
International Technical Support Organization

DATABASE 2 for AIX Conversion Guide
Oracle 7.1 to DB2 Version 2

August 1995

SG24-2567-00

International Technical Support Organization

DATABASE 2 for AIX Conversion Guide
Oracle 7.1 to DB2 Version 2

August 1995

SG24-2567-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xiii.

First Edition (August 1995)

This edition applies to Version 2 , Release 1 of DB2, for use with the AIX Operating System.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader ′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 821 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document is unique in its detailed coverage of the conversion process from
Oracle 7 to DATABASE 2 for AIX Version 2. It focuses on the technical
considerations and methodologies involved in performing a database conversion.
Information about the different data types and the implementation of features,
such as Stored Procedures and Triggers, is provided. Application programming
and conversion considerations are discussed along with the differences in
features and functionality of the two products.

This document was written for people involved in the planning and
implementation of a database conversion. Some knowledge of AIX and
relational databases is assumed.

(178 pages)

 Copyright IBM Corp. 1995 iii

iv DB2 Version 2 Conversion Guide

Contents

Abstract . i i i

Special Notices . xii i

Preface . xv
How This Document is Organized . xv
Related Publications . xvi
International Technical Support Organization Publications xvi
ITSO Redbooks on the World Wide Web (WWW) xvii
Acknowledgments . xvii

Chapter 1. Conversion Overview . 1
1.1 Strategy and Conversion Methodologies . 1

1.1.1 Strategy Definition . 1
1.1.2 Conversion Methodologies . 3

1.2 Planning the Conversion . 5
1.2.1 Stage One: Defining the Strategy . 7
1.2.2 Stage Two: Testing the Concept . 9
1.2.3 Stage Three: Implementation and Cutover 10

1.3 Conversion Considerations . 11

Chapter 2. Packaging and Installation . 13
2.1 Oracle Products and Packaging . 13
2.2 DB2 Products and Packaging . 15
2.3 DB2 Product Installation . 21

2.3.1 Directory Structure . 22
2.3.2 Hardware Requirements . 23

2.4 Licensing Overview . 23
2.4.1 Oracle Licensing . 23
2.4.2 DB2 Licensing . 24
2.4.3 Default Licenses . 24

Chapter 3. Relational Database Model . 25
3.1 Instance and Database Structure . 25

3.1.1 Oracle Database Structure . 25
3.1.2 DB2 Database Structure . 26

3.2 Process Model . 26
3.2.1 Oracle Process Model . 27
3.2.2 DB2 Process Model . 27

3.3 Database Creation . 30
3.3.1 Directories in DB2 . 30

3.4 Client/Server Models . 31
3.4.1 DB2 Stand-Alone Configuration . 31
3.4.2 DB2 Server in a LAN Environment . 32
3.4.3 DB2 Server in a LAN Environment with Host Connection 33

Chapter 4. Storage . 35
4.1 Physical Storage Devices . 35

4.1.1 Oracle 7 Physical Structure . 35
4.1.2 DATABASE 2 for AIX Version 2 Physical Structure 37

4.2 Logical Storage Devices . 43

 Copyright IBM Corp. 1995 v

4.2.1 Logical Storage Devices in Oracle . 43
4.2.2 Logical Storage Devices in DB2 . 45

4.3 logical . 45
4.4 Database Storage Elements . 47

4.4.1 Tables . 48
4.4.2 Indexes . 48
4.4.3 Extent Allocation in DATABASE 2 for AIX Version 2 48
4.4.4 Tablespace Translation Example . 50

4.5 Log and Dump Devices . 51

Chapter 5. Data Types . 53
5.1 Data Type Comparisons . 53

5.1.1 Oracle Internal Data Types . 53
5.1.2 DATABASE 2 for AIX Version 2 Data Types 54
5.1.3 Mapping Conversion . 55

5.2 Data Type Incompatibilities . 57
5.3 DB2 User-Defined Types . 58
5.4 Data Type Conversion Example . 58

Chapter 6. Database Schema . 61
6.1 Tablespaces . 61

6.1.1 Oracle Tablespaces . 61
6.1.2 DB2 Tablespaces . 61

6.2 Tables, Views and Indexes . 62
6.2.1 Tables . 62
6.2.2 Views . 62
6.2.3 Indexes . 63

6.3 Clusters and Constraints . 63
6.3.1 Oracle Clusters and Constraints . 64
6.3.2 DB2 Clusters and Constraints . 65

6.4 Synonyms and Aliases . 65
6.4.1 Oracle Aliases and Synonyms . 65
6.4.2 DB2 Aliases and Synonyms . 66

6.5 Schema . 66
6.5.1 Oracle Schema . 66
6.5.2 DB2 Schema . 67

6.6 Users and Groups . 67
6.6.1 Oracle Users and Groups . 67
6.6.2 DB2 Users and Groups . 68

6.7 Packages . 68
6.8 Stored Procedures and Triggers . 68

6.8.1 Oracle Stored Procedures and Triggers 69
6.8.2 DB2 Stored Procedures and Triggers 69

6.9 Catalogs . 70
6.9.1 Oracle Catalogs . 70
6.9.2 DB2 Catalogs . 70

Chapter 7. SQL Language Elements . 71
7.1 Functions . 71

7.1.1 Compatible Functions . 71
7.1.2 Incompatible Functions . 75
7.1.3 Additional DATABASE 2 for AIX Version 2 Functions 78

7.2 SQL Comparison . 81
7.2.1 Operators, Expressions and Conditions 83
7.2.2 SQLCA Structure . 84

vi DB2 Version 2 Conversion Guide

7.2.3 SQLDA Structure . 84
7.2.4 ORACA Structure . 85
7.2.5 Oracle Hints . 85
7.2.6 SQL Syntax Comparison . 86

7.3 Constraints . 100
7.4 Joins . 101
7.5 CURSOR and DYNAMIC SQL . 102

7.5.1 CLOSE . 103
7.5.2 DECLARE CURSOR . 103
7.5.3 DESCRIBE . 103
7.5.4 EXECUTE . 103
7.5.5 EXECUTE IMMEDIATE . 104
7.5.6 PREPARE . 104

7.6 Reserved Words . 104
7.7 Special Registers . 105

Chapter 8. Database Security . 107
8.1 Instance and Database-Level Security . 107

8.1.1 Oracle Instance and Database Security 107
8.1.2 DB2 Instance and Database Security 107

8.2 Users, Groups and Roles . 108
8.2.1 Privileges . 111

8.3 DCE Directory and Security . 113
8.4 Applications . 113

Chapter 9. Applications . 117
9.1 Pre-Compilers . 117

9.1.1 Embedded SQL in Oracle 7 . 117
9.1.2 Embedded SQL in DB2 . 118

9.2 Programming Languages . 120
9.2.1 Host Variables . 120
9.2.2 SQL Communication Area (SQLCA) 122
9.2.3 SQL Descriptor Area (SQLDA) . 123
9.2.4 Static and Dynamic SQL . 125

9.3 Stored Procedures . 127

Chapter 10. Backup and Restore . 129
10.1 Oracle 7 Database Backup . 129

10.1.1 Backup Strategy . 130
10.1.2 Redo Log Archiving . 131

10.2 Oracle 7 Recovery . 132
10.3 DATABASE 2 for AIX Version 2 Backup 133

10.3.1 Backup Methods . 133
10.3.2 DATABASE 2 for AIX Version 2 Recovery 137
10.3.3 DB2 Load Utility . 139

10.4 Logging . 139
10.4.1 Circular Logging . 140
10.4.2 Archival Logging . 140
10.4.3 User Exits . 140

Chapter 11. Performing a Conversion . 143
11.1 Overview . 143
11.2 Extracting Oracle Tablespaces, Users and Roles 143

11.2.1 Extracting Tablespace Information 144
11.2.2 Extracting Roles and Users . 145

Contents vii

11.2.3 Translating Granted Roles to Group Membership 146
11.3 Creating the DB2 Database and Environment 147

11.3.1 Creating Tablespaces . 147
11.3.2 Granting Access to the Database . 148

11.4 Table, Views, Data, Constraint, and Index Conversion 149
11.4.1 Table Conversion . 149
11.4.2 Moving Data from Oracle to DB2 . 152
11.4.3 Referential Constraints . 153
11.4.4 Index Conversion . 153
11.4.5 Synonym Conversion . 154
11.4.6 View Conversion . 154
11.4.7 Grant Permission on User Objects 155
11.4.8 Procedure, Function and Trigger Conversion 156

Appendix A. Oracle 7 and DATABASE 2 for AIX Version 2 Limits 157

Appendix B. IBM SQL Reserved Words . 159

Appendix C. Functions . 161

Appendix D. Oracle and DB2 System Catalog 163
D.1 Oracle 7 Data Dictionary Tables/Views 163
D.2 DATABASE 2 for AIX Version 2 System Catalog Views 166

Appendix E. User-Defined Functions . 169

Index . 171

viii DB2 Version 2 Conversion Guide

Figures

 1. Three Stages of Conversion . 7
 2. Oracle Product Categories . 14
 3. DB2 Client/Server Environment Example 21
 4. Oracle Sample Instance Structure . 25
 5. DATABASE 2 for AIX Version 2 Sample Database Structure 26
 6. DATABASE 2 for AIX Version 2 Process Model 28
 7. DB2 Stand-alone Configuration . 32
 8. DB2 Server in a LAN Environment . 33
 9. DB2 Server in a LAN Environment with a Host Connection 34
10. Example of the config.ora and init.ora Files 37
11. Creating Raw Devices . 39
12. Example of Directories Interacting . 41
13. Example of a List Database Directory . 42
14. Logical Storage Structure in Oracle . 44
15. Example of Tablespace and Container Lists 46
16. Logical Storage Structure in DATABASE 2 for AIX Version 2 47
17. Use of Containers and Extents in DATABASE 2 for AIX Version 2 49
18. The File DDL_for_oracle.sql . 59
19. Files extract_insert_for_db2.sql and insert_for_db2.sql 59
20. The File DDL_for_db2.sql . 60
21. Run the DDL Statements . 60
22. Compiling Oracle Embedded SQL Applications 118
23. Compiling DB2 Embedded SQL Applications 119
24. Commands Used to Create a Source Executable 120
25. Sample DECLARE SECTION in DATABASE 2 for AIX Version 2 121
26. The Oracle 7 SQLCA Structure . 122
27. The DATABASE 2 for AIX Version 2 SQLCA Structure 122
28. The Oracle 7 SQLDA Structure . 123
29. The DATABASE 2 for AIX Version 2 SQLDA Structure 124
30. Sample sqlald . 125
31. Sample C Program . 126
32. DB2 Backup Examples . 134
33. Crash Recovery Timeline . 137
34. Restore Recovery Timeline . 138
35. Roll-Forward Recovery Timeline . 138
36. Tablespace Organization in Oracle . 144
37. Korn Shell Script for Converting Roles 145
38. Korn Shell Script for Converting Users 145
39. Korn Shell Script for Adding Users to Groups/Roles (grant.ksh) 146
40. Grant Connect Permission to DB2 . 149
41. Converting DDL for Tables . 151
42. SQLPLUS Command to Export an Oracle Table (oraexp.sql) 152
43. Korn Shell Script to Convert Referential Constraints 153
44. Index Conversion . 154
45. Synonym Conversion . 154
46. View Conversion . 155
47. User and Role Conversion . 155
48. Source Code for COSH UDF (cosh.c) . 169
49. Makefile for COSH UDF (makefile) . 169
50. Export File for COSH UDF (udfs.exp) . 170
51. SQL File for COSH UDF (udfs.sql) . 170

 Copyright IBM Corp. 1995 ix

x DB2 Version 2 Conversion Guide

Tables

 1. Summary of Strategy Characteristics . 2
 2. Summary of Conversion Methodologies 5
 3. DB2 Product Kit and Component Cross Reference 16
 4. DB2 and Oracle Product Cross Reference 19
 5. DB2 Hardware Requirements . 23
 6. Choosing an SMS or DMS Tablespace . 39
 7. Sizing the Database . 43
 8. Oracle Internal Data Types . 53
 9. Oracle External Data Types . 54
10. DB2 Data Types . 54
11. Number Data Types . 55
12. Character Data Types . 56
13. Binary Data Types . 56
14. Date/Time Data Types . 57
15. Functions That Map from Oracle Directly to DB2 72
16. Oracle Functions with Different Names in DB2 72
17. Functions with Different Output Formatting 73
18. Functions Available in DATABASE 2 for AIX Version 2 78
19. ORACLE and DB2 DML/DDL Comparisons 86
20. DB2 System Group Authorizations . 110
21. Data Types in C/C++ . 121
22. Mapping SQLDA in Oracle and DB2 . 124
23. Backup in DB2 and Oracle . 136
24. ′LOGRETAIN′ and ′USEREXIT′ Combinations 141
25. DATABASE 2 for AIX Version 2 Limits . 157
26. Oracle 7 and DATABASE 2 for AIX Version 2 Functions 161
27. Oracle 7 Data Dictionary Views . 163
28. Catalog Views in DATABASE 2 for AIX Version 2 166

 Copyright IBM Corp. 1995 xi

xii DB2 Version 2 Conversion Guide

Special Notices

This publication is intended to help IBM system engineers and their customers
perform a database conversion from Oracle 7 to DATABASE 2 for AIX Version 2.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by DATABASE 2 for AIX Version 2.
See the PUBLICATIONS section of the IBM Programming Announcement for
DATABASE 2 for AIX Version 2 for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program or service is not intended
to state or imply that only IBM′s product, program or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Windows is a trademark of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

ADSTAR AIX
DATABASE 2 DB2
DRDA IBM
MVS/ESA OS/2
OS/400

 Copyright IBM Corp. 1995 xiii

C + + American Telephone and Telegraph Company, Inc.

IPX Novell, Inc.

Lotus 1-2-3 Lotus Development Corporation

Microsoft Microsoft Corporation

Oracle Oracle Corporation

X/Open X/Open Company Limited

Micro Focus Micro Focus Limited

SQL*NET Oracle Corporation

Pro*C Oracle Corporation

Other trademarks are trademarks of their respective companies.

xiv DB2 Version 2 Conversion Guide

Preface

This document is intended to assist in the conversion from an Oracle 7 relational
database environment to a DATABASE 2 for AIX Version 2 relational database
environment. It contains a description of the conversion process and suggestions
on how the mapping of database features may be accomplished.

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Conversion Overview”

This chapter covers the general concepts involved in performing a
conversion in a relational database environment.

• Chapter 2, “Packaging and Installation”

This chapter describes the packaging of DATABASE 2 for AIX Version 2
products and how to map from the Oracle 7 product set to the DATABASE 2
for AIX Version 2 product set.

• Chapter 3, “Relational Database Model”

This chapter discusses the relational database models in both DATABASE 2
for AIX Version 2 and Oracle 7. Both the structure of the database and the
process model are covered.

• Chapter 4, “Storage”

This chapter looks at how data is stored in the different environments. It
covers the physical storage model, the logical storage model and the
database storage model.

• Chapter 5, “Data Types”

This chapter looks at the differences in the data types of Oracle 7 and
DATABASE 2 for AIX Version 2. A variety of methods for handling the
differences are also discussed.

• Chapter 6, “Database Schema”

This chapter covers the different schema objects in Oracle 7 and DATABASE
2 for AIX Version 2. Objects ranging from aliases to tablespaces are
covered, and how they map between the two environments is discussed.

• Chapter 7, “SQL Language Elements”

This chapter discusses the differences in the SQL language elements. These
include functions, SQL operations and syntax, reserved words, and special
registers.

• Chapter 8, “Database Security”

This chapter discusses the different security issues that need to be covered
when converting from the Oracle 7 environment to a DATABASE 2 for AIX
Version 2 environment.

• Chapter 9, “Applications”

This chapter discusses the application-development process and how it
differs between the two database environments.

 Copyright IBM Corp. 1995 xv

• Chapter 10, “Backup and Restore”

This chapter looks at the backup/restore process, and how to implement a
backup/restore strategy on the DATABASE 2 for AIX Version 2 environment.

• Chapter 11, “Performing a Conversion”

This chapter guides you through an actual conversion process. Looking at
the different operations involved, it provides scripts that may help you in the
conversion process.

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document. They are
available as online documents with the DATABASE 2 for AIX Version 2 products.

• Information and Concepts Guide, S20H-4664

• Administration Guide, S20H-4580

• Database System Monitor Guide and Reference, S20H-4871

• Command Reference, S20H-4645

• API Reference, S20H-4984

• SQL Reference, S20H-4665

• Application Programming Guide, S20H-4643

• Call Level Interface Guide and Reference, S20H-4644

International Technical Support Organization Publications
• Planning for Conversion to the DB2 Family: Methodology and Practice,

GG24-4445

A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get a catalog of ITSO technical publications (known as “redbooks”), VNET
users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

xvi DB2 Version 2 Conversion Guide

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-284-4721. Visa and Master Cards are accepted. Outside the
USA, customers should contact their local IBM office. For guidance on
ordering, send a PROFS note to BOOKSHOP at DKIBMVM1 or E-mail to
bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customer sets,
called BOFs, which relate to specific functions of interest. IBM employees
and customers may also order ITSO books in online format on CD-ROM
collections, which contain redbooks on a variety of products.

ITSO Redbooks on the World Wide Web (WWW)
Internet users may find information about redbooks on ″The ITSO World Wide
Web home page.″ To access the ITSO Web pages, point your Web browser to the
following URL:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. The intenal
Redbooks home page may be found at the following URL:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

Acknowledgments
This project was designed and managed by:

Frank Rusconi
International Technical Support Organization, Austin Center

The authors of this document are:

Jean-Christophe Brun
IBM France

Cinzia De Persio
IBM Italy

Peter A Wood
IBM England

This publication is the result of a residency conducted at the International
Technical Support Organization, Austin Center.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Marcus Brewer, Editor
International Technical Support Organization, Austin Center

Preface xvii

Bernhard Schiefer, Reviewer
IBM Canada

Richard Swagerman, Reviewer
IBM Canada

Frank Pellow, Reviewer
IBM Canada

xviii DB2 Version 2 Conversion Guide

Chapter 1. Conversion Overview

This chapter looks at the conversion process and the different steps involved in
the planning and execution of a successful conversion. For further information,
refer to Planning for Conversion to the DB2 Family: Methodology and Practice.
The topics covered are:

• Strategies Available

• Conversion Methodologies

• Planning the Conversion

• Conversion Considerations

1.1 Strategy and Conversion Methodologies
In performing a conversion, you need to decide on the following.

 1. The overall strategy

This is the general approach to the question of moving to DB2. Is speed the
most important parameter, or perhaps it′s the method involving the least
amount of risk?

 2. The starting point

What is the first application to be moved to DB2? Is it just part of a total
application? How will coexistence be handled?

1.1.1 Strategy Definition
There are several strategies that could be used to convert the system, each may
be better suited to different environments. Table 1 on page 2 gives a summary
of the strategies available and the advantages and disadvantages of each.

1.1.1.1 Big Bang
This is where all applications and data are moved to DB2 and go live
simultaneously. This is useful when speed of conversion is the overriding
consideration; however, this strategy has the highest risk.

1.1.1.2 Piece by Piece
This is where definable applications or pieces of them and the data that they use
are migrated to DB2 one at a time. This strategy implies that all applications and
data are eventually going to be converted to DB2. No enhancements are made to
the application during its conversion, and future enhancements are made in DB2.
This strategy is indicated when the primary considerations are to reduce risk,
keep track of projects and gain experience as the work proceeds.

1.1.1.3 Tight Coexistence
This strategy means that the old systems are kept and new systems are
developed with new enhancements for using data in DB2. As systems come up
for redevelopment, they are redeveloped using DB2.

 Copyright IBM Corp. 1995 1

1.1.1.4 Loose Coexistence
This strategy usually involves a management information system (MIS) or
reporting system. A copy of the data is loaded into DB2 and accessed using
report programs running on DB2. This strategy means some of the data is kept
multiple times, but operations continue as normal. Copies of the data can be
used as part of conversion, and they can be kept up-to-date by asynchronous
update or periodic copy.

1.1.1.5 Combinations
A combination of strategies may be the best solution.

One option is to set up a read-only MIS system first to handle reporting, convert
a few existing report programs to use the MIS and provide extra reporting
through DB2.

Where the Big Bang is not appropriate, it may be necessary to migrate some
applications piece by piece and then follow up with a series of little bangs where
two or three applications are migrated together with their common data.

It may be that some applications are in good shape, but others are in poor
shape and need rewriting. This may mean different methods will be employed for
different applications, but it does not alter the basic strategies.

The following table summarizes the main advantages and disadvantages of each
strategy.

Table 1. Summary of Strategy Characteristics

Strategy Advantages Disadvantages

Big Bang Fastest for total conversion High risk

No coexistence problems Long time before first benefits

No duplicated work force Complex change management

Piece by Piece Low risk Long project

Fast way to get some benefits of DB2 Need to handle coexistence

Workforce adjusts over time Dual platforms for some time

Tight coexistence Enhancements added Need very good dual update
mechanism

CASE tools possible Need to open programs on multiple
occasions

Each conversion separately justified Dual platforms indefinitely

Loose Coexistence Management information greatly
enhanced

Does not fix operational problems

Low risk Hard to get up-to-the-minute
information

Few coexistence problems

2 DB2 Version 2 Conversion Guide

1.1.2 Conversion Methodologies
There are several methodologies that could be considered, any of which could
be correct in different circumstances. Once a conversion methodology has been
selected, it will then set the way for data design: programs, testing, tools, and
any data cleaning.

Table 2 on page 5 gives a summary of the conversion methodologies available
and their advantages and disadvantages.

1.1.2.1 Translation
Translation occurs when the application Database Management System (DBMS)
calls are translated one-for-one into DB2 SQL calls. When applied to data,
translation means that the data is also copied one-for-one into DB2 with no
allowances made for the advantage of the large number of DB2 data types.

Translation means modifying the programs to access the new database and
using the old data layout for the data; it is a one-for-one line translation of the
data access language in the source code. Translation tries to make no changes
to the business or data logic parts of the programs and no structural changes to
the data layout. Where speed of conversion is the highest priority, translation
allows for fast migration.

1.1.2.2 Transparency
With transparency, the data is migrated to DB2, and a special program is written
to intercept calls to the old DBMS. This program will translate the calls into DB2
SQL transparently and routes the call to DB2. The program remains unchanged
and can be executed with the data in either database system. Transparency
enables all the data to be moved to DB2 and the programs to be rewritten or
changed one at a time. It also offers a migration path for businesses with very
large databases that require very high availability and administrators who do not
have time to unload and reload the data.

DataJoiner is a product from IBM that can help with this method. It allows
transparent access to data wherever it may reside with the application unaware
of where the data is coming from. By using DataJoiner, applications can access
the DB2 and Oracle databases at the same time, thus allowing you to join a DB2
table with an Oracle table in one SQL statement. DataJoiner can also be used
to assist in some of the other methodologies which use a coexistence strategy. It
can also be used as a tool to move the data from Oracle into DB2.

1.1.2.3 Re-engineering
Re-engineering allows us to alter the data and programs to be compatible with
good DB2 design without having to rethink the whole design.

The data is adapted to a new data model, and the program data calls are
adapted to fit the new target data model. For the applications, only the database
calls and data logic parts of the program are changed with limited alterations to
the DB logic consistent with the new design. Re-engineering would have only
minimal impact on the business-logic part of the program.

This method is good for testing for equivalent function and for future
enhancements. It should perform well, but will take longer than translation.

Chapter 1. Conversion Overview 3

1.1.2.4 Reverse Engineering
Reverse engineering is a form of re-engineering that involves capturing the old
design into models, modifying them, and generating new programs and a new
DBMS design. Reverse engineering usually means using tools to recover the
design of the original data into a reconstructed data model and recover the
application into a new process model. These models can then be modified to
improve the design. The new improved models are then used to generate
(forward engineer) DB2 Data Definition Language (DDL) for the database and
new code for the applications.

Reverse engineering is a very valid way to improve applications and data, but to
be really effective, good tools are needed.

Tools such as AMC*DESIGNER are available to help automate this process.

1.1.2.5 Redevelopment
Here, the whole application is redeveloped according to user requirements. In
the case of data, it means that the data model is rethought from scratch using
requirements from the users. Redevelopment can use traditional methods or the
new CASE tools. If CASE tools are used to model the process, future
enhancements mean only changing the model and regenerating code.

Choosing this course of action requires the purchase of a suitable package since
this is equivalent to writing an application suite from scratch.

1.1.2.6 Corporate Model
This refers to the generation of corporate-wide models. Instead of just one
application suite, the entire business can be modelled into a corporate business
data model and a corporate business process model. The DBMS design and
code may be generated from the models and any changes or enhancements
needed are reflected in the model ′s original and newly generated code. Each
application suite may be rewritten or regenerated one by one to access a new
corporate-wide database.

Although costly in time and effort, it is a method that potentially provides the
greatest benefits. It allows systems to be brought together using an integrated
corporate database.

1.1.2.7 Combinations
To some extent, the methods can be mixed. It is possible to use one method for
data and a different method for the applications. There is the possibility of using
one method and switching to another. It may be that time is of the essence and
therefore a quick translation just to move the DBMS is required. As soon as that
conversion is complete, sections of the DBMS and relevant programs can be
re-engineered.

The following table summarizes the main advantages and disadvantages of each
conversion methodology.

4 DB2 Version 2 Conversion Guide

Table 2. Summary of Conversion Methodologies

Methodology Advantages Disadvantages

Translation Easiest Method Few advantages of DB2

Easy for tools Design inflexible for future

Possible to use in two-stage
approach

Transparency Data may be restructured Performance maybe a problem

Applications can be rewritten later Module difficult to write

Low risk Conversion takes much longer

Re-engineering Obtain advantages of DB2 Relatively longer t ime

Allows limited redesign

Reverse Engineering Design may be optimized for
performance

Tools do not handle all situations

Later enhancements easier Less efficient code from tools

Redevelopment Known process Much longer development t ime

Future maintenance easier Existing investment lost

Corporate Models Business modeled as a whole Large upfront investment

Less redundant code Existing investment lost

Case tools available Need to manage changes

1.2 Planning the Conversion
A DBMS conversion can sound simple—just collect all the programs and change
the DBMS calls from the old data language to DB2 SQL calls. However, consider
these questions:

• Which application will be converted first?

• What is known about the makeup of the programs?

− How many are there?

− Are they all the same language?

− Do they all make DBMS calls?

− How good is the current documentation?

− Do all programs need converting?

• Are the applications independent?

• If the data is moved to DB2 for use by the new system, how will updates be
synchronized?

• Can a single application system be split so that it can be moved a piece at a
time?

• How much time is allocated for the conversion process?

• How good is the data model of the existing system?

• How will the results be tested?

Chapter 1. Conversion Overview 5

These are just some of the considerations that must be fully addressed to have a
successful conversion. A decision must also be made as to which strategy and
conversion methodologies to use.

These issues are addressed via the Three Stage Approach as shown in Figure 1
on page 7

 1. Stage One

Before any conversion can be contemplated, there is a need to take stock of
the current systems. This stage takes an overview (portfolio analysis) of the
system and considers what options will fulfill most requirements to produce
a cost effective conversion strategy.

 2. Stage Two

The second stage tests the feasibility of the output produces by stage one. It
puts plans in place and tests them with a pilot conversion to see if the
assumptions made are correct.

 3. Stage Three

Stage three is the main conversion. It is where the majority of the work takes
place. This is implementing the plan worked out in Stage Two, then cutting
the new system over to production.

6 DB2 Version 2 Conversion Guide

Figure 1. Three Stages of Conversion

1.2.1 Stage One: Defining the Strategy
Before any conversion can be contemplated, current systems need to be
evaluated. The information obtained in stage one is essential for deciding which
strategy and which conversion method to use.

1.2.1.1 Survey
This is a short task where the area of the proposed conversion is set down on
one page. The purpose of this short document is to set the boundaries of the
subsequent project. It sets out which system or systems are candidates for the
conversion, the programming languages involved and the data sources.

Chapter 1. Conversion Overview 7

1.2.1.2 Business Requirements
The most important aspect of conversion is contained here. This sets out what is
expected from the conversion and is used to guide later decisions. It effectively
sets down the business requirements and other criteria that must be achieved
for the project to be a success.

1.2.1.3 Portfolio Analysis
The goal of the portfolio analysis is to get an idea of the state of the systems, the
size of the task, the effects on data used by multiple systems and any special
difficulties to account for.

1.2.1.4 Strategy Definition
There are several ways that you could go forward and many methods you could
use to actually convert the system, all of which could be correct in some
instances.

Now that the present position is understood, the main decisions can be made
about the applications. These include:

• Whether to adopt a strategy to move everything at once (Big Bang) or to
move small pieces at a time (Piece by Piece).

• Whether to move all the reporting programs

• Which application to move first

• Which programs and data to use for a pilot

1.2.1.5 Conversion Methods
With the overall strategy set, the method can then be selected and the
requirements set for the data layout and DB2 features, including:

• What method of conversion will suit the programs and data best

• What to do about data cleaning

• What testing strategy to use

• What enhancements should be made, and when

1.2.1.6 Deliverables
The deliverables of this first stage are:

• A description of the business benefits expected

• An understanding of the migration process

• An overall strategy

• The place to start the migration process

• Scope of the pilot

• List of issues

The biggest factor influencing success is going into the new territory with
awareness of both the pitfalls and the rewards. Working through Stage One will
give an understanding of the process, a set of requirements, and the first gross
estimate of the conversion task.

8 DB2 Version 2 Conversion Guide

1.2.2 Stage Two: Testing the Concept
The objective of stage two are to put proper plans in place and testing the
theories with a pilot conversion, the results of which are then used to adjust the
plans for the final stage. There are a number of relatively small, but vital, tasks
that need to be done:

Data layout The database design must be carefully checked and a first
cut DB2 design produced.

Programs The programs need checking too. An inventory of where
they are by categorizing them into Online Transaction
Processing (OLTP), batch and reporting applications.

Testing The test strategy decided in stage one needs to be written,
set up and tested.

Performance A performance plan needs to be established. It should
identify critical processes and specify how changes are to
be made.

Change Control A change control system must be put in to place.

Data Movement A plan needs to be put in place for data movement—that is,
the unloading, reformatting and loading of the actual data.

Set Up DB2 If DB2 is not installed, then installation needs to take place
before any pilot can run. If DB2 is already in use, then it is
preferable to establish a separate system for the
conversion work.

Pilot The pilot takes the previously chosen applications and
runs them through the conversion process.

Review At the end of the pilot, a thorough review should be made,
and the results should be fed back into the plans and
adjustments made.

1.2.2.1 Deliverables
The deliverables for stage two can really be expressed as a tested proof of
concept. Specifically, there should be;

• Tested proof that all the components work

• A program inventory

• A data inventory

• Old data column to new data column cross reference

• Old program name to new program name cross reference (if applicable)

• A project plan for the entire conversion:

− An application plan showing how the changes will be tackled

− Data movement plan

− A performance test plan

− Change control plan

− Data cleaning

− A test plan

• Database design

Chapter 1. Conversion Overview 9

• Critical process list

• A data movement plan

• Documented results of the pilot

• The first few converted programs

• Results of the review

Done properly, the second stage shows that the project is viable, highlights any
areas of weakness that can be corrected and provides feedback to be used in
the main and final stages of the plan.

1.2.3 Stage Three: Implementation and Cutover
By this time, although there is much left to do, the rest should be
straightforward. It is now a matter of making sure the plan is correctly
implemented.

1.2.3.1 Implementation
This is the implementation of the plans worked out in stage two. Here the
programs are converted, tested and changed, if required, via the change control
plan already set up.

1.2.3.2 Data Cleaning
The accuracy of the actual data needs to be assessed for quality. Depending on
the errors, this may require anything from a small to a significant investment.
The most common corruption is that data is entered incorrectly in the first place.
Sometimes data has been entered incompletely, and the additional data was
never entered.

During DB2 Load, the utility checks the properties of the data, and it will refuse
to load any records that are obviously wrong, placing them instead in a discard
file. This is one method that can be used for assessing errors; however, the
utility cannot detect where the wrong values have been entered.

The data cleaning strategy identified in stage one and tested in stage two should
be used to verify the data and correct any errors.

1.2.3.3 Cutover
Here the data is unloaded, reformatted and loaded into DB2. The plans for the
applications are bound, the libraries switched and the new system brought up.

1.2.3.4 Testing
Testing is very likely to take 50 percent or more of the time taken to convert the
DBMS. During conversion, testing differs from normal application development in
these ways;

 1. There is a need to test every function and every part of the code to ensure
that it all still performs in the same way.

 2. The tests must be repeatable and repeated to ensure that errors are not
reintroduced.

 3. The tests must ensure that the program still functions the same.

 4. Automated test tools can shorten the time taken for testing by providing
repeatable automatic comparison and regression testing.

10 DB2 Version 2 Conversion Guide

 5. Stress testing needs to be a part of the testing to ensure that the whole
application will function well and to check that things, such as deadlocks,
have not been introduced.

1.2.3.5 Fallback Plan
In case of unforeseen problems, a fallback plan needs to be set up. This should
be business-as-usual as customers are used to changing levels of software, both
from themselves and from software vendors.

1.2.3.6 Consolidation
The period of post-live consolidation needs to be defined. The system needs to
run for a month or so before any new enhancements are added. Further, when
the conversion is declared complete, do not delete the old system; archive it.

1.2.3.7 Deliverables
This is, of course, the new system working as planned with DB2.

1.3 Conversion Considerations
This section highlights some of the considerations found during the many
conversions to DB2 that have already been completed. These are not unique to
a particular environment and may very depending on your specific environment;
therefore any, all or none of these considerations may apply.

• One percent of source code is lost.

When it comes to actually converting every program, some source code
cannot be found.

• Ten percent of the source code does not match the production object code.

• Sixty percent of the program inventory needs to be converted.

This relates to redundant programs, unused programs, reporting programs,
programs without any DBMS calls, and those that need rewriting anyway.

• Testing and fixing will take over 50 percent, and may take up to 80 percent,
of the project time.

• Sixty percent of the programs problems are unrelated to conversion.

Problems due to unsuitable conversion do occur, but the majority of issues
that surface are due to:

− Bad source code

− Known bug in original code

− Latent bug that is found due to new environment

− Latent bug that is found due to more comprehensive testing

Chapter 1. Conversion Overview 11

12 DB2 Version 2 Conversion Guide

Chapter 2. Packaging and Installation

This chapter discusses the Oracle product packaging and relates it to the
product packaging used by DB2. The chapter has been written for the user who
is starting a conversion process and needs help determining the following:

How to map from Oracle products to DB2 products

The function of each DB2 module

How to choose and install the required DB2 components

The correct installation sequence to follow

Disk storage requirements for the DB2 product components

The directory structure after installation

The licensing management for each product

The chapter consists of the following topics:

• Product packaging

• Installation

• Licensing overview

2.1 Oracle Products and Packaging
It is possible to group Oracle products into the following six categories:

• Database Engine

• Database Administration Products

• Application Development Tools

• Case & Designer Tools

• Communications Support Tools

• General Tools

Each of these categories contain a number of products that perform a specific
function. Figure 2 on page 14 groups the Oracle products into these categories
and shows how they interact with each other.

 Copyright IBM Corp. 1995 13

Figure 2. Oracle Product Categories

The function of each of these Oracle products is described in the following list.

Oracle7 Server Database engine

SQL*DBA Base command line processor for database administration

SQL*Loader Loader tool for non-ORACLE data

SQL*Plus Command line processor for SQL statements

SQL*FORMS Forms generator

SQL*Menu Menu generator

SQL*Report Writer/SQL*Report
Report writer and generator/graphic report writer

Pro*Ada Support for Ada compiler

Pro*C Support for C compiler

Pro*COBOL Support for COBOL compiler

Pro*FORTRAN Support for FORTRAN compiler

PL/SQL Procedural Language support

CASE*DICTIONARY Tool for maintenance of database information and objects

CASE*DESIGNER Graphic interface for the Case*Dictionary data

14 DB2 Version 2 Conversion Guide

CASE*GENERATOR Tool for generation of simple forms using dictionary
information

SQL*NET Features and tools for the connectivity

SQL*CONNECT Access to non-Oracle databases

Oracle*Mail Feature and tools for office mail

ORA 1-2-3 Electronic foil, like Lotus 1-2-3

SQL*QMX Tool for easy SQL reports

SQL*Calc Electronic foil with Oracle layout

EASY*SQL Easy command line processor for SQL statements

2.2 DB2 Products and Packaging
The DB2 family of products is composed of product kits and components. The
product kits can be purchased with a range of licensing options. The kits
available include:

• IBM DATABASE 2 for AIX Version 2.1 Server

• IBM DATABASE 2 for AIX Version 2.1 Single-User

• IBM DATABASE 2 Software Developer′s Kit for AIX Version 2.1

• IBM DDCS for AIX Version 2.3 Multi-User Gateway

• DB2 Client Application Enabler for AIX

• DB2 Product Messages

• DB2 Product Library

Components are the features included in a product kit. They can be considered
as installable options for the related DB2 products. The product kits are made
up of the various components to suit different environments, and they provide
various levels of functionality. Table 3 on page 16 contains a cross reference of
the DB2 product kits and the components they include.

Chapter 2. Packaging and Installation 15

Table 3 (Page 1 of 2). DB2 Product Kit and Component Cross Reference

IBM DATABASE 2 for AIX Version 2.1 Server

db2_02_01.client Client Application Enabler

db2_02_01.clp Command Line Processor

db2_02_01.db2.rte DB2 executables

db2_02_01.db2.misc DB2 Utilities and Examples

db2_02_01.dd DB2 Database Director

db2_02_01.cs.rte DB2 Communications Support - Base with TCP/IP

db2_02_01.cs.sna DB2 Communications Support - SNA

db2_02_01.cs.drda DB2 Communications Support - DRDA Application Server

db2_02_01.cs.ipx DB2 Communications Support - IPX

IBM DATABASE 2 for AIX Version 2.1 Single-User

db2_02_01.client Client Application Enabler

db2_02_01.clp Command Line Processor

db2_02_01.db2.rte DB2 executables

db2_02_01.db2.misc DB2 utilities and examples

db2_02_01.sdk.c DB2 SDK C include files and sample programs

db2_02_01.sdk.fortran DB2 SDK FORTRAN include files and sample programs

db2_02_01.sdk.cobol DB2 SDK COBOL include files and sample programs

db2_02_01.sdk.cli DB2 SDK Call Level Interface samples

db2_02_01.sdk.misc DB2 SDK utilities and samples

db2_02_01.dd DB2 Database Director

db2_02_01.ve DB2 Visual Explain

IBM DATABASE 2 Software Developer ′s Kit for AIX Version 2.1

db2_02_01.client Client Application Enabler

db2_02_01.clp Command Line Processor

db2_02_01.sdk.c DB2 SDK C include files and sample programs

db2_02_01.sdk.fortran DB2 SDK FORTRAN include files and sample programs

db2_02_01.sdk.cobol DB2 SDL COBOL include files and sample programs

db2_02_01.sdk.cli DB2 SDK Call Level Interface samples

db2_02_01.sdk.misc DB2 SDK utilities and samples

db2_02_01.dd DB2 Database Director

db2_02_01.ve DB2 Visual Explain

IBM DDCS for AIX Version 2.3 Multi-User Gateway

db2_02_01.client Client Application Enabler

db2_02_01.clp Command Line Processor

db2_02_01.db2.rte DB2 executables

db2_02_01.cs.rte DB2 Communications Support - Base with TCP/IP

db2_02_01.cs.sna DB2 Communications Support - SNA

db2_02_01.cs.drda DB2 Communications Support - DRDA Application Server

db2_02_01.cs.ipx DB2 Communications Support - IPX

db2_02_01.ddcs Distributed Database Connection Services

16 DB2 Version 2 Conversion Guide

Table 3 (Page 2 of 2). DB2 Product Kit and Component Cross Reference

db2_02_01.dd DB2 Database Director

DB2 Client Application Enabler for AIX

db2_02_01.client Client Application Enabler

DB2 Product Messages - %L (%L represents locale)

db2_02_01.msg.%L.client DB2 Product Messages

db2_02_01.msg.%L.dd DB2 Database Director Messages and Help

DB2 Product Library

db2_02_01.doc.%L.pscript DB2 manuals in postscript

db2_02_01.doc.%L.ipfx DB2 manuals in IPF format

IPF/X Viewer

ipfx.runtime IBM Information Presentation Facility

IPF/X National Language Support Messages and Resources

ipfx.nls.%L Messages and Resources - %L

Each of the DB2 product components provide a defined set of functions. This
allows us to select only the components required by your environment. By doing
this, we are able to keep the size and cost of the DB2 products to a minimum.
The DB2 components are listed below along with a description of the function
they provide.

