
International Technical Support Organization

DB2 Version 2 Planning Guide
for Database Administrators

January 1996

SG24-2523-00

International Technical Support Organization

DB2 Version 2 Planning Guide
for Database Administrators

January 1996

SG24-2523-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xiii.

First Edition (January 1996)

This edition applies to DB2 for AIX Version 2.1 of Program Number 41H2128 for use with the AIX Operating
System and DB2 for OS/2 Version 2.1 of Program 41H2114 for use with the OS/2 Operating System.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader ′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document is unique in its detailed coverage of DB2 for the AIX and OS/2
platforms (DB2 for AIX and DB2 for OS/2). It focuses on those aspects that a
database administrator must consider for planning a database in DB2 Version 2.
The document has more AIX examples than OS/2, though DB2 for OS/2 database
administrators will find it useful. It also provides information about migrating
from a Version 1 database either OS/2 or AIX.

This document was written for database administrators and anyone wanting
detailed information on DB2 Version 2. Some knowledge of DB2, Version 1,
either for AIX or OS/2 is assumed.

(226 pages)

 Copyright IBM Corp. 1996 iii

iv DB2 V2 Planning Guide for DBAs

Contents

Abstract . i i i

Special Notices . xii i

Preface . xv
How This Document is Organized . xv
Related Publications . xvi
International Technical Support Organization Publications xvi
Acknowledgments . xvii

Chapter 1. Product Overview . 1
1.1 DB2 Version 2 Engine . 2

1.1.1 Base Engine Functions . 2
1.1.2 DB2 Single-User . 2
1.1.3 DB2 Server . 3

1.2 DB2 Version 2 Components . 4
1.2.1 Command Line Processor (CLP) . 5
1.2.2 Communications Support . 5
1.2.3 Client Application Enablers (CAE) . 5

1.3 Other DB2 Version 2 Products . 6
1.4 Distributed Database Connection Services (DDCS) 6

1.4.1 DDCS Single-User . 7
1.4.2 DDCS Multi-User Gateway . 7
1.4.3 Software Developer′s Kit (SDK) . 8

1.5 DB2 Client/Server Environment . 10
1.5.1 DB2 Client/Server Communication Products and Protocols 11
1.5.2 Back-Level Interconnectivity . 11

1.6 Product Distribution . 12
1.6.1 Access Keys . 12

Chapter 2. Customer Scenario . 15
2.1 Background Information . 15

2.1.1 Current Status . 16
2.1.2 Issues and Problems . 16

2.2 Summary . 16

Chapter 3. Instances and Users . 19
3.1 Instances in AIX and OS/2 . 19

3.1.1 Multiple Instances . 19
3.2 Instance Structure . 20
3.3 Creating an Instance . 24

3.3.1 Instance Creation in AIX . 24
3.3.2 Instance Creation in OS/2 . 25
3.3.3 Client/Server Connectivity Configuration 26
3.3.4 Other Administrative Commands . 28

3.4 Instances and Security . 28
3.4.1 Authentication at the Instance Level . 29
3.4.2 Levels of Authentication . 29
3.4.3 Administrative Control . 30

3.5 User and Group Support . 34
3.6 Directories and Database Access . 36

 Copyright IBM Corp. 1996 v

3.6.1 DCE Directory Services . 37
3.7 Accessing an Instance . 38

3.7.1 Remote Access . 38
3.7.2 Local Access . 39
3.7.3 Accessing the DB2 Server . 41

Chapter 4. Data Placement . 45
4.1 Storage Concepts in DB2 Version 2 . 45

4.1.1 Container . 45
4.1.2 Tablespace . 46
4.1.3 Extent . 48
4.1.4 Summary . 48

4.2 SMS and DMS Tablespaces . 49
4.2.1 Container Options with SMS and DMS Tablespaces 49

4.3 System Managed Storage (SMS) Tablespaces 52
4.4 Database Managed Storage (DMS) Tablespaces 53

4.4.1 SMS and DMS Tablespace Considerations 55
4.5 Planning Your Tablespace Environment . 57

4.5.1 Logical Design of Tablespaces . 57
4.5.2 Creating a Database . 59
4.5.3 Sizing of Tables and Tablespaces . 63
4.5.4 Sizing Example for DMS Tablespace 66
4.5.5 Determining Containers . 68
4.5.6 Writing to Containers . 70
4.5.7 Creating Tablespaces . 72
4.5.8 Creating Tables and Indexes . 74
4.5.9 System Catalog Changes . 75

4.6 Managing Tablespaces . 77
4.6.1 List Tablespaces . 78
4.6.2 List Tablespace Containers . 79
4.6.3 Alter Tablespace . 80
4.6.4 Drop Tablespace . 81
4.6.5 States of Tablespaces . 81

4.7 Performance Considerations . 82
4.7.1 Buffer Pool Size . 82
4.7.2 I/O Prefetch . 83
4.7.3 I/O Cleaners . 83

4.8 Customer Scenario for Data Placement . 84
4.8.1 Telephone Company . 84

Chapter 5. Data Movement . 91
5.1 Overview of the Load Process . 91
5.2 Getting Ready for the Load Utility . 93

5.2.1 Input Data File . 93
5.2.2 Sorting the Data (Optional) . 94
5.2.3 Creating a Target Table and an Exception Table 95
5.2.4 Determining the Storage Used in the Load Utility 96
5.2.5 The Using Directory Option . 97
5.2.6 The Remote File Option . 97
5.2.7 The Copy Yes Option . 98

5.3 Using the Load Command . 98
5.4 Four Successful Load Scenarios . 103

5.4.1 Example 1 - Using the Load Utility . 104
5.4.2 Example 2 - An Index Key Violation 106
5.4.3 Example 3 - A Constraint Violation . 107

vi DB2 V2 Planning Guide for DBAs

5.4.4 Example 4 - Loading LOBs . 111
5.5 What Happens If A Load Fails? . 111
5.6 The Load Query Command . 113
5.7 Load Command Tests . 114
5.8 Storage Media Constraints . 115

5.8.1 Remote File . 115
5.8.2 Using the Directory Option of the Load Command 116
5.8.3 DMS Tablespace and Container . 116
5.8.4 Container in an SMS Tablespace . 119
5.8.5 Copy Target File/Device . 120

5.9 DB2 System Crash . 121
5.9.1 DB2 Agent/Process Killed and Copy No Option 121

5.10 Load Statistics . 124
5.11 Import/Export . 124

5.11.1 Converting Between SMS and DMS Tablespaces 125
5.12 Data Propagator Relational (DPropR) . 127
5.13 Customer Scenario . 128

5.13.1 Telephone Company . 128

Chapter 6. Logging . 131
6.1 Overview . 131

6.1.1 Unit of Work . 131
6.1.2 Transaction . 132
6.1.3 Write-Ahead-Logging . 132
6.1.4 Use of Log Files by Multiple Transactions 132

6.2 Log Management Configuration Parameters 133
6.2.1 LOGBUFSZ - Log Buffer Size . 134
6.2.2 LOGFILSIZ - Log File Size . 135
6.2.3 LOGPRIMARY - Number of Primary Logs 135
6.2.4 LOGSECOND - Number of Secondary Logs 135
6.2.5 NEWLOGPATH - New Log Path . 136
6.2.6 SOFTMAX - Percentage of Records Reclaimed Before Soft

Checkpoint . 136
6.2.7 LOGRETAIN - Recoverable Database 137
6.2.8 USEREXIT - Log Archiving . 137
6.2.9 MINCOMMIT - Number of Commits to Group 137
6.2.10 OVERFLOWLOGPATH - Overflow Log Path 137
6.2.11 NUM_IOCLEANERS - Asynchronous Page Cleaners 137
6.2.12 Log File Information . 139
6.2.13 Location of Log Files . 139

6.3 Types of Logging in DB2 . 141
6.3.1 Circular Logging . 141
6.3.2 Archival Logging . 143

6.4 Log File Usage . 146
6.4.1 Crash Recovery . 146
6.4.2 Rollforward Recovery . 146
6.4.3 How Far to Roll Forward . 148

Chapter 7. Backup and Restore . 151
7.1 Overview . 151

7.1.1 Review of Version 1 Process Models 151
7.2 DB2 Backup and Restore Considerations 155

7.2.1 Understanding the Backup Command 157
7.2.2 The Backup File . 159

7.3 DB2 Restore Utility . 160

Contents vii

7.3.2 Target Database Existence (Database Level Restore) 161
7.3.3 Understanding the Restore Utility Parameters 164
7.3.4 Backup/Restore Tablespace Considerations 166
7.3.5 Tablespace Backup and Restore Scenarios 168
7.3.6 Online Archived Log File Reuse . 170

7.4 Redirected Restore . 171
7.5 Failures and Recovery Actions . 172

7.5.1 Methods of Recovery . 173
7.5.2 Media Failure . 174

7.6 Tablespace Backup Guidelines . 174
7.6.1 Backup/Restore Recommendations 176

7.7 Performance Issues . 176
7.8 Recovery History File . 177

7.8.2 Format of Recovery History File . 179
7.9 Customer Scenario - The Telephone Company 180

Chapter 8. Data Access . 183
8.1 Command Line Processor (CLP) . 183
8.2 SQL Query Products . 184
8.3 Database Director . 185

8.3.1 Getting Started . 185
8.3.2 Configuration . 187
8.3.3 Creating/Modifying DB2 Objects . 193
8.3.4 Backing up a Database . 199
8.3.5 Backing up a Tablespace . 200
8.3.6 Restoring a Database . 200
8.3.7 Examining Database Packages . 203
8.3.8 Performance Monitoring . 206

Appendix A. Database Migration . 207
A.1 General Considerations . 207

A.1.1 Version Incompatibilit ies . 207
A.1.2 Authentication . 207
A.1.3 Storage Requirements . 208

A.2 Specific Considerations for OS/2 . 208
A.2.1 Pre-Migration . 208
A.2.2 Remote Unattended Migration . 209
A.2.3 Parameter Value Changes . 210
A.2.4 Restoring DB2 Version 1.x Databases 210

A.3 OS/2 Database Migration Procedure . 210
A.4 Specific Considerations for AIX . 212

A.4.1 User/Group Security . 213
A.4.2 Instance Migration . 213

A.5 AIX Database Migration Procedure . 215
A.6 Problem Solving . 216
A.7 Customer Scenario . 217

A.7.1 Telephone Company . 217

List of Abbreviations . 219

Index . 221

viii DB2 V2 Planning Guide for DBAs

Figures

 1. DB2 Single-User . 3
 2. DB2 Server Engine . 4
 3. DDCS Single-User for OS/2 . 7
 4. DDCS Multi-User Gateway . 8
 5. DB2 Software Developer ′s Kit (DB2 SDK) 9
 6. DB2 Client/Server Environment . 10
 7. Telephone Company Environment . 15
 8. Instances in DB2 . 20
 9. Authorization Heirarchy . 31
10. Group and User Support in Version 2 . 35
11. DB2 Directory Structure . 36
12. Example - Local and Remote User in DB2 40
13. What Does a Container Look Like? . 46
14. Database Manager Instance, Database, Tablespace and Tables 46
15. Tablespace and Container, One-to-Many Relationship 47
16. Extent, Container and Tablespace in DB2 Version 2 48
17. Default SMS Tablespaces . 53
18. Tables in DMS Tablespaces . 54
19. Example Database and Tablespace Environment 59
20. Default DB2 Database Objects . 62
21. Defining Containers for User Tablespaces - AIX and DMS 69
22. Writing to Containers . 70
23. Three Phases of Load . 92
24. Example Load Command . 99
25. A Simple Load Scenario . 104
26. A Load with an Index Key Violation . 106
27. A Load with a Constraint Violation . 108
28. Data Propagator Relational . 127
29. Transaction Log File Use . 133
30. Logging Configuration Parameters . 134
31. Asynchronous Page Cleaners . 138
32. Log File Information . 139
33. Location of Log Files . 140
34. Circular Logging . 141
35. Archival Logging . 143
36. DB2/2 Version 1 Backup/Restore Processing 152
37. DB2/2 Version 1 User Exit Support . 153
38. DB2/6000 Version 1 Backup/Restore Processing 154
39. DB2 Version 2 Backup/Restore Processing 155
40. Backup Utility Considerations . 156
41. Backup File Format in DB2 . 159
42. Restoring a Backup Image to a Database 162
43. Checking the Database Seed Upon a Restore 163
44. Tablespace Level Restore . 167
45. Example Database and Tablespace Environment 169
46. On-Line Archived Log File Re-Use . 170
47. Potential Problems . 172
48. Methods of Recovery . 173
49. Format of the Recovery History File . 179
50. Visualizer for OS/2 . 185
51. The Database Director Main Screen - Tree View 186

 Copyright IBM Corp. 1996 ix

52. The Database Director Main Screen - List View 187
53. Notebook Settings for DB2 Instance (DBM) Configuration 188
54. Failed Attempt to Configure a DB2 Instance 189
55. Notebook Settings for Database (DB) Configuration 190
56. DB2 Directories . 191
57. System Database Directory . 192
58. System/Node Directory Relationship . 193
59. Pop-up Menu for Creating a Database 194
60. Notebook Settings for Creating a Database 195
61. Defining Tablespaces During Database Creation 196
62. Dropping a Database . 197
63. Creating Tablespaces . 198
64. Adding a Container to a DMS Tablespace 198
65. Backing Up a Database . 199
66. Jobs Recovery Tool . 200
67. Changing Container Definition during Restore 201
68. Redirected Restore . 202
69. Redefining Containers . 203
70. Examining Database Packages . 204
71. Explainable Statements . 205
72. Visual Explain Example . 205
73. OS/2 Database Migration Phases . 210
74. AIX Database Migration Phases . 214

x DB2 V2 Planning Guide for DBAs

Tables

 1. Client/Server Interconnectivity . 11
 2. Back-Level Interconnectivity . 12
 3. Client/Server Connectivity Tasks . 26
 4. Authentication Levels in DB2 . 29
 5. Database Authorities . 33
 6. Container Options for SMS and DMS Tablespaces 49
 7. Characteristics of SMS and DMS User Tablespaces 57
 8. Sizes of Rows - dss Database . 63
 9. Size of Descriptors for Long Field Data and LOBs 64
10. Minimum Size of Tablespaces - DMS . 65
11. Maximum size of Tablespaces - DMS . 65
12. Sizing Regular Table Objects - Extent Size 8 4 KB Pages 66
13. Sizing Index Table Objects - Extent Size 8 4 KB Pages 67
14. Sizing LOB Table Objects - Extent Size 32 4 KB Pages 67
15. Sizing DMS Tablespaces Example . 68
16. Sizing Containers . 71
17. Logical Volumes . 72
18. Phone Company - Grouping Tables . 85
19. Phone Company - Sizes of Tablespaces 86
20. Phone Company - Containers . 86
21. Valid Load Parameters, Invalid Conditions 112
22. Differences between the IMPORT and the LOAD Utilities 124
23. Phone Company - Tables Per Tablespace 129
24. Limitations and Restrictions of Backup 168
25. Logging/Backup Requirements Summary 176
26. Format of the Recovery History File . 179

 Copyright IBM Corp. 1996 xi

xii DB2 V2 Planning Guide for DBAs

Special Notices

This publication is intended to help database administrators or anyone planning
a DB2 Version 2 environment. It also provides detailed information on some of
the new features in Version 2 that many people will find useful. The information
in this publication is not intended as the specification of any programming
interfaces that are provided by DB2 for AIX Version 2.1 or DB2 for OS/2 Version
2.1. See the PUBLICATIONS section of the IBM Programming Announcement for
DB2 for AIX Version 2.1 or DB2 for OS/2 Version 2.1 for more information about
what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Windows is a trademark of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

IBM

 Copyright IBM Corp. 1996 xiii

Other trademarks are trademarks of their respective companies.

xiv DB2 V2 Planning Guide for DBAs

Preface

This document is intended to help database administrators plan their DB2
Version 2 environment. Specifically, it covers the AIX and OS/2 platforms. DB2
is supported on many platforms, such as HP, Sun or NT. These are not
discussed. There may be platform dependendcies that need to be considered.

This document is intended for database administrators and anyone wanting
detailed information about DB2 Version 2. This document focuses on
administrative aspects such as placement, movement and backup/restore of
data. It also looks at some of the user interfaces such as the Database Director,
which is new in Version 2. It does not cover every aspect that a database
administrator might be involved in, such as how to use the Visual Explain facility.
Note that not every new feature of Version 2 is covered in this document.

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Product Overview”

This chapter describes the product packaging in Version 2. It also gives a
connectivity summary.

• Chapter 2, “Customer Scenario”

This chapter looks at a sample customer environment and explores some of
the considerations that a customer might have in migrating their
environment from DB2/6000 Version 1 to DB2 for AIX Version 2.

• Chapter 3, “Instances and Users”

This chapter describes the instance, users and security.

• Chapter 4, “Data Placement”

This chapter describes the placement of data. A detailed look at tablespaces
and planning the storage is covered.

• Chapter 5, “Data Movement”

This chapter describes the movement of data. In particular, it focuses on the
load utility.

• Chapter 6, “Logging”

This chapter discusses logging in DB2.

• Chapter 7, “Backup and Restore”

This chapter describes planning a backup/restore strategy for your
environment.

• Chapter 8, “Data Access”

This chapter looks at the user interfaces a database administrator may
choose from. Covered are the Command Line Processor, SQL Query
Products and the Database Directory

• Appendix A, “Database Migration”

This appendix describes the migration from Version 1 for both AIX and OS/2.

 Copyright IBM Corp. 1996 xv

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

• IBM DATABASE 2 Command Reference - for common servers Version 2 ,
S20H-4645-00

• IBM DATABASE 2 SQL Reference - for common servers Version 2 ,
S20H-4665-00

• IBM DATABASE 2 Administration Guide - for common servers Version 2,
S20H-4580-00

• IBM DATABASE 2 Information and Concepts Guide - for common servers
Version2, S20H-4664-00

• IBM DATABASE 2 for AIX Planning Guide Version 2, S20H-4758-00

• IBM DATABASE 2 DDCS User′s Guide, S20H-4793-00

• IBM DATABASE 2 Software Developer′s Kit for AIX, S20H-4780-00

• IBM DATABASE 2 Installing and Using AIX Clients, S20H-4666-00

• IBM DATABASE 2 Installing and Using DB2 Clients for Windows,
S20H-4789-00

International Technical Support Organization Publications
A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get a catalog of ITSO technical publications (known as “redbooks”), VNET
users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-445-9629. Almost all major credit cards are accepted. Outside
the USA, customers should contact their local IBM office.

Customers may order hardcopy ITSO books individually or in customized
sets, called GBOFs, which relate to specific functions of interest. IBM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

xvi DB2 V2 Planning Guide for DBAs

Acknowledgments
This project was designed and managed by:

Calene Janacek
International Technical Support Organization, Austin Center.

This publication is the result of a residency conducted at the International
Technical Support Organization, Austin Center. The authors of this document
are:

William McAuliffe
IBM Ireland

Veronique Gillet
IBM France

Grant Hutchison
IBM Canada

Calene Janacek
IBM Austin

Giuseppe Ornaghi
IBM Italy

Dale McInnis
IBM Canada

Gerhard Mueller
IBM Germany

Miguel Robles
IBM Spain

Melanie Stopfer
IBM US Education and Training

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

The document had many reviewers whose time and assistance was greatly
appreciated:

Marcus Brewer, Editor
ITSO Austin

Dorothy Chen
IBM Canada

Al Comeau
IBM Canada

Grant Hutchison
IBM Canada

Preface xvii

Dale McInnis
IBM Canada

Ella Polan
IBM Canada

Steve Schmidt
IBM Canada

My thanks for time and support is also extended to

Tim Sennitt
ITSO Boca Raton

xviii DB2 V2 Planning Guide for DBAs

Chapter 1. Product Overview

DB2 Version 2 introduces a common server code on both the Intel and RISC
platforms. Version 2 provides equivalent function to both platforms, while using
operating-system services and optimization to fully leverage each platform
environment. Application function compatibility with Version 1 is maintained in
Version 2.

The DB2 for OS/2 and DB2 for AIX products are now collectively known as DB2
common server because they operate on similar platforms and share the same
code base. The packaging of DB2 products for both OS/2 and AIX is consistent
in Version 2. DB2 common server also shares the same basic architecture as
DB2 for MVS and uses many of the same key algorithms. However, the internal
components of DB2 have been optimized to exploit each operating system and
platform.

The DB2 common server Version 2 products that are discussed in this
publication are the following:

• IBM DATABASE 2 for AIX Version 2.1 Single-User (DB2 for AIX)

• IBM DATABASE 2 for OS/2 Version 2.1 Single-User (DB2 for OS/2)

• IBM DATABASE 2 for AIX Version 2.1 Server (DB2 for AIX)

• IBM DATABASE 2 for OS/2 Version 2.1 Server (DB2 for OS/2)

• IBM Distributed Database Connection Services for OS/2 Version 2.3
Single-User (DDCS for OS/2)

• IBM Distributed Database Connection Services for OS/2 Version 2.3
Multi-User Gateway (DDCS for OS/2)

• IBM Distributed Database Connection Services for AIX Version 2.3 Multi-User
Gateway (DDCS for AIX)

• IBM DATABASE 2 Software Developer′s Kit for AIX Version 2.1 (DB2 SDK for
AIX)

• IBM DATABASE 2 Software Developer′s Kit for OS/2 Version 2.1 (DB2 SDK
for OS/2)

• IBM DATABASE 2 Software Developer′s Kit for Windows Version 2.1 (DB2
SDK for Windows)

Throughout the remainder of this book, unless otherwise noted, DB2 will refer to
the DB2 common server.

This chapter is an introduction to DB2 Version 2. Included are descriptions of
the following;

• DB2 Version 2 Products

• DB2 Version 2 Components

• Packaging of Products and Components

 Copyright IBM Corp. 1996 1

1.1 DB2 Version 2 Engine
The DB2 database engine is available in two versions: Single-User and Server.
The database engine in both of these versions is identical. The engine is a
full-function relational database management system that includes the optimizer,
SQL support and tools to help manage the data. The difference between these
products is whether remote clients can access the databases or not and whether
or not the application development environment is an integrated feature.

1.1.1 Base Engine Functions
The following are the base engine functions of DB2:

• Full-function relational database management system.

• Cost-based optimizer which supports complex queries.

• Data integrity through declarative referential integrity, forward recovery and
multilevel concurrency control.

• Flexible management of very large databases.

• Ability for an application to read or update tables in more than one database
from within a single unit of work with full data integrity. This capability is
provided through Distributed Unit of Work (DUOW) functionality, also known
as two-phase commit.

For a full discussion on the DB2 base engine functions, see the Information and
Concepts Guide.

The major functional engine enhancements in DB2 Version 2 over Version 1
were in the following areas:

• Extended SQL Capabilities

• Enhanced SQL Optimizer

• Database Performance

• Systems Management Support

• Compatibility with DB2 for MVS

• Integrity and Data Protection

• Object and Relational Capabilities

• National Language Support

These enhancements are applicable to both the Single-User and Server versions
of DB2. For a full description of these enhancements, see the DB2 for OS/2 (or
AIX) Planning Guide.

1.1.2 DB2 Single-User
The Single-User version of DB2 contains all the features of the base engine, as
well as the following:

• Application Development Environment

The application development environment of the DB2 SDK is included with
DB2 Single-User. This allows you to create applications on the same
platform where you have local databases.

2 DB2 V2 Planning Guide for DBAs

DB2 Single-User is an ideal environment for those who develop applications or
perform database administration tasks and need to have local databases to test
their applications.

Figure 1. DB2 Single-User

Figure 1 shows the packaging for the DB2 Single-User product.

DB2 Single-User contains the DB2 database engine, application development
tools, administration tools, an application-development Command Line
Processor, Visual Explain, and the Client Application Enabler (CAE) for the
platform on which it is installed. The DB2 for OS/2 Single-User package also
contains the CAEs for DOS and Windows.

1.1.3 DB2 Server
DB2 Server supports all the base engine functions plus provides support for
remote as well as local clients who want database access. Remote database
clients can communicate with the server using any of the supported
communication protocols (see DB2 for AIX (or OS/2) Planning Guide). Remote
clients are available for a varied set of operating environments, such as DOS,
Windows, OS/2, Macintosh, and UNIX. DB2 Server provides a true client/server
database, supporting autonomous clients that do not need to know the physical
location of the database. The processing of applications is split between the
database server and client machines.

To provide the application development environment with DB2 Server, DB2 SDK
must be installed on the same machine.

Chapter 1. Product Overview 3

Figure 2. DB2 Server Engine

DB2 Server contains the DB2 database engine, communications support for
clients, administration tools, the Command Line Processor, and the Client Pack
(run-time code for a variety of client workstations).

DB2 Server also now has DRDA Application Server capability. This function
allows DB2 for MVS, DB2 for VM and DB2 or OS/400 applications (or any other
application that implements DRDA application requestor functionality) to access
data located in DB2 databases. Thus, existing database applications running on
the MVS, VM and OS/400 platforms may be able to access data stored in DB2
databases. The Distributed Unit of Work (DUOW) is subject to the availability of
an external transaction manager.

1.2 DB2 Version 2 Components
DB2 Version 2 components are packaged and bundled with different DB2
products. Components are discrete elements of function within DB2 products
which are labelled and described separately. They have no product cost, and
customers may choose whether or not they wish to install them. The
components may be installed on multiple workstations without additional product
cost.

The components of DB2 Version 2 are as follows:

Command Line Processor (CLP)

Communications Support

Client Application Enabler (CAE)

4 DB2 V2 Planning Guide for DBAs

Database Director

Visual Explain

Performance Monitor

1.2.1 Command Line Processor (CLP)
The Command Line Processor (CLP) is a character-based application that
provides the ability to enter SQL statements, environment, utility, and
configuration commands. Using the CLP, you can create a database, connect to
a database and select rows from a table, for example.

1.2.2 Communications Support
In Version 1 of DB2 for AIX, there was a separate product called Client
Support/6000 which, when installed with DB2 acting as a database server,
allowed databases to be accessed and shared by remote AIX, DOS, Windows,
and OS/2 clients. Communications Support now replaces Client Support as an
installable client communications support feature of DB2 Server and DB2
Multi-User Gateway.

1.2.3 Client Application Enablers (CAE)
The Client Application Enablers allow application programs running on DOS,
Windows, OS/2, AIX, HP-UX, and Solaris client workstations to access data
stored in any of the DB2 relational databases. The CAEs provide run-time
access to applications that support Microsoft′s Open Database Connectivity
(ODBC) interface and to those developed with the DB2 Software Developer′s Kit
(DB2 SDK).

A set of all the supported DB2 Client Application Enabler products is included
with the DB2 Server and DDCS Multi-User Gateway products. This is known as a
Client Pack. Any number of these clients can be separately installed on the
client workstations on your network. Client support for additional workstation
operating systems, as they are developed, will be available at no charge to
customers of DB2 Version 2 products.

The following is a list of the Version 2 enhancements found in the Client
Application Enabler:

• DB2 Client Set-Up

• Remote Administration Capabilities

• Directory Caching

• DRDA Stored Procedures

For a full discussion on these enhancements, consult the DB2 for OS/2 (or AIX)
Planning Guide.

There are several graphical database administration components designed to
help database administrators manage and administer DB2 databases.

There are several DB2 components which, when installed on the same
workstation as the database server, allow you to administer your databases
locally. Alternatively, you can set up a dedicated database administrator′s
system by installing these tools on a client workstation. This allows you to
administer databases remotely.

Chapter 1. Product Overview 5

Following is a list of the tools and their capabilities:

• Database Director

The Database Director is an easy-to-use graphical interface that displays
database objects (databases, tables and packages) and their relationship to
each other. Using the Director, you can select one or more database objects
to perform the following tasks:

− Configure databases and database manager instances

− Manage the directories necessary for accessing local and remote
databases

− Back up and recover databases or tablespaces

• Visual Explain

This tool graphically shows you the access plans for an SQL statement. It
provides a visual representation of how transactions relate to each other,
and you can assess if a database change needs to be made. You can also
model the effect of any changes on the production environment before
committing the changes. This allows you to assess the impact of
environment changes on SQL.

• Performance Monitor

This tool can help you monitor the performance of your DB2 system for
tuning purposes. It uses the database system monitor APIs provided with
the base engine. With the Performance Monitor, you can:

− Define your own statistics, in addition to the defaults provided

− Determine and analyze performance problems in the database manager
or database applications

− Tune SQL statements for better performance

− Identify exception conditions based on thresholds you define

1.3 Other DB2 Version 2 Products
To offer a comprehensive database management solution, other products are
needed to support the database function. First, a communications gateway
facility is needed to allow access to other relational database management
systems that implement the DRDA application server specification. Second, a
collection of development tools is required to meet the needs of database
application developers. The DB2 companion products which meet these needs
are:

Distributed Database Connection Services (DDCS)

Software Developer′s Kit (SDK)

1.4 Distributed Database Connection Services (DDCS)
The Distributed Database Connection Services (DDCS) product addresses the
need to access and update corporate data stored in a host relational database
from applications running in a LAN-based environment. It can be implemented
as a Single-User or Multi-User Gateway environment. This capability is
generically referred to as the DRDA Application Requestor function.

6 DB2 V2 Planning Guide for DBAs

The following enhancements were made to the DDCS products in Version 2:

• DRDA Bind Options

• Stored Procedure Support

• Compound SQL

• Pre-fetching of Data Pages

• SQLCODE Mapping

• Accounting String Support

See the DB2 for OS/2 (or AIX) Planning Guide for a summary of these
enhancements, or see the DDCS User′s Guide for additional information.

1.4.1 DDCS Single-User
The Single-User version of DDCS is available for the OS/2 platform only. It
provides local client direct access to databases maintained by DRDA Application
Servers. It is not necessary to have the database manager product installed on
this workstation.

Figure 3. DDCS Single-User for OS/2

This package contains the DRDA Application Requestor, administration tools, a
Command Line Processor, and the CAEs for OS/2, DOS and Windows.

1.4.2 DDCS Multi-User Gateway
The Multi-User Gateway version of DDCS provides access from the clients on
your network to DRDA Application Servers. A DDCS gateway server can receive
concurrent requests from multiple remote database clients. Each of these
requests is rerouted to the appropriate host database for processing.

While it is possible to access the DB2 databases with DDCS, it is recommended
that the native distributed support provided with the DB2 server functions be
used rather than DDCS.

Version 2 has new installation considerations for DDCS Multi-User Gateway.
When installing on the AIX platform, you must install the run-time portion of DB2
Server. It is not necessary to purchase DB2 Server unless you want database
server functions. When installing DDCS Multi-User Gateway on the OS/2
platform, DB2 Server will install automatically as a pre-requisite.

Chapter 1. Product Overview 7

Figure 4. DDCS Multi-User Gateway

Figure 4 shows the DDCS Multi-User Gateway packaging. The gateway package
contains the DRDA Application Requestor, Client Support, administration tools,
Command Line Processor, and the Client Pack.

1.4.3 Software Developer ′s Kit (SDK)
The DB2 Software Developer′s Kit is a collection of tools designed to meet the
needs of database application developers. DB2 SDK includes all necessary
development tools, except a compiler. It provides support for the creation of
character-based, multimedia or object-oriented applications.

DB2 SDK is a separate product that can be installed on the server where DB2 is
installed or on a remote client. There is a platform-specific version of the
supported client environments. Applications developed with DB2 SDK will run
on any client platform where the equivalent Client Application Enabler
component is installed and can access all DB2 servers as well as any other
application server that implements the DRDA protocol.

The DB2 SDK provides support to develop applications using the following
interfaces:

8 DB2 V2 Planning Guide for DBAs

• Embedded SQL

• Call-Level Interface (CLI) development environment (compatible with
Microsoft ′s ODBC on Windows)

• Application programming interfaces (APIs) to access database utilities

• A prototyping environment using the Command Line Processor′s interactive
SQL

Programming libraries, header files, code samples, the Database Director, Visual
Explain, and a complete set of documentation are provided for developing
applications with embedded SQL and the DB2 CLI. Programming languages
including COBOL, FORTRAN, REXX, C, and C++ are supported for application
development, and pre-compilers for the supported languages are provided.

Figure 5. DB2 Software Developer ′s Kit (DB2 SDK)

The developer′s kit package contains application development tools, Visual
Explain, administration tools, an application development Command Line
Processor, and the CAE for the platform on which it is installed.

The following enhancements have been made in Version 2 to the DB2 SDK
products:

• DB2 Call-Level Interface extensions

• Programming language support

• Visual Explain

• Bind Options

• Flagger Utility

See the DB2 for OS/2 (or AIX) Planning Guide for a summary of these
enhancements and the DB2 SDK - Building Your Applications publication for
additional information.

Chapter 1. Product Overview 9

1.5 DB2 Client/Server Environment
Figure 6 shows the DB2 client/server environment. It is comprised of clients on
DOS, WINDOWS, OS/2, AIX, HP-UX, or Sun Solaris platforms. These clients can
access data on DB2 for AIX, DB2 for OS/2, DB2 for HP-UX, or DB2 for Solaris
database servers.

Figure 6. DB2 Client/Server Environment

Distributed Database Connection Services (DDCS) also has the capability of
acting as a DB2 Gateway Server. It allows DB2 database clients transparent and
concurrent access to data on any of the DRDA Application Servers (AS). The
DRDA AS can be an IBM or non-IBM platform that is DRDA compliant.
Therefore, this machine can be a DB2 Gateway Server and DRDA Application
Requester (AR) at the same time.

DB2 or DDCS servers can communicate with clients using NetBIOS (DB2 and
DDCS for OS/2 only), APPC, TCP/IP, or IPX/SPX as long as the client supports
that same protocol. However, communication between DDCS and a DRDA AS is
only via APPC (SNA LU6.2 protocol). The APPC or APPN (APPC with dynamic
routing) support is provided by Communications Manager/2 on the OS/2 platform
and by SNA Server/6000 on the AIX platform.

MPTN (Multiple Protocol Transport Network) allows the SNA LU6.2 protocol to
flow on a TCP/IP network. ANYNET/6000 and ANYNET/MVS provide MPTN
support.

10 DB2 V2 Planning Guide for DBAs

1.5.1 DB2 Client/Server Communication Products and Protocols
Table 1 can be used as a reference to the protocols supported for a specific DB2
client/server product combination. DB2 Version 2 now supports clients
connecting via TCP/IP to a DB2 for OS/2 database server. Also found in Version
2 of DB2 is native support by DB2 for AIX servers for clients that connect using
the IPX/SPX protocol.

Table 1. Client/Server Interconnectivity

Client Communication
Protocols
Supported

DB2
for
OS/2
V2

DB2
for
AIX V2

DB2
FOR
HP-UX
V1.2

DB2
for
Solaris
V1.2

DB2 Client Application
Enabler for DOS V1.2

NetBIOS Yes No No No

IPX/SPX Yes Yes Yes• Yes•

TCP/IP Yes Yes Yes Yes

APPC No No No No

DB2 Client Application
Enabler for Windows V2.1

NetBIOS Yes No No No

IPX/SPX Yes Yes Yes• Yes•

TCP/IP Yes Yes Yes Yes

APPC No No No No

DB2 Client Application
Enabler for OS/2 V2.1

NetBIOS Yes No No No

IPX/SPX Yes Yes No No

TCP/IP Yes Yes Yes Yes

APPC Yes Yes No No

DB2 Client Application
Enabler for AIX V2.1

NetBIOS No No No No

IPX/SPX No No No No

TCP/IP Yes Yes Yes Yes

APPC Yes Yes Yes Yes

DB2 Client Application
Enabler for HP-UX V1.2

NetBIOS No No No No

IPX/SPX No No No No

TCP/IP Yes Yes Yes Yes

APPC Yes Yes No No

DB2 Client Application
Enabler for Sun Solaris V1.2

NetBIOS No No No No

IPX/SPX No No No No

TCP/IP Yes Yes Yes Yes

APPC Yes Yes No No

Note: •Provided by the FireFox, Inc. NOV*IX for NetWare product.

1.5.2 Back-Level Interconnectivity
DB2 Version 2 also supports many back levels of DB2 products. Table 2 on
page 12 shows the down-level support for DB2 products. The CAE and SDK
products in Table 2 on page 12 are at the V1.2 level. The DB2/2 and DB2/6000
represent V1.x of those products. The DDCS products are at a V2.2 or earlier
level.

Chapter 1. Product Overview 11

Table 2. Back-Level Interconnectivity

Client Protocol ES V1.0
Server

DDCS/2
DB2/2

DDCS/6000
DB2/6000

OS/2 Extended
Services 1.0

APPC/APPN Yes Yes Yes•

NetBIOS Yes Yes No

IPX/SPX No No No

TCP/IP No No No

DB2/2 APPC/APPN Yes Yes Yes•

NetBIOS Yes Yes No

IPX/SPX No No No

TCP/IP No No No

DB2 CAE/2 or DB2
SDK/2

APPC/APPN Yes Yes Yes•

NetBIOS• Yes Yes No

IPX/SPX• No Yes No

TCP/IP No No Yes

DB2 CAE/DOS or
DB2 SDK/DOS

APPC/APPN No No No

NetBIOS• No Yes No

IPX/SPX• No Yes No•

TCP/IP No No Yes

DB2 CAE/6000 or
DB2 SDK/6000

APPC/APPN No No Yes•

NetBIOS No No No

IPX/SPX No No No

TCP/IP No No Yes

Note: •Support provided with V1.2. •NOV*IX NetWare Server can translate IPX/SPX to TCP/IP
•APPN support provided with SNA Server/6000 V2.1

1.6 Product Distribution
DB2 for OS/2 products are available on CD-ROM and/or 3.5 inch diskettes. The
CD-ROM also contains softcopy publications in BookManager READ format.

DB2 for AIX products must be ordered on CD-ROM, but a supplementary 8mm
tape option is also available for ease of installation. The charge for the tape
option is only for the media. Both the CD-ROM and the tape contain product
code as well as the Postscript and INF files for all publications.

The Client Pack CD-ROM, delivered with the DB2 server and the DDCS products,
contains the most recent version of every client application enabler. The
documentation included with Client Pack is as follows: an installation guide for
each client in hardcopy, BookManager and INF formats. Also included are 3.5
inch diskettes for those client platforms for which diskette is the common install
media.

1.6.1 Access Keys
Access keys are required for installation of all DB2, DDCS and SDK products.
The keys are provided in the CD-ROM and diskette packages only. The
pre-generated access key label is on a sheet of paper packaged with the
product. These labels are non-transferable and should be kept in a secure place
as the products cannot be used until the access keys are entered. Each access
key label is unique (unique label serial number and the access key).

12 DB2 V2 Planning Guide for DBAs

The client application enabler can be installed and used without entering an
access key.

Chapter 1. Product Overview 13

14 DB2 V2 Planning Guide for DBAs

Chapter 2. Customer Scenario

This chapter describes a customer scenario which may be instructive for you
when considering the implementation of DB2 Version 2 and/or upgrading from
DB2 Version 1. Almost every chapter in this document looks at this customer
environment and details how customers will address their environment in
Version 2. Using this example, this document means to provide some insight
into the concerns and priorities of the database administrator (DBA).

2.1 Background Information
A telephone company has implemented a comprehensive operational system for
its telephone network service. It stores information about all aspects of the
network inventory and configuration and automates all customer transactions,
such as line requests and connections.

Figure 7. Telephone Company Environment

 Copyright IBM Corp. 1996 15

As Figure 7 shows, the operational online transaction system is executing on an
MVS host using DB2 for MVS and is linked to 35 regional RS/6000 servers which,
in turn, serve a PC user population in the company′s offices nationwide.

A second requirement subsequently emerged to facilitate a management
information system based on the information stored in the DB2 for MVS
database. About 300 users (out of 4000) wanted to generate ad hoc reports from
the central database information from their own workstations. A distributed
database environment was established using DB2 Version 1 (with DDCS) to
connect the PC users to the MVS host. Standard SQL query requests are
formulated by an end-user query product. For a number of reasons (possibly
because the SQL queries were inefficiently constructed), the performance of this
configuration was not satisfactory. Currently, users are restricted from issuing
queries during peak hours.

2.1.1 Current Status
A solution was proposed to right-size the query server from MVS to AIX. Using
DB2 Version 2, a development environment has been established where the DB2
for MVS data will be down loaded from the host onto an RS/6000 server. The
database environment will ultimately consist of up to 50 tables containing up to
30 Gigabytes of information (currently 5 Gigabytes). No BLOBs or CLOBs will be
used within the database.

2.1.2 Issues and Problems
• The logical design of the database was sourced from the DDL of the DB2 for

MVS database. This has given the project team an effective starting point
from which to develop the new solution.

• Designing the physical database is more challenging. The approach so far
has been on a trial-and-error basis. Depending on performance, relocation
of tables and tablespaces may be necessary.

• Backup/Restore policy is another issue that needs to be addressed. Due to
the size of the database, the backup policy is one of the concerns of the
project team. Frequency and scope of the backups are to be determined.

• On a timely basis (possibly four times per year), a complete reload of the
database will be required. These loads will have to be performed in less
than 48 hours. Recovery from an “unsuccessful” load must be guaranteed.

• Moving from an unsatisfactory performance system requires that
performance should be carefully monitored during the first stages of
production.

2.2 Summary
As stated in the Preface, the intention of this book is to guide the DBA through
the issues and decisions to be made when planning and installing DB2 Version
2. Prompted by this real-life customer scenario, we will now step through the
critical work tasks of a DBA as he/she attempts to solve the problems and
issues raised. The chapters are sequenced to reflect the order in which the
tasks would be undertaken.

We will look at the following items:

16 DB2 V2 Planning Guide for DBAs

 1. The physical design of the database and tablespaces and how they wil l be
placed onto disk.

 2. The movement of data into the database.

 3. The backup/restore policy that has been determined.

The chapters that follow in this document contain a detailed discussion of
subject areas for the DBA followed by (when appropriate) a plan of
implementation that the customer has selected.

Chapter 2. Customer Scenario 17

18 DB2 V2 Planning Guide for DBAs

Chapter 3. Instances and Users

DB2 instances are the key to database administration and security in DB2
Version 2. In this chapter, we will review the concept of instances and the
implementation differences between AIX and OS/2. In particular, we will look at
how users access and use instances at different levels. The chapter is
organized as follows:

• Instances in AIX and OS/2

• Instance Structure

• Creating an Instance

• Instances and Security

• User and Group Support

• Directories and Database Access

• Accessing an Instance

3.1 Instances in AIX and OS/2
A relational database presents data as a collection of tables, with each table
consisting of data logically arranged in columns and rows. In addition to data,
each database includes a set of system catalog tables which describe the logical
and physical structure of the data, a configuration file which contains the
parameter values associated with the database, and recovery logs which record
ongoing transactions and transactions that can be archived.

The database manger manages the Relational Database Management System
(RDBMS) by providing centralized control and independence of data. As well as
defining the physical storage of data (in databases), a database manager
provides for efficient access to, as well as integrity of, recovery, concurrency
control, privacy, and security. In DB2, the database manager is an instance of
the DB2 product and its databases.

DB2 is now implemented as instances under AIX and OS/2. Each instance is a
unique database-manager environment, that is an environment containing a
separate database-manager configuration with one or more databases. Many
instances may be created, and run concurrently, on the same physical machine.
This allows databases to service various users and applications, which have
different requirements for security and performance, without impacting the
various users and applications.

3.1.1 Multiple Instances
Multiple instances may be created on a single workstation. This means that you
can create several instances, running concurrently, on the same physical
machine. This provides flexibility in setting up environments.

Multiple instances provide the following:

• Separate test and production environments

• The ability to tune a database environment for a specific application

• Protection of sensitive information from others

 Copyright IBM Corp. 1996 19

DB2 for OS/2 only supports multiple instances with Version 2.1 or higher. DB2
for AIX Version 2 also supports multiple instances. However, only AIX allows
multiple instances and different versions of the product to coexist on the same
database server. Figure 8 on page 20 shows two instances on the same
physical machine with links to DB2 Version 2.1 and Version 1.2.

Figure 8. Instances in DB2.

Figure 8 shows two instances on the same server. For both AIX and OS/2, the
following are characteristics of instances:

• Each instance has a unique instance owner associated with it. This instance
owner is also the DB2 system administrator (SYSADM). For more
information on authorizations within DB2, see 3.4.3, “Administrative Control”
on page 30. The default instance for DB2 for OS/2 does not have an
instance owner associated with it. However, it is recommended that you
create an instance owner.

• Each instance has a unique database configuration (DBM) file. The name of
the file is db2systm. In this file, you will find most of the parameters that
affect the amount of system resources that are allocated to an instance.

• Authentication, specified at the instance level for Version 2 of DB2, is the
mechanism that verifies the user′s identity. For more information on
authentication, see 3.4.1, “Authentication at the Instance Level” on page 29.

• Every instance owner will have an sqllib directory associated with the
instance.

3.2 Instance Structure
The directory structure for DB2 Version 2 is different between AIX (UNIX) and
OS/2. These differences are due to the way in which products are installed
under the different operating systems.

20 DB2 V2 Planning Guide for DBAs

3.2.1.1 AIX Instance/Directory Structure
When a DB2 Version 2.1 product is installed on an AIX platform, the products will
be placed in the /usr/lpp/db2_02_01 directory, while DB2/6000 Version 1 products
were in the /usr/lpp/db2_01_01_0000 directory. This naming convention used by
AIX makes it possible to install and use multiple versions of DB2 on the same
machine.

The directory structure within the db2_02_01 directory is as follows:

/adm System administrator executable files
/adsm ADSTAR Distributed Storage Manager files
/bin Binary executable files
/bnd Bind files
/cfg Default system configuration files
/dba Database Director
/deinstl Files to reject applied software
/doc/%L Postscript and Online books for language %L
/function User-defined functions
/include C and FORTRAN include files
/include/cobol_mf COBOL COPY files for Micro Focus COBOL
/include/cobol_a COBOL COPY files for ANSI COBOL
/instance Instance scripts
/lib Libraries
/map Map files for DDCS for AIX
/misc Utilities and examples
/msg/%L Message catalogs for language %L
/netls iFOR/LS files
/Readme/%L Readme files for language %L
/samples/c C sample programs
/samples/cli DB2 CLI examples
/samples/clp Command line processor examples
/samples/cobol COBOL sample programs
/samples/db2sampl Sample database
/samples/fortran FORTRAN sample programs
/samples/rexx DB2 REXX sample programs

Unlike OS/2, AIX systems do not directly use these files within an instance.
When an instance is created under AIX, links to these files and directories are
created from the instance owner′s home directory. The exception to this is the
individual configuration files for each instance.

