

International Technical Support Organization

Software Distribution for AIX:
A Solution for Installation and Configuration of
Pristine AIX Environments

February 1996

SG24-4508-00

IBM International Technical Support Organization

Software Distribution for AIX:
A Solution for Installation and Configuration of
Pristine AIX Environments

February 1996

SG24-4508-00

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Special Notices” on
page xv.

First Edition (February 1996)

This edition applies to Releases 1.2, 1.2.1 of NetView DM/6000 and Version 3.1 of Software Distribution for AIX, Program Number
5765-196 for use with the AIX Operating System Version 3.2.5 or higher.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

An ITSO Technical Bulletin Evaluation Form for reader's feedback appears facing Chapter 1. If the form has been removed,
comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Abstract

This document shows a practical example of how to design and implement a
solution to install and configure pristine AIX machines in an automated way. It
focuses on the installation and customization of Software Distribution for AIX and
necessary communication subsystems, such as SNA Server. Two alternatives for
storing the configuration data - the AIX internal database ODM and DB2/6000 - are
also explained.

The book is written for customers and IBM personnel who will install a large
number of AIX machines and want to take a structured approach to maintain
control over a growing environment.

Some knowledge of AIX, including Korn Shell, Software Distribution for AIX and the
basic concepts of change and configuration management, is needed.

(464 pages)

 Copyright IBM Corp. 1996 iii

iv Pristine AIX Environments

 Contents

Abstract . iii

Special Notices . xv

Preface . xvii
How This Redbook Is Organized . xvii
Related Publications . xix
International Technical Support Organization Publications xix
ITSO Redbooks on the World Wide Web (WWW) xx
Acknowledgments . xxi

Chapter 1. The Overall Picture . 1

Chapter 2. Base of Automated Configuration 5
2.1 Objective and Overview . 5
2.2 Defining Which Types of Nodes We Want to Configure 7
2.3 Defining Configuration Activities . 8
2.4 Defining Interfaces and Prerequisites . 9

Chapter 3. Designing a Data Model for Configuration Data 11
3.1 Defining a Method to Store Configuration Data 11
3.2 Defining Object Classes . 12

3.2.1 The nvdm_node Object Class . 13
3.2.2 The nvdm_groups Object Class . 15
3.2.3 The nvdm_users Object Class . 15
3.2.4 The nvdm_servers Object Class . 16
3.2.5 The nvdm_queues Object Class . 16
3.2.6 The nvdm_cfg_static Object Class . 17

3.3 Creating Test Data for Configuring the Test Environment 17
3.4 Limitations . 26

Chapter 4. Designing and Implementing the Configuration Procedure . . 29
4.1 General Recommendations . 30
4.2 Database Access Procedures . 31
4.3 How the Configuration Script Works . 33
4.4 Customizing the NetView DM/6000 Configuration File 37
4.5 Adding NetView DM/6000 Users to AIX . 39
4.6 Configuring SNA Server . 41

4.6.1 Determining SNA Configuration Parameters 42
4.6.2 Saving the Current SNA Configuration 46
4.6.3 Configuring the SNA DLC interface . 47
4.6.4 Configuring the SNA Initial Node Setup Profile 47
4.6.5 Configuring the SNA Control Point Profile 48
4.6.6 Configuring the SNA DLC Profile . 49
4.6.7 Configuring the SNA Link Station Profile 51
4.6.8 Configuring the SNA Local LU Profile 53
4.6.9 Configuring the SNA Mode Profile . 55
4.6.10 Configuring the SNA TPN Profiles . 56
4.6.11 Configuring SNA Partner LU Profile 57
4.6.12 Configuring the SNA LU 6.2 Location Profile 58

 Copyright IBM Corp. 1996 v

4.6.13 Configuring the SNA Side Information Profiles 59
4.7 Configuring SNA/DS Connection Profiles 61
4.8 Configuring SNA/DS Routing Table . 65
4.9 Configuring Local Targets . 68
4.10 Configuring Target Groups . 74
4.11 Configuring Remote Targets . 76
4.12 Miscellaneous Matters . 79
4.13 Limitations . 81

Chapter 5. Testing the Automatic Configuration Script 83
5.1 Prerequisites for Node Configuration . 83
5.2 Starting the Node Configuration . 83
5.3 Automating the Configuration Process . 89

Chapter 6. Using the ODM Editor to Change the Configuration 99
6.1 Editing the Configuration . 99
6.2 Reconfiguring the Network . 106
6.3 Other Ways to Store Configuration Data 108

Chapter 7. Customizing and Extending the Configuration Procedure . . 109
7.1 Determining Configuration Commands . 109

7.1.1 Determining NetView DM/6000 Commands 109
7.1.2 Determining AIX Commands . 112
7.1.3 Determining SNA Server Commands 116

7.2 Changing Configuration Files . 119
7.3 Adjusting the Data Model . 121

7.3.1 Introducing New Global Variables . 121
7.3.2 Changing the Data Model . 124

Chapter 8. Enhancing the Configuration Procedure 131
8.1 Configuring Intermediate Nodes . 131

8.1.1 Adjusting the Data Model . 133
8.1.2 Adjusting the SNA/DS Connection Configuration Files 134
8.1.3 Adjusting the SNA/DS Routing Table 138

8.2 Configuring NetView DM/MVS . 142
8.3 Configuring NetView DM TCP/IP Ports 151
8.4 Configuring the root.cli File . 153

Chapter 9. Configuring a Production Environment 155
9.1 Customizing the Configuration Procedure 155
9.2 Testing the Configuration Procedure . 155
9.3 Generating Configuration Data for the Target Environment 156

9.3.1 Creating ODM Definitions Automatically 157
9.4 Defining a Roll-Out Strategy . 162

9.4.1 Installing Software . 162
9.4.2 Configuring Software Products . 164

Chapter 10. Pristine Installation . 167
10.1 Overview and Objective . 167
10.2 The Pristine Installation Process . 168
10.3 Prerequisites for Server and Model Workstation 169
10.4 Creating the System Backup Image . 170
10.5 Preparing the Model Workstation and the Server 174
10.6 Booting the Client . 180

vi Pristine AIX Environments

10.7 Submitting the Install Request . 181
10.8 Configuring the NetView DM/6000 Server 187

Chapter 11. Migrating the Procedure to Software Distribution for AIX
V3.1 . 197

11.1 Configuration Matters . 197
11.1.1 Adding NetView DM Users to AIX 198
11.1.2 Configuring SNA/DS Connection Profiles 201
11.1.3 Configuring Local Targets . 203
11.1.4 Configuring Remote Targets . 211
11.1.5 Configuring Target Groups . 214
11.1.6 Restarting Software Distribution for AIX 215
11.1.7 Updating Server Information . 216

Chapter 12. Implementing the Configuration Data Model Using DB2/6000 219
12.1 Advantages of DB2/6000 over ODM . 219
12.2 General Steps in Installing and Configuring DB2/6000 220

12.2.1 The Overall Picture . 220
12.2.2 Installing DB2/6000 on the Target Machine 222
12.2.3 Common Actions for Server and Client 223
12.2.4 Further Server Configuration . 225
12.2.5 Further Client Configuration . 226

12.3 Depicting the Data Model for the Configuration Data in DB2/6000 . . . 227
12.3.1 Porting of the ODM Data Model to DB2/6000 228
12.3.2 Creating and Recreating the Configuration Database 231
12.3.3 Authentication Types and Security Considerations 247
12.3.4 An Improved Data Model of the Configuration Database 250

12.4 Database Access Procedures . 253

Chapter 13. Testing the Automatic Configuration Procedure with
Software Distribution for AIX V3.1 with DB2/6000 259

13.1 Prerequisites for Node Configuration . 260
13.2 Starting the Configuration . 260
13.3 Checking the NetView DM/6000 Configuration 271

Chapter 14. Converting the Data Model between ODM and DB2/6000 . 275
14.1 ODM to DB2/6000 Conversion . 277
14.2 Extracting CC Domain Configuration from DB2 to ODM 282
14.3 Remote Software Distribution for AIX Configuration with Different

Database Support . 286

Chapter 15. Modifying Configuration Data Using a Graphical User
Interface . 293

15.1 Using the Graphical Interface for Changing Configuration Data 295
15.1.1 Updating Network Global Parameters 296
15.1.2 A Guided Way for Inserting New Software Distribution for AIX

Nodes . 299
15.1.3 Conventional Database Table Browsing and Updating 305

15.2 Implementation Insights . 306
15.2.1 The Database Access Part . 307
15.2.2 The Database Frames Part . 311
15.2.3 The Main Program . 313
15.2.4 Features of the Graphical Interface Program 314

 Contents vii

Chapter 16. Cloning Systems Using Software Distribution for AIX 3.1 . 317
16.1 Overview and Objective . 317
16.2 File and Directory Structure . 318
16.3 Prerequisites . 319
16.4 Installing AIX 4.1 on a Pristine Client . 320

16.4.1 Creating File Systems . 320
16.4.2 Copying the Client Image . 321
16.4.3 Creating the System Backup Image 321
16.4.4 Customizing the Default File . 322
16.4.5 Describing the Pristine Client . 323
16.4.6 Running the Preparation Script . 323
16.4.7 Customizing the bosinst.data File 326
16.4.8 Defining the Pristine Client as a CC Client 327
16.4.9 Booting the Pristine Client . 327
16.4.10 Customizing the fnd_bi_tool File 328
16.4.11 Building the Installation Change File 329
16.4.12 Submitting the Change Request 329
16.4.13 Cleaning Up the Network Server 329

Appendix A. The Configuration Script Listings 331
A.1 Script for NetView DM/6000 Version 1.2 Using ODM 331
A.2 Configuration Script for NetView DM for AIX Version 3.1 Using

DB2/6000 . 370

Appendix B. Script Reference Information 411
B.1 Shell Variables . 411
B.2 Files Contained in Sample Configuration Code 413

Appendix C. Source Code of the Graphical User Interface 419
C.1 Makefile . 419
C.2 Database Access . 420
C.3 Database Frames . 431
C.4 Main Program . 452

Index . 461

viii Pristine AIX Environments

 Figures

1. Scenario for Automatic Configuration of NetView DM/6000 6
2. NetView DM/6000 Node Types . 7
3. Configuration Object Classes . 12
4. Class Definition File . 18
5. Output from odmcreate Command . 20
6. Data Definition File for nvdm_node Class 21
7. build_db Shell Script . 22
8. Data Definition File for nvdm_groups Class 23
9. Data Definition File for nvdm_users Class 24

10. Class Definition File for nvdm_servers Class 25
11. Class Definition File for nvdm_queues Class 26
12. Structure of the Configuration Procedure 29
13. get_attribute Shell Procedure . 31
14. get_attribute_list Shell Procedure . 32
15. get_attribute_and Shell Procedure . 33
16. Configuration Steps . 35
17. configure_nvdm_cfg Shell Procedure . 38
18. add_users_aix Shell Procedure . 40
19. get_sna_attributes Shell Procedure . 44
20. export_sna Shell Procedure . 46
21. configure_sna_dlc Shell Procedure . 47
22. sna_initial Shell Procedure . 48
23. configure_sna_cp Shell Procedure . 49
24. configure_sna_dlc_profile Shell Procedure 50
25. configure_sna_link Shell Procedure . 52
26. configure_sna_local_lu Shell Procedure 54
27. configure_sna_mode Shell Procedure . 55
28. configure_sna_send Shell Procedure . 56
29. configure_sna_receive Shell Procedure . 57
30. configure_sna_partner Shell Procedure . 58
31. configure_sna_location Shell Procedure 59
32. configure_side_snd Shell Procedure . 60
33. configure_side_rcv Shell Procedure . 61
34. get_queues Shell Procedure . 62
35. configure_sna_ds_conn Shell Procedure 63
36. configure_sna_ds_appc Shell Procedure 64
37. configure_sna_ds_tcpip Shell Procedure 65
38. configure_routetab Shell Procedure . 66
39. nvdm_delete_targets Shell Procedure . 69
40. nvdm_save_history Shell Procedure . 70
41. Sample Software Inventory File . 71
42. nvdm_configure_targets Shell Procedure 72
43. nvdm_delete_groups Shell Procedure . 75
44. nvdm_configure_groups Shell Procedure 76
45. nvdm_remote_targets Shell Procedure . 78
46. restart_nvdm Shell Procedure . 80
47. Configuration Log File rs60007.log (Part 1) 84
48. /usr/lpp/netviewdm/db/nvdm.cfg File on rs60007 86
49. Output from lsuser Command . 86
50. /usr/lpp/netviewdm/db/snads_conn/RS600015 File 87

 Copyright IBM Corp. 1996 ix

51. /usr/lpp/netviewdm/db/routetab File on rs60007 87
52. Output from lstg Command . 88
53. Ouput from lsgp Command . 89
54. Automating the Configuration Process . 90
55. configure_network Shell Script . 92
56. build_net_db Shell Script . 93
57. Configuration Log File network.log . 94
58. odme Startup Window . 100
59. rebuild_db Shell Script . 101
60. edit_db Shell Script . 102
61. odme Retrieve/Edit Objects Window . 103
62. odme Retrieve/Edit Objects Window . 103
63. NetView DM/6000 Catalog Window (rs60007) 104
64. Install Change Files Window . 105
65. Target History Window . 105
66. NetView DM/6000 Catalog (rs600015) Window 106
67. NetView DM/6000 Targets (rs600015) Window 107
68. Target History Window After configure_network Completed 107
69. Software Distribution for AIX V3.1 Commands 110
70. NetView DM/6000 Commands . 111
71. SMIT User Menu . 113
72. SMIT Create User Panel . 114
73. SMIT Show Command String Window 115
74. SMIT SNA Server/6000 Menu . 116
75. SMIT Add LU 6.2 Local LU Profile panel 117
76. SMIT Show Command String Window 118
77. Verify Configuration Profiles Panel . 119
78. ODM Class Definition File config_db2.cre 125
79. Data Definition File nvdm_node2.odmadd 127
80. add_fs_repos Shell Procedure . 128
81. Output from df Command . 129
82. Intermediate Node Scenario . 132
83. Class Definition File . 134
84. configure_sna_ds_conn Shell Procedure 137
85. configure_routetab Shell Procedure . 139
86. SNA/DS Routing Table (Server A) . 141
87. SNA/DS Routing Table (Server B and C) 141
88. Sample Procedure to Configure NetView DM/MVS 143
89. Sample Definition for nvdm_node Class 148
90. Sample Definition for nvdm_servers Class 149
91. Output File Created by nvdm_mvs Script 150
92. check_ports Shell Procedure . 152
93. uicfg.c Program . 153
94. Generating ODM Classes Automatically 158
95. Organization Structure File . 158
96. Example Corporate Structure . 159
97. SMIT Add a Journaled File System Panel 172
98. SMIT Change a Logical Volume Panel 173
99. SMIT Backup the System Panel . 174
100. Boot_Serv.config File on rs60007 . 176
101. bserv.log Log File . 178
102. profile.backup File on rs60007 . 180
103. NetView DM/6000 Targets Window . 182
104. NetView DM/6000 Target Connection Status Window 182

x Pristine AIX Environments

105. NetView DM/6000 Catalog Window on rs60007 183
106. NetView DM/6000 Install Change Files Window 183
107. /export/nvdma/rs600015/work/request.out File 184
108. NetView DM/6000 Target History Window 186
109. Code to Change Server Settings . 188
110. Code to Restart NetView DM/6000 Server 189
111. netlog3 Log File . 190
112. nvdm_delete_users Shell Procedure (for Version 3.1) 199
113. add_users_aix Shell Procedure (for Version 3.1) 200
114. configure_sna_ds_appc Shell Procedure (for Version 3.1) 202
115. configure_sna_ds_tcpip Shell Procedure (for Version 3.1) 203
116. nvdm_delete_targets Shell Procedure (for Version 3.1) 205
117. rs600016.req Request Log File . 207
118. nvdm_save_history Shell Procedure (for Version 3.1) 208
119. nvdm_configure_targets Shell Procedure (for Version 3.1) 210
120. nvdm_remote_targets Shell Procedure (for Version 3.1) 213
121. Output from nvdm lsgp (NetView DM/6000 V1.2) 214
122. Output from nvdm lsgp (Software Distribution for AIX V3.1) 214
123. nvdm_delete_groups Shell Procedure (for Version 3.1) 215
124. restart_nvdm Shell Procedure (for Version 3.1) 216
125. nvdm_update_server Shell Procedure (for Version 3.1) 218
126. DB2/6000 Overview in a Network Environment 221
127. Direct Porting of the ODM Data Model to DB2/6000 228
128. Referential Constraints between Tables 229
129. Reflexive Referential Dependences Derived from the ODM Data Model 230
130. Building the Configuration Database NVDM_CFG (Script build_db) . . 232
131. Creating and Recreating the Configuration Database NVDM_CFG (Script

db_c . 234
132. Database Table Definitions (Script db_model.sql) 236
133. Script db_comment.sql for Adding Comments to the Database Objects 240
134. Database User Authorizations (Script db_authorize.sql) 242
135. Import of Data for the Tables of NVDM_CFG (Script db_import) 243
136. Import Data File for Table nvdm_node 243
137. Database Creation Log Output . 245
138. An Improved Data Model for NVDM_CFG 251
139. Database Access Procedures for the Database NVDM_CFG (DB2/6000) 254
140. Scenario for Automatic Configuration of NetView DM/6000 V3.1 with

DB2/60 . 259
141. Script select_db for Generating Reports from the NetView DM/6000

Configuration Database . 261
142. Contents of DB2/6000 Table nvdm_node 261
143. Contents of DB2/6000 Table nvdm_servers 261
144. Contents of DB2/6000 Table nvdm_groups 262
145. Contents of DB2/6000 Table nvdm_queues 262
146. Contents of DB2/6000 Table nvdm_users 262
147. Contents of DB2/6000 Table nvdm_cfg_static 263
148. Log File Contents After Configuration Procedure 264
148. Log File Contents After Configuration Procedure 260
148. Log File Contents After Configuration Procedure (Part 1 of 2) 260
148. Log File Contents After Configuration Procedure (Part 2 of 2) 260
148. Log File Contents After Configuration Procedure 260
148. Log File Contents After Configuration Procedure 260
149. Configured Targets on the Server rs60004 271
150. Connection Queues configured on rs60004 272

 Figures xi

151. Contents of Routing Information File /usr/lpp/netviewdm/db/routetab . . 272
152. Locally Configured User Profiles on rs60004 273
153. Mixed Use of DB2/6000 and ODM in a Distribution Network 276
154. Configuration Data Conversion Processes 277
155. ODM-to-DB2/6000 Conversion Script odm2db2 278
156. Creating the DB2/6000 Database from ODM (Script build_db_odm) . . 281
157. Extracting Domain Configuration Related to a Specific Host (Script

db22odm) . 282
158. Automatic Remote Configuration of NetView DM/6000 (Script

configure_network_univ) . 286
159. Output Log for the Execution of configure_network_univ 291
160. Main Window of the Graphical User Interface 296
161. Updating Distribution Network Global Information (Table

NVDM_CFG_STATIC) . 297
162. Entering a New NetView DM/6000 Node Name 299
163. Inserting the Node-Specific Data into Table NVDM_NODE (Part 1) . . 301
164. Inserting the Node-Specific Data into Table NVDM_NODE (Part 2) . . 302
165. Inserting the Server-Specific Data into Table NVDM_SERVERS 304
166. Inserting the User-Specific Data into Table NVDM_USERS 305
167. Table View of NVDM_NODE . 306
168. Database Access Include File dbAccess.h 308
169. Database Frames Include File dbFrames.h 312
170. Steps in Pristine Installation Scenario . 317
171. Configuration File for Pristine Client . 323
172. Preparation Script Log . 326
173. bosinst.data File . 327
174. config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database 328
175. config_nvdm Shell Script Software Distribution for AIX V3.1 with

DB2/6000 Database . 370
176. Makefile for the Graphical User Interface uicfgdb 419
177. Generic Database Interface dbAccess.h 420
178. DB2/6000 Implementation File dbAccessDB2.c 422
179. Database Frames Include File dbFrames.h 431
180. Database Frames Implementation File dbFrames.c 432
181. Graphical User Interface Main Program (uicfgdb.c) 452

xii Pristine AIX Environments

 Tables

1. SNA Configuration Parameters . 42
2. Comparison between Different Access Approaches to the Configuration

Data . 293
3. Global Shell Variables . 411
4. Filelist for Sample Code . 414

 Copyright IBM Corp. 1996 xiii

xiv Pristine AIX Environments

 Special Notices

This publication is intended to help customer staff and IBM personnel to plan and
implement large networks of AIX workstations. The information in this publication is
not intended as the specification of any programming interfaces that are provided
by NetView DM/6000 and Software Distribution for AIX. See the PUBLICATIONS
section of the IBM Programming Announcement for NetView DM/6000 and
Software Distribution for AIX for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM (VENDOR)
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and depends
on the customer's ability to evaluate and integrate them into the customer's
operational environment. While each item may have been reviewed by IBM for
accuracy in a specific situation, there is no guarantee that the same or similar
results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative to
the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

 Copyright IBM Corp. 1996 xv

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Windows is a trademark of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Other trademarks are trademarks of their respective companies.

AIX AIX/6000
AIXwindows APPN
DATABASE 2 DB2
DRDA IBM
InfoExplorer OS/2
OS/400 RISC System/6000
VTAM 400

HP Hewlett-Packard Company
Motif Open Software Foundation Incorporated
ODM Optical Disk Mastering, Incorporated
NFS, Solaris, Sun Sun Microsystems, Incorporated

xvi Pristine AIX Environments

 Preface

In this redbook we will show a solution for installing and configuring pristine AIX
machines in a highly automated way. The redbook focuses on the installation and
customization of the AIX operating system, Software Distribution for AIX and
necessary communication subsystems such as SNA server. We also explain two
alternatives for storing the configuration data - the AIX internal database ODM and
DB2/6000.

The book guides you in getting started in the disciplines of change and
configuration management in a new environment. The original design and
implementation that is the basis for this book is used in a customer environment
and has already proven its usability in covering daily business needs during a
roll-out of several hundred machines.

The book is written for technical staff who will install a large number of AIX
machines and want to take a structured approach to maintain control over the
configuration data in a growing distributed environment. It can also be used by
project managers to get an impression of what can be done even if they are not
interested in implementation details.

As this book deals intensively with AIX, including Korn Shell, Software Distribution
for AIX as well as change management and configuration management aspects,
some basic knowledge is assumed in these areas.

Yes or No ?

No: It is a competitive solution that covers major aspects of configuration
management - for example inventory discovery.

No: The customer is locked in with this solution and cannot take
advantage of future configuration management features.

Yes: The data access modules are implemented in a way so that they can
be adapted easily to, for example, a configuration database under
the SystemView family.

Yes: Once it is implemented and adapted to an environment it saves a lot
of time and avoids typical errors that occur through manual
configuration.

How This Redbook Is Organized
The redbook is basically divided into two main parts:

� Chapters 2 through 10 set up the framework and explain how to implement this
kind of solution with NetView DM/6000 and the ODM database; how to extend
it and give you some ideas on how to transfer the test environment to a
production environment.

� From Chapter 11 to 16 we will enhance the configuration procedure, use
Software Distribution for AIX Version 3.1, use DB2/6000 to store the
configuration data and guide you through the process of developing a simple
graphical interface to maintain the database.

 Copyright IBM Corp. 1996 xvii

The chapters are organized as follows:

� Chapter 1, “The Overall Picture” gives you an overview of what will be covered
in the following chapters and will also explain the background of why certain
parts are designed and implemented the way they are.

� Chapter 2, “Base of Automated Configuration” provides an introduction to the
automated configuration, sets the objective for the following chapters and
defines which node types will be supported.

� In Chapter 3, “Designing a Data Model for Configuration Data” we design a
data model that represents the node types that we want to configure. As for
the first start, we use the AIX internal database ODM.

� Chapter 4, “Designing and Implementing the Configuration Procedure” will
guide you through the different basic configuration procedure to install and
customize NetView DM/6000 and SNA server. The objective is to have an
installation that allows you to use means of change management from then on.

� Chapter 5, “Testing the Automatic Configuration Script” shows you the result of
the configuration with an example of how a network can be set up and tested
to ensure the correctness and usability of the setup.

� Chapter 6, “Using the ODM Editor to Change the Configuration” gives you
some hints on how you can use and exploit the ODM database and some of its
tools, for example the ODM editor.

� Chapter 7, “Customizing and Extending the Configuration Procedure” advises
you if you wish to enhance the configuration procedure and include additional
products that need specific customization steps.

� Chapter 8, “Enhancing the Configuration Procedure” guides you through a
situation where the data model and certain parts of the procedure must be
changed. We use the configuration of an intermediate node scenario as an
example.

� In Chapter 9, “Configuring a Production Environment” we explain what needs
to be done in order to use this approach in a production environment and show
an example of how to develop a roll-out strategy.

� In Chapter 10, “Pristine Installation” we exploit some new features of NetView
DM/6000 that allow us to back a system up and install this image as a base
system on pristine machines.

� Chapter 11, “Migrating the Procedure to Software Distribution for AIX V3.1”
shows you a way to adapt the scenario to the new version of Software
Distribution for AIX in order to take advantage of the new features and
functions.

� In Chapter 12, “Implementing the Configuration Data Model Using DB2/6000”
we transfer the ODM data model to DB2/6000 and use SQL to access the
database. You will also find a way to isolate the configuration procedure from
the data model in order to keep it as independent as possible.

� Chapter 13, “Testing the Automatic Configuration Procedure with Software
Distribution for AIX V3.1 with DB2/6000” gives you an example of the behavior
of the system. It shows the definitions to be made in the configuration for a
complete scenario and output that you get when you run the configuration
procedures on the different node types.

xviii Pristine AIX Environments

� In Chapter 14, “Converting the Data Model between ODM and DB2/6000” we
give you an example of how to start with the implementation on ODM and
move it to DB2/6000. It also shows you how you can take advantage of the
strengths of both systems and automate the whole process even more.

� In Chapter 15, “Modifying Configuration Data Using a Graphical User Interface”
we guide you through an example where we develop a simple graphical
interface that allows you to maintain the configuration data base. It is written in
such a way that you can easily adapt it to the needs in your environment.

� Chapter 16, “Cloning Systems Using Software Distribution for AIX 3.1” deals
with the new functions that are available in Software Distribution for AIX to
install an AIX operating system using the change management product.

 Related Publications
The publications listed in this section are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

� NetView DM/6000 R1.2 Concepts and Overview, GH19-5001

� NetView DM/6000 R1.2 Installation and Customization Guide, SH19-5002

� NetView DM/6000 R1.2 Installation and Configuration Guide, SH19-5005

� NetView DM/6000 R1.2 User's Guide, SH19-5003

� NetView DMA/6000 V1R1 User's Guide, SH19-4071

� NetView DM/6000 R1.2 Message and Error Recovery Guide, SH19-5004

� Software Distribution 3.1 for AIX Concepts, GH19-4161

� Software Distribution 3.1 for AIX Getting Started, SH19-4162

� Software Distribution 3.1 for AIX User's Guide, SH19-4163

� Software Distribution 3.1 for AIX Installation and Customization Guide,
SH19-4164

� DB2/6000 Programming Reference, SC09-1573

� DATABASE 2 SQL Reference, SC09-1574

� DB2 Call Level Interface Reference and Guide, SC09-1626

� AIXwindows Programming Guide, SC23-2632

� AIX User Interface Programming Concepts, Volume 1, SC23-2404

International Technical Support Organization Publications
� The NetView Distribution Manager/6000 Cookbook, GG24-4246

� NetView Distribution Manager/6000 Release 1.2 Agents and Advanced
Scenarios, GG24-4490

� Software Distribution for AIX: Migration Aspects, GG24-4621 (will be available
second quarter 1996)

� Distributed Relational Database Cross Platform Connectivity and Application,
SG24-4311

 Preface xix

A complete list of International Technical Support Organization publications, known
as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on MKTTOOLS as
ITSOCAT TXT. This package is updated monthly.

How to Order ITSO Technical Publications

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or
by faxing 1-800-445-9269. Most major credit cards are accepted. Outside the
USA, customers should contact their local IBM office. For guidance on
ordering, send a PROFS note to BOOKSHOP at DKIBMVM1 or E-mail to
bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized sets,
called BOFs, which relate to specific functions of interest. IBM employees and
customers may also order ITSO books in online format on CD-ROM collections,
which contain books on a variety of products.

ITSO Redbooks on the World Wide Web (WWW)
Internet users may find information about redbooks on the ITSO World Wide Web
home page. To access the ITSO Web pages, point your Web browser to the
following URL:

 http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. The internal
Redbooks home page may be found at the following URL:

 http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

xx Pristine AIX Environments

Subscribing to Internet Listserver

IBM redbook titles/abstracts are now available through Internet E-mail via the
IBM Announcement Listserver. With an Internet E-mail address, anyone can
subscribe to an IBM Announcement Listserver. All it takes is a few minutes to
set up a profile, and you can get news (in ASCII format) from selected
categories.

To initiate the service, send an E-mail note to:

announce@webster.ibmlink.ibm.com

with the keyword subscribe in the body of the note (leave the subject line
blank). A category form and detailed instructions will be sent to you.

To obtain more details about this service, employees may type the following:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

Note: INEWS users can select RelInfo from the action bar to execute this
command automatically.

 Acknowledgments
This project was designed and managed by:

Wolfgang Geiger
International Technical Support Organization, Raleigh Center

The authors of this document are:

Plamen Kiradjiev
IBM Germany

Stefan Uelpenich
IBM Germany

This publication is the result of a residency conducted at the International Technical
Support Organization, Raleigh Center.

Thanks to the following people for the invaluable advice and guidance provided in
the production of this document:

David Boone
Kathryn Casamento
Robert Macgregor
Linda Robinson
Gail Wojton
International Technical Support Organization, Raleigh Center

Thanks to the following people for the invaluable advice and guidance provided in
the production of this document:

Matteo Bonavita
IBM Network Systems Laboratory, Rome, Italy

 Preface xxi

Monica Galiano
IBM Network Systems Laboratory, Rome, Italy

Linda Harrell
IBM Network Systems Laboratory, Rome, Italy

xxii Pristine AIX Environments

Chapter 1. The Overall Picture

This book provides guidance on the installation and configuration of large
AIX-based production environments. It focuses on the configuration of NetView
Distribution Manager/6000 and the following version of this product called Software
Distribution for AIX which is part of the SystemView for AIX product family. It also
gives some advice on how to configure large networks of AIX workstations in
general.

The book is intended mainly for system designers and administrators who have to
plan and implement large networks of workstations. It may also be useful for
project managers to get an overview about what effort is required to establish the
base infrastructure for a large production environment.

This redbook is based on real customer requirements that have been implemented,
tested and used in the "real world" to set up a production environment of several
hundred AIX machines. The experiences that were noted during the test phase
and usage of the package lead to the different enhancements that are also
reflected in the book.

This approach is not intended to be:

� A "competitive" solution for any configuration management product that may
become part of the SystemView family. This approach shows you a way to get
started with configuration and change management and because the access
routines are isolated, this solution can be adapted easily to a new, more
complex configuration data base.

� A one-size-fits-all solution - meaning that for very large projects you will
probably have to extend the package, for example, to better control
administrative work from a security point of view.

Also, for very small projects it may be that it is more efficient to to do certain
parts manually to save the (relatively small) overhead that is related to this
implementation.

This approach tries to:

� Encourage you to take a planned and systematic approach when you have to
install and configure a large network of AIX workstations even if we do not
have a full blown configuration database yet

� Show the major advantages when you use a change management product
rather than some kind of an installation tool

� Be a guide that allows you to follow step by step to get to a solution that meets
production requirements

The effort needed to establish the network infrastructure for a large network is often
underestimated. In large, distributed networks it is especially important that the
machines to be used at remote locations are configured automatically and can be
upgraded while unattended.

The configuration might include several network components, such as network
adapters, communication protocols and communication products.

 Copyright IBM Corp. 1996 1

Throughout this book we will design and implement a configuration procedure that
can be used to configure the NetView DM/6000/Software Distribution for AIX nodes
in our software distribution network from a central configuration server. This
procedure will completely configure any node type in our example scenario nearly
without any interaction required at the workstations to be configured.

Preparing a software distribution network includes more tasks than just the
configuration of the change management product. The reason for this is that
NetView DM/6000/Software Distribution for AIX needs some prerequisites, for
example, a properly configured base operating system and communications
subsystem.

Therefore we define the following general tasks which have to be completed to
achieve a ready-to-use software distribution network:

� Installation and configuration of the base operating system

� Installation and configuration of network communication products

� Installation and configuration of the change management product, NetView
DM/6000 or Software Distribution for AIX

It is fully intended to support both versions of NetView DM/6000/Software
Distribution for AIX because there are cases, for example, when you have
many OS/2 and Windows agents, where you would still take NetView DM/6000
instead of Software Distribution for AIX. For more information on this topic
refer to the redbook Software Distribution for AIX: Migration Aspects,
GG24-4621.

Getting the Code

You can get a copy of all the files needed for this project via anonymous
FTP:

� For users outside the IBM network:

1. Connect to ftp.almaden.ibm.com using FTP user ID anonymous.

2. Download file /redbooks/GG244508/README.first in ASCII.

3. Download file /redbooks/GG244508/4508CODE.zip in binary.

� For users inside the IBM network:

1. Connect to rsserver.itso.ral.ibm.com using FTP user ID anonymous.

2. Download file /pub/GG244508/README.first in ASCII.

3. Download file /pub/GG244508/4508CODE.zip in binary.

IBM employees can also request the code by typing:

TOOLS SENDTO ROMEPPC LABFORUM NVDMREPO GET 45ð8CODE PACKAGE

The detailed steps needed to configure a specific environment will differ from
scenario to scenario. In order to develop our sample configuration we have chosen
an example scenario that represents the production environment we want to
configure.

In our scenario we will have:

� Two NetView DM/6000/Software Distribution for AIX servers

2 Pristine AIX Environments

� A NetView DM/6000/Software Distribution for AIX agent

� A NetView DM/MVS focal point system

The production environment that we will eventually configure includes the following
components:

� A central NetView DM/MVS system located at the headquarters and acting as
the focal point for all software distributions

� Approximately 320 RS/6000 systems, located at head offices and acting as
NetView DM/6000/Software Distribution for AIX servers

� Approximately 2200 RS/6000 systems, located at branch offices and acting as
NetView DM/6000/Software Distribution for AIX agents.

The systems are interconnected using different types of networks, including a WAN
(Wide Area Network) as well as several LAN (Local Area Network) networks.

In our example configuration procedure we will only configure LAN communications,
namely a token-ring network. However, in most production environments there will
also be WAN communications, for example, an X.25 network.

This book is divided into several parts:

In the first chapters we will design and implement a configuration procedure based
on a sample scenario. This will include the design of a data model which can be
used to hold configuration data.

As soon as the configuration procedure has been implemented, we will show how
to apply it to our example environment.

In chapter Chapter 6, “Using the ODM Editor to Change the Configuration” on
page 99 we show how the configuration database can be easily modified using the
AIX ODM editor (odme).

The configuration procedure that we describe in this book was developed for this
specific project and is therefore most likely to need customization for your own
environment. Therefore we have included some guidance on how to adapt and
extend the procedure in Chapter 7, “Customizing and Extending the Configuration
Procedure” on page 109.

Also we have included Chapter 8, “Enhancing the Configuration Procedure” on
page 131 in which we introduce new features to the configuration procedure that
were not included in the original procedure.

In chapter Chapter 10, “Pristine Installation” on page 167 we will combine the
configuration procedure with the pristine installation procedure supplied with
NetView DM/6000 Version 1.2.1 in order to show the completely automatic
configuration of a NetView DM/6000 server.

This chapter can also be used separately if you just need information about this
new pristine installation feature of NetView DM/6000.

In order to fully benefit from the contents of this book you should have a good
understanding of the NetView DM/6000/Software Distribution for AIX product; for

 Chapter 1. The Overall Picture 3

example, you should have some experience in using the NetView
DM/6000/Software Distribution for AIX command line interface.

Also, you should have at least some knowledge about shell programming, because
you will have to adapt the scripts presented in this book to your own needs.

4 Pristine AIX Environments

Chapter 2. Base of Automated Configuration

In this chapter we will describe the base of the automatic configuration for nodes in
a NetView DM network.

Throughout the book we will use this base to implement an automatic configuration
procedure for NetView DM/6000.

2.1 Objective and Overview
Our objective is to configure each node in a NetView DM/6000 network
automatically, no matter whether it is a CC server, a CC client or a preparation
system.

This process is considered to be part of a complete roll-out for a large number of
RS/6000 systems constituting a target network for a production environment.

Consider the following situation: We have a production environment with a large
number of RS/6000 systems, let's say about 1000, which need to be installed at
several different remote locations. Since it is very time consuming to install all
these systems manually, we need procedures to configure each system
automatically so that it can be used right after it has been installed.

To do so, several installation and configuration steps need to be performed
including the installation of the base operating system, configuration of network
adapters, etc. As soon as NetView DM/6000 has been configured automatically,
we can perform any additional configuration steps using NetView DM/6000.

This chapter will concentrate on the configuration of NetView DM/6000, but we will
also show some methods for the general configuration of pristine RS/6000 systems.

Configuration of NetView DM/6000 nodes in your network might be quite easy if
you have only a small number of CC servers. This is because then you can
configure your CC servers manually. Furthermore the configuration of a CC client
requires only a few steps, basically the customization of the nvdm.cfg file and the
local target definition on the server, so this could be done by a simple script.

However, the task becomes more challenging as soon as you have a larger
number of CC servers on your network. Because configuration of a NetView
DM/6000 server is normally more demanding and requires a large number of
configuration steps, therefore we did not want to do it manually but use an
automatic configuration routine instead.

The configuration routine that we develop in this chapter includes all tasks required
to configure any type of NetView DM/6000 node, including those configuration
steps not directly related to NetView DM/6000. For example, a connection to
NetView DM/MVS requires a working SNA connection, so we will develop a
procedure to configure SNA Server automatically so that it will establish an LU 6.2
session to NetView DM/MVS.

It is not intended to cover all configuration possibilities of the product because in
most cases you will only have a certain subset. Therefore we show how to extend

 Copyright IBM Corp. 1996 5

the configuration script and database in Chapter 7, “Customizing and Extending the
Configuration Procedure” on page 109.

The configuration procedure is developed and tested in a test scenario. In order to
configure a large production environment we also show methods to configure a
"real" production environment.

The transition from the test environment to the production environment is made just
by replacing the configuration database the configuration script uses. Therefore we
also develop a simple data model to represent the configuration data needed to
configure a NetView DM/6000 node.

We include a complete description of every configuration step we perform so that
you can use the procedures we create as building blocks for your own configuration
scripts.

The following figure shows the environment in which we develop and test our
configuration scripts:

Figure 1. Scenario for Automatic Configuration of NetView DM/6000

Creating an automatic configuration script for NetView DM/6000 is divided into the
following tasks:

� Defining which types of nodes we want to configure

� Defining which configuration activities are required for each type of node

� Defining interfaces to other configuration activities and prerequisites

� Designing a data model that represents the configuration

6 Pristine AIX Environments

� Designing and implementing a shell procedure for each configuration step

� Creating test data for configuring the test environment

� Testing the automatic configuration script in the test environment

� Showing procedures to replace test data with real production data

� Showing procedures to configure a large NetView DM/6000 network

For this part you should have a good understanding of NetView DM/6000 and the
AIX operating system. Depending on which components you need to configure in
your specific environment, you should also have at least a basic understanding of
these components. For example, if you have SNA connections you should have a
basic understanding of how to configure SNA Server.

Also, you should have some knowledge about Korn shell programming as well as
of some common UNIX tools, such as sed, awk, etc.

 Note

As far as the configuration of SNA connections is concerned we perform all
configuration activities using SNA Server commands. If you intend to use SNA
Services instead, you will have to adapt the procedures. If you need guidance
on how to configure either SNA Server or SNA Services for use with NetView
DM/6000, you should consult the redbook The NetView Distribution
Manager/6000 Cookbook GG24-4246.

2.2 Defining Which Types of Nodes We Want to Configure

Figure 2. NetView DM/6000 Node Types

We want to be able to configure any type of NetView DM/6000 node, where we
differentiate between the following:

� NetView DM/6000 server (CC server)

 Chapter 2. Base of Automated Configuration 7

� NetView DMA/6000 (CC client)

� NetView DM/6000 preparation system (CC server)

The preparation system can normally be treated as a CC server; nevertheless we
use a distinct type of node for preparation systems. The reason for this is that all
configuration data is held in a configuration database, so you can tell at any time
for example, how many servers, preparation systems and agents you have in your
network by just examining this database.

As far as configuration is concerned a CC server and a preparation system are
treated in the same way.

 Note

We do not have a different configuration track for preparation systems in our
specific configuration procedure but use the same track used for a NetView
DM/6000 server.

In your specific environment, however, you might want to have a distinct track
for preparation systems. For example, you may wish to create some file
systems on preparation systems.

We use the same configuration script for all types of nodes, so the script is able
to detect which type of node it is about to configure.

2.3 Defining Configuration Activities
We now define which configuration steps need to be performed for the different
node types.

 Note

We assume that a preparation system can be treated as a NetView DM/6000
server, so we have only two types of nodes, servers and agents.

For a NetView DM/6000 agent the following steps need to be performed:

� Configuring of the Workstation Name and Server fields in the nvdm.cfg file

� Configuring of product parameters like the size of log files etc. in nvdm.cfg

� Adding NetView DM/6000 users to AIX

For a NetView DM/6000 server the following steps need to be performed:

� Configuring SNA Server, including all link and session profiles

� Configuring SNA/DS connection profiles

� Configuring SNA/DS routing table

� Configuring all local targets

� Configuring all remote targets

� Configuring a focal point system

� Configuring all target groups

8 Pristine AIX Environments

 Note

Since a NetView DM/6000 server includes an agent, we imbed the configuration
steps necessary for an agent into the server and thus perform all steps
necessary for an agent also on a server. You should also note that the above
list is just an example of what is needed to perform a complete customization of
NetView DM/6000. This list needs to be extended for your specific
environment. Also, some steps may not be necessary in your environment; for
example, if you do not have a focal point in your network you can ignore the
procedure to configure a focal point system.

2.4 Defining Interfaces and Prerequisites
As mentioned before we will not cover every single step needed to install every
system on our network from scratch in this scenario. Instead, we concentrate on
configuring NetView DM/6000.

We try however, to give some examples of what else could be necessary to
achieve a completely automatic configuration of an RS/6000 system. Since we will
not discuss these additional steps in full detail, we define some of these steps as
prerequisites for our NetView DM/6000 configuration.

This means that for a completely automatic roll-out we assume that these steps
have been performed before the NetView DM/6000 configuration is done.

In our example we assume that the following steps have been performed before we
start configuring NetView DM/6000:

� The AIX base operating system has been installed on the node to be
configured.

� The NetView DM/6000 product has been installed on the node to be configured
(either server or agent).

� All other necessary products have been installed, for example SNA Server.

� A TCP/IP network connection to a central server has been configured.

� TCP/IP hostnames can be resolved on each node to be configured.

 Note

It is essential that each system which needs to be configured has a working
TCP/IP network connection to a central server. The configuration of each node
on the network will be initiated from that central server. How this can be done
is shown in 5.3, “Automating the Configuration Process” on page 89. For the
TCP/IP connection to work for example, the network adapter in each system
has to be configured.

We describe a pristine installation procedure in Chapter 10, “Pristine
Installation” on page 167 that performs all the above prerequisites. It is
combined with the configuration procedure and can therefore be used to
completely configure our software distribution network.

 Chapter 2. Base of Automated Configuration 9

10 Pristine AIX Environments

Chapter 3. Designing a Data Model for Configuration Data

One of the most important steps in creating an automatic configuration procedure
for NetView DM/6000 is to describe a data model that can hold the complete
configuration data to configure the software distribution network.

The intention of this chapter is to show you how to get started. In Chapter 7,
“Customizing and Extending the Configuration Procedure” on page 109 we explain
how you can easily extend the data model and adapt it to your needs.

Before we start we should have a look at the requirements for the configuration
data:

� The configuration database must contain all parameters necessary to
completely configure any NetView DM/6000 node on the network.

� The configuration database must be easily accessible from a Korn shell script.

� Data changes in the configuration database must not require any changes in
the configuration script.

� It must be possible to change the way of storing configuration data, for example
by using a relational database system. This should be transparent to the
configuration part of the script. The only change required for the script is
replacing the database access procedures. See Chapter 12, “Implementing
the Configuration Data Model Using DB2/6000” on page 219 for the
implementation of the NetView DM/6000 configuration data model in DB2/6000.

3.1 Defining a Method to Store Configuration Data
We could store all configuration data in flat ASCII files. However, we decided to
use the AIX Object Data Manager (ODM) to store all configuration data in the first
approach.

This has the following advantages:

� The way the ODM stores data forces you to structure your configuration data
using object classes. This is a great advantage over flat files where you do not
have any implicit structure.

� The ODM ensures integrity of your data because it will only let you add data
which is in the form predefined by the ODM class definition.

� The creation of ODM classes and objects is quite easy, as is access to objects
stored in the database.

� You can, for example, use the ODM editor odme to add new objects to your
software distribution network. We will show an example for this in Chapter 6,
“Using the ODM Editor to Change the Configuration” on page 99.

� It should be easily possible to move ODM data to another type of database, for
example a relational database later.

� The ODM is available on every AIX system for free.

 Copyright IBM Corp. 1996 11

 Note

We move the database to IBM Database 2/6000 in Chapter 12, “Implementing
the Configuration Data Model Using DB2/6000” on page 219. We also show
how to transfer data stored in the ODM to DB2/6000 tables and vice versa.

3.2 Defining Object Classes
 Note

This data model has been developed for a customer scenario and therefore
only reflects the requirements for this project. You should make your own
database design in any case.

Figure 3. Configuration Object Classes

The main task in defining the ODM database is to find the necessary object classes
and assign the necessary attributes.

12 Pristine AIX Environments

To define classes we have to find objects in our software distribution network which
have the same kind of attributes. All objects which share the same attributes can
then be grouped together forming an ODM class.

These classes will then be filled with instances representing the configuration of our
software distribution network.

The first thing we can define is that each RS/6000 system that we want to
configure will be a NetView DM/6000 node, so we will need to have an object
representing each node in our network. Since a node can either be a server, a
preparation system or an agent, we need to find out what all these types of nodes
have in common. Then this information can be stored in this general node class.

For example, each NetView DM/6000 node is a target, so this class must contain
all parameters needed to configure a target, such as a target short name,
description, etc. (Also, each node has a NetView DM/6000 server, even a server
itself because it acts as its own server.)

Furthermore, we have configuration parameters that are only needed for a server.
For example, only a server can have connections to other servers or a focal point
system using SNA/DS.

We will now discuss every class we use in this configuration in detail.

3.2.1 The nvdm_node Object Class
As mentioned above this class contains an instance for every node in our software
distribution network. This class holds all attributes which are needed for every
node.

The first attribute is the node_name. This is a special attribute because it will be
used by the ODM access methods as the search criteria when searching the ODM
database for matching objects.

When we fill the ODM database we will set this attribute to the IP hostname of the
node to be configured.

The node_name attribute will be included as a key in all ODM classes we define.
The configuration script can then query any ODM class with the IP hostname of the
node as the search argument. This enables us to pass only that one parameter,
the IP hostname, to the configuration script. The script can then obtain all the data
it needs from the ODM database by specifying just the node_name parameter.

The class nvdm_node will contain the following attributes:

� node_name: the IP hostname of the node to be configured

� node_type: the node type of the node to be configured

� short_name: the target short name of the node to be configured

� description: a description of the target

� contact_name, owning_manager, telephone_number, customer_name: descriptive
information

� server_name: the NetView DM/6000 server for that target

 Chapter 3. Designing a Data Model for Configuration Data 13

� group_name: the name of the target group this node belongs to

� target_os: the target operating system

Explanation :
Since every node acts as a target, they need all parameters needed to configure a
target. Parameters for a target that are the same for all nodes will not be stored
with the object, but hard-coded in our configuration script.

We have, however, included the target operating system for a target in the
nvdm_node class, although this attribute is always set to AIX in our example. The
procedure could be extended to be able to configure agents or servers for other
operating systems too.

 Note

Examples where our procedure could be extended to handle other operating
systems are the NetView DM/6000 agents for HP-UX, Sun OS and Sun Solaris.
Since we have defined that configuring an agent only requires configuration of
nvdm.cfg and addition of operating system users, these configuration steps can
easily be transferred to these agents. The configuration of nvdm.cfg can remain
unchanged, only the commands to add and change operating system users
(mkuser and chuser on AIX) need to be adapted to the other operating systems.

However, because the ODM only exists in AIX, the database access routines
would need to be adapted. For example, all ODM queries could be made
remotely to an AIX server by using rsh.

Another example where the data model and procedure could be extended is the
use of target specific tokens or an attribute that whether if a target is a
push-mode or pull-mode target.

Some of the attributes in the object class are mandatory, others are not. Each
node needs to have a short_name, a node_type and a server_name. A node, which
is always a target, can belong to a target group. If so, the group_name field
contains the name of this target group.

Each target has a corresponding NetView DM/6000 server_name. For a NetView
DM/6000 server node, this field contains the server itself because each server has
a target definition for itself.

 Note

Which parameters are mandatory is not only dependent on the NetView
DM/6000 product, but also on how we code the configuration script later. There
are some parameters which are essentially needed to configure the product,
such as server-agent relationships, so they must be supplied in the database.

Others can be set to defaults within the configuration script if no match is found
in the database. For example, if the configuration script does not find a match
for the target OS in the database it could set it to AIX by default.

To demonstrate how this class can be used, imagine the following example:

14 Pristine AIX Environments

We want to know which targets are defined for a NetView DM/6000 server. For
that purpose we just need to start an ODM query to display all objects in the
nvdm_node class where the server field matches the IP hostname of the server we
are looking for. We will discuss the syntax and the results of such a query later.

3.2.2 The nvdm_groups Object Class
The nvdm_groups object class will be used to store objects representing NetView
DM/6000 target groups.

It will also have an attribute node_name which identifies the node on which this
target group has to be created. Since target groups will be defined on NetView
DM/6000 servers only this class will only be accessed on nodes which are servers.

This class will contain one object for each group to be created on a NetView
DM/6000 server.

The class nvdm_groups will have the following attributes:

� node_name: the IP hostname of the node to be configured

� group_name: the group name of the group to be created

� short_name: the short name of the group to be created

� description: a description of the group to be created

Explanation:
The group_name attribute is a link to the attribute with the same name in the
nvdm_node object class. This enables the configuration script to find all nodes
belonging to the target group when creating it.

 Note

Since there is only one entry possible for the group_name field in the nvdm_node
class, a target can only belong to one target group in this example.

If you want a target to be able to belong to more than one target group you will
have to adapt the data model for that purpose.

3.2.3 The nvdm_users Object Class
The nvdm_users object class is used to store NetView DM/6000 users.

We will have one object for each user to be defined on each NetView DM/6000
server.

The class nvdm_users will contain the following attributes:

� node_name: the IP hostname of the node to be configured

� username: the user name of the user to be created

� usergroup: the user group of the user to be created

Explanation:

 Chapter 3. Designing a Data Model for Configuration Data 15

Here the node_name field identifies the target on which the user username has to be
added, where usergroup is the AIX user group this user will be in (FNDUSER,
FNDBLD, FNDADMN).

This class will be accessed on both the agent and server. The users for a target
will be configured on its server. On the target the user needs to be added as an
AIX user and assigned to the right AIX user group.

3.2.4 The nvdm_servers Object Class
By creating the nvdm_node class we have grouped all nodes in one class, whether
they are server or agent, because the attributes contained in this class are needed
for every node.

There are, however, attributes which are only needed for servers. These attributes
will be stored in the classes nvdm_servers and nvdm_queues.

The class nvdm_servers contains the parameters needed to configure SNA server.

The attributes are in detail:

� node_name: the IP hostname of the node to be configured

� local_lu_name: the name of the LU 6.2 used for NVDM communications, for
example, to a focal point system

� pu_name: the name of the SNA Physical Unit used for NVDM communications

� cp_name: the name of the SNA Control Point used for NVDM communications

� xid: the XID used for the server node

� sna: a flag indicating whether this node needs SNA configuration

Explanation:
The attributes stored in this class are the parameters that are unique for every
system when configuring SNA server. They will be discussed in detail when
creating the SNA Server configuration procedure.

The sna attribute can be set to yes or no indicating whether the server node_name
needs SNA configuration or not.

3.2.5 The nvdm_queues Object Class
The nvdm_queues object class will be used to configure SNA/DS queues. An
SNA/DS queue will be used for both types of communications, APPC and TCP/IP.

This class will contain the following attributes:

� node_name: the IP hostname of the node to be configured

� protocol: the communications protocol to be used

� remote_server: the short name of the remote server or focal point to which this
queue should be connected

� focal_point: flag indicating whether the remote server is a focal point or not

Explanation:

16 Pristine AIX Environments

The protocol parameter must be set to either APPC or TCP/IP. The remote_server
is defined by its short name. The configuration script will, among other things, also
create a remote target for that system.

If the focal_point flag is set to yes the remote target will be configured as a
report_to focal point.

3.2.6 The nvdm_cfg_static Object Class
The classes defined before will contain objects which are unique for every node.

However, we also have parameters that are unique in the entire software
distribution network and thus the same for all nodes to be configured. One
example is the SNA network name which normally exists only once in the whole
network.

 Note

In this example we assume that we will only configure SNA connections to one
central NetView DM/MVS system, so we will have only one SNA network name.
However, if you have more SNA connections that you want to configure in your
network, you will have to make some changes to the data model and the script.
We will give you some hints on how to do that later.

Since we do not want to hard-code these parameters in our script we will also store
these values in the ODM.

To do so we create a simple class, nvdm_cfg_static, which holds all data being the
same for every node.

This class will contain only two attributes, NAME and VALUE, where NAME identifies the
global parameter and VALUE stores its value. For the SNA Network name, NAME

could be set to SNA_NET_NAME and VALUE could be set to USIBMRA assuming
that USIBMRA is our SNA network name.

3.3 Creating Test Data for Configuring the Test Environment
We now define the configuration data for our test scenario and store it in ODM
classes.

First of all, we need to create the ODM classes used to store the configuration
data.

The following figure shows the ODM class definition file for the ODM database we
want to create:

 Chapter 3. Designing a Data Model for Configuration Data 17

#

Create ODM class files for NVDM configuration DB

#

#

the nvdm_groups class defines the target groups to be defined

on a server

#

class nvdm_groups {

 char group_name[25];

 char description[25];

 char short_name[9];

 char node_name[25];

}

#

the nvdm_node class describes the name (IP Hostname) and

type (Server, Agent, Prep Site) of the node, where

ð : NVDM Server

1 : NVDM Agent

2 : NVDM Prep Site

also included are attributes required for every node, like

the name of the NVDM/6ððð Server, etc.

#

group_name is a link to the nvdm_groups class specifying

the group this target belongs to

class nvdm_node {

 char node_name[25];

 short node_type;

 char short_name[9];

 char target_os[12];

 char description[25];

 char contact_name[25];

 char owning_manager[25];

 char telephone_number[2ð];

 char customer_name[2ð];

 char x_25_number[15];

 char server_name[25];

 link nvdm_groups nvdm_groups group_name group_name;

}

#

nvdm_users is a class containing the users

for a target. this class will be used on

servers and targets to define users

#

Figure 4 (Part 1 of 2). Class Definition File

18 Pristine AIX Environments

class nvdm_users {

 link nvdm_node nvdm_node node_name node_name;

 char username[9];

 char usergroup[12];

}

#

nvdm_cfg_static contains all parameters being

unique for all targets

#

class nvdm_cfg_static {

 char NAME[2ð];

 char VALUE[128];

}

#

the nvdm_servers class contains parameters only

needed to configure NVDM/6ððð Servers

#

class nvdm_servers {

link nvdm_node nvdm_node node_name node_name;

 char local_lu_name[13];

 char pu_name[9];

 char cp_name[9];

 char xid[9];

 char sna[4];

}

#

the nvdm_queues class contains connections to

remote servers

e.g. a Focal Point or remote administrator

#

Protocol must be "APPC" or "TCP/IP"

if Protocol is TCP/IP the remote_server

field must be filled with the IP hostname

of the remote server

#

This class will also be used to define

The remote server as a remote target automatically

#

class nvdm_queues {

link nvdm_node nvdm_node node_name node_name;

 char protocol[8];

 char remote_server[25];

 char focal_point[4];

}

Figure 4 (Part 2 of 2). Class Definition File

The class definition file should have a file name ending with .cre. Assuming that
our class definition is stored in the file config_db.cre the command for creating the
ODM classes is:

 Chapter 3. Designing a Data Model for Configuration Data 19

odmcreate -c config_db

 Note

You must have root user authority when invoking the above command as well
as all other commands mentioned in this chapter.

The syntax of the class definitions is similar to a structure definition in the C
programming language.

The attributes in a class are defined using data types such as char and short.
The link type is a special data type used to link an attribute in a class to an
attribute in another class with the same definition.

 Note

If you need more information about the format of the class definition file you can
refer to the manpage for odmcreate or to the appropriate InfoExplorer
document.

This command will create a file for each class we have defined in the ODM
directory which is /etc/objrepos by default. If you want to store them in another
directory you can set the environment variable ODMDIR to that directory, for
example, in a Korn shell:

export ODMDIR=/myodm

The odmcreate command will produce the following output:

nvdm_groups

nvdm_node

nvdm_users

nvdm_cfg_static

nvdm_servers

nvdm_queues

Figure 5. Output from odmcreate Command

Now that we have created the class files we can fill them with our configuration
data.

Data can be added to the ODM using the odmadd command. The argument
supplied with this command is the name of an ODM data file.

We will also refer to these data files as ODM definition files in this book.

This file has to be in a special format readable by the odmadd command. The
following figure shows the file which contains the data definition for the objects to
be added to the nvdm_node class:

20 Pristine AIX Environments

nvdm_node:

node_name = "rs6ððð7"

node_type = ð

short_name = "RS6ððð7"

target_os = "AIX"

description = "ITSO Raleigh development"

contact_name = "Stefan Uelpenich"

owning_manager = "Wolfgang Geiger"

telephone_number = "4711"

customer_name = "IBM"

x_25_number = ""

server_name = "rs6ððð7"

group_name = "Group1"

nvdm_node:

node_name = "rs6ððð15"

node_type = ð

short_name = "RS6ððð15"

target_os = "AIX"

description = "ITSO Raleigh test server"

contact_name = "Stefan Uelpenich"

owning_manager = "Wolfgang Geiger"

telephone_number = "4711"

customer_name = "IBM"

x_25_number = ""

server_name = "rs6ððð15"

group_name = "Group2"

nvdm_node:

node_name = "rs6ððð4"

node_type = 1

short_name = "RS6ððð4"

target_os = "AIX"

description = "ITSO Raleigh test client"

contact_name = "Stefan Uelpenich"

owning_manager = "Wolfgang Geiger"

telephone_number = "4711"

customer_name = "IBM"

x_25_number = ""

server_name = "rs6ððð7"

group_name = "Group1"

Figure 6. Data Definition File for nvdm_node Class

Explanation:
The data definition file contains the object definitions for the three nodes in our
example network, where rs6ððð7 and rs6ððð15 are servers and rs6ððð4 is an
agent, indicated by the node_type attribute set to either 1 or 0.

The server for agent rs6ððð4 is rs6ððð7, indicated by the server_name field set to
rs6ððð7 in the object defintion for rs6ððð4.

Targets rs6ððð7 and rs6ððð4 belong to the same target group Group1, whereas
target rs6ððð15 belongs to a target group Group2.

 Chapter 3. Designing a Data Model for Configuration Data 21

Each instance starts with the name of the class that we want to create an object
for, for example, nvdm_node followed by a colon (:).

The attributes for an object are specified in the form:

attribute_name = value

For example, to set the node_name for an object to rs6ððð7 we have to specify the
line:

node_name = "rs6ððð7"

There does not have to be a line for optional attributes. For example, if you do not
want to have a description for a target, you can leave out the description attribute
in the object definition. This field will then be set to an empty string automatically.

You can store the data definition for all classes in one file but we recommend that
you use a single file for each class for ease of maintenance.

To add the definitions for the nvdm_node class we type:

odmadd nvdm_node.odmadd

assuming that the definitions are stored in the file nvdm_node.odmadd.

You should know that if you invoke this command several times, the ODM adds the
entries several times because it does not check if an entry already exists.

To prevent this we write a simple script called build_db which contains the
following lines:

odmcreate -c config_db

odmadd nvdm_cfg_static.odmadd

odmadd nvdm_groups.odmadd

odmadd nvdm_node.odmadd

odmadd nvdm_queues.odmadd

odmadd nvdm_users.odmadd

odmadd nvdm_servers.odmadd

Figure 7. build_db Shell Script

Whenever we change a definition in one of the *.odmadd files we will invoke this
script to update the ODM database.

The odmcreate command at the beginning of the script will create the ODM classes
and therefore clear the database every time it is invoked. This avoids double
entries in the database.

The following figure shows the data definition file for the nvdm_groups class in our
example network:

22 Pristine AIX Environments

nvdm_groups:

group_name = "Group1"

description = "Raleigh Group1"

short_name = "GROUP1"

node_name = "rs6ððð7"

nvdm_groups:

group_name = "Group2"

description = "Raleigh Group2"

short_name = "GROUP2"

node_name = "rs6ððð15"

Figure 8. Data Definition File for nvdm_groups Class

Explanation:
The data definition file contains the description of the two target groups we have in
our example network.

The node_name field indicates on which NetView DM/6000 server the target group
shall be created.

The following figure shows the data definition file for the nvdm_users class in our
example network:

 Chapter 3. Designing a Data Model for Configuration Data 23

nvdm_users:

node_name = "rs6ððð7"

username = "root"

usergroup = "FNDADMN"

nvdm_users:

node_name = "rs6ððð7"

username = "suelpen"

usergroup = "FNDADMN"

nvdm_users:

node_name = "rs6ððð15"

username = "root"

usergroup = "FNDADMN"

nvdm_users:

node_name = "rs6ððð15"

username = "suelpen"

usergroup = "FNDUSER"

nvdm_users:

node_name = "rs6ððð4"

username = "root"

usergroup = "FNDADMN"

nvdm_users:

node_name = "rs6ððð4"

username = "mike"

usergroup = "FNDBLD"

Figure 9. Data Definition File for nvdm_users Class

Explanation:
On target rs6ððð7 we defined two users, root and suelpen, both being NetView
DM/6000 administrators.

On target rs6ððð15 we defined the same user names, but this time user suelpen
being a NetView DM/6000 user.

On target rs6ððð4 we have defined user root to be an administrator and user mike
to be a builder.

The following figure shows the data definition file for the nvdm_servers class in our
example network:

24 Pristine AIX Environments

nvdm_servers:

node_name = "rs6ððð15"

local_lu_name = "RA6ðð15B"

pu_name = "RA6ðð15"

cp_name = "RA6ð15CP"

xid = ""

sna = "yes"

nvdm_servers:

node_name = "rs6ððð7"

local_lu_name = "A"

pu_name = "B"

cp_name = "C"

xid = ""

sna = "no"

Figure 10. Class Definition File for nvdm_servers Class

Explanation:
The nvdm_servers class contains the SNA definitions needed to configure a
NetView DM/6000 server for SNA communications.

Of the two servers on our network, only rs6ððð15 has an SNA connection to
NetView DM/MVS, indicated by the sna attribute set to yes. The object definition
for rs6ððð15 contains the SNA parameters being unique for that system, which are
the local LU name, the PU name and the CP name.

The xid field is left blank, so the configuration script configures the corresponding
SNA profiles to use the control point XID instead.

Since rs6ððð7 does not have SNA connections we filled in some dummy values for
the LU name, PU name and CP name.

The following figure shows the data definition file for the nvdm_queues class in our
example network:

 Chapter 3. Designing a Data Model for Configuration Data 25

nvdm_queues:

node_name = "rs6ððð7"

protocol = "TCP/IP"

remote_server = "rs6ððð15"

focal_point = "no"

nvdm_queues:

node_name = "rs6ððð15"

protocol = "TCP/IP"

remote_server = "rs6ððð7"

focal_point = "no"

nvdm_queues:

node_name = "rs6ððð15"

protocol = "APPC"

remote_server = "RA39TCF1"

focal_point = "yes"

Figure 11. Class Definition File for nvdm_queues Class

Explanation:
We want to configure an SNA/DS connection between rs6ððð7 and rs6ððð15 using
TCP/IP, so we have to define this connection on both nodes.

Further, rs6ððð15 will also have an SNA/DS connection to NetView DM/MVS using
APPC, where NetView DM/MVS is a focal point system.

To add all the above definitions to the ODM database we typed:

 ./build_db

Now that we have added our test data to the ODM we can start implementing the
configuration shell script.

 3.4 Limitations
As mentioned before the data model that we have described in this chapter was
designed for a specific customer environment and only covers the specific
requirements for that project.

Hence, the data model presented here has the following limitations:

� There is no support for the automatic configuration of intermediate nodes (IN).

� There is no support for the automatic configuration of user interface (UI) only
targets.

� The SNA configuration covers only a connection to a central NetView DM/MVS
system.

The above points were not implemented because they were not needed in the
scenario for which the procedure was originally developed (because we cannot
cover configuration of NetView DM/6000 here).

26 Pristine AIX Environments

However, we give you advice on how to customize the data model as well as the
configuration procedure to meet the requirements of your specific environment.

The intent of this book is to provide you with the basic knowledge to allow you to
create your own, specific configuration procedure.

 Note

We show a way to extend the configuration procedure to be able to configure
Intermediate Nodes (IN) in 8.1, “Configuring Intermediate Nodes” on page 131.

 Chapter 3. Designing a Data Model for Configuration Data 27

28 Pristine AIX Environments

Chapter 4. Designing and Implementing the Configuration
Procedure

Figure 12. Structure of the Configuration Procedure

We now create the shell script which can be used to configure nodes in our
software distribution network.

One design goal is to keep the database access independent from the configuration
code. To achieve this we encapsulate the database access, in our case ODM
queries, in separate shell procedures.

 Note

Encapsulating the database access procedures enables us to replace the ODM
by another database later. We show how to replace the ODM by DB2/6000 in
Chapter 12, “Implementing the Configuration Data Model Using DB2/6000” on
page 219.

 Copyright IBM Corp. 1996 29

 4.1 General Recommendations
In the project, the configuration procedure described in this book was originally
developed for, we found that it is very useful to use a version control system to
keep track of the changes made to the configuration procedure.

This is especially useful if you have to create a procedure for a complex
environment or if there is more than one person working on the configuration
procedure. Also, you might have procedures to configure other components of your
AIX system, for example, other products. Then a version control system enables
you to keep track of changes more easily and also allows you to roll back to a
previous release of the script if necessary.

The easiest way is to use Source Code Control System (SCCS) which comes free
with every AIX system. This is quite an easy to use tool to keep track of source
code levels.

 Note

To get a description of sccs type man sccs or refer to the corresponding
InfoExplorer document.

When developing or testing your configuration procedure it is also a good idea to
keep different versions of the configuration database. This can, for example, be
useful when testing a procedure with certain configuration parameters.

You can manage to hold different versions of the configuration database in the
ODM by setting the ODMDIR shell variable to the appropriate directory.

 Note

You should be careful when setting the ODMDIR variable.

Let's assume that you hold a test version of the configuration database in the
directory /usr/mydata. You could achieve this by setting the ODMDIR variable to
/usr/mydata before using the odmcreate and odmadd commands to create and fill
the necessary ODM class files: ODMDIR=/usr/mydata and export ODMDIR.

When you run the configuration procedure, afterwards you will have problems if
there is a configuration part that uses the ODM itself.

For example, SNA Server stores its configuration in the ODM, which is by default
located in the /etc/objrepos directory. If you redirect the ODM directory SNA will
not be able to find and update its configuration information.

You can solve this by copying the necessary class files from /etc/objrepos to your
own directory. However, you should not make permanent changes to the
configuration while the ODM path is redirected. Use this only for testing purposes.

30 Pristine AIX Environments

4.2 Database Access Procedures
The only way a configuration procedure can retrieve data is by calling the database
access procedures, thus hiding the underlying database.

Later we can replace the ODM with another way of storing data. The only
procedures which need to be changed are the database access procedures. The
configuration procedures can remain unchanged.

 Note

It is very important that the configuration scripts access data stored in the
configuration database only by using the procedures described below. This
allows us to easily replace the underlying database later (see Chapter 12,
“Implementing the Configuration Data Model Using DB2/6000” on page 219).

Since we have decided to store our data in the ODM, we first have to develop the
access procedures to retrieve data from the ODM.

The first procedure, get_attribute, will retrieve an attribute value from an object
matching a specified criteria and look as follows:

#

get single parameters

$1 = class name

$2 = search field

$3 = search field value

$4 = attribute name

#

get_attribute ()

{

 VALUE=yodmget -q $2=$3 $1 | grep "$4 =" | cut -d '=' -f2 | sed "s/\"//g" |\
 cut -c2-79y
}

Figure 13. get_attribute Shell Procedure

The procedure will query the ODM with the search criteria specified in the
command line parameters, cut the relevant information from the odmget output and
store the result in the shell variable VALUE which is accessible in the entire shell
script.

For example, you could issue the following command in a configuration procedure:

get_attribute nvdm_node node_name rs6ðð12 server

This will search the class nvdm_node for an object where the node_name attribute is
set to rs6ððð12.

If an object is found the value for the server attribute for that node is stored in
VALUE.

 Chapter 4. Designing and Implementing the Configuration Procedure 31

 Note

The get_attribute procedure can only be used for queries where you expect
no or exactly one match.

In our scenario we have queries where you could have more than one match. For
example, when asking the database which nodes have a certain NetView DM/6000
server:

get_attribute nvdm_node server MASTER node_name

If there is more than one node in the network which has MASTER as its server the
query will return a list of matches.

Therefore we will write another procedure, get_attribute_list, which can be used
to make queries where you expect a list of answers:

#

get list parameters from odm_class

$1 = class name

$2 = search field

$3 = search field value

$4 = attribute name

The list of parameters is stored in the VALUE_LIST variable

The number of parameters is stored in VALUE_NUM

#

get_attribute_list ()

{

 VALUE_LIST=yodmget -q $2=$3 $1 | grep "$4 =" | cut -d'=' -f2 |\
 sed "s/\"//g" | cut -c2-79y
 VALUE_NUM=yodmget -q $2=$3 $1 | grep "$1:" | wc -ly
}

Figure 14. get_attribute_list Shell Procedure

The get_attribute_list procedure will store the result in the shell variable
VALUE_LIST. Also it will store the number of elements in VALUE_LIST in the shell
variable VALUE_NUM.

Sometimes it will be necessary to have two search criteria connected with AND,
therefore we, will have another procedure allowing this type of query:

32 Pristine AIX Environments

#

get single parameters (AND)

$1 = class name

$2 = search field1

$3 = search field value1

$4 = search field2

$5 = search field value2

$6 = attribute name

#

get_attribute_and ()

{

 VALUE=yodmget -q "$2=$3 AND $4=$5" $1
 sed "s/\"//g" | cut -c2-79y
}

Figure 15. get_attribute_and Shell Procedure

This procedure is necessary to query attributes of objects with more than one
instance per node. For example, we can have more than one user defined for a
target. If we want to query the usergroup attribute for one of these users we can
connect the search arguments by typing:

get_attribute_and nvdm_users node_name rs6ððð12 username mike usergroup

 Note

You might also want to add other database access procedures that use, for
example, other features of the odmget command. One example is the use of
the LIKE statement of the odmget command, which can be used to do a fuzzy
search.

However, the configuration scripts that we will develop in this chapter will only
use the database access procedures shown above.

4.3 How the Configuration Script Works
We now develop a configuration routine for every configuration step needed to
configure NetView DM/6000.

These routines will be implemented as Korn Shell procedures. Then the single
procedures will be combined in one single Korn Shell script, config_nvdm, which will
be used to configure every node in our software distribution network.

The only parameter passed to this script will be the IP hostname of the node to be
configured.

The complete configuration script is listed in Appendix A, “The Configuration Script
Listings” on page 331.

 Chapter 4. Designing and Implementing the Configuration Procedure 33

It is important to understand that in our scenario we have an ODM database
holding the complete configuration of our software distribution network. Therefore,
the ODM files need to be copied to every node that needs to be configured. How
this can be achieved will be described later.

The configuration script are a combination of the database access routines. The
configuration routines we describe below.

The way data is passed within the script is as follows:

� The ODM query routines which we have described previously will be used to
retrieve data from the ODM and store it in the shell variables VALUE or
VALUE_LIST.

� A configuration procedure will call the ODM access procedures and then copy
the data retrieved to a global shell variable accessible within the entire
configuration script.

For example, one configuration routine will need the NetView DM/6000 server
name, so the code to get that data looks like the following:

get_attribute nvdm_node node_name rs6ððð12 server_name

SERVER=$VALUE

The above code will determine the server for node rs600012 and then store the
server name in the global shell variable SERVER.

� The main body of the script combines the different configuration steps together
for each type of node.

� Since this defines the configuration steps to take place for the different node
types, you will have to make changes here if you want to adapt the script to
your specific environment.

For example, if you want to leave out the configuration of the SNA Initial Node
Setup you can just remove the line calling the sna_initial procedure from the
config_nvdm script.

The following figure shows the steps being performed in our scenario:

34 Pristine AIX Environments

Figure 16. Configuration Steps

In the following we describe the configuration procedures that we use in our
scenario. They cover all the configuration activities that we have defined before.

 Note

All configuration procedures will be implemented as Korn-Shell procedures. If
you are not familiar with the Korn-Shell syntax, you should refer to the
Korn-Shell manpage by typing man ksh or to the documentation listed in the
preface of this book.

Within the procedures we use several commands. These commands are AIX
commands, as well as SNA Server and NetView DM/6000 commands.

 Chapter 4. Designing and Implementing the Configuration Procedure 35

We use the following AIX operating system commands:

� mv to move files

� rm to remove files

� cd to change the working directory

� sed to modify files

� grep to search in strings and files

� cut to cut sub-strings from strings

� odmget to query the ODM

� lsuser to list defined AIX users and their attributes

� mkuser to add AIX users

� chuser to change the attributes of existing AIX users

� mkdev to create devices (chuser)

 We recommend

If you are not familiar with any of the above commands, you should at least
consult the manpage for that command.

Moreover, it is always a good idea to consult the appropriate section of
InfoExplorer to get a more comprehensive overview.

We use the following SNA Server commands:

� mk_qcinit to perform the Initial Node Setup

� mksnaobj to create SNA Server profiles

� chsnaobj to change existing SNA Server profiles

� exportsna to export the current SNA Server profiles

 We recommend

If you need a description of the above SNA Server commands and especially
about the flags these commands use, you should refer to the SNA Server
documentation.

We use the following NetView DM/6000 commands:

� nvdm lstg to list existing targets

� nvdm addtg to add a target to a NetView DM/6000 server configuration

� nvdm updtg to update target information

� nvdm deltg to delete targets from a NetView DM/6000 server configuration

� nvdm lsgp to list existing target groups

� nvdm addgp to add a target group to a NetView DM/6000 server configuration

� nvdm delgp to delete groups from a NetView DM/6000 server configuration

� nvdm inv to update the NetView DM/6000 software inventory

36 Pristine AIX Environments

� nvdm lscm to list existing change management records

� nvdm delcm to delete change management records

� nvdm uncat to remove a change file from the catalog

� nvdm bld to build a new change file

� nvdm inst to install a change file

� nvdm start to start the NetView DM/6000 server

� nvdm stop to stop the NetView DM/6000 server

 We recommend

If you need a description of the above NetView DM/6000 commands and
especially of the flags these commands use, you should refer to the manpages
for NetView DM/6000, by typing man nvdm_addtg; this command will give you a
description of the addtg sub-command including a description of all possible
flags.

4.4 Customizing the NetView DM/6000 Configuration File
The first thing we discuss is the customization of the NetView DM/6000
configuration file nvdm.cfg.

 Note

All configuration procedures described in this chapter were developed for
NetView DM/6000. Generally these procedures can also be used for Software
Distribution for AIX. However, some of the procedures need to be adapted to
be usable with Software Distribution for AIX. The required modifications are
described in Chapter 11, “Migrating the Procedure to Software Distribution for
AIX V3.1” on page 197.

The nvdm.cfg file is the NetView DM/6000 base configuration file and is needed on
every server and agent on the network.

We wrote a configuration procedure configure_nvdm_cfg that can be used to
change any parameter in the nvdm.cfg file.

The following figure shows that procedure:

 Chapter 4. Designing and Implementing the Configuration Procedure 37

#

Set Attributes in nvdm.cfg file

$1 parameter name (e.g. WORKSTATION NAME, SERVER)

$2 parameter value

#

configure_nvdm_cfg ()

{

 mv $CONFIG /tmp/config

 print "NVDM CONFIG : Setting nvdm.cfg ($1) to $2"

 #

 # the TCP/IP port parameter is special

 # because it contains a / in its name

 # and also needs modification of

 # /etc/services

 #

 if ["$1" = "TCP/IP PORT"]

 then

sed "s/TCP\/IP PORT:.\/TCP\/IP PORT: $2/" \

/tmp/config >$CONFIG

mv /etc/services /tmp/services

 sed "s/NetViewDM6ððð.\\/tcp/NetViewDM6ððð $2\/tcp/" \

/tmp/services >/etc/services

 return

 fi

 #

 # adjust to right column

 #

 len=yecho $1 | wc -cy
 SUBST=$2

 while [$len -lt 22]

 do

 SUBST=" "$SUBST

len=yexpr $len + 1y
 done

 #

 # replace parameter

 #

 sed "s/$1:.\/$1:$SUBST/" /tmp/config >$CONFIG

}

Figure 17. configure_nvdm_cfg Shell Procedure

Explanation:
You have to pass two arguments when calling the procedure. The first argument is
the keyword of the parameter you want to change, and the second is the value you
want to set for this parameter.

For example, to change the WORKSTATION NAME field to rs6ððð11 the call would be:

configure_nvdm_cfg "WORKSTATION NAME" rs6ððð11

In our configuration script we will use this procedure to change the WORKSTATION
NAME, SERVER and LOG FILE SIZE fields.

38 Pristine AIX Environments

You can, however, use this procedure to change any valid field in the nvdm.cfg file.

The values to be filled in the nvdm.cfg file will be retrieved from the ODM by using
the ODM access procedures before calling the configuration procedure.

The following figure shows a code fragment which can be used to retrieve the
NetView DM/6000 server from the database and then set the appropriate field in
the configuration file:

get_attribute nvdm_node node_name $1 server_name

SERVER=$VALUE

configure_nvdm_config "SERVER" $SERVER

First the server name is retrieved from the ODM using the get_attribute
procedure to query the nvdm_node class. The call shown above assumes that the
variable $1 contains the IP hostname of the node to be configured.

The result is then stored in the shell variable VALUE, so we will assign the value of
that variable to another shell variable SERVER.

Then the configuration procedure configure_nvdm_cfg is called passing the field
name and the server name as parameters.

You should notice that the configuration of the TCP/IP port used for NetView
DM/6000 is different from the other parameters, and therefore treated as a special
case.

First, it contains a slash (/) character in the parameter name and can therefore not
be directly processed by the sed command used to alter the corresponding line in
nvdm.cfg.

Second, a change of the TCP/IP port in nvdm.cfg requires also a change of the
corresponding entry in /etc/services.

 Note

If you want to be completely flexible in using different TCP/IP ports for NetView
DM/6000, you must add the code to change the other ports NetView DM/6000
uses.

The code supplied will only be able to change the port NetViewDM6ððð and is
considered to be an example.

4.5 Adding NetView DM/6000 Users to AIX
In order to enable an AIX user to use NetView DM/6000 the user ID has to be
defined twice:

1. The user has to be defined as a user of the NetView DM/6000 target.

2. The user has to be defined to the AIX operating system itself.

Defining the user as a NetView DM/6000 target user is covered by the configuration
procedure that does the target configuration and is therefore described there.

 Chapter 4. Designing and Implementing the Configuration Procedure 39

The routine we describe now will add the users to AIX.

The following figure shows the configuration procedure:

#

add user at OS level (AIX)

$1 = IP Hostname

$2 = Type: either "server" or "target"

use "target", when you want to add a user to AIX

add a target workstation; the user will always be

assigned group FNDADMN

use "server", when you want to add a user to AIX

add a server workstation; the user will be assigned

the appropriate usergroup defined in the database

#

add_users_aix ()

{

print "NVDM CONFIG : --> Adding AIX users for NVDM..."

get_attribute_list nvdm_users node_name $1 username

if [$VALUE_NUM != ð]

then

for i in $VALUE_LIST

 do

 #

First, add NVDM user to operating system...

check if user exists

 #

lsuser $i 2>/dev/null 1>&2

 #

if not (RC 2 from lsuser command)

 #

if [$? = 2]

 then

print "NVDM CONFIG : Adding user $i to AIX OS."

 mkuser $i

 fi

 #

check if user has NVDM group

 #

get_attribute_and nvdm_users node_name $1 username $i usergroup

 GRP=$VALUE

 #

if we configure a target, set group to FNDADMN

 #

if ["$2" = "target"]

 then

 GRP=FNDADMN

 fi

DEFGRP=ylsuser -a groups $i | cut -d'=' -f2y
if user is not in NVDM group, add him

if ["yecho $DEFGRP | grep $GRPy" = ""]

Figure 18 (Part 1 of 2). add_users_aix Shell Procedure

40 Pristine AIX Environments

 then

chuser groups="$DEFGRP,$GRP" $i

 fi

 done

fi

}

Figure 18 (Part 2 of 2). add_users_aix Shell Procedure

Explanation:
This procedure has to be called on the server and on the target for which a user
has to be defined.

On the server, all targets defined for this server have to be detected. Then all
users for all targets have to be defined on the server.

On a target, all users defined for this target have to be defined to the AIX operating
system.

First, the add_users_aix procedure queries the class nvdm_users to get all users for
the target to be configured.

If a NetView DM/6000 user does not exist yet, it will be added to AIX, then the
group to which this user shall belong will be determined from the nvdm_users class.

Since on an agent there is only the FNDADMN user group, the AIX user will always
be assigned to this user group on an agent.

If the user does not belong to the defined group yet this group will be added to the
AIX group set for that user. The user group must be one of the groups created by
NetView DM/6000 (FNDUSER, FNDADMN, FNDBLD).

If a user already exists, then only the group set is extended, if necessary.

4.6 Configuring SNA Server
The automatic configuration of SNA Server for use with NetView DM/6000 is one of
the most difficult tasks in creating an automatic roll-out procedure for NetView
DM/6000 nodes.

The reason for this is that a lot of configuration parameters are needed to configure
SNA, so it is very hard to find a scenario to represent a "typical" environment.

Therefore this part of the configuration is most likely to need customization for your
specific environment. For that reason, we tried to make the scripts as flexible and
modular as possible so that you can use them as building blocks for your own
environment. See Chapter 7, “Customizing and Extending the Configuration
Procedure” on page 109 for information on how to customize the procedure.

The steps performed to configure SNA Server for use with NetView DM/6000 were
initially taken from The NetView Distribution Manager/6000 Cookbook GG24-4246.
So, if you need help in customizing the scripts for use in your environment, it might
be a good idea to consult this redbook before doing so.

 Chapter 4. Designing and Implementing the Configuration Procedure 41

Customizing SNA Server is divided into several steps, where most of the steps
represent the configuration of an SNA Server profile.

The steps needed to configure SNA are as follows:

� Configuring the SNA DLC interface

� Configuring the SNA Initial Node Setup profile

� Configuring the SNA Control Point profile

� Configuring the SNA DLC profile

� Configuring the SNA Link Station profile

� Configuring the SNA Local LU profile

� Configuring the SNA Mode profile

� Configuring the SNA TPN profiles

� Configuring the SNA Partner LU profile

� Configuring the SNA LU 6.2 Location profile

� Configuring the SNA Side Information profiles

Moreover, we have another procedure to determine all the parameters that we
need to configure SNA Server. We start with that procedure and then describe all
the single configuration steps to be performed.

4.6.1 Determining SNA Configuration Parameters
Most of the parameters needed to configure SNA are unique across the network.
This is because most of them describe the focal point system which we have only
once in our entire network.

 Note

The configuration procedure described in this book can only be used to
configure SNA connections to a central NetView DM/MVS system. If you want
to be able to configure SNA connections between any systems, you will have to
modify the scripts as well as the data model.

Therefore most of the configuration parameters are stored in the ODM class
nvdm_cfg_static because this is the place we decided to store data which exists
only once in the entire network.

The following table shows all SNA parameters that we will store in
nvdm_cfg_static:

Table 1 (Page 1 of 2). SNA Configuration Parameters

Parameter Name Parameter Description Parameter Value

VTAM_CP_NAME Name of VTAM Control Point RAK

SOLICIT_SSCP Flag yes

I_FIELD_SIZE I-Field Size 2042

LOCAL_SAP Local SAP address 04

42 Pristine AIX Environments

Table 1 (Page 2 of 2). SNA Configuration Parameters

Parameter Name Parameter Description Parameter Value

REMOTE_SAP Remote SAP address 04

INITIATE_CALL Flag yes

ACTIVATE_START Flag yes

RESTART_NORMAL Flag yes

RESTART_ABNORMAL Flag yes

DATALINK_DEVICE Network adapter to be used for
SNA communications

tok0

REM_LINK_ADDR Remote Link Address for SNA
communications

400001240000

SNA_NET_NAME SNA network name USIBMRA

TPN_PROF_NAME_SND Name of TPN profile for send NVDMSND

TPN_PROF_NAME_RCV Name of TPN profile for receive NVDMRCV

MODE_PROF_NAME Name of Mode profile NVDMNORM

MODE_NAME Name of Mode for NetView
DM/MVS

NVDMNORM

PARTNER_LU_NAME Name of focal point LU6.2 RA39TCF1

SIDE_INFO_PROF_SND Side Information profile name
(Send)

NVDMSIDS

SIDE_INFO_PROF_RCV Side Information profile name
(Receive)

NVDMSIDR

Configuration data that is different for each server node includes data describing
the SNA characteristics of that specific node and not data being unique in the
network.

