes) of
the set

pCompCode Long Completion code

pReason Long Reason code

MQDELA ByVal HSet Long Set handle

pCompCode Long Completion code

pReason Long Reason code

MQDELE ByVal HSet Long Set handle

ByVal ElementId Long Identifier of the element

pCompCode Long Completion code

pReason Long Reason code

MQDELS ByVal HSet Long Set handle

pCompCode Long Completion code

pReason Long Reason code

MQENDE ByVal HInst Long Instance handle

ByVal InstanceState Long Instance state

pCompCode Long Completion code

pReason Long Reason code

MQENDP ByVal Options Long Options

pCompCode Long Completion code

pReason Long Reason code

MQLOG ByVal HInst Long Instance handle

ByVal LogLevel Long Logging level for the log
message

ByVal BufferLength Long Length (in bytes) of the
buffer area

Buffer Any Buffer that holds the log
message

ByVal InsertCount Long Number of insert strings

pInsertTable Long Table of pointers to insert
strings

pCompCode Long Completion code

pReason Long Reason code

Appendix B. Summary of MQ3T APIs 253

APIs

Table 26 (Page 4 of 6). MQSeries 3T APIs for Visual Basic

API Parameter Declared Description

MQQRY ByVal HInst Long Instance handle

pClassName String Class name

ByVal QueryType Long Type of query

pBufferLength Long Length (in bytes) of the
buffer area

Buffer Any The buffer to which the
information is to be
copied

pCompCode Long Completion code

pReason Long Reason code

MQQRYE ByVal HInst Long Instance handle

pEventData MQEVENT Event data

pCompCode Long Completion code

pReason Long Reason code

MQQRYM ByVal HInst Long Instance handle

ByVal MsgNumber Long Message number

pMsgProperties MQMP Message properties

pMsgDataLength Long Length (in bytes) of the
MsgData area

MsgData Any Buffer to hold the
retrieved message or
handle

pCompCode Long Completion code

pReason Long Reason code

MQQRYS ByVal HInst Long Instance handle

pElementCount Long Number of elements in
the set

pBufferLength Long Length (in bytes) of the
buffer area

Buffer Any Buffer to hold the set

pCompCode Long Completion code

pReason Long Reason code

MQREG pClassName String Name of the class to
associate with the
window handle

ByVal MaxInstances Long Maximum instances

ByVal HWnd Long Window handle to
associate with the class

ByVal MsgId Long Message identi

ByVal Options Long Options

pCompCode Long Completion code

pReason Long Reason code

254 MQ3T Examples for Windows Clients and AIX Servers

APIs

Table 26 (Page 5 of 6). MQSeries 3T APIs for Visual Basic

API Parameter Declared Description

MQRPLY ByVal HInst Long Instance handle

pMsgName String Name of the reply
message

ByVal MsgAttrs Long Message attr ibutes

MsgData Any Buffer that holds the
reply message

pCompCode Long Completion code

pReason Long Reason code

MQSEND ByVal HInst Long Handle of the sending
instance

pClassName String Name of the destination
class

pInstanceName String Name of the destination
instance

pMsgName String The name of the
message to be sent

ByVal MsgAttrs Long Message attr ibutes

MsgData Any Buffer that holds the
message data to be sent

pCompCode Long Completion code

pReason Long Reason code

MQSETS ByVal HInst Long Instance handle

ByVal InstanceState Long Instance state

pCompCode Long Completion code

pReason Long Reason code

MQTIME ByVal HInst Long Instance handle

pRuleName String Name of the timed rule

ByVal Timeout Long Timeout period in
