
SG24-2071-00

Integrating TME 10 on the RS/6000 SP

September 1997

International Technical Support Organization

Integrating TME 10 on the RS/6000 SP

September 1997

SG24-2071-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix I, “Special Notices” on page 229.

First Edition (September 1997)

This edition applies to PSSP Version 2, Release 2 for use with the AIX Version 4 Operating System and TME 10
Version 3.1.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . vii

Tables . ix

Preface . xi
The Team That Wrote This Redbook . xi
Software Levels . xii i
Deliverables . xii i
Comments Welcome . xiv

Chapter 1. Introduction . 1

Chapter 2. Planning and Design . 3
2.1 Basic Tivoli Terminology . 3
2.2 Planning the Integration of Your SP with Tivoli 4

2.2.1 Security . 5
2.2.2 System Installation and Maintenance 5
2.2.3 File Distribution . 5
2.2.4 User Management . 6
2.2.5 System Monitoring and Event Handling 6
2.2.6 Distributed Task and Command Execution 7

2.3 Planning the Deployment of Tivoli on Your RS/6000 SP 8
2.3.1 TMR Configuration . 8
2.3.2 TME 10 Framework Configuration . 12
2.3.3 Planning for RS/6000 SP Changes . 14

2.4 Planning Applied to a Practical Example . 15
2.4.1 Environment at the ITSO SP Lab . 15
2.4.2 Integration Planning . 16
2.4.3 Deployment Planning . 17

Chapter 3. Installation . 19
3.1 Installing Tivoli Using the SP Switch . 19
3.2 Tivoli Object Database Consistency . 21

3.2.1 Database Backup . 22
3.2.2 Database Restore . 22
3.2.3 Database Consistency Check . 23
3.2.4 Synchronizing Databases across TMRs 23

Chapter 4. Event Management Integration . 25
4.1 Defining the TME 10 Enterprise Console . 26
4.2 The PSSP T/EC Adapter . 27

4.2.1 How the PSSP T/EC Adapter Forwards Events 27
4.2.2 Using the PSSP T/EC Adapter . 29
4.2.3 Event Classes Defined for PSSP Events 29
4.2.4 Installing the PSSP T/EC Adapter Classes in the T/EC Server 30
4.2.5 Configuring the T/EC Server to Receive PSSP Events 31
4.2.6 Compiling the PSSP T/EC Adapter in the RS/6000 SP 31
4.2.7 Installing the PSSP T/EC Adapter in the RS/6000 SP 32
4.2.8 Using the tecad_pssp Command . 33
4.2.9 Making Event Subscriptions in the RS/6000 SP 34
4.2.10 Extending the PSSP Event Classes . 35

 Copyright IBM Corp. 1997 iii

4.2.11 An Example: Using the PSSP T/EC Adapter 37
4.2.12 Debugging the Event Generation and Reception 45

4.3 Using the TME 10 T/EC SNMP Adapter . 45
4.3.1 Adapter Installation . 46
4.3.2 SNMP Configuration . 47
4.3.3 Adapter Configuration . 47
4.3.4 Starting and Testing the Event Adapter 53
4.3.5 SNMP Adapter Value . 58

4.4 Using the TME 10 T/EC Logfile Adapter . 58
4.4.1 How to Forward Events from a Log File 59
4.4.2 How to Assign Severities Using a Log File 69
4.4.3 Summary of Using the Logfile Adapter 75

4.5 Using NetView/6000 for AIX and TME 10 Enterprise Console 75
4.5.1 Environment Introduction . 75
4.5.2 Setup procedure in NetView/6000 for AIX 76
4.5.3 Setup procedure in T/EC . 83
4.5.4 Implement Event Adapter, Event Source, and Group 84
4.5.5 Event correlation with NetView/6000 for AIX and T/EC 84
4.5.6 Discussion on Event Adapter Implementation Options 86

4.6 Integration of TME 10 Distributed Monitoring and Event Management . . 87
4.6.1 Using the wasync command directly . 88
4.6.2 How to integrate the SP Log File with TME 10 Distributed Monitoring 90

Chapter 5. Task Libraries, Tasks, and Jobs . 95
5.1 General Procedure for Creating Tasks . 95
5.2 SP Task Libraries . 96
5.3 Using the Task Library Language . 97

5.3.1 Creating Customized Tasks . 100

Chapter 6. AEF Customizations for the RS/6000 SP 105
6.1 High Level Overview of a Sample Set of Customizations 107
6.2 Installation of the Sample Customizations 113
6.3 What is AEF? . 115

6.3.1 Strengths and Weaknesses of AEF/DSL 118
6.4 Anatomy of an AEF/DSL Customization 119

6.4.1 Removing AEF/DSL Customizations 123
6.5 TME 10 Desktop Dialogs . 123

6.5.1 Basic Structure of a DSL File . 126
6.5.2 Variables and Variable Blocks . 126
6.5.3 Attribute Blocks . 127
6.5.4 Gadget Blocks . 128

6.6 Methods for Customized Objects . 129
6.6.1 Desktop Callbacks . 130
6.6.2 Legacy Callbacks . 130
6.6.3 Callback Method Utilities . 132

6.7 Bitmaps . 133
6.7.1 Icons . 134

6.8 Messages and Message Catalogs . 136

Appendix A. Event Management Resource Variables 139
A.1.1 A List of All Resource Variables . 139
A.1.2 The Resource Class Definitions . 145
A.1.3 The Default Resource Monitors . 146

Appendix B. The SP MIBs . 147

iv Integrating TME 10 on the RS/6000 SP

Appendix C. Contents of the Attached Diskette 151

Appendix D. Source files for the PSSP T/EC Adapter 153
D.1.1 The makeit file . 153
D.1.2 The PSSP T/EC Adapter BAROC File 154
D.1.3 The tecad_pssp.c File . 157
D.1.4 The rvclasses.cfg file . 175

Appendix E. Contents of SNMP Adapter Class Definition Statements 183

Appendix F. Logfile CDS . 189

Appendix G. Sample Task Library Listings . 193
G.1 SP Task Library Source Listing . 193

G.1.1 SPTasks.tll . 193
G.2 Switch Task Library Source Listing . 196

G.2.1 SwitchTasks.tll . 197

Appendix H. Contents of AEF Customization Scripts 201
H.1 Dialog Listings . 201

H.1.1 sp.run_command.ksh . 202
H.1.2 sp.run_command_driver.ksh . 202
H.1.3 sp_cws.check_node_response.ksh . 203
H.1.4 sp_cws.efence_nodes.ksh . 205
H.1.5 sp_cws.eunfence_nodes.ksh . 205
H.1.6 sp_cws.get_all_cw_attributes.ksh . 206
H.1.7 sp_cws.get_node_numbers.ksh . 207
H.1.8 sp_cws.launch_applications_driver.ksh 208
H.1.9 sp_cws.launch_perspectives.ksh . 208
H.1.10 sp_cws.modify_attribute.ksh . 209
H.1.11 sp_cws.modify_attribute_driver.ksh 210
H.1.12 sp_cws.power_nodes_off.ksh . 210
H.1.13 sp_cws.power_nodes_on.ksh . 211
H.1.14 sp_cws.run_command_driver_nodes.ksh 212
H.1.15 sp_cws.run_command_nodes.ksh 213
H.1.16 sp_cws.spmon.ksh . 214
H.1.17 sp_node.get_all_attributes.ksh . 214
H.1.18 sp_node.get_frame_number.ksh . 216
H.1.19 sp_node.get_node_number.ksh . 216
H.1.20 sp_node.get_slot_number.ksh . 216
H.1.21 sp_node.modify_attribute.ksh . 217
H.1.22 sp_node.modify_attribute_driver.ksh 218