By using symbolic links to the DB2 installed product, multiple instances can be
maintained with minimal use of of additional disk space. When a database is
created, the default location for that database is within the instance owner′s
home directory. A subdirectory with the same name as the instance is created,
and the databases will be stored within this directory.

With this structure, the only limitation is that each instance must have a unique
name. As the instance name maps directly to an operating-system user, this
implies that each instance must have a unique UserID as the instance owner.

When an instance is created, the following directory structure will be created
under the instance owner′s home directory.

SYSADM executable files

sqllib/adm/db2start Start the database manager

Chapter 3. Instances and Users 21

sqllib/adm/db2stop Stop the database manager
sqllib/adm/db2trc Trace database execution paths

Configuration files

sqllib/db2systm Database manager configuration file
sqllib/cfg Miscellaneous configuration files

Sample scripts to set default DB2 environment

sqllib/db2cshrc (for C Shell users)
sqllib/db2profile (for Bourne and Korn Shell users)

Directory for stored procedures and user-defined functions

sqllib/function

Links to the /usr/lpp/db2_02_01 subdirectories

sqllib/adsm links to /usr/lpp/db2_02_01/adsm
sqllib/bin links to /usr/lpp/db2_02_01/bin
sqllib/bnd links to /usr/lpp/db2_02_01/bnd
sqllib/dba links to /usr/lpp/db2_02_01/dba
sqllib/doc links to /usr/lpp/db2_02_01/doc
sqllib/include links to /usr/lpp/db2_02_01/include
sqllib/include/cobol_mf links to /usr/lpp/db2_02_01/include/cobol_mf
sqllib/include/cobol_a links to /usr/lpp/db2_02_01/include/cobol_a
sqllib/lib links to /usr/lpp/db2_02_01/lib
sqllib/map links to /usr/lpp/db2_02_01/map
sqllib/misc links to /usr/lpp/db2_02_01/misc
sqllib/msg links to /usr/lpp/db2_02_01/msg
sqllib/Readme links to /usr/lpp/db2_02_01/Readme
sqllib/samples links to /usr/lpp/db2_02_01/samples

Work directories

sqllib/tmp
sqllib/db2dump

The following considerations exist for DB2 for AIX:

 1. Each instance must have a unique name.
 2. Multiple versions of DB2 may be installed on the same database server.
 3. Database names must be unique, even across instances.

3.2.1.2 OS/2 Instance/Directory Structure
When a DB2 product is installed on the OS/2 platform, it will be placed, by
default, under a directory called X:\SQLLIB, where X is the target installation
drive. The structure of the DB2 directories for OS/2 are as follows:

\sqllib The SYSLEVEL files, base configuration file and
instance directory file

\sqllib\bin Executable files
\sqllib\bnd Bind and list files
\sqllib\book Online book (documentation) files
\sqllib\cfg Default configuration files
\sqllib\db2 Default DB2 instance configuration files
\sqllib\db2\sqldbdir Default DB2 instance system database directory

files
\sqllib\db2\sqlgwdir Default DB2 instance gateway directory files

22 DB2 V2 Planning Guide for DBAs

\sqllib\db2\sqlnodir Default DB2 instance node directory files
\sqllib\tmp DB2 temporary files
\sqllib\dcslib DDCS files
\sqllib\dll Dynamic link libraries
\sqllib\function System functions
\sqllib\function\unfenced Unfenced stored procedures. Initially an empty

directory
\sqllib\help Help files
\sqllib\include FORTRAN and C header files
\sqllib\include\cobol_a IBM COBOL header files
\sqllib\include\cobol_mf Micro Focus COBOL header files
\sqllib\install Installation and maintenance utility
\sqllib\lib Library files
\sqllib\map DDCS map files
\sqllib\misc Miscellaneous applications/util it ies
\sqllib\msg\prime Messages files
\sqllib\samples\c Sample C files
\sqllib\samples\cli Sample CLI files.
\sqllib\samples\clp Sample CLP files
\sqllib\samples\cobol Sample COBOL files
\sqllib\samples\db2sampl Sample source files
\sqllib\samples\db2sampl\prime Sample source files
\sqllib\samples\fortran Sample FORTRAN files
\sqllib\samples\rexx Sample REXX files and Windows support

README
\sqllib\win Windows support README file
\sqllib\win\bin Windows client executable files
\sqllib\win\bnd Bind files and list files
\sqllib\win\book Online books
\sqllib\win\help Help files
\sqllib\win\include C and COBOL header files
\sqllib\win\lib Library files
\sqllib\win\msg Message files
\sqllib\win\samples\c Sample C files
\sqllib\win\samples\cli Sample CLI files
\sqllib\win\samples\clp Sample CLP files
\sqllib\win\samples\cobol Sample COBOL files

When a new instance is created, the following directories will be created for that
instance.

• X:\SQLLIB\instance_name
• X:\SQLLIB\instance_name\SQLDBDIR
• X:\SQLLIB\instance_name\SQLGWDIR
• X:\SQLLIB\instance_name\SQLNODIR
• X:\SQLLIB\instance_name\TMP

Here, instance_name is the name of the instance created. Also, the default
directory for databases that are created in any instance is X:\, where X is the
drive on which DB2 was installed. This target drive may be modified in the
database manager configuration or specified when the database is created.

The following considerations exist for DB2 for OS/2:

 1. Each instance must have a unique name.

Chapter 3. Instances and Users 23

 2. Multiple versions of DB2 may not be installed because the DLL file names
wil l conflict.

 3. Database names must be unique, even across instances.

3.3 Creating an Instance
The concept of an instance is the same in both AIX and OS/2. However, there
are some differences in implementation. Before you can use DB2 for AIX, you
must create an instance; when you install the DB2 for OS/2, a default instance is
created for you.

There are certain recommended steps that are the same for creating instances
in both AIX and OS/2:

 1. Create a group for the instance owner.

 2. Create the instance owner.

 3. Customize the environment of the instance owner for DB2.

3.3.1 Instance Creation in AIX
Each instance in DB2 is represented by its user. This user must be a member of
one primary group. First, create an instance owner group and user as root.
Enter the license information that was provided with the product.

Then you can create the instance. The db2instance command found in DB2/6000
Version 1 is now called db2icrt in order to be consistent between AIX and OS/2.
The db2icrt command is invoked as follows:

/usr/lpp/db2_02_01/instance/db2icrt instanceowner -a authentication

In Version 2, you can specify the authentication type of the instance at creation
time. Valid authentications are SERVER, CLIENT or DCS. Note that this
authentication level applies to all databases under this instance. If the
authentication type is not specified, it will be determined when the first database
is created in the instance (default authentication is SERVER). The files created
during instance installation are located in INSTHOME/sqllib, where INSTHOME is
the home directory of the instance owner. This directory contains symbolic links
to directories in /usr/lpp/db2_02_01 and includes all files and sub-directories for
use by the database manager. To prevent a potential loss of data if an instance
is deleted, you should not create any files within this directory structure.
Exceptions are UDF libraries and stored procedures.

All users belonging to the group defined for the instance owner will become
SYSADM. This means that all users will have DB2 system administrator
authority for a given instance. The SYSADM_GROUP parameter is set to this
primary group owner and cannot be changed.

After creating an instance, you must set the DB2 environment for each user who
needs access to this instance and its databases.

24 DB2 V2 Planning Guide for DBAs

3.3.1.1 AIX Configuration
For this example, we used the UserID db2 and the primary group db2adm. The
process of creating the users/groups in AIX is as follows:

As the root user

 1. Create the instance owner ′s primary group if it does not exist.

mkgroup db2adm

 2. Create the instance owner ′s UserID if it does not exist.

mkuser -a pgrp=db2adm groups=db2adm db2

 3. Create the database instance.

/usr/lpp/db2_02_01/instance/db2icrt db2 -a server

This will set the authentication type to server.

 4. Enter the licensing information. This may be a nodelock file entry or an
iFOR/LS license.

 5. Modify user profiles to include the instance profile. Here, we assume the
home directory of the instance owner is /home/db2.

/home/db2/sqllib/db2profile

 Note

Once the environment has been configured, you will be able to access
online help if it has been installed. To start the online manuals, use the
command db2help from an aixterm.

As the instance owner, db2

 6. Start the database engine so that local users may access it.

$ db2start

3.3.2 Instance Creation in OS/2
The installation of DB2 for OS/2 has been enhanced to provide the same look
and feel as other software products from IBM. The installation process involves
the loading of DB2 product files, setting the environmental variables in the
CONFIG.SYS file and the automatic creation of one default instance called DB2.

There are some differences between the instance creation tool under AIX and
OS/2. When you create an instance under AIX, you can specify the
authentication level and parameters for fenced user-defined functions (UDFs).
These options -a and -u are not valid under the db2icrt under OS/2. An error
will be returned if they are specified. When you issue the db2icrt to create an
individual instance, you can only provide the instance name. The authentication
level is set to SERVER. Therefore, if you want to create an instance with
authentication CLIENT or DCS, you must create it as SERVER, and then update
the DBM authentication parameter.

3.3.2.1 OS/2 Configuration
The process of creating the users/groups in OS/2 is done via the User Profile
Management (UPM) Service. When DB2 is installed on the OS/2 platform, a
default instance, called DB2, is automatically created. For consistency with AIX
(UNIX) platforms and ease of administration, it is recommended that you create
your own instance with a different UPM-created UserID and GroupID.
Alternatively, as in this example, create a UserID and administration group that

Chapter 3. Instances and Users 25

will be the administrative user and group for the DB2 instance. In the following
example, db2 will be the instance owner, and db2adm will be the administrative
group.

The steps to do this are as follows:

 1. Using the UPM administrator logon, create the group db2adm and the user
db2. You will also need to add the user db2 to the group db2adm.

UPM Note

If you have not used UPM before, the default administrator UserID is
“USERID,” and the default password is “PASSWORD.” It is
recommended that you change this immediately.

 2. Enter the licensing information for the nodelock file. This file wil l be in one
of the following locations.

a. %DB2PATH%\NODELOCK

b. %DB2INSTPROF%\NODELOCK

 3. Set the DB2INSTANCE environment variable. This wil l usually be set up in
CONFIG.SYS.

 4. Check the database manager configuration.

[C:\] db2 GET DATABASE MANAGER CONFIGURATION

or

[C:\] db2 GET DBM CFG

 5. Make any desired changes. For example, to set up the system administration
group to db2adm, you would use the command:

[C:\] db2 UPDATE DBM CFG USING SYSADM_GROUP db2adm

 6. Start the database manager

[C:\] db2start

3.3.3 Client/Server Connectivity Configuration
A DB2 Version 2 database can support both local and remote clients
concurrently. Some form of communication support is required on all remote
clients to support the communication protocol they choose to use. The
communications support components for the desired protocol(s) need to be
installed. For a listing of what protocols are supported with what DB2 products,
see Chapter 1, “Product Overview” on page 1. The following table summarizes
the tasks needed by database servers and remote clients to communicate using
DB2.

Table 3 (Page 1 of 2). Client/Server Connectivity Tasks

Task
Protocol

APPC TCP/IP NetBIOS IPX/SPX

Install correct level of products to support
protocols used

YES YES YES YES

Apply required maintenance to products YES YES YES YES

Update environment variables on server YES YES YES YES

Update environment variables on client YES

26 DB2 V2 Planning Guide for DBAs

Table 3 (Page 2 of 2). Client/Server Connectivity Tasks

Task
Protocol

APPC TCP/IP NetBIOS IPX/SPX

Update communication profi les on server YES

Update communication profiles on client YES

Specify Local LU (Optional) YES

Update DBM on server YES YES YES YES

Update DBM on client YES

Catalog Node Directory on client YES YES YES YES

Catalog Database Directory on client YES YES YES YES

Register DB2 server on NetWare File Server
•

YES

Update hosts file on client YES

Update services file on client YES

Update services fi le on server YES

Set up client and server for DCE Directory
Services (Optional)

YES YES

Bind client packages on servers • YES YES YES YES

Note:

 1. When using file server addressing only. Not required when using direct addressing on all clients.

 2. Required only when client platform is different from server platform.

For more detail on the setup of client/server environment, there are other
manuals available, such as Installing and Using DB2 Clients for Windows and
Installing and Using AIX Clients.

3.3.3.1 DB2 Communication Environment Variables
DB2 Version 2 has a number of environment variables that need to be set to
enable communication. For example, DB2COMM must be set to support remote
clients. The setup differs for OS/2 and AIX.

• For a DB2 or DDCS for OS/2 server, this is done by editing CONFIG.SYS and
adding the entry:

SET DB2COMM=XXXXX

where XXXX is the protocol the client will use, such as NETBIOS, APPC,
TCPIP, or IPXSPX. More than one protocol may be defined by using a
comma as a separator, such as:

SET DB2COMM=TCPIP,APPC,IPXSPC,NETBIOS

• For a DB2 or DDCS for AIX server, this is done by editing the db2profile
script and specifying:

DB2COMM=XXXX
export DB2COMM

This script can be invoked directly or added to a user′s .profile or .login file.

Chapter 3. Instances and Users 27

3.3.4 Other Administrative Commands
In the previous section, we discussed commands to create an instance in DB2.
There are some additional commands in DB2 Version 2 to manipulate instances.
In DB2 for AIX, these commands are located in the /usr/lpp/db2_02_01/instance
directory. You must have root authority to use them. In DB2 for OS/2, they are
located in \sqllib\xxxxxxx.

• db2ilist

Returns a list of all instances that exist on the workstation.

• db2iupdt

Updates the instance. The parameter -u is the name of the user under which
fenced user defined functions will be run. The default is the user “nobody.”

• db2idrop

Removes an instance.

Note that any cataloged databases will not be removed by issuing this
command.

• db2imigrev (AIX only)

If for some unexpected reason you must reverse an instance migration, it is
possible by using the db2imigrev command. This will restore the
INSTHOME/sqllib_v1 directory to INSTHOME/sqllib and create a copy of the
Version 2 INSTHOME/sqllib to INSTHOME/sqllib_v2. To migrate back to
Version 2 of DB2, execute db2imigr again. This restores Version 2 of DB2
from the copy.

3.4 Instances and Security
If you are moving or migrating to DB2 Version 2, it is a good idea to understand
the authentication mechanism and security features before you start the move.
This may save considerable time in reconfiguring or perhaps remove the risk of
security violations.

There are two levels of security that control access in a database system. The
first controls access to a database system, and the second controls access
within the database system.

• Access to the database system is managed by operating- system functions.
These functions allow the system to authenticate the user and to control
access to objects such as files and programs. The concepts of users and
groups are the basis of this mechanism. AIX makes sure, for example, that
the user who is logging in is who he/she claims to be.

• Access within a database manager instance is controlled by DB2 itself. The
concepts of administrative authorities and user privileges are the basis of
this mechanism.

The database administrator must ensure that sensitive information are not
accessed by those without a “need to know.” A plan for controlling database
access should be developed by defining your objectives for a database
access-control scheme and specifying who shall have access to what objects
and under what circumstances.

28 DB2 V2 Planning Guide for DBAs

3.4.1 Authentication at the Instance Level
The first step in managing security is to verify the user′s identify. This is called
authentication. Authentication DB2 Version 2 is set at the instance level. This
means that all databases within an instance must have the same authentication
level.

Authentication is the operation of verifying whether a user is who he/she claims
to be, based on the username and password. Every time users try to connect to
a local or remote database, they are authenticated. DB2 relies on the operating
system to perform this authentication. In UNIX or AIX systems, the
authentications allows the user or group to exercise control over objects such as
files and programs. OS/2 provides this level of control via User Profile
Management (UPM) Services.

3.4.2 Levels of Authentication
There are three authentication levels in DB2 Version 2. They are:

• SERVER Authentication

This is the default setting. The user is authenticated at the server machine.
The user name and password flow from client to server in ASCII format. The
server will then authenticate them before processing any requests.

• CLIENT Authentication

The server machine will assume that the client machine has already
authenticated the user. The server will process the request using the
supplied UserID without further authentication.

• DCS Authentication

DCS authentication is similar to server authentication for DRDA connections.
This will allow the host database to authenticate the user. If authentication
is set to server when connecting to a host database, authentication will take
place at the gateway machine.

Client authentication should only be used on secure networks. This is because
the server does not determine which machine the client user is on. Given this, it
is possible in an unsecure network for someone to introduce a machine with any
UserID and be able to access the server using that UserID without the
requirement of a password.

In DB2/2 Version 1, the only supported authentication level was server
authentication. DB2/6000 Version 1.0 supported mixed authentication types
within a single database, while DB2/6000 Version 1.2 reduced this to one
authentication type for each database, but still permitted mixed authentication
types within the instance. In DB2 Version 2, the authentication type is defined at
the instance level, and it applies to all databases within the instance. Table 4
summarizes the authentication levels for different levels of DB2.

Table 4 (Page 1 of 2). Authentication Levels in DB2.

Product/Version Authentication Type

DB2/2 Version 1.x Server Only

DB2/6000 Version
1.0

Mixed authentication types allowed in one database

DB2/6000 Version
1.2

One authentication type/database, but can mix authentication types of
database within instance.

Chapter 3. Instances and Users 29

Table 4 (Page 2 of 2). Authentication Levels in DB2.

Product/Version Authentication Type

DB2 Version 2 (OS/2
and AIX)

One authentication type/instance

3.4.2.1 Setting Authentication Levels
In DB2 Version 2, the authentication level must be the same for databases
contained in that instance. The setting of what the authentication level is for the
instance can be done in one of the following three ways:

 1. At instance creation, you can define the authentication for that instance and
for all databases contained in that instance.

 2. The authentication level can be determined when the first database is
created in the instance.

 3. If not done explicitly, as in the above steps, then the authentication wil l be
set to SERVER at first database creation.

To change the authentication type after the instance has been created, the
database manager configuration file must be changed. The instance must be
stopped and restarted for the changes to take effect.

3.4.3 Administrative Control
After authentication, the second step is to control the ability to operate on
objects in the database. This is called access control. Access control is a
combination of privilege and authority. Privilege is the right to perform an
operation on a database object. Authority defines a set of privileges. Authority
levels are SYSADM, DBADM, SYSCTRL, SYSMAINT, and users.

Users are the lowest level of authority within the database. Users here are
User_ID and Group_ID. These are the two types of authorizations, individual and
group. An individual ID is an ID assigned to a particular person. A group ID
consists of one or more individual IDs. If an individual ID is a member of a
group, that individual ID automatically has all privileges granted to the group.

The group ID PUBLIC plays a particular role in the access control mechanism of
the database. All users accessing a database are automatically members of the
group PUBLIC. Granting a privilege to PUBLIC grants that privilege to all users
of the database.

In DB2 Version 1, there were two levels of administrative control:

• SYSADM - Highest level of authority applies to an instance

• DBADM - Applies to a specific database

Each of these authority levels gives the user a defined set of privileges. A
privilege can be defined as the right to perform an operation on a database
object. There are a large number of privileges in the database environment;
some of these include:

• CREATE

• SELECT

• INSERT

• UPDATE

30 DB2 V2 Planning Guide for DBAs

• EXECUTE

To grant a privilege to a user or group, the SQL grant statement is used. To
revoke a privilege, the SQL revoke statement is used.

DB2 Version 2 has added new authorization levels. Authorization levels within a
database now include:

• System Administration Authority (SYSADM)

• System Control Authority (SYSCTRL)

• System Maintenance Authority (SYSMAINT)

• Database Administration Authority (DBADM)

• User Authority

The authority levels, SYSADM, SYSCTRL and SYSMAINT, are not granted in the
same way as privileges. The authority levels are associated with groups through
the database manager configuration. To grant a user the required authority
level, you need to add that user to the associated group. These authorities are
for the entire instance and are not limited to an individual database.

3.4.3.1 Hierarchy of Authorizations
Authorization levels in DB2 provide a hierarchy for administration capabilities.
This can be seen in Figure 9, or a more complete list of the operations each
authorization level provides can be found in Table 5 on page 33. At the top of
this hierarchy is the System Administrator or SYSADM. SYSADM is able to
perform any of the DB2 administration operations as well as select any
information from any database that exists within the instance.

Figure 9. Authorization Heirarchy

System control (SYSCTRL) provides the ability to perform almost any
administration command. The SYSCTRL user does not have authority to access
user information or modify the database manager configuration.

Chapter 3. Instances and Users 31

System Maintenance (SYSMAINT) is restricted to maintenance operations, such
as backup and restore of databases, update of database configuration and
database monitoring.

A listing of the new authorities and privileges are as follows:

1. SYSCTRL - System Control

SYSCTRL offers almost complete control of database objects defined in that DB2
instance, but cannot access user data directly, unless granted the privilege to do
so. A user with this authority, or higher authority, can perform the following
functions:

• Update the database, node and Database Connection Services (DCS)
directory

• Update database configuration parameters

• Create or drop a database

• Force applications

• Quiesce the DB2 instance or database

• Run the RESTORE DATABASE utility on a new database

• Create or drop a tablespace

2. SYSMAINT - System Maintenance

This authority allows the execution of maintenance activities, but cannot access
user data. Only users with this level of authority or higher (SYSADM or
SYSCTRL) can do the following tasks:

• Update database configuration files

• Backup databases and tablespace

• Restore to an existing database

• Restore tablespace

• Start and stop DB2 instance

• Run the database monitor

• Start and stop traces

At the database administration level, there is the DBADM authority. Database
Administration authority (DBADM) is a special case. Although this is an
authority and not a privilege, it may be granted in the same way as a privilege.
However, it may not be granted to the special group PUBLIC. The creator of a
database will automatically have DBADM authority on that database. DBADM
authority is for a single database only. It is possible to hold DBADM authority for
multiple databases. DBADM provides some system-level administration, such as
loading tables, some tablespace operations and event monitoring. The DBADM
has complete authority over the database, however. Using it, an administrator
may query, drop or create any table and set the privileges for users within the
database.

To specify authorization levels, three new parameters have been added to the
database manager configuration file. These parameters are SYSADM_GROUP,
SYSCTRL_GROUP and SYSMAINT_GROUP. For example, you are the system
administrator on an instance and want to have another trusted person do some

32 DB2 V2 Planning Guide for DBAs

of the system control functions. Create a group on your system, INSTCRL, for
example. Then update the database manager configuration file with following:

 db2 update database manager configuration using SYSCTRL_GROUP INSTCTRL

This will give SYSCTRL to any user who is in the group INSTCTRL. Remember
to stop and restart the database manager instance to read the configuration file
with any changes.

There are some important considerations when running an AIX (UNIX) server
where users may log into the server machine. Providing authority levels higher
than user authority may require you to give the user write permission on certain
directories. For instance, anyone with SYSCTRL authority will require write
permission if they are going to be able to update the database, node or DCS
directories. You should consider using access control lists to limit the write
privilege to specific users or groups. Access control lists are created and
maintained by the acledit, aclget and aclput commands.

Table 5 shows all the authorities and privileges that exist for DB2 Version 2.

Table 5 (Page 1 of 2). Database Authorities.

Function SYSADM SYSCTRL SYSMAINT DBADM

CATALOG/UNCATALOG
DATABASE

YES

CATALOG/UNCATALOG
NODE

YES

CATALOG/UNCATALOG DCS YES

UPDATE DBM CFG YES

GRANT/REVOKE DBADM YES

GRANT/REVOKE SYSCTRL YES

GRANT/REVOKE SYSMAINT YES

FORCE USERS YES YES

CREATE/DROP DATABASE YES YES

QUIESCE INSTANCE OR
DATABASE

YES YES

CREATE/DROP/ALTER
TABLESPACE

YES YES

RESTORE TO NEW
DATABASE

YES YES

UPDATE DB CPG YES YES YES

BACKUP DATABASE OR
TABLESPACE

YES YES YES

RESTORE TO EXISTING
DATABASE

YES YES YES

PERFORM ROLL FORWARD
RECOVERY

YES YES YES

START/STOP DATABASE
INSTANCE

YES YES YES

RESTORE TABLESPACE YES YES YES

RUN TRACE YES YES YES

TAKE DBM OR DB
SNAPSHOTS

YES YES YES

QUERY TABLESPACE STATE YES YES YES YES

Chapter 3. Instances and Users 33

Table 5 (Page 2 of 2). Database Authorities.

Function SYSADM SYSCTRL SYSMAINT DBADM

UPDATE LOG HISTORY
FILES

YES YES YES YES

QUIESCE TABLESPACE YES YES YES YES

LOAD TABLES YES YES YES

SET/UNSET CHECK
PENDING STATUS

YES YES YES

READ LOG FILES YES YES YES

CREATE/ACTIVATE/DROP
EVENT MONITORS

YES YES YES

RUN LOAD UTILITY YES YES YES

3.5 User and Group Support
Some operating systems will allow the same name for a user and a group. This
may cause confusion for authorization and privilege checking within DB2.

In general, there are three possible scenarios.

 1. The name is unique to a user.

 2. The name is unique to a group.

 3. The name refers to both a user and a group.

In the first two scenarios, there is no problem since it should be clear as to
whom the authority or privilege is being granted.

The third scenario is not possible on OS/2 platforms since identical user and
group names are not permitted. However, it is possible for this to occur on AIX
or UNIX platforms.

In DB2/6000 Version 1, the use of the environment variable, DB2GROUPS, was
used to distinguish between group and user privileges. The DB2GROUPS
environment variable is no longer required, or used, in DB2 Version 2.

Figure 10 on page 35 shows how user and group support is implemented in DB2
Version 2. Note how OS/2 does not allow a user and group to have identical
names.

34 DB2 V2 Planning Guide for DBAs

Figure 10. Group and User Support in Version 2

In DB2 Version 2, changes have been made to the grant and revoke SQL
statements to add an optional parameter in the TO/FROM authorization-name
clause which is used to indicate if the privilege is intended for a user or group.
As a result, if a user and a group have the same name in the previous database
version, the authority and privilege to the group must be explicitly re-granted
after migration. This condition check may result in a member of a group no
longer having authority for database objects that he had in V1.x. If the user
within the group still requires the authority, then you must explicitly grant the
authority at the group level. To overcome this problem, you are able to specify
either to user or to group in the grant command. Figure 10 illustrates three
scenarios on both AIX and OS/2. They are as follows:

 1. A user named cal exists on either AIX or OS/2. The select privilege may
either be implicitly or explicitly given. The select permission will be granted
only to the user.

 2. A group named cal exists on either AIX or OS/2. The select may either be
implicitly or explicitly given. Because no user named cal exists, the select
permission will be granted only to the group.

 3. Only AIX allows a user and group to have the same name. If the select does
not specify the to user option explicitly, the select permission will be granted
to the user cal. Otherwise, you may explicitly grant permission to the group
by using the to group option.

Equivalently, the revoke command may include either from user or from group to
indicate where the authority or privilege is to be removed. If the additional
to/from clause is not included, then the default will be for user.

Chapter 3. Instances and Users 35

During migration, the authorization catalog tables are checked to determine if
existing privileges are for users or groups, and the GRANTEETYPE (′U′ or ′G′) is
determined. The following condition check occurs:

• If GRANTEE in a V1.x table is a USER or undefined, then GRANTEETYPE is
set to U.

• If GRANTEE in a V1.x table is a GROUP, then GRANTEETYPE is set to G.

• If GRANTEE in a V1.x table is both a USER and a GROUP, then
GRANTEETYPE is set to U.

3.6 Directories and Database Access
Access to both local and remote databases is done through the use of
directories. The directories hide the requirement for a user to know where a
database actually resides. Users are able to connect to local databases, remote
databases and host or DRDA databases simply by specifying a database name.
The directories that make this possible are:

• Node Directory

• Database Connect Services Directory

• Database Directory

Each database client maintains a node directory. The node directory contains
entries for all instances that a client will access. The node directory is used to
contain communications information about the network connection to the
instance. If multiple instances exist on a remote machine, then each instance
must be cataloged as a separate node before you will be able to access any
information contained within the instance.

Figure 11. DB2 Directory Structure

36 DB2 V2 Planning Guide for DBAs

DB2 Version 2 includes the capability to catalog other instances on the same
machine as a local node. The implications of this are discussed in 3.7.2, “Local
Access” on page 39.

The connection information for DRDA-connected databases, that is databases
residing on a host machine, is different from the information for LAN-connected
databases. Due to this, DB2 uses a different directory to catalog this type of
database. The directory used is the Database Connection Services (DCS)
directory. This directory will only exist if DDCS has been installed on your
system. The DCS directory stores information used by the database manager to
access databases on a host computer. For these type of databases, there is no
node directory entry; this is because the DCS directory contains all the required
information to connect to the host database.

The final type of directory used is the database directory. There are two
database directories, the System Database directory and the Local Database
directory.

The System Database directory resides in the sqldbdir subdirectory, which is
located in the instance directory. This directory is used to access both local and
remote databases. The directory contains the database name, alias, type, and
node where the database resides. If the database is local, the directory where
the database resides is included. The System Database directory also contains
authentication information.

The Local Database directory resides in every subdirectory that contains a
database. It is used to access local databases in that subdirectory. Each entry
in the directory contains the database name, alias, type, and storage information
about the database.

Each time a user connects to a database, these directories are used to locate
the database. To help reduce the amount of time it will take to connect to a
database, DB2 Version 2 has included the option to cache the directory
information in memory. This is set by the database manager configuration
parameter DIR_CACHE. The default value is yes, which stores the directory
information in memory. The performance benefits of this are best seen on a
gateway machine that is processing a large number of requests or where the
application issues multiple connection requests.

3.6.1 DCE Directory Services
Distributed Computing Environment (DCE) Cell Directory Services (CDS) is
supported in DB2 Version 2. CDS provides a mechanism for centralizing
database directories. The CDS server maintains the database directories, and
the participating clients will reference the CDS server to resolve directory
entries. This centralization of database directories means that if a catalog
update needs to be done, then it only need be done on the CDS server and not
on the individual clients.

Chapter 3. Instances and Users 37

3.7 Accessing an Instance
This section discusses the ways in which a database user (other than the
instance owner) accesses instances and objects belonging to instances, such as
a database. Accessing an instance can be divided into two sections:

• Remote access

• Local access

3.7.1 Remote Access
Remote access is accomplished by making entries into the directories found in
DB2. For more information on directories, see 3.6, “Directories and Database
Access” on page 36. The administrator of the client machine must configure the
system to communicate with the DB2 server. This will depend on the operating
system, either AIX or OS/2, and the communication protocol that the DB2 server
is using. The supported protocols are:

• NetBIOS - OS/2 only

• TCP/IP - AIX or OS/2

• APPC - AIX or OS/2

• IPX/SPX - AIX or OS/2

The client user wanting access to a remote DB2 server will do the following:

 1. Catalog the remote node

 2. Catalog the DB2 server

The cataloging of the remote database server will depend upon the
communication protocol being used. For example, to catalog a DB2 server using
TCP/IP, enter:

db2 catalog tcpip node nodename remote hostname server service-name

where:

• nodename is a unique name for the server node. This unique name may be
the same as the TCP/IP hostname. The name will be used to catalog the
remote database.

• hostname is the TCP/IP hostname of the server.

• service-name is the service name entered in the /etc/services file on the
client. The port number on the client must match the port number that the
DB2 server is using for that instance.

To catalog the remote database at the client, enter:

db2 catalog database database-name as alias at node nodename
authentication server

where:

• database-name is the name of the database on the DB2 server machine.

• alias is the name by which the database will be known at the client.

• nodename is the unique name used in the catalog node command.

• authentication server is the type of authentication used. This must match
the authentication as defined on the DB2 database server. Valid choices are
server, client and dcs.

38 DB2 V2 Planning Guide for DBAs

Once the client has cataloged the remote server node and database, it is
possible to either connect to a database or attach to a remote instance.

3.7.1.1 Remote Administration
DB2 Version 2 provides the capability for remote client administration of a server
node. By attaching to an instance, the client is able to perform functions such as
the following:

• Create/drop databases

• Get/update/reset database manager configuration

• Get/update/reset database configuration

• Monitor a database

• Backup/restore rollforward database

• Load data

• Force applications

To attach to another instance, you would use the command:

ATTACH [TO nodename] [USER username [USING password]]

If the attach command is specified without any arguments, the current
attachment status is returned. Also, if you attach to an instance while already
attached to a different instance, the current instance will be detached before the
new attachment is attempted.

Database connections are independent of instance attachments. A single
application may maintain several database connections at the same time it has
an instance attachment, but may only maintain a single instance attachment at
any one time.

When attached to another database, you will still be using the directory services
of the local instance, which is determined by the DB2INSTANCE variable.
Because of this, you will not be able to perform catalog changes, list, update or
reset commands on databases, nodes or DCS directories.

If you create a new database, the database will be created at the attached
instance, and a catalog entry will be created in the local instance directories
which refer to the remote database. To drop the database at the remote
instance, the local directory must contain an entry for the database.

3.7.2 Local Access
If the database user is local, there are several ways to access a local instance:

• Set the client environment so that the local user has defined the
DB2INSTANCE and DB2PATH variables.

• Catalog a local instance

The following scenario illustrates a user accessing two local instances and one
remote instance.

Chapter 3. Instances and Users 39

Figure 12. Example - Local and Remote User in DB2

Figure 12 is explained as follows:

 1. The local user has set the DB2INSTANCE and DB2PATH variables to allow
access to the locinst1 instance. In AIX, this user would edit his/her .profile to
include the following entry:

. /home/locinst1/sqllib/db2profile

 2. The local user also wants access to another instance on the same server
machine. The local user will catalog the other instance as a local node and
catalog the local database. The catalog node command is as follows;

db2 catalog local node locinst2 instance locinst2

where:

• local identifies that this is a local instance.

• locinst2 is a name that is to particular to local client user and will be
referred to in the catalog database command.

• locinst2 is the local instance name as it is defined on the server.

The catalog database command is:

db2 catalog database db3 as locdb3 at node locinst2

where:

• db3 is the actual name of the database as it exists on the server.

• locdb3 is the alias that the local client user will use to refer to the
database.

• locinst2 is the reference name given to the local instance by the client
user in the catalog node command.

 3. The local user has also cataloged a remote node, reminst1. For more
information about the cataloging of a remote node, see 3.7.1, “Remote
Access” on page 38.

40 DB2 V2 Planning Guide for DBAs

3.7.3 Accessing the DB2 Server
The authentication level of the instance will affect the client, either local or
remote, when connecting to a database or attaching to an instance. The other
consideration is the type of client machine attempting access.

3.7.3.1 AIX Client
When an AIX client connects to a DB2 server, there are two forms of the connect
statement to consider. One specifies the user name and password, and one
does not. When connecting to a DB2 server with authentication server, the
following behavior results from the connect statement:

connect to <database> user <userid> using <password>

The user name/password combination is sent to the DB2 server for
authentication. This information is checked against what is contained in the
/etc/passwd file on the AIX DB2 server or in UPM on the OS/2 DB2 server.

The following format of the connect statement is not allowed from an AIX client
with authentication server on the DB2 server:

connect to <database>

Authentication client means that the AIX client user is validated at the local
workstation. When using client authentication, there are two forms of the connect
statement that are valid:

connect to <database> user <userid> using <password>
connect to <database>

3.7.3.2 OS/2 Client
When an OS/2 client connects to a database server, there are two forms of the
connect command to consider with an authentication type of server.

connect to <database> user <userid> using <password>

If the OS/2 client is accessing an AIX DB2 server, the UserID/password is sent to
the AIX server for authentication there. UPM on the OS/2 client is not involved
in this process. This means that the UserID/password will flow as typed in on
the command line. The AIX DB2 server is case sensitive. It will check this
information against what is stored in the /etc/passwd file. There must be an
exact match.

The other form of the connect statement to consider is:

connect to <database>

Here, the node name that is stored in the client database directory is retrieved
and sent to UPM. Since UPM is involved in this form of the connect statement,
there are three cases to consider:

 1. Remote logon

If the client user on the OS/2 workstation has already done a remote logon to
the database server through UPM, then the user ID/password is retrieved
from UPM and sent to the database server.

 2. Local logon

If the client user is logged on locally at the OS/2 workstation, then UPM
retrieves the local UserID/password. This information, in turn, gets passed
to the database server for authentication.

Chapter 3. Instances and Users 41

 3. Not logged on

If a logon has not occurred on the OS/2 workstation, the user is then
prompted for a remote logon using the node information that was passed to
UPM by the CAE client code. The UserID/password also gets validated at
the database server.

If the OS/2 client is accessing an AIX DB2 server, the password in this type of
connect statement is converted to uppercase. This leads to the requirement that
while the UserID created on AIX for OS/2 users can be defined in lowercase, the
password must be stored on the AIX server in uppercase. UPM will fold the
password into upper case. To match on the AIX server, the password in
/etc/passwd must also be in uppercase.

When the DB2 server has authentication client and the client is an OS/2 client,
two forms of the connect statement are valid:

connect to <database> user <userid> using <password>
connect to <database>

The UserID and password are passed to UPM for validation that this is a valid
local user. This information is checked in the NET.ACC file on the OS/2
workstation.

3.7.3.3 DOS/Windows Client
With the authentication type of server on the DB2 instance, the DOS/Windows
client supports three types of connect syntax. One type specifies a UserID (login
name) and password; one specifies the UserID only, and one specifies neither
UserID nor password.

They are as follows:

connect to <database> user <userid> using <password>

The UserID and password are sent to the database server unencrypted for
authentication.

connect to <database> user <userid>

With an authentication type server and no password specified on the connect
statement, the password will be extracted from the DOS environment variable,
DB2PASSWORD. If this variable has not been set, an error will be returned with
an SQLCODE of -1403.

connect to <database>

If the authentication type is server and neither UserID nor password is specified
on the connect statement, the UserID will be extracted from the DOS environment
variable, DB2USERID. The password will be extracted from DB2PASSWORD. If
either of these are not set, an SQLCODE of -1403 is returned. Otherwise, the
information stored in these variables is sent to the server for authentication.

For client authentication, there are two forms of the connect statement that are
valid:

connect to <database> user <userid> using <password>
connect to <database>

When using client authentication, the UserID specified with the connect statement
is passed to the database server to determine database privileges. For an AIX

42 DB2 V2 Planning Guide for DBAs

database server, if the user is not a valid AIX user, the user will get the default
privileges associated with the AIX group, PUBLIC.

3.7.3.4 Binding the Database Utilities
When a client wants access to a database server where the operating system is
different from the client machine, another step must be taken. The database
utilities must be bound on the server for the client to use. The database utilities
that a remote client must bind to the DB2 server include:

• Ad hoc SQL functions in the Command Line Processor (CLP)

• DB2 Call-Level Interface

• The binder program

• Import and export functions

• The reorg command

If you create a new database on the server, packages for the database utilities
must also be created in the database′s system catalog tables. All of the client
packages are contained in a db2ubind.lst file. These packages may be created
by executing the bind command from the client workstation. Before executing
this command, you must first connect to the server database, and then execute
the bind command. For example, to bind all the DB2 CAE/DOS packages,
execute the following commands:

connect to <database>
bind <path>@db2ubind.lst blocking all

where

• <database> is the name of the database as it is cataloged on the client.

• <path> is the full pathname of the db2ubind.list file, such as \sqllib\bnd or
C:\sqllib\bnd.

• @ indicates to the bind command that what follows is a file containing a list of
bind files.

• db2ubind.lst contains the list of bind files.

• blocking all allows for row blocking to be performed.

The bind command must be run separately for each database that you wish to
access. If you have different types of clients coexisting on your network, you
must bind the utilities from each type of client. The utilities only have to be
bound once from each type of client.

Chapter 3. Instances and Users 43

44 DB2 V2 Planning Guide for DBAs

Chapter 4. Data Placement

This chapter discusses the storage model for Version 2. We will begin by
reviewing the storage model for Version 1 on both OS/2 and AIX. The storage
model for DB2/2 in Version 1 created the database files on a single disk drive
with the exception of log files. Log files for OS/2 in Version 1 could be placed on
a different drive. However, the size of the database was limited to the size of
the hard drive. For OS/2, the physical limitations were as follows:

• Maximum table size determined by maximum file size

• Maximum database size determined by size of the drive

Log files for AIX in Version 1 could be also be placed on a different physical
volume from the database. DB2/6000 Version 1 based its storage model on
tables that were segmented into multiple directories. Each table in DB2/6000
was given a corresponding file name, for example, SQL00001.DAT. These AIX
files were stored in directories. Thus, you had the ability to spread the contents
of one table, for example, SQL00001.DAT, over multiple directories. These file
systems could be mounted over these AIX directories, if your database needed
to be greater than the 2GB size limitation imposed by an AIX file or file system.

4.1 Storage Concepts in DB2 Version 2
The enhancements in the storage model for DB2 on OS/2 and AIX allow for
user-controlled location of database objects onto different media. It further
provides the capability to store data onto these physical devices directly, no
longer requiring that a file system be used to store data as in Version 1. These
enhancements lead to:

• Improved performance

• More flexibility in database configuration

• More portability

• More granularity for database administration

The storage model in DB2 Version 2 has led to new or different definitions of
storage items than was found in Version 1. The concepts this section will
discuss are:

• Container

• Tablespace

• Extent

• Database

• Table Objects

4.1.1 Container
A container is a generic term used to describe the allocation of physical space.
Figure 13 on page 46 shows that a container can be any of the following:

• File

• Directory

 Copyright IBM Corp. 1996 45

• Device

Figure 13. What Does a Container Look Like?

The type of container depends on the type of tablespace and the platform. For
example, in AIX, a device container is a logical volume.

4.1.2 Tablespace
The storage model in DB2 Version 2 is based upon a logical layer between the
database and its tables called the tablespace. The concept of a tablespace is
not a new one to the DB2 family. Tablespaces are also implemented in DB2 for
MVS.

Figure 14. Database Manager Instance, Database, Tablespace and Tables

Figure 14 shows the relationship between tables, tablespaces and databases
found in one database manager instance on a server. The instance is created.

46 DB2 V2 Planning Guide for DBAs

A database, Database 1, is created within the instance. A tablespace may be
created with defaults or explicitly with the create tablespace command.

Tables may be created in tablespaces as shown. A tablespace can contain more
than one table. For example, Tablespace 3 in Database 1, has three tables
created in it.

There are two ways to create tablespaces:

 1. create database command

 2. create tablespace command

4.1.2.1 Database, Tablespaces and Table Objects
In DB2, a database is made up of a grouping of different tables of data. A table
holds different types of objects or parts. There are basically five types of storage
objects that make up a table. They are:

• DAT - contains the column data

• LF - contains the LONG VARCHAR columns defined in the table

• LOB - this is the data that is stored in BLOBs (Binary Large Objects) or
CLOBs or DBLOBs

• LOBA - this the allocation control type of information about LOB data

• INX - if the table has an index defined on it, it is contained here.

Each of these storage objects that belong to a table can exist in only one
tablespace. These storage objects (table parts) are basically a set of functionally
related pages. The type of tablespace determines how these objects are stored.

4.1.2.2 Tablepsaces and Containers
There is a one-to-many relationship between a tablespace and containers.
Multiple containers may be defined for a tablespace, however, a container can
only be assigned to one tablespace. Figure 15 shows this one-to-many
relationship.

Figure 15. Tablespace and Container, One-to-Many Relationship

A container is the allocation of storage to a tablespace. The physical space may
or may not exist at the time the tablespace is created depending on the
tablespace type. Figure 15 shows tablespace 3 with only one container (a
directory) assigned to it. A tablespace may have one or more containers

Chapter 4. Data Placement 47

assigned to it. However, a tablespace cannot share containers. This is shown in
tablespace 4 which has two containers, Container 0 and Container 1 assigned to
it. Container IDs are assigned in numerical order to a tablespace, starting from
0.

Figure 15 on page 47 shows another important concept about tablespaces.
Depending on the type of tablespace, it is possible for a table to span
tablespaces. The restriction is that the data must be of the same type in the
tablespace. Tablespace 4, 5 and 6 contain only one table but span multiple
tablespaces. Note that the same one-to-many relationship still exists between
tablespaces and containers, even if the table spans multiple tablespaces.

4.1.3 Extent
An extent is an allocation of space, within a container of a tablespace. The
extent is allocated to a single database object. This allocation consists of
multiple pages.

Figure 16. Extent, Container and Tablespace in DB2 Version 2

Figure 16 shows the relationship between an extent, a container and a
tablespace. The tablespace is initialized when it is created. As part of this
initialization, an allocation size is set for the tablespace. This parameter is
called the extent size. The tablespace page size is 4096 bytes (4K). The default
extent size is 32 4K pages.

4.1.4 Summary
The following concepts will be discussed in this chapter as they relate to data
placement:

Container Directory or file in AIX and OS/2, logical volume in AIX
only. Containers cannot be shared among tablespaces.

Tablespace The logical layer between the physical tables and the
database. Containers are assigned to tablespaces.

48 DB2 V2 Planning Guide for DBAs

Extent An allocation of space within the container of a tablespace.
It is the number of pages written into by the database
manager in a container before writing to another physical
allocation of the same size.

Table A set of rows and columns. A table may be assigned to
one tablespace. Although, several tables can share the
same tablespace. Depending on the type of tablespace, a
table may span multiple tablespaces.

Table Objects Also called table parts or storage objects. This is the data
in the table and any related parts, such as the index of the
table.

Database A collection of tablespaces that hold tables.

4.2 SMS and DMS Tablespaces
DB2 Version 2 supports two kinds of tablespaces:

• System Managed Space or Storage (SMS) Tablespace

• Database Managed Space or Storage (DMS) Tablespace

System Managed Storage or System Managed Space (SMS) tablespaces are a
generalization of the storage model found in Version 1. SMS tablespaces are
called System Managed because as in Version 1, the database manager uses
the operating system′s file system. For OS/2, the file system type is the High
Performance File System (HPFS) or File Allocated Tables (FAT). For AIX, the file
system is the Journaled File System (JFS).

Database Managed Storage (DMS) tablespaces are characterized by tablespaces
that are assigned pre-allocated storage. This storage can be a device, such as a
logical volume in AIX, or a file in OS/2 and AIX. The database manager is
responsible for the management of this space. The use of the logical volume in
AIX in a DMS tablespace is often referred to as raw I/O.