This data will be stored in the nvdm_servers class because only NetView DM/6000
servers can have SNA connections.

The parameters stored in that class are:

� Local PU name

� Local LU name

� Local Control Point name

 � XID

The procedure shown below will retrieve the necessary configuration parameters
from the configuration database and store them in global shell variables so that
they are accessible from every SNA configuration procedure.

 Chapter 4. Designing and Implementing the Configuration Procedure 43

#

get all static SNA attributes (SNA Net Name, etc.)

$1 = IP Hostname of node to be configured

#

get_sna_attributes ()

{

 #

get static SNA parameters

 #

for i in SNA_NET_NAME DATALINK_DEVICE REM_LINK_ADDR MODE_PROF_NAME\

 MODE_NAME TPN_PROF_NAME_SND TPN_PROF_NAME_RCV PARTNER_LU_NAME\

 SIDE_INFO_PROF_SND SIDE_INFO_PROF_RCV SOLICIT_SSCP I_FIELD_SIZE\

 LOCAL_SAP REMOTE_SAP INITIATE_CALL ACTIVATE_START RESTART_NORMAL\

 RESTART_ABNORMAL VTAM_CP_NAME

 do

get_attribute nvdm_cfg_static NAME $i VALUE

case $i in

SNA_NET_NAME) text="SNA Network Name"

 SNA_NET=$VALUE ;;

DATALINK_DEVICE) text="SNA Datalink Device"

 DEVICE=$VALUE ;;

 REM_LINK_ADDR) text="SNA Remote Link Address"

 ADDR=$VALUE ;;

MODE_PROF_NAME) text="SNA NVDM Mode Profile Name"

 MPROF=$VALUE ;;

MODE_NAME) text="SNA NVDM Mode Name"

 MODE=$VALUE ;;

TPN_PROF_NAME_SND) text="SNA TPN Profile Name (Send)"

 SND=$VALUE ;;

TPN_PROF_NAME_RCV) text="SNA TPN Profile Name (Receive)"

 RCV=$VALUE ;;

PARTNER_LU_NAME) text="SNA Partner LU Name (MVS Host)"

 PARTNER=$VALUE ;;

SIDE_INFO_PROF_SND) text="SNA Side Info Profile Name (Send)"

 SIDS=$VALUE ;;

SIDE_INFO_PROF_RCV) text="SNA Side Info Profile Name (Receive)"

 SIDR=$VALUE ;;

SOLICIT_SSCP) text="Solicit SSCP Field (yes|no)"

 SOLICIT=$VALUE ;;

 I_FIELD_SIZE) text="I-Field Size"

 IFIELD=$VALUE ;;

LOCAL_SAP) text="SNA Local SAP No."

 LSAP=$VALUE ;;

REMOTE_SAP) text="Remote SAP No."

 RSAP=$VALUE ;;

Figure 19 (Part 1 of 3). get_sna_attributes Shell Procedure

44 Pristine AIX Environments

 INITIATE_CALL) text="SNA Initiate Call Field (yes|no)"

 ICALL=$VALUE ;;

ACTIVATE_START) text="SNA Activate on start (yes|no)"

 ACTSTART=$VALUE ;;

RESTART_NORMAL) text="SNA Restart on normal termination (yes|no)"

 RNORM=$VALUE ;;

RESTART_ABNORMAL) text="SNA Restart on abnormal termination (yes|no)"

 RABNORM=$VALUE ;;

VTAM_CP_NAME) text="SNA VTAM CP Name (for LU6.2 Location Profile)"

 VTAMCP=$VALUE ;;

 esac

if ["$VALUE" = ""]

 then

abort "Could not determine $text. Exiting..."

 else

print "NVDM CONFIG : Setting $text to $VALUE"

 fi

 done

get_attribute nvdm_servers node_name $1 pu_name

 PUNAME=$VALUE

if ["$PUNAME" = ""]

 then

abort "Could not determine PU NAME for $1 configuration

. Exiting..."

 fi

print "NVDM CONFIG : Setting PU NAME for $1 to $PUNAME "

get_attribute nvdm_servers node_name $1 local_lu_name

 LLUNAME=$VALUE

if ["$LLUNAME" = ""]

 then

abort "Could not determine Local LU Name for $1 configu

ration. Exiting..."

 fi

print "NVDM CONFIG : Setting Local LU Name for $1 to $LLUNAME "

get_attribute nvdm_servers node_name $1 cp_name

 CP_NAME=$VALUE

if ["$CP_NAME" = ""]

 then

abort "Could not determine Control Point Name for $1.\

 Exiting..."

 fi

 CP_TYPE=appn_end_node

print "NVDM CONFIG : Setting Control Point Name for $1\

Figure 19 (Part 2 of 3). get_sna_attributes Shell Procedure

 Chapter 4. Designing and Implementing the Configuration Procedure 45

to $CP_NAME"

get_attribute nvdm_servers node_name $1 xid

 XID=$VALUE

if ["$XID" = ""]

 then

print "NVDM CONFIG : Could not determine XID for $1 configu

ration."

print "NVDM CONFIG : Setting USE_CP_XID to yes"

 USE_CP_XID="yes"

set XID to dummy value

 XID=ð71ððððð

 else

print "NVDM CONFIG : Setting XID for $1 to $XID "

print "NVDM CONFIG : Setting USE_CP_XID to no"

 USE_CP_XID="no"

 fi

}

Figure 19 (Part 3 of 3). get_sna_attributes Shell Procedure

4.6.2 Saving the Current SNA Configuration
Before making any changes to the existing SNA Server configuration, it is a good
idea to save the current configuration.

The best way to do this is to use the SNA Server feature to export the SNA
configuration profiles. In case of an error you can import the profiles again to
restore the previous configuration.

The following shell procedure can be used to export the SNA configuration profiles:

#

export existing SNA profiles

in case they need to be restored if

NVDM configuration fails

#

$1 = name of export file

#

export_sna ()

{

 print "NVDM CONFIG : Exporting existing SNA profiles to $1 . & exportsna -A -f $1 -r -UT -C

}

Figure 20. export_sna Shell Procedure

46 Pristine AIX Environments

4.6.3 Configuring the SNA DLC interface
For every communications adapter that we intend to use for SNA, we need a DLC
(Data Link Control) interface for that adapter.

The following procedure can be used to configure token-ring, Ethernet and X.25
adapters for that purpose:

#

configure SNA dlc

for all SNA communications a DLC for the

communications adapter is needed.

if the DLC already exists, the mkdev command

will print an error message - this will be

redirected to /dev/null

#

configure_sna_dlc ()

{

 print "NVDM CONFIG : Adding DLC Device for $DEVICE"

 CHECK=yecho $DEVICE | cut -c1-3y
 case "$CHECK" in

"tok") mkdev -c dlc -s dlc -t tokenring 1>/dev/null 2>&1 ;;

"ent") mkdev -c dlc -s dlc -t ethernet 1>/dev/null 2>&1 ;;

"x25") mkdev -c dlc -s dlc -t x25_qllc 1>/dev/null 2>&1 ;;

"\") print "NVDM CONFIG : Device type $CHECK unknown." ;;

 esac

}

Figure 21. configure_sna_dlc Shell Procedure

Explanation:
The script assumes that the script get_sna_attributes has been invoked before so
that the the shell variable DEVICE contains the data link device to be used for SNA
communications.

For example, this variable can hold the value tokð indicating that we want to use
the first token-ring adapter in the machine for SNA.

By examining the first three characters in the device name, the script then
determines which kind of adapter we have and then calls the appropriate
configuration command.

4.6.4 Configuring the SNA Initial Node Setup Profile
The shell procedure sna_initial will be used to configure the SNA initial node
setup:

 Chapter 4. Designing and Implementing the Configuration Procedure 47

#

SNA initial node setup

#

sna_initial ()

{

 CHECK=yecho $DEVICE | cut -c1-3y
 case "$CHECK" in

"tok") DEV_TYPE="token_ring" ;;

"ent") DEV_TYPE="ethernet" ;;

"fdd") DEV_TYPE="fddi" ;;

"x25") DEV_TYPE="x.25_call_SVC" ;;

 "\") DEV_TYPE="none"

 esac

 if ["$DEV_TYPE" = "none"]

 then

abort "No device type found for $DEVICE."

 fi

 print "NVDM CONFIG : Configuring SNA Initial Node Setup"

set -x

 mk_qcinit -y $DEV_TYPE -t $CP_TYPE -w $SNA_NET -d $CP_NAME

set +x

}

Figure 22. sna_initial Shell Procedure

For the initial node, set up the device type, control point type and SNA network
name needed.

These are expected to be stored in certain global shell variables. For a complete
list of all global shell variables used in the configuration procedures, you can refer
to B.1, “Shell Variables” on page 411.

4.6.5 Configuring the SNA Control Point Profile
For the configuration of the control point we need the following information:

� The SNA network name

� The control point name of the node to be configured

� The control point type of the node to be configured

This information is assumed to be stored in the shell variables SNA_NET, CP_NAME
and CP_TYPE.

The following figure shows the script:

48 Pristine AIX Environments

#

configure SNA Control Point Profile

#

SNA_NET contains SNA Network Name

CP_NAME contains SNA Control Point Name

CP_TYPE contains SNA Control Point Type

#

configure_sna_cp ()

{

 print "NVDM CONFIG : Configuring SNA Control Point Profile"

 line

set -x

 chsnaobj -t 'control_pt' -e "$SNA_NET" -a "$CP_NAME" -A "$CP_NAME"\

 -N "$CP_TYPE" node_cp

set +x

 line

}

Figure 23. configure_sna_cp Shell Procedure

4.6.6 Configuring the SNA DLC Profile
The SNA DLC profile connects SNA Server to the communications adapter that
shall be used for SNA communications.

To configure this profile we need the following configuration parameters:

� The device type of the communications adapter

� The device name of the communications adapter

 � Flags

The device type will be determined by examining the first three characters of the
device name. The script supports token-ring, Ethernet, FDDI and X.25 adapters.

The device name is assumed to be stored in the DEVICE shell variable. This
variable is filled by the get_sna_attributes shell procedure which gets data from
the configuration data base and stores it in shell variables. As a consequence, the
get_sna_attributes procedure must be called before any other configuration
procedure.

In our scenario we will use some flags that can change; others are hard-coded in
the script. For example, the Local SAP address is stored in the LSAP shell variable.

Which flags you will store in variables and which you decide to hard-code depends
on your specific environment.

The device name of the adapter will also be used as the name for the profile to be
created.

The following figure shows the script that will configure the SNA DLC profile:

 Chapter 4. Designing and Implementing the Configuration Procedure 49

#

configure SNA dlc profile

#

configure_sna_dlc_profile ()

{

 # determine type of DLC from datalink device name

 # get only first 3 characters from device name

 # e.g. if datalink device is x25s1, then x25 determines

 # the type to be X.25

 CHECK=yecho $DEVICE | cut -c1-3y
 case "$CHECK" in

"tok") DEV_TYPE="sna_dlc_token_ring" ;;

"ent") DEV_TYPE="sna_dlc_ethernet" ;;

"fdd") DEV_TYPE="sna_dlc_fddi" ;;

"x25") DEV_TYPE="sna_dlc_x.25" ;;

 "\") DEV_TYPE="none"

 esac

 if ["$DEV_TYPE" = "none"]

 then

abort "No device type found for $DEVICE."

 fi

 #

 # create new DLC Profile

 # use Datalink Device Name as Profile Name

 #

 print "NVDM CONFIG : Configuring SNA DLC Profile"

 line

set -x

change !!!

 if ["$DEV_TYPE" = "sna_dlc_x.25"]

 then

mksnaobj -t "$DEV_TYPE" "$DEVICE"

 RC=$?

 else

mksnaobj -t "$DEV_TYPE" -d "$DEVICE" -b $SOLICIT -w yes -m $IFIELD \

-H $LSAP -c no -q ð "$DEVICE"

 RC=$?

 fi

set +x

 line

 if [$RC = 255]

 then

Figure 24 (Part 1 of 2). configure_sna_dlc_profile Shell Procedure

50 Pristine AIX Environments

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

change !!!

if ["$DEV_TYPE" = "sna_dlc_x.25"]

 then

chsnaobj -t "$DEV_TYPE" "$DEVICE"

 else

chsnaobj -t "$DEV_TYPE" -d "$DEVICE" -b $SOLICIT -w yes -m $IFIELD \

 -H $LSAP -c no -q ð "$DEVICE"

 fi

set +x

 line

 fi

}

Figure 24 (Part 2 of 2). configure_sna_dlc_profile Shell Procedure

4.6.7 Configuring the SNA Link Station Profile
For the configuration of the SNA Link Station profile we will need several
parameters:

� The device type of the communications adapter to be used

� The device name of the communications adapter to be used

� The remote link address

 � The XID

� The Local PU name

 � Flags

The device name and type are the same that we used in the configuration of the
SNA DLC profile before.

The remote link address is the MAC address of the SNA system to connect to, for
example, the token-ring address of a host communications controller.

The local PU name will be used as the profile name for the SNA Link Station
profile.

In our example we use some flags that we store in variables, for example, the
remote SAP address and some restart flags.

This script, as well as all the following SNA Server configuration scripts, first tries to
create a new profile. If there is a profile with that name already existing, it will
change the existing one to reflect any changes made.

Therefore the entire configuration script can be used not only for an initial
configuration but also for reconfiguration of a node.

 Chapter 4. Designing and Implementing the Configuration Procedure 51

The following figure shows the script:

#

configure SNA Link Station Profile

#

configure_sna_link ()

{

 # determine type of DLC from datalink device name

 # get only first 3 characters from device name

 CHECK=yecho $DEVICE | cut -c1-3y
 case "$CHECK" in

"tok") DEV_TYPE="token_ring" ;;

"ent") DEV_TYPE="ethernet" ;;

"fdd") DEV_TYPE="fddi" ;;

"x25") DEV_TYPE="x.25" ;;

 "\") DEV_TYPE="none"

 esac

 if ["$DEV_TYPE" = "none"]

 then

abort "No device type found for $DEVICE. Exiting"

 fi

 #

 # create new Link Station Profile

 # use Datalink Device Name as DLC Profile Name

 #

 print "NVDM CONFIG : Configuring SNA Link Station Profile"

 line

set -x

change !!!

 if ["$DEV_TYPE" = "x.25"]

 then

mksnaobj -t link_station -w "$DEV_TYPE" -y "$DEVICE" -q "$X25_TYPE"\

-a $SOLICIT -O $ICALL -F $ACTSTART -h $RNORM -z $RABNORM \

-s "$ADDR" "$PUNAME"

 RC=$?

 else

mksnaobj -t link_station -w "$DEV_TYPE" -y "$DEVICE" -d "$ADDR" -l $XID\

-s $RSAP -a $SOLICIT -O $ICALL -F $ACTSTART -h $RNORM -z $RABNORM \

-c "$USE_CP_XID" "$PUNAME"

 RC=$?

 fi

set +x

 line

 if [$RC = 255]

Figure 25 (Part 1 of 2). configure_sna_link Shell Procedure

52 Pristine AIX Environments

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

if ["$DEV_TYPE" = "x.25"]

 then

chsnaobj -t link_station -w "$DEV_TYPE" -y "$DEVICE" -q "$X25_TYPE" \

-a $SOLICIT -O $ICALL -F $ACTSTART -h $RNORM -z $RABNORM \

-s "$ADDR" "$PUNAME"

 else

chsnaobj -t link_station -w "$DEV_TYPE" -y "$DEVICE" -d "$ADDR" -l $XID\

-s $RSAP -a $SOLICIT -O $ICALL -F $ACTSTART -h $RNORM -z $RABNORM \

-c "$USE_CP_XID" "$PUNAME"

 fi

set +x

 line

 fi

}

Figure 25 (Part 2 of 2). configure_sna_link Shell Procedure

 Note

You should be aware that the configuration parameters in the SNA DLC profile
and Link Station profile might be different for the different types of network
adapters.

In the example procedures shown above, for example, we differentiate between an
X.25 adapter and other types of adapters, such as token-ring or Ethernet.

This is necessary because the flags used when configuring the profiles are slightly
different for X.25 adapters. For example, you have to specify the Network User
Address (NUA) of the remote adapter with the -s flag when configuring an X.25
connection, while you have to specify the Medium Access Control (MAC) address
with the -d flag when configuring a token-ring or Ethernet connection.

If you use an X.25 adapter you also need to provide the circuit type in the X25_TYPE
variable which can be either switched or permanent.

In case you want to use a network adapter different from token-ring, Ethernet or
X.25 you should check for the appropriate configuration flags before implementing
the configuration script. How this can be done is described in 7.1.3, “Determining
SNA Server Commands” on page 116.

4.6.8 Configuring the SNA Local LU Profile
NetView DM/6000 uses SNA LU 6.2 to communicate with NetView DM/MVS,
therefore we need to configure the necessary LU 6.2 profiles.

The first LU 6.2 profile we configure is the local LU profile.

For that profile we need the following parameters:

 Chapter 4. Designing and Implementing the Configuration Procedure 53

� The local LU name

� The local LU alias

� The local LU profile name

 Note

In our scenario we assume that the local LU is independent.

In our scenario we use the local LU name for the local LU alias and the profile
name. This parameter is assumed to be stored in the LLUNAME shell variable.

The following figure shows the script:

#

configure local LU profile for node

#

configure_sna_local_lu ()

{

 print "NVDM CONFIG : Configuring SNA Local LU Profile"

 #

 # create new Local LU Profile

 # use Local LU Name as Profile Name

 #

 line

set -x

 mksnaobj -t local_lu -u lu6.2 -l "$LLUNAME" -L "$LLUNAME"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t local_lu -u lu6.2 -l "$LLUNAME" -L "$LLUNAME"

set +x

 line

 fi

}

Figure 26. configure_sna_local_lu Shell Procedure

54 Pristine AIX Environments

4.6.9 Configuring the SNA Mode Profile
The SNA Mode profile is used to describe the LU 6.2 mode used for NetView DM
communications.

We use the mode name and the mode profile name as the configuration
parameters, where the mode name is stored in the MODE variable and the mode
profile name is stored in the MPROF variable.

We recommend that you use the default value, NVDMNORM, for both values.

The following figure shows the procedure used to configure the mode profile:

 Note

In our example all mode parameters, like session winners (parameter -w ð)
and losers (parameter -l ð) are hard-coded.

If there is any need to change this, feel free to do so.

#

configure SNA Mode Profile

#

configure_sna_mode ()

{

 #

 # create new Mode Profile

 #

 print "NVDM CONFIG : Configuring SNA Mode Profile"

 line

set -x

 mksnaobj -t mode -x 1 -w ð -l ð -a ð -N "#CONNECT" -m "$MODE" "$MPROF"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t mode -x 1 -w ð -l ð -a ð -N "#CONNECT" -m "$MODE" "$MPROF"

set +x

 line

 fi

}

Figure 27. configure_sna_mode Shell Procedure

 Chapter 4. Designing and Implementing the Configuration Procedure 55

4.6.10 Configuring the SNA TPN Profiles
NetView DM/6000 uses two LU 6.2 transaction programs to transfer data using
SNA. These transaction programs are delivered with the product and need to be
defined to SNA Server. For that purpose, we need to create two SNA TPN profiles.

The parameters needed to configure these profiles are mostly predetermined by the
product, for example, the transaction program name and the path where the
program is located.

The only parameter that we have to define ourselves is the profile name for each of
the two profiles.

We recommend that the TPN profile for send is named NVDMSND and that for
receive it is named NVDMRCV to be consistent with the manuals.

The following figure shows the procedure to configure the TPN profile for send:

#

configure TPN send profile

#

configure_sna_send ()

{

 #

 # create TPN Profile (Send)

 #

 print "NVDM CONFIG : Configuring SNA TPN Profile (SEND)"

 line

set -x

 mksnaobj -t local_tp -n 21FðFðF7 -h yes -c basic \

 -w /usr/lpp/netviewdm/bin/fndts -s none "$SND"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t local_tp -n 21FðFðF7 -h yes -c basic \

 -w /usr/lpp/netviewdm/bin/fndts -s none "$SND"

set +x

 line

 fi

}

Figure 28. configure_sna_send Shell Procedure

The following figure shows the procedure to configure the TPN profile for receive:

56 Pristine AIX Environments

#

configure TPN receive profile

#

configure_sna_receive ()

{

 #

 # create TPN Profile (Receive)

 #

 print "NVDM CONFIG : Configuring SNA TPN Profile (Receive)"

 line

set -x

 mksnaobj -t local_tp -n 21FðFðF8 -h yes -c basic \

 -w /usr/lpp/netviewdm/bin/fndtr -s none "$RCV"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t local_tp -n 21FðFðF8 -h yes -c basic \

 -w /usr/lpp/netviewdm/bin/fndtr -s none "$RCV"

set +x

 line

 fi

}

Figure 29. configure_sna_receive Shell Procedure

4.6.11 Configuring SNA Partner LU Profile
For communications between the system we want to configure and the NetView
DM/MVS system we will use an LU 6.2 session.

We have shown a procedure to create an SNA Server profile describing the local
LU used for that purpose in 4.6.8, “Configuring the SNA Local LU Profile” on
page 53. Moreover, we also need to describe the partner LU we want to
communicate with.

The parameters we need to configure this profile are the partner LU name, the
partner LU alias, the network name, and the profile name.

For the partner LU alias and the profile name we will use the same name as for the
partner LU. This value is assumed to be stored in the PARTNER shell variable. The
SNA network name is assumed to be stored in the SNA_NET shell variable.

The following figure shows the procedure used to configure the partner LU profile:

 Chapter 4. Designing and Implementing the Configuration Procedure 57

#

Configure partner LU profile (Focal Point)

#

configure_sna_partner ()

{

 #

 # create LU 6.2 Partner Profile

 #

 print "NVDM CONFIG : Configuring SNA LU6.2 Partner LU"

 line

set -x

 mksnaobj -t partner_lu6.2 -p no -P "$SNA_NET"."$PARTNER" \

 -A "$PARTNER" "$PARTNER"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t partner_lu6.2 -p no -P "$SNA_NET"."$PARTNER" \

-A "$PARTNER" "$PARTNER"

set +x

 line

 fi

}

Figure 30. configure_sna_partner Shell Procedure

4.6.12 Configuring the SNA LU 6.2 Location Profile
To configure the SNA LU 6.2 Location profile, we need the SNA network name, the
partner LU name and the name of the VTAM control point as the configuration
parameters. The name of the VTAM control point is assumed to be stored in the
VTAMCP shell variable.

 Note

This profile is only required if the remote control point is an APPN Low Entry
Node (LEN). The remote node in this case is VTAM. VTAM does not support
End Nodes (EN) or Network Nodes (NN) until Version 4.1.

The following figure shows the configuration procedure:

58 Pristine AIX Environments

#

configure LU6.2 location profile

#

configure_sna_location ()

{

 print "NVDM CONFIG : Configuring SNA LU 6.2 Location Profile"

 #

 # create new LU 6.2 Location Profile

 # use Local LU Name as Profile Name

 #

 line

set -x

 mksnaobj -t partner_lu6.2_location -P "$SNA_NET.$PARTNER" \

 -O "$SNA_NET.$VTAMCP" -m link_station -l $LLUNAME \

 -s $PUNAME $PARTNER

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

 chsnaobj -t partner_lu6.2_location -P "$SNA_NET.$PARTNER" \

 -O "$SNA_NET.$VTAMCP" -m link_station -l $LLUNAME \

 -s $PUNAME $PARTNER

set +x

 line

 fi

}

Figure 31. configure_sna_location Shell Procedure

4.6.13 Configuring the SNA Side Information Profiles
We need to configure a Side Information profile for the send and receive
transaction programs used by NetView DM/6000.

In order to configure the Side Information profile for the Send program, we need to
know the control point name, the SNA network name, the partner LU name, the
mode name and the profile name for the Side Information profile.

The following figure shows the procedure used to configure the Side Information
profile (Send):

 Chapter 4. Designing and Implementing the Configuration Procedure 59

#

configure Side Info Profile (Send)

#

configure_side_snd ()

{

 #

 # create Side Info Profile (Send)

 #

 print "NVDM CONFIG : Configuring SNA Side Info Profile (Send)"

 line

set -x

 mksnaobj -t side_info -L "$CP_NAME" -P "$SNA_NET"."$PARTNER" -m "$MODE"\

 -d 21FðFðF7 -h yes "$SIDS"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t side_info -L "$CP_NAME" -P "$SNA_NET"."$PARTNER" -m "$MODE"\

 -d 21FðFðF7 -h yes "$SIDS"

set +x

 line

 fi

}

Figure 32. configure_side_snd Shell Procedure

 Note

It is important to choose profile names that you will also use in the SNA/DS
connection profiles, for example, in the SEND TP SYMBOLIC DESTINATION field. In
our scenario this is guaranteed because the procedure used to configure the
SNA/DS connection profiles uses the same shell variables to determine the
profile names.

The configuration for the Side Information Profile for receive is very similar to that
for Send, except that we use the local LU name instead of the control point alias.

We use the control point alias for the one profile and the local LU name for the
other to avoid warnings when verifying the SNA profiles.

60 Pristine AIX Environments

#

configure Side Info Profile (Receive)

#

configure_side_rcv ()

{

 #

 # create Side Info Profile (Receive)

 #

 print "NVDM CONFIG : Configuring SNA Side Info Profile (Receive)"

 line

set -x

 mksnaobj -t side_info -L "$LLUNAME" -P "$SNA_NET"."$PARTNER" -m "$MODE"\

 -d 21FðFðF8 -h yes "$SIDR"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t side_info -L "$LLUNAME" -P "$SNA_NET"."$PARTNER" -m "$MODE"\

 -d 21FðFðF8 -h yes "$SIDR"

set +x

 line

 fi

}

Figure 33. configure_side_rcv Shell Procedure

4.7 Configuring SNA/DS Connection Profiles
NetView DM/6000 uses SNA/DS to communicate with other NetView DM/6000
servers or with NetView DM/MVS. For this to work, SNA/DS has to be configured
properly.

 Note

Unlike configuring SNA Server, which is a separate product, the configuration of
SNA/DS is a part of configuring the NetView DM/6000 product.

For each connection to another server we need an SNA/DS connection profile, so
we will now develop a procedure to configure these connection profiles
automatically.

 Chapter 4. Designing and Implementing the Configuration Procedure 61

In our configuration database we define remote systems by adding objects to the
nvdm_queues class. This makes sense because any connection to a remote server
uses a queue.

Therefore, we first create a simple routine to query the nvdm_queues class. The
information we need to configure an SNA/DS connection to a remote system
contains basically the name of the remote system and the protocol to be used.

The following shell procedure will obtain this information:

#

get queues defined for a server

since this class can contain more

than one entry for a server, we have

to store the result in a list

#

$1 = server name

#

get_queues ()

{

 #

 # first, determine number of entries for

 # that server

 #

 #

 # Fill in Fields

 #

 get_attribute_list nvdm_queues node_name $1 protocol

 NUM_QUEUE=$VALUE_NUM

 if [$NUM_QUEUE = ð]

 then

 return

 fi

 PROTOCOL=$VALUE_LIST

 get_attribute_list nvdm_queues node_name $1 remote_server

 REMOTE_SERVER=$VALUE_LIST

}

Figure 34. get_queues Shell Procedure

The get_queues shell procedure will store the data in the global variables PROTOCOL
and REMOTE_SERVER.

The configuration procedure shown below will use this data to configure the
SNA/DS connection profiles:

62 Pristine AIX Environments

#

configure SNA/DS connection profiles

#

$1 = IP Hostname of system to be configured

#

configure_sna_ds_conn ()

{

#

perform SNA/DS configuration (connection profiles)

#

#

remove demo profile CONNSNA,CONNTCP if existent

#

cd $SNA_DS_DIR

rm CONNSNA 2>/dev/null

rm CONNTCP 2>/dev/null

get_queues $1

if [$NUM_QUEUE != ð]

then

 a=1

for i in $PROTOCOL

 do

print "NVDM CONFIG : Configuring $i connection"

if ["$i" != "APPC" -a "$i" != "TCP/IP"]

 then

abort "Protocol is neither APPC nor TCP/IP. Exiting..

 fi

if ["$i" = "APPC"]

 then

 configure_sna_ds_appc

 else

REMSERV=yecho $REMOTE_SERVER | cut -d' ' -f "$a"y
 configure_sna_ds_tcpip $REMSERV

a=yexpr $a + 1y
 fi

 done

fi

}

Figure 35. configure_sna_ds_conn Shell Procedure

Explanation:
First the procedure removes the default connection files CONNSNA and CONNTCP,
which are delivered with NetView DM/6000. This is just done to avoid these demo
queues appearing in the NetView DM/6000 queues window and leading to
confusion.

 Chapter 4. Designing and Implementing the Configuration Procedure 63

The shell variable SNA_DS_DIR holds the pathname of the directory where SNA/DS
connection profiles are stored. Normally this is
/usr/lpp/netviewdm/db/snads_conn.

Then the script processes the list of remote systems to be configured. Depending
on whether the system to be configured is connected via APPC or TCP/IP it will call
the configuration procedures configure_sna_ds_appc or configure_sna_ds_tcpip.

The next figure shows configure_sna_ds_appc:

#

Configure SNA/DS connection configuration file (APPC)

#

configure_sna_ds_appc ()

{

 print "NVDM CONFIG : Configuring SNA/DS connection\

 configuration file $SNA_DS_DIR/$PARTNER"

 echo "PROTOCOL: APPC

SEND TP SYMBOLIC DESTINATION: $SIDS

RECEIVE TP SYMBOLIC DESTINATION: $SIDR

NEXT DSU: $SNA_NET.$PARTNER

TRANSMISSION TIME-OUT: 6ð

RETRY LIMIT: 3

SEND MU_ID TIME-OUT: 6ð

RECEIVE MU_ID TIME-OUT: 12ð" > $SNA_DS_DIR/$PARTNER

}

Figure 36. configure_sna_ds_appc Shell Procedure

Explanation:
The configuration procedure will create a file in the SNA/DS directory that
represents the connection to be configured. The shell variable PARTNER holds the
name of the partner system to be configured. The variables SIDS and SIDR hold the
names of the side information profiles also used in the configuration of SNA Server;
SNA_NET holds the SNA Network name.

 Note

The procedure shown above is quite simple because in our scenario we only
configure an APPC connection to NetView DM/MVS. Therefore, we use the
same data that we used to configure the SNA Server connection to the MVS
system.

However, the configuration becomes more complicated if you want to configure
SNA connections to other RS/6000 systems. If you intend to do that, you will
have to modify the above procedure.

In this example communications to other NetView DM/6000 servers will use TCP/IP
as the communications protocol.

The following figure shows the procedure to configure SNA/DS connections using
TCP/IP:

64 Pristine AIX Environments

#

Configure SNA/DS connection configuration file (TCP/IP)

$1 = TCP/IP Hostname of remote system

#

configure_sna_ds_tcpip ()

{

 #

 # get short name of remote server

 #

 get_attribute nvdm_node node_name $1 short_name

 A=$VALUE

 print "NVDM CONFIG : Configuring SNA/DS connection configuration file.

 print "NVDM CONFIG : (TCP/IP) for remote Server $A."

 echo "PROTOCOL: TCP/IP

REMOTE SERVER NAME: $1

TCP/IP TIME-OUT: 3ðð

NEXT DSU: $A.$A

TRANSMISSION TIME-OUT: 6ð

RETRY LIMIT: 3

SEND MU_ID TIME-OUT: 6ð

RECEIVE MU_ID TIME-OUT: 12ð" >$SNA_DS_DIR/$A

}

Figure 37. configure_sna_ds_tcpip Shell Procedure

Explanation:
The procedure configure_sna_ds_tcpip is basically the same as
configure_sna_ds_appc. It is, however, more flexible. The TCP/IP hostname of the
remote system is passed to the procedure as a command parameter. The short
name of this system is determined by using the nvdm_node class.

Therefore this procedure can be used to configure any TCP/IP connection using
SNA/DS.

4.8 Configuring SNA/DS Routing Table
The SNA/DS routing table contains the routes to be used for SNA/DS and STS
traffic. We will only use SNA/DS connections in our example.

There is one routing table for all connections.

The following figure shows the procedure to automatically configure the SNA/DS
routing table:

 Chapter 4. Designing and Implementing the Configuration Procedure 65

#

configure SNA/DS routing table

$1 = IP Hostname

#

configure_routetab ()

{

 #

 # first, determine what network protocols we have

 #

 a=ð

 b=ð

 print "NVDM CONFIG : Configuring SNA/DS routing table."

 cd $SNA_DS_DIR

 HAVET=ygrep PROTOCOL \ | grep TCP/IPy
 if ["$HAVET" != ""]

 then

print "NVDM CONFIG : System has TCP/IP connection to remote server.

 a=1

 fi

 HAVEA=ygrep PROTOCOL \ | grep APPCy
 if ["$HAVEA" != ""]

 then

print "NVDM CONFIG : System has APPC connection to remote server."

 b=1

 fi

 if [$a -eq ð -a $b -eq ð]

 then

print "NVDM CONFIG : There are no connections defined."

 return

 fi

 if [$a -eq 1 -a $b -eq 1]

 then

 RPROT="BOTH"

 fi

 if [$a -eq 1 -a $b -eq ð]

 then

 RPROT="TCP/IP"

 fi

 if [$a -eq ð -a $b -eq 1]

 then

 RPROT="APPC"

 fi

Figure 38 (Part 1 of 2). configure_routetab Shell Procedure

66 Pristine AIX Environments

 print "NVDM CONFIG : Writing routing table to $SNA_DS_ROUTE"

 echo "NETWORK PROTOCOL: $RPROT

#

SNA connections

#

" >$SNA_DS_ROUTE

#

get all SNA Routes

#

 cd $SNA_DS_DIR

 SNA_R=ygrep -p APPC \ | grep "NEXT DSU" | cut -d':' -f2y
 if ["$SNA_R" != ""]

 then

for i in $SNA_R

 do

ONE=yecho $i | cut -d'.' -f1y
TWO=yecho $i | cut -d'.' -f2y
if ["$TWO" = "\"]

 then

echo "$i ANY ANY ANY ANY $ONE 5" >>$SNA_DS_ROUTE

 else

echo "$i ANY ANY ANY ANY $TWO 5" >>$SNA_DS_ROUTE

 fi

 done

 fi

 echo "

#

TCP/IP connections

#

" >>$SNA_DS_ROUTE

 TCP_R=ygrep -p TCP/IP \ | grep "NEXT DSU" | cut -d':' -f2y
 if ["$TCP_R" != ""]

 then

for i in $TCP_R

 do

ONE=yecho $i | cut -d'.' -f1y
 echo "$ONE.\ $ONE" >>$SNA_DS_ROUTE

 done

 fi

}

Figure 38 (Part 2 of 2). configure_routetab Shell Procedure

Explanation:
First, the procedure determines what protocols we use for SNA/DS connections,
APPC, TCP/IP or both. This information is needed to fill in the NETWORK PROTOCOL

field in the routetab file.

The shell variable SNA_DS_ROUTE holds the file name of the SNA/DS routing table
which is normally /usr/lpp/netviewdm/db/routetab.

 Chapter 4. Designing and Implementing the Configuration Procedure 67

Information is then gathered from the SNA/DS connection files needed to construct
the SNA/DS routes.

 Note

In the above configuration procedure we just fill in the fields regarding the
existing SNA/DS connection files. For the route configuration itself we use the
defaults as recommended in the NetView DM/6000 manuals.

If you need to change these defaults you will have to modify the procedure, for
example, by replacing the ANY fields in the APPC routes.

4.9 Configuring Local Targets
On a NetView DM/6000 server all targets defined for this server need to be
configured automatically.

The procedure we develop to do this should be able to cover both types of
configuration:

 � Initial Configuration

 � Reconfiguration

The entire configuration script cannot only be used to initially configure our software
distribution network but also to make changes to this network.

As far as targets are concerned, this means that the server-agent relationships in
the network may change in one of the following ways:

1. A target is added to a server.

2. A target is removed from a server.

3. The characteristics of a target are changed.

4. A target is moved from one server to another.

To meet all of the above requirements we have to write several scripts to perform
the steps necessary to maintain the target configuration.

The first procedure will delete all targets from a server that are not contained in the
current configuration database for that server. This will primarily happen when you
want to delete a target from a server's configuration.

The following figure shows the procedure to do so:

68 Pristine AIX Environments

#

delete local targets from NVDM Server configuration

$1 = Server IP Hostname

#

nvdm_delete_targets()

{

 #

 # get list of existing targets

 #

 TLIST=ynvdm lstg '\' | grep "Target:" | cut -d':' -f2y

 #

 # get list of all defined targets for this server

 #

 get_attribute_list nvdm_node server_name $1 node_name

 XLIST=$VALUE_LIST

 #

 # delete all targets which are not defined for this server

 #

 for i in $TLIST

 do

 match=ð

for x in $XLIST

 do

if ["$i" = "$x"]

 then

 match=1

 fi

 done

if [match -eq ð]

 then

 nvdm_save_history $i

print "NVDM CONFIG : Deleting Target $i from Server $1 configuration."

nvdm deltg $i -f

 fi

 done

}

Figure 39. nvdm_delete_targets Shell Procedure

Explanation:
The procedure first determines which targets are currently defined for the server to
be configured. Then the database is queried to return all targets currently in the
configuration database for that server.

All targets that are currently defined, but not in the configuration database, will then
be removed.

Possibly, a target not contained in the configuration database for a server anymore
has been moved to another server. When this happens we not only want to

 Chapter 4. Designing and Implementing the Configuration Procedure 69

remove the target from one server and add it to another but also move the target
history with the target.

For saving the target history we write another shell procedure nvdm_save_history

which will be called before removing a target from a server:

#

Save NVDM target history by creating software inventory

file and copying it to corresponding node

requires /.rhosts file on target

$1 = target name

#

nvdm_save_history ()

{

 print "NVDM CONFIG : Saving target history for $1"

 nvdm inv

 SLIST="ynvdm lscm -w $1 '\' | grep 'Global file name:' | cut -d':' -f2y"
 >/tmp/inv

 if ["$SLIST" != ""]

 then

for o in $SLIST

 do

print "NVDM CONFIG : Adding $o to software inventory file."

print "PRODUCT: "$o >>/tmp/inv

print "DESCRIPTION: Target has been moved!" >>/tmp/inv

 done

print "NVDM CONFIG : Copying inventory file $SW_INV to $1."

echo "GLOBAL NAME: HISTORY.REF.1

CHANGE FILE TYPE: GEN

COMPRESSION TYPE: LZW

REBOOT REQUIRED: NO

PACK FILES: NO

SECURE PACKAGE: NO

OBJECT:

SOURCE NAME: /tmp/inv

TARGET NAME: /usr/lpp/netviewdm/fndswinv

TYPE: FILE

ACTION: COPY

INCLUDE SUBDIRS: NO" >/tmp/hist.pro

nvdm delcm HISTORY.REF.1 -w '\'

nvdm uncat HISTORY.REF.1 -d -f

nvdm bld /tmp/hist.pro -f

nvdm inst HISTORY.REF.1 -w $1 -f -i

print "CONFIG NVDM : Sleeping for 5 secs."

 sleep 5

 fi

}

Figure 40. nvdm_save_history Shell Procedure

Explanation:
The script will save the target history using the software inventory file fndswinv on
the target to be moved. First, the current change history of the node to be moved
is determined using the nvdm lscm command. For this to work the target to be

70 Pristine AIX Environments

moved still has to be active and connected to the server from which we initiate the
move. Therefore, we have to do this before finally removing the target from the
original server.

From the information gathered by nvdm lscm, a software inventory file is created
and stored in /tmp/inv at the server.

This inventory file then has to be copied to the agent for which it has been created.
To do so,we create a change file that contains the inventory file and then send this
change file to the agent.

 Note

We use a change file to transmit the inventory file to make use of the servers
ability to copy files to the agent. If we used, for example, remote copy (rcp) to
do so we would need to have a lot of /.rhosts files to cover the possible
server-agent relationships.

The following figure contains a sample inventory file generated by
nvdm_save_history:

PRODUCT: HUGO.REF.1

DESCRIPTION: Target has been moved!

PRODUCT: IBM.NDM6ððð.CLBOOKS.FIX.112.U436

DESCRIPTION: Target has been moved!

PRODUCT: IBM.NDM6ððð.CLBOOKS.REF.112

DESCRIPTION: Target has been moved!

PRODUCT: IBM.NDM6ððð.CLGI.FIX.112.U436929

DESCRIPTION: Target has been moved!

PRODUCT: IBM.NDM6ððð.CLGI.REF.112

DESCRIPTION: Target has been moved!

PRODUCT: IBM.NDM6ððð.CLIENT.FIX.112.U4369

DESCRIPTION: Target has been moved!

PRODUCT: IBM.NDM6ððð.CLIENT.REF.112

DESCRIPTION: Target has been moved!

PRODUCT: SUELPEN.DEMO.REF.1

DESCRIPTION: Target has been moved!

Figure 41. Sample Software Inventory File

After the target has been moved to another server the target history for that target
can still be retrieved because it is stored in the software inventory file.

 Warning

The procedure shown above is a quite simple way to save the target history. It
assumes that the agent to be moved is connected to the server which tries to
save the history. If you reconfigure a complete network you must ensure that
you reconfigure the server before you reconfigure the agent that is to be moved.
This is because if you reconfigured the agent first to belong to a new server, the
server currently defined for that target could not create and transmit the history
file.

 Chapter 4. Designing and Implementing the Configuration Procedure 71

We now show another procedure, nvdm_configure_targets, which we use to add or
modify targets.

The following figure shows the procedure:

#

configure Targets for an NVDM/6ððð Server

$1 = Server IP Hostname

#

nvdm_configure_targets ()

{

 #

 # First, determine all Nodes which have these Server

 # defined as their NVDM/6ððð server

 #

 # access database

 get_attribute_list nvdm_node server_name $1 node_name

 TLIST=$VALUE_LIST

 for i in $TLIST

 do

print "NVDM CONFIG : Defining Target $i on server $1"

nvdm lstg $i 1>/dev/null 2>&1

 #

if return code = ð then target exists already

 #

if [$? -ne ð]

 then

COMMAND="nvdm addtg $i"

 else

COMMAND="nvdm updtg $i"

print "NVDM CONFIG : Target already exists. Updating.

 fi

 #

get required target attributes

 #

for a in short_name target_os description contact_name\

 owning_manager telephone_number customer_name

 do

get_attribute nvdm_node node_name $i $a

 v=$VALUE

if ["$v" != ""]

 then

case $a in

Figure 42 (Part 1 of 2). nvdm_configure_targets Shell Procedure

72 Pristine AIX Environments

short_name) COMMAND=$COMMAND" -s '$v'" ;;

target_os) COMMAND=$COMMAND" -y '$v'" ;;

description) COMMAND=$COMMAND" -d '$v'" ;;

contact_name) COMMAND=$COMMAND" -q '$v'" ;;

owning_manager) COMMAND=$COMMAND" -o '$v'" ;;

telephone_number) COMMAND=$COMMAND" -t '$v'" ;;

customer_name) COMMAND=$COMMAND" -r '$v'" ;;

 esac

 fi

 done

 echo $COMMAND

 eval $COMMAND

#

add users for target

#

get_attribute_list nvdm_users node_name $i username

if [$VALUE_NUM != ð]

then

print "NVDM CONFIG : Adding Target Users..."

for x in $VALUE_LIST

 do

print "NVDM CONFIG : Adding $x User"

nvdm updtg $i -u $x

 done

fi

done

}

Figure 42 (Part 2 of 2). nvdm_configure_targets Shell Procedure

Explanation:
First the database is queried to return all targets currently in the configuration
database for that server. Then the procedure determines if the target already
exists or not. If the target does not exist yet, we will use the nvdm addtg command
to add this target to the server; otherwise we will use nvdm updtg to just update the
target characteristics.

In our scenario we retrieve several target characteristics from the configuration
database, including a target description, etc. What you will include in your own
configuration database depends on your specific environment. For example, you
may not need to include a target description in your database.

However, some parameters are essential and necessary so they must be included
in your configuration database. As far as the target definition is concerned, the
target short name must be included in the database because it is needed to run the
configuration command.

 Chapter 4. Designing and Implementing the Configuration Procedure 73

 Note

In case of the short name you can, of course, also decide to automatically
generate the short name in the configuration script. For example, you could
take the IP hostname and convert it into uppercase to use it as the short name
if you limit the length of the hostname to eight characters. Then you would not
need to have the short name as an attribute in the nvdm_node class.

After the target base characteristics have been configured, the script will add the
users of this target to the configuration. For that purpose the ODM class containing
the target users will be consulted.

4.10 Configuring Target Groups
The task of configuring local target groups is similar to that of configuring local
targets.

We also have a shell procedure to remove target groups that are not in the
configuration database anymore from the configuration of a server.

However, since target groups do not have a change management history, we will
not have to save history information for target groups.

The following figure shows the procedure to remove target groups:

74 Pristine AIX Environments

#

Delete all existing groups before adding groups from

configuration database

$1 = IP Hostname of server to be configured

#

nvdm_delete_groups ()

{

 #

 # determine existing groups

 #

 GP=ynvdm lsgp '\' | grep -E "Push|Pull" | cut -d' ' -f1y
 #

 # determine list of defined groups

 #

 get_attribute_list nvdm_groups node_name $1 group_name

 XGP=$VALUE_LIST

 for i in $GP

 do

 match=ð

for x in $XGP

 do

if ["$i" = "$x"]

 then

 match=1

 fi

 done

if [match -eq ð]

 then

print "NVDM CONFIG : Deleting group $i from $1 configuration."

nvdm delgp $i -f

 fi

 done

}

Figure 43. nvdm_delete_groups Shell Procedure

The process of removing target groups from a server's configuration is nearly the
same as that for removing targets.

Also we have a similar script to configure local target groups:

 Chapter 4. Designing and Implementing the Configuration Procedure 75

#

configure groups defined for NVDM/6ððð server

#

nvdm_configure_groups ()

{

 print "NVDM CONFIG : Configuring Target Groups for $1"

 get_attribute_list nvdm_groups node_name $1 group_name

 if [$VALUE_NUM = ð]

 then

print "NVDM CONFIG : No groups defined"

 return

 fi

 GROUP_LIST=$VALUE_LIST

 for i in $GROUP_LIST

 do

print "NVDM CONFIG : Adding group $i"

get_attribute nvdm_groups group_name $i short_name

 SHORT=$VALUE

get_attribute nvdm_groups group_name $i description

 DESC=$VALUE

 #

get all targets being defined for this group

 #

get_attribute_list nvdm_node group_name $i node_name

for a in $VALUE_LIST

 do

eval nvdm addgp $i $a -s "'$SHORT'" -d "'$DESC'"

 done

 done

}

Figure 44. nvdm_configure_groups Shell Procedure

4.11 Configuring Remote Targets
We can have two types of remote targets:

� Remote servers and clients

 � Focal points

Remote servers are other NetView DM servers (NetView DM/6000, NetView
DM/MVS, etc.).

Remote NetView DM/6000, NetView DM/MVS, NetView DM/2 and System
Manager/400 servers can also be confirmed as focal points.

Connections to other NetView DM servers are made using SNA/DS queues.
Therefore we can detect which remote targets we have to define by examining the

76 Pristine AIX Environments

database containing the queue definition for the server to be configured. In our
scenario this is the nvdm_queues ODM class.

If the remote target is a focal point, we will use the same configuration parameters
that we used to configure SNA Server.

If the remote target is another NetView DM/6000 server, it must also have a
corresponding object in the nvdm_node class representing it, so we can consult that
class to get the target short name.

The following figure shows the shell procedure that can be used to configure
remote targets and focal points:

 Chapter 4. Designing and Implementing the Configuration Procedure 77

#

configure Remote Targets

$1 = IP Hostname

#

nvdm_remote_targets ()

{

 #

 # First, get all remote targets defined for this server

 # Remote Targets are determined by searching the nvdm_queues

 # class because any connection to a remote system requires a

 # queue

 get_attribute_list nvdm_queues node_name $1 remote_server

 if [$VALUE_NUM = ð]

 then

print "NVDM CONFIG : No remote targets defined"

 return

 fi

 for i in $VALUE_LIST

 do

print "NVDM CONFIG : Defining remote target for $i"

 #

determine if system to be configured is a Remote Target or

a Focal Point

 #

get_attribute_and nvdm_queues node_name $1 remote_server $i focal_point

if ["$VALUE" = "yes"]

 then

print "NVDM CONFIG : $i will be configured as focal point."

for the MVS focal point short name will be the same as node name

network id will be the SNA Network Name

set -x

eval nvdm addtg $i -m report_to -s $i -n $SNA_NET -d "'NVDM_MVS'"

set +x

 else

get short name for remote server from class nvdm_node

get_attribute nvdm_node node_name $i short_name

if ["$VALUE" = ""]

 then

abort "No Short Name defined for $i in class nvdm_node. Exiting..."

 fi

 RSHORT=$VALUE

Figure 45 (Part 1 of 2). nvdm_remote_targets Shell Procedure

78 Pristine AIX Environments

 #

This remote server is assumed to be connected via TCP/IP

so, we set the network name to be the same as the short name

 #

nvdm addtg $i -m remote -s $RSHORT -n $RSHORT

 fi

 done

}

Figure 45 (Part 2 of 2). nvdm_remote_targets Shell Procedure

 Note

In the above script we assume that if we have to configure a focal point that this
is also a report to focal point system, so we use the -m report_to parameter
with the nvdm addtg command.

If you do not want the focal point system to be a report_to focal point you will
have to change this. Of course you can also introduce a new attribute to the
corresponding ODM class to make the configuration script more flexible.

 4.12 Miscellaneous Matters
The configuration shell procedures described in the previous sections will be
combined into one single shell script used to perform the configuration of a NetView
DM/6000 node.

Besides the configuration procedures, this script also contains some additional
routines, for example, how to print error messages.

The following procedure is used to start or restart NetView DM/6000 after a server
has been configured:

 Chapter 4. Designing and Implementing the Configuration Procedure 79

restart_nvdm ()

{

 print "NVDM CONFIG : --> In order for the changes to become active"

 print "NVDM CONFIG : NetView DM/6ððð will be restarted on this node"

 #

 # determine if nvdm is running

 #

 nvdm stat 1>/dev/null 2>&1

 if [$? = 121]

 then

print "NVDM CONFIG : NVDM is not running. It will be started now."

 nvdm start

 nvdm start

 else

print "NVDM CONFIG : Stopping NVDM."

nvdm stop -x 1>/dev/null 2>&1

 s=1

print "NVDM CONFIG : Restarting NVDM."

while [$s = 1]

 do

print "NVDM CONFIG : Restarting NVDM."

 nvdm start

 nvdm stat

if [$? != 121]

 then

 s=ð

 fi

 done

 fi

}

Figure 46. restart_nvdm Shell Procedure

Explanation :
The procedure first examines if NetView DM/6000 is already running by invoking
the nvdm stat command. If NetView DM/6000 is not running yet it will be started;
otherwise the server will be stopped and then started again.

 Note

We recommend that the procedure to start NetView DM/6000 contains the
statement nvdm start two times.

If NetView DM/6000 has just been stopped and nvdm start is called afterwards, the
command will produce the following error message if there has not been enough
time elapsed since the stopping of the server:

FNDCL232E: Unable to start the system as the D&CC Agent is shutting down

80 Pristine AIX Environments

In that case the server will not be started. However, if you invoke nvdm start a
second time, it will start the server in any case, because it then waits for the server
to be stopped before trying to restart it.

 4.13 Limitations
All the shell procedures described in this chapter previously are used to configure
RS/6000 nodes in our software distribution network.

However, we might also have to configure other operating systems. For example, if
we have a focal point system running NetView DM/MVS, we should also have
procedures to configure NetView DM/MVS as well as other necessary MVS
components.

The reason for this is simple. Assuming that we have a large number of RS/6000
nodes in our software distribution network, we now have the procedures to
configure these nodes automatically. Nevertheless, we still have to do all the
configuration work on MVS manually, for example defining all NetView DM/6000
nodes to NetView DM/MVS.

Although we will not provide the procedures needed to configure an MVS host, in
this book we give some hints on how this task could be performed.

In order to automate the process of configuring NetView DM/MVS, we need to
figure out which components have to be configured. For example, the following
steps could be included:

� Adding node definitions for all NetView DM/6000 nodes to NetView DM/MVS

� Adding SNA LU 6.2 definitions for all RS/6000 nodes to VTAM

 Note

The automatic configuration of VTAM can be quite complicated and will not be
discussed here. If you want to create a procedure to automatically configure
VTAM you will need a very good knowledge of SNA and MVS.

In order to automatically configure MVS components we normally use CLISTs
which are similar to the Shell procedures for AIX developed in this book. NetView
DM/MVS also supplies macros that can be used, for example, to add node
definitions in batch mode.

The problem is that our configuration database is stored in the AIX ODM database
which is only available on AIX. In order to configure MVS components we need to
access the same configuration data that is used to configure RS/6000 nodes.
Therefore, we have to transfer the configuration data from AIX to MVS.

One way to do this is as follows:

We create a shell script on AIX that queries the ODM database for the necessary
data and then generates the CLIST or macro procedures needed to configure, for
example, node definitions in NetView DM/MVS. These procedures can then be
transferred to MVS and be executed there to perform the necessary configuration
tasks.

 Chapter 4. Designing and Implementing the Configuration Procedure 81

We will show a simple example for such a procedure in 8.2, “Configuring NetView
DM/MVS” on page 142.

Another way to exchange configuration data between AIX and MVS

is the use of a DB2 database (see Chapter 12, “Implementing the Configuration
Data Model Using DB2/6000” on page 219).

In this case the MVS host holds the configuration database while the AIX
configuration server is configured as a Distributed Database Connection Services
(DDCS) gateway, enabling the targets, configured as DB2/6000 clients, to access
the host database transparently.

We are neither going to show the setup of the MVS host as a database server, nor
the configuration of the DDCS feature of DB2/6000 in this book. For details about
the latter you can refer to Distributed Relational Database Cross Platform
Connectivity and Application, SG24-4311.

Note that the SQL scripts for the creation of the configuration database presented
in Chapter 12, “Implementing the Configuration Data Model Using DB2/6000” on
page 219 apply to DB2 on the MVS host, too.

82 Pristine AIX Environments

Chapter 5. Testing the Automatic Configuration Script

In Chapter 4, “Designing and Implementing the Configuration Procedure” on
page 29 we created the shell procedures to perform the configuration activities
needed to configure NetView DM/6000.

We now show how to apply the configuration script in combination with the
configuration data to our test environment.

The different shell procedures will be combined into one single shell script,
config_nvdm, which is listed in the appendix.

To initiate configuration of a node in a NetView DM/6000 software distribution
network,we have to invoke this script and pass the IP hostname of the node as the
command line parameter, for example, config_nvdm rs6ððð7.

The script will then use the IP hostname as the search criteria to obtain
configuration data for that node. Since we have filled the ODM database previously
with the configuration data describing our specific scenario we can now start to
configure our NetView DM/6000 nodes.

5.1 Prerequisites for Node Configuration
In order for the automatic node configuration to work we performed some
prerequisite steps in our test environment.

These are the following:

� The AIX 3.2.5 operating system has been installed on all systems in our
network.

� NetView DM/6000 Server Version 1.2 has been installed on rs6ððð7 and
rs6ððð15.

� NetView DM/6000 Client Version 1.2 has been installed on rs6ððð4.

� SNA Server Version 2.1 has been installed on rs6ððð15.

� TCP/IP has been configured to run on the token-ring adapter in
rs6ððð4,rs6ððð7 and rs6ððð15.

� TCP/IP name resolution is provided on all hosts in our network.

5.2 Starting the Node Configuration
To configure the node rs6ððð7 and redirect the script output in a log file we type:

config_nvdm rs6ððð7 2>&1 | tee rs6ððð7.log

The following figure shows the log file produced for the configuration of rs6ððð7:

 Copyright IBM Corp. 1996 83

NVDM CONFIG : --> Trying to configure node rs6ððð7

NVDM CONFIG : Node type is ð (ð = Server, 1 = Agent, 2 = Prep)

NVDM CONFIG : --> NVDM Base Node Configuration

NVDM CONFIG : Setting nvdm.cfg (WORKSTATION NAME) to rs6ððð7

NVDM CONFIG : Setting nvdm.cfg (SERVER) to rs6ððð7

NVDM CONFIG : Setting nvdm.cfg (LOG FILE SIZE) to 25ðððð

NVDM CONFIG : Setting nvdm.cfg (TCP/IP PORT) to 729

NVDM CONFIG : --> Adding AIX users for NVDM...

NVDM CONFIG : Adding user suelpen to AIX OS.

NVDM CONFIG : --> Adding AIX users for NVDM...

NVDM CONFIG : Adding user mike to AIX OS.

NVDM CONFIG : Setting SNA Network Name to USIBMRA

NVDM CONFIG : Setting SNA Datalink Device to tokð

NVDM CONFIG : Setting SNA Remote Link Address to 4ðððð124ðððð

NVDM CONFIG : Setting SNA NVDM Mode Profile Name to NVDMNORM

NVDM CONFIG : Setting SNA NVDM Mode Name to NVDMNORM

NVDM CONFIG : Setting SNA TPN Profile Name (Send)

to NVDMSND

NVDM CONFIG : Setting SNA TPN Profile Name (Receive)

to NVDMRCV

NVDM CONFIG : Setting SNA Partner LU Name (MVS Host)

to RA39TCF1

NVDM CONFIG : Setting SNA Side Info Profile Name (Send)

to NVDMSIDS

NVDM CONFIG : Setting SNA Side Info Profile Name (Receive)

to NVDMSIDR

NVDM CONFIG : Setting Solicit SSCP Field (yes|no) to yes

NVDM CONFIG : Setting I-Field Size to 2ð42

NVDM CONFIG : Setting SNA Local SAP No. to ð4

NVDM CONFIG : Setting Remote SAP No. to ð4

NVDM CONFIG : Setting SNA Initiate Call Field (yes|no) to yes

NVDM CONFIG : Setting SNA Activate on start (yes|no) to yes

NVDM CONFIG : Setting SNA Restart on normal termination

(yes|no) to yes

NVDM CONFIG : Setting SNA Restart on abnormal termination

(yes|no) to yes

NVDM CONFIG : Setting SNA VTAM CP Name

(for LU6.2 Location Profile) to RAK

NVDM CONFIG : Setting PU NAME for rs6ððð7 to B

NVDM CONFIG : Setting Local LU Name for rs6ððð7 to A

NVDM CONFIG : Setting Control Point Name for rs6ððð7to C

NVDM CONFIG : Could not determine XID for rs6ððð7 configu

ration.

NVDM CONFIG : Setting USE_CP_XID to yes

NVDM CONFIG : Configuring TCP/IP connection

NVDM CONFIG : Configuring SNA/DS connection configuration file.

NVDM CONFIG : (TCP/IP) for remote Server RS6ððð15.

NVDM CONFIG : Configuring SNA/DS routing table.

NVDM CONFIG : System has TCP/IP connection to remote server.

Figure 47 (Part 1 of 2). Configuration Log File rs60007.log (Part 1)

84 Pristine AIX Environments

NVDM CONFIG : Writing routing table

to /usr/lpp/netviewdm/db/routetab

NVDM CONFIG : Defining Target rs6ððð7 on server rs6ððð7

NVDM CONFIG : Target already exists. Updating...

nvdm updtg rs6ððð7 -s 'RS6ððð7' -y 'AIX'

-d 'ITSO Raleigh development' -q 'Stefan Uelpenich'

-o 'Wolfgang Geiger' -t '4711' -r 'IBM'

WARNING: The Network ID of this domain has been changed

to RS6ððð7.

NVDM CONFIG : Adding Target Users...

NVDM CONFIG : Adding root User

NVDM CONFIG : Adding suelpen User

NVDM CONFIG : Defining Target rs6ððð4 on server rs6ððð7

nvdm addtg rs6ððð4 -s 'RS6ððð4' -y 'AIX'

-d 'ITSO Raleigh test client' -q 'Stefan Uelpenich'

-o 'Wolfgang Geiger' -t '4711' -r 'IBM'

NVDM CONFIG : Adding Target Users...

NVDM CONFIG : Adding root User

NVDM CONFIG : Adding mike User

NVDM CONFIG : Configuring Target Groups for rs6ððð7

NVDM CONFIG : Adding group Group1

NVDM CONFIG : Defining remote target for rs6ððð15

ð513-ð29 The sna Subsystem is already active.

Multiple instances are not supported.

NVDM CONFIG : --> In order for the changes to become active

NVDM CONFIG : NetView DM/6ððð will be restarted on this node

NVDM CONFIG : NVDM is not running. It will be started now.

Trying to connect to default server (rs6ððð7).

Connected to server rs6ððð7.

NVDM CONFIG : Releasing NVDM SNA communications.

NVDM CONFIG : !!! Configuration of Server completed successfully !!!

Figure 47 (Part 2 of 2). Configuration Log File rs60007.log (Part 1)

 Note

In order for the script to work, the ODM database needs to be filled with the
configuration data. We filled the database in our scenario before by invoking
the build_db command, which is listed in Figure 7 on page 22.

If the script cannot find the necessary configuration data in the database it will
print an error message and quit.

We will now have a look at the NetView DM/6000 configuration for rs6ððð7 to see
what the configuration script has configured.

The first thing done by the configuration script is modifying the NetView DM/6000
main configuration file nvdm.cfg:

 Chapter 5. Testing the Automatic Configuration Script 85

WORKSTATION NAME: rs6ððð7

MESSAGE LOG LEVEL: N

LAN AUTHORIZATION: ð

CONFIGURATION: REMOTE_ADMIN_SERVER

MACHINE TYPE: AIX

LOG FILE SIZE: 25ðððð

TRACE FILE SIZE: 1ðððððð

API TRACE FILE SIZE: 5ððððð

TCP/IP PORT: 729

MAX TARGETS: 6ðð

MAX CONNECTIONS: 5ð

MAX USER INTERFACES: 2ð

SERVER: rs6ððð7

REPOSITORY: /usr/lpp/netviewdm/repos

SERVICE AREA: /usr/lpp/netviewdm/service

BACKUP AREA: /usr/lpp/netviewdm/backup

WORK AREA: /usr/lpp/netviewdm/work

Figure 48. /usr/lpp/netviewdm/db/nvdm.cfg File on rs60007

The configuration script has changed the WORKSTATION NAME, LOG FILE SIZE and
SERVER fields.

To examine the users created or changed by the script, we type:

lsuser -a groups root,suelpen,mike

This should produce the following output:

root groups=system,bin,sys,security,cron,audit,FNDADMN

suelpen groups=staff,FNDADMN

mike groups=staff,FNDBLD

Figure 49. Output from lsuser Command

Users root and suelpen have been defined to be NetView DM/6000 administrators,
whereas user mike has been defined to be a NetView DM/6000 builder.

For the SNA/DS connection to rs6ððð15 the script has created a connection file
/usr/lpp/netviewdm/db/snads_conn/RS6ððð15:

86 Pristine AIX Environments

PROTOCOL: TCP/IP

REMOTE SERVER NAME: rs6ððð15

TCP/IP TIME-OUT: 3ðð

NEXT DSU: RS6ððð15.RS6ððð15

TRANSMISSION TIME-OUT: 6ð

RETRY LIMIT: 3

SEND MU_ID TIME-OUT: 6ð

RECEIVE MU_ID TIME-OUT: 12ð

Figure 50. /usr/lpp/netviewdm/db/snads_conn/RS600015 File

The SNA/DS routing table looks like the following:

NETWORK PROTOCOL: TCP/IP

#

SNA connections

#

#

TCP/IP connections

#

RS6ððð15.\ RS6ððð15

Figure 51. /usr/lpp/netviewdm/db/routetab File on rs60007

To see the targets created by the configuration script we type:

nvdm lstg -l '\'

This should produce the following output:

 Chapter 5. Testing the Automatic Configuration Script 87

Target: rs6ððð15

Description:

Customer name:

Contact name:

Telephone number:

Manager:

Mailing address:

Mode: Remote

Short name: RS6ððð15

Network ID: RS6ððð15

Target: rs6ððð4

Description: ITSO Raleigh test client

Customer name: IBM

Contact name: Stefan Uelpenich

Telephone number: 4711

Manager: Wolfgang Geiger

Mailing address:

Mode: Push

Operating system: AIX

Short name: RS6ððð4

Network ID: RS6ððð7

LAN address:

CM window: ðð:ðð:ðð - 23:59:ðð

Distribution window: ðð:ðð:ðð - 23:59:ðð

Logging level: Normal

Tracing state: Off

Installation parms: None.

Hardware parms: None.

Discovered inventory: None.

Users: mike

 root

Target: rs6ððð7

Description: ITSO Raleigh development

Customer name: IBM

Contact name: Stefan Uelpenich

Telephone number: 4711

Manager: Wolfgang Geiger

Mailing address:

Mode: Push

Operating system: AIX

Short name: RS6ððð7

Network ID: RS6ððð7

LAN address:

CM window: ðð:ðð:ðð - 23:59:ðð

Distribution window: ðð:ðð:ðð - 23:59:ðð

Logging level: Normal

Figure 52 (Part 1 of 2). Output from lstg Command

88 Pristine AIX Environments

Tracing state: Off

Installation parms: None.

Hardware parms: None.

Discovered inventory: None.

Users: root

 suelpen

Figure 52 (Part 2 of 2). Output from lstg Command

To see the groups created by the configuration script we type:

nvdm lsgp '\'

This should produce the following output:

Group Mode Description

Group1 Push Raleigh Group1

Figure 53. Ouput from lsgp Command

5.3 Automating the Configuration Process
In the previous example, we started the configuration for node rs6ððð7 manually.

If we have a large number of nodes to be configured we do not want to copy the
configuration files and initiate the configuration process on each node manually,
therefore we create a simple script to perform the configuration of nodes on the
network from a central configuration server.

 Chapter 5. Testing the Automatic Configuration Script 89

Figure 54. Automating the Configuration Process

The script will perform the following tasks:

1. Create a tar archive containing all files needed to configure a node, including
the ODM database files.

2. Compress the tar file using compress.

3. Copy the compressed tar file to the node to be configured.

4. Decompress the file on the node to be configured using uncompress.

5. Extract the tar archive on the node to be configured.

6. Invoke the configuration script config_nvdm on the node to be configured thus
initiating the configuration process.

 Note

In our scenario it is normally not necessary to compress the tar file before
transmitting because we use a relatively fast network. However, if you want to
configure nodes, for example, in a WAN network such as X.25, it might be a
good idea to compress the files thus saving transmission time.

In order to perform the configuration of the remote nodes the configuration server
uses the commands rsh and rcp. Therefore all nodes to be configured have to

90 Pristine AIX Environments

have a file /.rhosts containing the name of the configuration server, in our case
rs6ððð7.

Hence, in our example the /.rhosts file on nodes rs6ððð4 and rs6ððð15 contains
the line:

rs6ððð7.itso.ral.ibm.com

 Note

Remember to use the fully qualified host name when making the entry in the
/.rhosts file and to refresh the inetd subsystem by typing refresh -s inetd.

The following figure shows the script that performs remote configuration of NetView
DM/6000 nodes:

 Chapter 5. Testing the Automatic Configuration Script 91

#!/bin/ksh

#

Copy Configuration to all Nodes and execute configuration script

For this to work each system to be configured has to have

an entry for the central installation system in it's /.rhosts file

Author : Stefan Uelpenich / IBM Germany

#

print "\\\\ CONFIGURING NETVIEW DISTRIBUTION MANAGER/6ððð \\\\"

#

to reduce network traffic we will compress the

installation files before transmitting them

#

print "\\ Creating tar archive"

tar -cvf/tmp/nvdm.tar . >/dev/null

SIZE=yls -l /tmp/nvdm.tar | awk '{ print $5 }'y
print "Size before compressing : $SIZE"

print "\\ Crunching tar archive"

rm /tmp/nvdm.tar.Z 2>/dev/null

compress /tmp/nvdm.tar

SIZE=yls -l /tmp/nvdm.tar.Z | awk '{ print $5 }'y
print "Size after compressing : $SIZE"

LIST=ycat node_listy
if ["$LIST" != ""]

then

for i in $LIST

do

print "\\\ Processing node : $i"

print "\\ Copy compressed archive"

rcp /tmp/nvdm.tar.Z $i:/tmp

print "\\ Uncrunching compressed archive"

rsh $i rm /tmp/nvdm.tar

rsh $i uncompress /tmp/nvdm.tar

print "\\ Extracting files from tar archive"

rsh $i cd /tmp

rsh $i "cd /tmp ; tar -xvf/tmp/nvdm.tar 1>/dev/null 2>&1"

print "Creating ODM DB ..."

rsh $i /tmp/build_net_db

print "Invoking configuration script..."

rsh $i /tmp/config_nvdm $i

done

fi

Figure 55. configure_network Shell Script

The nodes to be configured remotely are listed in the file node_list, so in our
scenario this file has the following entries:

rs6ððð4

rs6ððð15

92 Pristine AIX Environments

The script is started on rs6ððð7 by typing ./configure_network. To redirect the
output to a log file we type:

 ./configure_network 2>&1 | tee network.log

 Note

The configure_network shell script requires that all files needed to configure a
node are stored in the same directory where the script itself resides.

This is because the script creates a tar archive of all files needed to configure a
node. For simplicity this tar archive will contain all files that are located in the
same directory as configure_network.

You have to supply the following files in the directory:

� The configuration script config_nvdm

� The ODM creation file, for example, config_db2.cre

� The ODM definition files, for example, nvdm_node.odmadd

� The program to modify the root.cli file (uicfg)

Since the tar archive is decompressed at the /tmp directory of the target system,
you also need to supply a slightly modified version of the build_db shell script,
which has to be named build_net_db.

The following figure shows this script:

odmcreate -c /tmp/config_db2

odmadd /tmp/nvdm_cfg_static.odmadd

odmadd /tmp/nvdm_groups.odmadd

odmadd /tmp/nvdm_node.odmadd

odmadd /tmp/nvdm_queues.odmadd

odmadd /tmp/nvdm_users.odmadd

odmadd /tmp/nvdm_servers.odmadd

Figure 56. build_net_db Shell Script

The following figure shows the configuration protocol:

 Chapter 5. Testing the Automatic Configuration Script 93

\\\\ CONFIGURING NETVIEW DISTRIBUTION MANAGER/6ððð \\\\

\\ Creating tar archive

Size before compressing : 113664ð

\\ Crunching tar archive

Size after compressing : 313686

\\\ Processing node : rs6ððð15

\\ Copy compressed archive

\\ Uncrunching compressed archive

\\ Extracting files from tar archive

Creating ODM DB ...

nvdm_groups

nvdm_node

nvdm_users

nvdm_cfg_static

nvdm_servers

nvdm_queues

Invoking configuration script...

NVDM CONFIG : --> Trying to configure node rs6ððð15

NVDM CONFIG : Node type is ð (ð = Server, 1 = Agent, 2 = Prep)

NVDM CONFIG : --> NVDM Base Node Configuration

NVDM CONFIG : Setting nvdm.cfg (WORKSTATION NAME) to rs6ððð15

NVDM CONFIG : Setting nvdm.cfg (SERVER) to rs6ððð15

NVDM CONFIG : Setting nvdm.cfg (LOG FILE SIZE) to 25ðððð

NVDM CONFIG : Setting nvdm.cfg (TCP/IP PORT) to 729

NVDM CONFIG : --> Adding AIX users for NVDM...

NVDM CONFIG : Setting SNA Network Name to USIBMRA

NVDM CONFIG : Setting SNA Datalink Device to tokð

NVDM CONFIG : Setting SNA Remote Link Address to 4ðððð124ðððð

NVDM CONFIG : Setting SNA NVDM Mode Profile Name to NVDMNORM

NVDM CONFIG : Setting SNA NVDM Mode Name to NVDMNORM

NVDM CONFIG : Setting SNA TPN Profile Name (Send) to NVDMSND

NVDM CONFIG : Setting SNA TPN Profile Name (Receive) to NVDMRCV

NVDM CONFIG : Setting SNA Partner LU Name (MVS Host) to RA39TCF1

NVDM CONFIG : Setting SNA Side Info Profile Name (Send) to NVDMSIDS

NVDM CONFIG : Setting SNA Side Info Profile Name (Receive) to NVDMSIDR

NVDM CONFIG : Setting Solicit SSCP Field (yes|no) to yes

NVDM CONFIG : Setting I-Field Size to 2ð42

NVDM CONFIG : Setting SNA Local SAP No. to ð4

NVDM CONFIG : Setting Remote SAP No. to ð4

NVDM CONFIG : Setting SNA Initiate Call Field (yes|no) to yes

NVDM CONFIG : Setting SNA Activate on start (yes|no) to yes

NVDM CONFIG : Setting SNA Restart on normal termination (yes|no) to yes

NVDM CONFIG : Setting SNA Restart on abnormal termination (yes|no) to yes

NVDM CONFIG : Setting SNA VTAM CP Name (for LU6.2 Location Profile) to RAK

NVDM CONFIG : Setting PU NAME for rs6ððð15 to RA6ðð15

NVDM CONFIG : Setting Local LU Name for rs6ððð15 to RA6ðð15B

NVDM CONFIG : Setting Control Point Name for rs6ððð15to RA6ð15CP

NVDM CONFIG : Could not determine XID for rs6ððð15 configu

ration.

Figure 57 (Part 1 of 4). Configuration Log File network.log

94 Pristine AIX Environments

NVDM CONFIG : Setting USE_CP_XID to yes

NVDM CONFIG : --> Configuring SNA

NVDM CONFIG : Adding DLC Device for tokð

NVDM CONFIG : Configuring SNA Initial Node Setup

+ mk_qcinit -y token_ring -t appn_end_node -w USIBMRA -d RA6ð15CP

The SNA DLC Profile 'tokð.ðððð1' has been created successfully.

+ chsnaobj -t control_pt -e USIBMRA -a RA6ð15CP -A RA6ð15CP

 -N appn_end_node node_cp

NVDM CONFIG : Configuring SNA Control Point Profile

===

+ mksnaobj -t sna_dlc_token_ring -d tokð -b yes -w yes -m 2ð42

 -H ð4 -c no -q ð tokð

Profile type 'control_pt' name 'node_cp' CHANGED.

===

NVDM CONFIG : Configuring SNA DLC Profile

===

+ RC=ð

Profile type 'sna_dlc_token_ring' name 'tokð' ADDED.

===

+ mksnaobj -t link_station -w token_ring -y tokð -d 4ðððð124ðððð

 -l ð71ððððð -s ð4 -a yes -O yes -F yes -h yes -z yes -c yes RA6ðð15

+ RC=ð

NVDM CONFIG : Configuring SNA Link Station Profile

===

Profile type 'link_station_token_ring' name 'RA6ðð15' ADDED.

+ mksnaobj -t local_lu -u lu6.2 -l RA6ðð15B -L RA6ðð15B RA6ðð15B

+ RC=ð

===

NVDM CONFIG : Configuring SNA Local LU Profile

===

Profile type 'local_lu_lu6.2' name 'RA6ðð15B' ADDED.

+ mksnaobj -t mode -x 1 -w ð -l ð -a ð -N #CONNECT -m NVDMNORM NVDMNORM

+ RC=ð

+ mksnaobj -t local_tp -n 21FðFðF7 -h yes -c basic -d ð -P yes

 -w /usr/lpp/netviewdm/bin/fndts -s none NVDMSND

===

NVDM CONFIG : Configuring SNA Mode Profile

===

Profile type 'mode' name 'NVDMNORM' ADDED.

===

NVDM CONFIG : Configuring SNA TPN Profile (SEND)

===

+ RC=ð

+ mksnaobj -t local_tp -n 21FðFðF8 -h yes -c basic -d ð -P yes

 -w /usr/lpp/netviewdm/bin/fndtr -s none NVDMRCV

Profile type 'local_tp' name 'NVDMSND' ADDED.

===

NVDM CONFIG : Configuring SNA TPN Profile (Receive)

===

+ RC=ð

Figure 57 (Part 2 of 4). Configuration Log File network.log

 Chapter 5. Testing the Automatic Configuration Script 95

+ mksnaobj -t partner_lu6.2 -p no -P USIBMRA.RA39TCF1 -O none

-A RA39TCF1 RA39TCF1

Profile type 'local_tp' name 'NVDMRCV' ADDED.

===

NVDM CONFIG : Configuring SNA LU6.2 Partner LU

===

Profile type 'partner_lu6.2' name 'RA39TCF1' ADDED.

+ RC=ð

+ mksnaobj -t partner_lu6.2_location -P USIBMRA.RA39TCF1

-O USIBMRA.RAK -m link_station -l RA6ðð15B -s RA6ðð15 RA39TCF1

+ RC=ð

===

NVDM CONFIG : Configuring SNA LU 6.2 Location Profile

===

Profile type 'partner_lu6.2_location' name 'RA39TCF1' ADDED.

+ mksnaobj -t side_info -L RA6ð15CP -P USIBMRA.RA39TCF1

-m NVDMNORM -d 21FðFðF7 -h yes NVDMSIDS

+ RC=ð

+ mksnaobj -t side_info -L RA6ðð15B -P USIBMRA.RA39TCF1

-m NVDMNORM -d 21FðFðF8 -h yes NVDMSIDR

===

NVDM CONFIG : Configuring SNA Side Info Profile (Send)

===

Profile type 'side_info' name 'NVDMSIDS' ADDED.

===

NVDM CONFIG : Configuring SNA Side Info Profile (Receive)

===

+ RC=ð

Profile type 'side_info' name 'NVDMSIDR' ADDED.

===

NVDM CONFIG : Updating SNA Server...

NOTE: The following profiles can ONLY be refreshed if there

are currently no active resources using them.

Profile type 'mode' name 'NVDMNORM' CHANGED.

NOTE: The following profile refreshes will take effect when

all active resources using these profiles deactivate.

Profile type 'side_info' name 'NVDMSIDS' CHANGED.

verifysna command OK.

The profiles listed above have been dynamically updated successfully.

NVDM CONFIG : Configuring TCP/IP connection

NVDM CONFIG : Configuring SNA/DS connection configuration file.

NVDM CONFIG : (TCP/IP) for remote Server RS6ððð7.

NVDM CONFIG : Configuring APPC connection

NVDM CONFIG : Configuring SNA/DS connection configuration file

/usr/lpp/netviewdm/db/snads_conn/RA39TCF1

NVDM CONFIG : Configuring SNA/DS routing table.

Figure 57 (Part 3 of 4). Configuration Log File network.log

96 Pristine AIX Environments

NVDM CONFIG : System has TCP/IP connection to remote server.

NVDM CONFIG : System has APPC connection to remote server.

NVDM CONFIG : Writing routing table to /usr/lpp/netviewdm/db/routetab

NVDM CONFIG : Defining Target rs6ððð15 on server rs6ððð15

NVDM CONFIG : Target already exists. Updating...

nvdm updtg rs6ððð15 -s 'RS6ððð15' -y 'AIX'

-d 'ITSO Raleigh test server' -q 'Stefan Uelpenich'

-o 'Wolfgang Geiger' -t '4711' -r 'IBM'

WARNING: The Network ID of this domain has been changed to RS6ððð15.

NVDM CONFIG : Adding Target Users...

NVDM CONFIG : Adding root User

NVDM CONFIG : Adding suelpen User

NVDM CONFIG : Configuring Target Groups for rs6ððð15

NVDM CONFIG : Adding group Group2

NVDM CONFIG : Defining remote target for rs6ððð7

NVDM CONFIG : Defining remote target for RA39TCF1

NVDM CONFIG : RA39TCF1 will be configured as focal point.

+ eval nvdm addtg RA39TCF1 -m report_to -s RA39TCF1

-n USIBMRA -d 'NVDM_MVS'

+ nvdm addtg RA39TCF1 -m report_to -s RA39TCF1 -n USIBMRA -d NVDM_MVS

ð513-ð29 The sna Subsystem is already active.

Multiple instances are not supported.

NVDM CONFIG : --> In order for the changes to become active

NVDM CONFIG : NetView DM/6ððð will be restarted on this node

NVDM CONFIG : Stopping NVDM.

NVDM CONFIG : Restarting NVDM.

NVDM CONFIG : Releasing NVDM SNA communications.

NVDM CONFIG : !!! Configuration of Server completed successfully !!!

\\\ Processing node : rs6ððð4

\\ Copy compressed archive

\\ Uncrunching compressed archive

\\ Extracting files from tar archive

Creating ODM DB ...

nvdm_groups

nvdm_node

nvdm_users

nvdm_cfg_static

nvdm_servers

nvdm_queues

Invoking configuration script...

NVDM CONFIG : --> Trying to configure node rs6ððð4

NVDM CONFIG : Node type is 1 (ð = Server, 1 = Agent, 2 = Prep)

NVDM CONFIG : --> NVDM Base Node Configuration

NVDM CONFIG : Setting nvdm.cfg (WORKSTATION NAME) to rs6ððð4

NVDM CONFIG : Setting nvdm.cfg (SERVER) to rs6ððð7

NVDM CONFIG : Setting nvdm.cfg (LOG FILE SIZE) to 25ðððð

NVDM CONFIG : Setting nvdm.cfg (TCP/IP PORT) to 729

NVDM CONFIG : --> Adding AIX users for NVDM...

NVDM CONFIG : Adding user mike to AIX OS.

NVDM CONFIG : Starting NVDM Agent (fndcmps)....

Figure 57 (Part 4 of 4). Configuration Log File network.log

 Chapter 5. Testing the Automatic Configuration Script 97

98 Pristine AIX Environments

Chapter 6. Using the ODM Editor to Change the
Configuration

We now show a simple example where we use the ODM editor to change the
configuration of our software distribution network.

The ODM editor is a simple tool which assists in changing or adding objects
(instances) in ODM classes. Basically it is a user interface to the odmadd, odmget

and odmdelete commands.

 Note

The ODM editor is only available in AIX 3.2, whereas in AIX 4.1 this tool has
been removed.

Therefore in AIX 4.1 you have to use the above commands. What you can also
do use the odme executable file /bin/odme from an AIX 3.2 system at the AIX
4.1 system.

The example shows how easily the configuration of our software distribution
network can be changed. A change of the configuration requires the following
steps:

� Changing the configuration database by changing the ODM object classes
(using the ODM editor)

� Distributing the updated database to all nodes that are affected by the
reconfiguration

� Processing the configuration script on all nodes that are affected by the
reconfiguration

 Warning

You can use the ODM editor odme to edit any object class on your AIX system.
This includes the classes containing the operating system configuration, for
example, CuDv. We do not recommend that you do this unless you are very
experienced in AIX. Otherwise, this may cause unpredictable results on your
system.

6.1 Editing the Configuration
The ODM editor is invoked by typing odme. This will pop up the following screen:

 Copyright IBM Corp. 1996 99

Figure 58. odme Startup Window

 Note

We have developed a simple script build_db in Figure 7 on page 22 which we
used to update the ODM database. You must not use this script after you have
changed the ODM manually by using odme. This is because build_db clears all
classes and refills them with the data from the *.odmadd files which would
remove the changes made using odme.

To prevent this from happening we introduce a second script rebuild_db which will
keep the ODM data files up to date:

100 Pristine AIX Environments

#!/bin/ksh

#

rebuild ODM definition files (odmadd)

from existing ODM class files

#

S.Uelpenich

#

determine all classes beginning with "nvdm"

LIST=yls /etc/objrepos/nvdm\y

for i in $LIST

do

 CLASS=ybasename $iy
 print "$CLASS"

odmget $CLASS >$CLASS".odmadd"

done

Figure 59. rebuild_db Shell Script

The script will look for all ODM files located in the default ODM directory
/etc/objrepos and their names starting with nvdm.

 Note

If you decide to have your ODM class names not starting with nvdm you will
have to modify the rebuild_db script to reflect that change.

Then an odmget command is applied to all of these class files, thus getting the
ODM data file, which is the source file from which this ODM class file has been
created.

The output from the odmget command will be redirected to a file classname.odmadd.

Anytime you have used odme to change data in the ODM you have to invoke
rebuild_db to update the corresponding data definition files.

When you invoke build_db then this will not remove the changes made using odme.

To ensure that you use rebuild_db after using odme to change data we recommend
that you use another shell script edit_db:

 Chapter 6. Using the ODM Editor to Change the Configuration 101

#!/bin/ksh

edit configuration database

first call odme, then rebuild the

odmadd files

#

if [$# -ne 1]

then

print "Syntax : $ð [ODM class name]"

 exit 1

fi

odme $1

./rebuild_db

Figure 60. edit_db Shell Script

To edit the configuration database you can type edit_db classname. The script will
call odme and rebuild_db afterwards automatically.

We will change the configuration of our software distribution network now by
moving target rs6ððð4 from server rs6ððð7 to rs6ððð15.

To achieve this we have to perform the following steps:

1. Edit the nvdm_node object class

2. Run the configuration script on all affected nodes

To edit the nvdm_node object class we type:

 ./edit_db nvdm_node

The odme startup screen will appear as shown in Figure 58 on page 100.

We select Retrieve/Edit objects . This will pop up the following screen:

102 Pristine AIX Environments

Figure 61. odme Retrieve/Edit Objects Window

We do the following:

1. Move the cursor down to rs6ððð4 using the arrow down key.

2. Move the cursor to the server_name column using the Tab key.

You should see the following screen:

Figure 62. odme Retrieve/Edit Objects Window

 Chapter 6. Using the ODM Editor to Change the Configuration 103

To move target rs6ððð4 from server rs6ððð7 to rs6ððð15, we simply change the
entry for server_name from rs6ððð7 to rs6ððð15.