H.2 Examples of AEF Customization Dialogs 218

Appendix I. Special Notices . 229

Appendix J. Related Publications . 231
J.1 International Technical Support Organization Publications 231
J.2 Redbooks on CD-ROMs . 231
J.3 Other Publications . 231

How to Get ITSO Redbooks . 233
How IBM Employees Can Get ITSO Redbooks 233
How Customers Can Get ITSO Redbooks . 234
IBM Redbook Order Form . 235

Contents v

ITSO Redbook Evaluation . 237

List of Abbreviations . 239

Index . 241

vi Integrating TME 10 on the RS/6000 SP

Figures

 1. Tivoli and SP integration . 2
 2. Available Integration Methods . 26
 3. PSSP T/EC Adapter Control Flow . 28
 4. PSSP T/EC Adapter Class Hierarchy . 30
 5. The test script test_agent . 34
 6. Event Perspective Event Definitions Window 39
 7. Event Perspective Create Condition Window 40
 8. Event Perspective Response Options Window 41
 9. Arm Event Received from the PSSP Source 43
10. Rearm Event Received from the PSSP Source 44
11. SNMP Connections . 46
12. The tecad_snmp.cds file . 49
13. The tecad_snmp.baroc file, SP-related entries 52
14. Perspective Event Definition: Example of a WARNING SNMP Trap for

T/EC . 55
15. T/EC SNMP Event Console: SNMP trap WARNING message 56
16. T/EC Message Viewer Window . 57
17. Event Definition . 60
18. Using the Logfile Configuration Facility . 63
19. The Logfile Configuration Facility Dialog 64
20. Selecting the Class with the Logfile Configuration Facility 65
21. Mapping the Structure into the BAROC File 66
22. CPU Events Captured in T/EC . 68
23. Problem Management Information . 69
24. T/EC LOGFILE Source . 74
25. Event Consoles . 76
26. SP MIBS -- Loading the SP MIB . 77
27. The NetView MIB Browser -- Viewing the SP MIB 78
28. Event Configuration -- Register the SP-specific Traps 79
29. Register Traps -- Configuration of Trap Characteristics 80
30. Using SMIT to Configure NetView . 81
31. Event Perspectives -- Define an event that generates a trap 84
32. The NetView Event Window -- Receiving SP Traps 85
33. The T/EC Event Console -- Receiving Forwarded Events from NetView . 85
34. Detailed T/EC View -- Information from NetView Events 86
35. Usage of the wasync command . 88
36. Defining a wasync event using Event Persectives 89
37. Defining a Log File Event Using Event Perspectives 91
38. TME 10 Distributed Monitoring Pop-Up for CPU busy 94
38. TME 10 Distributed Monitoring Pop-Up for CPU idle 94
39. SP Task Libraries . 98
40. Tasks in the SPTasks Library . 99
41. Tasks in the SwitchTask Library . 99
42. A Managed Node customized as an SP Control Workstation 107
43. A Managed Node customized as an SP Node 108
44. Extended Managed Node Properties . 109
45. SDR Attributes Displayed for an SP Node 110
46. Running a Command in an SP Node . 110
47. Control Workstation Properties List . 111
48. Node Responds Information . 112
49. Launch Pad for SP Applications . 113

 Copyright IBM Corp. 1997 vii

50. The Framework Object . 116
51. An Icon with its Associated Bitmap . 118
52. SP Applications for the Control Workstation 124
53. The Control Workstation Icon, which is a bitmap 135
54. PSSP T/EC Adapter makeit file . 153

viii Integrating TME 10 on the RS/6000 SP

Tables

 1. Software Levels . xii i
 2. Event Integration Methods . 27

 Copyright IBM Corp. 1997 ix

x Integrating TME 10 on the RS/6000 SP

Preface

This redbook provides practical experiences and suggestions on integrating the
IBM Parallel System Support Programs for AIX (PSSP) 2.2 system management
and administration tools which run on the RS/6000 Scalable POWERparallel
Systems (RS/6000 SP) into the Tivoli Management Environment 10 (TME 10).

This redbook requires indepth knowledge and understanding of TME 10 and
intermediate knowledge of the PSSP 2.2 functionality.

This redbook provides help to SP system administrators, SP technical
professionals and software engineers to provide them with hints and tips to
manage certain PSSP-specific system management aspects in TME 10.

Several practical examples are presented to demonstrate how individual
components of TME 10 can be used to interface with PSSP 2.2 specific
characteristics.

This redbook covers the following subjects in more detail:

 1. Planning for RS/6000 SP and TME 10

 2. TME 10 installation considerations

 3. SP event management integration with TME 10

 4. Task libraries with PSSP commands

 5. AEF customizations

Also, attached to this redbook is a diskette containing the code used in this
redbook for the PSSP T/EC Adapter code, sample task libraries, and the AEF
Customization code. This code can also be found on the World Wide Web at the
following URL:

ftp://www.redbooks.ibm.com/redbooks/SG242071 .

Knowledge of the following products and disciplines are assumed and not
covered in this redbook:

TME 10 product installation

Understanding of the TME 10 products

PSSP 2.2 installation and administration

Understanding of the PSSP 2.2 High Availability Infrastructure

AIX 4 system administration

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Poughkeepsie
Center.

Peter Kes is a project manager in the International Technical Support
Organization, Poughkeepsie Center. Before joining the ITSO in 1996, Peter
worked for the RS/6000 Product Division in the Netherlands as an SP Specialist.

 Copyright IBM Corp. 1997 xi

Marcos Novaes is a system engineer in France. He holds a PhD degree in
Computer Science and graduated in 1982 from the University of Paris. After his
study, he joined the IBM La Gaude Laboratory in France where he was involved
in RAS of Communication Controller Products. In 1989 he joined the Toulouse
branch office to work in the scientific and technical IBM solutions. In 1996 he
moved to Paris to work as a service and support engineer in the ANSS AIX
department.

Rosario Uceda-Sosa is the product manager at the Software and Networking
brand team in IBM Taiwan. He is responsible for planning, consultant, and
technical support for networking software products since 1996. He has six years
of experience in networking software. Before joining IBM in 1995, he worked for
the CCL/ITRI National Lab for four years. He holds a master degree in computer
science at the Illinois Institute of Technology in 1990.

Ron Goering is a RS/6000 IT specialist at the Availability Services department of
IBM Taiwan. He is the team leader of RS/6000 professional services team and
also responsible for RS/6000 SP support in Taiwan. He is a certified Tivoli
consultant and holds nine years of experience in UNIX operating systems.
Before joining IBM Taiwan in 1995, he worked for Cray Research Inc., as a field
system analyst. His areas of expertise include performance tuning, kernel
debugging, parallel programming, and TCP/IP networking.

David Chiu is a system management architect for the RS/6000 SP system. He
has been involved in the SP system since its inception.

George Versmissen is a software developer for the RS/6000 SP system with
design and development responsibilities in the system management area. She
has worked on a number of development projects within IBM over the past 14
years.

Neerav Shah is a software engineer with the RS/6000 division. He is currently
involved in the development of the High Availability Infrastructure for the RS/6000
SP system. Before joining IBM in 1995, he was a research scientist at CIS Inc.,
where he worked in the design of a system for the parallel processing and
analysis of sonar signals. He holds a PhD degree from the University of North
Texas, and his dissertation proposes a parallel implementation of the Discrete
Wavelet Transform for analyzing multidimensional signals.