4.2.1 Container Options with SMS and DMS Tablespaces
The following table lists the container options for SMS and DMS tablespaces for
AIX and OS/2:

Table 6. Container Options for SMS and DMS Tablespaces

Operating System File Directory Device

OS/2 DMS SMS Not Applicable

AIX DMS SMS DMS

4.2.1.1 Using Directories as Containers
SMS tablespaces only use directories as containers. Table parts (storage
objects are built by creating files within these directories. Directories are
created to be used as a container for an SMS tablespace when the tablespace is
created. The name of the directories is specified when the tablespace is
created. In the following example, four directories were specified as containers

Chapter 4. Data Placement 49

when the tablespace was created. The names specified were /db2data/mydir1,
/db2data/mydir2, /db2data/mydir3 and /db2data/mydir4. The instance owner,
inst01 in the example, must have read and write permission in the /db2data
filesystem. In AIX, after the filesystem (or directory) is created, the system
administrator must change ownership of it so that the instance owner may write
into it. If inst01 is the instance owner whose primary group is db2adm, the AIX
system administrator should issue the following command:

� �
$ chown inst01.db2adm /db2data

� �

To check the result, you can issue the following command:

� �
$ ls -la /db2data
drwxr-s--- 2 inst01 db2adm 512 Aug 23 11:56 mydir1
drwxr-s--- 2 inst01 db2adm 512 Aug 23 11:56 mydir2
drwxr-s--- 2 inst01 db2adm 512 Aug 23 11:56 mydir3
drwxr-s--- 2 inst01 db2adm 512 Aug 23 11:56 mydir4

$
� �

4.2.1.2 Using Files as Containers
Files can be used as containers only for DMS tablespaces. These files do not
have to be previously created.

A file is created as a container for a DMS tablespace in one of the following:

• The DMS tablespace is created either at create database or create
tablespace time

• A container is added to a DMS tablespace

In both cases, the containers are specified by the name of the file and the
number of 4 KB pages assigned to each container. See the syntax of the create
tablespace and the alter tablespace statements in 4.5.7, “Creating Tablespaces”
on page 72 and 4.6, “Managing Tablespaces” on page 77. The following screen
shows the file created when the container was created. The name specified for
the file was /db2data/contts01 and the container was given 200 4 KB pages.
Note that space is allocated when the container is created. The owner and the
permissions of the file are not specified when the container is created. The
instance owner will be the owner of the file. Group permissions will be
associated with the instance owner′s primary group.

� �
$ ls -la /db2data/contts01
-rw------- 1 inst01 db2adm 819200 Aug 23 11:25 /db2data/contts01

$� �

50 DB2 V2 Planning Guide for DBAs

4.2.1.3 Using Devices as Containers
When planning to use a device in AIX as a container for a DMS tablespace, the
device has to be previously created by the AIX system administrator. Devices
used as containers are usually logical volumes on the AIX platform. When a
logical volume is created, the AIX system administrator provides the following
information, either by accepting the default values or by entering specific values:

• Name of the logical volume

• Size of the logical volume. The size is specified as number of logical
partitions. The size of each partition is 4 MB.

• Physical volume or volumes where the partitions should be allocated.

• Desired position in the physical volume of these partitions, in the edge,
middle or center of the physical volume.

• Type of logical volume. The logical volume has to be a raw logical volume
(as opposed to JFS) to be used as a container.

The result of the creation of a logical volume is a special file in the /dev
directory. The following screen shows the file created when a logical volume is
created with name volts1.

� �
$ mklv -y′ volts1′ rootvg 4
$ ls -la /dev/volts1
brw-rw---- 1 root system 20, 9 Aug 23 08:39 /dev/volts1
$� �

The container created has two devices, the block special device and the
character special device. The character special device will automatically have
an “r” in front of the name you have given it at creation.

� �
$ ls -la /dev/rvolts1
crw-rw---- 1 root system 20, 9 Aug 23 08:42 /dev/rvolts1
$� �

The instance owner must have read and write permissions on only the character
special device part. The AIX system administrator must grant read and write
(r/w) permissions to the instance owner on the device. The AIX chown command
will change permissions.

� �
$ ls -la /dev/rvolts1
crw-rw---- 1 root system 20, 9 Aug 23 08:48 /dev/rvolts1

$ chown inst01.db2adm /dev/rvolts1
$ ls -la /dev/rvolts1
crw-rw---- 1 inst01 db2adm 20, 9 Aug 23 08:52 /dev/rvolts1� �

One of the main differences between using the file, directory or device for
containers is that the device must exist before it can be used. The device
(logical volume in AIX) can be used for DMS tablespaces in any of the following:

• When the DMS tablespace is created, either when creating the database or
creating a tablespace

• When adding a container to an existing DMS tablespace

Chapter 4. Data Placement 51

In both cases, the containers must exist before using. The container is specified
by the name of the special file and the number of 4 KB pages assigned to each
container. See the syntax of the create tablespace and the alter tablespace
statements on 4.5.7, “Creating Tablespaces” on page 72 and 4.6.3, “Alter
Tablespace” on page 80 for examples.

4.3 System Managed Storage (SMS) Tablespaces
System Managed Storage is based on the storage model found in DB2 Version 1.
Containers in SMS tablespaces have some of the following characteristics:

• The container in an SMS tablespace does not pre-allocate its storage. There
will be some space used during tablespace creation for overhead.

• Containers cannot be added to a SMS tablespace after the tablespace is
created.

• The total number of containers in a SMS tablespace is determined either at
create database or at create tablespace time.

4.3.1.1 Default Tablespaces
When creating a database, three tablespaces must either be specifically created
or defaults will be used. These tablespaces will hold the following database
objects:

• System catalogs

• Temporary space

• User data

The tablespace that holds the system catalogs cannot be dropped or changed
after the create database command is issued. There is only one tablespace for
the system catalogs. The tablespaces that holds temporary data or user may be
changed after creation of database or other tablespaces. There may be multiple
tablespaces for temporary data or user data depending on your database
environment. There must be at least one temporary tablespace for use by the
database at all times.

If you do not explicitly specify tablespaces when creating a database, three
default SMS tablespaces are created.

Adding Tablespaces

You can add tablespaces after the database is created by using the create
tablespace command.

The default SMS tablespaces are based on the storage model found in Version 1
of DB2. Figure 17 on page 53 shows the directory structure of the database and
SMS tablespaces when the create database command is entered and default
values are selected..

52 DB2 V2 Planning Guide for DBAs

Figure 17. Default SMS Tablespaces

Figure 17 shows DMS tablespaces that are created if default values are selected
at create database time. Not all the database structures are represented here.
Figure 20 on page 62 shows the other default objects that are created when a
database is created.

In AIX, if you accept the default directory for database placement, it is
determined by the Default Database Path (DFTDBPATH) parameter of the
database manager configuration. When the instance is created, this path is set
to the instance owner′s home directory. The value of this parameter can be
changed with the update database manager command. Figure 17 shows this as
the “database directory.” The default placement is a subdirectory with the same
name as the instance owner under the home directory of the instance owner.
For example, if the instance owner is db2, the default placement of the three
SMS tablespaces is /home/db2/db2.

In OS/2 the default placement of a database is under the drive and directory
specified by the Default Database Path (DFTDBPATH) parameter of the database
manager configuration. By default, DFTDBPATH is the root directory of the the
drive where the DB2 code is installed.

Regardless of platform, the first database will be placed in the SQL00001
directory. SQL00001 is a subdirectory of the database directory as shown in dflt..
SQL00001 consists of three containers assigned to three default SMS
tablespaces:

 1. SQLT0000.0 is the container that holds the system catalogs. The system
catalog tablespace contain all the system catalog tables for the database
and cannot be dropped. This tablespace is called SYSCATSPACE.

 2. SQLT0001.0 is the container that holds temporary tables that are created and
removed during normal processing. This tablespace is called TEMPSPACE1.

 3. SQLT0002.0 is named USERSPACE1. This is the default SMS tablespace that
holds all user defined tables.

4.4 Database Managed Storage (DMS) Tablespaces
Database Managed Storage (DMS) tablespaces are characterized by tablespaces
that are built on pre-allocated portions of storage. This storage (container) can
be a device or a file.

The database manager controls the storage space and allocates storage space
to the container when the container is created. When working with containers
and DMS tablespaces, the following apply:

Chapter 4. Data Placement 53

• If the container is a file, it is created when the tablespace is created and
dropped when the tablespace is dropped.

• If the container is a logical volume in AIX, the container must exist before
creating the tablespace. After dropping the tablespace, the logical volume
still exists and must be removed.

• Storage space is pre-allocated to a container when a container is created.

• Containers can be added to a tablespace using the alter tablespace
statement.

One of the biggest differences and advantages to using DMS tablespaces over
SMS tablespaces is the ability to span a table over multiple tablespaces. When
creating a table, you can decide to place certain objects of the table in different
tablespaces. DMS allows you to store Large Object Data (LF and LOBs) and
indexes in different tablespaces. A table can then split up across three different
tablespaces. The tablespaces used to store the table are selected when the
table is created.

Figure 18. Tables in DMS Tablespaces

Figure 18 shows the EMPLOYEE table being split among three DMS tablespaces.
The regular table data is placed in Tablespace 2. LOBS have been placed in
Tablespace 3 and indexes in Tablespace 4. In DMS tablespaces, the tablepsace
is defined by a set of operating system filenames. These file names may be
device names. The storage objects or table parts are built by allocating extents
from the tablespace.

54 DB2 V2 Planning Guide for DBAs

4.4.1 SMS and DMS Tablespace Considerations
When choosing between SMS and DMS tablespaces, there are many factors to
consider. Consider the operational characteristics of the three tablespace types:

• Catalog tablespace.

Only one catalog tablespace can exist in a database. Although a choice is
possible, SMS is recommended unless you will have very large system
catalogs. (Here, very large is defined as a file that exceeds the size
limitations imposed by the operating system.) From an administration point,
SMS will be easier to maintain. Also, it is not possible to add containers to
an SMS tablespace should you exceed size limits for the
filesystem/directory.

When the system catalog tablespace (SYSCATSPACE) is created the
database manager creates a set of tables, indexes and views. The space
needed for the SYSCATSPACE is approximately 200 extents. Should you
select DMS for the system catalogs and use the default extent size, you must
understand the amount of pre-allocated storage that would be required. The
default extent size is 32 pages, each page of 4 KB. If SYSCATSPACE were to
be a DMS tablespace pre-allocated space would be allocated with the create
database command. This means that the necessary space for the system
catalogs to be created as a DMS tablespace would be approximately 200 x
32 x 4K.

• Temporary tablespace.

Temporary tablespaces are used by the database manager to create
temporary tables. SMS offers the best choice for the temporary tablespace.
The size of the temporary tablespace can peak to a high value while sorting
large tables. Its peak size is difficult to predict, and, if using DMS, you would
have to allocate a large amount of space that you would not be able to
recover.

There is no performance advantage in having more than one temporary
tablespace. If there are multiple temporary tablespaces, they are accessed
in a round-robin manner at run-time. It would be very difficult to predict
which temporary tablespace (if multiple ones existed) would be used. The
temporary tablespace should be at least large enough to support the largest
temporary table that might be generated during run-time.

• User tablespaces.

The choice between user SMS and DMS tablespaces is not an obvious
choice. It depends on many factors, such as

− Size of database

− Physical resources such as amount and type of disk

− Performance

− Type of operations on the data, such as frequent joins

− Data types such as BLOBs, CLOBs or DBLOBs

You will have to weigh the advantages and disadvantages of SMS and DMS
tablespaces. You could even decide that a mix of tablespaces, some of them
SMS tablespaces and some of them DMS tablespaces, is the best alternative
for your database.

Chapter 4. Data Placement 55

4.4.1.1 Advantages of SMS User Tablespaces
There are two possible advantages to using SMS tablespaces for user data:

• Size of database and total disk in system

Storage space is not pre-allocated for SMS tablespaces. Storage needs of
tablespaces are provided by the operating system. When a tablespace is
dropped, the space used by the tablespace is immediately recovered. If disk
space is constrained in your system and your database is small, you might
want to consider using SMS user tablespaces. The definition of small is
debatable. For AIX, small would be 2 gigabytes or less. However, even a
database that is 2 GB might want to take advantage of the benefits of DMS
tablespaces.

• Ease of administration

• SMS tablespace administration is easier than DMS tablespace
administration. You do not have to pre-allocate space, so there is no need
to create containers before using each tablespace. Also, if your database
was small, several hundred MB or less, you could do an offline backup of the
database when backing up the entire operating system. For example, in AIX,
performing a mksysb on an AIX system containing a small database would be
easy to administer. The database in this situation must not be in use.

4.4.1.2 Advantages of DMS Tablespaces
This storage model has important benefits when compared to the SMS storage
model. Some of the advantages are the following: Table objects can be
accurately placed in the physical devices. Performance may increase when the
operating system layer is avoided during I/O operations.

• Placement of database objects

Tables may be split across multiple DMS tablespaces, allowing the
separation of table parts.

• Maximizing system resources

By splitting data among tablespaces, you can direct table parts to
specialized disks.

• Flexibility

By controlling the placement of database objects, you can control not only
access, but administrative tasks like backup and restore. You can place less
frequently accessed items like BLOBs that may store images that once
created are neither accessed nor frequently updated.

• Performance

Space allocation is cheaper in DMS tablespaces. If using devices for DMS
tablespaces, you avoid the filesystem overhead.

• Scalability

DMS tablespaces allow you to add containers to the tablespace online.
Rebalancing of the data is done immediately and automatically when a
container is added.

Ask the questions found in the table that follows to help you determine whether
your user tablespaces should be SMS or DMS:

56 DB2 V2 Planning Guide for DBAs

Table 7. Characteristics of SMS and DMS User Tablespaces

Characteristics SMS Tablespace DMS Tablespace

Can Increase Number of
Containers in Tablespace

No Yes

Can Store Index Data in
Separate Tablespace

No Yes

Can Store Long Data in
Separate Tablespace

No Yes

One Table can Span
Several Tablespaces

No Yes

Space allocated only
when needed

Yes No

Table Objects can be
Directed to Different
Types of Disk

Yes Yes

4.5 Planning Your Tablespace Environment
When the logical design of your database is done, you have to deal with the
physical design of your database. This design will depend on the resources,
mainly disk space or disk drives you have available. The objective of planning
your user tablespace environment is to determine the type of tablespace and the
placement of the user tables in the tablespaces.

To efficiently plan your environment, you will need to gather information about
the size of your tables and indexes. The list of tasks that you will need to
accomplish is the following:

 1. Logical design of tablespaces

 2. Creating the database

 3. Sizing of tables and tablespaces

 4. Determination of container characteristics

 5. Creation of containers and tablespaces

 6. Creation of tables and indexes

To illustrate the process of planning a tablepsace environment, we will use one
example throughout this section. It will consist of a database, dss, comprised of
eight tables.

4.5.1 Logical Design of Tablespaces
There are two approaches when grouping tables into tablespaces:

• Create one tablespace for each table.

This policy allows you to make individual backups of each table, as backups
can only be performed at tablespace or database level. You can recover the
space allocated to the container after dropping the table and the tablespace.

• Group related tables into tablespaces.

Chapter 4. Data Placement 57

Tables that are related through referential contraints or triggers can be
grouped together. Backup and restore can be made at tablespace level,
reducing the time needed to restore the database to a consistent level.

Unrelated tables can be also grouped together depending on the size of
these tables. A group of small tables may be grouped into a tablespace to
use a different extent size.

Once you have grouped tables into tablespaces, you may wish to further
categorize each tablespace by performance characteristics: one for index data,
one for LOB and Long Field Data, and one for regular table data. Thus, if you
are going to define indexes or use LOBs and Long Field Data, you will have to
create more tablespaces than you might otherwise expect.

In our example (see Figure 19 on page 59), we grouped our tables into two
groups to facilitate our backup policy. We will have to create one tablespace for
each group of tables. Additionally, we want to create a tablespace to store all
the indexes of our tables and a tablespace to store LOBs. The six tablespaces
that will be used by our database dss are:

• SYSCATSPACE. This is an SMS tablespace that will contain the system
catalogs.

• TEMPSPACE1. This is an SMS tablespace that will be used for temporary tables
that are built during processing.

USERSPACE1 will also be created, but will be dropped. SYSCATSPACE and
TEMPSPACE1 are created using default values during the create database
command.

• ts01. This tablespace will store the regular data of the ORDERS, OPTIONS1
and OPTIONS2 tables.

• ts02. This tablespace will store the regular data of the rest of the tables
(CUSTOMERS, LOCATIONS, SITEMAPS, EMPLOYEE, EMPDEPT)

• index01. This tablespace will store all the indexes of our tables.

• lobs01. This tablespace will store the LOB table objects of the ORDERS,
SITEMAPS and LOCATIONS tables.

Tablespaces ts01, ts02, index01 and lobs01 will all be DMS tablespaces.
They will be created explicitly with the create tablespace command.

58 DB2 V2 Planning Guide for DBAs

Figure 19. Example Database and Tablespace Environment

4.5.2 Creating a Database
The create database command has changed from DB2/6000 Version 1. You can
create tablespaces when creating a database. Alternatively, you can use the
create tablespace statement to create tablespaces. For our example, we will use
the defaults for creating a database, with the exceptions that we will use a
different path for the database, /db/dss. The system catalogs and temporary
space will be SMS tablespaces and will be stored in subdirectories under
/db/dss. Later, we will drop USERSPACE1 and create DMS tablespaces. The
syntax for our example is the following:

� �
db2 ″create database dss on /db/dss″

� �

4.5.2.1 Create Database Syntax
The syntax of the create database command is:

Chapter 4. Data Placement 59

��──CREATE DATABASE──database-name─ ──┬ ┬───────────────────── ──┬ ┬─────────────────────── ─────�
└ ┘─ON─ ──┬ ┬─path (AIX)── └ ┘─ALIAS──database-alias─

└ ┘─drive (OS2)─

�─ ──┬ ┬── ──┬ ┬───────────────────────────── ───────�
└ ┘─USING CODESET──codeset──TERRITORY──territory─ └ ┘─COLLATE USING─ ──┬ ┬─SYSTEM───

└ ┘─IDENTITY─

�─ ──┬ ┬────────────────── ──┬ ┬─────────────────────────────── ─────────────────────────────────�
└ ┘─NUMSEGS──numsegs─ └ ┘─DFT_EXTENT_SZ──dft_extentsize─

�─ ──┬ ┬────────────────────────────────────── ──┬ ┬─────────────────────────────────── ─────────�
└ ┘─CATALOG TABLESPACE──┤ tblspace-dfn ├─ └ ┘─USER TABLESPACE──┤ tblspace-dfn ├─

�─ ──┬ ┬── ──┬ ┬──────────────────────── ─────────────────��
└ ┘─TEMPORARY TABLESPACE──┤ tblspace-dfn ├─ └ ┘─WITH──″comment-string″─

tblspace-dfn:
├──MANAGED BY───�

┌ ┐─,──────────────────
�─ ──┬ ┬─SYSTEM USING──(─ ───� ┴─′ container string′ ─ ─)──────────────────────────────── ───────────�

│ │┌ ┐─,───
└ ┘─DATABASE USING──(─ ───� ┴──┬ ┬─FILE─── ─′ container string′ ──number-of-pages─ ─)─

└ ┘─DEVICE─

�─ ──┬ ┬────────────────────────────── ──┬ ┬─────────────────────────────── ─────────────────────�
└ ┘─EXETENTSIZE──number-of-pages─ └ ┘─PREFETCHSIZE──number-of-pages─

�─ ──┬ ┬────────────────────────────────── ──┬ ┬────────────────────────────────────── ──────────┤
└ ┘─OVERHEAD──number-of-milliseconds─ └ ┘─TRANSFERRATE──number-of-milliseconds─

The description of the command options for the create database command are
the following:

ON Specifies a path or drive on which to create the database.
The configuration file and the log files will be created in
sub-directories of the specified path. For AIX, will use the
home directory of the instance owner as default.

ALIAS Gives an alias name to the database. If not specified, it
will use the same name as the database-name.

USING CODESET Specifies the code set to be used for data.

COLLATE USING Determines the type of collating sequence used. If
SYSTEM, the collating sequence is based on the current
country code. This is the default. If IDENTITY, strings will
be compared byte by byte.

NUMSEGS Specifies the number of segment directories that will be
used to store DAT, IDX and LF files. Only applies if any of
the tablespaces are SMS tablespaces. Its default value is
one.

DFT_EXTENT_SZ It is an integer that defines the size of the extent in 4KB
pages. If not specified, will use 32 4 KB pages. This will
be the default value when creating tablespaces unless the
EXTENTSIZE parameter is used in the create tablespace
command.

60 DB2 V2 Planning Guide for DBAs

CATALOG TABLESPACE
Defines the catalog tablespace. If not specified,
SYSCATSPACE will be created as a SMS tablespace.

USER TABLESPACE Defines the initial user tablespace, USERSPACE1. If not
specified, it will be created as a SMS tablespace.

TEMPORARY TABLESPACE
Defines the initial temporary tablespace, TEMPSPACE1. If
not specified, it will be created as an SMS tablespace.

See 4.5.7, “Creating Tablespaces” on page 72 for a description of the tablespace
definition options.

4.5.2.2 The DFT_EXTENT_SZ Parameter
One of the new database parameters in DB2 Version 2 is DFT_EXTENT_SZ. It is
set when you issue the create database command. It determines how many
pages are written to a container before writing to another container. This is the
extent size for tablespaces, both DMS and SMS. The default size for
DFT_EXTENT_SZ is 32 4K pages. If you do not alter this value, all of your
tablespaces within that database will have this default value. The range of
values for DFT_EXTENT_SZ is between 2 and 256 pages.

You may still change the number of pages written before writing to another
container (extent size) at the tablespace level. This can be done when creating
the tablespace with the statement option EXTENTSIZE. Care should be taken to
determine the correct value for EXTENTSIZE, as once it is set for a tablespace, it
determines the extent size for a tablespace and cannot be altered. The extent
size can have an impact on space utilization and performance.

4.5.2.3 The NUMSEGS Parameter
NUMSEGS and SEGPAGES were two parameters that were set with the create
database command in DB2/6000 Version 1. They controlled the segmentation of
databases in Version 1:

• NUMSEGS was the number of segment directories over which the database
was split.

• SEGPAGES was the number of pages (4K) in a segment

SEGPAGES no longer exists in Version 2. NUMSEGS is kept mainly for
backwards compatibility with Version 1. However, it does have significance
when dealing with SMS tablespaces.

Because of restrictions in AIX Version 3.2.5, the maximum size of any one file or
filesystem was 2 GB. The way DB2/6000 stored its data in one filesystem meant
that without spreading the physical data over different filesystems, the maximum
size of a database in Version 1 would have been restricted to 2 GB. So, to exist
with AIX 3.2.5, DB2 allowed the database to be split across many filesystems
such that the maximum size of the database was 2 GB x the number of file
systems allocated to the database.

NUMSEGS in Version 2 is similar in concept. If you select SMS tablespaces, you
are selecting NUMSEGS. That is the number of directories allocated to an SMS
tablespace and is determined by the database parameter NUMSEGS in Version
2. Consider the example of selecting all the default tablespaces at create
database time. (See Figure 17 on page 53.) There are 3 default SMS
tablespaces created. Each one of these is a segment directory. NUMSEGS

Chapter 4. Data Placement 61

refers to the number of segment directories that the default SMS tablespace
(USERSPACE1) will have. The default value for NUMSEGS is one. That means
that the total size of USERSPACE1 if allowed to be in one segment directory is
determined by the maximum size of any one filesystem in AIX. This is
dependent on the level of AIX that you are using with DB2 Version 2. If using
AIX 3.2.5 or lower, the maximum filesystem size is still 2 GB. If using AIX 4.1 or
higher, the maximum filesystem size is 64 GB.

Alternatively, you may still use SMS tablespaces, but select a higher value for
NUMSEGS. You may also create other SMS tablespaces with explicit directory
paths, thus exceeding defaults. However, NUMSEGS is still set at the database
level when issuing the create database command.

4.5.2.4 Default Database Files and Directories
When the create database command is issued, a number of database files and
objects are created by default. The default database files and directories are
placed in the database directory. The exact location of the database directory
may be altered at database creation, but the name of the directory is assigned
by the database manager. The first database directory will be SQL0001. The
next database directory is SQL0002 and so on. This is independent of the type of
tablespace that is created. Figure 20 shows the default objects associated with
a database.

Figure 20. Default DB2 Database Objects

62 DB2 V2 Planning Guide for DBAs

The following files and directories are created with every DB2 Version 2
database:

SQLDBCON File that stores the individual database parameters

SQLINSLK File that is used to ensure that a database is only used by
one instance of the database manager

SQLTMPLK File that is used to ensure that a database is only used by
one instance of the database manager

SQLOGCTL.LFH File that tracks and controls all the database logs

SQLOGDIR Directory that contains the three default logs. Circular
logging is the default logging type. This parameter may be
changed in the database configuration after creation. For
more information on logging, see Chapter 6, “Logging” on
page 131.

SQLSPCS.1 File that contains the definition and current state of all the
tablespaces in the database

SQLSPCS.2 File that is a copy of SQLSPCS.1, used as a backup should
SQLSPCS.1 fail

db2event Default directory that can be used for output files
associated with an event monitor

db2rhist.asc File that is used for history of all backups and load
operations

db2rhist.bak File that is used with db2rhist.asc. db2rhist.asc and
db2rhist.bak are ASCII files that are merged together and
viewed as one entity by the user. db2rhist.bak is called a
shadowed history file.

4.5.3 Sizing of Tables and Tablespaces
When calculating the size of tables, the row size and structure of the table can
be determined. However, other factors such as overhead for disk fragmentation,
free space and variable length columns make it difficult to determine exact size.

An estimate of the size of user tables data can be obtained by:

(average_row_size + 8) * number_of_rows * 1.5

The calculations for the table row sizes and number of rows per table for the
eight tables in our example for the dss database (see Figure 19 on page 59) are
as follows:

Table 8 (Page 1 of 2). Sizes of Rows - dss Database

Table Name Regular
Data

BLOB CLOB Indexes Number of
Rows

ORDERS 344 Bytes none 7 KBytes 46 bytes 150000

OPTIONS1 132 Bytes none none 32 bytes 750

OPTIONS2 132 Bytes none none 32 bytes 750

Chapter 4. Data Placement 63

User tables are stored using 4 KB pages. These 4096 bytes will limit the length
of the row as a row cannot span multiple pages. Due to overhead and other
factors, the actual size of rows is limited to 4005 bytes.

The pages do not contain Long Field Data or Large Object Data (LOBs). For
columns containing these data types, only a descriptor is held in the table.
Descriptor lengths are referenced in the following table:

The descriptor for BLOBs and CLOBs has a size between 72 and 280 bytes. The
exact size is a function of the size of the object, whether the compact option is
used or not and allowing for any fragmentation within the lob space. A
recommendation for sizing is to either assume the worst case, or at take an
average of the above information.

Long Field Data, as LONG VARCHAR or LONG VARGRAPHIC, are stored in a
separate object. This object is divided in areas of 32 KB. Areas are broken into
segments. The size of these segments is a multiple of 512 bytes. Each LONG
VARCHAR/VARGRAPHIC value must fit into a single segment. Unused space in
the Long Field Data object depends on the size of the data and on the
consistency of the sizes of each entry. Unused space can add up to 50% of the
size of Long Field Data.

Large Object Data are stored in two separate table objects: LOB Allocation
Objects and LOB Data Objects.

• LOB Allocation Objects maintain information of allocation and free space for
LOB Data Objects. This information is stored in 4 KB pages. The number of
pages used depends on the space allocated for LOB Data Objects. Use one
4 KB page for every 64 GB of LOB Data Objects and use one 4 KB page for
every increment of 8 MB of LOB Data.

Table 8 (Page 2 of 2). Sizes of Rows - dss Database

Table Name Regular
Data

BLOB CLOB Indexes Number of
Rows

CUSTOMERS 186 Bytes none none 51 bytes 16000

LOCATIONS 144 Bytes none 16 KB 12 bytes 3000

SITEMAPS 52 Bytes 1.5 M B none 14 bytes 200

EMPLOYEE 144 Bytes none none 28 bytes 400

EMPDEPT 64 Bytes none none 12 bytes 64

Table 9. Size of Descriptors for Long Field Data and LOBs

Data Type Bytes

LONG VARCHAR 20

LONG VARGRAPHIC 20

BLOB/CLOB/DBCLOB 72 to 280

64 DB2 V2 Planning Guide for DBAs

• The size of LOB data objects is a multiple of 1024 bytes. To reduce the
amount of redundant space, the COMPACT parameter on the create table
and alter table can be used. This option reduces the amount of redundant
space, allowing the LOB data to be placed into separate segments.

An estimate of the space needed for each index can be obtained by:

(average_index_key_size + 8) * number_of_rows * 2

If the index includes columns with different data types you should not use the
maximum declared size of VARCHAR and VARGRAPHIC columns. Use the
average size instead.

4.5.3.1 Minimum Space Requirements for Container in DMS
Tablespace
The minimum space required for a DMS tablespace is determined by the extent
size. By default, the extent size is 32 4 KB pages. Three extents are reserved
for overhead and two more are the minimum required to store any user table
data. Note that two extents are the minimum for each table in a DMS
tablespace.

If the tablespace will contain indexes, Long Field Data or LOBs, two additional
extents are required for each type.

The following table lists the minimum size for DMS tablespaces:

The following table lists the maximum size for DMS tablespaces:

Table 10. Minimum Size of Tablespaces - DMS

Tablespace Size (Number of extents) Size if using Default
Extent Size (32 4 KB
pages)

Regular (only data) 5 160 4 KB pages

Regular (only indexes) 5 160 4 KB pages

Regular (data and
indexes)

7 224 4 KB pages

Regular (data and LOBs) 7 224 4 KB pages

Regular (data, indexes
and LOBs)

9 288 4 KB pages

Long 5 160 4 KB pages

Table 11 (Page 1 of 2). Maximum size of Tablespaces - DMS

Tablespace Size

Regular 64 GB

Chapter 4. Data Placement 65

Table 11 (Page 2 of 2). Maximum size of Tablespaces - DMS

Tablespace Size

Long 2 TB

4.5.4 Sizing Example for DMS Tablespace
To estimate the sizes of tables and tablespaces in our dss database example,
we set the size of the extent to 8 4 KB pages for tablespaces ts01, ts02 and
index01, and the size of the extent to 32 4 KB pages for the tablespace lobs01.
Extent size is discussed in 4.5.6.1, “Extent Size in Tablespaces” on page 71.

The estimation of the size required by the regular table objects of our database
example is the following (Extent size 8 4 KB pages):

Table 12 (Page 1 of 2). Sizing Regular Table Objects - Extent Size 8 4 KB Pages

Table Name Regular
Data

BLOB
descriptor

CLOB
descriptor

Number
of Rows

Total Number
of
extents

ORDERS 344
Bytes

0 72
Bytes

150000 ((344+72)
+ 8) *
150000
* 1 .5 =
95400
KB

2982

OPTIONS1 132
Bytes

0 0 750 (132 +
8) * 750
* 1 .5 =
157.5
KB

5

OPTIONS2 132
Bytes

0 0 750 (132 +
8) * 750
* 1 .5 =
157.5
KB

5

CUSTOMERS 186
Bytes

0 0 16000 (186 +
8) *
16000 *
1.5 =
4656
KB

146

LOCATIONS 144
Bytes

0 72
Bytes

3000 ((144+72)
+ 8) *
3000 *
1 . 5 =
1008
KB

32

SITEMAPS 52
Bytes

72
Bytes

0 200 ((52+72)
+ 8) *
200 *
1 . 5 =
39.6 KB

2

EMPLOYEE 144
Bytes

0 0 400 (144 +
8) * 400
* 1 .5 =
91.2 KB

3

66 DB2 V2 Planning Guide for DBAs

Note that even if the regular table object of the EMPDEPT table requires 7 KB,
two extents �1� of 8 4KB pages are allocated to this object, as two extents is the
minimum required for each table object.

Table 12 (Page 2 of 2). Sizing Regular Table Objects - Extent Size 8 4 KB Pages

Table Name Regular
Data

BLOB
descriptor

CLOB
descriptor

Number
of Rows

Total Number
of
extents

EMPDEPT 64
Bytes

0 0 64 (64 +
8) * 64 *
1.5 = 7
KB

2 �1�

4.5.4.1 Sizing Example for Indexes
The estimation of the size required by the index table objects of our database
example is the following (Extent size 8 4 KB pages):

Table 13. Sizing Index Table Objects - Extent Size 8 4 KB Pages

Table Name Index Size Number of
Rows

Total Number of
Extents

ORDERS 46 Bytes 150000 (46 + 8) *
150000 * 2 =
16200 KB

507

OPTIONS1 32 Bytes 750 (32 + 8) * 750
* 2 = 60 KB

2

OPTIONS2 32 Bytes 750 (32 + 8) * 750
* 2 = 60 KB

2

CUSTOMERS 51 Bytes 16000 (51 + 8) *
16000 * 2 =
1888 KB

59

LOCATIONS 12 Bytes 3000 (12 + 8) * 3000
* 2 = 120 KB

4

SITEMAPS 14 Bytes 200 (14 + 8) * 200
* 2 = 8.8 KB

2

EMPLOYEE 28 bytes 400 (28 + 8) * 400
* 2 = 28.8 KB

2

EMPDEPT 12 Bytes 64 (12 + 8) * 64 *
2 = 2.6 KB

2

4.5.4.2 Sizing Example for LOBs
The estimation of the size required by the LOB table objects of our database
example is the following (Extent size 32 4 KB pages):

Table 14. Sizing LOB Table Objects - Extent Size 32 4 KB Pages

Table Name LOB Data LOB
Segment

Number of
Rows

Total Number of
Extents

ORDERS 7 KBytes 8 KBytes 150000 1200000 KB 9375

LOCATIONS 16 KBytes 16 KBytes 3000 48000 KB 375

SITEMAPS 1.5 M B 2048 KB 200 400000 KB 3125

Chapter 4. Data Placement 67

Notice that LOB data has to fit into segments which are a multiple of 1024 bytes
(1KB, 2KB, 8KB, 16 KB, and so on). If the COMPACT option is specified when
the tables that contain LOB objects are created, an important amount of space
could be saved, as each entry would use the most appropriate segment. A
BLOB entry whose size is 900 KB, would use a 1 MB segment. For our database
example, we assume that the COMPACT option is not specified and thus, all
entries of the same table will use segments of the same size.

Allocation and free space information is stored in 4 KB allocation pages
separated from the actual data. The number of these 4 KB pages depends on
the amount of data, including unused space, allocated for the large object data.
The overhead is calculated as follows: one 4 KB page for every 64 GB plus one
4 KB pages for every 8 MB.

If the character data is less than 4 KB in length, use data type CHAR, GRAPHIC,
VARCHAR or VARGRAPHIC instead of BLOB, CLOB or DBCLOB.

4.5.4.3 Sizing Example - Summary
The space needed for a DMS tablespace will be obtained by adding together the
space required for each table or table object that the tablespace will contain.
Since data is written to containers in terms of extents, you should calculate the
number of extents required for each table. To the number obtained you will
need to add three extents that are required for overhead.

 sum(Number_of_extents_table_object) + 3

The number of extents for the DMS tablespaces of our database example is
obtained by adding together the extents of the table objects that are going to be
stored in the tablespace.

Table 15. Sizing DMS Tablespaces Example

Tablespace Extents - Table
Objects

Extents -
Overhead

Total Extents Extent Size

ts01 2982 + 5 + 5 3 2995 8 Pages of 4
KB

ts02 144 + 32 + 2
+ 3 + 2

3 188 8 Pages of 4
KB

index01 507 + 2 + 2
+ 5 9 + 4 + 2
+ 2 + 2

3 583 8 Pages of 4
KB

lobs01 9375 + 375 +
3125

3 12878 32 Pages of 4
KB

4.5.5 Determining Containers
The next task is to choose the containers that will belong to each tablespace and
to determine the size of each container. The number of containers that you will
use and the placement of each container is highly dependent on your physical
environment.

When choosing containers, you must consider on which physical drives will
these containers be placed. In AIX, this will depend on the disks specified when
the logical volumes were created, or the file system created, if any, when using

68 DB2 V2 Planning Guide for DBAs

files as containers. For OS/2, it will depend on the partitions or hard disks
available.

The number of containers should be selected based on the number of physical
disks associated with the database server. Consideration should also be given
to the type of database operation being performed on database objects. For
example, if performing a join on two separate tables, it would be advisable to
place those tables, if possible, on separate disks. With the addition of the
concept of tablespaces in Version 2, these tables may be in separate
tablespaces.

Once the tablespace is created, it is not possible to change the type of
tablespace, either DMS or SMS. Also the extent size may not be changed after
creating the tablespace. However, there is an option that allows you to change
the container definition when performing a restore operation. For more
information, see 8.3.6, “Restoring a Database” on page 200.

For our database example we have four drives available. We decided to create
containers for the ts01 and ts02 tablespaces on two drives. We will create one
container for our index tablespace (index01), on the third drive. lobs01
tablespace will use one container on the fourth drive. By doing this, we will
place LOBs, indexes and data on different drives. Using two different drives for
our regular data will enable parallel I/0 operations. Containers for our database
are shown in the following figure:

Figure 21. Defining Containers for User Tablespaces - AIX and DMS

If possible, make the containers the physical size in the operating system.

Chapter 4. Data Placement 69

4.5.6 Writing to Containers
The database manager will try to evenly distribute the table among containers.
In doing so, the database manager writes up to a defined number of pages to
each container before writing to the next container. If only one container is
defined to the tablespace, it will write to the same container. The number of
pages that is written to a container before writing continues in the next container
is called the extent size.

Figure 22 shows three containers, Container 0, Container 1 and Container 2
defined to Tablespace 4.

Figure 22. Writing to Containers

Tablespace 4 has three containers assigned to it, each with different sizes.
However, the extent size for Tablespace 4 is the same for each container.

In this example, once the database manager has written to all the containers
allocated to Tablespace 4, it will write back to the one it started writing to. This
round-robin process of writing to the containers is designed to balance the load.
In Figure 22, the database manager will write to the first extent, Extent 0 on
Container 0 in Tablespace 4. Then writing will be in the second extent, Extent 1
in Container 1 in Tablespace 4. The third extent will be written to Extent 2 in
Container 2 in Tablespace 3 and so on.

When the smallest container, Container 0, fills up, the database manager will
continue to write to the other two containers. Writing will also be performed in a
round-robin discipline, alternating containers. When containers 0 and 1 are
filled, the database manager will have to do all the writing to Container 2. This
is only true if the container is assigned to a DMS tablespace. If the container is
assigned to an SMS tablespace, and the database manager wants to write to
container 0 and is not able to, an error will be returned. When the containers no
longer permit write access, the database manager will not be able to add any
new pages. However, read or update access is still allowed.

70 DB2 V2 Planning Guide for DBAs

4.5.6.1 Extent Size in Tablespaces
By default, the extent size to be used when a tablespace is created is 32 4 KB
pages. You can change this default value at database level using the update
database command, if the tablespace has not been created. Once, the extent
size is set for the tablespace, it cannot be changed. You can also use a specific
extent size for each tablespace. This can be accomplished when the tablespace
is created using the EXTENTSIZE option. The range of EXTENTSIZE is from 2 4
KB pages to 256 4 KB pages.

A smaller extent size than the default can be chosen if your tablespace will not
store large table objects. A smaller extent size will save space, but will require
more frequent allocation of extents. A extent size of 8 or 16 4 KB pages is
usually chosen for regular tablespaces. For long tablespaces, and to avoid the
overhead derived from allocating a large number of extents each time a new
entry is made, a larger extent size is recommended. However, if LOBs are
smaller (less than 100K), the default size of 32 for extent size will suffice.

If the PREFETCHSIZE option is not specified when the tablespace is created, no
prefetching will take place. Prefetching is also discussed in 4.7, “Performance
Considerations” on page 82. Prefetching will create separate I/O processes
(AIX) or threads (OS/2) that will perform the reads of large amounts of data.
Prefetching will reduce the I/O activity, and will enable parallel I/O if the
PREFETCHSIZE is a multiple of the EXTENTSIZE and the extents being prefetched
are on separate disks.

4.5.6.2 Sizing Containers for a DMS Tablespace
To determine the size of each container used by a DMS tablespace, you will use
the size of the tablespace as your starting point. You should distribute the
number of extents required by the tablespace between the containers, and then
add one 4 KB page to each container for overhead.

For our dss database example, we will estimate the size of the containers as
being the size of the logical volume, as space available in the logical volume
that has not been assigned to a container is wasted.

Table 16. Sizing Containers

Tablespace Container Size of the
Container
(in number
of extents)

Extent Size AIX 4MB
Partitions
necessary
to
accommodate
the
container

Rounded
Size of
Container
(in 4 KB
pages)

ts01 /dev/rvol1 1498 8 pages of 4
KB

12 12000

ts01 /dev/rvol2 1498 8 pages of 4
KB

12 12000

ts02 /dev/rvol3 94 8 pages of 4
KB

1 1000

ts02 /dev/rvol4 94 8 pages of 4
KB

1 1000

index01 /dev/rvol5 583 8 pages of 4
KB

5 5000

lobs01 /dev/rvol6 12878 32 pages of
4 KB

413 413000

Chapter 4. Data Placement 71

You can now proceed to create all your user tablespaces and containers. For
AIX, ask your system administrator to create the logical volumes you will be
using as containers. You will have to provide the size, name and physical drive
to use for each raw logical volume. If you want to assign some physical disks to
be used only for your database, you may want to create a volume group with
these drives. The additional tasks to be performed when using logical volumes
as containers can be summarized as follows:

 1. If you plan to assign a set of hard disks for the exclusive use of DB2, create
a volume group with these disks. By doing so, you will not share these
drives with other AIX logical volumes.

 2. Create as many raw logical volumes as containers. Place them on the
physical drive of your choice. Give them the appropriate number of
partitions. Be careful, as space assigned to the logical volume and not given
to the container will not be usable.

 3. Change owner and group of the devices you have just created to the
instance owner and group. This will grant DB2 Read/Write access to the
device.

For our dss database example, we will provide the following information to the
system administrator:

Table 17. Logical Volumes

Logical Volume
Name

Type Physical disk Number of 4MB
partitions

vol1 raw hdisk1 12

vol2 raw hdisk2 12

vol3 raw hdisk1 1

vol4 raw hdisk2 1

vol5 raw hdisk3 5

vol6 raw hdisk4 413

4.5.7 Creating Tablespaces
The create tablespace statement is new in Version 2. It will create a new
tablespace within the database to which you are connected. It assigns
containers to the tablespace and makes entries into the system catalogs about
the tablespace attributes. To execute the create tablespace statment, you must
have SYSADM or SYSCTRL authority.

The syntax of the create tablespace statement is as follows:

72 DB2 V2 Planning Guide for DBAs

��──CREATE─ ──┬ ┬─────────── ─TABLESPACE──table-space-name──MANAGED BY─────────────────────────�
├ ┤─REGULAR───
├ ┤─LONG──────
└ ┘─TEMPORARY─

┌ ┐─,──────────────────
�─ ──┬ ┬─SYSTEM USING──(─ ───� ┴─′ container string′ ─ ─)──────────────────────────────── ───────────�

│ │┌ ┐─,───
└ ┘─DATABASE USING──(─ ───� ┴──┬ ┬─FILE─── ─′ container string′ ──number-of-pages─ ─)─

└ ┘─DEVICE─

�─ ──┬ ┬────────────────────────────── ──┬ ┬─────────────────────────────── ─────────────────────�
└ ┘─EXETENTSIZE──number-of-pages─ └ ┘─PREFETCHSIZE──number-of-pages─

�─ ──┬ ┬────────────────────────────────── ──┬ ┬────────────────────────────────────── ─────────��
└ ┘─OVERHEAD──number-of-milliseconds─ └ ┘─TRANSFERRATE──number-of-milliseconds─

The description of the command options follows.

REGULAR This is the default value. Regular tablespaces store all
data except for temporary tables.

LONG Stores long or LOB table objects. Long tablespaces must
be DMS tablespaces.

TEMPORARY Stores temporary tables. One temporary tablespace is
created when the database is created.

MANAGED BY SYSTEM
Defines this tablespace as an SMS tablespace.

USING (′container string ′)
Identifies the directory used as container.

MANAGED BY DATABASE
Defines this tablespace as a DMS tablespace.

USING (FILE/DEVICE ′container string ′ number-of-pages, ...)
Identifies the containers that will belong to this tablespace
and its size. Size is measured in 4 KB pages.

EXTENTSIZE number-of-pages
Defines the size of the extent in 4 KB pages. If not
specified, the extent size defined when the database was
created will be used. The database parameter for the
extent size is DFT_EXTENT_SZ.

PREFETCHSIZE number-of-pages
Specifies the number of “read-ahead” pages when reading
from the tablespace. The default is 0, which means that no
prefetching will be done.

OVERHEAD number-of-milliseconds
This value is only used to determine the cost of I/O during
query optimization. Its default value is 24.1, and
represents the I/O controller overhead and disk and
latency time.

TRANSFERRATE number-of-milliseconds
This value is only used to determine the cost of I/O during
query optimization. Its default value is 0.9, and represents

Chapter 4. Data Placement 73

the time to read one 4 KB page from this tablespace into
memory.

4.5.7.1 Creating Tablespace Example
For our dss database, we will use a extent size of 8 4 KB pages for regular
tablespaces and 32 pages of 4 KB as our prefetch size.

The following commands will create our four tablespaces. We have placed the
commands in a file, whose contents is as follows:

� �
create tablespace ts01 managed by database using
(device ′ / dev/rvol1′ 12000, device ′ / dev/rvol2′ 12000)
extentsize 8 prefetchsize 16;

create tablespace ts02 managed by database using
(device ′ / dev/rvol3′ 1000, device ′ / dev/rvol4′ 1000)
extentsize 8 prefetchsize 16;

create tablespace index01 managed by database using
(device ′ / dev/rvol5′ 5000) extentsize 8 prefetchsize 32;

create long tablespace lobs01 managed by database
using (device ′ / dev/rvol6′ 413000) extentsize32;

� �

4.5.8 Creating Tables and Indexes
When you create a table, you must specify the table name and the name in
attributes of its columns.