To leave odme we press F3. A window will pop up asking if we want to commit
changes. To do so we hit the Y key. This will get us back to the odme main
window.

We press F3 again to leave odme. The following lines appear, indicating that
edit_db updates the *.odmadd files:

nvdm_cfg_static

nvdm_groups

nvdm_node

nvdm_queues

nvdm_servers

nvdm_users

Before we run the configuration script again and thus move target rs6ððð4 to server
rs6ððð15 we install a change file on rs6ððð4 from server rs6ððð7 to show how the
change management history for the target is moved.

To do so we start the NetView DM/6000 graphical user interface on rs6ððð7:

nvdmgi &

The following panel will pop up:

Figure 63. NetView DM/6000 Catalog Window (rs60007)

We install the dummy change file SUELPEN.DEMO.REF.1, which we have created
before, on target rs6ððð4. This change file is installed just to show the change
management history, so its content is not important.

To install the change file we select Selected from the menu bar and then Install...
from the pull-down menu.

The following panel will appear:

104 Pristine AIX Environments

Figure 64. Install Change Files Window

We do the following:

1. Select target rs6ððð4 and then the Install push button. This will install the
change file on rs6ððð4.

2. Select the Close push button to close the Install Change Files window.

3. In the Catalog window select Windows from the menu bar and then Targets
from the pull-down menu. This will open the Targets window.

4. In the Targets window select rs6ððð4.

5. Select Selected from the menu-bar.

6. From the pull-down menu select Open and then History... from the cascaded
menu.

The Target History window will appear:

Figure 65. Target History Window

 Chapter 6. Using the ODM Editor to Change the Configuration 105

6.2 Reconfiguring the Network
We now reconfigure our network. First, we reconfigure rs6ððð7 by typing the
following command on rs6ððð7:

config_nvdm rs6ððð7

The script will recognize from the database that target rs6ððð4 is no longer
configured for server rs6ððð7 and therefore saves the target history.

Since rs6ððð4 and rs6ððð15 are also affected by the change in the database, they
will also need reconfiguration. To perform the reconfiguration we will use the script
configure_network on rs6ððð7.

The node_list file must contain the following entries:

rs6ððð15

rs6ððð4

After the configure_network script has completed we start nvdmgi & on rs6ððð15 to
see if the target as well as the target history has been moved to rs6ððð15.

The following panel will appear:

Figure 66. NetView DM/6000 Catalog (rs600015) Window

We select Windows from the menu-bar and then Targets... from the pull-down
menu.

This will pop up the Targets window:

106 Pristine AIX Environments

Figure 67. NetView DM/6000 Targets (rs600015) Window

We do the following:

1. Select target rs6ððð4 from the target list.

2. Select Selected from the menu bar.

3. Select Open from the pull-down menu.

4. Select History... from the cascaded menu.

The Target History window will appear:

Figure 68. Target History Window After configure_network Completed

As you can see, the target history has been moved to rs6ððð15 together with the
target itself.

 Note

You should notice that the change file SUELPEN.DEMO.REF.1 now shows up as
Discovered, Not removable whereas on rs6ððð7 it was Installed, removable.
This is because now the change management history for the target is gathered
from the software inventory file on rs6ððð4. All entries in the software inventory
file will show up as Discovered, Not removable in the target history.

 Chapter 6. Using the ODM Editor to Change the Configuration 107

6.3 Other Ways to Store Configuration Data
In the above scenario we used the ODM editor because we stored our
configuration database in ODM classes.

Consider the following alternative:

� We could have stored configuration data in a relational database system such
as DB2/6000. Of course we would have to change the database access
procedures in our configuration script then. This would enable us to change
the configuration of the software distribution network by simply using SQL
commands to modify the configuration database (see Chapter 12,
“Implementing the Configuration Data Model Using DB2/6000” on page 219).

� Let's say we have a large organization which has a network containing 100
NetView DM/6000 servers all connected to a central NetView DM/MVS system
using SNA LU 6.2. At some point the organization decides to change its
naming scheme for LU 6.2 names. This will require the SNA Server
configuration to be changed on all NetView DM/6000 servers.

� If we stored the configuration in an SQL database we could just issue a simple
update command to change all relevant table entries. Then we could run the
configuration script again on all servers thus updating the SNA Server
configuration on all nodes. (We realize that it is not that simple.)

 Note

In fact we show how to use DB2/6000 to store configuration data in Chapter 12,
“Implementing the Configuration Data Model Using DB2/6000” on page 219.
Further we show how to edit data stored in DB2/6000 in 15.1, “Using the
Graphical Interface for Changing Configuration Data” on page 295.

108 Pristine AIX Environments

Chapter 7. Customizing and Extending the Configuration
Procedure

In this chapter we give you guidance on how to customize the configuration
procedure for your own environment.

We do this by giving you some general hints about the following tasks:

� Determining configuration commands

� Changing configuration files

� Adjusting the data model

For this chapter, it is required that you be familiar with some general programming
concepts, including shell programming.

Also, you should be familiar with some common UNIX tools, including sed, awk, etc.
However, if you are not familiar with all the commands used in this chapter you can
always refer to the manpages or InfoExplorer.

7.1 Determining Configuration Commands
Changes in the configuration of products are normally made by using either of the
following procedures:

� Update the configuration using commands

� Update the configuration by modifying configuration files

First we will concentrate on configuration commands.

The configuration procedure which we developed in the previous chapters of this
book included more than the configuration of the NetView DM/6000 product itself.
This is because for NetView DM/6000 to run we also need to configure related
products, in our scenario namely the AIX base operating system and the SNA
Server product.

Depending on what component we want to configure, the way of determining the
necessary commands might be different.

7.1.1 Determining NetView DM/6000 Commands
All commands that we use to configure NetView DM/6000 are part of the NetView
DM/6000 command-line interface.

A command is invoked by typing nvdm command (parameters).

To get a list of available commands you can type nvdm help on your Software
Distribution for AIX 3.1 server.

This will produce the following output:

 Copyright IBM Corp. 1996 109

Valid commands are

acc delf hldrq lsq rld unbld

act delpm hldtg lsrq rstrq uncat

addgp delprf imp lstg rtrv uninst

addpm delrq inst lsusr rtrvf upd

addtg deltg inv preqpln send updak

addpln delusr log prgq sendf updbs

addprf eraserq ls prtyq start updpln

addusr exec lsak relc stat updprf

auth execf lsbs relq stattg updpwd

 bld execpln lscf relrq stop updrq

cat exp lscm reltg svr updtg

del help lsgp rem troff updusr

delcm hldc lspln rentg tron vercm

delgp hldq lsprf reset unauth

Type nvdmgi at a graphics-capable command prompt to run the Graphical

Interface. Type nvdm command prompt to run an interactive command line

session.

Using the interactive command line session the following command can

be used in addition:

 ? for help

! to activate the OS command shell

(exit to leave the OS command shell)

open to open a connection with a NetView DM/6ððð Server

quit to exit from the interactive command line session

To get more help for an individual command type nvdm help followed by

the command name. For example nvdm help ls gives more help on the ls

command. If you are running in an interactive command line session

type just help or ?.

Figure 69. Software Distribution for AIX V3.1 Commands

For NetView DM/6000 Version 1.2 or previous versions, you have to type nvdm to
get a list of all possible commands:

110 Pristine AIX Environments

Valid commands are

 acc delrq log relc stattg

 act deltg ls relq stop

 addgp exec lsbs reltg svr

 addpm exp lscf rem troff

 addtg help lscm rentg tron

 auth hldc lsgp reset unauth

bld hldq lsq rld uncat

cat hldtg lsrq rtrv uninst

del imp lstg send updbs

delcm inst lsusr start updtg

delgp inv prgq stat updusr

 delpm

If available on your system, type nvdmgi at a graphics-capable command

prompt to run the graphical interface. To get more help for an individual

command type nvdm help followed by the command name. For example nvdm help

ls gives more help on the ls command.

Figure 70. NetView DM/6000 Commands

When configuring NetView DM/6000 we normally need two types of commands:

� Commands to determine the current configuration or status of NetView
DM/6000

� Commands to modify the current configuration of NetView DM/6000

For example in the shell procedure nvdm_configure_targets which we developed
previously we configure the local targets for a server.

To do so we need to find out if the target already exists or if we have to create a
new one. The nvdm lstg targetname command can be used to find out if target
targetname already exists.

If the target does not exist yet, the command will not return a return code being
zero, so we know that the target does not exist.

If the target exists we will update the existing target using the nvdm updtg

command.

The code fragment looks like the following:

nvdm lstg $i >/dev/null

if [$? -ne ð]

then

COMMAND="nvdm addtg $i"

else

COMMAND="nvdm updtg $i"

fi

 Chapter 7. Customizing and Extending the Configuration Procedure 111

 Note

It is important that you redirect the output of commands to /dev/null if they are
used just to query the configuration. This prevents the output from appearing
on the screen or in the log file.

The above example assumes that the target name is stored in the $i shell variable.

In general, nvdm commands to query the current configuration of NetView DM/6000
start with ls, such as lstg, lsgrp, etc. and commands to modify the configuration
start with add or upd.

You can get a complete description of all nvdm commands either by consulting the
NetView Distribution Manager/6000 User's Guide SH19-5003 or by typing man

nvdm_command, for example man nvdm_lstg.

To invoke configuration commands we normally will have to pass parameters, such
as, for example, target names or flags.

Normally these parameters will be retrieved from the ODM database using the
ODM access methods that we have developed previously.

We will discuss how parameters can be introduced to the ODM database in detail
in 7.3, “Adjusting the Data Model” on page 121.

However, you always will have to decide whether you want to put parameters in the
data base or hard-code them in the configuration script.

For example, the -y parameter used with the nvdm addtg or nvdm updtg command
determines the target operating system for that target.

If you have only AIX targets in your network you might want to hard-code this
parameter in your script by always using the flag as in -y AIX.

However, if you have other operating systems on your network too, you might want
to store this parameter in the ODM like we did in our scenario.

7.1.2 Determining AIX Commands
In our configuration procedure we also had to use native AIX operating system
commands, mainly when adding users to the AIX operating system.

A good way to determine the commands necessary to perform a certain task is
using SMIT.

For example, if we want to know the command to add a user to the AIX operating
system we can type:

smitty user

112 Pristine AIX Environments

 Note

In the above example, user is the appropriate fast path to get immediately to
the SMIT section dealing with commands related to AIX users. Normally the
fast path to get to a certain SMIT section is quite easy to guess, for example, to
get to the section dealing with file systems you can type smitty fs.

However, if you do not know the appropriate fast path you can just type smitty
to get to the main menu and then walk through the menus until you get to the
right place.

The following panel will appear:

Figure 71. SMIT User Menu

We want to know the command to add a user to AIX, so we move the cursor to
Add a user using the arrow down key and then press Enter.

This will pop up the following panel:

 Chapter 7. Customizing and Extending the Configuration Procedure 113

Figure 72. SMIT Create User Panel

We enter the parameters in the panel that we expect to be needed for the
configuration.

In the example we do the following:

1. Enter mike in the User NAME field.

2. Enter FNDADMN in the Group SET field.

To see the command that SMIT will generate for that panel we press F6, which will
result in the following screen:

114 Pristine AIX Environments

Figure 73. SMIT Show Command String Window

In the above example the command needed to add user mike to AIX, having
FNDADMN in his group set is:

mkuser groups='FNDADMN' mike

We can now code the above statement in our configuration script. However, we
will normally have to store parameters in shell variables, so the command could
look like:

mkuser groups=$NVDMGRP $USERNAME

The above statement assumes that the shell variable NVDMGRP holds the group set
and USERNAME holds the AIX user name. These variables could have been filled
before, using the ODM access methods to query the ODM database.

 Note

You should notice that in the configuration script we do not use the mkuser
command to modify the group set of the user as shown in the above example.

In fact we use the mkuser command to create the user and then the chuser
command to change the group set.

For configuration of the AIX operating system we will also use two types of
commands, normally:

� Commands determining the current configuration of AIX

� Commands changing the current configuration of AIX

 Chapter 7. Customizing and Extending the Configuration Procedure 115

The following are also some general rules about command names in AIX:

� Commands adding an object to AIX start with either mk or cr, as in mkuser or
crfs.

� Commands showing the current configuration of AIX start with ls, as in lsfs,
lsuser, or lsgroup.

� Commands removing an object from AIX start with rm, as in rmuser or rmfs.

� Commands changing or updating the configuration of AIX start with ch, as in
chuser or chfs.

Once you have found the command that you can use to perform the task you want,
you can refer to the manpage of that command to get a list of all possible flags, for
example:

man mkuser

This will also give you related information, for example, that the defaults for the
mkuser command are stored in /etc/security/user/mkuser.default.

Information like this is often helpful to avoid coding errors, so if you do not know a
command you want to use in full detail, you should always consult the manpage
first.

7.1.3 Determining SNA Server Commands
SNA Server, like almost any IBM product for AIX, offers a SMIT interface to
configure and control it. The fast path to get to the SNA Server section of SMIT is
sna, so we type smitty sna to get to the following panel:

Figure 74. SMIT SNA Server/6000 Menu

116 Pristine AIX Environments

For our purposes we will mainly use the sub menus Configure SNA Profiles and
Manage SNA Resources.

First we will show an example of how to configure an SNA profile.

For that purpose we do the following:

1. Move the cursor to Configure SNA Profiles and press Enter. This will get us
to the Configure SNA Profiles menu.

2. Move the cursor to Advanced Configuration and press Enter. This will get us
to the Advanced Configuration menu.

3. Move the cursor to Sessions and press Enter.

4. Move the cursor to LU 6.2 and press Enter.

5. Move the cursor to LU 6.2 Local LU and press Enter.

6. Move the cursor to Add a profile and press Enter.

This should get us to the Add LU 6.2 Local LU Profile panel:

Figure 75. SMIT Add LU 6.2 Local LU Profile panel

We enter the values as shown in the above panel and then press F6.

This will pop up the following window:

 Chapter 7. Customizing and Extending the Configuration Procedure 117

Figure 76. SMIT Show Command String Window

In the above example the command to configure the LU 6.2 Local LU profile is:

mksnaobj -t'local_lu' -u'lu6.2' -l 'LOCLU' -'LOCLUA' -a 'tokð'

LLUPRO

The parameters -t'local_lu' and -u'lu6.2' determine the profile we want to
configure and can therefore be hard-coded in the script because they will not
change.

In our example scenario we used the local LU name for the LU name field as well
as for the LU alias field and the profile name itself, so - assuming that the local LU
name is stored in the shell variable LLUNAME the final command would be:

mksnaobj -t'local_lu' -u'lu6.2' -l $LLUNAME -L $LLUNAME

-a $DEVICE $LLUNAME

 Note

The above example also assumes that the Link Station Profile name is stored in
the DEVICE shell variable.

The mksnaobj command is used to configure most of the SNA Server profiles.
However, if the profile you want to create with mksnaobj already exists, the
command will fail.

There is another command, chsnaobj, available to change existing profiles, where
the parameters that need to be passed are exactly the same as for the
corresponding mksnaobj command.

118 Pristine AIX Environments

In our example configuration script we always try to configure a profile using
mksnaobj first. If this command fails, we try the corresponding chsnaobj command,
using the same parameters.

Besides configuring profiles we also need SNA Server commands to control the
SNA Server product.

For example, we need to update the SNA Server configuration database after we
have configured all profiles for the changes to become effective immediately.

To determine the necessary command we go back to the SNA Server Advanced
Configuration menu and select Verify Configuration Profiles .

We use the Tab key to change the Update action field to dynamic_update and then
press F6 to see the command:

Figure 77. Verify Configuration Profiles Panel

As shown above, the command to dynamically update the SNA Server
configuration is:

verifysna -R

7.2 Changing Configuration Files
Some configuration data for the products we need to configure is stored in flat
ASCII files, therefore we have to modify these files to update the configuration.

Some of the files that we modified in our example were:

� The NetView DM/6000 base configuration file nvdm.cfg

 Chapter 7. Customizing and Extending the Configuration Procedure 119

� The SNA/DS connection files

� The SNA/DS routing table

� The /etc/services file

There are two ways to update configuration files:

1. Create a new configuration file

2. Update an existing configuration file

Creating a new configuration file is easier because you do not have to care about
the current content of the file.

For example, when we change the SNA/DS routing table we always create a new
file ignoring the current content.

A simple way to create a configuration file is to use the shell command echo and
redirect its output to the file to be created, as in the following example:

echo "NETWORK PROTOCOL: TCP/IP

RS6ððð15.\ RS6ððð15" >/usr/lpp/netviewdm/db/routetab

If we use shell variables instead of fixed strings, we can make the configuration
more flexible:

echo "NETWORK PROTOCOL: TCP/IP

$SHORTNAME.\ $SHORTNAME" >$ROUTETAB

 Note

The above example assumes the short name to be configured in the routing
table is stored in the SHORTNAME shell variable and that the file name of the
SNA/DS routing table is stored in the ROUTETAB shell variable.

In some cases we cannot ignore the current content of a file. Then we only want to
change the sections of the file affected by the configuration update.

For example for setting an agents server we only need to change the entry for the
SERVER field in the nvdm.cfg file keeping the rest of the file untouched.

For changing file contents we can use the UNIX stream editor sed. This tool allows
us to find strings described by regular expression and replace them with new
strings.

 Note

If you are not familiar with sed or with pattern matching using regular
expressions, you should consult the manpage for sed using the man sed

command and the InfoExplorer sections dealing with regular expressions.

120 Pristine AIX Environments

The following code fragment can be used to replace the entry for the SERVER field in
the nvdm.cfg file:

CONFIG=/usr/lpp/netviewdm/db/nvdm.cfg

cp $CONFIG /tmp/config

sed "s/SERVER:.\/SERVER: rs6ððð7" >$CONFIG

Using shell variables the code could look like the following:

CONFIG=/usr/lpp/netviewdm/db/nvdm.cfg

cp $CONFIG /tmp/config

sed "s/SERVER:.\/SERVER: $SERVER" >$CONFIG

The above example assumes that the name of the NetView DM/6000 server is
stored in the SERVER shell variable.

7.3 Adjusting the Data Model
In this part we discuss how to change the data model used for NetView DM/6000
configuration.

A change in the data model will be needed if you want to significantly enhance the
function of the existing configuration procedure.

If you just want to introduce a new global variable to the configuration procedure it
is normally not necessary to change the data model. However, such changes
normally require an update of the configuration script.

First, we discuss the case of introducing a new global variable.

7.3.1 Introducing New Global Variables
When designing our configuration data model we decided to store all parameters
being unique in our entire software distribution in the nvdm_cfg_static class.

For example, we could want to introduce a new variable to store the path name for
the NetView DM/6000 repository that should be used on all systems.

The new variable could simply be introduced by adding the following lines to the
nvdm_cfg_static.odmadd file:

NAME = "REPOS_DIR"

VALUE = "/usr/local/nvdm/repository"

After adding the lines the database can be updated by typing:

 ./build_db

 Chapter 7. Customizing and Extending the Configuration Procedure 121

 Note

Of course you can also use odme to add the new variable by typing odme
nvdm_cfg_static.

The variable can be retrieved from a shell script by using the ODM access methods
developed before:

get_attribute nvdm_static NAME "REPOS_DIR" VALUE

REPOS=$VALUE

This will get the VALUE of the REPOS_DIR variable from the database and store it in
the shell variable REPOS.

There are basically two reasons to introduce a new variable:

1. Making the script more flexible

2. Adding new functionality

If we just want to make the script more flexible, the only change in the script that is
required is changing all occurrences where the parameter was hard-coded before
with the variable.

In our example we have to change all lines where the name of the repository
directory for NetView DM/6000 was hard-coded before.

In case of the repository directory this was not contained anywhere in the script
before because we did not change the default entry for the REPOSITORY field in
nvdm.cfg.

To add this we will just have to put in the following line somewhere in the main
body of the script:

configure_nvdm_cfg "REPOSITORY" $REPOS

 Note

The above example assumes that before the call is made the REPOS has been
filled from the database.

If we did call configure_nvdm_cfg in the way shown above, this would cause the
sed command within that procedure to fail, because the path name in the REPOS
shell variable normally contains slashes (/) which are used as a delimiter in the sed
command.

To avoid this, we precede every occurence of a slash in the class definition file
nvdm_cfg_static.odmadd with a back-slash character.

The code to set the parameter then looks like:

122 Pristine AIX Environments

get_attribute nvdm_cfg_static NAME REPOS_DIR VALUE

if ["$VALUE" != ""]

then

 VALUE=yecho "$VALUE"y
configure_nvdm_cfg "REPOSITORY" $VALUE

fi

To add some functionality we could decide that we want to have the repository
directory to be in an own file system.

To determine the command string for creating a file system we do the following:

1. Start SMIT by typing smitty fs.

2. Select Add / Change / Show / Delete File Systems and press Enter.

3. Select Journaled File System and press Enter.

4. Select Add a Journaled File System and press Enter.

5. Select rootvg and press Enter. This will get us to the Add a Journaled File
System panel.

6. Enter 2ðððð in the SIZE of file system field.

7. Enter /test in the MOUNTPOINT field.

8. Enter yes in the Mount AUTOMATICALLY at system restart field.

 9. Press F6.

This will pop up the DISPLAY COMMAND STRING window of SMIT showing that
the command to add a file system with the desired parameters is:

crfs -v jfs -g rootvg - a size=2ðððð -m /test -A yes -p rw -t no

Since we want the size of the file system to be variable we will store this in another
ODM variable, by adding the following lines to the nvdm_cfg_static.odmadd file:

NAME = "REPOS_SIZE"

VALUE = 5ðððð

The code fragment to create the file system could look like the following:

 Chapter 7. Customizing and Extending the Configuration Procedure 123

REPOS=ygrep "REPOSITORY" /usr/lpp/netviewdm/db/nvdm.cfg |
cut -d':' -f2y
get_attribute nvdm_cfg_static NAME REPOS_SIZE VALUE

if ["$VALUE" = ""]

then

 SIZE=2ðððð

else

 SIZE=$VALUE

fi

crfs -v jfs -g rootvg -a size=$SIZE -m $REPOS

-A yes - p rw -t no

7.3.2 Changing the Data Model
We will now show an example in which we will change the data model. That
means that we will change the ODM class definitions.

In the previous section we have introduced a new variable to contain the size of a
file system to be created on every node for containing the repository directory of
NetView DM/6000.

Since we stored this value in the class nvdm_cfg_static we could only use the
same value for all nodes. However, it might be necessary to have different file
system sizes on the different nodes. Also, some nodes might not need to have the
repository directory to be put into an own file system.

In order to be able to have different file system sizes on every node and also to be
able to decide whether the repository directory needs to be put into an own file
system we introduce the following new attributes to the nvdm_node class:

� repos_fs: flag indicating if the repository directory has to be put into an own file
system (either yes or no)

� repos_size : size in blocks of the file system to be created (only needed if
repos_fs is set to yes)

In order to add these attributes to the ODM we have to change the class definition
file:

124 Pristine AIX Environments

#

Create ODM class files for NVDM configuration DB

#

#

the nvdm_groups class defines the target groups to be defined

on a server

#

class nvdm_groups {

 char group_name[25];

 char description[25];

 char short_name[9];

 char node_name[25];

}

#

the nvdm_node class describes the name (IP Hostname) and

type (Server, Agent, Prep Site) of the node, where

ð : NVDM Server

1 : NVDM Agent

2 : NVDM Prep Site

also included are attributes required for every node, like

the name of the NVDM/6ððð Server, etc.

#

group_name is a link to the nvdm_groups class specifying

the group this target belongs to

class nvdm_node {

 char node_name[25];

 short node_type;

 char short_name[9];

 char target_os[12];

 char description[25];

 char contact_name[25];

 char owning_manager[25];

 char telephone_number[2ð];

 char customer_name[2ð];

 char repos_fs[4];
 long repos_size;
 char x_25_number[15];

 char server_name[25];

 link nvdm_groups nvdm_groups group_name group_name;

}

...

Figure 78. ODM Class Definition File config_db2.cre

Assuming that the class definition file is stored in config_db2.cre we can type the
following command to create the ODM class files:

odmcreate -c config_db2

 Chapter 7. Customizing and Extending the Configuration Procedure 125

Now that the ODM class files have been changed we can also change our data
definition file for the nvdm_node class.

We take the nvdm_node.odmadd file from our example scenario and add the
attributes to reflect the following changes:

� The rs6ððð7 server shall have the repository directory being in an own file
system sized 100000 blocks.

� The rs6ðð15 server shall have the repository directory being in an own file
system sized 50000 blocks.

� The rs6ððð4 shall not have the repository directory in an own file system.

The nvdm_node.odmadd file should then look like the following:

126 Pristine AIX Environments

nvdm_node:

node_name = "rs6ððð7"

node_type = ð

short_name = "RS6ððð7"

target_os = "AIX"

repos_fs = "yes"
repos_size = 1ððððð
description = "ITSO Raleigh development"

contact_name = "Stefan Uelpenich"

owning_manager = "Wolfgang Geiger"

telephone_number = "4711"

customer_name = "IBM"

x_25_number = ""

server_name = "rs6ððð7"

group_name = "Group1"

nvdm_node:

node_name = "rs6ððð15"

node_type = ð

short_name = "RS6ððð15"

target_os = "AIX"

repos_fs = "yes"
repos_size = 5ðððð
description = "ITSO Raleigh test server"

contact_name = "Stefan Uelpenich"

owning_manager = "Wolfgang Geiger"

telephone_number = "4711"

customer_name = "IBM"

x_25_number = ""

server_name = "rs6ððð15"

group_name = "Group2"

nvdm_node:

node_name = "rs6ððð4"

node_type = 1

short_name = "RS6ððð4"

target_os = "AIX"

repos_fs = "no"
description = "ITSO Raleigh test client"

contact_name = "Stefan Uelpenich"

owning_manager = "Wolfgang Geiger"

telephone_number = "4711"

customer_name = "IBM"

x_25_number = ""

server_name = "rs6ððð15"

group_name = "Group1"

Figure 79. Data Definition File nvdm_node2.odmadd

Assuming that the data definitions are stored in nvdm_node2.odmadd we can add
them by typing:

odmadd nvdm_node2.odmadd

 Chapter 7. Customizing and Extending the Configuration Procedure 127

Since we have cleared all the other ODM class files by calling the odmcreate
command before, we also need to add the definitions for the other classes again:

odmadd nvdm_cfg_static.odmadd

odmadd nvdm_groups.odmadd

odmadd nvdm_queues.odmadd

odmadd nvdm_users.odmadd

odmadd nvdm_servers.odmadd

To add the file system we create another shell procedure within our configuration
script:

#

add file system for repository

$1 = node name

#

add_fs_repos ()

{

 # get repository path

 REPOS=ygrep "REPOSITORY" /usr/lpp/netviewdm/db/nvdm.cfg \
 | cut -d':' -f2y
 get_attribute nvdm_node node_name $1 repos_fs

 if ["$VALUE" = "yes"]

 then

get_attribute nvdm_node node_name $1 repos_size

if ["$VALUE" = ""]

 then

 SIZE=2ðððð

 else

 SIZE=$VALUE

 fi

print "NVDM CONFIG : Creating file system $REPOS."

print "NVDM CONFIG : Size = $SIZE blocks."

first, save old files

tar -cvf/tmp/save.tar $REPOS/.

crfs -v jfs -g rootvg -a size=$SIZE -m $REPOS -A yes -p rw -t n

o

 mount $REPOS

restore files

tar -xvf/tmp/save.tar $REPOS/.

 fi

}

Figure 80. add_fs_repos Shell Procedure

Explanation:
The script determines the path of the repository from the NetView DM/6000
nvdm.cfg file. Then the class nvdm_node is examined to detect whether this node
needs to have its own file system for the repository.

If so, the size of that file system is determined from the repos_size attribute. If no
size information is found, the size is set to a default value of 2ðððð.

128 Pristine AIX Environments

Before creating the file system, the old data being in the repository path is saved to
a tar archive. This is important, because as soon as the new file system is
created and mounted over the path name of the repository, it will hide the old files.

After the file system has been created and mounted the shell procedure will restore
the files from the tar archive to the newly created file system.

We run the modified configuration script again on rs6ððð7 by typing:

 ./config_nvdm rs6ððð7

After the script has finished the new file system should have been added to the AIX
operating system. We check this by typing df which produces the following output
on rs6ððð7:

Filesystem Total KB free %used iused %iused Mounted on

/dev/hd4 16384 29ð4 82% 1137 27% /

/dev/hd9var 4ð96ð 2ð952 48% 16ð1 15% /var

/dev/hd2 1ð36288 35424 96% 37562 14% /usr

/dev/hd3 12288 298ð 75% 173 4% /tmp

/dev/hd1 4ð96 38ðð 7% 44 4% /home

/dev/lvðð 24576 34ð4 86% 195 3% /usr/lpp/netviewdm

/dev/lvð1 53248 5ð26ð 5% 19 ð% /usr/lpp/netviewdm/repos

Figure 81. Output from df Command

 Note

In the above example the changes we made to the ODM definition were quite
simple because we only added two new attributes to the nvdm_node class.

However, the changes become more difficult if you really change the data
model, for example by introducing new classes or changing the relationship
between classes.

Nevertheless, the procedure to implement these changes is the same as
described above.

 Chapter 7. Customizing and Extending the Configuration Procedure 129

130 Pristine AIX Environments

Chapter 8. Enhancing the Configuration Procedure

In this chapter we enhance the configuration procedure by introducing new features
that were not included in the original procedure.

Unlike Chapter 7, “Customizing and Extending the Configuration Procedure” on
page 109 where we give some general hints about how to customize and extend
the procedure, we describe specific enhancements in detail in this chapter.

8.1 Configuring Intermediate Nodes
The project in which the configuration procedure described in this book was
originally developed did not use intermediate nodes. Therefore the configuration of
intermediate nodes was not included in the configuration procedure.

However, the intermediate node function of SNA/DS is very useful, so we will adapt
the configuration procedure to support this feature.

 Note

If you need a detailed description of the intermediate node concept you should
consult the redbook The NetView DM/6000 Cookbook, GG24-4246.

Before we start to define configuration activities we will first have a look at an
intermediate node scenario:

 Copyright IBM Corp. 1996 131

Figure 82. Intermediate Node Scenario

In the above example Server A acts as an intermediate node for connections
between Servers B and C and the NetView DM/MVS focal point.

In order to enable the configuration procedure to configure a network containing
intermediate nodes, the following configuration activities are affected:

� Configuration of SNA Server

� Configuration of the SNA/DS connection configuration files

� Configuration of the SNA/DS routing table

In our example configuration procedure we only configure SNA connections to a
central NetView DM/MVS system. If we have SNA connections to, for example,
other NetView DM/6000 servers we need to modify most of the configuration parts
dealing with SNA.

We will not show how to do this in detail in this chapter. Nevertheless you should
be aware of the fact, that this will also require significant modifications to the model.

In the data model we assume that SNA connections will only be needed to connect
to one central MVS system. Therefore all parameters describing the SNA partner
system are stored in the nvdm_cfg_static class. However, if we want to be able to

132 Pristine AIX Environments

configure SNA connections to any other system we would have to store this
information in another class.

On a system that uses an intermediate node to connect to another system we only
need a connection configuration file describing the SNA/DS connection to the
intermediate node. The connections to other systems connected through the
intermediate node are defined in the routing table.

On the intermediate node itself we need a connection configuration file for each
system that is connected to the intermediate node using SNA/DS. The routing
table on the intermediate node can be the same as the one used in the sample
configuration procedure.

Since only NetView DM/6000 servers can have remote connections to other
NetView DM servers, we only have to adjust the configuration parts dealing with the
configuration of NetView DM/6000 servers.

8.1.1 Adjusting the Data Model
In our sample data model we have a class, nvdm_queues to define connections to
remote destinations. Since remote connections in NetView DM/6000 are always
based on SNA/DS, we use this class to configure SNA/DS connections, namely the
connection configuration files and the routing table.

The remote_server attribute in this class determines the remote system to which
we want to connect, where for an SNA connected system we use the partner LU
name to determine the system and for TCP/IP connected systems we use the
TCP/IP hostname.

In order to be able to configure connections using an intermediate node, we can
add an attribute to this class that determines if an intermediate node is used to
connect to the remote system. This attribute contains no value if we directly
connect to the remote system, thus indicating that we do not want to use an
intermediate node.

If we want to connect through an intermediate node, this attribute contains the short
name of the intermediate node.

We will add the attribute inter_node to the nvdm_queues class to store the
intermediate node information. In order to do so, we have to change the ODM
class creation file to contain the new attribute. The following figure shows the
affected part:

 Chapter 8. Enhancing the Configuration Procedure 133

#

the nvdm_queues class contains connections to

remote servers

e.g. a Focal Point or remote administrator

#

Protocol must be "APPC" or "TCP/IP"

if Protocol is TCP/IP the remote_server

field must be filled with the IP hostname

of the remote server

#

This class will also be used to define

The remote server as a remote target automatically

#

class nvdm_queues {

link nvdm_node nvdm_node node_name node_name;

 char protocol[8];

 char remote_server[25];

 char focal_point[4];

 char inter_node[9];
}

Figure 83. Class Definition File

8.1.2 Adjusting the SNA/DS Connection Configuration Files
For the intermediate node itself, the creation of the SNA/DS connection
configuration files can remain unchanged, assuming that all connections to remote
systems are defined as instances of the nvdm_queues class. For the intermediate
node the inter_node attribute contains no value.

In our example the objects in the nvdm_queues class for the intermediate node
Server A could look as follows:

nvdm_queues:

 node_name = "server_a"

 protocol = "APPC"

remote_server = "RA39TCF1"

 focal_point = "yes"

 inter_node = ""

nvdm_queues:

 node_name = "server_a"

 protocol = "TCP/IP"

remote_server = "server_b"

 focal_point = "no"

 inter_node = ""

nvdm_queues:

 node_name = "server_a"

 protocol = "TCP/IP"

remote_server = "server_c"

 focal_point = "no"

 inter_node = ""

134 Pristine AIX Environments

Explanation:
The TCP/IP hostname of Server A is assumed to be server_a. The first entry
describes the connection to the NetView DM/MVS focal point. Since we only
configure SNA connections to MVS we only supply the LU name of NetView
DM/MVS as the remote_server and determine the SNA network name from the
nvdm_cfg_static object class.

The following entries define two TCP/IP connections to the other NetView DM/6000
servers, assuming that the TCP/IP hostnames of these servers are server_b and
server_c.

For nodes connected through an intermediate node we have two types of
connections:

� A connection to the intermediate node

� Connections to other systems using the intermediate node

For the connection to the intermediate node we have to create a connection
configuration file whereas the connections to other systems through the
intermediate node are defined in the SNA/DS routing table.

The objects in nvdm_queues for Server B could look as follows:

nvdm_queues:

 node_name = "server_b"

 protocol = "TCP/IP"

remote_server = "server_a"

 focal_point = "no"

 inter_node = ""

nvdm_queues:

 node_name = "server_b"

 protocol = "APPC"

remote_server = "RA39TCF1"

 focal_point = "yes"

 inter_node = "SERVERA"

Explanation:
The TCP/IP hostname of Server B is assumed to be server_b. We have one
connection to the intermediate node using TCP/IP, assuming that the TCP/IP
hostname of Server A is server_a. The connection to the focal point is made using
Server A as an intermediate node indicated by the inter_node attribute set to the
short name of Server A.

 Note

You should notice that when we specify a remote TCP/IP server we use the
TCP/IP hostname, whereas when we specify an intermediate node we use the
short name. This is caused by the design of our data model.

The definitions for Server C look very similar, except that the hostname is server_c:

 Chapter 8. Enhancing the Configuration Procedure 135

nvdm_queues:

 node_name = "server_c"

 protocol = "TCP/IP"

remote_server = "server_a"

 focal_point = "no"

 inter_node = ""

nvdm_queues:

 node_name = "server_c"

 protocol = "APPC"

remote_server = "RA39TCF1"

 focal_point = "yes"

 inter_node = "SERVERA"

In the configuration procedure that we have developed previously in this book, we
use the shell procedure configure_sna_ds_conn to configure SNA/DS connection
configuration files. This procedure calls either configure_sna_ds_appc to configure
LU 6.2 connections or configure_sna_ds_tcpip to configure TCP/IP connections.

Since we do not need to configure a connection configuration file for connections
using an intermediate node, we have to check the inter_node attribute in this
procedure to determine if we have to create a connection configuration file.

The modified configure_sna_ds_conn procedure looks as follows:

136 Pristine AIX Environments

#

configure SNA/DS connection profiles

#

$1 = IP Hostname of system to be configured

#

configure_sna_ds_conn ()

{

#

perform SNA/DS configuration (connection profiles)

#

#

remove demo profile CONNSNA,CONNTCP if existent

#

cd $SNA_DS_DIR

rm \

get_queues $1

if [$NUM_QUEUE != ð]

then

 a=1

for i in $PROTOCOL

 do

print "NVDM CONFIG : Configuring $i connection"

if ["$i" != "APPC" -a "$i" != "TCP/IP"]

 then

abort "Protocol is neither APPC nor TCP/IP. Exiting..."

 fi

determine if connection is made through an intermediate node

INODE=yecho $REMOTE_SERVER | cut -d' ' -f"$a"y
get_attribute_and nvdm_queues node_name $1 remote_server $INODE inter_node
if ["$VALUE" != ""]

 then
print "NVDM CONFIG : Remote connection to $INODE is made"
print " through intermediate node $VALUE."
print " No SNA/DS connection file is created."

 else

if ["$i" = "APPC"]

 then

 configure_sna_ds_appc

 else

REMSERV=yecho $REMOTE_SERVER | cut -d' ' -f "$a"y
 configure_sna_ds_tcpip $REMSERV

Figure 84 (Part 1 of 2). configure_sna_ds_conn Shell Procedure

 Chapter 8. Enhancing the Configuration Procedure 137

 fi

 fi

a=yexpr $a + 1y
 done

fi

}

Figure 84 (Part 2 of 2). configure_sna_ds_conn Shell Procedure

Explanation:
We have replaced the remove (rm) statement to remove all files in the
/usr/lpp/netviewdm/dm/snads_conn directory. In case a connection is changed to
go through an intermediate node, this will erase the old connection configuration file
for that connection.

Before we configure any connection configuration file, we check if the connection is
made through an intermediate node. If so, no connection configuration file is
created, since these connections are only defined in the routing table.

8.1.3 Adjusting the SNA/DS Routing Table
In the original configuration procedure we created a default entry for each remote
connection where the connection field was set to the same name as the entry that
was added.

In order to implement the intermediate node concept we have to create a routing
table that sends all traffic through the intermediate node for connections where the
inter_node field contains a value.

In the configuration procedure the shell procedure configure_routetab is used to
create the SNA/DS routing table.

The modified configure_routetab procedure looks as follows:

138 Pristine AIX Environments

#

configure SNA/DS routing table

$1 = IP Hostname

#

configure_routetab ()

{

 #

 # first, determine what network protocols we have

 #

 a=ð

 b=ð

 print "NVDM CONFIG : Configuring SNA/DS routing table."

 cd $SNA_DS_DIR

 HAVET=ygrep PROTOCOL \ | grep TCP/IPy
 if ["$HAVET" != ""]

 then

print "NVDM CONFIG : System has TCP/IP connection to remote server."

 a=1

 fi

 HAVEA=ygrep PROTOCOL \ | grep APPCy
 if ["$HAVEA" != ""]

 then

print "NVDM CONFIG : System has APPC connection to remote server."

 b=1

 fi

 if [$a -eq ð -a $b -eq ð]

 then

print "NVDM CONFIG : There are no connections defined."

 return

 fi

 if [$a -eq 1 -a $b -eq 1]

 then

 RPROT="BOTH"

 fi

 if [$a -eq 1 -a $b -eq ð]

 then

 RPROT="TCP/IP"

 fi

 if [$a -eq ð -a $b -eq 1]

 then

 RPROT="APPC"

 fi

Figure 85 (Part 1 of 2). configure_routetab Shell Procedure

 Chapter 8. Enhancing the Configuration Procedure 139

 print "NVDM CONFIG : Writing routing table to $SNA_DS_ROUTE"

 echo "NETWORK PROTOCOL: $RPROT

#

SNA connections

#

" >$SNA_DS_ROUTE

#

get all SNA Routes

#

 cd $SNA_DS_DIR

 SNA_R=ygrep -p APPC \ | grep "NEXT DSU" | cut -d':' -f2y
 if ["$SNA_R" != ""]

 then

for i in $SNA_R

 do

ONE=yecho $i | cut -d'.' -f1y
TWO=yecho $i | cut -d'.' -f2y
if ["$TWO" = "\"]

 then

echo "$i ANY ANY ANY ANY $ONE 5" >>$SNA_DS_ROUTE

 else

echo "$i ANY ANY ANY ANY $TWO 5" >>$SNA_DS_ROUTE

 fi

 done

 fi

 echo "

#

TCP/IP connections

#

" >>$SNA_DS_ROUTE

 TCP_R=ygrep -p TCP/IP \ | grep "NEXT DSU" | cut -d':' -f2y
 if ["$TCP_R" != ""]

 then

for i in $TCP_R

 do

ONE=yecho $i | cut -d'.' -f1y
 echo "$ONE.\ $ONE" >>$SNA_DS_ROUTE

 done

 fi

}

Figure 85 (Part 2 of 2). configure_routetab Shell Procedure

Explanation:
In the original version of configure_routetab we scanned the files in the
/usr/lpp/netviewdm/db/snads_conn directory to gather information about the
defined connections and then constructed the SNA/DS routing table from that
information.

Since we do not create a connection configuration file for connections using an
intermediate node we cannot use this approach anymore. Instead we use the

140 Pristine AIX Environments

information stored in the nvdm_queues class to retrieve information about the
SNA/DS connections.

When we write a routing table entry we have to check for each connection if the
connection is made using an intermediate node. If so, we have to specify the
intermediate node in the CONNECTION field of the routing table. Otherwise we
use the short name of the remote server.

In case we configure a TCP/IP connection we have to search the nvdm_node class
for the short name of the remote_server, since the remote_server field in the
nvdm_queues class contains only the TCP/IP hostname.

The SNA/DS routing tables generated for our example scenario will look as follows:

For Server A:

NETWORK PROTOCOL: BOTH

#

SNA connections

#

USIBMRA.RA39TCF1 ANY ANY ANY ANY RA39TCF1 5

#

TCP/IP connections

#

SERVERB.\ SERVERB

SERVERC.\ SERVERC

Figure 86. SNA/DS Routing Table (Server A)

The routing tables for Server B and Server C are identical:

NETWORK PROTOCOL: BOTH

#

SNA connections

#

USIBMRA.RA39TCF1 ANY ANY ANY ANY SERVERA 5

#

TCP/IP connections

#

SERVERA.\ SERVERA

Figure 87. SNA/DS Routing Table (Server B and C)

 Chapter 8. Enhancing the Configuration Procedure 141

8.2 Configuring NetView DM/MVS
In the configuration procedure developed in this book, we focused on the
configuration of NetView DM/6000. In an environment where you have a NetView
DM/MVS focal point it might also be desirable to configure NetView DM/MVS
automatically.

We will not develop a complete procedure to fully configure NetView DM/MVS here.
However, we will show an example of how to create a configuration procedure for
NetView DM/MVS.

In the example we write a shell script that will produce the commands to configure
the nodes attached to the NetView DM/MVS system automatically. For that
purpose we will use the same ODM database that we also used to configure
NetView DM/6000.

The procedure that we develop will produce an ASCII file containing the necessary
MVS commands which can then be transferred to the MVS host.

The following figure shows the procedure:

142 Pristine AIX Environments

#!/bin/ksh

#

Generate Statements to configure

NetView DM/MVS

#

This script uses the ODM class nvdm_node and nvdm_servers

to create automatic node definitions

#

Author : Stefan Uelpenich / IBM Germany

$Revision: 1.11 $

#

#

NODE_CLASS=nvdm_node

SERVER_CLASS=nvdm_servers

#

variable field for job card creation

they may also be put into the ODM,

e.g. into nvdm_cfg_static

#

USERID=A47112

ACCOUNT="ACCT"

NAME=DSX

SIZE=6ðððK

CLASS=A

TIME=144ð

LOADLIB="NDM.R5.NDMLOAD"

PW=DUMMY

FN="NETVIEW.R5"

#

#

DATABASE ACCESS METHODS (ODM)

these access methods may be replaced with

access methods for any other database at

a later time

#

#

#

get list parameters from odm_class

$1 = class name

$2 = search field

$3 = search field value

$4 = attribute name

The list of parameters is stored in the VALUE_LIST variable

Figure 88 (Part 1 of 5). Sample Procedure to Configure NetView DM/MVS

 Chapter 8. Enhancing the Configuration Procedure 143

The number of parameters is stored in VALUE_NUM

#

get_attribute_list ()

{

 VALUE_LIST=yodmget -q $2=$3 $1 | grep "$4 =" | cut -d'=' -f2 |\
 sed "s/\"//g" | cut -c2-79y
 VALUE_NUM=yodmget -q $2=$3 $1 | grep "$1:" | wc -ly
}

#

get single parameters

$1 = class name

$2 = search field

$3 = search field value

$4 = attribute name

#

get_attribute ()

{

 VALUE=yodmget -q $2=$3 $1 | grep "$4 =" | cut -d '=' -f2 | sed "s/\"//g" |\
 cut -c2-79y
}

#

get single parameters (AND)

$1 = class name

$2 = search field1

$3 = search field value1

$4 = search field2

$5 = search field value2

$6 = attribute name

#

get_attribute_and ()

{

 VALUE=yodmget -q "$2=$3 AND $4=$5" $1 | grep "$6 =" | cut -d '=' -f2 |\
 sed "s/\"//g" | cut -c2-79y
}

#

#

create job cards...

#

#

generate_servers ()

{

Figure 88 (Part 2 of 5). Sample Procedure to Configure NetView DM/MVS

144 Pristine AIX Environments

 #

 # get all nodes that are defined as NVDM servers

 #

 get_attribute_list $NODE_CLASS node_type ð node_name

 print "Number of servers: $VALUE_NUM"

 #

 # create job card header

 #

 echo "

//${USERID}A JOB

(${ACCOUNT}),${NAME},REGION=${SIZE},CLASS=${CLASS},TIME=${TIME},

// MSGCLASS=9,PRTY=14,NOTIFY=${USERID}

//\\

//JOBLIB DD DSN=${LOADLIB},DISP=SHR

//\\

//\\

//GDSX1ð1 EXEC PGM=DSXPREP,

// PARM='FUNCTION=SUBMIT,USERID=${USERID},PASSWORD=${PW}'

//DSXPRINT DD SYSOUT=\

//SYSPRINT DD SYSOUT=\

//SNAP DD SYSOUT=\

//SYSUDUMP DD DUMMY

//DSXDRD DD DSN=${FN}.DRD,DISP=SHR

//DSXLIB DD DSN=${FN}.LIB,DISP=SHR

//DSXLIBT DD DSN=${FN}.LIBT,DISP=SHR

//DSXTCF DD DSN=${FN}.TCF,DISP=SHR

//DSXHFDI DD DSN=${FN}.HFDI,DISP=SHR

//DSXHFDA DD DSN=${FN}.HFDA,DISP=SHR

//DSXGIX DD DSN=${FN}.GIX,DISP=SHR

//DSXGIXD DD DSN=${FN}.GIXD,DISP=SHR

//NDMRQF DD DSN=${FN}.RQF,DISP=SHR

//NDMRQFDA DD DSN=${FN}.RQFDA,DISP=SHR

//SYSIN DD \

" > $outfile

 #

 # create an entry for each node to be created

 #

 for i in $VALUE_LIST

 do

 #

get necessary attributes from database

 #

get_attribute $NODE_CLASS node_name $i short_name

 SHORT=$VALUE

get_attribute $SERVER_CLASS node_name $i local_lu_name

 LUNAME=$VALUE

get_attribute $NODE_CLASS node_name $i description

 DESC=$VALUE

printf "%-7ðs \\n" "$SHORT DEF NODE NAME=$SHORT," >>$outfile

printf "%-7ðs \\n" " NODETYPE=NDM6," >>$outfile

Figure 88 (Part 3 of 5). Sample Procedure to Configure NetView DM/MVS

 Chapter 8. Enhancing the Configuration Procedure 145

printf "%-7ðs \\n" " LUNAME=$LUNAME," >>$outfile

printf "%-7ðs \\n" " LOGMOD=NVDMNORM," >>$outfile

printf "%-7ðs \\n" " RGN=$SHORT," >>$outfile

printf "%-7ðs \\n" " REN=$SHORT," >>$outfile

printf "%-7ðs \\n" " LINETYPE=L," >>$outfile

printf "%-7ðs \\n" " STATUS=P," >>$outfile

printf "%-7ðs \\n" " CLASS=Að," >>$outfile

printf "%-7ðs \\n" " SRVNAME=$SHORT," >>$outfile

printf "%-7ðs \\n" " TIMZOFFS=ð," >>$outfile

printf "%-7ðs\n" " NOTE='$DESC'" >>$outfile

 done

}

generate_agents ()

{

 get_attribute_list $NODE_CLASS node_type 1 node_name

 print "Number of agents: $VALUE_NUM"

 for i in $VALUE_LIST

 do

 #

get necessary attributes from database

 #

get_attribute $NODE_CLASS node_name $i short_name

 SHORT=$VALUE

get_attribute $NODE_CLASS node_name $i server_name

 SVR=$VALUE

get_attribute $SERVER_CLASS node_name $SVR local_lu_name

 LUNAME=$VALUE

get_attribute $NODE_CLASS node_name $SVR short_name

 SVRSHORT=$VALUE

get_attribute $NODE_CLASS node_name $i description

 DESC=$VALUE

printf "%-7ðs \\n" "$SHORT DEF NODE NAME=$SHORT," >>$outfile

printf "%-7ðs \\n" " NODETYPE=NDM6," >>$outfile

printf "%-7ðs \\n" " LUNAME=$LUNAME," >>$outfile

printf "%-7ðs \\n" " LOGMOD=NVDMNORM," >>$outfile

printf "%-7ðs \\n" " RGN=$SVRSHORT," >>$outfile

printf "%-7ðs \\n" " REN=$SHORT," >>$outfile

printf "%-7ðs \\n" " LINETYPE=L," >>$outfile

printf "%-7ðs \\n" " STATUS=P," >>$outfile

printf "%-7ðs \\n" " CLASS=Að," >>$outfile

printf "%-7ðs \\n" " SRVNAME=$SVRSHORT," >>$outfile

printf "%-7ðs \\n" " TIMZOFFS=ð," >>$outfile

printf "%-7ðs\n" " NOTE='$DESC'" >>$outfile

 done

}

Figure 88 (Part 4 of 5). Sample Procedure to Configure NetView DM/MVS

146 Pristine AIX Environments

#

MAIN

#

print "NetView DM/MVS configuration generator."

print "Name of output file:"

read outfile

generate_servers

generate_agents

Figure 88 (Part 5 of 5). Sample Procedure to Configure NetView DM/MVS

Explanation:
Assuming that the shell script is stored in a file named nvdm_mvs we can invoke it
by typing:

nvdm_mvs

The script will then ask for a file name of the file where the output will be placed.
This file will contain a job card for MVS that can be used to define the nodes of our
software distribution network to NetView DM/MVS.

Values that depend on the specific MVS environment are held in shell variables
being set at the beginning of the script. For example, the shell variable USERID

contains the MVS user ID.

Another way to store these values would be to put them in the ODM, preferably in
the nvdm_cfg_static class.

The script contains two procedures, configure_servers and configure_agents.
The configure_servers procedure is used to create the job card header and an
entry for each server defined in the software distribution network. Information about
servers is gathered from the nvdm_node and nvdm_servers ODM classes.

The configure_agents procedure is used to create an entry for each agent defined
in the software distribution network. Since NetView DM/MVS is not connected to
NetView DM/6000 agents directly but through a NetView DM/6000 server, we have
to find out the appropriate server for each agent and then determine the short
name and the LU name of the server.

These values are then used when defining the agent as a node to NetView
DM/MVS.

We use the following example node definition to demonstrate the script:

 Chapter 8. Enhancing the Configuration Procedure 147

nvdm_node:

node_name = "nw13nvdm1ð5"

node_type = ð

short_name = "NW13NVDM"

target_os = "AIX"

description = "NetView DM Server 1"

contact_name = "Stefan Uelpenich"

owning_manager = "Wolfgang Geiger"

telephone_number = "1234"

customer_name = "ITSO Raleigh"

repos_fs = ""

repos_size = ð

x_25_number = ""

server_name = "nw13nvdm1ð5"

group_name = "group1"

nvdm_node:

node_name = "nw12adsm1ð5"

node_type = 1

short_name = "NW12ADSM"

target_os = "AIX"

description = "Johnbergs ADSM Server"

contact_name = "Stefan Uelpenich"

owning_manager = "Wolfgang Geiger"

telephone_number = "5678"

customer_name = "ITSO Raleigh"

repos_fs = ""

repos_size = ð

x_25_number = ""

server_name = "nw13nvdm1ð5"

group_name = "group1"

nvdm_node:

node_name = "nw18nvdm1ð5"

node_type = ð

short_name = "NW18NVDM"

target_os = "AIX"

description = "NetView DM Server 2"

contact_name = "Stefan Uelpenich"

owning_manager = "Wolfgang Geiger"

telephone_number = "1234"

customer_name = "ITSO Raleigh"

repos_fs = ""

repos_size = ð

x_25_number = ""

server_name = "nw18nvdm1ð5"

group_name = "group2"

Figure 89 (Part 1 of 2). Sample Definition for nvdm_node Class

148 Pristine AIX Environments

nvdm_node:

node_name = "nw38r4ðp137"

node_type = 1

short_name = "NW384ðP"

target_os = "AIX"

description = "Sample Client for AIX4"

contact_name = "Stefan Uelpenich"

owning_manager = "Wolfgang Geiger"

telephone_number = "5678"

customer_name = "ITSO Raleigh"

repos_fs = ""

repos_size = ð

x_25_number = ""

server_name = "nw13nvdm1ð5"

group_name = "group1"

Figure 89 (Part 2 of 2). Sample Definition for nvdm_node Class

Further, we use the following SNA definitions in the nvdm_servers class:

nvdm_servers:

node_name = "nw13nvdm1ð5"

local_lu_name = "LUNDM13"

pu_name = "PUNDM13"

cp_name = "CPNDM13"

xid = ""

sna = "yes"

nvdm_servers:

node_name = "nw18nvdm1ð5"

local_lu_name = "LUNDM18"

pu_name = "PUNDM18"

cp_name = "CPNDM18"

xid = ""

sna = "yes"

Figure 90. Sample Definition for nvdm_servers Class

Assuming that we have added the above definitions to the ODM, for example by
using the odmadd command, we can start the script by typing:

nvdm_mvs

The output file for the above definitions will look as follows:

 Chapter 8. Enhancing the Configuration Procedure 149

//A47112A JOB (ACCT),DSX,REGION=6ðððK,CLASS=A,TIME=144ð,

// MSGCLASS=9,PRTY=14,NOTIFY=A47112

//\\

//JOBLIB DD DSN=NDM.R5.NDMLOAD,DISP=SHR

//\\

//\\

//GDSX1ð1 EXEC PGM=DSXPREP,

// PARM='FUNCTION=SUBMIT,USERID=A47112,PASSWORD=DUMMY'

//DSXPRINT DD SYSOUT=\

//SYSPRINT DD SYSOUT=\

//SNAP DD SYSOUT=\

//SYSUDUMP DD DUMMY

//DSXDRD DD DSN=NETVIEW.R5.DRD,DISP=SHR

//DSXLIB DD DSN=NETVIEW.R5.LIB,DISP=SHR

//DSXLIBT DD DSN=NETVIEW.R5.LIBT,DISP=SHR

//DSXTCF DD DSN=NETVIEW.R5.TCF,DISP=SHR

//DSXHFDI DD DSN=NETVIEW.R5.HFDI,DISP=SHR

//DSXHFDA DD DSN=NETVIEW.R5.HFDA,DISP=SHR

//DSXGIX DD DSN=NETVIEW.R5.GIX,DISP=SHR

//DSXGIXD DD DSN=NETVIEW.R5.GIXD,DISP=SHR

//NDMRQF DD DSN=NETVIEW.R5.RQF,DISP=SHR

//NDMRQFDA DD DSN=NETVIEW.R5.RQFDA,DISP=SHR

//SYSIN DD \

NW13NVDM DEF NODE NAME=NW13NVDM, \

 NODETYPE=NDM6, \

 LUNAME=LUNDM13, \

 LOGMOD=NVDMNORM, \

 RGN=NW13NVDM, \

 REN=NW13NVDM, \

 LINETYPE=L, \

 STATUS=P, \

 CLASS=Að, \

 SRVNAME=NW13NVDM, \

 TIMZOFFS=ð, \

NOTE='NetView DM Server 1'

NW18NVDM DEF NODE NAME=NW18NVDM, \

 NODETYPE=NDM6, \

 LUNAME=LUNDM18, \

 LOGMOD=NVDMNORM, \

 RGN=NW18NVDM, \

 REN=NW18NVDM, \

 LINETYPE=L, \

 STATUS=P, \

 CLASS=Að, \

 SRVNAME=NW18NVDM, \

 TIMZOFFS=ð, \

NOTE='NetView DM Server 2'

Figure 91 (Part 1 of 2). Output File Created by nvdm_mvs Script

150 Pristine AIX Environments

NW12ADSM DEF NODE NAME=NW12ADSM, \

 NODETYPE=NDM6, \

 LUNAME=LUNDM13, \

 LOGMOD=NVDMNORM, \

 RGN=NW13NVDM, \

 REN=NW12ADSM, \

 LINETYPE=L, \

 STATUS=P, \

 CLASS=Að, \

 SRVNAME=NW13NVDM, \

 TIMZOFFS=ð, \

NOTE='Johnbergs ADSM Server'

NW384ðP DEF NODE NAME=NW384ðP, \

 NODETYPE=NDM6, \

 LUNAME=LUNDM13, \

 LOGMOD=NVDMNORM, \

 RGN=NW13NVDM, \

 REN=NW384ðP, \

 LINETYPE=L, \

 STATUS=P, \

 CLASS=Að, \

 SRVNAME=NW13NVDM, \

 TIMZOFFS=ð, \

NOTE='Sample Client for AIX4'

Figure 91 (Part 2 of 2). Output File Created by nvdm_mvs Script

8.3 Configuring NetView DM TCP/IP Ports
For communicating over TCP/IP NetView DM/6000 uses certain TCP/IP ports which
need to be defined in the /etc/services file. This is normally done by editing this
file, for example, by using the vi editor.

The following shell procedure can be used to add the ports needed by NetView
DM/6000 automatically:

 Chapter 8. Enhancing the Configuration Procedure 151

#

check if TCP/IP ports for NetView DM/6ððð are

existing. If not, add them to /etc/services file

#

check_ports ()

{

 #

 # first, make a backup copy of /etc/services..."

 #

 cp /etc/services /etc/services.nvdm

 #

 # check for port NetViewDM-rcv

 #

 print "CONFIG NVDM : Checking NetViewDM-rcv port..."

 R=ygrep NetViewDM-rcv /etc/servicesy
 if ["$R" = ""]

 then

print "CONFIG NVDM : Port did not exist. Adding it to /etc/services..."

 echo "NetViewDM-rcv 731/tcp" >>/etc/services

 fi

 #

 # check for port NetViewDM-snd

 #

 print "CONFIG NVDM : Checking NetViewDM-snd port..."

 R=ygrep NetViewDM-snd /etc/servicesy
 if ["$R" = ""]

 then

print "CONFIG NVDM : Port did not exist. Adding it to /etc/services..."

 echo "NetViewDM-snd 73ð/tcp" >>/etc/services

 fi

 #

 # check for port NetViewDM6ððð

 #

 print "CONFIG NVDM : Checking NetViewDM6ððð port..."

 R=ygrep NetViewDM6ððð /etc/servicesy
 if ["$R" = ""]

 then

print "CONFIG NVDM : Port did not exist. Adding it to /etc/service

 echo "NetViewDM6ððð 729/tcp" >>/etc/services

 fi

}

Figure 92. check_ports Shell Procedure

Explanation:
The shell procedure checks for the following ports needed by NetView DM/6000:

 � NetViewDM6000

 � NetViewDM-snd

 � NetViewDM-rcv

In case one of the ports is not defined in the /etc/services file, the procedure will
add the ports, using the default TCP port number, for example, port 73ð for
NetViewDM-snd.

152 Pristine AIX Environments

8.4 Configuring the root.cli File
When a NetView DM/6000 server or agent has been used with a different
hostname before, there might occur a problem, because the product keeps the
hostname in several configuration files.

The product configuration files, like nvdm.cfg are not a problem, because they are
reconfigured when running the configuration procedure.

There is, however, a file called
/usr/lpp/netviewdm/uicfg/username/uicfg/username for each user that has used
the workstation before. This is a binary file which also contains the hostname of
the workstation.

When you try to reconfigure NetView DM/6000 with a different hostname now,
starting the product will fail, since the file still contains the old hostname.

To solve this problem we need to modify the hostname in the file and adjust it to
the hostname currently used for that workstation.

The following C program can be used to perform this task:

/\ create uicfg/xxx.cli file

Author : Stefan Uelpenich/IBM Germany

\/

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

static char cfgfile[]={ ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,

 ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,

 ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,

 ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,

 ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,

 ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,

 ð,ð,ð,ð,ðxð4 };

main(argc,argv)

int argc;

char \argv[];

{

 FILE \hnd;

 if (argc != 2) {

printf ("Syntax : %s hostname\n",argv[ð]);

 exit (ð);

 }

 printf("Create /usr/lpp/netviewdm/uicfg/root.cfg file...\n");

 hnd=fopen("/usr/lpp/netviewdm/uicfg/root.cli","wb+");

 strcpy(cfgfile,argv[1]);

 fwrite(cfgfile,1,65,hnd);

 fclose(hnd);

}

Figure 93. uicfg.c Program

 Chapter 8. Enhancing the Configuration Procedure 153

Assuming that the source code is stored in a file uicfg.c, you can compile it by
typing:

cc -o uicfg uicfg.c

The compiled program can then be invoked using the hostname to be configured
as the command line argument, for example:

uicfg rs6ððð12

This program should be included in the configuration script to make sure, that the
product will start successfully, even if the hostname has changed and NetView
DM/6000 has been used before on that workstation.

 Note

The above program only adjusts the file for the root user. If you want to make
the program more general you could add a parameter determining the user
name and therefore adjust the files for all users.

154 Pristine AIX Environments

Chapter 9. Configuring a Production Environment

We now develop some general concepts for applying the configuration procedure
that we have created before to a real production environment.

That means that we show the procedures to configure a large number of RS/6000
systems from a central point of control.

We will concentrate on the following topics:

� Customizing the configuration procedure

� Testing the configuration procedure in a test environment

� Generate configuration data for the production environment

� Defining a roll-out strategy

9.1 Customizing the Configuration Procedure
As stated before the configuration procedure documented in this book shall be the
base for the configuration procedure you will need in your specific environment.
Therefore, it is most likely that it will need at least some sort of customization.

The customization might include:

� Selecting the configuration steps you need to perform

� Adding new functions to the configuration script

� Changing the data model

We have shown procedures to perform all of the above steps previously, so you
should be able to create your own configuration procedure that specifically meets
the requirements of your environment.

As soon as you think that customization is finished, you can test the procedure in a
test environment.

9.2 Testing the Configuration Procedure
In order to test your procedure you should set up a test environment that is a
model of your real target environment.

In the scenario used for developing our example configuration procedure we had,
for example, two NetView DM/6000 servers, one NetView DM/6000 agent and one
NetView DM/MVS focal point.

This could be the model for a target environment where you have some NetView
DM/6000 servers connected to a NetView DM/MVS focal point and lots of agents
connected to each server.

Some points you should consider when setting up a test environment include:

� What kind of node types do I have on my network?

 Copyright IBM Corp. 1996 155

� What kind of network protocols do I intend to use?

� What kind of networks will I have in my target environment?

� What is the number of systems on my network?

� Do I have remote administrators?

� Do I have a focal point system?

� What kind and level of operating systems do I have?

Your test environment should be as close to the real production environment as
possible. The following list might give you some hints about what can be important:

� If you have different versions of the operating system in your target network
you should have at least one machine with either of these levels in your test
environment. For example, when you know that there will be agents on your
network running AIX 4.1, you should have one agent in your test environment
running AIX 4.1.

� If you have different machine types on your network, you should have one
machine of each type in your test environment. For example, the target
machines may differ in disk space, memory size or processor speed.

� If you have different network types in your target network you should at least
test your procedure once using each network type. For example, if your test
environment runs on a token-ring network and you know that your target
network will be X.25, you can develop your procedure in the token-ring
network. As soon as you are finished you should then test the procedure in an
X.25 network before starting the roll-out.

� If you intend to use network protocols other than TCP/IP, you should carefully
test the setup of these protocols. Whereas the configuration of TCP/IP is
comparably easy, the configuration of SNA LU 6.2 is normally a lot more
complicated.

� The number of systems on your network should be considered, for example, to
get an idea of how to organize target groups, how to structure server levels,
etc.

9.3 Generating Configuration Data for the Target Environment
In our example scenario we defined all configuration data manually. This worked
fine in the test environment because we had only three systems to be configured.

However, if we have some hundreds, or even thousands of systems on our
network, it would be very time consuming and error-prone to type in all
configuration data manually.

We now show some techniques to generate configuration data automatically.

The goal should be to keep the information that has to be entered manually as
minimal as possible.

One way to achieve this is to find out the core data describing your software
distribution network. All configuration data needed to configure the software
distribution network must either be contained in this core data or deductible from
that data.

156 Pristine AIX Environments

 Note

What data is core data and what data can be deducted depends strongly on
your specific environment and your specific requirements.

Deducing data from core data always reduces flexibility, which is not always
desirable.

9.3.1 Creating ODM Definitions Automatically
In this section we show an example of how you can set up rules in your
organization that allows you to generate node-specific information automatically. If
this does not apply to your situation, skip this section.

 Note

We assume that we have to create ODM definitions in this example since we
used the ODM to store the configuration database in all the previously
described examples.

However, if we used another database, we would have to create data definition
files for that database.

For example, we replaced the ODM with DB2/6000 in Chapter 12,
“Implementing the Configuration Data Model Using DB2/6000” on page 219. In
order to fill the configuration database stored in DB2/6000 automatically, we can
either create SQL insert statements automatically with the procedures described
below or use the migration tool described in 14.1, “ODM to DB2/6000
Conversion” on page 277 to migrate an existing ODM configuration database to
DB2/6000 or use the graphical user interface presented in Chapter 15,
“Modifying Configuration Data Using a Graphical User Interface” on page 293.

If we have a core data set containing the essential information about our software
distribution network we can construct at least parts of the ODM data definition files
automatically.

For that purpose we need a rule for every ODM attribute to be created describing
how this attribute can be constructed from the core data.

 Chapter 9. Configuring a Production Environment 157

Figure 94. Generating ODM Classes Automatically

Let's start with a very simple example of core data:

We have an organization table, stored in an AIX file, containing the branch office
structure of a company. In the first approach the table looks like the following:

hððð1 hððð1

hððð1 bððð7

hððð1 bðð11

hððð2 hððð2

hððð2 bððð1

hððð2 bððð3

hððð3 hððð3

hððð3 bððð8

hððð3 bððð9

...

Figure 95. Organization Structure File

Explanation:

158 Pristine AIX Environments

Within the organization there are head offices and branch offices. The head offices
are connected to the central headquarters, whereas each branch office is
connected to a head office.

The above table contains the names of the head offices and branch offices and
their relationships. Each branch office has a head office to which it is connected.
A head office is always connected to itself, because it also acts as a branch office.

Figure 96. Example Corporate Structure

The names of head offices always start with an h whereas the names of branch
offices always start with a b.

In this example we want to configure a software distribution network in the following
way:

� All head offices act as NetView DM/6000 servers.

� All branch offices act as NetView DM/6000 agents.

� All NetView DM/6000 servers are connected to a central NetView DM/MVS
system located at the headquarters using SNA.

� All targets connected to a head office form a target group.

 Chapter 9. Configuring a Production Environment 159

� All targets will only have one user root which will have NetView DM/6000
administrator authority.

We now want to fill the ODM object classes with the configuration data for this
network automatically. We use the object classes designed in 3.2, “Defining Object
Classes” on page 12.

In order to do so we need rules to create the attributes for the objects we need to
describe our network.

 Note

The rules we use in this example are very simple, since we only want to show
the basic principles. It is most likely that in a real environment the rules needed
to create configuration data are more complex.

The following list contains the rules for our environment:

1. nvdm_node object class:

� The node_name (IP hostname) is the same as the head office or branch
office name.

� The node_type can be derived from the office name. Since head offices
are NetView DM/6000 servers, all offices having a name starting with h will
have node_type 0, whereas all branch offices are agents and have
node_type 1.

� The short_name will be the office name converted into uppercase.

� The server_name can be gathered directly from the table. The first column
contains the head office which is also the corresponding NetView DM/6000
server. For a head office this field points to itself.

� The group_name can be the name of the server since all nodes connected
to a server also form a target group.

� The target_os field will be set to AIX because all nodes we want to
configure run the AIX operating system.

� The optional fields, like description, contact_name, etc. can be left blank
or filled with any useful values. For example, the core data table could also
contain the name of the city where each office is located. Then the
description field could be filled with that name.

2. nvdm_groups object class

� The node_name is the same IP hostname as used in the nvdm_node object
class.

� The group_name is the name of the group to be created. Since all targets
connected to one server form a target group we have to create one
instance of this class for every server in our network. The group_name field
contains the same value as the corresponding group_name field in the
nvdm_node class.

� We use the group_name converted to uppercase as the group short_name.

� The description field is optional.

3. nvdm_users object class

160 Pristine AIX Environments

� The node_name is the same IP hostname as used in the nvdm_node object
class.

� The username is the AIX user that has to be configured as a NetView
DM/6000 target user. Since we want to configure only the root user at
each target we have to create one instance of this class for every node.

� The usergroup field will always be set to FNDADMN because we only
define the root user as NetView DM/6000 administrator on each target.

4. nvdm_servers object class

� The node_name is the same IP hostname as used in the nvdm_node object
class.

� In our example we assume that we have a very simple naming scheme for
SNA parameters. For example, LU 6.2 names always start with LU
followed by the office name converted to uppercase, like LUH0001. This
value will be stored in local_lu_name. We need to create one instance of
this class for each NetView DM/6000 server, because only the servers in
the head offices are connected to the focal point using SNA.

� The pu_name will always be PU followed by the office name, like PUH0001.

� The cp_name will always be CP followed by the office name, like CP0001.

� The xid field will be left blank, because we will use the control point XID.

� The sna field will always be set to yes because we want SNA Server
configuration to be performed on each node.

5. nvdm_queues object class

� The node_name is the same IP hostname as used in the nvdm_node object
class.

� The protocol is always set to APPC since we only have a remote
connection to the MVS focal point using APPC. One instance of this class
has to be created for each NetView DM/6000 server.

� The remote_server field always contains the LU 6.2 name of the focal point
system, for example LUHQNVDM.

� The focal_point field is always set to yes since we have only remote
connections to the focal point system.

The above rules could now easily be translated into a simple Shell script that uses
the core data set to create the ODM definition files automatically.

Anytime the core table is changed we only need to run the Shell script again to
update the ODM database. For example, if a branch office is moved to another
head office the change has to be performed only in the core data table.

 Note

Similar considerations about generating data for the configuration database
apply to the DB2/6000 scenario in Chapter 12, “Implementing the Configuration
Data Model Using DB2/6000” on page 219.

 Chapter 9. Configuring a Production Environment 161

9.4 Defining a Roll-Out Strategy
The roll-out strategy is basically the process that is used to install and configure the
workstations in the network.

We assume that we have adapted the configuration procedure for our specific
environment and that we have also filled the configuration database with the data
representing our software distribution network.

We now have to design the procedure to completely install and configure any
system that is part of our network.

Depending on what software has to be installed on each system this procedure will
be different for every specific environment. However, there are some general
concepts that can be applied to any kind of software:

� The software has to be installed on the system.

� Software that needs configuration should be automatically configured.

All software that is needed on a system has to be installed on that system where
there are several ways to do that. We will discuss the possibilities in 9.4.1,
“Installing Software.”

Software that needs configuration should be configured automatically on each
system. This is especially important for networks containing a large number of
systems.

In this book we have developed a configuration procedure to configure NetView
DM/6000 automatically as well as some other components, such as SNA Server.
You might want to implement your own configuration procedures for other products,
too.

Here are some examples of products that could be configured by a configuration
procedure:

� Adstar Distributed Storage Manager/6000 (ADSM/6000)

� Host Connection Program/6000 (HCON/6000)

� Distributed SMIT (DSMIT)

� AIX operating system parameters, such as users, file systems, adapters, etc.

 9.4.1 Installing Software
All software that is required on a system has to be installed on that system first.

Depending on the type of software there are several ways to do that. The first
software product that is needed on an RS/6000 system is the AIX base operating
system.

You can install AIX, for example, by:

1. Using an AIX installation tape

2. Using a system backup (mksysb) tape

3. Using the NetView DM/6000 pristine installation feature

162 Pristine AIX Environments

4. Using a network installation server

 Note

If your systems come pre-installed from the IBM factory you might not need any
of the above alternatives, because then all your systems already have a base
operating system installed. However, with pre-installed systems you might also
lose flexibility.

� AIX installation tape

The classic way to install an AIX system is to use an AIX installation tape.
Since this is very time-consuming and also requires permanent user-interaction
this will not be your choice when you have to install dozens, or even hundreds
of systems.

 � System backup

Another way is to install one system as a model and then install a system
backup (mksysb) tape on the other workstations. This is a good choice if you
have only one or a few types of systems on your network.

Then you have to create a system backup image for each type of system.
Using a system backup tape instead of an installation tape has the following
advantages:

– The installation of a system backup is a lot faster than the installation from
an installation tape.

– You can do a lot of customization on your model system before you create
the system backup, and therefore, install this customization also on the
systems that are installed with the system backup later.

� NetView DM/6000 pristine installation feature

You have basically the same kind of installation as with a system backup tape.
The difference is that in the pristine installation the system backup is installed
from the network instead from a tape and that the whole process is triggered by
NetView DM/6000.

Since the pristine installation transmits the complete system backup over the
network, and a system backup image is quite large, at least some hundred MB,
this can only be performed in a LAN environment. However, in a typical
production environment you will quite often have WAN connected systems.

� Network install server

Using a network install server you can also install system backup images
across a LAN network. In contrast to the pristine installation this process is not
triggered by NetView DM/6000.

Which of the above alternatives is appropriate for a specific environment
depends mostly on the type of network:

– In a LAN network normally the pristine installation is the best choice.

– In a WAN network normally using system backup tapes is the best choice.

In some cases it may also be enough to use pre-installed systems. However, this
is not very flexible. For example, if you have only a small amount of hard disk
space available on your workstations, you may want to install only a minimal

 Chapter 9. Configuring a Production Environment 163

operating system. If your system comes pre-installed, you will normally not have
the chance to do that.

Besides the base operating system you will normally have to install additional
software packages. Of course you can install these packages on your model
system before creating the system backup image.

As far as change management is concerned there is the following problem with this
approach:

If you install software packages on the model system and then create a system
backup image, these packages are not included in the change management history
because they were not installed using NetView DM/6000. Since we want to track
as much software as possible using the change management process this is not
desirable.

The alternative is to install only the base operating system, for example using a
system backup image, and then all additional packages using NetView DM/6000.
However, this requires that you already have a working software distribution
network before you can use NetView DM/6000. Hence, you will also need to install
the NetView DM/6000 product, either server or agent, on each system.

This can be done, for example, by including the product in the system backup. The
problem is, that NetView DM/6000 might need additional products in order to work
(in our example SNA Server) so this must also be included in the system backup
image.

 Note

Software that was installed without using NetView DM/6000 should also be
included in the change management history. A way to do that is to use the
software inventory function of NetView DM/6000. How software inventory
discovery can be implemented is explained in the redbook NetView DM/6000
Agents and Advanced Scenarios, GG24-4490.

9.4.2 Configuring Software Products
The configuration activities needed to configure a software product differ
significantly depending on what product you need to configure.

There are products that need only very few configuration steps whereas other
products might need a large number of configuration steps.

We have developed a configuration procedure for NetView DM/6000 in this book
since automatic configuration of NetView DM/6000 is a quite complicated task.

Other products might need only a very limited customization. If the customization is
the same for all systems, it can be included in the system backup, that is, it will be
applied to the model system before the system backup is created. For example, if
all systems need a modified /etc/profile, this customization can be performed on
the model system.

If we have a configuration procedure, such as the one we have developed for
NetView DM/6000 we have to distribute the configuration procedure as well as the
configuration database to all systems that need to be configured.

164 Pristine AIX Environments

In our example environment we have done this by transmitting all data across a
LAN network. However, this might be a problem if we have WAN connected
systems.

If we have a large number of systems to be configured, the ODM database that we
use to store configuration information will be very large. This database has to be
copied to all systems that have to be configured. If we have, for example, an X.25
network with a very limited bandwidth, it is very time consuming to transfer this data
to all systems across the network.

If we decide to install the systems using a system backup it is a better approach to
include the ODM database in the system backup then so that it does not have to
be transmitted across the network.

 Chapter 9. Configuring a Production Environment 165

166 Pristine AIX Environments

 Chapter 10. Pristine Installation

In this chapter we perform a pristine installation of an RS/6000 system on our
network.

We combine the pristine installation procedure supplied with the NetView DM/6000
product with the configuration procedure we have developed previously in order to
automatically create a NetView DM/6000 server.

10.1 Overview and Objective
With Version 1.2 a new function was introduced to the NetView DM/6000 product
allowing the installation of RS/6000 systems "from scratch" triggered by NetView
DM/6000.

 Note

This chapter deals with the pristine installation feature available in NetView
DM/6000 Version 1.2.1. If you are using Software Distribution for AIX you
should refer to Chapter 16, “Cloning Systems Using Software Distribution for
AIX 3.1” on page 317.

We do not explain the pristine installation in full detail here, since this is fully
documented in the redbook NetView DM/6000 Agents and Advanced Scenarios
GG24-4490. If you want to get detailed information about the pristine installation
process, for example, about remote IPL, you should consult this redbook.

However, with PTF U436928 the pristine installation procedure was enhanced to
allow for some new functionality.

The major enhancements are:

� You can now install backup images created with the mksysb command that are
stored in files at the model workstation.

� The complete pristine installation process, including the preparation of the
model workstation is now triggered by NetView DM/6000 change files.

� Sample change file profiles are supplied allowing for the easy customization for
your specific environment.

We will use the pristine installation in this scenario to create a NetView DM/6000
server. This will include the following steps:

� Create an mksysb image of a NetView DM/6000 server and store it at the model
workstation.

� Prepare the model workstation and the NetView DM/6000 server for the pristine
installation process.

� Use the pristine installation procedure to install the NetView DM Agent/6000
product on the target workstation.

� Install the mksysb image on the target using NetView DM/6000 thus installing
the NetView DM/6000 server code on the target.

 Copyright IBM Corp. 1996 167

� Use the configuration script config_nvdm to automatically configure the NetView
DM/6000 server product at the target.

 Note

It is important to understand that we will install a NetView DM/6000 server on
the target workstation in this scenario although the pristine installation
procedure itself covers only the installation of agents. However, the pristine
installation procedure allows us to trigger the whole installation process using
NetView DM/6000. For the above reasons the NetView DM/6000 server code is
not contained in a change file but in the mksysb image stored on the model
workstation.

10.2 The Pristine Installation Process
Before we start we will give a short overview of the pristine installation process.

 Note

A description of the new pristine installation is available in the file
/usr/lpp/netviewdm6ððð/inst_U436928/lpp.README at your server after you
have installed the PTF U436928. Before you try the pristine installation you
should read this file.

In order to perform the pristine installation we need to have a model workstation, a
NetView DM/6000 server and a target that we want to install.

The model workstation will act as a network boot server for the target and also hold
the mksysb image to be installed on the target.

The model can, however, also be the same machine as the NetView DM/6000
server, as in our scenario:

� We will have rs6ððð7 acting as the NetView DM/6000 server and as the model
workstation.

� We will have rs6ððð15 acting as the target to be installed.

 Note

Normally the model needs to be a CC client because the pristine installation
procedure needs the files supplied with the NetView DM Agent/6000 in order to
configure the target as an agent.

However, we can also use a server if we keep the install image of the agent on
that server. How this can be done will be explained when preparing the model.

The target workstation will be configured to boot from the network using the model
workstation as its boot server.

The boot image will contain a fully configured NetView DM/6000 agent enabling the
target to act as a NetView DM/6000 agent right after it has been booted.

168 Pristine AIX Environments

As soon as the NetView DM/6000 agent on the target is active, a change file can
be installed from the server containing a script which will then install the mksysb
image from the model to the target.

10.3 Prerequisites for Server and Model Workstation
The CC server needs to have the following software installed:

 � AIX 3.2.5

� TCP/IP Version 2.1

� NetView DM/6000 including the Tools option

 Note

It is especially important that the server has the NetView DM/6000 Tools option
installed because this option includes the sample change file profiles to prepare
the model and the server for the pristine installation.

The model workstation needs to have the following software installed:

 � AIX 3.2.5

� TCP/IP Version 2.1

� Network File System (NFS)

� NetView DM Agent/6000

Since in our scenario the model workstation and the NetView DM/6000 server
reside on the same machine, this machine needs to meet both of the above
requirements.

In order to provide the agent code on the server the appropriate install image for
the agent has to be in the /usr/sys/inst.images at the server.

 Note

You cannot install a system backup for AIX 4.1 using the pristine installation
feature of NetView DM/6000 Version 1.2.1. If you intend to clone AIX 4.1
systems or want to upgrade systems from AIX 3.2.5 to AIX 4.1 you must use
Software Distribution for AIX. An example of how to use this feature is shown
in Chapter 16, “Cloning Systems Using Software Distribution for AIX 3.1” on
page 317. Please refer to this chapter if you intend to clone AIX 4.1 systems.
Nevertheless you should continue reading this chapter completely since it
contains information about the pristine installation process in general. This
information is not repeated in Chapter 16, “Cloning Systems Using Software
Distribution for AIX 3.1” on page 317.

The model workstation must also have enough disk space available:

� 16 MB of disk space for the first target to be free

� 8 MB of disk space for each additional target to be free

 Chapter 10. Pristine Installation 169

Furthermore, the model workstation needs disk space to hold the mksysb image that
will be installed at the target. The size of this image depends on the system where
you create the system backup but normally you should have at least 1 GB of free
disk space.

10.4 Creating the System Backup Image
We will now create the system backup to be installed at the target as the first step
in performing the pristine installation.

Before you create the system backup you must decide what you want to be
installed on the target. In our scenario we want to install the following products:

� The AIX 3.2.5 base operating system

� NetView DM/6000 Version 1.2

� SNA Server Version 2.1

We need the NetView DM/6000 server product because we want to create a
NetView DM/6000 server. This server is supposed to have SNA connections, so
we also need the SNA Server product.

 Note

You should notice that all the products you include in the system backup will not
appear in the change management history of NetView DM/6000. If you want to
avoid this, you can include only a minimal system in the mksysb image and
install any additional products using NetView DM/6000. If you decide to include
all products in the system backup, you can create an inventory discovery
procedure to detect these products and add them to the software inventory.
How to do this is described in the redbook NetView DM/6000 Agents and
Advanced Scenarios, GG24-4490.

In order to create the system backup image we have to perform the following steps:

1. Install a system that can be used to create the system backup.

2. Create a file system on the model workstation to hold the system backup.

3. Export this file system to the target using NFS.

4. Transfer the system backup to the model workstation.

First we have to select a system which has all the software installed that we want
to have in our system backup.

If we do not have a system with an appropriate configuration we will have to install
the additional software products prior to creating the system backup.

In our example we create the system backup on rs6ððð15 which contains NetView
DM/6000 server and SNA Server.

170 Pristine AIX Environments

 Note

You might want to customize the system where you create the system backup
before initiating the mksysb command. For example, you can customize system
profiles such as /etc/profile.

In our example it is particularly important, that we create a /.rhosts file on the
machine we want to take the system backup from, containing the following line:

rs6ððð7.itso.ral.ibm.com root

This is required, because we want to run the configuration script on rs6ððð15 from
rs6ððð7 to configure the NetView DM/6000 server after the pristine installation is
completed.

Before we create the system backup we will create the file system to hold the
system backup on our model workstation and then export this file system to
rs6ððð15.

This enables us to mount this file system from rs6ððð15 and then write the system
backup directly to the NFS mounted drive. Therefore we do not need to explicitly
transfer the mksysb image to rs6ððð7 after we have created it on rs6ððð15.

In order to create the file system we do the following:

1. Type smitty crfs to get to the appropriate SMIT fast path.

2. Select Add a Journaled File System and press Enter.

3. Select rootvg and press Enter.

The following panel will appear:

 Chapter 10. Pristine Installation 171

Figure 97. SMIT Add a Journaled File System Panel

In our example we create a new file system /mksysb to be 28ððððð blocks of size.
We fill in the fields as shown above and then press Enter to create the file system.

 Note

The file system that we want to create is fairly big, so it might exceed the
maximum number of logical partitions allowed for a logical volume by default.

If the command to create the file system fails, we do the following:

1. Type smitty chlv to get to the appropriate SMIT fast path.

2. Select Change a Logical Volume and then press Enter.

3. Press F4, select the logical volume holding the file system and the press Enter.

The following panel will appear:

172 Pristine AIX Environments

Figure 98. SMIT Change a Logical Volume Panel

Change the MAXIMUM NUMBER of LOGICAL PARTITIONS field to 512 and press
Enter.