IBM DB2 for AIX Server

The server engine is a full-function, relational database management system that
includes SQL query optimization, based on actual database usage. It provides
support for user defined functions and types, triggers, stored procedures,
constraints, Large Objects (LOBS), and recursive SQL. DATABASE 2 for AIX
Version 2 also provides support for a distributed unit of work. The server is also
able act as a client to other DB2 servers.

IBM DB2 for AIX Single-User

The single-user version of the engine provides the same functionality as the
server, but only for local applications. There is no network server capability built
into the product.

IBM Distributed Database Connection Services (DDCS) for AIX

DDCS provides the ability to access host databases running on systems such as
DB2 for MVS/ESA, DB2 for VSE and VM, DB2 for OS/400 and most systems that
support the Distributed Relational Database Architecture (DRDA) protocol. There
are two versions of DDCS. The first is a single-user version; this allows only
local applications to access the host databases. The second, multi-user gateway
allows both local and remote clients to access the host.

DB2 Client Application Enabler

The remote clients are able to run in a number of environments, including OS/2,
DOS, Windows, and several UNIX-based environments. The DB2 Client
Application Enabler component is build into each of the server products. This

Chapter 2. Packaging and Installation 17

component allows applications to access any DB2 server over a number of
supported communications protocols.

DB2 Command Line Processor

The command line processor allows you to prototype SQL statements. It also
provides the capability to backup or restore a database, configure database or
database manager parameters, and a number of other administrative tasks.

IBM DB2 Software Developer ′s Kit for AIX

The Software Developer′s Kit (SDK) is a collection of tools that meet the needs
of an application developer. Support for the creation of character-based,
multimedia or object-oriented applications is provided. The SDK allows you to
develop applications using embedded SQL, application programming interfaces
(APIs) or a call-level interface. The call-level interface is compatible with
Microsoft ′s Open Database Connectivity (ODBC).

DB2 Software Developer ′s Kit for C

The DB2 Software Developer′s Kit for C provides the necessary include files and
some sample programs for developing applications using the C programming
language. The actual compiler is not included with the component.

DB2 Software Developer ′s Kit for FORTRAN

The DB2 Software Developer′s Kit for FORTRAN provides the necessary include
files and some sample programs for developing applications using the FORTRAN
programming language. The actual compiler is not included with the component.

DB2 Software Developer ′s Kit for COBOL

The DB2 Software Developer′s Kit for COBOL provides the necessary include
files and some sample programs for developing COBOL applications. The actual
compiler is not included with the component.

DB2 Software Developer ′s Kit Call-Level Interface Samples

The Call-Level Interface (CLI) is based on the Microsoft Open Database
Connectivity specification and the X/Open Call-Level Interface specification. It
provides a development environment for creating DB2 CLI applications. The DB2
Client Application Enablers provide run-time support for executing these
applications.

DB2 executables

The DB2 executable component is the run-time environment for DB2. The
run-time environment comes with the DB2 server products.

DB2 Communications Support-Base with TCP/IP

This component is required if remote clients are going to require access to a
DB2 server. The DB2 Communications Support is installed on the server
platform, and allows clients to connect using the TCP/IP protocol.

DB2 Communications Support - SNA

18 DB2 Version 2 Conversion Guide

The SNA communications support allows clients to connect using the SNA
protocol.

DB2 Communications Support - DRDA Application Server

This product allows DB2 to perform server functions across a network using the
DRDA protocol.

DB2 Communications Support - IPX

Provides support for Netware′s IPX protocol.

DB2 Database Director

Provides an easy-to-use graphical interface that will display database objects,
such as databases, tables and packages, and the relationships between them.

DB2 Visual Explain

The Visual Explain tools can be used for analyzing and tuning SQL statements.
They allow developers to view the access plan chosen by the database
manager ′s optimizer for a given SQL statement. They also provide the ability to
tune the SQL statements for better performance and model the impact of
environment changes on SQL statements.

DB2 Product Library (INF/POSTSCRIPT)

Provides the DB2 product manuals in either Postscript or INF format. Manuals in
INF format can be viewed by using the IPF/X viewer.

Table 4 provides a guideline for matching Oracle products with the
corresponding DB2 product or component.

Table 4 (Page 1 of 2). DB2 and Oracle Product Cross Reference

DB2 Oracle

Database 2 Engine Oracle7 Server

DB2 Utilities and Samples Oracle7 Server

Product Family Messages Oracle7 Server

Database Administrator ′s Messages no single component

DB2 Visual Explain no product

DB2 Database Director SQL*DBA

DB2 Client Application Enabler SQL*NET

DB2 Command Line Processor SQL*PLUS

DB2 Software Developer′s Kit
Executable

no single component

DB2 C Language include Files and
Samples

PRO*C

DB2 FORTRAN Language include Files
and Sample Programs

PRO*FORTRAN

DB2 COBOL Language PRO*COBOL

DB2 Call-Level Interface Samples PL/SQL

DB2 SDK Utilities and Samples no single component

Chapter 2. Packaging and Installation 19

Table 4 (Page 2 of 2). DB2 and Oracle Product Cross Reference

DB2 Oracle

DB2 Communication Support - Remote
Client Support

SQL*NET

DB2 Communication Support - SNA
Support

SQL*NET

DB2 Communication Support - DRDA
Application Server

SQL*NET

DB2 Communication Support - IPX
Support

SQL*NET

DB2 Distributed Database Connection
Services

Oracle Transparent Gateway for IBM
DRDA

DB2 Product Library - manuals in INF
format

Oracle*Book

DB2 Product Library - manuals in
Postscript format

Oracle*Book

IBM Information Presentation
Facility/6000 Executable

Oracle*Book

20 DB2 Version 2 Conversion Guide

2.2.1.1 The DB2 Client/Server Environment

Figure 3. DB2 Client/Server Environment Example

Figure 3 shows an example of a client/server environment. If both the AIX
server and the host contain databases, the data on these machines can be
accessed from either client. For the example, we will assume that Client A is an
AIX development machine and Client B is an OS/2 client.

The DATABASE 2 for AIX Version 2 server would need the Version 2.1 Server Kit.
This would include the command line processor and the communications
software that allows the clients to connect to the server. For access to the host
database, the DDCS Multi-User Gateway Kit would also have to be installed.

Client A would require the Software Developers Kit. This kit includes the
necessary tools for developing DB2 applications. It also includes the command
line processor and the Client Application Enabler components.

Client B would only require the Client Application Enabler Kit. This kit allows and
application to communicate with the DATABASE 2 for AIX Version 2 server.

2.3 DB2 Product Installation
After selecting the appropriate DB2 products, we need to install them on the
machine. The following steps are required to perform a standard installation of
the DB2 products. For further installation instructions, refer to the documentation
provided with DATABASE 2 for AIX Version 2.

Step 1 Logon as root and use installp command or the SMIT
interface to install the desired products.

Chapter 2. Packaging and Installation 21

Step 2 Create or assign groups and users. DB2 will use the AIX
groups and user names for database security. Refer to
Chapter 8, “Database Security” on page 107, or the DB2
documentation for more information on Users and Groups
in DB2

Step 3 Create the instance using the db2icrt command.
Remember, a single DB2 instance can contain multiple
databases.

For information on a DB2 instance, refer to Chapter 6,
“Database Schema” on page 61.

Step 4 Configure license information. This may be a nodelock file,
or you may use a iFOR/LS License server. For detailed
information about licensing methods, see section 2.4.2,
“DB2 Licensing” on page 24.

Step 5 Configure the DB2 environment using the db2profile file.
Refer to the Installation and Operation Guide for details on
the DB2 environment variables.

Step 6 Create links for DB2 libraries using the db2ln command.
This may be required if doing application development.

2.3.1 Directory Structure
When all the DB2 products are installed, the following directories will be created
under /usr/lpp/db2_02_01/:

adm System administrator executable files

adsm ADSTAR Distributed Storage Manager files

bin Binary executable files

bnd Bind files

cfg Configuration files

dba Database Director

deinstl Files used to reject applied software

doc/%L Postscript and online books in INF format

function User-defined functions

include C and FORTRAN include files

include/cobol_mf COBOL COPY files for Micro Focus COBOL

include/cobol_a COBOL COPY files ANSI COBOL

instance Instance scripts

lib Libraries

map Map files for DDCS for AIX

misc Utilities and examples

msg/%L Message catalogs

netls iFOR/LS files

readme/%L README files

samples/c C sample programs

22 DB2 Version 2 Conversion Guide

samples/cli DB2 Call-Level Interface samples

samples/clp Command line processor examples

samples/db2sampl Sample database

samples/fortran FORTRAN sample programs

samples/rexx DB2 REXX samples

2.3.2 Hardware Requirements
The disk and memory requirements are going to vary depending on the products
you choose to install. For a guideline on the recommended memory and disk
requirements, refer to the IBM Database 2 for AIX Planning Guide.

The point to note with DB2 is that a single machine is capable of running
multiple instances. When a new instance is created, the disk storage
requirements does not increase. This is because the instance actually creates
symbolic links to the product installation directories. Multiple instances are then
able to share the single copy of the product code. The memory requirement will
go up because each instance will have its own set of processes and shared
memory areas.

As an initial guideline Table 5 provides an indication of the memory and disk
requirements for different environments.

Table 5. DB2 Hardware Requirements

Function Recommended
Memory (MB)

Recommended
Disk (MB)

DB2 for AIX Single-User 3.2 26.4
DB2 for AIX Server 3.1 26.9
DB2 Client Application Enabler for AIX 0.15 9.2

DB2 Software Developer′s Kit for AIX 0.15 13.8

DDCS for AIX Multi-User Gateway 0.10 25.6

Database Director 34
Documentation - IPF 10
Documentation - Postscript 20

2.4 Licensing Overview
The following sections discuss the differences between ORACLE and DB2
licensing methods.

The licensing in DATABASE 2 for AIX Version 2 is different to that of Oracle 7.
DB2 has the ability to use a nodelock license or the iFOR/LS product to control
its licensing. Oracle uses its own licensing that is built into the Oracle products.

2.4.1 Oracle Licensing
Oracle products have two types of license tracking, both of which are checked
and activated internally by the database. They are:

• Concurrent-session licensing

Chapter 2. Packaging and Installation 23

This method checks and set a limit for the number of concurrent sessions
that can connect to an instance. To set this, you need to set the value,
LICENSE_MAX_SESSIONS, in the database parameter file. You can also set
the LICENSE_SESSIONS_WARNING parameter. Once this value is reached,
an Oracle user is able to connect, but a warning message is received.

• Named-users licensing

This method allows your to create a set number of users that can access the
database. The number is determined by the LICENSE_MAX_USERS
parameter. When this limit is reached, Oracle does not allow you to create
any more Oracle users for that instance. The users referred to here are
Oracle users, not operating system users.

The prices are lower for the named users license. The base license for named
users licenses 1 to 8 users, and this can be increased by lots of three.

2.4.2 DB2 Licensing
The DATABASE 2 for AIX Version 2 family of products are licensed programs that
operate under the control of iFOR/LS, a network licensing system produced by
Gradient Technologies. This system checks and controls all the accesses to
products. A license key is obtained and entered into the iFOR/LS server. The
product is composed of a pre-generated iFOR/LS Product License Key which is
shipped with the product on a Product License Key label. Before you can use
DB2, saveSDK and DDCS, you have to enter the Pre-generated Product License
Key. For detailed information on the Installation method, refer to the ″Installation
and Operation Guide.

This kind of licensing is called a Nodelock License A nodelock license allows the
DB2 product to run on a specific machine because the license is tied to the
machine ′s CPU. A nodelock license is required for each of the DB2 products on
the machine, and it is stored in a single text file. This type of license does not
require the use of a license server, and this makes it suitable for smaller
environments.

2.4.3 Default Licenses
DB2 and DDCS base products allow up to five concurrent users. The number of
concurrent users is defined as the maximum number of client workstations,
running one or more applications, that are connected to a DATABASE 2 for AIX
Version 2 server at a given point in time. If you need to support more than five
users, you can acquire entitlements for additional users. These entitlements are
available in configurations of 1, 5, 10, and 50 users.

By default, the DB2 Software Developer′s Kit for AIX base product allows access
for only one user. If you need to support more than one user, additional
entitlements are available in configurations of 1, 5 and 10 users.

The DATABASE 2 for AIX Version 2 Single-User Kit includes a single developer
entitlement for the DB2 Software Developer′s Kit for AIX.

24 DB2 Version 2 Conversion Guide

Chapter 3. Relational Database Model

Although Oracle 7 and DATABASE 2 for AIX Version 2 are both Relational
Database Management Systems, there are some differences in the way that they
are implemented. This chapter discusses these differences, and how it may
effect the conversion process.

The topics covered include:

• Instance and Database Structure

• Database Creation

• Process Model

• Client / Server Model

3.1 Instance and Database Structure
The relational database structure can be divided into physical and logical parts.
The physical part is determined by the operating system. It includes the files,
directories and other physical storage elements. The logical part is made up of
the objects that are referenced by the database. The logical elements include
tables, tablespaces and other elements that make up the relational database
model.

3.1.1 Oracle Database Structure
An Oracle database is generally divided into tablespaces and schema objects
such as tables, views and indexes. Figure 4 shows the logical structure of a
sample Oracle database.

Figure 4. Oracle Sample Instance Structure

 Copyright IBM Corp. 1995 25

Each Oracle instance is also a unique database. The database can be divided
into one, or more tablespaces and each tablespace may contain several tables.
However, a table must be fully contained within a single tablespace.

3.1.2 DB2 Database Structure
In DB2 an instance can contain multiple databases. Each database may have a
different logical structure by using different combinations of tablespaces.
However, a tablespace cannot be shared between databases. There are two
different logical tablespaces. They are System Managed Spaces (SMS) and
Database Managed Spaces (DMS). Both types of tablespaces appear to be
equivalent to an application running under DB2. The difference lies in the
management and physical storage of the data within the tablespace itself. These
differences are discussed in Chapter 4, “Storage” on page 35. Figure 5 shows
a sample structure of a DB2 instance.

Figure 5. DATABASE 2 for AIX Version 2 Sample Database Structure

3.2 Process Model
This section discusses the differences between the Oracle and DB2 process
models. The main difference between these two models is that in Oracle an
instance corresponds to a single database. While in DB2, an instance is an
environment that may contain multiple databases. Because of this, both models
will have database level processes, but DB2 will also have processes at the
instance level.

26 DB2 Version 2 Conversion Guide

3.2.1 Oracle Process Model
In an Oracle environment, an instance can be defined as a combination of the
Oracle background processes and the System Global Area (SGA). The System
Global Area is a shared memory region allocated by Oracle, and contains data
and control information for the Oracle instance.

These processes are used to perform all the operations requested by the user
processes. The principle processes include:

reco (Recoverer) Used in distributed database environments to recover
pending transactions after a network failure.

LGWR (Log Writer) Writes redo log records to the disk.

SMON (System Monitor)
Performs instance recovery and startup.

DBWR (Database Writer)
Writes the modified blocks from the database buffer cache
to the physical data files.

CKPT (Checkpoint) Is an optional process, and is responsible for maintaining
the indication of the most recent DBWR operation.

PMON (Process Monitor)
Performs process recovery in the case where a user
process fails.

ARCH (Archiver) Copy the redo log files to archive storage when they
become full.

ARH (Asynchronous Reader)
Performs asynchronous reading of data.

3.2.2 DB2 Process Model
In DB2, an instance is an environment that may contain multiple databases. It
maintains a system directory of all databases and provides a level of
detachment from other DB2 instances.

Each instance is a unique database manager environment. It is actually a virtual
copy of the DB2 code. This is made by creating symbolic links to the shared
physical copy of the installed product. This allows multiple instances to exist on
a single machine with minimal overhead for each additional instance. There are
several reasons for maintaining multiple instances on a single machine. These
could include:

Maintaining distinct test and production environments

Restricting the access SYSADM authority has to certain databases

Exploit different database configurations

Simulate more than one client/server configuration on the same physical
system.

Each instance is attached to an AIX user, and this UserID becomes the instance
owner. The instance owner will have ownership of the instance files and will
have system administration authority over all the databases that are contained
within the instance. Most of the instance processes will be owned by the
instance owner, the exception is the watchdog process which is owned by the
root user.

Chapter 3. Relational Database Model 27

A user cannot be the owner of more than one instance. Administrative users and
groups exist to provide the capability for a single user to administer multiple
instances. These groups include SYSADM, SYSCTRL, SYSMAINT and DBADM.

Because of the more complicated structure, the process model is also more
complicated. The processes within a DB2 environment can be grouped into
startup or instance processes, per database processes and per client or user
processes. Figure 6 provides an example of the DATABASE 2 for AIX Version 2
process model.

Figure 6. DATABASE 2 for AIX Version 2 Process Model

DATABASE 2 for AIX Version 2 implements a firewall when accessing the
database. This firewall provides protection against application errors. All user
applications access the database through a DB2 agent process. This stops a
users application from overwriting or corrupting an internal database buffer. It
also prevents a application from crashing the database manager or another
application.

We can see in Figure 6 that programs and fenced processes exist outside the
firewall. These processes are the user level processes. Inside the firewall are
the instance level processes, the per client processes and the per database
processes. The instance level processes are started when the database
manager or instance is started. These processes include:

28 DB2 Version 2 Conversion Guide

db2wdog The ″watchdog″ process monitors all other processes and
cleans up an resources if a process terminates
abnormally.

db2sysc The ″System Controller″ process handles the
housekeeping tasks. These include starting and shutting
down the instance.

db2gds The ″Generic Daemon Spawner″ is responsible for
creating most of the DB2 demons.

db2ipccm The ″IPC Communications Manager″ handles the
connection requests from the local clients. It will spawn an
agent process for each local connection.

db2tcpcm The ″TCP/IP Communications Manager″ handles the
connection requests from remote TCP/IP clients.

db2tcpim The ″TCP/IP Interrupt Manager″ handles interrupt requests
from remote TCP/IP clients.

db2snacm The ″SNA Communications Manager″ handles the APPC
connection requests from remote clients.

db2isxcm The ″IPX Communications Manager″ handles the IPX/SPX
connection requests from remote clients.

db2resyn The ″resync″ will handle the recover of any indoubt DUOW
transactions.

Each client application that connect to the database will have an agent process
started. This agent process exists inside the firewall and will handle all the
database requests from its client.

db2agent The ″agent″ process handle all the SQL processing for the
application that it is associated with. each application has
its own agent running inside the firewall.

There also exists some per database processes. These processes handle
database operations such as buffer manipulation, logging, deadlock detection
and the backup or restore of a databases. The database processes are:

db2dlock The ″database deadlock detector″ process looks for any
deadlock situations on a database. If one is determined the
it will take action to resolve it.

db2loggr The ″database logger″ process handles all of the log I/O
for the database.

db2pclnr The ″page cleaner″ process also helps to increase
efficiency by asynchronously writing dirty pages when the
CPU would otherwise be idle. The number of pages
cleaners is configurable.

db2pfchr The ″prefetch″ process performs read-ahead, big-block
and parallel I/O. This allows for more efficient processing
of data.

Chapter 3. Relational Database Model 29

3.3 Database Creation
As DB2 allows for multiple databases to exist within a single instance there are
some extra commands and structures used to keep track of the database
locations. As Oracle only has a single database per instance, this additional
information is not required.

In DB2, after the instance has been created, it is necessary to create the
database or databases. A database creation will cause the following actions to
be performed by the database manager:

• Creation of System Catalog tables

Each database includes a set of system catalog tables. These contain
information about the objects contained within the database. Each database
has its own set of system catalogs.

• Creation of Database recovery log

The database recovery log keeps a record of all the changes made to the
database. Each database has its own recovery log.

• Creation of Configuration files

The configuration files for a database are also stored in the same location as
the database itself. Each database has its own configuration information and
may be viewed or updated using the database director or the command line
processor.

• Creation of System Database Directory

The system database directory is created for each instance. Refer to 3.3.1,
“Directories in DB2” for further information on the system database
directory.

• Creation of Local Database Directory

The local database directory is created in every location that contains a
database. Refer to 3.3.1, “Directories in DB2” for further information on the
local database directory.

• Binding of Utilities to Database

Before a database application can be executed it must be bound to the
database. The database utilities are bound as a part of the database creation
process.

3.3.1 Directories in DB2
DB2 uses four directories to contain information about database locations and
connections. These directories are not the same as a filesystem directory. The
four directories are:

System Database Directory

Local Database Directory

Node Directory

DCS Directory

The system database directory is used to identify the name, alias and physical
location of each cataloged database. For a user or application to access a

30 DB2 Version 2 Conversion Guide

database, it must be in the system database directory for both the client and the
server.

The local database directory contains the name of a database and the location in
which the database files are stored. There is a local database directory in every
location that contains a database.

The node directory contains an entry for all nodes that can be connected to. It
lists the node′s name along with some communication and instance information.
The term node is used to specify a system in the network. When the ″CONNECT
TO″ statement is issued, the database directory and the node directory are
accessed to determine if the database is local or remote. The communications
protocol and connection type are also determined by looking at the directories.

The database connection services or DCS directory is used for databases that
are accessed via the DDCS product. It contains an entry for each DRDA
database that can be accessed by your node or instance.

The node directory, DCS directory and system database directory are all stored
within the instance directory. As a database can theoretically be stored
anywhere in the AIX file system structure, the local database directory can also
be anywhere. It is stored in the database directory, which by default is the home
directory of the instance owner.

3.4 Client/Server Models
There are a number of different client and server configurations. This chapter
will look at the three of the most common environments and look at the
configurations in each.

3.4.1 DB2 Stand-Alone Configuration
For a small business or a development environment, it is common to have a
single machine running DB2. Access to the database may be limited to local
users. For this environment you would only need to install either the server kit or
the single-user kit. This would depend on the number of users and what the
machine is to be used for. There is no requirement for additional client code, as
the client application enabler code is built in to the server code.

Chapter 3. Relational Database Model 31

Figure 7. DB2 Stand-alone Configuration

3.4.2 DB2 Server in a LAN Environment
In a Local Area Network (LAN) it is possible to support both locally attached
users, and LAN clients. To do this the server kit would need to be installed on
the server machine, along with the appropriate communications protocol in the
communications support kit.

Depending on the operating system running on the client, you would need to
install the appropriate client application enabler kit. This will allow applications
to connect to the server database.

32 DB2 Version 2 Conversion Guide

Figure 8. DB2 Server in a LAN Environment

3.4.3 DB2 Server in a LAN Environment with Host Connection
If your DATABASE 2 for AIX Version 2 server needed to support both clients and
a connection to a host database, then you would need to set up an environment
similar to that in 3.4.2, “DB2 Server in a LAN Environment” on page 32. In
addition to this environment you would need to install the DDCS for AIX Version
2.3 Multi-User Gateway. This will allow the DB2 server and its clients to connect
to the host database.

Chapter 3. Relational Database Model 33

Figure 9. DB2 Server in a LAN Environment with a Host Connection

34 DB2 Version 2 Conversion Guide

Chapter 4. Storage

This chapter discusses the differences in data and object storage for Oracle 7
and DATABASE 2 for AIX Version 2.

The topics that are covered include:

Physical Storage Elements

Logical Storage Elements

Database Storage Elements

4.1 Physical Storage Devices
The physical storage devices are the set of elements used to store the different
database objects. Storage devices include UNIX files, devices and directories.
The are many similarities between Oracle and DB2 in the area of physical and
logical storage. However, the terminology may be different. This chapter will
cover the different ways the database systems use physical storage devices to
build a logical storage area for the database system.

4.1.1 Oracle 7 Physical Structure
An Oracle database′s physical structure is determined by the operating system
files that constitute the database. Each Oracle database is comprised of four
types of files:

• Data files

• Redo log files

• Control files

• Configuration files

The files of a database provide the actual physical storage for database
information. The file may simply be a file within the filesystem, or it may be a
raw device, such as a logical volume.

4.1.1.1 Data Files
Every Oracle database has one or more physical data files. These data file
contain all the data stored in the database system. Information on database
structures, such as tables and indexes, is also stored in the data files allocated
for a database.

Database file have the following characteristics:

• A data file can be associated with only one database.

• Once created, a data file cannot change in size.

• One or more data files form logical units of database storage called a
tablespace.

 Copyright IBM Corp. 1995 35

4.1.1.2 Redo Log Files
Every Oracle database has a set of two or more redo log files. The set of redo
log files for a database are collectively known as the database′s redo log. The
primary function of the redo log is to record all changes made to the database
data. Should a failure prevent modified data from being permanently written to
the data files, the changes can be obtained from the redo log. This ensures
information or data is never lost. One or more copies of the redo log can be
maintained on different disks.

4.1.1.3 Control Files
Every Oracle database has a control file. A control file records the physical
structure of the database. Control files contain the following types of
information:

• The database name

• Names and locations of a database′s data files and redo log files

• Time stamp of the database′s creation

Oracle allows the control file to be mirrored for protection of the control file.

Each time an instance of an Oracle database is started, its control file is used to
identify the database, the physical structure of the data and the redo log files
that must be opened for the database operation to proceed. It is also used for
recovery, if required.

4.1.1.4 Configuration Files
Every Oracle database has two configuration files. A configuration file records
database parameters values, such as:

• Redo log files location

• Control files location

• System Global Area size (for more information, refer to the chapter on the
relational database model)

These files are config.ora and init.ora. These files are plain text files and can be
viewed with a text browser, such as vi. A sample of these files is shown in
Figure 10 on page 37.

36 DB2 Version 2 Conversion Guide

� �
(Oracle)/u/oracle/dbs> cat init.ora
$Header: initx.orc 7001300.3 93/06/16 12:28:26 mkrishna Osd<unix>
$ Copyr (c) 1992 Oracle
include database configuration parameters
ifile = /u/oracle/dbs/configA.ora
#rollback_segments = (r01,r02,r03,r04)
tuning parameters
db_files = 20
db_file_multiblock_read_count = 8 # SMALL
db_block_buffers = 200 # SMALL
shared_pool_size = 3500000 # SMALL
mts_dispatchers=″ipc,1″
mts_max_dispatchers=10
mts_servers=1
mts_max_servers=10
mts_service=A
mts_listener_address=″ (ADDRESS=(PROTOCOL=ipc)(KEY=A))″

(Oracle)/u/oracle/dbs> cat config.ora
$Header: cnfg.orc 7001200.2 93/04/26 14:58:22 eruben Osd<unix>
$ Copyr (c) 1992 Oracle
cnfg.ora - instance configuration parameters
control_files = (/u/oracle/dbs/ctrl1A.ctl,

/u/oracle/dbs/ctrl2A.ctl,
/u/oracle/dbs/ctrl3A.ctl)

Below for possible future use...
#init_sql_files = (?/dbs/sql.bsq,
?/rdbms/admin/catalog.sql,
?/rdbms/admin/expvew.sql)
background_dump_dest = /u/oracle/rdbms/log
core_dump_dest = /u/oracle/dbs
user_dump_dest = /u/oracle/rdbms/log
#log_archive_dest = /u/oracle/dbs/arch/arch.log
#db_block_size = <blocksize>
db_name = A� �

Figure 10. Example of the config.ora and init.ora Files

4.1.2 DATABASE 2 for AIX Version 2 Physical Structure
A DB2 instance can manage multiple databases. When a database is created,
the database manager creates a separate subdirectory to store control files and
containers for the default tablespaces. Objects associated with the database,
including devices such as logical volumes, are not always stored in the database
directory. They can be stored in various locations.

The naming scheme for the database is /instance_name/SQL00001 through
/instance_name/SQLnnnnn, where SQL00001 contains objects associated with
the first database created; SQL00002 contains objects for the second database,
and so on. These subdirectories are created within the PATH specified in the
CREATE DATABASE command or, by default, in the instance owner′s home directory.

Chapter 4. Storage 37

4.1.2.1 Data Files
In DB2, the physical structure of the data files is dependent upon the type of
tablespace that you define. There are two types of managed tablespaces, and
both types can be utilized within a single database. The two types of managed
tablespaces are:

• System Managed Space (SMS) Tablespace

The operating system′s file manager controls the storage space within a file
system.

• Database Manager Space (DMS) Tablespace

The database manager controls the storage space within a logical volume or
file.

The SMS tablespace is a generalization of the storage model found in DB2
Version 1. Version 1 database files are stored under a configured number of
subdirectories. All the data files are located under the database subdirectory.
The database or system administrator can tell DB2 where to create the database
subdirectory. The name and location of all the segment subdirectories is
automatic. The number of subdirectories created can be specified at database
creation time and cannot be changed afterward. In DB2 Version 2, SMS allows
the database administrator to specify any directory that is accessible by the
system, as a location for storing database files. These directories are called
containers. In an SMS tablespace, one container maps to a single directory.
Given this, the maximum size of an SMS tablespace would be the number of
containers multiplied by the maximum file system size supported by the
operating system.

The following files are found within an SMS tablespace directory:

SQLxxxxx.DAT Table file. All rows of a table are stored here, with the
exception of LONG VARCHAR, LONG VARGRAPHIC, CLOB,
BLOB, and DBLOB data.

SQLxxxxx.LF Files containing LONG VARCHAR or LONG VARGRAPHIC
data. This file is only created if LONG VARCHAR or LONG
VARGRAPHIC columns exist in the table.

SQLxxxxx.LB Files containing CLOB, BLOB, or DBBLOB data. This file
is only created if CLOB, BLOB, or DBBLOB columns exist
in the table.

SQLxxxxx.LBA Files containing allocation and free space information
about the SQLxxxxx.LB file.

SQLxxxxx.INX Index files for a table. All indexes for the corresponding
table are stored in this file. It is only created if indexes
have been defined. When an index is dropped, the space is
not physically freed from the index file until the index file is
deleted. This occurs when all indexes for the table have
been deleted.

SQLxxxxx.EIX Damaged INX file for a table.

SQLxxxxx.DTR Temporary data files for a REORG of a DAT file.

SQLxxxxx.LFR Temporary data files for a REORG of an LF file.

SQLxxxxx.RLB Temporary data files for a REORG of an LB file.

SQLxxxxx.RBA Temporary data files for a REORG of an LBA file.

38 DB2 Version 2 Conversion Guide

For more information about SMS tablespaces, refer to the documentation
supplied with DATABASE 2 for AIX Version 2.

The DMS tablespaces are built on pre-allocated disk partitions or files. This
pre-allocated space can be a large single file or a logical volume. The file or
logical volume need to have the owner and group set to match the DB2 instance
owner. Figure 11 is an example of how to create a DMS tablespace. The
database manager then becomes responsible for the management of this space.
The table objects for the data, indexes and long columns of a table can be stored
in the same tablespace or in different tablespaces. The size of a DMS
tablespace can be increased by adding storage elements called containers.

In DMS tablespaces, a container can be either a logical volume or a file. The
implementation of a DMS tablespace is similar to an Oracle tablespace.

� �
o Create a 16 MB Logical Volume called lobA in the root volume group.

mklv -y′ lobA′ rootvg 4
lobA

o Change the ownership to match the DB2 instance owner.

chown db2.db2gr /dev/rlobA
chmod 600 /dev/rlobA
ls -al /dev/rlobA
crw------- 1 db2 db2gr 10, 13 Apr 28 13:22 /dev/rlobA

� �
Figure 11. Creating Raw Devices

4.1.2.2 Choosing an SMS or DMS Tablespace
There are a number of points to consider when determining which type of
tablespace you should use to store your data. Table 6 summarizes these points.

Table 6. Choosing an SMS or DMS Tablespace

SMS Tablespace DMS Tablespace

Tablespaces can share
containers

YES NO

Increase number of containers
in tablespace

NO YES

Store Index data in separate
tablespace

NO YES

Store long data in separate
tablespace

NO YES

One table (index, data, LOB)
can span several tablespaces

NO YES

Container can be a raw device NO YES

Chapter 4. Storage 39

4.1.2.3 Log Files
Like Oracle, DB2 maintains a set of log files. The database recovery log keeps a
record of all changes made to a database, whether it is the addition of new data
or the update of existing data. This database log can be used to ensure that a
failure does not leave the database in an inconsistent state. The naming
convention used for the database log files is Syyyyyyy.LOG. These logs are
stored within the database directory by default. It is possible to configure the log
file path so that the logs are stored elsewhere.

4.1.2.4 Control Files
These files are used by the database manager to verify that the database is
complete and consistent. The following list contains the control files used by the
database:

• SQLOGCTL.LFH : This file is used to help track and control all of the database
log files.

• SQLINSLK, SQLTMPLK : These files are used to help ensure that a database
is only used by one instance of the database manager.

• SQLSPCS.1 : This file contains the definition and current state of all
tablespaces in the database.

• SQLSPCS.2 : This file is a copy of SQLSPCS.1.

• SQLTAG.NAM : There is one of these files in each container subdirectory.
They are used by the database manager when you connect to the database
to verify that the database is complete and consistent. These files are only
used for SMS tablespaces.

4.1.2.5 Directory Files
The directory files are used for accessing both local and remote databases.
These directories contain information which ensures that access to a database is
transparent to users and applications, regardless of physical location of the
database. These directories are not the same as an AIX filesystem directory.
They are stored as structured files within the database environment. Oracle
does not have an equivalent directory structure.

DB2 uses three types of database directories to identify the location of the
databases, nodes and connection information.

The three directories can be summarized as follows:

• The Database Directories identify the name, alias and physical location of
each cataloged database. There is a System database directory and Local
database directory

• The Node Directory contains an entry for all nodes to which your database
client can connect. Each entry contains the node′s name, its communication
information, and instance information if it exists.

• The Database Connection Services (DCS) Directory is only used if DDCS is
installed on your system. It contains an entry for each DRDA database that
your node can access.

Figure 12 on page 41 is an example of how the various directories interact. In
the example, a database called DB2DB exists on a server machine. The
hostname of the server machine is ′db2serv′. This database has also been

40 DB2 Version 2 Conversion Guide

cataloged on the server under the name ′TORONTO3′. A user local to the server
could use either of these names to connect to the database.

The client workstation has a database called ′TOR3′. From the Database
Directory, we see that ′TOR3′ is an alias for the database ′TORONTO3′ on the
node ′TORONTO′ When a user on the client connects to ′TOR3′, this information
is extracted from the Database Directory along with the node information from
the Node Directory. From this information, the location of the database is
determined, and a remote connection is established.

By doing this, is it possible to access both local and remote databases in exactly
the same way. The user or application does not have to keep track of the
physical location of a database.

Figure 12. Example of Directories Interacting

The directory information can be viewed or modified using the following
commands:

• LIST DATABASE DIRECTORY

• LIST DCS DIRECTORY

Chapter 4. Storage 41

• CATALOG

Figure 13 shows the results of the List Databases Directory command.

� �
$ db2 list database directory

System Database Directory

Number of entries in the directory = 1

Database 1 entry:

Database alias = TITI
Database name = TITI
Local database directory = /home/jcb
Database release level = 6.00
Comment = A Test database
Directory entry type = Indirect
Authentication = SERVER� �

Figure 13. Example of a List Database Directory

4.1.2.6 Configuration Files
Configuration files contain parameter values that define the allocated resources
for the DB2 instance and for the individual databases.

There are two types of configuration files.They are the database manager
configuration file for the DB2 instance as a whole and the database configuration
file for each individual database.

The database manager configuration file is created when an instance of DB2 is
created. Its parameters define the available system resources at a global or
instance level. This is independent of any individual database stored within the
instance. Many of these parameters can be changed. There is one database
manager configuration file for each installation of a instance.

The database configuration file is created when a database is created, and it
resides where that database physically resides. There is one database
configuration file per database. Its parameters specify the amount of resources
available for that database.

These files cannot be directly edited. The following commands are used to
update and list the configuration.

• GET DATABASE MANAGER CONFIGURATION

• UPDATE DATABASE MANAGER CONFIGURATION ...

• GET DATABASE CONFIGURATION FOR dbname

• UPDATE DATABASE CONFIGURATION FOR dbname ...

42 DB2 Version 2 Conversion Guide

4.1.2.7 Estimating Space Requirements for Tables
Table 7 provides a general rule for estimating the size of a database. Caution
should be taken when allocating space for the system catalogs if they reside in a
DMS tablespace. The size of a table in DMS tablespaces is also dependent on
the tablespace extent size.

Table 7. Sizing the Database

Object Formula

System catalog tables
When a database is initially created, about 420 KB of system tables
are created. These system tables will grow as user tables, views,
indexes, authorizations, and packages are added to the database.

User data tables

(average row size + 8) * numbers of rows * 1.5

The average row size is the sum of the average column sizes. For
long field data and large object data, refer to the product
documentation for information on how these are stored.

Index space

(average index key size + 8) * number of rows * 2

The average index key size is the byte count of each column in the
index key. Temporary space is required when creating the index. The
maximum estimation is (average index key size + 8) * number of
rows * 3.2.

Log file space

The amount of space (in bytes) required for logging is minimally

(logprimary * (logfilsiz + 2) * 4096) + 8192

If the database is configured for circular logging and secondary logs
are used during interaction with the database, space must be added
for these files during run time: (logsecond * (logfilsiz + 2)).

Temporary work space
The amount of required disk space will be totally dependent on the
queries, and therefore space is difficult to estimate.

4.2 Logical Storage Devices
Both Oracle and DB2 divide the database into separate storage elements. This
division allows an independence between the database manager′s conceptual
storage model and the physical storage.

4.2.1 Logical Storage Devices in Oracle
A database is divided into multiple logical storage units called tablespaces. The
usable data of an Oracle database is logically stored in the tablespace and
physically stored within the data files associated to the tablespace.

When an Oracle database is created, space is pre-allocated for the tablespace
data files. The logical allocation of space is broken down into data blocks,
extents and segments.

At the finest level of granularity, an Oracle database′s data is stored in data
blocks (also called logical blocks, Oracle blocks or pages). One data block
corresponds to a specific number of bytes of physical space on disk. The data
block size is specifically set for each Oracle database at the time of database
creation.

Chapter 4. Storage 43

The next level of logical database space is called an extent. An extent is a
specific number of contiguous data blocks that area allocated for storing data.

The level of logical database storage above an extent is called a segment. A
segment is a set of extents that have been allocated for a specific type of data
structure and stored within the same tablespace. There are five segment types:

• Data segment

• Index segment

• Rollback segment

• Temporary segment

• Bootstrap segment

Oracle allocates segment space using extents. Therefore, when the existing
extents of a segment is full, another extent for that segment is allocated.
Because the extents are allocated as required, the extents of a single segment
may not be contiguous on disk and may exist in multiple data files. However, a
single extent must be fully contained within a single data file. The allocation
space is dependent on the parameter defined by the storage clause. Such as
MINEXTENTS, MAXEXTENTS, PCTINCREASE, INITIAL, or NEXT.

Figure 14 shows the relationships between the different data structures that
Oracle uses to allocate physical space and create the logical database storage.