Default Placement of Tables in Tablespaces

Unless specified otherwise, the table will be created in the first user
tablespace you created for your database, and indexes and LOBs will not be
placed in separate tablespaces. The default placement for tables is the first
user-created tablespace. If you have not created a tablespace, the default is
USERSPACE1.

Three new options have been added to the create table command that allows
you to specify in which tablespace you want to place regular data, indexes and
long columns. The syntax with the new options is as follows:

��──CREATE TABLE──table-name──(... table definition ...)─ ──┬ ┬───────────────────── ─────────�
└ ┘─IN──tablespace-name─

�─ ──┬ ┬─────────────────────────── ──┬ ┬────────────────────────── ────────────────────────────��
└ ┘─INDEX IN──tablespace-name─ └ ┘─LONG IN──tablespace-name─

The parameters are discussed further:

IN If this option is not specified, the table will be created in
the first tablespace created by the user that is issuing the
create table command. If the user had not created any
tablespace, the table will be created in the tablespace
USERSPACE1.

This option identifies the tablespace in which the table will
be created. This tablespace must exist already, and must

74 DB2 V2 Planning Guide for DBAs

be a REGULAR tablespace. If no other tablespace is
specified in the INDEX IN or LONG IN options, all table
objects will be stored in this tablespace.

INDEX IN Specifies the tablespace in which any indexes on the table
will be created. Only applies to DMS user tablespaces,
this tablespace must exist already, and must be a
REGULAR tablespace.

LONG IN Identifies the tablespace in which the Long Data or LOB
objects are stored. Only applies to user DMS user
tablespaces, this tablespace must exist already, and must
be a LONG tablespace.

The commands to create our eight tables of our database example will be placed
in a file similar to the following:

� �
create table orders (......) in ts01 index in index01 long in lobs01;
create table options1 (....) in ts01 index in index01;
create table options2 (....) in ts01 index in index01;
create table customers (...) in ts02 index in index01;
create table locations (...) in ts02 index in index01 long in lobs01;
create table sitemaps (....) in ts02 index in index01 long in lobs01;
create table employee (....) in ts02 index in index01;
create table empdept (.....) in ts02 index in index01;

� �

4.5.9 System Catalog Changes
Information about tables and tablespaces is kept in the system catalog. The
DBA will use DB2 commands to list, alter or create tablespaces and tables, but
this information can also be obtained querying catalog tables. DB2 commands
used to manage tables and tablespaces are described in 4.6, “Managing
Tablespaces” on page 77.

There are three catalog views directly related to tablespaces, tables and
indexes:

• SYSCAT.TABLESPACES

• SYSCAT.TABLES

• SYSCAT.INDEXES

See the Appendix D of the Database 2 SQL Reference for Common Servers
Version 2, S20H-4665, for a detailed list of all the system catalog views.

SYSCAT.TABLESPACES contains a row for each tablespace. Each row maintains
information about the name of the tablespace, the tablespace id, tablespace
type, type of data this tablespace stores, extent size and prefetch size.

Chapter 4. Data Placement 75

� �
$ db2 ″select tbspace,tbspacetype,tbspaceid,datatype,extentsize from \
syscat.tablespaces″

TBSPACE TBSPACETYPE TBSPACEID DATATYPE EXTENTSIZE
------------------ ----------- ----------- -------- -----------
SYSCATSPACE S 0 A 32
TEMPSPACE1 S 1 T 32
USERSPACE1 S 2 A 32
TS01 D 3 A 8
TS02 D 4 A 8
INDEX01 D 5 A 8
LOBS01 D 6 A 32

7 record(s) selected.

$� �

The output of the last command shows a total of seven tablespaces, the first
three are SMS tablespaces and the last four are DMS tablespaces. The
tablespace id is a unique number that identifies the tablespace in the database.
Values for DATATYPE column show the type of data than can be stored in this
tablespace; A for all types of permanent data and T for temporary tables. Notice
that there are different extent sizes for the tablespaces.

SYSCAT.TABLES contains a row for each table, view or alias that is created.
Related to tablespaces, each row mantains information about the name of the
table, the tablespace where the table is placed, and names of the tablespaces
where indexes and Long Object Data or LOBs for this table are placed.

� �
$ db2 ″select tabname,tbspaceid,tbspace,index_tbspace,long_tbspace
from syscat.tables where tabschema=′ DB2′ ″

TABNAME TBSPACEID TBSPACE INDEX_TBSPACE LONG_TBSPACE
------------------ --------- ------------------ ------------------ -------------

ORDERS 3 TS01 INDEX01 LOBS01
OPTIONS1 3 TS01 INDEX01 -
OPTIONS2 3 TS01 INDEX01 -
CUSTOMERS 4 TS02 INDEX01 -
LOCATIONS 4 TS02 INDEX01 LOBS01
SITEMAPS 4 TS02 INDEX01 LOBS01
EMPLOYEE 4 TS02 INDEX01 -
EMPDEPT 4 TS02 INDEX01 -

8 record(s) selected.

$� �

Eight tables using this schema (db2) exist in the database. The orders, options1
and options2 tables are placed in tablespace ts01. The customer, locations,
sitemaps, employee and empdept tables are in ts02. All the indexes for the
eight tables are in tablespace index01. All the lobs for tables containing lobs are
in lobs01.

SYSCAT.INDEXES contains a row for each index that is defined for a table.
Specifically, each row maintains information on what indexes are created on
each table.

76 DB2 V2 Planning Guide for DBAs

� �
$ db2 select ″indname,tabname from syscat.indexes where tabschema=′ DB2′ ″

INDNAME TABNAME
------------------ ------------------
ORD_NO ORDERS
OPT_1 OPTIONS1
OPT_2 OPTIONS2
CUST_NO CUSTOMERS
LOC_ID LOCATIONS
SITE_IT SITEMAPS
EMP_NO EMPLOYEE
DEPT_NO EMPDEPT

8 record(s) selected.

$� �

Eight indexes have been created for the eight tables. Note that in this output, no
information is mantained about the tablespace being used by indexes.

4.6 Managing Tablespaces
Tablespace management includes the tasks of creating, deleting, modifying and
monitoring tablespaces and containers. DB2 provides commands and utilities to
perform these tasks. The commands available to the DBA are the following:

• l ist tablespaces

The list tablespaces command lists all the tablespaces contained in the
database. For each tablespace, it shows information about type, data type
contained, state, size (only for DMS tablespaces), and extent and prefetch
size.

• l ist tablespace containers

The list tablespace containers command lists all the containers for a
specific tablespace. Shows information about the name, type and size (only
DMS tablespaces) of the containers of this tablespace.

• alter tablespace

The alter tablespace enables the DBA to add containers to a DMS
tablespace (not supported for SMS tablespaces), and modify the
PREFETCHSIZE, OVERHEAD and TRANSFERRATE of a tablespace.

• drop

The drop command deletes, among other table objects, an index, table,
tablespace or view. Objects that are directly or indirectly dependent on that
object are also deleted or marked inoperative.

The commands described below do not constitute a full listing of all commands
related to tablespaces and containers. Also note that not all the syntax
diagrams are complete. The purpose is to highlight new commands and options
provided by DB2 Version 2. Refer to the Database 2 SQL Reference for common
servers Version 2, S20H-4665, and the Database 2 Command Reference for
common servers Version 2, S20H-4645, for a complete description of commands
and command options.

Note that all these tasks can be accomplished using the Database Director. The
Database Director is a graphical user interface that helps you perform the

Chapter 4. Data Placement 77

database administration function more easily. The Database Director is
discussed in Chapter 8, “Data Access” on page 183

4.6.1 List Tablespaces
The syntax for the list tablespaces command is as follows:

��──LIST TABLESPACES─ ──┬ ┬───────────── ───��
└ ┘─SHOW DETAIL─

SHOW DETAIL If this option is not specified, this command will list all
tablespaces for the current database, their name, type,
contents and extent. If specified, it will also list
information about the size, extent size and prefetchsize.

The output for the list tablespaces show detail command is similar to the
following:

� �
 Tablespace ID = 0
 Name = SYSCATSPACE
 Type = System managed space �1�
 Contents = Any data
 State = 0x0000

Detailed explanation:
Normal

 Total pages = 754
 Useable pages = 754 �2.�
 Used pages = 754
 Free pages = Not applicable
 High water mark (pages) = Not applicable
 Page size (bytes) = 4096
 Extent size (pages) = 32
 Prefetch size (pages) = 32
 Number of containers = 1

 Tablespace ID = 2
 Name = USERSPACE1
 Type = System managed space
 Contents = Any data
 State = 0x0000
 .
 .
 .

 Tablespace ID = 3
 Name = TSO1
 Type = Database managed space
 Contents = Any data
 State = 0x0000 �3�

Detailed explanation:
Normal

 Total pages = 24000 �4�
 Useable pages = 3968 �5�
 Page size (bytes) = 4096
 Extent size (pages) = 32
 Prefetch size (pages) = 32
 Number of containers = 2 �6�

� �

Not that when a database is created, creating the system catalogs will require
some storage. (�1�)

78 DB2 V2 Planning Guide for DBAs

The state of the tablespace �3�, is expressed in a hexadecimal number, being
0x0000 in a normal state. This hexadecimal number may be a combination of
states. DB2 provides the db2tbst DB2 Version 2.1.1 includes more detailed
information about the state of a tablespace in a more readable format. utility
that converts this number into a readable format. Tablespaces states are
discussed in more detail in 4.6.5, “States of Tablespaces” on page 81.

�4� and �5� provides information about the total and useable pages of the
tablespace. None of these figures represent the free space in the tablespace.
The difference between total pages and useable pages is due to the fact that
space in a container is only useable if it is a multiple of the extent size. This is
shown in the list tablespace containers example.

�6� shows that this tablespace is defined to use two containers.

You could obtain similar information using the Database Director. For more
information about the Database Director, see Chapter 8, “Data Access” on
page 183. The Database Director will also provide information about the amount
and percentage of space being used.

4.6.2 List Tablespace Containers
The syntax for the list tablespace containers command is as follows:

��──LIST TABLESPACE CONTAINERS FOR──tablespace-id─ ──┬ ┬───────────── ────────────────────────��
└ ┘─SHOW DETAIL─

The parameters of the command are described:

tablespace-id An integer that uniquely identifies a tablespace in the
database. This value can be obtained from the list
tablespaces command or querying the SYSCAT.TABLES
table.

SHOW DETAIL If this option is not specified, the command will show the
container id, name and type (file, disk or path) of every
container used by the tablespace. If specified, this option
will also show the total number of pages and the number
of useable pages if the containers belong to a DMS
tablespace.

The following screen shows the output of the list tablespace containers
command issued against a DMS tablespace which is using two containers.

Chapter 4. Data Placement 79

� �
$ db2 ″list tablespace containers for 3 show detail″

Tablespace Containers for Tablespace 4

 Container ID = 0
 Name = /dev/rvol1
 Type = Disk
 Total pages = 12000
 Useable pages = 11992
 Accessible = Yes
 Container ID = 1
 Name = /dev/rvol2
 Type = Disk
 Total pages = 12000
 Useable pages = 11992
 Accessible = Yes

$� �

Notice the difference between total pages and usable pages for these containers.
The container ′ /dev/rvol1 ′ has 8 pages unusable. One is reserved for the
administrative overhead of the container. Depending on the extent size of your
tablespace after overhead, the remaining pages are divided into allocations of
extent size. Any other remaining amounts less than the extent size are wasted.

4.6.3 Alter Tablespace
The syntax for the alter tablespace command is as follows:

��──ALTER TABLESPACE──tablespace-name───�

┌ ┐──
│ │┌ ┐─,───

�─ ───� ┴──┬ ┬─ADD──(─ ───� ┴──┬ ┬─FILE─── ─′ container string′ ──number-of-pages─ ─)─ ─────────────────��
│ │└ ┘─DEVICE─
├ ┤─PREFETCHSIZE──number-of-pages──────────────────────────────────
├ ┤─OVERHEAD──number-of-milliseconds───────────────────────────────
└ ┘─TRANSFERRATE──number-of-milliseconds───────────────────────────

The command paramters are listed as follows:

ADD Specifies the new container to be added to a DMS
tablespace.

Many of these options have already been described in 4.5.7, “Creating
Tablespaces” on page 72 when discussing the create tablespace statement.
Note the extent size of a tablespace cannot be changed, and that containers can
only be added to DMS tablespaces. Note also that containers cannot be
modified.

When you add a container to a tablespace, the data placed in a tablespace will
automatically be distributed among containers.

80 DB2 V2 Planning Guide for DBAs

4.6.4 Drop Tablespace
The syntax for the drop tablespace command is as follows:

��──DROP─ ──┬ ┬─INDEX──index-name─────────── ───��
├ ┤─TABLE──table-name───────────
├ ┤─TABLESPACE──tablespace-name─
├ ┤─VIEW──view-name─────────────
└ ┘─other objects ...───────────

When you drop a table, all indexes, primary keys, foreign keys and check
contraints referencing the table are also dropped. Views and triggers
referencing the table are marked inoperative, and packages depending on them
will be invalidated.

You will not be able to drop a tablespace in any table stored in the tablespace
which has one of its parts (indexes, or LOBs) stored in another tablespace. You
will have to drop first the table and then proceed to drop the tablespace.

Dropping a tablespace will drop all tables, indexes, primary and foreign keys,
and referential constraints of the tablespace. Views and triggers are made
inoperative.

User created containers such as filesystems of logical volumes in AIX will not be
deleted when a tablespace is dropped. To recover the space used by DMS
containers, you have to delete them manually.

4.6.5 States of Tablespaces
The database manager maintains information about the states of tablespaces
and will not allow access to tablespaces that are not in a normal state.
Tablespace states are given in hexadecimal numbers. Sometimes a tablespace
may have more than one state associated with it. This will result in a combined
hexadecimal number. All of the states associated with tablespaces can be found
in the sqlutil.h file located in the /usr/lpp/db2_02_01/include directory (AIX). To
view the tablespace state, issue the list tablespacees command. DB2 Version
2.1.1 shows the tablespace state and gives the explanation of the state.
Alternatively, you can use a utility called db2tbst with the hexadecimal number
to evaluate the tablespace state. The db2tbst utility can be found in the
sqllib/misc directory of the instance owner.

A tablespace is placed in a non-normal state during load, backup and recovery
operations, or if placed in a quiesced condition via the quiesce tablespaces
command Inconsistencies in data across tablespaces are avoided by restricting
tablespace access. A listing of some of the possible tablespace states are as
follows:

• Normal (0x0000)

Access to the tablespace is allowed.

• Quiesce related states:

A tablespace is in any of these states when a quiesce request is received by
the database manager. Any of these states must be explicitly reset.

− Quiesced share (0x0001)

− Quiesced update (0x0002)

− Quiesced exclusive (0x0004)

Chapter 4. Data Placement 81

• Load related states:

− Load Pending (0x0008)

A tablespace is in a Load Pending state when a table is being loaded or
when the LOAD utility fails. After correcting the problem that caused the
failure, invoking the LOAD utility with the RESTART option will continue
with the load process.

− Delete Pending (0x0010)

A tablespace is in a Delete Pending state when a table stored in the
tablespace has been successfully loaded and the LOAD utility is
processing the delete phase to delete rows with duplicate keys.

• Backup/Recovery states:

− Backup Pending (0x0020)

A tablespace will be in this state when a table contained in this
tablespace has been successfully loaded using the LOAD utility. Access
to the tablespace will not be allowed until a backup of the database or
the tablespace is taken.

− Restore Pending (0x0100)

A tablespace will be in this state when you perform a LOAD with
TERMINATE option. The tablespace will have to be recovered from from
a backup. If the backup being restored is a database backup, the
database will have to be rolled forward to the end of the logs.

Load and Backup/Recovery related states are covered in Chapter 5, “Data
Movement” on page 91 and Chapter 7, “Backup and Restore” on page 151

4.7 Performance Considerations
Configuration parameters that affect performance can be defined at different
levels:

• Database manager

• Database

• Tablespace

• Table

When a parameter can be defined at two different levels, the value specified at
the higher level will be considered the default value. We will discuss several of
the parameters that may affect performance.

4.7.1 Buffer Pool Size
Determines the number of 4 KB pages to be allocated on the machine where the
database is located. This memory is allocated when the first application
connects to the database and released when the last one disconnects. This pool
is used to transfer data to and from disk.

If the pool is large enough, disk I/O activity will be reduced. As a rule of thumb,
you can start with 50% of total memory. If the machine is a dedicated database
server, you may assign a larger amount of machine memory to the buffer pool.
Be default, this pool will have 1000 4 KB pages.

82 DB2 V2 Planning Guide for DBAs

This is the most important parameter that will affect database performance and
is defined at database level.

4.7.2 I/O Prefetch
I/O prefetch increases the performance of queries that retrieve a large amount of
data. Prefetching allows CPU and I/O overlap reducing the query execution
time.

• PREFETCHSIZE

This parameter determines the amount of data that is “read-ahead.” The
prefetchsize is determined when the tablespace is created. If no value is
specified when the tablespace is created, it will take the default value in the
database parameter, DFT_PREFETCH_SZ. The default size is 32 4 KB. It
should be set to a multiple of the extent size, as this would allow the
database manager to perform parallel I/O if the extents being prefetched are
on different disk drives and multiple I/O servers are configured. This value
can be modified using the alter tablespace command.

For any prefetching to occur, the buffer pool must be set to 1100 4 KB pages
or higher. The default values for the buffer pool are 1000 4 KB for AIX and
250 4 KB for OS/2. Both AIX and OS/2 must have a value greater than 1100 4
KB for prefetching to occur.

• NUM_IOSERVERS

This parameter specifies the number of processes to be used to perform
prefetch I/O and asyncronous I/O (as required by backup and restore
utilities). If prefetching is being used, this number should be set to the
number of physical disk drives + 2 (for backup and restore).

4.7.3 I/O Cleaners
The object of having I/O cleaners is to ensure that there are enough “clean”
pages in the buffer pool when a transaction is started. In this way, the
transaction will not have to wait until previously used pages are written out. I/O
page cleaners are also discussed in 6.2.11, “NUM_IOCLEANERS - Asynchronous
Page Cleaners” on page 137.

• NUM_IOCLEANERS

Determines the maximum number of I/O cleaners processes that can be
started. This processes are started when the ′Changed Pages Threshold′ is
reached. It is defined at database level, and the default number is 1.

In a query-only database, this parameter should be set to 0 as no pages will
be need to be written to disk. In a transaction environment, the parameter
should be set between 1 and the number of physical disks used by the
database.

• Changed Pages Threshold (CHNGPS_THRESH)

This threshold determines at which percentage of changed pages will the
asynchronous page cleaners be started. Page cleaners will write all
modified pages to disk and will become inactive until the threshold is again
exceeded.

This parameter is defined at database level, and its default value is 60%.

Chapter 4. Data Placement 83

4.8 Customer Scenario for Data Placement
The steps that the telephone company will execute have been illustrated
throughout this chapter. To summarize:

 1. Decide on what databases wil l be migrated and how. Consider what tools
might possibly assist in the migration. There must also be consideration for
any changes from DB2/6000 Version 1 to DB2 V2 such as using an invalid
schema.

 2. Perform a logical design of tablespaces, deciding which tablespaces wil l be
SMS, which will be DMS.

Consider using SMS tablespaces for system catalogs and temporary space
and DMS tablespaces for any user tablespaces.

 3. Create any new databases

 4. Drop USERSPACE1 before creating DMS tablespaces

 5. Calculate space needed for regular tables

 6. Calculate space needed for indexes

 7. Calculate space needed for LOBs

 8. Group tables into tablespaces and size tablespaces.

 9. Group indexes into tablespaces and size tablespaces.

10. Group LOBs into tablespaces and size tablespaces.

Determine buffer pool size, EXTENTSIZE, PREFETCHSIZE and number of I/O
server and I/o cleaners.

Before using the database, decide on the logging policy, either circular or
log retain. Consider placing the log files on a separate disk from the
database. Change the database parameter, NEWLOGPATH, before using the
database.

4.8.1 Telephone Company
The phone company uses SMS tablespaces for the catalog and the temporary
tablespace for their production environment. They created a filesystem mounted
on the $HOME/$DB2INSTANCE/SQL00001 directory where the database′s files
and directories are placed. By doing this, they can control the amount of free
space left for these tablespaces. The space used or required by any other AIX
application or database will have no influence on the space left for these two
tablespaces. They assigned 100 MB to this filesystem, estimating that their
catalog tablespace would require 25 MB and that the database manager could
require up to 75 MB for its temporary tables. The phone company left the
EXTENTSIZE and PREFETCHSIZE to their default values (32 pages of 4 KB) for
these two tablespaces.

For the user tables, they are using DMS tablespaces. AIX logical volumes are
used as containers. Their query environment is very well suited for parallel I/O,
and they want to have the indexes in separate drives. They grouped their 52
tables according to their backup policy, their data placement requirements and
how often their tables are modified. They classified their tables according the
following criteria:

• Size

− A table is considered Small if its size is under 1000 rows.

84 DB2 V2 Planning Guide for DBAs

− A Medium size table will have between 1000 and 100000 rows.

− Large tables have more than 100000 rows.

• Daily modifications

− A Low number of modifications is considered when less than 1000 rows
are modified per day.

− A Medium number of modifications is considered when the number of
rows modified per day is between 1000 and 8000.

− A table is considered Frequently modified when the number of modified
rows exceeds 8000.

The following table show the number of tables that fall in each category:

They grouped their tables in the following tablespaces:

 1. The space01 tablespace would store all the tables that suffer a low level of
modifications.

 2. The space02 tablespace would store all the tables that suffer a medium
number of modifications.

 3. The space03 tablespace would store all the tables that suffer frequent
modifications and are ′medium ′ size tables. considered ′medium ′.

 4. They would create eight tablespaces, space04 to space11, one for each of the
eight large tables that are frequently modified.

For indexes, the database administrator decided to create one tablespace for all
the indexes .

The telephone company database would be stored using 12 tablespaces:

• Tablespaces space01 to space11 for table data.

• Tablespace index01 for indexes.

To estimate the size of the tablespaces, they used a extent size of 8 pages of 4
KB. After obtaining the storage space required by tables and indexes, they
added the sizes of table objects that are stored in the same tablespace. They
added the extents required for overhead, and rounded the total number of
extents. They obtained obtain the following figures:

Table 18. Phone Company - Grouping Tables

Small Tables Medium Tables Large Tables

Low 23 2 None

Medium None 9 None

Frequent None 9 8

Chapter 4. Data Placement 85

The AIX logical volumes to be used as containers were determined using the
following policies:

• Containers for indexes were placed in separate physical drives from the rest
of user tablespaces.

• To enable parallel I/O operations, containers used by the same tablespace
were placed in different disks.

• The number of containers for each tablespace was chosen depending on the
size of the tablespace. The database administrator decided to use one
container for small tablespaces, three containers for medium size
tablespaces and six containers for large tablespaces.

The database manager placed the containers using twenty-four physical drives.
The distribution the logical volumes used as containers over the available
physical drives is shown in the following table:

Table 19. Phone Company - Sizes of Tablespaces

Tablespace Size in MB

space01 48

space02 384

space03 456

space04 1968

space05 288

space06 1104

space07 600

space08 192

space09 372

space10 168

space11 576

index01 516

Table 20 (Page 1 of 3). Phone Company - Containers

Tablespace Size in MB Containers Size of Containers in
MB

Physical Disk

space01 48 /dev/rcont10 48 hdisk4

86 DB2 V2 Planning Guide for DBAs

Table 20 (Page 2 of 3). Phone Company - Containers

Tablespace Size in MB Containers Size of Containers in
MB

Physical Disk

space02 384 /dev/rcont20 128 hdisk4

/dev/rcont21 128 hdisk8

/dev/rcont22 128 hdisk12

space03 456 /dev/rcont30 152 hdisk16

/dev/rcont31 152 hdisk20

/dev/rcont32 152 hdisk24

space04 1968 /dev/rcont40 328 hdisk4

/dev/rcont41 328 hdisk8

/dev/rcont42 328 hdisk12

/dev/rcont43 328 hdisk16

/dev/rcont44 328 hdisk20

/dev/rcont45 328 hdisk24

space05 288 /dev/rcont50 96 hdisk5

/dev/rcont51 96 hdisk9

/dev/rcont52 96 hdisk13

space06 1104 /dev/rcont60 184 hdisk5

/dev/rcont61 184 hdisk9

/dev/rcont62 184 hdisk13

/dev/rcont63 184 hdisk17

/dev/rcont65 184 hdisk21

/dev/rcont66 184 hdisk25

Chapter 4. Data Placement 87

Table 20 (Page 3 of 3). Phone Company - Containers

Tablespace Size in MB Containers Size of Containers in
MB

Physical Disk

space07 600 /dev/rcont70 200 hdisk17

/dev/rcont71 200 hdisk21

/dev/rcont72 200 hdisk25

space08 192 /dev/rcont80 64 hdisk6

/dev/rcont81 64 hdisk10

/dev/rcont82 64 hdisk14

space09 372 /dev/rcont90 124 hdisk18

/dev/rcont91 124 hdisk22

/dev/rcont92 124 hdisk26

space10 168 /dev/rcont100 56 hdisk6

/dev/rcont101 56 hdisk10

/dev/rcont102 56 hdisk14

space11 576 /dev/rcont110 192 hdisk7

/dev/rcont111 192 hdisk11

/dev/rcont112 192 hdisk15

index01 516 /dev/r idx10 172 hdisk19

/dev/r idx11 172 hdisk23

/dev/r idx12 172 hdisk27

Before creating the logical volumes, the AIX system administrator created a
volume group, vgdb2. This volume group included twenty-four physical volumes,
from hdisk4 to hdisk27. Separating the drives in a different volume group,
isolated them from regular operating system activity. Unless intentionally done,
no AIX filesystem is stored in the physical volumes of this volume group.

After creating the volume group, the AIX system administrator created the 40
raw logical volumes that are used as containers. Sizes of the logical volumes
and their physical drives where they were created, were obtained from the
previous table. After the logical volumes were created, the AIX system

88 DB2 V2 Planning Guide for DBAs

adminstrator changed the owner and group of these logical volumes to the
owner and primary group of the instance.

The DB2 administrator created the user tablespaces. All the user tablespaces
are DMS tablespaces. Containers and sizes of containers of the tablespaces
were taken from the previous table. Note that the overhead required by the
container (one 4 KB page) is irrelevant relative to the size of the logical volume,
so they used the same size for the container and for the logical volume.
EXTENTSIZE for all user tablespaces was set to 8 4 KB pages. To enable
prefetching and parallel I/O operations, the PREFETCHSIZE of user tablespaces
was set to 24 4 KB pages for tablespaces that use three containers and
PREFETCHSIZE was set to 48 4 KB pages for tablespaces that use six logical
volumes as containers. Both sizes are multiples of the extent size. Using these
values, and if enough I/O servers are available, a R/W request coming from an
application can be performed in parallel to all the containers of the tablespace.

Tables and indexes were created by the DB2 administrator. When each table
and index was created, the tablespace to be used to store de table was
determined.

The Buffer Pool Size was increased to improve the performance of the database.
Since the processor is a dedicated database server, 50% of the system memory
was given to this pool. The Buffer Pool Size was increased to 256 MB using the
update database configuration command.

The number of I/O servers was increased to 26. These twenty-six I/O servers
were chosen because the number of physical drives to be used by the database
is twenty-four. Two more I/O servers were added so backup/restore processes
can be executed at the same time.

I/O Cleaners and Changed Pages Threshold were left to their default value. No
I/O cleaners should be needed, as the database is query-only, and no pages are
to be written to disk. Since I/O cleaners are only started when needed, leaving
this value (1 I/O cleaner) to its default does not affect the resources of the
system.

Chapter 4. Data Placement 89

90 DB2 V2 Planning Guide for DBAs

Chapter 5. Data Movement

This chapter discusses how to move data into DB2 Version 2 databases.
Specifically, we will discuss:

• The load utility

• The import/export utility

This chapter will focus on the load utility which is new in Version 2.
Import/export was available in Version 1. This chapter discusses the differences
in implementation of import/export in Version 2.

The load utility is intended for the initial load or an append of a table where
large amounts of data are inserted. There are no restrictions on the data types
used by the load utility. You may include LOBs (Large Binary Objects) and
user-defined types (UDTs) as data that is going to be loaded. The load utility is
faster than performing an import because load writes formatted pages directly
into the database, while import performs SQL inserts. Also the load utility does
not log each write of data during a load operation.

5.1 Overview of the Load Process
There are three phases of the load process:

 1. Load, where the data is written into the table.

 2. Build, where the indexes are created.

 3. Delete, where the rows that caused a unique key violation are removed from
the table.

Figure 23 on page 92 shows each phase of the load process and the actions
which occur during these phases:

 Copyright IBM Corp. 1996 91

Figure 23. Three Phases of Load

The three phases of the load utility can be further explained in the following way:

 1. Load Phase

During the load phase, data is loaded into the table, and index keys are
collected. Save points or consistency points are established at intervals
specified by you in the load command. Messages let you know how many
input rows have been successfully loaded at the time of the save point.

If a failure occurs, you should use the restartcount option set to the value
indicated by the last load consistency/save point indicated in the messages
file. If the failure occurs near the beginning of the load, you could consider
restarting the load again from the beginning.

 2. Build Phase

During the build phase, indexes are created, based on the index keys
collected in the load phase. The index keys are sorted during the load
phase. If a failure occurs, the build is restarted from the beginning of the
build phase.

 3. Delete Phase

During the delete phase, all rows causing a unique key violation are deleted.
If a failure occurs, this phase should be restarted by you from the beginning
of the delete phase. Once the database indexes are rebuilt, information
about the rows containing the invalid keys is stored in an exception table, if

92 DB2 V2 Planning Guide for DBAs

you have created one before the load began and identified it in the load
command. Unique key violations are placed into the exception table, and
messages on rejected rows are put into the message file. Finally, duplicate
keys are deleted.

All phases of the load process are part of one operation which is completed only
after all three phases complete successfully. The load utility will generate
messages during the progress of each phase. Should a failure occur during one
of the phases, then these messages can assist you in deciding on recovery
actions.

5.2 Getting Ready for the Load Utility
There are a number of steps to consider before beginning the load operation. It
is highly recommended that some care and thought be taken to get ready for the
load as it can help and even in some cases prevent you having to restart the
utility. These steps are as follows:

 1. Know how and in what format data will be available to the load utility.

 2. Sort the input data if necessary.

 3. Create the target table and the exception table.

 4. Calculate the storage required for the loading of data into the target and
exception table.

 5. Consider the location and estimated storage requirements for both the
remote file and the temporary sort files in the sort directory which are
generated during the load. The remote file and using directory are options
of the load. (See 5.2.6, “The Remote File Option” on page 97 and 5.2.5, “The
Using Directory Option” on page 97 for more details.)

 6. If making a copy of the loaded data on disk, allow for the storage of that
copy. This is discussed further in 5.2.7, “The Copy Yes Option” on page 98.

 7. Place the load command in a file that can be edited and executed from the
command line or the CLP.

These steps are described in more detail in the following sections.

5.2.1 Input Data File
Input data for a database load process is likely to come from a variety of
sources: other DB2 databases (LAN or host), other databases, transactional
systems, PC applications, and so on. You need to consider how to convert and
sort, if necessary, this input data into a format that the load command can
process.

The input data for a load process must be in one of three file formats: Integrated
Exchange Format (IXF), delimited ASCII (DEL) or non-delimited ASCII (ASC).

PC/IXF This file format is a database manager adaptation of the
Integrated Exchange Format and is the preferred method for
exchange between database managers. The IXF architecture is
designed specifically to enable exchange of relational database
structure and data. You can export a data file using a
Distributed Database Connection Services (DDCS) gateway from
a host database to the DB2 Server. The advantage of this is
that it eliminates the additional steps of creating a table using

Chapter 5. Data Movement 93

DDL (Data Definition Language) and related indexes into a new
or empty table.

In general, a PC/IXF file consists of an unbroken sequence of
variable-length records. The file will have the following types of
records in the order given:

• One header record of record type H

• One table record of record type T

• Multiple column descriptor records of record type C (one
record for each column of data in the table)

• Multiple data records of record type D. Each row in the
table is represented by one or more D records.

 Note

If the host file contains packed fields, you will have to
convert these fields before transferring the file to the DB2
common/server database. To perform this conversion,
create a VIEW in DB2 for MVS for all the columns that you
require; a VIEW automatically forms character fields out of
the packed fields. From the VIEW, you can now EXPORT the
required data as an IXF file.

DEL If you do not have a DDCS connection with a remote database,
or you are transferring data from some other source, it is likely
to be in delimited ASCII format. Delimited ASCII is used for
exchanging files with a wide variety of industry applications,
especially other database products. This is a commonly used
way of storing data that separates column values with a special
delimiting character. An example of a DEL file is:

″Smith, Bob″,4973,15.46
″Jones, Suzanne″,12345,16.34
″Williams, Sam″,452,193.78

where (″) is a character string delimiter, (,) is a column delimiter
and (.) is a decimal point. Alternatively, (;) can be used as a
column delimiter, with (′) as the character string delimiter.

ASC Non-delimited ASCII files are used for loading data from other
applications that create flat text files with aligned column data,
such as word processors. Each ASCII file is a stream of ASCII
characters consisting of data values organized by row and
column. Rows in the data stream are separated by a line feed
(or a carriage return/line feed). An example of an ASC is:

Smith, Bob 4973 15.46
Jones, Suzanne 12345 16.34
Williams, Sam 452 193.78

5.2.2 Sorting the Data (Optional)
If the amount of data being loaded is large in size, you may want to consider the
sequence of the data in the target table and associated indexes for the load
operation. This is an optional step that is not required by the load utility.
However, it may improve the performance of the load operation. The steps to
consider are the following:

94 DB2 V2 Planning Guide for DBAs

• The logical design of the table

• Creating the indexes according to the nature of the anticipated queries or
application requirements

• Before loading the input data, sort the data, using an external sort program
with parameters that reflect the target table index environment

For the sort operation itself, you have a number of options. In a host
environment, there are sort programs such as DFSORT which could be used, or
in an AIX environment, there is the sort command. Alternatively, you could
consider loading the data as you receive it and, subsequently, run the REORG
utility provided with DB2. The REORG utility rearranges the data of a table into a
physical sequence according to a specified index. Even in an operational
environment, a table can become fragmented due to many updates, causing
performance to deteriorate. Thus, apart from the load process itself, you should
consider performing a REORG on heavily-used tables on a regular basis.

5.2.3 Creating a Target Table and an Exception Table
The load utility moves data into a target table which must already exist within
the database. The target table may be a new table which you have created prior
to the load or an existing table to which you will be appending or replacing data.
Indexes on the table may or may not already exist. However, the load process
only builds indexes that are already defined on a table.

In addition to a target table, it is recommended that an exception table be
created to write any rows that violate unique index key or constraint violations.
The exception table should be the same as the target table in every respect,
except that it also contains two extra columns: a timestamp column and a
messages column. The exception table can have more than n+2 columns,
(n=the number of columns in the target table) but these columns (n+3) must be
nullable or defaultable. All columns of the exception table should be free of any
constraints. Constraints include referential integrity, check constraints and
unique index constraints that could cause error on insert. The n+1 column of
the exception table is an optional TIMESTAMP column. The n+2 column should
be of type CLOB (Character Large Binary Objects) (1 MB) and is optional, but is
used to give the name of the constraints that the data within the rows have
violated. There is no enforcement of any particular name for the
above-mentioned additional columns.

The exception table is an optional parameter to the load command. It is used to
store copies of rows that violate unique index rules. By placing these rows in
the exception table, you have the option after the load as to how to proceed with
the violating rows. You may choose to alter them or ignore them. However, if
the exception table is not created and not specified with the load utility, any rows
that violate unique index rules will be discarded without any chance of
recovering or altering them.

The following is an example of creation of a table and exception table that will
be used for some of the examples in this chapter. The command has been
placed in a file as follows:

Chapter 5. Data Movement 95

� �
create table cal.par
 (DEPTNO SMALLINT(2) NOT NULL,

DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO SMALLINT(2) NOT NULL
 PRIMARY KEY(DEPTNO));

� �

This will create a table that will be used in three of the examples in 5.4, “Four
Successful Load Scenarios” on page 103. For the exception table, we will mimic
the definition of the target table, cal.par. There are two methods for creating the
exception table. One uses the same DDL that was used to create the target
table, with two additional columns for the TIMESTAMP and CLOB. If there are
many rows in the target table and you have not saved the DDL used to create it,
you can use the second method. The second method uses the import and export
utilities. An example is as follows:

� �
db2 connect to database
db2 ″export to anyfile of ixf messages anymsg select * from cal.par

where mgrno < 0″
db2 import from anyfile of ixf messages anymsg create into cal.exp
db2 alter table cal.exp add column ts timestamp
db2 alter table cal.exp add column msg clob(1MB)

� �

The exception table was created by exporting to a file the definition of the table,
cal.par. A condition was specified for which there would be no rows (should the
table contain data). Then the additional columns were added with the alter
table command.

5.2.4 Determining the Storage Used in the Load Utility
There are two tables in the load process for which storage should be calculated,
the target table and the exception table. When determining the storage
requirements for loading data into the target table, there are two distinct
situations:

• The table is being newly created, and the load will be an initial load of data.

• The table contains data, and the load will append to it.

The sizing of tables and containers used in tablespaces is covered in detail in
4.5.3, “Sizing of Tables and Tablespaces” on page 63. If appending to an
existing table, you need to estimate what the effect of adding the input data will
be on this table. In simple terms, if you are loading 1000 rows of data and each
row is 512 bytes in size, then your table will grow to more than 512 kilobytes
(allowing for some overhead).

Calculating the size of the exception table is difficult because it depends on the
amount of data that does not get loaded to the target table. The exception table
will usually be inspected and then discarded. The worst case is that the
exception table should be equal to the number of rows being loaded, plus the
storage required by the additional two columns. The recommendation is for the
exception table to be placed in a separate tablespace that can be dropped after
its use.

96 DB2 V2 Planning Guide for DBAs

5.2.5 The Using Directory Option
When loading into a table that has indexes, temporary files will be created in the
tmp subdirectory of the instance. Depending on the number and size of indexes,
you may wish to have these temporary files created in another location. This
can be done with the using option on the load command.

For example, you may wish for the temporary files to be created in the /tmp
directory. The load command placed in a file may then look like the following:

� �
load from calpar.ixf of ixf messages par.msgs
remote file par.remote
replace into cal.par using /tmp;

� �

The amount of space required for the indexes will depend upon the amount of
data being loaded and the size of the index, the number of columns within the
index and the data type of each column. The DB2 Administration Guide provides
information for calculating the size of indexes.

As an estimate for storage with the using directory option, calculate the sum of
size of your index and allow for possibly twice that amount. As a rough
estimate, you should calculate the size of the indexes based on the columns
used, multiply by the number of rows being loaded and then multiply by two.
This should give you enough space for the load command to successfully
complete. The actual space used depends on the number of records and the
uniqueness of the collating sequence.

Another consideration is supplying multiple directories to the using directory
option. If using more than one directory for the temporary sort tables generated,
they must be equal in size.

5.2.6 The Remote File Option
Temporary files are created during the load process. You may redirect the
placement of those files using the remote file option of the load utility.

The remote file can be queried using the load query command in the event that a
load has been placed in a pending state. For more information on the load query
command, see 5.6, “The Load Query Command” on page 113.

The remote file identifies a base file name. DB2 actually creates three internal
temporary files that make up the remote file. The files that comprise the remote
file are basename.rid, basename.log and basename.msg, created by default in
the DB2UTMP subdirectory. You will need to allow some space for these files.
The amount of space necessary for the remote file will depend on the number of
rows being input and if the table has a unique index that is violated by the rows
being input. The basename.rid file stores information about the rows to be
deleted in the delete phase of the load operation. These are the rows that have
violated a unique key index. So the size of this portion of the remote file
depends on the total number of rows being input and the possibility that they
may violate a unique key index on the table.

Chapter 5. Data Movement 97

5.2.6.1 Location of the Remote File
The location of the remote file may be specified via the remote file option in the
load command. The default location depends on from where the load utility is
started. If the command is issued locally at the server, the remote file by default
will be placed in the current directory. If the load utility is executed remotely
from a client, the remote file will, by default, be generated in the database
directory.

5.2.6.2 Other Considerations for The Remote File Option
There are other considerations for using the remote file option with an explicitly
stated directory/path. Consider an example of two loads being performed locally
at a database server without specifying a directory for the remote file. By
default, two loads in the same current directory on a local database server will
cause the remote file to be placed in the same directory. If you do not specify
an explicit path for the remote file in the load command, the remote file for both
of these load operations will be directed not only to the same directory but also
to the same file. Should you need access to the remote file, it would be difficult
to determine which load operation the file is referencing. Therefore, use the
remote file option and explicitly specify a separate directory for each load
process. Should you have to restart one of the two load operations, having a
fully qualified path for the remote file will avoid confusion.

5.2.7 The Copy Yes Option
The other option that requires additional storage consideration for the load
operation is the copy yes option. The default is copy no, meaning that no copy
of the load operation will occur. Copy yes creates an image of the table load
that can be used in recovery situations.

However, the only time storage is a consideration is if the location for the copy is
disk. You can also specify that the copy is directed to tape or to an ADSM
server. If the copy is going to disk on the database server, the size
consideration should be equivalent to that of the target table.

5.2.7.1 Use of the Load Copy
This copy image cannot be used as a restore copy. It can only be used during a
rollforward command. Consider the situation where you have experienced a
failure that causes the log files to be replayed. The load utility logs that a load
has started and ended. It does not log the load itself. Therefore, if those log
files are replayed during a recovery process, and include the load, the copy
image is required to replay the load.

This option can only be used if archival logging is enabled. (For more
information on logging, see Chapter 6, “Logging” on page 131.) If archival
logging is enabled and the load command is issued with the default of copy no, a
backup will be necessary when the load completes. If circular logging is used,
no backup will be requested. You cannot specify copy yes with circular logging.

5.3 Using the Load Command
The load command has many parameters and options. Understanding them is
important to using the utility.

98 DB2 V2 Planning Guide for DBAs

 NOTE

The input file for the load process must exist on the database server.

The load command can be issued from the command line, from the Command
Line Processor (CLP) or from an API. It is recommended that the load command
be placed in a file that can be edited and then run from the command line. For
example, Figure 24 shows the contents of the file LOADEX.1.

Figure 24. Example Load Command

It can be executed as follows:

db2 -f LOADEX.1

The numbers shown in the load command file, LOADEX.1 are explained as
follows:

�1� The input file for the load is calpar.ixf.

�2� The file type is ixf.

�3� Messages will be directed to a file called par.msgs. This file can be viewed
after the load has completed.

�4� The temporary remote file names will be prefixed with “par.remote” and will
be used during the load process. The remote file will be generated in the /tmp
filesystem.

�5� The action of load is insert. In our case, the table was empty before the
load. The cal.par table is the target table. It gets loaded with all the input data
as shown.

�6� The using directory option will place any temporary sort files in the
/tmp/sort.dir directory/fi lesystem.

The full syntax of the load command can be found in 5.3.1.1, “The Syntax of the
Load Command” on page 101.

The load command has four different actions associated with it. Understanding
the four different actions of load is important to the use of the utility. They are
as follows:

Chapter 5. Data Movement 99

INSERT When loading an empty table, you should specify an insert
operation. Also, when appending data to an existing table
with data, specify insert to add data to the table without
changing the existing table data.

REPLACE If you specify replace in the load command, all existing
data in a table will be deleted and new data from the input
file will be loaded into the target table. The table definition
and index definitions are not changed. You can only
collect statistics under the replace option. REPLACE has
several advantages over INSERT. You can do a REPLACE
on a tablespace already in a load pending situation.
Secondly, REPLACE may have better performance over
INSERT if there are indexes to build during the load
process.

RESTART After a load has been interrupted, this action is used to
restart the load process. In such a situation, it is important
to keep track of the last consistency point. This
information is stored in the message file and the remote
file.

TERMINATE This action terminates a previously interrupted load and
moves the tablespaces, in which a target table resides,
from a load pending state to a restore-pending state. The
tablespaces cannot be used until a backup has been
restored, and the tablespaces have been rolled forward.

100 DB2 V2 Planning Guide for DBAs

5.3.1.1 The Syntax of the Load Command
The full syntax of the load command is:

┌ ┐─,──────────
��──LOAD FROM─ ───� ┴┬ ┬─filename─ ─OF─ ──┬ ┬─ASC─ ──┬ ┬───────────────────────── ──┬ ┬─────────────────────────────── ───────�

├ ┤─pipename─ ├ ┤─DEL─ │ │┌ ┐─,──────── │ │┌ ┐────────────────
└ ┘─device─── └ ┘─IXF─ └ ┘─LOBS FROM─ ───� ┴─lob-path─ └ ┘─MODIFIED BY─ ───� ┴─filetype-mod─

�─ ──┬ ┬── ──────────────────�
│ │┌ ┐─,──────────────────
└ ┘─METHOD─ ──┬ ┬─L──(─ ───� ┴─col-start──col-end─ ─)─ ──┬ ┬───

│ ││ │┌ ┐─,────────────
│ │└ ┘─NULL INDICATORS──(─ ───� ┴─col-position─ ─)─
│ │┌ ┐─,────────
├ ┤─N──(─ ───� ┴─col-name─ ─)──
│ │┌ ┐─,────────────
└ ┘─P──(─ ───� ┴─col-position─ ─)──

�─ ──┬ ┬────────────── ──┬ ┬───────────────────── ──┬ ┬───────────── ──┬ ┬───────────────── ──┬ ┬──────────────────────── ───�
└ ┘─SAVECOUNT──n─ └ ┘─RESTARTCOUNT─ ──┬ ┬─B─ └ ┘─ROWCOUNT──n─ └ ┘─WARNINGCOUNT──n─ └ ┘─MESSAGES──message-file─

├ ┤─D─
└ ┘─n─

�─ ──┬ ┬────────────────────────── ──┬ ┬─INSERT──── ─INTO──table-name─ ──┬ ┬───────────────────────── ────────────────────�
└ ┘─REMOTE FILE──remote-file─ ├ ┤─REPLACE─── │ │┌ ┐─,─────────────

├ ┤─RESTART─── └ ┘─(─ ───� ┴─insert-column─ ─)─
└ ┘─TERMINATE─

�─ ──┬ ┬─────────────────────────── ───�
└ ┘─FOR EXCEPTION──table-name─

�─ ──┬ ┬── ────────────────────────────�
└ ┘─STATISTICS─ ──┬ ┬─NO───

└ ┘─YES─ ──┬ ┬─WITH DISTRIBUTION─ ──┬ ┬────────────────────────────────
│ │└ ┘─AND─ ──┬ ┬────────── ─INDEXES ALL─
│ │└ ┘─DETAILED─
└ ┘──┬ ┬─AND─ ──┬ ┬────────── ─INDEXES ALL────────────────────
└ ┘─FOR─ └ ┘─DETAILED─

�─ ──┬ ┬─── ──┬ ┬────────────────────── ─────────────────�
└ ┘─COPY─ ──┬ ┬─NO── │ │┌ ┐─,─────────

└ ┘─YES─ ──┬ ┬─USE ADSM─ ──┬ ┬────────────────────────── ────── └ ┘─USING─ ───� ┴─directory─
│ │└ ┘─OPEN──num-sess──SESSIONS─
│ │┌ ┐─,────────────────
├ ┤─TO─ ───� ┴─device/directory─ ────────────────────
└ ┘─LOAD──lib-name─ ──┬ ┬──────────────────────────

└ ┘─OPEN──num-sess──SESSIONS─

�─ ──┬ ┬────────────── ──┬ ┬─────────────────── ──┬ ┬────────────────────────── ──┬ ┬────────────────────────── ──────────��
└ ┘─HOLD QUIESCE─ └ ┘─WITHOUT PROMPTING─ └ ┘─DATA BUFFER──buffer-size─ └ ┘─SORT BUFFER──buffer-size─

For a description of all of the parameters, refer to the Command Reference for
common servers.