seconds

pCompCode Long Completion code

pReason Long Reason code

MQUREG pClassName String Name of the class to
unregister

ByVal HWnd Long Handle of the window to
unregister

ByVal Options Long Options

pCompCode Long Completion code

pReason Long Reason code

Appendix B. Summary of MQ3T APIs 255

APIs

Table 26 (Page 6 of 6). MQSeries 3T APIs for Visual Basic

API Parameter Declared Description

MQVALS pHSet Long Set handle

ByVal
BufferLength

Long Leng th (in bytes) of the
buffer area

Buffer Any Buffer containing the set
data

pCompCode Long Completion code

pReason Long Reason code

MQXRPLY ByVal HInst Long Instance handle

ByVal OperationCode Long Type of reply

ByVal OperationVersion Long User-defined value

ByVal MsgAttrs Long Message attr ibutes

ByVal MsgDataLength Long Length (in bytes) of the
MsgData area

MsgData Any Buffer that holds the
reply message

pConversionDLL String Name of the
data-conversion DLL

pCompCode Long Completion code

pReason Long Reason code

MQXSEND ByVal HInst Long Instance handle

pClassName String Name of the destination
class

pInstanceName String Name of the destination
instance

ByVal MsgType Long Type of message

ByVal OperationCode Long Purpose of the message

ByVal OperationVersion Long User-defined value

ByVal MsgAttrs Long Message attr ibutes

ByVal Role Long Role

ByVal MsgDataLength Long Length (in bytes) of the
MsgData area

MsgData Any Buffer that holds the
message to be sent

pConversionDLL String Name of the
data-conversion DLL

pCompCode Long Completion code

pReason Long Reason code

256 MQ3T Examples for Windows Clients and AIX Servers

Diskette

Appendix C. Diskette Contents

SG24-4664
IBM MQSeries Three Tier
Examples for Windows and AIX

Diskette 1

 1. README contains the same information as this appendix.

 2. CL1T.EXE can be used to verify a client/server connection. Its use is
demonstrated in Chapter 2, “Installation” on page 15.

 3. cmqaix is a directory that contains a compressed tar format file with the
programs and definition files to run the MQI file transfer example described
in Chapter 4, “File Transfer Example” on page 77. The chapter explains
how to install and run the sample.

The commands to uncompress the file are:

• dosread cmqaix.tz cmqaix.tar.Z (copy the file on a AIX machine)

• uncompress cmqaix.tar.Z

• tar -xvf cmqaix.tar

 4. c3taix is a directory that contains a compressed tar format file with the
programs and definition files to run the MQ3T file transfer example described
in Chapter 4, “File Transfer Example” on page 77. The chapter explains
how to install and run the sample.

The commands to uncompress the file are:

• dosread c3taix.tz c3taix.tar.Z (copy the file on a AIX machine)

• uncompress c3taix.tar.Z

• tar -xvf c3taix.tar

 5. vb3twin is a directory that contains all files required in the Windows client
workstation, the class definitions and the Visual Basic files.

 6. classes is a directory that contains the class definition for MQ3T in the AIX
server.

Diskette 2

 1. bltaix is a directory that contains all files for the BLT example in Chapter 5,
“The Bacon Lettuce and Tomato Sandwich” on page 111 that are required in
the server.

 2. bltwin is a directory that contains all files for the BLT example in Chapter 5,
“The Bacon Lettuce and Tomato Sandwich” on page 111 that were created
in the Windows workstation.