┌────────────────┬───┐
│ Instance │ ORACLE_SID │
├────────────────┼───┤
│ Database │ ORACLE_SID │
├────────────────┼─────────────────────────────────┬───────────────────┤
│ Tablespace │ SYSTEM │ USERS │
├────────────────┼─────────────────────────────────┼───────┬───────────┤
│ Data files │ dbsyst.data │ u1.dt │ u2.dt │
├────────────────┼─────────┬───────┬───────┬───────┼───────┼───────┬───┤
│ Segments │ dt │ idx │ rbs │ boot │ temp │ dt │idx│
├────────────────┼───┬─────┼───────┼───┬───┼───────┼───┬───┼───┬───┼───┤
│ Extents │ │ │ │ │ │ │ │ │ │ │ │
├────────────────┼─┬─┼─┬─┬─┼─┬─┬─┬─┼─┬─┼─┬─┼─┬─┬─┬─┼─┬─┼─┬─┼─┬─┼─┬─┼─┬─┤
│ Logical Blocks │
├────────────────┼┬┤
│ Physical blocks│││
└────────────────┴┴┘

dt - Data segment boot - bootstrap segment
idx - index segment temp - temporary segment
rbs - rollback segment

Figure 14. Logical Storage Structure in Oracle

Each Oracle database contains a tablespace named SYSTEM, which is
automatically created when the database is created. The SYSTEM tablespace
contains the data dictionary tables for the entire database. The SYSTEM
tablespace must always be kept online.

44 DB2 Version 2 Conversion Guide

It is possible to enlarge the size of a database by adding an additional data file
to an existing tablespace. However, the new data file will be used only when the
first data file of this tablespace is full.

Note : In DB2 Version 1, there exist segment directories. These directories are
not related to the segments in Oracle. The DB2 Version 1 segments were
subdirectories where the data files were stored. In DATABASE 2 for AIX Version
2, when you use an SMS tablespace, these subdirectories are called containers,
rather than segments.

4.2.2 Logical Storage Devices in DB2

4.3 logical
Like Oracle, a DB2 database is divided into logical storage units called
tablespaces. The data of a DATABASE 2 for AIX Version 2 database is logically
stored in the tablespace and physically stored in the containers associated with
the tablespace. A container is a generic term used to describe the allocation of
space to a tablespace. The container in DB2 is much like the data files found in
Oracle A container can be any of the following:

• File (DMS tablespace container)

• Directory (SMS tablespace container)

• Logical Volume (DMS tablespace container)

To increase a tablespace (DMS only), you can add more containers to it.

There are two commands to list tablespaces and their containers:

• LIST TABLESPACES [SHOW DETAIL]

• LIST TABLESPACE CONTAINERS FOR tablespace-ID [SHOW DETAIL]

Figure 15 on page 46 shows the results of the List Tablespaces [SHOW DETAIL]
command.

Chapter 4. Storage 45

� �
 $ db2 LIST TABLESPACES

Tablespaces for Current Database

 Tablespace ID = 0
 Name = SYSCATSPACE
 Type = Database managed space
 Contents = Any data
 State = 0x0000

 Tablespace ID = 1
 Name = TEMPSPACE1
 Type = Database managed space
 Contents = Temporary data
 State = 0x0000

 Tablespace ID = 2
 Name = USERSPACE1
 Type = Database managed space
 Contents = Any data
 State = 0x0000

 $ db2 LIST TABLESPACE CONTAINERS FOR 2 SHOW DETAIL

Tablespace Containers for Tablespace 2

 Container ID = 0
 Name = /u/jcb/user.fl
 Type = File
 Number of tablespaces = 1
 Total pages = 1000
 Useable pages = 992
 Accessible = Yes

� �
Figure 15. Example of Tablespace and Container Lists

An extent is a contiguous allocation of space within a tablespace container. The
extent is allocated to a single type of database object. This allocation consists of
multiple pages of 4 KB each. The extent is given a default size at the time of
database creation. The default size of an extent is 32 pages, and each page is 4
KB. The extent size for a tablespace indicates the number of pages of table data
that will be written to a container before data will be written to the next
container.

Figure 16 on page 47 shows the relationship between these DATABASE 2 for
AIX Version 2 data structures.

46 DB2 Version 2 Conversion Guide

┌────────────────┬───┐
│ Instance │ DB2INSTANCE │
├────────────────┼──┬──────────┤
│ Database │ Database1 │Database2 │
├────────────────┼───────┬───────┬───────────┬─────┬────────┼────┬─────┤
│ Tablespace │ CAT1 │ TEMP │ USERS │ LOB │ INDX │CAT2│ │
├────────────────┼───────┼───────┼─────┬─────┼─────┼────────┼────┼─────┤
│ Containers │ s1.dt │tmp.dt │u1.dt│u2.dt│l1.dt│ idx.dt │ │ │
├────────────────┼─┬─┬─┬─┼─┬─┬─┬─┼──┬──┼──┬──┼─────┼────────┼────┼─────┤
│ Extents │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
├────────────────┼┬┼┬┼┬┼┬┼┬┼┬┼┬┼┬┼┬┬┼┬┬┼┬┬┼┬┬┼┬┬┬┬┬┼┬┬┬┬┬┬┬┬┼┬┬┬┬┼┬┬┬┬┬┤
│ Pages │││
├────────────────┼┼┤
│ Physical blocks│││
└────────────────┴┴┘

CAT1 = SYSCATSPACE for the database Database1
TEMP = TEMPSPACE1 for the database Database1
USERS = USERSPACE1 for the database Database1
CAT2 = SYSCATSPACE for the database Database2
LOB = tablespace for Long OBject
INDX = tablespace for indexes

Figure 16. Logical Storage Structure in DATABASE 2 for AIX Version 2

A DATABASE 2 for AIX Version 2 database contains at least three tablespaces:

• Catalog tablespace, which contains all the system catalog tables for the
database. This tablespace is similar to the Oracle SYSTEM tablespace. This
tablespace is called SYSCATSPACE and it cannot be dropped.

• User tablespace, which contains all user-defined tables. The USERSPACE1
tablespace is created at the time of database creation. This is the default
user tablespace.

• Temporary tablespace, which contains all the temporary tables. By default,
one tablespace, called TEMPSPACE1, is created. A database must have at
least one temporary tablespace.

It is important to note that in DB2 the tablespace containers are are written to in
a round-robin manner. The database manager writes the first extent of the
object to the first container in the tablespace, the second extent of the object on
the second container in the tablespace, and so on until all containers have had
an extent written to them. This is different from Oracle, which only writes to a
second data file only when the first data file has been filled.

4.4 Database Storage Elements
Both Oracle and DB2 use tablespaces to contain the database data. Within a
tablespace are tables and indexes. The allocation of space for these object may
be different between the two systems. This chapter will discuss how the space is
allocated for these objects.

Chapter 4. Storage 47

4.4.1 Tables
In Oracle, you can specify a tablespace name when you create a table. If you do
not specify a name, the table is placed in the table owner′s default tablespace or
in the default SYSTEM tablespace.

When creating a table, a data segment is automatically allocated in the
associated tablespace. You can control the allocation of space for a table ′s data
segment and the use of this reserved space in the following ways:

• You can control the amount of space of the data segment′s extents by setting
the storage parameters for the data segment (INITIAL, NEXT, PCTINCREASE,
and so on).

• You can control the use of the free space in the data blocks that constitute
the data segment′s extents by setting the PCTFREE and PCTUSED
parameters for the data segment.

In DB2, as in Oracle, you can specify a tablespace name when you create a
table. If you do not specify a tablespace name, the table is created in the first
user-created user tablespace. If none are found, the table is placed into the
default system-created user tablespace, USERSPACE1. If USERSPACE1 has been
dropped, the table creation fails.

In addition, DB2 allows you to place the data contained in the LONG columns of
a table into a separate tablespace. This is specified when the table is created.

4.4.2 Indexes
In Oracle, you can specify a tablespace name for an index during the create
index statement. Otherwise, the indexes will be placed in the default tablespace
of the user.

In DB2, if you specify a tablespace name for an index during the create table
statement, indexes for that table will be stored in the named tablespace.
Otherwise, the indexes will be stored in the same tablespace as the table.

4.4.3 Extent Allocation in DATABASE 2 for AIX Version 2
One of the new configuration parameters in DATABASE 2 for AIX Version 2 is
DFT_EXTENT_SZ. This is defined at the database level and may vary between
databases. It determines how many pages are written to a container before
writing to the next container. The default size for DFT_EXTENT_SZ is 32 (4 KB
page). If you do not alter this value, all your tablespaces within the database
will have this default value. The range of values for DFT_EXTENT_SZ is between
two and 256 pages.

You may still change the number of pages written before writing to another
container at the tablespace level. This change can be done at tablespace
creation with the parameter EXTENTSIZE. Care should be taken to determine the
correct size since, once it is set for a tablespace, it cannot be altered. This size
may have an impact on space utilization and performance.

The database manager will try to evenly distribute the table′s data among the
containers. In doing so, the database manager writes up to a defined number of
pages to each container before writing to the next container. The number of
pages written to a container before writing continues in the next container is
called EXTENTSIZE. Once the database manager has written to all the containers

48 DB2 Version 2 Conversion Guide

allocated to the tablespace, it will write back to the one it started with. This
round-robin process of writing to the containers is designed to balance the load.

Figure 17 shows an example of the extent allocations for tablespace that
contains two tables. The first table is the DEPT table, and it fills four extents. The
second table is the EMPLOYEE table that contains only three extents. The
extents that make the tables have been evenly spread over the three containers.

Figure 17. Use of Containers and Extents in DATABASE 2 for AIX Version 2

When selecting an extent size, you should consider:

• The size of the tables in the tablespace

Space in DMS tablespaces is reserved for a table an extent at a time. If you
have a table that is much smaller than an extent in the tablespace, some
space will not be used. If, on the other hand, you have a very large table that
has a high growth rate, and you are using a DMS tablespace with a small
extent size, you could have unnecessary overhead related to the frequent
allocation of additional extents.

• The type of access to the tables

If access to the tables includes many queries or transactions that process
large quantities of data, pre-fetching data from the tables may provide
significant performance benefits.

• The minimum number of extents required

There must be enough space in the containers for five extents of the
tablespace; otherwise, the tablespace will not be created.

Chapter 4. Storage 49

4.4.4 Tablespace Translation Example
The following example translates the Oracle tablespace organization into DB2. In
this example, there are five tablespaces in Oracle:

• SYSTEM tablespace contains the data dictionary

Location : /data/systA.dbf
Size : 6400 * 4 KB pages

• RBS tablespace contains the rollback segments

Location : /data/rbsA.dbf
Size : 1024 * 4 KB pages

• TOOLS tablespace contains the tables for SQL*FORMS

Location : /data/toolA.dbf
Size : 6144 * 4 KB pages

• USERS tablespace contains the user′s tables

Location : /data/usrA.dbf
Size : 512 * 4 KB pages

• TEMP tablespace contains the temporary segments

Location : /data/tempA.dbf
Size : 138 * 4 KB pages

It is possible to create a similar organization in DB2. In DB2, we do not need to
create the tablespaces TOOLS and RBS because they are not required by DB2.
We can also add a tablespace for the LOB data.

Given the above, for DB2, we would create the following.

• The SYSTEM tablespace is called SYSCATSPACE in DB2.

Location : /data/systA.dbf
Size : 6400 * 4 KB pages

• The USERS tablespace contains the user′s tables.

Location : /data/usrA.dbf
Size : 512 * 4 KB pages

• The TEMP tablespace contains the temporary tables.

Location : /data/tempA.dbf
Size : 138 * 4 KB pages

• The LOBA tablespace is added to store LOB columns.

Location : /dev/rlobA
Size : 4000 * 4 KB pages

The location of the DB2 containers or data files could be the same as the files
used by ORACLE, or you could choose to restructure by using a combination of
SMS and DMS tablespaces.

An example of creating this new DB2 environment is shown in the following
steps. In this case, we will assume the instance owner is the user db2i, and the
primary group is db2adm. The first two steps should be done as the root user,
while the remaining steps should be done as the instance owner.

 1. Create a logical volume for the LOB tablespace container.

50 DB2 Version 2 Conversion Guide

• mklv -y lobA rootvg 4
• chown db2i.db2adm /dev/rlobA
• chmod 600 /dev/rlobA

This will create the logical volume, and set the correct ownership and
permissions on the device.

 2. Change the ownership and group for the existing containers of Oracle.

• chown db2i.db2adm /data/*.dbf
• chmod 600 /data/*.dbf

This corrects the ownership for all the ′dbf′ files in the data directory. The files
that are not being used can be deleted from this directory.

 3. Create the database.

• CREATE DATABASE A
CATALOG TABLESPACE
MANAGED BY DATABASE USING (FILE ′ / data/systA.dbf′ 6400);

This will create the new database, with the name A, with the system
catalog in the container specified. The user and temporary tablespaces
will default to SMS tablespaces.

 4. Drop the default user and temporary tablespaces, and create new tablespace
containers by using the old Oracle containers.

• CONNECT TO A
• CREATE TABLESPACE USERS

MANAGED BY DATABASE USING (FILE ′ / data/usrA.dbf′ 512)
• CREATE TEMPORARY TABLESPACE TEMP

MANAGED BY DATABASE USING (FILE ′ / data/tempA.dbf′ 138)
• DROP TABLESPACE TEMPSPACE1
• DROP TABLESPACE USERSPACE1

Note: We created the new tablespaces before dropping the old. The order of
creation did not matter for the user tablespace, but creation of temporary
tablespaces must be done in this order. This is because there must exist at
least one temporary tablespace within the database environment.

 5. Create the LOB tablespace.

• CREATE LONG TABLESPACE LOBSPACE
MANAGED BY DATABASE USING (DEVICE ′ / dev/rlobA′ 4000);

4.5 Log and Dump Devices
In DB2, as in Oracle, there are some files which collect the different events
received by the database manager.

In Oracle, you can find log and dump file in locations specified by the config.ora
and init.ora parameters:

• core_dump_dest

• background_dump_dest

• user_dump_dest

In DB2, you can find log and dump file in files specified in the database manager
configuration parameter:

Diagnostic data directory path (DIAGPATH) = /u/jcb/sqllib/db2dump

Chapter 4. Storage 51

52 DB2 Version 2 Conversion Guide

Chapter 5. Data Types

This chapter covers the differences between the data types of Oracle 7 and
DATABASE 2 for AIX Version 2. It discusses the data types that map directly from
Oracle to DB2 and how to work with the data types that do not have a direct
mapping.

The topics that are covered include:

Data-Type Cross Reference

Incompatible Data Types

DB2 User-Defined Types

5.1 Data Type Comparisons
The different data types managed by Oracle and DB2 are described in the
following sections. The aim of this is discussion is to help point out what
modifications are required to map the Oracle data types to DB2 data types.

5.1.1 Oracle Internal Data Types
Table 8 lists the Oracle data types. Each data type has a code which is used
internally by Oracle. The data type code of a column is returned by the Oracle
DUMP function. These codes are only for the internal use of Oracle, and they do
not play a role in the conversion to DB2.

Table 8. Oracle Internal Data Types

Data Type Description

VARCHAR2(n)
Variable length character string having maximum length n bytes. The
maximum length is 2000.

NUMBER(p,s)
Number having precision ′p′ and scale ′s′. The precision can range
from 1 to 38. The scale can range from -84 to 127.

LONG Character data of variable length up to 2 GB or 2E31 - 1.

DATE Valid date range from January 1, 4712 BC to December 31, 4712 AD.

RAW(n) Raw binary data of length n bytes. Maximum n is 255 bytes.

LONG RAW Raw binary data of variable length up to 2 GB.

ROWID
Hexadecimal string representing the unique address of a row in its
table. This data type is primarily for values returned by the ROWID
pseudo-column.

CHAR(n)
Fixed-length character data of length n bytes. Maximum n is 255.
Default n is 1 byte.

MLSLABEL
Binary format of an operating system label. This data type is used
primarily with Trusted Oracle.

The Oracle pre-compilers recognize additional data types to those listed in
Table 8. These data types are called external data types, and they are shown in
Table 9 on page 54.

 Copyright IBM Corp. 1995 53

Table 9. Oracle External Data Types

Data Type Oracle Data Type

CHARACTER(n) CHAR(n)

NUMERIC(p,s), DECIMAL(p,s), DEC(p,s) NUMBER(p,s)

INTEGER, INT, SMALLINT NUMBER(38)

FLOAT(p), DOUBLE PRECISION, REAL FLOAT

VARCHAR(n) VARCHAR(n)

LONG VARCHAR LONG

5.1.2 DATABASE 2 for AIX Version 2 Data Types
DB2 supports a large number of data types, including support for the following
data types:

• BLOB - Binary Large Object

• CLOB - Character Large Object

• DBCLOB - Double Byte Large Object

There can by any number of BLOB, CLOB or DBCLOB columns in a DB2 table.
DB2 makes it possible for users to define their own data types. This is done by
creating a User-Defined Types (UDTs). Refer to 5.3, “DB2 User-Defined Types”
on page 58 for further information about UDTs.

Table 10 gives an overall view of the different data types supported by DB2.

Table 10 (Page 1 of 2). DB2 Data Types

Data Type Description

INTEGER, INT
For a large integer. The range is -2147483648 to
+214783647.

SMALLINT For a small integer. The range is -32768 to +32767.

DOUBLE, DOUBLE PRECISION,
FLOAT

For a floating-point number. The number can be zero, or it
can range from -1.79769E+308 to -2.225E-307 or from
2.225E-307 to 1.79769E+308.

DECIMAL(p,s), DEC(p,s),
NUMERIC(p,s), NUM(p,s)

For a decimal number.

CHARACTER(n), CHAR(n)
For a fixed-length character string, of length n, which may
range from 1 to 254

VARCHAR(n),
 CHARACTER VARYING(n),
 CHAR VARYING(n)

For a variable character string, of length n, which may be
range from 1 to 4000.

LONG VARCHAR
For a variable character string with a maximum length of
32700.

GRAPHIC(n)
For a fixed-length graphic string, of length n, which may
range from 1 to 127.

54 DB2 Version 2 Conversion Guide

Table 10 (Page 2 of 2). DB2 Data Types

Data Type Description

VARGRAPHIC(n)
For a variable graphic string, of maximum length n, which
may range from 1 to 2000.

LONG VARGRAPHIC
For a variable graphic string with a maximum length of
16350.

DATE For a date. A three-part value (year, month, and day).

TIME For a time. A three-part value (hour, minute, and second).

TIMESTAMP
For a timestamp (year, month, day, hour, minute, second,
microsecond).

BLOB
Binary Large OBject is a variable string measured in
bytes that can be up to 2 GB long.

CLOB
Character Large OBject is a variable string measured in
bytes that can be up to 2 GB long. A CLOB is considered
to be a character string.

DBLOB

A Double Byte Large OBject is a variable string of
double-byte characters that can be up to 1073741823
characters long. A DBLOB is be considered to be a
graphic string.

5.1.3 Mapping Conversion
This section looks at each Oracle data type and translates it into a DB2 data
type. Care should be taken when looking at each type since the name of the data
type may be equivalent; however, the function may not be equivalent. The
mapping or translation of the Oracle types has been broken down into four
separate tables. These are:

• Number data type mapping (Table 11)

• Character data type mapping (Table 12 on page 56)

• Binary data type mapping (Table 13 on page 56)

• Date/Time data type mapping (Table 14 on page 57)

NOTE: In each table, the shaded rows indicate the data types in Oracle that are
different from those in DB2.

5.1.3.1 Number Data Type
The NUMBER data type is used to represent many numerical data types in
Oracle. These data types do not exist in DB2. Table 11 shows the function of
Oracle numerical data types and the equivalent in DB2.

Table 11 (Page 1 of 2). Number Data Types

Oracle Data Types DB2 Data Types

FLOAT(p) default p = 128 FLOAT

REAL FLOAT

DOUBLE PRECISION DOUBLE PRECISION

Chapter 5. Data Types 55

Table 11 (Page 2 of 2). Number Data Types

Oracle Data Types DB2 Data Types

NUMBER(p,s) default p = 38 NUMERIC(p,s) p <= 31

NUMBER(p,0) INTEGER

DECIMAL(p,s) DECIMAL(p,s)

DEC(p,s) DEC(p,s)

INT, INTEGER INT, INTEGER

SMALLINT SMALLINT

Be careful of the range value. If the value is out of the correct range, Oracle will
still insert the row. However, DB2 will reject it by trying to insert a number
greater than 32767 in a column which has the data type SMALLINT.

Also, Oracle rounds up numbers (n,0), whereas DB2 ignores all the numbers
after the decimal point. For example, Oracle would round 3.8 up to 4, while DB2
would return the value 3.

5.1.3.2 Character Data Types
The maximum size for the CHARACTER data type in DB2 is 254. With Oracle, the
maximum size is 255.

Table 12. Character Data Types

Oracle Data Types DB2 Data Types Comments

VARCHAR2(n) VARCHAR(n) 1 < = n < = 2 0 0 0

VARCHAR(n) VARCHAR(n) 1 < = n < = 2 0 0 0

CHAR VARYING(n) CHAR VARYING(n) 1 < = n < = 2 0 0 0

CHARACTER VARYING(n) CHARACTER VARYING(n) 1 < = n < = 2 0 0 0

CHARACTER(n) CHARACTER(n) n < = 2 5 4

CHAR(n) CHAR(n) n < = 2 5 4

CHARACTER(255) VARCHAR(255)

CHAR(255) VARCHAR(255)

LONG VARCHAR LONG VARCHAR

LONG CLOB(2 GB)

5.1.3.3 Binary Data Types
Oracle supports only one column of the LONG type per table. DB2 does not have
this limitation since any table may contain multiple columns of the equivalent
DB2 type. The mapping of these types can be seen in Table 13.

Table 13 (Page 1 of 2). Binary Data Types

Oracle Data Types DB2 Data Types Comments

RAW(n) CHAR(n) FOR BIT DATA n < = 2 5 4

56 DB2 Version 2 Conversion Guide

Table 13 (Page 2 of 2). Binary Data Types

Oracle Data Types DB2 Data Types Comments

RAW(255) VARCHAR(255) FOR BIT DATA

LONG RAW BLOB(2 GB)

5.1.3.4 Date/Time
The Oracle data type DATE indicates year, month, day, hour, minute, and
second. It does not correspond to the type DATE of DB2 because the DATE data
type in DB2 contains only the year, month and day. In DB2, the data type
TIMESTAMP contains all the information from the year through to the seconds
and fractions of a second. The mapping of the Oracle DATE will depend on the
amount of information you require in the DB2 data type.

To extract the DATE of Oracle, you must use a format function, such as to_char.

• The TIMESTAMP data type format in DB2 is
YYYY-MM-DD-HH24.MI.SS.mmmmmm. The function in Oracle which creates
this format is called to_char(a_date,′YYYY-MM-DD-HH24.MI.SS′).

• The DATE data type format in DB2 is MM/DD/YYYY. The function in Oracle
which creates this format is to_char(a_date,′MM/DD/YYYY ′)

• The TIME data type format in DB2 is HH24:MI:SS. The function in Oracle
which creates this format is to_char(a_date,′HH24:MI:SS′)

There are additional formats for date and time to the ones shown in the above
examples.

Table 14. Date/Time Data Types

Oracle Data Types DB2 Data Types Comments

DATE TIMESTAMP All information. Be careful of the format

DATE DATE Only the date

DATE TIME Only the time

5.2 Data Type Incompatibilities
Some types, such as ROWID (block.row.tuple), are unique to Oracle. We can
assimilate some of these types. For example, DB2 has a unique row identifier
(RID), but it is not specified by the user in the Data Manipulation Language
(DML) and is therefore slightly different from the ROWID in Oracle.

Some of the of Oracle data types have no equivalent in DB2, for example,
ROWID and MLSLABEL. But for each of them, there is a type that can be
considered to be an equivalent.

The data types that pose the most problem during the conversion from Oracle
are:

• NUMBER

• DATE

Chapter 5. Data Types 57

DB2 also offers some additional data types that have no corresponding types in
Oracle. These data types include:

• GRAPHIC

• VARGRAPHIC

• LONG VARGRAPHIC

• TIME

• TIMESTAMP

• CLOB

• DBLOB

• BLOB

5.3 DB2 User-Defined Types
DB2 offers the possibility to define your own data types. This is achieved by
using the features in DATABASE 2 for AIX Version 2 to create a User-Defined
Type (UDT), which is a unique type based on standard DB2 data types.

We can use this functionality to create types corresponding to the Oracle data
types or to create our own types that more closely match the values being
stored.

As an example, this capability could be used to create a type that matches the
Oracle ROWID type. This would be done by using the following statement:

CREATE DISTINCT TYPE ROWID AS CHAR (18) WITH COMPARISONS

Another use of the UDT capability would be the creation of a type, such as INCH.
To do this, you would use the statement:

CREATE DISTINCT TYPE INCH AS INTEGER WITH COMPARISONS

These UDTs are strongly typed. This means that a UDT, such as INCH, cannot be
compared to an INTEGER, even though it is based on the integer type. To do
such a comparison, a casting function must be used. By creating the
User-Defined Function (UDF) with comparisons, the casting functions will
automatically be generated. For further information on User-Defined Functions
and Types you should refer to the documentation supplied with DATABASE 2 for
AIX Version 2.

5.4 Data Type Conversion Example
This example translates an Oracle table to a DB2 table. The definition of the
table can be seen in Figure 18 on page 59, and it involves the data types date,
number, raw, and char (character).

58 DB2 Version 2 Conversion Guide

� �
Oracle> cat DDL_for_oracle.sql
drop table tab;
create table tab (

a1 date,
a2 number(5,3),
a3 raw(255),
a4 char(5));

insert into tab values (SYSDATE,15.86,HEXTORAW(′ AABBCCDDEEFF′) , ′ TITI′) ;
insert into tab values (SYSDATE,11.186,HEXTORAW(′0011223344FF′) , ′ TOTO1′) ;
exit;
Oracle> sqlplus scott/tiger @DDL_for_oracle.sql� �

Figure 18. The File DDL_for_oracle.sql

The steps in the table translation are as follows:

 1. Use the file extract_insert_for_db2.sql, as shown in Figure 19, to extract the
INSERT order. This will create a file containing the statements that will be
used to insert the data into DB2. The statements will be saved in the file
insert_for_db2.sql.

� �
Oracle> cat extract_insert_for_db2.sql
set head off;
set line 1048;
spool insert_for_db2.sql;

select ′ INSERT INTO tab VALUES (′ ′ ′ | | rowid || ′ ′ ′ , ′ ′ ′ | |
to_char(a1,′ YYYY-MM-DD-HH24.MI.SS′) | | ′ ′ ′ , ′ | |
a2 || ′ , x′ ′ ′ | | RAWTOHEX(a3) || ′ ′ ′ , ′ ′ ′ | | a4 || ′ ′ ′) ; ′

from tab;
exit;
Oracle> sqlplus scott/tiger @extract_insert_for_db2.sql
Oracle> cat insert_for_db2.sql

INSERT INTO tab VALUES (′00000502.0000.0001′,′1995-04-17-16.59.24′ , 15 .86 ,
x′ AABBCCDDEEFF′ , ′ TITI ′) ;
INSERT INTO tab VALUES (′00000502.0001.0001′,′1995-04-17-16.59.24′ ,11.186
,x′0011223344FF′ , ′ TOTO1′) ;

� �
Figure 19. Files extract_insert_for_db2.sql and insert_for_db2.sql

 2. Modify the file DDL_for_oracle.sql, as shown in Figure 18, to create the
DDL_for_db2.sql. The file is created with the assistance of the information
contained in Table 11 on page 55, Table 12 on page 56, Table 13 on
page 56, and Table 14 on page 57.

Chapter 5. Data Types 59

� �
$ cat DDL_for_db2.sql
drop table tab;
drop distinct type ROWID;
create distinct type ROWID as character(18) with comparisons;
create table tab (

rowid ROWID,
a1 timestamp,
a2 numeric(5,3),
a3 varchar(255) for bit data,
a4 char(5));

quit;

� �
Figure 20. The File DDL_for_db2.sql

 3. Run DDL_for_db2.sql to create the table in DB2.

 4. Run insert_for_db2.sql to load the data into the table.

� �
$ db2 connect to SAMPLE
$ db2 -tvf DDL_for_db2.sql
$ db2 -tvf insert_for_db2.sql

� �
Figure 21. Run the DDL Statements

60 DB2 Version 2 Conversion Guide

Chapter 6. Database Schema

This chapter covers the differences between database schema objects in Oracle
and DB2. It also covers the differences that exist between DB2 and Oracle in the
following database objects:

• Tablespaces

• Tables, Views and Indexes

• Clusters and Constraints

• Aliases

• Schema

• Users, Packages and Privileges

• Stored Procedures and Triggers

• Catalogs

6.1 Tablespaces
A database can be logically divided into tablespaces. A tablespace can be used
to help partition system information from user information, or it could be used to
help partition information across physical storage media to help improve
performance.

6.1.1 Oracle Tablespaces
In Oracle a tablespace can exist in one of two states. The tablespace can be
online or offline. When the tablespace is online, it is accessible by the users, and
the data contained within that tablespace may be updated. In the offline state,
the tablespace in not available to the users. A tablespace may be places in the
offline state so that the administrator can perform administrative tasks.

Each Oracle database contains a tablespace called SYSTEM. The SYSTEM
tablespace is created when the database is created. It contains the data
dictionary of the database tables and objects. This tablespace cannot be taken
offline because it is required for access to any of the database objects.

Tablespaces are made up of data files. It is possible to increase the size of a
tablespace by adding additional data files to it. For further information on
tablespaces and datafiles, refer to 4.1.1, “Oracle 7 Physical Structure” on
page 35

6.1.2 DB2 Tablespaces
DATABASE 2 for AIX Version 2 divides the database into tablespaces in the
same way that Oracle does. However, DATABASE 2 for AIX Version 2 supports
two different types of tablespaces. The first type is a System Managed Space
(SMS) and the second a Database Managed Space (DMS). The DMS tablespace
is similar to an Oracle tablespace. It is possible to use both types of tablespaces
within a single database. It is possible to increase the size of a DMS tablespace
in a similar way that Oracle is able to increase the size of its tablespaces.
However, there are some differences in the way space is allocated for the

 Copyright IBM Corp. 1995 61

database objects within the tablespace. This is covered in more detail in 4.1.2,
“DATABASE 2 for AIX Version 2 Physical Structure” on page 37.

6.2 Tables, Views and Indexes
Within a tablespace, the tables, views and indexes exist. In general, data is
stored within the table. This may be user data or system data. Indexes are
created to speed-up access times on table information. Views are used to look
at existing tables in different ways. A view looks like another table; however, it is
actually referencing existing tables.

This section discusses each of these topics and outlines the differences in the
implementation of them in Oracle and DB2.

6.2.1 Tables
A table is a collection of data, logically arranged into rows and columns. The
basic way in which you use tables in Oracle and DB2 is the same. However,
there are some differences in the way that tables can be defined and how the
table information is stored within the database.

Oracle Tables

A single table in Oracle is unable to span across multiple tablespaces. The only
division of an object across tablespaces is the ability to place the indexes of a
table into a separate tablespace. There is no limit on a the number of rows,
indexes or columns in a table other than the fact that each table may only
contain one column of data type LONG.

DB2 Tables

In DB2, a table will not usually span across a tablespace. Like Oracle, it is
possible to store the indexes for a table in a separate tablespace. However, a
DB2 table supports multiple columns of the equivalent data types to the Oracle
LONG data type. It is also possible to store these types in a separate
tablespaces. Also, like Oracle, there are no limits on the number of rows,
indexes or columns that a table may contain.

The other difference between Oracle and DB2 is in the system catalogs that are
created when a database is created. In DB2, most of these tables are read-only.
However, some of the tables may be updated by a user. These tables involve
statistical information, and the values are used by DB2 to optimize SQL
statements. By updating these tables, it is possible to simulate different
environments and test the performance of an SQL statement under the set
conditions.

6.2.2 Views
A view is an alternative representation of data from one or more tables. The
data is not duplicated since the view accesses the original table data. To the
user, a view appears to have all the properties of a table. The view may include
any number of columns from multiple tables or other views. Because a view
accesses the data contained within other tables, the only space it requires is for
its definition.

62 DB2 Version 2 Conversion Guide

Any statement performed on a view is actually being performed on the table or
on tables the view accesses. This means that if a view is used in an SQL update
statement, the table is actually being updated. Similarly, if the table is changed,
then these changes are reflected in the view.

Both Oracle and DB2 provide for a ′ with check option′ clause when creating a
view. This will check that any updates or inserts of data from a view conform to
the select clause of the view. Oracle also allows a specific constraint to be
specified when the view is created. DB2 does not allow you to specify a
constraint at the view level. However, the with check clause in DB2 may be
specified as either local or cascading. A local check clause will only check that
the view′s select clause is satisfied when performing an SQL operation, while a
cascading check clause will also check the selects on any of the tables or views
that the current view is dependent upon.

6.2.3 Indexes
An index is a list of the locations of rows, sorted by the contents of one or more
specified columns. Indexes are used to speed-up access to a table, but they can
be also used to keep a check on the rows of a table. For example, to restrict the
entry of duplicate values in a column or group of columns.

Oracle Indexes

When processing an SQL request, Oracle can choose to use some or all of the
defined indexes to perform the request. An index is created on one or more
columns of a table and is automatically maintained and used by Oracle. Changes
to table data are automatically incorporated into all the indexes defined for that
table. Each index in Oracle is contained within its own segment. This segment
is allocated when the index is created. You are able to specify the storage
parameters for allocation of the index. These parameters include the number of
extents and tablespace name. You can also refer to a schema name or a cluster
when creating an index. An Oracle index can contain up to sixteen columns, and
there can be any number of indexes on a table.

DB2 Indexes

Indexes in DB2 are the same in function as an Oracle index. The main
differences between indexes in Oracle and DB2 are that the indexes in DB2 for a
particular table are stored within a single file when using an SMS tablespace.
Also, a DB2 index may be specified as unique. This uniqueness means that the
column or columns that make up the index may not contain duplicates. Oracle
specifies the uniqueness of a column or columns as a constraint on a table. The
index can be defined when the table is created or at a later time.

6.3 Clusters and Constraints
A cluster is a concept available only in the Oracle environment. It involves
multiple tables that have one or more columns in common that share the same
data. These common columns are physically stored in the same datablocks on
disk.

A constraint is a rule or restriction on the values of a table ′s data that is
enforced at the database level, rather than at the object or application level. By

Chapter 6. Database Schema 63

using constraints, we can guarantee that values of a column conform to the rules
we specify for that table, before the value is inserted, updated or removed.

6.3.1 Oracle Clusters and Constraints
Clustering is a method used to store table data. A cluster is a group of one or
more table columns from multiple tables that are physically stored together
because they share common data and may often be used together. Disk access
improvements may be seen due to the related rows being physically stored in
the same data blocks.

The columns included in a cluster are called cluster keys. It is recommended
that you should only cluster tables that are frequently joined on the cluster key
columns in SQL statements. This is because clustering multiple tables can
improve the performance of joins, but is likely to reduce the performance of full
table scans and insert or update statements that modify the cluster ′s key values.

Integrity constraints are defined at table level and stored as part of the table ′s
definition in the database′s data dictionary area. In this way, all database
applications must adhere to the rule, and any changes to a constraint need to be
made at the database level and will take effect on every application.

When a constraint is defined for an existing Oracle table and some existing data
does not satisfy the constraint, the constraint is not created. The statement is
rolled back and an error message returned. Oracle supports the following
integrity constraints:

NOT NULL These columns must contain a value other then null.

UNIQUE Duplicate values are not allowed in this column or set of
columns.

PRIMARY KEY Duplicate and null values are not allowed in these
columns.

FOREIGN KEY Each value in these columns must match a value in a
related table′s unique or primary key column. Creating a
foreign key also creates an index on its columns.

CHECK Check for values that do not satisfy the logical expression
of the constraint specified.

Oracle Keys

In Oracle, the term ″key″ is used to indicate a column or set of columns included
in a constraint definition to describe the relationships between the different
tables and columns of the database. There are different kinds of keys:

Primary key Is a unique identifier of the rows in a table.

Unique key Identifies the columns included in a unique constraint
definition.

Foreign key Identifies the columns included in a referential integrity
constraint definition. A referential integrity constraint can
be defined as a constraint that guarantees that the values
in the foreign key also exist in the primary key′s table.

Referenced key Identifies the unique or primary key of the table that is
referenced by a foreign key.

64 DB2 Version 2 Conversion Guide

6.3.2 DB2 Clusters and Constraints
As previously stated, DATABASE 2 for AIX Version 2 does not support clusters.
This section will concentrate on constraints and referential integrity.

DATABASE 2 for AIX Version 2 referential integrity constraints similar to those
found in Oracle. The difference in Oracle constraints and DB2 constraints lies in
the actual definition of the constraint. DB2 defines referential integrity constraints
and table check constraints.

Referential integrity constraints allow us to define any required constraints
between or within tables. The referential integrity constraint is a relationship
between a primary and a foreign key.

Table check constraints are conditions defined as part of the table definition, and
they verify that changed or inserted data in a table does not violate the
conditions. They also are used to specify conditions which are checked for each
row of a table. A check constraint designates the values or range of values that
a specific column of a base table can contain. These constraints may be turned
off by using the set constraints off statement. This will place the table in a
CHECK PENDING state. For more information on DB2 constraints, refer to the
DB2 for AIX Version 2 Information and Concepts Guide.

6.4 Synonyms and Aliases
Both Oracle and DB2 provide synonyms and aliases. However, they appear to
mean different things in each environment. This section looks at both synonyms
and aliases in each environment and describes their function.

An alias is an indirect method of referencing a table or view. It is commonly used
in SQL statements to allow independence from the qualified names of these
database objects. If a table or view changes, only the alias definition must be
changed. An alias can be used in any SQL statement except for the constraint
definition. An alias must be unique and can only refer to a table or view within
the same database. An alias can be defined for a table, view or alias. A table or
view can be referred to in an SQL statement by its name or by an alias that has
been defined for its name. Thus, aliases can be thought of as alternate names
for tables and views. When a database has been cataloged, it can be referred to
by an alias. Two databases with the same name on different nodes can be
cataloged with different aliases . The Oracle alias concept corresponds to the
correlation or synonym concept in DB2.

6.4.1 Oracle Aliases and Synonyms
An Oracle alias and synonym are similar in function. They differ in the way they
are defined and in the longevity of the alias or synonym.

Aliases

An alias in Oracle is an alternative name assigned to an existing database
object during the execution of an SQL statement. The alias exists only during the
SQL statement. An alias may refer to objects, such as tables, views, columns, or
values within the SQL statement.

Chapter 6. Database Schema 65

In Oracle, there is no CREATE ALIAS; so you must specify the alias for a table,
view or column during the SQL statement definition, and that alias will be valid
until the end of the SQL statement execution.

Synonyms

An Oracle synonym is different from the alias because you can create a
synonym for a table, view, sequence, procedure, function, package, or snapshot.
The synonym can be private or public and will last until it is dropped with the
DROP SYNONYM statement.

Like the alias, a synonym does not require any storage other than for its
definition. A public synonym is owned by all the users in the group public, while
a private synonym is owned by a specific user and is only available to that user.

6.4.2 DB2 Aliases and Synonyms
DATABASE 2 for AIX Version 2 provides both the alias capability and the
synonym capability as defined by Oracle. An alias in DB2 is the same as a
synonym. The statements CREATE ALIAS and CREATE SYNONYM are identical. What
Oracle refers to as an alias is called a correlated reference in DB2

Correlated Reference (Oracle Alias)

A correlated reference in DB2 can apply to a table, column, view or value within
an SQL statement. Like Oracle aliases, this value only holds for the duration of
the SQL statement. For detailed information on correlated references and their
use, refer to the DB2 SQL Reference for common servers Version 2.

Synonyms

As mentioned previously, a synonym in DB2 may also be referred to as an alias
within the DB2 documentation. Either term refers to a synonym that functions in
much the same was as an Oracle synonym.