Eric Chin is a software engineer working for the RS/6000 SP Software Lab since
1995. She holds a PhD degree in Computer Science and Engineering (1995) and
a master degree in mathematics (1994) from the University of Michigan. Her
areas of expertise are concurrent and distributed systems and OO software
architecture. She has been involved in the design of various software projects
for the RS/6000 SP system architecture, including the OO framework, and the
integration of Tivoli and the SP.

Linda Mellor is member of the Seismic Infrastructure and Support Team at Shell
International Exploration and Production B.V, Research and Technical Services,
Rijswijk, The Netherlands. His areas of expertise include system management of
SP systems and RS/6000 workstations in a seismic processing environment.

Thanks to the following people for their invaluable contributions to this project:

IBM PPS Lab Poughkeepsie:
Steve Champagne

xii Integrating TME 10 on the RS/6000 SP

International Technical Support Organization, Poughkeepsie Center:
Marcello Barios
Endy Chiakpo

International Technical Support Organization, Raleigh Center:
Barry Nusbaum
Dave Shogren

IBM Global Services:
Neerav Shah

Software Levels
The following software levels were used during the development of this redbook.
The names and versions are listed as they appeared on the distribution media.

Table 1. Software Levels

Software Level

AIX Version 4.1.4

PSSP Version 2.2

Tivoli/Framework Version 3.1 Revision C

Tivoli/User Administration Version 3.1 Revision A

Tivoli/Enterprise Console Version 2.6 Revision B

Tivoli/Sentry Version 3.0.2 Revision A

TME 10 Distributed Monitoring Version 2.3.1

TME 10 Software Distribution Manager Version 3.1

Tivoli/Inventory Version 3.0 Revision A

NetView/6000 for AIX Version 4.1.2 PTF U443133

Deliverables
This redbook contains example code and scripts. Most of the examples and
scripts are listed in the appendix of this book. A complete copy of the scripts
and code is attached to this redbook as a diskette.

Also, a copy will be available on the World Wide Web. The URL for this web site
is:

ftp://www.redbooks.ibm.com/redbooks/SG242071

You can download the contents of this directory using an Internet browser.

All code and scripts are provided on an as is basis. Support for the PSSP T/EC
Adapter is available through a Programming Request for Price Quotation (PRPQ)
from the Poughkeepsie Laboratory.

Preface xiii

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 237 to
the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com

• Send us a note at the following address:

redbook@vnet.ibm.com

xiv Integrating TME 10 on the RS/6000 SP

Chapter 1. Introduction

This book explores how to integrate an RS/6000 SP system with the Tivoli
Management Environment. It is intended for customers, system providers, and
software engineers who have to perform such an integration.

The Tivoli Management Environment provides a management platform and
applications to manage an enterprise computing environment. The RS/6000 SP
consists of a number of processing nodes, each running the AIX operating
system and connected by an administrative LAN, and an optional high
performance switch. The Parallel System Support Program (PSSP) is software
that provides administrative and management support for the RS/6000 SP
system.

Tivoli applications focus on supporting a broad range of platforms providing a
consistent interface to commonly used administrative functions. The main focus
of Tivoli applications is managing in the enterprise environment.

The PSSP provides system-specific system management for the RS/6000 SP.
The software provided in PSSP provides tools for managing the SP platform, and
includes platform-specific management tools. One of the challenges when
integrating an SP into a Tivoli environment is to analyze which tasks should be
performed through the Tivoli environment, and which should be done using the
PSSP tools. Factors such as the frequency of the task, the domain of
administration, and the skills of the administrators should be considered.

Figure 1 on page 2 shows the main integration points for integrating SP into the
Tivoli environment. These areas are:

• Tivoli applications acting on nodes of the RS/6000 SP system
• Monitoring the state of applications, subsystems, and SP nodes
• Making RS/6000 SP-specific management tasks available to the administrator

in the Tivoli environment

There are a number of possible integration scenarios that are discussed more
completely in the following chapters. Tivoli applications can be used against
individual SP nodes. They treat each node as a standalone RS/6000 system.
The full power of Tivoli applications can be used to manage each individual SP
node. Tivoli constructs, such as policy regions and profile managers, can be
used to group the nodes of the RS/6000 into appropriate groupings. For
example, this integration point might be appropriate for managing users using
the TME 10 User Administration product.

 Copyright IBM Corp. 1997 1

Figure 1. Tivoli and SP integration. Three areas for Tivoli and SP integration are shown.

An important capability of Tivoli is the monitoring of the computing environment.
In the most basic scenario, existing TME 10 Distributed Monitoring monitors
could be used to monitor resources on individual nodes and forward alerts to
TME 10 Distributed Monitoring, and on to the TME 10 Enterprise Console (T/EC)
application. A T/EC event adapter has been developed to provide additional
monitoring capability on the SP system. It allows any High Availability
Infrastructure Event Manager event to be forwarded to T/EC. This allows many
SP-unique resources, as well as standard AIX resources, to be efficiently
monitored. T/EC can be used as a centralized point for event correlation,
notification, and automated actions. More details of the PSSP T/EC Adapter are
provided in Chapter 4, “Event Management Integration” on page 25.

The PSSP provides many SP-unique functions, including management of the high
performance switch, node control including power controls, and parallel
commands. In a Tivoli environment, there are several alternate ways to access
these functions.

SMIT or Perspectives could be used to manage the SP directly. Alternatively, a
task library consisting of frequently used SP management tasks can be defined
in Tivoli. Administrators can execute these tasks against individual nodes of the
SP control workstation as appropriate. Sample tasks and more specific
information about task library creation is provided in Chapter 5, “Task Libraries,
Tasks, and Jobs” on page 95.

The highest degree of integration is provided by extending the TME 10 Desktop
so that the managed node objects representing SP nodes provide direct access
to additional SP-specific functions. This capability is described in more detail in
Chapter 6, “AEF Customizations for the RS/6000 SP” on page 105.

2 Integrating TME 10 on the RS/6000 SP

Chapter 2. Planning and Design

Before installing Tivoli on your RS/6000 SP, careful positioning and planning of
your administrative tasks, applications, and physical resources is required. This
chapter introduces some basic Tivoli concepts, and then discusses positioning
your administrative tasks and applications within your Tivoli enterprise and
reviews the planning issues required to deploy Tivoli across your resources and
configure your enterprise appropriately.

2.1 Basic Tivoli Terminology
This redbook assumes the reader has full knowledge of Tivoli terminology,
concepts, and applications. This section provides a brief overview of the major
concepts that are discussed in this book. For in-depth discussions of these
items and other Tivoli terms not included in this list, refer to the TME 10
Framework Planning and Installation Guide, TME 10 Framework User′s Guide,
and individual Tivoli application manuals.

Tivoli Management Environment (TME)

The combination of the base TME 10 Framework, the distributed
object databases, graphical user interface (GUI), command line
interface (CLI), and all Tivoli toolkits and applications required within
the enterprise that is managed by Tivoli.

TME 10 Framework

The base set of Tivoli software that is required to run any of the Tivoli
management applications. The Framework provides basic system
administration capabilities, and services for the management
applications, including an administrator facility, scheduler facility, and
notice facility. The TME 10 Framework is often referred to as the
Tivoli Management Platform (TMP).