 Copyright IBM Corp. 1996 257

Diskette

258 MQ3T Examples for Windows Clients and AIX Servers

List of Abbreviations

APA all points addressable

API application program interface

ASCII American National Standard
Code for Information
Exchange

BL Business Logic

BLM Business Logic Manager

CDL Class Definition Language

CM/2 IBM Communications
Manager/2

CRLF carriage return / l ine feed

CUA Common User Access

CSD Corrective Service Diskette

DDL dynamic l ink l ibrary

EBCDIC extended binary coded
decimal interchange code

GUI graphical user interface

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

LPP l icensed program product

MLE multi l ine entry field

MQ message queuing

MQ3T MQSeries Three Tier

MQI message queuing interface

NFS network fi le server

OOA Object-Oriented Analysis

OOD Object-Oriented Design

OS/2 IBM Operating System/2

PL Presentation Logic

PLM Presentation Logic Manager

PM Presentation Manager

SAA System Application
Architecture

SDDM Self-defining Data Manager

SMIT System Management
Interface Tool

SNA System Network Architecture

SVGA Super Video Graphics
Adapter

TCP/IP Transmission Control
Protocol/Internet Protocol

VB Visual Basic

VGA Video Graphics Adapter

WYSIWYG what you see is what you get

 Copyright IBM Corp. 1996 259

260 MQ3T Examples for Windows Clients and AIX Servers

Index

Special Characters
#INCLUDE 100

Numerics
3T 5

API calls for Visual Basic 251
application model 11
icons 50
message flow 5
run-time components 3
Visual Basic interface 44
what tiers are 2
Windows directories 71

3T design 14
application model 7
BLT example 121
file transfer options 77
software distribution 107

3T for Windows 39
3T samples

BLT application 111
file transfer 77

develop MQ3T version 94
using MQ3T 86
using MQI 80

for Visual Basic 50
for quick start of PLs 64
HELLO1 51
HELLO1 set up and run 67
HELLO2 59
read-only fragments 61
template 63

software distribution 107

A
abbreviations 259
acronyms 259
AIX 1

redo BLT 198
redo file transfer 98

AIX server 16
AIX workstation 10, 15
alter queue 84
amqscoma.tst 68
AntiVirus/DOS 28
API 7

calls
See MQ...

list of MQ3T calls 64
MQ3T calls for Visual Basic 251
MQTIME 11, 136
notes to Visual Basic 66

API types 65
base calls 65
PLM calls 65
SDDM calls 65

application
design 9, 14
development process 12
development requirements 12
execution requirements 12
model 11
portable 204
simulator 8

applicid 83
auto-start 32
AUTOEXEC.BAT

3T Windows client 39
BMQCCSID 39
MQSERVER 37
TCP/IP 33
Windows 3.1 29

B
basket

business logic 183
procedure ″delivery.c″ 189
procedure ″foodinq.c″ 188

binary class file 11
bit map viewer 79
BLM

in background and foreground 91
BLT

3T design 121
analysis 113
building GUIs 141
business logic 173
class descriptions 127
classes 121
description 111
design crosscheck 139
GUI prototypes 118
make file 178
message flow 116
messages 122

exceptions 124
inventory control process 123
maintenance 124
operation codes 126
order process 124
production process 122
structure 127
summary 125

objects and functions 114
profile for BLM 200
profile for PLMs 141, 200

 Copyright IBM Corp. 1996 261

BLT (continued)
queue definit ions 199
requirements 112
rules and methods 128
server connection 198
skeleton files 173
start BLMs 200
test 198

BLT sample program 111
bltcoma.tst 199
bltdef.bas 249
bltdef.h 247
bltmake.c 181
bltnone.c 183
bltorder.c 180
bltserve.c 183
BMQ_NOTIFY 44, 48, 53, 105, 146

declared 51
explained 45

BMQB.BAS 51
installed 41

BMQC.H 51, 68
bmqcc example (AIX) 70
BMQERROR.LOG 75, 98, 200
bmqh link 68
BMQLOCPATH 39
BMQNTFY.VBX 47, 48, 50

between PL and PLM 47
install 42

bmqsysms.ch 125
BMQVBX.BAS 51
breadbox

business logic 183
procedure ″delivery.c″ 189
procedure ″foodinq.c″ 188

Business Logic 2, 14
Business Logic Manager 3
business requirements 12
ByVal 66

C
CBbl 170
CDL 4, 6
challenger.gif 79
channel 36, 82, 84

tr igger monitor 84
channel definition 37
chgrp command 67, 82, 87
chmod command 67, 82, 87
chown command 67, 82, 87
circular message flow 118
cl1t 37, 38
class 2, 113