A DB2 synonym or alias is created with the CREATE [ALIAS | SYNONYM]
statement. When an alias is created, it is available to all users connected to that
database. This alias or synonym remains effective until it is dropped by the DROP
[ALIAS | SYNONYM] statement.

6.5 Schema
A schema is a logical classification of all the objects owned by a user. A schema
is associated to a database user and is used to perform more than one DDL
operation on a set of objects owned by a user. A schema is not linked to any
particular tablespace. A single schema may be spread across multiple
tablespaces, and a single tablespace may contain multiple schemas.

6.5.1 Oracle Schema
In Oracle, the concept of a schema is used to indicate a collection of objects,
such as tables, views, synonyms, packages, and so on, that are related to a
database user.

66 DB2 Version 2 Conversion Guide

6.5.2 DB2 Schema
DATABASE 2 for AIX Version 2 has a similar concept of schema as found in
Oracle. All objects in DATABASE 2 for AIX Version 2 belong to a user. If an
object belongs to another user, it may be referenced by placing the user′s login
ID before the object name. For example, if there is a table ′ addr1′ owned by the
user ′ fred′ , another user may reference this table by using the name
′ fred.addr1′ . You may also prefix an object with a schema name in the same
way as a user.

Schema in Oracle can be used to grant a user access to a group of objects. To
accomplish this under DB2, you may create a new operating system group, and
rather than adding objects to a schema, you can grant the appropriate
permission to this group. When a user requires access to the object, you may
add the user′s ID to the group.

6.6 Users and Groups
This section will discuss the ways in which Oracle and DB2 manage users,
groups, roles, and privileges.

In the DB2 environment, a user directly equates to an operating system user that
has been created by the system administrator. To access the database, the user
only needs to set up the environment variables. Oracle defines a user within the
database environment itself. This means that a user at the operating system
level needs to set up the environment variables as well as enter another user ID
and password for Oracle.

This difference in user definition also leads to differences in the way privileges
are allocated to a user. DB2 allows privileges to be allocated to a user or to a
group. The group is again a direct mapping to the operating-system groups.
Oracle does not use groups; instead, it defines roles. The role is a group set of
privileges that can then be granted to a user. More details on the way users,
groups and roles are defined by the database managers can be found in 8.2,
“Users, Groups and Roles” on page 108.

6.6.1 Oracle Users and Groups
Oracle creates a set of users when a database instance is created. These users
are for system administration. The default users are:

INTERNAL The internal user is allowed to startup and shutdown the database.

SYS The sys user is the owner of the base tables and views of the data
dictionary.

SYSTEM The system user owns all additional tables and views that contain
administrative information used by the Oracle tools.

Oracle also create a default group called PUBLIC. This group provides access to
specific schema objects, like tables and views, to users belonging to this special
group. Every Oracle user belongs to the public group by default. Membership to
this group allows users to select from some of the data dictionary tables, grant
or revoke privileges to the public group, create links and synonyms, and assign
to the public group. As mentioned earlier, the public group is a special case.
Oracle would normally use roles to distribute privileges to multiple users.

Chapter 6. Database Schema 67

6.6.2 DB2 Users and Groups
DATABASE 2 for AIX Version 2 also has a default user in the database
environment. This user is the instance owner. When a DATABASE 2 for AIX
Version 2 instance is created, an operating system user ID is required. This user
becomes the instance owner and inherits all the database administration
privileges.

DB2 also has three default groups. These groups are not mapped to any
operating system group when the instance is created. It is up to the instance
owner to decide the operating system group that will inherit the database
authorizations that they provide. These groups are:

SYSADM Performs all system control tasks and database administration
activities.

SYSCTRL Performs operation on system resources. Has no access to database
data.

SYSMAINT Performs database maintenance operations.

Apart from these groups, there is also the normal database user and a special
authority, called DBADM.

DBADM Performs database administration only on the database where the
authority has been granted.

For a complete reference of the authorizations that SYSADM, SYSCTRL,
SYSMAINT, and DBADM provide, refer to figure Table 20 on page 110.

6.7 Packages
Packages under DB2 and Oracle are very different in the database objects that
they describe. Oracle refers to a package as a collection of objects, while DB2
uses the term package to describe the information stored in a database about an
SQL statement.

An Oracle package is a grouping of possibly related procedures, functions,
cursors, and variables, and it stores them as a package in the database. This
allows you to grant access to this package and in doing so, to grant access to all
of its contents. Oracle packages are created by using the CREATE PACKAGE
command, and the information about the package is stored in the system tables.

DATABASE 2 for AIX Version 2 defines a package as the information stored in
the database that is required to process specific SQL statements from a single
source file or application. The package is created when the source file is
precompiled during the binding of an application program.

The binding process is covered in Chapter 9, “Applications” on page 117.

6.8 Stored Procedures and Triggers
A stored procedure is a way to enable multiple users to perform an operation
using the same piece of code. This allows us to minimize the risk of data
corruption through incorrect coding and provide a single point of change should
the code need to be changed. When a user wishes to run this procedure or
function, they call it, and the database manager will retrieve the code and handle

68 DB2 Version 2 Conversion Guide

its execution. The implementation of stored procedures is different between the
Oracle and DB2 environments.

A trigger is a piece of code that will be executed automatically by the system
upon a specified event, such as an insert statement, update statement or delete
statement. Like stored procedures, the implementation of triggers is different
between the two database environments.

The following sections look briefly at the implementation of stored procedures
and triggers in the two database environments. For more details on the
DATABASE 2 for AIX Version 2, refer to Chapter 9, “Applications” on page 117
and the DATABASE 2 Application Programming Guide for common servers
Version 2.

6.8.1 Oracle Stored Procedures and Triggers
A stored procedure in Oracle logically groups a set of SQL and other PL/SQL
programming languages statements together to perform a specific task. It can
be executed interactively (for example, in an SQL*DBA environment) called by
name from an application or called from another procedure or trigger Oracle
also allows you to create and store functions which are similar to procedures but
which return a value.

Oracle stored procedures and functions are stored within the database itself and
are written in PL/SQL. Because these may contain PL/SQL they would have to
be re-written for DB2., as PL/SQL is not supported outside Oracle.

Types of triggers Oracle triggers can have special features that are defined at
execution time, such as the number of times the trigger is to be executed. A
trigger is invoked upon an SQL insert, update or delete statement. There are
also several types of Oracle triggers. They are:

Row Triggers Executed one for each row changed in a table.

Statement Triggers Executed once for each statement executed.

Before Triggers Executed just before the statement′s execution.

After Triggers Executed just after the statement′s execution.

It is possible to combine the before and after triggers with the row and statement
triggers. Finally, a trigger may be in an enabled state, or it may be disabled.

6.8.2 DB2 Stored Procedures and Triggers
In DB2, a stored procedure may be written in almost any supported
programming language. Some of these include C, COBOL and FORTRAN. A
DATABASE 2 for AIX Version 2 stored procedure is actually stored at the
database server, but outside the database. When a stored procedure is created,
it is bound to the database. This binding process creates a package in the
database that contains information about the external procedure. Once a
procedure has been bound to the database, it is accessible by the database
clients.

Like Oracle, DB2 also provides trigger capabilities. The triggers are stored in the
database and automatically called by the database manager, when required.
Triggers ensure that the business rules defined at the database creation time
are always respected, and if one of the rules changes, the only change needed
is made in the trigger statement, not in every application that uses it. In addition

Chapter 6. Database Schema 69

to triggers, DB2 provides constraints. A constraint may be able to replace a
trigger or a trigger and stored procedure combination.

As in Oracle, DB2 provides for before triggers and after triggers on SQL insert,
delete or update operations. Also, a trigger can be directed to perform the
operation for each row that is affected or for the entire statement.

By comparison, the triggers in both database managers are similar in
functionality and differ mainly in the way a trigger is defined. Stored procedures
are quite different in the way they are implemented, but perform a similar
function in the two database environments.

6.9 Catalogs
System catalogs are the tables that constitute the database′s data dictionary.
The catalog tables contain all the information about the database structures,
objects and definitions.

6.9.1 Oracle Catalogs
In Oracle, the system catalogs are another name for data dictionary. System
catalogs are a set of tables and views that are used in read-only reference about
the database. The catalogs store information about the logical and physical
structure of the database. The owner of the data dictionary tables is user SYS,
and the owner is the only user that can modify the tables.

The data dictionary is composed of base tables and views. The base tables are
accessed by the Oracle engine only and cannot be directly accessed by users.
The views provide a summary of the base table′s contents and simplify the
contents. This allows users to view the types of information stored in the system
catalogs. A complete list of the system catalogs has been provided in Table 27
on page 163.

6.9.2 DB2 Catalogs
DATABASE 2 for AIX Version 2 has the same concept of system catalogs. These
tables perform much the same function as in Oracle. The system catalog are
again divided into the base tables and a collection of simplified views.

The majority of the system catalog tables in DATABASE 2 for AIX Version 2 are
read-only. However, there are a number of tables that the user is able to
update. These tables contain statistical information used to optimize SQL
statements before they are executed. For a complete list of DB2 system
catalogs, refer to Appendix B, “IBM SQL Reserved Words” on page 159
Table 28 on page 166.

70 DB2 Version 2 Conversion Guide

Chapter 7. SQL Language Elements

This chapter compares the SQL language of Oracle 7 to that of DATABASE 2 for
AIX Version 2. There are examples of how to perform the different conversions
necessary and a discussion about the differences on the following topic areas:

Functions

DDL and DML Syntax

Constraints

Joins

Cursors

Reserved Words

DB2 Special Registers

7.1 Functions
This section discusses the functions available in Oracle and how they map to
DB2 functions. The conversion topics have been broken into the following topics:

• Oracle functions that map directly to DB2

• Functions that have differences in syntax or output

• Oracle functions that have no DB2 equivalent

• Additional DATABASE 2 for AIX Version 2 functions

In many cases, the functions are similar in the task they perform, but may be
cataloged under a different name. A complete list of Oracle 7 functions and the
equivalent DATABASE 2 for AIX Version 2 function can be found in Table 26 on
page 161.

For further information on topics covered in this chapter, you should refer to the
documentation supplied with your copy of DB2. Descriptions, such as that
contained in Database 2 SQL Reference for common server Version 2 , should be
referenced for further information on the DB2 functions.

Many of the functions used in Oracle map directly to a DB2 function. However,
care needs to be taken with functions that involve the following:

• Displaying output of numeric data

• Use of implicit data type conversion

• Use of the DATE data type or format

These areas are discussed in detail later in this chapter.

7.1.1 Compatible Functions
Table 15 on page 72 is a listing of the Oracle functions that map directly to a
DB2 function. These functions are equivalent in name, syntax, functionality and
output. Therefore, they require no modification in their use.

 Copyright IBM Corp. 1995 71

Some Oracle functions have an equivalent DB2 function, but the function may be
listed under a different name in DB2. The Oracle SQL could be changed to use
the DB2 name. Alternatively, a User Defined Function (UDF) could be created in
DATABASE 2 for AIX Version 2 to map internally to the same function name used
by Oracle.

For example, to translate a character string to uppercase in Oracle, the UPPER
function is used. In DB2, it is the UCASE function. A UDF, called UPPER, could be
created in DB2 and based on the DB2 UCASE function, as follows:

CREATE FUNCTION UPPER (CHAR(40)) RETURNS CHAR(40)
SPECIFIC UPPER SOURCE UCASE

The UDF would have the same name as the Oracle function, and so it allows the
Oracle code to remain unchanged.

Table 16 lists the Oracle functions that map to equivalent DB2 functions which
have different names.

Most arithmetic functions in Oracle and DB2 are compatible. There are some
syntactical differences which are discussed later. The main difference is in the
output that is displayed by the function. For example, given the following SQL
statements:

Table 15. Functions That Map from Oracle Directly to DB2

Oracle 7 DATABASE 2 for AIX Version 2

ABS ABS or ABSVAL

ASCII ASCII

CHR CHR

COUNT COUNT

MAX MAX

MIN MIN

LENGTH LENGTH

POWER POWER

SIGN SIGN

SOUNDEX SOUNDEX

SUM SUM

USER USER

Table 16. Oracle Functions with Different Names in DB2

Oracle 7 DATABASE 2 for AIX Version 2

LENGTHB LENGTH

LOWER LCASE

SYSDATE CURRENT DATE

UPPER UCASE

VSIZE LENGTH

72 DB2 Version 2 Conversion Guide

CREATE TABLE tab1 (col1 NUM(3,2))

INSERT INTO tab1 values(1.0)

SELECT AVG(col1) from tab1

We would find that the select statenebt in Oracle would return the value 1, while
DB2 would return the value 1.0. To get the same displayable output from DB2,
the INT function could be used as follows:

SELECT AVG(INT(col1)) from tab1

An example where the output has greater differences is in the CEIL function.
Given the statement:

SELECT CEIL(15.7) from tab1

Oracle would return 16. However, DB2 would return +1.60000000000000E+001. To
get the same displayable output from DB2, the INT function could be used in the
following manner:

SELECT INT(CEIL(15.7)) from tab1

As shown in the previous examples, you need to take care when dealing with
numerical output. The output may need to be modified via DB2 functions, such as
INT or DEC. Otherwise, the program may need to be altered to account for the
possible changes in output size.

Internal arithmetic operations in Oracle 7 and DB2 are similar; it is just the
manner in which the results are displayed that needs to be taken into
consideration during the conversion.

Table 17 lists the functions that are equivalent in syntax and function; however, if
the SQL were to remain unchanged, the output displayed by the statement would
be different in the two environments.

If the following Oracle functions are used, they may need to be modified when
converting to DB2 due to differences in the output produced, the syntax used or
how the function operates:

• CONCAT

The function, syntax and output is the same in DB2 as it is in Oracle. The
difference is that Oracle has implicit data conversion and will concatenate

Table 17. Functions with Different Output Formatting

Oracle 7 DATABASE 2 for AIX Version 2

AVG AVG

CEIL CEIL or CEILING

COS COS

EXP EXP

FLOOR FLOOR

LN LN or LOG

SIN SIN

SQRT SQRT

TAN TAN

Chapter 7. SQL Language Elements 73

columns of character and number types automatically. In DB2, the columns
must be compatible. For example, if you wish to concatenate a character and
a number, you must explicitly do the data conversion. An example of this
would be as follows:

SELECT CHAR(number1) CONCAT char2 from tab1

Implicit and explicit data conversion is discussed later in this chapter.

• INSTR and INSTRB

These Oracle functions map to LOCATE in DB2. The syntax is quite different
in Oracle. In Oracle, the syntax is INSTR(char1,char2[,n[,m]]),, while in DB2,
the syntax is LOCATE(source_string,search_string,[n]).

• LOG

The function is similar; however, Oracle allows the specification of base and
number. In DB2, the function LOG(n) returns the natural logarithm of ′ n′ ,
while LOG10(n) will return base 10 logarithm of the argument ′ n′ . The Oracle
function LOG(m,n), returns base ′ m′ of the value ′ n′ . The format of the
output is also different. As previously mentioned, you can use the INT
function to produce identical output from DB2.

• LTRIM

The operation and output is identical; however, the syntax is different
between the two environments. In Oracle, the syntax is LTRIM(char[,set]),
while in DB2 the syntax is LTRIM(char). In Oracle, if the optional parameter
′SET′ is not used, then the two functions are the same.

• MOD

The function, syntax and output are the same for this function on both Oracle
and DB2. The syntax is MOD(m,n), and the the difference is in that Oracle will
return ′ m′ if ′ n′ is 0, whereas DB2 will issue a message saying division by
zero attempted.

• NVL

This Oracle function maps to the NULLIF in DB2. The main consideration
here is that the data types must be compatible in DB2, while implicit data
type conversion is done in Oracle.

• REPLACE

The function and output are the same; however, the requirement of
parameters is different. Given the syntax REPLACE(char, search_string
[replacement_string]), the third parameter is optional in Oracle, while if it is
not specified in DB2, an error message will be returned.

• ROUND

The function is the same; the difference is in the syntax and output. The
syntax in DB2 is ROUND(n,m). In Oracle, m is optional. If m is not specified in
DB2, an error message is returned. If the output is a displayable numeric
result, then, as discussed previously, the use of the INT or DEC functions may
format the displayable output the same way Oracle does.

• RTRIM

The operation and output are identical; however, the syntax is different
between the two environments. In Oracle, the syntax is RTRIM(char[,set]),
while in DB2 the syntax is RTRIM(char). If the optional Oracle parameter
′SET′ is not used, then the two functions are the same.

74 DB2 Version 2 Conversion Guide

• SUBSTR

The operation, syntax and output are the same in both environments. The
difference is in the allowable parameters. Given the syntax
SUBSTR(char,m,[n]), Oracle allows m to be a positive or negative number,
while in DB2, the value must be positive.

• SUBSTRB

This Oracle function is performed by SUBSTR in DB2.

• TRANSLATE

The function and output are the same, but the syntax is different. Oracle
uses the syntax TRANSLATE(char,from,to), while the syntax used by DB2 is
TRANSLATE(char,to,from[,pad]) . The pad parameter in DB2 will make sure the
to parameter is added to the same length as the from parameter. Oracle
does not have this capability.

• TRUNC

The function is the same in both environments and the output requires the
same considerations previously discussed for arithmetic formatting of output.
Given the syntax TRUNC(n[,M]), the parameter m is optional in Oracle, but it is
mandatory for DB2.

7.1.2 Incompatible Functions
A lot of the compatibility issues come from data type conversion. Oracle
supports both implicit and explicit conversions. Implicit data type conversion is
when the database manager automatically converts one data type into another
so that it is compatible for a particular operation. Explicit data type conversion
is when the user must convert the data type using a function, before the values
are used. Automatic conversion of values from one data type to another is not
part of standard SQL. In the Oracle 7 Server SQL language Reference Manual,
Oracle recommends that you use explicit data type conversion, rather than
implicit conversions, for the following reasons:

• SQL statements are easier to understand when you use explicit data type
conversion functions.

• Automatic data type conversion can have a negative impact on performance,
especially if the data type of a column value is converted to that of a
constant rather than the other way around.

• Implicit conversion depends on the context in which it occurs and may not
work the same way in every case.

• Algorithms for implicit conversion are subject to change across software
releases and among Oracle products. Behavior of explicit conversions is
more predictable.

DB2 uses explicit conversion in all cases, except when a column of the data type
′DATE′ is assigned to a character string variable or string column. When this
occurs, the conversion to a string representation is done automatically.

For comparisons or concatenation operations in DB2, the data types must be
compatible. There are a number of DB2 functions that can be used to convert
data types. Some of these include ′CAST′, ′CHAR′, ′DECIMAL′, ′DIGITS′, and
′HEX′. These would then enable two different data types to be compared or
concatenated.

Chapter 7. SQL Language Elements 75

The following Oracle conversion functions do not directly map to an equivalent
DB2 conversion function. However, a similar function may exist, or could be
created, using user-defined types and user-defined functions.

• CHARTOROWID and ROWIDTOCHAR

CHARTOROWID converts a value from the ′CHAR′ or ′VARCHAR2′ data type
to the Oracle data type ROWID. As discussed in the data types chapter,
ROWID is specific to Oracle. When the rows are unloaded from Oracle,
columns of this data type are converted to the DB2 type, ′CHAR(18)′.

The following example shows how we can create a UDT called ROWID and a
UDF called CHARTOROWID. This will allow applications that use the data
type ROWID and the functions CHARTOROWID and ROWIDTOCHAR to be migrated
without change.

CREATE DISTINCT TYPE rowid as CHAR(18) WITH COMPARISONS;
CREATE FUNCTION CHARTOROWID (VARCHAR(18)) returns rowid

source rowid (VARCHAR(18));

CREATE TABLE tab1 (c1 rowid);
INSERT INTO tab1 VALUES(′ aa′) ;
SELECT * FROM tab1 WHERE c1=CHARTOROWID(′ aa′) ;

• HEXTORAW and RAWTOHEX

To map these function to DB2, you would need to define a column as ′FOR
BIT DATA′, and then you may use the HEX or X functions. For example:

1). The following could be done:

X′ FFFF′ representing the bit pattern ′1111111111111111′
X′4672616E6B′ representing the VARCHAR pattern of the

ASCII string ′ Frank′ in the SQL.

2). Either of the following insert statements could be used
given that C1 and C2 are defined as:

CREATE TABLE tab1 (
C1 CHAR(2),
C2 CHAR(2) FOR BIT DATA
)

INSERT INTO tab1 VALUES(′ aa′ , x′6161′)
INSERT INTO tab1 VALUES(′ bb′ , ′ bb′)

3). The following four select statements produce the
same result given the above table definition:

SELECT * FROM tab1 WHERE x′6161′ = c2
SELECT * FROM tab1 WHERE ′ aa′ ═ c2
SELECT * FROM tab1 WHERE c1 ═ c2
SELECT * FROM tab1 WHERE HEX(c1) ═ HEX(c2)

Again, it is possible to create a UDT, called HEXTORAW, to enable
applications to be converted to DB2 unchanged. Also, there is the possibility
of using the HEX function available in DB2 which returns the hexadecimal
representation of a value.

• TO_CHAR

TO_CHAR has many functions associated with it. Some of which are no
longer relevant in DB2, while others can be accomplished using other DB2
functions, such as DIGITS. DIGITS will convert a number into a character
string. The DATE data type is implicitly converted by DB2 into a character

76 DB2 Version 2 Conversion Guide

string. To use the formatting capabilities of the TO_CHAR function, you would
need to write a UDF or modify the application code to perform the formatting.

• TO_DATE

The TO_DATE function has many functions associated with it. Again, some of
them would no longer be required in DB2. To convert a number data type in
to the date format, the DB2 DATE function could be used. If a character string
was to be converted, you may be able to use the CASE function.

• TO_NUMBER

This function is performed in DB2 by either the DECIMAL function or by the
CAST function. A UDT called TO_NUMBER could be created based on these
functions. This would allow the conversion of the SQL without changes.

As discussed in data types chapter, the DATE data type in Oracle is not like the
DATE data type in DB2. The Oracle DATE data type indicates the year through to
the second. This is similar to the DB2 TIMESTAMP datatype. The DB2 DATE data
type contains only the year, month and day. The mapping of the DATE data type
depends on the amount of information that is going to be required in the new
data type. To extract the DATE of Oracle into a DB2 format the Oracle function
TO__CHAR is used when unloading the rows.

When migrating to DATABASE 2 for AIX Version 2, a decision needs to be made
on the TO_CHAR values required so the data that will be loaded into DB2. The
applications could be updated to use the DB2 DATE functions or a UDF called
TO_CHAR could be created which performs the required function.

Functions such as ADD_MONTHS, LAST_DAY, MONTHS_BETWEEN and NEXT_DAY could have
UDF′s built, based on existing DB2 functions, so that SQL would not have to be
rewritten.

Date arithmetic in DB2 is also calculated differently. The following date functions
exist in DB2, but do not have an equivalent in Oracle. These functions are:

• DATE
• DAY
• DAYNAME
• DAYOFWEEK
• DAYOFYEAR
• DAYS
• HOUR
• MICROSECOND
• MINUTE
• MONTH
• MONTHNAME
• SECOND
• TIME
• TIMESTAMP
• TIMESTAMP_ISO
• TIMESTAMPDIFF
• WEEK
• YEAR

Addition and subtraction of the DATE data type is simple in DB2. For example:

Chapter 7. SQL Language Elements 77

CREATE TABLE tab1 (col1 DATE)
INSERT into tabl1 values (DATE(CURRENT TIMESTAMP))

SELECT * from tab1

If this select statement returned the value 04/2/1995, we could perform the
following update statement followed by another select

UPDATE tab1 set col1 = col1 + 14 DAYS

SELECT * from tab1

This select statement would now return 05/10/1995.

Further information and examples can be found in the Database 2 SQL Reference
for common server Version 2

The remaining functions that have not already been covered and have no direct
translation to a DB2 function are listed below. However, a UDF or UDT could be
created in DB2 which would allow the SQL to be converted unchanged. An
example of creating a User-Defined Function (UDF) is shown in Appendix E,
“User-Defined Functions” on page 169.

The functions that may require a UDF are:

• COSH
• DUMP
• GLB
• GREATEST
• GREATEST_LB
• INITCAT
• LEAST
• LEAST_UB
• LPAD
• LUB
• NEW_TIME
• NEXT_DAY
• RPAD
• SINH
• STDDEV
• TANH
• UID
• USERENV
• VARIENCE

7.1.3 Additional DATABASE 2 for AIX Version 2 Functions
There are a number of functions available in DATABASE 2 for AIX Version 2 that
are not in Oracle. These functions are summarized in Table 18.

Table 18 (Page 1 of 4). Functions Available in DATABASE 2 for AIX Version 2

Function name Description

ACOS Returns the arccosine of the argument as an angle expressed
in radians

ASIN Returns the arcsine of the argument as an angle expressed in
radians

78 DB2 Version 2 Conversion Guide

Table 18 (Page 2 of 4). Functions Available in DATABASE 2 for AIX Version 2

Function name Description

ATAN Returns the arctangent of the argument as an angle expressed
in radians

ATAN2 Returns the arctangent of x and y coordinates, specified by the
first and second arguments respectively, as an angle
expressed in radians

BLOB Casts from source type to BLOB with optional length

CHAR Returns a string representation of the source type

CLOB Casts from a source type to CLOB with optional length

COALESCR or
VALUE

Returns the first non-null argument in the set of arguments

COT Returns the cotangent of the argument where the argument is
an angle expressed in radians

DATE Returns a date from a single input value

DAY Returns the day part of a value

DAYNAME Returns a mixed-case character string containing the name of
the day, for the day portion of the argument based on what the
locale was when DB2 start was issued

DAYOFWEEK Returns the day of the week in the argument as an integer
value in the range 1-7, where 1 represents Sunday

DAYOFYEAR Returns the day of the year in the argument as an integer
value in the range 1-366

DAYS Returns an integer representation of a date

DBCLOB Casts from a source type to DBCLOB with optional length

DECIMAL or DEC Returns decimal representation of a number, with optional
precision and scale

DEGREES Returns the number of degrees converted from the argument
expressed in radians

DIFFERENCE Returns the difference between the sounds of the words in the
two argument strings as determined using the SOUNDEX
function. A value of zero means the strings sound the same

DIGITS Returns the character string representation of a number

DOUBLE or
DOUBLE_PRECISION

Returns the floating-point representation of a number

EVENT_MON_STATE Returns the operational state of a particular event monitor

FLOAT Same as DOUBLE

GRAPHIC Casts from source type to GRAPHIC with optional length

HEX Returns the hexadecimal representation of a value

HOUR Returns the hour part of a value

INSERT Returns a string where arg3 bytes have been deleted from
arg1 beginning at arg2 and where arg4 has been inserted into
argument beginning at arg2

INTEGER or INT Returns the integer representation of a number

LEFT Returns a string consisting of the leftmost arg2 bytes in arg1

Chapter 7. SQL Language Elements 79

Table 18 (Page 3 of 4). Functions Available in DATABASE 2 for AIX Version 2

Function name Description

LOCATE Returns the starting position of the first occurrence of arg1
within arg2. If the optional third argument is specified, it
indicates the character position in arg2 at which the search is
to begin. If arg1 is not found within arg2, the value 0 is
returned

LONG_VARCHAR Returns a long string with optional length

LONG_VARGRAPHIC Casts from source type to LONG_VARGRAPHIC with optional
length

MICROSECOND Returns the microsecond(time-unit) part of a value

MINUTE Returns the minute part of a value

MONTH Returns the month part of a value

MONTHNAME Returns a mixed case character string containing the name of
month for the month portion of the argument that is a date or
timestamp, based on what the locale was when db2start was
issued

NULLIF Returns NULL if the arguments are equal, else returns the first
argument

QUARTER Returns an integer value in the range 1 to 4 representing the
quarter of the year for the date specified in the argument

RADIANS Returns the number of radians converted from argument which
is expressed in degrees

RAISE_ERROR Raises an error in the SQLCA. The sqlstate returned is
indicated by arg1. Second argument contains any text to be
returned

RAND Returns a random floating point value between 0 and 1 using
the argument as the optional seed value

REPEAT Returns a character string composed of arg1 repeated arg2
times

RIGHT Returns a string consisting of the rightmost arg2 bytes in arg1

SECOND Returns the second (time-unit) part of the value

SMALLINT Returns the small integer representation of a number

SPACE Returns a character string consisting of arg1 blanks

TABLE_NAME Returns an unqualified name of a table or view based on the
object name given in arg1 and the optional schema name
given in arg2. It is used to resolve aliases

TABLE_SCHEMA Returns the schema name portion of the two part table or view
name given by the object name in arg1 and the optional
schema name given in arg2. It is used to resolve aliases

TIME Returns the time from a value

TIMESTAMP Returns a timestamp from a value or a pair of values

TIMESTAMP_ISO Returns a timestamp in the ISO format converted from the IBM
format. If the argument is a date, it inserts zero for all the time
elements. If the argument is a time, it inserts the value of
CURRENT DATE for the date elements and zero for the
fractional t ime element

TIMESTAMPDIFF Returns an estimated number of intervals of type arg1 based
on the difference between two timestamps

VARCHAR Returns VARCHAR representation of the first argument

80 DB2 Version 2 Conversion Guide

Table 18 (Page 4 of 4). Functions Available in DATABASE 2 for AIX Version 2

Function name Description

VARGRAPHIC Returns a VARGRAPHIC representation of the first argument. If
a second argument is present, it specifies the length of the
result

WEEK Returns the week of the year in the argument as an integer
value in the range of 1 to 53.

YEAR Returns the year part of a value

7.2 SQL Comparison
This section will compare the Data Manipulation Language (DML) and Data
Definition Language (DDL) of Oracle 7 and DATABASE 2 for AIX Version 2. You
should refer to the Database 2 SQL Reference for common server Version 2 and
the Oracle 7 SQL Language Reference Manual for further reference on the
material covered in this chapter.

The following areas of discussion are covered:

• Some general considerations

• Optional parameters used by Oracle commands

• Operators, Expressions and Conditions

• The SQLCA, SQLDA and ORACA structures

• Oracle hints and recommendations on what to migrate over to DB2

• Comparison of the DML and DDL of Oracle and DB2

• Joins

• Dynamic SQL and Cursors

There are many similarities between the DML and DDL of Oracle and DB2;
however, there are also some differences. Many of the difference are due to
Oracle extensions to standard SQL and Oracle optional parameters. If these
optional parameters and extensions are removed, the DML and DDL would map
more closely to DB2.

There are some precompiler parameters in Oracle that can be used to flag the
Oracle extensions. These include:

• FIPS FLAGGER

If this is set to FIPS =YES, the precompiler will flag the Oracle extensions to
standard SQL in the embedded SQL programs.

• MODE

This specifies whether the program observes Oracle extensions or ANSI
standards. The default is ORACLE. If this is set to MODE =ANSI or
MODE =ANSI14, the embedded SQL will map more closely to the SQL used
by DB2. For example, a ′no rows found′ error will return a SQLCODE +1403
in Oracle if the MODE =ORACLE. If MODE =ANSI14, the sample error will
return the SQLCODE of +100. The SQLCODE of +100 matches the code
returned in DATABASE 2 for AIX Version 2.

Chapter 7. SQL Language Elements 81

Another consideration may be the use of host arrays in Oracle. If
MODE =ANSI14 is specified, you cannot use host arrays in Oracle, and this
will map to DB2. However DB2 does provide for host arrays when using CLI
or compound SQL. If host arrays are used in Oracle, the application may
need to be modified to remove them and to also remove the code which
handles phantom ′no rows found′ situations. That is, if you define an array
for 100 and only 20 rows are returned, the SQLCA SQLCODE will be set to
′no rows found′ return code.

• DBMS.

If this is set to DBMS =V7, NULL processing maps closer to DB2 .

If the above options are already set to these values, the DML, DDL and the flow
of the program will be close to the way it will work in DB2.

Another consideration when converting to DB2 is the length of identifiers. For
example, table name, index name, view name, and so on. The identifier in
Oracle has a maximum length of 30; in DB2, the maximum length is 18.

Some of the Oracle DML and DDL may use optional parameters that have a
different meaning or are done a different way in DB2. These include schema,
@dblink, alias, and synonym.

• SCHEMA

In ORACLE V6, there was no distinction between a user and the collection of
objects owned by the user. The name of an object could be qualified by the
name of the user who owned it.

In Oracle 7, the term schema now describes the collection of objects owned
by a user. Every user owns a schema in which objects can be created. The
name of that schema is the same as the name of the user. The name of an
object can be qualified by the schema in which the object exists. For
example, the table EMP in the schema of the user SCOTT can be defined by
SCOTT.EMP.

Schema in DB2 may be described as being similar to the schema concept in
Oracle. However, there are no CREATE SCHEMA statements as there are in
Oracle. DB2 schema may map to a user or may be defined when objects
such as tables are created. In DB2, before doing any work in a database, the
first action is to connect to the database we wish to work in; you can connect
to the database by specifying a user ID and password. All activity is then
done under this user ID in the database. Alternativly you may prefix the
database object with the user ID or schema name. To perform actions in
another database, you must connect to that database. A schema in DB2 is
defined as a logical grouping for database objects. When a database object
is created, it is assigned to one schema, which is determined by the name of
the object. For example, the table EMP in the schema of the user PETE can
be defined by PETE.EMP.

• @DBLINK

@DBLINK is the complete or partial name of a database link to a remote
database. If this is omitted, Oracle assumes that we are using a local
database. You use this in conjunction with Oracle SQL*NET product. The
optional ′@DBLINK′ parameter in Oracle is not required by DB2. DB2
automatically resolves the database location by using its database
directories. This allows DB2 administrators to move the database without
having to change any DDL, DML or SQL.

82 DB2 Version 2 Conversion Guide

• SYNONYM

A synonym in Oracle is referred to as either a synonym or an alias in DB2. In
DB2, you can continue to use the term synonym if you wish, and you may
either use the create alias or create synonym statements.

In Oracle, a synonym can be used in SQL statements, such as select,
insert, update, delete, explain table, lock table, audit, noaudit, grant,
revoke and comment.

In DB2, a synonym can be used anywhere a table or a view is allowed.

• ALIAS

Some Oracle statements may specify an alias within an SQL statement; this
is the same for DB2. However, in DB2, it is refer to as a “correlation name.”

• Compound SQL

Some statements in Oracle use PL/SQL which may need to be converted into
compound SQL if you wish to keep the same functionality. An example of this
might be:

EXEC SQL BEGIN COMPOUND NOT ATOMIC
SELECT c1, CASE c2,c3,c4

WHEN c2 > :avail THEN RAISE_ERROR (′ ZZ000′ , ′ too much′)
WHEN c4 ═ NULL THEN RAISE_ERROR (′ ZZ001′ , ′ missing′)
END

INTO :hv1,:hv2,:hv3,:hv4 from tab1 where....
END COMPOUND

For further details, please refer to the Database 2 SQL Reference for common
server Version 2

7.2.1 Operators, Expressions and Conditions
All of the Oracle operators, expressions and conditions map to DB2 These
include operators like NULL, +, -, *, /, LIKE, and between. There are two
exceptions to this: the Oracle DECODE expression and the Oracle precompiler
parameter ′DBMS ′ and the effect it has on processing NULL values.

The DECODE expression is comparable to the CASE function in DB2. In Oracle, an
expression like,

DECODE (deptno, 10, ′ SALES′ , 20 , ′RESEARCH′)

could map to the DATABASE 2 for AIX Version 2 statement:

CASE deptno
WHEN 10 THEN ′ SALES′
WHEN 20 THEN ′ RESEARCH′

END

This expression can be used in a number of places. This includes its use with
select statement shown below:

SELECT empno, empname FROM emp
WHERE (CASE WHEN salary=0 THEN NULL ELSE comm/salary END) > 0.25

If the Oracle precompiler expression is DBMS =V7, both Oracle and DB2 will be
compatible in the processing of NULL values. If the Oracle parameter is
DBMS =V6, you can select a column which is null into a field which does not
have a null indicator, without any error being set. This is not the way that

Chapter 7. SQL Language Elements 83

Oracle 7 or DATABASE 2 for AIX Version 2 process the NULL values, and it may
cause you problems.

7.2.2 SQLCA Structure
The SQLCA and its use is mostly compatible between Oracle and DB2.
Applications should be able to use the DB2 SQLCA without change. However,
there are a few considerations that need to be taken into account.

• SQLERRD(5)

In Oracle, this parameter holds the character position at which a parse error
began. In DB2, it contains the number of rows updated or deleted as the
result of a constraint enforcement.

• SQLWARN5

DB2 does not use this parameter. In Oracle, it is used when a create
procedure, function, package,or package bodycommand fails.

• INCLUDE SQLCA.

This includes the SQLCA layout into both Oracle and DB2 applications. If you
have the Oracle precompiler parameter ′MODE′ set to ANSI13 or ORACLE,
you must include this command; otherwise the include is optional. In DB2
applications, the inclusion of SQLCA is required.

• SQLSTATE

In DB2, the SQLSTATE is included at the end of the SQLCA record. DB2
automatically provides information to both the SQLSTATE and the SQLCODE
records. In Oracle, you are required to specify the precompiler parameter
′MODE′ equal to ANSI or ANSI14, and then declare a field called SQLSTATE.
In Oracle, to return values to SQLCODE and SQLSTATE you must also
declare the field SQLCODE in the DECLARE section.

SQLCODE stores error codes and “not found” conditions, while SQLSTATE
stores error and warning codes. SQLSTATE uses a standard coding schema
and is the preferred status variable under SQL92. Under SQL92, SQLCODE
is retained for compatibility with SQL89 and is likely to be removed from
future versions of the standard. For further information on Oracle SQLCODE
and SQLSTATE, refer to the Programmer′s Guide to the Oracle Precompilers,
Release 1.6.

DB2 provides additional information in the SQLCA record.The additional fields
are SQLERRP, SQLERRD(2), SQLERRD(4) and SQLWARNA. Further information
on DB2 SQLCA can be found in DATABASE 2 for AIX Version 2 SQL Reference.

7.2.3 SQLDA Structure
SQLDA provides similar function in DB2 and Oracle, but the way it is used by the
application is different. You will need to modify the application if you use the
Oracle SQLDA. An example and further information can be found in 7.5,
“CURSOR and DYNAMIC SQL” on page 102. In short, SQLCODE +236 in DB2
replaces the Oracle requirement to test the relationship between ′sqln′ and
′sqld′. This is usually done to determine if the SQLDA contains enough SQLVARs
for the describe statement. Applications coded for Oracle often use the check
″s q l c o d e < > 0 ″ to check for warnings. You should bind your DB2 packages with
SQLWARN NO and your applications should work as they would in Oracle.

84 DB2 Version 2 Conversion Guide

7.2.4 ORACA Structure
The SQLCA handles standard SQL communications, while the ORACA handles
ORACLE communications. When you need more information about run-time
errors and status changes than SQLCA provides, the ORACA can be used. It
contains an extended set of diagnostic tools. However, use of the ORACA adds
to run-time overhead.

In DB2, you have the SQLCA structure. Any applications that reference ORACA
will need to be converted to use the SQLCA. DB2 provides additional
information in the SQLCA in fields SQLERRP, SQLERRD(2), SQLERRD(4) and
SQLWARNA. Further information on DB2 SQLCA can be found in the DATABASE
2 for AIX Version 2 SQL Reference.

7.2.5 Oracle Hints
Hints are used in Oracle so that you can force the cost-based optimizer to use
your chosen execution plan. The optimizer hints are hardcoded into the
applications for specific update, delete and select statements. Hints allow you
to specify use of the cost-based or rule-based optimizer, the access or join
method and the goal of the cost-based optimizer. If hints are specified
incorrectly, Oracle will ignore them, but will not issue an error. The RULE hint,
along with the rules based optimizer, will not be available in future versions of
Oracle.