After that you can enlarge the file system using smitty chfs.

If the file system was created successfully we can mount it by typing:

mount /mksysb

We need to export the file system to rs6ððð15 using NFS in order to write the
system backup created on rs6ððð15 to that file system.

To do so we can either use the SMIT fast path smitty nfs and then get to the
appropriate panel or we type in the command:

mknfsexp -d /mksysb -t rw -r rs6ððð15 -B

On rs6ððð15 we have to mount the file system using the following command:

mount rs6ððð7:/mksysb /mksysb

After we have mounted the file system on rs6ððð15 we can create the system
backup.

To do so we type smitty mksysb on rs6ððð15.

The following panel will appear:

 Chapter 10. Pristine Installation 173

Figure 99. SMIT Backup the System Panel

We enter the values as shown above and press Enter.

This will create a system backup of rs6ððð15 and store it in the file
/mksysb/6ððð15.image, which is physically located on rs6ððð7.

 Note

You must specify a file as the backup device, not a directory. If you specify a
directory, the mksysb command will fail.

10.5 Preparing the Model Workstation and the Server
The first thing to do on the model workstation is to export the file system where the
system backup is located to the target.

Since we already did this to create the system backup we can skip this step.

In order to configure the model workstation as a network boot server an example
script is provided in /usr/lpp/netviewdm/tool/NServ.cfg.template at the server.
We have to customize this script to use it for our specific environment.

Before we do this, we copy the template file to another file that we will customize
afterwards:

cd /usr/lpp/netviewdm/tool

cp NServ.cfg.template Boot_Serv.config

174 Pristine AIX Environments

 Note

You should copy the file to Boot_Serv.config because this is the name used in
the change file profile. If you want to use another name, you will have to
modify profile.pristool to reflect this change.

We have to customize the Boot_Serv.config file to reflect our specific environment.
In order to customize it we need the following parameters:

� The network adapter device used for network booting the target

� The IP hostname of the target

� The hardware address of the network adapter installed in the target

� The IP hostname of the server

The following figure shows the Boot_Serv.config file that we have modified for our
scenario:

 Chapter 10. Pristine Installation 175

#!/bin/ksh

(C) COPYRIGHT IBM CORP 1993

ALL RIGHTS RESERVED

LICENSED MATERIALS - PROPERTY OF IBM

#

Module: NServ.cfg.template

#

Component: Pristine machine installation tool

#

Description: AIX Korn shell script to configure Network Server

#

#

#

This is a sample of the procedure that must be run on the CC Client

that will act as the Network Server for the pristine installation.

#

ROLES OF NETWORK SERVER:

1. It is a model workstation in the clone installation procedure

(its hard disk is copied onto another workstation).

2. Boot Server. It provides the network boot image for remote

clients.

3. System backup images repository for the backup installation

procedure. The system backup images must reside in a directory

(that cannot be /usr or under /usr) and exported to the pristine

clients.

#

NOTE: The Network Server must have about 16Mb of free disk space for the

first CC client to be installed and about 8Mb for any additional

CC client.

#

Replace the following parameters with their actual values:

</dev/netdevice>: /dev/tokð, /dev/tok1, /dev/tok2, /dev/entð, /dev/ent1,

/dev/ent2

<clientname>: pristine CC client name

<hardwareaddress>: boot device MAC address

<servername>: NetView DM/6ððð name

<gatewayIPaddr>: gateway IP address (optional)

<subnetmask>: subnetwork mask (optional, mandatory if gatewayIPaddr is

used)

#

EXAMPLE:

/usr/lpp/netviewdm/script/fndnprel /dev/tokð RISCð2 ð8ðð5A4FD558 RISCð3 \

-G 129.82.23.3 -S 255.255.255.ð

#

#

#

ids=yid | sed -e "s/uid=\([ð-9]\\).\gid=\([ð-9]\\).\/\1 \2/"y

Figure 100 (Part 1 of 2). Boot_Serv.config File on rs60007

176 Pristine AIX Environments

set -- yecho $idsy
GROUPs=$2

cp /usr/lib/dwm/dwm_functions /usr/lib/dwm/dwm_functions.$$

sed -e "s/\"ð ð\"/\"ð $GROUPs\"/" /usr/lib/dwm/dwm_functions > /usr/lib/dwm/tt

mv /usr/lib/dwm/tt /usr/lib/dwm/dwm_functions

cd /usr/lpp/netviewdm/script

#

Customize the following part

#

/usr/lpp/netviewdm/script/fndnprel /dev/tokð rs6ððð15 \
 1ððð5ab1d731 rs6ððð7
rc=$?

#

End of customizable part

#

mv /usr/lib/dwm/dwm_functions.$$ /usr/lib/dwm/dwm_functions

exit $rc

Figure 100 (Part 2 of 2). Boot_Serv.config File on rs60007

Normally the Boot_Serv.config is used in a change file which is then installed on
the model workstation. For that purpose there is a change file profile
profile.pristool which can be used to build the change file:

cd /usr/lpp/netviewdm/tool

nvdm bld profile.pristool

Since our NetView DM/6000 server also acts as the network boot server we do not
need to execute this script using a change file but can directly execute it on
rs6ððð7:

cd /usr/lpp/netviewdm/tool

./Boot_Serv.config 2>&1 | tee bserv.log

 Note

In order for the script to run successfully you have to supply the latest PTF level
of the agent code in the /usr/sys/inst.images directory. At the time this book
was written this was the file netviewdm6ððð.1.ð.2.1.U436929. The preparation
script will look exactly for that file name. You do not have to supply the agent
code if your model workstation is a NetView DM/6000 agent because the script
then accesses the agent code directly.

The following figure shows the log file produced for the above command:

 Chapter 10. Pristine Installation 177

Creating /export/install filesystem 8MB large.

New File System size is 16384

Creating /export/root filesystem 4MB large.

New File System size is 8192

Creating /export/nvdma filesystem 4MB large.

New File System size is 8192

Creating /export/nvdma/rs6ððð15 directory.

Making the boot image...

bosboot: Boot image is 4262 512 byte blocks.

Making the INSTALL spot...

Creating the rs6ððð15 client.

ln: /tftpboot/rs6ððð15 exists. Specify -f to remove.

Making NFS and exporting file systems: it may take some minutes.

New volume on /usr/sys/inst.images/netviewdm6ððð.1.ð.

 Cluster 512ðð bytes (1ðð blocks).

Volume number 1

Date of backup: Tue Apr 11 1ð:45:5ð 1995

Files backed up by name

 User caminada

files restored: 1ð

Creating diskettes files...

Creating extended display diskette...

files restored: 32

Backing up to /export/install/dskt/ext

 Cluster 512ðð bytes (1ðð blocks).

Volume 1 on /export/install/dskt/ext

Done at Fri May 19 16:32:36 1995.

23ðð blocks on 1 volume(s)

Creating display diskette...

files restored: 32

Backing up to /export/install/dskt/disp

 Cluster 512ðð bytes (1ðð blocks).

Volume 1 on /export/install/dskt/disp

Done at Fri May 19 16:32:43 1995.

24ðð blocks on 1 volume(s)

Creating install and maintenance diskette...

Backing up to /export/install/dskt/inst

 Cluster 512ðð bytes (1ðð blocks).

Volume 1 on /export/install/dskt/inst

Done at Fri May 19 16:32:52 1995.

28ðð blocks on 1 volume(s)

files restored: 2

Figure 101 (Part 1 of 2). bserv.log Log File

178 Pristine AIX Environments

files restored: 2

files restored: 1

Populating /export/install with needed commands...

files restored: 5

files restored: 6

Figure 101 (Part 2 of 2). bserv.log Log File

The script will perform several tasks, allowing the machine on which it is executed
to act as a network boot server.

This will include:

� Creating NFS file systems to be exported to the target

� Creating a boot image for the target

� Creating an install SPOT for the target

� Populating the exported file systems with the NetView DM/6000 agent code

 Note

Under certain circumstances the fndnprel script might fail.

The script creates several diskette images and stores them in the file systems to be
exported to the client. In case the files to be stored on the diskette do not fit onto
one diskette, the command that is used to create the diskette will ask for a new
diskette.

For example, the mkinstdskt command might need two diskettes if you have an
FDDI adapter installed. Since the output of mkinstdskt and other commands is
redirected to /dev/null within the fndnprel script, the message prompting the user
to insert another diskette cannot be seen on the screen.

If the script does not continue for a long time, you should therefore remove the
redirection to /dev/null.

The process of installing the mksysb image on the target will be triggered by a
NetView DM/6000 change file.

There is a change file profile that can be used to create this change file which is
located in /usr/lpp/netviewdm/tool/profile.backup. The only thing that needs to
be customized in this change file profile is the name of the mksysb install image.

The following figure shows the change file profile modified for our specific
environment:

 Chapter 10. Pristine Installation 179

GLOBAL NAME: NVDM.BACKUP.REF.1

CHANGE FILE TYPE: GEN

COMPRESSION TYPE: LZW

PACK FILES: NO

SECURE PACKAGE: NO

Replace "/bck.images/sysbck1" with the full path of your backup

PRE-INSTALL: /usr/lpp/netviewdm/work/fnd_sysbck_inst /mksysb/6ððð1
POSTREQ COMMAND: /call_shutc

OBJECT:

 SOURCE NAME: /usr/lpp/netviewdm/script/fnd_sysbck_inst

 TARGET NAME: /usr/lpp/netviewdm/work/fnd_sysbck_inst

 TYPE: FILE

 ACTION: COPY

 INCLUDE SUBDIRS: NO

Figure 102. profile.backup File on rs60007

To build the change file we type:

cd /usr/lpp/netviewdm/tool

nvdm bld profile.backup

 Note

You might want to have several system backups stored at your model
workstation to install different kinds of clients. In that case you should build one
change file for each system backup image. Do this by copying profile.backup
to another file name and then customizing the PRE-INSTALL field. You also
need to assign a new GLOBAL NAME since you cannot have multiple change files
with the same name in your catalog.

10.6 Booting the Client
We will now boot the client from the network, using our NetView DM/6000 server as
the network boot server.

Before doing so we have defined the target workstation rs6ððð15 as a local target
to the NetView DM/6000 server rs6ððð7

 Note

In this example we assume that the target is able to perform a remote IPL. If
you do not know how to determine whether your target workstation supports
remote IPL or what to do if your target does not support remote IPL you should
consult the redbook NetView DM/6000 Agents and Advanced Scenarios.

In order to boot the target we perform the following steps on the target workstation:

1. Turn the key switch to Secure position and switch on the system.

2. Wait until the three-digit LED displays 2ðð.

180 Pristine AIX Environments

3. Turn the key switch to Service position, press the yellow reset button and wait
until the boot MAIN MENU appear on the screen.

 Note

If the boot MAIN MENU does not appear within a short time your target
workstation probably does not support remote IPL.

4. Select 1 and press Enter. This will get you to the SELECT BOOT (STARTUP)
DEVICE panel.

5. Select the type of network adapter you use for booting and press Enter. This
will get you to the SET OR CHANGE NETWORK ADDRESSES panel.

6. Enter the IP addresses for the client and the boot server, then select 99 and
press Enter. This will save the addresses and get you back to the main menu.

7. In the main menu select 6 and press Enter.

8. Turn the key switch to Normal position and press Enter.

Within a short period of time the STARTING SYSTEM (BOOT) panel will appear.
After a few seconds the system will display the number of BOOTP and TFTP
packets being transferred between the boot server and the target.

If it does not, something is wrong with the setup of either the network boot server
or the target workstation. There are a lot of possible causes for the network boot
not working correctly.

Most of them as well as possible solutions are also documented in the redbook
NetView DM/6000 Agents and Advanced Scenarios GG24-4490. If you encounter
any problems with the remote boot process you should consult either this redbook
or the appropriate AIX system documentation.

After a short time the network boot of the target will be completed and the target
displays a message that its NetView DM/6000 agent is ready and waiting for
change requests.

10.7 Submitting the Install Request
Before we submit the install request to perform the pristine installation of the target
we have to check if the NetView DM/6000 agent on the target is ready.

To do so we start the NetView DM/6000 graphical user interface on rs6ððð7 by
typing:

nvdmgi &

In the catalog window we select Windows from the menu bar and then Targets...
from the pull-down menu.

The following panel will appear:

 Chapter 10. Pristine Installation 181

Figure 103. NetView DM/6000 Targets Window

We select the rs6ððð15 target. After that we select Selected from the menu bar
and then Status... from the pull-down menu.

The following panel will appear:

Figure 104. NetView DM/6000 Target Connection Status Window

The agent should have a status of 'Attached'. If it does not, the target failed to start
the NetView DM/6000 agent.

In that case you should do the following:

� Watch the messages appearing on the screen when starting the target. This
might give you some hints about the cause of the error.

� Check the NetView DM/6000 server log file /usr/lpp/netviewdm/fndlog on
rs6ððð7.

 Note

In our scenario we encountered an error because the /usr file system was not
correctly exported on rs6ððð7. Therefore the client was denied access when
trying to mount this filesystem from rs6ððð7 and the fndpru script which is used
to boot the client was killed.

In order to export the /usr file system to rs6ððð15 we typed the following line at
rs6ððð7:

mknfsexp -d /usr -t rw -r rs6ððð15

182 Pristine AIX Environments

In order to start the installation of the mksysb we go to the catalog window of
NetView DM/6000:

Figure 105. NetView DM/6000 Catalog Window on rs60007

We do the following:

1. Select the change file NVDM.BACKUP.REF.1.

2. Select Selected from the menu bar.

3. Select Install... from the pull-down menu.

The following panel will appear:

Figure 106. NetView DM/6000 Install Change Files Window

We select the target rs6ððð15 and then the Install push button. This will submit
the installation request.

To watch the progress of the installation process we type the following command
on rs6ððð7:

tail -f /export/nvdma/rs6ððð15/work/request.out

The following figure shows the request.out file that was produced for our example
environment. This file is quite large, so we will show only excerpts:

 Chapter 10. Pristine Installation 183

Mounting device...

6ððð15.image

/mksysb

Retrieving .fs.size from backup...

Retrieving file systems sizes from install media...

rootvg

Creating page logical volume(s).

hd6

hd61

Creating boot logical volume.

hd5

Creating dump logical volume.

hd7

Creating log logical volume.

hd8

Creating / logical volume.

Making the / file system...

Creating /usr logical volume.

Making the /usr file system...

Creating /home logical volume.

Making the /home file system...

Creating /tmp logical volume.

Making the /tmp file system...

Creating /usr/lpp/netviewdm logical volume.

Making the /usr/lpp/netviewdm file system...

Creating /var logical volume.

Making the /var file system...

USTAR format archive

./.fs.size

Figure 107 (Part 1 of 2). /export/nvdma/rs600015/work/request.out File

184 Pristine AIX Environments

./var/

./var/adm

./var/adm/acct

./var/adm/cron

....

Copying device special files from RAM to hard disk...

Copying volume group maps from RAM to hard disk...

mkdir: cannot create /tmp/objrepos.inst.

/tmp/objrepos.inst: File exists

Copying ODM from RAM to hard disk...

9.24.1ð4.76

Updating database with names of dynamically created special files..

Retrieving device configuration from previous system...

bosboot: Boot image is 11297 512 byte blocks.

 Licensed Materials - Property of IBM

 5756-ð3ðð1

(C) Copyright International Business Machines Corp. 1985, 1991.

(C) Copyright AT&T 1984, 1985, 1986, 1987, 1988, 1989.

(C) Copyright Graphic Software Systems Incorporated 1984, 199ð, 1991.

(C) Copyright KnowledgeSet Corporation 199ð, 1991.

(C) Copyright Open Software Foundation, Inc. 1989, 199ð.

(C) Copyright Massachusetts Institute of Technology 1985, 1986,

1987, 1988, 1989.

(C) Copyright Regents of the University of California 198ð, 1982,

1983, 1985, 1986, 1987, 1988, 1989.

(C) Copyright Silicon Graphics, Inc. 1988, 1989, 199ð.

(C) Copyright SUN Microsystems, Inc. 1984, 1985, 1986, 1987, 1988&peri

(C) Copyright TITN Inc. 1984, 1989.

(C) Copyright Mentat Inc. 199ð, 1991.

 All rights reserved.

 US Government Users Restricted Rights - Use, duplication or disclosure

 restricted by GSA ADP Schedule Contract with IBM Corp.

 Task completed...

fnd_sysbck is exiting now.

If the system booted in Maintenance Mode

turn the key in Normal Mode.

Figure 107 (Part 2 of 2). /export/nvdma/rs600015/work/request.out File

 Chapter 10. Pristine Installation 185

 Warning

The request.out file produced when installing the change file to perform the
pristine installation is located in the /export/nvdma file system which has been
created by the preparation script fndnprel. By default this file system is
created with a size of 4MB. However, if you have a large number of files in
your mksysb image the request.out file may be too large for the file system.
This is because every file extracted at the target is logged in request.out.

To make sure that the /export/nvdma file system will not run full you should
enlarge it to be 8MB of size.

To monitor whether the install request has finished we go to the NetView DM/6000
Targets window and select target rs6ððð15. Then we select Selected from the
menu bar and then Open from the pull-down menu.

From the cascaded menu we select History...

The following panel will appear:

Figure 108. NetView DM/6000 Target History Window

As long as the status is 'In progress' the installation script is running.

 Note

The pristine installation process will take some time to run. The time needed to
perform the process depends mostly on the speed of the network you use and
on the size of the mksysb image.

In our example, using a 4Mb token-ring network and an install image being
approximately 1GB of size the installation process took about 2.5 hours to run.

186 Pristine AIX Environments

10.8 Configuring the NetView DM/6000 Server
We will now run the configuration procedure to configure the NetView DM/6000
server product on rs6ððð7.

The configuration data base we use for that purpose is the same that we have
used in the scenario where we developed the configuration procedure.

 Warning

You should be aware of the fact that the reconfiguration of a NetView DM/6000
server is a lot more complicated than the reconfiguration of an agent.

In this scenario we installed the NetView DM/6000 product on an RS/6000 system
and then made a system backup image to contain all the products currently
installed on that machine.

When the NetView DM/6000 server is installed it automatically configures the
nvdm.cfg file to contain the current hostname in the WORKSTATION NAME and SERVER
fields.

Further it creates an initial target record for the server, located in the file
/usr/lpp/netviewdm/db/target_config/servername.

In our specific environment this is not a problem, because we took the system
backup on rs6ððð15 and then installed rs6ððð15 "from scratch" using this image, so
the hostname as well as the NetView DM/6000 server name did not change.

However, if you intend to install a lot of servers using the same system backup
image, the hostname and the NetView DM/6000 server name will be different on
every server.

The pristine installation script will automatically configure TCP/IP on the target
system. This will include setting the hostname correctly.

What will happen then is that the hostname and the WORKSTATION NAME configured in
nvdm.cfg do not match and that you can therefore neither start nor stop the
NetView DM/6000 server.

For example if the server name on which the system was created was rs6ðððxx
and the target was rs6ððð15 the WORKSTATION NAME and SERVER fields contain
rs6ðððxx whereas the hostname is set to rs6ððð15 after the pristine installation.

Also the initial target record is stored in

/usr/lpp/netviewdm/db/target_config/rs6ðððxx

When we reconfigure the nvdm.cfg the nvdm.cfg file for rs6ððð15 the server will fail
to start because there is no initial target record for rs6ððð15.

To solve this problem we add the following code to our script to be executed before
configuring the WORKSTATION NAME:

 Chapter 10. Pristine Installation 187

#-------------change--------------

if we configure a server and want to change the

WORKSTATION NAME we must stop the server before

reconfiguring this field.

To do so we must be sure that the hostname and

the WORKSTATION NAME match

#

if ["$NODE_TYPE" = "ð" -o "$NODE_TYPE" = "2"]

then

get current hostname

 OHN=yhostnamey
print "NVDM CONFIG : Current hostname of server is $OHN."

get WORKSTATION NAME currently configured

HN=ygrep "WORKSTATION NAME:" $CONFIG | cut -d':' -f2y
print "NVDM CONFIG : Current WORKSTATION NAME of server is $HN."

print "NVDM CONFIG : Stopping Server..."

make sure that both match

 hostname $HN

nvdm stop -x

print "NVDM CONFIG : Sleeping 1ð seconds..."

 sleep 1ð

set back hostname

print "NVDM CONFIG : Setting hostname to $OHN."

 hostname $OHN

also, we must be sure that there is an initial target record for

the servername configured

ls /usr/lpp/netviewdm/db/target_config/$1 >/dev/null 2>&1

if [$? -ne ð]

 then

echo "DESCRIPTION: INITIAL TARGET CONFIGURATION RECORD

TARGET TYPE: PUSH

TARGET OS: AIX

RBAPI TRACE: NONE

LOG LEVEL: N

SHORT NAME: SERVER

CM WINDOW START: ð : ð

CM WINDOW STOP: 23:59

DISTRIBUTION WINDOW START: ð : ð

DISTRIBUTION WINDOW STOP: 23:59

NUMBER OF PARMS: ð

NUMBER OF USERS: 1

USER: root" >/usr/lpp/netviewdm/db/target_config/$1

 fi

fi

#-----------end-of-change---------

Figure 109. Code to Change Server Settings

Before starting the NetView DM/6000 server configuration we have to make sure
that the server is running, because this is a prerequisite for configuring targets, etc.

The following code will be inserted before the server configuration part in our script:

188 Pristine AIX Environments

#-------------change--------------

restart server, in case it is not already running

print "NVDM CONFIG : Restarting Server..."

nvdm start

#-----------end-of-change---------

Figure 110. Code to Restart NetView DM/6000 Server

With these changes made we run the configuration script to configure rs6ððð15.

For that purpose the file node_list contains the following line:

rs6ððð15

To run the configuration script and redirect the output to netlog3 we type:

configure_network 2>&1 | tee netlog3

The log file produced for this command looks like the following:

 Chapter 10. Pristine Installation 189

\\\\ CONFIGURING NETVIEW DISTRIBUTION MANAGER/6ððð \\\\

\\ Creating tar archive

Size before compressing : 75776ð

\\ Crunching tar archive

Size after compressing : 2147ð2

\\\ Processing node : rs6ððð15

\\ Copy compressed archive

\\ Uncrunching compressed archive

\\ Extracting files from tar archive

Creating ODM DB ...

nvdm_groups

nvdm_node

nvdm_users

nvdm_cfg_static

nvdm_servers

nvdm_queues

Invoking configuration script...

NVDM CONFIG : --> Trying to configure node rs6ððð15

NVDM CONFIG : Node type is ð (ð = Server, 1 = Agent, 2 = Prep)

NVDM CONFIG : --> NVDM Base Node Configuration

NVDM CONFIG : Current hostname of server is rs6ððð15.

NVDM CONFIG : Current WORKSTATION NAME of server is rs6ðððxx.

NVDM CONFIG : Stopping Server...

rs6ðððxx

Trying to connect to default server (rs6ðððxx).

Connected to server rs6ðððxx.

NVDM CONFIG : Sleeping 1ð seconds...

NVDM CONFIG : Setting hostname to rs6ððð15.

rs6ððð15

NVDM CONFIG : Setting nvdm.cfg (WORKSTATION NAME) to rs6ððð15

NVDM CONFIG : Setting nvdm.cfg (SERVER) to rs6ððð15

NVDM CONFIG : Setting nvdm.cfg (LOG FILE SIZE) to 25ðððð

NVDM CONFIG : Setting nvdm.cfg (TCP/IP PORT) to 729

NVDM CONFIG : --> Adding AIX users for NVDM...

NVDM CONFIG : Restarting Server...

Trying to connect to default server (rs6ððð15).

Connected to server rs6ððð15.

NVDM CONFIG : --> Adding AIX users for NVDM...

NVDM CONFIG : Setting SNA Network Name to USIBMRA

NVDM CONFIG : Setting SNA Datalink Device to tokð

NVDM CONFIG : Setting SNA Remote Link Address to 4ðððð124ðððð

NVDM CONFIG : Setting SNA NVDM Mode Profile Name to NVDMNORM

NVDM CONFIG : Setting SNA NVDM Mode Name to NVDMNORM

NVDM CONFIG : Setting SNA TPN Profile Name (Send) to NVDMSND

NVDM CONFIG : Setting SNA TPN Profile Name (Receive) to NVDMRCV

NVDM CONFIG : Setting SNA Partner LU Name (MVS Host) to RA39TCF1

NVDM CONFIG : Setting SNA Side Info Profile Name (Send) to NVDMSIDS

NVDM CONFIG : Setting SNA Side Info Profile Name (Receive) to NVDMSIDR

NVDM CONFIG : Setting Solicit SSCP Field (yes|no) to yes

Figure 111 (Part 1 of 5). netlog3 Log File

190 Pristine AIX Environments

NVDM CONFIG : Setting I-Field Size to 2ð42

NVDM CONFIG : Setting SNA Local SAP No. to ð4

NVDM CONFIG : Setting Remote SAP No. to ð4

NVDM CONFIG : Setting SNA Initiate Call Field (yes|no) to yes

NVDM CONFIG : Setting SNA Activate on start (yes|no) to yes

NVDM CONFIG : Setting SNA Restart on normal termination (yes|no) to yes

NVDM CONFIG : Setting SNA Restart on abnormal termination (yes|no) to yes

NVDM CONFIG : Setting SNA VTAM CP Name (for LU6.2 Location Profile) to RAK

NVDM CONFIG : Setting PU NAME for rs6ððð15 to RA6ðð15

NVDM CONFIG : Setting Local LU Name for rs6ððð15 to RA6ðð15B

NVDM CONFIG : Setting Control Point Name for rs6ððð15to RA6ð15CP

NVDM CONFIG : Could not determine XID for rs6ððð15 configu

ration.

NVDM CONFIG : Setting USE_CP_XID to yes

+ mk_qcinit -y token_ring -t appn_end_node -w USIBMRA -d RA6ð15CP

NVDM CONFIG : --> Configuring SNA

NVDM CONFIG : Adding DLC Device for tokð

NVDM CONFIG : Configuring SNA Initial Node Setup

+ chsnaobj -t control_pt -e USIBMRA -a RA6ð15CP -A RA6ð15CP

-N appn_end_node node_cp

NVDM CONFIG : Configuring SNA Control Point Profile

===

Profile type 'control_pt' name 'node_cp' CHANGED.

===

+ mksnaobj -t sna_dlc_token_ring -d tokð -b yes -w yes -m 2ð42 -H ð4

-c no -q ð tokð

ð1ð5-ðð31 Profile type 'sna_dlc_token_ring' name 'tokð' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

+ chsnaobj -t sna_dlc_token_ring -d tokð -b yes -w yes -m 2ð42 -H ð4

-c no -q ð tokð

NVDM CONFIG : Configuring SNA DLC Profile

===

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

Profile type 'sna_dlc_token_ring' name 'tokð' CHANGED.

===

+ mksnaobj -t link_station -w token_ring -y tokð -d 4ðððð124ðððð

-l ð71ððððð -s ð4 -a yes -O yes -F yes -h yes -z yes -c yes RA6ðð15

ð1ð5-ðð31 Profile type 'link_station_token_ring' name 'RA6ðð15' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

+ chsnaobj -t link_station -w token_ring -y tokð -d 4ðððð124ðððð

-l ð71ððððð -s ð4 -a yes -O yes -F yes -h yes -z yes -c yes RA6ðð15

NVDM CONFIG : Configuring SNA Link Station Profile

===

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

Figure 111 (Part 2 of 5). netlog3 Log File

 Chapter 10. Pristine Installation 191

+ mksnaobj -t local_lu -u lu6.2 -l RA6ðð15B -L RA6ðð15B RA6ðð15B

ð1ð5-ðð31 Profile type 'local_lu_lu6.2' name 'RA6ðð15B' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

+ chsnaobj -t local_lu -u lu6.2 -l RA6ðð15B -L RA6ðð15B RA6ðð15B

Profile type 'link_station_token_ring' name 'RA6ðð15' CHANGED.

===

NVDM CONFIG : Configuring SNA Local LU Profile

===

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ mksnaobj -t mode -x 1 -w ð -l ð -a ð -N #CONNECT -m NVDMNORM NVDMNORM

ð1ð5-ðð31 Profile type 'mode' name 'NVDMNORM' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

+ chsnaobj -t mode -x 1 -w ð -l ð -a ð -N #CONNECT -m NVDMNORM NVDMNORM

Profile type 'local_lu_lu6.2' name 'RA6ðð15B' CHANGED.

===

NVDM CONFIG : Configuring SNA Mode Profile

===

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ mksnaobj -t local_tp -n 21FðFðF7 -h yes -c basic -d ð -P yes

-w /usr/lpp/netviewdm/bin/fndts -s none NVDMSND

ð1ð5-ðð31 Profile type 'local_tp' name 'NVDMSND' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

+ chsnaobj -t local_tp -n 21FðFðF7 -h yes -c basic -d ð -P yes

-w /usr/lpp/netviewdm/bin/fndts -s none NVDMSND

+ mksnaobj -t local_tp -n 21FðFðF8 -h yes -c basic -d ð -P yes

-w /usr/lpp/netviewdm/bin/fndtr -s none NVDMRCV

Profile type 'mode' name 'NVDMNORM' CHANGED.

===

NVDM CONFIG : Configuring SNA TPN Profile (SEND)

===

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

Profile type 'local_tp' name 'NVDMSND' CHANGED.

===

NVDM CONFIG : Configuring SNA TPN Profile (Receive)

===

ð1ð5-ðð31 Profile type 'local_tp' name 'NVDMRCV' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

+ chsnaobj -t local_tp -n 21FðFðF8 -h yes -c basic -d ð -P yes

-w /usr/lpp/netviewdm/bin/fndtr -s none NVDMRCV

+ mksnaobj -t partner_lu6.2 -p no -P USIBMRA.RA39TCF1 -O none

Figure 111 (Part 3 of 5). netlog3 Log File

192 Pristine AIX Environments

-A RA39TCF1 RA39TCF1

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

Profile type 'local_tp' name 'NVDMRCV' CHANGED.

===

NVDM CONFIG : Configuring SNA LU6.2 Partner LU

===

ð1ð5-ðð31 Profile type 'partner_lu6.2' name 'RA39TCF1' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

+ chsnaobj -t partner_lu6.2 -p no -P USIBMRA.RA39TCF1 -O none

-A RA39TCF1 RA39TCF1

+ mksnaobj -t partner_lu6.2_location -P USIBMRA.RA39TCF1 -O USIBMRA.RAK

-m link_station -l RA6ðð15B -s RA6ðð15 RA39TCF1

ð1ð5-ðð31 Profile type 'partner_lu6.2_location' name 'RA39TCF1' already exists.

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

Profile type 'partner_lu6.2' name 'RA39TCF1' CHANGED.

===

NVDM CONFIG : Configuring SNA LU 6.2 Location Profile

===

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

+ chsnaobj -t partner_lu6.2_location -P USIBMRA.RA39TCF1 -O USIBMRA.RAK

-m link_station -l RA6ðð15B -s RA6ðð15 RA39TCF1

+ mksnaobj -t side_info -L RA6ð15CP -P USIBMRA.RA39TCF1 -m NVDMNORM

-d 21FðFðF7 -h yes NVDMSIDS

ð1ð5-ðð31 Profile type 'side_info' name 'NVDMSIDS' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

+ chsnaobj -t side_info -L RA6ð15CP -P USIBMRA.RA39TCF1 -m NVDMNORM

-d 21FðFðF7 -h yes NVDMSIDS

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

Profile type 'partner_lu6.2_location' name 'RA39TCF1' CHANGED.

===

NVDM CONFIG : Configuring SNA Side Info Profile (Send)

===

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ mksnaobj -t side_info -L RA6ðð15B -P USIBMRA.RA39TCF1 -m NVDMNORM

-d 21FðFðF8 -h yes NVDMSIDR

ð1ð5-ðð31 Profile type 'side_info' name 'NVDMSIDR' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

+ chsnaobj -t side_info -L RA6ðð15B -P USIBMRA.RA39TCF1 -m NVDMNORM

Figure 111 (Part 4 of 5). netlog3 Log File

 Chapter 10. Pristine Installation 193

-d 21FðFðF8 -h yes NVDMSIDR

Profile type 'side_info' name 'NVDMSIDS' CHANGED.

===

NVDM CONFIG : Configuring SNA Side Info Profile (Receive)

===

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

Profile type 'side_info' name 'NVDMSIDR' CHANGED.

===

NVDM CONFIG : Updating SNA Server...

verifysna command OK.

The profiles listed above have been dynamically updated successfully.

NVDM CONFIG : Configuring TCP/IP connection

NVDM CONFIG : Configuring SNA/DS connection configuration file.

NVDM CONFIG : (TCP/IP) for remote Server RS6ððð7.

NVDM CONFIG : Configuring APPC connection

NVDM CONFIG : Configuring SNA/DS connection configuration file

/usr/lpp/netviewdm/db/snads_conn/RA39TCF1

NVDM CONFIG : Configuring SNA/DS routing table.

NVDM CONFIG : System has TCP/IP connection to remote server.

NVDM CONFIG : System has APPC connection to remote server.

NVDM CONFIG : Writing routing table to /usr/lpp/netviewdm/db/routetab

NVDM CONFIG : Saving target history for rs6ðððxx

NVDM CONFIG : Deleting Target rs6ðððxx from Server rs6ððð15 configuration.

NVDM CONFIG : Defining Target rs6ððð15 on server rs6ððð15

NVDM CONFIG : Target already exists. Updating...

nvdm updtg rs6ððð15 -s 'RS6ððð15' -y 'AIX' -d 'ITSO Raleigh test server'

-q 'Stefan Uelpenich' -o 'Wolfgang Geiger' -t '4711' -r 'IBM'

WARNING: The Network ID of this domain has been changed to RS6ððð15.

NVDM CONFIG : Adding Target Users...

NVDM CONFIG : Adding root User

NVDM CONFIG : Adding suelpen User

NVDM CONFIG : Defining Target rs6ððð4 on server rs6ððð15

nvdm addtg rs6ððð4 -s 'RS6ððð4' -y 'AIX' -d 'ITSO Raleigh test client'

-q 'Stefan Uelpenich' -o 'Wolfgang Geiger' -t '4711' -r 'IBM'

NVDM CONFIG : Adding Target Users...

NVDM CONFIG : Adding root User

NVDM CONFIG : Configuring Target Groups for rs6ððð15

NVDM CONFIG : Adding group Group2

NVDM CONFIG : Defining remote target for rs6ððð7

NVDM CONFIG : Defining remote target for RA39TCF1

NVDM CONFIG : RA39TCF1 will be configured as focal point.

+ eval nvdm addtg RA39TCF1 -m report_to -s RA39TCF1 -n USIBMRA -d 'NVDM_MVS'

+ nvdm addtg RA39TCF1 -m report_to -s RA39TCF1 -n USIBMRA -d NVDM_MVS

ð513-ð29 The sna Subsystem is already active.

Multiple instances are not supported.

NVDM CONFIG : Releasing NVDM SNA communications.

NVDM CONFIG : !!! Configuration of Server completed successfully !!!

Figure 111 (Part 5 of 5). netlog3 Log File

After the script has been run the NetView DM/6000 server on rs6ððð15 is ready to
be used.

194 Pristine AIX Environments

 Note

We could also specify the command config_nvdm to run the configuration script
as a post-install script for the change file that performs the pristine installation of
rs6ððð15.

 Chapter 10. Pristine Installation 195

196 Pristine AIX Environments

Chapter 11. Migrating the Procedure to Software Distribution
for AIX V3.1

In this chapter we discuss the implications of using Software Distribution for AIX
V3.1 instead of NetView DM/6000 V1.2.

We describe how using the new version affects the configuration procedure that we
have developed in this book and modify the procedure to work with the new
version.

We will focus only on configuration matters and will not discuss the new features of
Software Distribution for AIX V3.1, for example, the plan facility.

 11.1 Configuration Matters
As far as configuration is concerned we have to determine all changes that have
been made in Version 3.1 that affect the configuration procedure that we have
developed in this book.

The configuration procedure configures the product either by using the command
line interface or by directly writing to product configuration files. Therefore, we
have to deal with two types of changes:

� Changes in the command line interface

� Changes in configuration files

Changes in the command line interface include:

 � New commands

� New functionality within commands

� New command line options

Changes in configuration files include:

� New configuration file names

� Modified configuration file structure

We will show all configuration procedures that need to be modified and explain the
changes.

We will use the following commands that are new in version 3.1 or have been
modified compared to previous versions:

� nvdm addusr to add users to Software Distribution for AIX

� nvdm lsusr to list users defined in Software Distribution for AIX

� nvdm updusr to update user definitions in Software Distribution for AIX

� nvdm delusr to delete users from Software Distribution for AIX

� nvdm lsrq to determine requests for a target

 Copyright IBM Corp. 1996 197

� nvdm prgq to purge a local queue for a target

� nvdm delrq and nvdm eraserq to delete requests

� nvdm rentg to rename a target

� nvdm lsgp to list target groups

11.1.1 Adding NetView DM Users to AIX
In order to enable an AIX user to use NetView DM, the user has to be defined
twice:

1. The user has to be defined as a user of NetView DM/6000.

2. The user has to be defined to the AIX operating system itself.

 Note

Whereas NetView DM/6000 V1.2 user authorization was implemented using AIX
user groups, Software Distribution for AIX uses user authorization profiles to
control access to Software Distribution for AIX User authorization profiles are
implemented within the Software Distribution for AIX product and not in the AIX
operating system.

The different user concepts will affect the configuration steps we have to perform
for the different versions of the product.

The procedures to configure users in NetView DM/6000 V1.2 are described in 4.5,
“Adding NetView DM/6000 Users to AIX” on page 39 and 4.9, “Configuring Local
Targets” on page 68. The add_users_aix procedure is used to add users to AIX
and assign them to the appropriate user groups and the procedure
nvdm_configure_targets is used to assign users to targets.

In Software Distribution for AIX V3.1 we have to deal with the following major
changes compared to V1.2:

� We do not need to assign AIX users to AIX users groups, but have to assign
them the appropriate user authorization profile that is defined in Software
Distribution for AIX.

� We cannot define users by updating the target information, because users are
not contained in the target definition anymore. Instead we have to explicitly
create Software Distribution for AIX and assign them to their targets.

We will use the nvdm_users object class to determine which users have to be
created for which target. Unlike with Version 1.2, the usergroup field does not
represent an AIX user group but the name of an authorization profile.

However, we can use the same data model that is used for previous versions of
NetView DM.

With Version 3.1 there is a new command nvdm addprf to create user profiles.
However, there are three standard authorization profiles delivered with the product
that match the user groups previously used in Version 1.2. These are named
exactly like the user groups used before:

 � FNDUSER

198 Pristine AIX Environments

 � FNDBLD

 � FNDADMN

We will only supply the code to configure the above standard profiles within this
example, so you are only allowed to specify these values in the usergroup field.

However, if you want to be able to support custom authorization profiles you will
have to add a new procedure that is able to add user authorization profiles. This
procedure can be fed with values from a new object class that contains information
about the custom user authorization profiles to be created.

In order to be able to reconfigure user definitions, we will first supply a procedure to
delete the existing user profiles on a server. This procedure is called before the
users are configured thus allowing to remove users that are not in the configuration
database anymore.

The following figure shows the procedure:

#

delete all users currently defined on that server

the root user profile cannot be deleted

#

nvdm_delete_users ()

{

 #

 # determine all users that are defined on this server

 #

 USRLIST=ynvdm lsusr '\' | grep "User:" | cut -d':' -f2y
 for i in $USRLIST

 do

if ["$i" != "root"]

 then

print "NVDM CONFIG : Deleting existing user profile : $i"

nvdm delusr $i -f

 fi

 done

}

Figure 112. nvdm_delete_users Shell Procedure (for Version 3.1)

The procedure add_users_aix will be used to add users to AIX as well as to
Software Distribution for AIX. When called with target as the second command line
argument, the procedure will only add the defined users to the AIX operating
system in case they do not exist yet.

When called with server as the second command line argument, the procedure will
create a new Software Distribution for AIX user. If this user already exists, the user
definition is updated.

On a server, the add_users_aix procedure is called for each target defined for that
server, thus defining all users for all targets.

The following figure shows the procedure:

 Chapter 11. Migrating the Procedure to Software Distribution for AIX V3.1 199

#

add user at OS level (AIX)

$1 = IP Hostname

$2 = Type: either "server" or "target"

use "target", when you want to add a user to AIX

add a target workstation; the user will always be

assigned group FNDADMN

use "server", when you want to add a user to AIX

add a server workstation; the user will be assigned

the appropriate usergroup defined in the database

#

add_users_aix ()

{

print "NVDM CONFIG : --> Adding AIX users for NVDM..."

get_attribute_list nvdm_users node_name $1 username

if [$VALUE_NUM != ð]

then

for i in $VALUE_LIST

 do

 #

First, add NVDM user to operating system...

check if user exists

 #

lsuser $i 2>/dev/null 1>&2

 #

if not (RC 2 from lsuser command)

 #

if [$? = 2]

 then

print "NVDM CONFIG : Adding user $i to AIX OS."

 mkuser $i

 fi

 #

only continue, if we are about to configure a server

 #

if ["$2" = "server"]

 then

get_attribute_and nvdm_users node_name $1 username $i usergroup

 GRP=$VALUE

print "NVDM CONFIG : Authorization profile $GRP assigned to $i."

nvdm lsusr $i 2>/dev/null

 #

if RC != ð then user does not exist yet

 #

if [$? -ne ð]

 then

nvdm addusr $i $GRP -t $1

Figure 113 (Part 1 of 2). add_users_aix Shell Procedure (for Version 3.1)

200 Pristine AIX Environments

 else

nvdm updusr $i $GRP -t $1

 fi

 fi

 done

fi

}

Figure 113 (Part 2 of 2). add_users_aix Shell Procedure (for Version 3.1)

11.1.2 Configuring SNA/DS Connection Profiles
We have to deal with the following changes as far as SNA/DS connection files are
concerned:

� The name of the SNA/DS connection profile directory has changed.

� There are additional parameters available in an SNA/DS connection file.

Whereas in Version 1.2 the SNA/DS connection profiles are located in the
/usr/lpp/netviewdm/db/snads_conn directory, the directory name in Version 3.1 is
/usr/lpp/netviewdm/db/snadscon.

In the configuration script the directory name is held in the shell variable
SNA_DS_DIR which is set at the beginning of the configuration script config_nvdm.

In Software Distribution for AIX Version 3.1 there is a new type of connection called
server-to-server (STS) connection. Therefore there is a new field TYPE in each
connection profile that determines the type of connection to be used (either SNA or
STS).

 Note

In the TYPE field SNA means that this is a normal SNA/DS connection and not
an STS connection. It does not mean that the PROTOCOL has to be APPC. You
can, of course, have PROTOCOL set to TCP/IP and TYPE set to SNA meaning that
you configure an SNA/DS connection using TCP/IP.

We will slightly modify the procedures in 4.7, “Configuring SNA/DS Connection
Profiles” on page 61 to reflect these changes.

The procedures configure_sna_ds_appc and configure_sna_ds_tcpip will both be
modified to add the line

TYPE: SNA

to each connection profile. In fact, this it not even necessary, since SNA is the
default value for the TYPE field. However, we include it for ease of maintenance.

Also, we will add a check for the partner location to both procedures. If the short
name for the partner cannot be determined, the procedures will not create the
connection profile.

The following figure shows the configure_sna_ds_appc procedure:

 Chapter 11. Migrating the Procedure to Software Distribution for AIX V3.1 201

#

Configure SNA/DS connection configuration file (APPC)

#

configure_sna_ds_appc ()

{

 print "NVDM CONFIG : Configuring SNA/DS connection\

 configuration file $SNA_DS_DIR/$PARTNER"

 if ["$PARTNER" = ""]

 then

print "NVDM CONFIG ERROR : APPC Partner LU not defined."

print "NVDM CONFIG ERROR : Cannot create SNA/DS connection profile.

 return 1

 fi

 echo "PROTOCOL: APPC

TYPE: SNA

SEND TP SYMBOLIC DESTINATION: $SIDS

RECEIVE TP SYMBOLIC DESTINATION: $SIDR

NEXT DSU: $SNA_NET.$PARTNER

TRANSMISSION TIME-OUT: 6ð

RETRY LIMIT: 3

SEND MU_ID TIME-OUT: 6ð

RECEIVE MU_ID TIME-OUT: 12ð" > $SNA_DS_DIR/$PARTNER

}

Figure 114. configure_sna_ds_appc Shell Procedure (for Version 3.1)

The following figure shows the configure_sna_ds_tcpip procedure:

202 Pristine AIX Environments

#

Configure SNA/DS connection configuration file (TCP/IP)

$1 = TCP/IP Hostname of remote system

#

configure_sna_ds_tcpip ()

{

 #

 # get short name of remote server

 #

 get_attribute nvdm_node node_name $1 short_name

 A=$VALUE

 print "NVDM CONFIG : Configuring SNA/DS connection configuration file."

 print "NVDM CONFIG : (TCP/IP) for remote Server $1."

 if ["$A" = ""]

 then

print "NVDM CONFIG ERROR : Could not determine short name for $1."

print "NVDM CONFIG ERROR : Please update nvdm_node class."

 return

 fi

 echo "PROTOCOL: TCP/IP

TYPE: SNA

REMOTE SERVER NAME: $1

TCP/IP TIME-OUT: 3ðð

NEXT DSU: $A.$A

TRANSMISSION TIME-OUT: 6ð

RETRY LIMIT: 3

SEND MU_ID TIME-OUT: 6ð

RECEIVE MU_ID TIME-OUT: 12ð" >$SNA_DS_DIR/$A

}

Figure 115. configure_sna_ds_tcpip Shell Procedure (for Version 3.1)

 Note

The procedures to create connection files cannot be used to configure
server-to-server (STS) connections which are a new feature in Version 3.1.
However, you can adapt the procedures to support this feature.

11.1.3 Configuring Local Targets
The steps necessary to configure local targets are described in 4.9, “Configuring
Local Targets” on page 68.

In order to work with Version 3.1, the procedures that are needed to configure local
targets have to be adapted.

The first procedure nvdm_delete_targets is used to delete all local targets defined
for a Software Distribution for AIX server.

 Chapter 11. Migrating the Procedure to Software Distribution for AIX V3.1 203

Since SD4AIX. V3.1 maintains a local queue for each local target, the product will
normally refuse to remove a target from the server configuration if there are still
pending requests.

Therefore we first have to purge the queue used for the local target we want to
remove by using the nvdm prgq command. However, we want to save information
about all requests that are still in the queue. For that purpose the script will create
a log file containing all requests currently in the queue, before the queue is purged
and the target is deleted.

To be sure that all pending requests for a target are deleted, we use the nvdm
delrq and nvdm eraserq commands to remove any single pending requests.

However, the nvdm eraserq command will sometimes refuse to erase a request the
first time is called. When the command is called again, the request will be marked
as Pending, delete requested and can be erased. Therefore we will call the nvdm

delrq and nvdm eraserq commands twice.

The following figure shows the nvdm_delete_targets shell procedure:

204 Pristine AIX Environments

#

delete local targets from NVDM Server configuration

$1 = Server IP Hostname

#

nvdm_delete_targets()

{

 #

 # get list of existing targets

 #

 TLIST=ynvdm lstg '\' | grep "Target:" | cut -d':' -f2y

 #

 # get list of all defined targets for this server

 #

 get_attribute_list nvdm_node server_name $1 node_name

 YLIST=$VALUE_LIST

 XLIST=""

 for i in $YLIST

 do

XLIST=$XLIST" "yecho $i | cut -d'.' -f1y
 done

 #

 # delete all targets which are not defined for this server

 #

 for i in $TLIST

 do

 match=ð

for x in $XLIST

 do

if ["$i" = "$x"]

 then

 match=1

 fi

 done

if [match -eq ð]

 then

 nvdm_save_history $i

print "NVDM CONFIG : Deleting Target $i from Server $1 configuration."

 #

before a target can be deleted, we have to

discard all pending requests

 #

PEND=ynvdm lsrq -w $i | grep "Request ID:" | cut -d':' -f2 | \

Figure 116 (Part 1 of 2). nvdm_delete_targets Shell Procedure (for Version 3.1)

 Chapter 11. Migrating the Procedure to Software Distribution for AIX V3.1 205

awk '{ print $3 }'y
if ["$PEND" != ""]

 then

print "NVDM CONFIG : Requests IDs $PEND for $i will be deleted."

print "NVDM CONFIG : Information about pending requests for"

print "NVDM CONFIG : Target $i will be written to $i.req"

echo "The following requests were purged:" >$i.req

for x in $PEND

 do

nvdm lsrq -l $x >>$i.req

 done

 fi

nvdm hldq $i

nvdm prgq $i -f

for x in $PEND

 do

echo "y" >/tmp/yes

nvdm delrq $x -f

nvdm eraserq $x </tmp/yes

 sleep 2

nvdm delrq $x -f

nvdm eraserq $x </tmp/yes

 done

nvdm deltg $i -f

 fi

 done

}

Figure 116 (Part 2 of 2). nvdm_delete_targets Shell Procedure (for Version 3.1)

The following figure shows an example of a log file that was created by
nvdm_delete_targets. This file contains all requests for the deleted target.

206 Pristine AIX Environments

The following requests were purged:

Request ID: rs6ððð11 root 12 ð

SNA correlator: rs6ððð11 ð9/ð1/95 53257

 Submission time: ð9/ð1/95 1ð:37:19

 Request type: Ret inv

 Object:

 Status: Successful

 Error severity: ð

 Schedule time: ð9/ð1/95 1ð:37:19

 Starting mode: Released

 Priority: No

 Application ID: CLI

 Execution window:

Execution time : When received by target

 Expiration time: Undefined

Time Format : Local time at origin

Termination target exit:

 Termination exit:

Request ID: rs6ððð11 root 14 ð

SNA correlator: rs6ððð11 ð9/ð1/95 53259

 Submission time: ð9/ð1/95 1ð:54:26

 Request type: Install

 Object: HISTORY.REF.1

 Status: Successful

 Error severity: ð

 Schedule time: ð9/ð1/95 1ð:54:26

 Starting mode: Released

 Priority: No

 Application ID: CLI

 Execution window:

Execution time : When received by target

 Expiration time: Undefined

Time Format : Local time at origin

Termination target exit:

 Termination exit:

Figure 117. rs600016.req Request Log File

The nvdm_save_history shell procedure has to be slightly modified to be compliant
with the new file format for software inventory files in Version 3.1.

In Version 1.2 and previous releases the name of the change file to appear in the
target software inventory had to be specified using the PRODUCT keyword in the
software inventory file fndswinv.

The keyword was followed by the global name of the change file to be cataloged.
In Version 3.1 the GLOBAL NAME keyword is used to specify change files in the
software inventory file.

In order to work with Version 3.1, we change the nvdm_save_history procedure to
be compliant with this change.

 Chapter 11. Migrating the Procedure to Software Distribution for AIX V3.1 207

Further, we have extended the time the procedure waits for the install request for
the inventory file to be completed to 15 seconds. You might need to adjust this
value to your own environment.

The following figure shows the nvdm_save_history shell procedure:

#

Save NVDM target history by creating software inventory

file and copying it to corresponding node

requires /.rhosts file on target

$1 = target name

#

nvdm_save_history ()

{

 print "NVDM CONFIG : Saving target history for $1"

 #nvdm inv

 SLIST="ynvdm lscm -w $1 '\' | grep 'Global file name:' | cut -d':' -f2y"
 >/tmp/inv

 if ["$SLIST" != ""]

 then

for o in $SLIST

 do

print "NVDM CONFIG : Adding $o to software inventory file."

print "GLOBAL NAME: "$o >>/tmp/inv

print "DESCRIPTION: Target has been moved!" >>/tmp/inv

 done

print "NVDM CONFIG : Copying inventory file $SW_INV to $1."

echo "GLOBAL NAME: HISTORY.REF.1

CHANGE FILE TYPE: GEN

COMPRESSION TYPE: LZW

REBOOT REQUIRED: NO

PACK FILES: NO

SECURE PACKAGE: NO

OBJECT:

SOURCE NAME: /tmp/inv

TARGET NAME: /usr/lpp/netviewdm/fndswinv

TYPE: FILE

ACTION: COPY

INCLUDE SUBDIRS: NO" >/tmp/hist.pro

nvdm delcm HISTORY.REF.1 -w '\'

nvdm uncat HISTORY.REF.1 -d -f

nvdm bld /tmp/hist.pro -f

nvdm inst HISTORY.REF.1 -w $1 -f -i

#

we will sleep here for 15 secs to allow

the CF to be sent to the target before

it is deleted. You might need to adjust

this value, especially if you are, for example,

in a WAN environment

#

 fi

 print "NVDM CONFIG : Sleeping for 15 secs."

 sleep 15

}

Figure 118. nvdm_save_history Shell Procedure (for Version 3.1)

208 Pristine AIX Environments

The nvdm_configure_targets procedure has to be modified to be compliant with the
following changes:

� Users are not defined in the target definition anymore.

� There is a new flag -b available with the nvdm addtg command.

Since users are defined using the nvdm addusr command in Version 3.1, the code
to define users in the target definition must be removed from the
nvdm_configure_targets shell procedure.

The flag -b that has been added to the nvdm addtg defines the target type. We will
set this flag to client for the agents to be defined.

 Note

You must not set the -b flag when updating the target definition for a server.

On a Software Distribution for AIX server a target definition is automatically created
for the server itself during installation. This target definition is called the Initial
Target Record.

We will have to use the nvdm updtg command when updating the definitions for that
target. However, the product will not allow to change the target type for the server
itself, so if we specify the nvdm updtg command with the flag -b server the update
will fail, regardless of the fact that this is the same type which is already defined.
Hence, we will not use the -b flag, when configuring the target definition for the
server.

 Note

The return codes for the nvdm lstg command have changed in Version 3.1.

In Version 1.2 the command nvdm lstg targetname produced a return code that
was not ð in the $? shell variable if the target did not exist.

In Version 3.1 this command will produce a return code of ð no matter if the target
exists or not.

We did use the return code to check if the target already existed. Now we have to
check for the message FNDCL129E that is returned by the command if the target
does not exist.

The following figure shows the nvdm_configure_targets shell procedure:

 Chapter 11. Migrating the Procedure to Software Distribution for AIX V3.1 209

#

configure Targets for an NVDM/6ððð Server

$1 = Server IP Hostname

#

nvdm_configure_targets ()

{

 #

 # First, determine all Nodes which have this Server

 # defined as their NVDM/6ððð server

 #

 # access database

 get_attribute_list nvdm_node server_name $1 node_name

 ATLIST=$VALUE_LIST

 TLIST=""

 for i in $ATLIST

 do

TLIST=$TLIST" "yecho $i | cut -d'.' -f1y
 done

 count=ð

 for i in $TLIST

 do

count=yexpr $count + 1y
print "NVDM CONFIG : Defining Target $i on server $1"

A=ynvdm lstg $i 2>&1 | grep FNDCL129Ey
 #

if FNDCL129E not found then target exists already

 #

if ["$A" != ""]

 then

COMMAND="nvdm addtg $i"

 else

COMMAND="nvdm updtg $i"

print "NVDM CONFIG : Target already exists. Updating..."

 fi

 #

get required target attributes

 #

huhn=yecho $ATLIST | cut -d' ' -f$county

for a in short_name target_os description contact_name\

 owning_manager telephone_number customer_name

Figure 119 (Part 1 of 2). nvdm_configure_targets Shell Procedure (for Version 3.1)

210 Pristine AIX Environments

 do

get_attribute nvdm_node node_name $huhn $a

 v=$VALUE

if ["$v" != ""]

 then

case $a in

short_name) COMMAND=$COMMAND" -s '$v'" ;;

target_os) COMMAND=$COMMAND" -y '$v'" ;;

description) COMMAND=$COMMAND" -d '$v'" ;;

contact_name) COMMAND=$COMMAND" -q '$v'" ;;

owning_manager) COMMAND=$COMMAND" -o '$v'" ;;

telephone_number) COMMAND=$COMMAND" -t '$v'" ;;

customer_name) COMMAND=$COMMAND" -r '$v'" ;;

 esac

 fi

 done

if ["$i" != "$1"]

 then

COMMAND=$COMMAND" -b client"

 fi

 echo $COMMAND

 eval $COMMAND

 done

}

Figure 119 (Part 2 of 2). nvdm_configure_targets Shell Procedure (for Version 3.1)

11.1.4 Configuring Remote Targets
In Version 3.1 the flags that can be used with the nvdm addtg command have
slightly changed as far as the configuration of remote targets is concerned.

The following changes will affect the configuration procedure nvdm_remote_targets:

� We have to specify the type of the remote target using the -b flag. Since we
only allow to configure other servers as remote targets we will always specify
-b server with the command.

� The parameters available with the -m flag have changed. Instead of the type
report_to we will have to use focal to configure the focal point system. The
type remote is no longer existent, so we will use the default (Push) for other
RS/6000 servers connected trough TCP/IP.

� For remote connections that use APPC we have to specify -tp appc: to define
APPC as the protocol to be used for the remote connection.

 Chapter 11. Migrating the Procedure to Software Distribution for AIX V3.1 211

 Note

You might need to extend the nvdm_remote_targets procedure to support other
features. For example, you can enhance the procedure to also allow the
configuration of remote agents. By default, we configure remote RS/6000
servers as Push mode targets. In case you want to configure the remote
system as a Remote Administrator (RA), you will have to define this system as
a manager.

In both cases you will also have to modify the data model.

The following figure shows the nvdm_remote_targets shell procedure:

212 Pristine AIX Environments

#

configure Remote Targets

$1 = IP Hostname

#

nvdm_remote_targets ()

{

 #

 # First, get all remote targets defined for this server

 # Remote Targets are determined by searching the nvdm_queues

 # class because any connection to a remote system requires a

 # queue

 get_attribute_list nvdm_queues node_name $1 remote_server

 if [$VALUE_NUM = ð]

 then

print "NVDM CONFIG : No remote targets defined"

 return

 fi

 for i in $VALUE_LIST

 do

print "NVDM CONFIG : Defining remote target for $i"

 #

determine if system to be configured is a Remote Target or

a Focal Point

 #

get_attribute_and nvdm_queues node_name $1 remote_server $i focal_point

if ["$VALUE" = "yes"]

 then

print "NVDM CONFIG : $i will be configured as focal point."

for the MVS focal point short name will be the same as node name

network id will be the SNA Network Name

set -x

eval nvdm addtg $i -m focal -b server -s $i -n $SNA_NET \

 -d "'NVDM_MVS'" -tp appc:

set +x

 else

get short name for remote server from class nvdm_node

get_attribute nvdm_node node_name $i short_name

if ["$VALUE" = ""]

 then

abort "No Short Name defined for $i in class nvdm_node. Exiting..."

 fi

Figure 120 (Part 1 of 2). nvdm_remote_targets Shell Procedure (for Version 3.1)

 Chapter 11. Migrating the Procedure to Software Distribution for AIX V3.1 213

 RSHORT=$VALUE

 #

This remote server is assumed to be connected via TCP/IP

so, we set the network name to be the same as the short name

 #

nvdm addtg $i -s $RSHORT -n $RSHORT -b server

 fi

 done

}

Figure 120 (Part 2 of 2). nvdm_remote_targets Shell Procedure (for Version 3.1)

11.1.5 Configuring Target Groups
There is a change in the output format of the nvdm lsgp command, which lists all
target groups configured on a CC server. The following figures show the output
format for both versions:

NetView DM/6000 Version 1.2:

nvdm lsgp '\'

Group Mode Description

Group1 Push

Group2 Push

Figure 121. Output from nvdm lsgp (NetView DM/6000 V1.2)

Software Distribution for AIX Version 3.1:

nvdm lsgp '\'

Group: Group1

Mode: Push

Description:

Group: Group2

Mode: Push

Description:

Figure 122. Output from nvdm lsgp (Software Distribution for AIX V3.1)

As we use the command nvdm lsgp in the shell procedure nvdm_delete_groups

when configuring target groups, we must modify the procedure to reflect the
change.

The described output format difference affects the part of nvdm_delete_groups

where we process the output from the above command in order to determine the

214 Pristine AIX Environments

existing target groups on the server. The following figure depicts the modification
of the procedure due to the format change of the command nvdm lsgp:

#

Delete all existing groups before adding groups from

configuration database

$1 = IP Hostname of server to be configured

#

nvdm_delete_groups ()

{

 #

 # determine existing groups

 #

 GP=ynvdm lsgp '\' | grep "Group:" | cut -c24-y
 #

 # determine list of defined groups

 #

 get_attribute_list nvdm_groups node_name $1 group_name

 XGP=$VALUE_LIST

 for i in $GP

 do

 match=ð

for x in $XGP

 do

if ["$i" = "$x"]

 then

 match=1

 fi

 done

if [match -eq ð]

 then

print "NVDM CONFIG : Deleting group $i from $1 configuration."

nvdm delgp $i -f

 fi

 done

}

Figure 123. nvdm_delete_groups Shell Procedure (for Version 3.1)

11.1.6 Restarting Software Distribution for AIX
After a server has been configured it needs to be restarted. The shell procedure
restart_nvdm is used for that purpose.

In order to detect whether the server is running we use the nvdm stat command.
By examining the return code of this command, we can tell whether the server is
running.

Whereas, in NetView DM/6000 V1.2 a return code of 121 indicates that the server
is not running, in Software Distribution for AIX V3.1 the corresponding return code
is 218.

 Chapter 11. Migrating the Procedure to Software Distribution for AIX V3.1 215

The following figure shows the shell procedure for Version 3.1:

restart_nvdm ()

{

 print "NVDM CONFIG : --> In order for the changes to become active"

 print "NVDM CONFIG : NetView DM/6ððð will be restarted on this node"

 #

 # determine if nvdm is running

 #

 nvdm stat 1>/dev/null 2>&1

 if [$? = 218]

 then

print "NVDM CONFIG : NVDM is not running. It will be started now."

 nvdm start

 nvdm start

 else

print "NVDM CONFIG : Stopping NVDM."

nvdm stop -x 1>/dev/null 2>&1

 s=1

print "NVDM CONFIG : Restarting NVDM."

while [$s = 1]

 do

print "NVDM CONFIG : Restarting NVDM."

 nvdm start

 nvdm stat

if [$? != 218]

 then

 s=ð

 fi

 done

 fi

}

Figure 124. restart_nvdm Shell Procedure (for Version 3.1)

 Warning

Starting the server might fail if you have defined APPC connections in your
database without having SNA Server installed correctly. If SNA Server is not
installed in the correct version or not installed at all, the Software Distribution for
AIX server will fail to start if there are APPC connections defined.

11.1.7 Updating Server Information
When configuring a server we have found that changing the hostname of a
machine can heavily influence the configuration of NetView DM. Therefore we
have to be careful when reconfiguring a Software Distribution for AIX server that
has already been configured with a different hostname.

216 Pristine AIX Environments

For that purpose we added some additional code to the configuration script in
Figure 109 on page 188 that was imbedded in the nvdm_update_server procedure
in the configuration script.

For Version 1.2 this procedure creates an initial target record for the server in the
/usr/lpp/netviewdm/db/target_config directory. For Version 3.1 this is not
possible because of the following reasons:

� The storage method for target information has changed. Whereas in Version
1.2 there is one file for each target in the above mentioned directory, in Version
3.1 information about all targets is held in /usr/lpp/netviewdm/db/trgcfg.

� The initial target configuration is held in a binary file in Version 3.1 and not in
an ASCII file as in Version 1.2. Therefore, it cannot be simply created by a
shell script.

Instead we will use the nvdm rentg to rename the initial target record if necessary.

The following figure shows the shell procedure:

 Chapter 11. Migrating the Procedure to Software Distribution for AIX V3.1 217

#

update NVDM/6ððð server definition

#

nvdm_update_server ()

{

#-------------change--------------

if we configure a server and want to change the

WORKSTATION NAME we must stop the server before

reconfiguring this field.

To do so we must be sure that the hostname and

the WORKSTATION NAME match

#

if ["$NODE_TYPE" = "ð" -o "$NODE_TYPE" = "2"]

then

get current hostname

 OHN=yhostnamey
print "NVDM CONFIG : Current hostname of server is $OHN."

get WORKSTATION NAME currently configured

HN=ygrep "WORKSTATION NAME:" $CONFIG | cut -d':' -f2y
print "NVDM CONFIG : Current WORKSTATION NAME of server is $HN."

print "NVDM CONFIG : Stopping Server..."

make sure that both match

 hostname $HN

nvdm stop -x

print "NVDM CONFIG : Sleeping 2ð seconds..."

 sleep 2ð

set back hostname

print "NVDM CONFIG : Setting hostname to $OHN."

 hostname $OHN

also, we must be sure that there is an initial target record for

the servername configured

we rename the initial target record to the new hostname

nvdm rentg $HN $OHN -f

fi

#-----------end-of-change---------

}

Figure 125. nvdm_update_server Shell Procedure (for Version 3.1)

218 Pristine AIX Environments

Chapter 12. Implementing the Configuration Data Model
Using DB2/6000

In order to show the usability of the automatic configuration procedure for NetView
DM/6000 in different database environments we implement the ODM data model
from Chapter 3, “Designing a Data Model for Configuration Data” on page 11 using
IBM Database 2 AIX/6000 (DB2/6000) in this chapter.

This direct porting might somehow seem awkward from the general viewpoint of
SQL, which offers powerful means for data definition and manipulation. At the
same time our configuration procedure uses only three quite primitive access
procedures (see 4.2, “Database Access Procedures” on page 31). They define a
clear database-independent interface, so the storing method of the configuration
data can be exchanged transparently for the configuration activities of NetView
DM/6000. This is what we demonstrate in this chapter.

This chapter is intended for system administrators who want to use DB2/6000
instead of ODM for keeping the configuration database. First, we present the basic
advantages of DB2/6000 that give preference to the use of DB2/6000 over ODM in
change and distribution management. With the intention of making your DB2/6000
configuration task easier, we point out the important steps of building your
DB2/6000 server and clients in a Transmission Control Protocol/Internet Protocol
(TCP/IP) network environment. Following the ODM data model we show the
implementation and automatic creation of the configuration database as well as the
appropriate database access procedures. We also provide an idea of how to
design a data model that makes much better use of the DB2/6000 features
regarding data integrity.

For a good understanding of this chapter we assume the reader has a basic
knowledge of relational database concepts and some background in Structured
Query Language (SQL).

12.1 Advantages of DB2/6000 over ODM
DB2/6000 has the following advantages over ODM concerning distribution and
change management:

� DB2/6000 contains more powerful data definition methods such as indexing
and enforcing referential integrity, defining package dependencies (for example,
actions on the dependent object after deleting the parent object).

� DB2/6000 offers a big variety of data access methods: the full SQL apparatus
of predicates, nested queries, views, joins, etc.

� The authorization mechanism of DB2/6000 gives you the possibility of defining
access rights to users without regarding AIX authorities.

� The client/server approach of DB2/6000 ensures the transparent remote access
to the database residing on the configuration server concurrently by several
NetView DM/6000 targets, the necessity of distributing the whole configuration
database in the CC domain no longer exists.

 Copyright IBM Corp. 1996 219

� The IBM Database 2 family of products for the IBM RISC System/6000 includes
additional client support for OS/2 and DOS platforms, which enhances the
capability for automatic installation and configuration of non-AIX targets.

� Moreover, the import and export utilities of DB2/6000 let you move data
between a DB2/6000 node and DRDA-compliant databases (Distributed
Relational Database Architecture). This allows the possibility of supplying
configuration data to NetView DM/6000 agents that are not supported as
DB2/6000 clients.

� Another possibility offered by DB2/6000 is it enables applications running on
DOS, Windows, OS/2 and AIX workstations to access and update data on
DRDA-compliant host database management systems like MVS, OS/400, VM
and VSE. For that purpose you have to install IBM AIX Distributed Database
Connection Services/6000 of the DB2/6000 product family.

12.2 General Steps in Installing and Configuring DB2/6000
If you have not installed DB2/6000 on your machine yet, the following sections
provide instructions on how to perform the installation and configuration of the
product, both on the server and on the clients. The description is oriented on our
task to enable the machines in our network environment to access the configuration
database residing on the configuration server. For more details, see the
DATABASE 2 AIX/6000 Installation Guide, GC09-1570.

 Note

We are using DB2/6000 Version 1.2 in this scenario.

12.2.1 The Overall Picture
Before starting the description of the installation and configuration steps for
DB2/6000, we present a general overview of the structure of a DB2/6000 database
network environment. Figure 126 on page 221 illustrates the principle of using
DB2/6000 in client/server mode.

220 Pristine AIX Environments

Figure 126. DB2/6000 Overview in a Network Environment

On each machine participating in the database network environment resides an
instance of the database management system. The instance is created by root
both on the database server and on the database clients. One instance manages
several databases that contain many tables. On their part the tables consist of
rows and columns as usual for relational databases.

 Note

There may be more than one instance on a workstation, which is sensible (for
example, in the case of running production and development in parallel). To
avoid unnecessary confusion we omit this aspect because it leaves the scope of
this book.

Physically the databases reside on the server. From each client instance exists a
link to the desired database located on the server. This enables users on the
clients to access databases transparently across the network.

There are three categories of database users:

instance owner

This is the database management system administrator (sysadm) that the
DB2/6000 instance is assigned to. This assignment is done when root

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 221

creates the instance. The instance owner has the highest authority over
all databases in its instance.

database administrator

The database administrator (dbadm) has exclusive rights over a single
database. This authority is granted by sysadm and is valid only within
the specified database.

general user

The general database user can perform actions as granted by sysadm or
by dbadm of the database.

12.2.2 Installing DB2/6000 on the Target Machine
Log in as root and use smitty to transfer the packages from the distribution
medium to the target machine.

On the designated database server, where your configuration database will reside,
you must install the following products from the DB2/6000 AIX family:

� IBM Database 2 AIX/6000, which contains a full-function relational database
management system for the AIX operating system with the capability of a local
database server and a remote database client in a network environment

� IBM AIX Database 2 Client Support/6000 (DB2 Client Support/6000), which
provides remote client support, enabling the database server to accept requests
from remote clients as well as local clients over the Transmission Control
Protocol/Internet Protocol (TCP/IP)

 Note

Client support for communications between the database server and the
database clients over the Advanced Program-to-Program Communications
(APPC) protocol is enabled after installing the additional SNA Support
Feature of the DB2 Client Support/6000. In this case it is assumed that you
have before installed and configured additional software supporting the LU
6.2 protocol (for example, SNA Server/6000).

On every AIX database client machine you must install IBM AIX Database 2
Software Developer's Kit/6000. This product enables applications to run on remote
clients and contains a full development environment for client workstations including
interactive SQL, embedded SQL and the Call Level Interface.

 Note

Installing the IBM AIX Database 2 Client Application Enabler/6000 is not
sufficient for our task to send queries from the remote database clients to the
server holding the configuration database because this product provides only
runtime support for applications but does not allow you to use interactive SQL.

There is also support for OS/2 and DOS database clients. To enable such clients
to communicate with the AIX database server you must install on such machines
the appropriate product, respectively IBM Database 2 Software Developer's Kit/2 or
IBM Database 2 Software Developer's Kit/DOS.

222 Pristine AIX Environments

12.2.3 Common Actions for Server and Client
1. Create an instance of the product.

You must have root authority when performing this step.

� Create an AIX user group that will be the instance owner group:

mkgroup dbsysadm

� Create an AIX user ID that will be the instance owner, that is it will have
the highest database priority sysadm:

mkuser pgrp=dbsysadm groups=dbsysadm home=/home/dbmsadm dbmsadm

passwd dbmsadm (set the password for dbmsadm)

 Note

The designated primary group of the instance owner becomes
automatically the group of the database system administrator (sysadm)
while creating the instance. Make sure that the instance owner has the
correct primary group before running the instance creating script
db2instance (in our example dbsysadm). Otherwise there exists the
danger of inadvertent authorization to sysadm of members of staff, for
example, which is the default primary group of AIX users without
administrator rights.

� Execute the db2instance command:

/usr/lpp/db2_ð1_ð1_ðððð/instance/db2instance dbmsadm

This command creates a directory $HOME/sqllib for dbmsadm that represents
the database instance assigned to the user and defines its environment as
instance owner.

� Set up the database environment (for Bourne shell and Korn shell).

Log in as dbmsadm. Edit the file $HOME/sqllib/db2profile and change the
appropriate entries to the following:

DB2INSTANCE=dbmsadm

PATH=${PATH}:/home/dbmsadm/sqllib/bin:/home/dbmsadm/sqllib/adm

PATH=${PATH}:/home/dbmsadm/sqllib/misc

DB2DBDFT=NVDM_CFG

 Note

The DB2DBDFT variable contains the name of the default database
(default value SAMPLE). NVDM_CFG will be the name of the
configuration database.

Edit $HOME/.profile and add the call of db2profile:

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 223

DB2/6ððð settings

 . ./sqllib/db2profile

 Note

This will call the script db2profile that sets the correct AIX environment
variables and extends the command search directories in the global
variable PATH. The settings becomes effective after the next login or
after the execution of .profile (. ./.profile).

2. Enter the license information.

Before you can use any of the products in the DB2/6000 family you must enter
the NetLS license passwords. See DATABASE 2 AIX/6000 Installation Guide,
GC09-1570 for more instructions about obtaining and registering of the license
information into the file /usr/lib/netls/conf/nodelock.

3. Execute the db2ln command.

This step creates links for libraries and include files for a particular version and
release of the product:

/usr/lpp/db2_ð1_ð1_ðððð/cfg/db2ln

4. Configure DB2/6000 to communicate over TCP/IP.

In order to provide communication support over TCP/IP you must first have
installed and configured the Base Operating System Network Facilities
(BOSNET) both on the server and the clients.

The configuration of DB2/6000 over TCP/IP include the following:

� Ensure name resolution between server and clients.

Make sure that both, server and client machines, know each other's host
name. To check whether the respective host name (for example, rs6ððð12)
can be resolved issue the following:

host rs6ððð12

In the case of success you will get an output like the following:

rs6ððð12.itso.ral.ibm.com is 9.24.1ð4.124

If the host query fails then check whether you are using a Domain Name
Server (DNS) or you are resolving host names locally. Add an entry into
your local /etc/hosts or let the DNS administrator add it for you into the
/etc/hosts of the DNS similar to the following:

9.24.1ð4.124 rs6ððð12.itso.ral.ibm.com rs6ððð12

� Define the DB2/6000 communication ports.

224 Pristine AIX Environments

Application programs communicate in TCP/IP networks over ports. To
enable the connection between the DB2/6000 server and its clients you
must specify two adjacent ports to the TCP/IP subsystem designated for
the DB2/6000 communications. The ports must match on both sides,
server and clients.

Log in as root and edit /etc/services to add the following two lines:

db2nvdmc 37ðð/tcp # DB2 main connection port

db2nvdmi 37ð1/tcp # DB2 interrupt port

The entry db2nvdmc is the service name that is used later for the
configuration of the database system manager both on the server and on
the client sites.

12.2.4 Further Server Configuration
1. Configure database manager for TCP/IP.

The service name associated with the main connection port is used by the
database manager to identify the port it will listen to. To enter this information
into the database manager configuration file, log in as dbmsadm and use the
following command from the shell command line:

db2 update database manager configuration using svcename db2nvdmc

TCP/IP support is generally enabled after issuing the next db2start command
from the Command Line Processor db2.

2. Create a new file system for the database.

As the creation of a new database requires about 12 MB storage on the
database server, we recommend holding the configuration database in a
separate file system mounted under the home directory of the instance owner.
You must have root authority to be able to do that, execute the following
commands:

mkdir /home/dbmsadm/databases

crfs -v jfs -g rootvg -a size=4ðððð -m /home/dbmsadm/databases -A yes -p rw

mount /home/dbmsadm/databases

chown dbmsadm:dbsysadm /home/dbmsadm/databases

 Note

Since you execute the above commands as root, do not forget to change
the ownership (chown) of the created directory to the instance owner
(dbmsadm). Otherwise, it cannot create the database directory where the
configuration database will physically reside.

3. Add two additional AIX users (optional).

In order to provide a secure database network environment you should create
respectively catalog the configuration database with server authentication type
(see 12.3.3, “Authentication Types and Security Considerations” on page 247).

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 225

For this reason you need to create the following two database users on the
server to make the authentication:

dbcfgadm This database user has update rights for all tables of the
configuration database. It corresponds to the NetView DM/6000
FNDADMN authority and is allowed to alter the NetView DM/6000
configuration by changing the data in the tables. The responsibility
of changing the data model (that is, creating and dropping tables) or
creating and dropping the whole database is reserved to the
instance owner dbmsadm.
 Note.

Even the instance owner dbmsadm is allowed to create and drop a
database only locally on the server.

dbcfgusr This user is able to connect to the configuration database and select
its tables. It corresponds to the NetView DM/6000 FNDBLD and
FNDUSER privileges, that cannot change the configuration and are
not allowed to perform administrative work.

Log in as root and execute the following commands to create the AIX users:

mkuser home=/home/dbcfgadm dbcfgadm

mkuser home=/home/dbcfgusr dbcfgusr

passwd dbcfgadm (enter password for dbcfgadm)

passwd dbcfgusr (enter password for dbcfgusr)

Edit the .profile of both users to add the following DB2/6000 lines similar to
the change of dbmsadm's .profile:

DB2/6ððð settings

 . /home/dbmsadm/sqllib/db2profile

12.2.5 Further Client Configuration
1. Configure database manager.

To make the database server known to the client database manager, log in as
dbmsadm and execute the following command from the shell command prompt:

db2 catalog tcpip node rs12db remote rs6ððð12 server db2nvdmc

The arguments of the above command have the following meaning:

rs12db: Name of the TCP/IP node used by the database manager when
cataloging the database (see next step)

rs6ððð12: Host name of the remote database server machine
 Note.

If the database server is not in your TCP/IP domain (in the case
of DNS) you must specify the fully qualified server name not just
its alias, for example rs6ððð12.itso.ral.ibm.com.

226 Pristine AIX Environments

db2nvdmc: Service name bound to the designated main connection TCP/IP port

 Note

There are two possible ways of entering commands to the Command Line
Processor db2:

� Call db2 from the shell command prompt and then enter SQL
commands until you type quit or terminate. While the former exit
leaves the connection to a database open, the latter closes it.

� Call the SQL commands directly from the shell command prompt by
prefixing them with db2. The connection to the database remains open
(until you call db2 terminate). As the shell evaluation rules apply here,
you can use variables and quote shell specific symbols (like \, " or ').

As SQL is not case-sensitive, it is of no importance whether you use small
or capital letters entering the commands for the DB2/6000 Command Line
Processor. For the sake of uniformity we show SQL commands with small
letters throughout this book.

2. Catalog the remote configuration database NVDM_CFG

Now you must define the configuration database to the client as a remote
database. You can do that using the catalog database command of the
DB2/6000 Command Line Processor:

db2 'catalog database nvdm_cfg at node rs12db authentication client \

with "NetView DM/6ððð Configuration Database"'

 Note

The authentication parameter specifies the user authentication type of
DB2/6000. The default value is server. The cataloging of the database on
the server is made implicitly when creating the database. The
authentication method on both sides, server and client, must match to
establish the connection between them. See 12.3.3, “Authentication Types
and Security Considerations” on page 247 for the security considerations
related to the authentication methods.

12.3 Depicting the Data Model for the Configuration Data in DB2/6000
Based on the data model from Chapter 3, “Designing a Data Model for
Configuration Data” on page 11 we now present the structure of the NetView
DM/6000 configuration database as defined by means of DB2/6000. First we
describe the direct porting of the ODM data model to DB2/6000, so that the
automatic configuration script is not affected at all. That means that you can run
exactly the same script and either use ODM or DB2/6000 as your configuration
database. In order to make the database access fully transparent for the
configuration procedure, we do not exploit the means of relational design and
implementation to a large extent.

At the end of this section we propose an improved data model that makes use of
the advanced data definition techniques of DB2/6000 Structured Query Language
(SQL). However, this data model requires appropriate changes in the configuration

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 227

script, as the data there is restructured to better represent the referential integrity of
the configuration data.

12.3.1 Porting of the ODM Data Model to DB2/6000
Figure 127 shows the direct translation of the ODM data model to DB2/6000,
taking into account the best possible way to depict the referential dependencies of
the configuration data. To compare this data model with the ODM definition refer to
Figure 3 on page 12 in Chapter 3, “Designing a Data Model for Configuration
Data” on page 11.

Figure 127. Direct Porting of the ODM Data Model to DB2/6000

 Note

In connection with DB2/6000 we use the terminology of relational database
systems. We use the terms table instead of ODM class, column instead of
ODM attribute and row instead of ODM object.

For each table in the configuration database we define a primary key. This is a
unique descriptor of the rows contained in the particular table and consist of one or
more non-nullable columns. For example, node_name specifies unambiguously each
row of the table nvdm_node while node_name and username form the primary key of

228 Pristine AIX Environments

table nvdm_users (compare with Chapter 3, “Designing a Data Model for
Configuration Data” on page 11).

Foreign keys are columns in a table that constitute the primary key of another table.
In our example the column node_name in nvdm_users is a foreign key because it has
the same meaning as node_name that is the primary key of nvdm_node.

In this manner the couple foreign key and primary key define a relationship
between the tables they are contained in. Figure 127 on page 228 shows the
types of the relationships between the configuration tables: one-to-one,
many-to-one or many-to-many. For example, while the relationship between
nvdm_servers and nvdm_node is a one-to-one relationship (one server definition can
correspond at the most to one node definition, and vice versa); there may exist
many users on one node and one user may also be registered at more than one
machine (many-to-many relationship between nvdm_node and nvdm_users).

Considering the relationship between nvdm_users and nvdm_node it is obvious that
the existence of rows in the former table is only sensible when a row for the
appropriate node exists in the latter table. The guaranteeing of this semantical
relationship of the data in the database is called data integrity. Data integrity is
defined by referential constraints.

The arrows in Figure 127 on page 228 show the referential constraints of the
foreign keys. They are labelled with the names of the foreign keys and primary
keys involved in the relationships between the tables. See the following figure for
explanation:

Figure 128. Referential Constraints between Tables

For example, the referential constraint between nvdm_users and nvdm_node defines
the former table as dependent from the parent table nvdm_node.

In this case the constraint is defined as on delete cascade, which makes the
independent existence of a user impossible on a machine without the definition of
the latter as node in the nvdm_node table.

If we assume that the link construct in ODM represents referential integrity of data,
there are two differences between the DB2/6000 definition the ODM definition
(compare with Figure 3 on page 12):

� The reference from group_name of nvdm_node to group_name of nvdm_groups is
not shown on Figure 127 on page 228.

� The foreign key server_name in nvdm_node points to the same table instead of
referencing table nvdm_servers.

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 229

 Note

In fact, ODM offers the link construct but it is only a syntactical feature that
helps to define attributes with the same characteristics from the same data type.
ODM cannot guarantee any referential integrity of the stored data.

The reason for these restrictions is the strict checking in DB2/6000 for reflexive
dependencies during the data definition. Such referential dependencies arise in the
following cases:

direct: Between nvdm_node and nvdm_servers

indirect: Between nvdm_node and nvdm_groups (the circle is closed over
nvdm_servers)

The following figure depicts all defined link constructs in the ODM model that are
not allowed to be defined as referential constraints in DB2/6000 (the broken lines
depict the relationships not included in our DB2/6000 data model):

Figure 129. Reflexive Referential Dependences Derived from the ODM Data Model

Actually, the two relationships above define, together with the depicted
dependencies in Figure 127 on page 228, a direct reflection between nvdm_node
and nvdm_servers and an indirect reflection between nvdm_node and nvdm_groups

(circular dependence between nvdm_groups, nvdm_servers and nvdm_node).

The advantage of the strict checking of the dependencies in DB2/6000 is the static
monitoring of the referential integrity of the data, guaranteed by the database
management system itself. That is, a sophisticated data model that makes use of

230 Pristine AIX Environments

the data definition features of DB2/6000 can move the responsibility of keeping the
data integrity from the database administrator to the database management system.

12.3.2 Creating and Recreating the Configuration Database
In order to enable the automatic creation of the configuration database we describe
a similar procedure to the script build_db from Chapter 3, “Designing a Data Model
for Configuration Data” on page 11. We also named the script build_db as a
replaceable part of the database procedures belonging to the automatic NetView
DM/6000 configuration. It is shown in Figure 130 on page 232 and must be
executed on the database server by the instance owner (dbmsadm). This
requirement makes sense because of the following considerations:

� DB2/6000 restricts even the system owner from executing some management
operations from a client machine. That includes db2start, create database

and drop database operations needed by the script build_db.

� As the full name of a database table contains also the name of its creator (for
example, dbmsadm.nvdm_node), the requirement that dbmsadm must create all
configuration tables allows other authorized database users to refer to them
unambiguously. Otherwise, if other database users are allowed to create
tables, each time the creator part of the table name will be different.

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 231

#

#

procedure for building the DB2/6ððð configuration database

#

#

creating / recreating the configuration database

#---

. ./db_create

table definitions

#------------------

db2 -sf ./db_model.sql

if [$? -ne ð]

then

 exit 1

fi

comments

#---------

db2 -sf ./db_comment.sql

if [$? -ne ð]

then

 exit 1

fi

authorizations

#---------------

db2 -sf ./db_authorize.sql

if [$? -ne ð]

then

 exit 1

fi

inserting data

#---------------

db2 -sf ./db_import.sql

if [$? -ne ð]

then

 exit 1

fi

print "\n\nDATABASE CONFIG: Database NVDM_CFG built SUCCESSFULLY!!!\n\n"

exit ð

Figure 130. Building the Configuration Database NVDM_CFG (Script build_db)

The script is made of different blocks that perform the following steps:

� Creating the database

� Defining the configuration tables

232 Pristine AIX Environments

� Adding comments to the database objects

 � Granting authorizations

� Inserting data into the tables

In the following we describe the steps in detail.