application model 11
description 6
section 6
types 11

class compiler 6
functions 7

class file contents 6
class name 46
class source files

BLT: basket 220
BLT: BL rules and methods

explained 131
summary 133

BLT: breadbox 223
BLT: class descriptions 218
BLT: definitions 247
BLT: fridge 226
BLT: gremlin 229
BLT: grocer 230
BLT: Karen 232
BLT: Konrad 236
BLT: Luigi 238
BLT: messages 213

correlation 138
operation codes 126
role 138
structure 127

BLT: microwave 240
BLT: PL rules and methods

explained 128
summary 130

BLT: repair list 242
BLT: shopping list 243
BLT: toaster 245
crosscheck 139
file transfer example 96
late messages 135
messages

explained 126
state depended rules 136
system messages 125
timed rules 135

client 1
3T functions 3
channel in server 37
check MQ connection to server 37
compile HELLO1 72
installation 28
local queue in server 36
MQSERVER environment variable 37
ping the server 33
run HELLO1 74
setup server for BLT 198
Visual Basic support 43

CMQB.BAS 51
installed 41

CMQC.H 51, 68
cmqh link 68
code fragments 61
code page 39, 203
command button 145

262 MQ3T Examples for Windows Clients and AIX Servers

communication
MQ server connection 36
test TCP/IP connection 33
verify cl ient/server connection 37

CompCode (defined) 54
CompCode (displayed) 54
compile

class source files 97
HELLO1 sample 67

complex data types 66
CONFIG.SYS

environment variable space 29
TCP/IP 33
Windows 3.1 29

configure TCP/IP 31
ConversionDLL 203
convert

character to long 170
cook.c 190
correlate messages 138
create (Visual Basic)

command button 145
label 144
option button 157
radio button 157
text box 144, 160

create remote queue 36
crosscheck 7
cr tmqm 23
CSINCLUDE 125
custom command 31
custom control 47, 50
customization

TCP/IP 31

D
data conversion 203

make file 209
data conversion program 205
Data Logic 2, 7, 14, 78, 103
DEF file 7
default queue manager 23
define channel 37, 82, 83
define process 83
define queue alias 87
define remote queue 87
define transmission queue 82
define trigger queue 83
delivery.c 189
DEPTH 83
design

application 9, 14
design crosscheck 139
developer ′s workstation 9
development process 12
device selection 17
display

CompCode, Reason 54

display (continued)
return codes 54

display queue 36
documentation

TCP/IP 30
dosdir command 80
dosread command 81, 87
doswrite command 35

E
element list 192
elements (set) 169
endplm uti l i ty 75
enhancements 1
entry point 100, 174

entry point
See MQENTRY

environment variable
BMQCCSID 39
INCLUDE 68, 98
LANG 97
language 67
MQSERVER 37
space (CONFIG.SYS) 29
TCPBASE 30

error log 75, 200
event 11

and rules 7
custom control 47
direct to PL 44
end 56
in MQREG 45
instance deleted 48
message ID 48
OAK1_NewEvent 48, 149
procedure 48, 54
procedure to process 55
query 56
rule satisfied 48
structure MQEVENT 56
what it is 11
window unregistered 48

export fi le 173

F
facil it ies 6
file transfer 77
file transfer sample

3T version 80
business logic 100
C skeleton 100
class source files 94
compile class source files 97
file structure 100
files 88, 90
possible extensions 107
presentation logic 104
run it 90

Index 263

f i le transfer sample (continued)
3T version (continued)

sender program (BL) 101
set-up receiver station 89
set-up sender station 86
set-up Windows station 89
skeleton files 98

description 78
MQI version 79

files 81
run it 84
set-up receiver station 83
set-up sender station 80

first.cmd 85
font size 144
foo1.cmd 80
foodinq.c 188
fridge1.c 184
ftp command 36

G
Gremlin

Visual Basic project 155
grocer

business logic 191
procedure ″grocer1.c″ 191

grocer1.c 191

H
HELLO1

compile (Windows) 72
compile on AIX 68
files 69
profi le 73, 74
run it 73
set up on AIX 67
view GUI (Windows) 71