Some of the parameters of the load command are as follows:

filename, pipename, device
This parameter identifies the source of the data being
loaded. The source file, pipe or device must be on the
same node as the database being loaded. If several data
sources are identified, they will be loaded sequentially.

ASC, DEL, IXF Specifies the format of the source data being loaded:

• ASCII (non-delimited ASCII format)

• DEL ASCII (delimited ASCII format)

• IXF (integrated exchange format, PC version)

Chapter 5. Data Movement 101

method L, N or P There are three possible load method options: L, N or P.

• If the source data is an ASCII file, use the L parameter
to identify the first and last byte of each column of data
to be loaded.

• If the source data is an IXF file, use the N parameter to
identify the name of the column to be loaded.

• If the source data is a delimited ASCII file, use the P
parameter to identify the numbers of the columns to be
loaded.

SAVECOUNT n This parameter is used to establish consistency points
during a load after every n rows. The benefit of specifying
this parameter is only realized in a recovery situation,
where you can restart the load from the last consistency
point, rather than from the first row again. However, there
is a processing overhead in creating these consistency
points; so you should only consider using them when
loading large amounts of data (>1 hour load duration).
Consider having a consistency point after loading 10
percent of the rows and at equal intervals thereafter. The
default is for no consistency points, SAVECOUNT equaling
0.

RESTARTCOUNT n This parameter can have the following values

B - Specify a B to be used with the RESTART action of
the load utility. The load will be restarted at the
beginning of the build phase.

D - Specify a D to be used with the RESTART action of
the load utility. The load will be restarted at the
beginning of the delete phase.

n - Specify a number that is used with the RESTART
action of the load utility. The load is restarted at n+1.
The n is determined from the last consistency point
found in the SAVECOUNT option. This last consistency
point is stored in the remote file that is used during the
load operation. You must use the load query command
to view the remote file to obtain this consistency value.

message-file Specifies the location for warning and error messages that
occur during the load. You can omit the message file only
through using the CLP when invoking the load command.
If a directory/file for the message file is not omitted, the
messages are written to standard output. If the complete
path to the file is not specified, load uses the current
directory and the default drive as the destination. If the
name of a file that already exists is specified, load
appends the information to it.

remote file Identifies a base file name from which the system will
create three internal temporary files (basename.rid,
basename.log and basename.msg) during the load
process. The default base file name is DB2UTMP, and the
default location is in the current directory if issued locally
at the database server, in the database directory if issued

102 DB2 V2 Planning Guide for DBAs

remotely. These files are destroyed on completion of the
load, but some of their information content is copied to the
message file. However, in the case of a load failure where
you might not have access to the message file, the remote
file can be interrogated by the load query command to
identify the last consistency point reached (if the
SAVECOUNT option has been specified).

into table-name Specifies the target table within the database and,
optionally, the table columns into which the data is to be
loaded.

exception table-name
Specifies the exception table into which rows in error will
be copied. An exception table is a user-created table
which mimics the definition of the target table being
loaded. This table is used to store copies of rows that
violate unique index rules, have check constraint or foreign
key violations, or invalid rows from a previous load
operation. All columns of the exception table should be
free of any constraint; constraints include referential
integrity, check constraints and unique index constraints
that could cause error on insert. The n+1 column of the
exception table is an optional TIMESTAMP column; the
n+2 column should be of type CLOB (1MB) and is also
optional, but is used to give the name of the constraints
that the rows have violated.

copy yes/no If you specify the copy no option, the tablespace in which
the table resides will be placed in a backup pending state
after loading, if forward recovery is enabled. The data will
not be accessible until a tablespace backup or a full
database backup is made. If you choose the copy yes
option, a copy of the changes caused by the load process
will be saved either to an ADSM server, tape or directory.

using directory When loading into a table that contains indexes, temporary
files will be created in the sort directory. This directory is
sqllib/tmp subdirectory of the instance owner′s home
directory. This may be set to one or more alternative
directories by including the using directory option.

5.4 Four Successful Load Scenarios
Four successful load examples are given to help understand the command
parameters. By successful, either the input data has been completely loaded
into the target table; or the data has been partially loaded into the target table,
and we have a complete record of the failing rows that can be subsequently
corrected and reloaded. Another aspect of the successful load is the completion
of all three phases, indicating the total load operation has been completed.

Chapter 5. Data Movement 103

5.4.1 Example 1 - Using the Load Utility
In this scenario, as represented in Figure 25, a user has prepared an input file
(calpar.ixf) and created a target table (cal.par). The target table has been
created using the DDL found in 5.2.3, “Creating a Target Table and an Exception
Table” on page 95.

Figure 25. A Simple Load Scenario

The load command as placed in a file as :

� �
load from calpar.ixf of ixf messages par.msgs
remote file /tmp/par.remote
insert into cal.par using /tmp/par.dir;

� �

After the completion of the load, you may view the message file, par.msgs, using
an editor of your choice. The message file after completion of the load will be
similar to the following:

104 DB2 V2 Planning Guide for DBAs

� �
SQL3500W The utility is beginning the ″LOAD″ phase at time ″08-25-1995
10:07:55.856344″ . �1�

SQL3109N The utility is beginning to load data from file
″ /home/inst02/data/table1.ixf″ . �2�

SQL3150N The H record in the PC/IXF file has product ″DB2 01.00″ , date
″19950814″, and time ″111218″. �3�

SQL3153N The T record in the PC/IXF file has name ″calpar.ixf″ ,
qualifier″ , and source ″ ″ . �4�

SQL3110N The utility has completed processing. ″4″ rows were read from
input file. �5�

SQL3519W Begin Load Consistency Point. Input record count = ″4″. �6�

SQL3520W Load Consistency Point was successful. �7�

SQL3515W The utility has finished the ″LOAD″ phase at time ″08-25-1995
10:07:56.842711″ . �8�

SQL3500W The utility is beginning the ″BUILD″ phase at time ″08-25-1995
10:07:56.884353″ . �9�

SQL3515W The utility has finished the ″BUILD″ phase at time ″08-25-1995
10:07:57.009092″ . �10�� �

�1� This is an informational message indicating that a phase is about to begin
and that the previous phase has ended. During the load phase, data is loaded
into your table. If there are any indexes to be built, the build phase will follow
the load phase. If there were any duplicate keys found for a unique index, the
delete phase will follow the build phase.

�2� This is the normal beginning message.

�3� Information is given about the product that created the PC/IXF file and when
it was created.

�4� Optional information is given about the name of the table where data was
extracted, the product that created the table and the original source of the data.

�5� This is the normal load phase ending message.

�6� The load utility is about to attempt to perform a consistency point for the load
phase.

�7� The consistency point performed by load was successful.

�8� This is an informational message indicating that the load phase has finished.

�9� This is the normal beginning message for the build phase where the indexes
are being created.

�10� This is the normal ending message for the build phase after the indexes
have been built.

There is no delete phase indicated as no rows were rejected from the load
phase.

Chapter 5. Data Movement 105

5.4.2 Example 2 - An Index Key Violation
In this load scenario, as represented in Figure 26, a user has prepared an input
file, calpar.ixf, and created a target table, cal.par, and an exception table,
cal.parexp. The target table has a unique key on the first column.

Figure 26. A Load with an Index Key Violation

In this situation, we want to replace records in the target table and we want to
save any records that violate the unique key into the exception table. The load
command as placed in a file is:

� �
load from calpar.ixf of ixf messages par.msgs
remote file /tmp/par.remote
replace into cal.par for exception cal.parexp
using /tmp/par.dir;

� �

If no exception table is specified in the load command, only the total number of
rows which violate the unique key index will be displayed as a warning message
on the screen. No copy of the specific rows will be kept.

From the message file, you will get the following information on completion of
the load:

106 DB2 V2 Planning Guide for DBAs

� �
SQL3500W The utility is beginning the ″LOAD″ phase at time ″08-25-1995
10:52:34.877189″ .

SQL3109N The utility is beginning to load data from file
″ /home/inst02/data/calpar.ixf″ .

SQL3150N The H record in the PC/IXF file has product ″DB2 01.00″ , date
″19950825″, and time ″103855″.

SQL3153N The T record in the PC/IXF file has name ″calpar.ixf″ ,
qualifier″ , and source ″ ″ .

SQL3110N The utility has completed processing. ″4″ rows were read from
input file.

SQL3519W Begin Load Consistency Point. Input record count = ″4″.

SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the ″LOAD″ phase at time ″08-25-1995
10:52:35.851971″ .

SQL3500W The utility is beginning the ″BUILD″ phase at time ″08-25-1995
10:52:35.893648″ .

SQL3515W The utility has finished the ″BUILD″ phase at time ″08-25-1995
10:52:36.014830″ .

SQL3500W The utility is beginning the ″DELETE″ phase at time ″08-25-1995
10:52:36.815156″ .

SQL3509W The utility has deleted ″2″ rows from the table. �*�

SQL3515W The utility has finished the ″DELETE″ phase at time ″08-25-1995
10:52:37.079315″ .� �

When a table with a unique index is loaded, rows causing a violation of the index
will be deleted from the table during the delete phase. This message (�*�)
provides information on how many rows have been deleted.

The load has ended successfully, but two input rows have been written into the
exception table because they violated the index key. You need to decide if these
rows do indeed contain the correct data or if they need to be corrected. In either
case, you can then reload the rows into the target table from the exception table.

5.4.3 Example 3 - A Constraint Violation
In this load scenario, as represented in Figure 27 on page 108, a user has
prepared an input file and created a target table (cal.par). In this case, the
target table has a parent table (cal1.par) containing a unique key on the first
column. The target table was created with a foreign key referenced on the
parent table. This represents a scenario that can occur while you are loading
data into a table with referential constraints.

Chapter 5. Data Movement 107

Figure 27. A Load with a Constraint Violation

The load command for this example as placed in a file is:

� �
load from calpar.ixf of ixf messages par.msgs
remote file /tmp/par.remote
using /tmp/par.dir
insert into cal.par for exception cal.parexp;

� �

From the message file, you can get the following information

108 DB2 V2 Planning Guide for DBAs

� �
SQL3500W The utility is beginning the ″LOAD″ phase at time ″08-29-1995
10:40:32.654674″ .

SQL3519W Begin Load Consistency Point. Input record count = ″0″.

SQL3520W Load Consistency Point was successful.

SQL3109N The utility is beginning to load data from file
″ /home/inst02/data/calpar.ixf″ .

SQL3150N The H record in the PC/IXF file has product ″DB2 01.00″ , date
″19950825″, and time ″111045″.

SQL3153N The T record in the PC/IXF file has name ″calpar.ixf″ ,
qualifier″ , and source ″ ″ .

SQL3110N The utility has completed processing. ″5″ rows were read from
input file.

SQL3519W Begin Load Consistency Point. Input record count = ″5″.

SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the ″LOAD″ phase at time ″08-29-1995
10:40:33.599667″ .� �

This message file listing would seem to indicate that the load has completed
successfully. In addition, the messages that appear on the workstation screen
indicate that everything has proceeded normally:

� �
Number of rows read = 5
Number of rows skipped = 0
Number of rows loaded = 5
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 5� �

These messages still do not indicate that the load has encountered any difficulty.
Next, you should check tablespace states by using this command:

� �
db2 list tablespaces� �

The output of this command is:

� �
 Tablespace ID = 4
 Name = TS033
 Type = Database managed space
 Contents = Any data
 State = 0x0020 �*�

Backup Pending� �

�*� 0x0020 means that the tablespace, in which the table resides, is in a backup
pending state. Even though the tablespace state is not in a normal state, the
load was successful. Backup pending is placed on a tablespace when the
default option of copy no is taken and archival logging is being done on the
database. After doing a tablespace backup as required by the state information,
the tablespace is returned to a normal state. That is, the tablespace state will
be 0x0000. However, if you try to select from the table, the following error
message may be received:

Chapter 5. Data Movement 109

� �
SQL0668N Operation not allowed when the underlying table is in Check
Pending. SQLSTATE=57016� �

5.4.3.1 Check Pending
Check pending is a table state, not a tablespace state. It means that some of the
rows from the operation, in this case a load, have violated a constraint condition.
If you try to access a table that is in check pending, you will receive an error
code of SQL0668N.

This message indicates that some of the rows attempted by the load violated a
constraint. In this case, the child table, cal.par, has a foreign key that has
violated referential integrity placed on it by the parent table, cal1.par. To verify
the status of tables, check the table status in the syscat.tables system catalog
with the following command:

� �
db2 ″select tabname, status, const_checked from syscat.tables
where tabname in (′ cal1.par′ , ′ cal.par′) ″� �

Following is an example where one of the tables is in check pending state.

� �
TABNAME STATUS CONST_CHECKED
------------------ ------ --------------------------------
cal1.par N YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
cal.par C NYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY� �

Status C indicates check pending state; N is normal state. The N in the
CONST_CHECKED column indicates that one constraint needs to be applied.

If a table is in the check pending state, then you should execute the set
constraints command by using the exception table, cal.parexp. The command to
do this is similar to the following:

� �
db2 ″set constraints for cal.par immediate checked
for exception in cal1.par use cal.parexp″

� �

This results in the following message:

� �
SQL3602W Check data processing found constraint violations and moved
them into the exception table. SQLSTATE=01603� �

Even though the load process is complete, you could not access the table until
the set constraints command is performed. As a final step, you can now verify
that the status of the table in the syscat.tables system catalog is normal.

� �
TABNAME STATUS CONST_CHECKED
------------------ ------ --------------------------------
CAL1.PAR N YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
CAL.PAR N YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY� �

110 DB2 V2 Planning Guide for DBAs

A decision can be made about the rejected rows that were placed in the
exception table as to what actions, if any, will be taken to correct the data, and
either load or import them back to the target table. Alternatively, the constraints
could be relaxed to accommodate the rows.

5.4.4 Example 4 - Loading LOBs
The load command also allows you to load large objects or LOBs into a table. If
the LOBs are contained within the load input file or device, then the load
command requires no additional parameters to include the LOBs. However, the
LOBs may be located separate from the load file. They may be stored in a
directory on the database server. The column in the input file for the load
operation will contain the name of the LOB file on the server. For example, a
non-delimited ASCII file may look like the following:

� �
Test data 12345 lobfile1
More data here234556 lobfile2

� �

In the above example, columns 1 to 14 represent the first column of the table
and columns 15 to 24 may be the second column, while column 25 to 35
represent the LOB column and contain the name of the LOB file on the server.

In the second example, the ixf file and the LOB files may be created from an
existing database table by using the export command. The following command
exports the emp_resume table from the sample database.

� �
db2 ″export to emp_resume.ixf of ixf
lobs to ′ . / lobs/′ modified by lobsinfile
′ select * from emp_resume′ ″

� �

Then, to load the exported data into a table called resume, you would use the
following load command:

� �
db2 ″load from ′ emp_resume.ixf′ of ixf
lobs from ′ . / lobs′ modified by lobinsfile
messages ′ . / resume.msg′ remote file ′ . / resume.rem′
insert into resume″

� �

5.5 What Happens If A Load Fails?
Diagnosing a load failure situation is a non-trivial exercise. Should the load
utility fail, the tablespace will be placed either in a load pending or
delete-pending state, which must be corrected to access the tablespace and the
tables. The following points may be helpful in determining the problem:

 1. An SQLCODE return code and a short explanation wil l be returned when an
error occurs. This return code may be misleading since it may only yield
information for a symptom, rather than the cause of the problem.

 2. By viewing the messages file, you may get information about the progress of
the load operation. This is where warning and error messages that occur

Chapter 5. Data Movement 111

during the load will be written. However, the messages file may not be
available for viewing, depending on the failure and the phase in which the
failure occurred. The remote file may be viewed using the load query
command. The remote files are temporary internal files from which
information from the remote file gets written to the messages file. This is
explained in 5.6, “The Load Query Command” on page 113.

 3. Finally, you could check the db2diag.log file to understand the sequence of
events taking place within the database. The path of the db2diag.log file is
set by the database manager configuration parameter, DIAGPATH. By
default, DIAGPATH is not set. The default placement of db2diag.log is in the
db2dump subdirectory for AIX and in the instance directory for OS/2. A time
stamp will tell when the error occurred. The instance name, function name
and database alias are all listed to assist in pinpointing the error. A
diagnostic message (DIAxxxx) explains the error that occurred.

Given an understanding of the database environment you are working with, the
above points should allow you to determine the current state of your database,
tablespaces and tables.

The following table contains most of the SQL return codes which can occur
during a load operation, along with an explanatory note.

Table 21 (Page 1 of 2). Valid Load Parameters, Invalid Conditions

Description of Situation SQL Return Code

Invoke load when not connected to
database

1024

Input file does not exist 3025

Do not have read permission on input
file

2061

Directory specified for remote file does
not exist

3508

No write permission on remote file 3508

Directory specified for message file does
not exist

3006

Copy_target does not exist 3508

Copy_target not writable fi le 2061

Working directory does not exist 3508

Copy yes, forward recovery disabled for
the database

3522

Ask for statistics with insert option 2032

Table specified does not exist 3304

112 DB2 V2 Planning Guide for DBAs

Table 21 (Page 2 of 2). Valid Load Parameters, Invalid Conditions

Description of Situation SQL Return Code

Exception table specified does not exist 3304

Exception table and load table do not
match

3604

Constraints/triggers on exception table 3604

5.6 The Load Query Command
If your load operation fails, you will need to decide if you should either restart
the load operation or restore to a prior state. The load query command can be
used to get more diagnostic or recovery information to speed up the
recovery/restart process. It allows you to access the temporary files (remote
file) that are created during the load process to identify at what point the load
failed and where it can be restarted from. To use it, you require a connection to
the database. The command can be used by local or remote users. The syntax
for the load query command is:

��──LOAD QUERY──remote file──TO──local-message-file────────────────────────────────────��

where

remote file Identifies the base file name from which the system
created three internal temporary files (basename.rid,
basename.log and basename.msg) during the load
process. The default base file name is DB2UTMP, and the
default location depends where the command was invoked.
If the load is started from the database server, the default
directory is the current directory. If the load is initiated
from a remote client, the default directory is the database
directory. These files are destroyed on completion of the
load, but some of their information content is copied to the
messages file. However, in the case of a load failure
where you might not have access to the messages file, the
remote file can be viewed by the load query command to
identify the last consistency point reached (only if the
SAVECOUNT option has been specified in the load
command).

local-message-file Specifies a file where you want the contents of the load
query command sent to. This file should not be the
messages file identified in the load command.

The output of a load query command is similar to the messages file. If during
the load the system crashed, the messages file will never be built. However,
you can still view the remote file with the load query command to assess the
progression of the load and to identify the last consistency point, having
specified the SAVECOUNT option in the load command. (See �1� and �2� in the

Chapter 5. Data Movement 113

remote file example below). The load command was executed from the following
file:

� �
load from staffbig.ixf of ixf messages staffbig.msgs
remote file staffbig.remote
insert into staffbig.tab for exception staffbig.exp
SAVECOUNT 1000

� �

At �1� and �2�, consistency points were established after 1000 and 2000 rows
were loaded. You could restart from either of these points without having to
repeat the entire load. That is, you could restart the load using the restart
option and restartcount 1000 or restartcount 2000.

� �
SQL3500W The utility is beginning the ″LOAD″ phase at time
″07-13-1995 19:40:29.645353″ .

SQL3519W Begin Load Consistency Point. Input record count = ″0″

SQL3520W Load Consistency Point was successful.

SQL3109N The utility is beginning to load data from the file
″ /u/mydir/data/staffbig.ixf″

SQL3150N The H record in the PC/IXF file has product ″DB2 01.00″ ,
date ″19950611″, and time ″194554″.

SQL3153N The T record in the PC/IXF file has name
″data/staffbig.ixf″ , qualifier ″ ″, and source ″ ″ .

SQL3519W Begin Load Consistency Point. Input record count=
″1109″. �1�

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count=
″2117″. �2�

SQL3520W Load Consistency Point was successful.� �

Note that although the SAVECOUNT option was specified as 1000, the
consistency points do not occur exactly every 1000 rows. An approximation
takes place.

5.7 Load Command Tests
We carried out a number of tests to determine the operating characteristics of
the load process under various environmental conditions. We then identified
how to resolve the resulting error situations. The error situations result in the
following pending states:

• Load pending

• Delete pending

The condition that caused these pending states is likely to be one of these:

• Storage Media Constraint

• DB2 System Crash

114 DB2 V2 Planning Guide for DBAs

The impact and resolution of these situations varies depending on environmental
and configuration factors you have put in place:

• Logretain off (circular logging enabled)

• Logretain on (archive logging enabled)

• Using Database Managed Storage/Space (DMS) for user tables and
tablespaces

• Using System Managed Storage/Space (SMS) for user tables and
tablespaces

• Copy yes (copy of load being made during load)

• Copy no (no copy of load being made)

5.8 Storage Media Constraints
From the many failure situations that may occur, the most likely will be storage
related. In this section, we show test results for five possible situations where
different areas of storage are exhausted and cause the load to fail.

5.8.1 Remote File
When performing a load, there are three temporary files created which are
collectively referred to as the remote file. These files are created on the server,
and their location may be specified in the load command. These files may grow
quite large and may possibly fill the storage media. By default, the three files
that make up the remote file are placed in the current directory is the load is
started from the database server. If the load is started from a remote client, the
default location is the database directory.

Using the following load command, we simulated the situation where the remote
file ran out of storage space.

� �
load from calpar.ixf of ixf.messages par.msgs remote file par.remote
replace into cal.par� �

When the remote file ran out of storage, the SQL return code was:

� �
SQL3508N Error in accessing a file of type ″LOGFILE″ during load or load
query. Reason code: ″3″. Path: ″par.remote.log″� �

The explanation of this message is that an error occurred in trying to open, read
from, write to, or close the remote log file during the processing of the load
command. The prescribed user response is to ensure that your remote file
directory is specified properly; there must be enough disk space to write out
index keys for all the indexes to be built in this directory.

You should check the state of the tablespace where the target table resides.
Depending on the stage at which this error occurred, you may need to take
further action to recover fully. If the tablespace is in a recoverable state, then
you may correct the error and re-run the load. Here, correcting the error would
be to redirect the remote file to a larger filesystem/directory.

Chapter 5. Data Movement 115

It is possible that the load failed at a point that it is unable to fully recover from.
You may try using the load query command to check the status of the load.

� �
db2 load query par.remote to par.query

� �

You will normally receive information about the load status; however, in some
failure situations, you may receive the following message:

� �
SQL3523W There are no messages to be retrieved from the message file.
Reason code: ″1″.� �

Reason code ″1″ means that the remote file does not exist. The recommended
recovery action is to perform one or more of the following tasks:

 1. Remove files or increase size of file system where the remote file is located.
After more space has been allocated, you can restart your load from the
beginning by again using this command.

� �
load from calpar.ixf of ixf messages par.msgs
remote file par.remote
restart into cal.par

� �
 2. Alternatively, you could do the following:

a. Reissue the load again with the replace option and using as input an
empty file (zero length).

b. This should take the tablespace out of load pending

 c. Drop the table

d. Reissue the load command.

5.8.2 Using the Directory Option of the Load Command
The using directory option of the load command redirects the temporary sort
files that are built when a load is performed on a table that has indexes. Should
these files fill the directory/filesystem that they are stored in, the load will fail
with the following error:

� �
SQL3508N Error in accessing a file of type ″SORTDIRECTORY″ during load
or load query. Reason code: ″3″. Path: ″ /home/data/small/″ .� �

The load has failed, and the tablespace will be left in a load pending state. To
recover from this, you will need to increase the size of the storage available to
the using directory option, and restart the load command.

5.8.3 DMS Tablespace and Container
Having created a target table in a DMS tablespace, if the extent size or the size
of the load has been miscalculated, it is possible for the DMS tablespace to fill
up. The following command was used in creating a situation where this
occurred.

116 DB2 V2 Planning Guide for DBAs

� �
load from calpar.ixf of ixf savecount 5000 messages par.msgs
remote file par.remote replace into cal.par� �

When the DMS container ran out of storage, the SQL return code was:

� �
SQL0289N Unable to allocate new pages in a tablespace SQLSTATE=57011� �

The explanation of this message is that all the containers assigned to this
tablespace are full. Details can be found in the db2diag.log and/or the database
manager error log.

The tablespace states looked like this:

� �
 Tablespace ID = 3
 Name = TS03
 Type = Database managed space
 Contents = Any data
 State = 0x0008 �*�
 Total pages = 1000� �

�*� 0x0008 means Load Pending state.

View the message file or remote file (if no message file has been generated) to
find the last successful commit point:

Chapter 5. Data Movement 117

� �
SQL3500W The utility is beginning the ″LOAD″ phase at time ″08-31-1995
13:56:42.659689″ .

SQL3519W Begin Load Consistency Point. Input record count = ″0″.

SQL3520W Load Consistency Point was successful.

SQL3109N The utility is beginning to load data from file
″ /home/inst02/data/ixf.A0DB24.A0AOCTTD″ .

SQL3150N The H record in the PC/IXF file has product ″DB2 01.00″ , date
″19950509″, and time ″153923″.

SQL3050W Conversions on the data will be made between the IXF file code
″850″ and the application code page ″819″.

SQL3153N The T record in the PC/IXF file has name ″ixf.A0DB24.A0AOCT″ ,
qualifier ″ ″ , and source ″ ″ .

SQL3519W Begin Load Consistency Point. Input record count = ″6042″.

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = ″12122″.

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = ″18202″.

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = ″24272″.

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = ″30352″.

SQL3520W Load Consistency Point was successful.

SQL0289N Unable to allocate new pages in a table space SQLSTATE=57011

SQL0289N Unable to allocate new pages in a table space SQLSTATE=57011� �

To recover from the load fail situation, add new container(s) to the tablespace,
and try the operation again. The command to add a new container to an existing
DMS tablespace is:

� �
db2 ″alter tablespace caltbsp add (file ′ / calpath′ 1000)″� �

In this example, we are adding 1000 new pages to the tablespace. You should
re-estimate the required size of your tablespace based on the data being input,
and add sufficient pages to allow the load to complete successfully.

Before continuing, you should ensure that the data has been re-balanced across
all the available containers. To check this, you should look for the following
message in the db2diag.log, which is located in the db2dump subdirectory of the
instance (AIX), in the instance directory (OS/2) or as set by the DBM
configuration parameter, DIAGPATH (AIX and OS/2).

� �
inst02 pid(29116) process (db2rebal)
buffer_pool_services sqlb_rebalance Probe:2877

Rebalancer completed successfully 0003 �*�� �

118 DB2 V2 Planning Guide for DBAs

�*� Check that this number correctly matches the tablespace ID.

You may now restart the load from the last successful consistency point. In our
example, this was at row 30352.

� �
db2 ″load from calpar.ixf of ixf restartcount 30352
messages par.msgs remote file par.remote restart into cal.par″� �

At this stage, the tablespace states are:

� �
 Tablespace ID = 3
 Name = TS03
 Type = Database managed space
 Contents = Any data
 State = 0x0020 �*�
 Total pages = 4000� �

�*� 0x0020 means backup pending. You may notice an increased number of
pages for this tablespace. This was after the container was added to the
tablespace. You are now required to perform a backup before the tablespace
will return to normal state.

5.8.4 Container in an SMS Tablespace
As with the container example in an DMS tablespace, it is possible for a
container in an SMS tablespace to fill during a load. However, in an SMS
tablespace, you cannot add another container. You can increase the size if it is
an AIX filesystem and if space exists, or delete files from the container (both AIX
and OS/2). Having created a target table in an SMS tablespace, and with
logretain on, we used the following load command to cause the situation where
the SMS tablespace filled during the load.

� �
db2 ″load from ixf.file of ixf messages parmsgs
remote file par.remote insert into caltable″� �

The following message will be received when the SMS tablespace storage is
exhausted:

� �
SQL0901N The SQL statement failed because of a non-severe system error.
Subsequent SQL statements can be processed. (Reason ″-10740″ .)� �

If you cannot free disk space by removing files from the filesystem or increasing
the size of the filesystem, there are several options you may consider.

 1. You may try to re-issue the load command using the restart option with
RESTARTCOUNT B. This will truncate the table to the last consistency point
achieved during the load process. This may be sufficient for your storage
requirements. However, by specifying a RESTARTCOUNT B to the restart
option, the load utility will start at the build phase. Should you have indexes,
you may still encounter storage problems.

 2. As another alternative, you could restart the load using the restart option
with RESTARTCOUNT n. However, n in this situation should be greater than

Chapter 5. Data Movement 119

the total number of rows in your input file. Again, this will truncate the table
to the last consistency point.

 3. Another alternative is to perform a full database restore to recover from the
failure. This is described further.

� �
restore database caldb from ′ / calpath′� �

If you are doing a database restore, you will also rollforward your database
to a point in time just before the load was started. The timeline below
represents the different points in time when the backup, load, failure, and
restore take place.

� �
T T+1 T+2 T+3

time_____|______________________|_______|_____________|_______
| | | |

Backup Load Load Fails Restore� �
You have to rollforward the database to time > T and < T+1 to return to
normal state. The command to rollforward to the time 8:33 on 19 July 1995
would look like the following:

� �
rollforward database caldb to ′1995-07-19-08.33.00′ and stop� �

If you specify logretain off, the recovery action is the same, except that you
will not rollforward. Instead, you restore to the point of the last backup, and
all transactions since the backup will be lost.

5.8.5 Copy Target File/Device
If you are using the copy option of the load command, a situation may exist
where the target file or device is exhausted of storage. To create this situation,
we used the following load command:

� �
db2 ″load from calpar.ixf of ixf messages par.msgs
remote file par.remote insert into cal.par copy yes to ′ / calpath′ ″� �

This is the message you obtain from the system:

� �
SQL3706N A disk full error was encountered on ″ / calpath″ .� �

Your tablespace looks like this:

� �
 Tablespace ID = 3
 Name = TS03
 Type = Database managed space
 Contents = Any data
 State = 0x0008 �*�� �

�*� 0x0008 means Load Pending state. Because you have specified the copy yes
option of the load command and the filesystem/directory for the copy was not
large enough, your tablespace is in a load pending state. You have two choices:

• Free-up storage in the container (filesystem). Here, we used /calpath.

120 DB2 V2 Planning Guide for DBAs

• Change the target directory for the copy.

It is recommended that you restart the load from the beginning. The copy image
from the initial load did not complete properly.

To restart the load, we used the following command:

� �
db2 ″load from ixf.file of ixf savecount 5000 messages par.msgs
remote file par.remote restart into table-name
copy yes to ′ / newcalpath′ ″� �

You cannot specify copy yes in a logretain off environment. If you try to do this,
you will receive the following message:

� �
SQL3522N A copy target cannot be provided when both log retain and
user exits are disabled.� �

5.9 DB2 System Crash
In the event that the DB2 system crashes due to some operating or processing
system error or user intervention, the DB2 agent or process controlling a load
will be killed. Only one scenario is presented: one where a load copy is not
being taken, the default, and LOGRETAIN is enabled.

5.9.1 DB2 Agent/Process Killed and Copy No Option
With the copy no option, a tablespace will be placed in a backup pending state
after the load completes.

The load command issued was :

� �
load from calpar.ixf of ixf savecount 5000 messages par.msgs
remote file par.remote restart into cal.par� �

The SQL return code that will appear on the screen is:

� �
SQL1224N A database agent could not be started to service a request, or
terminated as a result of a database system shutdown or a force command.
SQLSTATE=55032� �

This is the only diagnostic information available to you as the entire DB2
instance will be brought down, and you will not be able to execute the load query
command because you have no database connection.

At this point, you will have to start the database manager again, and connect to
the database. Now, the tablespace states are:

Chapter 5. Data Movement 121

� �
 Tablespace ID = 3
 Name = TS03
 Type = Database managed space
 Contents = Any data
 State = 0x000c �*�
 Total pages = 4000� �

�*�0x000c means Quiesced Exclusive and Load Pending.

The action to take is to perform a quiesce reset to put the tablespaces in a load
pending state only. Here is the command:

� �
db2 ″quiesce tablespaces for table caltable reset″� �

The tablespace states are now:

� �
 Tablespace ID = 3
 Name = TS03
 Type = Database managed space
 Contents = Any data
 State = 0x0008 �*�
 Total pages = 4000� �

�*�0x0008 means load pending.

A remote file will have been generated if you have specified it in your load
command. Execute the following load query command to extract information
from the remote file on the progress of the load process:

� �
db2 ″load query par.remote to par.query″� �

Here are the contents of the remote file:

122 DB2 V2 Planning Guide for DBAs

� �
SQL3500W The utility is beginning the ″LOAD″ phase at time ″08-31-1995
15:05:10.793656″ .

SQL3519W Begin Load Consistency Point. Input record count = ″0″.

SQL3520W Load Consistency Point was successful.

SQL3109N The utility is beginning to load data from file
″ /home/inst02/data/ixf.A0DB24.A0AOCTTD″ .

SQL3150N The H record in the PC/IXF file has product ″DB2 01.00″ , date
″19950509″, and time ″153923″.

SQL3050W Conversions on the data will be made between the IXF file code
″850″ and the application code page ″819″.

SQL3153N The T record in the PC/IXF file has name ″ixf.A0DB24.A0AOCT″ ,
qualifier ″ ″ , and source ″ ″ .

SQL3519W Begin Load Consistency Point. Input record count = ″6042″.

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = ″12122″.

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = ″18202″.

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = ″24272″.

SQL3520W Load Consistency Point was successful.� �

You can use the file information to restart the load at the correct point, if you
have specified the SAVECOUNT option in the load command. The number of
rows you have successfully loaded becomes the starting point (RESTARTCOUNT)
for the load restart process. Execute the following command to restart the load
process:

� �
db2 ″load from calpar.ixf of ixf restartcount 24272
messages par.msgs remote file par.remote restart into cal.par″� �

Messages appear after you restart the load. The “Number of rows skipped” is
the number you found on the local message file after the load query, a number
that you specified in the RESTARTCOUNT option. Other messages that appeared
in our test were:

� �
Number of rows read = 61608.
Number of rows skipped = 24272.
Number of rows loaded = 61608.
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 61608.� �

After the restart load has completed, the tablespaces are in a backup pending
state (0x0020). Perform the backup to return them to normal state.

Chapter 5. Data Movement 123

5.10 Load Statistics
The load utility allows for building indexes and gathering statistics for a table as
part of the load. This is more efficient than executing the three phases
separately. Keys are sorted and statistics are collected during the load phase,
which removes some of the overhead involved in issuing separate CREATE
INDEX and RUNSTATS statements, but for larger tables, the number of indexes
and whether statistics are collected or not become key factors in the total load
time. Collecting statistics will affect the performance of the load.

One of the parameters of the load command is whether or not you require
statistics to be gathered during the load process. By specifying statistics yes,
statistics will be gathered for the target table and for any existing indexes.
However, this option is not supported if the load is in insert or restart mode. It is
only supported in replace mode. Parameter options include:

• With Distribution - means that distribution statistics are kept.

• And Indexes All - update statistics for both the table and its indexes.

• For Indexes All - update statistics for the indexes only.

• Detailed - means that extended index statistics are requested.

By specifying statistics no, no statistics will be gathered, and that the statistics in
the catalogs will not be altered.

5.11 Import/Export
Although both the import and load utilities are used to load data into a database,
it is important to understand the differences between the two utilities:

Table 22 (Page 1 of 2). Differences between the IMPORT and the LOAD Utilities

The Import Utility The Load Utility

Creation of table and indexes supported
with IXF format

Table and indexes must exist

WSF format is supported WSF format is not supported

Can import into aliases, views and table Can load into tables only

The tablespace(s) that contain the table
and its indexes are online for the
duration of the import

The tablespace(s) that contain the table
and its indexes are offline for the
duration of the import

Triggers will be fired Triggers are not supported

If an import is interrupted and a commit
count had been specified, the table is
usable and will contain the rows that
were loaded up to the last commit. The
user has the choice to restart the import
or use the table as it is

If a load is interrupted and a
SAVECOUNT option had been specified,
the table remains in load pending state
and cannot be used until the load is
restarted to continue the load or until
the tablespace is restored from a
backup image created some time before
the load

124 DB2 V2 Planning Guide for DBAs

The following changes have been made to import/export to support new data
types in Version 2:

 1. UDTs - During export, the base type will be stored in IXF files. If using the
IXF file to create a new table doing an import, the new table will have the
base type that the column types have instead of the UDT. The import utility
will support putting a base type that can be cast into the UDT. Import will
cast the UDTs so that the qualifier is explicitly stated when importing into a
UDT.

 2. LOBs - For export, you can select LOB column types and have the data
stored in the file itself or in separate files for each LOB column/row by using
the filetype-mod option lobsinfile and the LOBPATH/LOBFILE parameters.
The LOBPATH parameter specifies the paths in which the individual files
containing the LOBs are to be placed and must end with a valid path
separator. If it is not provided but lobsinfile is specified, the same path as
the datafile will be used.

 3. Support for non-atomic compound SQL is added to import/export for
performance reasons, especially when in use with DDCS gateway machines
connecting to host database. Insert statements are blocked together and
sent in a block to limit the network traffic as compared to doing individual
insert statement. Back-level servers not supporting compound SQL will use
individual INSERT statements.

Table 22 (Page 2 of 2). Differences between the IMPORT and the LOAD Utilities

The Import Utility The Load Utility

All constraints are validated during an
import

Uniqueness is verified during a load, but
all other constraints must be checked
using the check data API

The keys of each row are inserted into
the index one at a time during the
import

During a load, all the keys are sorted,
and the index is built after the data has
been loaded. There will not be any page
splits in the indexes following a load

If up-to-date statistics are required after
an import, RUNSTAT must be executed

Statistics can be gathered during the
load

You can import into host database with
DDCS

You can not load into host database

Files that are imported must reside on
the node where import is invoked

Files/pipes that are loaded must reside
on the node where the database resides

5.11.1 Converting Between SMS and DMS Tablespaces
By using the export and import/load utilities, you can move data from an SMS
tablespace environment to a DMS tablespace and back again. This may be
necessary for operational and/or performance reasons. Because the export
utility exports data from a database into an operating system file, it does not
carry with it any references to the tablespace type it was stored in. Once the
data is in an operating system file, you can then input it back into the database
by using the import or load utilities and selecting the tablespace type of your
choice.

An example of the command for exporting data is:

Chapter 5. Data Movement 125

� �
db2 ″export to staff.ixf of ixf select * from userid.staff″� �

The following information is required when exporting data:

• A SELECT statement specifying the data to be exported.

• The path and name of the operating system file that will store the exported
data.

• The format of the data in the file. This format can be IXF, WSF (worksheet or
spreadsheet format), or DELimited ASCII. Note that IXF is the recommended
format for transferring data between DB2 common server databases. To
provide compatibility within the DB2 common sever family, the export utility
creates files with numeric data in Intel format, and the import utility expects
it in this format.

• A message file name.

The import utility inserts data from an input file into a table or a view. If table or
view receiving the imported data already contains data, you can either replace
or append the existing data with the data in the input file.

An example of the command for importing data is:

� �
db2 ″import from stafftab.ixf of ixf insert into userid.staff″� �

The following information is required when import data to a table or a view:

• The path and input file name where the data to import is stored.

• The name or alias of the table or view where the data will be imported.

• The format of the data in the input file. This format can be IXF, WSF
(worksheet or spreadsheet format), delimited ASCII or non-delimited ASCII.

• Whether the data in the input file is to be inserted, updated, replaced, or
appended to the existing data in the table or view.

• A message file name.

For delimited ASCII, WSF and ASCII data-file formats, define the table, including
column names and data types, before importing the file. The data types in the
operating system file fields are converted into the corresponding type of data in
the database table. For IXF data file formats, the table does not need to exist
before beginning the import; it can be automatically created when the data is
imported.

If you use the load utility to input a previously exported file, be aware that it does
not support the WSF data type; that is data stored as spread sheets. This
restricts you to either using IXF or or delimited ASCII files if using export
followed by load in converting tablespace types.

126 DB2 V2 Planning Guide for DBAs

5.12 Data Propagator Relational (DPropR)
Data Propagator Relational copies data automatically between DB2 relational
database management systems on platforms supporting Distributed Relational
Database Architecture (DRDA) connectivity.

Figure 28. Data Propagator Relational

There are three pieces or components to the DPropR product: the Change
Capture Program, the Apply Program and the Administrator Facility.

The Change Capture Program captures the changes from selected tables. These
tables can be external tables containing SQL data from a file system or
non-relational database manager, from existing tables in the database or from
tables that have previously been updated by the Apply Program.

The Apply Program takes the changes from the changed data tables and copies
the data to the target tables.

The Administrator Facility assists with creating and maintaining the copying
environment.

There are no standard program linkages between these distributed components.
All control data and user data flows between them via SQL tables. None of
these components has any dependency on any particular type of physical
network, network protocol or communications API.

Each of the components is able to operate, regardless of the state of the other
components. Changed data is stored in SQL tables; so user data is not lost as a
result of a program failure.

Chapter 5. Data Movement 127

Refer to the DataPropagator Relational User′s Guide for further information.

5.13 Customer Scenario
This section discusses the way in which the telephone company will handle
moving data into a DB2 database.

5.13.1 Telephone Company
The database being used by the phone company is reloaded every three months
as the DB2/MVS database that is used as a “source” to propagate data to the
DB2/AIX database, is also reloaded. Reloads of DB2/MVS databases take place
when new data is acquired from external information systems.

This “data acquisition” is scheduled to occur over the next two years. The
volume of data being acquired impedes use of the regular channel of updating
tables through DPropR. Planning for these upcoming eight loads will use the
following schedule:

• Loads will take place during weekends. Data is first loaded into the
DB2/MVS database. After loading, it goes through a validation process, and
it is dumped to tape. DB2/MVS administrators are committed to have the
tapes available by Sunday at 8 a.m.

• DB2/AIX administrators will load the database from these tapes. The load
process deadline is Sunday at 4 a.m. By then, the entire database must be
loaded. Functional tests will take place from 4 p.m. to 6 p.m.

• In case of severe problems during the dump/load of the data, administrators
will restore their backups. The time window for restoring the databases
(both DB2/MVS and DB2/AIX) is from Sunday at 6 p.m. to Monday at 6 a.m.

Before loading the tables, the AIX database administrator will take a complete
backup of the database. As tables to be loaded will inevitably be larger that the
previous tables, special attention should be given to the sizes of the tablespaces.
Containers should be added to tablespaces. Information on the storage
requirements of the tables that will be loaded is gathered during the days prior
to the load.

Before loading data, it is beneficial to lower the amount of memory assigned to
the buffer pool and increase the size of the utility heap size. This heap indicates
the amount of memory that the backup, restore and load utilities can use. By
default, it is 5000 4 KB pages. Since the buffer pool is not used while loading
data, the database administrator lowered it to 100 MB during the load. Memory
freed from the buffer pool is given to the utility heap size. The UTIL_HEAP_SZ is
increased to 40000 4 KB pages. This parameter is a database configuration
parameter.

For the load process, tables are classified according to the tablespace where
they are stored. Grouping tables into tablespaces was made according to the
size of the tables and the frequency of modifications.

128 DB2 V2 Planning Guide for DBAs

All the tables being loaded share the following options of the load utility:

• Loading is done from the 3490 tape device.

• The format of the source data being loaded is delimited ASCII.

• The load action will be REPLACE. REPLACE will delete all the existing data
from the table and will insert the loaded data. Table and index definitions
are not changed.

• No exception tables will be created as the data is already “verified” in
DB2/MVS.

• DATA BUFFER is set to 20000 4 KB pages. This is memory allocated for data
buffers during the load.

• SORT BUFFER is set to 10000 4 KB pages. This is memory used for sorting
key index.

Table 23. Phone Company - Tables Per Tablespace

space01 space02 space03 space04 to space11

25 Tables 9 Tables 9 Tables 1 Table/tablespace

5.13.1.1 Tables Stored in Tablespace space01
These 25 tables are small tables (under 1000 rows). Since they are grouped in a
single tablespace, the load will be performed with the copy yes option, so the
tablespace will not be placed in a backup pending after each table is loaded.
When the 25 tables of the tablespace are loaded, the database administrator will
take a tablespace backup. Since the number of rows of each table is small, the
SAVECOUNT option will not be specified. Messages will be kept for statistical
purposes. For these tables, the load utility will be invoked with the following
options:

• SAVECOUNT will not be specified.

• Messages will be sent to a different message file for each table.

• STATISTICS YES and INDEXES ALL options will be specified so no REORGs
will be needed after the load.

• COPY YES, as already discussed.

5.13.1.2 Tables Stored in Tablespaces space02 and space03
These 18 tables are medium size tables (between 1000 and 100000 rows). Tables
will be loaded with the copy yes option to avoid having to take a backup after
each load. The SAVECOUNT option is set to 20000 rows, to minimize the time
required to reload the table if the load is interrupted. For these tables, the load
utility will be invoked with the following options:

• SAVECOUNT 20000

• Messages will be sent to different message file for each table.