12.3.2.1 Creating the Database
This first task is performed by the script db_create, which is shown in Figure 131
on page 234.

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 233

#

#

procedure for creating / recreating the NetView DM/6ððð

configuration database

#

#

authentication type (SERVER or CLIENT)

AUTH=CLIENT

configuration database name (this name occurs in db_model.sql too)

DBNAME=$DB2DBDFT

DBDIR=/home/dbmsadm/databases

start DB2/6ððð manager

print "\nDATABASE CONFIG: starting the database manager"

set -x

db2 db2start

set +x

get SQL state after connecting to the database

SQLCODE=ydb2 -ec +o connect to $DBNAMEy

case $SQLCODE in

database exits (SQLCODE = ð): recreate it

"ð") print "\nDATABASE CONFIG: dropping the old database"

 set -x

db2 force application all

 set +x

 sleep 2ð

 set -x

db2 drop database $DBNAME

 set +x

print "\nDATABASE CONFIG: recreation of the database"

 ;;

database does not exist: just create it

"-1ð13" | "-1ð31")

print "\nDATABASE CONFIG: creation of the database"

 ;;

else

"\") print "\nDATABASE CONFIG: unknown error while creating/altering \

configuration database"

exit 1 ;;

esac

db2 create database $DBNAME on $DBDIR \

authentication $AUTH \

with \"NVDM configuration database\"

db2 connect >/dev/null 2>&1 # necessary after FORCE

Figure 131. Creating and Recreating the Configuration Database NVDM_CFG (Script db_c

First, it starts the database manager (db2start). Depending on whether or not the
configuration database already exists, it is created or recreated with the name

234 Pristine AIX Environments

NVDM_CFG. In the case of recreation, first all users are forced to disconnect
(force application) and the database is dropped.

 Note

After using force application you can get the following message when trying
to connect to the database (issuing connect to from the Command Line
Processor db2 or calling it in the case of implicit connect):

SQL1224N: A database agent could not be started to service a request,

or was terminated as a result of a database system shutdown or

a force command.

Issue a new connect request to get connected to the database.

The common step in both cases is the create database operation with
authentication type client (see the value of the variable AUTH). Section 12.3.3,
“Authentication Types and Security Considerations” on page 247 explains the use
of authentication types in detail.

12.3.2.2 Defining the Configuration Tables
Figure 132 on page 236 shows the file db_model.sql with the DB2/6000
commands that create the tables of the configuration database. We are not going
to describe again the meaning of the particular columns, but only point out some
important details concerning the implementation in DB2/6000. The comments
inserted into the database in the next section describe the particular meaning of the
columns.

As shown in Figure 127 on page 228 the table nvdm_node is the parent table for
nvdm_users and nvdm_servers. The latter itself is the parent table for nvdm_groups

and nvdm_queues. Therefore, nvdm_node is the parent table of all of these tables. A
row cannot be inserted into the dependent tables before it is inserted into
nvdm_node, and vice versa, a deletion of a row in nvdm_node leads to the deletion of
all related rows in the dependent tables (see the referential integrity considerations
on page 229).

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 235

--

-- Data Model Definition (DB2/6ððð)

--

-- connecting the database

connect to nvdm_cfg

-- creation of NVDM tables

-- the nvdm_node table describes the name (IP Hostname) and

-- type (Server, Agent, Prep Site) of the node, where

-- ð : NVDM Server

-- 1 : NVDM Agent

-- 2 : NVDM Prep Site

-- also included are attributes required for every node, like

-- the name of the NVDM/6ððð Server, etc.

--

-- group_name is a link to the nvdm_groups table specifying

-- the group this target belongs to

create table nvdm_node \

(node_name char(24) not null primary key, \

node_type char(1) not null, \

short_name char(8) not null, \

target_os char(11), \

description char(24), \

contact_name char(24), \

owning_manager char(24), \

telephone_number char(19), \

customer_name char(19), \

repos_fs char(3), \

repos_size char(2ð), \

x_25_number char(14), \

server_name char(24) not null, \

group_name char(24), \

foreign key r_server (server_name) \

references nvdm_node \

on delete cascade)

Figure 132 (Part 1 of 3). Database Table Definitions (Script db_model.sql)

236 Pristine AIX Environments

-- nvdm_users is a table containing the users

-- for a target. this relation will be used on

-- servers and targets to define users

create table nvdm_users \

(node_name char(24) not null, \

username char(8) not null, \

usergroup char(11) not null, \

primary key (node_name,username), \

foreign key r_node (node_name) \

references nvdm_node \

on delete cascade)

-- the nvdm_servers table contains parameters only

-- needed to configure NVDM/6ððð Servers

create table nvdm_servers \

(node_name char(24) not null primary key, \

local_lu_name char(12), \

pu_name char(8), \

cp_name char(8), \

xid char(8), \

sna char(3), \

foreign key r_node (node_name) \

references nvdm_node \

on delete cascade)

-- the nvdm_groups table defines the target groups to be defined

-- on a server

create table nvdm_groups \

(node_name char(24) not null, \

group_name char(24) not null, \

description char(24), \

short_name char(8) not null, \

primary key (node_name, group_name), \

foreign key r_node (node_name) \

references nvdm_servers \

on delete cascade)

Figure 132 (Part 2 of 3). Database Table Definitions (Script db_model.sql)

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 237

-- the nvdm_queues table contains connections to

-- remote servers

-- e.g. a Focal Point or remote administrator

--

-- Protocol must be "APPC" or "TCP/IP"

-- if Protocol is TCP/IP the remote_server

-- field must be filled with the IP hostname

-- of the remote server

--

-- This table will also be used to define

-- The remote server as a remote target automatically

create table nvdm_queues \

(node_name char(24) not null, \

remote_server char(24) not null, \

protocol char(7), \

focal_point char(3), \

inter_node char(8), \

primary key (node_name, remote_server), \

foreign key r_node (node_name) \

references nvdm_servers \

on delete cascade)

-- nvdm_cfg_static contains all parameters being

-- unique for all targets

create table nvdm_cfg_static \

(name char(19) not null primary key, \

 value char(127))

-- commit work and quit

commit work

quit

Figure 132 (Part 3 of 3). Database Table Definitions (Script db_model.sql)

The table nvdm_cfg_static has no relations to the other tables.

All columns of the configuration tables have the type char. One can argue that in
some places it is better to use INT or SMALLINT data types (for example, for the
column node_type in nvdm_node). We chose only character types to represent the
configuration data, even when sacrificing some space for the internal data
representation. Our intention was to keep the data access procedures (see 12.4,
“Database Access Procedures” on page 253) as simple as possible. As shell
scripts process string variables in the case of using non-character data types in
DB2/6000, you must provide the appropriate data conversion in the access
procedures depending on the column type.

238 Pristine AIX Environments

 Note

Comparing the lengths of the ODM attributes (see Figure 4 on page 18) and
the lengths of the respective DB2/6000 columns, they differ in one character.
This is because ODM needs one character more for the end-of-string symbol.

12.3.2.3 Adding Comments to the Database Objects
After creating the database tables, we add appropriate comments to the database
objects. The following figure is showing the script db_comment.sql, which is called
after db_model.

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 239

--

-- Comments on NetView DM/6ððð Configuration Tables and Columns

--

-- Table nvdm_node

comment on table nvdm_node \

is 'NetView DM/6ððð nodes in the distribution network'

comment on column nvdm_node.node_name \

is 'IP host name of the node (primary key)'

comment on column nvdm_node.node_type \

is 'Node type (ð=server, 1=agent, 2=preparation site, not null)'

comment on column nvdm_node.short_name \

is 'Target short name (not null)'

comment on column nvdm_node.target_os \

is 'Target operating system (AIX assumed if null)'

comment on column nvdm_node.repos_fs \

is 'Flag indicating if the repository directory has to be put in an own \

file system (yes/no)'

comment on column nvdm_node.repos_size \

is 'Size in blocks of the file system to be created (when repos_fs is set \

to yes'

comment on column nvdm_node.x_25_number \

is 'If null configure SNA profiles to use the control point XID instead'

comment on column nvdm_node.server_name \

is 'Name of the NetView DM/6ððð server for this target (not null, \

foreigh key to nvdm_node)'

comment on column nvdm_node.group_name \

is 'Target group the node belongs to'

comment on column nvdm_node.config_db \

is 'Configuration database support (ODM or DB2, ODM if null)'

-- Table nvdm_users

comment on table nvdm_users \

is 'NetView DM/6ððð users'

comment on column nvdm_users.node_name \

is 'IP host name of the node (primary key, foreign key to nvdm_node)'

comment on column nvdm_users.username \

is 'AIX user name (primary key)'

comment on column nvdm_users.usergroup \

is 'AIX user group'

Figure 133 (Part 1 of 2). Script db_comment.sql for Adding Comments to the Database Objects

240 Pristine AIX Environments

-- Table nvdm_servers

comment on table nvdm_servers \

is 'NetView DM/6ððð servers'

comment on column nvdm_servers.node_name \

is 'Server name (primary key, foreign key to nvdm_node)'

comment on column nvdm_servers.local_lu_name \

is 'LU6.2 name'

comment on column nvdm_servers.pu_name \

is 'SNA physical unit name'

comment on column nvdm_servers.cp_name \

is 'SNA control point name'

comment on column nvdm_servers.xid \

is 'XID of the server node'

comment on column nvdm_servers.sna \

is 'Flag indicating whether this node uses SNA connection (yes/no)'

-- Table nvdm_groups

comment on table nvdm_groups \

is 'NetView DM/6ððð target groups'

comment on column nvdm_groups.node_name \

is 'Server name managing the target group \

(primary key, foreign key to nvdm_node)'

comment on column nvdm_groups.group_name \

is 'Target group name (primary key)'

comment on column nvdm_groups.short_name \

is 'Short name of the group (not null)'

-- Table nvdm_queues

comment on table nvdm_queues \

is 'SNA/DS queues'

comment on column nvdm_queues.node_name \

is 'Server name (primary key, foreign key to nvdm_node)'

comment on column nvdm_queues.remote_server \

is 'Short name of remote server'

comment on column nvdm_queues.protocol \

is 'Communication protocol (APPC or TCP/IP)'

comment on column nvdm_queues.focal_point \

is 'Flag indicating whether the remote node is a focal point'

comment on column nvdm_queues.inter_node \

is 'Short name of intermediate node if present'

-- Table nvdm_cfg_static

comment on table nvdm_cfg_static \

is 'Common distribution network information'

comment on column nvdm_cfg_static.name \

is 'Global parameter name'

comment on column nvdm_cfg_static.value \

is 'Parameter value'

Figure 133 (Part 2 of 2). Script db_comment.sql for Adding Comments to the Database Objects

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 241

 12.3.2.4 Granting Authorizations
The script build_db calls the Command Line Processor db2 with the file
db_authorize.sql to perform the user authorization task. This file contains the
grant commands for the Command Line Processor as shown in the following
figure:

--

-- User Authorization

--

grant connect on database to dbcfgadm,dbcfgusr,root

grant all on nvdm_node to dbcfgadm

grant all on nvdm_users to dbcfgadm

grant all on nvdm_servers to dbcfgadm

grant all on nvdm_groups to dbcfgadm

grant all on nvdm_queues to dbcfgadm

grant all on nvdm_cfg_static to dbcfgadm

grant select on nvdm_node to dbcfgusr,root

grant select on nvdm_users to dbcfgusr,root

grant select on nvdm_servers to dbcfgusr,root

grant select on nvdm_groups to dbcfgusr,root

grant select on nvdm_queues to dbcfgusr,root

grant select on nvdm_cfg_static to dbcfgusr,root

Figure 134. Database User Authorizations (Script db_authorize.sql)

The instance owner dbmsadm authorizes the users dbcfgadm, dbcfgusr and root to
connect to the database NVDM_CFG. The users dbcfgusr and root can only
select data from the configuration tables (owned by dbmsadm). The user dbcfgadm is
granted all rights over the configuration tables except creating and dropping tables
(see considerations on page 225 when creating the AIX users). It corresponds to
the FNDADMN authority in NetView DM/6000.

12.3.2.5 Inserting Data into the Tables
There are several different ways of inserting data into the configuration database
(see Chapter 15, “Modifying Configuration Data Using a Graphical User Interface”
on page 293). At this place in the script build_db you can use the desired insert
method calling an appropriate script (see Chapter 14, “Converting the Data Model
between ODM and DB2/6000” on page 275 for an example).

In our case we use the import possibility of DB2/6000. The data is prepared in
ASCII files in a particular format and then put into the database by the SQL
command import.

Although this method seems uncomfortable, it is justified by the following:

242 Pristine AIX Environments

� As the file format corresponds to DRDA standards, such files can be used to
transfer data between DRDA-compliant databases.

� The files can be used as an intermediate step in converting data from
DB2/6000 into non-DRDA-compliant databases such as ODM (see Chapter 14,
“Converting the Data Model between ODM and DB2/6000” on page 275).

� Such files can be easily generated automatically from other applications (for
example, in the case of large distribution networks where it is too awkward to
enter the configuration data manually, see Chapter 9, “Configuring a
Production Environment” on page 155).

The data imports into the NVDM_CFG database are done by the script
db_import.sql, which contains import statements for each table and is called in
build_db by the Command Line Processor. The following figure shows the data
import file:

--

-- Import Data

--

import from NVDM_NODE.del of del insert into nvdm_node

import from NVDM_USERS.del of del insert into nvdm_users

import from NVDM_SERVERS.del of del insert into nvdm_servers

import from NVDM_GROUPS.del of del insert into nvdm_groups

import from NVDM_QUEUES.del of del insert into nvdm_queues

import from NVDM_CFG_STATIC.del of del insert into nvdm_cfg_static

Figure 135. Import of Data for the Tables of NVDM_CFG (Script db_import)

The data for each table of the NVDM_CFG database is contained in files with
names made of the name of the respective table in upper-case and an extension
del. For example the appropriate import file for the table nvdm_node is
NVDM_NODE.del. The following figure shows the data for the table nvdm_node:

"rs6ððð12","ð","RS6ððð12","AIX","ITSO Raleigh DB2 server","Plamen Kiradjiev",

 "Wolfgang Geiger","2377","IBM","yes",,,"rs6ððð12",

"rs6ððð4","ð","RS6ððð4",,"dummy server",,,,,,,,"rs6ððð4","Group1"

"rs6ððð11","ð","RS6ððð11","AIX","ITSO Raleigh test server","Stefan Uelpenich",

 "Wolfgang Geiger","4711","IBM",,"ð",,"rs6ððð11","Group1"

"rs6ððð5","1","RS6ððð5","AIX","dummy agent",,,,,,"ð",,"rs6ððð11","Group1"

"rs6ððð77","1","RS6ððð77","AIX","dummy agent",,,,,,,,"rs6ððð4","Group1"

Figure 136. Import Data File for Table nvdm_node

The data is stored in the DEL (delimited ASCII) file format with commas (,) as
column delimiters. Null values, if allowed, are provided by entering two adjacent
commas.

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 243

The following is the output of the script build_db in the case when creating the
database is a success:

244 Pristine AIX Environments

DATABASE CONFIG: starting the database manager

+ db2 db2start

SQL1ð26N The database manager is already active.

DATABASE CONFIG: creation of the database

DB2ððððI The CREATE DATABASE command completed successfully.

Database Connection Information

 Database product = DB2/6ððð 1.2.ð

 SQL authorization ID = DBMSADM

 Local database alias = NVDM_CFG

DB2ððððI The SQL command completed successfully.

 ...

DB2ððððI The SQL command completed successfully.

SQL31ð9N The Import utility is beginning to import data from file

"NVDM_NODE.del".

SQL311ðN The Import utility has completed processing. "3" rows were read

from the input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "3".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "3" rows were processed from the input file. "3" rows were

successfully inserted into the table. "ð" rows were rejected.

SQL31ð9N The Import utility is beginning to import data from file

"NVDM_USERS.del".

SQL311ðN The Import utility has completed processing. "8" rows were read

from the input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "8".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "8" rows were processed from the input file. "8" rows were

successfully inserted into the table. "ð" rows were rejected.

SQL31ð9N The Import utility is beginning to import data from file

"NVDM_SERVERS.del".

SQL311ðN The Import utility has completed processing. "2" rows were read

from the input file.

Figure 137 (Part 1 of 2). Database Creation Log Output

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 245

SQL3221W ...Begin COMMIT WORK. Input Record Count = "2".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "2" rows were processed from the input file. "2" rows were

successfully inserted into the table. "ð" rows were rejected.

SQL31ð9N The Import utility is beginning to import data from file

"NVDM_GROUPS.del".

SQL311ðN The Import utility has completed processing. "1" rows were

read from the input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "1".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "1" rows were processed from the input file. "1" rows were

successfully inserted into the table. "ð" rows were rejected.

SQL31ð9N The Import utility is beginning to import data from file

"NVDM_QUEUES.del".

SQL311ðN The Import utility has completed processing. "ð" rows were

read from the input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "ð".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "ð" rows were processed from the input file. "ð" rows were

successfully inserted into the table. "ð" rows were rejected.

SQL31ð9N The Import utility is beginning to import data from file

"NVDM_CFG_STATIC.del".

SQL311ðN The Import utility has completed processing. "25" rows were

read from the input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "25".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "25" rows were processed from the input file. "25" rows were

successfully inserted into the table. "ð" rows were rejected.

DATABASE CONFIG: Database NVDM_CFG built SUCCESSFULLY!!!

Figure 137 (Part 2 of 2). Database Creation Log Output

246 Pristine AIX Environments

12.3.3 Authentication Types and Security Considerations
In this section we consider some specifics of the two possible authentication types
in DB2/6000: server and client. It will help you to get an impression of how user
authentication is done in DB2/6000 and what impact the chosen authentication type
has on the remote database access and on the NetView DM/6000 configuration
security.

12.3.3.1 Authentication Types in DB2/6000
There are two ways of using the configuration database: with server authentication
or with client authentication. As the given authentication type has to be identical on
both the server and the client sites the following actions have to be performed:

Server For general use set the appropriate value for the variable AUTH in the
script build_db. When build_db is executed the database is created,
respectively recreated with the desired authentication type.

For temporary change of the authentication, you must uncatalog the
database and then catalog it again with the desired authentication type.
You can do this only as the instance owner dbmsadm. To change the
authorization from the default server to client, execute the following
commands from the Command Line Processor:

uncatalog database nvdm_cfg

catalog database nvdm_cfg on /home/dbmsadm/databases \

authentication client

 Note

Before uncataloging the database, you can run list database

directory to get information about the path where the database
resides.

The default authentication type for DB2/6000 is server. So if you omit
the authentication parameter, the database is cataloged with server
authentication.

Client To change the authentication type on the client site, you must uncatalog
and catalog the database with the new authentication type. The actions
are similar to the temporary change of the authentication type on the
server, except that you must specify the TCP/IP node instead of
database directory (see 12.2.5, “Further Client Configuration” on
page 226 for details):

uncatalog database nvdm_cfg

catalog database nvdm_cfg at node rs12db authentication client

Only the instance owner has the permission of cataloging and
uncataloging databases.

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 247

 Note

It is important that the given authentication type matches on both the
server and its clients. Otherwise the following error massage is
generated:

SQL14ð1N Authentication types do not match.

12.3.3.2 Comparison between the Two Types of Authentication
in DB2/6000
The two types of authentication provide the two extremes considering the comfort
of remote access and the database security. The following is a comparison of the
two authentication types with regard to both of the criteria above:

Authentication type SERVER

 � Remote access

To access the remote database from a client, you must first issue
the command connect, for example:

connect to nvdm_cfg user dbcfgusr

Then you are prompted to enter the password of the given user
name. The authentication is made on the server, which means that
such an AIX user must be registered on the server. Therefore the
remote user must explicitly connect to the database.

 � Security

From both types the server authentication provides the higher level
of security because every remote user must have a valid AIX user
account and password on the server. Of course, the general
network security considerations, like gaining the password while
transmitting it to the server, apply here.

For the case of using server authentication, we defined two AIX users
on the database server dbcfgadm and dbcfgusr (see page 225) and
granted them appropriate authorities (see 12.3.2.4, “Granting
Authorizations” on page 242). To obtain the desired priority level a
remote user should log in as dbcfgadm, for NetView DM/6000
administration tasks, respectively as dbcfgusr, for simple selections for
FNDBLD or FNDUSER task

Authentication type CLIENT

 � Remote access

The authentication on the client provides a very comfortable way to
access the remote database from the client machine. Here the
authentication is made locally on the client and is based on the local
user account the current AIX user is registered under. Moreover,
you can set the default database name in the variable DB2DBDFT
from the script db2profile to automatically connect to the desired
database after issuing db2.

248 Pristine AIX Environments

This way is very convenient for the database access from shell
scripts because there is no need of interaction while running the
script. In our scenario, we granted root the authority for connecting
the NVDM_CFG database and querying its tables. With this type of
authentication, a root on the client can obtain implicitly the same
database authorities as the root on the server just after calling the
Command Line Processor db2, provided that DB2DBDFT is set to
the desired default database. Otherwise, it only has to call connect
to nvdm_cfg but user and password do not need to be supplied.
The database user is accepted by the server after passing the
authentication on the client since it is authorized to use the
database.

 Note

The database user does not need to be registered as an AIX
user on the database server machine.

 � Security

At this place arises a big security hole in using the configuration
database.

NetView DM/6000 defines generally three groups of users:
FNDADMN, FNDBLD and FNDUSER. By default, only the
FNDADMN users have the authority of configuring and
administrating NetView DM/6000.

The automatic configuration procedure uses the NVDM_CFG
database, among other things, to create the NetView DM/6000
users on the targets. It is quite possible that some root's in the CC
domain do not have FNDADMN rights, while other users on the
same machines are authorized to change the NetView DM/6000
configuration.

Moreover, some machines might not contain FNDADMN users at all,
but every root can identify himself as any user on his local machine.
This includes the instance owner which is presented on every client
machine. That is, the root user on the database client, whether or
not it is authorized, can grab database rights that he is not entitled
to. Hence he can gain full control of NetView DM/6000 through the
NVDM_CFG configuration database.
 Note

This contradicts the security concepts of NetView DM/6000
where the authorization of the users on the targets is made on
the CC server based on their privileges (FNDADMN, FNDBLD or
FNDUSER) defined also on the server. We can speak here
about server type authorization in similarity to the database
notion.

We can draw the following conclusions after the considerations above:

� Use server authentication to ensure a higher level of security while configuring
NetView DM/6000. This approach is reasonable in small networks because of

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 249

the need to type passwords during the configuration of each remote database
client.

� Use client authentication in large trusted networks to achieve a higher level of
automation of the configuration.

 Note.

Since we assumed our test environment is trusted, we defined client
authentication (see Figure 130 on page 232). Another reason for this choice is
our focus on the automation in configuring NetView DM/6000 in a large software
distribution network.

When stressing more the secure aspect of the process, you must alter the
AUTH variable definition in the script build_db, and catalog the database on the
clients with authentication type SERVER (see previous section).

12.3.4 An Improved Data Model of the Configuration Database
This section is written for people who want to get an impression of a slightly
different, more database-oriented approach of modelling the NetView DM/6000
configuration. Other reader, could continue with 12.4, “Database Access
Procedures” on page 253, and come to this section later.

In 12.3.1, “Porting of the ODM Data Model to DB2/6000” on page 228, we
presented the direct porting of the ODM data model from Chapter 3, “Designing a
Data Model for Configuration Data” on page 11 with the goal to be able to
exchange the database part of the automatic configuration procedure without
affecting the code of the configuration script config_nvdm.

We pointed out some weaknesses of the designed ODM model with regard to
defining the data integrity of the configuration database. They especially originate
from the reflexive dependencies between tables (see 12.3, “Depicting the Data
Model for the Configuration Data in DB2/6000” on page 227 for details).

250 Pristine AIX Environments

Figure 138. An Improved Data Model for NVDM_CFG

In this section we propose an improved database design that makes use of the
advanced DB2/6000 data definition features for ensuring referential integrity of data
(see Figure 138). We do not show the implementation of this database design.
Our intention is to show how to use DB2/6000, designing a NetView DM/6000
configuration data model that passes the task of monitoring data integrity from the
NetView DM/6000 administrator to the DB2/6000 database management system.

As ODM does not provide such powerful tools for defining and monitoring
referential integrity of data, this aspect was omitted when defining the ODM data
model.

To avoid the reflexive referential dependencies between the tables, nvdm_node,
nvdm_servers and nvdm_groups (compare with Figure 127 on page 228) we
introduce two new tables that express the table relationships not depicted in
Figure 127 on page 228:

� nvdm_node_server : Defines the relationship from client in nvdm_node to server
in nvdm_servers and its columns consist of the primary keys of the both tables.

� nvdm_node_group : Defines the membership of a node in nvdm_node to a
group in nvdm_group and its columns consist of the primary keys of the both
tables.

In the original tables nvdm_node, nvdm_servers and nvdm_groups we leave only the
columns with specific information about the appropriate item (node, server or
group). We call these tables basic and depict them in Figure 138 with a rectangle.

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 251

The two new tables are depicted as rhombs and called relationship tables.

The following list shows the changed tables with highlighting differences:

 � table nvdm_node

– node_name (primary key)

 – node_type

 – short_name

 – description

 – contact_name

 – owning_manager

 – telephone_number

 – customer_name

 – target_os

 � table nvdm_servers

– node_name (primary key)

 – local_lu_name

 – pu_name

 – cp_name

 – xid

 – sna

 � table nvdm_groups

– node_name (primary key)

– group_name (primary key)

 – short_name

 – description

 � table nvdm_node_server

– node_name (foreign key referencing nvdm_node)

– server_name (foreign key referencing nvdm_servers)

 � table nvdm_node_group

– node_name (foreign key referencing nvdm_node)

– group_name (foreign key referencing nvdm_groups)

 Note

Defining the relationship between nvdm_node and nvdm_node_group as a
many-to-one relationship, we are now allowed to have a node belonging to
different groups. This is generally possible in NetView DM/6000 but the
former model did not represent it (see Chapter 3, “Designing a Data Model
for Configuration Data” on page 11).

252 Pristine AIX Environments

The referential constraints depicted in Figure 127 on page 228 are kept. The table
nvdm_node remains the parent of all tables except nvdm_cfg_static. The new
relationships added by the tables nvdm_node_server and nvdm_node_group, reflect
the constraints between the basic tables in the other direction preventing the risk of
reflection.

Referring to the new data model, as the deletion of a node in nvdm_node triggers
the deletion of the appropriate rows in all other dependent tables (except
nvdm_cfg_static), so do the opposite referential constraints work. When deleting a
server entry in nvdm_server, all related rows in nvdm_node_server are affected,
there will be no data remaining that determine a non-existing server as the server
of a NetView DM/6000 node. In a similar way the same relationship is valid for the
group membership of a node.

 Note

The inserting of data is also dependent on the referential constraints. The
principle here is the same: no data can exist in dependent tables without the
related data in the parent table.

This approach guarantees the clean DB2/6000 implementation of the referential
integrity of the NetView DM/6000 configuration database with the aid of foreign
keys.

The given proposal in this section does not claim to be the ideal alternative of the
NetView DM/6000 configuration data model. It gives just an idea of how to
integrate the notion of data integrity into the the DB2/6000 database.

 Note

If you decide to implement such a different data model for the configuration
database you must adjust all database access procedure calls in the
configuration script config_nvdm to the new model, as their arguments use table
respectively column names. It is also quite possible that some changes in the
logic of the configuration procedure are necessary.

12.4 Database Access Procedures
The configuration database NVDM_CFG created and the NetView DM/6000
configuration data imported, we now describe the implementation of the access
procedures in DB2/6000 providing the same interface as the ODM database access
procedures.

The three interfaces between the automatic configuration script and the
configuration database are represented by the following procedures:

 � get_attribute

 � get_attribute_list

 � get_attribute_and

Figure 139 on page 254 shows their implementation using DB2/6000.

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 253

#

#

DATABASE ACCESS METHODS (DB2)

#

#

database owner name

#--------------------

DBOWNER=dbmsadm

#

connect to the configuration database

#--------------------------------------

print "DB2/6ððð : Connect to configuration database"

db2 connect

#

get data output from SQL (extract SQL header and trailer)

$1: select clause

$2: tables (from clause)

$3: conditions (where clause)

#--

get_data()

{

 WHERE="$3"

if ["$WHERE" = ""]

 then

 WHERE="1=1"

 fi

 SELECT="$1"

db2 select "$SELECT" from $2 where "$WHERE" | awk '

 BEGIN {

inlist = ð

 }

 /^SQL[ð-9][ð-9][ð-9][ð-9][N,C]/ {

cmd = sprintf("exec 1>&2;echo DB2/6ððð : %s",$ð)

 system(cmd)

 }

 /^-+/ {

inlist = 1

 next

 }

Figure 139 (Part 1 of 3). Database Access Procedures for the Database NVDM_CFG
(DB2/6000)

254 Pristine AIX Environments

 /∧$/ {

if (inlist == 1) inlist++

 next

 }

inlist == 1 {

 gsub(/ \$/,"")

 print

 }

'

}

#

get list of selected column values from a DB2 table

$1 = table name

$2 = search column name

$3 = search column value

$4 = output column name

The list of selected column values is stored in the VALUE_LIST variable

The number of selected values is stored in VALUE_NUM

#---

get_attribute_list ()

{

VALUE_LIST=yget_data "$4" $DBOWNER.$1 "$2 = '$3'"y
VALUE_NUM=yecho "$VALUE_LIST" | wc -w | sed 's/ //g'y

}

#

get single select value

$1 = table name

$2 = search column name (must be the primary key of the table)

$3 = search column value

$4 = output column name

#---

get_attribute ()

{

VALUE=yget_data "$4" $DBOWNER.$1 "$2 = '$3'"y
}

Figure 139 (Part 2 of 3). Database Access Procedures for the Database NVDM_CFG
(DB2/6000)

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 255

#

get single select value (AND)

$1 = table name

$2 = search field1

$3 = search field value1

$4 = search field2

$5 = search field value2

$6 = output column name

field1 and field2 must constitute the primary key of the table

#---

get_attribute_and ()

{

VALUE=yget_data "$6" $DBOWNER.$1 "$2 = '$3' and $4 = '$5'"y
}

Figure 139 (Part 3 of 3). Database Access Procedures for the Database NVDM_CFG
(DB2/6000)

There is a need of some automatic editing of the output from a DB2/6000 SQL
query. Generally, the output of an SQL query consist of the following three parts:

header: With the column names and separating lines

data: The retrieved data

trailer: Selected row count summary

We take as example the following SQL query:

SELECT user_name FROM nvdm_users WHERE nvdm_node='rs6ððð12'

This query is generated by the following call:

get_attribute_list nvdm_users node_name rs6ððð12 user_name

The SQL output looks like:

USERNAME

plamen

root

stefan

3 record(s) selected.

In order to enable the further processing of the pure retrieved data we must cut the
header and trailer information from the SQL query output. This task is performed
by the procedure get_data. It is called with three arguments representing the three
parts of the SQL query:

$1: select clause, containing the desired output columns

256 Pristine AIX Environments

$2: from clause with the queried tables

$3: where clause containing the selection predicates as well as the
additional parts of the SQL query, like order and group

The arguments must obey the standard shell evaluation rules. For example, you
must quote the asterisk (\) in the select clause like the following:

get_data \\ nvdm_node "server_name = 'rs6ððð4'"

We recommend you enclose the third argument in double-quotes (") like in the
given example. The procedure get_data returns the pure selected data row by row
by applying the editing features of awk. Moreover, it checks whether an error
message is returned by the database management system and redirects it to
standard error.

With the help of this procedure the code for the database access procedures look
very simple. You must just build the appropriate call of get_data and assign the
returned value to the variables VALUE, respectively VALUE_LIST. Especially by
get_attribute_list, it is also required to set VALUE_NUM to the number of
selected rows. This task is performed by counting the list members in
VALUE_LIST with the aid of wc.

 Note

The procedure get_data is more powerful and general than the database
access procedures used from the NetView DM/6000 configuration procedure.
In Chapter 14, “Converting the Data Model between ODM and DB2/6000” on
page 275 we show another application of this help procedure, which makes use
of the order part of the SQL query.

 Chapter 12. Implementing the Configuration Data Model Using DB2/6000 257

258 Pristine AIX Environments

Chapter 13. Testing the Automatic Configuration Procedure
with Software Distribution for AIX V3.1 with DB2/6000

After we described the migration of the automatic configuration procedure from
Software Distribution for AIX Version 1.2 to Software Distribution for AIX Version
3.1 in Chapter 11, “Migrating the Procedure to Software Distribution for AIX V3.1”
on page 197 and ported the data model from ODM in DB2/6000 in Chapter 12,
“Implementing the Configuration Data Model Using DB2/6000” on page 219, we
now test the script config_nvdm applying both enhancements.

In this chapter we show a more complicated scenario than our former test
environment from Chapter 2, “Base of Automated Configuration” on page 5. Our
network environment for the current test is depicted in Figure 140.

Figure 140. Scenario for Automatic Configuration of NetView DM/6000 V3.1 with DB2/60

We configure the NetView DM/6000 server rs6ððð4. It is the CC server for the
node rs6ððð77 and is connected with a NetView DM/MVS by an SNA/DS
connection over the SNA LU6.2 protocol. Besides, our server is connected over
SNA/DS based on TCP/IP with another server rs6ððð11 from a different network
over the intermediate node rs6ððð12. In this way we also show the configuration of
an SNA/DS connection over TCP/IP through an intermediate node (refer to
Chapter 8, “Enhancing the Configuration Procedure” on page 131).

 Copyright IBM Corp. 1996 259

13.1 Prerequisites for Node Configuration
In order to prepare our test environment for running the automatic configuration
procedure, we performed the following tasks:

� Installation of the AIX 3.2.5 operating system on all machines in our test
network environment

� Installation of Software Distribution for AIX Server Version 3.1 on rs6ððð4,
rs6ððð11 and rs6ððð12

� Installation of Software Distribution for AIX Agent Version 3.1 on rs6ððð77 and
rs6ððð5

� Installation of SNA Server Version 2.1 on rs6ððð4

� Configuration of TCP/IP on all AIX sites in our network over the token-ring
adapter (inclusively enabling the TCP/IP name resolution for all machines)

� Configuration of rs6ððð4 as a DB2/6000 Version 1.2 server (for details see
Chapter 12, “Implementing the Configuration Data Model Using DB2/6000” on
page 219)

� Configuration of all other AIX machines as DB2/6000 Version 1.2 clients (for
details see Chapter 12, “Implementing the Configuration Data Model Using
DB2/6000” on page 219)

13.2 Starting the Configuration
In order to execute the automatic configuration procedure the DB2/6000 database
must have been previously filled. See 12.3.2, “Creating and Recreating the
Configuration Database” on page 231 about creating the DB2/6000 configuration
database. We first present the contents of our configuration database. The output
is done from SQL select statements by making some projections on the relevant
columns in order to let the selected data fit in the page. The following figures
depict the script select_db generating the SQL reports and its output.

260 Pristine AIX Environments

#

#

select statements for the relevant data in the NetView DM/6ððð

configuration database

#

#

db2 select node_name, node_type, short_name, target_os, server_name \

from dbmsadm.nvdm_node > nvdm_node

db2 select \\ from dbmsadm.nvdm_servers > nvdm_servers.select

db2 select \\ from dbmsadm.nvdm_groups > nvdm_groups.select

db2 select \\ from dbmsadm.nvdm_queues > nvdm_queues.select

db2 select \\ from dbmsadm.nvdm_users > nvdm_users.select

db2 select \\ from dbmsadm.nvdm_cfg_static > nvdm_cfg_static.select

Figure 141. Script select_db for Generating Reports from the NetView DM/6000
Configuration Database

NODE_NAME NODE_TYPE SHORT_NAME TARGET_OS SERVER_NAME

------------------------- --------- ---------- ------------ -------------------------

rs6ððð12 ð RS6ððð12 AIX rs6ððð12

rs6ððð4 ð RS6ððð4 - rs6ððð4

rs6ððð11 ð RS6ððð11 AIX rs6ððð11

rs6ððð5 1 RS6ððð5 AIX rs6ððð11

rs6ððð77 1 RS6ððð77 AIX rs6ððð4

5 record(s) selected.

Figure 142. Contents of DB2/6000 Table nvdm_node

NODE_NAME LOCAL_LU_NAME PU_NAME CP_NAME XID SNA

------------------------- ------------- --------- --------- --------- ----

rs6ððð12 A B C - no

rs6ððð4 RA62224B RA62224 RA62224A - yes

rs6ððð11 RA6ðð11B RA6ððð11 RA6ð11CP - no

3 record(s) selected.

Figure 143. Contents of DB2/6000 Table nvdm_servers

 Chapter 13. Testing the Automatic Configuration Procedure with Software Distribution for AIX V3.1 with DB2/6000 261

NODE_NAME GROUP_NAME DESCRIPTION SHORT_NAME

------------------------- ------------------------- ------------------------- ----------

rs6ððð11 Group1 Raleigh Group1 GROUP1

1 record(s) selected.

Figure 144. Contents of DB2/6000 Table nvdm_groups

NODE_NAME REMOTE_SERVER PROTOCOL FOCAL_POINT INTER_NODE

------------------------- ------------------------- -------- ----------- ----------

rs6ððð11 rs6ððð12 TCP/IP no -

rs6ððð11 rs6ððð4 TCP/IP no RS6ððð12

rs6ððð4 rs6ððð11 TCP/IP no RS6ððð12

rs6ððð4 rs6ððð12 TCP/IP no -

rs6ððð4 RA39TCF1 APPC yes -

5 record(s) selected.

Figure 145. Contents of DB2/6000 Table nvdm_queues

NODE_NAME USERNAME USERGROUP

------------------------- --------- ------------

rs6ððð12 root FNDADMN

rs6ððð12 stefan FNDBLD

rs6ððð12 plamen FNDBLD

rs6ððð11 root FNDBLD

rs6ððð4 plamen FNDUSER

rs6ððð4 wolfgang FNDBLD

rs6ððð11 hugo FNDUSER

rs6ððð11 stefan FNDADMN

rs6ððð77 root FNDADMN

rs6ððð77 stefan FNDUSER

1ð record(s) selected.

Figure 146. Contents of DB2/6000 Table nvdm_users

262 Pristine AIX Environments

NAME VALUE

-------------------- --

VTAM_CP_NAME RAK

SOLICIT_SSCP yes

I_FIELD_SIZE 2ð42

LOCAL_SAP ð4

REMOTE_SAP ð4

INITIATE_CALL yes

ACTIVATE_START yes

RESTART_NORMAL yes

RESTART_ABNORMAL yes

RESTART_NVDM no

REM_LINK_ADDR 4ðððð124ðððð

SNA_NET_NAME USIBMRA

DATALINK_DEVICE tokð

MODE_PROF_NAME NVDMNORM

MODE_NAME NVDMNORM

MAX_RU_SIZE 2ð48

TPN_PROF_NAME_SND NVDMSND

TPN_PROF_NAME_RCV NVDMRCV

RTPN_PROF_NAME_SND NVDMSND

RTPN_PROF_NAME_RCV NVDMRCV

PARTNER_LU_NAME RA39TCF1

SIDE_INFO_PROF_SND NVDMSIDS

SIDE_INFO_PROF_RCV NVDMSIDR

TCPIP_PORT 729

NVDM_LOG_SIZE 25ðððð

25 record(s) selected.

Figure 147. Contents of DB2/6000 Table nvdm_cfg_static

Similar to Chapter 5, “Testing the Automatic Configuration Script” on page 83 we
want to keep track of the execution of the configuration procedure. In order to do
this we use the following statement:

config_nvdm rs6ððð4 2>&1 | tee logfile

The configuration procedure for NetView DM/6000 with DB2/6000 support is listed
in Appendix A, “The Configuration Script Listings” on page 331.

The following figure shows the log file contents after the successful execution of our
configuration procedure:

 Chapter 13. Testing the Automatic Configuration Procedure with Software Distribution for AIX V3.1 with DB2/6000 263

NVDM CONFIG : Extracted hostname ... rs6ððð4

DB2/6ððð : Connect to configuration database

Database Connection Information

 Database product = DB2/6ððð 1.2.ð

 SQL authorization ID = ROOT

 Local database alias = NVDM_CFG

===

Software distribution network configuration script

$Revision: 1.1 $

IP Hostname = rs6ððð4

Name resolution = rs6ððð4.itso.ral.ibm.com is 9.24.1ð4.27

===

NVDM CONFIG : --> Trying to configure node rs6ððð4

NVDM CONFIG : Node type is ð (ð = Server, 1 = Agent, 2 = Prep)

NVDM CONFIG : --> NVDM Base Node Configuration

NVDM CONFIG : Current hostname of server is rs6ððð4.

NVDM CONFIG : Current WORKSTATION NAME of server is rs6ððð4.

NVDM CONFIG : Stopping Server...

rs6ððð4

Trying to connect to default server (rs6ððð4).

Connected to server rs6ððð4.

NVDM CONFIG : Sleeping 2ð seconds...

NVDM CONFIG : Setting hostname to rs6ððð4.

rs6ððð4

FNDCLð21E: The new target name is already in use.

NVDM CONFIG : Setting nvdm.cfg (WORKSTATION NAME) to rs6ððð4

NVDM CONFIG : Setting nvdm.cfg (SERVER) to rs6ððð4

NVDM CONFIG : Setting nvdm.cfg (LOG FILE SIZE) to 25ðððð

CONFIG NVDM : Checking NetViewDM-rcv port...

CONFIG NVDM : Checking NetViewDM-snd port...

CONFIG NVDM : Checking NetViewDM6ððð port...

NVDM CONFIG : Setting nvdm.cfg (TCP/IP PORT) to 729

NVDM CONFIG : Resetting root.cli ... (rs6ððð4)

Create /usr/lpp/netviewdm/uicfg/root.cfg file...

NVDM CONFIG : Restarting Server...

NVDM CONFIG : --> In order for the changes to become active

NVDM CONFIG : NetView DM/6ððð will be restarted on this node

NVDM CONFIG : NVDM is not running. It will be started now.

FNDCL232E: Unable to start the system as the D&CC Agent is shutting down.

Trying to connect to default server (rs6ððð4).

Connected to server rs6ððð4.

Trying to connect to default server (rs6ððð4).

Connected to server rs6ððð4.

NVDM CONFIG : Setting SNA Network Name to USIBMRA

NVDM CONFIG : Setting SNA Datalink Device to tokð

NVDM CONFIG : Setting SNA Remote Link Address to 4ðððð124ðððð

Figure 148 (Part 1 of 7). Log File Contents After Configuration Procedure

264 Pristine AIX Environments

NVDM CONFIG : Setting SNA NVDM Mode Profile Name to NVDMNORM

NVDM CONFIG : Setting SNA NVDM Mode Name to NVDMNORM

NVDM CONFIG : Setting SNA TPN Profile Name (Send) to NVDMSND

NVDM CONFIG : Setting SNA TPN Profile Name (Receive) to NVDMRCV

NVDM CONFIG : Setting SNA Partner LU Name (MVS Host) to RA39TCF1

NVDM CONFIG : Setting SNA Side Info Profile Name (Send) to NVDMSIDS

NVDM CONFIG : Setting SNA Side Info Profile Name (Receive) to NVDMSIDR

NVDM CONFIG : Setting Solicit SSCP Field (yes|no) to yes

NVDM CONFIG : Setting I-Field Size to 2ð42

NVDM CONFIG : Setting SNA Local SAP No. to ð4

NVDM CONFIG : Setting Remote SAP No. to ð4

NVDM CONFIG : Setting SNA Initiate Call Field (yes|no) to yes

NVDM CONFIG : Setting SNA Activate on start (yes|no) to yes

NVDM CONFIG : Setting SNA Restart on normal termination (yes|no) to yes

NVDM CONFIG : Setting SNA Restart on abnormal termination (yes|no) to yes

NVDM CONFIG : Setting SNA VTAM CP Name (for LU6.2 Location Profile) to RAK

NVDM CONFIG : Setting PU NAME for rs6ððð4 to RA62224

NVDM CONFIG : Setting Local LU Name for rs6ððð4 to RA62224B

NVDM CONFIG : Setting Control Point Name for rs6ððð4to RA62224A

NVDM CONFIG : Could not determine XID for rs6ððð4 configu

ration.

NVDM CONFIG : Setting USE_CP_XID to yes

NVDM CONFIG : --> Configuring SNA

NVDM CONFIG : Exporting existing SNA profiles to /tmp/sna.org ...

NOTE: The committed database does not contain default

template profiles; none will be exported.

Configuration file '/tmp/sna.org' exported.

NVDM CONFIG : Adding DLC Device for tokð

NVDM CONFIG : Configuring SNA Initial Node Setup

+ mk_qcinit -y token_ring -t appn_end_node -w USIBMRA -d RA62224A

NVDM CONFIG : Configuring SNA Control Point Profile

===

+ chsnaobj -t control_pt -e USIBMRA -a RA62224A -A RA62224A -N appn_end_node node_cp

Profile type 'control_pt' name 'node_cp' CHANGED.

===

NVDM CONFIG : Configuring SNA DLC Profile

===

+ [sna_dlc_token_ring = sna_dlc_x.25]

+ mksnaobj -t sna_dlc_token_ring -d tokð -b yes -w yes -m 2ð42 -H ð4 -c no -q ð tokð

ð1ð5-ðð31 Profile type 'sna_dlc_token_ring' name 'tokð' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ [sna_dlc_token_ring = sna_dlc_x.25]

+ chsnaobj -t sna_dlc_token_ring -d tokð -b yes -w yes -m 2ð42 -H ð4 -c no -q ð tokð

Profile type 'sna_dlc_token_ring' name 'tokð' CHANGED.

Figure 148 (Part 2 of 7). Log File Contents After Configuration Procedure

 Chapter 13. Testing the Automatic Configuration Procedure with Software Distribution for AIX V3.1 with DB2/6000 265

===

NVDM CONFIG : Configuring SNA Link Station Profile

===

+ [token_ring = x.25]

+ mksnaobj -t link_station -w token_ring -y tokð -d 4ðððð124ðððð -l ð71ððððð -s ð4 -a yes \

-O yes -F yes -h yes -z yes -c yes RA62224

ð1ð5-ðð31 Profile type 'link_station_token_ring' name 'RA62224' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ [token_ring = x.25]

+ chsnaobj -t link_station -w token_ring -y tokð -d 4ðððð124ðððð -l ð71ððððð -s ð4 -a yes \

-O yes -F yes -h yes -z yes -c yes RA62224

Profile type 'link_station_token_ring' name 'RA62224' CHANGED.

===

NVDM CONFIG : Configuring SNA Local LU Profile

===

+ mksnaobj -t local_lu -u lu6.2 -l RA62224B -L RA62224B RA62224B

ð1ð5-ðð31 Profile type 'local_lu_lu6.2' name 'RA62224B' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ chsnaobj -t local_lu -u lu6.2 -l RA62224B -L RA62224B RA62224B

Profile type 'local_lu_lu6.2' name 'RA62224B' CHANGED.

===

NVDM CONFIG : Configuring SNA Mode Profile

===

+ mksnaobj -t mode -x 1 -w ð -l ð -a ð -N #CONNECT -m NVDMNORM NVDMNORM

ð1ð5-ðð31 Profile type 'mode' name 'NVDMNORM' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ chsnaobj -t mode -x 1 -w ð -l ð -a ð -N #CONNECT -m NVDMNORM NVDMNORM

Profile type 'mode' name 'NVDMNORM' CHANGED.

===

NVDM CONFIG : Configuring SNA TPN Profile (SEND)

===

+ mksnaobj -t local_tp -n 21FðFðF7 -h yes -c basic -d ð -P yes -w /usr/lpp/netviewdm/bin/fndts \

-s none NVDMSND

ð1ð5-ðð31 Profile type 'local_tp' name 'NVDMSND' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ chsnaobj -t local_tp -n 21FðFðF7 -h yes -c basic -d ð -P yes -w /usr/lpp/netviewdm/bin/fndts \

-s none NVDMSND

Profile type 'local_tp' name 'NVDMSND' CHANGED.

Figure 148 (Part 3 of 7). Log File Contents After Configuration Procedure (Part 1 of 2)

266 Pristine AIX Environments

===

NVDM CONFIG : Configuring SNA TPN Profile (Receive)

===

+ mksnaobj -t local_tp -n 21FðFðF8 -h yes -c basic -d ð -P yes -w /usr/lpp/netviewdm/bin/fndtr \

-s none NVDMRCV

ð1ð5-ðð31 Profile type 'local_tp' name 'NVDMRCV' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ chsnaobj -t local_tp -n 21FðFðF8 -h yes -c basic -d ð -P yes -w /usr/lpp/netviewdm/bin/fndtr \

-s none NVDMRCV

Profile type 'local_tp' name 'NVDMRCV' CHANGED.

===

NVDM CONFIG : Configuring SNA LU6.2 Partner LU

===

+ mksnaobj -t partner_lu6.2 -p no -P USIBMRA.RA39TCF1 -O none -A RA39TCF1 RA39TCF1

ð1ð5-ðð31 Profile type 'partner_lu6.2' name 'RA39TCF1' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ chsnaobj -t partner_lu6.2 -p no -P USIBMRA.RA39TCF1 -O none -A RA39TCF1 RA39TCF1

Profile type 'partner_lu6.2' name 'RA39TCF1' CHANGED.

===

NVDM CONFIG : Configuring SNA LU 6.2 Location Profile

===

+ mksnaobj -t partner_lu6.2_location -P USIBMRA.RA39TCF1 -O USIBMRA.RAK \

-m link_station -l RA62224B -s RA62224

RA39TCF1

ð1ð5-ðð31 Profile type 'partner_lu6.2_location' name 'RA39TCF1' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ chsnaobj -t partner_lu6.2_location -P USIBMRA.RA39TCF1 -O USIBMRA.RAK \

-m link_station -l RA62224B -s RA62224

RA39TCF1

Profile type 'partner_lu6.2_location' name 'RA39TCF1' CHANGED.

Figure 148 (Part 4 of 7). Log File Contents After Configuration Procedure (Part 2 of 2)

 Chapter 13. Testing the Automatic Configuration Procedure with Software Distribution for AIX V3.1 with DB2/6000 267

===

NVDM CONFIG : Configuring SNA Side Info Profile (Send)

===

+ mksnaobj -t side_info -L RA62224A -P USIBMRA.RA39TCF1 -m NVDMNORM -d 21FðFðF7 -h yes NVDMSIDS

ð1ð5-ðð31 Profile type 'side_info' name 'NVDMSIDS' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ chsnaobj -t side_info -L RA62224A -P USIBMRA.RA39TCF1 -m NVDMNORM -d 21FðFðF7 -h yes NVDMSIDS

ð1ð5-ð1ð2 Both the partner LU alias and fully qualified partner LU name cannot be specified in

profile type 'side_info' name 'NVDMSIDS'.

ð1ð5-ð124 Unable to change profile type 'side_info' name 'NVDMSIDS'.

Figure 148 (Part 5 of 7). Log File Contents After Configuration Procedure

268 Pristine AIX Environments

===

NVDM CONFIG : Configuring SNA Side Info Profile (Receive)

===

+ mksnaobj -t side_info -L RA62224B -P USIBMRA.RA39TCF1 -m NVDMNORM -d 21FðFðF8 -h yes NVDMSIDR

ð1ð5-ðð31 Profile type 'side_info' name 'NVDMSIDR' already exists.

ð1ð5-ðð25 mksnaobj command failed.

+ RC=255

===

NVDM CONFIG RECOVER : Profile already existed. Changing existing one ...

===

+ chsnaobj -t side_info -L RA62224B -P USIBMRA.RA39TCF1 -m NVDMNORM -d 21FðFðF8 -h yes NVDMSIDR

ð1ð5-ð1ð2 Both the partner LU alias and fully qualified partner LU name cannot be specified in

profile type 'side_info' name 'NVDMSIDR'.

ð1ð5-ð124 Unable to change profile type 'side_info' name 'NVDMSIDR'.

===

NVDM CONFIG : Updating SNA Server...

WARNING: More than one Side Information Profile was found

to represent the same local LU or CP alias 'RA62224B', partner

LU name 'USIBMRA.RA39TCF1', and mode name 'NVDMNORM'.

This may cause an unintended Side Information Profile name to

be used to identify an active session using those same values.

verifysna command OK.

The profiles listed above have been dynamically updated successfully.

NVDM CONFIG : Configuring TCP/IP connection

NVDM CONFIG : Remote connection to rs6ððð11 is made

through intermediate node RS6ððð12.

No SNA/DS connection file is created.

NVDM CONFIG : Configuring TCP/IP connection

NVDM CONFIG : Configuring SNA/DS connection configuration file.

NVDM CONFIG : (TCP/IP) for remote Server rs6ððð12.

NVDM CONFIG : Configuring APPC connection

NVDM CONFIG : Configuring SNA/DS connection configuration file

 /usr/lpp/netviewdm/db/snadscon/RA39TCF1

NVDM CONFIG : Configuring SNA/DS routing table.

NVDM CONFIG : System has TCP/IP connection to remote server.

NVDM CONFIG : System has APPC connection to remote server.

NVDM CONFIG : Writing routing table to /usr/lpp/netviewdm/db/routetab

NVDM CONFIG : Saving target history for RA39TCF1

FNDCL131E: The target specified is not local.

NVDM CONFIG : Sleeping for 15 secs.

NVDM CONFIG : Deleting Target RA39TCF1 from Server rs6ððð4 configuration.

NVDM CONFIG : Saving target history for rs6ððð11

NVDM CONFIG : Sleeping for 15 secs.

NVDM CONFIG : Deleting Target rs6ððð11 from Server rs6ððð4 configuration.

FNDCLC73E: The filters specified do not match any queues.

FNDCLC73E: The filters specified do not match any queues.

NVDM CONFIG : Saving target history for rs6ððð12

NVDM CONFIG : Sleeping for 15 secs.

NVDM CONFIG : Deleting Target rs6ððð12 from Server rs6ððð4 configuration.

Figure 148 (Part 6 of 7). Log File Contents After Configuration Procedure

 Chapter 13. Testing the Automatic Configuration Procedure with Software Distribution for AIX V3.1 with DB2/6000 269

NVDM CONFIG : Defining Target rs6ððð4 on server rs6ððð4

NVDM CONFIG : Target already exists. Updating...

nvdm updtg rs6ððð4 -s 'RS6ððð4' -d 'dummy server'

WARNING: The Domain Address has been changed to RS6ððð4.

NVDM CONFIG : Defining Target rs6ððð77 on server rs6ððð4

NVDM CONFIG : Target already exists. Updating...

nvdm updtg rs6ððð77 -s 'RS6ððð77' -y 'AIX' -d 'dummy agent' -b client

NVDM CONFIG : --> Adding AIX users for NVDM...

NVDM CONFIG : Authorization profile FNDUSER assigned to plamen.

User: plamen

Authorization Profile: FNDUSER

NVDM CONFIG : Authorization profile FNDBLD assigned to wolfgang.

User: wolfgang

Authorization Profile: FNDBLD

NVDM CONFIG : --> Adding AIX users for NVDM...

NVDM CONFIG : Authorization profile FNDADMN assigned to root.

User: root

Authorization Profile: FNDADMN

FNDCLDð7E: The root user configuration cannot be updated.

NVDM CONFIG : Authorization profile FNDUSER assigned to stefan.

User: stefan

Authorization Profile: FNDUSER

NVDM CONFIG : Deleting group Mode: from rs6ððð4 configuration.

FNDCL523W: Mode: is not a configured group.

NVDM CONFIG : Configuring Target Groups for rs6ððð4

NVDM CONFIG : No groups defined

NVDM CONFIG : Defining remote target for rs6ððð11

NVDM CONFIG : Defining remote target for rs6ððð12

NVDM CONFIG : Defining remote target for RA39TCF1

NVDM CONFIG : RA39TCF1 will be configured as focal point.

+ eval nvdm addtg RA39TCF1 -m focal -b server -s RA39TCF1 -n USIBMRA -d 'NVDM_MVS' -tp appc:

+ nvdm addtg RA39TCF1 -m focal -b server -s RA39TCF1 -n USIBMRA -d NVDM_MVS -tp appc:

ð513-ð29 The sna Subsystem is already active.

Multiple instances are not supported.

NVDM CONFIG : Releasing NVDM SNA communications.

===

NVDM CONFIG : !!! Configuration of Server completed successfully !!!

===

Figure 148 (Part 7 of 7). Log File Contents After Configuration Procedure

At the beginning of the log file you can find the DB2/6000 database connect
information. It contains the DB2/6000 version, the database user we are
authenticated as (root) when running the script and the database name
NVDM_CFG, which we configured as the default connection (see the DB2/6000
installation and configuration instructions in Chapter 12, “Implementing the
Configuration Data Model Using DB2/6000” on page 219). There is no difference
in the database access when running the queries from a DB2/6000 client (in our
case the NetView DM/6000 configuration server and the DB2/6000 are located on
the same machine, rs6ððð4).

270 Pristine AIX Environments

The transparency in the database access from the configuration script config_nvdm

can be recognized when comparing the above log file with the output from
Chapter 5, “Testing the Automatic Configuration Script” on page 83. In spite of the
different NetView DM/6000 configuration environment, you would not be able to
determine whether ODM or DB2/6000 is used as a database platform, if we had not
intentionally added the DB2/6000 connect database output into the log information.

13.3 Checking the NetView DM/6000 Configuration
In order to check the correctness of our automatic configuration, we execute some
Software Distribution for AIX inquiry commands in this section. You can compare
the output from the NetView DM/6000 configuration inquiry commands to the
DB2/6000 database contents presented in the previous section.

First, we list the configured targets on our server rs6ððð4 by issuing the following
command:

nvdm lstg '\'

Its output is shown in the following figure:

Target: RA39TCF1

Mode: Focal

Description: NVDM_MVS

Type: SERVER

Target: rs6ððð11

Mode: Push

Description:

Type: SERVER

Target: rs6ððð12

Mode: Push

Description:

Type: SERVER

Target: rs6ððð4

Mode: Push

Description: dummy server

Type: SERVER

Target: rs6ððð77

Mode: Push

Description: dummy agent

Type: CLIENT

Figure 149. Configured Targets on the Server rs60004

The node rs6ððð77 is configured as a local target, while rs6ððð12, rs6ððð11 and
the host are configured as remote targets.

According to the intermediate node configuration discussed in Chapter 8,
“Enhancing the Configuration Procedure” on page 131, connection queues are

 Chapter 13. Testing the Automatic Configuration Procedure with Software Distribution for AIX V3.1 with DB2/6000 271

created only for the adjacent servers (in our example, the host and rs6ððð12).
Hence, we see the following output after executing nvdm stat:

SNADS: Released

XFER : Released

CMD : Released

Target Type Connection Entries Q Status Tg Status

RA39TCF1 snads RA39TCF1 ð Held Released

rs6ððð12 snads RS6ððð12 ð Held Released

Figure 150. Connection Queues configured on rs60004

The method used to reach the remote server rs6ððð11 over the intermediate node
rs6ððð12 is represented in the file /usr/lpp/netviewdm/db/routetab as follows:

NETWORK PROTOCOL: BOTH

#

SNA connections

#

USIBMRA.RA39TCF1 ANY ANY ANY ANY RA39TCF15

#

TCP/IP connections

#

RS6ððð11.\ RS6ððð12

RS6ððð12.\ RS6ððð12

Figure 151. Contents of Routing Information File /usr/lpp/netviewdm/db/routetab

In order to list the Software Distribution for AIX user profiles configured on our
server rs6ððð4, we execute the following command:

nvdm lsusr '\'

It generates the following output:

272 Pristine AIX Environments

User: plamen

Authorization Profile: FNDUSER

User: root

Authorization Profile: FNDADMN

User: stefan

Authorization Profile: FNDUSER

User: wolfgang

Authorization Profile: FNDBLD

Figure 152. Locally Configured User Profiles on rs60004

When comparing with the contents of the DB2/6000 table nvdm_users from the
previous section, one can recognize that only users from the CC domain are
registered on our Software Distribution for AIX server rs6ððð4. For example, the
user hugo on the remote server rs6ððð11 is not in the list, although there is a target
entry for this node.

 Chapter 13. Testing the Automatic Configuration Procedure with Software Distribution for AIX V3.1 with DB2/6000 273

274 Pristine AIX Environments

Chapter 14. Converting the Data Model between ODM and
DB2/6000

This chapter describes the method of switching between the two presented
database scenarios for storing the Software Distribution for AIX configuration
database. It is addressed to administrators of change and distribution networks
who are using different database platforms and want to enable the transformation
of the configuration data in both directions.

We present the conversion from ODM to DB2/6000 as well as the transformation of
configuration data from DB2/6000 to ODM, although our claim is not to achieve
symmetry in both conversion processes. Rather we are guided by two practical
tasks that require conversion of the Software Distribution for AIX configuration data:

� Migrating the ODM configuration data to DB2/6000

As we presented in Chapter 12, “Implementing the Configuration Data Model
Using DB2/6000” on page 219, there are many advantages of using DB2/6000
for the Software Distribution for AIX configuration data. Because of the wide
availability of ODM as part of the AIX base operating system, it is quite
possible that you started configuring your Software Distribution for AIX
environment with an ODM data model. In order to benefit from the more
powerful capabilities of DB2/6000 previously mentioned, install the relational
database system and use it further for storing the Software Distribution for AIX
configuration data. But the data must be automatically transferred into the new
database environment as you intend to use the current Software Distribution for
AIX configuration. This method of transferring the whole ODM database to
DB2/6000 is described in 14.1, “ODM to DB2/6000 Conversion” on page 277.

� Configuring Software Distribution for AIX agents without DB2/6000 support from
a configuration server based on DB2/6000

In spite of the benefits of using DB2/6000 over ODM, in particular in large
distribution networks, it might not be feasible to install DB2/6000 client software
on all machines, only for Software Distribution for AIX purposes. One
conceivable scenario of using both platforms, DB2/6000 and ODM, in a
distribution network is depicted in Figure 153 on page 276.

 Copyright IBM Corp. 1996 275

Figure 153. Mixed Use of DB2/6000 and ODM in a Distribution Network

In this case the configuration server holds the DB2/6000 database (that is, it is
at the same time database server). The CC servers constitute DB2/6000
clients that access the Software Distribution for AIX configuration database
remotely. The CC clients have not installed any DB2/6000 client software, so
they are using ODM for storing the configuration data.

Therefore, there is a need to convert configuration data from the DB2/6000
database to ODM and transfer it from the CC server to its clients in the domain.
In contrast to 5.3, “Automating the Configuration Process” on page 89, where
the whole configuration database is sent to each machine, we describe in 14.2,
“Extracting CC Domain Configuration from DB2 to ODM” on page 282 a
method for extracting only the relevant data for a particular site, which consists
of the information related to the enclosing CC domain. At the end of the
chapter we present an automatic distribution and remote configuration
procedure for Software Distribution for AIX networks with mixed database
support.

Figure 154 on page 277 depicts both conversion processes. While the procedure
odm2db2 moves the whole configuration data from ODM to DB2/6000, the other
direction, performed by db22odm, needs a machine name as argument to extract
only the particular domain information from the DB2/6000 database.

276 Pristine AIX Environments

Figure 154. Configuration Data Conversion Processes

14.1 ODM to DB2/6000 Conversion
The first conversion task is performed by the procedure odm2db2, which is shown in
Figure 155 on page 278. As depicted in Figure 154, this procedure takes all ODM
contents related to the Software Distribution for AIX configuration and transforms
them into DB2/6000.

 Chapter 14. Converting the Data Model between ODM and DB2/6000 277

#!/bin/ksh

#

#

procedure for converting NetView DM/6ððð configuration

from ODM to DB2/6ððð

#

#

convert an ODM class output from odmget to an DB2/6ððð insert operator

$1: ODM class name

#---

convert_class()

{

odmget $1 | awk -v class=$1 '

 BEGIN {

FS = " = "

columns = ""

values = ""

q = sprintf("%c",39)

 printf "connect\n"

 }

$ð == class":" {

if (columns != "")

printf "insert into %s (%s) values (%s)\n", class, columns, values

columns = ""

values = ""

 }

!/^$/ && $ð != class":" {

 gsub("\t","",$1)

 gsub("\"","",$2)

if ($2 == "") $2 = "null"

else $2 = q $2 q

if (columns == "") {

columns = $1

values = $2

 }

 else {

columns = columns "," $1

values = values "," $2

 }

 }

 END {

printf "insert into %s (%s) values (%s)\n", class, columns, values

 }

 '

}

Figure 155 (Part 1 of 2). ODM-to-DB2/6000 Conversion Script odm2db2

278 Pristine AIX Environments

execute convert_class for each NetView DM/6ððð ODM class

and send the output to the DB2/6ððð Command Line Processor

(the execution order of the insert statements is important

because of the defined referential constraints)

#---

convert_class nvdm_node

convert_class nvdm_servers

convert_class nvdm_groups

convert_class nvdm_queues

convert_class nvdm_users

convert_class nvdm_cfg_static

Figure 155 (Part 2 of 2). ODM-to-DB2/6000 Conversion Script odm2db2

The principle the script odm2db2 works is the following:

1. Retrieve data from ODM for a particular class with the aid of odmget

2. Process the output from the ODM query to build an SQL insert statement

3. Apply 1 and 2 to all Software Distribution for AIX configuration classes

The first two tasks are implemented in the procedure convert_class. Using awk we
transform the output from the odmget command into an insert statement. In order
to demonstrate this we take the following ODM object, returned as part of the query
odmget nvdm_users:

 ...

nvdm_users:

node_name = "rs6ððð4"

username = "root"

usergroup = "FNDADMN"

 ...

After applying convert_class to that input, we get the following insert statement as
output:

insert into nvdm_users (node_name,username,usergroup) \

 values ('rs6ððð4','root','FNDADMN')

The following must be considered with regards to the syntactical transformations
from ODM to DB2/6000:

� The attribute definition order of the ODM classes does not need to be the same
as the column definition order in the appropriate DB2/6000 tables. Hence, we

 Chapter 14. Converting the Data Model between ODM and DB2/6000 279

use the long variant of the SQL insert statement (that is, with listing the
column names).

� String values in ODM are represented by double quotes ("), while in DB2/6000
they are enclosed in single quotes (').

� Null values in ODM appear as empty strings (""), while in the insert statement
you must provide the null value.

After defining the syntactical transformation procedure convert_class, we apply it
to all ODM classes related to Software Distribution for AIX.

 Note

One can argue that the ODM class names could be obtained by the following
commands:

cd /etc/objrepos

ls nvdm\

The reason why we fix the classes convert_class is applied to is because of
the referential dependencies between the DB2/6000 tables in the model (see
Figure 127 on page 228). There must be some knowledge about the data
model in the script to determine the order of inserting the data into the tables.

Of course, you can make the script in this respect generic by retrieving this
meta information from the system tables. For the sake of simplicity and
understandability and as our main emphasis is not put on generic features of
the database operations, we left this aspect out of our implementation.

The standard output of odm2db2 consists of all the insert statements needed to fill
the DB2/6000 configuration tables. This means that the user has the following
possibilities of redirecting the output from the script:

� Redirect to a file:

odm2db2 > db_insert.sql

For example, you can send the file to another machine and execute it there
with the Command Line Processor (for example, db2 -f db_insert.sql). This
is the case when you migrate the Software Distribution for AIX configuration
data from the ODM on one machine to DB2/6000 on another machine.

� Redirect to the Command Line Processor:

odm2db2 | db2 -s

This is the way we use the conversion procedure in our scenario. We slightly
modified our script build_db for the creation and re-creation of the Software
Distribution for AIX configuration database in DB2/6000 by exchanging the
execution of the import script db_import.sql with the execution of the
ODM-to-DB2/6000 conversion.

280 Pristine AIX Environments

The new script is shown in Figure 156 on page 281 and named build_db_odm to
distinguish from the former. The only difference from build_db is in the insertion of
the data where the line is highlighted.

#

procedure for building the DB2/6ððð configuration database

(converting data from the ODM database)

#

creating / recreating the configuration database

#---

. ./db_create

table definitions

#------------------

db2 -sf ./db_model.sql

if [$? -ne ð]

then

 exit 1

fi

comments

#---------

db2 -sf ./db_comment.sql

if [$? -ne ð]

then

 exit 1

fi

authorizations

#---------------

db2 -sf ./db_authorize.sql

if [$? -ne ð]

then

 exit 1

fi

inserting data

#---------------

odm2db2 | db2 -s
if [$? -ne ð]

then

 exit 1

fi

print "\n\nDATABASE CONFIG: Database NVDM_CFG built SUCCESSFULLY!!!\n\n"

exit ð

Figure 156. Creating the DB2/6000 Database from ODM (Script build_db_odm)

 Chapter 14. Converting the Data Model between ODM and DB2/6000 281

14.2 Extracting CC Domain Configuration from DB2 to ODM
The extracting of the domain configuration related to a specific Software Distribution
for AIX node from the DB2/6000 database is done by the script db22odm, which is
shown in Figure 157.

#!/bin/ksh

#

#

procedure for building the ODM configuration database from

the DB2/6ððð database for a specific NetView DM/6ððð CC domain

$1: node name

#

#

check for $1

if ["$1" = ""]

then

print "Please give a node name as argument"

 exit 1

fi

database access procedure definition

#-------------------------------------

. ./DB2

convert DB2/6ððð table into ODM object definition file

$1: table name

$2: select predicates (SQL format)

$3: columns case: (u[pper] / l[ower])

#---

convert_table()

{

 WHERE=$2

if ["$WHERE" = ""]

 then

 WHERE="1=1"

 fi

TBNAME=yecho $1|awk '{name = toupper($ð); print name}'y
COLS=yget_data name,colno sysibm.syscolumns "tbname = '$TBNAME' order by colno" | awk '{print

$1}'y
COLCNT=yecho $COLS | wc -w | sed 's/ //g'y
LENGTHS=yget_data length,colno sysibm.syscolumns "tbname = '$TBNAME' order by colno" | awk '{print

$1}'y
 COLS=yecho $COLSy
 LENGTHS=yecho $LENGTHSy

Figure 157 (Part 1 of 3). Extracting Domain Configuration Related to a Specific Host (Script db22odm)

282 Pristine AIX Environments

get_data \\ $DBOWNER.$1 "$WHERE" | awk \

-v case=$3 -v class=$1 -v colstr="$COLS" -v colcnt=$COLCNT -v lenstr="$LENGTHS" '

 BEGIN {

if (case /^l/) colstr=tolower(colstr)

 split(colstr,columns)

 split(lenstr,lengths)

for (i=1;i<=colcnt;i++) {

cl = length(columns[i])

if (cl > lengths[i]) lengths[i] = cl

 }

 }

 {

 n=1

printf "%s:\n", class

for (i=1;i<=colcnt;i++) {

l = lengths[i]

v = substr($ð,n,l)

n = n + l + 1

 sub(/^ \/,"",v)

 sub(/ \$/,"",v)

 sub(/^-$/,"",v)

if (v ! /^[ð-9]+$/) v = "\"" v "\""

printf "\t%s = %s\n" , columns[i], v

 }

 }

'

}

connect to the database

#---------------------------

db2 connect >/dev/null 2>&1

get the server of the node

#--

SERVER=yget_data server_name $DBOWNER.nvdm_node "node_name = '$1'"y
if ["$SERVER" = ""]

then

print "DATABASE CONVERT: node $1 has no server entry."

 exit 1

fi

Figure 157 (Part 2 of 3). Extracting Domain Configuration Related to a Specific Host (Script db22odm)

 Chapter 14. Converting the Data Model between ODM and DB2/6000 283

get all nodes in the CC domain

#-------------------------------

NODES=yget_data node_name $DBOWNER.nvdm_node "server_name = '$SERVER'"y
NODES=\'yecho $NODES|sed "s/ /','/g"y\'

building the ODM object definition output and inserting the data

#---

print "DATABASE CONVERT : creating file nvdm_node.odmadd"

convert_table nvdm_node "server_name = '$SERVER'" "l" > nvdm_node.odmadd

print "DATABASE CONVERT : creating file nvdm_servers.odmadd"

convert_table nvdm_servers "node_name = '$SERVER'" "l" > nvdm_servers.odmadd

print "DATABASE CONVERT : creating file nvdm_groups.odmadd"

convert_table nvdm_groups "node_name = '$SERVER'" "l" > nvdm_groups.odmadd

print "DATABASE CONVERT : creating file nvdm_queues.odmadd"

convert_table nvdm_queues "node_name = '$SERVER'" "l" > nvdm_queues.odmadd

print "DATABASE CONVERT : creating file nvdm_users.odmadd"

convert_table nvdm_users "node_name in ($NODES)" "l" > nvdm_users.odmadd

print "DATABASE CONVERT : creating file nvdm_cfg_static.odmadd"

convert_table nvdm_cfg_static "" "u" > nvdm_cfg_static.odmadd

exit ð

Figure 157 (Part 3 of 3). Extracting Domain Configuration Related to a Specific Host (Script db22odm)

In contrast to the ODM-to-DB2/6000 database conversion where the whole
Software Distribution for AIX configuration is affected (see 14.1, “ODM to DB2/6000
Conversion” on page 277), the script db22odm requires a node name as an
argument. Based on the node entry, the procedure determines all of the domain
relevant data that must be transferred from ODM to DB2/6000.

The following presents the domain relevant data for a given node argument NODE
(see Figure 132 on page 236 for the database definition):

� The server SERVER from NODE (the row from nvdm_servers corresponding to
the server_name entry for NODE in nvdm_node)

� All targets NODES with the server SERVER (all rows from nvdm_node with
server_name = SERVER)

� All target groups maintained on SERVER (all rows from nvdm_groups with
node_name = SERVER)

� All server-to-server connections to be configured on SERVER (all rows from
nvdm_queues with node_name = SERVER)

� All users on the targets determined above (all rows from nvdm_users with
node_name equal to any target from the set NODES)

� All network common data (the whole nvdm_cfg_static table)

First, the script db22odm determines the server of the given node argument ($1)
SERVER and the set NODES of all targets managed on that server.

284 Pristine AIX Environments

 Note

The obtained node name of the server matches the name of the argument ($1)
in the case when the latter is a Software Distribution for AIX server. This fact
does not affect our algorithm of determining the domain relevant data.

Thereafter, the procedure convert_table is applied on the configuration tables
creating ODM object data files as required by the AIX command odmadd. The
further use of these files in a concrete application is described in 14.3, “Remote
Software Distribution for AIX Configuration with Different Database Support” on
page 286.

The procedure convert_table is the opponent of convert_class (see 14.1, “ODM
to DB2/6000 Conversion” on page 277) and performs the syntactical conversion of
the SQL output into the format of an ODM object definition, which is the same as
provided by the AIX command odmget (see the previous section). The additional
capability of convert_table consists of the ability to provide selection criteria for the
processed table. In general, it applies the procedure get_data (see Figure 139 on
page 254) and builds the appropriate output in odmadd format with the aid of awk.

In order to enable the automatic editing of the selected results, the procedure first
determines the column lengths of the inspected table. This is done by applying
get_data on the system column sysibm.syscolumns, which contains the column
definition data for each DB2/6000 table. Here we make use of the order clause of
the SQL select statement to build two ordered lists, COLS and LENGTHS,
containing the column names and their respective lengths. They are passed to awk
where each SQL result row is split into the column values according to the column
lengths.

 Note

When the length of the column name is greater than the maximum length of the
column value, the value output length does not match the column length
information from sysibm.syscolumns.

SQL formats the output according to the maximum of both length values. This
case is treated in the BEGIN part of the awk operation.

During the syntactical transformation, attention must be paid to the following format
specifics:

� The ODM object definition format requires the enclosing of strings in double
quotes ("), while integer values are assigned unchanged. But the value types
are not distinguishable from the SQL output. As the ODM configuration model
uses both types (see Chapter 3, “Designing a Data Model for Configuration
Data” on page 11), we leave the numerical values unchanged and put all other
values in double quotes.

� The null values appearing in the SQL output as dashes (-) must be converted
into the ODM representation for null values: the empty string ("").

 Chapter 14. Converting the Data Model between ODM and DB2/6000 285

14.3 Remote Software Distribution for AIX Configuration with Different
Database Support

Similar to 5.3, “Automating the Configuration Process” on page 89 we now want to
enable the automatic remote configuration of the Software Distribution for AIX
nodes from the configuration server. While the procedure configure_network treats
only the case of ODM configuration database, we present in this section an
enhanced procedure configure_network_univ that covers both cases of database
use. It is shown in Figure 158.

#!/bin/ksh

#

Copy Configuration to all Nodes and execute configuration script

Depending upon whether the particular node is using an ODM or DB2/6ððð

configuration database the appropriate configuration script is sent

to it. The latter information is contained in the new nvdm_node field

config_db ("DB2" or "ODM")

For this to work each system to be configured has to have

an entry for the central installation system in it's /.rhosts file

The script requires two parameters:

$1: local path of the DB2/6ððð version of the automatic configuration procedure

$2: local path of the ODM version of the automatic configuration procedure

Author : Plamen Kiradjiev

#

print "\\\\ CONFIGURING NETVIEW DISTRIBUTION MANAGER/6ððð \\\\"

MYDIR=ypwdy
DB2PATH=$1

ODMPATH=$2

determine the version used by the initiating site

case $MYDIR in

 $DB2PATH) INITVERSION=DB2

. $DB2PATH/DB2 ;;

 $ODMPATH) INITVERSION=ODM

 . $ODMPATH/ODM

print "\\ Rebuilding the ODM database"

 ./rebuild_db ;;

\) print "CONFIG NVDM: Cannot determine the version (DB2 or ODM) of the initiating machine."

print " enter \$1: DB2/6ððð version full path"

print " enter \$2: ODM version full path"

 exit 1 ;;

esac

Figure 158 (Part 1 of 3). Automatic Remote Configuration of NetView DM/6000 (Script configure_network_univ)

286 Pristine AIX Environments

LIST=ycat node_listy
for i in $LIST

do

print "\\\ Processing node : $i"

get_attribute nvdm_node node_name $i config_db

 VERSION=$VALUE

if ["$VERSION" = ""]

 then

 VERSION=ODM

 fi

case $INITVERSION in

conversion from DB2/6ððð to ODM if necessary

DB2) if [! $VERSION = DB2]

 then

print "\\ Extracting domain relevant data for $i from DB2/6ððð"

 cd $DB2PATH

 ./db22odm $i

ls $DB2PATH/\odmadd|xargs -i basename {}|xargs -i mv -f {} $ODMPATH/{}

 fi

 ;;

in the case of using ODM the ODM database is used in both cases

 ODM) VERSION=ODM

 ;;

 esac

build appropriate tar archive and compress it

print "\\ Creating tar archive for the $VERSION version"

 VPATH=$yecho $VERSIONyPATH
cd yeval echo $VPATHy
tar -chvf/tmp/nvdm_$VERSION.tar . >/dev/null

SIZE=yls -l /tmp/nvdm_$VERSION.tar | awk '{ print $5 }'y
print "Size before compressing : $SIZE"

print "\\ Crunching tar archive"

rm /tmp/nvdm_$VERSION.tar.Z 2>/dev/null

 compress /tmp/nvdm_$VERSION.tar

SIZE=yls -l /tmp/nvdm_$VERSION.tar.Z | awk '{ print $5 }'y
print "Size after compressing : $SIZE"

send the code to the desired machine, unpack and execute it there

print "\\ Copy compressed archive"

rcp /tmp/nvdm_$VERSION.tar.Z $i:/tmp/nvdm.tar.Z

print "\\ Uncrunching compressed archive"

rsh $i uncompress -f /tmp/nvdm.tar

print "\\ Extracting files from tar archive"

rsh $i "cd /tmp ; tar -xvf/tmp/nvdm.tar 1>/dev/null 2>&1"

if [$VERSION = ODM]

 then

print "\\ Creating ODM DB ..."

rsh $i /tmp/build_net_db2

 fi

print "\\ Invoking configuration script..."

rsh $i ". ./.profile; /tmp/config_nvdm $i"

done

Figure 158 (Part 2 of 3). Automatic Remote Configuration of NetView DM/6000 (Script configure_network_univ)

 Chapter 14. Converting the Data Model between ODM and DB2/6000 287

cd $MYDIR

rebuilding the ODM database in the case $INITVERSION = ODM

if [$INITVERSION = ODM]

then

print "\\\ Rebuilding ODM database"

 ./rebuild_db

fi

exit ð

Figure 158 (Part 3 of 3). Automatic Remote Configuration of NetView DM/6000 (Script configure_network_univ)

For the purpose of distinguishing between remote nodes with different configuration
storage methods, we introduce a new column (attribute) config_db for the
DB2/6000 table (ODM class). Its value can be either DB2 or ODM.

 Note

Nodes containing null values in this column (attribute) are assumed to support
ODM. Thereby, the compatibility with configuration data from the former data
models is guaranteed (see Chapter 3, “Designing a Data Model for
Configuration Data” on page 11 and Chapter 12, “Implementing the
Configuration Data Model Using DB2/6000” on page 219).

The following shows the new nvdm_node definitions:

ODM: in file config_db2_remote.cre

class nvdm_node {

 char node_name[25];

 short node_type;

 char short_name[9];

 char target_os[12];

 char description[25];

 char contact_name[25];

 char owning_manager[25];

 char telephone_number[2ð];

 char customer_name[2ð];

 char repos_fs[4];

 long repos_size;

 char x_25_number[15];

 char server_name[25];

 link nvdm_groups nvdm_groups group_name group_name;

 char config_db[4];
}

288 Pristine AIX Environments

DB2/6000: in file db_model2.sql

create table nvdm_node \

(node_name char(25) not null primary key, \

node_type char(1) not null, \

short_name char(9) not null, \

target_os char(12), \

description char(25), \

contact_name char(25), \

owning_manager char(25), \

telephone_number char(2ð), \

customer_name char(2ð), \

repos_fs char(4), \

repos_size char(2ð), \

x_25_number char(15), \

server_name char(25) not null, \

group_name char(25), \

config_db char(3), \
foreign key r_server (server_name) \

references nvdm_node \

on delete cascade)

Considering the database support on the configuration server and the remote node,
the following combinations are possible:

� ODM on the configuration server, ODM on the remote node

This case is the same as in 5.3, “Automating the Configuration Process” on
page 89 where the whole ODM database is sent to the remote node.

� ODM on the configuration server, DB2/6000 on the remote node

This case is treated in the same way as the case above by ignoring the
DB2/6000 capability of the remote node.

 Note

It could be conceivable to make conversion in this database combination
too, for example when the configuration server does not support DB2/6000
but the CC servers do (see Figure 153 on page 276). Because of the
rareness of this case we do not consider it.

� DB2/6000 on the configuration server, DB2/6000 on the remote note

No configuration data is transferred in this case. The remote node acts as a
DB2/6000 client and queries the database remotely from the configuration
server.

� DB2/6000 on the configuration server, ODM on the remote node

Here we apply the DB2/6000-to-ODM conversion described in 14.2, “Extracting
CC Domain Configuration from DB2 to ODM” on page 282. In contrast to the
ODM-ODM combination, we extract the domain relevant data for the particular
node and transfer only this part of the configuration database to the ODM of
the remote node.

The script configure_network_univ requires two arguments that represent the
paths for the DB2/6000 respectively ODM version of the automatic configuration

 Chapter 14. Converting the Data Model between ODM and DB2/6000 289

procedure, locally on the initiating machine. Depending on from which of both
paths the remote configuration script configure_network_univ is called, the
variable INITVERSION is set to DB2 or ODM. The remote node database support
is queried from the configuration database (field config_db in nvdm_node) and stored
in the variable VERSION.

Both variables, INITVERSION and VERSION, determine the particular database
version combination as explained above. According to INITVERSION, the
appropriate database access procedure definitions are included in the script (from
the file DB2 or ODM). Based on VERSION, the appropriate version of the
automatic configuration procedure undergoes the following steps for each remote
node:

� Building a tar archive and compressing it locally on the initiating machine (the
configuration server)

In the DB2/6000-to-ODM case we first apply db22odm to extract the domain
configuration information for the particular node and include the created ODM
object definition files (with extension odmadd) into the tar archive.

� Sending the package to the remote node to be configured (rcp)

In order to be able to execute the rcp and the following rsh commands, you
must ensure the presence of the configuration server entry in the .rhosts file in
root's home directory on each remote node (see 5.3, “Automating the
Configuration Process” on page 89).

� Decompressing and unarchiving on the remote node (rsh)

� Initiating the configuration procedure on the remote node (rsh)

In the case of the ODM version on the remote node for the NetView DM/6000
configuration, the creation of the ODM database is required before running the
configuration script config_nvdm. For the DB2/6000-DB2/6000 combination, no
database creation is needed, provided that it is configured as a DB2/6000 client
(see installation instructions in Chapter 12, “Implementing the Configuration
Data Model Using DB2/6000” on page 219).

Figure 159 on page 291 shows a sample output from executing the script
configure_network_univ for two remote machines, rs6ððð4 and rs6ððð11.
According to 5.3, “Automating the Configuration Process” on page 89, we maintain
a file node_list in each version directory on the initiating site with the names of the
remote machines to be configured.

In our example, the initiating machine is using DB2/6000 for storing the
configuration data. The node rs6ððð4 is configured as a DB2/6000 client, while
rs6ððð11 supports only ODM (with respect to the values of config_db in the
appropriate nvdm_node rows).

The script for automatic remote NetView DM/6000 configuration is called in the
following way:

cd /45ð8code/db_version_2

 ./configure_network_univ /45ð8code/db_version_2 /45ð8code/version_2 2>& \

| tee logfile_net

290 Pristine AIX Environments

 Note

It is important to change the current directory to the appropriate version
directory (in our example, /45ð8code/db_version_2 for the DB2/6000 version on
the initiating machine) because the script determines the local database version
based on the current directory from where it is called.

The two arguments represent the directories where we store the particular
versions of the configuration procedure on our sample initiating machine.