HELLO1.FRM 52
HELLO1H.BAS 58
HELLO1x.BAS 58
HELLO2.FRM 60
HELOGU1W.MAK 51
HELOGU2W.MAK 59
home directory 67

I
icons used by 3T 50
include statement 100
inform message 4
installation 15

AIX server 16
3T for AIX 25
MQSeries base 16
MQSeries CSD 21

MQSeries objects for AIX
windows client (development) 28

3T 39

installation (continued)
windows client (development) (continued)

3T Visual Basic Support 41
DOS 7.0 28
MQSeries client 34
TCP/IP for Windows 30
Visual Basic 40
Windows 3.1 29

windows client (production) 42
instance 113
instance handle 48
instance state 46, 128
IP address 31

J
job 113
job viewer 8

K
Karen

business logic 179
C skeleton file 175
export fi le 173
make file 178
procedure ″bltmake.c″ 181
procedure ″bltnone.c″ 183
procedure ″bltorder.c″ 180
procedure ″bltserve.c″ 183

kil lmqm command fi le 82
Konrad

class description 127
explained 127

Visual Basic project 144

L
label 144
language 67
late message 128, 136
license agreement 41
ln command 68
log level 200
LPARAM 47, 48, 50
ls command 68
Luigi

Visual Basic project 151

M
MA3B SupportPac 41
make command 68
make example (AIX) 70
make EXE (Visual Basic) 72
make file 7
make file (data conversion) 209
make file example (AIX) 178

264 MQ3T Examples for Windows Clients and AIX Servers

malloc 192
MATCHSTATE 136
message 4, 6

data flag 174, 182
descriptor 203
ID 48
routing 99
set 59
types 4

message flow 5
method 7, 11

for PL 128
microwave

business logic 190
procedure ″cook.c″ 190

mkdir command 81, 87
mkgroup command 16
mkuser command 16
mount command 16
MQ_SYSTEM_OWNER_ENDED 125
MQ3T

directories 71
icons 74
program manager icons 40
Visual Basic API calls 251

MQADDC 59
explained 60

MQADDI 170
explained 171

MQClose 38
MQConnect 38
MQCPYB 192

explained 192
MQCPYC 60

explained 60
MQCRTS 59, 170

explained 60, 170
MQDELS 170
MQDisconnect 38
MQENDE 55, 60, 105, 150

explained 56
parameters 57

MQENTRY 100
file transfer skeleton 100
for any message 176
for one specific message 174
for three messages 177
when timer expires 177

MQFMT_NONE 203
MQFMT_STRING 203
mqfpt command format 79
mqftp 78
mqftprtx 78
MQGet 38, 203
MQM objects 22
MQOpen 38
MQPLM_HWND_UNREGISTERED 48

MQPLM_INSTANCE_DELETED 48
MQPLM_RULE_SATISFIED 48
MQPut 38
MQQRYE 55, 60, 105, 150

explained 56
parameters 57

MQQRYM 55, 60, 105
explained 56
parameters 57

MQQRYS 170, 192
explained 171, 192

MQREG 44, 53, 105, 146
explained 44
parameters 45

MQRPLY 181, 183
MQSEND 49, 56, 106, 150

explained 48, 148
parameters 49

MQSEND (set) 59, 170
explained 60

MQSeries
base product 16
for AIX 16
updates for MQ3T 21

MQSeries 3T for AIX
MQSERVER 39
MQSETS 45, 55

explained 46
parameters 46

MQTIME 11, 136, 148, 163, 169, 182
explained 136, 163, 168, 169
parameters 136

MQUREG 45, 55
explained 45
parameters 46

MQXSEND 102, 103
MSG100.def (OS/2) 211
MSG100.mak (AIX) 209
MSG100.mak (OS/2) 211
multi l ine 144