• A different remote file will be specified for each table.

• Statistics yes and indexes all

• Copy yes

Chapter 5. Data Movement 129

5.13.1.3 Tables Stored in Tablespaces space04 to space11
These nine tables are large tables (more than 100000 rows). Each table is stored
in a separate tablespace. Tables will be loaded with the copy no option.
Loading with this option will place the tablespace in a backup pending state, but
will be faster. After the load is finished, the database administrator will backup
the tablespace to a different tape drive (an 8 mm drive) than the one being used
by the load utility (3490 drive). The SAVECOUNT option is set to 100000 rows.
For these tables, the load utility will be invoked with the following options:

• SAVECOUNT 100000

• Messages will be sent to different message file for each table.

• A different remote file will be specified for each table.

• STATISTICS YES AND INDEXES ALL

• COPY NO

130 DB2 V2 Planning Guide for DBAs

Chapter 6. Logging

The aim of this chapter is to introduce the concept of logging in a relational
database system. We examine why logs are used as well as how log files relate
to SQL statements. This is followed by a detailed look at the different logging
options available when setting up a DB2 database. Also, a discussion of how log
files are used in recovery situations is included.

6.1 Overview
It would be impractical, from a performance point of view, for a database system
to write out changes in data for each user whenever they were made. Most, if
not all, relational database systems will batch these changes so that data
modified by several users will only have to be written once. This allows the
database system to determine when the most efficient time would be to write the
changes to permanent storage. The flaw with this implementation is how to
recover from a system crash. Since the changes were not written out
immediately, there is no way to recover them. This is why the concept of
database logs was developed. Logs are files which are used by DB2 to ensure
the integrity of your database even when the system crashes due to some
unforeseen problem, such as a power failure. To fully understand the purpose of
logging, the concepts of unit of work and database transactions must first be
explained.

6.1.1 Unit of Work
In order to ensure consistency of the data in a database, it is often necessary for
applications to apply a number of changes all at once, or not at all. This is
called the unit of work. A unit of work is a recoverable sequence of operations
within an application process. The unit of work is the basic mechanism that an
application uses to assure that it doesn′ t introduce inconsistent data in a
database. For example, when a bank executes a transfer of money from one
account to another, it has to execute two operations at once:

• Subtract the amount from one account

• Add the same amount to the other account

After the application subtracts the amount from one account, the two accounts
are inconsistent. They aren ′ t consistent again until the amount is added to the
second account. When both steps are completed, a point of consistency is
reached. The two changes can be applied to the database and made available
to all other applications. If, for any reason, it is impossible to execute the
second of the two operations, the first may, under no circumstance, be applied to
the database alone. Instead, the database has to be returned to its previous
state by undoing the first change. At any time, an application process has a
single unit of work, but the life of an application process may involve many units
of work.

 Copyright IBM Corp. 1996 131

6.1.2 Transaction
In relational databases, such as DB2, the unit of work is called the transaction.
A transaction is a recoverable sequence of SQL operations within an application
process. Any reading or writing to a database is done within a transaction.
When an application makes changes to the database, the rows involving these
changes are usually unavailable to other processes. They become available all
at once or not at all when a transaction terminates.

Any application that successfully connects to a database automatically starts a
transaction. The application must end the transaction by issuing an SQL commit
or SQL an rollback statement. At this moment, a new transaction starts. The
SQL commit statement tells the database manager to apply all database changes
(inserts, updates and deletes) in the transaction to the database at once. The
database manager thus becomes available to the other processes. The SQL
rollback statement orders the database manager not to apply the changes but to
return the affected rows to their original state just before the beginning of the
transaction.

6.1.3 Write-Ahead-Logging
DB2 has implemented a Write-Ahead-Logging (WAL) scheme to ensure the
integrity of your data. The basis for Write-Ahead-Logging is that when an SQL
call is made which deletes, inserts, or updates any data in the database, the
changes are first written to the log files. Then, at some later time, these
changes are written to the data files. This will allow DB2 to write out the data
when it deems it most efficient, depending on the current workload. When an
SQL commit is issued, DB2 will ensure that all log file(s) required for that
transaction to be replayed are written to disk. The database manager will not
return to the caller (application) until the write of the log files has completed. In
the case of a system failure, such as a power failure, the log files would be used
to bring the database back to a consistent state. All committed transactions will
be guaranteed to be redone, and all uncommitted transactions will be rolled
back.

6.1.4 Use of Log Files by Multiple Transactions
All databases have log files associated with them. Log files are files in which
the database manager synchronously records changes to a database issued by
all applications accessing that database. These files play a role in recreating a
consistent database after any incident which may have introduced an error. Log
files have a predefined length. Therefore, when one log file gets filled, logging
continues in another log file.

The following diagram will il lustrate how multiple, concurrent transactions will
simultaneously use multiple log files.

132 DB2 V2 Planning Guide for DBAs

Figure 29. Transaction Log File Use

The top part of the diagram represents the evolution in time of three user
processes (1 - 3) accessing the same database. The blank boxes represent
database changes such as insert or update. The shaded boxes surrounding them
show the life span of the different transactions (A - F). The lower-middle of the
diagram, shows how the database changes are synchronously recorded in the
log files (x, y). The letter in each box indicates the transaction to which the
database change belongs. When an SQL COMMIT is issued, the log buffer
containing the transaction is written to disk. This is represented by the arrows
and the small wavy lines. Transaction E is never written to disk because it ends
with an SQL ROLLBACK instruction. When log file x runs out of room to store
the first database change of transaction D, the logging process switches to log
file y. Log file x remains active until the writing of all changes of transaction C
to the database disk files is complete. The period of time during which log file x
remains active after the moment logging switched to log file y is represented by
the hexagon.

6.2 Log Management Configuration Parameters
Figure 30 on page 134 shows the database configuration parameters associated
with logging. The database administrator should have an understanding of these
parameters and their effect.

Chapter 6. Logging 133

Figure 30. Logging Configuration Parameters

The configuration parameters shown in Figure 30 can impact logging for the
database. The proper values for these parameters are highly dependent on the
installation requirements; so care must be taken regarding “rules of thumb.” The
following database configuration parameters are used by the logging process
within DB2:

• LOGBUFSZ

• LOGFILSIZ

• LOGPRIMARY

• LOGSECOND

• NEWLOGPATH

• SOFTMAX

• LOGRETAIN

• USEREXIT

• MINCOMMIT

• OVERFLOWLOGPATH

Changes to any of these database configuration parameters will not take effect
until all database connections have terminated. Then on the very first
connection all configuration changes will be activated.

6.2.1 LOGBUFSZ - Log Buffer Size
The log buffer size parameter determines how much database shared memory
will be allocated to buffer the log records before they are written out to disk.
Buffering the log records will result in more efficient log file I/O since the log
records will be written to disk less frequently, and more log records will be
written at each time. Therefore, a large value can improve logging I/O for active
databases, but the cost is memory. The value for this parameter will indicate
the number of 4K pages, up to a maximum of 128-4 K pages; the default being
8-4 K pages. The units of 4 K are new for DB2/2 because previously it used 2 K

134 DB2 V2 Planning Guide for DBAs

pages and was limited to a maximum of 17-2 K pages. In DB2/6000 (AIX
platform), the maximum was 32-4 K pages. In Version 2, both AIX and OS/2 have
a maximum of 128-4 K pages.

6.2.2 LOGFILSIZ - Log File Size
This value determines the number of pages to be allocated when a log file is
requested. Combined with LOGPRIMARY and LOGSECOND, this value
determines the disk space required to support logging. Since all primary logs
are allocated, even if not used, the value of this parameter can have major
impact on the system disk utilization. The value specified must be balanced
between the available disk space and the activity level of the database. A
database that supports a high level of insert, update and/or delete transactions
favors a larger log file size, but at the expense of disk space.

LOGFILSIZ is measured in units of 4 K pages. The size of the log files limits the
number of log records that can be written before a new log files is required. In
AIX, the default is 1000, with an upper limit of 16384; whereas the default on OS/2
is 250, with an upper limit of 4095.

6.2.3 LOGPRIMARY - Number of Primary Logs
This value represents the number of primary log files that will be allocated to
support database logging. Regardless of the type of logging you are using, there
will always be at least LOGPRIMARY log files allocated, each of LOGFILSIZ in
size. The appropriate value is highly dependent on installation-specific
requirements. For circular logging that is frequently using secondary logs, it
may be necessary to increase this value. For log retention (archival) logging
with highly active systems, it may be necessary to use a value greater than the
default so that waiting for logs to be allocated is not experienced. Conversely, a
database that is not accessed frequently may be properly supported by a smaller
value in LOGPRIMARY, thus saving disk space.

The default number of primary log files is three and can be increased to a
maximum of 128. DB2 has restricted the number of active log files to 128;
therefore the sum of LOGPRIMARY and LOGSECOND must be less than or equal
to 128, regardless of the type of logging being used.

6.2.4 LOGSECOND - Number of Secondary Logs
This parameter specifies the maximum number of secondary log files that can be
created when needed by the system. This parameter is now used for both
archival as well as circular logging. When the primary log files become full, the
secondary log files of size LOGFILESZ are allocated one at a time, as needed.
The default number of secondary log files is two, with a maximum of 126. The
maximum is 126 because there is a minimum requirement of 2 primary log files.
DB2 has restricted the number of active log files to 126; therefore the sum of
LOGPRIMARY and LOGSECOND must be less than or equal to 128, regardless of
the type of logging being used.

Chapter 6. Logging 135

6.2.5 NEWLOGPATH - New Log Path
Database log files are, by default, written to the SQLOGDIR which is a
subdirectory of the database directory. For recovery purposes, it will be
beneficial for installations to place log files on a different physical disk than the
database files. This parameter identifies the path for placement of log files. It is
recommended that this parameter be set to direct log files to a disk that does
not have high I/O requirements and does not contain the database itself. The
path name must be a fully qualified path name which must already exist and
cannot exceed 242 bytes.

6.2.6 SOFTMAX - Percentage of Records Reclaimed Before Soft Checkpoint
At the time of a database failure resulting from an event such as a power failure,
there may have been changes to the database which:

• Have not been committed, but have updated the data in the buffer pool

• Have been committed, but have not been written from the buffer pool to the
disk

• Have been committed and written from the buffer pool to the disk

When a database is restarted, the log files will be used to perform a crash
recovery of the database which ensures that the database is in a consistent state
(that is, all committed transactions are applied to the database, and all
uncommitted transactions are not applied to the database).

To determine which records from the log file need to be applied to the database,
the database manager uses a log control file which is periodically written to disk.
Depending on the information in this log control file, the database manager may
attempt to apply log records which have been committed and written from the
buffer pool to disk. These log records have no impact on the database since the
changes contained within them have already been written to disk. However,
attempting to apply these log records introduces some overhead into the
database restart phase.

The log control file is always written to disk when a log file is full, known as a
hard checkpoint, or when the database is cleanly shut down. You may use this
configuration parameter to take an additional soft checkpoint, which will:

• Write the log control file to disk

• Call an asynchronous page cleaner to flush the buffer pool to disk. For more
information on asynchronous page cleaners, see 6.2.11, “NUM_IOCLEANERS
- Asynchronous Page Cleaners” on page 137.

This value is a percentage of the LOGFILSIZ that determines if a log control file
should be written more frequently than the default, which is to write the log
control file when a log becomes full. The log control file is used during crash
recovery to determine which log records are truly necessary to restore the
database to a consistent state. If the log control file is not frequently written,
crash recovery may apply log records that relate to events that have been
committed and written to disk. While this will not corrupt the integrity of the
database, it will increase the time for crash recovery to complete. Reducing this
parameter will cause the log control file to be written as the log file fills past
certain percentages. While this reduces crash recovery time, it will also
increase overhead. Also, reducing this parameter may not be beneficial if the

136 DB2 V2 Planning Guide for DBAs

database supports large transactions with few commit points, or is configured
with a large bufferpool and/or a small log file size.

6.2.7 LOGRETAIN - Recoverable Database
Setting this parameter to Yes indicates that log retention or archival logging is to
be used. The log files become archived log files when full instead of being
resued. If an installation wishes to enable rollforward recovery, this parameter
(or USEREXIT) must be enabled. If this or the USEREXIT parameter is enabled,
then the database is considered to be using archival logging. The first time
either of these parameters are enabled, a full database backup will be required.

6.2.8 USEREXIT - Log Archiving
This parameter indicates whether a USEREXIT should be called when processing
archive or retrieval requests for log files. Setting this value to Yes enables
archival logging and rollforward recovery, regardless of the setting for
LOGRETAIN. Installations that wish to automate the process of managing
archive log files may benefit from utilizing this database parameter. The first
time either the USEREXIT or LOGRETAIN parameters are enabled, a full
database backup will be required.

6.2.9 MINCOMMIT - Number of Commits to Group
This value indicates that grouping of commits issued by multiple applications is
to be attempted if the value is set to greater than 1. If the number of
applications connected to the database is greater than or equal to this
parameter, commits will not cause immediate physical writes of the log. The
writes will be delayed one second or until the number of commits requested by
all applications equals this value. Grouping commits can enhance the
performance of a database servicing multiple connects with high change activity.
Setting this value greater than 1 can introduce one-second commit waits for
changed applications that do not execute concurrently with other changed
applications.

6.2.10 OVERFLOWLOGPATH - Overflow Log Path
This parameter is used to specify an alternative log path to search for archived
logs. Archive log files need to be brought back into LOGFILEPATH. If there is no
additional space in LOGFILEPATH, OVERFLOWLOGPATH is used. The default is
null; no path is set.

6.2.11 NUM_IOCLEANERS - Asynchronous Page Cleaners
A new class of database processes, called page cleaners, have been added to
Version 2. Asynchronous page cleaners are not a logging configuration
parameter. However, they do have an affect on which pages are written to disk,
and that does concern logging. Figure 31 on page 138 shows how pages were
written to disk in DB2/6000 Version 1 and how they are written to disk in Version
2.

Chapter 6. Logging 137

Figure 31. Asynchronous Page Cleaners

Page cleaners examine the database buffer pool, looking for pages which need
to be written to disk. This allows user agent processes to use buffer pool pages
without having to wait for I/O to complete processing.

DB2 moves pages of data from disk to the buffer pool in order to read and/or
modify data. If a page has been modified, it should be written back to disk. With
previous versions of DB2, this was done when a database agent needed some
pages in the buffer pool, but discovered that the slots contained changed pages.
So, the agent had to wait for an I/O operation to continue. DB2 Version 2 uses
page cleaner agents to handle modified pages.

The purpose of the page cleaners is to write out most changed pages to disk so
regular database agents can find empty slots and do not have to write pages
out. This means that the agents will not have to wait for additional I/O, and the
user transaction should execute faster.

The page cleaners are processes external to the database. They run in parallel
with the database agents. They are activated when the number of written pages
in the buffer pool is greater than MAXCHNGPGS, a database parameter. This

138 DB2 V2 Planning Guide for DBAs

value acts like a trigger for the page cleaners. The database manager also has
other criteria to decide when to activate page cleaners.

The number of asynchronous page cleaners for a database is specified by the
NUM_IOCLEANERS database configuration parameter.

6.2.12 Log File Information
DB2 uses a control file to determine the status of log files. The control file
identifies the active log file with the “lowest” name. Figure 32 shows the log file
information over time. The control file also identifies the name of the next log
file to be used. This file is called the nextactive.

Figure 32. Log File Information

The values for loghead and nextactive can be valuable to the database
administrator. They can be obtained via a get database configuration command.
(The control file is identified for information purposes only. It is not in a
readable format and should not be edited.)

Log files with names that are “less” than the loghead are archive files. They are
not required for crash recovery and could be moved to a different media. Crash
recovery is one of three types of recovery methods. For more information, see
7.5.1, “Methods of Recovery” on page 173 and 6.4.1, “Crash Recovery” on
page 146.

The nextactive value, used in conjunction with loghead, can be used to
determine the number of active logs currently allocated. If the number allocated
becomes abnormally large, an application may not be committing on a timely
basis.

6.2.13 Location of Log Files
This section discusses the naming and placement of log files. The naming
convention for log files is as follows:

Sxxxxxxx.LOG

where xxxxxxx is a number starting from 0000000 through to 9999999. The
numbers are assigned by the database manager.

Chapter 6. Logging 139

By default, log files are located in SQLOGDIR, which is a subdirectory of the
database directory. Figure 33 on page 140 shows the default location of log files
when a database is created. It is not generally good practice to store log files
on the same physical device as the database files for which they provide
recovery support.

It is recommended to change the log path BEFORE using the database in order
to direct the logs to a device that does not contain database files. It is
recommended not to have a recovery strategy involving a change to the log path
during the recovery process.

Figure 33. Location of Log Files

The location of log files currently in use is identified by the informational
parameter, LOGPATH. The NEWLOGPATH database configuration parameter
allows the database administrator to redirect logging support to a specified path.
The new path does not become active until all connections to the database end
and the database is in a consistent state. (A database may be in an inconsistent
state due to an incomplete recovery process. This simply means that all units of
work are not complete.) The information database configuration parameter,
DATABASE_CONSISTENT, contains this status.

The situation illustrated in Figure 33 is not generally desirable. Here, a
database was created and used before the log path was changed. Therefore,
log files exist in the default directory, SQLOGDIR. At some point in time, while
S0000002.LOG was the active log file, the database administrator updated the
database configuration file to indicate a new logpath of /usr/your/choice in AIX
or \usr\your\choice in OS/2.

Assume all applications completed their units of work and disconnected from the
database before allocation of S0000003.LOG. The log path was changed to
/usr/your/choice in AIX, or to \usr\your\choice in OS/2, at the time a new
application connected to the database. The file S0000003.LOG was allocated in
the new location. This means that the previous log files under SQLOGIDR must
be manually moved to the new log path to be available if needed for recovery

140 DB2 V2 Planning Guide for DBAs

purposes. It is recommended to change the log path, if desired, before the first
connection to the database is made.

6.3 Types of Logging in DB2
Two types of logging can occur in a DB2 database:

• Circular logging (the default)

• Archival Logging

6.3.1 Circular Logging
Circular logging will use the number of primary log files specified by the
database configuration parameter, LOGPRIMARY. The necessary log
information is for in-process transactions. The log files are used in sequence
and can be reused when all units of work contained within it are committed or
rolled back, and the committed changes are reflected on the disks supporting the
database. Figure 34 shows the concept of circular logging.

Figure 34. Circular Logging

6.3.1.1 Log Files Used with Circular Logging
Circular logging uses two types of log files:

• Primary log files

• Secondary log files

Primary log files are pre-allocated, while secondary log files are only allocated
when necessary. If the database manager requests the next log in the sequence
and it is not available for reuse, a secondary log file will be allocated. After it is
full, the next primary log file is checked for reuse again. If it is still not available,
another secondary log file is allocated. This process continues until the primary
log file becomes available for reuse or the number of secondary log files
permitted for allocation is exceeded.

Secondary log files are de-allocated once the database manager determines that
they are no longer needed.

Primary log files are allocated when the database becomes active, while
secondary log files are allocated as needed. Therefore, the database
administrator may elect to use the primary log files for typical processing, but

Chapter 6. Logging 141

permit the allocation of secondary log files to permit periodic applications that
have large units of work. For example, submission of an IMPORT utility with a
large commit count may require the use of secondary log files. Supporting such
applications via primary logs would waste space since all primary logs, whether
used or not, are allocated when the database becomes active.

The number of primary and the maximum number of secondary log files are
database parameters that may be tuned. The parameters are LOGPRIMARY and
LOGSECOND and can be changed via the command line processor or via the
Database Director. The maximum number of active log files (T) is the sum of
LOGPRIMARY and LOGSECOND. Version 2 has increased the maximum number
of active log files from 63 to a total of 128. If the number of active log files is
equal to T and the last log file is filled up, all database changes from all
applications accessing the corresponding database will fail with a log full error
condition. This can be caused by two problems:

• The number and/or size of the log files are undersized for the type and
number of transactions performed.

• A process has made a change in the database without completing it with a
COMMIT or ROLLBACK.

If the number or size of the log files are undersized, the database has to be
stopped and reconfigured. If secondary log files are frequently being allocated,
you may be able to improve system performance by increasing the log file size,
LOGFILSIZ, or by increasing the number of primary log files.

Circular logging provides support for crash and version/restore recovery, but
does NOT support rollforward recovery.

6.3.1.2 Default Log Files
When a database is first created, the following characteristics are used:

• Circular logging is enabled (LOGRETAIN and USEREXIT are disabled).

• Log File Size is 1000 x 4 K pages on AIX and 250 x 4 K pages on OS/2.

• Three primary log files are allocated.

• LOGSECOND is set to 2.

• The log path is initialized to SQLOGDIR, which is a database subdirectory.

This means that a newly created (empty) database on DB2/2 will consume
approximately 3 MB of disk space for the logs, whereas an empty DB2/6000
database will consume approximately 12 MB of disk space for the logs.

6.3.1.3 Circular Logging Changes in Version 2
The following enhancements have been made to circular logging in version 2:

• Total number of active logs increased from 63 to 128

• Log page size changed from 2 K pages to 4 K pages, DB2/2 only. DB2/6000
always had 4 K pages

• Max log buffer size changed from 32x2 K pages to 128x4 K pages on DB2/2
and from 32x4 K pages to 128x4 K pages on DB2/6000.

• Default log file size has changed to 1 MB in DB2/2 only.

• Secondary log files are de-allocated dynamically, either when a threshold
limit has been reached or when a hard checkpoint is performed.

142 DB2 V2 Planning Guide for DBAs

6.3.1.4 Recommendations
For databases which are not frequently accessed, set LOGPRIMARY to 2 to save
disk space. Use secondary logs for databases that have periodic needs for large
amounts of log space.

Circular logging should never be used in a production environment unless the
database is query only and is never modified. The reason for this comes into
play in a recovery scenario. Databases configured with circular logging are only
recoverable to the point at which the backup was taken. All work done on the
database since the backup was taken is lost when the database is restored.
Note that the first time that either the LOGRETAIN and/or USEREXIT
configuration parameters are enabled, the database is placed in a
backup-pending state. This gives you a snapshot of the database at the current
point in time, in case you need it for a recovery scenario.

6.3.2 Archival Logging
Archival logging is the log file management technique where log files are
archived when they become inactive. Usually, the database configuration will
permit several primary log files so that a log file being allocated is not
immediately needed for logging. (Allocation is done ahead of the need for the
file.) Figure 35 shows the concepts of archival logging.

Figure 35. Archival Logging

There are three types of log files associated with this method:

 1. Active - (Indicated in Figure 35 numbers 15 and 16)

These files contain information related to transactions that have not yet
committed (or rolled back) work. They also contain information for
transactions that have been committed but whose changes have not yet
been written to the database files. (The changes could be in the buffer pool.)

A log file is called active as long as it contains records of changes to the
database which haven′ t been committed or rolled back or as long as the

Chapter 6. Logging 143

committed changes haven′ t been completely written to disk. An inactive log
file can be either an online or an offline archived log file.

 2. Online Archive (Figure 35 on page 143 number 14)

These files contain information related to completed transactions no longer
required for crash recovery protection. They are termed “online” because
they reside in the same subdirectory as the active log files. By enabling the
LOGRETAIN parameter, inactive log files are left in the log file directory, thus
becoming online archived log files.

 3. Offline Archive (Figure 35 on page 143 numbers 12 and 13)

These files have been moved from the active log file subdirectory. The
method of moving these files could be a manual process or a process
invoked through a USEREXIT. Archived log files can be placed offline simply
by moving them to another directory in the file system, by storing them on
tape or by storing elsewhere, such as on an ADSTAR Distributed Storage
Manager (ADSM) server.

ADSM is a client/server archiving product. It allows client system files to be
archived on and retrieved from host storage media, where the host can be
MVS, AIX or OS/2. In this scenario, the DB2 server is a client to the ADSM
server, and must be configured as such. Refer to the DB2 Administration
Guide for details regarding configuring ADSM with DB2.

Note: When using archival (log retention) logging, DB2 will truncate and close
the last log file written to free-up space when the last application disconnects
from the database. This is a positive feature when the database is to be inactive
for some period of time. However, if an installation has a low level of activity
and there are short periods where no application will be connected to the
database, it will be costly to truncate the last active log and then re-allocate the
primary log files when the application connects.

The database administrator should consider using an application that connects
to the database and simply waits for a request to disconnect. This “dummy”
application will keep the database active and prevent log file truncation. (An
additional benefit of such an application would be that memory allocated at first
connect and released when the database becomes inactive would be retained.
This can enhance the performance of databases experiencing periods of
inactivity.

Two configuration parameters allow you to configure a database for archival
logging:

• LOGRETAIN

• USEREXIT

When the LOGRETAIN database configuration parameter is enabled, log files are
not deleted when they become inactive. When the USEREXIT database
configuration parameter is enabled, the database manager will call the db2uexit
program each time a log file is no longer needed for log writes, for example it is
full. A number of parameters are passed to the program, such as the database
name and path of the log file. These parameters allow the program to archive
the log file. The customer must write this program and tailor it to the needs of
their environment. Three sample C source db2uexit programs are included in the
DB2 product. If USEREXIT is enabled, the log file will not be deleted until it is no
longer needed by any transaction, for example to complete a rollback.

144 DB2 V2 Planning Guide for DBAs

Conversely, if USEREXIT is disabled, the log file will never be removed and will
continue to be stored in the directory used for logging.

6.3.2.1 Advantages of Archival Logging
Archival logging, even though not the default logging method, is the only method
which will allow you to perform rollforward recovery. In Version 2, to restore a
tablespace, you must perform the rollforward operation; so you must have
archival logging as the form of logging for the database. The advantages can be
summarized as follows:

• Ability to perform online backups

• Ability to perform tablespace-level backups

• Ability to recover the database to any point in time past the end of the
backup

6.3.2.2 Archival Logging Changes in Version 2
The following enhancements have been made to archival logging in version 2:

• Total number of active logs increased from 63 to 128.

• Log page size changed from 2 K pages to 4 K pages; DB2/2 only, DB2/6000
always had 4 K pages.

• Max log buffer size changed from 32x4 K pages to 128x4 K pages on
DB2/6000.

• Default log file size has changed to 1 MB, DB2/2 only. The default in AIX is 4
MB.

• LOGSECOND configuration parameter is now used to allocate secondary
logs in cases when the all of the log primary files are filled. This is
particularly useful if a log full condition is encountered during crash recovery
as this parameter can be increased, and the crash recovery can be
restarted.

6.3.2.3 Recommendations
All production databases should be configured for archival logging.
Non-production databases may be configured with circular logging so that log
file management does not have to be done.

The log path should be set so that it does not reside on the same physical disk
as any of the tablespaces. This will allow the operation system to write to both
the logs and data concurrently.

The USEREXIT database configuration parameter should be enabled so that
inactive log files are deleted from your current log path, allowing disk space for
new active log files to be allocated.

The two most important configuration parameters used by archival logging are
LOGFILSIZ and LOGPRIMARY. Unfortunately, there are no hard and set rules for
recommending values for these database configuration parameters. You will
have to run experiments to determine what is optimal for your environment and
workload. The log file size will directly affect how often the log fills and,
therefore, is archived. The number of primary log files is not as important now
that the LOGSECOND database configuration parameter is supported, which was
not the case in Version 1.

Chapter 6. Logging 145

6.4 Log File Usage
Log files are written to during normal processing; however, they are only ever
read in three situations:

 1. Rollback

 2. Crash Recovery

 3. Rollforward Recovery

The SQL rollback statement uses the log files to terminate a unit of work and
back out the database changes that were made by that unit of work. Crash
recovery and rollforward recovery are covered in the following sections.

6.4.1 Crash Recovery
In the event of certain kinds of failure (disk crash, power outage), an operation
called crash recovery is needed to bring the database back to a consistent,
usable state. Crash recovery, also known as database restart, consists of two
consecutive phases. During the first phase of crash recovery, all transactions
are reapplied to the database, regardless of whether they were committed or
not. This phase completes when the end of the active log files is reached. The
second phase of crash recovery is to roll back all uncommitted transactions.
Both phases are required to complete successfully before the database is
considered to be “transaction consistent.”

When a database is created, the default setting for the database configuration
parameter to enable crash recovery is ON. This parameter is called
AUTORESTART. In the event of a system crash, the first person to connect to
the database will trigger the database manager to be restarted. This connect
may take quite a while as the logs will have to be replayed and uncommitted
transactions rolled back. It is possible to disable this feature by setting
AUTORESTART to OFF

6.4.2 Rollforward Recovery
Rollforward applies transactions recorded in the database log files. The
command is invoked after a database or tablespace backup has been restored
or if any tablespaces have been taken offline by the database manager due to a
media error.

If an I/O error is encountered while trying to read from or write to disk, a
tablespace in which the page resides is disabled and placed in a “roll forward
pending” state. It is possible that a roll forward to the end of the logs will clear
the state. If the pending state cannot be cleared with just a roll forward of the
tablespace, a restore followed by a roll forward is required. For a discussion on
restore of a database or tablespace, see Chapter 7, “Backup and Restore” on
page 151. In either case, the rollforward command is issued.

Restore is the first phase of a complete rollforward recovery of a database or
tablespace. After a successful database restore, a database that was configured
for rollforward recovery at the time of a backup was taken enters a rollforward
pending state. It is not usable until the rollforward command has been run
successfully. If the restore used a tablespace-level backup, the tablespaces
restored enter a rollforward pending state.

146 DB2 V2 Planning Guide for DBAs

When the rollforward database command is issued, if the database is in a
rollforward pending state, the database is rolled forward. If the database is not
in a rollforward pending state, all tablespaces in the database in the rollforward
pending state are processed.

Another database restore is not allowed when the rollforward process is
executing. Note that if you restore from a full offline database backup image,
you can bypass the rollforward pending state during the recovery process. The
restore database command gives you the option to use the restored database
immediately without rolling the database forward.

You cannot bypass the rollforward phase when recovering at the tablespace
level or if you restore from a backup image that was created using the ONLINE
option of the backup database command.

6.4.2.1 Log File Considerations with Roll Forward
If enabling an existing database for rollforward recovery, change the number of
primary log files to the sum of the number of primary log files and secondary log
f i les + 1. This recommendation assumes the prior configuration was
determined to meet the needs of the largest unit of work in the system. More
information will be logged for LONG VARCHAR fields and LOB data in a
database that has been enabled for rollforward recovery.

If a tablespace is being rolled forward and the database is configured with
USEREXITs enabled, the log files will have to be manually copied from the
archive source. Only a database roll forward will call the USEREXIT to retrieve
log files. This is not yet possible with a tablespace-level roll forward.

6.4.2.2 Syntax of Rollforward Database
The syntax for the command is as follows:

��──ROLLFORWARD──DATABASE──database-alias──────────────────────────────�

�─ ──┬ ┬───────────────────────────────────── ────────────────────────────�
└ ┘─USER──username─ ──┬ ┬─────────────────

└ ┘─USING──password─

�─ ──┬ ┬─────────────────────────────────── ──┬ ┬─────────────────── ───────�
├ ┤─TO─ ──┬ ┬─isotime───── ──┬ ┬────────── └ ┘─TABLESPACE ONLINE─
│ │└ ┘─END OF LOGS─ └ ┘─AND STOP─
├ ┤─STOP──────────────────────────────
└ ┘─QUERY STATUS──────────────────────

�─ ──┬ ┬────────────────────────────────── ──────────────────────────────��
└ ┘─OVERFLOW LOG PATH──log-directory─

The key parameters of the rollforward command are as follows:

database-alias database name which will be rolled forward.

username The authorized UserID under which the database will be
rolled forward.

password The password for the supplied username; if one is not
supplied the user will be prompted to enter it.

Chapter 6. Logging 147

TO isotime The point in time to which all committed transactions are
rolled forward. This parameter is only valid for full
database restore. The value is specified as a timestamp in
the following format:

yyyy-mm-dd-hh.mm.ss.nnnnn

(year, month, day, hour, minute, seconds, microseconds)
This timestamp is in Universal Coordinated Time (UCT),
which is Greenwich Mean Time.

TO END OF LOGS This will cause the roll forward to process as many log
files as it can locate in the current log path directory. If
the database is configured with USEREXITs enabled and
this is a full database roll forward, then archived logs will
be automatically retrieved. Otherwise, the log files will
have to be manually copied into the current log path or
their path specified on the OVERFLOW LOG PATH
parameter.

STOP / AND STOP This will indicate that you have processed all of the log
files, and you want to make the database consistent. Be
very careful when specifying one of these parameters as
once they are issued, all uncommitted transactions are
rolled back, and the database is made transaction
consistent.

QUERY STATUS List the log files which have been rolled forward, the next
archive log file required, the timestamp (UCT format) of the
last committed transaction since rollforward processing
began. QUERY STATUS is the default value of the TO and
STOP phases which are omitted from the rollforward
command. It is recommended that you issue the
rollforward command with the QUERY STATUS parameter
before using the STOP parameter to ensure that you have
rolled forward to the correct point in time.

TABLESPACE ONLINE
Indicates that the roll forward will be done at the
tablespace level. This will also allow other agents to
connect to the database and access all tablespaces which
are accessible and not being rolled forward.

OVERFLOW LOG PATH
Specifies an alternative log path to search for archived log
files. This is particularly useful when restoring a database
to a different system as the original log path may not exist.
It is also useful for tablespace-level restore because the
USEREXIT will not be called to retrieve archived log files.

6.4.3 How Far to Roll Forward
The database administrator can clear a rollforward pending condition by issuing
the rollforward command. The point in time to which the rollforward stage
processed is also controlled by the administrator. There are a number of
considerations for determining how far to roll forward the log files. These
considerations include:

• End of logs (typical)

148 DB2 V2 Planning Guide for DBAs

The end of logs means usually means the end of the current log path. Other
logs, however, may need to be moved into the path. End of logs is a
requirement for any tablespace recovery strategy.

• Online backup requires a roll forward past the end of the backup.

The integrity of the database must be protected. Therefore, the earliest point
in time at which the rollforward stage can end is the end of the online
backup image.

• Point in time

The parameter ISOTIME can be coded on the rollforward command to
identify a particular point in time up to which the logs should be applied.
This time is specified as the iso format of the Universal Coordinated Time
(UCT).

The Universal Coordinated Time is used in log records so that the database
manager does not have a recovery dependency regarding daylight savings
time or other local time anomalies. However, this introduces a degree of
complexity for the database administrator. While backup images are
identified via timestamps reflecting local time, rolling forward (since it
applies to logs) must designate times in UCT format. The format is:
yyy-mm-dd-hh.mm.ss.

In many cases, the point of time for recovery will be the most current one
possible. Therefore, the end of logs option will be commonly used. The
database administrator or instance administrator can stop the rollforward
process and allow access to the database.

The AND STOP is a necessary parameter to permit the database manager to roll
back any transactions that are not completed after applying the log records to
the indicated point. This is true even if END OF LOGS is utilized. Otherwise, the
database will remain in rollforward pending status.

Chapter 6. Logging 149

150 DB2 V2 Planning Guide for DBAs

Chapter 7. Backup and Restore

In this chapter we will describe the backup and restore utilities which are used
to safeguard and recover databases in the event of a failure. We will discuss
database and tablespace backup and restore considerations and how a
customer might implement a backup/restore strategy.

7.1 Overview
In DB2 Version 1, backup and restore were supported at the full database level
only. With databases growing to several gigabytes in size or more, the
maintenance window available may not be sufficient to allow for a full database
backup. In Version 2, backup and restore can be done at a finer level of
granularity, namely, the tablespace.

The ability to record the recovery history of a database was also a desirable
feature in Version 1. A recovery history file is now added in Version 2 to track
backup/recovery/load activities performed on the database. This is done
through an interface that allows the user to query and manage the file.

This chapter is outlined as follows:

• Discussion of the Version 1 and Version 2 process models

• A detailed look at the backup and restore utility at both the database and
tablespace level

• Guidelines for a backup and recovery strategy

• Some backup and restore scenarios

• Types of failures that may occur and the recommended action for recovery

• Performance Issues

• Recovery history file

• The customer scenario of the telephone company

7.1.1 Review of Version 1 Process Models
As a review, we will look at the different process models that were used for
backup/restore in Version 1. There were three distinct models used:

 1. DB2/2 Version 1 Backup/Restore Process Model

 2. DB2/2 Version 1 Backup/Restore User Exit Process Model

 3. DB2/6000 Version 1 Backup/Restore Process Model

7.1.1.1 DB2/2 Version 1 Backup/Restore Process Model
In Version 1 of DB2 for OS/2 (DB2/2), each database was restricted to residing
on a single partition. As such, the OS/2 backup and restore utilities were used
to perform the database level backup and restore. These utilities required the
caller to back up to a partition other than the one on which the database resided.
As well, the target output was restricted to OS/2 support devices; namely disk
and diskette. Figure Figure 36 on page 152, illustrates how the backup utility
functioned.

 Copyright IBM Corp. 1996 151

Figure 36. DB2/2 Version 1 Backup/Restore Processing

The main points illustrated in Figure 36 are the following:

• DB2/2 Version 1 used a different backup/restore utility than is used in DB2
Version 2.

• Only disk or diskette was supported for backup and restore.

• This model is still supported in DB2 for OS/2 Version 2.

7.1.1.2 DB2/2 Version 1 User Exit Process Model
OS/2 versions 1.0 - 3.0 did not support tape drives as a logical device.
Therefore, the only way to backup/restore from a tape drive was through the use
of a user exit calling a third party vendor. This restriction is still enforced with
Version 2 and support for user exits is still available. Figure Figure 37 on
page 153, illustrates how user exits were supported.

152 DB2 V2 Planning Guide for DBAs

Figure 37. DB2/2 Version 1 User Exit Support

The main points in Figure 37 are the following:

• A third party vendor product was necessary to provide user exit support
using a tape device in DB2/2 Version 1.

• This support was available in Version 1.x and still exists Version 2.x for OS/2
through the use of APIs. The target-area in the backup/restore command
parameters will be :0.

• You had to either quiesce or pause the database before starting the backup
process.

7.1.1.3 DB2/6000 Version 1 Process Model
In Version 1, when a database was backed up or restored, only one database
process was involved. The data pages were read into a single buffer and written
out serially when the buffer was full. In doing this, the process could become I/O
bound, leaving the CPU idle. The performance of the backup and restore utilities
in Version 2 is improved by the ability to use multiple buffers and I/O streams.
In Figure 38 on page 154, you can see the process activity for the backup utility
that was used in Version 1 of DB2/6000.

Chapter 7. Backup and Restore 153

Figure 38. DB2/6000 Version 1 Backup/Restore Processing

7.1.1.4 DB2 for AIX Version 2 Process Model
Version 2 has increased in flexibility and usability by allowing the caller to
specify the size of the internal buffer to use, the number of internal buffers, as
well as the number of devices to be read from or written to. The optimal number
of buffers and media I/O devices to use will depend on the environmental setup
for each individual database. The system administrator can tune the
performance by changing the input parameters. In Figure 39 on page 155, you
can see the process activity of a backup operation using multiple buffers and
media I/O processes.

154 DB2 V2 Planning Guide for DBAs

Figure 39. DB2 Version 2 Backup/Restore Processing

To increase the performance in backup and restore in Version 2, the portion of
the process that manipulates the backup and restore buffers has been removed
from the agent process and is now a separate process. This separation allows
the backup or restore agent (parent process) to handle any error conditions that
might be returned from the media I/O controllers without impacting the speed at
which we read the database data. The main purpose of the buffer manipulator is
to either read data from the database and place it in the media buffers or to take
data from the media buffers and put it back in the database. All error
processing and communication with the clients will be done by the parent agent.

During a restore procedure, you also have the ability to select multiple buffers to
improve the performance of the restore process. The multiple internal buffers
may be filled with data from the backup media. You may specify the number of
pages to use for this restore buffer when invoking the restore database utility. If
you do not, the buffer will be allocated based on the database manager
configuration parameter, RESTBUFSZ. If there is not enough memory available
to allocate the buffer, an error will be returned. If a database was created with a
previous version of DB2 and the database has not been migrated, you must
migrate the database before performing a backup. See Appendix A, “Database
Migration” on page 207 for more information on migrating a Version 1 database.

7.2 DB2 Backup and Restore Considerations
Version 2 of DB2 allows you the option of backing up the entire database or
individual tablespaces or groups of tablespaces. To make a informed choice as
to which method to use, a full understanding of the backup/restore operation is
necessary. Figure 40 on page 156 shows some of the considerations that must
be determined before running the utility.

Chapter 7. Backup and Restore 155

Figure 40. Backup Util ity Considerations

A full offline database backup provides you with a complete snapshot of the data
at a fixed point in time. This level of backup is a requirement for disaster
recovery and should be an essential part of any backup/restore strategy.

Some of the considerations should include:

• You must have SYSADM, SYSCTRL or SYSMAINT authority to use the backup
database command.

• You must start the database manager (db2start) before running the backup
database command or API. However, when using the Database Director, you
do not need to explicitly start the database manager.

• If you are using the command or API from the Database Director, you must
specify a database alias name, not the database name itself.

• You can do a backup while the database is either offline or online. The
default is offline.

− If the backup is performed offline, only the backup task can be connected
to the database. The stored data must be consistent. An offline backup
can be used either as a restore only type of recovery or a restore
followed by the roll forward phase.

The implication of an offline backup is that the rest of your organization
cannot connect to the database while the backup task is running.

− If the backup is performed online, other applications or processes can
continue to connect to it while the backup task is running.

Online backups are supported only if rollforward recovery is enabled.
The backup will not be valid for recovery purposes, if you do not retain
the log files written while the backup was taken. While the online backup
operation is running, changes can be performed on the tables. The data,

156 DB2 V2 Planning Guide for DBAs

when restored from the backup files, is not consistent until the logs are
applied during roll forward recovery.

An offline backup will acquire an exclusive connection to the database,
failing if anyone else is already connected. Whereas an online backup
will merely acquire a shared connection, permitting other shared
connections to exist.

• The database may be local or remote. The backup image remains on the
database server unless a storage management product such as ADSTAR
Distributed Storage Manager (ADSM) is used.

• You can back up a database or tablespace to a fixed disk, a tape or a
location managed by the ADSM utility or another vendor. If using a utility
from a third party vendor, they must provide the shared library.

• If you change a database configuration parameter to enable roll forward
recovery (either LOGRETAIN or USEREXIT), you must take an offline backup
of the database before it is usable.

• If your database is enabled for roll forward recovery and you are using a
tape system that does not support the ability to uniquely reference a backup
image, it is recommended that you do not keep multiple backup copies of the
same database on the same tape.

• Multiple files may be created to contain the backed up data from the
database or tablespace.

• You may specify multiple target areas (directory or tape devices) if you wish
to take advantage of parallelism. For more information, see the DB2
Administration Guide and Reference.

• During the backup procedure, an internal buffer is filled with data to be
backed up. When this buffer becomes full, the data is copied to the backup
medium. You have the ability in Version 2, to optionally select to use
multiple buffers and I/O streams to improve the performance of the backup
procedure. The number of buffers you allocate should be at least twice as
many as the number of I/O devices you are using. For more information on
backup performance, see 7.7, “Performance Issues” on page 176.

• You may specify the number of pages to use for the backup buffer(s) when
you invoke the backup database command. The minimum number of pages is
16. If you do not specify the number of pages, each buffer will be allocated
based on the database manager configuration parameter, BACKBUFSZ. If
there is not enough memory available to allocate to the buffer, an error will
be returned.

• If a system crash occurs during a critical stage of backing up the database,
you cannot successfully connect to the database until you re-issue the backup
database command.

• If you are using the backup database command for concurrent backup
processes to tape, ensure that the processes do not target the same tape.

7.2.1 Understanding the Backup Command
The syntax for the utility is as follows:

Chapter 7. Backup and Restore 157

��──BACKUP DATABASE──database-alias─ ──┬ ┬───────────────────────────────────── ───────────────�
 └ ┘─USER──username─ ──┬ ┬─────────────────

└ ┘─USING──password─

�─ ──┬ ┬───────────────────────────────── ──┬ ┬──────── ───�
│ │┌ ┐─,─────────────── └ ┘─ONLINE─
└ ┘─TABLESPACE─ ───� ┴─tablespace-name─

�─ ──┬ ┬── ────────────────────────────────�
├ ┤─USE ADSM─ ──┬ ┬────────────────────────────── ──────────
│ │└ ┘─OPEN──num-sessions──SESSIONS─
│ │┌ ┐─,───────────
├ ┤─TO─ ───� ┴─target-area─ ─────────────────────────────────
└ ┘─LOAD──library-name─ ──┬ ┬──────────────────────────────

└ ┘─OPEN──num-sessions──SESSIONS─

�─ ──┬ ┬──────────────────────────── ──┬ ┬───────────────────── ──┬ ┬─────────────────── ─────────��
└ ┘─WITH──num-buffers──BUFFERS─ └ ┘─BUFFER──buffer-size─ └ ┘─WITHOUT PROMPTING─

The following describes the parameters to the backup command:

DATABASE database-alias
Specifies the alias name of the database to back up.
When using the command, API or task under the Database
Director, you must specify a database alias name, not the
database name itself.

USER username Identifies the user name under which the backup is
processed.

USING password The password used to authenticate the user name. If the
password is omitted, the user is prompted to enter it.

TABLESPACE tablespace-name
List of one or more tablespaces within the database to be
backed up.

ONLINE Specifies online processing, the default is offline. If a
database connection exists and the default option of offline
is attempted when backing up, the offline process will be
stopped. Online processing requires that the database is
enabled for rollforward processing.

USE ADSM OPEN num-sessions SESSIONS
Specifies that ADSM will be the backup target for this
backup and and “num-sessions” ADSM sessions will be
used throughout the backup. The necessary ADSM
environment variables must be previously set up and the
DB2 Server registered as an ADSM Client with the ADSM
Server. See the DB2 Administration Guide for more
details.

TO target-area Specifies where the target placement for the backup will
be. This can be a directory or tape device name. If
backing up to a directory, the full path name must be
provided. You may specify multiple target areas (directory
or tape devices) if you want to take advantage of parallel
backup. If more than one target is specified, the first one
specified will be opened and contain the media header and
special files. The remaining targets are opened and then

158 DB2 V2 Planning Guide for DBAs

used in parallel during the backup. This may be useful for
tablespace backups of large tables (for example LOBs). If
no parameter is issued, the backup will be placed under
the current directory (for example: /u/instance). The
target-area must reside on the database server if it is a
directory.