Tivoli Management Region (TMR)

The basic physical unit of Tivoli functionality. It consists of one TME
server and the clients that server is managing.

Policy Regions, Policies

A policy region is a collection of TME resources that are controlled by
a common set of policies or rules. Typically, policy regions define the
boundaries of the authority of Tivoli administrators, as well as provide
a mechanism for organizing and managing system resources in a
hierarchical structure.

Profiles, Profile Managers

A profile contains a collection of application-specific information. The
information in a profile is specific to a particular profile type (for
example, a user profile will contain user names, login ids, and so on).

A profile manager contains profiles and a list of subscribers to which
the profile data can be distributed. Subscribers can be managed
nodes, PC managed nodes, NIS Domains, and other profile managers.

 Copyright IBM Corp. 1997 3

Administrators

A Tivoli administrator is a user that has been given authorization to
perform management tasks in the TME. The administrator′s
authorization roles determine what tasks that administrator can
perform against a particular set of resources.

Resources

A TME resource is a general term used to define systems, devices,
services, and facilities in a distributed system. A managed resource
can be owned by only one policy region.

TME 10 Application Extension Facility (AEF)

An interface to dynamically customize the Tivoli applications by
adding site-specific behavior or values to standard applications.

TME 10 Event Integration Facility (EIF)

A facility to build event adapters to map events from any application,
resource, or component into a format compatible with the TME 10
Enterprise Console.

TME 10 Application Developers Environment (ADE)

Programming tools for creating new custom management applications
on top of the TME 10 Framework.

2.2 Planning the Integration of Your SP with Tivoli
To integrate an SP system into a Tivoli environment, there is interaction and
overlap between TME and the PSSP in several areas that must be considered.
In general, you must examine the domain of administration for different tasks,
and pick the technology that is appropriate for the task. For example, if users
are being managed across the SP, other servers, and client machines, then
Tivoli user management would be an appropriate choice. If a Tivoli application
is chosen to handle a particular task or requirement, you must also design how
it integrates with the SP. Among the areas to consider are:

• Security
• System Installation and Maintenance
• File Distribution
• User Management and Administration
• System Monitoring and Event Handling
• Distributed Task and Command Execution

When planning for SP and Tivoli integration in various areas, you should
consider the following factors:

• What are the administrative tasks frequently performed in your environment?
• Who performs these tasks and what platform are they familiar with?
• Is the scope of a particular task limited to the SP platform, or does it operate

across many platforms in the environment?

Tasks that are performed across many platforms or need centralized data, such
as user administration, are good candidates to perform through Tivoli.
Infrequently performed, platform-specific tasks, such as setting the switch
clocking parameters, probably make sense to have accessible only through
platform-specific management tools such as the SP GUI Perspectives, or AIX
management tools such as SMIT. Tasks that are platform-specific, but which

4 Integrating TME 10 on the RS/6000 SP

may be needed during general operations by personnel who are not specifically
trained on platform-specific interfaces are good candidates for integration
through Tivoli task libraries, or extensions to the TME 10 Desktop.

2.2.1 Security
Tivoli and SP administration have completely separate and unrelated security
domains. SP uses Kerberos V4 as the basis of authentication and authorization
of administrative users. Tivoli has several possible security implementations
including Kerberos as an option. Even in an environment where both Tivoli and
SP are using Kerberos, it is not possible to use only a single Kerberos database.
Tivoli and SP security realms must be administered separately.

One possible advantage of Tivoli/SP integration is that operations personnel
could be enabled through Tivoli tasks, or Tivoli applications, to perform
operations on the SP without being in the SP Kerberos database. Tivoli′s
authorization structure for tasks using the super, senior, admin, and user roles is
easier to manage than the SP mechanisms of having separate access control
lists (ACLs) for each resource.

2.2.2 System Installation and Maintenance
The PSSP provides facilities for the initial installation of the operating system,
AIX, and the basic PSSP software. It exploits the AIX Network Installation
Manager (NIM) to provide this capability. Tivoli does not have equivalent
function, and it is recommended that the PSSP and AIX facilities be used for SP
installation, migration, PTF application, and other software maintenance.

There are also many platform-specific administrative tasks that Tivoli does not
provide. Generally these tasks are infrequently performed, and are quite
operating system- or hardware-specific. We generally recommend that they be
performed by experienced personnel using SMIT, Perspectives, or the command
line. However, Tivoli tasks could be defined for the more common of these
tasks, and the Tivoli role structure used to allow operators to perform these
tasks from the TME 10 Desktop. For more details on invoking SP-specific tasks
from Tivoli, see Chapter 5, “Task Libraries, Tasks, and Jobs” on page 95. TME
10 Desktop customizations could be used to allow the launching of SMIT or
Perspectives, or running a specific command. See Chapter 6, “AEF
Customizations for the RS/6000 SP” on page 105.

2.2.3 File Distribution
Both the SP and Tivoli provide mechanisms for distribution and update of groups
of files. These files could be application binaries, application data, or system
files.

The SP provides the file collections technology. It is specific to the SP, and
allows groups of related files to be defined into file collections. Files which have
been changed in a file collection are automatically updated periodically, or when
a node reboots. It is reasonably easy to add new files to an existing file
collection, although there is no SMIT or GUI interface to do so. Defining a new
file collection can be difficult.

The SP predefines file collections used for user management files (/etc/passwd,
/etc/group, /etc/security/*, and related files), and another for system files such
as /etc/services.

Chapter 2. Planning and Design 5

TME 10 Software Distribution is a Tivoli application that is appropriate when file
synchronization is managed at a domain larger than the SP. It provides a rich
set of facilities for distributing and updating files. TME 10 Software Distribution
operates against individual SP nodes exactly as it would against any other
managed nodes. Profile managers and policy regions can be used to group SP
nodes to make file distribution management easier.

2.2.4 User Management
Both Tivoli and the PSSP provide tools for user administration. The PSSP
solution provides a simple mechanism for managing users only on the SP
platform, and optionally integrates support for automounting user′s home
directories. TME 10 User Administration is an enterprise user administration
application that can provide user management across many platforms with
configurable levels of local control or centralization.

The decision on which user management solution to deploy depends primarily
on the scope of user administration in your enterprise. Among the reasons you
might want to choose TME 10 User Administration are:

• To enforce a common userid space for a domain larger than the SP
• To manage different sets of users on different SP nodes
• To provide different administrators with administrative control on different

nodes or sets of nodes
• To integrate your SP user management into the enterprise
• To eliminate the SP restriction that requires users to change their passwords

on the control workstation

TME 10 User Administration allows you to manage your users at the enterprise
level, or across a number of machines, something that PSSP management by
itself clearly does not do. Using the wpasswd command, you can have your users
change their passwords from any SP node, and TME 10 User Administration will
keep those passwords synchronized across SP nodes and other systems. By
using profile managers you can enforce a common userid space, and restrict
access of certain users to certain nodes. You can also allow administrators
local control over users on a node or group of nodes while enforcing common
policies at the enterprise level. TME 10 User Administration does not handle
building automounter maps as SP user management does.

2.2.5 System Monitoring and Event Handling
Monitoring key system resources is probably the first and most important
integration point to be considered. It is also the area where there are the most
choices for a solution.

The first task is to identify the key resources you wish to monitor. These
resources might include node availability, adapter or network availability, state
of file systems, processor load, and other states of computing resources, as well
as the state of key applications.