N
name resolution 32
NDIS interface 31
new line characters 149
NOTMATCHSTATE 137
number format 203

O
OAK1_NewEvent 48, 149
objects for MQM 22
OO 14
option button 157
OS/2 1

data conversion 210
OS/2 workstation 9

Index 265

overview 1

P
parameter passing 47
parameters of API calls 251
PCUST.FRM 63
PCUST.MAK 62
permission 67
PFCUST.FRM 61
PFCUST.MAK 61
ping

DOS 33
Windows 34

PL and BMQNTFY 47
PLACEHOLDER 135, 136
PLM and BMQNTFY 47
PLM and Visual Basic 44
PLM API calls 7
PMQELIL 192
portable application 204
pre-requisites 6
Presentation Logic 2, 14
Presentation Logic Manager 3
procedures

business logic (C)
bltmake (Karen) 181
bltnone (Karen) 183
bltorder (Karen) 180
bltserve (Karen) 183
cook 190
del ivery 189
fi le transfer program 101
foodinq 188
fridge1 184
grocer1 191
xclear 194
xgremlin 197
xignore 195
xiquiry 196
xrepair 194

data conversion 205
Visual Basic

BLT_Click (Konrad) 148
Close_Click 45, 55
Deliver_Click (Luigi) 153
DS_MLE (display) 149
DS_MSG (display) 162
Enter_Click (Gremlin) 158
Exit_cmd_Click 104
Form_Load 44, 53, 105, 146
Form_Unload 56, 146
input (shopping list) 168
Inquire_Click (repair list) 163
Inquire_Click (shopping list) 169
MenuExit_Click 56
MenuHelloBL_Click 49, 56
OAK1_NewEvent 48, 54, 149
Option1_Click (Gremlin) 157
Option1_Click (repair list) 162

procedures (continued)
Visual Basic (continued)

Option1_Click (shopping list) 168
Pizza_Click (Konrad) 148
ProcessPLEvent 55
ProcessPlEvent (file transfer) 105
ProcessPLEvent (Gremlin) 159
ProcessPLEvent (Konrad) 150
ProcessPLEvent (Luigi) 154
ProcessPlEvent (repair list) 164
ProcessPLEvent (shopping list) 171
Quit_Click 146
Repair_Click (repair list) 163
SendMe_cmd_Click (file transfer) 106
Shop_Click (shopping list) 170
user input (file transfer) 106

process object 83
profi le

BLM in BLT example 200
for fi le transfer 91, 92
for HELLO1 73, 74
for messages routing 99, 107
PLMs in BLT example 141, 200

Q
QLOCAL 36, 82, 83
queue (alter) 84
queue definitions for BLT 199
queue manager

create 23
directories 22
naming convention 23
objects 24

R
radio button 157
Reason (defined) 54
Reason (displayed) 54
redo command file (AIX)

for file BLT example 198
for fi le transfer example 98

refr igerator
business logic 183
procedure ″delivery.c″ 189
procedure ″foodinq.c″ 188
procedure ″fridge1.c″ 184

remote queue 36
repair l ist

Visual Basic project 159
request message 4
response message 4
return address 48
return codes 54
role 138
rootvg 22
routing information 32

266 MQ3T Examples for Windows Clients and AIX Servers

routing messages 99
rule 6

correlate messages 138
define for ... 128
dependency 128
state dependent 136
t imed 135

run-time components 3
run-time utility SPEEDUP 64
runmqchl 84, 90
runmqsc 24, 36, 68, 82
runmqtrm 83, 84, 90
running HELLO1 73

S
sampcoma.tst 68
scroll bar 145
SDDM 4, 8, 169

data conversion 204
SDDM API calls 8, 65
SDDM error handling 66
SDDM validity checking 66
sdiff command 69
Self-Defining Data Manager