LOAD library-name OPEN num-sessions SESSIONS
Specifies that a third party vendor product will be used as
the target for this backup and that “num-sessions” will be
used.

WITH num-buffers BUFFERS
The number of buffers to be used.

BUFFER buffer-size The size in pages of the buffer used for the appropriate
process. The minimum value for this 16 pages. The
default value is 1024 pages. If you specify a buffersize of
0, the value in the database manager configuration for this
parameter will be used. This parameter is also discussed
in 7.7, “Performance Issues” on page 176.

WITHOUT PROMPTING
Perform the backup without prompting for new media. If
any other type of warning occurs or all the backup target
devices fill, then an error is returned to the caller and the
backup fails.

7.2.2 The Backup File
Since AIX and OS/2 do not share identical conventions for naming files, DB2
could not make the backup file names identical across platforms. However, the
format of each file is easy to understand. Figure 41 shows the backup file
format for both OS/2 and AIX.

Figure 41. Backup File Format in DB2

Figure 41 shows a database backup of database, dss, in inst01 taken on July 19,
1995 at 13:12:59. There are three possible file types:

 1. Type 0 is for full database
 2. Type 3 is for a tablespace backup
 3. Type 4 is for a copy for a table load

Chapter 7. Backup and Restore 159

The number after the instance name is reserved for the node number.

Tape images for backups are not named, but contain the same information in the
backup header for verification purposes.

Backup history provides key information in an easy to use format and is kept in
the recovery history file. The recovery history file is updated automatically with
summary information whenever you carry out a backup or restore of a full
database or tablespace. The contents of the history file is sufficient to support
management of the backup images. However, there may be cases where
knowledge of the naming convention used by DB2 regarding backup files could
be useful. One such case would involve a damaged history file. The recovery
history file is discussed in more detail in 7.8, “Recovery History File” on
page 177.

7.3 DB2 Restore Utility
When restoring a database, consider the following:

• You must have SYSADM, SYSCTRL or SYSMAINT authority to restore to an
exiting database from a full database or tablespace backup. To restore to a
new database, you must have SYSADM or SYSCTRL authority.

• The database manager must be started before restoring a database.

• You can only use the restore database command if the database or
tablespace has been backed up with the backup database command.

• The database to which you restore the data may be the same one as the
data was originally backup up from, or it may be different. You may restore
the data to a new or an existing database.

• You can choose at the time of the restore which type of restore is to be
performed. You can select from the following types:

 1. A full restore of everything from the backup image.
 2. A tablespace restore (using a backup image that only includes

tablespaces).
 3. A restore of only the recovery history file from the backup image.

• The database may be local or remote.

• The restore database command can be used the ADSM utility.

• Another vendor product may also be used if that product was used to store
the original backup image.

• A database restore requires an exclusive connection. That is, no
applications can be running against the database when the task is started.
Once it starts, it prevents other applications from accessing the database
until the restore is completed.

• The size and number of the buffers(s) used to support the restore can be
specified as a command option. If the hardware configuration has multiple
I/O controllers available, supporting I/O with multiple buffers can improve the
performance of the restore.

• During the restore procedure, you have the ability to optionally select to use
multiple buffers to improve the performance of the restore operation. The
multiple internal buffers may be filled with data from the backup media. The

160 DB2 V2 Planning Guide for DBAs

number of buffers you allocate should be at least twice as many of the
number of I/O devices you are using.

• You may specify the number of pages to use for each restore buffer when
you invoke the restore database command. The minimum number of pages
is 16. If you do not specify the number of pages, each buffer will be
allocated based on the database manager configuration parameter,
RESTBUFSZ. If there is not enough memory available to allocate the buffer,
an error will be returned.

• The backup copy of the database or tablespace to be used by the restore
database command can be located on a fixed disk, tape or location managed
by ADSM or another vendor. If using a third party vendor, they must supply
the shared libraries.

• Once the restore database command starts for a database backup, the
database is not usable until the command completes successfully. It is also
possible that a roll forward will be required before access is permitted.

• If a system failure occurs during any stage of restoring a database, you
cannot connect to the database until you reissue the restore database
command and successfully complete the restore.

• If a Version 1 backup copy of the database has not been migrated, the
restore database command migrates the database after the database is
restored. The backup copy of the database is not affected. If the restore
operation cannot successfully call the migration utility, you will receive a
message indicating that the database must be migrated with the migration
utility.

7.3.1.1 OS/2 Restore Considerations
The following list pertains only to the OS/2 platform and the restore operation:

• In OS/2, the restore database command can call a user exit program only if a
the backup copy was made using an exit program.

• There is ADSM support for restore in OS/2. Version 2.1.2 of the ADSM client
is a prerequisite for ADSM support in OS/2.

• The restore copy may be located on diskette in OS/2.

7.3.2 Target Database Existence (Database Level Restore)
When restoring a database, you have two options: to restore to an existing
database or to restore into a new database. Figure 42 on page 162 shows the
two options.

Chapter 7. Backup and Restore 161

Figure 42. Restoring a Backup Image to a Database

There are certain considerations for each case:

 1. Restoring to an Existing Database

You may restore an image of full database backup or tablespace backup to
an existing database of one or more tablespaces. To restore to an existing
database, you must have SYSADM, SYSCTRL or SYSMAINT authority.

When restoring to an existing database (the database alias in the image
matches the target alias), the restore task performs the following:

a. Delete table, index and long field contents for the existing database and
replace them with the contents from the backup image.

b. Retain the authentication for the existing database.

 c. Retain the database directories for the existing database that define
where the database resides and how it is cataloged.

d. Replace tablespace table entries for each tablespace being restored.

e. Retain the recovery history file unless the one on disk is damaged.

f. Other tasks, which depend on whether or not the database seed in the
backup image matches the seed of the target database. A database
seed is a unique identifier of a database that remains constant for the life
of the database. This seed is assigned by the database manager when
the database is first created.

 2. Restoring to a New Database

As an alternative to restoring to a database that already exists, you may
create a new database and then restore the backup image of the data. To
restore to a new database, you must have SYSADM or SYSCTRL authority.

162 DB2 V2 Planning Guide for DBAs

In this case, the restore database command will perform the following
functions:

a. Create a new database, using the database name and database alias
name that was specified by the target database alias parameter. (If this
target database alias was not specified, the restore database command
will create a database with the name and alias the same as the source
database alias parameter.)

b. Restore the authentication type from the backup image.

 c. Restore the database configuration file from the backup image.

d. Modify the database configuration file to indicate that the default log file
path should be used for logging.

e. Restore the database comments from the backup image for the database
directories.

7.3.2.1 Other Database Restore Considerations
If the target alias that you are restoring to and the alias in the backup image are
the same, the database seed is checked. Figure 43 shows the differences when
the database seed is the same and when the database seed is different.

Figure 43. Checking the Database Seed Upon a Restore

If the database seeds are different, the backup image was not made from the
database being restored. Restore will continue with the following:

• Delete the logs associated with the existing database

• Copy the database configuration file from the backup image

• Change the database configuration file to indicate that the default log file
path should be used for logging.

Chapter 7. Backup and Restore 163

When the database seeds are the same, the backup image was created from the
database being restored. Restore will continue with the following

• Retain the current database configuration file, unless the file is corrupted, in
which case this file will be copied from the backup image.

• Delete the logs if the image is of a non-recoverable database. Otherwise,
the log files will be kept.

7.3.3 Understanding the Restore Utility Parameters
The first step to understanding the restore utility is to discuss the parameters of
the command:

��──RESTORE DATABASE──source-database-alias─ ──┬ ┬───────────────────────────────────── ───────�
└ ┘─USER──username─ ──┬ ┬─────────────────

└ ┘─USING──password─

�─ ──┬ ┬─────────────────── ──┬ ┬── ───────�
├ ┤─TABLESPACE ONLINE─ ├ ┤─USE ADSM─ ──┬ ┬────────────────────────────── ────────────
└ ┘─HISTORY FILE────── │ │└ ┘─OPEN──num-sessions──SESSIONS─

│ │┌ ┐─,─────────────
├ ┤─FROM─ ───� ┴──┬ ┬─directory─ ───────────────────────────────
│ │└ ┘─device────
└ ┘─LOAD──shared-library─ ──┬ ┬──────────────────────────────

└ ┘─OPEN──num-sessions──SESSIONS─

�─ ──┬ ┬───────────────────── ──┬ ┬────────────────────── ──┬ ┬───────────────────────────── ──────�
└ ┘─TAKEN AT──date-time─ └ ┘─TO──target-directory─ └ ┘─INTO──target-database-alias─

�─ ──┬ ┬──────────────────────────── ──┬ ┬───────────────────── ──┬ ┬───────────────────────── ────�
└ ┘─WITH──num-buffers──BUFFERS─ └ ┘─BUFFER──buffer-size─ └ ┘─WITHOUT ROLLING FORWARD─

�─ ──┬ ┬─────────────────── ──��
└ ┘─WITHOUT PROMPTING─

The following list provides some of the options of the commands and their
descriptions.

DATABASE source-database-alias
Specifies the alias name of the database to restore. The
database to which you restore the data may be the same
one as the data was originally backed up from, or it may
be different. You may restore the data to a new or an
existing database.

USER username Identifies the user name under which the database is to be
restored.

USING password The password used to authenticate the user name. If the
password is omitted, the user is prompted to enter it.

TABLESPACE ONLINE
Specifies that this is an online process, the default is
offline. The means that other users can connect while the
backup is being restored. Once the restore process
begins for a tablespace, that tablespace is not usable until
the restore completes and a successful roll forward to the
end of log files has occurred. Online tablespace
processing requires that the database is enabled for
rollforward processing.

164 DB2 V2 Planning Guide for DBAs

HISTORY FILE Specifies that only the history file from the backup image
will be restored.

USE ADSM OPEN num-sessions SESSIONS
Specifies that the database is to be restored from ADSM
managed output using “num-sessions.” The necessary
ADSM environment variables must be set and the DB2
Server registered as an ADSM Client with the ADSM
Server before starting the restore operation.

FROM directory / device
Specifies the device or directory on which the backup
image reside. You can choose more then one source if
you backed up to several tapes and directories.

LOAD library-name OPEN num-sessions SESSIONS
Specifies that a third party vendor product will be used as
the target for this backup and that “num-sessions” will be
used.

TAKEN AT date-time This is a parameter for the restore command that allows
you to choose between several backup images. You must
issue the full timestamp to indicate which database image
is being restored.

To target-directory Specifies the path to be used to create the target
database. This path must exist on the server.

INTO target-database-alias
Specifies the name of the database to restore into. This
allows you to change the name of a database at restore
time.

WITH num-buffers BUFFERS
The number of buffers to be used.

BUFFER buffer-size The size in pages of the buffer used for the appropriate
process. The minimum value for this 16 pages. The
default value is 1024 pages. If you specify a buffersize of
0, the value in the database manager configuration for this
parameter will be used. These two parameters will
discussed further in 7.7, “Performance Issues” on
page 176.

WITHOUT ROLLING FORWARD
This option is only valid with an offline backup image of a
recoverable database. This will indicate that you do not
want to roll forward and the database should be made
consistent to the end of the backup.

WITHOUT PROMPTING
Perform the restore without prompting for new media. If
any other type of warning occurs or all the restore source
devices have been processed and there are still additional
images required to complete the restore, an error is
returned to the caller and the restore fails.

Chapter 7. Backup and Restore 165

7.3.4 Backup/Restore Tablespace Considerations
This section deals with only those considerations for backup/restore as it
pertains to the tablespace. However, the database backup/restore
considerations also exist for the tablespace. These have been discussed in 7.2,
“DB2 Backup and Restore Considerations” on page 155.

The following are backup/restore considerations at the tablespace level:

• A tablespace backup and tablespace restore cannot be run at the same time
even if the backup and restore cover different tablespaces.

• If you have tables that span more than one tablespace, you should backup
(and restore) the set of tablespaces together. This will eliminate some
complexity of your recovery strategies.

• A tablespace backup can include a single tablespace or multiple
tablespaces. However, restore is not selective. Therefore, planning should
be completed when determining the tablespaces to place on the backup
image.

• The decision to select which tablespaces to backup will also reduce the time
when the database is not available.

− Long field and large object (LOB) data for a table must be placed in the
same tablespace.

− Long field and LOB data can be in a separate tablespace from the rest of
the table data.

− Index data could also be kept in a separate tablespace from the rest of
the table data.

• Backup strategies could be planned to take advantage of tablespace backup,
thereby shortening the time for the backup to complete.

It is also possible to group several related tables together so that the
tablespaces they share can be considered a “unit” for backup and restore.
This could provide the “granularity” required for backup and restore to
complete in a shorter time frame, while keeping the management of backups
reasonable.

7.3.4.1 Tablespace Level Restore and Roll Forward Recovery
Tablespace restore can be completed starting with a backup image that contains
one of more tablespaces as shown in Figure 44 on page 167. The tablespace
level restore must be to the same database. This is different than the options
that exist for a full database restore. The name and seed for a tablespace
restore must be identical. When a tablespace level backup is done, part of the
information that is stored in the header is the “lifelsn.” This is the log sequence
number that exists for the database recorded during the tablespace backup.
There is a timestamp that is recorded in this information. This must match when
doing the tablespace restore.

166 DB2 V2 Planning Guide for DBAs

Figure 44. Tablespace Level Restore

To ensure that restored tablespaces are synchronized with the rest of the
database, the tablespaces must be rolled forward to the end of the log files. For
this reason, tablespace level backup and restore can only be performed if roll
forward recovery is enabled.

If roll forward recovery is disabled at any time after a tablespace level backup is
executed, it will not be possible to restore from the backup, and then to roll the
tablespace forward to the current point in time. In this case, all tablespace level
backups taken prior to that time are no longer restorable. The restore operation
will fail if the user tries to restore from such a backup.

Another important consideration in tablespace backup/restore is that you must
manually retrieve any archived log files. This is not done automatically for a
tablespace level roll forward.

In cases where it cannot be determined that the backup is valid (if, for instance,
the database has been restored and rolled forward, thus creating a new log
sequence), the restore may be successful, and the broken restore set will be
detected during roll forward recovery. This technique does not require the
backup restored in phase one of the recovery process to reflect a point of
consistency. Figure 44 shows the backup of the tablespace reflecting a point of
consistency. Here, the backup image of the tablespace(s) was taken. Logging
continued with transactions being recorded in the log files at a point of time after
the backup completed. At a later point in time, a crash occurred that required
the tablespace backup to be restored. The roll forward must take place and go
to the end of the log files to ensure a point of consistency within the tablespace
and database.

Each component of a table may be backed up and restored with the tablespace
in which it resides, independently of the other components of the table. An
exception to this general rule concerns recovery strategies for tables involving
LOB and long field data. If the roll forward phase of such a restore process
includes a REORG of such tables, the backup image previously restored must
contain all related LOB and long field data. This could mean that the backup

Chapter 7. Backup and Restore 167

image must contain more than one tablespace if the LOB and long field data was
placed in separate tablespaces.

7.3.4.2 Summary of Backup/Restore Considerations
Table 24 summarizes the considerations for backup/restore at both the
tablespace and full database level.

Table 24. Limitations and Restrictions of Backup

Full Database Backup
Offline

Full
Database
Backup
Online

Tablespace
Backup
Offline

Tablespace
Backup
Online

Logging Type Allowed Archive Circular Archive Archive Archive

Access Allowed During Backup
Process

No Access to Database
Full

Access to
Database

No
Access to
Database

Full
Access to
Database

Database State Following Restore Database
in

Rollfoward
Pending

State

Database
Consistent

Database
in

Rollforward
Pending

State

Database
in

Rollforward
Pending

State

Database
in

Rollforward
Pending

State

Rollforward Required Any Point
in Time

N/A Any Point
in Time at
Past End

of Backup

End of
Log

End of
Log

Table 24 points out considerations for your backup/restore strategy:

• Consider the type of logging to be used - circular versus archival

• Decide what type of access you can live with for both backup and restore

• Realize that your recovery action may include a roll forward operation

• Understand the point in time to which a roll forward must take place

7.3.5 Tablespace Backup and Restore Scenarios
In 4.5, “Planning Your Tablespace Environment” on page 57, a sample database
environment was presented. We will use that environment to discuss some
backup and restore strategies.

168 DB2 V2 Planning Guide for DBAs

Figure 45. Example Database and Tablespace Environment

Figure 45 shows the database, dss, with both DMS and SMS tablespaces. Not
all the tables are represented here for this discussion. We will discuss a
number of examples using this environment as it pertains to the tablespaces in
the dss database.

7.3.5.1 Log Files and NEWLOGPATH Parameter
As shown in Figure 45, the log files for the dss database will be placed on a
separate disk from the database itself. This will help in any recovery scenario.
The database parameter, NEWLOGPATH, has been set to point to the
directory/filesystem that is created on hdisk5. This is done before any
connections are made to the database.

7.3.5.2 System Catalog Backup/Restore
If the tablespace being restored is the system catalog tablespace
(SYSCATSPACE), then no other connections to the database are possible until
restore and rollforward recovery have completed. Figure 45 shows the dss
database environment. If the SYSCATSPACE tablespace that store the system
catalogs is damaged, no users will be able to connect to the database. If a
tablespace level backup containing the system catalog tablespace is available,
you can restore the tablespace backup and do a roll forward to the end of the
log files. If there is no backup copy that can be restored for the system catalog
tablespace, then you must perform an entire database restore.

7.3.5.3 Long/LOB Tablespaces
With Database Managed Storage (DMS), the user may choose to separate the
data, index and long field (LONG/large objects (LOBs)) into different tablespaces.
Only LONG and LOB for the same table must reside in the same tablespace.
Each component of a table may be backed up and restored if in separate
tablespaces. Figure 45 shows that a separate backup of the lobs01 tablespace
may be made only as often as needed.

Chapter 7. Backup and Restore 169

7.3.6 Online Archived Log File Reuse
There are special restrictions to be checked when restoring a tablespace backup
to determine if the backup can be used. This is necessary because a full
database restore changes the valid sequence of logs for roll forward recovery.
The log files are re-used. After restoring a tablespace backup, it must be
possible to roll forward the tablespace to the current point-in-time.

Figure 46. On-Line Archived Log File Re-Use

Figure 46 shows a scenario where two full backups (FDB1 and FDB2) and three
tablespace backups (TBS1, TBS2 and TBS3) are taken. This is indicated by Time
Line 1. The next time line, Time Line 2, shows that the full backup, FDB2, is
restored with no roll forward. Processing continues and tablespace backup
TBS3 is taken. This is also represented with Time Line 2. If a tablespace found
in all three tablespace backups becomes disabled, the only useable tablespace
backups are TBS1 and TBS3. The reason why TBS2 is unusable is that there is
no path from backup TBS2 through the logs to the current point-in-time (second
copy of S0000015.LOG); TBS2 was taken when an old version of log
S0000015.LOG was in use.

For completeness, Figure 46 can be broken down into the following steps:

 1. Full database backup (FDB1) is taken

 2. Logging begins in S0000012.LOG

 3. Tablespace backup (TBS1) is taken

 4. Second full database backup (FDB2) is taken

 5. Second tablespace backup (TBS2) is taken

 6. Full database restore is done using FDB2 with no roll forward

 7. Tablespace backup (TBS3) is taken

 8. Only TBS1 and TBS3 are usable for tablespace restores; TBS2 is lost

170 DB2 V2 Planning Guide for DBAs

7.4 Redirected Restore
Redirected restore is an option that allows you to redefine containers during
recovery. It can only be performed using the Database Director. Performing this
option using the Database Director is covered in 8.3.6, “Restoring a Database”
on page 200.

Redirected restore may possible be required to support:

• A container that cannot be accessed.

• Disaster Recovery

• “Copying” a Database

• Adding containers through the alter tablespace Command

These considerations are discussed in more detail.

7.4.1.1 Validating the Containers during a Restore
The redirected restore may be necessary as validation of the list of containers
while doing a restore. As part of the restore process, RESTORE validates the list
of containers needed by the tablespace. RESTORE first tries to create the
containers if they do no exist.

If the containers that cannot be created are currently used by another tablespace
or are inaccessible for any other reason, then the list of containers needed must
be redefined before the restore can continue.

7.4.1.2 Disaster Recovery/Copy
When you are restoring the database to a new location, the list of tablespace
containers will not likely match between the backup database image and the
new database. There is no way to prevent having to redefine the container list
in this case. The Database Director will indicate which containers need to be
defined before the restore can proceed.

After the list of containers has been redefined, a confirmation or re-validation of
the list takes place. You will be able to correct the list of containers or cancel
the action.

7.4.1.3 The Alter Tablespace Command
The alter tablespace command to ADD FILE or ADD DEVICE adds a tablespace
container to a specific tablespace.

When restoring to the same database, the list of tablespace containers in the
backup image will all be validated during the first phase of restore. It is only
during roll forward that the log records associated with the alter tablespace
command are encountered. If the container associated with the alter tablespace
command is accessible, the application of the log records proceeds and the
ALTER is re-applied. Otherwise, the tablespace is left in roll forward pending
status.

One way to limit having to correct the list of containers is by doing a backup
following the addition of containers to a tablespace. This is not a system
requirement, but as long as the RESTORE uses the most recent backup image of
the database, then redefining the container list is avoided.

Chapter 7. Backup and Restore 171

Directory and file containers are created automatically if they do not exist. No
redirection is necessary unless the containers are not accessible for some other
reason. Device containers (AIX only) are not automatically created. Conversely,
device containers are not removed.

7.5 Failures and Recovery Actions
You need to know the strategies available to you to help when there are
problems with the database. Typically, you will deal with media and storage
problems, and application failures.

Figure 47. Potential Problems

You need to know that you can backup up your database, or individual
tablespaces, and then rebuild them should they be damaged or corrupted. The
rebuilding of these objects is called recovery. DB2 provides the capability to
recover from a variety of data processing problems.

The degree of recovery is dependent on the type of recovery required. For
example,

• Recovery from a program logic flaw can only be made to a point before the
erroneous program began.

• Recovery from a power failure can restore the database to a consistent state
up to the last committed unit of work.

In order to support recovery from all the potential problems, the database
administrator needs to take full advantage of all the recovery features of DB2.

172 DB2 V2 Planning Guide for DBAs

7.5.1 Methods of Recovery
There are basically three types or methods of recovery as shown in Figure 48:

Figure 48. Methods of Recovery

As shown in Figure 48, these three methods of recovery are:

 1. Crash Recovery

Entails using the log files to recovery from power interrupts or application
abends. Crash recovery can be initiated by entering a restart database
command. However, it is more common to use the automatic restart enable
(AUTORESTART) database configuration parameter. This will cause crash
recovery to occur automatically at the first connect after a failure. The
default for this configuration parameter is that the restart database
command will be started every time it is needed.

 2. Restore or Version

Entails using a backup copy of the database to replace the current data in
the database. This type provides recovery from media, hardware,
operational and software problems, but only to the point that the backup
copy was made. Therefore, the more frequent the backups, the more current
the recovered database will be.

You must schedule and perform a full backup of the database on a regular
basis. The longer the time between the backups, the greater the number of
units of work that may be lost. The loss of units of work must be acceptable
within your business operation or you must have a way to re-apply the
missing units of work against the restored database.

Tablespace recovery is not supported by Restore or Version strategy.

 3. Roll Forward Recovery

Entails using a backup copy of the database or tablespace to replace the
current data and then applying log records to recover changes made after
the backup images was created. This type provides recovery from media,
hardware, operational and software problems. The recovery can be to a
point in time or the last committed unit of work. Note, that if tablespace level

Chapter 7. Backup and Restore 173

recovery is being completed, the only option is to apply all of the log
records. Point in time recovery is not supported for tablespaces.
Rollforward recovery using a recent backup will require less log record
application than a rollforward using an older backup, so the frequency of
backups will still be a consideration for the database administrator.

To use the database roll forward recovery method, you must ensure that log
retention is done and that the log files created since the backup are
available for the roll forward process. For more information on logging, see
Chapter 6, “Logging” on page 131.

7.5.2 Media Failure
In Version 1, a media error would cause the entire database to be brought down.
If the database was not able to perform a crash recovery, the entire database
would be marked as damaged. The only recovery method available was to
restore the entire database.

In Version 2, the media error can now be isolated at the tablespace level. This
leaves remaining tablespaces in the database still accessible for use. If an I/O
error is encountered while trying to read or write data to disk, the tablespace in
which the page read is disabled. That tablespace is placed in a rollforward
pending state.

 Note:

This is only possible if the database has roll forward recovery enabled;
otherwise, the database will be brought down with SQLCODE -902 as it does
in Version 1.

By putting the tablespace in rollforward pending state instead of recovery
pending, the user is able to recover the tablespace by rolling forward only the
database. The tablespace does not have to be restored to do roll forward
recovery. Before the tablespace becomes completely disabled, the active
transactions accessing the tablespace are allowed to complete. While these
existing transactions are completing, the tablespace is placed in an intermediate
state called disabled pending, in which access to the tablespace is still allowed
with restrictions. This allows the existing transactions to write all log records to
disk before access to the tablespace is totally restricted.

If a transaction received an I/O error in the tablespace during the rollback
processing, the tablespace will be disabled immediately; the tablespace is
placed in rollforward pending

7.6 Tablespace Backup Guidelines
The following lists some guidelines for implementing a backup/restore strategy
at the tablespace level:

 1. Roll forward must be enabled

 2. All log records must be applied

 3. Multiple tablespaces in image may be desirable

• Ease of tablespace recovery strategy
• Access to related tables managed coherently

174 DB2 V2 Planning Guide for DBAs

 4. Long field/LOB data and REORG

 5. All tablespaces in image restored

 6. Catalog tablespace good candidate

 7. Critical application tables tablespaces

 8. Online or offline

In order to use tablespace level backup and restore, roll forward recovery must
be enabled. Furthermore, the recovery point in such a strategy is to the end of
the logs. Point in time recovery is not permitted at the tablespace level.

One of the key reasons to use tablespace recovery is to reduce the time of
backup and restore. This is accomplished by reducing the amount of data
involved in these processes. However, the database administrator should not
strive to simply minimize the amount of data in a backup. Although this could be
accomplished by placing a single table in its own tablespace, such
implementation would likely lead to a management problem concerning backup
and recovery.

If the tablespace associated with closely related tables is contained in a single
backup, only the applications targeting the closely related tables are impacted.
In many cases, such applications would be impacted even if a single table in the
“group” was unavailable. (Assuming one table per tablespace.) This is
especially true in the case of referentially constrained tables. You should
consider grouping the tablespaces that support referential structures in a single
backup image.

The key is to reduce the amount of data involved in the event that recovery is
necessary while controlling the impact on management of the backup/restore
strategy.

LOB data and long field data can be placed in a tablespace that is separate from
“regular” data. This can assist the recovery time since the frequency of backing
up LOB data is not as often as the frequency of backing up “regular” data. The
nature of LOB data is that is tends not to be updated frequently and it is large.
However, if a REORG of such a table is part of the roll forward process, you must
have all tablespaces relating to the table in the backup. This would defeat one
of your reasons to separate the data. The solution is to establish new backups
of the tablespaces associated with such tables after you perform the REORG.

If you are logging large object (LOB) data, you have to consider the impact on
performance. If you turn logging on for LOB data, your application′s
performance will deteriorate and you may encounter problems related to the
increased size of the log file. If you turn the logging off for LOB data, your
application′s performance improves, however, its recoverability is sacrificed.

It is not possible to selectively restore a tablespace from a backup that contains
several tablespace images. All are restored. Therefore, the choices you make
during your backups will impact the granularity of your restore.

Chapter 7. Backup and Restore 175

7.6.1 Backup/Restore Recommendations
No two installations will have identical recovery requirements, but the following
are some considerations:

• Place the log files and database files on separate physical disks.

• Decide what medium (disk, tape or ADSM) can best handle the volume of log
data to be generated in your environment.

• An offline backup/restore in Version 2.1.1 will perform better than an online
backup/restore.

• If recovery is critical, consider mirroring the log files and making copies of
backups. (AIX only)

• Determine how far back recovery should be enabled for your needs.

• Determine when log files and backups may be discarded.

• Consider using a user-exit and modifying it for your environment.

Particular consideration should be made to the use of user exit programs.
Although these are supplied by IBM as samples and are therefore not
guaranteed regarding functionality, they are a good starting point. It is
necessary to test the functionality at your installation. Table 25 summarizes key
points regarding backup and logging and their effect on resources. The
descriptions of resources and management are relative. For example, some
database administrators may consider management of an installation′s roll
forward recovery strategy simple, once the planning and implementation process
has been completed. However, compared to supporting crash recovery, the cost
is high.

Table 25. Logging/Backup Requirements Summary

Consideration Crash Version Roll
Forward

Logging Circular or
Archival

Circular or
Archival

Archival

Backup N/A OFFLINE OFFLINE
or ONLINE

Resources Low Medium High

Management Low Medium High

Currency after Media Failure Not
Provided

Latest
Backup

Last
Committed
Work

Tablespace Recovery N/A No Yes

7.7 Performance Issues
There are a number of items in Version 2 that may affect the performance of a
backup/restore. These items are as follows:

• Offline backup versus online backup

• Number of buffers

• Size of buffers

176 DB2 V2 Planning Guide for DBAs

In Version 2.1.1 of DB2, offline backup is faster than online backup. It is linear
scalable. The term “linear scalable” in this context refers to the increase in
performance when adding more disk to the backup/restore process. The
performance of an online backup/restore would also benefit, but is even more
noticed when doing an offline backup.

7.7.1.1 Buffers and Performance
The number of buffers and size of buffers can have a direct impact on the
performance of your backup/restore. The exact figures will depend on your
installation. The number of buffers you allocate should be at least twice as
many as the number of I/O devices you are using.

The size of buffers can also affect performance. Choosing the size of the buffer
is related to the amount of memory in your system configuration available for the
backup/restore process. When possible, the buffer should reside in memory
during the backup/restore process and not be swapped out.

Another consideration is the type of tablespace could affect the size of the
backup/restore buffer. A large buffer size for DMS tablespaces would improve
the backup/restore performance because of the internal format in which the DMS
tablespace is backed up or restored.

7.8 Recovery History File
A recovery history file contains historical information for a database. The file is
maintained at the database level and resides in the same directory as the
database configuration file. If the database is dropped, the history file is lost.

The recovery history file is updated when any one of the following operations is
performed:

• A backup of the full database or tablespace(s)

• A restore of the full database or tablespaces(s)

• A load of a table

The recovery history file provides a summary of backup information useful in the
event that a database or tablespace must be restored. The backup information
includes:

• The part of the database that has been copied by a backup, load or copy
operation

• When the database was copied

• The location of the copy

• Time of the last restore

The full format of the file can be found in 7.8.2, “Format of Recovery History File”
on page 179. For example, to list all the backups, restores and loads that have
been done for a database (here called dss), the command would be:

� �
db2 list history all for dss

� �

Chapter 7. Backup and Restore 177

An option on the restore command permits only the history file in a backup
image to be restored. This is useful in recovery situations where the history file
currently associated with the database is not accessible and information
contained in the history file is needed to plan the recovery strategy.

All insertions to the recovery history file are done automatically whenever a
backup, restore or load is performed. A warning will be given if the history file
cannot be inserted into or updated, due to either a full file system, a damaged
history file or an I/O error. If the file system is full, the current entry will be lost,
since insertions are made as the backup, restore or load is being done. The
user cannot insert records into the history directly. In the case of a full file
system, this information would be lost.

7.8.1.1 Managing the Recovery History File
You can manage the recovery history file by using the prune history command.

The prune history command may be used to delete entries from the recovery
history file. The syntax for the PRUNE HISTORY file is as follows:

prune history timestamp with force option

The timestamp is used to identify a range of entries in the recovery history file.
A complete timestamp (in the format yyyymmddhhmmss) or an initial prefix (at a
minimum, yyyy) may be specified. All entries with timestamps equal to or less
than the timestamp provided are deleted from the recovery history file.

The WITH FORCE OPTION specifies that the entries will be pruned according to
the timestamp specified, even if some entries from the most recent restore set
are deleted from the file.

The following are examples of the prune history command:

� �
db2 prune history 19950726100922
db2 prune history 19950726 with force option

� �

You must have SYSADM, SYSCTRL, SYSMAINT or DBADM authority to use the
prune history command.

There will a recovery history file for every database. The size of the file depends
on the REC_HIS_RETENTN database configuration parameter and the frequency
of backups, restores and table loads. REC_HIS_RETNTN is used to set the
retention period of the history file; the default is 366 days. If the recovery history
file is not needed to keep track of backups, restores or loads, REC_HIS_RETENTN
can be set to a small value.

If you want to keep the recovery history file indefinitely, set the
REC_HIS_RETNTN value to -1. In this case, the user must explicitly prune the
recovery history file. By default, the recovery history file is automatically pruned
after recording a full database backup.

No matter how small the retention period, the most recent full database backup
plus its restore set will always be kept unless the PRUNE with FORCE option is
used.

178 DB2 V2 Planning Guide for DBAs

7.8.2 Format of Recovery History File
Figure 49 shows the format of the recovery history file.

Figure 49. Format of the Recovery History File

The following lists the columns contained in the recovery history file and their
description:

Table 26 (Page 1 of 2). Format of the Recovery History File

Column Name Type Description

OPERATION Char(1) Type of operation performed, B=Backup, R=Restore,
L = L o a d

OBJECT Char(1) Granularity of operation, D=Full Database,
P=Tablespace, T=Table

OBJECT_PART Char(17) First 14 characters=t imestamp=yyyymmddhhnnss, Next
3 characters=Sequence Number. Backup can save to
multiple fi les/tapes Restore/Load always ′001′

OPTYPE Char(1) Additional operation qualif ication, F=Offl ine backup,
N=Online backup, R=Load Replace, A=Load APpend,
C=Load Copy, Blank for other operations

DEVICE_TYPE Char(1) D=Disk , K=Disket te , T=Tape, A=ADSM, U=UserEx i t ,
O=Other Vendor Device Support

FIRST_LOG Char(12) Earliest Log File ID (S0000000 to S9999999) Required for
roll forward recovery after full database/tablespace
backup

LAST_LOG Char(12) Latest Log File ID

BACKUP_ID Char(14) Timestamp ′yyyymmddhhnnss ′ that references one or
more file lines representing backup operation. For full
database restore, references full database backup that
was restored. For tablespace, references tablespace
backup or full database backup used to restore specified
tablespaces. Blank for other operations.

SCHEMA Char(8) Tablename qualifier for load

TABLE_NAME Char(18) Name of Loaded Table

NUM_TABLESPACES Char(3) Number of tablespaces involved in backup/restore. If
non-zero, next lines in fill contain one line for each
tablespace.

Chapter 7. Backup and Restore 179

Table 26 (Page 2 of 2). Format of the Recovery History File

Column Name Type Description

LOCATION Char(255) Where data is saved for backups/load copy. For
restore/loads where first part of data was saved. Refers
to DEVICE_TYPE. If D or K, then fully qualified file name.
If T, then tape volume label. If A, then ADSM server
name. If U or O, then free form text.

COMMENT Char(30) Free form text.

7.8.2.1 Damaged Recovery History File
If the current database is unusable or not available, and the associated recovery
history file is damaged or deleted, an option on the RESTORE command allows
only the recovery history file to be restored. The recovery history file can then
be reviewed to provide information on which backup image to use to restore the
database. This restored history file will contain all entries up to, but not
including backup used for restoration.

7.9 Customer Scenario - The Telephone Company
The backup strategy of the phone company is conditioned by the time window
available to perform backups. The batch time window for DB2/MVS is from 3 PM
to 7 PM. Changes generated by all the batch jobs are then propagated to
DB2/AIX. Database and tablespace backups are taken using scripts executed by
cron daemons. Time window for backups is from 8 PM to 6 AM. ADSM is not
installed. The backup strategy relies on a weekly database backup and selected
daily tablespace backups. Archival logging is being used.

Tables were grouped into tablespaces according to the number of modified rows
per day:

• Tablespace space01 stores all the tables with a low number of modifications.

• Tablespace space02 is used to store tables with a “medium” number of
modifications per day.

• Tablespaces space03 to space11 store frequently modified tables.

The backup policy implemented by the database administrator takes in
consideration the volume of modifications undergone by the tablespaces. Taking
backups more often of frequently modified tablespaces will reduce the space
needed in the log files to store those changes, and will reduce the time to
roll-forward the changes after restoring a tablespace. The backup schedule
outlined by the DBA is the following:

• Monday: Tablespace backups of the space03 to space11 tablespaces.

• Tuesday: Tablespace backups of the space01 to space07

• Wednesday: Tablespace backups of the space03 to space11 tablespaces.

• Thursday: Tablespace backups of the space01, space02, and space08 to
space11 tablespaces.

• Friday: Full database backup.

Before taking backups, the amount of memory given to the utility heap is
increased. As in the case of the load utility, the backup utility does not use the

180 DB2 V2 Planning Guide for DBAs

buffer pool. The buffer pool is reduced to 100 MB and the UTIL_HEAP_SZ is
increased to 20000 pages. The memory allocated for the buffers used by the
backup utility comes from the utility heap.

All the backups taken share the following options:

• The 5 GB 8mm tape drive as destination device.

• No backups are taken ONLINE.

• The number of buffers used is 16.

• The size of this buffers is 1024 4KB pages.

Chapter 7. Backup and Restore 181

182 DB2 V2 Planning Guide for DBAs

Chapter 8. Data Access

There are different methods of accessing DB2 resources, including:

• Command Line Processor (CLP)

• SQL Query Products, such as Visualizer

• Database Director

8.1 Command Line Processor (CLP)
The Command Line Processor (CLP) is provided in all of the DB2 V2 products.
The amount of functionality provided by CLP is determined by the product which
you are using. For example, The Client Application Enabler (CAE) provides a
minimal CLP interface which allows you to connect to a remote database and
bind an application. The Software Developer Kit (SDK) provides an enhanced
CLP which allows you to do such things as precompile an application. The
Single-User and the Server versions of DB2 provide a full CLP interface which
allows the user to execute SQL statements.

To invoke the CLP, simply type db2 at a command line. You can issue SQL
statements or DB2 commands using CLP. If you are issuing a DB2 command
and you need to verify the syntax of the command, issue db2 ? command-name.
The syntax of the particular command will then be displayed. If you are
attempting to issue an SQL statement, you can easily verify the syntax of the
statement by entering db2 help sql-statement. This will display the appropriate
section of the SQL Reference manual online.

Many of the examples throughout this book use the Command Line Processor
(CLP) as the method of performing DB2 tasks, such as backup and load. The
syntax for these utilities can become very long, and errors can easily occur. The
first step to making CLP commands more usable is to place the commands into
a file. To execute commands from a file, you must use the -t of the CLP.

There have been some time-saving changes added to CLP in V2. The following
is a list of abbreviations recognized by CLP. This will help save a few
keystrokes when using interactive CLP commands.

The word database can be abbreviated as db, as in the following commands:

� �
db2 list db directory
db2 get db configuration for sample

� �

The term “database manager” may be abbreviated to dbm.

� �
db2 get dbm directory

� �

The word “configuration” can be shortened to cfg or config.

 Copyright IBM Corp. 1996 183

� �
db2 get dbm config

� �

The CLP interface provides the ability to issue DB2 commands and most SQL
statements and therefore is the most flexible interface available to manage a
DB2 installation. Some of the limitations of CLP are its speed and inability to
integrate with some of the new features of DB2 V2, such as Visual Explain and
the Graphical Performance Monitor. There is another variation of CLP called
db2batch. It is a tool to be used in benchmarking and tuning a query. The
db2batch program is located in the misc directory of the instance.

As mentioned previously, the Command Line Processor is the most flexible user
interface to DB2. There are some tasks that can only be performed using CLP or
the equivalent API (NOT accessible using the Database Director), including:

• Load

• Import

• Export

• Reorg

• Runstats

8.2 SQL Query Products
There are various query products available which use SQL to manipulate DB2
resources. DB2 for OS/2 V1.x provided a SQL query tool, called Query Manager.
This product is not shipped with V2.x. Therefore, an alternative product should
be used to issue SQL queries. Query Manager may still be used but only as a
remote client to a V2.x database. If using Query Manager, some of of the V2.x
features cannot be utilitized. such as IBM′s Visualizer Products, Lotus Approach
or Microsoft Access are some of the more popular SQL query products used with
DB2 today. Figure 50 on page 185 shows an example of the Visualizer SQL
query product from IBM. Some of the day-to-day activities of a database
administrator can be accomplished using SQL statements. Here are a few SQL
statements that would be of interest to a database administrator:

• Alter tablespace - to add a new container to a DMS tablespace

• Create event monitor - to examine SQL activity

• Create index - to increase select performance on heavily accessed tables

• Create tablespace - to define a new tablespace within a database

• Grant - to provide database object access to users and/or groups

• Revoke - to prevent unauthorized access to database objects

• Set constraints - to remove the check-pending status of a table

• Set event monitor state - to activate/deactivate a defined monitor

184 DB2 V2 Planning Guide for DBAs

Figure 50. Visualizer for OS/2

The list of SQL statements does not include such tasks as making a backup
image of a database and restoring the backup image. These tasks cannot be
performed using SQL. To perform these tasks, you may decide to use a
database management product such as DataHub, or use the Database Director
shipped with DB2.

An SQL query product will not allow a database administrator the ability to
perform key tasks, such as backup and restore. Therefore, using such an
interface is only a partial solution to manage a DB2 database system.

8.3 Database Director
DB2 V1.x included some database tools known as DBAT (Database Tools). DB2
for AIX V1.x included a program that was invoked from an aixterm by the
command db2adm. This utility is no longer shipped in V2. DB2 for OS/2 V1.x
included a recovery tool, directory tool and configuration tool. These tools are
also no longer shipped in V2. A new database-management interface called the
Database Director is provided.

8.3.1 Getting Started
The Database Director provides a graphical interface that helps you perform
common database administration tasks. It is provided with the SDK, Single-User
or Server. The Database Director can be used to create, modify or delete
various DB2 objects, such as tables and tablespaces. It can also be used to
invoke the Performance Monitor Tool and the Visual Explain utility. The
Database Director can be started by issuing the db2dd command from a window
in AIX. In OS/2, the Database Director is started by selecting the Database
Director icon in the DB2 folder. Figure 51 on page 186 shows the first screen of
the Database Director. The interface is almost identical between OS/2 and AIX.
(DB2 for Windows NT V2.1 does not have the Database Director available in the
initial release.)

Chapter 8. Data Access 185

Figure 51. The Database Director Main Screen - Tree View

There are two different methods of viewing the DB2 objects within the Database
Director, the tree view and the list view. The default view is the tree view, as
seen in Figure 51. In Figure 52 on page 187, the equivalent list view of the DB2
objects can be seen. This view will display objects of the same type. Figure 52
on page 187 shows that there are three instances: DB2, INSTB and SERV1. The
title bar for the Database Director will show which view is currently being
displayed, followed by a number. Each time a Database Director window is
created, a new number is assigned. There is no significance to this number
other than to help identify the different windows that are open.

186 DB2 V2 Planning Guide for DBAs

Figure 52. The Database Director Main Screen - List View

There are three main areas that can be accessed using the Database Director:

 1. Instances

 2. Databases

 3. Directories (See Figure 51 on page 186)

The following sections discuss the tasks that are possible using the Database
Director.

8.3.2 Configuration
A DB2 Server usually requires some type of tuning to achieve optimal
performance. The task of tuning a DB2 Server (instance) and tuning a DB2
database involves the understanding of many configuration parameters. These
parameters are stored in two different files: the DBM configuration file (sqlsystm)
and the DB configuration file (sqldbcon). There are two ways to modify these
configuration parameters:

 1. Using the CLP

db2 update database manager configuration using <keyword> <value>

 2. Using the Database Director

We discuss the use of the Database Director to accomplish this task.

Chapter 8. Data Access 187

8.3.2.1 Configuring DB2 Instances
DB2 V2 has over 50 Database Manager (DBM) (instance) configuration
parameters. Note that these configuration parameters are established for a
single instance. In a multiple instance environment, it is important to know
which instance you are configuring. Any changes to DBM configuration
parameters take effect when all applications have disconnected from databases
within the instance, the instance has been stopped and then restarted (db2start).
If you have created more than one instance on a DB2 server or you would like to
access instances residing on other DB2 servers, you must catalog all of the
instances for them to be accessible via the Database Director. The Database
Director uses the node directory to locate the instances which are displayed.
Therefore, simply creating a new instance using the db2icrt command will not
result in an object being displayed via the Database Director. The term used in
the Database Director which refers to DB2 instances is Database Managers.

Figure 53. Notebook Settings for DB2 Instance (DBM) Configuration

The database director allows you to modify any of the DBM configuration
parameters by using the pop-up menu for the instance you wish to configure.
Figure 53 shows the DBM configuration panel for a DB2 instance. Notice that
the parameters are grouped by type; this is useful in understanding how they
relate to each other. Also, note that the database manager configuration release
level is 0x600; this value is used to determine which release of DB2 Common
Server is being configured. It is possible to configure any local or remote

188 DB2 V2 Planning Guide for DBAs

instance which has been cataloged, but the instance must have been started.
(See Figure 54 on page 189.)

Figure 54. Failed Attempt to Configure a DB2 Instance

8.3.2.2 Configuring DB2 Databases
There are over 50 DB (database) configuration parameters in DB2 V2. These
parameters are stored within the database in the sqldbcon file, which is stored
with a database backup image. Any changes to the database configuration take
effect when all applications have disconnected from the database, and a new
database connection is established (connect to dbname).

Chapter 8. Data Access 189

Figure 55. Notebook Settings for Database (DB) Configuration

The Database Director allows you to modify the DB configuration via the pop-up
menu for the database you wish to configure. As shown in Figure 55, the DB
configuration parameters are grouped by type. This is useful in understanding
how they relate to each other. Figure 55 shows the notebook settings for a
default OS/2 DB2 database. Note the default buffer pool size for OS/2 of 250-4
KB pages, which is approximately 1 MB. You will very likely wish to increase
this value if the DB2 server has the physical memory available. The default
buffer pool size for an AIX server is 1000-4 KB pages, or approximately 4 MB.