If hints are not used, the cost-based optimizer looks at catalog statistics
gathered by the ANALYZE utility to decide the access path. You can see what
decision it has made by using the explain plan command.

If you use hints in your applications, they will need to be removed when
converting to DB2.

DB2 also uses a cost-based optimizer. It makes a decision on the best access
path to use by using catalog statistics gathered by the RUNSTATS utility. You
can see what path the optimizer has chosen by using the VISUAL explain tool.

It is possible to perform “what if” scenarios by influencing the optimizer in its
decision process, much like the hints of Oracle. This can be achieved by
updating the statistics in the SYSSTAT catalogs. You can also influence the
optimizer in the application by using ′FOR READ ONLY ′ or ′FOR UPDATE ONLY′
parameters in the cursor definitions. If you believe data returned for a select
statement will not change, you can specify optimize for x rows to tell the
optimizer how many rows will be returned by this statement.

The DATABASE 2 for AIX Version 2 Starburst optimizer has different levels of
optimization, which are set via the set current query optimization statement for
dynamic SQL. For static SQL, the QUERYOPT option is used during the
preprocessing or binding stage. This tells the optimizer to perform very little
optimization for simple SQL or to use the maximum amount of optimization for
very complex SQL. The Starburst optimizer will even rewrite the query to
achieve the best possible access path.

Chapter 7. SQL Language Elements 85

7.2.6 SQL Syntax Comparison
Table 19 is a list of common Oracle statements. It includes both the Data
Manipulation Language (DML) and the Data Definition Language (DDL) found in
Oracle. The table briefly describes the associated DATABASE 2 for AIX Version 2
command or statements that are equivalent in function to the Oracle command
or statement. Many of the commands or statements may not have an equivalent
due to differences in definitions or functionality of the database. Chapter 6,
“Database Schema” on page 61 should be read before this chapter to obtain an
understanding of where these differences lie.

The commands and statemets that require more detailed discussion are covered
later in the chapter. References to these sections have been included in
Table 19.

Table 19 (Page 1 of 4). ORACLE and DB2 DML/DDL Comparisons

Oracle 7 DML or DDL DATABASE 2 for AIX Version 2 DML or DDL

alter cluster Clustering is not used in DB2.

alter database Much of this function is provided by the update database configuration
command.

alter function DB2 requires you to drop the function and then re-create it.

al ter index Much if this function is done with the alter tablespace statement.

alter package Not available in DB2 as the concept of a package is different.

alter procedure Procedures are bound to the database in DB2. To modify a procedure, it
must be re-bound to the database.

alter profi le Profile information is altered using the operating system and the
command, update database configuration.

alter resource cost Resources are controlled by the operating system and the following
DB2 commands:

• update database configuration
• update database manager configuration

alter role Roles are not used in DB2. However, it is possible to grant and revoke
permissions on groups to provide a similar function to roles.

alter rollback segment To manage logs in DB2, you can use the command, update database
configuration. Much of the log management in DB2 is automatic.

alter sequence DB2 does not provide the the sequence capability. Refer to 7.2.6.10,
“CREATE SEQUENCE” on page 93 further information.

alter session Some of this function is not required in DB2; other functionality is found
in various DB2 commands. For example:

• set sql_trace is implemented in update database manager
configuration.

• set optimizer goal is implemented in set current query
optimization.

• advise is implemented in list indoubt transactions.

al ter snapshot This function is provided by the product, Data Propagator Relational.

alter snapshot log This function is provided by the product Data Propagator Relational.

alter system The function provided here is found in the operating system as well as
the following DB2 commands:

• force application
• update database configuration manager
• connect to ... in exclusive mode

86 DB2 Version 2 Conversion Guide

Table 19 (Page 2 of 4). ORACLE and DB2 DML/DDL Comparisons

Oracle 7 DML or DDL DATABASE 2 for AIX Version 2 DML or DDL

alter table Refer to 7.2.6.1, “ALTER TABLE” on page 89.

alter tablespace Refer to 7.2.6.2, “ALTER TABLESPACE” on page 90.

alter tr igger DB2 requires a trigger to be dropped and then re-created if changes
are to be made.

alter user Users in DB2 are at the operating system level and are modified using
operating system commands. Access to a database and its tables may
then be granted to the user.

al ter view DB2 requires that the view be dropped and re-created for any
modifications.

audit/noaudit Monitoring may be turned on using the update database manager
configuration. Triggers may also be used to provide audit information.

close Refer to 7.5, “CURSOR and DYNAMIC SQL” on page 102.

comment on The statement syntax is similar. DB2 allows you to comment on an
alias, column, constraint, distinct type, function, index, package, table,
tablespace, trigger, or view.

commit Commit will work in DB2 as it does in Oracle. However, the Oracle force
parameter is not implemented. To commit or rollback in-doubt
transactions, use the list indoubt transactions command.

connect Refer to 7.2.6.3, “CONNECT” on page 90.

create cluster Clustering is not used in DATABASE 2 for AIX Version 2.

create controlf i le Refer to 7.2.6.4, “CREATE CONTROLFILE” on page 90.

create database Refer to 7.2.6.5, “CREATE DATABASE” on page 91.

create database link DB2 resolves database location through its catalogs. To catalog a
database, use the catalog commands.

create function Refer to 7.2.6.6, “CREATE FUNCTION” on page 92.

create index Refer to 7.2.6.7, “CREATE INDEX” on page 92.

create package Refer to 7.2.6.8, “CREATE PACKAGE” on page 92.

create package body This command is not required for the same reasons discussed in
7.2.6.8, “CREATE PACKAGE” on page 92.

create procedure Refer to 7.2.6.9, “CREATE PROCEDURE” on page 93.

create profi le User profiles are at the operating system level and some information is
in the database configuration. To update database configurations, use
the update database configuration command.

create role Roles are not used in DATABASE 2 for AIX Version 2. By using groups
and privileges, it is possible to get the functionality of a role.

create rollback segment This is not required in DB2 as the information is automatically managed
by the database manager.

create schema A schema is not used in DB2 as Oracle defines them. Refer to
Chapter 6, “Database Schema” on page 61 for information on the
schema concept.

create sequence Refer to 7.2.6.10, “CREATE SEQUENCE” on page 93.

create snapshot This function is provided by the product Data Propagator Relational.

create snapshot log This function is provided by the product Data Propagator Relational.

create synonym In DB2, a synonym and alias are equivalent. Chapter 6, “Database
Schema” on page 61 describes this in more detail. Either create
synonym or create alias may be used in DB2.

Chapter 7. SQL Language Elements 87

Table 19 (Page 3 of 4). ORACLE and DB2 DML/DDL Comparisons

Oracle 7 DML or DDL DATABASE 2 for AIX Version 2 DML or DDL

create table Refer to 7.2.6.11, “CREATE TABLE” on page 93.

create tablespace Refer to 7.2.6.12, “CREATE TABLESPACE” on page 94.

create tr igger Refer to 7.2.6.13, “CREATE TRIGGER” on page 94.

create user Adding a user in DB2 is done via:

• Add a user at the operating system level.
• Modify profile to include the instance profile (db2profile).
• Grant appropriate privilege on the database or databases.

create view Views are similar in DB2. However the Oracle replace, constraint and
force options are not available.

declare cursor Refer to 7.5, “CURSOR and DYNAMIC SQL” on page 102.

declare database This is replaced by the statement connect to database.

declare command DB2 uses a prepare command that removes the requirement for this
command.

declare table DB2 performs this function during the precompile or bind time if the
′ val idate ′ parameter is specified.

delete Similar in DB2 The Oracle parameter ′ alias′ may be replaced in DB2
using the ′ as correlation-name′ capability.

describe Refer to 7.5, “CURSOR and DYNAMIC SQL” on page 102.

drop cluster Clustering not used in DB2.

drop database link DB2 uses catalogs to resolve database locations. To uncatalog a
database, use the uncatalog command.

drop function Refer to 7.2.6.14, “DROP FUNCTION” on page 95.

drop index DB2 also uses the drop index statement.

drop package This statement exists in DB2. However, as the definition of a package
is different care should be taken. Refer to 7.2.6.8, “CREATE PACKAGE”
on page 92 and Chapter 6, “Database Schema” on page 61 for
information on packages.

drop procedure Not used in DB2.

drop profi le Not used in DB2. User profiles are at the operating system level.

drop role Roles do not exist in DB2

drop rollback segment Not used in DB2.

drop sequence Not used in DB2.

drop snapshot Not used in DB2.

drop snapshot log Not used in DB2.

drop synonym May use either drop synonym or drop alias in DB2.

drop table The DB2 drop table statement is similar to Oracle if Oracle specified
the ′ cascade constraints′ parameter.

drop tablespace Refer to 7.2.6.15, “DROP TABLESPACE” on page 96.

drop tr igger The drop trigger statement works the same as in Oracle.

drop user Not required as users are at the operating system level.

drop view The drop view statement works the same as in Oracle.

execute Refer to 7.5, “CURSOR and DYNAMIC SQL” on page 102.

execute immediate Refer to 7.5, “CURSOR and DYNAMIC SQL” on page 102.

88 DB2 Version 2 Conversion Guide

Table 19 (Page 4 of 4). ORACLE and DB2 DML/DDL Comparisons

Oracle 7 DML or DDL DATABASE 2 for AIX Version 2 DML or DDL

explain plan The explain facility is similar. You should issue the set current
explain snapshot to enable the facility and then view with the Visual
Explain tool. Alternatively you may use the db2expln or dynexpln tools.

fetch Refer to 7.5, “CURSOR and DYNAMIC SQL” on page 102.

grant Refer to 7.2.6.16, “GRANT” on page 96.

insert Refer to 7.2.6.17, “INSERT” on page 97.

lock table Refer to 7.2.6.18, “LOCK TABLE” on page 97.

open Refer to 7.5, “CURSOR and DYNAMIC SQL” on page 102.

prepare Refer to 7.5, “CURSOR and DYNAMIC SQL” on page 102.

rename Not used in DB2. The same effect may be produced by the use of
aliases.

revoke Refer to 7.2.6.19, “REVOKE” on page 97.

rollback Refer to 7.2.6.20, “ROLLBACK” on page 97.

savepoint This is not used in DB2. DB2 will commit or rollback based on a Unit of
Work (UOW).

select Refer to 7.2.6.21, “SELECT” on page 98.

set role Roles are not used in DB2. The concept of a role is discussed in
Chapter 6, “Database Schema” on page 61.

set transaction Refer to 7.2.6.22, “SET TRANSACTION” on page 99.

truncate Not used in DB2.

type Refer to 7.2.6.23, “TYPE” on page 99.

update The DB2 update statement is no different to the Oracle command.

var Refer to 7.2.6.24, “VAR” on page 100.

whenever The DB2 whenever statement is similar to Oracle. However, the Oracle.
optional parameters ′ stop′ and ′ do′ are not available. They could be
replaced using the ′ goto ′ option.

7.2.6.1 ALTER TABLE
The syntax of the alter table statement is similar in both environments.
However, there are some differences in the parameters used.

As space management is handled at the tablespace level, there is no use for the
parameters ′PCTFREE′ and ′PCTUSED′ in the DB2 alter alter table statement.
Also the parameters ′ INITRANS′ and ′MAXTRANS′ are not used in the alter
table statement because these types of values are set at the database or
tablespace level. Storage allocation is handled at the tablespace level in DB2;
so the parameters ′STORAGE′ and ′ALLOCATE EXTENT′ are also not required by
the DB2 alter table statement.

Constraints on tables may be turned on and off in DB2 by using the set
constraints statement. To enable and disable a trigger, you would need to use
the drop trigger and create trigger statements. These statements replace the
′ENABLE′ and ′DISABLE parameters in the Oracle alter table statement.

Chapter 7. SQL Language Elements 89

Oracle defines the uniqueness of a column or group of columns at the table
level. In DB2, this is done by assigning a unique index to the table. Because of
this difference, the alter table drop statement in Oracle is not used in DB2

Finally, while Oracle allows a ′ (′ to be added after the ′ADD′ parameter in the
alter table statement, this will cause error SQL0104N to be generated in DB2.

7.2.6.2 ALTER TABLESPACE
Tablespaces in Oracle and DB2 are very different in design and in the way that
they are managed by the database manager. DB2 has two types of tablespaces,
while Oracle only uses one type of tablespace.

The Oracle alter tablespace will perform functions that may be performed in
DATABASE 2 for AIX Version 2 using different commands. To bring a tablespace
online or take it offline, the DB2 quiesce tablespace command would be used. It
is possible to make a backup of a tablespace in DB2 by using the backup
database command. This will take a backup of the database or tablespace(s)
while the system is either online or offline.

Finally, to increase the size of a tablespace, it is possible to add a container in
DB2. If a container is added to a DB2 tablespace, the distribution of data will
automatically be re-balanced across all the containers. Access to the tablespace
is not restricted during this re-balancing process.

7.2.6.3 CONNECT
Connecting to a database is conceptually different in DATABASE 2 for AIX
Version 2 and Oracle 7. An Oracle 7 server controls only one database; so a
user cannot switch databases within the instance, but must connect to another
server. DB2 may contain multiple databases or cataloged remote databases.

A user may connect to any database they have been granted access to without
being concerned about its physical location. Also, a user may connect to another
database using a different user ID if they know the correct password. An
example of this is shown below:

CONNECT TO databaseA
SELECT
INSERT
CONNECT TO databaseB USER UserID USING password
SELECT
UPDATE
COMMIT

7.2.6.4 CREATE CONTROLFILE
This command is used in Oracle for a number of reasons. These include:

• Change the name of a database

• Create a new control file, if all copies have been destroyed

• Change the maximum number of logs, datafiles, and so on

Oracle recommends taking a full backup of all files in the database before and
after you issue this command.

DATABASE 2 for AIX Version 2 does not used this command; however, similar
information is contained in the database configuration file and database
directories. DB2 does not allow you to rename a database, but you can catalog

90 DB2 Version 2 Conversion Guide

an existing database under a different name. Both the new name and the old
name would access the database. To change parameters, such as the maximum
number of logs and so on, the command, update database configuration can be
used. To look at the current settings of the parameters, use the get database
configuration for <database-name> command.

7.2.6.5 CREATE DATABASE
The format the this command is similar in both environments. However, where
the command is issued and the end result is different, as there are conceptual
differences between an Oracle database and a DB2 database. In addition to the
create database command, Oracle requires several other steps to create a
database or instance. DB2 allows a single instance to contain multiple
databases. Each database is created with the create database command, which
is issued like any other command.

Due to these basic differences between databases in Oracle and DB2, you will
need to look closely at the database mapping and logging before starting a
conversion. Decisions, such as should I have multiple instances on a single
machine and a single database in each instance or a single instance with
multiple databases, should be considered. You may even choose multiple
instances and multiple databases. The reason for this may include giving
different people administrative authority on the different instances or using one
instance as a production system while the other is for development.

When the create database command is issued in DB2, the database logs are
created, the database directories are updated, and three tablespaces are
created. If you wish, you can specify the name, location, size, and type (SMS or
DMS) of these tablespaces, or leave them to default. If left to default, DB2 will
create three SMS tablespaces: a catalog tablespace called SYSCATSPACE, a
default user tablespace called USERSPACE1 and a temporary tablespace called
TEMPSPACE1.

Many of the parameters used by Oracle in the create database command are set
in the database configuration file of DATABASE 2 for AIX Version 2. To view
these values for a database, you can use the command, get database
configuration for database-name. To update the values, you would use the
command update database configuration for <database> using <parameter>
<value>.

Most of the information specified in the Oracle create database parameters may
be viewed and modified using the above commands. This includes all the
logging information, archiving details and character sets. Other parameters, such
as ′DATAFILE′, may be implemented in the DB2 create database command by
specifying the tablespace containers to be used or by using the ′ON′ value to
specify where the database is to be created.

An example of the DB2 create database command would be:

CREATE DATABASE payroll
ON /database/pay ALIAS pay
NUMSEGS 30

In Oracle, if you use the create database command on an existing database, it
will destroy the existing database. DB2 will return error SQL1005N, saying that a
database of that name already exists. You will need to drop the database before
trying to re-create it.

Chapter 7. SQL Language Elements 91

7.2.6.6 CREATE FUNCTION
The concept of a User-Defined Function is similar in both Oracle and DB2. The
differences lie in the language used to create them and in the way the database
manager stores them.

In Oracle, the function is defined as a PL/SQL block; in DB2 it is a C or C++
program or another User-Defined Function (UDF). An example of a user-defined
function can be found in Appendix E, “User-Defined Functions” on page 169.

Due to the language differences, an Oracle function must be re-written using one
of the supported DATABASE 2 for AIX Version 2 languages. Also, if the Oracle
function contains SQL statements, further problems exist since DB2 Functions
cannot contain SQL statements. In these cases, it would be necessary to
convert the Oracle function into a DB2 stored procedure, compound SQL or
incorporate it into the application.

7.2.6.7 CREATE INDEX
This syntax of the DDL below should work in both Oracle and DB2.

CREATE INDEX indexname ON
{ tablename (column [ASC|DESC] [, column [ASC|DESC]] ...)}

Oracle has the ′DESC′ parameter for compatibility. This would normally cause
the index to be a descending index. However, in Oracle, indexes are always
ascending. In DB2, it is possible to create the index as an ascending (ASC) or
descending (DESC) index.

While Oracle allows you to specify the tablespace that will contain the index
being created, DB2 does this when the table is created. If this option is used in
any create index statement, both the create index and create table statements
will need to be modified.

In both Oracle and DB2, you can specify up to 16 columns in the index. DB2
allows for a maximum size of 255 total bytes for an index.

The optional Oracle parameter ′NOSORT′ is compatible with the DB2 parameter
′ INDEXSORT′ in the database configuration file. Also, the optional Oracle
parameter ′CLUSTER′ is not applicable to DB2 because clustering is not
available in DB2. Storage parameters are specified in the DB2 create tablespace
statement and in the file, directory or logical volume specifications.

DB2 allows you to specify a unique index on a table. Oracle recommends that
you do this via a ′UNIQUE′ constraint in the create table statement. However,
you can still use the create unique index statement in Oracle, but it is not
documented in the Oracle 7 SQL Language Reference Manual .

7.2.6.8 CREATE PACKAGE
In Oracle, a package is an encapsulated collection of related procedures,
functions, variables, constants, exceptions, and cursors. It is an alternative to
creating procedures and functions as stand-alone schema objects. They are
used to help you organize the application development process better by
grouping together related functions and procedures.

The package specifies functions, procedures and their parameters. The package
body specifies the PL/SQL to be executed when the function or procedure is
executed by an application. Having a separate package body allows you to alter

92 DB2 Version 2 Conversion Guide

the package body by using the create package or replace package statement and
to then recompile it via the alter package compile body command. This
eliminates the requirement to recompile the applications that use the function or
procedure.

In DB2, the term ″package″ refers to a database object that includes information
required to execute SQL statements associated with the source file of an
application program. A package is generated by pre-compiling a source file with
the prep statement or by binding a precompiler-generated bind file using the bind
command.

The create package command is not available in DB2 for the reason shown
above. The Oracle packages should be changed to stand-alone functions or
procedures. In this form, it is possible to re-bind a function or procedure without
the need to recompile or modify any applications.

7.2.6.9 CREATE PROCEDURE
In Oracle, a procedure is created via this command and is defined using PL/SQL.
It is invoked by the application via the via the execute statement.

DB2 stored procedures are an application written in one of the supported
languages and stored on the database server but external to the database. The
stored procedure is invoked by the client application using the SQL CALL and
the SQLDA structure. When the application is compiled, it is bound to the
database, and information about the procedure is stored within the database.

As stored procedures in Oracle are written in PL/SQL, they will need to be
re-written using one of the DB2 supported languages.

7.2.6.10 CREATE SEQUENCE
This is not used in DB2; however, a before-insert trigger to generate sequential
numbers in a column could be used to perform a similar task, for example:

CREATE TRIGGER trig1
no cascade before insert on tabl1
referencing new as n for each row mode db2sql
set n.col1 ═ case

when (select count(*) from tabl1) ═ 0 then 1
else (select max(col1)+1 from tabl1)
end;

This is only an example; if used as written above, it works when rows are
inserted one at a time. If multiple rows are inserted in a single SQL statement,
the above trigger would insert the same value for each row.

7.2.6.11 CREATE TABLE
The format of the create table statement is similar in both Oracle and DB2.
However, as mentioned in the alter table statement, there are some significant
differences in some of the clauses used. This is due to the way areas, such as
storage allocation and constraints, are managed.

In DB2, space management and concurrency are not defined when the table is
created. This means that the Oracle parameters ′PCTUSED′, ′PCTFREE′,
′ INITRANS′, and ′MAXTRANS′ are not used in the DB2 form of the create table
statement. Also, the ′ENABLE′ and ′DISABLE′ parameters are not used in DB2 as
the constraints are managed via the set constraints statement.

Chapter 7. SQL Language Elements 93

It is possible in DB2 to specify that indexes and long columns, such as CLOB,
BLOB and DBCLOB, be stored in separate tablespaces.

Other differences in the create table statement clause involve the definition of
constraints and the different data types. For further information on these, you
should refer to the documentation supplied with DATABASE 2 for AIX Version 2.

7.2.6.12 CREATE TABLESPACE
DATABASE 2 for AIX Version 2 supports two different types of tablespace. These
are discussed in detail in Chapter 4, “Storage” on page 35. The create
tablespace statement will be quite different because of these differences.

It is possible to specify a regular tablespace, long tablespace or temporary
tablespace. The regular tablespace stores all data other than temporary tables.
The temporary tables go into the temporary tablespace, of which at least one
must exist in the database environment. The long tablespace is for the storage of
long or LOB table columns. The long tablespace is optional, and if excluded, this
data will be stored in a regular tablespace.

In DB2, you specify the parameter ′USING′ when defining a tablespace. This
replaces the Oracle ′DATAFILE′ parameter. Finally, taking a tablespace online or
offline is done via the quiesce tablespace command in DB2.

An example of the DB2 create tablespace statement would be:

CREATE TABLESPACE payroll MANAGED BY DATABASE
USING (DEVICE ′ / dev/rhd6′ 1000, DEVICE ′ / dev/rhd7′ 1000)
EXTENTSIZE 4

7.2.6.13 CREATE TRIGGER
In Oracle, this command creates a database trigger. A database trigger is a
PL/SQL block associated with a table, which is stored in the database. To use
this, you must be using Oracle with the procedural option.

DB2 conforms to Draft SQL3. The syntax is similar to Oracle, but there are
differences that may need to be addressed when migrating to DB2. An example
of a DB2 trigger is:

CREATE TRIGGER new_hired
AFTER INSERT ON employee
FOR EACH ROW MODE DB2SQL
UPDATE company_stats SET nbemp ═ nbemp + 1

The purpose, function and syntax are similar in Oracle and DB2. The areas that
need consideration during a conversion to DB2 are as follows:

• In Oracle, you can specify ′OR REPLACE′ to update or change a trigger,
while in DB2, you are required to drop and then create the trigger again.

• In Oracle, you may specify ′OR′ to link together the actions that cause the
trigger to fire. In DB2, you need specify triggers one at a time.

• In Oracle, the trigger is specified with a PL/SQL block, which must not
contain ddl, rollback or commit statements. In DB2, a trigger is an SQL
statement or series of statements. When using the BEFORE trigger in DB2,
the triggered SQL statment must be one of the following:

− a full select

− a set transition-variable SQL statement

94 DB2 Version 2 Conversion Guide

− a signal sqlstate statement

When the trigger is an AFTER trigger, the triggered SQL statement must be
one of the following:

− an insert sql

− a searched update sql

− a searched delete sql

− a signal sqlstate

− a full select

• In DB2, when defining a trigger, you must specify it as either a ′FOR EACH
ROW′ or a ′FOR EACH STATEMENT′ trigger. Oracle defaults to ′FOR EACH
STATEMENT′ if nothing is specified.

• The mode of a trigger must be specified in DB2. Currently, DB2SQL is the
only available mode.

• Oracle allows the ′FOR EACH STATEMENT′ to be specified on BEFORE
triggers. This is not allowed in DATABASE 2 for AIX Version 2.

The ′NO CASCADE BEFORE′ parameter in DB2 specifies that the actions caused
by the trigger will not cause other triggers to be activated. Also, the action of the
trigger will be applied before the subject table is actually updated.

DB2 allows you to use the ′REFERENCING′ clause to specify correlation names
for the rows modified by the trigger. You can specify a correlation name for the
row state prior to the triggered operation and the modified row. In addition to
this, you can reference temporary tables that contain all the affected rows before
the trigger modified them and another table that contains all the modified rows.

In DB2, you can specify the ′WHEN′ condition for statement and row triggers,
while Oracle only allows this to be used for row triggers. Finally, while Oracle
limits the number of triggers allowed, DB2 does not.

7.2.6.14 DROP FUNCTION
The syntax in both Oracle and DB2 are similar. The differences lie in the effect
on the database objects after a function has been dropped.

Oracle invalidates any local objects that depend on, or call, the dropped function.
If you subsequently reference one of these objects, Oracle tries to recompile the
object and returns an error message if the dropped function has not been
recreated. In DB2, other objects, excluding packages, that depend on the
function must be removed before the function can be dropped. An attempt to
drop a function with such dependencies will result in an error (SQLSTATE 42893).
However, when the function is dropped, any packages dependent on the function
are marked as inoperative. Such a package will not be rebound implicitly. It
must either be rebound by using the bind or rebind commands or re-prepared by
using the prep command.

Chapter 7. SQL Language Elements 95

7.2.6.15 DROP TABLESPACE
DB2 has the same behavior as Oracle when the Oracle parameters ′ INCLUDING
CONTENTS′ and ′CASCADE CONSTRAINTS′ are specified.

In DB2, the tablespace will not be dropped (SQLSTATE 55024) if there is any
table that stores at least one of its parts in this tablespace and has one or more
parts in another tablespace. To drop this tablespace, the tables in the state
mentioned above would need to be dropped first.

7.2.6.16 GRANT
There are two versions of GRANT in Oracle: grant system privileges and grant
object privileges. When using the grant statement in DB2, the main
consideration, in both cases, is with roles. In DB2, users are at the operating
system level, and instead of using roles, DB2 uses the operating system groups.
It is possible to grant privileges to groups as well as to users. To convert Oracle
roles to DB2, you could create an operating system group for each role, and add
the users who were granted that role to the newly created group that matches
the old Oracle role.

Since DB2 allows multiple databases to exist in a single instance the system
privileges are more complicated than in Oracle. This is because you may require
system control over the entire instance or simply over a single database. To
resolve this, there are four default system authority levels that provide different
levels of control over the instance. These authorities are:

SYSADM System Administration Authority

SYSCTRL System Control Authority

SYSMAINT System Maintenance Authority

DBADM Database Administration Authority

A summary of the capabilities that these authorities allow is listed in Table 20 on
page 110. To provide a user with SYSADM, SYSCTRL or SYSMAINT authority,
you would need to decide which operating system group will hold the authority,
and add the user to that group. Then update the database manager configuration
to reflect the group name for the authority level in question. By default, the
primary group of the instance owner becomes the SYSADM group. DBADM
authority is given to the creator of a database and to anyone else granted the
authority.

It is possible to grant the following authorities to users, groups or to the public.
These authorities will apply to the entire database your are connected to when
the grant is executed. The authorities include:

CONNECT Authority to connect or access the database

BINDADD Authority to create a package and bind it to the database

CREATETAB Authority to create base tables

CREATE_NOT_FENCED Authority to register functions that will execute as a
database manager ′s process

DBADM Database Administration Authority over the entire
database

The Oracle option ′WITH ADMIN OPTION′ would map to ′GRANT DBADM′ in DB2.

96 DB2 Version 2 Conversion Guide

The format of the grant statement for granting privileges on objects is similar for
both Oracle and DB2. The same considerations discussed for roles and groups,
that was discussed previously, is also valid for object privileges.

In Oracle, it is possible to specify a ′WITH GRANT OPTION′. DB2 allows this
capability, but it is specified by granting ′CONTROL′ privilege to the user or
group. The ′CONTROL′ privilege in DB2 provides different privileges, depending
on the object being referenced. For more information refer to the SQL Reference
Guide.

7.2.6.17 INSERT
The following syntax of the DML works in both Oracle and DB2:

INSERT INTO {table | view} [(column [, column] ...)]
{VALUES (expr [, expr] ...) | subquery}

In Oracle, each ′ INSERT INTO VALUES (expr)′ statement allows for a single
row to be inserted into the table. The same statement in DB2 can insert multiple
rows into the table. For example, the following statement will insert multiple
rows into the table ′ tab1′:

INSERT INTO tab1 VALUES (′ wood′ , CURRENT DATE),(′ miller′ , CURRENT DATE),...

7.2.6.18 LOCK TABLE
DB2 has the two lockmodes, SHARE and EXCLUSIVE, which are at the table
level. Oracle has the additional lockmodes of ROW SHARE, ROW EXCLUSIVE,
SHARE UPDATE, and SHARE ROW EXCLUSIVE which are taken at row or table
level. If these are used, you will need to consider how to migrate them to
table-level locks.

Oracle allows you to specify a view name in the lock table statement. This is not
allowed in DB2; the name must be a table or an alias. Also in DB2, it is possible
to specify a single table/alias name in each lock statement, while Oracle permits
multiple names in a single statement. .

The behavior of the DB2 lock statement will be the same as the behavior in
Oracle if the Oracle parameter ′NOWAIT′ was specified.

7.2.6.19 REVOKE
The considerations that hold for the grant statement also hold true for the revoke
statement. There are also two versions of the revoke statement in Oracle: one
for system privileges and the other for object privileges. You should read
7.2.6.16, “GRANT” on page 96 and then refer to the SQL Reference guide for
DB2 for the different syntax of the revoke statement or statement.

7.2.6.20 ROLLBACK
The format of the rollback statement is similar in both DB2 and Oracle. The
Oracle optional parameters, ′SAVEPOINT′ and ′FORCE′ are not used in DB2
commands. The Oracle optional parameter, ′FORCE′, manually commits an
in-doubt distributed transaction. In DB2, you use an interactive command, list
indoubt transactions, which prompts you to commit or rollback any in-doubt
transactions.

Chapter 7. SQL Language Elements 97

7.2.6.21 SELECT
The format of the select statement in both Oracle and DB2 is almost the same.
There are, however, differences in some of the options used within the select
statement. These include:

START WITH, CONNECTED BY
This enables you to retrieve rows in a hierarchical order in
Oracle, but is not available in DB2. However, the same
effect may be achieved using recursive SQL statements.

GROUP BY In Oracle, you are allowed to specify columns that are not
in the select list. In DB2, a column used in the GROUP BY
clause must also appear in the select list for the query. If it
is not, then DB2 will return the error, SQL0119N
SQLSTATE=42803. The query may however be re-written
using a nested table expression.

MINUS In DB2, this is done via the EXCEPT keyword. It is also
possible to specify EXCEPT ALL and INTERSECT ALL in
DB2.

ORDER BY In Oracle, it is possible to specify any column in the order
by clause, provided that the DISTINCT keyword is not used.
DB2 requires that the columns used in the order by clause
to always appear in the select list. If they do not, then the
error SQLSTATE=42707 will be returned.

FOR UPDATE OF In DB2, the column must be unqualified and identify
columns of the table or views identified in the first FROM
clause of the full select.

NOWAIT DB2 will have the same behavior as Oracle if this
parameter is not specified; however, DB2 will only wait
until the time-out value.

The comments on the full select also apply to subqueries and correlated
subqueries, which are similar in Oracle and DB2. For the embedded select into
statement, Oracle has the optional parameters ′ INDICATOR′ and
′ INDICATOR-VARIABLE′. These are not used in DB2.

The Oracle expression DECODE is compatible with the CASE expression that is
provided by DB2. However, the format of the CASE expression is different, and the
SQL statement would need to be reworked. The predicates and comparison
operators, such as BETWEEN, LIKE, IN, and = , are compatible between Oracle
and DB2. For further information on these operators and expressions, refer to
7.2.1, “Operators, Expressions and Conditions” on page 83.

There are some capabilities provided by DB2 that are not available in Oracle.
These include:

• FOR READ ONLY and FOR FETCH ONLY

This clause indicates that the resulting table is read-only; therefore the
cursor cannot be referred to by positioned update and delete statements.
For result tables in which updates and deletes are allowed, specifying FOR
READ ONLY (or FOR FETCH ONLY) can possibly improve the performance of
FETCH operations by allowing the database manager to do blocking and
avoid exclusive locks. Some result tables are read-only by nature. An
example would be a table based on a read only view. The FOR READ ONLY
clause can still be specified on such tables.

98 DB2 Version 2 Conversion Guide

• OPTIMIZE FOR

The OPTIMIZE FOR clause indicates to the optimizer how many rows may be
returned from this command. The optimizer can then use this as a factor
when deciding on the optimum path for the command.

• Common table expression

A common table expression is like a temporary view within a complex query
that can be referenced in other places within the query. For example, we
could avoid creating a view and use a common table expression:

SELECT....WITH com-tab-name (col1,col2,..) AS fullselect.....

Common table expressions can be used in select, create view and insert
statements. It can be used in the following circumstances:

− In place of a view to avoid creating the view

− To enable grouping by a column that is derived from an expression

− When the desired result table is based on host variables

− When the same result table needs to be shared in a full select

− When the result needs to be derived using recursion

• Nested table expression

This allows the creation of intermediate results without creating a temporary
table. The same result could be achieved by using a view; however, no host
variables or grouping by a derived column would be allowed. It can be used:

− In place of a view to avoid creating the view

− To enable grouping by a column that is derived from an expression

− When the desired result table is based on host variables

7.2.6.22 SET TRANSACTION
DB2 does use the set transaction statement. Through the command line
processor wou may use the change isolation to command to set the required
isolation level. The supported isolation levels are Repeatable Read (RR), Read
Stability (RS), Cursor Stability (CS) and Uncommitted Read (UR). You may also
specify ′FOR UPDATE OF′, ′FOR READ ONLY′ or ′FOR FETCH ONLY′ to indicate
the command will be doing reads or updates.

7.2.6.23 TYPE
Oracle allows you to use an embedded command, type. The syntax of this
command is as follows:

EXEC SQL TYPE type IS data-type

This is used in Oracle applications to perform user-defined type equivalencing. It
can only be used with PRO*C or PRO*PASCAL Precompilers.

In DB2, there are User-Defined Types (UDTs) that provide more functionality than
the Oracle type statement. The DB2 UDT is stored in the database and is
accessible to users and applications that are bound to the database containing
the UDF definition.

An example of the DB2 UDT for the type inch would appear as follows:

CREATE DISTINCT TYPE inch AS INTEGER WITH COMPARISONS

Chapter 7. SQL Language Elements 99

You can then use inch as a unique type. For example:

CREATE TABLE US_BOX (udesc char(20), ulength inch not null)

SELECT * from US_BOX where ulength > inch(10)

Note that the integer value 10 in the above example must be type cast to the
type inch. This is because inch and integer are defined as two different types.
The casting functions and comparison operators are automatically created when
the ′WITH COMPARISONS′ parameter is included in the create distinct type
statement.

The DB2 CAST function may also be of use when converting type statements.
Refer to 7.2.6.24, “VAR” for further information on the CAST function.

7.2.6.24 VAR
This is not available in DB2. Once a host variable has been defined in DB2, it is
not possible to redefine it at a later time. However, in some cases, you may be
able to use the CAST expression. CAST may be used anywhere an expression is
allowed. The syntax of the CAST function is:

CAST ({{ expression | NULL | parameter-marker } AS datatype })

It is possible to use the CAST function in a select statement as follows:

SELECT empno, CAST(salary AS integer) from emp
WHERE age ═ CAST(? AS T_AGE)

7.3 Constraints
Constraints are found in both Oracle and DB2. In both environments, there exist
table constraints and column constraints. Both of these types of constraints are
similar in the different environments.

In Oracle, a unique constraint may be placed on one or more columns of a table
to ensure uniqueness. DB2 performs this function by creating a unique index on
the columns. Oracle also allows you to specify a column that allows NULL
values as the ′PRIMARY KEY′. This is not allowed in DB2. Any column used as a
primary key must be defined as ′NOT NULL′.

Oracle allows you to specify the ′EXCEPTIONS INTO′ parameter. This allows you
to identify a table into which Oracle places information about rows that violate
an integrity constraint. DB2 provides this function through the statement, set
constraints for table2 immediate checked for exception in table2. Oracle
allows you to disable integrity constraints though the DISABLE statement. To
disable integrity constraints in DB2, the statement, set constraints for table
off should be used.

The Oracle option ′ON DELETE CASCASE′ is available in DB2; however, there
are more alternatives in DB2 that provide greater functionality. These include:

• ON DELETE RESTRICT

Enforced before other constraints and prevents the row from being deleted if
it has dependent rows.

• ON DELETE NO ACTION

100 DB2 Version 2 Conversion Guide

Enforced after other constraints and prevents the row from being deleted if it
has dependent rows.

• ON DELETE CASCASE

Deletes any rows that are dependent on the row being deleted.

• ON DELETE SET NULL

Dependent rows have the foreign key set to NULL.

• ON UPDATE RESTRICT

Enforced before other constraints and prevents the row from being updated if
it violates dependent rows.

• ON UPDATE NO ACTION

Enforced after other constraints and prevents the row from being updated if it
violates dependent rows.

An additional difference for the column constraints is that, in Oracle, you can
specify a column as ′NULL′ or ′NOT NULL′. In DB2, you only need to specify a
column as ′NOT NULL′ because the default will be to allow NULL values. If you
specify ′NULL′ in DB2, you will receive the error, SQLSTATE=42601.

7.4 Joins
Joins in Oracle and DB2 are very similar in the syntax used and in the way they
work. DB2 uses the optimizer to determine the best join method, based on the
catalog statistics for the tables involved in the join. To allow you to influence the
optimizer, some of the statistical system tables may be modified by a user. This
also allows you to simulate what would happen in different environments.
Oracle lets you use the optimizer to decide, or you can specify join instructions
by using HINTS in the application.

The two main types of joins are inner joins and outer joins. Inner joins combine
the data, but if a row exists in one table and not the other, the information is not
included in the result table. Outer joins preserve these unmatched rows.

All joins in Oracle and DB2 are the same, except for the specification of the
outer join. The function of the outer join is the same in Oracle and DB2;
however, the specification of the join is different.

In Oracle, a left outer join is characterized by a join condition that uses the outer
join operator (+). All the rows that meet the join condition are returned. Also
returned are all the rows from the table without the outer join operator for which
there are no matching rows in the table with the outer join operator. Oracle joins
the row to a row with all the columns from the other tables containing NULL
values.

In DB2, there are three types of outer join. These are:

• Left outer join, which includes rows from the left table that were not
matched to rows in the right table.

• Right outer join, which includes rows from the right table that were not
matched to rows in the left table.

• Full outer join, which includes rows from both the left and right tables that
did not have matches in the other table.

Chapter 7. SQL Language Elements 101

control of which of the outer join methods is to be used is done by controlling
which of the common table expressions are included in the query. An example of
performing an outer join can be found in the DATABASE 2 SQL Reference for
common servers Version 2 manual.

7.5 CURSOR and DYNAMIC SQL
This section will compare cursors and Dynamic SQL use in Oracle 7 and
DATABASE 2 for AIX Version 2. The topics covered include:

• General considerations in migrating to DB2

• The Dynamic SQL methods available

• The statements involved in using cursors and dynamic SQL

You will find that most of the cursor statements in Oracle and DB2 will be very
similar. In DB2, you can specify a cursor ′FOR READ′, ′FOR FETCH′ or ′FOR
UPDATE′. If not specified, an ambiguous cursor results, and DB2 will decide
what type it is via the context of the cursor statement. For example, a cursor
defined as select order by would be determined to be a read-only cursor.

Oracle only supports embedded cursors. DB2 also supports embedded cursors;
however, the DECLARE, OPEN, FETCH and close statements may also be issued
interactively. This could be done through the command line processor.