\\\\ CONFIGURING NETVIEW DISTRIBUTION MANAGER/6ððð \\\\

\\\ Processing node : rs6ððð4

\\ Creating tar archive for the DB2 version

Size before compressing : 19456ð

\\ Crunching tar archive

Size after compressing : 57ð13

\\ Copy compressed archive

\\ Uncrunching compressed archive

\\ Extracting files from tar archive

\\ Invoking configuration script...

 ...

\\\ Processing node : rs6ððð11

\\ Extracting domain relevant data for rs6ððð11 from DB2/6ððð

DATABASE CONVERT : creating file nvdm_node.odmadd

DATABASE CONVERT : creating file nvdm_servers.odmadd

DATABASE CONVERT : creating file nvdm_groups.odmadd

DATABASE CONVERT : creating file nvdm_queues.odmadd

DATABASE CONVERT : creating file nvdm_users.odmadd

DATABASE CONVERT : creating file nvdm_cfg_static.odmadd

\\ Creating tar archive for the ODM version

Size before compressing : 12288ð

\\ Crunching tar archive

Size after compressing : 42193

\\ Copy compressed archive

\\ Uncrunching compressed archive

\\ Extracting files from tar archive

\\ Creating ODM DB ...

nvdm_groups

nvdm_node

nvdm_users

nvdm_cfg_static

nvdm_servers

nvdm_queues

\\ Invoking configuration script...

 ...

Figure 159. Output Log for the Execution of configure_network_univ

 Chapter 14. Converting the Data Model between ODM and DB2/6000 291

292 Pristine AIX Environments

Chapter 15. Modifying Configuration Data Using a Graphical
User Interface

We described in Chapter 12, “Implementing the Configuration Data Model Using
DB2/6000” on page 219 a procedure for the automatic generation of the Software
Distribution for AIX configuration database under DB2/6000. There we took the
data from import files in DEL format. This approach might be convenient for tasks
such as exchanging data between DRDA-compliant platforms, converting data
between different database systems or automating the data generation from user
scripts. But there is no possibility for the NetView DM/6000 system administrator to
access respectively change configuration data in a sensible way.

The following table summarizes the different approaches we have used to access
the NetView DM/6000 configuration database in ascending order with regard to
their user friendliness:

Table 2. Comparison between Different Access Approaches to the Configuration Data

Data Access
Approach

Advantages Disadvantages

Import Files � Data transfer between
DRDA-compliant databases

� Data conversion between
non-DRDA-compliant databases

� Automatic database generation from
external applications

� Not suited for data access

� Not recommended for data update

� Data model knowledge required

ODM-to-DB2/6000
Conversion

� Conceivable in the case of porting the
configuration data from ODM to
DB2/6000

� odme can be used to prepare the data
before converting

 � One-way approach

� Not suited for the work with DB2/6000
after the conversion

Interactive SQL � Most powerful approach for querying
as well as updating data

� Full SQL power available

� Suited to be called from application
scripts

� SQL skill required

� Data model knowledge required

� Not convenient for numerous single
row updates

Visualizer
Query/6000

� The most user friendliest

� Plenty of different ways for browsing
data (queries, views, reports)

� Close to SQL in power (allows even
model changing)

� Not possible to define user actions

� Referential dependences of the data
model hidden for the "conventional"
database user

� Not possible to build own model
dependent forms

The presented data access approaches have been used in different contexts
throughout this book. For the automatic creation of the Software Distribution for
AIX configuration database we employed the import files. In Chapter 14,
“Converting the Data Model between ODM and DB2/6000” on page 275 the
second and the third approach apply. In the case of porting the configuration
database from ODM to DB2/6000, odme can be used to perform some preparation

 Copyright IBM Corp. 1996 293

changes. Thereafter, SQL insert statements are generated and executed from the
script build_db_odm (see Figure 156 on page 281).

The Command Line Processor db2 is extensively used by the scripts for database
creation, access and conversion respectively, by the database access procedures
(see Chapter 12, “Implementing the Configuration Data Model Using DB2/6000” on
page 219). interactive SQL offers a good means for global changes of the
configuration data in the following manner:

update nvdm_users set usergroup = 'FNDADMN' where username = 'wolfgang'

The above SQL statement sets the user group of the user wolfgang to FNDADMN
on all targets in the distribution network.

In contrary for single row updates, the Command Line Processor appears a bit
awkward to a system administrator, who is required to reenter a long SQL
statement for each particular row to be changed. In this case a graphical user
interface such as the Visualizer Query/6000 is more suited. Rather, it offers a
convenient means for browsing and updating data, report generation, and even
data model changes.

Although being so powerful and user friendly, the Visualizer Query/6000 could not
fulfill our requirements to supply the system administrator with a tool that supports
the referential integrity of the Software Distribution for AIX configuration model.
Especially, it should provide a consistent way of inserting data into the database
tables without having to worry about the existing dependencies between them. At
the same time it must be user friendly and comfortable enough, so that the system
administrator can abstract from the SQL level and the data model.

In this chapter we present a tool, that we implement in order to supply the Software
Distribution for AIX system administrator with a convenient access to the
configuration database as well as with a model-dependent, guided way of inserting
data into the configuration tables. In the first part of the chapter we describe the
appearance and use of the graphical interface to the Software Distribution for AIX
configuration database. The second part deals with the design principles and some
implementation details of the tool as well as pointing out its extensibility.

As the graphical interface is written in C, using on the one hand the Call Level
Interface of DB2/6000 and on the other hand the Motif 1.2 libraries, we assume the
reader interested in the implementation specifics of our interface has a particular
background in these topics. We recommend the following reference literature:

� DB2 Call Level Interface Guide and Reference (DATABASE 2), SC09-1626 -
for the Call Level Interface functions of DB2/6000

� AIXwindows Programming Guide, SC23-2632 - for the Motif programming
principles.

Appendix C, “Source Code of the Graphical User Interface” on page 419 contains
the source code of the graphical user interface to the NetView DM/6000
configuration database.

Other readers, after getting acquainted with the usage of the graphical interface,
can skip the implementation description without loss of information.

294 Pristine AIX Environments

15.1 Using the Graphical Interface for Changing Configuration Data
The package of the graphical user interface to the Software Distribution for AIX
configuration database consists of the following files:

� dbAccess.h: generic database access interface file li.dbAccessDB2.c: DB2/6000
access implementation file

� dbFrames.h: database frames interface file

� dbFrames.c: database frames implementation file

� makefile: make file for compiling the application

� uicfgdb: main program

In order to enable the compilation of the graphical user interface, the following
software must have been installed on your workstation:

� C for AIX Compiler

� IBM AIX DATABASE 2 Software Developer's Kit/6000

� AIXwindows Application Development Toolkit Motif

After executing make the graphical user interface is compiled and ready to use. The
produced executable file is uicfgdb.

 Note

In order to enable other AIX users to call the graphical user interface, you
should set the appropriate executable rights in the following manner:

chmod +x uicfgdb

Although the above command allows all AIX users to execute uicfgdb, there is
hardly any risk of unauthorized database access since DB2/6000 controls the
authorizations by itself.

According to our scenario from Chapter 12, “Implementing the Configuration Data
Model Using DB2/6000” on page 219, you should run the graphical interface to the
Software Distribution for AIX configuration database as the instance owner dbmsadm
in order to be able to make changes. The user root has only read rights on the
configuration tables. The tool is based on the client authentication type, so that the
connection to the configuration database is made transparently without asking for a
user name and a password.

After executing uicfgdb, the following window appears on the screen:

 Chapter 15. Modifying Configuration Data Using a Graphical User Interface 295

Figure 160. Main Window of the Graphical User Interface

If the database connection request fails, an error message is displayed and the
application is exited. This may occur, for example, when the database manager is
not running on the database server or the client is not correctly configured.

The main window of the graphical user interface lists all Software Distribution for
AIX configuration tables including the system tables (with prefix SYSIBM). By
double-clicking on a particular item from the list you can get a table view of the
contained data. The buttons define model-specific actions such as updating the
global distribution network parameters or inserting a new target into the database.
These actions are described in the following sections.

15.1.1 Updating Network Global Parameters
Clicking on the button Update Network Globals leads to the table frame of
NVDM_CFG_STATIC depicted in the following figure:

 Note

In this chapter we are using the names of database objects in uppercase as
they appear in the application frames. This is because the object names are
taken from the DB2/6000 system tables where they are stored in uppercase.
SQL does not distinguish between uppercase and lowercase.

296 Pristine AIX Environments

Figure 161. Updating Distribution Network Global Information (Table NVDM_CFG_STATIC)

The table frame allows the user to insert, update or delete rows from the table with
the network global parameters. Since this table is not involved in any referential
dependencies (see Figure 127 on page 228), you can update it separately without
affecting the data integrity.

After the initial display of the window, the input focus is positioned on the first table
row (if any). Generally the current row (the one with the input focus on one of its
fields) is highlighted. The database messages and warnings are displayed below

 Chapter 15. Modifying Configuration Data Using a Graphical User Interface 297

the table data. The six buttons at the bottom of the table frame define the following
actions:

Inserting a new row:

After clicking on the button Insert Row a new empty row is generated at
the bottom of the table and the input focus is moved to this row. You
can then enter the data for the new table row.

Updating the current row:

Initially the table frame is in browse mode. That is, you cannot alter the
field data having positioned the cursor on a particular field, even if you
have update rights for the table. This is done to avoid an inadvertent
altering of the row data.

In order to switch to update mode for the current row, you must click on
the button Update Row . Thereafter you are able to update the fields of
that row, until you move to another row. Then, the browse mode is
restored again.

Deleting a row:

When clicking on the button Delete Row , the current row disappears
from the table frame and the input focus is moved to the next available
row (trying first to move to the next row below the deleted one).

Committing the work:

After executing the actions above, only the data viewed in the table
frame is changed. In order to perform the appropriate database
changes, you must click on the button Commit . The initiated action
updates the contents of the processed database table in one transaction
according to the data in the frame and refreshes the table frame.

Refreshing the table frame:

Click on the button Refresh . This rereads the database contents and
corresponding changing of the data depicted in the table frame. This
action is sensible in two cases: rolling back to previous database
contents after some changes in the table frame or refreshing the table
frame after changes made from other forms (for example, after a node
insertion).

Quitting the table form:

Clicking on the Quit button leaves the table form without any other
actions. That is, the database contents are not affected. In order to
take over the changes made in the table frame, you must commit before
quitting the frame.

The described actions above apply to all the database tables, since the table frame
is created by a standard function provided by the database frames' interface (see
15.2, “Implementation Insights” on page 306).

In this respect our graphical user interface offers a way of browsing databases in
the same manner as the Visualizer Query/6000. Of course, the tool cannot be
expected to provide the full functionality of the product (see 15.2.4, “Features of the
Graphical Interface Program” on page 314 for details).

298 Pristine AIX Environments

15.1.2 A Guided Way for Inserting New Software Distribution for AIX
Nodes

Our main goal when designing the graphical user interface to the Software
Distribution for AIX configuration database was to provide a consistent and
comfortable way for inserting data according to the referential dependences of the
presented data model. DB2/6000 controls the data integrity of the database and
the obeying of the defined table dependences.

For example, when trying to insert a new user for a non-existing node, the following
DB2/6000 error message occurs and the insert fails:

DB21ð34E The command was processed as an SQL statement and returned:

SQLð53ðN The insert or update value of FOREIGN KEY "R_NODE" is not equal to

some value of the primary key of the parent table. SQLSTATE=235ð3

This error occurs independently of the database access approach (by import files,
interactive SQL, Visualizer Query/6000 or our graphical interface). Therefore, a
particular sequence by the inserting of the configuration information is required.
This sequence is determined by the referential dependencies between the
configuration tables, starting from the parent tables to the dependent tables. As
shown in Figure 127 on page 228, the table NVDM_NODE is the parent table of all
and should be the start of inserting new configuration data. This appears
reasonable from the intuitive point of view too, as the information in the remaining
tables, NVDM_SERVERS, NVDM_QUEUES, NVDM_GROUPS and NVDM_USERS is always tied to a
particular node (target).

Thus we provide a consistent and intuitive method of entering a new node and the
information related to it. The user does not need to be aware of the referential
dependencies of the data model. It is guided by the application through the tables
that need information inserted into them in a data model determined sequence.

After clicking on the button Insert New Node , the following dialog box appears on
the screen:

Figure 162. Entering a New NetView DM/6000 Node Name

 Chapter 15. Modifying Configuration Data Using a Graphical User Interface 299

In this dialog box you are required to enter the name of the new node and
determine whether it will be a Software Distribution for AIX server. Depending on
the latter information you pass a different number of insert table frames:

Server case:

1. NVDM_NODE insert frame

2. NVDM_SERVERS insert frame

3. NVDM_QUEUES insert frame

4. NVDM_GROUPS insert frame

5. NVDM_USERS insert frame

Client case:

1. NVDM_NODE insert frame

2. NVDM_USERS insert frame

In our example we are using the server case and we click on the toggle button
is Server? .

After clicking on the OK button, the insert frame for the table NVDM_NODE appears on
the screen. Figure 163 on page 301 and Figure 164 on page 302 depict this
insert frame and the example data for the node newserver.

 Note

The first field NODE_NAME cannot be changed. It always appears when a new
insert is prepared and is based on the name you entered from the initial dialog
box.

300 Pristine AIX Environments

Figure 163. Inserting the Node-Specific Data into Table NVDM_NODE (Part 1)

 Chapter 15. Modifying Configuration Data Using a Graphical User Interface 301

Figure 164. Inserting the Node-Specific Data into Table NVDM_NODE (Part 2)

From the insert frame you can perform the following actions:

Inserting the data filled in the frame:

Click on the Insert button. The database contents are changed and the
frame is refreshed by clearing the fields except from the NODE_NAME.

Canceling the insertion:

Click on the Cancel button. The frame is refreshed by leaving the
NODE_NAME field.

Proceed with inserting further information:

Click on Quit . You leave the insert frame for the present database table
and pass to the next table in the insertion sequence (if any).

302 Pristine AIX Environments

 Note

If you want the last field information to be inserted into the
processed table, you must click on the Insert button before quitting
the insert frame.

Similar to the table frame, the insert frame is a standard window provided by the
database frames' interface dbFrames.h (see 15.2, “Implementation Insights” on
page 306). Thus, the above actions apply to all accessed tables from the
configuration database. For all of these actions the node name is filled in
previously from the application based on the name you entered in the dialog box. It
is impossible to change this name from the insert frame.

After inserting data into NVDM_NODE, you can go to the next table insertion by clicking
on Quit . Since NODE_NAME constitutes the primary key of NVDM_NODE on its own and
you cannot alter it in the insert frame, you are not allowed to insert into the table
NVDM_NODE. In such a way you are guided to enter all the information related to the
particular node before switching to another.

The next insert frame in our example is the one for the table NVDM_SERVERS, since
we specified newserver to be a NetView DM/6000 server. The following figure
shows the initial frame that appears with the node name fixed again:

 Chapter 15. Modifying Configuration Data Using a Graphical User Interface 303

Figure 165. Inserting the Server-Specific Data into Table NVDM_SERVERS

In a similar way you then go to the server case through the database tables
NVDM_QUEUES and NVDM_GROUPS and at last reach the insert frame of NVDM_USERS (see
Figure 166 on page 305).

 Note

For the latter three tables you are allowed to perform multiple inserts as their
primary keys do not consist only of NODE_NAME.

304 Pristine AIX Environments

Figure 166. Inserting the User-Specific Data into Table NVDM_USERS

15.1.3 Conventional Database Table Browsing and Updating
After inserting the node data for newserver, check the result. Choose the table
NVDM_NODE from the list in the main application window and double-click on it. In the
opened table frame for NVDM_NODE we can see the inserted new node as shown in
Figure 167 on page 306.

 Chapter 15. Modifying Configuration Data Using a Graphical User Interface 305

Figure 167. Table View of NVDM_NODE

In this way you are able to browse and update all the tables for which you are
authorized. Refer to 15.1.1, “Updating Network Global Parameters” on page 296
for the possible actions on the table frame in general.

 Note

Similar to Chapter 3, “Designing a Data Model for Configuration Data” on
page 11 we provide a procedure edit_db that updates the database import
files. First, it calls the graphical user interface and then it exports the Software
Distribution for AIX configuration tables.

 15.2 Implementation Insights
Now that we have presented the use of the graphical user interface, we now
describe some of its implementation principles. The tools consist of three
separated parts that cover the following tasks:

Database access methods:

The file dbAccess.h offers a database-independent interface to the
stored data. Moreover, it defines the main database functions operating
on a database system independent data structure. Although we
implement the DB2/6000 scenario in our tool, it should be quite easier to
implement an ODM implementation and exchange it transparently for the
user.

306 Pristine AIX Environments

Database frames:

The interface file dbFrames.h provides three standard frames that can be
used for any table and database.

Model dependent part:

The main program uicfgdb specifies the model-dependent, NetView
DM/6000 configuration database relevant actions.

When designing and implementing the graphical user interface, we separated the
different tasks from each other. The database access and database frame parts of
the tool are reusable and applicable to any database respectively database objects.
Only the main program is tightly coupled with our Software Distribution for AIX
configuration data model.

In the following we describe the main features and implementation details of the
three program parts.

15.2.1 The Database Access Part
This part provides a system-independent access to a database. The core of the
database access interface is the data structure Table that serves to describe a
table independently of the database system. Figure 168 on page 308 shows the C
include file dbAccess.h, which defines the functionality of the interface.

 Chapter 15. Modifying Configuration Data Using a Graphical User Interface 307

/\\

\\

\\ File: dbAccess.h

\\ System: User Interface to NetView DM/6ððð Configuration Database

\\ Purpose: Database-Independent Interface

\\ Author: Plamen Kiradjiev

\\ Date: 1ð/ð9/1995

\\

\\\/

/\----------------- Includes ---\/

#include <stdio.h>

#include <stdlib.h>

/\----------------- Constants --\/

#define NONE ð

#define SELECTED 1

#define INSERTED 2

#define UPDATED 3

#define DELETED 4

/\---------------- Type Definitions --------------------------------------\/

typedef int Mode /\ SELECTED, INSERTED or UPDATED \/

typedef char \Message /\ SQL message string \/

typedef struct Row{

char \\data /\ column values array \/

Mode mode /\ row mode \/

unsigned char changed /\ 1, if any column changed, else ð \/

char \\chData /\ changed values array

 (NULL for unchanged columns) \/

 }Row;

typedef struct ColAttributes{

char \\name /\ column names \/

int \length /\ column lengths \/

unsigned char \isNullable /\ is nullable array \/

 }ColAttributes;

typedef struct Table{

char \name /\ table name \/

ColAttributes colAttr /\ column attributes \/

int colCount /\ result column count \/

Row \rows /\ row array \/

int rowCount /\ selected row count \/

Message message /\ SQL message in error case \/

 }Table;

Figure 168 (Part 1 of 2). Database Access Include File dbAccess.h

308 Pristine AIX Environments

/\--------------- Procedures ---\/

/\ Connect to database \/

Message dbConnect(char \dbName);

/\ Disconnect from the database \/

Message dbDisconnect();

/\ Make a check point \/

Message dbCheckPoint(void);

/\ Select columns from table tableName with selection criteria selection \/

Table \dbSelect(char \tableName, int colCount,

char \columns[], char \selection);

/\ Insert values into table tableName with columns sequence columns \/

Message dbInsert(char \tableName, int colCount,

 char \columns[], char \values[]);

/\ Update table tableName by setting setColumns to values for selection \/

Message dbUpdate(char \tableName, int colCount, char \setColumns[],

 char \values[], char \selection);

/\ Delete from table tableName with selection criteria selection \/

Message dbDelete(char \tableName, char \selection);

/\ Build selection string for a particular row \/

char \selectThisRow(Row row, int colCount, char \columns[]);

/\ Build the order-by part of selection statement \/

char \dbOrderString(int colCount, char \columns[]);

/\ Build an always false where part of selection statement \/

char \dbAlwaysFalse(void);

/\ free space allocated for table \/

void freeTable(Table \table);

Figure 168 (Part 2 of 2). Database Access Include File dbAccess.h

The type Table contains the following information:

� The database table name (name)

� A data structure describing the column attributes (colAttr)

� The output column number (colCount)

� An array of the retrieved rows (rows)

� The number of retrieved rows (rowCount)

� A message or warning from the database system (message)

The column attributes (type ColAttributes) consists of three arrays containing the
column names, their lengths and nullable flags in the column output order.

 Chapter 15. Modifying Configuration Data Using a Graphical User Interface 309

Each row (type Row) is made up of a string data array ordered according to the
column output, a mode field, a change flag and an array of changed data. The
mode field can be set to one of the following values:

� SELECTED: the row data comes from a selected operation on the database.

� INSERTED: the row data is to be inserted into the database.

� UPDATED: the row data is updated since the last selection.

� DELETED: the row is to be deleted from the database.

� NONE: no information about the row contents.

The array chData contains the changed values at the appropriate column positions.
It contains null values at the column positions where no changes have been made
since the last selection.

The table data structure serves to represent the database information that the
database frames operate on. It is not related to a database-specific structure, like
the SQLDA structure from DB2/6000 when using embedded SQL. This enables us
to exchange the database implementation, for example with ODM, by obeying the
interface definitions. In particular, the ODM implementation would be even easier
because of the absence of such a variety of system meta information such as in
DB2/6000 (contained in the system tables).

Our concrete implementation is based on DB2/6000 and uses the Call Level
Interface (CLI). There are three types of procedures defined in our database
access interface:

� General database procedures: for connecting to the database (dbConnect),
disconnecting from the database (dbDisconnect) and making a checkpoint
(dbCheckPoint)

� Data manipulation procedures: dbSelect, dbInsert, dbUpdate, dbDelete

� Help procedures: for building selection strings (selectThisRow, dbOrderString

and dbAlwaysFalse) and for freeing the allocated space for the table data
structure (freeTable)

The four manipulation procedures provide the main database access operations:
data selection, insertion, updating and deletion. The select function dbSelect takes
as arguments the table name (from part of the SQL select statement), the output
column number and the column name array (corresponding to the select part of
the SQL select statement); a selection string determining the selection predicates
output ordering or grouping. It returns the data in a table data structure, which is
then used by the database frames to display the table contents (see the next
section).

The other manipulation procedures, dbInsert, dbUpdate, and dbDelete, provide in a
similar way parameters corresponding to the appropriate SQL statements they
represent. They return a NULL in the case of success, or the error message in the
case of failure.

The help procedures serve on the one hand to abstract from the particular
database syntax when building the selection strings and on the other hand to free
the table data structure. In the former case they return a selection string for a
particular row (selectThisRow), the false predicate (dbAlwaysFalse) respectively
define an order for the row output (dbOrderString). In the latter case represented

310 Pristine AIX Environments

by freeTable the memory space allocated for a table data structure (returned by
dbSelect) is freed.

All the database access procedures defined in the interface are designed according
to the particular needs of our task to provide a graphical user interface to the
Software Distribution for AIX configuration interface. But they are kept general in
such a way that they apply to any database and database object. The abstraction
of the concrete task and modularization of the program structure make the program
maintenance easier and enable the enhancement of its functionality.

The DB2/6000 implementation is listed in Appendix C, “Source Code of the
Graphical User Interface” on page 419. The detailed explanation of the C code is
beyond the scope of this book. We believe that after the user gets acquainted with
the data structures and functionality of the procedures provided by the interface and
supported by the program comments, an experienced C-programmer could change,
improve, and reimplement parts according to his/her own needs and tastes without
affecting other parts of the program. Our intention, providing the graphical user
interface to the Software Distribution for AIX configuration database, is to show a
way for convenient and consistent database access, relieving the network
administrator of concerns database specifics and data model details.

15.2.2 The Database Frames Part
The same modular principle is applied when designing the needed frames for the
graphical representation of the configuration data. The C include file is listed in
Figure 169 on page 312.

 Chapter 15. Modifying Configuration Data Using a Graphical User Interface 311

/\\

\\

\\ File: dbFrames.h

\\ System: User Interface to NetView DM/6ððð Configuration Database

\\ Purpose: Graphic Database Frames Interface

\\ Author: Plamen Kiradjiev

\\ Date: 1ð/ð9/1995

\\

\\\/

/\---------------------- Includes ---\/

#include "dbAccess.h"

#include <Xm/PushB.h>

/\---------------------- Procedures --\/

/\ View Database Data in a Table Frame \/

void tableFrame(Widget w, Table \table);

/\ Insert Table Frame for a Sequence of Tables \/

void insertFrame(Widget w, int tabCount, Table \\table);

/\ Message Box \/

void messageBox(Widget top, String msg, int fatal);

Figure 169. Database Frames Include File dbFrames.h

In this interface we provide three general frames used by the main program:

� tableFrame: displaying a database table in a usual way by rows and columns

� insertFrame: providing the possibility of inserting data into a sequence of
database tables

� messageBox: for the output of error messages and warnings

The frames rely on the database access interface and use only the data structures
and procedures defined there. They are kept independent of the concrete
configuration database implementation, so they can be used unchanged for the
ODM case as soon as an ODM access implementation is provided according to the
interface dbAccess.h.

All the frame procedures take as first argument the parent widget. This is needed
because of the hierarchical structure of the Motif graphic elements (widgets, see
AIXwindows Programming Guide). The table and insert frame rely on the table
data structure when processing data from the database. Here you can recognize
the benefit of a neutral data structure defining the interface between the database
and graphical part of the program. It separates both tasks and enables
enhancement and development of the modules independently from each other.

312 Pristine AIX Environments

The insert frame provides a special feature needed by our tool for the convenient
insertion of data into the configuration tables without considering the defined
referential dependencies of the model: the capability of defining of a table insert
sequence. In this manner you can specify a Table array from the application
determining the order that the insert frames appear according to the referential
rules.

The functionality of the frames was already described in the first part of this
chapter.

The message box displays a message in a separate dialog window. Among the
parent widget and the message string, the procedure messageBox takes a flag fatal
that indicates whether the application should be exited after the particular error
occurs.

The modular approach enables the extensibility of the graphical part of the tool
similar to the database part. With some experience in Motif programming you can
add new elements to the existing frames or even design new ones. The
implementation (see Appendix C, “Source Code of the Graphical User Interface” on
page 419) is structured in three parts defining the graphic elements, the callbacks
and some help procedures, respectively.

15.2.3 The Main Program
The only application and data model dependent part of our graphical user interface
is the main program, uicfgdb.c (see Appendix C, “Source Code of the Graphical
User Interface” on page 419). It uses the database access procedures and frames
for the particular task of accessing the Software Distribution for AIX configuration
database.

The specific configuration data model is represented by a couple of constants for
the used database table names and objects and by the two global arrays
serverDependentTabs and clientDependentTabs determining the table insert
sequences for a new server and client node, respectively (refer to Appendix C,
“Source Code of the Graphical User Interface” on page 419).

The main program initializes the Motif environment and tries to make a connection
to the Software Distribution for AIX configuration database NVDM_CFG. In the
case of failure (for example, the configuration database is not available), an error
message is displayed and the application is exited.

After the successful connection to NVDM_CFG, the main application window occurs
on the screen. The possible actions from the main window are covered by the
following callback procedures:

� listSelectCB: after double-clicking on a database table from the list, a table
frame is generated for the chosen table.

� updateGlobalsCB: after clicking on the button Update Network Globals , a table
frame occurs for NVDM_CFG_STATIC, containing the network global
parameters.

� insertNodeCB: after clicking on the button Insert New Node , a dialog window is
called requesting the new node name and the specification of whether or not it
is a server (see Figure 162 on page 299).

� exitAppCB: the application is left.

 Chapter 15. Modifying Configuration Data Using a Graphical User Interface 313

The processing of the new node to be inserted depends on whether it is defined as
a server or as a client. In the former case the server-dependent tables are taken
(global array serverDependentTabs); in the latter the global array
clientDependentTabs is taken. In both cases after taking over the inserted
information, the callback readNameCB is called when clicking on the OK button (see
Figure 162 on page 299). It prepares the needed column data by performing
empty selections from the tables of the specified sequence (by applying the
function dbAlwaysFalse from dbAccess.h). In this manner the array of table data
structures is constructed and delivered to the function insertFrames.

 Note

Of course, the same result can be obtained by retrieving information from the
DB2/6000 system tables. We do not make use of the system tables for the
following two reasons:

� Relying on the DB2/6000 specific meta information would be inconsistent
with our modular approach to separate the different tasks and let the
program part communicate through well-defined interfaces.

� A select operation with the false predicate is handled much faster by the
optimizers of relational database systems, while the selection of a system
table like SYSIBM.SYSCOLUMNS can be time consuming because of its
size.

15.2.4 Features of the Graphical Interface Program
Now that we have presented the functionality and some implementation details of
the graphical user interface, we now summarize the features of the tool. Providing
this tool, our main intention is to demonstrate a comfortable, easy to use and
consistent interface to the Software Distribution for AIX configuration database.
You can directly employ this interface for the configuration data model discussed in
this book as well as modify and improve it when needed by slight changes to the
code.

 15.2.4.1 Advantages
The graphical user interface to the Software Distribution for AIX configuration
database has the following advantages:

� The graphical user interface provides a conventional user-friendly access to the
tables of the Software Distribution for AIX configuration database as well as a
model-driven, consistent way of inserting new targets.

� It relieves the Software Distribution for AIX administrator of the in-depth
knowledge of the configuration data normally required model and of the defined
referential dependences between tables.

� The graphical user interface is designed in order to guarantee its extensibility,
so it is not difficult to improve its behavior and add a new functionality.

� Because of its modularity the changes affect only a limited scope of the
program.

� As the database access and database frame procedures do not rely on a
concrete model or application, they are reusable to a large extent. Moreover,
they constitute most of the code for the tool.

314 Pristine AIX Environments

 15.2.4.2 Limitations
It is reasonable to expect from such a tool, implemented for the sake of
completeness of our relational database approach in processing Software
Distribution for AIX configuration data to show some limitations, which are as
follows:

� Although keeping the generality of the interfaces, only the needed database
operations and frames are implemented.

� Since our configuration data model uses only the SQL CHAR type, we do not
complicate the table data processing with type conversions according to the
particular column types.

� Although provided by the database access procedures by the selection string
parameter, there is no graphic support for restricted table selections. When the
number of selected rows exceeds the value of a constant MAXSELECT
(currently set to 100), the remaining rows are not shown and an appropriate
message occurs in the message part of the table frame.

� In the case of data model change, a recompilation is needed because of the
required modifications of the globals in the main program uicfgdb. Relying on
the makefile shipped with the package, the user can call make in the directory
of the graphical user interface.

� The database connection is made implicitly and relies on client authentication in
the DB2/6000 client/server environment.

 Chapter 15. Modifying Configuration Data Using a Graphical User Interface 315

316 Pristine AIX Environments

Chapter 16. Cloning Systems Using Software Distribution for
AIX 3.1

In this chapter we will examine the tools available in Software Distribution for AIX
3.1 for either installing or migrating workstations.

In order to demonstrate this feature we will show the steps needed to install the
AIX 4.1 operating system on a pristine workstation.

16.1 Overview and Objective
With Software Distribution for AIX 3.1 the tools available for installing the AIX
operating system on workstations have been significantly enhanced as compared to
NetView DM/6000.

Figure 170. Steps in Pristine Installation Scenario

The major enhancements are features to install an AIX 4.1 system backup image
(mksysb) on a pristine workstation and to update an installed workstation from AIX
3.2.5 or from a previous version of AIX 4.1.

 Copyright IBM Corp. 1996 317

Hence, the tools supplied with the product can be used to do the following:

� Clone an AIX 3.2.5 system by copying the complete rootvg of a model
workstation to the workstation that needs to be installed. This feature was also
available in NetView DM/6000 1.2 and is described in detail in the redbook
NetView DM/6000 Agents and Advanced Scenarios, GG24-4490.

� Clone an AIX 3.2.5 system by installing a system backup image (mksysb) on the
target workstation. We have shown an example of how to do that with NetView
DM/6000 1.2 in Chapter 10, “Pristine Installation” on page 167.

� Clone an AIX 4.1 system by installing a system backup image on the target
workstation. This is the feature that we will demonstrate in this chapter.

� Migrate an installed workstation from AIX 3.2.5 to AIX 4.1 using an AIX 4.1
system backup image.

� Migrate a workstation installed with AIX 4.1 to a newer version of AIX 4.1, for
example, migrate from AIX 4.1.2 to 4.1.3. This is also achieved by installing an
AIX 4.1.3 system backup image.

Although new features have been introduced to the pristine installation process with
Software Distribution for AIX 3.1, the basic principle is the same as it was in
NetView DM/6000. However, there have been significant changes in the scripts
used to perform the preparation and execution of the pristine installation.

 Additional Hints

You will find additional hints to avoid potential problems with the pristine
installation in the file:

 /45ð8code/README.first

Therefore we will not describe the entire installation process again, but concentrate
on the new features and changes. If you need an introduction to the pristine
installation process you can refer to the redbook NetView DM/6000 Agents and
Advanced Scenarios, GG24-4490 or to Chapter 10, “Pristine Installation” on
page 167.

16.2 File and Directory Structure
In order to be able to clone workstations you have to install the Tools option of
Software Distribution for AIX 3.1.

All files for cloning and migrating workstations are located in the
/usr/lpp/netviewdm/tool/AIX.install directory. This directory contains two
subdirectories, 4_1 which contains the files needed to install AIX 4.1 and 3_2_5
which contains the files needed to install AIX 3.2.5.

Each of these directories has two subdirectories, scripts which contains the shell
scripts for preparing and performing the cloning and profiles which contains
change file profiles that are used to build the change files needed to prepare and
perform the cloning.

Further, there is a directory /etc/aixfnd that holds configuration and status
information maintained by the cloning scripts. The file fnddb holds a simple pristine

318 Pristine AIX Environments

installation database which is actually a simple text file containing information about
the clients that have been prepared, etc.

This file is accessed by the preparation script fndnprel as well as the cleanup
script fndcln.

Also, a file lock is created in /etc/aixfnd whenever the preparation script fndnprel
is running. This avoids multiple instances of fndnprel running at the same time.

 16.3 Prerequisites
In order to be able to install an AIX 4.1 system backup image, the following
software has to be installed on the network server:

� AIX Base Operating System Version 4.1

� TCP/IP Version 2.1

� Network File System (NFS)

� The bos.sysmgt.sysbr fileset

In our example we also use the CC server as the network server and have installed
AIX 4.1.3.

 Note

In our example we also use the CC server as the network server because this
simplifies the scenario. In case you want to use another machine, this machine
has to have the Software Distribution Agent installed. In order to prepare this
system as the network server you will have to build a change file to transmit
and execute the preparation script fndnprel. Refer to Software Distribution 3.1
for AIX User's Guide, SH19-4163 on how to do that.

Normally TCP/IP and NFS are automatically installed when you install your AIX 4.1
operating system. Whether the bos.sysmgt.sysbr file set is also installed can be
checked by typing:

lslpp -h bos.sysmgt.sysbr

This should produce an output similar to the following:

Fileset Level Action Status Date Time

 --

Path: /usr/lib/objrepos

 bos.sysmgt.sysbr

4.1.3.ð COMMIT COMPLETE 1ð/12/95 17:41:5ð

Path: /etc/objrepos

 bos.sysmgt.sysbr

4.1.3.ð COMMIT COMPLETE 1ð/12/95 17:43:ð8

 Chapter 16. Cloning Systems Using Software Distribution for AIX 3.1 319

16.4 Installing AIX 4.1 on a Pristine Client
In order to install a pristine client with AIX 4.1, we will perform the following steps:

� Create a file system to hold the system backup image on the network server.

� Create a file system to hold the AIX 4.1 support images needed to install the
client.

� Copy the Software Distribution for AIX client image to the directory where the
support images reside.

� Create a system backup image (mksysb) of a model workstation and store it on
the network server.

� Customize the fnd_defaults file.

� Create a list file containing information about the pristine client.

� Run the preparation script fndnprel.

� Customize the bosinst.data file.

� Define the pristine client as a target on the CC server.

� Boot the pristine client.

� Customize the fnd_bi_tool file.

� Build the change file to perform the cloning.

� Submit the change file to perform the cloning.

� Clean up the network server.

We will now describe each of the above steps in detail.

16.4.1 Creating File Systems
In order to perform the cloning we will need two file systems, one to hold the image
to be installed on the client and another to hold the AIX 4.1 support images.

Unlike with the AIX 3.2.5 cloning procedure we need to supply certain AIX 4.1
images to support the installation. These images are copied by fndnprel from a
source specified in the fnd_defaults file to the file system we create; the name of
this file system is also specified in the fnd_defaults file.

The preparation script fndnprel uses the support file sets to install the /usr SPOT
which is used by the pristine client after booting.

The default name of the file system for support images is /inst.images, so we
create a file system with that name being 300 MB of size. We can use SMIT or the
following command:

crfs -v jfs -g rootvg -a size=6ððððð -m /inst.images -A yes -p rw \

-f no -a frag=yes -a nbpi=4ð96 -a compress=no

We use a similar command to create a file system for storing the system backup
image:

320 Pristine AIX Environments

crfs -v jfs -g rootvg -a size=1ðððððð -m /inst.images -A yes -p rw \

-f no -a frag=yes -a nbpi=4ð96 -a compress=no

 Note

A file system size of 500 MB is normally enough to store an AIX 4.1 mksysb

image. Unlike in AIX 3.2 where system backup images were in tar format, AIX
4.1 uses the backup format which significantly reduces the size of the image.

The next step is mounting both file systems:

mount /inst.images

mount /mksysb

16.4.2 Copying the Client Image
In order to enable the pristine client to act as a software distribution agent right
after it has been booted, the agent code is installed in the /usr SPOT.

This is done by fndnprel, which needs the install image of the client located in the
directory where the support images reside.

We can either copy the install image from tape or, if we already have the file stored
on our hard disk, by a simple file copy.

We assume that we have the image stored in the /usr/sys/inst.images directory.
We can then copy the file by typing:

cd /usr/sys/inst.images

cp netviewdm6ððð.client.3.1.ð.ð /inst.images

If we want to save disk space we can also create a symbolic link:

ln -s /usr/sys/inst.images/netviewdm6ððð.client.3.1.ð.ð \

/inst.images/netviewdm6ððð.client.3.1.ð.ð

16.4.3 Creating the System Backup Image
Before creating the system backup image we have to pick a system that we want to
clone.

When doing so you must consider that with AIX 4.1 you must be careful when
selecting the model system. Since with AIX 4.1 you cannot install a mksysb image
on a different hardware model, you must pick a system as your model that is
similar to the system you want to install.

For example, it is not possible to install an image created on an RS/6000 model
40P on a C10 because these systems have different hardware architectures.

 Chapter 16. Cloning Systems Using Software Distribution for AIX 3.1 321

The reason for this is that in AIX 4.1, normally, only the device drivers actually
needed are installed. Therefore it is very likely that device drivers are missing
when trying to install the system backup on a different machine. For example, the
40P has an ISA bus, whereas the C10 uses a Micro-Channel.

However, you can normally install the backup image on a similar machine. We
had, for example, no problems when installing an image created on a C10 on a
C20 since these machines differ only in the CPU type. Also, you should normally
have no problems if the target system has a different disk configuration, as long as
the hard disks are of the same architecture and the target system disk space is
sufficient to store the data contained in the image.

In order to store the image on the network server, we NFS-export the file system
we have previously created to the model workstation. This can be done using
SMIT. Remember to grant the model workstation root access and export the file
system in read-write mode.

On the model we have to mount the file system. Assuming that our network server
has the hostname rs6ððð15, we type on the model:

mkdir /mksysb

mount rs6ððð15:/mksysb /mksysb

Now we can create the system backup. The easiest way is using SMIT by typing
smitty mksysb. Enter the name of the system backup image, for example,
/mksysb/aix41.image and also select to create map files.

The backup will run for some time. As soon as it is finished you can unmount the
NFS file system again and return to the CC server.

16.4.4 Customizing the Default File
The fnd_defaults file located in the
/usr/lpp/netviewdm/tool/AIX.install/4_1/scripts directory contains information
for the preparation script telling it where to find information.

In order to customize the file we type:

vi fnd_defaults

Jump to the end of the file where you will find the customizable parameters. For
our scenario we enter the following values:

DEFAULT_source=/dev/cdð

DEFAULT_inst_images=/inst.images

DEFAULT_mksysb=/mksysb

MKSYSB_IMAGE=aix41.image

INSTALLP_LOG=/tmp/installp

We specify the device file of the CD-ROM drive as DEFAULT_source in order to copy
the support file sets from CD-ROM.

322 Pristine AIX Environments

In order to be able to watch the progress of the SPOT installation we specify
/tmp/installp as the log file. This will enable us to see the output of the installp
that is used by fndnprel to install the /usr SPOT.

16.4.5 Describing the Pristine Client
In order to describe the parameters needed to install client, we create a list file with
the appropriate data. A sample file can be found in fnd.cfg.sample located in the
same directory where fnd_defaults resides.

In order to fill this file you will need the following information:

� The TCP/IP address and hostname of the pristine client

� The MAC address of the pristine client

� The installation method

The TCP/IP hostname in our example is nw44, the TCP/IP address is 192.1.1.44.
The machine has a token-ring adapter with the MAC address ð8ðð5a81d33d.

 Note

You can use the netstat -v | more command to determine the MAC address
of the client if it already has an operating system installed. If not, you just need
to try a network boot and the address will be displayed on the console.

The installation method in our case is mksysb_install. The other possible value is
migrate if you want to migrate an installed system.

The following figure shows the list file for our example:

 CLIENT NAME: nw44

 BOOT DEVICE: tokð

DESCRIPTION: Pristine Installation Test

NETWORK DEVICE HARDWARE ADDRESS: ð8ðð5A81D33D

 SERVER: rs6ððð15

 GATEWAY ADDRESS:

 SUBNETMASK:

 INSTALL METHOD: mksysb_install

BACKUP IMAGE NAME: /mksysb/aix41.image

 DEBUG MODE: no

Figure 171. Configuration File for Pristine Client

16.4.6 Running the Preparation Script
Now that we have supplied all necessary information and completed all prerequisite
tasks we can run the preparation script.

Since we want to copy our support images from CD-ROM, we have to insert an AIX
4.1 installation CD in the CD drive of the network server before running the script.

To run the script and write the output to logfile we type:

 Chapter 16. Cloning Systems Using Software Distribution for AIX 3.1 323

cd /usr/lpp/netviewdm/tool/AIX.install/4_1/scripts

 ./fndnprel -f list | tee logfile

Note about CD-ROM

With some versions of Software Distribution for AIX 3.1 the preparation script
will fail when using a CD-ROM to supply the support images. The reason for
this is that the fndnprel script will use the inutoc command to create a .toc file
in source directory. Since the CD-ROM is read-only this command will fail and
the fndnprel will quit.

In order to fix this you can edit fndnprel and comment out the line where the
inutoc command is invoked. In the version we worked with this was line 1219:

#${INUTOC} ${source} 2>/dev/null || handle_error

Also, when using a CD-ROM as the source for support images, the fndnprel

script will not unmount the CD file system after it has completed. This will cause
the script to fail the next time it is invoked.

In order to fix this you should unmount the file system manually before running
fndnprel again. The file system name is /tmp/PID, for example, /tmp/198ð2.
To unmount it we type:

unmount /tmp/198ð2

The fndnprel will perform the following tasks in order to prepare the pristine
installation:

 � Create /etc/aixfnd/lock.

� Copy the support images from the source to /inst.images.

� Create a file system /export/nvdma and export it to the pristine client.

� Create a directory /export/nvdma/workstation.

� Create a /usr SPOT.

� Install the SPOT with the support images.

� Install the Software Distribution Agent in /export/nvdma/workstation and
customize it for use with the CC server.

� Insert the pristine client into /etc/bootptab.

� Create a network boot image in the /tftpboot directory.

� Make an entry in /etc/aixfnd/fnddb.

324 Pristine AIX Environments

 Note

We encountered an error when installing the SPOT with the support images.
The installp command failed because it could not install some of the support
file sets due to a missing prerequisite. The images that could not be installed,
however, were not actually needed, but the fndnprel command failed.

To fix this, we commented out the line in fndnprel where the return code of the
installp command is checked. In the version we used this was line 2981. We
replaced rc=$? with rc=ð in order to ignore the return code.

The output of the installp can be examined by browsing the file /tmp/installp
assuming that the parameter in fnd_defaults is set appropriately.

As soon as fndnprel has completed successfully we can perform the pristine
installation.

 Note

If the fndnprel script complains that there is already a preparation script
running, you can check this by typing:

ps -ef | grep fndnprel

If the script is not running, remove the file /etc/aixfnd/lock by typing rm
/etc/aixfnd/lock and then start fndnprel again.

The following figure shows logfile for a successful run of fndnprel:

 Chapter 16. Cloning Systems Using Software Distribution for AIX 3.1 325

 Configuring AIX Version 4.1 Network Server

for the installation of a remote client using

Software Distribution for AIX.

 Creating /usr/lpp/netviewdm/tmp directory.

 Creating /export/nvdma filesystem.

Based on the parameters chosen, the new /export/nvdma JFS file system

is limited to a maximum size of 134217728 (512 byte blocks)

New File System size is 24576

 Created /export/nvdma filesystem 12Mb large.

 Mounting /export/nvdma filesystem.

Creating /export/nvdma/nw44 directory.

 Creating /tftpboot filesystem.

 Created /tftpboot filesystem 4Mb large.

 Mounting /tftpboot filesystem.

bosboot: Boot image is 5ð68 512 byte blocks.

New volume on /inst.images/netviewdm6ððð.client.3.1&

 Cluster 512ðð bytes (1ðð blocks).

Volume number 1

Date of backup: Wed Oct 18 22:12:2ð DFT 1995

Files backed up by name

 User builder

files restored: 14

 Creating the /usr-spot.

Exporting filesystems to nw44 client.

It may take some minutes...

/usr/bin/fndnprel executed successfully.

Figure 172. Preparation Script Log

16.4.7 Customizing the bosinst.data File
The bosinst.data file is located in /export/nvdma/workstation and contains
information about how to install the operating system.

It is important that the CONSOLE and PROMPT fields in this file are set correctly. The
CONSOLE field contains the console device of the pristine client, for example,
/dev/ttyð or /etc/lftð.

The following figure shows the bosinst.data file for our example:

326 Pristine AIX Environments

control_flow:

CONSOLE = /dev/ttyð

INSTALL_METHOD = overwrite

PROMPT = no

EXISTING_SYSTEM_OVERWRITE = yes

INSTALL_X_IF_ADAPTER = yes

RUN_STARTUP = no

RM_INST_ROOTS = no

 ERROR_EXIT =

 CUSTOMIZATION_FILE =

TCB = no

INSTALL_TYPE = eserver

 BUNDLES =

target_disk_data:

 LOCATION =

 SIZE_MB =

 HDISKNAME =

target_disk_data:

 LOCATION =

 SIZE_MB =

 HDISKNAME =

locale:

 BOSINST_LANG =

CULTURAL_CONVENTION = en_US

MESSAGES = en_US

KEYBOARD = en_US

Figure 173. bosinst.data File

16.4.8 Defining the Pristine Client as a CC Client
In order for the pristine client to act as a CC client we have to define it as a target
on our CC server. We can do this by either using the graphical user interface
nvdmgi or by using the command line interface:

nvdm addtg nw44 -s NW44 -y AIX -b client

In the above example the hostname of our client is nw44.

16.4.9 Booting the Pristine Client
We have described how to boot a pristine client in Chapter 10, “Pristine
Installation” on page 167 and will not describe this procedure again. However, the
procedure described there is only valid for Micro-Channel systems. Therefore we
will describe the procedure for ISA-bus systems, namely a model 43P now.

The following are steps that need to be performed:

1. Insert the diskette labeled "System Management Services".

2. Turn on the system.

 Chapter 16. Cloning Systems Using Software Distribution for AIX 3.1 327

3. Wait until the keyboard icon is displayed and press F4. The system
management utilities will be loaded from the diskette.

4. Select Utilities from the menu and press Enter.

5. Select Remote Initial Program Load Setup and press Enter.

6. Select IP Parameters and press Enter.

7. Enter Client IP Address, Server IP Address and Netmask and then press Enter.
Then press the Escape key.

8. Select Ping and press Enter. Start a test transmission. If the test is not
successful check network connections, cables, routers, etc. If the test is
successful press the Escape key.

9. Select Select Boot Devices and press Enter.

10. Select Boot Other Devices and press Enter.

11. Select the appropriate network adapter and press Enter. The system will boot
from the network.

 Note

If you want to migrate a system, you will not need to boot it manually. You can
then use the script
/usr/lpp/netviewdm/tool/AIX.install/4_1/scripts/bootl.proc to change the
boot list on the client system. To do so change the network device in
bootl.proc, for example, to tokð. Then catalog the procedure on the CC server
by typing nvdm cat BOOTLIST.CHANGE.PROC bootl.proc -o PROC -t and execute
the procedure on the client by typing:

nvdm exec BOOTLIST.CHANGE.PROC -w workstation

This will change the boot list in normal mode to boot from the network. Then
use the command:

nvdm act -w workstation -f

This will reboot the client from the network.

16.4.10 Customizing the fnd_bi_tool File
The fnd_bi_tool script in the /usr/lpp/netviewdm/tool/AIX.install/4_1/script

directory performs the actual cloning. It will be contained in the change file that is
installed on the pristine client to do the installation.

Before the change file is built, we might need to customize this script:

� The variable CURLEVEL contains the current level of AIX that is to be installed.
In the current version this field is set to 4.1.1.

� In our scenario, however, we use AIX 4.1.3 so we replace the line
CURLEVEL=4.1.1 with CURLEVEL=4.1.3.

328 Pristine AIX Environments

16.4.11 Building the Installation Change File
The change file to perform the pristine installation can be built from the change file
profile /usr/lpp/netviewdm/tool/AIX.install/4_1/profiles/profile.install:

cd /usr/lpp/netviewdm/tool/AIX.install/4_1/profiles

nvdm bld profile.install

This will add the change file NVDM.AIX.INSTALL.REF.1 to the catalog at the CC
server.

16.4.12 Submitting the Change Request
Before submitting the change request we have to make sure that the pristine client
has successfully started the CC client code.

This can be checked by typing:

nvdm stattg nw44

As soon as the status is available we can submit the change request.

In order to actually start the installation we have to install the change file
NVDM.AIX.INSTALL.REF.1 on the target nw44. This can be done using the
graphical user interface nvdmgi.

The progress of the installation can be checked by watching the file
/export/nvdma/workstation/work/request.out, for example:

tail -f /export/nvdma/nw44/work/request.out

16.4.13 Cleaning Up the Network Server
The preparation script fndnprel creates file systems, a /usr SPOT, a network boot
image, etc. This will consume some of your disk space which you might want to
free up again after you have installed the pristine client.

For that purpose you can use the script fndcln. It will remove the information
created for a specific system. In our example we typed the following to remove the
information for our pristine client:

fndcln -w nw44

This will remove the boot image in /tftpboot, the entry from /etc/bootptab, etc. It
will also remove the /export/nvdma file system and the SPOT if there are no other
clients in the database file /etc/aixfnd/fnddb.

However, it will not remove the directory containing the support images by default
because they may be needed to perform another installation. If you also want to
remove this directory, you must type:

 Chapter 16. Cloning Systems Using Software Distribution for AIX 3.1 329

fndcln -w nw44 all

330 Pristine AIX Environments

Appendix A. The Configuration Script Listings

In this appendix we list the file that contains the configuration script config_nvdm,
which is used to configure software distribution networks.

A.1 Script for NetView DM/6000 Version 1.2 Using ODM

 Copyright IBM Corp. 1996 331

#!/bin/ksh

#

#

Configure NVDM node

Main Configuration Script

For NetView DM/6ððð V1.2

This script can be used to configure any RS/6ððð

workstation in your software distribution network

automatically

Author : Stefan Uelpenich/IBM Germany

RCS Revision : $Revision: 1.1 $

#

This script will cover:

#

1. For all nodes

- configuration of WORKSTATION NAME in nvdm.cfg

- configuration of SERVER in nvdm.cfg

- configuration of TCP/IP ports used by NVDM

- configuration of log file size & other things

in nvdm.cfg

- add NVDM Users to AIX Operating System

#

2. For servers/prep sites

- modification of server's own target

- add DLC Device for SNA adapter

- SNA initial node setup

- configuration of SNA CP profile

- configuration of SNA DLC profile

- configuration of SNA Link profile

- configuration of SNA Local LU profile

- configuration of SNA Mode profile

- configuration of SNA TPN Send profile

- configuration of SNA TPN Receive profile

- configuration of SNA LU6.2 Location profile

- configuration of SNA Side Info profile (Send)

- configuration of SNA Side Info profile (Receive)

- configuration of SNA/DS connection profiles

- configuration of SNA/DS Routing table

- configuration of local targets

- configuration of local target groups

- configuration of remote targets/focal points

- reload NVDM Configuration

- refresh SNA Server Configuration

- start SNA Server

- restart NVDM

- release NVDM SNA communications

332 Pristine AIX Environments

#

#

#

The command line parameter supplied with this command

must be the IP hostname of the system to be configured.

This hostname will be used as the argument when

accessing the configuration database

#

if [$# != 1]

then

print "Syntax : $ð node_name"

 exit 1

fi

#

extract hostname (without domain information)

#

HNAME=yecho $1 | cut -d'.' -f1y
print "NVDM CONFIG : Extracted hostname ... $HNAME"

#

Variables

#

CONFIG=/usr/lpp/netviewdm/db/nvdm.cfg

NUM_QUEUE=ð

PROTOCOL=""

REMOTE_SERVER=""

EXPORT_SNA=/tmp/sna.org

SNA_DS_DIR="/usr/lpp/netviewdm/db/snads_conn"

SNA_DS_ROUTE="/usr/lpp/netviewdm/db/routetab"

HISTORY_DIR="/usr/lpp/netviewdm/db/cm_status"

SAVE_DIR="/tmp/target_save"

USE_CP_XID=no

SW_INV="/usr/lpp/netviewdm/fndswinv"

#

#

useful stuff

#

#

print a line

line ()

{

 print "====================================\

Figure 174 (Part 2 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 333

==="

}

#

print debug information

#

debug_info ()

{

 line

 print "Software distribution network configuration script"

 print "\$Revision: 1.1 $"

 BEK=yhostnamey
 print "IP Hostname = $DEB"

 print "Name resolution = "yhost $DEBy
 line

}

#

abort configuration script

and print an error message

$1 = text of error message

#

abort ()

{

 line

 banner "FAILURE!"

 line

 print "NVDM CONFIG ERROR :\

 Could not properly configure node."

 print "Cause : $1"

 line

 exit 1

}

#

#

DATABASE ACCESS METHODS (ODM)

these access methods may be replaced with

access methods for any other database at

a later time

#

#

#

get list parameters from odm_class

$1 = class name

$2 = search field

$3 = search field value

Figure 174 (Part 3 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

334 Pristine AIX Environments

$4 = attribute name

The list of parameters is stored in the VALUE_LIST variable

The number of parameters is stored in VALUE_NUM

#

get_attribute_list ()

{

 VALUE_LIST=yodmget -q $2=$3 $1 | grep "$4 =" | cut -d'=' -f2 |\
 sed "s/\"//g" | cut -c2-79y
 VALUE_NUM=yodmget -q $2=$3 $1 | grep "$1:" | wc -ly
}

#

get single parameters

$1 = class name

$2 = search field

$3 = search field value

$4 = attribute name

#

get_attribute ()

{

 VALUE=yodmget -q $2=$3 $1 | grep "$4 =" | cut -d '=' -f2 | sed "s/\"//g" |\
 cut -c2-79y
}

#

get single parameters (AND)

$1 = class name

$2 = search field1

$3 = search field value1

$4 = search field2

$5 = search field value2

$6 = attribute name

#

get_attribute_and ()

{

 VALUE=yodmget -q "$2=$3 AND $4=$5" $1 | grep "$6 =" | cut -d '=' -f2 |\
 sed "s/\"//g" | cut -c2-79y
}

#

#

CONFIGURATION METHODS

#

#

#

Set Attributes in nvdm.cfg file

Figure 174 (Part 4 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 335

$1 parameter name (e.g. WORKSTATION NAME, SERVER)

$2 parameter value

#

configure_nvdm_cfg ()

{

 mv $CONFIG /tmp/config

 print "NVDM CONFIG : Setting nvdm.cfg ($1) to $2"

 #

 # the TCP/IP port parameter is special

 # because it contains a / in its name

 # and also needs modification of

 # /etc/services

 #

 if ["$1" = "TCP/IP PORT"]

 then

sed "s/TCP\/IP PORT:.\/TCP\/IP PORT: $2/" \

/tmp/config >$CONFIG

mv /etc/services /tmp/services

 sed "s/NetViewDM6ððð.\\/tcp/NetViewDM6ððð $2\/tcp/" \

/tmp/services >/etc/services

 return

 fi

 #

 # adjust to right column

 #

 len=yecho $1 | wc -cy
 SUBST=$2

 while [$len -lt 22]

 do

 SUBST=" "$SUBST

len=yexpr $len + 1y
 done

 #

 # replace parameter

 #

 sed "s/$1:.\/$1:$SUBST/" /tmp/config >$CONFIG

}

#

configure SNA Control Point Profile

#

SNA_NET contains SNA Network Name

CP_NAME contains SNA Control Point Name

CP_TYPE contains SNA Control Point Type

#

configure_sna_cp ()

{

 print "NVDM CONFIG : Configuring SNA Control Point Profile"

Figure 174 (Part 5 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

336 Pristine AIX Environments

 line

set -x

 chsnaobj -t 'control_pt' -e "$SNA_NET" -a "$CP_NAME" -A "$CP_NAME"\

 -N "$CP_TYPE" node_cp

set +x

 line

}

#

configure SNA dlc

for all SNA communications a DLC for the

communications adapter is needed.

if the DLC already exists, the mkdev command

will print an error message - this will be

redirected to /dev/null

#

configure_sna_dlc ()

{

 print "NVDM CONFIG : Adding DLC Device for $DEVICE"

 CHECK=yecho $DEVICE | cut -c1-3y
 case "$CHECK" in

"tok") mkdev -c dlc -s dlc -t tokenring 1>/dev/null 2>&1 ;;

"ent") mkdev -c dlc -s dlc -t ethernet 1>/dev/null 2>&1 ;;

"x25") mkdev -c dlc -s dlc -t x25_qllc 1>/dev/null 2>&1 ;;

"\") print "NVDM CONFIG : Device type $CHECK unknown." ;;

 esac

}

#

SNA initial node setup

#

sna_initial ()

{

 CHECK=yecho $DEVICE | cut -c1-3y
 case "$CHECK" in

"tok") DEV_TYPE="token_ring" ;;

"ent") DEV_TYPE="ethernet" ;;

"fdd") DEV_TYPE="fddi" ;;

"x25") DEV_TYPE="x.25_call_SVC" ;;

 "\") DEV_TYPE="none"

 esac

 if ["$DEV_TYPE" = "none"]

 then

abort "No device type found for $DEVICE."

 fi

 print "NVDM CONFIG : Configuring SNA Initial Node Setup"

Figure 174 (Part 6 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 337

set -x

 mk_qcinit -y $DEV_TYPE -t $CP_TYPE -w $SNA_NET -d $CP_NAME

set +x

}

#

configure SNA dlc profile

#

configure_sna_dlc_profile ()

{

 # determine type of DLC from datalink device name

 # get only first 3 characters from device name

 # e.g. if datalink device is x25s1, then x25 determines

 # the type to be X.25

 CHECK=yecho $DEVICE | cut -c1-3y
 case "$CHECK" in

"tok") DEV_TYPE="sna_dlc_token_ring" ;;

"ent") DEV_TYPE="sna_dlc_ethernet" ;;

"fdd") DEV_TYPE="sna_dlc_fddi" ;;

"x25") DEV_TYPE="sna_dlc_x.25" ;;

 "\") DEV_TYPE="none"

 esac

 if ["$DEV_TYPE" = "none"]

 then

abort "No device type found for $DEVICE."

 fi

 #

 # create new DLC Profile

 # use Datalink Device Name as Profile Name

 #

 print "NVDM CONFIG : Configuring SNA DLC Profile"

 line

set -x

change !!!

 if ["$DEV_TYPE" = "sna_dlc_x.25"]

 then

mksnaobj -t "$DEV_TYPE" "$DEVICE"

 RC=$?

 else

mksnaobj -t "$DEV_TYPE" -d "$DEVICE" -b $SOLICIT -w yes -m $IFIELD \

-H $LSAP -c no -q ð "$DEVICE"

 RC=$?

 fi

set +x

Figure 174 (Part 7 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

338 Pristine AIX Environments

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

change !!!

if ["$DEV_TYPE" = "sna_dlc_x.25"]

 then

chsnaobj -t "$DEV_TYPE" "$DEVICE"

 else

chsnaobj -t "$DEV_TYPE" -d "$DEVICE" -b $SOLICIT -w yes -m $IFIELD \

 -H $LSAP -c no -q ð "$DEVICE"

 fi

set +x

 line

 fi

}

#

configure SNA Link Station Profile

#

configure_sna_link ()

{

 # determine type of DLC from datalink device name

 # get only first 3 characters from device name

 CHECK=yecho $DEVICE | cut -c1-3y
 case "$CHECK" in

"tok") DEV_TYPE="token_ring" ;;

"ent") DEV_TYPE="ethernet" ;;

"fdd") DEV_TYPE="fddi" ;;

"x25") DEV_TYPE="x.25" ;;

 "\") DEV_TYPE="none"

 esac

 if ["$DEV_TYPE" = "none"]

 then

abort "No device type found for $DEVICE. Exiting"

 fi

 #

 # create new Link Station Profile

 # use Datalink Device Name as DLC Profile Name

 #

Figure 174 (Part 8 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 339

 print "NVDM CONFIG : Configuring SNA Link Station Profile"

 line

set -x

change !!!

 if ["$DEV_TYPE" = "x.25"]

 then

mksnaobj -t link_station -w "$DEV_TYPE" -y "$DEVICE" -q "$X25_TYPE"\

-a $SOLICIT -O $ICALL -F $ACTSTART -h $RNORM -z $RABNORM \

-s "$ADDR" "$PUNAME"

 RC=$?

 else

mksnaobj -t link_station -w "$DEV_TYPE" -y "$DEVICE" -d "$ADDR" -l $XID\

-s $RSAP -a $SOLICIT -O $ICALL -F $ACTSTART -h $RNORM -z $RABNORM \

-c "$USE_CP_XID" "$PUNAME"

 RC=$?

 fi

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

if ["$DEV_TYPE" = "x.25"]

 then

chsnaobj -t link_station -w "$DEV_TYPE" -y "$DEVICE" -q "$X25_TYPE" \

-a $SOLICIT -O $ICALL -F $ACTSTART -h $RNORM -z $RABNORM \

-s "$ADDR" "$PUNAME"

 else

chsnaobj -t link_station -w "$DEV_TYPE" -y "$DEVICE" -d "$ADDR" -l $XID\

-s $RSAP -a $SOLICIT -O $ICALL -F $ACTSTART -h $RNORM -z $RABNORM \

-c "$USE_CP_XID" "$PUNAME"

 fi

set +x

 line

 fi

}

#

configure local LU profile for node

#

configure_sna_local_lu ()

{

 print "NVDM CONFIG : Configuring SNA Local LU Profile"

Figure 174 (Part 9 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

340 Pristine AIX Environments

 #

 # create new Local LU Profile

 # use Local LU Name as Profile Name

 #

 line

set -x

 mksnaobj -t local_lu -u lu6.2 -l "$LLUNAME" -L "$LLUNAME" "$LLUNAME"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t local_lu -u lu6.2 -l "$LLUNAME" -L "$LLUNAME" "$LLUNAME"

set +x

 line

 fi

}

#

configure LU6.2 location profile

#

configure_sna_location ()

{

 print "NVDM CONFIG : Configuring SNA LU 6.2 Location Profile"

 #

 # create new LU 6.2 Location Profile

 # use Local LU Name as Profile Name

 #

 line

set -x

 mksnaobj -t partner_lu6.2_location -P "$SNA_NET.$PARTNER" \

 -O "$SNA_NET.$VTAMCP" -m link_station -l $LLUNAME \

 -s $PUNAME $PARTNER

 RC=$?

set +x

 line

 if [$RC = 255]

 then

Figure 174 (Part 10 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 341

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

 chsnaobj -t partner_lu6.2_location -P "$SNA_NET.$PARTNER" \

 -O "$SNA_NET.$VTAMCP" -m link_station -l $LLUNAME \

 -s $PUNAME $PARTNER

set +x

 line

 fi

}

#

configure SNA Mode Profile

#

configure_sna_mode ()

{

 #

 # create new Mode Profile

 #

 print "NVDM CONFIG : Configuring SNA Mode Profile"

 line

set -x

 mksnaobj -t mode -x 1 -w ð -l ð -a ð -N "#CONNECT" -m "$MODE" "$MPROF"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t mode -x 1 -w ð -l ð -a ð -N "#CONNECT" -m "$MODE" "$MPROF"

set +x

 line

 fi

}

#

configure TPN send profile

#

Figure 174 (Part 11 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

342 Pristine AIX Environments

configure_sna_send ()

{

 #

 # create TPN Profile (Send)

 #

 print "NVDM CONFIG : Configuring SNA TPN Profile (SEND)"

 line

set -x

 mksnaobj -t local_tp -n 21FðFðF7 -h yes -c basic \

 -d ð -P yes -w /usr/lpp/netviewdm/bin/fndts -s none "$SND"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t local_tp -n 21FðFðF7 -h yes -c basic \

 -d ð -P yes -w /usr/lpp/netviewdm/bin/fndts -s none "$SND"

set +x

 line

 fi

}

#

configure TPN receive profile

#

configure_sna_receive ()

{

 #

 # create TPN Profile (Receive)

 #

 print "NVDM CONFIG : Configuring SNA TPN Profile (Receive)"

 line

set -x

 mksnaobj -t local_tp -n 21FðFðF8 -h yes -c basic \

 -d ð -P yes -w /usr/lpp/netviewdm/bin/fndtr -s none "$RCV"

 RC=$?

set +x

 line

 if [$RC = 255]

Figure 174 (Part 12 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 343

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t local_tp -n 21FðFðF8 -h yes -c basic \

 -d ð -P yes -w /usr/lpp/netviewdm/bin/fndtr -s none "$RCV"

set +x

 line

 fi

}

#

Configure partner LU profile (Focal Point)

#

configure_sna_partner ()

{

 #

 # create LU 6.2 Partner Profile

 #

 print "NVDM CONFIG : Configuring SNA LU6.2 Partner LU"

 line

set -x

 mksnaobj -t partner_lu6.2 -p no -P "$SNA_NET"."$PARTNER" \

 -O none -A "$PARTNER" "$PARTNER"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

 chsnaobj -t partner_lu6.2 -p no -P "$SNA_NET"."$PARTNER" \

 -O none -A "$PARTNER" "$PARTNER"

set +x

 line

 fi

}

#

configure Side Info Profile (Send)

Figure 174 (Part 13 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

344 Pristine AIX Environments

#

configure_side_snd ()

{

 #

 # create Side Info Profile (Send)

 #

 print "NVDM CONFIG : Configuring SNA Side Info Profile (Send)"

 line

set -x

 mksnaobj -t side_info -L "$CP_NAME" -P "$SNA_NET"."$PARTNER" -m "$MODE"\

 -d 21FðFðF7 -h yes "$SIDS"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t side_info -L "$CP_NAME" -P "$SNA_NET"."$PARTNER" -m "$MODE"\

 -d 21FðFðF7 -h yes "$SIDS"

set +x

 line

 fi

}

#

configure Side Info Profile (Receive)

#

configure_side_rcv ()

{

 #

 # create Side Info Profile (Receive)

 #

 print "NVDM CONFIG : Configuring SNA Side Info Profile (Receive)"

 line

set -x

 mksnaobj -t side_info -L "$LLUNAME" -P "$SNA_NET"."$PARTNER" -m "$MODE"\

 -d 21FðFðF8 -h yes "$SIDR"

 RC=$?

set +x

 line

Figure 174 (Part 14 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 345

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t side_info -L "$LLUNAME" -P "$SNA_NET"."$PARTNER" -m "$MODE"\

 -d 21FðFðF8 -h yes "$SIDR"

set +x

 line

 fi

}

#

get queues defined for a server

since this class can contain more

than one entry for a server, we have

to store the result in a list

#

$1 = server name

#

get_queues ()

{

 #

 # first, determine number of entries for

 # that server

 #

 #

 # Fill in Fields

 #

 get_attribute_list nvdm_queues node_name $1 protocol

 NUM_QUEUE=$VALUE_NUM

 if [$NUM_QUEUE = ð]

 then

 return

 fi

 PROTOCOL=$VALUE_LIST

 get_attribute_list nvdm_queues node_name $1 remote_server

 REMOTE_SERVER=$VALUE_LIST

}

#

Figure 174 (Part 15 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

346 Pristine AIX Environments

Configure SNA/DS connection configuration file (APPC)

#

configure_sna_ds_appc ()

{

 print "NVDM CONFIG : Configuring SNA/DS connection\

 configuration file $SNA_DS_DIR/$PARTNER"

 echo "PROTOCOL: APPC

SEND TP SYMBOLIC DESTINATION: $SIDS

RECEIVE TP SYMBOLIC DESTINATION: $SIDR

NEXT DSU: $SNA_NET.$PARTNER

TRANSMISSION TIME-OUT: 6ð

RETRY LIMIT: 3

SEND MU_ID TIME-OUT: 6ð

RECEIVE MU_ID TIME-OUT: 12ð" > $SNA_DS_DIR/$PARTNER

}

#

Configure SNA/DS connection configuration file (TCP/IP)

$1 = TCP/IP Hostname of remote system

#

configure_sna_ds_tcpip ()

{

 #

 # get short name of remote server

 #

 get_attribute nvdm_node node_name $1 short_name

 A=$VALUE

 print "NVDM CONFIG : Configuring SNA/DS connection configuration file."

 print "NVDM CONFIG : (TCP/IP) for remote Server $A."

 echo "PROTOCOL: TCP/IP

REMOTE SERVER NAME: $1

TCP/IP TIME-OUT: 3ðð

NEXT DSU: $A.$A

TRANSMISSION TIME-OUT: 6ð

RETRY LIMIT: 3

SEND MU_ID TIME-OUT: 6ð

RECEIVE MU_ID TIME-OUT: 12ð" >$SNA_DS_DIR/$A

}

#

delete local targets from NVDM Server configuration

$1 = Server IP Hostname

#

nvdm_delete_targets()

Figure 174 (Part 16 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 347

{

 #

 # get list of existing targets

 #

 TLIST=ynvdm lstg '\' | grep "Target:" | cut -d':' -f2y

 #

 # get list of all defined targets for this server

 #

 get_attribute_list nvdm_node server_name $1 node_name

 YLIST=$VALUE_LIST

 XLIST=""

 for i in $YLIST

 do

XLIST=$XLIST" "yecho $i | cut -d'.' -f1y
 done

 #

 # delete all targets which are not defined for this server

 #

 for i in $TLIST

 do

 match=ð

for x in $XLIST

 do

if ["$i" = "$x"]

 then

 match=1

 fi

 done

if [match -eq ð]

 then

 nvdm_save_history $i

print "NVDM CONFIG : Deleting Target $i from Server $1 configuration."

nvdm deltg $i -f

 fi

 done

}

#

Delete all existing groups before adding groups from

configuration database

$1 = IP Hostname of server to be configured

#

nvdm_delete_groups ()

{

Figure 174 (Part 17 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

348 Pristine AIX Environments

 #

 # determine existing groups

 #

 GP=ynvdm lsgp '\' | grep -E "Push|Pull" | cut -d' ' -f1y
 #

 # determine list of defined groups

 #

 get_attribute_list nvdm_groups node_name $1 group_name

 XGP=$VALUE_LIST

 for i in $GP

 do

 match=ð

for x in $XGP

 do

if ["$i" = "$x"]

 then

 match=1

 fi

 done

if [match -eq ð]

 then

print "NVDM CONFIG : Deleting group $i from $1 configuration."

nvdm delgp $i -f

 fi

 done

}

#

configure Targets for an NVDM/6ððð Server

$1 = Server IP Hostname

#

nvdm_configure_targets ()

{

 #

 # First, determine all Nodes which have this Server

 # defined as their NVDM/6ððð server

 #

 # access database

 get_attribute_list nvdm_node server_name $1 node_name

 ATLIST=$VALUE_LIST

 TLIST=""

 for i in $ATLIST

 do

TLIST=$TLIST" "yecho $i | cut -d'.' -f1y
 done

Figure 174 (Part 18 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 349

 count=ð

 for i in $TLIST

 do

count=yexpr $count + 1y
print "NVDM CONFIG : Defining Target $i on server $1"

nvdm lstg $i 1>/dev/null 2>&1

 #

if return code = ð then target exists already

 #

if [$? -ne ð]

 then

COMMAND="nvdm addtg $i"

 else

COMMAND="nvdm updtg $i"

print "NVDM CONFIG : Target already exists. Updating..."

 fi

 #

get required target attributes

 #

huhn=yecho $ATLIST | cut -d' ' -f$county

for a in short_name target_os description contact_name\

 owning_manager telephone_number customer_name

 do

get_attribute nvdm_node node_name $huhn $a

 v=$VALUE

if ["$v" != ""]

 then

case $a in

short_name) COMMAND=$COMMAND" -s '$v'" ;;

target_os) COMMAND=$COMMAND" -y '$v'" ;;

description) COMMAND=$COMMAND" -d '$v'" ;;

contact_name) COMMAND=$COMMAND" -q '$v'" ;;

owning_manager) COMMAND=$COMMAND" -o '$v'" ;;

telephone_number) COMMAND=$COMMAND" -t '$v'" ;;

customer_name) COMMAND=$COMMAND" -r '$v'" ;;

 esac

 fi

 done

 echo $COMMAND

 eval $COMMAND

#

add users for target

#

Figure 174 (Part 19 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

350 Pristine AIX Environments

get_attribute_list nvdm_users node_name $huhn username

if [$VALUE_NUM != ð]

then

print "NVDM CONFIG : Adding Target Users..."

for x in $VALUE_LIST

 do

print "NVDM CONFIG : Adding $x User"

nvdm updtg $i -u $x

 done

fi

done

}

#

configure groups defined for NVDM/6ððð server

#

nvdm_configure_groups ()

{

 print "NVDM CONFIG : Configuring Target Groups for $1"

 get_attribute_list nvdm_groups node_name $1 group_name

 if [$VALUE_NUM = ð]

 then

print "NVDM CONFIG : No groups defined"

 return

 fi

 GROUP_LIST=$VALUE_LIST

 for i in $GROUP_LIST

 do

print "NVDM CONFIG : Adding group $i"

get_attribute nvdm_groups group_name $i short_name

 SHORT=$VALUE

get_attribute nvdm_groups group_name $i description

 DESC=$VALUE

 #

get all targets being defined for this group

 #

get_attribute_list nvdm_node group_name $i node_name

for a in $VALUE_LIST

 do

TNGP=yecho $a | cut -d'.' -f1y
eval nvdm addgp $i $TNGP -s "'$SHORT'" -d "'$DESC'"

 done

 done

}

Figure 174 (Part 20 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 351

#

add user at OS level (AIX)

$1 = IP Hostname

$2 = Type: either "server" or "target"

use "target", when you want to add a user to AIX

add a target workstation; the user will always be

assigned group FNDADMN

use "server", when you want to add a user to AIX

add a server workstation; the user will be assigned

the appropriate usergroup defined in the database

#

add_users_aix ()

{

print "NVDM CONFIG : --> Adding AIX users for NVDM..."

get_attribute_list nvdm_users node_name $1 username

if [$VALUE_NUM != ð]

then

for i in $VALUE_LIST

 do

 #

First, add NVDM user to operating system...

check if user exists

 #

lsuser $i 2>/dev/null 1>&2

 #

if not (RC 2 from lsuser command)

 #

if [$? = 2]

 then

print "NVDM CONFIG : Adding user $i to AIX OS."

 mkuser $i

 fi

 #

check if user has NVDM group

 #

get_attribute_and nvdm_users node_name $1 username $i usergroup

 GRP=$VALUE

 #

if we configure a target, set group to FNDADMN

 #

if ["$2" = "target"]

 then

 GRP=FNDADMN

 fi

DEFGRP=ylsuser -a groups $i | cut -d'=' -f2y
if user is not in NVDM group, add him

if ["yecho $DEFGRP | grep $GRPy" = ""]
 then

Figure 174 (Part 21 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

352 Pristine AIX Environments

chuser groups="$DEFGRP,$GRP" $i

 fi

 done

fi

}

#

configure SNA/DS routing table

$1 = IP Hostname

#

configure_routetab ()

{

 #

 # first, determine what network protocols we have

 #

 a=ð

 b=ð

 print "NVDM CONFIG : Configuring SNA/DS routing table."

 get_attribute_and nvdm_queues node_name $1 protocol TCP/IP remote_server

 if ["$VALUE" != ""]

 then

print "NVDM CONFIG : System has TCP/IP connection to remote server."

 a=1

 fi

 get_attribute_and nvdm_queues node_name $1 protocol APPC remote_server

 if ["$VALUE" != ""]

 then

print "NVDM CONFIG : System has APPC connection to remote server."

 b=1

 fi

 if [$a -eq ð -a $b -eq ð]

 then

print "NVDM CONFIG : There are no connections defined."

 return

 fi

 if [$a -eq 1 -a $b -eq 1]

 then

 RPROT="BOTH"

 fi

 if [$a -eq 1 -a $b -eq ð]

 then

 RPROT="TCP/IP"

 fi

 if [$a -eq ð -a $b -eq 1]

Figure 174 (Part 22 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 353

 then

 RPROT="APPC"

 fi

 print "NVDM CONFIG : Writing routing table to $SNA_DS_ROUTE"

 echo "NETWORK PROTOCOL: $RPROT

#

SNA connections

#

" >$SNA_DS_ROUTE

#

get all SNA Routes

#

 get_attribute_and nvdm_queues node_name $1 protocol APPC remote_server

 SNA_R=$VALUE

 if ["$SNA_R" != ""]

 then

for i in $SNA_R

 do

check if intermediate node is used

get_attribute_and nvdm_queues node_name $1 remote_server $i inter_node

if ["$VALUE" != ""]

 then

echo "$SNA_NET.$i ANY ANY ANY ANY $VALUE 5" >>$SNA_DS_ROUTE

 else

echo "$SNA_NET.$i ANY ANY ANY ANY $i 5" >>$SNA_DS_ROUTE

 fi

 done

 fi

 echo "

#

TCP/IP connections

#

" >>$SNA_DS_ROUTE

 get_attribute_and nvdm_queues node_name $1 protocol TCP/IP remote_server

 TCP_R=$VALUE

 if ["$TCP_R" != ""]

 then

for i in $TCP_R

 do

in the routing table we need the short name, not the

TCP/IP hostname as specified in remote_server ; therefore

we have to get the shortname first

check if intermediate node is used

get_attribute nvdm_node node_name $i short_name

 sn=$VALUE

Figure 174 (Part 23 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

354 Pristine AIX Environments

get_attribute_and nvdm_queues node_name $1 remote_server $i inter_node

if ["$VALUE" != ""]

 then

 echo "$sn.\ $VALUE" >>$SNA_DS_ROUTE

 else

 echo "$sn.\ $sn" >>$SNA_DS_ROUTE

 fi

 done

 fi

}

#

configure Remote Targets

$1 = IP Hostname

#

nvdm_remote_targets ()

{

 #

 # First, get all remote targets defined for this server

 # Remote Targets are determined by searching the nvdm_queues

 # class because any connection to a remote system requires a

 # queue

 get_attribute_list nvdm_queues node_name $1 remote_server

 if [$VALUE_NUM = ð]

 then

print "NVDM CONFIG : No remote targets defined"

 return

 fi

 for i in $VALUE_LIST

 do

print "NVDM CONFIG : Defining remote target for $i"

 #

determine if system to be configured is a Remote Target or

a Focal Point

 #

get_attribute_and nvdm_queues node_name $1 remote_server $i focal_point

if ["$VALUE" = "yes"]

 then

print "NVDM CONFIG : $i will be configured as focal point."

for the MVS focal point short name will be the same as node name

network id will be the SNA Network Name

set -x

eval nvdm addtg $i -m report_to -s $i -n $SNA_NET -d "'NVDM_MVS'"

Figure 174 (Part 24 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 355

set +x

 else

get short name for remote server from class nvdm_node

get_attribute nvdm_node node_name $i short_name

if ["$VALUE" = ""]

 then

abort "No Short Name defined for $i in class nvdm_node. Exiting..."

 fi

 RSHORT=$VALUE

 #

This remote server is assumed to be connected via TCP/IP

so, we set the network name to be the same as the short name

 #

nvdm addtg $i -m remote -s $RSHORT -n $RSHORT

 fi

 done

}

restart_nvdm ()

{

 print "NVDM CONFIG : --> In order for the changes to become active"

 print "NVDM CONFIG : NetView DM/6ððð will be restarted on this node"

 #

 # determine if nvdm is running

 #

 nvdm stat 1>/dev/null 2>&1

 if [$? = 121]

 then

print "NVDM CONFIG : NVDM is not running. It will be started now."

 nvdm start

 nvdm start

 else

print "NVDM CONFIG : Stopping NVDM."

nvdm stop -x 1>/dev/null 2>&1

 s=1

print "NVDM CONFIG : Restarting NVDM."

while [$s = 1]

 do

print "NVDM CONFIG : Restarting NVDM."

 nvdm start

 nvdm stat

if [$? != 121]

 then

 s=ð

 fi

 done

 fi

Figure 174 (Part 25 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

356 Pristine AIX Environments

}

#

configure SNA/DS connection profiles

#

$1 = IP Hostname of system to be configured

#

configure_sna_ds_conn ()

{

#

perform SNA/DS configuration (connection profiles)

#

#

remove demo profile CONNSNA,CONNTCP if existent

#

cd $SNA_DS_DIR

rm \

get_queues $1

if [$NUM_QUEUE != ð]

then

 a=1

for i in $PROTOCOL

 do

print "NVDM CONFIG : Configuring $i connection"

if ["$i" != "APPC" -a "$i" != "TCP/IP"]

 then

abort "Protocol is neither APPC nor TCP/IP. Exiting..."

 fi

determine if connection is made through an intermediate node

INODE=yecho $REMOTE_SERVER | cut -d' ' -f"$a"y
get_attribute_and nvdm_queues node_name $1 remote_server $INODE inter_node

if ["$VALUE" != ""]

 then

print "NVDM CONFIG : Remote connection to $INODE is made"

print " through intermediate node $VALUE."

print " No SNA/DS connection file is created."

 else

if ["$i" = "APPC"]

 then

 configure_sna_ds_appc

 else

REMSERV=yecho $REMOTE_SERVER | cut -d' ' -f "$a"y
 configure_sna_ds_tcpip $REMSERV

Figure 174 (Part 26 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 357

 fi

 fi

a=yexpr $a + 1y
 done

fi

}

#

get all static SNA attributes (SNA Net Name, etc.)

$1 = IP Hostname of node to be configured

#

get_sna_attributes ()

{

 #

get static SNA parameters

 #

for i in SNA_NET_NAME DATALINK_DEVICE REM_LINK_ADDR MODE_PROF_NAME\

 MODE_NAME TPN_PROF_NAME_SND TPN_PROF_NAME_RCV PARTNER_LU_NAME\

 SIDE_INFO_PROF_SND SIDE_INFO_PROF_RCV SOLICIT_SSCP I_FIELD_SIZE\

 LOCAL_SAP REMOTE_SAP INITIATE_CALL ACTIVATE_START RESTART_NORMAL\

 RESTART_ABNORMAL VTAM_CP_NAME

 do

get_attribute nvdm_cfg_static NAME $i VALUE

case $i in

SNA_NET_NAME) text="SNA Network Name"

 SNA_NET=$VALUE ;;

DATALINK_DEVICE) text="SNA Datalink Device"

 DEVICE=$VALUE ;;

 REM_LINK_ADDR) text="SNA Remote Link Address"

 ADDR=$VALUE ;;

MODE_PROF_NAME) text="SNA NVDM Mode Profile Name"

 MPROF=$VALUE ;;

MODE_NAME) text="SNA NVDM Mode Name"

 MODE=$VALUE ;;

TPN_PROF_NAME_SND) text="SNA TPN Profile Name (Send)"

 SND=$VALUE ;;

TPN_PROF_NAME_RCV) text="SNA TPN Profile Name (Receive)"

 RCV=$VALUE ;;

PARTNER_LU_NAME) text="SNA Partner LU Name (MVS Host)"

 PARTNER=$VALUE ;;

SIDE_INFO_PROF_SND) text="SNA Side Info Profile Name (Send)"

 SIDS=$VALUE ;;

SIDE_INFO_PROF_RCV) text="SNA Side Info Profile Name (Receive)"

 SIDR=$VALUE ;;

SOLICIT_SSCP) text="Solicit SSCP Field (yes|no)"

 SOLICIT=$VALUE ;;

Figure 174 (Part 27 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

358 Pristine AIX Environments

 I_FIELD_SIZE) text="I-Field Size"

 IFIELD=$VALUE ;;

LOCAL_SAP) text="SNA Local SAP No."

 LSAP=$VALUE ;;

REMOTE_SAP) text="Remote SAP No."