8.3.2.3 Catalog/Uncatalog Databases
The task of cataloging databases and nodes can be confusing when using the
Command Line Processor (CLP). Entries in the different directories must match
for a successful database connection to occur. The DB2 directories are used to
determine where the databases physically reside, either locally or remotely.
During each connect statement, DB2 has to find the appropriate information from
these files. This action takes extra I/O during each connect statement. To
increase performance during a connect statement, these files can now be cached
in memory to avoid the extra disk access during all subsequent connections. As
shown in Figure 56 on page 191, there are four directories which can be
accessed using the Database Director, including:

• System database directory

• Node directory

190 DB2 V2 Planning Guide for DBAs

• Database connection services directory

• Local database directory

Figure 56. DB2 Directories

The first DB2 directory that is examined during a connect to <dbname> is the
system database directory. There is a single system database directory for each
DB2 instance. If the database has been cataloged as a local database, the local
database directory is then examined to locate the database. If the database has
been cataloged as a remote database, the node directory is examined to locate
the DB2 server where the database resides. Figure 57 on page 192 shows an
example of the system database directory. This example shows two local
databases and one remote database.

Chapter 8. Data Access 191

Figure 57. System Database Directory

The advantage of using the Database Director to catalog your databases is that
the integration of the various DB2 directories makes the task easier. In
Figure 58 on page 193, you can see that the corresponding node directory
entries can be chosen or defined when the catalog database task is being
performed. The CLP interface does not provide an easy method of performing
all of the necessary steps to catalog/uncatalog databases.

192 DB2 V2 Planning Guide for DBAs

Figure 58. System/Node Directory Relationship

8.3.3 Creating/Modifying DB2 Objects
This section shows how to create/modify DB2 objects using the Database
Directory. Specifically, the following operations may be performed:

• Creating a Database

• Dropping a Database

• Creating a Tablespace

• Backing up a Database

• Backing up a Tablespace

• Restoring a Database and Changing Container Definitions

• Examining Database Packages

• Using the Performance Monitor

Chapter 8. Data Access 193

8.3.3.1 Creating a Database
In DB2 Version 2, the task of creating a database has become more flexible. The
Database Director makes this task simpler than remembering the complete
syntax of the create database command. Figure 59 shows how to start the task
of creating a new database by using the pop-up menu and selecting the
Databases object.

Figure 59. Pop-up Menu for Creating a Database

The notebook settings for creating a database in Figure 60 on page 195 shows
that the characteristics of the new database can be easily defined including:

• The location of the three default tablespaces

• The number and location of the containers for the tablespaces

• The collating sequence

194 DB2 V2 Planning Guide for DBAs

Figure 60. Notebook Settings for Creating a Database

When creating a new database, the default tablespaces must be defined
Figure 61 on page 196 shows two containers have been defined for the system
catalogs (SYCATSPACE). The Database - Create screen contains two large
arrows. One arrow is pointing up and the other down. These arrows are used
to add (down arrow) or change (up arrow) the default container definitions for a
tablespace. Figure 61 on page 196 shows that there will be two containers
defined for the SYSCATSPACE tablespace. Remember that in an SMS (System
Managed Tablespace) tablespace, once the containers are defined for the
tablespace, no additional containers can be added. However, there is one
possiblity that allows you change the container definition when performing a
restore operation. This will allow you the opportunity to redefine the containers
for a tablespace, whether the tablespace is SMS or DMS. However, the type of
tablespace remains the same. For more information on this option, see 8.3.6,
“Restoring a Database” on page 200.

Chapter 8. Data Access 195

Figure 61. Defining Tablespaces During Database Creation

8.3.3.2 Dropping a Database
The Database Director can be used to drop a database by using the Database
Object pop-up Menu. As shown in Figure 62 on page 197, the Database Director
will warn you before the database is actually dropped.

196 DB2 V2 Planning Guide for DBAs

Figure 62. Dropping a Database

8.3.3.3 Creating a Tablespace
The Database Director may be used to create a new tablespace within a
database. As seen in Figure 63 on page 198, the type of tablespace (DMS or
SMS) can be selected, and the containers for the tablespace can be selected.

Chapter 8. Data Access 197

Figure 63. Creating Tablespaces

It is possible to add new containers to a DMS tablespace by using the Database
Director, as shown in Figure 64. When a new container is added to a DMS
tablespace, the data contained within the tablespace is rebalanced by DB2.
Alternatively, you can also add containers to a DMS tablespace with the alter
tablespace command. For more information, see 4.6.3, “Alter Tablespace” on
page 80.

Figure 64. Adding a Container to a DMS Tablespace

198 DB2 V2 Planning Guide for DBAs

8.3.4 Backing up a Database
The Database Director is a an easy-to-use interface for performing backups of a
database/tablespace. You can start the backup process and monitor its
progress by using the jobs recovery tool. The jobs recovery tool is only
accessible via the Database Director in DB2 Version 2.1.1. For DB2 Version
2.1.0, the jobs recovery tool can only be accessed from the command line. Use
the db2jobs command in AIX. In OS/2, there is an icon in the DB2 folder for the
jobs recovery tool.

Figure 65 shows the Database Director Back Up Database Panel. The same
options exist in the Database Director as in the backup database command. The
backup image may be placed on disk, sent to tape or sent to an ADSM server.

Figure 65. Backing Up a Database

Once the database backup has been initiated, it is assigned a job number. The
job number can be used to check the progress of the backup operation by using
the jobs recovery tool. Figure 66 on page 200 shows an example of using the
jobs recovery tool to check the status of a backup. Note that job number 7 was a
successful full database backup.

Chapter 8. Data Access 199

Figure 66. Jobs Recovery Tool

8.3.5 Backing up a Tablespace
The procedure for performing a tablespace-level backup using the Database
Directory is very similar to performing a full database backup. To back up a
tablespace, use the pop-up menu for the tablespace which is to be backed up.
Remember that to perform a table space backup, rollforward recovery needs to
be enabled. To examine the progress of a tablespace backup, the jobs recovery
tool can be also be used.

8.3.6 Restoring a Database
The task of restoring a previously backed up database image can become
complicated, especially if archival logging is being used. The Database Director
allows you to perform the restore and as part of the process, perform a
rollforward recovery. The Database Director has a recovery database notebook
setting which makes the job of restoring a database easier. Figure 67 on
page 201 shows the Restore Notebook.

200 DB2 V2 Planning Guide for DBAs

Figure 67. Changing Container Definit ion during Restore

Note the ability to Pause to allow table space container redefinition . This option
allows you the ability to add a new container or change the container locations
for both SMS and DMS tablespaces. This is called the Redirected Restore
Option.

8.3.6.1 Using the Redirected Restore Option
The redirected restore option is unique to the Database Director. It is not
possible when using the CLP or an API.

Chapter 8. Data Access 201

Figure 68. Redirected Restore

The redirected restore will prompt the database administrator to redefine the
container definitions before the restore task is started. This is illustrated in
Figure 68. Containers can be added or dropped during the restore, as shown in
Figure 69 on page 203. Here, a new container has been added to the DMS1
table space. The container location is c:\cntr2.

202 DB2 V2 Planning Guide for DBAs

Figure 69. Redefining Containers

 Containers

Directory and file containers are created automatically if they do not exist.
Device containers in AIX must exist before attempting the redirected
restored. Also, you may have to give ownership/permissions to the
containers on the AIX platform.

Following a successful database restore, the Database Director can be used to
perform the rollforward phase of database recovery.

After the list of containers has been redefined, a confirmation or revalidation of
the list takes place. If there is a problem, you will return to the previous window
until the list is correct, or you decide to cancel the operation.

8.3.7 Examining Database Packages
The are two methods of examining Visual Explain output for SQL statements
which have had explain snapshots taken.

Chapter 8. Data Access 203

Figure 70. Examining Database Packages

The first method is by using the Database Director and opening the packages for
static SQL explain statements, as shown in Figure 70. Another method of
examining the Visual Explain output is to open the Explained statements history
from the Database Director. Figure 71 on page 205 shows the interface for the
Visual Explain tool. There will be an entry for each explain snapshot taken. By
selecting the statement, a graphical representation of the access plan chosen for
the SQL statement will be displayed. The Visual Explain objects and their
meanings are documented in the online help facility. To obtain an explain
snapshot, the explain tables must be created and the snapshots taken for the
SQL statements.

204 DB2 V2 Planning Guide for DBAs

Figure 71. Explainable Statements

An example of the output of the Visual Explain tool is shown in Figure 72.

Figure 72. Visual Explain Example

Chapter 8. Data Access 205

8.3.8 Performance Monitoring
In DB2 Version 2.1.1, there are two new types of Performance Monitor. One is
based on the Snapshot Monitor; the other is based on Event Monitor output. The
graphical Performance Monitor may be invoked from the Database Director by
selecting the database object to be monitored and the appropriate monitor
variables.

206 DB2 V2 Planning Guide for DBAs

Appendix A. Database Migration

For those with DB2 Version 1 installed, a successful migration strategy and
process are essential. This section reviews the general issues with migration
and the specific factors for the OS/2 and AIX platforms. A step-by-step migration
process for each environment is described, along with a guide to problem
determination. The lessons for our chosen customer scenario are also
discussed.

A.1 General Considerations
The general issues to be considered before the migration process is initiated
are:

• Version Incompatibilities

• Authentication

• Storage Requirements

A.1.1 Version Incompatibilities
For a comprehensive review of the incompatibilities between Version 1 and
Version 2 of DB2 product, consult the SQL Reference. However, we draw your
attention to two significant incompatibilities which may impact migration, namely:

• View Definitions

If an existing view involves a SELECT *, the view may be unusable after
migration. Such a view must be dropped and re-created to avoid this error.

• Configuration Parameters

The migration process preserves the database configuration parameters,
with the exception of the following where new default parameter values have
been assigned:

− Application Heap Size

− Package Cache Size (AIX only)

− Maximum Storage of Lock Lists

− Statement Heap Size

− Log Records to Write Before Soft Checkpoint (softmax)

A.1.2 Authentication
Authentication refers to the location of the UserID and password verification. For
example, verification can take place on the client workstation, at the database
server or at a remote host server. However, a database cannot be cataloged
with a mix of authentication types. In addition, all authentication types must
match the instance authentication. If mixed types are detected during migration,
you can either stop the migration and change the directories or continue with the
migration. If you choose to continue, all the authentication types are changed to
blank, and the database uses the authentication type specified in the instance.

To use two databases with different authentication types, a new instance must
be created for one of the databases. The database should be backed up and
restored to a new database under the new instance. It can then be dropped

 Copyright IBM Corp. 1996 207

under the old instance, and migration can be initiated. Note: All DB2 for OS/2
V1.x databases were server authenticated; in migrating them to Version 2, you
will now have a choice of where to perform authentication.

A.1.3 Storage Requirements
Space is required for both the old and new catalogs during the migration, and
the amount of disk space required will vary depending on the size of the
database. As a rule of thumb, you should allow for double the amount of disk
space for user and system tables. If there is not enough disk space, migration
fails, and all changes are rolled back. Note: Migration is a single transaction
(UOW), and V1.x and V2.1 logging is performed.

A.2 Specific Considerations for OS/2
The migration driver shipped with DB2 for OS/2 Version 2 will migrate the
following databases.

• Extended Services V1.0 databases

• DB2/2 V1.1 databases

• DB2/2 V1.2 databases

A.2.1 Pre-Migration
Before you install Version 2, you should verify that your databases can be
migrated. A command (db2ckmig) is provided to do the verification (on the
Version 2 diskette 1 or the CD-ROM). Execute the db2ckmig command using the
following syntax:

��──db2ckmig─ ──┬ ┬─database─ ─/l filename─ ──┬ ┬──────────────────────── ───────────────────────��
└ ┘─/e─────── └ ┘─/u userid──/p password─

database Specifies an alias name of a database to be scanned.

/e Specifies that all local cataloged databases are to be
scanned.

/l Specifies a file to keep a list of errors and warnings
generated for the scanned database(s).

/u An optional parameter that specifies the UserID of the
system administrator.

/p An optional parameter that specifies the password of the
system administrator ′s UserID.

An error is logged for each database that is in one of the following states:

• backup pending

• rollforward pending

• database inconsistent

and for each database object that uses either SYSCAT or SYSSTAT as the
qualified object name. Here is an example of the output file report from the
db2ckmig command:

208 DB2 V2 Planning Guide for DBAs

� �
* * * ERROR * * *

object name: ′ TABLES′
object type: ′ TABLE′
bad schema name: ′ SYSCAT′

� �

Correct all the errors that are reported for databases that are in one of the
following states:

• Backup pending

Perform a backup of the database.

• Rollforward pending

Recover the database as required; perform or resume a ROLLFORWARD
DATABASE.

• Database inconsistent

Restart the database to return it to a consistent state.

If the databases contain one or more objects that use SYSCAT or SYSSTAT as
schema names, as in the example, then these objects must be dropped and
recreated using a different schema name.

A.2.2 Remote Unattended Migration
The db2cidmg migration program can be useful in the Configuration, Installation,
and Distribution (CID) architecture environment and allows for remote,
unattended installation and configuration on LAN-based workstations. The
db2cidmg program does not accept all the options generally supported by
software distribution manager (SDM) products. The syntax for invoking the
product is:

��──db2cidmg─ ──┬ ┬─database─ ──┬ ┬───── ──┬ ┬──── ───��
├ ┤─/r─────── └ ┘─/l1─ └ ┘─/b─
└ ┘─/e───────

database Specifies an alias name for the database to be migrated.
The database must be cataloged on the target workstation,
but it can be a local or a remote database.

/r Specifies a response file to be used for CID migration. The
response file is an ASCII file containing a list of databases
which are to be migrated

/e Indicates that every single database cataloged in the
system database directory is to be migrated.

/l1 Specifies the path name of the file to which error log
information from remote workstations can be copied after
the migration process is completed. If more than one
database is specified in the response file, the log
information for each database migration is appended to
the end of the file. This log file only records errors or
warnings that occur during the database migration; any
CID interface-related error will not be logged.

Appendix A. Database Migration 209

/b Indicates that all packages in the database are to be
rebound once migration is complete

You must have NetView DM/2 on your LAN to use CID migration.

A.2.3 Parameter Value Changes
Parameter values, previously allocated in units of 64 KB segments, are now
multiplied by 16 to allow for allocation in units of 4 KB pages. In addition, the
“Log Records to Write Before Soft Checkpoint (softmax)” will be set to the
default value since this parameter is now measured as a percentage of the log
records rather than as the absolute number of records.

A.2.4 Restoring DB2 Version 1.x Databases
An executable called db2resdb is provided in the \sqllib\misc directory to support
the restoring of back-level database backups taken from from Version 1.x and
Extended Services databases. It provides an alternative approach to migration,
if required. The executable is provided “as is” without warranty of any kind.
The syntax is:

��──db2resdb──database-alias──source drive──target drive───────────────────────────────────��

The restored databases will have SMS tablespaces.

A.3 OS/2 Database Migration Procedure
The migration process comprises two distinct, but interrelated, phases: DB2
product file migration and user database migration. By installing the DB2 V2.1
product, an automatic migration of V1.x files and configuration parameters takes
place. Figure 73 shows these migration phases.

Figure 73. OS/2 Database Migration Phases

The procedure for migration is:

210 DB2 V2 Planning Guide for DBAs

Step 1: Acquire SYSADM authority in order to migrate databases. Back up all
the databases. Should the migration fail, this backup can be used to restore the
backup to Version 2; the restored database is then implicitly migrated.

Step 2: Ensure that all databases that you wish to migrate are cataloged. End
all applications that are using the database manager.

Step 3: Run db2ckmig command to verify that databases can be migrated.

Step 4: Use the Command Line Processor to list the contents of the system
database directory, node directory and DDCS directory to a file; if you need to
move back to Version 1 for any reason, you can reference this file and re-catalog
all entries. An alternative method is to copy the entire system database
directory and save it on your workstation.

You do not need to save your local database directories (volume directories).
All local database directories will be migrated during installation, and a backup
copy of the pre-migrated local database directory file in the local database
directory will be saved. The backup copy is named SQLDBDIR and has a file
extension xxx, where xxx is a number between 1 and 999. If you attempt to
install and de-install between Version 2 and the previous version, the backup
copy of SQLDBDIR uses the next highest file extension number.

If you need to go back to Version 1 to access the database, you must delete
SQLDBDIR and SQLDBBAK from the local database directory, and copy
SQLDBDIR.xxx to both SQLDBDIR and SQLDBBAK. You must also de-install
Version 2, re-install Version 1, and then re-catalog all entries to the system
database directory.

Step 5: Stop the database manager by issuing the stopdbm command. Install
DB2 Version 2.1. An instance of DB2 is automatically generated. The
installation program replaces Version 1 product files with Version 2 product files
and migrates Version 1 directories and configuration information by merging
relevant values from Version 1 with Version 2 defaults. The following are
migrated (if applicable):

• DB2 settings in CONFIG.SYS

• Database manager configuration file

• Database directories

system
local

• Node directory

• Gateway directory

Reboot the operating system to implement the new CONFIG.SYS settings. DB2
then requests that you authenticate yourself by using the default UserID and
password, or otherwise. Secondly, it requests whether or not you wish to create
the sample database; if you did not drop the sample database under Version 1,
you will not be able to create the sample database under Version 2. Next, start
the database manager using the db2start command.

Step 6: Migrate database(s) using the migrate database command or the API.
The syntax is:

Appendix A. Database Migration 211

��──migrate database──database-alias─ ──┬ ┬──────────────────────── ──────────────────────────��
└ ┘─/u userid──/p password─

The migrated databases will remain in SMS format.

Step 7: If you have a local database directory (or its files) backed up before
installation and you would like to use it so that the database from this local
database directory can be migrated, you must first create directory SQLDBDIR (if
it does not already exist) on the drive. Copy the directory files which have been
backed up to the directory SQLDBDIR.

Run db2migdr against this local database directory drive to migrate its directory
entries to Version 2 format. The syntax is:

┌ ┐─,─────
��──db2migdr─ ───� ┴─drive─ ───��

For example, db2migdr c f migrates the local database directory from drive c and
from drive f.

If the system database directory does not have the entries cataloged in the local
database directory, you must first catalog them to the system database directory
before you can migrate the database.

Step 8 (Optional): Re-bind all database packages. All the packages will have
been marked as invalid during the catalog migration. You can now use a
command called db2rbind to re-validate the packages, or allow package
re-validation to occur implicitly when a package is first used after migration. The
db2rbind tool uses the REBIND SQL statement on all packages. The syntax is:

��──db2rbind──database-alias──/l=logfile─ ──┬ ┬──────────────────────── ──────────────────────��
└ ┘─/u userid──/p password─

You could use the REBIND (or BIND) SQL statement to validate each package in
turn, as required, instead of running db2rbind at a global level. Also, there is a
special column in the SYSPLAN table that identifies if the bind was explicit or
implicit.

Step 9 (Optional): In order to take advantage of Version 2 enhancements, you
should re-tune your database manager and database configuration after
migrating your databases. To assist in this tuning, you may wish to record and
compare configuration parameter values from before and after your migration.
You might also want to consider resetting all configuration parameters to their
default values after you complete your migration; consult the Administration
Guide for details.

A.4 Specific Considerations for AIX
The migration driver shipped with DB2 for AIX Version 2 will migrate the
following databases:

• DB2/6000 V1.1 databases

• DB2/6000 V1.2 databases

212 DB2 V2 Planning Guide for DBAs

A.4.1 User/Group Security
The AIX operating systems allows the same name to be created for a user and a
group. This can cause problems for authorization and privilege checking within
DB2. There needs to be a way to indicate if the privilege is intended for a user,
group or both.

During migration, the authorization catalog tables are checked to determine if
existing privileges are for users or groups, and the GRANTEETYPE (′U′ or ′G′) is
determined. The following condition-check occurs:

• If GRANTEE in a V1.x table is a USER or undefined, then GRANTEETYPE is
set to U.

• If GRANTEE in a V1.x table is a GROUP, then GRANTEETYPE is set to G.

• If GRANTEE in a V1.x table is both a USER and a GROUP, then
GRANTEETYPE is set to U.

In DB2 Version 2, changes have been made to the GRANT and REVOKE SQL
statements to add an optional parameter in the TO/FROM authorization-name
clause which is used to indicate if the privilege is intended for a user or group.
As a result, if a user and a group have the same name in the previous database
version, the authority and privilege to the group must be explicitly regranted
after migration. This condition check may result in a member of a group no
longer having authority for database objects that he had in V1.x. If the user
within the group still requires the authority, then you must explicitly GRANT the
authority at the group level.

A.4.2 Instance Migration
Instances were introduced in DB2 for AIX Version 1 to facilitate separate and
unique database manager environments. This allowed you to have several
database manager environments, with alternative configuration parameters or
authentication, all on the same processing platform. In considering migration,
you may want to retain these separate instances under Version 2. So, in the AIX
environment, the migration process comprises two distinct, but interrelated,
phases:

• instance migration

• database migration

Figure 74 on page 214 shows these migration phases.

Appendix A. Database Migration 213

Figure 74. AIX Database Migration Phases

To perform an instance migration:

 1. Do not delete Version 1 of DB2 (/usr/lpp/db2_01_0000) until your migration
work is completed and tested.

 2. Log on as SYSADM for the instance you are migrating. Back up all
databases in that instance.

 3. Ensure that all local databases that you wish to migrate are cataloged.

 4. End all applications that are currently using the instance.

 5. Stop the database manager and the Command Line Processor.

 6. A program script (db2imigr) is provided to migrate an existing instance to
Version 2. The instance migration routine is invoked from the
/usr/lpp/db2_02_01/instance directory as follows:

��──db2imigr──instanceName─ ──┬ ┬──────────────── ───��
└ ┘─-a─ ──┬ ┬─server─

├ ┤─client─
└ ┘─dcs────

instanceName The name of the existing instance to be migrated.

-a An optional parameter which specifies the
authentication type for the new instance. Valid
authentication types are server, client or DCS. If the -a
parameter is not specified, then the authentication type
will default to server.

While this script does not automatically initiate the migration of databases, it
detects conditions that would prevent the successful migration of any local
databases that are cataloged in the instance. If db2imigr detects any of
these conditions, it aborts the instance migration and generates a report that
lists the conditions that were detected.

214 DB2 V2 Planning Guide for DBAs

 7. Correct all the errors that were reported. For example, if a backup-pending
state was detected, perform a full database backup to clear this error
condition, and run db2imigr again. When the db2imigr verification finds no
errors, the instance migration will be initiated.

 8. Within the automatic instance migration process, the following actions are
performed:

• The Version 1 instance is backed up.

• A Version 2 instance is created.

• The Version 1 system database directory is copied over to Version 2
instance (no changes), along with the node directory (add file server and
object name) and the DCS directory (no changes).

• The Version 2 instance database manager configuration file is merged
with the Version 1 database manager configuration file.

• The list of instances is updated with this new Version 2 instance.

• The db2profile and db2cshrc files in Version 1 are copied to db2profile.v1
and db2cshrc.v1 files under the Version 2 instance.

• The contents of the Version 1 function directory are copied to the Version
2 instance.

 9. Instance migration is then complete, and database migration can begin.

Note: Once an instance has been migrated to Version 2, it is unusable in Version
1. You must perform a db2imigrev instance_name to return the instance to
Version 1 format.

You should consult the DB2 for AIX Installation and Operations Guide for a full
discussion of instance migration, if required.

A.5 AIX Database Migration Procedure
The following steps are recommended for the database migration process.

Step 1: Acquire SYSADM authority in order to migrate databases. Back up all
the databases. Should the migration fail, this backup can be used to restore the
backup to Version 2; the restored database is then implicitly migrated.

Step 2: Ensure that all databases that you wish to migrate are cataloged. End
all applications that are using the database manager and the instance. Stop the
database manager and the command line processor by issuing the db2stop and
db2 terminate commands.

Step 3: Perform instance migration, and this will ensure that databases can be
migrated and that there are no outstanding, pending situations.

Step 4: Install DB2 Version 2.1 product files. Create an instance of DB2 and
start the database manager by using the db2start command.

Step 5: Migrate database(s) using the migrate database command or the API.
The syntax is:

��──migrate database──database-alias─ ──┬ ┬──────────────────────── ──────────────────────────��
└ ┘─/u userid──/p password─

Appendix A. Database Migration 215

The migrated databases will remain in SMS format.

Step 6 (Optional): Re-bind all database packages. All the packages will have
been marked as invalid during the catalog migration. You can now use a
command called db2rbind to re-validate the packages, or allow package
re-validation to occur implicitly when a package is first used after migration. The
db2rbind tool uses the REBIND SQL statement on all packages. The syntax is:

��──db2rbind──database-alias──/l logfile─ ──┬ ┬──────────────────────── ──────────────────────��
└ ┘─/u userid──/p password─

You could use the REBIND (or BIND) SQL statement to validate each package in
turn, as required, instead of running the db2rbind at a global level. Also, there is
a special column in the SYSPLAN table that identifies if the bind was explicit or
implicit.

Step 7 (Optional): In order to take advantage of Version 2 enhancements, you
should re-tune your database manager and database configuration after
migrating your databases. To assist in this tuning, you may wish to record and
compare configuration parameter values from before and after your migration.
You might also want to consider resetting all configuration parameters to their
default values after you complete your migration; consult the Administration
Guide for details.

A.6 Problem Solving
During the migration step, error code SQL1704N may be returned with one of five
reason codes:

Reason Code 1 An invalid schema was found.

Reason Code 2 Database is abled be migrated because database is in one
of the following states: backup pending, rollforward
pending, or database inconsistent.

Reason Code 3 Database logs are full.

Reason Code 4 Insufficient disk space available.

Reason Code 5 The database configuration file cannot be updated.

The resolution of these problems is as follows:

 1. The reserved schema names are: SYSIBM, SYSCAT and SYSSTAT. Ensure
that all the database objects that use one or more of these schema names
are dropped and re-create the objects using a different schema name. This
correction must be made in the Version 1 database manager. Resubmit the
database configuration command under Version 2.

 2. Correct the database state by going back to Version 1 of the database
manager. See the Administration Guide for instructions on the actions that
are required to restore a consistent database state. Resubmit the database
migration command under Version 2.

 3. Increase the database configuration parameters, LOGFILSIZ or
LOGPRIMARY, to a larger volume. Resubmit the database migration
command.

 4. Increase the disk space available and resubmit the database migration
command.

216 DB2 V2 Planning Guide for DBAs

 5. Ensure that the database configuration file is not being held exclusively by
any users and can be updated. Resubmit the database migration command.

A.7 Customer Scenario
The migration procedure for both the OS/2 and AIX environments should be easy
to follow, but a number of issues of a general nature should be highlighted again
for the customer scenarios, namely:

• Back up all V1.x databases before starting a migration procedure.

• Do not delete any V1.x product files unless automatically deleted by the V2.1
install process or unless the migration has completed successfully.

• Re-bind all databases packages after migration, either explicitly or implicitly.

• Tune your application and database environment to take advantage of V2.1
enhancements by reviewing configuration parameters and application
design.

A.7.1 Telephone Company
• A parallel cut-over environment is possible where DB2 V1 could exist in one

instance until DB2 V2.1 is installed and productive in a second instance.

• Care is required in reviewing the DB2 V1 authorities and privileges before
moving to V2.1 to avoid privileges being inadvertently removed from an
individual user.

• In their complex network environment, care is required in checking the
system and node directory entries for the migrated database.

Appendix A. Database Migration 217

218 DB2 V2 Planning Guide for DBAs

List of Abbreviations

ADSM Adstar Distributed Storage
Manager

AIX Advanced Interactive
Executive

ASC Non-delimited ASCII

ASCII American National Standard
Code for Information
Interchange

BLOB Binary Large Object

CLOB Character Large Binary
Object

CAE Client Application Enabler

CLP Command Line Processor

DB Database

DB2 DATABASE 2

DBADM Database Administration

DBLOB Double Byte Binary Large
Object

DBM Database Manager
Configuration

DDCS Distributed Database
Connection Services

DEL Delimited ASCII

DPropR Data Propagator Relational

DRDA-AR Distributed Relational
Database Architecture
Application Requestor

DRDA-AS Distributed Relational
Database Architecture
Application Server

DMS Database Managed Space
(Storage)

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

IXF Integrated Exchange Format

PC/IXF Personal Computer/Integrated
Exchange Format

SDK Software Developer ′s Kit

SMS System Managed Storage
(Space)

SQL Structure Query Language

SYSADM System Administrator

SYSCTRL System Control

SYSMAINT System Maintenance

TCP/IP Transmission Control
Protocol/Internet Protocol

WAL Write-Ahead-Logging

WSF Work-Sheet Format

 Copyright IBM Corp. 1996 219

220 DB2 V2 Planning Guide for DBAs

Index

A
abbreviations 219
acronyms 219
Administrat ive Control 30

DBADM 32
Hierarchy of 31
Levels in Version 2 30
SYSCTRL 32
SYSMAINT 32

ADSM 144
Backup/Restore Scenarios 168
restore Command 164

AIX
chown Command 50
Configuration of Instance 25
Creating Instance in 24
Directory Structure of DB2 21
Logical Volume 51
Mirroring for Recovery 176
mklv Command 51

Authentication
CLIENT 29
DB2/2 Version 1 29
DB2/6000 Version 1.0 29
DB2/6000 Version 1.2 29
DCS 29
Levels of 29
Migrat ion 207
OS/2 and Migration 208
Setting Level 30
SEVER 29

B
Backup Util ity

backup Command 157
Considerations 155
DB2 Version 2 for AIX Backup/Restore Process

Model 154
DB2/2 Version 1 Process Model 151
DB2/2 Version 1 User Exit Process Model 152
DB2/6000 Version 1 Backup/Restore Process

Model 153
File Format 159
Overview 151
Performance Issues 176
Recommendations 176
Summary of Considerations 168
Tablespace Considerations 166
Tablespace Guidelines 174
Tablespace Scenarios 168

C
Client Application Enablers
Client/Server Configuration Tasks

Communication Environment Variables 27
Command Line Processor

Obtaining Help Using 183
Overview 183
Shortcuts Using 183

Commands in DB2
alter tablespace Command 80, 171
attach 39
backup Command 157
bind 43
catalog database 40
catalog node 40
create database Command 59
create table Command 74
create tablespace Command 72
db2cidmg Command 209
db2ckmig 208
db2icrt 24
db2idrop 28
db2ilist 28
db2imigr Command 214
db2imigrev 28
db2instance 24
db2iupdt 28
db2migdr Command 212
db2rbind Command 212, 216
db2resdb Command 210
drop tablespace Command 81
list tablespace containers Command 79
list tablespaces Command 77, 78
load 101
load query Command 113
migrate database Command 215
prune history Command 178
roll forward Command 146, 147
set constraints Command 110

Container
Adding Container using Database Director 198
alter tablespace Command 171
Changing Container Definition during Restore 201
Containers and DMS Tablespaces 51
Determining 68
Devices 51
Directories 49
DMS Tablespaces and 52
Files 50
Minimum Requirements in DMS Tablespace 65
Options with Tablespaces 49
Overview 45
Redirected Restore and Database Director 171
Sizing in DMS Tablespace 71

 Copyright IBM Corp. 1996 221

Container (continued)
Tablespaces and 47
Using Redirected Restore Option in Database

Director 201
Validating Containers during Restore 171
Writing to 70

Customer Scenario
Backup/Restore Strategy 180
Current Status 16
Data Placement 84
Environment 15
Issues and Problems 16
Migrat ion 217
Moving Data 128

D
Data Propagator Relational (DPropR)
Database

Active Log File 143
Archival Logging 143
Archival Logging Recommendations 145
Asynchronous Page Cleaners,

NUM_IOCLEANERS 137
Backing Up Database using Database

Director 199
Backing Up Tablespace using Database

Director 200
backup Command 157
Backup Considerations 155
Backup File Format 159
Backup/Restore Recommendations 176
Buffer Pool Size 82
Catalog/Uncatalog using Database Director 190
Changing Container Definition during Restore 201
CHNGPS_THRESH 83
Circular Logging Recommendations 143
Configuration using Database Director 189
Configuring Directories using Database

Director 191
create database Command 59
create table Command 74
Creating 59
Creating Tablespace using Database Director 197
Creating Tablespaces using Database

Director 195
Creating using Database Director 194
Creating/Modifying Objects using Database

Director 193
Default Files and Directories 62
Default Log Files 142
Default Tablespaces 52
DFT_EXTENT_SZ Parameter 61
Drop Database using Database Director 196
Examining Packages using Database Director 203
I/O Cleaners 83
I/O Prefetch 83
Jobs Recovery Tool in Database Director 200
Location of Log Files 139

Database (continued)
Log Archiving, USEREXIT 137
Log Buffer Size, LOGBUFSZ 134
Log Control File 136
Log File Considerations with Roll Forward 147
Log File Size, LOGFILESIZ 135
Log File Usage 146
Logging Configuration Parameters 133
LOGRETAIN 144
New Log Path, NEWLOGPATH 136
NEWLOGPATH 140
NUM_IOCLEANERS 83
NUM_IOSERVERS 83
Number of Commits to Group, MINCOMMIT 137
Number of Secondary Logs, LOGSECOND 135
NUMSEGS 61
Offline Archive Log File 144
Online Archive Log File 144
Overflow Log Path, OVERFLOWLOGPATH 137
Percentage of Records Reclaimed, SOFTMAX 136
Performance Monitor and Database Director 206
Recoverable Database, LOGRETAIN 137
Recovery History File 177
Recovery History File, Damaged 180
Recovery History File, Format of 179
Recovery History File, Managing 178
Recovery History File, REC_HIS_RETNTN

Parameter 178
Relationship between Tablespace and Table

Objects 47
Restore Considerations 160
Restoring Database using Database Director 200
Restoring to New Database 162
Restoring when Target Database Exists 161
Roll Foward and Log Files 148
roll forward Command 147
Rollforward Recovery 146
SEGPAGES 61
Sizing Example for DMS Tablespace 66
Sizing Example for Indexes 67
Sizing Example for LOBs 67
Sizing of Tables and Tablespaces 63
SQLOGDIR 139
System Catalog Changes 75
Transactions in 132
Unit of Work (UOW) 131
USEREXIT 144
Visual Explain in the Database Director 204
Write-Ahead-Logging 132

Database Authorit ies
Database Director

Adding Container using Database Director 198
Backing Up Database 199
Backing Up Tablespace 200
Catalog/Uncatalog Databases 190
Changing Container Definition during Restore 201
Configuration Using 187
Configuring Databases 189

222 DB2 V2 Planning Guide for DBAs

Database Director (continued)
Configuring Directories 191
Configuring Instances 188
Create Database 194
Creating Tablespace 197
Creating/Modifying Objects 193
Defining Tablespaces 195
Drop Database 196
Examining Database Packages 203
Getting Started 185
Jobs Recovery Tool 200
List View 186
Main Screen 185
Notebook Settings for Create Database 194
Overview 185
Performance Monitor 206
Redirected Restore 171
Restoring Database 200
Tablespaces 77
Tree View 186
Using Redirected Restore Option 201
Visual Explain Tool 204

Database Migration
AIX Procedure for Databases 215
Authentication 207
Authentication in OS/2 208
Considerations in AIX 212
db2cidmg Command 209
db2ckmig Command 208
db2imigr Command 214
db2migdr Command 212
db2rbind Command 216
db2rbind Command in OS/2 212
db2resdb Command 210
General Considerations 207
Instance Migration in AIX 213
migrate database Command 215
OS/2 Migration Considerations 208
OS/2 Parameter Value Changes 210
OS/2 Pre-Migration Considerations 208
Problem Solving 216
Procedure in DB2 for OS/2 210
Remote Unattended in OS/2 209
Restoring Version 1.x Databases in OS/2 210
Storage Requirements 208
User/Group Security Issues in AIX 213
Version Incompatibil it ies 207

Database User
AIX Client 41
Binding Database Util it ies 43
DB2GROUPS 34
DOS/Windows Client 42
Local Access 39
OS/2 Client 41
User and Group Support 34

DB2 for AIX Version 2.1
Backup File Format 159
chown Command 50

DB2 for AIX Version 2.1 (continued)
Client User 41
Creating Instance 24
Database Migration 215
DB2/6000 Version 1 Backup/Restore Process

Model 153
db2imigr Command 214
db2imigrev Command 28
db2rbind Command 216
Default Log File Size 145
DFTDBPATH 53
Instance Configuration 25
Log Page Size 145
Max Log Buffer Size 145
Migration Considerations 212
migration database Command 215
Migration Problems 216
Migration, Instance 213
mklv Command 51
Server 1
Single-User 1
User/Group Security Migration Issues 213
Version 2 Backup/Restore Process Model 154

DB2 for OS/2 Version 2.1
Backup File Format 159
Changes in Parameter Values 210
Client User 41
Creating Instance 25
Database Migration Procedure 210
DB2/2 Version 1 Backup/Restore Process

Model 151
DB2/2 Version 1 User Exit Process Model 152
db2cidmg Command 209
db2ckmig Command 208
db2migdr Command 212
db2rbind Command 212
Default Log File Size 145
DFTDBPATH 53
Instance Configuration 25
Log Page Size 145
Max Log Buffer Size 145
Migration and Authentication 208
Migration Considerations for 208
Migration Problems 216
Pre-Migration Considerations for 208
Remote Unattended Migration 209
Restore Considerations 161
Restoring Version 1.x Databases 210
Server 1
Single-User 1

DB2 Version 2
Access Keys 12
Archival Logging Changes 145
Back-Level Connectivity Support 11
Circular Logging Changes 142
Client Application Enablers (CAE) 5
Client/Server Environment 10
Command Line Processor (CLP) 5

Index 223

DB2 Version 2 (continued)
Communication Environment Variables 27
Communication Products and Protocols 11
Communications Support 5
Components 4
Engine 2
Packaging 1
Product Distribution 12
Server 3
Single-User 2
Software Developer ′s Kit 8

DFT_EXTENT_SZ Parameter 61
Directories

DCE 37
DCS 37
DIR_CACHE 37
Local Database 37
Node 37
sqldbdir 37
System Database 37

Directory Structure
instance owner 21
new instance 23
OS/2 22
structure 20
symbolic links 21

Distributed Database Connection Services
Multi-User Gateway 7
Multi-User Gateway for AIX 1
Multi-User Gateway for OS/2 1
Single-User for OS/2 1, 7
Version 2 Enhancements 7

E
Extent 48
Extent Size 71

I
Instance

Access 38
Administrat ive Commands 28
AIX 19
Authentication 29
Communication Environment Variables 27
Configuration in AIX 25
Configuration in OS/2 25
Configuration using Database Director 188
Creating in AIX 24
Creating in OS/2 25
Creating, Overview 24
Definition of 19
Directory Structure in AIX 21
Directory Structure in OS/2 22
Local Access 39
Mult iple 19
OS/2 19
Permissions on Containers 51

Instance (continued)
Remote Access 38
Remote Administrat ion 39
Security and, Overview 28
structure 20

L
Logging

Active Log File 143
ADSM 144
Advantages of Archival 145
Archival 143
Archival Changes in Version 2 145
Archiving, USEREXIT 137
Arhival Recommendations 145
Asynchronous Page Cleaners,

NUM_IOCLEANERS 137
AUTORESTART 146
Buffer Size, LOGBUFSZ 134
Circular 141
Circular Logging Changes in Version 2 142
Circular Logging Recommendations 143
Configuration Parameters 133
Control File 136
Crash Recovery 146
Default File Size 145
Default Files 142
File Size, LOGFILESIZ 135
File Usage 146
Files used with Circular Logging 141
Location of 139
LOGFILSIZ 145
Loghead 139
LOGPRIMARY 142, 145
LOGRETAIN 144
LOGSECOND 142
Max Buffer Size 145
New Log Path, NEWLOGPATH 136
NEWLOGPATH 140
Nextactive 139
Number of Commits to Group, MINCOMMIT 137
Number of Secondary, LOGSECOND 135
Offline Archive Log File 144
Online Archive Log File 144
Online Archived Files Scenario 170
Overflow Path, OVERFLOWLOGPATH 137
Overview 131
Page Size 145
Percentage of Records Reclaimed, SOFTMAX 136
Primary File 141
Recoverable Database, LOGRETAIN 137
Roll Forward and File Considerations 147
Roll Forward and Files 148
roll forward Command 147
Rollforward Recovery 146
Secondary File 141
SQLOGDIR 139
Transaction and 132

224 DB2 V2 Planning Guide for DBAs

Logging (continued)
USEREXIT 145
Write-Ahead-Logging 132

Logging, archival 141
Logging, circular 141

N
NUMSEGS 61

O
OS/2

Configuration of Instance 25
Creating Instance in 25
Directory Structure of DB2 22

P
Product Configuration

DB2INSTANCE 26
licensing 25, 26

R
Recovery

AUTORESTART 146, 173
Crash 173
Crash and Log Files 146
Failures and Actions 172
Jobs Recovery Tool in Database Director 200
Media Failure 174
Methods of 173
Recovery History File 177
Recovery History File, Damaged 180
Recovery History File, Format of 179
Recovery History File, Managing 178
Recovery History File, REC_HIS_RETNTN

Parameter 178
Restore or Version 173
Roll Forward 173
Tablespace Guidelines 174
Tablespace Level Restore 166

Recovery History File
Damaged 180
Format of 179
Managing 178
prune history Command 178
REC_HIS_RETNTN Parameter 178

Restore Util i ty
alter tablespace Command 171
Changing Container Definition 201
Considerations 160
Failures and Recovery Actions 172
New Database 162
OS/2 Considerations 161
Performance Issues 176
Recommendations 176
Redirected Restore and Database Director 171

Restore Util i ty (continued)
restore Command 164
Summary of Considerations 168
Tablespace Considerations 166
Tablespace Guidelines 174
Tablespace Level and Roll Forward Recovery 166
Tablespace Scenarios 168
Target Database Exists 161
Using Redirected Restore Option in Database

Director 201
Validating Containers 171

Roll Forward Util ity
How Far to Roll Forward 148
Log File Considerations 147
Media Failure 174
Recovery 146, 173
roll forward Command 147
Tablespace Backup/Restore Guidelines 174
Tablespace Level Restore 166

S
SEGPAGES 61
Software Developer ′s Kit

AIX 1
OS/2 1
Version 2 Enhancements 9
Windows 1

SQL Query Products
db2resdb Command 210
IBM Visualizer Products 184
Lotus Approach 184
Microsoft Access 184
Query Manager 184

SYSADM_GROUP 26
SYSCATSPACE 53, 55, 58

T
Tablespace

Adding Container using Database Director 198
Advantages of DMS 56
Advantages of SMS 56
alter tablespace Command 171
Backing Up Tablespace using Database

Director 200
Backup Guidelines 174
Backup/Restore Considerations for 166
Backup/Restore Recommendations 176
Backup/Restore Scenarios 168
Buffer Pool Size 82
Changing Container Definition during Restore 201
Characteristics of SMS and DMS 56
Containers and 47
Containers Options 49
Converting Between SMS and DMS 125
create database Command 59
create tablespace Command 72
Creating a Database 59

Index 225

Tablespace (continued)
Creating Table in 74
Creating Tablespace using Database Director 197
Database Director and Creating Tablespaces 195
Default 52
Determining Containers in 68
DFT_EXTENT_SZ Parameter 61
DMS and Containers 51
DMS Characteristics 53
Extent 48
Extent Size 71
I/O Cleaners 83
I/O Prefetch 83
list tablespaces Command 77, 78
Logical Design 57
Managing 77
Minimum Space Requirements for Container in

DMS 65
NUM_IOCLEANERS 83
NUM_IOSERVERS 83
Overview 46
Performance Considerations 82
Planning Environment 57
PREFETCHSIZE 71
Relationship between Database and Table

Objects 47
Restore and Roll Forward Recovery 166
Sizing 63
Sizing Containers in DMS 71
Sizing Example 66
Sizing Example for Indexes 67
Sizing Example for LOBs 67
SMS, Definition of 49
States 81
SYSCATSPACE 53, 55, 58
Tables and DMS Tablespaces 54
TEMPSPACE1 53, 55, 58
User-Defined 55, 58
USERSPACE1 53, 58
Using Devices as Containers 51
Using Directories as Containers 49
Using Files as Containers 50
Writing to Containers 70

Tablespace States 81
Backup Pending 82
Delete Pending 82
Load Pending 82
Normal 81
Quiesce Related 81
Quiesced Exclusive 81
Quiesced Share 81
Quiesced Update 81
Restore Pending 82

TEMPSPACE1 53, 55, 58
The Import/Export Util ity

Differences between Load 124
LOBS 125
Non-atomic Compound SQL 125

The Import/Export Util ity (continued)
UDTs 125

The Load Utility
Actions of 99
ASC File Format 94
Build Phase 92
Check Pending 110
Considerations for Remote File 98
Container Fills in DMS Tablespace 117
Container in SMS Tablespace Fills 119
Copy Target File/Device Fills 120
Copy Yes Option 98
Customer Scenario 128
DEL File Format 94
Delete Phase 92
Determining Storage Used During 96
Diagnosing Failure 111
Differences between Import/Export 124
Examples of Usage 103
Gathering Statistics 124
Input Data File 93
Invalid Conditions 112
Load Phase 92
load query Command 113
Location of Remote File 98
Overview of 91
PC/IXF File Format 93
Preparing for 93
Remote File Fills 115
Remote File Option 97
RESTARTCOUNT Parameter 102
Restore and Roll Forward 120
SAVECOUNT Parameter 102
set constraints Command 110
Sorting Data 94
Syntax of 101
System Crash during 121
Target Table and Exception Table 95
Use of Copy in 98
Using Directory Fills 116
Using Directory Option 97
Using LOBs 111

U
Unit of Work (UOW) 131
UPM 25
User-Defined Tablespaces 55, 58
USERSPACE1 53, 58

226 DB2 V2 Planning Guide for DBAs

ITSO Technical Bulletin Evaluation RED000

International Technical Support Organization
DB2 Version 2 Planning Guide
for Database Administrators
January 1996

Publication No. SG24-2523-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
SG24-2523-00 IBML 

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department JN9B, Building 045
Internal Zip 2834
11400 BURNET ROAD
AUSTIN TX
USA 78758-3493

Fold and Tape Please do not staple Fold and Tape

SG24-2523-00

IBML 

Printed in U.S.A.

SG24-2523-00