See SDDM
sending class, instance 48
server 1

3T functions 3
channel for client 37
check MQ connection from client 37
create MQM objects 22
installation (AIX) 16
local queue for client 36
run HELLO1 73
setup and compile HELLO1 67
setup for BLT 198

set 59, 169
set-up

MQ3T file transfer 86
MQI file transfer 80

setup
DOS 7.0 28
Windows 3.1 29

shell script first.cmd 85
shell script foo1.cmd 80
shopping list

Visual Basic project 166
simulator 8
skeleton files 7, 98, 173
SMIT 17
software distribution application 107
SPEEDUP 64
start

channel 84
client for MQ3T file transfer 91
receiver for MQ3T file transfer 90
receiver for MQI fi le transfer 84
sender for MQ3T file transfer 90

start (continued)
sender for MQI file transfer 84
tr igger monitor 84

startjob uti l i ty 75, 92
state 46, 128
state and rule 136
strblm 73, 91
strmqm 68, 73, 90
strplm uti l i ty 74, 92
structured design 14
Sub Close_Click 45, 55
Sub DisplayCompCode 54
Sub Form_Load 44, 53
Sub Form_Unload 56
Sub MenuExit_Click 56
Sub MenuHelloBL_Click 49, 56, 59
Sub OAK1_NewEvent 48, 54
Sub ProcessPLEvent 55, 60
subnet mask 31
SupportPac 41

content 50
MA3B for Visual Basic 43

SVRCONN 37
system messages (3T) 125
system test 198
systems management requirements 13

T
tabstop 145
tar command 81, 87
TCP/IP 30

customization 31
installation (DOS) 30
ping 33
test connection 33

TCPBASE 30
TCPCHECK 33
TCPREAD 30
template 63
test 198
test configuration 33
test harness 8
text box 144
text button 160
three tiers 2
t ier 78

purpose 14
what it is 2

timed rules 135
timeout value 148
toaster

business logic 190
procedure ″cook.c″ 190

toucan.gif 79
transmission queue 82
tr igger 6, 57, 79, 83, 91
tr igger monitor 83, 84, 90

Index 267

tr igger monitor error 85
triggered target queue 83
triggering rules 13, 57
TRIGTYPE 83
Trim 106
types of API calls 65

U
uncompress command 81, 87
using VB 3T samples 67
using Visual Basic 77

V
validate design 7
variable length message 59
VBRUN300.DLL 43

install 42
VBX file 47, 50
verify cl ient/server connection 37
Visual Basic

3T interface 44
3T samples 43, 51

using the samples 67
3T support 41, 43
add file 143
and PLM 44
CBbl 170
endplm 75
generic frame and project 144
HELLO1 sample 51
HELLO2 sample 59
installation 40
make EXE 72
MQ3T API calls 251
new line 149
new project 142
notes to API calls 66
open project 71
program manager icons 41
start job 75
strplm 74
SupportPac 43

Visual Basic calls by reference/value 66

W
wave 123
window message ID 51
Windows 3.1 29
Windows client 34
Windows workstation 10, 15, 28
WM_USER 51, 96

Visual Basic 51
workstation 9, 10
WPARAM 47, 48, 50

X
xclear.c 194
xgremlin.c 197
xignore.c 195
xinquiry.c 196
xrepair.c 194

268 MQ3T Examples for Windows Clients and AIX Servers

ITSO Technical Bulletin Evaluation RED000

International Technical Support Organization
MQSeries Three Tier
Examples for Windows Clients and AIX Servers
March 1996

Publication No. SG24-4664-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
SG24-4664-00 IBML 

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department HZ8, Building 678
P.O. BOX 12195
RESEARCH TRIANGLE PARK NC
USA 27709-2195

Fold and Tape Please do not staple Fold and Tape

SG24-4664-00

IBML 

Printed in U.S.A.