 RSAP=$VALUE ;;

 INITIATE_CALL) text="SNA Initiate Call Field (yes|no)"

 ICALL=$VALUE ;;

ACTIVATE_START) text="SNA Activate on start (yes|no)"

 ACTSTART=$VALUE ;;

RESTART_NORMAL) text="SNA Restart on normal termination (yes|no)"

 RNORM=$VALUE ;;

RESTART_ABNORMAL) text="SNA Restart on abnormal termination (yes|no)"

 RABNORM=$VALUE ;;

VTAM_CP_NAME) text="SNA VTAM CP Name (for LU6.2 Location Profile)"

 VTAMCP=$VALUE ;;

 esac

if ["$VALUE" = ""]

 then

abort "Could not determine $text. Exiting..."

 else

print "NVDM CONFIG : Setting $text to $VALUE"

 fi

 done

get_attribute nvdm_servers node_name $1 pu_name

 PUNAME=$VALUE

if ["$PUNAME" = ""]

 then

abort "Could not determine PU NAME for $1 configuration

. Exiting..."

 fi

print "NVDM CONFIG : Setting PU NAME for $1 to $PUNAME "

get_attribute nvdm_servers node_name $1 local_lu_name

 LLUNAME=$VALUE

if ["$LLUNAME" = ""]

 then

abort "Could not determine Local LU Name for $1 configu

ration. Exiting..."

 fi

print "NVDM CONFIG : Setting Local LU Name for $1 to $LLUNAME "

get_attribute nvdm_servers node_name $1 cp_name

 CP_NAME=$VALUE

if ["$CP_NAME" = ""]

 then

Figure 174 (Part 28 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 359

abort "Could not determine Control Point Name for $1.\

 Exiting..."

 fi

 CP_TYPE=appn_end_node

print "NVDM CONFIG : Setting Control Point Name for $1\

to $CP_NAME"

get_attribute nvdm_servers node_name $1 xid

 XID=$VALUE

if ["$XID" = ""]

 then

print "NVDM CONFIG : Could not determine XID for $1 configu

ration."

print "NVDM CONFIG : Setting USE_CP_XID to yes"

 USE_CP_XID="yes"

set XID to dummy value

 XID=ð71ððððð

 else

print "NVDM CONFIG : Setting XID for $1 to $XID "

print "NVDM CONFIG : Setting USE_CP_XID to no"

 USE_CP_XID="no"

 fi

}

#

Save NVDM target history by creating software inventory

file and copying it to corresponding node

requires /.rhosts file on target

$1 = target name

#

nvdm_save_history ()

{

 print "NVDM CONFIG : Saving target history for $1"

 nvdm inv

 SLIST="ynvdm lscm -w $1 '\' | grep 'Global file name:' | cut -d':' -f2y"
 >/tmp/inv

 if ["$SLIST" != ""]

 then

for o in $SLIST

 do

print "NVDM CONFIG : Adding $o to software inventory file."

print "PRODUCT: "$o >>/tmp/inv

print "DESCRIPTION: Target has been moved!" >>/tmp/inv

 done

print "NVDM CONFIG : Copying inventory file $SW_INV to $1."

echo "GLOBAL NAME: HISTORY.REF.1

CHANGE FILE TYPE: GEN

COMPRESSION TYPE: LZW

Figure 174 (Part 29 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

360 Pristine AIX Environments

REBOOT REQUIRED: NO

PACK FILES: NO

SECURE PACKAGE: NO

OBJECT:

SOURCE NAME: /tmp/inv

TARGET NAME: /usr/lpp/netviewdm/fndswinv

TYPE: FILE

ACTION: COPY

INCLUDE SUBDIRS: NO" >/tmp/hist.pro

nvdm delcm HISTORY.REF.1 -w '\'

nvdm uncat HISTORY.REF.1 -d -f

nvdm bld /tmp/hist.pro -f

nvdm inst HISTORY.REF.1 -w $1 -f -i

print "CONFIG NVDM : Sleeping for 5 secs."

 sleep 5

 fi

}

#

add file system for repository

$1 = node name

#

add_fs_repos ()

{

 # get repository path

 REPOS=ygrep "REPOSITORY" /usr/lpp/netviewdm/db/nvdm.cfg \
 | cut -d':' -f2y
 get_attribute nvdm_node node_name $1 repos_fs

 if ["$VALUE" = "yes"]

 then

get_attribute nvdm_node node_name $1 repos_size

if ["$VALUE" = ""]

 then

 SIZE=2ðððð

 else

 SIZE=$VALUE

 fi

print "NVDM CONFIG : Creating file system $REPOS."

print "NVDM CONFIG : Size = $SIZE blocks."

first, save old files

tar -cvf/tmp/save.tar $REPOS/.

crfs -v jfs -g rootvg -a size=$SIZE -m $REPOS -A yes -p rw -t no

 mount $REPOS

restore files

tar -xvf/tmp/save.tar $REPOS/.

 fi

}

Figure 174 (Part 30 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 361

#

check if TCP/IP ports for NetView DM/6ððð are

existing. If not, add them to /etc/services file

#

check_ports ()

{

 #

 # first, make a backup copy of /etc/services

 #

 cp /etc/services /etc/services.nvdm

 #

 # check for port NetViewDM-rcv

 #

 print "CONFIG NVDM : Checking NetViewDM-rcv port..."

 R=ygrep NetViewDM-rcv /etc/servicesy
 if ["$R" = ""]

 then

print "CONFIG NVDM : Port did not exist. Adding it to /etc/services..."

 echo "NetViewDM-rcv 731/tcp" >>/etc/services

 fi

 #

 # check for port NetViewDM-snd

 #

 print "CONFIG NVDM : Checking NetViewDM-snd port..."

 R=ygrep NetViewDM-snd /etc/servicesy
 if ["$R" = ""]

 then

print "CONFIG NVDM : Port did not exist. Adding it to /etc/services..."

 echo "NetViewDM-snd 73ð/tcp" >>/etc/services

 fi

 #

 # check for port NetViewDM6ððð

 #

 print "CONFIG NVDM : Checking NetViewDM6ððð port..."

 R=ygrep NetViewDM6ððð /etc/servicesy
 if ["$R" = ""]

 then

print "CONFIG NVDM : Port did not exist. Adding it to /etc/services..."

 echo "NetViewDM6ððð 729/tcp" >>/etc/services

 fi

}

#

export existing SNA profiles

in case they need to be restored if

NVDM configuration fails

#

$1 = name of export file

#

export_sna ()

Figure 174 (Part 31 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

362 Pristine AIX Environments

{

 print "NVDM CONFIG : Exporting existing SNA profiles to $1 ..."

 exportsna -A -f $1 -r -UT -C

}

#

update NVDM/6ððð server definition

#

nvdm_update_server ()

{

#-------------change--------------

if we configure a server and want to change the

WORKSTATION NAME we must stop the server before

reconfiguring this field.

To do so we must be sure that the hostname and

the WORKSTATION NAME match

#

if ["$NODE_TYPE" = "ð" -o "$NODE_TYPE" = "2"]

then

get current hostname

 OHN=yhostnamey
print "NVDM CONFIG : Current hostname of server is $OHN."

get WORKSTATION NAME currently configured

HN=ygrep "WORKSTATION NAME:" $CONFIG | cut -d':' -f2y
print "NVDM CONFIG : Current WORKSTATION NAME of server is $HN."

print "NVDM CONFIG : Stopping Server..."

make sure that both match

 hostname $HN

nvdm stop -x

print "NVDM CONFIG : Sleeping 2ð seconds..."

 sleep 2ð

set back hostname

print "NVDM CONFIG : Setting hostname to $OHN."

 hostname $OHN

also, we must be sure that there is an initial target record for

the servername configured

ls /usr/lpp/netviewdm/db/target_config/$1 >/dev/null 2>&1

if [$? -ne ð]

 then

echo "DESCRIPTION: INITIAL TARGET CONFIGURATION RECORD

TARGET TYPE: PUSH

TARGET OS: AIX

RBAPI TRACE: NONE

LOG LEVEL: N

SHORT NAME: SERVER

CM WINDOW START: ð : ð

CM WINDOW STOP: 23:59

DISTRIBUTION WINDOW START: ð : ð

DISTRIBUTION WINDOW STOP: 23:59

Figure 174 (Part 32 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 363

NUMBER OF PARMS: ð

NUMBER OF USERS: 1

USER: root" >/usr/lpp/netviewdm/db/target_config/$1

 fi

fi

#-----------end-of-change---------

}

#

#

\\\\\ MAIN \\\\\

#

#

debug_info

print "NVDM CONFIG : --> Trying to configure node $1"

#

determine node type

#

get_attribute nvdm_node node_name $1 node_type

if ["$VALUE" = ""]

then

abort "No Database match found for $1."

fi

NODE_TYPE=$VALUE

print "NVDM CONFIG : Node type is $NODE_TYPE (ð = Server, 1 = Agent, 2 = Prep)"

#

#

steps necessary for all nodes (server, agent, prep site)

#

#

print "NVDM CONFIG : --> NVDM Base Node Configuration"

#

add file system for repository

#

#add_fs_repos $1

#

update hostname/NVDM server name

#

nvdm_update_server

Figure 174 (Part 33 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

364 Pristine AIX Environments

#

configure WORKSTATION NAME

#

configure_nvdm_cfg "WORKSTATION NAME" $HNAME

#

configure SERVER

#

get_attribute nvdm_node node_name $1 server_name

SERVER=$VALUE

HSERVER=yecho $SERVER | cut -d'.' -f1y
configure_nvdm_cfg "SERVER" $HSERVER

#

configure NVDM LOG SIZE

#

get_attribute nvdm_cfg_static NAME NVDM_LOG_SIZE VALUE

if ["$VALUE" != ""]

then

 configure_nvdm_cfg "LOG FILE SIZE" $VALUE

fi

#

check for NetView DM ports

check_ports

#

configure TCP/IP port to be used by NetView DM

#

get_attribute nvdm_cfg_static NAME TCPIP_PORT VALUE

if ["$VALUE" != ""]

then

configure_nvdm_cfg "TCP/IP PORT" $VALUE

fi

#-------------change--------------

get_attribute nvdm_cfg_static NAME REPOS_DIR VALUE

if ["$VALUE" != ""]

then

 VALUE=yecho "$VALUE"y
configure_nvdm_cfg "REPOSITORY" $VALUE

fi

#-----------end-of-change---------

#

add users at target

#

Figure 174 (Part 34 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 365

if ["$NODE_TYPE" = "2"]

then

add_users_aix $1 target

fi

#-------change-----------

reset /usr/lpp/netviewdm/uicfg/root.cli file

print "NVDM CONFIG : Resetting root.cli ... ($HSERVER)"

./uicfg $HSERVER

#-------end of change----

if ["$NODE_TYPE" = "1"]

then

print "NVDM CONFIG : Starting NVDM Agent (fndcmps)...."

 /usr/lpp/netviewdm/bin/fndcmps &

 line

 banner SUCCESS!

 line

print "NVDM CONFIG : !!! Configuration of Agent completed successfully !!!"

 line

 exit ð

fi

#

#

Server configuration

#

#

#-------------change--------------

restart server, in case it is not already running

print "NVDM CONFIG : Restarting Server..."

restart_nvdm

#-----------end-of-change---------

add all target users also to server

get_attribute_list nvdm_node server_name $1 node_name

if ["$VALUE_LIST" != ""]

then

for i in $VALUE_LIST

 do

add_users_aix $i server

 done

fi

Figure 174 (Part 35 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

366 Pristine AIX Environments

#

#

SNA Configuration for Servers

#

#

#

determine if node needs SNA configuration

#

#

get all static SNA attributes

#

get_sna_attributes $1

get_attribute nvdm_servers node_name $1 sna

if ["$VALUE" = "yes"]

then

print "NVDM CONFIG : --> Configuring SNA "

 #

Configure SNA

 #

 export_sna $EXPORT_SNA

 configure_sna_dlc

 sna_initial

 configure_sna_cp

 configure_sna_dlc_profile

 configure_sna_link

 configure_sna_local_lu

 configure_sna_mode

 configure_sna_send

 configure_sna_receive

 configure_sna_partner

 configure_sna_location

 configure_side_snd

 configure_side_rcv

 #

After SNA has been configured, update configuration database

to make changes become active

 #

print "NVDM CONFIG : Updating SNA Server..."

 verifysna -R

Figure 174 (Part 36 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 367

fi # end of SNA configuration

#

perform SNA/DS configuration (connection profiles)

#

configure_sna_ds_conn $1

#

configure SNA/DS Routing Table

#

configure_routetab $1

#

Delete all existing targets in case of node reconfiguration

#

nvdm_delete_targets $1

#

Configure all local targets for NVDM/6ððð server

#

nvdm_configure_targets $1

#

Delete existing groups

#

nvdm_delete_groups $1

#

Configure all groups

#

nvdm_configure_groups $1

#

Configure all remote targets/focal point for NVDM/6ððð Server

#

nvdm_remote_targets $1

#

Reload nvdm configuration

This will only refresh SNA/DS configuration 'in flight'

nvdm rld

Figure 174 (Part 37 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

368 Pristine AIX Environments

#

Start SNA Server subsystem

#

startsrc -s sna

#

determine if NVDM has to be restarted

#

get_attribute nvdm_cfg_static NAME RESTART_NVDM VALUE

if ["$VALUE" = "yes"]

then

 restart_nvdm

fi

#

release all SNA communications

#

print "NVDM CONFIG : Releasing NVDM SNA communications."

nvdm relc

line

banner SUCCESS!

line

print "NVDM CONFIG : !!! Configuration of Server completed successfully !!!"

line

Figure 174 (Part 38 of 38). config_nvdm Shell Script for NetView DM/6000 V1.2 with ODM Database

 Appendix A. The Configuration Script Listings 369

A.2 Configuration Script for NetView DM for AIX Version 3.1 Using
DB2/6000

#!/bin/ksh

#

#

Configure NVDM node

Main Configuration Script

For NetView DM/6ððð V3.1

This script can be used to configure any RS/6ððð

workstation in your software distribution network

automatically

Author : Stefan Uelpenich/IBM Germany

RCS Revision : $Revision: 1.1 $

#

This script will cover:

#

1. For all nodes

- configuration of WORKSTATION NAME in nvdm.cfg

- configuration of SERVER in nvdm.cfg

- configuration of TCP/IP ports used by NVDM

- configuration of log file size & other things

in nvdm.cfg

- add NVDM Users to AIX Operating System / NetView DM

#

2. For servers/prep sites

- modification of server's own target

- add DLC Device for SNA adapter

- SNA initial node setup

- configuration of SNA CP profile

- configuration of SNA DLC profile

- configuration of SNA Link profile

- configuration of SNA Local LU profile

- configuration of SNA Mode profile

- configuration of SNA TPN Send profile

- configuration of SNA TPN Receive profile

- configuration of SNA LU6.2 Location profile

- configuration of SNA Side Info profile (Send)

- configuration of SNA Side Info profile (Receive)

- configuration of SNA/DS connection profiles

- configuration of SNA/DS Routing table

- configuration of local targets

- configuration of local target groups

- configuration of remote targets/focal points

- reload NVDM Configuration

- refresh SNA Server Configuration

- start SNA Server

- restart NVDM

- release NVDM SNA communications

Figure 175 (Part 1 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

370 Pristine AIX Environments

#

#

#

The command line parameter supplied with this command

must be the IP hostname of the system to be configured.

This hostname will be used as the argument when

accessing the configuration database

#

if [$# != 1]

then

print "Syntax : $ð node_name"

 exit 1

fi

#

extract hostname (without domain information)

#

HNAME=yecho $1 | cut -d'.' -f1y
print "NVDM CONFIG : Extracted hostname ... $HNAME"

#

Variables

#

CONFIG=/usr/lpp/netviewdm/db/nvdm.cfg

NUM_QUEUE=ð

PROTOCOL=""

REMOTE_SERVER=""

EXPORT_SNA=/tmp/sna.org

SNA_DS_DIR="/usr/lpp/netviewdm/db/snadscon"

SNA_DS_ROUTE="/usr/lpp/netviewdm/db/routetab"

HISTORY_DIR="/usr/lpp/netviewdm/db/cm_status"

SAVE_DIR="/tmp/target_save"

USE_CP_XID=no

SW_INV="/usr/lpp/netviewdm/fndswinv"

#

#

useful stuff

#

#

print a line

line ()

{

 print "====================================\

Figure 175 (Part 2 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 371

==="

}

#

print debug information

#

debug_info ()

{

 line

 print "Software distribution network configuration script"

 print "\$Revision: 1.1 $"

 BEK=yhostnamey
 print "IP Hostname = $DEB"

 print "Name resolution = "yhost $DEBy
 line

}

#

abort configuration script

and print an error message

$1 = text of error message

#

abort ()

{

 line

 banner "FAILURE!"

 line

 print "NVDM CONFIG ERROR :\

 Could not properly configure node."

 print "Cause : $1"

 line

 exit 1

}

#

#

DATABASE ACCESS METHODS (DB2)

#

#

database owner name

#--------------------

DBOWNER=dbmsadm

Figure 175 (Part 3 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

372 Pristine AIX Environments

#

connect to the configuration database

#--------------------------------------

print "DB2/6ððð : Connect to configuration database"

db2 connect

#

get data output from SQL (extract SQL header and trailer)

$1: select clause

$2: tables (from clause)

$3: conditions (where clause)

#--

get_data()

{

 WHERE="$3"

if ["$WHERE" = ""]

 then

 WHERE="1=1"

 fi

 SELECT="$1"

db2 select "$SELECT" from $2 where "$WHERE" | awk '

 BEGIN {

inlist = ð

 }

 /^SQL[ð-9][ð-9][ð-9][ð-9][N,C]/ {

cmd = sprintf("exec 1>&2;echo DB2/6ððð : %s",$ð)

 system(cmd)

 }

 /^-+/ {

inlist = 1

 next

 }

 /^$/ {

if (inlist == 1) inlist++

 next

 }

inlist == 1 {

 gsub(/ \$/,"")

 print

 }

'

}

Figure 175 (Part 4 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 373

#

get list of selected column values from a DB2 table

$1 = table name

$2 = search column name

$3 = search column value

$4 = output column name

The list of selected column values is stored in the VALUE_LIST variable

The number of selected values is stored in VALUE_NUM

#---

get_attribute_list ()

{

VALUE_LIST=yget_data "$4" $DBOWNER.$1 "$2 = '$3'"y
VALUE_NUM=yecho "$VALUE_LIST" | wc -w | sed 's/ //g'y

}

#

get single select value

$1 = table name

$2 = search column name (must be the primary key of the table)

$3 = search column value

$4 = output column name

#---

get_attribute ()

{

VALUE=yget_data "$4" $DBOWNER.$1 "$2 = '$3'"y
}

#

get single select value (AND)

$1 = table name

$2 = search field1

$3 = search field value1

$4 = search field2

$5 = search field value2

$6 = output column name

field1 and field2 must constitute the primary key of the table

#---

get_attribute_and ()

{

VALUE=yget_data "$6" $DBOWNER.$1 "$2 = '$3' and $4 = '$5'"y
}

Figure 175 (Part 5 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

374 Pristine AIX Environments

#

CONFIGURATION METHODS

#

#

add user at OS level (AIX)

$1 = IP Hostname

$2 = Type: either "server" or "target"

use "target", when you want to add a user to AIX

add a target workstation; the user will always be

assigned group FNDADMN

use "server", when you want to add a user to AIX

add a server workstation; the user will be assigned

the appropriate usergroup defined in the database

#

add_users_aix ()

{

print "NVDM CONFIG : --> Adding AIX users for NVDM..."

get_attribute_list nvdm_users node_name $1 username

if [$VALUE_NUM != ð]

then

for i in $VALUE_LIST

 do

 #

First, add NVDM user to operating system...

check if user exists

 #

lsuser $i 2>/dev/null 1>&2

 #

if not (RC 2 from lsuser command)

 #

if [$? = 2]

 then

print "NVDM CONFIG : Adding user $i to AIX OS."

 mkuser $i

 fi

 #

only continue, if we are about to configure a server

 #

if ["$2" = "server"]

 then

get_attribute_and nvdm_users node_name $1 username $i usergroup

 GRP=$VALUE

print "NVDM CONFIG : Authorization profile $GRP assigned to $i."

nvdm lsusr $i 2>/dev/null

 #

if RC != ð then user does not exist yet

Figure 175 (Part 6 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 375

 #

if [$? -ne ð]

 then

nvdm addusr $i $GRP -t $1

 else

nvdm updusr $i $GRP -t $1

 fi

 fi

 done

fi

}

#

delete all users currently defined on that server

the root user profile cannot be deleted

#

nvdm_delete_users ()

{

 #

 # determine all users that are defined on this server

 #

 USRLIST=ynvdm lsusr '\' | grep "User:" | cut -d':' -f2y
 for i in $USRLIST

 do

if ["$i" != "root"]

 then

print "NVDM CONFIG : Deleting existing user profile : $i"

nvdm delusr $i -f

 fi

 done

}

#

Set Attributes in nvdm.cfg file

$1 parameter name (e.g. WORKSTATION NAME, SERVER)

$2 parameter value

#

configure_nvdm_cfg ()

{

 mv $CONFIG /tmp/config

 print "NVDM CONFIG : Setting nvdm.cfg ($1) to $2"

 #

 # the TCP/IP port parameter is special

 # because it contains a / in its name

 # and also needs modification of

 # /etc/services

 #

 if ["$1" = "TCP/IP PORT"]

Figure 175 (Part 7 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

376 Pristine AIX Environments

 then

sed "s/TCP\/IP PORT:.\/TCP\/IP PORT: $2/" \

/tmp/config >$CONFIG

mv /etc/services /tmp/services

 sed "s/NetViewDM6ððð.\\/tcp/NetViewDM6ððð $2\/tcp/" \

/tmp/services >/etc/services

 return

 fi

 #

 # adjust to right column

 #

 len=yecho $1 | wc -cy
 SUBST=$2

 while [$len -lt 22]

 do

 SUBST=" "$SUBST

len=yexpr $len + 1y
 done

 #

 # replace parameter

 #

 sed "s/$1:.\/$1:$SUBST/" /tmp/config >$CONFIG

}

#

get all static SNA attributes (SNA Net Name, etc.)

$1 = IP Hostname of node to be configured

#

get_sna_attributes ()

{

 #

get static SNA parameters

 #

for i in SNA_NET_NAME DATALINK_DEVICE REM_LINK_ADDR MODE_PROF_NAME\

 MODE_NAME TPN_PROF_NAME_SND TPN_PROF_NAME_RCV PARTNER_LU_NAME\

 SIDE_INFO_PROF_SND SIDE_INFO_PROF_RCV SOLICIT_SSCP I_FIELD_SIZE\

 LOCAL_SAP REMOTE_SAP INITIATE_CALL ACTIVATE_START RESTART_NORMAL\

 RESTART_ABNORMAL VTAM_CP_NAME

 do

get_attribute nvdm_cfg_static NAME $i VALUE

case $i in

SNA_NET_NAME) text="SNA Network Name"

 SNA_NET=$VALUE ;;

DATALINK_DEVICE) text="SNA Datalink Device"

 DEVICE=$VALUE ;;

 REM_LINK_ADDR) text="SNA Remote Link Address"

Figure 175 (Part 8 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 377

 ADDR=$VALUE ;;

MODE_PROF_NAME) text="SNA NVDM Mode Profile Name"

 MPROF=$VALUE ;;

MODE_NAME) text="SNA NVDM Mode Name"

 MODE=$VALUE ;;

TPN_PROF_NAME_SND) text="SNA TPN Profile Name (Send)"

 SND=$VALUE ;;

TPN_PROF_NAME_RCV) text="SNA TPN Profile Name (Receive)"

 RCV=$VALUE ;;

PARTNER_LU_NAME) text="SNA Partner LU Name (MVS Host)"

 PARTNER=$VALUE ;;

SIDE_INFO_PROF_SND) text="SNA Side Info Profile Name (Send)"

 SIDS=$VALUE ;;

SIDE_INFO_PROF_RCV) text="SNA Side Info Profile Name (Receive)"

 SIDR=$VALUE ;;

SOLICIT_SSCP) text="Solicit SSCP Field (yes|no)"

 SOLICIT=$VALUE ;;

 I_FIELD_SIZE) text="I-Field Size"

 IFIELD=$VALUE ;;

LOCAL_SAP) text="SNA Local SAP No."

 LSAP=$VALUE ;;

REMOTE_SAP) text="Remote SAP No."

 RSAP=$VALUE ;;

 INITIATE_CALL) text="SNA Initiate Call Field (yes|no)"

 ICALL=$VALUE ;;

ACTIVATE_START) text="SNA Activate on start (yes|no)"

 ACTSTART=$VALUE ;;

RESTART_NORMAL) text="SNA Restart on normal termination (yes|no)"

 RNORM=$VALUE ;;

RESTART_ABNORMAL) text="SNA Restart on abnormal termination (yes|no)"

 RABNORM=$VALUE ;;

VTAM_CP_NAME) text="SNA VTAM CP Name (for LU6.2 Location Profile)"

 VTAMCP=$VALUE ;;

 esac

if ["$VALUE" = ""]

 then

abort "Could not determine $text. Exiting..."

 else

print "NVDM CONFIG : Setting $text to $VALUE"

 fi

 done

get_attribute nvdm_servers node_name $1 pu_name

 PUNAME=$VALUE

if ["$PUNAME" = ""]

 then

abort "Could not determine PU NAME for $1 configuration

. Exiting..."

 fi

Figure 175 (Part 9 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

378 Pristine AIX Environments

print "NVDM CONFIG : Setting PU NAME for $1 to $PUNAME "

get_attribute nvdm_servers node_name $1 local_lu_name

 LLUNAME=$VALUE

if ["$LLUNAME" = ""]

 then

abort "Could not determine Local LU Name for $1 configu

ration. Exiting..."

 fi

print "NVDM CONFIG : Setting Local LU Name for $1 to $LLUNAME "

get_attribute nvdm_servers node_name $1 cp_name

 CP_NAME=$VALUE

if ["$CP_NAME" = ""]

 then

abort "Could not determine Control Point Name for $1.\

 Exiting..."

 fi

 CP_TYPE=appn_end_node

print "NVDM CONFIG : Setting Control Point Name for $1\

to $CP_NAME"

get_attribute nvdm_servers node_name $1 xid

 XID=$VALUE

if ["$XID" = ""]

 then

print "NVDM CONFIG : Could not determine XID for $1 configu

ration."

print "NVDM CONFIG : Setting USE_CP_XID to yes"

 USE_CP_XID="yes"

set XID to dummy value

 XID=ð71ððððð

 else

print "NVDM CONFIG : Setting XID for $1 to $XID "

print "NVDM CONFIG : Setting USE_CP_XID to no"

 USE_CP_XID="no"

 fi

}

#

export existing SNA profiles

in case they need to be restored if

NVDM configuration fails

#

$1 = name of export file

#

Figure 175 (Part 10 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 379

export_sna ()

{

 print "NVDM CONFIG : Exporting existing SNA profiles to $1 ..."

 exportsna -A -f $1 -r -UT -C

}

#

configure SNA dlc

for all SNA communications a DLC for the

communications adapter is needed.

if the DLC already exists, the mkdev command

will print an error message - this will be

redirected to /dev/null

#

configure_sna_dlc ()

{

 print "NVDM CONFIG : Adding DLC Device for $DEVICE"

 CHECK=yecho $DEVICE | cut -c1-3y
 case "$CHECK" in

"tok") mkdev -c dlc -s dlc -t tokenring 1>/dev/null 2>&1 ;;

"ent") mkdev -c dlc -s dlc -t ethernet 1>/dev/null 2>&1 ;;

"x25") mkdev -c dlc -s dlc -t x25_qllc 1>/dev/null 2>&1 ;;

"\") print "NVDM CONFIG : Device type $CHECK unknown." ;;

 esac

}

#

SNA initial node setup

#

sna_initial ()

{

 CHECK=yecho $DEVICE | cut -c1-3y
 case "$CHECK" in

"tok") DEV_TYPE="token_ring" ;;

"ent") DEV_TYPE="ethernet" ;;

"fdd") DEV_TYPE="fddi" ;;

"x25") DEV_TYPE="x.25_call_SVC" ;;

 "\") DEV_TYPE="none"

 esac

 if ["$DEV_TYPE" = "none"]

 then

abort "No device type found for $DEVICE."

 fi

 print "NVDM CONFIG : Configuring SNA Initial Node Setup"

set -x

 mk_qcinit -y $DEV_TYPE -t $CP_TYPE -w $SNA_NET -d $CP_NAME

Figure 175 (Part 11 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

380 Pristine AIX Environments

set +x

}

#

configure SNA Control Point Profile

#

SNA_NET contains SNA Network Name

CP_NAME contains SNA Control Point Name

CP_TYPE contains SNA Control Point Type

#

configure_sna_cp ()

{

 print "NVDM CONFIG : Configuring SNA Control Point Profile"

 line

set -x

 chsnaobj -t 'control_pt' -e "$SNA_NET" -a "$CP_NAME" -A "$CP_NAME"\

 -N "$CP_TYPE" node_cp

set +x

 line

}

#

configure SNA dlc profile

#

configure_sna_dlc_profile ()

{

 # determine type of DLC from datalink device name

 # get only first 3 characters from device name

 # e.g. if datalink device is x25s1, then x25 determines

 # the type to be X.25

 CHECK=yecho $DEVICE | cut -c1-3y
 case "$CHECK" in

"tok") DEV_TYPE="sna_dlc_token_ring" ;;

"ent") DEV_TYPE="sna_dlc_ethernet" ;;

"fdd") DEV_TYPE="sna_dlc_fddi" ;;

"x25") DEV_TYPE="sna_dlc_x.25" ;;

 "\") DEV_TYPE="none"

 esac

 if ["$DEV_TYPE" = "none"]

 then

abort "No device type found for $DEVICE."

 fi

 #

 # create new DLC Profile

Figure 175 (Part 12 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 381

 # use Datalink Device Name as Profile Name

 #

 print "NVDM CONFIG : Configuring SNA DLC Profile"

 line

set -x

change !!!

 if ["$DEV_TYPE" = "sna_dlc_x.25"]

 then

mksnaobj -t "$DEV_TYPE" "$DEVICE"

 RC=$?

 else

mksnaobj -t "$DEV_TYPE" -d "$DEVICE" -b $SOLICIT -w yes -m $IFIELD \

-H $LSAP -c no -q ð "$DEVICE"

 RC=$?

 fi

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

change !!!

if ["$DEV_TYPE" = "sna_dlc_x.25"]

 then

chsnaobj -t "$DEV_TYPE" "$DEVICE"

 else

chsnaobj -t "$DEV_TYPE" -d "$DEVICE" -b $SOLICIT -w yes -m $IFIELD \

 -H $LSAP -c no -q ð "$DEVICE"

 fi

set +x

 line

 fi

}

#

configure SNA Link Station Profile

#

configure_sna_link ()

{

 # determine type of DLC from datalink device name

 # get only first 3 characters from device name

 CHECK=yecho $DEVICE | cut -c1-3y

Figure 175 (Part 13 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

382 Pristine AIX Environments

 case "$CHECK" in

"tok") DEV_TYPE="token_ring" ;;

"ent") DEV_TYPE="ethernet" ;;

"fdd") DEV_TYPE="fddi" ;;

"x25") DEV_TYPE="x.25" ;;

 "\") DEV_TYPE="none"

 esac

 if ["$DEV_TYPE" = "none"]

 then

abort "No device type found for $DEVICE. Exiting"

 fi

 #

 # create new Link Station Profile

 # use Datalink Device Name as DLC Profile Name

 #

 print "NVDM CONFIG : Configuring SNA Link Station Profile"

 line

set -x

change !!!

 if ["$DEV_TYPE" = "x.25"]

 then

mksnaobj -t link_station -w "$DEV_TYPE" -y "$DEVICE" -q "$X25_TYPE"\

-a $SOLICIT -O $ICALL -F $ACTSTART -h $RNORM -z $RABNORM \

-s "$ADDR" "$PUNAME"

 RC=$?

 else

mksnaobj -t link_station -w "$DEV_TYPE" -y "$DEVICE" -d "$ADDR" -l $XID\

-s $RSAP -a $SOLICIT -O $ICALL -F $ACTSTART -h $RNORM -z $RABNORM \

-c "$USE_CP_XID" "$PUNAME"

 RC=$?

 fi

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

if ["$DEV_TYPE" = "x.25"]

 then

chsnaobj -t link_station -w "$DEV_TYPE" -y "$DEVICE" -q "$X25_TYPE" \

-a $SOLICIT -O $ICALL -F $ACTSTART -h $RNORM -z $RABNORM \

-s "$ADDR" "$PUNAME"

 else

Figure 175 (Part 14 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 383

chsnaobj -t link_station -w "$DEV_TYPE" -y "$DEVICE" -d "$ADDR" -l $XID\

-s $RSAP -a $SOLICIT -O $ICALL -F $ACTSTART -h $RNORM -z $RABNORM \

-c "$USE_CP_XID" "$PUNAME"

 fi

set +x

 line

 fi

}

#

configure local LU profile for node

#

configure_sna_local_lu ()

{

 print "NVDM CONFIG : Configuring SNA Local LU Profile"

 #

 # create new Local LU Profile

 # use Local LU Name as Profile Name

 #

 line

set -x

 mksnaobj -t local_lu -u lu6.2 -l "$LLUNAME" -L "$LLUNAME" "$LLUNAME"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t local_lu -u lu6.2 -l "$LLUNAME" -L "$LLUNAME" "$LLUNAME"

set +x

 line

 fi

}

#

configure SNA Mode Profile

#

configure_sna_mode ()

Figure 175 (Part 15 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

384 Pristine AIX Environments

{

 #

 # create new Mode Profile

 #

 print "NVDM CONFIG : Configuring SNA Mode Profile"

 line

set -x

 mksnaobj -t mode -x 1 -w ð -l ð -a ð -N "#CONNECT" -m "$MODE" "$MPROF"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t mode -x 1 -w ð -l ð -a ð -N "#CONNECT" -m "$MODE" "$MPROF"

set +x

 line

 fi

}

#

configure TPN send profile

#

configure_sna_send ()

{

 #

 # create TPN Profile (Send)

 #

 print "NVDM CONFIG : Configuring SNA TPN Profile (SEND)"

 line

set -x

 mksnaobj -t local_tp -n 21FðFðF7 -h yes -c basic \

 -d ð -P yes -w /usr/lpp/netviewdm/bin/fndts -s none "$SND"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

Figure 175 (Part 16 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 385

 line

set -x

chsnaobj -t local_tp -n 21FðFðF7 -h yes -c basic \

 -d ð -P yes -w /usr/lpp/netviewdm/bin/fndts -s none "$SND"

set +x

 line

 fi

}

#

configure TPN receive profile

#

configure_sna_receive ()

{

 #

 # create TPN Profile (Receive)

 #

 print "NVDM CONFIG : Configuring SNA TPN Profile (Receive)"

 line

set -x

 mksnaobj -t local_tp -n 21FðFðF8 -h yes -c basic \

 -d ð -P yes -w /usr/lpp/netviewdm/bin/fndtr -s none "$RCV"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t local_tp -n 21FðFðF8 -h yes -c basic \

 -d ð -P yes -w /usr/lpp/netviewdm/bin/fndtr -s none "$RCV"

set +x

 line

 fi

}

#

Configure partner LU profile (Focal Point)

#

Figure 175 (Part 17 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

386 Pristine AIX Environments

configure_sna_partner ()

{

 #

 # create LU 6.2 Partner Profile

 #

 print "NVDM CONFIG : Configuring SNA LU6.2 Partner LU"

 line

set -x

 mksnaobj -t partner_lu6.2 -p no -P "$SNA_NET"."$PARTNER" \

 -O none -A "$PARTNER" "$PARTNER"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

 chsnaobj -t partner_lu6.2 -p no -P "$SNA_NET"."$PARTNER" \

 -O none -A "$PARTNER" "$PARTNER"

set +x

 line

 fi

}

#

configure LU6.2 location profile

#

configure_sna_location ()

{

 print "NVDM CONFIG : Configuring SNA LU 6.2 Location Profile"

 #

 # create new LU 6.2 Location Profile

 # use Local LU Name as Profile Name

 #

 line

set -x

 mksnaobj -t partner_lu6.2_location -P "$SNA_NET.$PARTNER" \

 -O "$SNA_NET.$VTAMCP" -m link_station -l $LLUNAME \

 -s $PUNAME $PARTNER

 RC=$?

set +x

Figure 175 (Part 18 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 387

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

 chsnaobj -t partner_lu6.2_location -P "$SNA_NET.$PARTNER" \

 -O "$SNA_NET.$VTAMCP" -m link_station -l $LLUNAME \

 -s $PUNAME $PARTNER

set +x

 line

 fi

}

#

configure Side Info Profile (Send)

#

configure_side_snd ()

{

 #

 # create Side Info Profile (Send)

 #

 print "NVDM CONFIG : Configuring SNA Side Info Profile (Send)"

 line

set -x

 mksnaobj -t side_info -L "$CP_NAME" -P "$SNA_NET"."$PARTNER" -m "$MODE"\

 -d 21FðFðF7 -h yes "$SIDS"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t side_info -L "$CP_NAME" -P "$SNA_NET"."$PARTNER" -m "$MODE"\

 -d 21FðFðF7 -h yes "$SIDS"

set +x

 line

 fi

Figure 175 (Part 19 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

388 Pristine AIX Environments

}

#

configure Side Info Profile (Receive)

#

configure_side_rcv ()

{

 #

 # create Side Info Profile (Receive)

 #

 print "NVDM CONFIG : Configuring SNA Side Info Profile (Receive)"

 line

set -x

 mksnaobj -t side_info -L "$LLUNAME" -P "$SNA_NET"."$PARTNER" -m "$MODE"\

 -d 21FðFðF8 -h yes "$SIDR"

 RC=$?

set +x

 line

 if [$RC = 255]

 then

print "NVDM CONFIG RECOVER : Profile already existed.\

 Changing existing one ..."

 line

set -x

chsnaobj -t side_info -L "$LLUNAME" -P "$SNA_NET"."$PARTNER" -m "$MODE"\

 -d 21FðFðF8 -h yes "$SIDR"

set +x

 line

 fi

}

#

get queues defined for a server

since this class can contain more

than one entry for a server, we have

to store the result in a list

#

$1 = server name

#

get_queues ()

{

 #

Figure 175 (Part 20 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 389

 # first, determine number of entries for

 # that server

 #

 #

 # Fill in Fields

 #

 get_attribute_list nvdm_queues node_name $1 protocol

 NUM_QUEUE=$VALUE_NUM

 if [$NUM_QUEUE = ð]

 then

 return

 fi

 PROTOCOL=$VALUE_LIST

 get_attribute_list nvdm_queues node_name $1 remote_server

 REMOTE_SERVER=$VALUE_LIST

}

#

configure SNA/DS connection profiles

#

$1 = IP Hostname of system to be configured

#

configure_sna_ds_conn ()

{

#

perform SNA/DS configuration (connection profiles)

#

#

remove demo profile CONNSNA,CONNTCP if existent

#

cd $SNA_DS_DIR

rm \ 2>/dev/null

get_queues $1

if [$NUM_QUEUE != ð]

then

 a=1

for i in $PROTOCOL

 do

print "NVDM CONFIG : Configuring $i connection"

if ["$i" != "APPC" -a "$i" != "TCP/IP"]

 then

Figure 175 (Part 21 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

390 Pristine AIX Environments

abort "Protocol is neither APPC nor TCP/IP. Exiting..."

 fi

determine if connection is made through an intermediate node

INODE=yecho $REMOTE_SERVER | cut -d' ' -f"$a"y
get_attribute_and nvdm_queues node_name $1 remote_server $INODE inter_node

if ["$VALUE" != ""]

 then

print "NVDM CONFIG : Remote connection to $INODE is made"

print " through intermediate node $VALUE."

print " No SNA/DS connection file is created."

 else

if ["$i" = "APPC"]

 then

 configure_sna_ds_appc

 else

REMSERV=yecho $REMOTE_SERVER | cut -d' ' -f "$a"y
 configure_sna_ds_tcpip $REMSERV

 fi

 fi

a=yexpr $a + 1y
 done

fi

}

#

Configure SNA/DS connection configuration file (APPC)

#

configure_sna_ds_appc ()

{

 print "NVDM CONFIG : Configuring SNA/DS connection\

 configuration file $SNA_DS_DIR/$PARTNER"

 if ["$PARTNER" = ""]

 then

print "NVDM CONFIG ERROR : APPC Partner LU not defined."

print "NVDM CONFIG ERROR : Cannot create SNA/DS connection profile."

 return 1

 fi

 echo "PROTOCOL: APPC

TYPE: SNA

SEND TP SYMBOLIC DESTINATION: $SIDS

RECEIVE TP SYMBOLIC DESTINATION: $SIDR

NEXT DSU: $SNA_NET.$PARTNER

TRANSMISSION TIME-OUT: 6ð

RETRY LIMIT: 3

SEND MU_ID TIME-OUT: 6ð

Figure 175 (Part 22 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 391

RECEIVE MU_ID TIME-OUT: 12ð" > $SNA_DS_DIR/$PARTNER

}

#

Configure SNA/DS connection configuration file (TCP/IP)

$1 = TCP/IP Hostname of remote system

#

configure_sna_ds_tcpip ()

{

 #

 # get short name of remote server

 #

 get_attribute nvdm_node node_name $1 short_name

 A=$VALUE

 print "NVDM CONFIG : Configuring SNA/DS connection configuration file."

 print "NVDM CONFIG : (TCP/IP) for remote Server $1."

 if ["$A" = ""]

 then

print "NVDM CONFIG ERROR : Could not determine short name for $1."

print "NVDM CONFIG ERROR : Please update nvdm_node class."

 return

 fi

 echo "PROTOCOL: TCP/IP

TYPE: SNA

REMOTE SERVER NAME: $1

TCP/IP TIME-OUT: 3ðð

NEXT DSU: $A.$A

TRANSMISSION TIME-OUT: 6ð

RETRY LIMIT: 3

SEND MU_ID TIME-OUT: 6ð

RECEIVE MU_ID TIME-OUT: 12ð" >$SNA_DS_DIR/$A

}

#

configure SNA/DS routing table

$1 = IP Hostname

#

configure_routetab ()

{

 #

 # first, determine what network protocols we have

 #

 a=ð

Figure 175 (Part 23 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

392 Pristine AIX Environments

 b=ð

 print "NVDM CONFIG : Configuring SNA/DS routing table."

 get_attribute_and nvdm_queues node_name $1 protocol TCP/IP remote_server

 if ["$VALUE" != ""]

 then

print "NVDM CONFIG : System has TCP/IP connection to remote server."

 a=1

 fi

 get_attribute_and nvdm_queues node_name $1 protocol APPC remote_server

 if ["$VALUE" != ""]

 then

print "NVDM CONFIG : System has APPC connection to remote server."

 b=1

 fi

 if [$a -eq ð -a $b -eq ð]

 then

print "NVDM CONFIG : There are no connections defined."

 return

 fi

 if [$a -eq 1 -a $b -eq 1]

 then

 RPROT="BOTH"

 fi

 if [$a -eq 1 -a $b -eq ð]

 then

 RPROT="TCP/IP"

 fi

 if [$a -eq ð -a $b -eq 1]

 then

 RPROT="APPC"

 fi

 print "NVDM CONFIG : Writing routing table to $SNA_DS_ROUTE"

 echo "NETWORK PROTOCOL: $RPROT

#

SNA connections

#

" >$SNA_DS_ROUTE

#

get all SNA Routes

#

 get_attribute_and nvdm_queues node_name $1 protocol APPC remote_server

Figure 175 (Part 24 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 393

 SNA_R=$VALUE

 if ["$SNA_R" != ""]

 then

for i in $SNA_R

 do

check if intermediate node is used

get_attribute_and nvdm_queues node_name $1 remote_server $i inter_node

if ["$VALUE" != ""]

 then

echo "$SNA_NET.$i ANY ANY ANY ANY $VALUE 5" >>$SNA_DS_ROUTE

 else

echo "$SNA_NET.$i ANY ANY ANY ANY $i 5" >>$SNA_DS_ROUTE

 fi

 done

 fi

 echo "

#

TCP/IP connections

#

" >>$SNA_DS_ROUTE

 get_attribute_and nvdm_queues node_name $1 protocol TCP/IP remote_server

 TCP_R=$VALUE

 if ["$TCP_R" != ""]

 then

for i in $TCP_R

 do

in the routing table we need the short name, not the

TCP/IP hostname as specified in remote_server ; therefore

we have to get the shortname first

check if intermediate node is used

get_attribute nvdm_node node_name $i short_name

 sn=$VALUE

get_attribute_and nvdm_queues node_name $1 remote_server $i inter_node

if ["$VALUE" != ""]

 then

 echo "$sn.\ $VALUE" >>$SNA_DS_ROUTE

 else

 echo "$sn.\ $sn" >>$SNA_DS_ROUTE

 fi

 done

 fi

}

#

delete local targets from NVDM Server configuration

$1 = Server IP Hostname

#

Figure 175 (Part 25 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

394 Pristine AIX Environments

nvdm_delete_targets()

{

 #

 # get list of existing targets

 #

 TLIST=ynvdm lstg '\' | grep "Target:" | cut -d':' -f2y

 #

 # get list of all defined targets for this server

 #

 get_attribute_list nvdm_node server_name $1 node_name

 YLIST=$VALUE_LIST

 XLIST=""

 for i in $YLIST

 do

XLIST=$XLIST" "yecho $i | cut -d'.' -f1y
 done

 #

 # delete all targets which are not defined for this server

 #

 for i in $TLIST

 do

 match=ð

for x in $XLIST

 do

if ["$i" = "$x"]

 then

 match=1

 fi

 done

if [match -eq ð]

 then

 nvdm_save_history $i

print "NVDM CONFIG : Deleting Target $i from Server $1 configuration."

 #

before a target can be deleted, we have to

discard all pending requests

 #

PEND=ynvdm lsrq -w $i | grep "Request ID:" | cut -d':' -f2 | \
awk '{ print $3 }'y

if ["$PEND" != ""]

 then

print "NVDM CONFIG : Requests IDs $PEND for $i will be deleted."

print "NVDM CONFIG : Information about pending requests for"

print "NVDM CONFIG : Target $i will be written to $i.req"

echo "The following requests were purged:" >$i.req

Figure 175 (Part 26 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 395

for x in $PEND

 do

nvdm lsrq -l $x >>$i.req

 done

 fi

nvdm hldq $i

nvdm prgq $i -f

for x in $PEND

 do

echo "y" >/tmp/yes

nvdm delrq $x -f

nvdm eraserq $x </tmp/yes

 sleep 2

nvdm delrq $x -f

nvdm eraserq $x </tmp/yes

 done

nvdm deltg $i -f

 fi

 done

}

#

Save NVDM target history by creating software inventory

file and copying it to corresponding node

requires /.rhosts file on target

$1 = target name

#

nvdm_save_history ()

{

 print "NVDM CONFIG : Saving target history for $1"

 #nvdm inv

 SLIST="ynvdm lscm -w $1 '\' | grep 'Global file name:' | cut -d':' -f2y"
 >/tmp/inv

 if ["$SLIST" != ""]

 then

for o in $SLIST

 do

print "NVDM CONFIG : Adding $o to software inventory file."

print "GLOBAL NAME: "$o >>/tmp/inv

print "DESCRIPTION: Target has been moved!" >>/tmp/inv

 done

print "NVDM CONFIG : Copying inventory file $SW_INV to $1."

echo "GLOBAL NAME: HISTORY.REF.1

CHANGE FILE TYPE: GEN

COMPRESSION TYPE: LZW

REBOOT REQUIRED: NO

PACK FILES: NO

SECURE PACKAGE: NO

OBJECT:

SOURCE NAME: /tmp/inv

Figure 175 (Part 27 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

396 Pristine AIX Environments

TARGET NAME: /usr/lpp/netviewdm/fndswinv

TYPE: FILE

ACTION: COPY

INCLUDE SUBDIRS: NO" >/tmp/hist.pro

nvdm delcm HISTORY.REF.1 -w '\'

nvdm uncat HISTORY.REF.1 -d -f

nvdm bld /tmp/hist.pro -f

nvdm inst HISTORY.REF.1 -w $1 -f -i

#

we will sleep here for 15 secs to allow

the CF to be sent to the target before

it is deleted. You might need to adjust

this value, especially if you are, for example,

in a WAN environment

#

 fi

 print "NVDM CONFIG : Sleeping for 15 secs."

 sleep 15

}

#

configure Targets for an NVDM/6ððð Server

$1 = Server IP Hostname

#

nvdm_configure_targets ()

{

 #

 # First, determine all Nodes which have this Server

 # defined as their NVDM/6ððð server

 #

 # access database

 get_attribute_list nvdm_node server_name $1 node_name

 ATLIST=$VALUE_LIST

 TLIST=""

 for i in $ATLIST

 do

TLIST=$TLIST" "yecho $i | cut -d'.' -f1y
 done

 count=ð

 for i in $TLIST

 do

count=yexpr $count + 1y
print "NVDM CONFIG : Defining Target $i on server $1"

A=ynvdm lstg $i 2>&1 | grep FNDCL129Ey
 #

if FNDCL129E not found then target exists already

Figure 175 (Part 28 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 397

 #

if ["$A" != ""]

 then

COMMAND="nvdm addtg $i"

 else

COMMAND="nvdm updtg $i"

print "NVDM CONFIG : Target already exists. Updating..."

 fi

 #

get required target attributes

 #

huhn=yecho $ATLIST | cut -d' ' -f$county

for a in short_name target_os description contact_name\

 owning_manager telephone_number customer_name

 do

get_attribute nvdm_node node_name $huhn $a

 v=$VALUE

if ["$v" != ""]

 then

case $a in

short_name) COMMAND=$COMMAND" -s '$v'" ;;

target_os) COMMAND=$COMMAND" -y '$v'" ;;

description) COMMAND=$COMMAND" -d '$v'" ;;

contact_name) COMMAND=$COMMAND" -q '$v'" ;;

owning_manager) COMMAND=$COMMAND" -o '$v'" ;;

telephone_number) COMMAND=$COMMAND" -t '$v'" ;;

customer_name) COMMAND=$COMMAND" -r '$v'" ;;

 esac

 fi

 done

if ["$i" != "$1"]

 then

COMMAND=$COMMAND" -b client"

 fi

 echo $COMMAND

 eval $COMMAND

 done

}

#

Delete all existing groups before adding groups from

configuration database

$1 = IP Hostname of server to be configured

#

Figure 175 (Part 29 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

398 Pristine AIX Environments

nvdm_delete_groups ()

{

 #

 # determine existing groups

 #

 GP=ynvdm lsgp '\' | grep "Group:" | cut -c24-y
 #

 # determine list of defined groups

 #

 get_attribute_list nvdm_groups node_name $1 group_name

 XGP=$VALUE_LIST

 for i in $GP

 do

 match=ð

for x in $XGP

 do

if ["$i" = "$x"]

 then

 match=1

 fi

 done

if [match -eq ð]

 then

print "NVDM CONFIG : Deleting group $i from $1 configuration."

nvdm delgp $i -f

 fi

 done

}

#

configure groups defined for NVDM/6ððð server

#

nvdm_configure_groups ()

{

 print "NVDM CONFIG : Configuring Target Groups for $1"

 get_attribute_list nvdm_groups node_name $1 group_name

 if [$VALUE_NUM = ð]

 then

print "NVDM CONFIG : No groups defined"

 return

 fi

 GROUP_LIST=$VALUE_LIST

 for i in $GROUP_LIST

 do

print "NVDM CONFIG : Adding group $i"

get_attribute nvdm_groups group_name $i short_name

 SHORT=$VALUE

get_attribute nvdm_groups group_name $i description

Figure 175 (Part 30 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 399

 DESC=$VALUE

 #

get all targets being defined for this group

 #

get_attribute_list nvdm_node group_name $i node_name

for a in $VALUE_LIST

 do

TNGP=yecho $a | cut -d'.' -f1y
eval nvdm addgp $i $TNGP -s "'$SHORT'" -d "'$DESC'"

 done

 done

}

#

configure Remote Targets

$1 = IP Hostname

#

nvdm_remote_targets ()

{

 #

 # First, get all remote targets defined for this server

 # Remote Targets are determined by searching the nvdm_queues

 # class because any connection to a remote system requires a

 # queue

 get_attribute_list nvdm_queues node_name $1 remote_server

 if [$VALUE_NUM = ð]

 then

print "NVDM CONFIG : No remote targets defined"

 return

 fi

 for i in $VALUE_LIST

 do

print "NVDM CONFIG : Defining remote target for $i"

 #

determine if system to be configured is a Remote Target or

a Focal Point

 #

get_attribute_and nvdm_queues node_name $1 remote_server $i focal_point

if ["$VALUE" = "yes"]

 then

print "NVDM CONFIG : $i will be configured as focal point."

for the MVS focal point short name will be the same as node name

Figure 175 (Part 31 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

400 Pristine AIX Environments

network id will be the SNA Network Name

set -x

eval nvdm addtg $i -m focal -b server -s $i -n $SNA_NET \

 -d "'NVDM_MVS'" -tp appc:

set +x

 else

get short name for remote server from class nvdm_node

get_attribute nvdm_node node_name $i short_name

if ["$VALUE" = ""]

 then

abort "No Short Name defined for $i in class nvdm_node. Exiting..."

 fi

 RSHORT=$VALUE

 #

This remote server is assumed to be connected via TCP/IP

so, we set the network name to be the same as the short name

 #

nvdm addtg $i -s $RSHORT -n $RSHORT -b server

 fi

 done

}

restart_nvdm ()

{

 print "NVDM CONFIG : --> In order for the changes to become active"

 print "NVDM CONFIG : NetView DM/6ððð will be restarted on this node"

 #

 # determine if nvdm is running

 #

 nvdm stat 1>/dev/null 2>&1

 if [$? = 218]

 then

print "NVDM CONFIG : NVDM is not running. It will be started now."

 nvdm start

 nvdm start

 else

print "NVDM CONFIG : Stopping NVDM."

nvdm stop -x 1>/dev/null 2>&1

 s=1

print "NVDM CONFIG : Restarting NVDM."

while [$s = 1]

 do

print "NVDM CONFIG : Restarting NVDM."

 nvdm start

 nvdm stat

if [$? != 218]

Figure 175 (Part 32 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 401

 then

 s=ð

 fi

 done

 fi

}

#

update NVDM/6ððð server definition

#

nvdm_update_server ()

{

#-------------change--------------

if we configure a server and want to change the

WORKSTATION NAME we must stop the server before

reconfiguring this field.

To do so we must be sure that the hostname and

the WORKSTATION NAME match

#

if ["$NODE_TYPE" = "ð" -o "$NODE_TYPE" = "2"]

then

get current hostname

 OHN=yhostnamey
print "NVDM CONFIG : Current hostname of server is $OHN."

get WORKSTATION NAME currently configured

HN=ygrep "WORKSTATION NAME:" $CONFIG | cut -d':' -f2y
print "NVDM CONFIG : Current WORKSTATION NAME of server is $HN."

print "NVDM CONFIG : Stopping Server..."

make sure that both match

 hostname $HN

nvdm stop -x

print "NVDM CONFIG : Sleeping 2ð seconds..."

 sleep 2ð

set back hostname

print "NVDM CONFIG : Setting hostname to $OHN."

 hostname $OHN

also, we must be sure that there is an initial target record for

the servername configured

we rename the initial target record to the new hostname

nvdm rentg $HN $OHN -f

fi

#-----------end-of-change---------

}

#

check if TCP/IP ports for NetView DM/6ððð are

existing. If not, add them to /etc/services file

#

check_ports ()

{

Figure 175 (Part 33 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

402 Pristine AIX Environments

 #

 # first, make a backup copy of /etc/services

 #

 cp /etc/services /etc/services.nvdm

 #

 # check for port NetViewDM-rcv

 #

 print "CONFIG NVDM : Checking NetViewDM-rcv port..."

 R=ygrep NetViewDM-rcv /etc/servicesy
 if ["$R" = ""]

 then

print "CONFIG NVDM : Port did not exist. Adding it to /etc/services..."

 echo "NetViewDM-rcv 731/tcp" >>/etc/services

 fi

 #

 # check for port NetViewDM-snd

 #

 print "CONFIG NVDM : Checking NetViewDM-snd port..."

 R=ygrep NetViewDM-snd /etc/servicesy
 if ["$R" = ""]

 then

print "CONFIG NVDM : Port did not exist. Adding it to /etc/services..."

 echo "NetViewDM-snd 73ð/tcp" >>/etc/services

 fi

 #

 # check for port NetViewDM6ððð

 #

 print "CONFIG NVDM : Checking NetViewDM6ððð port..."

 R=ygrep NetViewDM6ððð /etc/servicesy
 if ["$R" = ""]

 then

print "CONFIG NVDM : Port did not exist. Adding it to /etc/services..."

 echo "NetViewDM6ððð 729/tcp" >>/etc/services

 fi

}

#

#

\\\\\ MAIN \\\\\

#

#

debug_info

print "NVDM CONFIG : --> Trying to configure node $1"

#

determine node type

#

get_attribute nvdm_node node_name $1 node_type

Figure 175 (Part 34 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 403

if ["$VALUE" = ""]

then

abort "No Database match found for $1."

fi

NODE_TYPE=$VALUE

print "NVDM CONFIG : Node type is $NODE_TYPE (ð = Server, 1 = Agent, 2 = Prep)"

#

#

steps neccessary for all nodes (server, agent, prep site)

#

#

print "NVDM CONFIG : --> NVDM Base Node Configuration"

#

add file system for repository

#

#add_fs_repos $1

#

update hostname/NVDM server name

#

nvdm_update_server

#

configure WORKSTATION NAME

#

configure_nvdm_cfg "WORKSTATION NAME" $HNAME

#

configure SERVER

#

get_attribute nvdm_node node_name $1 server_name

SERVER=$VALUE

HSERVER=yecho $SERVER | cut -d'.' -f1y
configure_nvdm_cfg "SERVER" $HSERVER

#

configure NVDM LOG SIZE

#

get_attribute nvdm_cfg_static NAME NVDM_LOG_SIZE VALUE

if ["$VALUE" != ""]

then

 configure_nvdm_cfg "LOG FILE SIZE" $VALUE

fi

Figure 175 (Part 35 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

404 Pristine AIX Environments

#

check for NetView DM ports

check_ports

#

configure TCP/IP port to be used by NetView DM

#

get_attribute nvdm_cfg_static NAME TCPIP_PORT VALUE

if ["$VALUE" != ""]

then

configure_nvdm_cfg "TCP/IP PORT" $VALUE

fi

#-------------change--------------

get_attribute nvdm_cfg_static NAME REPOS_DIR VALUE

if ["$VALUE" != ""]

then

 VALUE=yecho "$VALUE"y
configure_nvdm_cfg "REPOSITORY" $VALUE

fi

#-----------end-of-change---------

#

add users at target

#

if ["$NODE_TYPE" = "2"]

then

add_users_aix $1 target

fi

#-------change-----------

reset /usr/lpp/netviewdm/uicfg/root.cli file

print "NVDM CONFIG : Resetting root.cli ... ($HSERVER)"

./uicfg $HSERVER

#-------end of change----

if ["$NODE_TYPE" = "1"]

then

print "NVDM CONFIG : Starting NVDM Agent (fndcmps)...."

 /usr/lpp/netviewdm/bin/fndcmps &

 line

 banner SUCCESS!

 line

print "NVDM CONFIG : !!! Configuration of Agent completed successfully !!!"

 line

Figure 175 (Part 36 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 405

 exit ð

fi

#

#

Server configuration

#

#

#-------------change--------------

restart server, in case it is not already running

print "NVDM CONFIG : Restarting Server..."

restart_nvdm

#-----------end-of-change---------

#

#

SNA Configuration for Servers

#

#

#

determine if node needs SNA configuration

#

#

get all static SNA attributes

#

get_sna_attributes $1

get_attribute nvdm_servers node_name $1 sna

if ["$VALUE" = "yes"]

then

print "NVDM CONFIG : --> Configuring SNA "

 #

Configure SNA

 #

 export_sna $EXPORT_SNA

 configure_sna_dlc

 sna_initial

 configure_sna_cp

 configure_sna_dlc_profile

 configure_sna_link

 configure_sna_local_lu

Figure 175 (Part 37 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

406 Pristine AIX Environments

 configure_sna_mode

 configure_sna_send

 configure_sna_receive

 configure_sna_partner

 configure_sna_location

 configure_side_snd

 configure_side_rcv

 #

After SNA has been configured, update configuration database

to make changes become active

 #

print "NVDM CONFIG : Updating SNA Server..."

 verifysna -R

fi # end of SNA configuration

#

perform SNA/DS configuration (connection profiles)

#

configure_sna_ds_conn $1

#

configure SNA/DS Routing Table

#

configure_routetab $1

#

Delete all existing targets in case of node reconfiguration

#

nvdm_delete_targets $1

#

Configure all local targets for NVDM/6ððð server

#

nvdm_configure_targets $1

#

add all target users also to server

#

get_attribute_list nvdm_node server_name $1 node_name

if ["$VALUE_LIST" != ""]

then

for i in $VALUE_LIST

Figure 175 (Part 38 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 407

 do

add_users_aix $i server

 done

fi

#

Delete existing groups

#

nvdm_delete_groups $1

#

Configure all groups

#

nvdm_configure_groups $1

#

Configure all remote targets/focal point for NVDM/6ððð Server

#

nvdm_remote_targets $1

#

Reload nvdm configuration

This will only refresh SNA/DS configuration 'in flight'

nvdm rld

#

Start SNA Server subsystem

#

startsrc -s sna

#

determine if NVDM has to be restarted

#

get_attribute nvdm_cfg_static NAME RESTART_NVDM VALUE

if ["$VALUE" = "yes"]

then

 restart_nvdm

fi

sleep 1ð

#

release all SNA communications

Figure 175 (Part 39 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

408 Pristine AIX Environments

#

print "NVDM CONFIG : Releasing NVDM SNA communications."

nvdm relc

line

banner SUCCESS!

line

print "NVDM CONFIG : !!! Configuration of Server completed successfully !!!"

line

Figure 175 (Part 40 of 40). config_nvdm Shell Script Software Distribution for AIX V3.1 with DB2/6000 Database

 Appendix A. The Configuration Script Listings 409

410 Pristine AIX Environments

Appendix B. Script Reference Information

This appendix contains some reference information about the configuration scripts.

 B.1 Shell Variables
The following table contains global shell variables used in the sample configuration
script config_nvdm.

The table is included to help you when modifying the configuration script.

Table 3 (Page 1 of 3). Global Shell Variables

Variable Name Purpose Example Value

ACTSTART Activate on start yes, no

ADDR Remote Link Address for SNA
connections

400010002000, 49221123456

CHECK Used to determine datalink device
type for SNA

Token-ring, X.25, Ethernet

COMMAND Used to contruct NVDM command
strings

nvdm lstg '*'

CONFIG Name of NetView DM base
configuration file

/usr/lpp/netviewdm/db/nvdm.cfg

CP_NAME Local CP Name of server

CP_TYPE Control Point type appn_end_node,
appn_network_node

DBOWNER DB2/6000 instance owner dbmsadm

DESC Description for a target

DEVICE Datalink device for SNA
connections

tok0, x25s0

EXPORT_SNA File name for exporting SNA
configuration

/tmp/sna

GP List containing existing groups for
a server

GRP NVDM group defined fo AIX user FNDUSER, FNDBLD, FNDADMN

HN Workstation name of node to be
configured

HNAME TCP/IP hostname of node to be
configured

rs600012

HSERVER Name of NVDM server (without
domain information)

IFIELD I-Field Size 2048

INODE Used to check if connection is
made through an intermediate
node

 Copyright IBM Corp. 1996 411

Table 3 (Page 2 of 3). Global Shell Variables

Variable Name Purpose Example Value

LLUNAME Local LU Name of server

LSAP Local SAP 04

MODE Name of NVDM mode NVDMNORM

MPROF Name of NVDM mode profile NVDMNORM

NODE_TYPE Type of node to be configured 0, 1, 2

NUM_QUEUE Number of remote connections 0, 1, 2, ...

OHN Current host name of node to be
configured

PARTNER Partner LU Name

PEND Requests for a target that is to be
deleted

PROTOCOL Protocol to be used for remote
connections

APPC, TCP/IP

PUNAME Local PU Name of server

RABNORM Restart on abnormal deactivation yes, no

RC Used to store return code from
commands

RCV TPN Profile Name (Receive)

REMOTE_SERVER List containing remote server
names

RA39TCF1 RA60004

REMSERV Name of remote server

RNORM Restart on normal deactivation yes, no

RPROT Protocols used for remote
connections

TCP/IP, APPC, BOTH

RSAP Remote SAP 08

RSHORT Short name of remote server

SELECT

SERVER Name of NVDM server (full domain
name)

SHORT Short name for a target

SIDR Side Info Profile Name (Receive)

SIDS Side Info Profile Name (Send)

SLIST List of installed Change Files (to
save target history)

SNA_DS_DIR Name of SNA/DS connection
configuration file directory

/usr/lpp/netviewdm/db/snads_conn

SNA_DS_ROUTE Name of SNA/DS routing table /usr/lpp/netviewdm/db/routetab

SNA_R List of remote servers connected
using APPC

SND TPN Profile Name (Send)

SOLICIT Solicit SSCP yes, no

412 Pristine AIX Environments

Table 3 (Page 3 of 3). Global Shell Variables

Variable Name Purpose Example Value

SUBST Used to substitute fields in base
configuration file

SW_INV Name of software inventory file /usr/lpp/netviewdm/fndswinv

TCP_R List of remote servers connected
using TCP/IP

TLIST List containing existing targets for
a server

TNGP List of targets belonging to a target
group

USE_CP_XID Determines whether to use Control
Point XID

yes, no

USRLIST List of defined NVDM users

VALUE Used to pass data from database
query

A, B, C

VALUE_LIST Used to pass data from database
query

A B C

VALUE_NUM Number of elements in
VALUE_LIST

0, 1, 2, ...

VTAMCP VTAM Control Point Name

WHERE

XGP List containing defined groups for a
server in database

XID XID of server

XLIST List containing defined targets for a
server from database

B.2 Files Contained in Sample Configuration Code
There are four versions of the procedure for automatic configuration of NetView
DM/6000 constituted by the combinations of the particular NetView DM/6000
Version (1.2 or 3.1) and the different configuration data model we presented (ODM
or DB2/6000).

These four versions are located in four different directories of our code package:

/4508code/version_1

Configuration Procedure for NetView DM/6000 Version 1.2 with ODM
configuration database

/4508code/version_2

Configuration Procedure for NetView DM/6000 Version 3.1 with ODM
configuration database

/4508code/db_version_1

Configuration Procedure for NetView DM/6000 Version 1.2 with
DB2/6000 configuration database

 Appendix B. Script Reference Information 413

/4508code/db_version_2

Configuration Procedure for NetView DM/6000 Version 3.1 with
DB2/6000 configuration database

See the file /45ð8code/README for details about the structure of the package.

In the following table we present the contents of the directories relevant to the
scenarios treated in Chapter 5, “Testing the Automatic Configuration Script” on
page 83 and Chapter 13, “Testing the Automatic Configuration Procedure with
Software Distribution for AIX V3.1 with DB2/6000” on page 259. Taking into
account your current configuration, you can combine the appropriate blocks forming
the configuration script for the different NetView DM/6000 versions (in
/45ð8code/blocks respectively /45ð8code/bookie_version_2) with the desired
configuration database support.

Table 4 (Page 1 of 4). Filelist for Sample Code

Directory File Name Description

/4508code/version_1 config_nvdm Main Configuration Script for
NetView DM/6000 V1.2

/4508code/version_1 config_db.cre ODM Creation File 1

/4508code/version_1 config_db2.cre ODM Creation File 2

/4508code/version_1 config_db2_remote.cre ODM Creation File for Different
Database Support

/4508code/version_1 nvdm_cfg_static.odmadd Class Definition File

/4508code/version_1 nvdm_groups.odmadd Class Definition File

/4508code/version_1 nvdm_node.odmadd Class Definition File

/4508code/version_1 nvdm_node2.odmadd Class Definition File

/4508code/version_1 nvdm_queues.odmadd Class Definition File

/4508code/version_1 nvdm_servers.odmadd Class Definition File

/4508code/version_1 nvdm_users.odmadd Class Definition File

/4508code/version_1 uicfg Program to modify root.cli

/4508code/version_1 uicfg.c C source code of uicfg

/4508code/version_1 build_db Shell script to create ODM

/4508code/version_1 build_net_db Shell script to create ODM for use
with configure_network

/4508code/version_1 build_net_db2 Shell script to create ODM for use
with configure_network_univ

/4508code/version_1 configure_network Shell script to configure NVDM
network

/4508code/version_1 configure_network_univ Shell script to configure NVDM
network with different database
support

/4508code/version_1 node_list File containing nodes to be
configured by configure_network

/4508code/version_1 rebuild_db Shell script to rebuild ODM after
change

/4508code/version_1 edit_db Shell script to edit ODM using odme

414 Pristine AIX Environments

Table 4 (Page 2 of 4). Filelist for Sample Code

Directory File Name Description

/4508code/blocks ODM ODM Access Procedures

/4508code/blocks configure_nvdm_cfg Shell Procedure

/4508code/blocks configure_sna_cp Shell Procedure

/4508code/blocks configure_sna_dlc Shell Procedure

/4508code/blocks sna_initial Shell Procedure

/4508code/blocks configure_sna_dlc_profile Shell Procedure

/4508code/blocks configure_sna_link Shell Procedure

/4508code/blocks configure_sna_local_lu Shell Procedure

/4508code/blocks configure_sna_location Shell Procedure

/4508code/blocks configure_sna_mode Shell Procedure

/4508code/blocks configure_sna_send Shell Procedure

/4508code/blocks configure_sna_receive Shell Procedure

/4508code/blocks configure_sna_partner Shell Procedure

/4508code/blocks configure_side_snd Shell Procedure

/4508code/blocks configure_side_rcv Shell Procedure

/4508code/blocks get_queues Shell Procedure

/4508code/blocks configure_sna_ds_appc Shell Procedure

/4508code/blocks configure_sna_ds_tcpip Shell Procedure

/4508code/blocks nvdm_delete_targets Shell Procedure

/4508code/blocks nvdm_delete_groups Shell Procedure

/4508code/blocks nvdm_configure_targets Shell Procedure

/4508code/blocks nvdm_configure_groups Shell Procedure

/4508code/blocks add_users_aix Shell Procedure

/4508code/blocks configure_routetab Shell Procedure

/4508code/blocks nvdm_remote_targets Shell Procedure

/4508code/blocks restart_nvdm Shell Procedure

/4508code/blocks configure_sna_ds_conn Shell Procedure

/4508code/blocks get_sna_attributes Shell Procedure

/4508code/blocks nvdm_save_history Shell Procedure

/4508code/blocks add_fs_repos Shell Procedure

/4508code/blocks check_ports Shell Procedure

/4508code/blocks export_sna Shell Procedure

/4508code/blocks nvdm_update_server Shell Procedure

/4508code/blocks header Header of configuration script
config_nvdm. Contains global
variables as well as useful
procedures. Should be included in
your own script.

/4508code/db_version_2 DB2 Shell Procedure with Database
Access Methods

 Appendix B. Script Reference Information 415

Table 4 (Page 3 of 4). Filelist for Sample Code

Directory File Name Description

/4508code/db_version_2 NVDM_CFG_STATIC.del Import Data File in DEL-Format

/4508code/db_version_2 NVDM_GROUPS.del Import Data File in DEL-Format

/4508code/db_version_2 NVDM_NODE.del Import Data File in DEL-Format

/4508code/db_version_2 NVDM_QUEUES.del Import Data File in DEL-Format

/4508code/db_version_2 NVDM_SERVERS.del Import Data File in DEL-Format

/4508code/db_version_2 NVDM_USERS.del Import Data File in DEL-Format

/4508code/db_version_2 build_db Shell Procedure for Building the
NetView DM/6000 Configuration
Database

/4508code/db_version_2 build_db2 Shell Procedure for Building the
Database for Remote
Configuration

/4508code/db_version_2 build_db_odm Shell Procedure for Creating
Database from ODM

/4508code/db_version_2 config_nvdm Main Configuration Script for
NetView DM/6000 with DB2/6000
Support

/4508code/db_version_2 configure_network_univ Remote Configuration Script for
Nodes with Different Database
Support

/4508code/db_version_2 db22odm Shell Procedure for
DB2/6000-to-ODM Conversion

/4508code/db_version_2 db_authorize.sql SQL Statements File for
Authorizing Database Users

/4508code/db_version_2 db_create Shell Procedure for
Creating/Recreating the Database

/4508code/db_version_2 db_import.sql SQL Statements File for Importing
Configuration Data

/4508code/db_version_2 db_model.sql SQL Statements File for Database
Table Definitions

/4508code/db_version_2 db_model2.sql SQL Statements File for Database
Table Definitions (Remote
Configuration)

/4508code/db_version_2 node_list Similar to /4508code/version_1

/4508code/db_version_2 odm2db2 Shell Procedure for
ODM-to-DB2/6000 Conversion

/4508code/db_version_2 rebuild_db Shell Procedure for Exporting the
Configuration Database

/4508code/db_version_2 uicfg The Same as in
/4508code/version_1

/4508code/db_version_2 uicfg.c The Same as in
/4508code/version_1

/4508code/uidb2 dbAccess.h Database Access Include File

/4508code/uidb2 dbAccessDB2.c Database Access Implementation
File (DB2/6000)

416 Pristine AIX Environments

Table 4 (Page 4 of 4). Filelist for Sample Code

Directory File Name Description

/4508code/uidb2 dbFrames.h Database Frames Include File

/4508code/uidb2 dbFrames.c Database Frames Implementation
File

/4508code/uidb2 makefile Makefile for Compiling and Linking
the Graphical Interface Program

/4508code/uidb2 uicfgdb.c Main Program File of the Graphical
User Interface to the NetView
DM/6000 Conf

/4508code/mvs nvdm_mvs Sample Script for NVDM/MVS

 Appendix B. Script Reference Information 417

418 Pristine AIX Environments

Appendix C. Source Code of the Graphical User Interface

The following are code listings of the modules constituting the graphical user
interface to the NetView DM/6000 configuration database, presented in Chapter 15,
“Modifying Configuration Data Using a Graphical User Interface” on page 293.

 C.1 Makefile

Makefile (c)'95 PLamen Kiradjiev

#

#

compiler and other variables

CC=cc

MOTIFLIBS=-lXm -lXt -lX11

DB2LIBS=-ldb2 -lc -lm -ls

LOADMAP=-bloadmap:map

OBJ=uicfgdb.o dbAccessDB2.o dbFrames.o

RM=rm -f

Debug information

#CC_FLAGS=-v -g

Normal work flags

CC_FLAGS=-O2

uicfgdb: $(OBJ)

$(CC) -o $@ $(DB2LIBS) $(LOADMAP) $(MOTIFLIBS) $(OBJ)

uicfgdb.o: uicfgdb.c dbAccess.h dbFrames.h

$(CC) -c $< $(CC_FLAGS)

dbFrames.o: dbFrames.c dbFrames.h dbAccess.h

$(CC) -c $< $(CC_FLAGS)

dbAccessDB2.o: dbAccessDB2.c dbAccess.h

$(CC) -c $< $(CC_FLAGS) -l $(DBOWNERHOME)/sqllib/include

clean:

$(RM) uicfgdb $(OBJ) map

Figure 176. Makefile for the Graphical User Interface uicfgdb

 Copyright IBM Corp. 1996 419

 C.2 Database Access
Generic Database Access Interface:

/\\

\\

\\ File: dbAccess.h

\\ System: User Interface to NetView DM/6ððð Configuration Database

\\ Purpose: Database-Independent Interface

\\ Author: Plamen Kiradjiev

\\ Date: 1ð/ð9/1995

\\

\\\/

/\----------------- Includes ---\/

#include <stdio.h>

#include <stdlib.h>

/\----------------- Constants --\/

#define NONE ð

#define SELECTED 1

#define INSERTED 2

#define UPDATED 3

#define DELETED 4

/\---------------- Type Definitions --------------------------------------\/

typedef int Mode /\ SELECTED, INSERTED or UPDATED \/

typedef char \Message /\ SQL message string \/

typedef struct Row{

char \\data /\ column values array \/

Mode mode /\ row mode \/

unsigned char changed /\ 1, if any column changed, else ð \/

char \\chData /\ changed values array

 (NULL for unchanged columns) \/

 }Row;

typedef struct ColAttributes{

char \\name /\ column names \/

int \length /\ column lengths \/

unsigned char \isNullable /\ is nullable array \/

 }ColAttributes;

typedef struct Table{

char \name /\ table name \/

ColAttributes colAttr /\ column attributes \/

int colCount /\ result column count \/

Row \rows /\ row array \/

int rowCount /\ selected row count \/

Message message /\ SQL message in error case \/

 }Table;

Figure 177 (Part 1 of 2). Generic Database Interface dbAccess.h

420 Pristine AIX Environments

/\--------------- Procedures ---\/

/\ Connect to database \/

Message dbConnect(char \dbName);

/\ Disconnect from the database \/

Message dbDisconnect();

/\ Make a check point \/

Message dbCheckPoint(void);

/\ Select columns from table tableName with selection criteria selection \/

Table \dbSelect(char \tableName, int colCount,

char \columns[], char \selection);

/\ Insert values into table tableName with columns sequence columns \/

Message dbInsert(char \tableName, int colCount,

 char \columns[], char \values[]);

/\ Update table tableName by setting setColumns to values for selection \/

Message dbUpdate(char \tableName, int colCount, char \setColumns[],

 char \values[], char \selection);

/\ Delete from table tableName with selection criteria selection \/

Message dbDelete(char \tableName, char \selection);

/\ Build selection string for a particular row \/

char \selectThisRow(Row row, int colCount, char \columns[]);

/\ Build the order-by part of selection statement \/

char \dbOrderString(int colCount, char \columns[]);

/\ Build an always false where part of selection statement \/

char \dbAlwaysFalse(void);

/\ free space allocated for table \/

void freeTable(Table \table);

Figure 177 (Part 2 of 2). Generic Database Interface dbAccess.h

 Appendix C. Source Code of the Graphical User Interface 421

DB2/6000 Implementation:

/\\

\\

\\ File: dbAccessDB2.c

\\ System: User Interface to NetView DM/6ððð Configuration Database

\\ Purpose: DB2 Access Procedures

\\ Author: Plamen Kiradjiev

\\ Date: 1ð/ð9/1995

\\

\\\/

/\------------------ Includes --\/

#include "dbAccess.h"

#include "sqlcli1.h"

#include <string.h>

/\------------------ Constants ---\/

#define MAX_STMT_LEN 2ððð

#define MAXCOLS 1ðð

#define MAXSELECT 1ðð

/\------------------ Macros --\/

#define max(a,b) (a > b ? a : b)

/\------------------ Globals --\/

static SQLHENV henv;

static SQLHDBC hdbc;

/\------------------ Forward Definitions ---------------------------------\/

Message error(SQLHENV henv, SQLHDBC hdbc, SQLHSTMT hstmt);

Table \allocTable(char \name, ColAttributes \colAttrPtr, int colCount,

Row rows[], int rowCount, Message msg);

/\--------------- Procedures ---\/

Message dbConnect(char \dbName)

{

/\ allocate an environment handle \/

if (SQLAllocEnv(&henv) != SQL_SUCCESS)

return error(henv, hdbc, SQL_NULL_HSTMT);

/\ allocate a connection handle \/

Figure 178 (Part 1 of 9). DB2/6000 Implementation File dbAccessDB2.c

422 Pristine AIX Environments

if (SQLAllocConnect(henv, &hdbc) != SQL_SUCCESS)

return error(henv, hdbc, SQL_NULL_HSTMT);

/\ connect to database (without providing user name and password) \/

if (SQLConnect(hdbc, dbName, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS)

 != SQL_SUCCESS)

return error(henv, hdbc, SQL_NULL_HSTMT);

}

Message dbDisconnect()

{

 RETCODE rc;

/\ commit \/

if (SQLTransact(henv, hdbc, SQL_COMMIT) != SQL_SUCCESS)

return error(henv, hdbc, SQL_NULL_HSTMT);

/\ disconnect from database \/

if ((rc=SQLDisconnect(hdbc)) != SQL_SUCCESS)

return error(henv, hdbc, SQL_NULL_HSTMT);

/\ free connection handle \/

if (SQLFreeConnect(hdbc) != SQL_SUCCESS)

return error(henv, hdbc, SQL_NULL_HSTMT);

/\ free environment handle \/

if (SQLFreeEnv(henv) != SQL_SUCCESS)

return error(henv, hdbc, SQL_NULL_HSTMT);

}

Message dbCheckPoint(void)

{

Message msg = (Message) calloc(1, SQL_MAX_MESSAGE_LENGTH+1);

\msg = '\ð';

if (SQLTransact(henv, hdbc, SQL_COMMIT) != SQL_SUCCESS) {

 dbDisconnect();

sprintf(msg, "Fatal Error.\nCommit failed. Exiting application...\n");

 }

 return msg;

}

Figure 178 (Part 2 of 9). DB2/6000 Implementation File dbAccessDB2.c

 Appendix C. Source Code of the Graphical User Interface 423

Table \dbSelect(char \tableName, int colCount,

char \columns[], char \selection)

{

 SQLRETURN rc;

 SQLHSTMT hstmt;

 int isNullable;

int n=ð, i=ð, j, outColCount;

SQLINTEGER collen[MAXCOLS], outlen[MAXCOLS];

SQLCHAR sqlstmt[MAX_STMT_LEN + 1] = "select";

 SQLCHAR colname[32];

 SQLCHAR \data[MAXCOLS];

 ColAttributes colAttr;

Row \rowArray = NULL;

Message msg = (Message) calloc(1,SQL_MAX_MESSAGE_LENGTH+1);

\msg = '\ð';

/\ build SQL statement string \/

if (colCount == ð)

sprintf(sqlstmt, "select \ from %s", tableName);

 else {

for (i=ð i<colCount i++)

sprintf(sqlstmt, "%s%s%s", sqlstmt, (i==ð)?" ":",", columns[i]);

sprintf(sqlstmt, "%s from %s", sqlstmt, tableName);

 }

if (selection != NULL)

sprintf(sqlstmt, "%s %s", sqlstmt, selection);

/\ allocate SQL statement handle \/

if (SQLAllocStmt(hdbc, &hstmt) != SQL_SUCCESS)

return allocTable(tableName, NULL, ð, NULL, ð, error(henv, hdbc, SQL_NULL_HSTMT));

/\ execute SQL statement \/

rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);

if (rc != SQL_SUCCESS)

return allocTable(tableName, NULL, ð, NULL, ð, error(henv, hdbc, hstmt));

/\ determine the result column count \/

SQLColAttributes(hstmt, 1, SQL_COLUMN_COUNT, NULL, ð,

 NULL, &outColCount);

/\ allocate column attribute arrays \/

colAttr.name = (char \\) calloc(outColCount, sizeof(char \));

colAttr.length = (int \) calloc(outColCount, sizeof(int));

colAttr.isNullable = (unsigned char \) calloc(outColCount, sizeof(unsigned char));

/\ for each output column... \/

for (i=ð i<outColCount i++) {

/\ get column attributes \/

Figure 178 (Part 3 of 9). DB2/6000 Implementation File dbAccessDB2.c

424 Pristine AIX Environments

SQLColAttributes(hstmt, i+1, SQL_COLUMN_NAME, colname, sizeof(colname),

 NULL, NULL);

SQLColAttributes(hstmt, i+1, SQL_COLUMN_NULLABLE, NULL, ð,

 NULL, &isNullable);

SQLColAttributes(hstmt, i+1, SQL_COLUMN_DISPLAY_SIZE, NULL, ð,

 NULL, &collen[i]);

/\ fill values into column attributes pointer \/

colAttr.name[i] = (char \) calloc(strlen(colname) + 1, sizeof(char));

 strcpy(colAttr.name[i],colname);

colAttr.length[i] = collen[i];

colAttr.isNullable[i] = (isNullable)?1:ð;

/\ bind column \/

data[i] = (SQLCHAR \) calloc(collen[i] + 1, sizeof(SQLCHAR));

SQLBindCol(hstmt, i+1, SQL_C_CHAR, data[i], collen[i]+1, &outlen[i]);

 }

/\ fetch data \/

while (SQLFetch(hstmt) != SQL_NO_DATA_FOUND) {

if (n >= MAXSELECT)

sprintf(msg, "Maximum of %d Viewable Rows Reached.\nThe Rest Has Been Cut.", n);

/\ reallocate row pointer \/

rowArray = (Row \)realloc(rowArray, (n+1)\sizeof(Row));

rowArray[n].data = (char \\) calloc(outColCount, sizeof(char \));

rowArray[n].mode = SELECTED;

rowArray[n].changed = ð;

rowArray[n].chData = (char \\) calloc(outColCount, sizeof(char \));

for (i=ð i<outColCount i++) {

/\ set output of null values \/

if (outlen[i] == SQL_NULL_DATA)

\data[i] = '\ð';

for (j=strlen(data[i])-1; j>=ð; j--)

if (data[i][j] == ' ')

data[i][j] = '\ð';

 else

 break;

rowArray[n].data[i] = (char \) calloc(collen[i]+1, sizeof(char));

 strcpy(rowArray[n].data[i],data[i]);

 }

 n++;

 }

SQLFreeStmt (hstmt, SQL_DROP) /\ free statement handle \/

Figure 178 (Part 4 of 9). DB2/6000 Implementation File dbAccessDB2.c

 Appendix C. Source Code of the Graphical User Interface 425

/\ set message string \/

if (strlen(msg) == ð)

sprintf(msg, "%d Rows Selected.",n);

 for(i=ð;i<outColCount;i++)

 free(data[i]);

return allocTable(tableName, &colAttr, outColCount, rowArray, n, msg);

}

Message dbInsert(char \tableName, int colCount,

 char \columns[], char \values[])

{

 int i;

 SQLHSTMT hstmt;

 SQLCHAR sqlstmt[MAX_STMT_LEN + 1] = "insert into",

sqlstmtExt[MAX_STMT_LEN + 1] = ") values ";

 SQLRETURN rc;

/\ build SQL insert statement \/

sprintf(sqlstmt, "%s %s ", sqlstmt, tableName);

for (i=ð i<colCount i++) {

sprintf(sqlstmt, "%s%s%s", sqlstmt, (i!=ð)?",":"(", columns[i]);

if (strlen(values[i]) == ð)

sprintf(sqlstmtExt, "%s%sNULL", sqlstmtExt, (i!=ð)?",":"(");

 else

sprintf(sqlstmtExt, "%s%s'%s'", sqlstmtExt, (i!=ð)?",":"(", values[i]);

 }

sprintf(sqlstmt, "%s %s)", sqlstmt, sqlstmtExt);

/\ allocate a statement handle \/

if (SQLAllocStmt(hdbc, &hstmt) != SQL_SUCCESS)

return error(henv, hdbc, SQL_NULL_HSTMT);

/\ execute statement \/

rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);

switch (rc) {

case SQL_SUCCESS: {

Message msg = (Message) calloc(1,SQL_MAX_MESSAGE_LENGTH+1);

\msg = '\ð';

 return msg;

 }

case SQL_NO_DATA_FOUND: {

Message msg = (Message) calloc(1,SQL_MAX_MESSAGE_LENGTH+1);

sprintf(msg, "\nSQLð1ððW No row was found for FETCH, UPDATE or DELETE; ");

sprintf(msg, "%sor the result of a query is an empty table. SQLSTATE=ð2ððð\n",msg);

 return msg;

 }

Figure 178 (Part 5 of 9). DB2/6000 Implementation File dbAccessDB2.c

426 Pristine AIX Environments

 default:

return error(henv, hdbc, hstmt);

 }

}

Message dbUpdate(char \tableName, int colCount, char \setColumns[],

 char \values[], char \selection)

{

 int i;

 SQLHSTMT hstmt;

SQLCHAR sqlstmt[MAX_STMT_LEN + 1] = "update";

 SQLRETURN rc;

/\ build SQL insert statement \/

sprintf(sqlstmt, "%s %s set", sqlstmt, tableName);

for (i=ð i<colCount i++)

if (strlen(values[i]) == ð)

sprintf(sqlstmt, "%s%s%s=NULL", sqlstmt, (i!=ð)?",":" ", setColumns[i]);

 else

sprintf(sqlstmt, "%s%s%s='%s'", sqlstmt, (i!=ð)?",":" ", setColumns[i], values[i]);

if (selection != NULL)

sprintf(sqlstmt, "%s %s", sqlstmt, selection);

/\ allocate a statement handle \/

if (SQLAllocStmt(hdbc, &hstmt) != SQL_SUCCESS)

return error(henv, hdbc, SQL_NULL_HSTMT);

/\ execute statement \/

rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);

switch (rc) {

case SQL_SUCCESS: {

Message msg = (Message) calloc(1,SQL_MAX_MESSAGE_LENGTH+1);

\msg = '\ð';

 return msg;

 }

case SQL_NO_DATA_FOUND: {

Message msg = (Message) calloc(1,SQL_MAX_MESSAGE_LENGTH+1);

sprintf(msg, "\nSQLð1ððW No row was found for FETCH, UPDATE or DELETE; ");

sprintf(msg, "%sor the result of a query is an empty table. SQLSTATE=ð2ððð\n",msg);

return (Message) msg;

 }

 default:

return error(henv, hdbc, hstmt);

 }

}

Figure 178 (Part 6 of 9). DB2/6000 Implementation File dbAccessDB2.c

 Appendix C. Source Code of the Graphical User Interface 427

Message dbDelete(char \tableName, char \selection)

{

 SQLHSTMT hstmt;

SQLCHAR sqlstmt[MAX_STMT_LEN + 1] = "";

 SQLRETURN rc;

/\ build SQL insert statement \/

sprintf(sqlstmt, "delete from %s", tableName);

if (selection != NULL)

sprintf(sqlstmt, "%s %s", sqlstmt, selection);

/\ allocate a statement handle \/

if (SQLAllocStmt(hdbc, &hstmt) != SQL_SUCCESS)

return error(henv, hdbc, SQL_NULL_HSTMT);

/\ execute statement \/

rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);

switch (rc) {

case SQL_SUCCESS: {

Message msg = (Message) calloc(1,SQL_MAX_MESSAGE_LENGTH+1);

\msg = '\ð';

 return msg;

 }

case SQL_NO_DATA_FOUND: {

Message msg = (Message) calloc(1,SQL_MAX_MESSAGE_LENGTH+1);

sprintf(msg, "\nSQLð1ððW No row was found for FETCH, UPDATE or DELETE; ");

sprintf(msg, "%sor the result of a query is an empty table. SQLSTATE=ð2ððð\n",msg);

return (Message) msg;

 }

 default:

return error(henv, hdbc, hstmt);

 }

}

void freeTable(Table \table)

{

 int i,j;

for (i=ð i<table->rowCount i++) {

for (j=ð; j<table->colCount; j++)

 free(table->rows[i].data[j]);

 free(table->rows[i].data);

 }

for (j=ð; j<table->colCount; j++)

 free(table->colAttr.name[j]);

 free(table->colAttr.name);

 free(table->colAttr.length);

 free(table->colAttr.isNullable);

Figure 178 (Part 7 of 9). DB2/6000 Implementation File dbAccessDB2.c

428 Pristine AIX Environments

 free(table->message);

 free(table->rows);

 free(table);

}

char \selectThisRow(Row row, int colCount, char \columns[])

{

 char \selection;

 int i;

if (colCount == ð) return NULL;

selection = (char \) calloc(MAX_STMT_LEN + 1, sizeof(char));

 for (i=ð i<colCount i++) {

if (i == ð)

if (strlen(row.data[i]) == ð)

sprintf(selection, "where %s is null", columns[i]);

 else

sprintf(selection, "where %s='%s'", columns[i], row.data[i]);

 else

if (strlen(row.data[i]) == ð)

sprintf(selection, "%s and %s is null", selection, columns[i]);

 else

sprintf(selection, "%s and %s='%s'", selection, columns[i], row.data[i]);

 }

 return selection;

}

char \dbOrderString(int colCount, char \columns[])

{

 char \selection;

 int i;

if (colCount == ð) return NULL;

selection = (char \) calloc(MAX_STMT_LEN + 1, sizeof(char));

for (i = ð; i<colCount; i++)

sprintf(selection, "%s%s%s", selection, (i==ð)?"order by ":",", columns[i]);

 return selection;

}

char \dbAlwaysFalse(void)

{

return "where 1<>1";

Figure 178 (Part 8 of 9). DB2/6000 Implementation File dbAccessDB2.c

 Appendix C. Source Code of the Graphical User Interface 429

}

/\--------------------- Help Procedures --------------------------------\/

/\ Return SQL error code \/

Message error(SQLHENV henv, SQLHDBC hdbc, SQLHSTMT hstmt)

{

SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1] = "";

SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1] = "";

SQLINTEGER sqlcode = ð;

SQLSMALLINT length = ð;

char \msg = (Message) calloc(1,SQL_MAX_MESSAGE_LENGTH+1);

\msg = '\ð';

while (SQLError(henv, hdbc, hstmt, sqlstate, &sqlcode, buffer,

SQL_MAX_MESSAGE_LENGTH + 1, &length) == SQL_SUCCESS)

sprintf(msg, "%s\n%s\n", msg, buffer);

return (Message) msg;

}

/\ build a table structure \/

Table \allocTable(char \name, ColAttributes \colAttrPtr, int colCount,

Row rows[], int rowCount, Message msg)

{

Table \table = (Table \) calloc(1, sizeof(Table));

table->name = name;

table->colAttr = \colAttrPtr;

table->colCount = colCount;

table->rows = rows;

table->rowCount = rowCount;

table->message = msg;

 return table;

}

Figure 178 (Part 9 of 9). DB2/6000 Implementation File dbAccessDB2.c

430 Pristine AIX Environments

 C.3 Database Frames
Database Frames Interface:

/\\

\\

\\ File: dbFrames.h

\\ System: User Interface to NetView DM/6ððð Configuration Database

\\ Purpose: Graphic Database Frames Interface

\\ Author: Plamen Kiradjiev

\\ Date: 1ð/ð9/1995

\\

\\\/

/\---------------------- Includes ---\/

#include "dbAccess.h"

#include <Xm/PushB.h>

/\---------------------- Procedures --\/

/\ View Database Data in a Table Frame \/

void tableFrame(Widget w, Table \table);

/\ Insert Table Frame for a Sequence of Tables \/

void insertFrame(Widget w, int tabCount, Table \\table);

/\ Message Box \/

void messageBox(Widget top, String msg, int fatal);

Figure 179. Database Frames Include File dbFrames.h

 Appendix C. Source Code of the Graphical User Interface 431

Database Frames Implementation:

/\\

\\

\\ File: dbFrames.c

\\ System: User Interface to NetView DM/6ððð Configuration Database

\\ Purpose: Graphic Database Frames

\\ Author: Plamen Kiradjiev

\\ Date: 1ð/ð9/1995

\\

\\\/

/\---------------------- Includes ---\/

#include "dbFrames.h"

#include <Xm/RowColumn.h>

#include <Xm/Form.h>

#include <Xm/PushB.h>

#include <Xm/Label.h>

#include <Xm/Text.h>

#include <Xm/ScrolledW.h>

#include <Xm/Separator.h>

/\--------------------- Constants --\/

#define MAXIDLEN 4ð

#define DEFAULTFIELDLEN 2ð

#define DEFAULTMARGIN 3

#define DEFAULTSPACING ð

#define DEFTXTMARGIN 5

#define HIGHLIGHT 2

#define SWMARGIN ð

#define SWSPACING 4

#define SCROLLBARWIDTH 5

#define OKSTRING "Ok!"