The Oracle optional parameter ′AT dbname′ is not used in DB2. This is because
of the different concepts in databases and instances. The first SQL statement
issued would be a connect to database; otherwise an implicit connect to the
default database would occur.

Oracle allows you to specify a PL/SQL block in some SQL statements. Since
PL/SQL is not found outside Oracle, these statements would need to be
converted into part of the application, into a DB2 compound SQL or into a stored
procedure.

The Oracle term, ″placeholders″ are known as parameter markers in DB2. The
function that they provide is identical.

There are four different methods for using dynamic SQL. These are:

 1. Nonquery without host variables. This refers to the execute immediate
statement, as shown in the following example.

SET I_STMNT =′ INSERT INTO WORKTAB
SELECT * FROM EMP WHERE ACTNO < 100′

EXECUTE IMMEDIATE :I_STMNT

 2. Nonquery, where the number of host variables, parameter markers and their
data types are known at precompile time. This refers to the prepare and
execute statements, as shown in the following example.

I_STMNT=′ INSERT INTO TDEPT VALUES (?,?,?,?)′

PEPARE DEPT_INSERT FROM I_STMNT

(Ask for the host variable values from the user)

EXECUTE DEPT_INSERT USING :HV1, :HV2, :HV3, :HV4

102 DB2 Version 2 Conversion Guide

 3. Query, where the number of host variables, parameter markers, select list
items, and their data types are known at precompile time. This refers to the
prepare, declare, open, fetch and close cursor statements. For example:

′ SELECT ENAME,EJOB,ELOCATION FROM EMP WHERE EMPNO = ?′

This method is the same as method two, but allows select statements.

7.5.1 CLOSE
The format of the close statement shown below will work in both the Oracle and
DB2 environments.

CLOSE cursor

There are no differences in behavior between Oracle and DB2 for this statement.

7.5.2 DECLARE CURSOR
When using a command name or block name in Oracle, you must first define it
using the declare statement statement or the prepare statement.

DB2 also provides the ′WITH HOLD′ option. This maintains resources across
multiple units of work. For example, with a unit of work that ends with a commit.
Any locks the cursor specified ′WITH HOLD′ are kept, and the cursor remains
open and positioned before the next logical row. It is then possible to issue a
fetch for the next row.

7.5.3 DESCRIBE
The format of the describe statement shown below will work in both the Oracle
and the DB2 environments.

DESCRIBE statement-name INTO descriptor-name

The DB2 statement works like the Oracle statement where the default option
′SELECT LIST FOR′ is specified. Describe input, which is specified in Oracle by
using bind variable for, is not available in DATABASE 2 for AIX Version 2.

7.5.4 EXECUTE
The following format of the execute statement will work in both Oracle and DB2
environments.

EXECUTE statement_name
[USING { :host_variable [[INDICATOR] :indicator_variable]

[, :host_variable [[INDICATOR] :indicator_variable] ...
| DESCRIPTOR descriptor }]

In Oracle, the SQL statement may only be delete, insert or update statements..
DB2 does not allow the the prepared command to be use a select statement.

It is possible in Oracle to specify a PL/SQL block with known host variables;
however, the PL/SQL may not contain a fetch statement. Because PL/SQL is not
found outside Oracle, any PL/SQL code would need to be rewritten as a part of
the application, converted to compound SQL or a stored procedure. Another
alternative would be to rewrite the execute statement using some of the other
SQL statements available in DATABASE 2 for AIX Version 2. DATABASE 2 for
AIX Version 2

Chapter 7. SQL Language Elements 103

7.5.5 EXECUTE IMMEDIATE
The syntax, execute immediate host-variable, will work in both the Oracle and
DB2 environments.

Oracle will only support the delete, insert or update statements in the execute
immediate statement. The DB2 execute immediately statement will support the
following:

ALTER TABLE ALTER TABLESPACE
COMMENT ON COMMIT
CREATE ALIAS CREATE DISTINCT TYPE
CREATE EVENT MONITOR CREATE FUNCTION
CREATE INDEX CREATE TABLE
CREATE TABLESPACE CREATE TRIGGER
CREATE VIEW DELETE
DROP GRANT
INSERT LOCK TABLE
REVOKE ROLLBACK
SET CONSTRAINTS SET CURRENT EXPLAIN SNAPSHOT
SET CURRENT FUNCTION PATH SET CURRENT QUERY OPTIMIZATION
SET EVENT MONITOR STATE UPDATE

In Oracle, you may use a host-variable or a text literal containing the SQL
statement, while in DB2 you must use a host variable. Oracle also allows you to
specify a PL/SQL block as long as it contains no host variables and does not
contain a fetch. To move this to DB2, it would need to be converted into part of
the application, into compound SQL or into a stored procedure.

7.5.6 PREPARE
The Oracle format of the prepare statement will work in DB2 without any
changes. However, DB2 allows you to specify an SQLDA record into which
prepare statement information will be placed and so provides some extra
parameters not found in Oracle.

In Oracle, any variables in the host string are placeholders. The actual host
variable names are assigned in the open using, execute using or fetch into
statements. In DB2, these placeholders are known as parameter markers and
are specified by using a question mark (?). They are assigned in the open using
and execute using statements.

Oracle allows you to specify a text string or a host string for the command being
prepared; however, in DB2 a host string must be specified.

If the command name identifies an existing prepared statement, Oracle
considers them to be the same and will use the most recently defined one. In
DB2, the previous prepared command is destroyed and the new one used; so the
actual effect is the same.

7.6 Reserved Words
The following schema names or user names are reserved in DB2:

• SYSCAT

• SYSIBM

• SYSSTAT

104 DB2 Version 2 Conversion Guide

In addition, it is strongly recommended that schema names never begin with the
SYS prefix. SYS is, by convention, used to indicate an area reserved by the
system.

DATABASE 2 for AIX Version 2 does not enforce reserved words. This allows
SQL to be converted to DB2 with checking not being required. Keywords can be
used as ordinary identifiers, except in the context where they could also be
interpreted as SQL keywords. In such cases, the word must be specified as a
delimited identifier.

IBM SQL and ISO/ANSI SQL92 reserved words are documented in Appendix B,
“IBM SQL Reserved Words” on page 159.

7.7 Special Registers
A special register is a storage area that is defined for an application processed
by the database manager. It is used to store information that can be referenced
by SQL statements. Special registers are in the database code page. These
registers include:

• CURRENT DATE, CURRENT TIME and CURRENT TIMESTAMP

These special registers specify information that is based on a reading of the
time-of-day clock. The clock is read when the SQL statement is executed at
the application server. If this special register is used more than once within
a single SQL statement, or used with another special register within a single
statement, all values are based on a single clock reading. For example:

UPDATE project SET startdate = CURRENT DATE where projno=′ MA2111′ .

SELECT class FROM tab1 WHERE start > CURRENT TIME and day═3

INSERT INTO tab1 VALUES (CURRENT TIMESTAMP, :src, :sub, ′ Pete′ , 12.6)

• CURRENT TIMEZONE

The CURRENT TIMEZONE special register specifies the difference between
Coordinated Universal Time (UTC) or Greenwich Mean Time (GMT) and local
time at the application server. The difference is represented by a
DECIMAL(6,0) data type where the first two digits are the number of hours;
the next two digits are minutes, and the last two digits are seconds.

• CURRENT SERVER

The CURRENT SERVER special register specifies a VARCHAR(18) value that
identifies the current application server.

• CURRENT QUERY OPTIMIZATION

The CURRENT QUERY OPTIMIZATION special register specifies an integer
value that controls the class of query optimization performed by the
database manager when binding statements.

• CURRENT EXPLAIN SNAPSHOT

The CURRENT EXPLAIN SNAPSHOT special register specifies a CHAR(8)
value. It contains a value controlling the behavior of the Explain Snapshot
facility for dynamically prepared statements.

• CURRENT FUNCTION PATH

Chapter 7. SQL Language Elements 105

The CURRENT FUNCTION PATH special register specifies a VARCHAR(254)
value that identifies the function path to be used to resolve function
references and data type references that are used in dynamically prepared
SQL statements.

106 DB2 Version 2 Conversion Guide

Chapter 8. Database Security

This chapter discusses the security features found in DATABASE 2 for AIX
Version 2 and how best to convert from the security features of Oracle 7.

The topics covered include:

• Instance and Database Security

• Users, Groups and Privileges

• DCE Directory and Security

• Applications

8.1 Instance and Database-Level Security
As discussed in Chapter 6, “Database Schema” on page 61, DB2 allows for
multiple databases to exist within a single instance. Oracle, however maintains a
one-to-one mapping of a database to an instance. This basic difference in the
structure of the database instance leads to differences in the way security is
managed. In both environments, we need to control who has access to the
database environment or instance and the level of access within the database.
DB2 also needs to consider who has access to the different databases within the
instance.

8.1.1 Oracle Instance and Database Security
Oracle provides two choices of authorization methods before a user may access
the database.

The first choice is a single authentication level. This level leaves user
authentication to the operating system. The user will usually supply a user ID
and password t o the operating system. Once the operating system has verified
the user, access to the database is granted.

The second choice is double authentication. In this situation the user must
supply a user ID and password to Oracle after they have logged in at the
operating-system level. Only after the Oracle authentication is completed is the
user granted access to the database.

The single authentication method is similar to DATABASE 2 for AIX Version 2.
However, as a DB2 instance may contain multiple databases, there are
additional DB2 authority requirements before the user may access any individual
database.

8.1.2 DB2 Instance and Database Security
DB2 does not maintain a list of users and passwords for accessing the instance
or database as is done in Oracle. DB2 authentication of users is done by the
operating system.

If a user has a valid operating system user ID and password, they should be able
to access the database instance. When an instance is created, the ownership of
that instance is associated with a user and their primary group. This user is
known as the instance owner and inherits system administration authority for the
database instance.

 Copyright IBM Corp. 1995 107

By setting the file or directory permission at the operating-system level, it would
be possible to stop other users from accessing the instance. This can be done,
for example, by removing read and execute permission from the directories.
Under normal circumstances, this is not a problem since even though a user
may have access to the instance, access to the individual databases must be
granted to that user or to a group the user belongs to. The users and groups are
defined at the operating system level. Granting access to a database may be
done by adding a user to the group that has been granted access.

Since DATABASE 2 for AIX Version 2 allows you to catalog a remote database
within your instance, the security of connecting to another machine needs to be
considered. There are three authentication methods for connecting to remote
databases. They are:

SERVER Server authentication requires that the node containing the
actual database authenticates all connections. This
requires the connecting user to have a valid user ID and
password on the server machine. This user ID and
password is at the operating-system level. The user ID on
the server machine does not need to be defined as a logon
user, but must exist on the machine with a valid password.

CLIENT Client authentication means that the server will assume
authentication has been done at the client. This should
only be used in an environment with a secure network.

DCS DCS authentication is similar to SERVER authentication,
but it is used when connecting to a DRDA application
server.

The type of authentication of a database is defined at the instance level on the
server node. When cataloging a database on a client, you are required to specify
the authentication level as well. The authentication level on both the client and
server must match.

8.2 Users, Groups and Roles
Once authenticated, a user will then be able to perform certain operations on the
database or instance. The authorization or privilege of the user will initially
depend on the user′s ID and group. These users or groups may then be granted
privileges. DB2 does not use the concept of a “role” as found in Oracle. Oracle
roles are covered later in this section.

The definition of users, groups and roles is quite different in DB2 and Oracle.
However, once these have been established, the granting and revoking of
privileges on them is similar for both environments.

Oracle 7 Users and Groups

Oracle may maintain a list of users and passwords within the Oracle instance
which are separate to the operating system. If double authentication is being
used, the user must know a valid Oracle user ID and password before they will
be granted access to the database. The level of access the user is granted
depends on the user ID and the roles granted to that user.

108 DB2 Version 2 Conversion Guide

Oracle creates a default set of users and privileges that cannot be changed.
These users and privileges provide different levels of access to the database.
The default users that are created are:

SYS SYS is the owner of all the tables and views that make up
the data dictionary.

SYSTEM SYSTEM is the owner of all the additional tables and views
that contain administrative information and the internal
tables and views used by Oracle tools.

The default privileges include:

INTERNAL This privilege level is usually only granted to the database
administrator because it enables operations such as
starting and stopping the database.

OSOPER A user with OSOPER privilege is able to perform
operations such as:

• startup and shutdown
• alter database open/mount
• alter database backup
• archive log
• recover
• use a restricted session

OSDBA A user with OSDBA privilege is able to perform all the
operations of a user with OSOPER privilege, plus all the
system privileges with ′ADMIN OPTION′ and the ability to
create a database.

DBA The DBA privilege allows the user to perform all the
database system operations. By default the users SYS and
SYSTEM are automatically granted this level of privilege.

Oracle has a default group called PUBLIC. If a privilege is granted to PUBLIC,
anyone who is authenticated by the database will have the privilege.

Oracle also allows you to group privileges into roles. These groups of privileges
may then be granted to a user. By doing this, you are able to minimize the
amount of overhead in controlling what privileges the different database users
have.

DATABASE 2 for AIX Version 2 Users and Groups

DB2 also creates a default set of users and groups. When a DATABASE 2 for AIX
Version 2 instance is created, it is associated to an operating system user ID.
The user is then known as the instance owner. The instance owner will inherit
system administration authority over the entire instance. DB2 provides four
levels of administrative authority. These levels provide different access and
privileges on the database instance and to the databases it contains.

The four authority levels are:

SYSADM System Administration Authority

SYSCTRL System Control Authority

SYSMAINT System Maintenance Authority

DBADM Database Administration Authority

Chapter 8. Database Security 109

Table 20 on page 110 provides a full listing of the authorities and capabilities
provided with each of these authority levels.

To assign the authority levels for SYSADM, SYSCTRL and SYSMAINT, they need
to be associated to an operating system group. SYSADM is automatically
assigned to the primary group of the instance owner. The other two authority
levels are not assigned a group by default. To assign an operating system
group to the authority levels, the database manager configuration needs to be
modified using the following commands:

UPDATE DATABASE MANAGER CONFIGURATION USING SYSCTRL_GROUP group-name
UPDATE DATABASE MANAGER CONFIGURATION USING SYSMAINT_GROUP group-name
UPDATE DATABASE MANAGER CONFIGURATION USING SYSADM_GROUP group-name

Once the authorities have been associated to an operating-system group, users
may be granted the authority by adding them to the group at the operating
system level.

The authority of DBADM is automatically assigned to the creator of individual
databases. The privilege may then be granted to an individual user or to a
group, excluding the special group PUBLIC. Unlike the SYSADM, SYSMAINT and
SYSCTRL privileges, DBADM is only applicable to a single database within the
instance.

Table 20. DB2 System Group Authorizations

Funct ion S Y S A D M S Y S C T R L S Y S M A I N T D B A D M

CATALOG / UNCATALOG DATABASE yes yes

CATALOG / UNCATALOG NODE yes yes

CATALOG / UNCATALOG DCS yes yes

MIGRATE DATABASE yes

UPDATE DBM CFG yes

GRANT / REVOKE DBADM yes

GRANT / REVOKE SYSCTRL yes

REVOKE / GRANT SYSMAINT yes

FORCE USERS yes yes

CREATE / DROP DATABASE yes yes

QUIESCE INSTANCE or DATABASE yes yes

CREATE / DROP / ALTER TABLESPACE yes yes

RESTORE TO NEW DATABASE yes yes

UPDATE DB CFG yes yes yes

BACKUP DATABASE or TABLESPACE yes yes yes

RESTORE TO EXISTING DATABASE yes yes yes

PERFORM ROLL FORWARD RECOVERY yes yes yes

START / STOP DATABASE INSTANCE yes yes yes

RESTORE TABLESPACE yes yes yes

RUN TRACE yes yes yes

TAKE DBM or DB SNAPSHOTS yes yes yes

QUERY TABLESPACE STATE yes yes yes yes

UPDATE LOG HISTORY FILES yes yes yes yes

QUIESCE TABLESPACE yes yes yes yes

LOAD TABLES yes yes yes

SET / UNSET CHECK PENDING STATUS yes yes yes

READ LOG FILES yes yes yes

CREATE / ACTIVATE / DROP EVENT MONITORS yes yes yes

RUN LOAD UTILITY yes yes yes

110 DB2 Version 2 Conversion Guide

8.2.1 Privileges
In both DB2 and Oracle, user privileges are granted by using the grant
statement and revoked with the revoke statement. The concept of granting and
revoking privileges is similar in both the DB2 and Oracle environments.

Oracle 7 automatically creates a special group called PUBLIC. Users are
automatically added to this group. As a member of the PUBLIC group, a user is
able to select from certain tables in the data dictionary, grant or revoke
privileges on the PUBLIC group, or create links and synonyms to be assigned to
the PUBLIC group.

The PUBLIC group is the only group used in Oracle, and it does not relate to any
of the operating-system groups. Rather than making use of the operating-system
groups like DB2, Oracle allows you to create roles. A role is a group of
privileges that may then be granted to users or other roles. As mentioned above,
DB2 makes use of the operating-system groups to perform a function similar to
the Oracle roles. Privileges may be granted to a group, which is similar in
concept to grouping them into a role. Then,to grant users the privileges, you
simply add the user to the group at the operating-system level.

Oracle divides the granting of privileges into two forms.

 1. Granting system privileges and roles to users or roles
 2. Granting privileges on objects to users or roles

DATABASE 2 for AIX Version 2 also divides privileges into separate groups.
These are

 1. Granting database authorities to users or groups
 2. Granting index privileges to users or groups
 3. Granting package privileges to users or groups
 4. Granting table or view privileges to users or groups

Privileges are grouped differently in DB2, but remain similar in syntax and
function to the privileges in Oracle. The different groupings in DB2 are based on
the different types of privileges that may be granted to the different database
objects. Oracle contains a large selection of system privileges that may be
granted to individual users. For example, you may grant one user the ability to
drop any table in the database, while another user may be able to drop users.
This level of granularity is not found in DB2 at the system or database level.
Many of the system-level privileges are associated with the four authority levels
discussed previously. The database-level authorities available in DATABASE 2
for AIX Version 2 are:

CONNECT Allows a user to connect or access the database.

BINDADD Allows a user to bind a package (stored procedure or
application) to the database.

CREATE_NOT_FENCED Allows a user to register functions that will be executed
in the database manager process area. Normally
functions are fenced from the database to minimize the
risk of adverse side effects.

CREATETAB Allows a user to create their own tables in the
database.

Chapter 8. Database Security 111

DBADM Grants the user database administration authority. They
inherit all the above privileges and have all privileges
on all objects within the database. They may also grant
or revoke privileges from other users.

The above authorities may be granted to users, group or to the special group,
PUBLIC. With the single exception that DBADM authority may not be granted to
PUBLIC. The DB2 PUBLIC group is the same as the PUBLIC group used in
Oracle.

At the table and view level, the privileges in Oracle and DB2 are almost
identical. The privileges found in DB2 for tables and views are:

ALL Grants the user all of the privileges listed below.

ALTER Allows the user to alter the specified table by adding
columns, and by creating or dropping primary keys, foreign
keys, triggers, or constraints. This privilege is not valid for
views.

CONTROL The control privilege grants the user all the privileges
listed, including the capability to drop the table or view,
execute the runstats utility on the table or view or grant
any of the privileges (except CONTROL) to another user.
Granting a user the CONTROL privilege is similar to using
the Oracle parameter, ′WITH GRANT OPTION′.

DELETE Allows the user to delete rows from the table or an
updatable view.

INDEX Permits the user to create an index on the table. The
creator of an index automatically has control privilege on
that index. This privilege is not valid for views.

INSERT Allows the user to insert rows into the table or updatable
view. This also allows the user to run the import utility.

REFERENCES Allows the user to create or drop a foreign key that
references the table as a parent. This privilege is not valid
for views.

SELECT Allows the user to retrieve rows from the table and run the
export utility.

UPDATE Allows the user to update existing rows in the table or
updatable view.

DB2 also has a privileges associated with packages (stored procedures or
applications). These packages are not the same as an Oracle package. For
further information on DATABASE 2 for AIX Version 2 packages, refer to
Chapter 6, “Database Schema” on page 61 or to Chapter 9, “Applications” on
page 117. The privileges associated with packages are:

CONTROL Allows the user to grant the package privileges (except
CONTROL) to another user. Both BIND and EXECUTE
privilege are granted to a user that is granted the
CONTROL privilege.

BIND Allows the user to rebind a package to the database. The
package must already have been bound by someone with
BINDADD authority.

112 DB2 Version 2 Conversion Guide

EXECUTE Execute privilege allows the user to run the package that
has been bound.

Finally, there are the privileges associated to an index. This should not be
confused with the index privilege on a table. If you have been granted the index
privilege for a table, you are able to create indexes and drop them for that table.
If you create an index on a table and you wish to allow other users to drop them,
you will need to grant them the following index privilege:

CONTROL Allows a user to drop the index for which the control
privilege has been granted.

8.3 DCE Directory and Security
DCE services are not found in Oracle, but may be incorporated into the
DATABASE 2 for AIX Version 2 environment. Using DCE Directory Services, you
are able to store information about the target databases within the DCE directory
objects. The DCE information on the clients may be stored in the database
manager configuration or as environment variables.

Currently, DATABASE 2 for AIX Version 2 supports DCE Cell Directory Services
(CDS) for a single cell environment. There also exists DCE Global Directory
Services (GDS) for multiple cells or global cell naming environments.

The Database 2 Administration Guide, Version 2 provides information on the
tasks required to configure DCE CDS for DB2. The type of information stored in
the DCE database object contains information such as the database name,
location, protocol, authentication and well as information about the database
products.

Authentication of users may be performed at the client, server or DDCS
Client/Server gateway. This is the same as in DB2 without DCE. However, it is
important to correctly specify the type of authentication being used in the
database object at the DCE server because this is where a client first requests
that information.

8.4 Applications
Application development in Oracle is different to application development in DB2.
One of the main differences is the way in which applications are compiled and
bound to a database. If you are not familiar with application development in the
DATABASE 2 for AIX Version 2 environment, you should refer to Chapter 9,
“Applications” on page 117.

Most of the applications written for Oracle will need to be modified and
re-compiled for DATABASE 2 for AIX Version 2. This process will require
application development on the new DB2 database. In DATABASE 2 for AIX
Version 2, there are several methods that you could use to allow application
development without placing the database at risk.

The first method would be to create a second database instance. This second
instance would be a complete copy of the primary instance. It would be possible
to grant system administration authority to the application developer on the
development instance. By doing this, you provide the application developer full

Chapter 8. Database Security 113

access to the database environment without the risk of corruption to the live or
primary instance.

Another method would be to create a second database in the existing instance.
By granting the application developer database administration authority on this
development database, you also provide full access to the development
database, but not to the primary database. However, this would require the
application developer to ask the system or instance owner to make any required
changes to the database instance.

If you have space or resource limitations, then you may decide to let the
application developer access the primary database. To minimize the risk of
corruption in this environment, you would grant the developer only a minimum
set of privileges. The main privileges required by a developer include:

• CONNECT authority on the database(s) the applications access.

• BINDADD authority if the developer is to create new applications.

• BIND authority if modifications to applications that have already been bound
to the database are to be made.

• CREATETAB authority if new tables are to be made within the database.

• The developer may also require specific privileges on existing database
objects, such as tables or indexes.

Static SQL and Dynamic SQL

An application that contains static SQL must be prepared or bound to the
database before it may be executed. When a static SQL application is prepared
the SQL statements are turned into executable form and stored within the
database as packages.

Once an application has been bound to the database, the end user will only
require execute privilege and does not require privileges on the tables the
package/application accesses. This is because the privileges of the user who
binds the application will be inherited by the user running the application.

The person binding the application must have sufficient access to all the
database objects accessed by the application.

This is not the case with dynamic SQL. In the case of applications that contain
dynamic SQL, the authorizations are determined at the time the statement is
executed and not at the time the application is bound to the database. The
individual users running the application need to have the appropriate privileges
on the database objects that the application accesses.

By choosing static SQL over dynamic SQL, you are able to control what a user
can modify through the application program because outside the application, the
user will not have access to the database objects. Also, since dynamic SQL
statements must be prepared at run-time, they will be slower in execution than
the same statement would be using static SQL. In short, dynamic SQL should
only be used when the added flexibility of dynamic statements is required.

Application Programming Interface

Most of the Application Programming Interface (API) calls for DATABASE 2 for
AIX Version 2 do not require any special privilege to be called. However,

114 DB2 Version 2 Conversion Guide

depending on the function the API performs, you may require some levels or
authorization or privilege. The Application Programming Interface Reference lists
all the DB2 API′s and the privileges required to execute them.

Chapter 8. Database Security 115

116 DB2 Version 2 Conversion Guide

Chapter 9. Applications

This chapter covers the different topics that require consideration when
converting an application from an Oracle 7 environment to a DATABASE 2 for
AIX Version 2 environment. These topics include:

Programming Languages

Pre-Compilers

Stored Procedures

9.1 Pre-Compilers
Embedded SQL is available in both Oracle 7 and DATABASE 2 for AIX Version 2.
The differences in the actual SQL syntax has been covered in Chapter 7, “SQL
Language Elements” on page 71. This chapter focuses on the compilation and
execution of applications in the DB2 environment.

9.1.1 Embedded SQL in Oracle 7
The process involved in compiling an Oracle application is similar to that of
compiling any application under the operating system. Figure 22 on page 118
indicates the basic process involved in the compilation of an Oracle embedded
SQL program. These basic steps are:

 1. Precompilation

During the precompilation phase or step, the embedded SQL statements are
replaced with data structures and library calls for the host language.

 2. Compilation

The compilation phase turns the precompiled files, and any other host
language source files used by the application, into object modules.

 3. Linking

Linking is the final phase for an Oracle compilation. This will link the object
modules and libraries to produce an executable application.

Once the application has been compiled, it will be ready for users to execute.

 Copyright IBM Corp. 1995 117

Figure 22. Compiling Oracle Embedded SQL Applications

9.1.2 Embedded SQL in DB2
The compilation process of an embedded SQL application in DATABASE 2 for
AIX Version 2 is similar to the compilation process for Oracle. However, an
additional step is required before the application may be executed successfully
against the database. Figure 23 on page 119 shows the compilation process for
DB2, including the additional step.

The basic steps for compiling an application with embedded SQL in a DB2
environment are:

 1. Precompilation

During the precompilation phase or step, the embedded SQL statements are
replaced with data structures and library calls for the host language. This
phase will also produce a bind file that will be used in the last phase.

 2. Compilation

The compilation phase turns the precompiled files, and any other host
language source files used by the application, into object modules.

118 DB2 Version 2 Conversion Guide

 3. Linking

Linking will link all the object modules and libraries into an executable
application.

 4. Binding

Binding will use the file produced by phase one and store the information in
the database as a package. This package includes all the necessary
information required to execute the static SQL statements found in the
application.

Figure 23. Compiling DB2 Embedded SQL Applications

Since DB2 binds applications to a database, you will need to be connected to the
target database during the precompilation (prep) phase. This is because some
SQL validation is performed during this phase of the compilation.

During the precompilation phase, a bind file will be produced for each source
module and may automatically be bound to the database. It is possible to delay
this binding by using the ′BINDFILE′ option with the preprocessor. The binding
process produces a package on the database server. These packages are
parsed forms of the SQL statements. By performing this operation at the

Chapter 9. Applications 119

compilation phase, it is not necessary to perform it at run time. This may have
significant performance benefits when the applications are executed.

Figure 24 is an example of the statement used to precompile and bind an
application to the database.

� �
$ db2 CONNECT TO sample

$ db2 PREF source.sqc BINDFILE

$ xlc -I/usr/lpp/db2_02_01/include -c source.c

$ xlc -o source source.o -L/usr/lpp/db2_02_01/lib -l db2

$ db2 BIND source.bnd

� �
Figure 24. Commands Used to Create a Source Executable

9.2 Programming Languages
An application in DB2 is made up of several phases. These include setting up
the application, connecting to the database, performing one or more units of
work, disconnecting from the database, and ending the application.

During the setting up of the application, you need to declare all variables and
data structures that will be used to interact with the database manager. For
example, setting up the host variables to contain any table information returned
by an SQL query.

The following sections discuss the host variables, the SQL Communication Area
(SQLCA), the SQL Descriptor Area (SQLDA) structures, and some of the other
important areas in application programming.

9.2.1 Host Variables
In DB2, host variables are declared within an SQL declare section. Oracle
allows you to declare variables outside this declare section, but the FIPS
(Federal Information Processing Standard) flagger will issue a warning message
because the declare section is a part of the SQL standard.

The SQL declare section is a group of host program variable declarations that
are preceded by the SQL statements, begin declare section, and ended with the
end declare section statement. The definition and attributes of each host variable
will depend upon how the variable is to be used within the SQL statements.
Variables that receive and store data from the DB2 tables need to match the
data type and length attributes of the tables column. An example of the different
data type mappings for the C programming language is shown in Table 21 on
page 121. For further information on the different data types, refer to Chapter 5,
“Data Types” on page 53.

120 DB2 Version 2 Conversion Guide

A more complete listing of the supported data types is available in the DB2
Application Programming Guide for common servers, Version 2. The SQLDA
record contains additional information about the data types in the SQLTYPE field,
including information indicating if the column is a nullable or non-nullable
column type.

An example of the declare section can be seen in Figure 25. The values shown
as comments are examples of the values that would be found in the SQLTYPE
field of the SQLDA record.

Table 21. Data Types in C / C + +

DB2 Column type C/C++ Data Type

SMALLINT short, short int

INTEGER long, long int

FLOAT double

DECIMAL(p,s) No exact equivalent. Use the type double

CHAR(1) char

CHAR(n) No exact equivalent. Use the type char [n], w h e r e 1 < = n < = 2 5 4

VARCHAR(n) struct tag { short int; char [n]; }, w h e r e 1 < = n < = 4 0 0 0

LONG VARCHAR struct tag { short int; char [n]; } 1 < = n < = 3 2 7 0 0

CLOB sql type is clob [n] 1 < = n < = 2 1 4 7 4 8 3 6 4 7

BLOB sql type is blob [n] 1 < = n < = 2 1 4 7 4 8 3 6 4 7

DATE char [10]

TIME char [8]

TIMESTAMP char [28]

� �
EXEC SQL BEGIN DECLARE SECTION;

short age=26; /* SQL type 500 */
long salary; /* SQL type 496 */
double wage; /* SQL type 480 */
char mi; /* SQL type 452 */
char name[6]; /* SQL type 460 */
struct {

short int len;
char arr[24];
} address; /* SQL type 448 */

sql type is clob(1m) chapter; /* SQL type 408 */
char timestamp[26]; /* SQL type 392 */
short wage_ind; /* Null indicator */
char (*arr)[10]; /* Ptr to a char of 10

bytes must be referenced
as :*mychar */

EXEC SQL END DECLARE SECTION;

� �
Figure 25. Sample DECLARE SECTION in DATABASE 2 for AIX Version 2

Within the declare section of Oracle, you are able to include statements, such as
exec sql include, exec sql type and exec sql var. DB2 does not permit the use
of any exec sql statement within the declare section.

Chapter 9. Applications 121

9.2.2 SQL Communication Area (SQLCA)
The SQLCA structure in DATABASE 2 for AIX Version 2 is similar to the same
structure found in Oracle 7. The SQLCA data structure provides information for
diagnostic checking and event handling. To declare the SQLCA structure in your
application, you use the statement, exec sql include sqlca.

During the preprocessing of your application, the host language variable
declarations replace the include sqlca statement. As mentioned in the previous
section, the include sqlca statement must be outside the declare section of your
application. The C/C++ representation of the SQLCA structure can be seen in
Figure 26 for Oracle 7 and in Figure 27 for DATABASE 2 for AIX Version 2.

� �
struct sqlca
{
 char sqlcaid[8];
 long sqlabc;
 long sqlcode;
 struct
 {

unsigned short sqlerrml;
char sqlerrmc[70];

} sqlerrm;
 char sqlerrp[8];
 long sqlerrd[6];
 char sqlwarn[8];
 char sqlext[8];
};

� �
Figure 26. The Oracle 7 SQLCA Structure

� �
SQL_STRUCTURE sqlca
{

char sqlcaid[8]; /* Eyecatcher = ′ SQLCA ′ */
long sqlcabc; /* SQLCA size in bytes = 136 */
long sqlcode; /* SQL return code */
short sqlerrml; /* Length for SQLERRMC */

 _SQLOLDCHAR sqlerrmc[70]; /* Error message tokens */
 _SQLOLDCHAR sqlerrp[8]; /* Diagnostic information */

long sqlerrd[6]; /* Diagnostic information */
 _SQLOLDCHAR sqlwarn[11]; /* Warning flags */
 _SQLOLDCHAR sqlstate[5]; /* State corresponding to SQLCODE */
}

� �
Figure 27. The DATABASE 2 for AIX Version 2 SQLCA Structure

After an SQL statement is executed, the system will place a return code in both
the sqlcode and sqlstate fields of the SQLCA structure. The sqlcode is an integer
value that summarizes the execution of the statement, while the sqlstate is a
character field that provides common error codes across the all the IBM
relational database products. The sqlstate also conforms to the ANSI standards.
The DB2 Messages Reference Version 2 manual provides a listing of all the error
codes and conditions that might be found in the SQLCA structure.

122 DB2 Version 2 Conversion Guide

It is possible to let the system provide some control over checking for errors or
warnings from the execution of SQL statements. This is provided by the whenever
statement. The whenever statement provides handling for not-found conditions,
warnings and errors. You may specify that upon the given condition an
appropriate action is to be taken or simply continue execution of the application.

 Note

DATABASE 2 for AIX Version 2 does not allow parameters ′DO′ and ′STOP′
with the whenever statement. For further details, refer to Chapter 7, “SQL
Language Elements” on page 71.

9.2.3 SQL Descriptor Area (SQLDA)
The SQLDA structure provides a mechanism for applications to transfer data to
the database manager as well as for receiving information from the database
manager. The C/C++ representation of this structure is shown in Figure 28 for
Oracle, and the DB2 structure is shown in Figure 29 on page 124.

� �
struct SQLDA {

long N; /* Descriptor size in number of entries */
char **V; /* Ptr to Arr of addresses of main variables */
long *L; /* Ptr to Arr of lengths of buffers */
short *T; /* Ptr to Arr of types of buffers */
short **I; /* Ptr to Arr of addresses of indicator vars */
long F; /* Number of variables found by DESCRIBE */
char **S; /* Ptr to Arr of variable name pointers */
short *M; /* Ptr to Arr of max lengths of var. names */
short *C; /* Ptr to Arr of current lengths of var. names */
char **X; /* Ptr to Arr of ind. var. name pointers */
short *Y; /* Ptr to Arr of max lengths of ind. var. names */
short *Z; /* Ptr to Arr of cur lengths of ind. var. names */
};� �

Figure 28. The Oracle 7 SQLDA Structure

Chapter 9. Applications 123

� �
SQL_STRUCTURE sqlname /* Variable Name */
{

short length; /* Name length */
_SQLOLDCHAR data[30];

/* Variable or Column name */
};

SQL_STRUCTURE sqlvar /* Variable Description */
{

short sqltype; /* Variable data type */
short sqllen; /* Variable data length */

 _SQLOLDCHAR *SQL_POINTER sqldata;
/* Pointer to variable data value */

short *SQL_POINTER sqlind;
/* Pointer to Null indicator */

struct sqlname sqlname; /* Variable name */
};

SQL_STRUCTURE sqlda
{

char sqldaid[8];
/* Eye catcher = ′ SQLDA ′ */

long sqldabc; /* SQLDA size in bytes=16+44*SQLN */
short sqln; /* Number of SQLVAR elements */
short sqld; /* # of columns or host vars. */
struct sqlvar sqlvar[1];

/* first SQLVAR element */
};� �

Figure 29. The DATABASE 2 for AIX Version 2 SQLDA Structure

A mapping between the different SQLDA records can be found in Table 22.

To include the SQLDA structure using the SQL preprocessor directive, you would
use the statement, exec sql include sqlda. It is also possible to include the
header fi le with the C/C++ precompiler. This would appear as the statement,
#include <sqlca.h>.

Table 22. Mapping SQLDA in Oracle and DB2

Variable in
Oracle 7

Variable in DATABASE 2 for
AIX Version 2

Comment

s q l d a - > N
sq lda ->sq ln

Specifies the total number of variables
currently allocated for the SQLDA.

s q l d a - > V [i] sq lda ->sq lva r [i].sqldata Specifies a pointer to the data item.

s q l d a - > L [i] sq lda ->sq lva r [i].sqllen
Specifies the actual length of the data
item.

s q l d a - > T [i] sq lda ->sq lva r [i].sqltype
Specifies the numeric value
representing the data type of an item
(see Table 21 on page 121).

s q l d a - > I [i] sq lda ->sq lva r [i].sqlind

Specifies a pointer to a short integer
that is used to indicate whether or not
the data item pointed to by the sqldata
pointer is null or truncated.

s q l d a - > F
sq lda ->sq ld

Specifies the number of variables
currently being used.

s q l d a - > S [i] sq lda ->sq lva r [i].sqlname.data

Specifies the fully qualified distinct type
name for columns of distinct type when
used by the describe or prepare
statements.

124 DB2 Version 2 Conversion Guide

Once the definition of the SQDA structure has been included in the application,
you will need to allocate space for the data structure. This is because the size
of the structure is not fixed and will depend upon the number of distinct data
items being passed. Oracle provides the following function to perform the
allocation of space;

SQLDA *sqlald(int max_vars, size_t max_name, size_t max_ind_name);

DB2 defines a macro, called SQLDASIZE. The form of the definition is:

#define SQLDASIZE(n) (sizeof(struct sqlda) + (n-1) * sizeof(struct sqlvar))

This definition can then be used in the definition of the SQLDA structure, as
follows:

struct sqlda *outda = (struct sqlda *) malloc(SQLDASIZE(1));

To maintain compatability with Oracle, the code example shown in Figure 30
allows you to allocate space in the same manner as it would in Oracle.

� �
struct sqlda *sqlald(int p1,int p2,int p3) /* Only p1 is used */
{

struct sqlda *da;
da=(struct sqlda *) malloc (SQLDASIZE(p1));
if (da==NULL) {

fprintf(stderr,″\nsqlald: out of memory error.\n″) ;
exit(-1);

}
strncpy(da->sqldaid,″SQLDA ″ , 8) ;
da->sqldabc=(long)SQLDASIZE(p1);
da->sqln=p1;
da->sqld=0;
return(da);

}� �
Figure 30. Sample sqlald

9.2.4 Static and Dynamic SQL
When the syntax of the embedded SQL statements are fully known at precompile
time, the statements are referred to as static SQL. This is in contrast to dynamic
SQL statements, which can have part or all of the statements specified at run
time, instead of at precompile time.

Both Oracle 7 and DATABASE 2 for AIX Version 2 use static SQL as well as
dynamic SQL. The important difference to note is that DB2 compiles the SQL
statements and calculates the access plans to the data when the application is
compiled. Oracle does this at run time. Because DB2 does not require the
access plans do to be calculated at run time, you may see an increase in the
performance. In general, static SQL statements will execute faster than dynamic
SQL for this reason.

Figure 31 on page 126 is an example of a Oracle C program modified to run with
DB2. The code enclosed in comments shows the old Oracle code, before the
modification was made.