There are a number of monitors available including the following:

• TME 10 Distributed Monitoring provides simple monitoring for common
computing resources. TME 10 Distributed Monitoring alerts can be
forwarded to TME 10 Enterprise Console, or converted into SNMP traps and
forwarded to NetView/6000 for AIX.

6 Integrating TME 10 on the RS/6000 SP

• TME 10 Enterprise Console logfile adapter can monitor SP logs and be
configured to generate events from log entries.

• Several solutions for using Event Management and Problem Management
from the PSSP software exist. These solutions involve invoking a program
through Problem Management as a response to an Event Management
detected event. Using the SP event manager allows a large number of
SP-specific subsystems, as well as basic AIX resources, to be efficiently
monitored. This combination can be set up using the SP Perspectives GUI.
These Problem Management actions in response to an event include:

− Using the Tivoli wasync command to forward a string to T/EC

− Generating an SNMP trap that is forwarded to NetView

− Invoking the new tecad_pssp which will parse the event manager event
and forward it to T/EC for handling

You should also identify the destination of any monitoring or alerts and the
transport for the events. The primary event transport mechanisms are T/EC
events, TME 10 Distributed Monitoring monitoring, or SNMP traps. Possible
event destinations might be the Tivoli Enterprise Console (T/EC), TME 10
Distributed Monitoring application on a TME 10 Desktop, or NetView or other
network manager. The combination of resources to be monitored, and the
destination of the monitoring, will help you choose an appropriate monitoring
solution. Chapter 4, “Event Management Integration” on page 25 provides
detailed discussions of monitoring integration choices and scenarios.

2.2.6 Distributed Task and Command Execution
Both the PSSP and Tivoli provide capabilities for distributed task and command
execution. The PSSP provides dsh, built on rsh with enhancements for parallel
execution and formatting, and sysctl, a generalized remote task execution
backend.

sysctl allows adminstrators to define procedures written in any language (Perl,
ksh, or C are popular choices), and give selected users access to that procedure
through access control lists. The defined procedure executes as root, but the
user never needs to know the root password. This capability allows
administrators to delegate portions of root access to users without compromising
the root password. The authentication for sysctl procedures is based on
Kerberos, and users of these procedures must be defined in the Kerberos
database, and currently have Kerberos credentials (typically acquired by the
kinit command.)

Tivoli provides a similar capability using the Tivoli tasks and a Tivoli task library.
Tivoli tasks are scripts defined to Tivoli to perform specific tasks on the target
host. The execution environment (userid, groupid, working directory, and so on)
are specified during task definition. A role is given to a task such that a user
must have that role to execute the task.

The main decision point is probably the overall administrative environment. If
your administrators are primarily using Tivoli, defining a Tivoli task is the logical
way to proceed. Your security environment is also a consideration. sysctl
requires the user to be defined in the SP Kerberos database. sysctl and dsh
are more efficient mechanisms for executing tasks directed specifically at SP
nodes. Chapter 5, “Task Libraries, Tasks, and Jobs” on page 95 provides

Chapter 2. Planning and Design 7

additional detail on a number of candidates for Tivoli tasks to help manage the
SP.

A hybrid approach that uses dsh or sysctl as commands within a Tivoli task is
also possible. This approach combines the benefits of the efficient task
execution environment on the SP with the centralized management provided by
Tivoli.

Chapter 6, “AEF Customizations for the RS/6000 SP” on page 105 describes
TME 10 Desktop customizations that allow execution of a command on a node or
set of nodes. These customizations can also be used to provide direct access
from the TME 10 Desktop to SP-specific tasks such as node and switch control.

2.3 Planning the Deployment of Tivoli on Your RS/6000 SP
A computing enterprise can include many different types of machines, operating
systems, applications, and communication networks. To manage these
resources, a Tivoli Management Environment may contain any number of
physical TMRs, logical policy regions with possibly many levels of hierarchy, and
managed resources which are to be controlled from Tivoli. Tivoli provides you
with the framework to manage everything in a consistent manner.

If your operations environment contains one or more RS/6000 SP machines, you
may wish to manage these machines as part of your larger Tivoli enterprise.
Before introducing your RS/6000 SP into your Tivoli enterprise, there are
numerous deployment planning issues that must first be considered. Many of
these issues are general considerations that apply to any resources added to a
Tivoli enterprise. These considerations will not be discussed in this book since
they are fully covered in Tivoli publications and other redbooks.

This chapter will focus on the planning issues that are unique to dealing with an
RS/6000 SP in a Tivoli enterprise.

2.3.1 TMR Configuration
The TME 10 Framework Planning and Installation Guide contains detailed
information on planning your Tivoli Management Region (TMR) configuration. It
discusses issues such as:

• If and when you need multiple TMRs

• The location of TME 10 databases and whether to share library and binary
files

• Resource updates between TMRs

• Server load

• Number of clients

• Network limitations

• Local versus central administration

• Network communications

Our redbook assumes that the reader is completely familiar with the concepts in
this area. However, we will address some considerations specific to the RS/6000
SP.

8 Integrating TME 10 on the RS/6000 SP

2.3.1.1 Representing an RS/6000 SP in TMRs
A Tivoli Management Region (TMR) is a physical representation consisting of a
TME server and some number of TME clients. There are many ways to
represent your RS/6000 SP within TMRs:

• As a single TMR

The most obvious approach is to represent the entire RS/6000 SP in its own
TMR. The TME server would be located on the control workstation or one of
the SP nodes, and all other nodes would be TME clients. This provides a
simple mapping of your TMR to your physical environment for moderately
sized RS/6000 SPs. However, if your RS/6000 SP has a large number of
nodes, or if the Tivoli installation stresses other server load characteristics,
you may need to divide the RS/6000 SP into multiple TMRs to reduce the
impact to a single TME server.

• As a subset of a TMR

The RS/6000 SP may be represented as a collection of TME clients within a
larger TMR that contains other workstations or RS/6000 SPs. This is
especially useful if you have smaller RS/6000 SPs. You may also wish to
include related print servers, file servers, and other resources that are used
during the operation of the RS/6000 SP(s). The TME server may or may not
reside within the RS/6000 SP. This is not a feasible representation for larger
RS/6000 SPs, where the number of nodes would exceed the TME server
capacity.

• As multiple TMRs

Due to the size of your RS/6000 SP or other physical or organizational
considerations, you may wish to represent the RS/6000 SP within Tivoli using
multiple TMRs. The location of the TME servers and the distribution of the
nodes among the TMRs must be planned. If your RS/6000 SP has multiple
partitions, you may consider separating your TMRs on partition boundaries.
When dealing with multiple TMRs, it is important to remember that not all
TME resources are shared across connected TMRs.

• Only represent the control workstation within a TMR

If you want to administer and monitor the RS/6000 SP through the control
workstation, you may wish to represent only the control workstation in an
existing TMR and not represent the nodes at all. With this approach, you will
not be able to apply special administration to individual nodes and you may
need to develop customized interfaces to meet your needs. However, this
approach may greatly reduce the complexity of your Tivoli installation and
limit the impact Tivoli has on your SP.

• As a collection of RS/6000 workstations

Although other configurations will most likely be more appropriate, you could
simply represent your RS/6000 SP as an unrelated collection of RS/6000
workstations with no regard to the fact that they are part of an RS/6000 SP.
This method does not require any special SP considerations, and you would
follow all documented Tivoli procedures for planning this approach. You can
have your TME servers reside anywhere in your installation, and have the SP
control workstation and nodes be members of whatever TMRs are
appropriate. Note, however, that you may not be able to do specific SP
administration from Tivoli when managing your environment in this way.