/\-------------------- Macros --\/

#define min(a,b) (a < b ? a : b)

#define max(a,b) (a > b ? a : b)

/\---------------------- Type Definitions ------------------------------\/

typedef struct TableInfo{

 int currentRow;

 int currentCol;

 Table \table;

Figure 180 (Part 1 of 20). Database Frames Implementation File dbFrames.c

432 Pristine AIX Environments

 Widget \rows;

 Widget \\field;

 Widget tMessage;

 }TableInfo;

typedef struct InsertInfo{

 int tabCount;

 Table \\tables;

 Widget \fields;

 Widget shell;

 }InsertInfo;

typedef struct Index{

 int row;

 int col;

 }Index;

/\----------------------- Globals --------------------------------------\/

static XmFontList fontList14, fontList18;

static Pixel fg, bg;

/\---------------------- Forward Definitions ------------------------------\/

void quitCB(Widget w, XtPointer client_data, XtPointer call_data);

void entryFieldCB(Widget w, XtPointer client_data, XtPointer call_data);

void exitFieldCB(Widget w, XtPointer client_data, XtPointer call_data);

void valueChangedCB(Widget w, XtPointer client_data, XtPointer call_data);

void updateRowCB(Widget w, XtPointer client_data, XtPointer call_data);

void insertRowCB(Widget w, XtPointer client_data, XtPointer call_data);

void deleteRowCB(Widget w, XtPointer client_data, XtPointer call_data);

void commitCB(Widget w, XtPointer client_data, XtPointer call_data);

void refreshCB(Widget w, XtPointer client_data, XtPointer call_data);

void okMsgCB(Widget w, XtPointer client_data, XtPointer call_data);

void insertCB(Widget w, XtPointer client_data, XtPointer call_data);

void cancelInsertCB(Widget w, XtPointer client_data, XtPointer call_data);

void quitInsertCB(Widget w, XtPointer client_data, XtPointer call_data);

void showRows(Widget parentW, TableInfo \tabinfo);

void buildCols(Widget parentW, InsertInfo \ininfo);

void allocateNewRow(TableInfo \tabinfo);

void clearTable(TableInfo \tabinfo, Boolean unmanage);

/\---------------------- Procedures --\/

void tableFrame(Widget w, Table \table)

{

Figure 180 (Part 2 of 20). Database Frames Implementation File dbFrames.c

 Appendix C. Source Code of the Graphical User Interface 433

 Display \display;

 XFontStruct \font;

Widget tableShell, tableForm, tLabel, tScrollW, tButtonRC;

Widget tSep, tTableRC, tColumnRC, tScrollRowsW, tRowsRC, tScrollMsg;

Widget \tColumnNames = (Widget \) calloc(table->colCount, sizeof(Widget));

 Widget tButtons[6];

 XmString t;

 Dimension sw;

int i, j, len;

 char \colname;

char title[MAXIDLEN + 2ð] = "Database Table: ";

char \tBtnLbls[] = {"Insert Row", "Update Row", "Delete Row",

"Commit", "Refresh", "Quit"};

TableInfo \tabinfo = (TableInfo \) calloc(1, sizeof(TableInfo));

display = XtDisplay(w);

tableShell = XtVaAppCreateShell(NULL, "tableShell",

 topLevelShellWidgetClass,display,

XtNtitle, "Table Frame",

 NULL);

/\ set used font lists \/

font = XLoadQueryFont(display, "-\-courier-bold-r-\--14-\");

fontList14 = XmFontListCreate(font, " ");

font = XLoadQueryFont(display, "-\-courier-bold-r-\--18-\");

fontList18 = XmFontListCreate(font, " ");

tableForm = XtVaCreateWidget("tableForm",

 xmFormWidgetClass, tableShell,

 NULL);

 strcat(title,table->name);

t = XmStringCreateLocalized(title);

tLabel = XtVaCreateManagedWidget("tLabel",

 xmLabelWidgetClass, tableForm,

 XmNtopAttachment, XmATTACH_FORM,

 XmNtopOffset, 5ð,

 XmNlabelString, t,

 XmNfontList, fontList18,

 NULL);

 XmStringFree(t);

tScrollW = XtVaCreateWidget("tScrollW",

 xmScrolledWindowWidgetClass, tableForm,

 XmNtopAttachment, XmATTACH_WIDGET,

 XmNtopWidget, tLabel,

 XmNtopOffset, 3ð,

 XmNleftAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_FORM,

 XmNwidth, 7ðð,

Figure 180 (Part 3 of 20). Database Frames Implementation File dbFrames.c

434 Pristine AIX Environments

 XmNheight, 6ðð,

 XmNscrollingPolicy, XmAUTOMATIC,

 NULL);

tTableRC = XtVaCreateWidget("tTableRC",

 xmRowColumnWidgetClass, tScrollW,

 NULL);

tColumnRC = XtVaCreateWidget("tColumnRC",

 xmRowColumnWidgetClass, tTableRC,

 XmNorientation, XmHORIZONTAL,

XmNmarginWidth, DEFAULTMARGIN + DEFTXTMARGIN + SWMARGIN + SWSPACING,

XmNspacing, DEFAULTSPACING + 2\DEFTXTMARGIN +2\HIGHLIGHT,

 XmNnumColumns, 1,

 NULL);

for (i=ð i<table->colCount i++) {

len = min(DEFAULTFIELDLEN, table->colAttr.length[i]);

len = max(len, strlen(table->colAttr.name[i]));

if (i == table->colCount-1)

len = len + SCROLLBARWIDTH;

colname = (char \) calloc(len + 1, sizeof(char));

 strcpy(colname, table->colAttr.name[i]);

 for(j=strlen(colname);j<len;j++)

colname[j] = ' ';

colname[len] = '\ð';

tColumnNames[i] = XtVaCreateManagedWidget(colname,

 xmLabelWidgetClass, tColumnRC,

 XmNfontList, fontList14,

 NULL);

 free(colname);

 }

tSep = XtVaCreateManagedWidget("tSep",

xmSeparatorWidgetClass, tTableRC, NULL);

tScrollRowsW = XtVaCreateManagedWidget("tScrollRowsW",

 xmScrolledWindowWidgetClass, tTableRC,

 XmNscrollingPolicy, XmAUTOMATIC,

 XmNscrolledWindowMarginWidth, SWMARGIN,

 XmNspacing, SWSPACING,

 XmNheight, 43ð,

 NULL);

 tRowsRC= XtVaCreateWidget("tRowsRC",

 xmRowColumnWidgetClass, tScrollRowsW,

 XmNentryAlignment, XmALIGNMENT_BEGINNING,

 XmNnumColumns, 1,

 NULL);

Figure 180 (Part 4 of 20). Database Frames Implementation File dbFrames.c

 Appendix C. Source Code of the Graphical User Interface 435

tabinfo->table = table;

 showRows(tRowsRC, tabinfo);

tScrollMsg = XtVaCreateManagedWidget("tScrollMsg",

 xmScrolledWindowWidgetClass, tTableRC,

 XmNscrollingPolicy, XmAUTOMATIC,

 XmNheight, 9ð,

 NULL);

if (strlen(table->message) == ð)

t = XmStringCreateLocalized(OKSTRING);

 else

t = XmStringCreateLtoR(table->message, " ");

tabinfo->tMessage = XtVaCreateManagedWidget("Message:",

 xmLabelWidgetClass, tScrollMsg,

 XmNlabelString, t,

 XmNalignment, XmALIGNMENT_BEGINNING,

 XmNfontList, fontList14,

 NULL);

 XmStringFree(t);

tButtonRC = XtVaCreateWidget("tButtonRC",

 xmRowColumnWidgetClass, tableForm,

 XmNtopAttachment, XmATTACH_WIDGET,

 XmNtopWidget, tScrollW,

 XmNtopOffset, 2ð,

 XmNorientation, XmHORIZONTAL,

 XmNnumColumns, 2,

 XmNentryAlignment, XmALIGNMENT_CENTER,

 XmNpacking, XmPACK_COLUMN,

 NULL);

 for (i=ð i<6 i++)

tButtons[i] = XtVaCreateManagedWidget(tBtnLbls[i],

 xmPushButtonWidgetClass, tButtonRC,

 XmNfontList, fontList18,

 XmNuserData, tabinfo,

 NULL);

XtAddCallback(tButtons[ð], XmNactivateCallback, insertRowCB, tScrollRowsW);

XtAddCallback(tButtons[1], XmNactivateCallback, updateRowCB, NULL);

XtAddCallback(tButtons[2], XmNactivateCallback, deleteRowCB, tScrollRowsW);

XtAddCallback(tButtons[3], XmNactivateCallback, commitCB, tScrollRowsW);

XtAddCallback(tButtons[4], XmNactivateCallback, refreshCB, tScrollRowsW);

XtAddCallback(tButtons[5], XmNactivateCallback, quitCB, tableShell);

 XtManageChild(tRowsRC);

 XtManageChild(tColumnRC);

 XtManageChild(tTableRC);

Figure 180 (Part 5 of 20). Database Frames Implementation File dbFrames.c

436 Pristine AIX Environments

 XtManageChild(tScrollW);

 XtManageChild(tButtonRC);

 XtManageChild(tableForm);

 XtRealizeWidget(tableShell);

if (tabinfo->table->rowCount > ð) {

 XtVaGetValues(tabinfo->field[ð][ð],

 XmNforeground, &fg,

XmNbackground, &bg, NULL);

 XmProcessTraversal(tabinfo->field[ð][ð], XmTRAVERSE_CURRENT);

 }

}

void insertFrame(Widget w, int tabCount, Table \\tables)

{

 Display \display;

 XFontStruct \font;

Widget insertShell, insertForm, iLabel, iBody, iButtonRC;

 Widget iButtons[3];

char \iBtnLbls[] = {"Insert", "Cancel", "Quit"};

char title[MAXIDLEN + 2ð] = "Insert Into ";

 XmString t;

 int i;

InsertInfo \ininfo = (InsertInfo \) calloc(1, sizeof(InsertInfo));

if (tabCount == ð) return;

display = XtDisplay(w);

insertShell = XtVaAppCreateShell(NULL, "insertShell",

 topLevelShellWidgetClass,display,

XtNtitle, "Insert Frame",

 NULL);

/\ set used font lists \/

font = XLoadQueryFont(display, "-\-courier-bold-r-\--14-\");

fontList14 = XmFontListCreate(font, " ");

font = XLoadQueryFont(display, "-\-courier-bold-r-\--18-\");

fontList18 = XmFontListCreate(font, " ");

insertForm = XtVaCreateWidget("insertForm",

 xmFormWidgetClass, insertShell,

 NULL);

 strcat(title,(\tables)->name);

t = XmStringCreateLocalized(title);

iLabel = XtVaCreateManagedWidget("iLabel",

 xmLabelWidgetClass, insertForm,

 XmNtopAttachment, XmATTACH_FORM,

Figure 180 (Part 6 of 20). Database Frames Implementation File dbFrames.c

 Appendix C. Source Code of the Graphical User Interface 437

 XmNtopOffset, 5ð,

 XmNlabelString, t,

 XmNfontList, fontList18,

 NULL);

 XmStringFree(t);

iBody = XtVaCreateManagedWidget("iBody",

 xmScrolledWindowWidgetClass, insertForm,

 XmNtopAttachment, XmATTACH_WIDGET,

 XmNtopWidget, iLabel,

 XmNtopOffset, 3ð,

 XmNleftAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_FORM,

 XmNwidth, 5ðð,

 XmNheight, 4ðð,

 XmNscrollingPolicy, XmAUTOMATIC,

 NULL);

ininfo->tabCount = tabCount;

ininfo->tables = tables;

 buildCols(iBody, ininfo);

iButtonRC = XtVaCreateWidget("iButtonRC",

 xmRowColumnWidgetClass, insertForm,

 XmNtopAttachment, XmATTACH_WIDGET,

 XmNtopWidget, iBody,

 XmNtopOffset, 2ð,

 XmNorientation, XmHORIZONTAL,

 XmNentryAlignment, XmALIGNMENT_CENTER,

 XmNpacking, XmPACK_COLUMN,

 NULL);

 for (i=ð i<3 i++)

iButtons[i] = XtVaCreateManagedWidget(iBtnLbls[i],

 xmPushButtonWidgetClass, iButtonRC,

 XmNfontList, fontList18,

 XmNuserData, ininfo,

 NULL);

ininfo->shell = insertShell;

XtAddCallback(iButtons[ð], XmNactivateCallback, insertCB, NULL);

XtAddCallback(iButtons[1], XmNactivateCallback, cancelInsertCB, NULL);

XtAddCallback(iButtons[2], XmNactivateCallback, quitInsertCB, w);

 XtManageChild(iButtonRC);

 XtManageChild(insertForm);

 XtRealizeWidget(insertShell);

}

Figure 180 (Part 7 of 20). Database Frames Implementation File dbFrames.c

438 Pristine AIX Environments

void messageBox(Widget top, String msg, int fatal)

{

 Widget message;

 XmString t;

 Arg args[5];

int n = ð;

/\ create selection box \/

t = XmStringCreateLtoR(msg, " ");

XtSetArg(args[n], XmNmessageString,t); n++;

XtSetArg(args[n], XmNlabelFontList,fontList14); n++;

XtSetArg(args[n], XmNbuttonFontList,fontList14); n++;

XtSetArg(args[n], XmNautoUnmanage,False); n++;

message = (Widget)MessageDialog(top, "message", args, n);

 XmStringFree(t);

 XtUnmanageChild(XmMessageBoxGetChild(message, XmDIALOG_CANCEL_BUTTON));

 XtUnmanageChild(XmMessageBoxGetChild(message, XmDIALOG_HELP_BUTTON));

XtAddCallback(message, XmNokCallback, okMsgCB, (XtPointer) fatal);

 XtManageChild(message);

 XtPopup(XtParent(message), XtGrabNone);

}

/\----------------------- Callbacks -------------------------------------\/

/\ select row after entering field of it \/

void entryFieldCB(Widget w, XtPointer client_data, XtPointer call_data)

{

 int i;

 XmString t;

Index \index = (Index \) client_data;

 TableInfo \tabinfo;

XtVaGetValues(w, XmNuserData, &tabinfo, NULL);

for (i=ð i< tabinfo->table->colCount i++)

 XtVaSetValues(tabinfo->field[index->row][i],

XmNforeground, bg, XmNbackground, fg, NULL);

if (tabinfo->currentRow != index->row) {

for (i=ð i< tabinfo->table->colCount i++)

XtVaSetValues(tabinfo->field[index->row][i], XmNeditable, False, NULL);

Figure 180 (Part 8 of 20). Database Frames Implementation File dbFrames.c

 Appendix C. Source Code of the Graphical User Interface 439

t = XmStringCreateLocalized(OKSTRING);

XtVaSetValues(tabinfo->tMessage, XmNlabelString, t, NULL);

 XmStringFree(t);

 }

tabinfo->currentRow = index->row;

tabinfo->currentCol = index->col;

}

/\ deselect row after exiting a field of it \/

void exitFieldCB(Widget w, XtPointer client_data, XtPointer call_data)

{

 int i;

 TableInfo \tabinfo;

XtVaGetValues(w, XmNuserData, &tabinfo, NULL);

for (i=ð i< tabinfo->table->colCount i++)

 XtVaSetValues(tabinfo->field[tabinfo->currentRow][i],

XmNforeground, fg, XmNbackground, bg, NULL);

}

/\ quit table frame \/

void quitCB(Widget w, XtPointer client_data, XtPointer call_data)

{

Widget top = (Widget) client_data;

 TableInfo \tabinfo;

XtVaGetValues(w, XmNuserData, &tabinfo, NULL);

 XtDestroyWidget(top);

 clearTable(tabinfo,ð);

}

/\ change value in table data structure \/

void valueChangedCB(Widget w, XtPointer client_data, XtPointer call_data)

{

 int i;

 TableInfo \tabinfo;

XtVaGetValues(w, XmNuserData, &tabinfo, NULL);

 switch(tabinfo->table->rows[tabinfo->currentRow].mode) {

 case SELECTED:

case UPDATED: {

 char \val;

tabinfo->table->rows[tabinfo->currentRow].mode = UPDATED;

Figure 180 (Part 9 of 20). Database Frames Implementation File dbFrames.c

440 Pristine AIX Environments

tabinfo->table->rows[tabinfo->currentRow].changed = 1;

if (tabinfo->table->rows[tabinfo->currentRow].chData[tabinfo->currentCol] == NULL)

 tabinfo->table->rows[tabinfo->currentRow].chData[tabinfo->currentCol] =

(char \) calloc(tabinfo->table->colAttr.length[tabinfo->currentCol]+1,

 sizeof(char));

val = XmTextGetString(w);

for (i=tabinfo->table->colAttr.length[tabinfo->currentCol]-1; i>=ð;i--) {

if (val[i] == ' ') val[i] = '\ð';

 else break;

 }

 strcpy(tabinfo->table->rows[tabinfo->currentRow].chData[tabinfo->currentCol],

 val);

 free(val);

 break;

 }

case INSERTED: {

 char \val;

val = XmTextGetString(w);

for (i=tabinfo->table->colAttr.length[tabinfo->currentCol]-1; i>=ð;i--) {

if (val[i] == ' ') val[i] = '\ð';

 else break;

 }

 strcpy(tabinfo->table->rows[tabinfo->currentRow].data[tabinfo->currentCol],

 val);

 free(val);

 break;

 }

 default: break;

 }

}

/\ switch to update mode for the current row \/

void updateRowCB(Widget w, XtPointer client_data, XtPointer call_data)

{

 int i;

 XmString t;

 TableInfo \tabinfo;

XtVaGetValues(w, XmNuserData, &tabinfo, NULL);

for (i=ð i< tabinfo->table->colCount i++)

XtVaSetValues(tabinfo->field[tabinfo->currentRow][i], XmNeditable, True, NULL);

 XmProcessTraversal(tabinfo->field[tabinfo->currentRow][tabinfo->currentCol], XmTRAVERSE_CURRENT);

t = XmStringCreateLocalized("Row Update.");

XtVaSetValues(tabinfo->tMessage, XmNlabelString, t, NULL);

 XmStringFree(t);

}

Figure 180 (Part 10 of 20). Database Frames Implementation File dbFrames.c

 Appendix C. Source Code of the Graphical User Interface 441

/\ insert row \/

void insertRowCB(Widget w, XtPointer client_data, XtPointer call_data)

{

int n, i, len;

 XmString t;

Widget tRowsRC, tScrollRowsW = (Widget) client_data;

 TableInfo \tabinfo;

 Index \index;

XtVaGetValues(w, XmNuserData, &tabinfo, NULL);

 allocateNewRow(tabinfo);

n = tabinfo->table->rowCount-1;

tabinfo->currentRow = n; tabinfo->currentCol = ð;

tabinfo->table->rows[n].mode = INSERTED;

tabinfo->table->rows[n].changed = ð;

XtVaGetValues(tScrollRowsW, XmNworkWindow, &tRowsRC, NULL);

tabinfo->rows[n] = XtVaCreateWidget("iRow",

 xmRowColumnWidgetClass, tRowsRC,

 XmNorientation, XmHORIZONTAL,

 XmNmarginWidth, DEFAULTMARGIN,

 XmNspacing, DEFAULTSPACING,

 NULL);

for (i=ð i< tabinfo->table->colCount i++) {

len = min(DEFAULTFIELDLEN, tabinfo->table->colAttr.length[i]);

len = max(len, strlen(tabinfo->table->colAttr.name[i]));

tabinfo->field[n][i] = XtVaCreateManagedWidget("ijField",

 xmTextWidgetClass, tabinfo->rows[n],

 XmNcolumns, len,

 XmNmarginWidth, DEFTXTMARGIN,

 XmNfontList, fontList14,

 XmNmaxLength, tabinfo->table->colAttr.length[i],

 XmNuserData, tabinfo,

 NULL);

XtAddCallback(tabinfo->field[n][i], XmNlosingFocusCallback, exitFieldCB, NULL);

index = (Index \)calloc(1, sizeof(Index));

index->row = n; index->col = i;

XtAddCallback(tabinfo->field[n][i], XmNfocusCallback, entryFieldCB, index);

XtAddCallback(tabinfo->field[n][i], XmNvalueChangedCallback, valueChangedCB, NULL);

 }

 XtManageChild(tabinfo->rows[n]);

XmScrollVisible(tScrollRowsW, tabinfo->field[n][ð], 1ð, 1ð);

 XmProcessTraversal(tabinfo->field[n][ð], XmTRAVERSE_CURRENT);

t = XmStringCreateLocalized("Insert Row.");

XtVaSetValues(tabinfo->tMessage, XmNlabelString, t, NULL);

 XmStringFree(t);

}

Figure 180 (Part 11 of 20). Database Frames Implementation File dbFrames.c

442 Pristine AIX Environments

/\ delete row \/

void deleteRowCB(Widget w, XtPointer client_data, XtPointer call_data)

{

Widget tScrollRowsW = (Widget) client_data;

int row, i, j;

 TableInfo \tabinfo;

XtVaGetValues(w, XmNuserData, &tabinfo, NULL);

row = tabinfo->currentRow;

 XtUnmanageChild(XtParent(tabinfo->field[tabinfo->currentRow][tabinfo->currentCol]));

if (tabinfo->table->rows[tabinfo->currentRow].mode == INSERTED)

tabinfo->table->rows[tabinfo->currentRow].mode = NONE;

 else

tabinfo->table->rows[tabinfo->currentRow].mode = DELETED;

for (i=row+1;i < tabinfo->table->rowCount; i++)

if ((tabinfo->table->rows[i].mode != DELETED) &&

(tabinfo->table->rows[i].mode != NONE)) {

XmScrollVisible(tScrollRowsW, tabinfo->field[i][tabinfo->currentCol], 1ð, 1ð);

 XmProcessTraversal(tabinfo->field[i][tabinfo->currentCol], XmTRAVERSE_CURRENT);

 return;

 }

for (i=row-1;i >= ð; i--)

if ((tabinfo->table->rows[i].mode != DELETED) &&

(tabinfo->table->rows[i].mode != NONE)) {

XmScrollVisible(tScrollRowsW, tabinfo->field[i][tabinfo->currentCol], 1ð, 1ð);

 XmProcessTraversal(tabinfo->field[i][tabinfo->currentCol], XmTRAVERSE_CURRENT);

 return;

 }

}

/\ commit changes \/

void commitCB(Widget w, XtPointer client_data, XtPointer call_data)

{

int i, j, n;

Widget parentW, tScrollRowsW = (Widget) client_data;

Message msg = NULL;

 XmString t;

char \\setColumns = NULL, \\values = NULL;

 TableInfo \tabinfo;

 char \tabname;

XtVaGetValues(w, XmNuserData, &tabinfo, NULL);

tabname = tabinfo->table->name;

Figure 180 (Part 12 of 20). Database Frames Implementation File dbFrames.c

 Appendix C. Source Code of the Graphical User Interface 443

if (tabinfo->table->rowCount == ð) return;

parentW = XtParent(tabinfo->rows[tabinfo->currentRow]);

 XtUnmanageChild(tScrollRowsW);

for (i=ð i<tabinfo->table->rowCount i++) {

switch (tabinfo->table->rows[i].mode) {

case DELETED: {

char \selection = selectThisRow(tabinfo->table->rows[i],

 tabinfo->table->colCount,

 tabinfo->table->colAttr.name);

 msg = dbDelete(tabinfo->table->name, selection);

 free(selection);

 break;

 }

 case INSERTED: {

 msg = dbInsert(tabinfo->table->name,

 tabinfo->table->colCount,

 tabinfo->table->colAttr.name,

 tabinfo->table->rows[i].data);

 break;

 }

case UPDATED: {

char \selection = selectThisRow(tabinfo->table->rows[i],

 tabinfo->table->colCount,

 tabinfo->table->colAttr.name);

n = ð;

 for (j=ð;j<tabinfo->table->colCount;j++)

if (tabinfo->table->rows[i].chData[j] != NULL) {

setColumns = (char \\) realloc(setColumns, (n+1)\sizeof(char \));

values = (char \\) realloc(values, (n+1)\sizeof(char \));

setColumns[n] = tabinfo->table->colAttr.name[j];

values[n] = tabinfo->table->rows[i].chData[j];

 n++;

 }

 msg = dbUpdate(tabinfo->table->name,

 n,

 setColumns,

 values,

 selection);

 free(selection);

 free(setColumns);

 free(values);

 break;

 }

 default: break;

 }

if (strlen(msg) != ð) break;

 free(msg);

msg = NULL;

 }

if (msg == NULL) {

Figure 180 (Part 13 of 20). Database Frames Implementation File dbFrames.c

444 Pristine AIX Environments

msg = dbCheckPoint();

if (strlen(msg) != ð)

messageBox(w, msg, 1);

 clearTable(tabinfo,1);

tabinfo->table = dbSelect(tabname, ð, NULL, NULL);

 showRows(parentW, tabinfo);

msg = (Message) calloc(1, strlen(tabinfo->table->message) + 2ð);

sprintf(msg, "Commit Done.\n%s", tabinfo->table->message);

t = XmStringCreateLtoR(msg, " ");

XtVaSetValues(tabinfo->tMessage, XmNlabelString, t, NULL);

 free(msg);

 XmStringFree(t);

 XtManageChild(tScrollRowsW);

if (tabinfo->table->rowCount > ð) {

tabinfo->currentRow = ð; tabinfo->currentCol = ð;

XmScrollVisible(tScrollRowsW, tabinfo->field[ð][ð], 1ð, 1ð);

 XmProcessTraversal(tabinfo->field[ð][ð], XmTRAVERSE_CURRENT);

 }

 }

 else {

t = XmStringCreateLtoR(msg, " ");

XtVaSetValues(tabinfo->tMessage, XmNlabelString, t, NULL);

 free(msg);

 XmStringFree(t);

 XtManageChild(tScrollRowsW);

 XmScrollVisible(tScrollRowsW,

tabinfo->field[tabinfo->currentRow][tabinfo->currentCol], 1ð, 1ð);

 XmProcessTraversal(tabinfo->field[tabinfo->currentRow][tabinfo->currentCol], XmTRAVERSE_CURRENT);

 }

}

/\ refresh frame with current database contents \/

void refreshCB(Widget w, XtPointer client_data, XtPointer call_data)

{

 XmString t;

Widget parentW, tScrollRowsW = (Widget) client_data;

 Message msg;

 TableInfo \tabinfo;

 char \tabname;

XtVaGetValues(w, XmNuserData, &tabinfo, NULL);

tabname = tabinfo->table->name;

if (tabinfo->table->rowCount == ð) return;

parentW = XtParent(tabinfo->rows[tabinfo->currentRow]);

 XtUnmanageChild(tScrollRowsW);

 clearTable(tabinfo,1);

tabinfo->table = dbSelect(tabname, ð, NULL, NULL);

 showRows(parentW, tabinfo);

Figure 180 (Part 14 of 20). Database Frames Implementation File dbFrames.c

 Appendix C. Source Code of the Graphical User Interface 445

msg = (Message) calloc(1, strlen(tabinfo->table->message) + 2ð);

sprintf(msg, "Refresh Done.\n%s", tabinfo->table->message);

t = XmStringCreateLtoR(msg, " ");

XtVaSetValues(tabinfo->tMessage, XmNlabelString, t, NULL);

 free(msg);

 XmStringFree(t);

 XtManageChild(tScrollRowsW);

if (tabinfo->table->rowCount > ð) {

tabinfo->currentRow = ð; tabinfo->currentCol = ð;

XmScrollVisible(tScrollRowsW, tabinfo->field[ð][ð], 1ð, 1ð);

 XmProcessTraversal(tabinfo->field[ð][ð], XmTRAVERSE_CURRENT);

 }

}

/\ quit message box \/

void okMsgCB(Widget w, XtPointer client_data, XtPointer call_data)

{

int fatal = (int)client_data;

 XtDestroyWidget(w);

 if (fatal)

 exit(1);

}

/\ insert new row from insertFrame \/

void insertCB(Widget w, XtPointer client_data, XtPointer call_data)

{

int i, j;

 Message msg;

 Boolean notFixed;

 char \val;

 InsertInfo \ininfo;

XtVaGetValues(w, XmNuserData, &ininfo, NULL);

for (i=ð i<(\ininfo->tables)->colCount i++) {

XtVaGetValues(ininfo->fields[i], XmNeditable, ¬Fixed, NULL);

if (notFixed) {

val = (char \) calloc((\ininfo->tables)->colAttr.length[i]+1, sizeof(char));

val = XmTextGetString(ininfo->fields[i]);

for (j=(\ininfo->tables)->colAttr.length[i]-1; j>=ð;j--) {

if (val[j] == ' ') val[j] = '\ð';

 else break;

 }

 (\ininfo->tables)->rows[ð].data[i] =

Figure 180 (Part 15 of 20). Database Frames Implementation File dbFrames.c

446 Pristine AIX Environments

(char \) calloc((\ininfo->tables)->colAttr.length[i] + 1, sizeof(char));

 strcpy((\ininfo->tables)->rows[ð].data[i], val);

 free(val);

 }

 }

msg = dbInsert((\ininfo->tables)->name, (\ininfo->tables)->colCount,

 (\ininfo->tables)->colAttr.name, (\ininfo->tables)->rows[ð].data);

if (strlen(msg) != ð) {

messageBox(w, msg, ð);

 return;

 }

msg = dbCheckPoint();

if (strlen(msg) != ð)

messageBox(w, msg, 1);

for (i=ð i<(\ininfo->tables)->colCount i++) {

XtVaGetValues(ininfo->fields[i], XmNeditable, ¬Fixed, NULL);

if (notFixed) {

 free((\ininfo->tables)->rows[ð].data[i]);

 XmTextSetString(ininfo->fields[i], NULL);

 }

 }

}

/\ cancel insertion from insertFrame \/

void cancelInsertCB(Widget w, XtPointer client_data, XtPointer call_data)

{

 int i;

 Boolean notFixed;

 InsertInfo \ininfo;

XtVaGetValues(w, XmNuserData, &ininfo, NULL);

for (i=ð i<(\ininfo->tables)->colCount i++) {

XtVaGetValues(ininfo->fields[i], XmNeditable, ¬Fixed, NULL);

 if (notFixed)

 XmTextSetString(ininfo->fields[i], NULL);

 }

}

/\ go to next table insert \/

void quitInsertCB(Widget w, XtPointer client_data, XtPointer call_data)

{

Widget parent = (Widget) client_data;

 Table \tab;

 Widget top;

 InsertInfo \ininfo;

Figure 180 (Part 16 of 20). Database Frames Implementation File dbFrames.c

 Appendix C. Source Code of the Graphical User Interface 447

XtVaGetValues(w, XmNuserData, &ininfo, NULL);

top = ininfo->shell;

 XtDestroyWidget(top);

 free(ininfo->fields);

tab = \ininfo->tables;

 freeTable(tab);

if (ininfo->tabCount <= 1) {

 free(ininfo->tables);

 }

 else

insertFrame(parent, ininfo->tabCount-1, &ininfo->tables[1]);

}

/\-------------------- Help Procedures -----------------------------------\/

/\ show table rows \/

void showRows(Widget parentW, TableInfo \tabinfo)

{

Widget \tRows = (Widget \) calloc(tabinfo->table->rowCount, sizeof(Widget));

Widget \\tField = (Widget \\) calloc(tabinfo->table->rowCount, sizeof(Widget \));

int i, j, len;

 Index \index;

 for(i=ð;i<tabinfo->table->rowCount; i++)

tField[i] = (Widget \) calloc(tabinfo->table->colCount, sizeof(Widget));

for (i=ð i<tabinfo->table->rowCount i++) {

tRows[i] = XtVaCreateWidget("iRow",

 xmRowColumnWidgetClass, parentW,

 XmNorientation, XmHORIZONTAL,

 XmNmarginWidth, DEFAULTMARGIN,

 XmNspacing, DEFAULTSPACING,

 NULL);

for(j=ð; j<tabinfo->table->colCount;j++) {

len = min(DEFAULTFIELDLEN, tabinfo->table->colAttr.length[j]);

len = max(len, strlen(tabinfo->table->colAttr.name[j]));

tField[i][j] = XtVaCreateManagedWidget("ijField",

 xmTextWidgetClass, tRows[i],

 XmNvalue, tabinfo->table->rows[i].data[j],

 XmNeditable, False,

 XmNcolumns, len,

 XmNmarginWidth, DEFTXTMARGIN,

Figure 180 (Part 17 of 20). Database Frames Implementation File dbFrames.c

448 Pristine AIX Environments

 XmNhighlightThickness, HIGHLIGHT,

 XmNfontList, fontList14,

 XmNmaxLength, tabinfo->table->colAttr.length[j],

 XmNuserData, tabinfo,

 NULL);

XtAddCallback(tField[i][j], XmNlosingFocusCallback, exitFieldCB, NULL);

index = (Index \)calloc(1, sizeof(Index));

index->row = i; index->col = j;

XtAddCallback(tField[i][j], XmNfocusCallback, entryFieldCB, index);

XtAddCallback(tField[i][j], XmNvalueChangedCallback, valueChangedCB, NULL)

;

 }

if ((tabinfo->table->rows[i].mode != DELETED) &&

(tabinfo->table->rows[i].mode != NONE))

 XtManageChild(tRows[i]);

 }

tabinfo->field = tField;

tabinfo->rows = tRows;

}

/\ build columns for insert frame \/

void buildCols(Widget parentW, InsertInfo \ininfo)

{

 int i;

Widget \colNames = (Widget \) calloc((\ininfo->tables)->colCount, sizeof(Widget));

Widget \colValues = (Widget \) calloc((\ininfo->tables)->colCount, sizeof(Widget));

Widget asterisk, iFieldForm, iFieldRC;

 char ast[2];

iFieldRC = XtVaCreateWidget("iFieldRC", xmRowColumnWidgetClass, parentW, NULL);

for (i=ð i<(\ininfo->tables)->colCount i++) {

iFieldForm = XtVaCreateWidget("iFieldForm", xmFormWidgetClass, iFieldRC, NULL);

colNames[i] = XtVaCreateManagedWidget((\ininfo->tables)->colAttr.name[i],

 xmLabelWidgetClass, iFieldForm,

 XmNfontList, fontList14,

 XmNtopAttachment, XmATTACH_FORM,

 XmNbottomAttachment, XmATTACH_FORM,

 XmNleftAttachment, XmATTACH_FORM,

 XmNrightAttachment, XmATTACH_POSITION,

 XmNrightPosition, 45,

 XmNalignment, XmALIGNMENT_END,

 NULL);

colValues[i] = XtVaCreateManagedWidget("iValue",

 xmTextWidgetClass, iFieldForm,

 XmNvalue, (\ininfo->tables)->rows[ð].data[i],

XmNcolumns, min(DEFAULTFIELDLEN, (\ininfo->tables)->colAttr.length[i]),

 XmNfontList, fontList14,

 XmNmaxLength, (\ininfo->tables)->colAttr.length[i],

Figure 180 (Part 18 of 20). Database Frames Implementation File dbFrames.c

 Appendix C. Source Code of the Graphical User Interface 449

 XmNtopAttachment, XmATTACH_FORM,

 XmNbottomAttachment, XmATTACH_FORM,

 XmNleftAttachment, XmATTACH_POSITION,

 XmNleftPosition, 5ð,

 XmNalignment, XmALIGNMENT_BEGINNING,

 NULL);

if (strlen((\ininfo->tables)->rows[ð].data[i]) > ð)

XtVaSetValues(colValues[i], XmNeditable, False, NULL);

 if ((\ininfo->tables)->colAttr.isNullable[i])

strcpy(ast, " ");

 else

 strcpy(ast, "\");

asterisk = XtVaCreateManagedWidget(ast,

 xmLabelWidgetClass, iFieldForm,

 XmNfontList, fontList14,

 XmNtopAttachment, XmATTACH_FORM,

 XmNbottomAttachment, XmATTACH_FORM,

 XmNleftAttachment, XmATTACH_POSITION,

 XmNleftPosition, 97,

 XmNrightAttachment, XmATTACH_FORM,

 XmNalignment, XmALIGNMENT_BEGINNING,

 NULL);

 XtManageChild(iFieldForm);

 }

 XtManageChild(iFieldRC);

ininfo->fields = colValues;

}

/\ allocate space for an additional row to the global tabinfo \/

void allocateNewRow(TableInfo \tabinfo)

{

 int i,n;

n = tabinfo->table->rowCount++;

tabinfo->table->rows = (Row \)realloc(tabinfo->table->rows, (n+1)\sizeof(Row));

tabinfo->table->rows[n].data = (char \\) calloc(tabinfo->table->colCount, sizeof(char \));

tabinfo->table->rows[n].chData = (char \\) calloc(tabinfo->table->colCount, sizeof(char \));

tabinfo->field = (Widget \\) realloc(tabinfo->field,(n+1)\sizeof(Widget \));

tabinfo->rows = (Widget \) realloc(tabinfo->rows, (n+1)\sizeof(Widget));

tabinfo->field[n] = (Widget \) calloc(tabinfo->table->colCount, sizeof(Widget));

for (i=ð i< tabinfo->table->colCount i++)

 tabinfo->table->rows[n].data[i] =

(char \) calloc(tabinfo->table->colAttr.length[i]+1, sizeof(char));

}

/\ deallocate space of tabinfo \/

Figure 180 (Part 19 of 20). Database Frames Implementation File dbFrames.c

450 Pristine AIX Environments

void clearTable(TableInfo \tabinfo, Boolean unmanage)

{

 int i;

for (i=ð i<tabinfo->table->rowCount i++) {

 if (unmanage)

 XtUnmanageChild(tabinfo->rows[i]);

 free(tabinfo->field[i]);

 }

 free(tabinfo->rows);

 freeTable(tabinfo->table);

}

Figure 180 (Part 20 of 20). Database Frames Implementation File dbFrames.c

 Appendix C. Source Code of the Graphical User Interface 451

 C.4 Main Program

/\\

\\

\\ File: uicfgdb.c

\\ System: User Interface to NetView DM/6ððð Configuration Database

\\ Purpose: Main Procedure

\\ Author: Plamen Kiradjiev

\\ Date: 1ð/ð9/1995

\\

\\\/

/\------------------------ Includes ---------------------------------------\/

#include "dbFrames.h"

#include <Xm/Label.h>

#include <Xm/Text.h>

#include <Xm/RowColumn.h>

#include <Xm/PushB.h>

#include <Xm/ToggleB.h>

#include <Xm/Separator.h>

#include <Xm/Form.h>

#include <Xm/MessageB.h>

#include <Xm/SelectioB.h>

/\----------------------- Constants --------------------------------------\/

#define DBNAME "NVDM_CFG"

#define DBOWNER "DBMSADM"

#define MAXNAMELEN 4ð

/\ tables \/

#define NODETAB "NVDM_NODE"

#define SERVERTAB "NVDM_SERVERS"

#define QUEUETAB "NVDM_QUEUES"

#define GROUPTAB "NVDM_GROUPS"

#define USERTAB "NVDM_USERS"

#define STATICTAB "NVDM_CFG_STATIC"

/\--------------- information relevant for inserting ----------------------\/

#define NODENAME "NODE_NAME"

#define STABCOUNT 5

#define CTABCOUNT 2

char \serverDependentTabs[] = {NODETAB, SERVERTAB, QUEUETAB, GROUPTAB, USERTAB};

char \clientDependentTabs[] = {NODETAB, USERTAB};

Figure 181 (Part 1 of 9). Graphical User Interface Main Program (uicfgdb.c)

452 Pristine AIX Environments

/\---------------------- Type Definitions ----------------------------\/

typedef struct NodeInfo{

 char \name;

 Boolean isServer;

 }NodeInfo;

/\----------------------- Help Functions ---------------------------------\/

/\ determine full table name \/

char \fullname(char \tab)

{

char \fn = (char \) calloc(MAXNAMELEN+1, sizeof(char));

sprintf(fn, "%s.%s", DBOWNER, tab);

 return fn;

}

/\----------------------- Globals --------------------------------------\/

static XmFontList fontList14, fontList18;

/\------------------------ Main ---\/

main(int argc, char \argv[])

{

 Message msg;

 XtAppContext app;

 Widget toplevel;

 Display \display;

 XFontStruct \font;

extern void mainFrame(Widget top);

extern void messageBox(Widget top, String msg, int fatal);

/\ setting default language environment \/

XtSetLanguageProc(NULL, NULL, NULL);

/\ initializing Xt \/

toplevel = XtVaAppInitialize(&app, "UICFGDB", NULL, ð,

&argc, argv, NULL, NULL);

/\ set used font lists \/

display = XtDisplay(toplevel);

font = XLoadQueryFont(display, "-\-courier-bold-r-\--14-\");

fontList14 = XmFontListCreate(font, " ");

font = XLoadQueryFont(display, "-\-courier-bold-r-\--18-\");

fontList18 = XmFontListCreate(font, " ");

Figure 181 (Part 2 of 9). Graphical User Interface Main Program (uicfgdb.c)

 Appendix C. Source Code of the Graphical User Interface 453

/\ connect to configuration database \/

 msg=dbConnect(DBNAME);

if (strlen(msg) > ð)

messageBox(toplevel, msg, 1);

 else

/\ call application main window \/

 mainFrame(toplevel);

/\ enter main application loop \/

 XtAppMainLoop(app);

}

/\ ------------------------ Frames --\/

/\ Application main window \/

void mainFrame(Widget top)

{

Widget mainRowCol, mainLabel, mainSep, mainButtonRC;

Widget mainGlobalsBtn, mainInsertBtn, exitBtn;

 Widget mainList;

 XmString xstr;

char \creator_name[] = {"CREATOR", "NAME"};

 int i=ð;

 Arg args[5];

 Table \table;

 char tname[MAXNAMELEN+1];

extern void listSelectCB(Widget w, XtPointer client_data, XtPointer call_data);

extern void exitAppCB(Widget w, XtPointer client_data, XtPointer call_data);

extern void insertNodeCB(Widget w, XtPointer client_data, XtPointer call_data);

extern void updateGlobalsCB(Widget w, XtPointer client_data, XtPointer call_data);

mainRowCol = XtVaCreateWidget("mainRowCol",

 xmRowColumnWidgetClass, top,

 XmNentryAlignment, XmALIGNMENT_CENTER,

 NULL);

xstr = XmStringCreateLocalized(

 "User Interface to NetView DM/6ððð Configuration Database");

mainLabel = XtVaCreateManagedWidget("mainLabel",

 xmLabelWidgetClass, mainRowCol,

 XmNlabelString, xstr,

 XmNfontList, fontList18,

 XmNmarginTop, 2ð,

 XmNmarginBottom, 3ð,

 NULL);

Figure 181 (Part 3 of 9). Graphical User Interface Main Program (uicfgdb.c)

454 Pristine AIX Environments

 XmStringFree(xstr);

mainSep = XtVaCreateManagedWidget("mainSep",

xmSeparatorWidgetClass, mainRowCol, NULL);

XtSetArg(args[i], XmNvisibleItemCount, 6); i++;

XtSetArg(args[i], XmNfontList, fontList14); i++;

XtSetArg(args[i], XmNlistMarginWidth, 1ðð); i++;

mainList = (Widget)XmCreateScrolledList(mainRowCol, "mainList", args, i)

table = dbSelect("sysibm.systables", 2, creator_name,

 dbOrderString(2, creator_name));

if (table->colCount == ð)

messageBox(top, table->message, 1);

 for (i=ð i<table->rowCount i++) {

sprintf(tname, "%s.%s", table->rows[i].data[ð],

table->rows[i].data[1]);

xstr = XmStringCreateLtoR(tname, " ");

XmListAddItemUnselected (mainList, xstr, i+1);

 XmStringFree(xstr);

 }

 XtManageChild(mainList);

mainSep = XtVaCreateManagedWidget("mainSep",

xmSeparatorWidgetClass, mainRowCol, NULL);

mainButtonRC = XtVaCreateWidget("mainButtonRC",

 xmRowColumnWidgetClass, mainRowCol,

 XmNentryAlignment, XmALIGNMENT_CENTER,

 XmNorientation, XmHORIZONTAL,

 XmNpacking, XmPACK_COLUMN,

 NULL);

mainGlobalsBtn = XtVaCreateManagedWidget("Update Network Globals",

 xmPushButtonWidgetClass, mainButtonRC,

 XmNfontList, fontList14,

 NULL);

mainInsertBtn = XtVaCreateManagedWidget("Insert New Node",

 xmPushButtonWidgetClass, mainButtonRC,

 XmNfontList, fontList14,

 NULL);

exitBtn = XtVaCreateManagedWidget("Exit",

 xmPushButtonWidgetClass, mainButtonRC,

 XmNfontList, fontList14,

 NULL);

XtAddCallback(mainList, XmNdefaultActionCallback, listSelectCB, NULL);

XtAddCallback(exitBtn, XmNactivateCallback, exitAppCB, NULL);

Figure 181 (Part 4 of 9). Graphical User Interface Main Program (uicfgdb.c)

 Appendix C. Source Code of the Graphical User Interface 455

XtAddCallback(mainInsertBtn, XmNactivateCallback, insertNodeCB, NULL);

XtAddCallback(mainGlobalsBtn, XmNactivateCallback, updateGlobalsCB, NULL);

/\ display widgets \/

 XtManageChild(mainButtonRC);

 XtManageChild(mainRowCol);

 XtRealizeWidget(top);

}

/\ question dialog for node name \/

void nodeNameQuestion(Widget w)

{

 Table \table;

NodeInfo \node=(NodeInfo \)calloc(1, sizeof(NodeInfo));

char \node_name[] = {NODENAME};

Widget qDialog, qServerToggle, qText, qLabel, qRC;

 XmString t;

 Arg args[5];

 int n=ð;

extern void readNameCB(Widget w, XtPointer client_data, XtPointer call_data);

extern void serverToggleCB(Widget w, XtPointer client_data, XtPointer call_data);

extern void nameChangeCB(Widget w, XtPointer client_data, XtPointer call_data);

table = dbSelect(fullname(NODETAB), 1, node_name, dbAlwaysFalse());

if ((table->colCount == ð) && (strlen(table->message) > ð))

messageBox(w, table->message, ð);

node->name = (char \) calloc(table->colAttr.length[ð] + 1, sizeof(char));

XtSetArg(args[n], XmNbuttonFontList, fontList14); n++;

XtSetArg(args[n], XmNautoUnmanage, False); n++;

qDialog = XmCreatePromptDialog(w, "node_name", args, n);

XtAddCallback(qDialog, XmNokCallback, readNameCB, node);

XtAddCallback(qDialog, XmNcancelCallback, XtDestroyWidget, NULL);

 XtUnmanageChild(XmSelectionBoxGetChild(qDialog, XmDIALOG_HELP_BUTTON));

 XtUnmanageChild(XmSelectionBoxGetChild(qDialog, XmDIALOG_SELECTION_LABEL));

 XtUnmanageChild(XmSelectionBoxGetChild(qDialog, XmDIALOG_TEXT));

 qRC = XtVaCreateWidget("qRC",

xmRowColumnWidgetClass, qDialog, NULL);

t = XmStringCreateLocalized("Enter Node Name:");

qLabel = XtVaCreateManagedWidget("qLabel",

 xmLabelWidgetClass, qRC,

 XmNlabelString, t,

Figure 181 (Part 5 of 9). Graphical User Interface Main Program (uicfgdb.c)

456 Pristine AIX Environments

 XmNfontList, fontList14,

 XmNalignment, XmALIGNMENT_BEGINNING,

 NULL);

 XmStringFree(t);

qText = XtVaCreateManagedWidget("qText",

 xmTextWidgetClass, qRC,

 XmNfontList, fontList14,

 XmNmaxLength, table->colAttr.length[ð],

 NULL);

t = XmStringCreateLocalized("is Server?");

qServerToggle = XtVaCreateManagedWidget("qServerToggle",

 xmToggleButtonWidgetClass, qRC,

 XmNalignment, XmALIGNMENT_BEGINNING,

 XmNfontList, fontList14,

 XmNlabelString, t,

 NULL);

 XmStringFree(t);

XtAddCallback(qText, XmNvalueChangedCallback, nameChangeCB, node);

XtAddCallback(qServerToggle, XmNvalueChangedCallback, serverToggleCB, node);

 XtManageChild(qRC);

 XtManageChild(qDialog);

 XmProcessTraversal(qText, XmTRAVERSE_CURRENT);

 XtPopup(XtParent(qDialog), XtGrabNone);

}

/\ ----------------------- Callbacks --\/

/\ exit application \/

void exitAppCB(Widget w, XtPointer client_data, XtPointer call_data)

{

 Message msg;

/\ disconnect from the configuration database \/

msg = dbDisconnect();

if (strlen(msg) > ð)

 printf("%s\n",msg);

 exit(ð);

Figure 181 (Part 6 of 9). Graphical User Interface Main Program (uicfgdb.c)

 Appendix C. Source Code of the Graphical User Interface 457

}

/\ call question dialog frame for node name \/

void insertNodeCB(Widget w, XtPointer client_data, XtPointer call_data)

{

 nodeNameQuestion(w);

}

/\ action after altering the server toggle button \/

void nameChangeCB(Widget w, XtPointer client_data, XtPointer call_data)

{

NodeInfo \node = (NodeInfo \) client_data;

node->name = strcpy(node->name, XmTextGetString(w));

}

/\ action after altering the server toggle button \/

void serverToggleCB(Widget w, XtPointer client_data, XtPointer call_data)

{

NodeInfo \node = (NodeInfo \) client_data;

node->isServer = XmToggleButtonGetState(w);

}

/\ read node name from node name question dialog \/

void readNameCB(Widget w, XtPointer client_data, XtPointer call_data)

{

NodeInfo \node = (NodeInfo \) client_data;

int i, j, fixIndex;

int cnt = (node->isServer)?STABCOUNT:CTABCOUNT;

Table \\tables = (Table \\) calloc(cnt,sizeof(Table \));

 char \\tabnames;

 char msg[6ð];

Widget parent = XtParent(w);

if (strlen(node->name) == ð) return;

 XtUnmanageChild(w);

 if (node->isServer)

tabnames = serverDependentTabs;

 else

tabnames = clientDependentTabs;

Figure 181 (Part 7 of 9). Graphical User Interface Main Program (uicfgdb.c)

458 Pristine AIX Environments

for (i = ð; i < cnt; i++) {

tables[i] = dbSelect(fullname(tabnames[i]), ð, NULL, dbAlwaysFalse());

if (tables[i]->colCount == ð) {

messageBox(parent, tables[i]->message, ð);

 free(tables);

 return;

 }

tables[i]->rows = (Row \) calloc(1, sizeof(Row));

tables[i]->rows[ð].data = (char \\) calloc(tables[i]->colCount, sizeof(char \));

fixIndex = -1;

for (j=ð j<tables[i]->colCount j++)

if (!strcmp(NODENAME, tables[i]->colAttr.name[j])) {

fixIndex = j;

 break;

 }

if (fixIndex < ð) {

sprintf(msg, "No column with name %s found in table %s" ,

 NODENAME, tables[i]->name);

messageBox(parent, msg, ð);

 free(tables);

 return;

 }

 tables[i]->rows[ð].data[fixIndex] =

(char \) calloc(tables[i]->colAttr.length[fixIndex]+1, sizeof(char));

 strcpy(tables[i]->rows[ð].data[fixIndex], node->name);

 }

insertFrame(parent, cnt, &tables[ð]);

}

/\ update global network attributes \/

void updateGlobalsCB(Widget w, XtPointer client_data, XtPointer call_data)

{

 Table \table;

table = dbSelect(fullname(STATICTAB), ð, NULL, NULL);

if (table->colCount == ð)

messageBox(w, table->message, ð);

 else

 tableFrame(w, table);

}

/\ select table from list \/

void listSelectCB(Widget w, XtPointer client_data, XtPointer call_data)

{

 XmString \strlist;

char \tname = (char \) calloc(MAXNAMELEN + 1, sizeof(char));

XmListCallbackStruct \cbs = (XmListCallbackStruct \) call_data;

Figure 181 (Part 8 of 9). Graphical User Interface Main Program (uicfgdb.c)

 Appendix C. Source Code of the Graphical User Interface 459

 Table \table;

XmStringGetLtoR(cbs->item, " ", &tname);

table = dbSelect(tname, ð, NULL, NULL);

if (table->colCount == ð)

messageBox(w, table->message, ð);

 else

 tableFrame(w, table);

}

Figure 181 (Part 9 of 9). Graphical User Interface Main Program (uicfgdb.c)

460 Pristine AIX Environments

 Index

Special Characters
/etc/objrepos 20, 30
/etc/services file 151

A
access 39, 112, 115, 122, 219, 295

implementation 295
methods 39, 112, 115, 122

ODM 112, 115, 122
rights 219

accessing the database 29
activities, configuration 6
adapters 49, 53

Ethernet 49, 53
FDDI 49
token-ring 49, 53
types of 53
X.25 49, 53

add a target (addtg) 36
add a target group (addgp) 36
add AIX users (mkuser) 36
add users (nvdm addusr) 197
addgp 36
adding an object (AIX) 116
address 175, 181

hardware 175
IP 181

addtg 36
adjacent server 272
agents 14, 159, 168

HP-UX 14
installation 168
NetView DM/6000 159
Sun 14
Sun OS 14

AIX
base operating system 109
configuring components 30
installation tape 163
operating system 160
target 41
user 39, 161, 248
user groups 198

AIX Object Data Manager
access methods 112, 115, 122
access procedures 39
class definitions 124
class files 125
classes 13
column instead of attribute 228

AIX Object Data Manager (continued)
creating file 93
data model 219, 250
data model to DB2/6000 228
database 34, 83, 90, 100, 112, 142, 161, 165, 289
database access 14
defining the database 12
definition files 20, 161
editor 99
editor, odme 11
files 34
object classes 11—12, 99, 160
object definition 285
query 15, 31, 36
redirecting 30
row instead of object 228
rsh 14
SNA connections 17
storing configuration data 11
table instead of class 228

aixfnd 318
APPC 16, 26, 67, 201, 211, 216, 222

connections 216
protocol 222

APPN Low Entry Node (LEN) 58
arguments 38
assigning attributes 12
attributes 12—13, 21—22, 31

assigning 12
optional 22

authentication types 227, 235, 247
authority 222
authorization mechanism 219

DB2/6000 219
authorization profiles 198, 199
authorizations 295
automatic configuration 41, 164

automatic configuration 41
automatic roll-out 9
automation (configuring) 250
awk 257

B
backup (mksysb) 163
backup image 163
base operating system 164
batch mode 81

node definitions 81
bld 37
boot image 168, 179

 Copyright IBM Corp. 1996 461

boot list 328
boot server 168, 181
browse 306
browse mode 298
build a new change file (bld) 37
building blocks 6, 41

customizing 42

C
Call Level Interface (CLI) 222, 310
catalog database 247
CC clients 8, 276, 327
CC domain 219, 249, 273, 276
CC servers 7, 259, 276, 322, 327
CD-ROM support images 323
central NetView DM/MVS 108
change attributes of AIX users 36
change existing SNA server profiles (chsnaobj) 36
change file 37, 71, 167, 175, 177, 179, 318

build (bld) 37
install (inst) 37
profile 175, 177, 318
removing (uncat) 37

change management history 107, 164, 170, 186
change management records, listing (lscm) 37
changes to configuration procedure, keeping track 30
changing operating system users 14
chfs 116

mksnaobj 117
chlv 172
chown 225
chsnaobj 36, 118

server
configuration 119

SNA
server database 119

chuser 14, 36, 116
Class Definition File 17—19
class files 125
classes 13, 100

ODM 13
odme 100

client authentication 247, 249, 295
cloning 318, 320
columns 221, 228, 238, 309

(database tables) 221
attributes 309
instead of ODM attribute 228
type 238

command line parameters 31
committing the work (Commit) 298
communication 16

APPC 16
TCP/IP 16

communications adapter 47, 49, 51
device name 49, 51
device type 49, 51

communications protocol 64
components of AIX system 30
config_db.cre 19
config_nvdm 33
Configuration

activities 6
additional software products 164
AIX Object Data Manager 11
automatic 41, 164
automation 250
building blocks 6
Control Point profile 42
create configuration data 160
customization 37, 155
data 6, 11, 20, 43, 276, 290, 299
data model 6, 307
data storing 11
database 29, 69, 73
determining 111
DLC 42
DM/6000 database 219
domain 282
execution 263
export SNA profiles 46
focal point system 8
global shell variables 48
initial 68
Initial Node Setup profile 42
initial target 217
instances 13
intermediate nodes 26
keeping track of changes 30
Link Station profile 42
Local LU profile 42
local targets 8, 68, 203
LU 6.2 location profile 42
Mode profile 42
modify 111
NetView DM/6000 119
nvdm.cfg 8
Partner LU profile 42
prerequisites 6
pristine RS/6000 systems 5
procedure 34, 39
remote targets 8
retrieve data 31
server 289
server node 43
shell procedure 7
Side Information profiles 42
SNA 8, 16, 41, 119, 132, 156
SNA/DS 16, 132
steps 8, 14, 34—35

462 Pristine AIX Environments

Configuration (continued)
structure of the procedure 29
target 13
target groups 8
TPM profiles 42
user-specific 27

configure_nvdm_cfg shell procedure 37
connection 13, 26, 86, 136, 140, 225, 272

configuration 136, 140
file 86
port 225
queues 272
server 13
TCP/IP 26

constraint 229
control point 42, 48, 59

name 48, 59
profile 42
type 48

conversion processes 275
core 157
CP name 25
CPU type 322
create 36, 198

devices (mkdev) 36
SNA server profiles (mksnaobj) 36
user profiles 198

nvdm addprf 198
crfs 116, 123, 225
customer scenario 12
customization 37, 42, 155, 164

NetView DM/6000 37
other products 164
profile 42
SNA server 42

cut 36

D
data 11, 20—21, 43, 219, 229, 238, 250, 297, 309

access methods 219, 238
configuration 11, 43
conversion 238
DB2/6000 219
definition file 21
definition methods 219
integrity 219, 229, 250, 297
link 20
structure 309
types 20, 238

Data Link Control (DLC) interface 47
data model 6, 11—12, 26, 121, 124, 198, 219, 226,

228, 250, 253, 280, 288, 294, 299, 307
configuration 307
defining object classes 12
describing 11

data model (continued)
limitations 26
ODM 250
ODM to DB2/6000 228

database 11—12, 29, 108, 219—228, 275—276,
293—298, 306—307, 309—311

access 306
methods 306

access procedures 108
accessibility 11
administrator (dbadm) 222
configuration 11, 219
converting data between different systems 293
DB2/6000 276
design, sample 12
frames 307
Korn shell 11
messages 298
object 311
platforms 275
relational systems 228
server 276
tables 309

name 309
warnings 298

database-specific structure 310
db2 225, 227

start 225
update 225

DB2/6000 108, 219, 224, 276, 289, 295, 314
access 295
communication ports 224
database 276
server

DB2/6000 289
system tables 314

db2instance 223
db2profile 224
DDCS 82
default connection files 63

CONNSNA 63
CONNTCP 63

default database 223
define users 198
defining 9, 12

database 12
interfaces 9
object classes 12
prerequisites 9

defining types of nodes 6
definition files 161

ODM 161
delcm 37
delete 36, 37, 197—198, 204, 297

change management records (delcm) 37
groups (delgp) 36

 Index 463

delete (continued)
requests 198, 204

(nvdm delrq) 198, 204
(nvdm eraserq) 198

rows 297
targets (deltg) 36
users (nvdm delusr) 197

deletion 310
delgp 36
delimited ASCII 243
deltg 36
dependent tables 235, 253
determining the current configuration of NetView

DM/6000 111
device 49, 51

name (communications adapter) 49, 51
type (communications adapter) 49, 51

Distributed Database Connection Services (DDCS) 82
Distributed Relational Database Architecture

(DRDA) 220
DLC profile 42

DLC
profile 42

DNS 224
domain 282, 290

configuration 282
extracting configuration information 290

Domain Name Server (DNS) 224
DRDA 243

standards 243
DRDA-compliant 220, 243, 293

databases 220, 243
platforms 293

E
editor, odme 11
embedded SQL 222
End Nodes (EN) 58
erase request (nvdm eraserq) 204
Ethernet 49, 53
exclusive rights 222
execution of the configuration procedure 263
export current SNA server profiles 36
export ODMDIR=/myodm 20
exportsna 36

F
FDDI 49
file system 129, 225
flexibility 157
fnd_defaults 320
FNDADMN 16, 41, 86, 114, 161, 199, 226, 249
FNDBLD 16, 41, 86, 199, 226, 248—249

SNA
server 41

fndcln 319
fnddb 319
fndnprel 179, 186, 319—320, 325
fndpru 182
fndswinv 70, 207
FNDUSER 16, 41, 198, 226, 248—249
focal point 76—77, 79, 142, 155—156, 161, 211

system 156, 161
focal point system 8, 13, 16, 26

NetView DM/MVS 26
SNA/DS 13

foreign keys 229, 253
frames implementation 295
frames interface 295
fuzzy search 33

G
general user 222
global variables 48, 121
grep 36

H
hardware 175, 321

address 175
architectures 321

host communications controller 51
token-ring address 51

hostname 13, 153, 160, 175
IP 13, 175

HP-UX 14

I
identifying for username 16
import 242
independent LU 54
indirect reflection 230
initial 36, 42, 68, 187, 217

configuration 68
node setup 36, 42

(mk_qcinit) 36
profile 42

target record 187, 217
initial target configuration 217
insertion 297, 303, 310, 313

data 303
rows 297

inst 37
install a change file (inst) 37
install image 169
install request 208
installation 163, 168, 183, 323

agents 168
feature (pristine) 163

464 Pristine AIX Environments

installation (continued)
method 323
mksysb 183
tape 163

AIX 163
installp 325
instance 33, 223
instance of the database management system 221
instance owner 221—223, 242, 249, 295

authority 222
primary group 223

instances 13
interactive SQL 222
interfaces 9

defining 9
intermediate nodes 26, 131, 133—134, 136, 138, 141,

259, 272
connections

configuration 134
configuration files 132

SNA
server 132

SNA/DS
connection configuration files 132
routing table 132

inutoc 324
inv 36
inventory 71, 170

discovery 170
file 71

IP 13, 16, 39, 83, 181
addresses 181
hostname 13, 16, 39, 83

node_name 16

J
job 147

defining nodes 147

K
Korn Shell

configuration database 11
procedures 33
shell programming 7

L
LEN 58
license information 224
LIKE 33
link and session profiles 8
link data type 20
Link Station profile 42, 51

list 36, 37, 197—198
AIX users and their attributes (lsuser) 36
existing change management records (lscm) 37
existing target groups (lsgp) 36
existing targets (nvdm lstg) 36
target groups (nvdm lsgp) 198
users (nvdm lsusr) 197

Local
database 222, 291
queue 204
server 222
targets 8
user account 248

Local Control Point name 43
local LU 25, 42—43, 54

alias 54
name 43, 54
profile 42, 54

Local PU name 43, 51
local targets 68
local_lu_name 16
log file 182, 263, 270, 323
Low Entry Node (LEN) 58
lscm 37
lsgp 36
lsgroup 116
lsgrp 112
lstg 112
lsuser 36, 86, 116
LU 6.2 55—58

configuration 156
connections 136
definitions 81
local LU 117
local_lu_name 16
location profile 42, 58
mode used for NetView DM 55
names 161
NetView DM/MVS 53
protocol 222, 259
transaction programs 56

LU name 147

M
MAC address 51, 53, 323
make file (makefile) 295
mandatory parameters 14
many-to-many relationships 229
many-to-one relationships 229, 252
Medium Access Control (MAC) 53
memory space 311
message box 313
mk_qcinit 36
mkdev 36

 Index 465

mkgroup dbsysadm 223
mkinstdskt 179
mksnaobj 36, 117
mksysb 163, 167—170, 179, 183, 317

image 170, 179
starting installation 183

mkuser 14, 36, 115, 226
mode name 59
Mode profile 42
model system 164

installing additional software packages 164
system backup 164

model workstation 167—170, 322
modifying files (sed) 36
modifying the current configuration of NetView

DM/6000 111
Motif programming 313
mount 173, 225
mounted drive (NFS) 171
MVS 147

environment 147
user ID 147

N
NetLS license 224
NetView DM/6000 37

agents 159
AIX base operating system 109
AIX user 39
automatic configuration 41
automatic roll-out 41
base configuration file 119
CC client 8
CC server 7
change management history 164, 170
customization 37
focal point 142
installing additional software 164
LU 6.2 transaction programs 56
modifying configuration for SNA 132
preparation system 8
roll-out 5
server 23, 64, 68, 159, 170
server node 14
SNA 17, 25, 109
starting (start) 37
stop (stop) 37
target 13
target groups 15
users 8

NetView DM/MVS 53, 61, 64, 81, 132, 147, 155, 159,
259

connections
over SNA LU 6.2 protocol 259

defining nodes 147

NetView DM/MVS (continued)
defining the agent as a node 147
focal point 155
LU 6.2

definitions 81
network 48, 156, 168, 174, 175, 179, 181, 322,

328—329
adapter 175, 181
adapter device 175
boot image 329
boot server 168, 174, 179
booting 175
device 328
kind of 156
name 48
protocols 156
server 322
types 156

Network File System (NFS) 169—171, 179, 322
mounted drive 171

Network Nodes (NN) 58
Network User Address (NUA) 53
node 7, 8, 15, 34, 81, 147, 155

definitions 81
to NetView DM/MVS 147
type 34
types 7, 8, 155

configuration steps 8
node_name 16
Normal position 181
nvdm addprf 198
nvdm addtg 73, 79, 209, 211
nvdm addusr 197, 209
nvdm bld 177, 180
nvdm delrq 198, 204
nvdm delusr 197
nvdm eraserq 198, 204
nvdm lscm 70
nvdm lsgp 89, 198, 214
nvdm lsrq 197
nvdm lstg 36, 87, 111, 209
nvdm lsusr 197
nvdm prgq 198, 204
nvdm rentg 198, 217
nvdm stat 80, 215
nvdm updtg 73, 111, 209
nvdm updusr 197
nvdm_cfg_static 17
nvdm_node_group 251
nvdm.cfg 8, 14, 37
NVDMRCV 56
NVDMSND 56

466 Pristine AIX Environments

O
object 11—13, 22, 99, 160, 285

classes 11—12, 99, 160
definition 22, 285
ODM 160, 285
representing each node 13

ODM
See AIX Object Data Manager

ODM definition files 20
odmadd 20, 22, 99, 128, 285

nvdm_node.odmadd 22
odmcreate 20, 126, 128

output 20
odmdelete 99
ODMDIR shell variable 30
odme 11, 99—104, 122
odmget 31, 33, 36, 99, 101, 279, 285
one-to-one relationships 229
operating system 14, 160

AIX 160
users, changing 14

organization table 158

P
parameters 14, 43, 51, 54, 112, 161

(SNA Link Station profile) 51
device name 51
device type 51
Local Control Point name 43
local LU 43, 54

local LU alias 54
local LU name 54
local LU profile name 54
name 43

Local PU name 43, 51
mandatory 14
remote link address 51
server-agent relationships 14
SNA 161
XID 43, 51

parent table 235, 299
parent widget 313
partner LU 42, 57, 59, 133

alias 57
LU 6.2

location profile 58
name 57, 59
profile 42

passwd 226
perform the Initial Node Setup (mk_qcinit) 36
pre-install 180
pre-installed systems 163
preparation 8, 329

script 329

preparation (continued)
system 8

prerequisites 6, 9, 188
configuration 6
defining 9

primary group 223
primary key 228—229, 303
priority level 248
pristine 5, 163, 167, 186—187, 317—318

configuration 5
installation 163, 167, 186—187, 318

execution 318
preparation 318
script 187

workstation 317
production environment 6, 155

from the test environment, transition 6
profiles 8, 42, 59, 318

DLC
interface 42

link and session 8
name for the Side Information profile 59
SNA server 42
SNA/DS 8

protocols 62, 67
PU name 25
pull-mode target 14
purge the queue (nvdm prgq) 198, 204
push-mode target 14

Q
queries 222

from remote database clients 222
query, ODM 15, 36

R
rcp 71, 90
reconfiguration 68
reconfiguring the network 106
redirecting the ODM directory 30
referential constraints 229—230, 253
referential dependencies 228, 230, 280, 297, 299, 313
referential integrity 219, 228, 229, 251, 294
reflexive dependencies 230, 250
relational database 11, 108, 219, 221, 222, 228

AIX Object Data Manager
storing configuration data 11

concepts 219
management system 222
system 11, 108, 228

relational design 227
relationship from client to server 251

nvdm_node_server 251

 Index 467

relationships between configuration tables 229, 252
many-to-many 229
many-to-one 229, 252
one-to-one 229

remote 5, 8, 51, 62, 71, 76, 133, 138, 141, 156, 161,
167, 180, 211, 219, 222, 248—250, 272, 288—289

access 219, 248
administrators 156
client support 222
connections 138, 161, 211
copy (rcp) 71
database client 222, 250
destinations 133
IPL 167, 180
link address 51
locations 5

installation of RS/6000 5
nodes 288—289
queries from 222
servers 76, 141, 272
systems 62
targets 8, 211

removing a change file from the catalog (uncat) 37
rename a target (nvdm rentg) 198
repository 124, 128
request.out 183
requests (nvdm lsrq) 197
requirements 27

specific environment 27
retrieve data 31
rmfs 116
rmuser 116
roll-out 5, 9, 41, 155—156, 162

automatic 9, 41
strategy 155, 162

rolling back 298
routetab 67
routing table 8, 133, 138

intermediate node 133
SNA/DS 8

row instead of ODM object 228
rows (database tables) 221
RS/6000

pristine 5
servers 211

rsh 14, 90
rules 160—161

creating attributes 160

S
SCCS

See Source Code Control System
scripts 41
search criteria 31—32

search in strings and files (grep) 36
security 248—249
sed 36, 120
selection 310
SEND TP SYMBOLIC DESTINATION 60
server-agent relationships 14
servers 13—15, 39, 41, 43, 61, 64, 68, 70, 76, 80,

156, 159, 161, 170, 211, 216, 247—248, 272
adjacent 272
authentication 247—248
connections 13
IP hostname 15
levels 156
name 39
NetView DM/6000 68, 159, 170
node 14, 43

NetView DM/6000 14
nvdm stat 80
remote 76, 272
removing a target 70
SNA 161, 170, 216

Service position 181
shell procedure 7, 37—38

arguments 38
shell programming, Korn 7
shell script 29
short name 77, 120, 141, 147, 201
Side Information profile 42, 59—60, 64

profile name 59
receive 60
Side Information Profiles

receive transaction program 59
send transaction program 59

SNA
characteristics 43
communications 47
communications adapter 47
configuration of server 132
connections 43, 170
connections configuration 132
control point name 48
control point type 48
Data Link Control (DLC) interface 47
definitions 149
DLC interface 42
DLC profile 49
export configuration profiles 46
initial node setup 47
Link Station profile 51
LU 6.2 53, 58, 81, 108
LU 6.2 configuration 156
LU 6.2 protocol 259
Mode profile 55
name needed 48
network name 48, 59, 135
parameters 161

468 Pristine AIX Environments

SNA (continued)
redirecting the ODM directory 30
server 8, 41—42, 49, 64, 109, 119, 161, 170, 216
Side Information Profiles 59
support feature 222

SNA/DS
APPC 26
connection files 120
connection profiles 8
connections 26, 60, 62, 64, 67, 86, 132—134, 141,

201, 259
intermediate node 131
queues 16
routes 68
routing table 8, 65, 67, 120, 132, 140
servers 61

software 11, 13, 29, 68, 70, 81, 102, 157, 162, 164,
207

configuration 162
distribution network 11, 13, 29, 68, 81, 102, 157,

162
instances 13

inventory 70, 207
packages 164

installing additional 164
Source Code Control System

description 30
keeping track of source code levels 30

specific environment 27
requirements 27

SPOT 179, 320, 323, 325, 329
installation 323

SQL 82, 108, 219, 222, 227, 256, 279, 294
commands 108, 227
embedded 222
global changes 294
insert 279
interactive 222
query 256
scripts 82

SQLDA 310
standard authorization profiles 198
standard shell evaluation 257
start 37
steps, configuration 14, 34
stop 37
storing configuration data 11
structure of the configuration procedure 29
STS connections 201, 203
sub-strings from strings (cut) 36
Sun 14
Sun OS 14
sysadm 223
sysibm.syscolumns 285
systems 5, 163—164, 167, 170, 187, 221, 314, 318,

320, 322

systems (continued)
administrator 221
backup 163—164, 167, 170, 187, 318, 320, 322

images 167, 187
image 163—164, 318, 320, 322
tables 314

DB2/6000 314

T
table 228—229, 235, 297, 306, 311

browse 306
data structure 311
delete rows 297
dependent 235
foreign keys 229
insert rows 297
parent 235
primary key 228, 229
update 306
update rows 297

table instead of ODM class 228
tar archive 290
target 70—71, 73—74

characteristics 73
groups 74
history 70—71

target definition 198, 209
users 209

target groups 8, 15, 23, 36, 156, 159—160, 198, 215
data definition file 23
finding nodes 15
list (nvdm lsgp) 198
SNA

connections 25
target workstation 168
targets 13, 14—16, 26, 36, 41, 68—69, 77, 93,

155—156, 160, 175, 182, 187, 198, 203, 204, 327
adding (addtg) 36
CC client 327
CC server 327
configuring local 68, 203
defining on the server 41
deleting (deltg) 36
environment 155
focal point 77
listing (nvdm lstg) 36
local 204
networks 156
nvdm_delete_targets Shell Procedure 69
pull-mode 14
push-mode 14
removing 204
rename (nvdm rentg) 198
short name, description 13
status 182

 Index 469

targets (continued)
tar 93
updating (updtg) 36
user interface (UI) 26

TCP port number 152
TCP/IP 16, 39, 65, 67, 133, 135—136, 141, 151, 156,

187, 201, 219, 224, 259, 323
address 323
connections 65, 136, 141
hostname 133, 135, 141
network environment 219
port 39
ports 151
SNA

connections 17
LU 6.2 156

test environment 155
tok0 47
token-ring 49, 51, 53, 156

address 51
Tools option 169
TPM profiles 42
TPN profile for receive (NVDMRCV) 56
TPN profile for send (NVDMSND) 56
transaction program name 56
transition from the test environment to the production

environment 6
trusted networks 250
types of adapters 53
types of communication 16

APPC 16
TCP/IP 16

types of nodes 6, 34
defining 6

U
uncat 37
uncatalog database 247
UNIX tools 7, 109

awk 7, 109
sed 7, 109
server

NetView DM/6000 109
SNA

server 109
updating 36, 197, 297, 306, 310

NetView DM/6000 (inv) 36
rows 297
target information (updtg) 36
users (nvdm updusr) 197

updtg 36
user group 16, 41, 198

AIX 198
assigning to AIX 16
FNDADMN 16, 41

user group (continued)
FNDBLD 16, 41
FNDUSER 16, 41
SNA

server 16
user groups 198

AIX 198
users 8, 14—16, 26, 41, 86, 113, 161, 198—199, 209,

242, 247—248, 273
adding 113
AIX 161, 248
authentication 247
authorization 198, 242
connections

(not STS) 201
files 201

created or changed 86
lsuser 86

defining on the server 41
definitions 199
identifying a target 16
interface (UI) only targets 26
nvdm addprf 198
operating system, changing 14
profiles, creating 198
SNA

server 8

V
Verify Configuration Profiles 119
verifysna 119
version control system 30
VTAM 81
VTAM control point name 58

X
X.25 49, 90, 156
X.25 adapter 53
XID 25, 43, 51

470 Pristine AIX Environments

ITSO Technical Bulletin Evaluation
RED000

International Technical Support Organization
Software Distribution for AIX:
A Solution for Installation and Configuration of
Pristine AIX Environments
February 1996

Publication No. SG24-4508-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

� Mail it to the address on the back (postage paid in U.S. only)
� Give it to an IBM marketing representative for mailing
� Fax it to: Your International Access Code + 1 914 432 8246
� Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spelling
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
SG24-4508-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 985, Building 657
P.O. BOX 12195
RESEARCH TRIANGLE PARK NC
USA 27709-2195

Fold and Tape Please do not staple Fold and Tape

SG24-4508-00

IBM

Printed in U.S.A.

SG24-45ð8-ðð