SG24-4664-00

	MQSeries Three Tier Examples for Windows Clients and AIX Servers
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	How This Document is Organized
	Related Publications
	International Technical Support Organization Publications
	How Customers Can Get Redbooks and Other ITSO Deliverables
	How IBM Employees Can Get Redbooks and ITSO Deliverables

	Acknowledgments
	Chapter 1. IBM MQSeries Three Tier Overview
	The Three Tiers
	Run- Time Components
	Messages
	Message Flow
	3T Facilities
	Class Definition Compiler
	Application Program Interface
	Application Simulator
	Test Harness
	Job Viewer
	Self- Defining Data Manager
	Visual Basic Support
	Application Design
	The 3T Application Model
	The 3T Application Development Process
	Structured Application Design

	Chapter 2. Installation
	AIX Server
	MQSeries Base Product
	CSD 14 for MQSeries
	Creating MQM Objects
	MQSeries Three Tier for AIX
	Windows Client for Development
	IBM DOS 7.0
	MS Windows Version 3.1
	TCP/ IP
	MQSeries Windows Client
	3T Windows Client
	Visual Basic
	Visual Basic Support for Windows Clients
	Windows Client for Production

	Chapter 3. Using Visual Basic
	Introduction
	The SupportPac
	The Visual Basic / MQ3T Interface
	Parameter Passing
	SupportPac Content
	Base Functions
	Sample Programs
	Sample Read Only Code Fragments
	A Template for Your Own Program
	Run- Time Utility
	Application Programming Interface Calls
	Types of API Calls
	Notes to API Calls
	Using the Visual Basic 3T Sample Programs
	Preparations on the AIX Server
	Preparations on the Windows Client
	Running the HELLO1 Sample

	Chapter 4. File Transfer Example
	Application Description
	Set Up and Run the MQI Application
	Set Up of the Sender Workstation
	Set Up of the Receiver Workstation
	Running the File Transfer Example
	Set Up and Run the MQ3T Application
	Set Up the Sender Workstation
	Set Up the Receiver Workstation
	Set Up the Windows Workstation
	Running the MQ3T File Transfer Example
	Developing the MQ3T Application
	Defining Class Source Files
	Compiling Class Source Files
	Routing Messages
	Writing the Business Logic
	Writing the Presentation Logic
	A Software Distribution Application

	Chapter 5. The Bacon Lettuce and Tomato Sandwich
	Requirements
	Business Analysis
	Objects and Their Functions
	Message Flow between Objects
	GUI Prototypes
	3T Design
	3T Classes
	Messages
	Class Descriptions
	Rules and Methods
	Design Crosscheck
	Building the GUIs
	Project Konrad
	Project Luigi
	Project Gremlin
	Project Repair List
	Project Shopping List
	Building the Business Logic
	Creating Skeleton Files
	Creating The Business Logic
	System Test

	Chapter 6. Data Conversion
	Creating a Conversion DLL for AIX
	Creating a Conversion DLL for OS/ 2

	Appendix A. Class Source Files for BLT Example
	A.1 Messages for The BLT Example
	A.2 Class Descriptions for The BLT Example
	A. 3 Class Source File for BASKET
	A. 4 Class Source File for BREADBOX
	A. 5 Class Source File for FRIDGE
	A.6 Class Source File for GREMLIN
	A. 7 Class Source File for GROCER
	A. 8 Class Source File for KAREN
	A.9 Class Source File for KONRAD
	A.10 Class Source File for LUIGI
	A.11 Class Source File for MICRO
	A.12 Class Source File for REPAIR
	A.13 Class Source File for SHOPPING
	A.14 Class Source File for TOASTER
	A.15 Definitions for Class Source Files
	A.16 Definitions for Visual Basic

	Appendix B. Summary of MQ3T APIs
	Appendix C. Diskette Contents
	List of Abbreviations
	Index
	Special Characters
	Numerics
	B
	A
	C
	E
	D
	F
	J
	K G
	H
	L
	I
	M
	N
	O
	P
	Q
	R
	S
	T
	X
	U
	V
	W
	ITSO Technical Bulletin Evaluation RED000