• Have no direct representation within a TMR

Chapter 2. Planning and Design 9

You may choose not to represent your RS/6000 SP within a TMR at all. With
this approach, you would not install Tivoli on the control workstation or any
nodes and you would not be able to manage the RS/6000 SP directly from
Tivoli. However, you would still be able to monitor events on the RS/6000 SP
through a TME 10 Enterprise Console installed on an external system using
an unsecure communications channel to the RS/6000 SP.

The particular representation that you choose for your RS/6000 SP is dependent
on many factors, such as the number of nodes on the RS/6000 SP, its
organizational structure and use, communication links, size of TME servers, TMR
connections, and so on. You must be familiar with the details discussed in the
TME 10 Framework Planning and Installation Guide to plan the TMR
representation of your RS/6000 SP.

2.3.1.2 Communication Considerations
TME distributed architecture is designed to work across a wide variety of LANs
and network topologies. The TME server and TME clients within a TMR must
communicate with each other. TME servers in connected TMRs must also be
able to exchange information and services. The minimal Tivoli requirement is
for a bi-directional, full-time, interactive TCP/IP line. The amount of
Tivoli-generated network traffic is determined by the type of administration, data
distribution, and resource monitoring you plan on performing within your Tivoli
installation.

The system topology of your RS/6000 SP with regard to the SP Ethernet, SP
switch (if any), outside network connections, routers, and gateways must be
carefully considered when planning the location of the TME servers and clients.
You must also consider the current traffic on these connections and the impact
additional Tivoli communications will have on them. See the TME 10 Framework
Planning and Installation Guide for a discussion of network limitations and how
they affect your TMR configuration.

The SP switch provides a high performance communication link which is unique
to the RS/6000 SP. Installations typically reserve this communication path for
production applications and critical data access. For most installations, use of
the SP switch is not recommended for distributing Tivoli administrative data
when other paths exist that would provide adequate network throughput.
However, you may find that your production SP environment can tolerate the
additional overhead of the Tivoli communications on the SP switch. In this case
you will see improved Tivoli performance by installing and managing your TMR
across the switch. 3.1, “Installing Tivoli Using the SP Switch” on page 19
contains instructions on how you can do this.

2.3.1.3 TME Server Load
TME server load is one of the most critical factors in determining the size of a
TMR. The server load is dependent on the number of file descriptors needed to
maintain contact with clients, the network traffic, and the CPU and memory
demands Tivoli places on the server.

The server load and network connectivity will also determine where you decide
to locate the TME server with regard to your RS/6000 SP. The possible locations
are:

• On the SP control workstation

10 Integrating TME 10 on the RS/6000 SP

If the TME server is to be located on the control workstation, you must
consider the impact TME operations will have on the performance of other
control workstation operations that are critical to the functioning of your
RS/6000 SP.

• On an SP node

There are no special SP considerations when placing the TME server on an
SP node other than the impact to non-Tivoli processing planned for that
node. Appropriate network connections and IP connectivity to all managed
nodes must exist. These connections should not be limited by SP partition
boundaries.

• On an independent RS/6000 workstation

Locating the TME server on an independent RS/6000 workstation that is not
part of your RS/6000 SP will eliminate the server load impact to your RS/6000
SP. This is only possible if you have an external network connection to your
RS/6000 SP and its nodes.

2.3.1.4 Number of TME Clients
The number of remote connections within a single TMR is limited to
approximately 200 TME clients. The TME server maintains an open connection
with each client and thus is limited by the number of file descriptors that may be
open at one time. Realistically, the server load and network impacts will most
likely limit the number of clients in your TMR long before this limit of 200 clients
is reached.

This limitation on the number of clients impacts how you can represent your
RS/6000 SP within a TMR. Smaller RS/6000 SPs with one or two frames can be
contained within a TMR. However, larger RS/6000 SPs with multiple frames and
large numbers of nodes may need to be divided into multiple TMRs. The actual
number of SP nodes that can be supported within a single TMR is dependent on
the server load issues discussed in the previous section with relation to the size
of the processor chosen for the server.

2.3.1.5 TMR Connections
Individual TMRs can be linked together with either one-way or two-way
connections, allowing administrators to manage resources in other TMRs.
Restrictions exist as to the types of resources that can be shared across TMRs.
See the TME 10 Framework Planning and Installation Guide for discussions on
connecting TMRs and updating resources between them.

There are no special SP considerations when connecting TMRs. However, you
will want to consider the limitations of performing administrative activities across
connected TMRs when you decide whether your RS/6000 SP should be contained
within a single TMR or divided into multiple TMRs. Some important resources
that are not shared across TMRs are the user and group name databases and
group profiles. You may, however, overcome some of these limitations through
careful implementation and administration of profiles and profile managers
which can span TMRs.

Chapter 2. Planning and Design 11

2.3.1.6 Location of TME 10 Files
The TME 10 Framework Planning and Installation Guide discusses what to
consider when deciding where to store the TME 10 databases and library and
binary files. There are no special considerations for the RS/6000 SP. To reduce
the storage requirements on individual nodes, you can use a common data
repository such as NFS or some other shared file system to contain the Tivoli
library and binary files.

2.3.1.7 Sizing Considerations
Processor, memory, and disk space recommendations for the TME server and
clients are detailed in the TME 10 Framework Release Notes. When reviewing
these recommendations in relation to the RS/6000 SP, consider these
recommendations as additional requirements to those required by the RS/6000
SP that are specified in the IBM RS/6000 SP Systems Planning Guide.

2.3.1.8 Application Considerations
Each Tivoli application has its own planning issues that must be considered. For
example, if you are installing TME 10 Enterprise Console and/or NetView/6000 for
AIX to monitor and respond to problems on your RS/6000 SP, you will need to
determine where those servers should reside, their server loads, network
connections, and so on. Review the documentation for each application to
determine if there are additional requirements to your overall Tivoli plan.

2.3.2 TME 10 Framework Configuration
While the TMR planning focuses on the physical configuration issues, the TME 10
Framework planning deals with the logical configuration of the Tivoli enterprise.
The TME 10 Framework configuration should be developed to match your current
organizational and administrative structure. The TME 10 Framework provides
the basis for managing resources in a distributed environment. The planning
considerations for the TME 10 Framework configuration include:

• Policy regions and subregions

• Managed nodes

• Profile managers and subscribers

• Administrator roles

The basic discussions for planning your TME 10 Framework configuration is
covered in the TME 10 Framework User′s Guide. Some SP-specific
considerations are included in the following sections.

2.3.2.1 Policy Regions and Subregions
Policy regions are used to organize the resources managed in your Tivoli
environment. A policy region is not limited to the local TMR -- it can contain
managed resources from connected TMRs. Therefore, you can eliminate some
of the physical boundaries that may have been imposed with TME server
limitations by using policy regions to generate a logical view of the
organizational structure of your resources.

A managed resource such as a managed node may only be resident within a
single policy region. However, you may have a hierarchy of policy sub-regions
to match the hierarchical view of your resource administration.

12 Integrating TME 10 on the RS/6000 SP

There are many ways to organize the managed nodes representing your RS/6000
SP control workstation and nodes in policy regions. A few possibilities may
include (but are certainly not limited to) any combinations of the following:

• A top-level policy region for the entire RS/6000 SP

Typically, there is one governing policy region for all the managed resources
within a TMR. If your RS/6000 SP is represented by a single TMR or a
subset of a larger TMR, and you have a simple administrative organization, a
single policy region containing the control workstation and all of the nodes of
your RS/6000 SP as managed nodes may be the simplest approach.