Chapter 9. Applications 125

� �#include <stdio.h>
#include <sqlenv.h>

EXEC SQL INCLUDE sqlca;
EXEC SQL INCLUDE sqlda;

struct sqlda *sqlda; /* SQLDA *sqlda;*/

/* extern SQLDA *sqlald(); */
struct sqlda *sqlald(int p1,int p2,int p3) {

struct sqlda *da;
da=(struct sqlda *) malloc (SQLDASIZE(p1));
if (da==NULL) {

fprintf(stderr,″\nsqlald: out of memory error.\n″) ;
exit(-1); }

 strncpy(da->sqldaid,″SQLDA ″ , 8) ; da->sqldabc=(long)SQLDASIZE(p1);
 da->sqln=p1; da->sqld=0;
 return(da);
}

main() {
EXEC SQL BEGIN DECLARE SECTION;
/* VARVHAR username[20]; */
struct { short int len; char arr[20]; } username;
/* VARCHAR passwd[22]; */
struct { short int len; char arr[22]; } passwd;
char *stmt=″select * from dept″ ;
EXEC SQL END DECLARE SECTION;

int i,null_ok;

strcpy(username.arr,″scott″) ; username.len=strlen(″scott″) ;
strcpy(passwd.arr,″tiger″) ; passwd.len=strlen(″tiger″) ;

EXEC SQL WHENEVER SQLERROR GOTO Error;

EXEC SQL CONNECT to A user :username using :passwd;
/*EXEC SQL CONNECT :username IDENTIFIED BY :passwd;*/

sqlda=sqlald(5,5,5);

/* for (i=1;i<sqlda->N;i++)
sqlda->I[i]=(short *) malloc(sizeof(short *)); */

EXEC SQL PREPARE s FROM :stmt;
/* EXEC SQL DESCRIBE SELECT LIST FOR s INTO sqlda; */
EXEC SQL DESCRIBE s INTO :*sqlda;

sqlda->sqln=sqlda->sqld; /* sqlda->N=sqlda->F; */

/* for (i=0;i<sqlda->F;i++) {
printf(″%d ==> \n\tcol. name(S) : %s\n\ttype(T):
%d\n\tLong(C) : %d\n″ , i,sqlda->S[i],
sqlda->T[i],sqlda->C[i]); } */

for (i=0;i<sqlda->sqld;i++) {
printf(″%d ==> \n\tcol. name(S) : %s\n\ttype(T) :
%d\n\tLong(C) : %d\n″ , i,
sqlda->sqlvar[i].sqlname.data,
sqlda->sqlvar[i].sqltype, sqlda->sqlvar[i].sqlname.length);

}

EXEC SQL CONNECT RESET; /* EXEC SQL COMMIT WORK RELEASE; */
exit(0);

Error :
printf(″Error detectee\n″) ; exit(1);

}� �
Figure 31. Sample C Program

126 DB2 Version 2 Conversion Guide

9.3 Stored Procedures
In Oracle, a procedure or function consists of SQL statements and/or PL/SQL
programming language statements that are written to perform a specific task.
Procedures or functions are created in a user′s schema and stored in the
database. Oracle groups related procedures, functions, cursors and variables
together as a unit which is referred to as a package. This package is stored in
the database, and the procedures or functions may be explicitly called using the
execute statement. For example,

EXECUTE pkgname.procname (′ TITI′ ,1035,NULL);

In DATABASE 2 for AIX Version 2, stored procedures can be used for database
manager applications running in a client/server environment. This technique
allows an application running on a client to call a procedure stored on at the
database server. The server procedure executes and accesses the database
locally and returns information to the client application.

To use this technique, the application is written in two separate parts. The
calling procedure is contained in a client application and executes on the client.
The server procedure executes at the location of the database that is on the
database server. However, unlike Oracle, the procedure is located outside the
database. Applications using this technique have the following advantages:

• Reduced network traffic

• Improved performance of server-intensive work

• Access to features that exist only on the database server

As mentioned above, the stored procedures are written in two separate parts.
These are:

• The client application, which performs the following functions;

 1. Declares, allocates and initializes storage for the optional data structures
and host variable.

 2. Connects to a database (connect to dbname).

 3. Invokes the server procedure through the sql call statement and passes
the SQLDA structure to the server.

 4. Receives information back from the server procedure.

 5. Disconnects from the database (connect reset).

• The server procedure, which performs the following functions:

 1. Accepts the SQLDA data structure from the client application.

 2. Executes on the database server under the same transaction as the
client application.

 3. Returns SQLCA information and optional output data to the client
application.

Chapter 9. Applications 127

128 DB2 Version 2 Conversion Guide

Chapter 10. Backup and Restore

This chapter discusses how to back up your existing database and how to
establish a backup and recovery methodology for your new DB2 environment.

Topics covered include:

Backing up you existing Oracle database

Restoring you Oracle database

Backup and Recovery strategies for DB2

Logging

10.1 Oracle 7 Database Backup
A major responsibility of the database administrator is to prepare for the
possibility of hardware, software, network, process, or system failures. If such a
failure effects the operation of a database system, it is usually desirable to
recover the database and return to normal operations as quickly as possible.

Several problems can halt the normal operation of an Oracle database or affect
the writing of database information to disk. These problems may include:

• User error

• Command failure

• Process failure

• Network failure

• Database instance failure

• Media (Disk) failure

It is always possible that a failure may occur during the conversion process. To
safeguard against the possibility of a failure and to minimize the effect if one
occurs, you should understand the following Oracle concepts and objects.

• Database Backups

A database backup consists of operating-system-level backups of the
physical files that constitute an Oracle database. To begin database recovery
from a media failure, the backup files are used to restore the damaged data
files or control files.

• The Redo Log

The Redo Log, which is present for every Oracle database instance, records
all changes made to the Oracle database. A database redo log is comprised
of following two parts.

− The online redo log

This log works in conjunction with the Oracle background log writer
process (LGWR) to immediately record all changes made through the
associated instance. The online redo log consists of two or more
pre-allocated files that are reused in a circular fashion to record ongoing
database changes.

− The archived (offline) redo log

 Copyright IBM Corp. 1995 129

Optionally, an Oracle database instance can be configured to archive
files of the online redo log once they fill. The online redo log files that
are archived are uniquely identified and make up the archived redo log.
By archiving completed online redo log files, older redo log information
can be preserved for more extensive database recovery operations,
while the pre-allocated online redo log files continue to be reused to
store the most current database changes.

• Rollback Segments

These are used for a number of functions in the operation of an Oracle
database. In general, the rollback segments of a database store the old
values of data changed by uncommitted transactions. Among other things,
the information in a rollback segment is used during database recovery to
″undo″ any ″uncommitted″ changes applied from the redo log to the data
files. Therefore, if database recovery is necessary, the data is in a consistent
state after the rollback segments are used to remove all uncommitted data
from the data files.

• Control Files

The control files store the status information about the physical structure of
the database. Certain status information in the control files is used to guide
Oracle during instance or media recovery. Information such as the current
online redo log file, or the names of the data files, is stored in the control
files.

10.1.1 Backup Strategy
There are three basic backup methods available to you in Oracle. These are
listed below with a description of each.

• Offline backups

Offline backups are full backups of data files, online redolog files and control
files taken while the database is shut down. A full backup should also
include the parameter files associated with the database. These files should
be all you need to restore the database to the current point in time. In
Oracle, offline backups are performed at the operating-system level using
commands such as tar, cpio or dd.

• Online backups

Online backups can be performed while the database is in use. This allows
system activity to continue uninterrupted while the backup takes place. You
must be in ″archivelog″ mode to perform online backups effectively. Note
that online backups are useless without the archived redo logs (offline redo
logs).

• Export

Backing up by exporting files using the Export/Import utilities to back up
tables and whole databases. The Export utility is usually not as desirable as
the backup methods discussed above because it is much slower. Also, to
recover a database, the import must recreate every database object one by
one.

Most existing database environments will already have a backup strategy in
place. If this is the case, you should make sure that you posses a current backup
of your entire database environment. If you do not already have a strategy, then
the following will provide you with some ideas on how to take a full backup of

130 DB2 Version 2 Conversion Guide

your Oracle system. Also note that this section is for backing up and restoring
Oracle. It does not describe how to back up Oracle data so that it may be
restored to DB2.

Database administrators typically perform regularly scheduled offline backups
during convenient time periods, such as weekends. They may also perform more
frequent online backups at shorter intervals.

The frequency at which you back up your database system will be determined by
a number of factors. These include the size of the database and how critical the
information is. Also the availability of performing an offline backup may impact
your backup policy.

Without control files, you cannot recover your database from any backup. Control
files should be backed up each time you perform an offline backup. You must
also have a copy of the control file, with the same file structure as your database
to recover from an online backup. For this reason, it is a good idea to back it up
immediately following the online backup procedure.

10.1.2 Redo Log Archiving
The redo log files of an Oracle server records changes made to database blocks
when transactions are committed. These files can then be used to recover a
damaged database by rolling forward from the most recently archived version of
the database.

When the database is running in archivelog mode, the Oracle server daemon
(ARCH) archives the completed online redo log files. These archived files can
then be used to restore the database in case of software or hardware failure.
When you use noarchivelog mode, the completed files are simply over written in
a round-robin fashion.

The decision whether to operate in archivelog mode or noarchivelog mode
depends on a balance of the costs and benefits of each mode. Weigh the cost of
the additional disk space you will require against the cost of data loss and
recovery time to arrive at a decision.

The following parameters will be set in the init.ora file if log archiving is being
used.

• log_archive_dest

Indicates the destination for the archiving of the redo log file.

• log_archive_format

Indicates the name of the file created.

• log_archive_start

Indicates whether archiving is to be automatic or manual when the instance
is started.

Chapter 10. Backup and Restore 131

10.2 Oracle 7 Recovery
In every database system, the possibility of a system failure is always present.
Should system failure occur, the database must be recovered quickly, and with
as little detrimental impact on users as possible.

Recovering from any type of system failure requires:

 1. Determining which data structures have been corrupted or lost

 2. Restoring the corrupted data from an archive/backup

 3. Restarting the database and possibly replay logs (rollforward)

 4. Checking database integrity

The aim is to return to normal operations as quickly as possible and, at the
same time, to insulate database users from any problems, such as the loss or
duplication of work. The recovery process varies, depending on the type of
failure and the database files affected by the failure.

Recovery from instance failure

To recover from an instance failure, you may simply need to shut down the
instance, possibly using the ′ IMMEDIATE′ or ′ABORT′ options for the shutdown
process. Then restart the instance as normal. Automatic recovery procedures
will perform the following steps:

• Roll forward all transactions in the redo log files

• Roll back uncommitted transactions

• Release all locks on Oracle resources

You should now be able to return to normal operations.

Recovery from media failure

Media failure happens when a non-recoverable error occurs during a read or
write operation involving one or more database files. For example, a disk-head
crash that destroys any files associated with a database constitutes a media
failure.

There are two different methods for recovering from a media failure. The method
to be used depends upon the archive method being used.

• Noarchivelog

Recovery from a media failure is a simple restoration of the most current full
backup. All work performed after the most recent full backup is lost.

• Archivelog

Recovery from a media failure involves an actual recovery procedure to
reconstruct the damaged database to a specified transaction consistent state
that existed prior to the media failure. This will involve restoring the backup
and the replay of logs. You should refer to your Oracle documentation for
detailed information on this procedure.

132 DB2 Version 2 Conversion Guide

10.3 DATABASE 2 for AIX Version 2 Backup
DATABASE 2 for AIX Version 2 provides several different mechanisms to back up
the database or the individual tablespaces. You should be familiar with these
before setting up your database environment because backup considerations
may influence the way in which you spread data across the tablespaces.

Like all database systems, DB2 is susceptible to database corruption due to
events such as user error or media failures. DB2 provides the capability to back
up the databases at different levels. This chapter will discuss the different
methods available.

10.3.1 Backup Methods
There are several methods available to back up existing DB2 databases. These
include:

• Offline database-level backup

• Online database-level backup

• Offline tablespace-level backup

• Online tablespace-level backup

Unlike Oracle, DATABASE 2 for AIX Version 2 provides backup and restore
capabilities at the database-manager level. The backup command is provided by
the database manger, and the database manager will keep track of what
backups have been performed. When performing a database backup using the
database manager, there is no additional requirement to back up configuration
files.

Using the backup command, you may back up the entire database or simply back
up individual tablespaces. Also, a backup in DATABASE 2 for AIX Version 2 may
be performed while the database is either online or offline.

10.3.1.1 Database-Level Backup
It is advisable to back up the database on a regular bases. This backup may be
to disk, tape or to ADSTAR Distributed Storage Manager (ADSM).

To perform an online backup, you need to retain the database logs. This is
similar to Oracle′s archivelog mode and is turned on by setting the ′LOGRETAIN′
parameter on for the database. The command to do this is:

UPDATE DATABASE CONFIGURATION FOR database-name USING LOGRETAIN ON

The database backup may be performed through the database director or via the
command line. Examples of the command line version of the backup command
may be seen in Figure 32 on page 134.

10.3.1.2 Tablespace-Level Backup
If you have an extremely large database, then you may find that backing up at
the tablespace level is a more viable option. At this level, you are able to
backup the individual tablespaces, rather than the entire database. As with the
database backup, a tablespace backup may be performed either online or offline.
To ensure that restored tablespaces are synchronized with the rest of the
database, a tablespace being restored must be rolled forward to the end of the
logs. For this reason, tablespace-level backup and restore can be performed if

Chapter 10. Backup and Restore 133

roll-forward recovery is enabled. To enable Roll-forward recovery, you need to
turn ′LOGRETAIN′ on. Also, before log archiving may be enabled, you must take
a full offline backup of the entire database. This is done to provide a starting
point for the logs. This is discussed in more detail in 10.3.2, “DATABASE 2 for
AIX Version 2 Recovery” on page 137.

If the database backup is written to disk, a single file will be generated
containing the backup data. The file being generated will use the following
naming convention.

dbname.type.db2instance.node.yyyymmddhhmmss.seq

where

dbname Database Name or Alias

type 0 for a database level backup or 3 for a tablespace level
backup

db2instance Instance Name

node Reserved

yyyymmddhhmmss Timestamp

seq Sequence number

An example of the files created can be seen in Figure 32. Also, information
about backup and restore operations may be viewed through the database
director or by using the command list backup or list history.

� �
$ db2 BACKUP DATABASE A TO /u/jcb/SVG
Backup successful. The timestamp for this backup image is : 19950509174543
$ ls /u/jcb/SVG
A.0.jcb.0.19950509174543.001

$ db2 BACKUP DATABASE A ONLINE TO /u/jcb/SVG
Backup successful. The timestamp for this backup image is : 19950509175629

$ ls /u/jcb/SVG
A.0.jcb.0.19950509174543.001
A.0.jcb.0.19950509175629.001

$ db2 BACKUP DATABASE A TABLESPACE users ONLINE TO /u/jcb/SVG
Backup successful. The timestamp for this backup image is : 19950509175931

$ ls /u/jcb/SVG
A.0.jcb.0.19950509174543.001
A.0.jcb.0.19950509175629.001
A.3.jcb.0.19950509175931.001

� �
Figure 32. DB2 Backup Examples

134 DB2 Version 2 Conversion Guide

10.3.1.3 Planning Your Backups
A proper backup of the database is critical. You need to be sure that you are
going to be able to use the backup to recover correctly. You will need to make
sure that you backup will allow you to restore the database to a consistent state.
If you already have a backup strategy for you Oracle database then you should
be able to map this to a backup strategy for DB2. However, due to some the
differences in DB2 you may like to modify the strategy to make full use of the
additional backup features found in DB2. Some of these area that will require
further consideration include:

• Who will be able to perform backups?

• Will the backups be online or offline?

• Will I use logging and how will I manage archiving log files?

As you are able to assign different levels of authority to users in DB2, you should
decide who will be able to perform backups on the different databases. Users
with SYSADM, SYSCTRL or SYSMAINT may perform a backup of any database.
SYSADM and SYSCTRL users may then restore the backup to an existing
database or to a new database, while SYSMAINT may only restore to an existing
database. A user with DBADM authority on a database may export or load data
for that database only.

Once you have decided who is going to be able to perform database backups,
you then need to decide where. If you have been backing up your Oracle
database, then you will probably use the same device to back up in DB2.

Deciding on which databases will have logging turned on is also something that
will need consideration. As DB2 allows multiple databases, you may decide to
split up your existing Oracle database into separate DB2 databases. If they can
be logically split, then you may also be able to use circular logging for less
critical information while using archive logging for the more crucial information.

Other factors will influence the above decisions, such as:

• Can I bring my database offline to perform a backup?

• Can I run a backup unsupervised?

• Will my backup fit onto a single tape, or will I need to change tape?

Once you have decided on the backup strategy to use, you will need to test it. In
actually performing the backup, there are a few points that you will need to
consider. These include:

• Unlike Oracle, when performing an offline backup, the database manager will
need to be running. The offline backup process needs to obtain an exclusive
lock on the database being backed up.

• You must not include temporary tablespaces in your backups. If you do
include a temporary tablespace, the backup will fail.

• If a system crash occurs during a critical stage of backing up a database,
you cannot successfully connect to the database until you reissue the backup
command and successfully complete the backup. The database will be in a
backup pending state until the backup is successfully performed.

• During the backup procedure, an internal buffer is filled with data to be
backed up. When this buffer becomes full, the data is copied to the backup

Chapter 10. Backup and Restore 135

medium. You have the ability to choose multiple buffers and I/O streams to
improve the performance of the backup procedure.

• The recovery history file is updated automatically with summary information
whenever you carry out a backup or restore.

Table 23 lists the different types of backups available and compares the steps
required by Oracle and DB2 to perform them.

Table 23. Backup in DB2 and Oracle

BACKUP Oracle 7 DATABASE 2 for AIX Version 2

database offline

• SHUTDOWN database

• cpio or tar (data files, control file, redo log
files, init.ora, config.ora) and dd for the
raw devices.

• STARTUP database

• No users/applications connected to the
database

• BACKUP DATABASE dbname TO
path/device

database online

• Database started and archive on

• for each tablespace of the database, do
ALTER TABLESPACE ts_name BEGIN
BACKUP

• cpio or tar (data files, control file, redo log
files, init.ora, config.ora) and dd for the
raw devices.

• For each tablespace of the database, do
ALTER TABLESPACE ts_name END
BACKUP

• Backup control file used: ALTER
DATABASE BACKUP CONTROLFILE TO
name_cf_svg and saved name_cf_svg

• Database started and ′LOGRETAIN′ on

• BACKUP DATABASE dbname ONLINE TO
path/device

tablespace offline

• SHUTDOWN database

• cpio or tar (data files of the tablespace,
control file, redo log files, init.ora,
config.ora) AND dd for the raw devices.

• STARTUP database

• Database started, archived ON, and must
be accessed in exclusive mode

• BACKUP DATABASE dbname
TABLESPACE ts_name TO path/device

tablespace online

• Database started and archived ON

• For the tablespace that you want save, do
ALTER TABLESPACE ts_name BEGIN
BACKUP

• cpio or tar (data files) AND dd for the raw
devices.

• ALTER TABLESPACE ts_name END
BACKUP

• Backup control file used: ALTER
DATABASE BACKUP CONTROLFILE TO
name_cf_svg and saved name_cf_svg

• Database started and archived ON

• BACKUP DATABASE dbname
TABLESPACE ts_name ONLINE TO
path/device

It is possible to back up the database without using the DB2 backup utilities. As
with Oracle, you may bring the database instance offline, and use the operating
system to backup the files/containers. However, using this method does not
record any history information within the database and may make it more
difficult to recover log files and perform a roll forward recovery.

136 DB2 Version 2 Conversion Guide

10.3.2 DATABASE 2 for AIX Version 2 Recovery
There are three ways to recover a damaged database. The method you use will
depend upon the type of backups that you have made and the severity of the
damage. The first of these three methods is Crash Recovery. This is the method
used if transactions or the database is abnormally terminated due to power loss
or perhaps a network failure. If the actual data integrity is lost due a more
severe failure, such as a corrupted disk, then the second method of restore
recovery might be used. This is restoring the database or tablespace from your
backup media. Finally the third method of recovery is Roll-forward recovery. This
may be used after a restore recovery and involves replaying the log files to bring
the database back to a consistent state just before the failure. A Roll-forward
recovery may also be used if after a crash recovery, one or more tablespaces
are left in a Roll-forward pending state. These scenarios are covered in more
detail in the following sections.

10.3.2.1 Crash Recovery
Should your system fail while transactions are in progress, Crash Recovery will
try to return your system to a consistent state. Crash Recovery may be started
by using the restart database command or by enabling automatic restart.
Automatic restart is enabled through the ′AUTORESTART′ parameter. During
Crash Recovery, any transaction that has not committed will be rolled back.
Once these transactions have been rolled back then your database should be in
a consistent state and ready for users to continue operations.

Figure 33 is an example of the timeline for a Crash Recovery scenario. The
three transactions are incomplete when the database crash occurred. This
means that all three transactions will be rolled back. All transactions that were
not committed at the time of the failure will need to be redone.

Figure 33. Crash Recovery Timeline

It is possible that one or more tablespaces many be left in a Roll-forward
pending state after a crash recovery. Any tablespaces in this state will require
further recovery before they may be accessed by users. This is covered in
further detail in 10.3.2.3, “Roll-forward Recovery” on page 138. Other
tablespaces that are not in this state may be accessed by users.

Chapter 10. Backup and Restore 137

10.3.2.2 Restore Recovery
On occasion, crash recovery may not be able to restore your database to a
consistent state. This may be due to problems such as disk corruption. In this
situation, it would be necessary to recover your database from a backup.
Figure 34 is an example of the timeline for a Restore Recovery.

Figure 34. Restore Recovery Timeline

When performing a Restore Recovery, the transactions completed after the
backup was taken will be lost.

10.3.2.3 Roll-forward Recovery
For most database environments, this will be the most common type of recovery
required, if the Crash Recovery is unable to correct any inconsistencies after a
failure. There are two types of Roll-forward recovery available. The first is a
database-level recovery and the second a tablespace-level recovery. The
timeline shown in Figure 35 would be similar for either type of recovery.

Figure 35. Roll-Forward Recovery Timeline

138 DB2 Version 2 Conversion Guide

After restoring the backup, you may need to replay the logs. By performing a
Roll-forward on the logs, you will be replaying any transactions that were
performed after the database- or tablespace-level backup.

Looking at the timeline in Figure 35 on page 138, we can see that transactions 1
and 2 were completed (committed) before the crash occurred. However,
transaction 3 was still in progress. During the Roll-forward process, all
transactions are re-played. At the end of the logs any transaction that has not
been committed will be rolled back. In the above example, transaction 3 will be
rolled back.

Roll-forward Recovery must be enabled before tablespace-level backups and
restores will be allowed. To enable Roll-forward Recovery, you must enable
′LOGRETAIN′. This is done through the database directory or via the update
database configuration command. You must also have a full database backup
before ′LOGRETAIN′ will be enabled. The is to provide a starting point for log
recovery.

10.3.3 DB2 Load Utility
When migrating data from the Oracle environment to DB2, the load utility will be
used to load the data. The load utility is intended for the initial load or append
of large amounts of data into database tables.

The load utility will handle delimited ASCII files (DEL), non-delimited or aligned
column ASCII files (ASC) or the PC Version of the Integrated Exchange Format
(IXF). It will handle all the DB2 data types, including large objects (LOBs) and
user defined types (UDTs).

The load utility is much faster than performing numerous SQL inserts, as is done
by the import command. This is because load will write formatted pages into the
database rather than performing multiple inserts into the database. There are
four basic phases involved in the load process. These are:

 1. Load

The data is loaded into the tables page by page.

 2. Build

Index are created/modified on the table.

 3. Delete

Rows that caused a unique key violation are removed from the table.

 4. Setting state

Finally, the removal of the check pending state from the tables.

For further information on the load utility, you should refer to DATABASE 2
Administration Guide Version 2.

10.4 Logging
The previous sections have discussed logging as a part of roll-forward recovery.
To perform a Roll-forward Recovery, you would use archival logging which is
done by setting ′LOGRETAIN′ on. If ′LOGRETAIN′ is not turned on, the default
type of logging is used. This is called circular logging.

Chapter 10. Backup and Restore 139

10.4.1 Circular Logging
As mentioned above, circular logging is when ′LOGRETAIN′ is not enabled. This
also means that Roll-forward Recovery is not possible.

Circular logging is the default type of logging for DATABASE 2 for AIX Version 2.
This involves the allocation of a defined number of logfiles with a defined size.
The default number of logfiles is three primary logs, and two secondary logs The
default size of these logfiles is 1000 * 4 KB pages (4 MB). The primary logfiles
will be preallocated when the database is created. The secondary logfiles will
be dynamically created if they are required.

These log files are used in a circular fashion. This means that logging
information will be lost when the logfile is reused by the database manager.
Circular logging is useful for the first recovery method (Crash Recovery).

If you require that the logs be saved so that you may perform Roll-forward
Recovery, you need to use archival logging.

10.4.2 Archival Logging
If either ′LOGRETAIN′ or ′USEREXIT′ is enabled, the log files will be retained and
become online archive log file for use in Roll-forward Recovery. This is called
log retention or archive logging. Unlike circular logging, the logfiles are not
normally reused.

The numbering scheme for the archival logging is Sxxxxxxx.LOG, where xxxxxxx
ranges from 0000000 to 9999999. The log files are stored in the directory
specified in the database configuration and may be defined when the database is
created or modified at a later date.

In Oracle 7, when you use the archivelog mode, the log files are always used in
circular mode, but when a log files becomes inactive, it is stored in the
log_archive_dest subdirectory. DB2 does not work in this fashion. As mentioned
above, the logfiles are not reused when archival logging is enabled. It is up to
the user to back up these log files. To assist in this, there is a user exit
capability that may be invoked whenever a logfile is closed.

10.4.3 User Exits
User exits allow you to specify your own program/application to be used for the
archiving and retrieval of log files when using a user exit Roll-forward Recovery
is allowed, and ′LOGRETAIN′ is not required. This gives you more flexibility in
managing the logging environment.

As with turning ′LOGRETAIN′ on, you must take a full database-level backup
immediately before or after enabling the user exit capability.

Different combinations of using ′LOGRETAIN′ and ′USEREXIT′ are possible.
Table 24 on page 141 summarizes the possible combinations and includes a
short description of the effect.

When the user exit program is invoked, the database manager passes control to
the executable file, db2uexit. Samples of the user exit programs are available in
the sample directory that comes with DATABASE 2 for AIX Version 2. These
include:

• db2uexit.cadsm

140 DB2 Version 2 Conversion Guide

This program uses the ADSTAR Distributed Storage Manager utility to
archive and retrieve database log files.

• db2uexit.ctape

This program archives and retrieves the database log files using tape media.

• db2uexit.cdisk

This program archives and retrieves the database log files using disk media.

These are only sample programs and may require modification to suit your
environment. Detailed information on user exits can be found in the DATABASE 2
Administration Guide Version 2

Table 24. ′LOGRETAIN′ and ′USEREXIT′ Combinations

LOGRETAIN USEREXIT Description

NO NO
Circular logging and Roll-forward is disabled. Logs are stored in the
SQLOGDIR.

YES NO
Archival logging with Roll-forward enabled. Logs are stored in the
SQLOGDIR subdirectory.

NO YES
Archival logging with Roll-forward enabled. Logs are used by the user
exit program and are erased from the SQLOGDIR subdirectory.

YES YES
Archival logging with Roll-Forward enabled. Logs are used by the user
exit program and are kept in the SQLOGDIR subdirectory.

Chapter 10. Backup and Restore 141

142 DB2 Version 2 Conversion Guide

Chapter 11. Performing a Conversion

This chapter discusses the actual process of performing a conversion on a
sample Oracle environment. The chapter may be used as a guideline to
performing your own conversion process, but should be used after you are
familiar with the concepts covered throughout this book.

Each Oracle environment being converted will be different in some way, and it
would be impossible to try and cover all facets of the conversion process in this
chapter.

11.1 Overview
The conversion process from Oracle 7 to DATABASE 2 for AIX Version 2 may be
separated into two different types of operations:

 1. Operations which can be automated. The automated conversion of the
following objects is possible.

• DDL
• Data
• Synonym
• Users
• Indexes
• Grant

 2. Operations that wil l have to be carried out manually. The following objects
are different to the extent that converting from Oracle to DB2 is a completely
manual process.

• Views
• Triggers
• Procedures
• Applications

Where possible, we have included the SQL statements or sample scripts that will
aid you in the conversion process. You may need to modify these scripts to
better suit you own environments, but they provide a good base on which to
start.

11.2 Extracting Oracle Tablespaces, Users and Roles
The first phase of conversion is to find out what we are dealing with by obtaining
object/structure information from Oracle. This information includes tablespaces,
users, roles, indexes, tables, and so on.

The following Oracle database example, shown in Figure 36 on page 144, is
used for this sample conversion.

 Copyright IBM Corp. 1995 143

Figure 36. Tablespace Organization in Oracle

To obtain a text description of the database and the objects contained within the
database, the Oracle exp utility is used. The chapter will refer to an export file.
This file is generated by using the following command;

exp sys/password full=y rows=n file=oracle.export

The Oracle user ′sys′ is used to obtain the information and the appropriate
password should be given. This file should be generated and stored as it will be
used throughout this chapter.

11.2.1 Extracting Tablespace Information
To build equivalent tablespace structures in DB2, you will need to obtain the
tablespace information from Oracle. You are able to obtain this information from
the export file by using the command:

$ grep ″ CREATE TABLESPACE ″ export.file

or by using the SQL query:

SQL> set head off
SQL> select TABLESPACE_NAME ||′ ′ | | FILE_NAME ||′ ′ | | BYTES/4096
2 from dba_data_files
3 order by TABLESPACE_NAME;

RBS /home/oracle/dbs/rbsA.dbf 2048
SYSTEM /home/oracle/dbs/systA.dbf 10240
TEMP /home/oracle/dbs/tempA.dbf 138
TOOLS /home/oracle/dbs/toolA.dbf 6400
USERS /home/oracle/dbs/usrA.dbf 256

144 DB2 Version 2 Conversion Guide

We can base the size and structure of the new DB2 database on this tablespace
information.

11.2.2 Extracting Roles and Users
We now need to find out what roles are defined within the Oracle environment.
The export file contains the Oracle create role commands for all the roles within
Oracle. Using the Korn shell script shown in Figure 37, we can extract these
lines and convert them into operating-system commands that will create groups
for each role.

� �
#!/usr/bin/ksh
cat $1 | sed -e ′ / ENDSYS/,$d′ | grep ″CREATE ROLE ″ | \

sed -e ′ s/CREATE ROLE/mkgroup/g′ | \
awk -F′ ″ ′ ′ { print $1,tolower($2) }′� �

Figure 37. Korn Shell Script for Convert ing Roles

The command to use this script would be:

roles.ksh oracle.export > db2_groups.ksh

In this example, the Korn shell script is called roles.ksh. The Oracle export file
is oracle.export and the output is redirected to the file db2_groups.ksh. The file
db2_groups.ksh will now contain the necessary commands for creating groups
that match the Oracle roles.

A similar command and script may be used for creating the users. Figure 38 is
an example of the Korn shell script for extracting the users from the export file
and creating an operating-system command to create each of the users.

� �
#!/usr/bin/ksh
cat $1 | sed -e ′ / ENDSYS/,$d′ | grep ″CREATE USER ″ | \

sed -e ′ s/CREATE USER/mkuser/g′ | \
awk -F′ ″ ′ ′ { print $1,tolower($2) }′� �

Figure 38. Korn Shell Script for Convert ing Users

The commands generated for creating users and group use all the default
system options. You may need to modify these so that the users are added to
the correct default group. Adding the users to the correct groups (roles) is
covered in 11.2.3, “Translating Granted Roles to Group Membership” on
page 146.

As the use of the users ′sys′ and ′system ′ is different in DB2, more consideration
needs to be given to these users. It is possible to create these users under the
operating system, and add them to the instances primary group. This will give
the users system administration authority for the instance. However, it is
recommended to use the DB2 groups SYSADM, SYSMAINT and SYSCTRL for granting
users the different levels of administrative authority.

Chapter 11. Performing a Conversion 145

11.2.3 Translating Granted Roles to Group Membership
The granting of roles to a user now equates to adding the users to the
operating-system group that is equivalent to the role. The export file contains a
list of all the grant commands. The commands dealing with granting roles to
users needs to be extracted and changed into chgroup commands. The script
shown in Figure 39 is a sample script that will do the extraction and execution of
the operating-system mkgroup command.

� �
#!/usr/bin/ksh
Extract the Roles and convert into Operating system mkgroup commands
#

Function to extract created roles from export file
#
function get_roles
{
cat $1 | sed -e ′ / ENDSYS/,$d′ | grep ″CREATE ROLE ″ | \

awk -F′ ″ ′ ′ { print tolower($2) }′
}

Given role extract grant commands for users
#
function get_user
{
cat $1 | sed -e ′ / ENDSYS/,$d′ | grep -i ″^GRANT \″$2\″″ | \

awk -F′ ″ ′ ′ {print tolower($4)}′
}

Main Loop
#
for role in get_roles $1
do

for user in get_user $1 $role
do

Extract current users for the group/role
usr_list=lsgroup -a users $role | cut -d′= ′ -f2

Check if the list is empty
if [″$usr_list″ = ″ ″]
then

Add the user to the group
chgroup users=$user $role

else
Check if user already in group
echo $usr_list | grep $user > /dev/null 2>&1
if [$? -ne 0]
then

new_list=echo usr_listuser | sed -e ′ s/ /,/g′
chgroup users=$new_list $role

fi
fi

done
done� �

Figure 39. Korn Shell Script for Adding Users to Groups/Roles (grant.ksh)

Note that example script for adding users to groups performs no error checking.
Also, unlike the first two examples, it will execute the chgroup command. The
script needs to be executed as root: otherwise you will get ′permission denied ′
errors on the chgroup command.

146 DB2 Version 2 Conversion Guide

11.3 Creating the DB2 Database and Environment
Before we start creating tablespaces and database objects that match the Oracle
environment, we need to create a database within the DB2 instance. An
operating-system user and group should be selected to become the instance
owner and instance group. These may be existing users or a new user and
group. Once they have been decided upon, you will need to run the db2icrt
command as the root user. This will set up the instance environment.

When the DATABASE 2 for AIX Version 2 database is created, there are three
default tablespaces created. These are:

• SYSCATSPACE, for the system catalogs

• TEMPSPACE1, for the temporary tables

• USERSPACE1, for user tables

If these default names will fit into your new environment, then you only need to
select the size and location of the tablespaces. If you need to change the names
of the temporary and user tablespaces, you need to create further tablespaces.

For our example, we are going to create new tablespaces for the temporary
tablespace and the user tablespace. So, we only need to be concerned with the
size and location of the system tablespace at this stage.

The name of the system tablespace cannot be changed, but you may select its
size and location. We will use a System Managed tableSpace (SMS) for the
system catalogs. For an SMS tablespace, we only need to select the location, or
we may let it default to the instance owner′s home directory. We have chosen to
take the default; so the create database command would look like the following:

$ db2 CREATE DATABASE dbname

If you chose to place the user and tablespace containers into the directory
/tmp/db while you set up the correct tablespaces and containers, you would use
the commands:

$ mkdir -p /tmp/db/usr /tmp/db/tmp
$ db2 ″CREATE DATABASE dbname
> USER TABLESPACE MANAGED BY SYSTEM (′ / tmp/db/usr′)
> TEMPORARY TABLESPACE MANAGED BY SYSTEM (′ / tmp/db/tmp′) ″

11.3.1 Creating Tablespaces
Once you have a database created, then you can start building the tablespaces
that corresponds to the tablespaces from Oracle. In the previous steps, we
extracted the tablespace information from Oracle and found that the following
tablespaces existed.

We will not recreate the RBS or the TOOLS tablespaces as they are not required by
DB2 This leaves us with the SYSTEM, TOOLS and USERS tablespaces.

Tablespace
Name

Data file/container Size in 4 KB
Pages

RBS /home/oracle/dbs/rbsA.dbf 2048
SYSTEM /home/oracle/dbs/systA.dbf 10240
TEMP /home/oracle/dbs/tempA.dbf 138
TOOLS /home/oracle/dbs/toolA.dbf 6400
USERS /home/oracle/dbs/usrA.dbf 256

Chapter 11. Performing a Conversion 147

The SYSTEM is going to remain as the default SMS tablespace created with the
database was created. This tablespace resides under the instance owners home
directory.

For the remaining two tablespaces, we are going to create then in a filesystem
called /data. These will be Database Managed tableSpaces (DMS), and we are
going to define the sized to match the sized defined by Oracle. The commands to
create these tablespaces are as follows:

$ db2 ″ CREATE REGULAR TABLESPACE users
> MANAGED BY DATABASE USING (FILE ′ / data/users.dat′ 256)″

$ db2 ″ CREATE TEMPORARY TABLESPACE temp
> MANAGED BY DATABASE USING (FILE ′ / data/temp.dat′ 138)″

With DB2, it is possible to create a separate tablespace for any large objects that
may be contained in files. Also, you may decide to create a tablespace for
indexes. To create these tablespaces, you would use the following:

$ db2 ″ CREATE REGULAR TABLESPACE idxts
> MANAGED BY DATABASE USING (FILE ′ / data/index.dat′ 500)″

$ db2 ″ CREATE LONG TABLESPACE lobts
> MANAGED BY DATABASE USING (FILE ′ / data/lobs.dat′ 10000)″

When creating the tablespace, you must be connected to the database in which
they are going to be assigned because this happens during the create phase.
Once you have created the tablespace, you may drop the default tablespaces
that are no longer required. The order in which you create and drop the
tablespaces is not important, except for the temporary tablespace. At all times,
at least one temporary tablespace must exist.

11.3.2 Granting Access to the Database
The granting of access to the database will require some consideration. The
first step is to set up the user environment. This is simply done by including the
file sqllib/db2profile into the user′s logon profile. In our example, the instance
owner is the user db2 and the instance home directory is /home/db2. For this
example, each users profile would include the line:

. /home/db2/sqllib/db2profile

This sets up the environment for the user to access the instance. The next
phase it to grant connect privilege to the database. The way in which you do this
will depend upon the environment. Your choices are:

 1. Grant access to everyone:

db2 CONNECT TO databasename
db2 GRANT CONNECT ON DATABASE TO PUBLIC

 2. Create a group for the database, and grant access to members of the group:

mkgroup new_group (This needs to be done as root)
db2 CONNECT TO databasename
db2 REVOKE CONNECT ON DATABASE FROM PUBLIC
db2 GRANT CONNECT ON DATABASE TO PUBLIC

 3. Grant access to the individual users:

db2 CONNECT TO databasename
db2 REVOKE CONNECT ON DATABASE FROM PUBLIC

148 DB2 Version 2 Conversion Guide

db2 GRANT CONNECT ON DATABASE TO user1,user2,group1

You may extract the grant commands from the Oracle export file and use these
commands to grant connect privilege to either users or group/roles. The script
shown in Figure 40 will build the DB2 commands.

� �
#!/usr/bin/ksh

#
Find all grant connect users
#
function connects
{
cat $1 | sed -e ′ / ENDSYS/,$d′ | grep ′ ^GRANT ″CONNECT″ ′ | \

awk ′{ print tolower($4) }′ | tr -d ′ ″ ′
}

#
Create db2 connect command for each user, group/role
#
for principal in connects $1
do

Check if principal is a user
lsuser $principal >/dev/null 2>&1
if [$? -eq 0]
then

echo ″db2 grant connect to user $principal″
fi

Check if principal is a group
lsgroup $principal >/dev/null 2>&1
if [$? -eq 0]
then

echo ″db2 grant connect to group $principal″
fi

done� �
Figure 40. Grant Connect Permission to DB2

Note that the conn.ksh script above will grant connect permission to both a user
and a group if they have the same name.

11.4 Table, Views, Data, Constraint, and Index Conversion
The conversion process for the objects contained in this section will need to be
repeated for each user or schema in the Oracle environment. For our examples,
we will use the default user scott.

Again, where possible, scripts have been included to help you in the conversion
process.

11.4.1 Table Conversion
This phase will extract the create table statements from Oracle export files and
convert them into DB2 statements.