If your RS/6000 SP spans multiple TMRs, you may find it useful to have a
higher-level policy region that includes all of the managed nodes from all of
the TMRs representing the SP. This policy region may either contain the
managed nodes directly, or indirectly through nested policy sub-regions.
This top-level policy region could then be used for generic management of
the entire RS/6000 SP, consistent monitoring and administration across all of
the SP nodes, and so on.

• Policy sub-regions to match SP partitions

If your RS/6000 SP contains multiple partitions, you may find it useful to
represent the nodes of a partition within separate policy sub-regions. This
will allow you to manage the partitions independently. These sub-regions
may or may not be hierarchically part of a governing policy region that
represents the entire RS/6000 SP.

An alternative way to represent partitions would be through profile
managers. See 2.3.2.3, “Profile Managers and Subscribers” on page 14.

• Policy sub-regions to match disjoint groups of SP nodes

If you have many SP nodes that are similar to each other or used in a
common manner, you may wish to organize such a group into its own policy
sub-region for common administration. For example, in a LAN-consolidation
environment, you may wish to group the SP nodes into disjoint sets based on
organizational or operational characteristics and represent each set as a
policy sub-region. As with partitions, these sub-regions may or may not be
hierarchically part of a governing policy region that represents the entire
RS/6000 SP.

Using policy sub-regions for groups of SP nodes is most appropriate when
the grouping will remain stable over time. For more dynamic grouping, or as
another grouping alternative, profile managers can be used.

2.3.2.2 Managed Nodes
Each SP control workstation and node that is installed as a TME server or client
is logically represented as a managed node within one (and only one) policy
region. You may wish to customize these managed nodes to provide unique SP
functions to your administrators from within the TME 10 Desktop. You can
develop customizations using Tivoli facilities such as ADE or AEF. See
Chapter 6, “AEF Customizations for the RS/6000 SP” on page 105 for information
on how you might provide your own TME 10 Desktop customizations and for
examples of modifying your managed nodes to invoke functions unique to an SP
control workstation and nodes. Also, you can load a set of sample TME 10
Desktop customizations from the diskette provided with this redbook. See 6.2,
“Installation of the Sample Customizations” on page 113 for installation
instructions.

Chapter 2. Planning and Design 13

2.3.2.3 Profile Managers and Subscribers
Profile managers contain profiles to manage the administrative data on your
systems. More importantly, however, they contain a list of subscribers that can
either be managed nodes or other profile managers. These subscription lists
can be a useful organizational construct in representing groups of resources
requiring common administration, especially since a managed node or profile
manager may be included in any number of subscription lists.

With regard to the RS/6000 SP, you will probably find it useful to create profile
managers to represent the following:

• All nodes on your RS/6000 SP

• The control workstation and all nodes on your RS/6000 SP

• All nodes within an SP partition

• All nodes within an SP node group

• All nodes with a common set of operational or organizational characteristics

These profile managers can then become subscribers for task execution, data
distribution, profile distribution, and so on. In SP terms, a profile manager that
contains only a subscription list can be thought of as an SP node group.
Therefore, any SP node groups that have been created for common
administrative purposes would be a good candidate for a profile manager.

2.3.2.4 Administrator Roles
By assigning appropriate authorizations and copying and moving policy regions
to the correct TME 10 Desktops, you can control the administrative roles of the
administrators managing subsets of the Tivoli enterprise. With regard to the
RS/6000 SP, you can restrict SP resources and tasks to only those administrators
that will be managing the RS/6000 SP from Tivoli. You would do this using the
normal procedures for configuring TME 10 administrators as described in the
TME 10 Framework User′s Guide.

2.3.3 Planning for RS/6000 SP Changes
Once a RS/6000 SP has become part of a Tivoli enterprise, planning RS/6000 SP
changes also requires planning corresponding TME changes. Some examples of
RS/6000 SP changes that may affect your Tivoli installation include:

• Adding new nodes to your RS/6000 SP

After you have added new nodes to your RS/6000 SP and have verified that
they are operating properly within your system, you will want to include them
in your Tivoli Management Environment. This will require you to install all of
the necessary TME framework and application binaries, libraries, and
databases to create the new managed nodes. You will need to add these
resources to the appropriate policy regions and profile managers and any
specific application resource managers to make them a part of your
managed environment.

If the number of new nodes is significant, you may need to consider creating
a new TMR if the new nodes will exceed the limits of your current TME
server or reduce its performance to unacceptable levels. You will then need
to evaluate how to connect this new TMR to your current Tivoli Management
Regions, and how it will be administered within your organization.

• Removing nodes from your RS/6000 SP

14 Integrating TME 10 on the RS/6000 SP

Before you remove nodes from your RS/6000 SP, you will want to delete the
managed nodes from your TMR and from all policy regions and resource
managers within your Tivoli enterprise.

• Re-partitioning your RS/6000 SP

If you have made TMR and TME 10 Framework configuration decisions based
on the system partition layout of your RS/6000 SP, you will need to consider
the impact to these configurations if you change the SP partitioning. You
may need to move managed nodes from one TMR to another (which requires
deleting them from the old TMR and creating them in the new TMR), move
the managed nodes from one policy region to another, or change the
subscription lists in various profile managers to reflect the new organization.

• Changing IP address and host names

If you change the IP address or host name for the SP nodes or the control
workstation that the TME uses to communicate with, you will need to update
the TME server and client databases.

• Migrating your RS/6000 SP to new levels of AIX or PSSP

When planning to migrate your RS/6000 SP to a new level of AIX or PSSP,
you will need to consider how you will migrate your Tivoli installation on
those managed nodes. If your TME server is resident on the control
workstation or one of the SP nodes, you will have additional migration issues
to consider. You will need to decide if you must migrate to new levels of the
TME 10 Framework or any other TME applications. You will need to preserve
all databases, binaries, libraries, and other files associated with the TME 10
Framework and applications.

Tivoli procedures for all of these changes are described in the TME 10
Framework Planning and Installation Guide, the TME 10 Framework User′s Guide,
the TME 10 Framework Release Notes, and the individual TME application
documents.

2.4 Planning Applied to a Practical Example
To illustrate some of the planning issues that have been discussed in this
chapter, we will take a sample SP environment and describe some of the
planning choices that can be made to incorporate it into a larger Tivoli
enterprise. The example is for discussion purposes only and is not meant to
represent any existing Tivoli enterprise or corporate environment.

2.4.1 Environment at the ITSO SP Lab
This redbook was written based upon our experiences while working at the
International Technical Support Organization (ITSO) Poughkeepsie Center.
Therefore, we will use the ITSO lab as the example environment that we want to
manage. The following hardware was available at the ITSO lab for our work:

• A 16-node RS/6000 SP containing:

− One frame

− 16 thin nodes

− A High Performance Switch

− An SP Ethernet connection to all nodes

− A control workstation

Chapter 2. Planning and Design 15

This RS/6000 SP is referred to as SP2, with the control workstation hostname
sp2cw0, and node hostnames sp2n01 through sp2n16 for Ethernet access and
sp2sw01 through sp2sw16 for switch access. There is only one partition on
this RS/6000 SP.