The first step is to use the exp utility to extract the definitions for the objects
owned by that user. An example of this command would be:

$ exp scott/tiger rows=n file=scott.export

Chapter 11. Performing a Conversion 149

Once we have this file, we may start modifying the command to the DB2
environment. The sample script shown in Figure 41 on page 151 is an example
that will help to modify the create table statements.

150 DB2 Version 2 Conversion Guide

� �
#!/usr/bin/ksh

Modify PCTFREE and TABLESPACE parameters
#
function pct_tab
{

sed -e ′ s/\(^.*\)PCTFREE\(.*\)TABLESPACE\(.*\)$/\1IN\3/g′
}

Convert Number Datatypes
#
function dt_num
{

sed -e ′ s/ REAL/ FLOAT/g′ \
-e ′ s/ NUMBER(*/ NUMERIC(31/g′ \
-e ′ s/ NUMBER/ NUMERIC/g′ \
-e ′ s/ FLOAT([0-9]*)/ float/g′ \
-e ′ s/ FLOAT(*)/ float/g′

}

Convert Binary Datatypes
#
function dt_bin
{

sed -e ′ s/ LONG RAW/ BLOB(2G)/g′ \
-e ′ s/ RAW(255)/ VARCHAR(255) FOR BIT DATA/g′ \
-e ′ s/ RAW(\([0-9]*\))/ CHAR(\1) FOR BIT DATA/g′

}

Convert Character Datatypes
#
function dt_char
{

sed -e ′ s/ VARCHAR2/ VARCHAR/g′ \
-e ′ s/ LONG/ CLOB(2G)/g′ \
-e ′ s/ CHAR(255)/ VARCHAR(255)/g′

}

Convert Date Datatypes
#
function dt_date
{

sed -e ′ s/ DATE/ TIMESTAMP/g′
}

Modify the default clause
#
function dt_def
{

sed -e ′ s/ DEFAULT .*,/ default/g′
}

Add ′ ; ′ to end of each create table
#
function stmt_end
{

sed -e ′ s/$/;/g′ | tr -d ′ ″ ′
}

grep -w ″CREATE TABLE ″ $1 | \
pct_tab | dt_num | dt_bin | dt_char | dt_date | dt_def | stmt_end� �

Figure 41. Converting DDL for Tables

Chapter 11. Performing a Conversion 151

You should redirect the output of this script to a file and perform further
modifications on that file, if required. Information that may need to be added to
the generated file includes index and LOB tablespace information or ′NOT NULL′
parameters to the primary key columns. If no modifications are to be made, the
following steps should be all that is required:

$ exp scott/tiger rows=n file=scott.export
$ db2 connect to database_name
$ table_ddl.ksh scott.export > scott.sql
$ db2 -t -f scott.sql

Note the above user will need to have access to both the Oracle and the DB2
environments. The tables created will belong to the user executing the scott.sql
file, and they will need to set up the privileges accordingly.

11.4.2 Moving Data from Oracle to DB2
In migrating the data from Oracle to DB2, we will need to export the data from
Oracle into flat files. By doing this, we get the data into a format that DATABASE
2 for AIX Version 2 can recognize. These files may be delimited ASCII or
non-delimited ASCII. The tools that can be used to load the information are
import or load.

To extract the information from Oracle you will need to write either SQL
statements or an small application that will select the rows and export this
information to a file. If this is the case, there are a couple of points that need
consideration, including the date and binary data types.

An example of the SQL statements to create an export file are shown in
Figure 42.

� �
SET NEWPAGE 0
SET TERMOUT OFF
SET SPACE 0
SET LINESIZE 78
SET PAGESIZE 0
SET ECHO OFF
SET FEEDBACK OFF
SET HEADING OFF
SET SQLPROMPT ″″
SPOOL emp.dat
SELECT empno, ename, job,mgr,

TO_CHAR(hire_date,′ YYYY-MM-DD-HH24.MI.SS′) ,
sal,comm,deptno

FROM emp
/
exit;� �

Figure 42. SQLPLUS Command to Export an Oracle Table (oraexp.sql)

In the previous examples, the date data type in Oracle has been replaced by the
timestamp data type in DB2. However, you may only require the day, month and
year to be stored in the new data type. If this is the case, then you should use
the date data type in DB2. This conversion is covered in more detail in
Chapter 5, “Data Types” on page 53. You may also use the COL command to
format the file.

152 DB2 Version 2 Conversion Guide

Binary objects may be loaded from the original data files that were used to
create the Oracle object if they still exist. If these files are no longer available, a
program needs to be written to extract the information from Oracle. Once this
has been done, the data may be loaded into DB2 using the load command with
the ′LOBSINFILE′ option.

You should familiarize yourself with both the load and import utilities in DB2.
before undertaking the process of exporting data from Oracle.

To load the file into DB2 using the load utility, the following command could be
used.

db2 ″import from ′ emp.dat′ of ASC modified by T reclen=99 \
method L (1 10, 11 20, 21 29,) \
insert into oracle.emp″

In the above example, you would need to set the reclen to the length of a table
row (line in file), and the remaining columns will nee to be added into the
parameter list for method L. The load command could also be used instead of the
import command.

11.4.3 Referential Constraints
This step extracts the alter table statements from the Oracle export file and
builds the referential constraint commands for DB2. To generate the export file,
you need to use the same command as mentioned in the previous steps. If the
file still exists, use it.

exp scott/tiger rows=n file=scott.export

The alter table commands that create unique indexes on the table are ignored
during this phase. Indexes are created during the next step.

The sample script shown in Figure 43 will extract the appropriate alter table
commands and convert them into DB2 commands.

� �
#!/usr/bin/ksh

#
Extract the users and convert into Operating system mkuser commands
#
cat $1 | grep -w ″ALTER TABLE ″ | grep -v ″ ADD[]*UNIQUE ″ | \

sed -e ′ s/\(^*\)USING INDEX .*/\1/g′ | \
sed -e ′ s/$/;/g′ | tr -d ′ ″ ′� �

Figure 43. Korn Shell Script to Convert Referential Constraints

Again, the output from this command should be redirected to a file so that it may
be executed by DB2.

11.4.4 Index Conversion
This step extracts the Oracle commands that will create indexes on the tables. It
will convert them into DB2 create index statements.

Once again, we will use the export file generated with the command:

exp SCOTT/TIGER rows=n file=SCOTT.dmp

Chapter 11. Performing a Conversion 153

The sample script show in Figure 44 on page 154 will extract all the Oracle
create index statements as well at the alter table ... add unique statements
and convert all these into DB2 create index statements.

� �
#!/usr/bin/ksh

#
Convert ′ alter table′ and ′ create index′ statements
#
cat $1 | grep -w ″CREATE [A-Z]*INDEX ″ | \

sed -e ′ s/\(^.*\)PCTFREE.*/\1;/g′ | tr -d ′ ″ ′

cat $1 | grep -w ″ ADD[]*UNIQUE ″ | \
sed -e ′ s/ALTER TABLE \(.*\) ADD []*UNIQUE \(.*\) \

USING.*/CREATE UNIQUE INDEX XXXXXX ON \1 \2;/g′ | tr -d ′ ″ ′� �
Figure 44. Index Conversion

Once this script has executed, you can edit the output file to replace XXXXXXX in
CREATE UNIQUE INDEX by an index name.

11.4.5 Synonym Conversion
As we did with the indexes, we can extract the synonym definitions from the
export file for each user and convert them into DB2 statements.

The sample script shown in Figure 45 can be used to help extract and convert
the statements. The output of this script should be redirected to another file so
that any modifications can be made before you execute them.

� �
#!/bin/ksh
FILE=$1
grep -w ″CREATE [A-Z]*SYNONYM ″ $FILE | \
sed -e ′ s/PUBLIC //g′ -e ′ s/$/;/g′ | tr -d ′ ″ ′� �

Figure 45. Synonym Conversion

11.4.6 View Conversion
Unfortunately, views need to be converted manually. The SQL statements, select
VIEW_NAME,′ : ′ , TEXT from user_views, in Oracle will return information on what
views are defined in Oracle. Also, the export file will contain the create view
statements.

The script shown in Figure 46 on page 155 will extract all the create view
statements from the Oracle export file and format them so that the DB2
command, db2 -t -f filename, wil l execute them. To do this, you need to redirect
the output of the script to a file.

154 DB2 Version 2 Conversion Guide

 Attention

Be careful, The body of view can contain Oracle owner function. For more
information about these functions, see Chapter 7, “SQL Language Elements”
on page 71.

� �
#!/usr/bin/ksh

#
Extract the CREATE View statements from export file
function getviews
{

read line
while [$? -eq 0]
do

echo $line | grep ″^CREATE VIEW″ 2>&1 >/dev/null
if [$? -eq 0]
then

echo $line | tr -d ′ ″ ′
read line
while [″$line″ != ″″]
do

echo $line | tr -d ′ ″ ′ | sed -e ′ s/^.select/select/g′
read line

done
echo ″ ; ″

fi
read line

done
}

cat $1 | getviews� �
Figure 46. View Conversion

The create view statements may need to be modified because some Oracle
options are not available in DB2.

11.4.7 Grant Permission on User Objects
Many of the grant statements will work in DB2 without changing the format.
However, there are some differences in granting some of the privileges. The
script shown in Figure 47 will extract the statement from the export file, and you
will be able to redirect the output to a file. Some modifications may need to be
made to grant statements that deal with administrative permission, rather than
object permission.

� �
#!/bin/ksh
FILE=$1
grep ″^GRANT ″ $FILE | tr -d ′ ″ ′� �

Figure 47. User and Role Conversion

Chapter 11. Performing a Conversion 155

11.4.8 Procedure, Function and Trigger Conversion
Unfortunately, procedures, functions and triggers are not simple to move across
to DATABASE 2 for AIX Version 2. This will be the most time-consuming part of
the migration as most of the existing procedures, functions and triggers will have
to be rewritten. You may find that it is possible to use constraints in DB2, rather
than some trigger/procedure combinations.

Since these objects will vary differently between environments, because each is
unique, the best we can offer here are pointers to where the information is
stored.

You can find information about user procedure and function in the system table,
user_source. This information may be extracted using the sqlplus command.

sqlplus SCOTT/TIGER <<END
set head off;
set line 256;
select name,type,text
from user_source;

END

You can find information about user triggers in the system table, user_triggers,
and it may be extracted using a similar command.

Several of the chapters in this book discuss triggers, procedures and functions in
the DB2 environment. Also, the topics are covered in the DATABASE 2 for AIX
Version 2 literature.

156 DB2 Version 2 Conversion Guide

Appendix A. Oracle 7 and DATABASE 2 for AIX Version 2 Limits

Table 25 describes certain maximums inherent in DATABASE 2 for AIX Version
2. Adhering to the most restrictive case can help programmers design
application programs that are easily portable. For more information, see
Appendix A - DATABASE 2 for AIX Version 2 SQL reference.

Table 25. DATABASE 2 for AIX Version 2 Limits

DATABASE 2 for AIX Version 2 maximums Limit

Longest authorization name 8

Longest constraint name 18

Longest cursor name 18

Longest external program name 8

Longest host identif ier 30

Longest schema name 8

Longest server (database alias) name 8

Longest command name 18

Longest unqualif ied column name 18

Longest unqualif ied package name 8

Longest unqualified table, view, alias, or index name 18

Most columns in a table 255

Most columns in a view 2000

Maximum length of a row including all overhead 4005 bytes

Maximum size of a table 64 GB

Maximum size of an index 64 GB

Most rows in a table 4 GB

Longest index key including all overhead 255 bytes

Most columns in an index key 16

Most indexes on a table 32 KB

Most tables referenced in a SQL statement or a view Storage

Most host variable declarations in a precompiled program Storage

Most host variable references in a SQL statement 1489

Longest host variable value used for insert or update 1 999 999 999

Longest SQL statement 32 KB

Most element in a select list 255

Most predicates in a WHERE or HAVING clause storage

Maximum number of columns in a GROUP BY clause 255

Maximum total length of columns in a GROUP BY clause 4005 bytes

Maximum number of columns in a ORDER BY clause 255

Maximum total length of columns in a ORDER BY clause 4005 bytes

Maximum size of an SQLDA 64 KB

Most declare cursors in a program storage

Maximum number of cursors opened at one time storage

Most tables in a relational database 65535

Maximum number of prepared commands storage

Maximum number of packages Storage

 Copyright IBM Corp. 1995 157

For information about database limits in Oracle 7, see Appendix D of The Oracle
7 Server Administration Guide.

158 DB2 Version 2 Conversion Guide

Appendix B. IBM SQL Reserved Words

This appendix describes the restrictions of certain names used by the database
manager. IBM SQL and ISO/ANSI SQL92 include the reserved words listed
below. These reserved words are not enforced by DATABASE 2 for AIX Version
2, but we suggest that you do not use them as ordinary identifiers in names that
will have a continuing use.

ABSOLUTE DAY IDENTIFIED OBID SQL
ACQUIRE DBA IDENTITY OCTET

LENGTH
SQLCODE

ALLOCATE DBSPACE IGNORE OFF SQLERROR
ARE DEALLOCATE IMMEDIATE OPEN SQLSTATE
ASSERTION DECLARE INDICATOR OPTIMIZE STATISTICS
AT DEFAULT INITIALLY OUTPUT STOGROUP
AUDIT DEFERRABLE INNER OUTER STORPOOL
AUTHORIZATION DEFERRED INPUT OVERLAPS SUBSTRING

DESCRIBE INSENSITIVE SYSTEM
BEGIN DESCRIPTOR INTERVAL PAGE SYSTEM USER
BIT LENGTH DIAGNOSTICS ISOLATION PAGES
BOTH DISCONNECT PART TABLESPACE
BUFFERPOOL DISPLACEMENT JOIN PARTIAL TEMPORARY

DOMAIN PCTFREE THEN
CASCADED LABEL PCTINDEX TIMEZONE HOUR
CASE EDITPROC LANGUAGE PLAN TIMEZONE

MINUTE
CAST ELSE LAST POSITION TRANSACTION
CATALOG END LEADING PREPARE TRANSLATION
CCSID ERASE LEFT PRESERVE TRIM
CHAR LENGTH END-EXEC LEVEL PRIOR TRUE
CHARACTER ESCAPE LOCAL PRIQTY

LENGTH
EXCEPTION LOCKSIZE PRIVATE UNKNOWN

CHECK EXEC LOWER PROCEDURE UPPER
CLOSE EXPLAIN USAGE
CLUSTER EXTERNAL MATCH READ USING
COALESCE EXTRACT MINUTE RELATIVE
COLLATE MODULE RESET VALIDPROC
COLLATION FALSE MONTH RESOURCE VALUE
COLLECTION FIELDPROC RIGHT VARIABLE
CONCAT FIRST NAMED ROW VARYING
CONNECTION FOUND NAMES ROWS VCAT
CONSTRAINT FULL NATIONAL RUN VOLUMES
CONTINUE NATURAL
CONVERT GET NCHAR SCHEDULE WHEN
CORRESPONDING GLOBAL NEXT SCHEMA WHENEVER
CROSS GO NHEADER SCROLL WRITE
CURRENT DATE GOTO NULLIF SECOND
CURRENT TIME NUMPARTS SECQTY YEAR
CURRENT
TIMESTAMP

HOUR SECTION

CURRENT USER SESSION_USER ZONE
SIZE

 Copyright IBM Corp. 1995 159

160 DB2 Version 2 Conversion Guide

Appendix C. Functions

This is a list of the Oracle functions in alphabetical order with the corresponding
DATABASE 2 for AIX Version 2 function list beside it. Any listing labeled ′UDF
Required ′ means that there is no equivalent DB2 function, and a User-Defined
Function needs to be created.

Table 26 (Page 1 of 2). Oracle 7 and DATABASE 2 for AIX Version 2 Functions

Oracle DATABASE 2 for AIX Version 2

ABS ABS or ABSVAL

ADD_MONTHS UDF Required

ASCII ASCII

AVG AVG

CEIL CEIL or CEILING

CHARTOROWID UDF Required

CHR CHR

CONCAT CONCAT

CONVERT UDF Required

COS COS

COSH UDF Required

COUNT COUNT

DUMP UDF Required

EXP EXP

FLOOR FLOOR

GLB UDF Required

GREATEST UDF Required

GREATEST_LB UDF Required

HEXTORAW X

INITCAP UDF Required

INSTR POSSTR

INSTRB POSSTR

LAST_DAY UDF Required

LEAST UDF Required

LEAST_UB UDF Required

LENGTH LENGTH

LENGTHB LENGTH

LN LN or LOG

LOG LOG10

LOWER LCASE

LPAD UDF Required

LTRIM LTRIM

LUB UDF Required

MAX MAX

MIN MIN

MOD MOD

MONTHS_BETWEEN UDF Required

 Copyright IBM Corp. 1995 161

Table 26 (Page 2 of 2). Oracle 7 and DATABASE 2 for AIX Version 2 Functions

Oracle DATABASE 2 for AIX Version 2

NEW_TIME UDF Required

NEXT_DAY UDF Required

NVL NULLIF

POWER POWER

RAWTOHEX HEX

REPLACE REPLACE

ROUND ROUND

ROWIDTOCHAR UDF Required

RPAD UDF Required

RTRIM RTRIM

SIGN SIGN

SIN SIN

SINH UDF Required

SOUNDEX SOUNDEX

SQRT SQRT

STDDEV UDF Required

SUBSTR SUBSTR

SUBSTRB SUBSTR

SUM SUM

SYSDATE CURRENT DATE

TAN TAN

TANH UDF Required

TO_CHAR DIGITS or UDF

TO_DATE DATE or CAST

TO_LABEL UDF Required

TO_NUMBER DECIMAL

TRANSLATE TRANSLATE

TRUNC TRUNC or TRUNCATE

UID UDF Required

UPPER UCASE

USER USER

USERENV UDF Required

VARIANCE UDF Required

VSIZE LENGTH

162 DB2 Version 2 Conversion Guide

Appendix D. Oracle and DB2 System Catalog

This appendix lists the system catalog/data dictionary tables for both Oracle 7
and DATABASE 2 for AIX Version 2. These may be of use when trying to extract
information from the database manager when performing the data conversion.

D.1 Oracle 7 Data Dictionary Tables/Views

More information about the tables/views listed in Table 27 may be found in the
Oracle 7 Server Administrator′s Guide.

Table 27 (Page 1 of 4). Oracle 7 Data Dictionary Views

Views Description

ALL_CATALOG All tables, views, synonyms, sequences accessible to the user

ALL_COL_COMMENTS Comments on columns of accessible tables and views

ALL_COL_PRIVS
Grants on columns for which the user is the grantor, grantee, owner, or for which an
enabled role or PUBLIC is the grantee

ALL_COL_PRIVS_MADE Grants on columns for which the user is owner or grantor

ALL_COL_PRIVS_RECD Grants on columns for which the user, PUBLIC or enabled role is the grantee

ALL_CONSTRAINTS Constraint definitions on accessible tables

ALL_CONS_COLUMNS Information about accessible columns in constraint definitions

ALL_DB_LINKS database links accessible to the user

ALL_DEF_AUDIT_OPTS Auditing options for newly created objects

ALL_DEPENDENCIES Dependencies to and from objects accessible to the user

ALL_ERRORS Current errors on stored objects that the user is allowed to create

ALL_INDEXES Descriptions of indexes on tables accessible to the user

ALL_IND_COLUMNS COLUMNs comprising INDEXes on accessible TABLES

ALL_OBJECTS Objects accessible to the user

ALL_REFRESH All the refresh groups that the user can touch

ALL_REFRESH_CHILDREN All the objects in refresh groups, where the user can touch the group

ALL_SEQUENCES Description of SEQUENCEs accessible to the user

ALL_SNAPSHOTS Snapshots the user can look at

ALL_SOURCE Current source on stored objects that user is allowed to create

ALL_SYNONYMS All synonyms accessible to the user

ALL_TABLES Description of tables accessible to the user

ALL_TAB_COLUMNS Columns of all tables, views and clusters

ALL_TAB_COMMENTS Comments on tables and views accessible to the user

ALL_TAB_PRIVS
Grants on objects for which the user is the grantor, grantee, owner, or for which an
enabled role or PUBLIC is the grantee

ALL_TAB_PRIVS_MADE User ′s grants and grants on user′s objects

ALL_TAB_PRIVS_RECD Grants on objects for which the user, PUBLIC or enabled role is the grantee

ALL_TRIGGERS Triggers accessible to the current user

ALL_TRIGGER_COLS Column usage in user ′s triggers or in triggers on user′s tables

ALL_USERS Information about all users of the database

ALL_VIEWS Text of views accessible to the user

 Copyright IBM Corp. 1995 163

Table 27 (Page 2 of 4). Oracle 7 Data Dictionary Views

Views Description

DBA_2PC_NEIGHBORS Information about incoming and outgoing connections for pending transactions

DBA_2PC_PENDING Info about distributed transactions awaiting recovery

DBA_AUDIT_EXISTS Lists audit trail entries produced by AUDIT NOT EXISTS and AUDIT EXISTS

DBA_AUDIT_OBJECT
Audit trail records for commands concerning objects, specifically: table, cluster, view,
index, sequence, [public] database link, [public] synonym, procedure, trigger, rollback
segment, tablespace, role, user

DBA_AUDIT_STATEMENT Audit trail records concerning grant, revoke, audit, noaudit and alter system

DBA_AUDIT_TRAIL All audit trail entries

DBA_CATALOG All database tables, views, synonyms, sequences

DBA_CLUSTERS Description of all clusters in the database

DBA_CLU_COLUMNS Mapping of table columns to cluster columns

DBA_COL_COMMENTS Comments on columns of all tables and views

DBA_COL_PRIVS All grants on columns in the database

DBA_CONSTRAINTS Constraint definitions on all tables

DBA_CONS_COLUMNS Information about accessible columns in constraint definitions

DBA_DATA_FILES Information about database fi les

DBA_DB_LINKS All database links in the database

DBA_DEPENDENCIES Dependencies to and from objects

DBA_ERRORS Current errors on all stored objects in the database

DBA_EXP_FILES Description of export fi les

DBA_EXP_OBJECTS Objects that have been incrementally exported

DBA_EXP_VERSION Version number of the last export session

DBA_EXTENTS Extents comprising all segments in the database

DBA_FREE_SPACE Free extents in all tablespaces

DBA_INDEXES Description for all indexes in the database

DBA_IND_COLUMNS COLUMNs comprising INDEXes on all TABLEs and CLUSTERs

DBA_JOBS All jobs in the database

DBA_JOBS_RUNNING All jobs in the database which are currently running, join v$lock and job$

DBA_OBJECTS All objects in the database

DBA_OBJECT_SIZE Sizes, in bytes, of various PL/SQL objects

DBA_OBJ_AUDIT_OPTS Auditing options for all tables and views

DBA_PRIV_AUDIT_OPTS Describes current system privileges being audited across the system and by user

DBA_PROFILES Display all profiles and their l imits

DBA_RCHILD All the children in any refresh group. This view is not a join.

DBA_REFRESH All the refresh groups

DBA_REFRESH_CHILDREN All the objects in refresh groups

DBA_RGROUP All refresh groups. This view is not a join.

DBA_ROLES All Roles which exist in the database

DBA_ROLE_PRIVS Roles granted to users and roles

DBA_ROLLBACK_SEGS Description of rollback segments

DBA_SEGMENTS Storage allocated for all database segments

DBA_SEQUENCES Description of all SEQUENCEs in the database

DBA_SNAPSHOTS All snapshots in the database

DBA_SNAPSHOT_LOGS All snapshot logs in the database

DBA_SOURCE Source of all stored objects in the database

164 DB2 Version 2 Conversion Guide

Table 27 (Page 3 of 4). Oracle 7 Data Dictionary Views

Views Description

DBA_STMT_AUDIT_OPTS Describes current system auditing options across the system and by user

DBA_SYNONYMS All synonyms in the database

DBA_SYS_PRIVS System privileges granted to users and roles

DBA_TABLES Description of all tables in the database

DBA_TABLESPACES Description of all tablespaces

DBA_TAB_COLUMNS Columns of all tables, views and clusters

DBA_TAB_COMMENTS Comments on all tables and views in the database

DBA_TAB_PRIVS All grants on objects in the database

DBA_TRIGGERS All triggers in the database

DBA_TRIGGER_COLS Column usage in all triggers

DBA_TS_QUOTAS Tablespace quotas for all users

DBA_USERS Information about all users of the database

DBA_VIEWS Text of all views in the database

USER_AUDIT_OBJECT
Audit trail records for commands concerning objects, specifically: table, cluster, view,
index, sequence, [public] database link, [public] synonym, procedure, trigger, rollback
segment, tablespace, role, user

USER_AUDIT_STATEMENT Audit trail records concerning grant, revoke, audit, noaudit and alter system

USER_AUDIT_TRAIL Audit trail entries relevant to the user

USER_CATALOG Tables, Views, Synonyms and Sequences owned by the user

USER_CLUSTERS Descriptions of user ′s own clusters

USER_CLU_COLUMNS Mapping of table columns to cluster columns

USER_COL_COMMENTS Comments on columns of user ′s tables and views

USER_COL_PRIVS Grants on columns for which the user is the owner, grantor or grantee

USER_COL_PRIVS_MADE All grants on columns of objects owned by the user

USER_COL_PRIVS_RECD Grants on columns for which the user is the grantee

USER_CONSTRAINTS Constraint definitions on user′s own tables

USER_CONS_COLUMNS Information about accessible columns in constraint definitions

USER_DB_LINKS Database links owned by the user

USER_DEPENDENCIES Dependencies to and from a users objects

USER_ERRORS Current errors on stored objects owned by the user

USER_EXTENTS Extents comprising segments owned by the user

USER_FREE_SPACE Free extents in tablespaces accessible to the user

USER_INDEXES Description of the user ′s own indexes

USER_IND_COLUMNS COLUMNs comprising user ′s INDEXes or on user ′s TABLES

USER_JOBS All jobs owned by this user

USER_OBJECTS Objects owned by the user

USER_OBJECT_SIZE Sizes, in bytes, of various PL/SQL objects

USER_OBJ_AUDIT_OPTS Auditing options for user′s own tables and views

USER_REFRESH All the refresh groups

USER_REFRESH_CHILDREN All the objects in refresh groups, where the user owns the refresh group

USER_RESOURCE_LIMITS Display resource limit of the user

USER_ROLE_PRIVS Roles granted to current user

USER_SEGMENTS Storage allocated for all database segments

USER_SEQUENCES Description of the user ′s own SEQUENCEs

USER_SNAPSHOTS Snapshots the user can look at

Appendix D. Oracle and DB2 System Catalog 165

Table 27 (Page 4 of 4). Oracle 7 Data Dictionary Views

Views Description

USER_SNAPSHOT_LOGS All snapshot logs owned by the user

USER_SOURCE Source of stored objects accessible to the user

USER_SYNONYMS The user ′s private synonyms

USER_SYS_PRIVS System privi leges granted to current user

USER_TABLES Description of the user ′s own tables

USER_TABLESPACES Description of accessible tablespaces

USER_TAB_COLUMNS Columns of user ′s tables, views and clusters

USER_TAB_COMMENTS Comments on the tables and views owned by the user

USER_TAB_PRIVS Grants on objects for which the user is the owner, grantor or grantee

USER_TAB_PRIVS_MADE All grants on objects owned by the user

USER_TAB_PRIVS_RECD Grants on objects for which the user is the grantee

USER_TRIGGERS Triggers owned by the user

USER_TRIGGER_COLS Column usage in user ′s tr iggers

USER_TS_QUOTAS Tablespace quotas for the user

USER_USERS Information about the current user

USER_VIEWS Text of views owned by the user

AUDIT_ACTIONS
Description table for audit trail action type codes. Maps action type numbers to action
type names

COLUMN_PRIVILEGES
Grants on columns for which the user is the grantor, grantee, owner, or for which an
enabled role or PUBLIC is the grantee

DICTIONARY Description of data dictionary tables and views

DICT_COLUMNS Description of columns in data dictionary tables and views

GLOBAL_NAME global database name

D.2 DATABASE 2 for AIX Version 2 System Catalog Views
In Table 28, the system catalog views are listed. These views should be used
whenever trying to extract information from the system catalogs. To list the
actual tables in the system catalogs, you may use the db2 list tables for
system command.

Table 28 (Page 1 of 2). Catalog Views in DATABASE 2 for AIX Version 2

Views Description

SYSCAT.CHECKS Check constraints

SYSCAT.COLCHECKS Columns referenced by check constraints

SYSCAT.COLDIST Detailed column statistics

SYSCAT.COLUMNS Columns

SYSCAT.CONSTDEP Constraint dependencies

SYSCAT.DATA TYPES Data types

SYSCAT.DBAUTH Authorities on the database

SYSCAT.EVENTMONITORS Event monitor definitions

SYSCAT.EVENTS Events currently monitored

SYSCAT.FUNCPARMS Function parameters

SYSCAT.FUNCTIONS User-defined functions

SYSCAT.INDEXAUTH Index privi leges

166 DB2 Version 2 Conversion Guide

Table 28 (Page 2 of 2). Catalog Views in DATABASE 2 for AIX Version 2

Views Description

SYSCAT.INDEXES Indexes

SYSCAT.KEYCOLUSE Columns used in keys

SYSCAT.PACKAGEAUTH Package privi leges

SYSCAT.PACKAGEDEP Packages dependencies

SYSCAT.PACKAGES Packages

SYSCAT.REFERENCES Referential constraints

SYSCAT.STATEMENTS Commands in packages

SYSCAT.TABAUTH Table privi l leges

SYSCAT.TABCONST Table constraints

SYSCAT.TABLES Table privi leges

SYSCAT.TABLESPACES Tablespaces

SYSCAT.TRIGDEP Trigger dependencies

SYSCAT.TRIGGERS Triggers

SYSCAT.VIEWDEP View dependencies

SYSCAT.VIEWS Views

Appendix D. Oracle and DB2 System Catalog 167

168 DB2 Version 2 Conversion Guide

Appendix E. User-Defined Functions

This appendix is an example of how to create a User-Defined Function. The
example is for the COSH function which is implemented in Oracle, but not in DB2.

Figure 48 is an example of a User-Defined Function that accepts a single
parameter of type double and returns the hyperbolic cosine of that value.

To be able to use this function, you will need to create this code, compile it and
define the function to the DB2 database.

#include <math.h>
#include <sqludf.h>

void SQL_API_FN COSH(
double *inp, /* input value */
double *out, /* output = cosh(inp) */
short *inpnull, /* input null indicator */
short *outnull, /* output null indicator */
char sqlstate[6], /* sqlstate */
char fname[28], /* fully qualifed func name */
char finst[19], /* func specific name */
char msgtext[71] /* msg text buffer */
)

{
/* Calculate the cosh of the input */
*out = cosh(*inp);

/* exit */
return;

}

Figure 48. Source Code for COSH UDF (cosh.c)

An example of a makefile that could be used to compile the User Defined
Function is shown in Figure 49.

DB2INSTANCEPATH=/home/db2v2
CFLAGS=-I$(DB2INSTANCEPATH)/sqllib/include
LIBS=-lm

CSRCS=cosh.c
COBJS=cosh.o

udfs : $(COBJS)
xlc -o udfs $(COBJS) $(LIBS) -H512 -T512 -bE:udfs.exp -e COSH
cp udfs /home/db2v2/sqllib/function/udfs
db2 -t -f udfs.sql

Figure 49. Makefile for COSH UDF (makefile)

 Copyright IBM Corp. 1995 169

The export file specified by the -b flag in the makefile is shown in Figure 50 on
page 170.

#!
COSH

Figure 50. Export File for COSH UDF (udfs.exp)

Finally, to define the function within the database, you would need to use the
create function statement. An example of this is shown in Figure 51. The
execution of this statement is performed by the sample makefile given. The
statement is stored in an ASCII file. In this example, the file is called ′udfs.sql′.

CREATE FUNCTION COSH(DOUBLE) returns DOUBLE
external name ′ udfs′
language c
parameter style db2sql
not variant
fenced
not null call
no sql
no external action
scratchpad
no final call;

Figure 51. SQL File for COSH UDF (udfs.sql)

170 DB2 Version 2 Conversion Guide

Index

A
aliases 65, 83
applications 113
arch 27
arh 27
authentication 107
Authori ty

BINDADD 96, 111
client 108
connect 96, 111
control 97
create_not_fenced 96, 111
CREATETAB 96, 111
DBADM 96, 112
server 108

authorizations 110

B
backup, strategy 130
Backup/Restore

autorestart 137
backups 129, 133
comparison 136
crash recover 137
database-level 133
load 139
logretain 133
methods 133
Recovery 137
restore recovery 138
roll-forward recovery 138
tablespace-level 133

binding 68, 93, 119

C
cascase 95
catalogs 70
check pending 65
ckpt 27
cl ient/server 21, 31
clusters 64, 92
communications manager 29
compilers 117
Configuration Files

config.ora 36
configuration fi les 42
init.ora 36

Constraints 153
CHECK 64
FOREIGN KEY 64
on delete 100
on update 101

Constraints (continued)
PRIMARY KEY 64
UNIQUE 64

containers 45
control fi les 36, 40, 130
control ler 29
correlated reference 66
correlation 65
create function
cursors 102, 103, 104

close 103
declare 103
describe 103
execute 103
execute immediate 104
prepare 104

D
daemon spawner 29
data files 35
Data Types

binary 56
BLOB 54
CBLOB 54
character 56
Comparisons 53
date/t ime 57
DB2 54
DBCBLOB 54
explicit conversion 75
implicit conversion 75
incompatibil i t ies 57
mapping 55
number 55
Oracle external 53
Oracle internal 53

DataJoiner 3
db2dlock 29
db2gds 29
db2ipccm 29
db2isxcm 29
db2loggr 29
db2pclnr 29
db2pfchr 29
db2resyn 29
db2snacm 29
db2sysc 29
db2tcpcm 29
db2tcpim 29
db2wdog 29
dbadm authority 68, 96, 109
dbwr 27
DCE 113

 Copyright IBM Corp. 1995 171

deadlock 29
declare variables 121
Directories 22

database 40
database connection services 31, 40
local 30, 31
node 31, 40
system 30

directory fi les 40

E
execute 127
export 144, 152
extent 43, 46, 48

F
f irewall 29
force 97
foreign key 64
Functions

ABS 72
ASCII 72
AVG 73
CEIL 73
CHARTOROWID 76
CHR 72
compatible functions 71
CONCAT 73
COS 73
COUNT 72
CURRENT DATE 72
date/t ime 77
EXP 73
FLOOR 73
HEXTORAW 76
incompatibil i t ies 75
INSTR 74
INSTRB 74
LCASE 72
LENGTH 72
LENGTHB 72
LN 73
LOG 74
LOWER 72
LTRIM 74
MAX 72
MIN 72
MOD 74
NVL 74
POWER 72
RAWTOHEX 76
REPLACE 74
ROUND 74
ROWIDTOCHAR 76
RTRIM 74
SIGN 72
SIN 73

Functions (continued)
SOUNDEX 72
SQRT 73
SUBSTR 75
SUBSTRB 75
SUM 72
SYSDATE 72
TAN 73
TO_CHAR 76
TO_DATE 77
TO_NUMBER 77
TRANSLATE 75
TRUNC 75
UCASE 72
UDF required 78
UPPER 72
USER 72
VSIZE 72

G
groups 67

H
hardware 23
host variables 120

I
indexes 38, 48, 63
indexsort 92
INITRANS 89, 93
installation 21
Instances

instance 26, 27
owner 27
structure 25

internal 67

J
joins 101

K
key, foreign 64
key, primary 64
key, referenced 64
key, unique 64

L
lgwr 27
Licensing

concurrent 23
default 24
entit lements 24
iFOR/LS 24
named users 24

172 DB2 Version 2 Conversion Guide

Licensing (continued)
nodelock 24
Overview 23

limits 157
linking 117
load 139
log files 40, 51
logger 29
logging 140

M
MAXTRANS 89, 93
methodologies

combinations 4
corporate model 4
Methodologies 3
re-engineering 3
redevelopment 4
reverse engineering 4
translation 3
transparency 3

N
nosort 92

P
packages 68
Packaging

AIX Server 17
AIX Single-User 17
C 18
Call-Level Interface 18
Client Application Enabler 17
COBOL 18
Command Line Processor 18
components 15
Database Director 19
DDCS 17
DRDA Application Server 19
FORTRAN 18
IPX 19
kits 15
Oracle 13
Product Library 19
SNA 18
Software Developer ′s Kit 18
TCP/IP 18
Visual Explain 19

page cleanger 29
PCTFREE 89, 93
PCTUSED 89, 93
Planning the Conversion

analysis 8
considerations 11
definit ion 8
deliverables 8, 9

Planning the Conversion (continued)
implementat ion 10
Overview 5
questions 5
requirements 8
stage one 6, 7
stage three 6, 10
stage two 6, 9
survey 7
testing 10

pmon 27
pre-compilers 117
prefetch 29
primary key 64
Privileges

all 112
alter 112
bind 112
control 112, 113
dba 109
delete 112
execute 113
group 111
index 112
insert 112
internal 109
osdba 109
osoper 109
references 112
select 112
update 112
user 111

process model 26, 27
public 67

R
reco 27
recovery 132
Recovery (See Backup/Restore) 137
redo log 129, 131
redo logs 36
referenced key 64
referencing 95
Reserved Words 104, 159
roles 145
rollback segments 130

S
savepoint 97
schema 66
security 107
segment 44, 130
select 98

connected by 98
for fetch only 98
for read only 98
for update of 98

Index 173

select (continued)
group by 98
minus 98
NOWAIT 98
optimize for 99
order by 98
start with 98

smon 27
Special Registers

current date 105
current explain snapshot 105
current function path 105
current query optimization 105
current server 105
current t ime 105
current t imestamp 105
current t imezone 105

SQL
alter table 89
alter tablespace 90
API 114
comparison 81
comparisons 86
connect 90
create controlfi le 90
create database 91, 147
create function 92
create index 92, 153
create package 92
create procedure 93
create sequence 93
create table 93
create tablespace 94, 148
create tr igger 94
DARI 127
DDL, data definition 86
DML, data manipulation 86
drop function 95
drop tablespace 96
dynamic 114, 125
Dynamic SQL 102
expressions 83
FIPS Flagger 81, 120
grant 96, 146, 148, 155
insert 97
lock table 97
mode 81
ORACA 85
revoke 97
rollback 97
schema 82
set transaction 99
sql call 127
SQLCA 84, 122
SQLDA 84, 123
static 114, 125
types 99
var 100

SQLCODE 84
sqlerrd 84
sqlstate 84
sqlwarn5 84
Storage

containers 45
logical 43
physical 35, 37

stored procedures 68
Strategy

big bang 1
combinations 2
Definitions 1
loose coexistence 2
piece by piece 1
tight coexistence 1

synonyms 65, 66, 83, 154
sys 67, 109
sysadm authority 68, 96, 109
sysctrl authority 68, 96, 109
sysmaint authority 68, 96
sysmaint aythority 109
system 67, 109
system catalogs 30
system global area 27

T
tables 48, 62
Tablespaces

containers 38, 39
creation 50
Database Managed Space 26, 39
System Managed Space 26, 38
tablespaces 25, 26, 61, 144

tr iggers 68
triggers, types 69

U
UDF 169
UDT 58
unique key 64
user exits 140
User-Defined Functions 169
User-Defined Types 58
users 67, 145

V
views 62, 155

W
watchdog 29

174 DB2 Version 2 Conversion Guide

ITSO Technical Bulletin Evaluation RED000

International Technical Support Organization
DATABASE 2 for AIX Conversion Guide
Oracle 7.1 to DB2 Version 2
August 1995

Publication No. SG24-2567-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
SG24-2567-00 IBML 

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department JN9, Building 821
Internal Zip 2834
11400 BURNET ROAD
AUSTIN TX
USA 78758-3493

Fold and Tape Please do not staple Fold and Tape

SG24-2567-00

IBML 

Printed in U.S.A.

SG24-2567-00