• A 12-node RS/6000 SP containing:

− One frame

− 4 thin nodes

− 4 wide nodes

− 1 SMP node

− An SP Switch

− An SP Ethernet connection to all nodes

− A control workstation

This RS/6000 SP is referred to as SP21, with the control workstation
hostname sp21cw0, and node hostnames sp21n01 through sp21n16 for
Ethernet access and sp21sw01 through sp21sw16 for switch access. There is
only one partition on this RS/6000 SP.

• Several RS/6000 workstations

• Local Token Ring connection between the control workstations and the
RS/6000 workstations

2.4.2 Integration Planning
We will make the assumption that administration of the lab machines is
self-contained with very little interaction with a more global corporate
administrative organization. However, to reduce personnel costs, we will say
that the administrators in charge of this lab are also responsible for other labs
within the region. The entire region is using Tivoli to manage their systems.
The administrators responsible for the lab have complete management control
over all machines.

Since the administrators must manage several labs, they would prefer to handle
as much SP system management from their TME 10 Desktops as possible. They
will install all SP customizations provided with this redbook, and create their
own task libraries and tasks for commonly performed operations not included in
the customizations.

The users in the lab require access to all available SP nodes and RS/6000
workstations, and would like to have a common userid and password image
across these machines. TME 10 User Administration will be installed to manage
groups, userids, and passwords. The SP User Management Services will be
turned off.

An automounter will be used to provide access to all user home directories.
TME 10 Software Distribution will be installed and used to distribute automounter
map files. The SP Automounter Support and SP File Collection Services will be
turned off.

Since the lab is mainly used as a test environment, applications are continuously
installed and upgraded. TME 10 Software Distribution will be used to distribute
application files to the appropriate workstations and SP nodes.

16 Integrating TME 10 on the RS/6000 SP

All systems will be monitored using the TME 10 Enterprise Console. The new
PSSP T/EC Adapter will be installed on all SP nodes and control workstations to
capture and forward events generated by the SP Event Manager to T/EC.

2.4.3 Deployment Planning
Planning to install Tivoli in this example environment, we decided on the
following configuration:

• One TMR for the entire lab

Since both RS/6000 SPs are small, we decided that one Tivoli Management
Region for the entire lab would be sufficient. This TMR would include the
RS/6000 SPs, as well as all of the standalone RS/6000 workstations. We do
not plan to have a rapid growth rate of new nodes on the RS/6000 SPs or
additional RS/6000 workstations, so we do not need to worry about
outgrowing our TME server in the near future.

• TME server on RS/6000 workstation

Since this is mainly an SP lab and the RS/6000 workstations are only
minimally used during application testing, we will dedicate one of the
RS/6000s to be our TME server. We will use this same server as our T/EC
server.

The current Local Token ring is not heavily used and can easily withstand
the additional network traffic required by the Tivoli distributed database and
management functions. We will access the SP nodes through the SP
Ethernet adapters.

• TMR connections

At this time, there is no advantage to connecting this TMR with other TMRs
in the enterprise. The lab would like to maintain its autonomy. However, if
regional procedures change such that a more global administrative policy is
instituted, there may later be a need to connect this TMR with other TMRs in
the region.

• Location of files

The Tivoli library and binary files will be installed on each RS/6000 and on
each SP control workstation. The SP nodes will NFS mount the Tivoli
directories from their respective control workstation over the SP Ethernet
connection. This will provide quick access to the data without compromising
the local disk space on the SP nodes. As required by Tivoli, all database
files will reside locally on each node.

• One top-level policy region for the TMR

We will have one top-level policy region to govern the entire TMR. This will
be used for lab-wide administration. For example, all user and group
management will be done from this policy region.

• Policy sub-regions for each RS/6000 SP

There will be one policy sub-region for each RS/6000 SP and one sub-region
for all of the RS/6000 workstations. These policy sub-regions will contain the
actual managed nodes representing the individual workstations and SP
nodes. Although users have access to all machines in the lab, they typically
limit their work to one of the RS/6000 SPs.

• Profile managers

Chapter 2. Planning and Design 17

The following profile managers will be created as our initial working set.
Additional profile managers will be defined to support individual applications
or groups of resources as the system administration evolves.

− One profile manager for each RS/6000 SP that contains as its subscribers
all of the managed nodes representing the SP nodes of that system.

− One profile manager for each RS/6000 SP that contains two subscribers:
the control workstation managed node and the profile manager
containing the SP nodes.

− One profile manager that contains two subscribers: the profile managers
containing each set of SP nodes. This profile manager will be used to
distribute data common to all SP nodes or to perform common tasks on
each node.

− One profile manager that contains all of the RS/6000 managed nodes as
its subscribers.

− One profile manager that has three subscribers: the two profile
managers representing the RS/6000 SPs and the profile manager with
the RS/6000 workstations. This profile manager will be used to distribute
common system and user management data.

The hierarchy of using profile managers as subscribers to other profile
managers makes administration much easier when new managed nodes are
added to the system. They need to only be added to the lowest level profile
managers as managed endpoints.

18 Integrating TME 10 on the RS/6000 SP

Chapter 3. Installation

Before installing Tivoli products on your RS/6000 SP system, you should develop
a TME installation plan to determine how the system will be managed within
your Tivoli enterprise.

You will need to:

• Decide the location of TME servers

• Decide the distribution of SP nodes across TMRs

• Decide which Tivoli products you will be installing and whether they will be
installed on selected managed nodes or on all nodes in the TMR

• Develop a topology of policy regions and profile managers so that your TME
10 Framework configuration reflects your administrative and organizational
structure.

The importance of proper planning must be stressed in order to make your Tivoli
installation more efficient and to avoid time-consuming and costly mistakes. See
Chapter 2, “Planning and Design” on page 3 for planning information.

This chapter includes information on how to use your RS/6000 SP switch to do
your initial Tivoli installation. The TME 10 Framework Planning and Installation
Guide should be followed for detailed installation instructions. This chapter also
includes information on maintaining Tivoli database consistency. Even though
this information is not specific to the RS/6000 SP, it is included here to stress its
importance in maintaining your Tivoli environment.

3.1 Installing Tivoli Using the SP Switch
This section contains instructions for installing a TME server on an RS/6000 SP
node using the SP switch to transfer the installation image from a CD-ROM
mounted on the control workstation.

Using the SP switch to install and manage the TME 10 Framework and other
Tivoli applications is an alternative to using an Ethernet or other external
network connection to distribute the data. You must consider the impact to your
current production SP environment before using this approach. The switch is
typically reserved for critical data and application communication where a high
performance communication link is essential. However, if your production
environment can tolerate the additional impact on the SP switch of the Tivoli
communications, you will gain performance improvements by using the switch.

The following procedure was developed by Neerav Shah of IBM Global Services
and was used in customer sites to install a TME server on an SP node
transferring the installation image across the SP switch.

Use the following steps to install the TME server on an SP node over the high
speed switch network:

 1. Mount the TME 10 Framework CD on /cdrom on the control workstation:

mount -rv cdrfs /dev/cd0 /cdrom

 2. Export the NFS mount for /cdrom to the chosen TME server node (this can be
done via the SMIT interface).

 Copyright IBM Corp. 1997 19

 3. Mount the NFS filesystem on the TME server node:

mount <CWS_hostname>:/cdrom /mnt

 4. Edit the /etc/wlocalhost file to reflect the TME server ′s high speed switch
hostname.

 5. Export the DISPLAY variable on the TME server node to reflect the control
workstation:

export DISPLAY=<CWS_ip_address>:0.0

 6. Enable the control workstation display. On the control workstation, enter:

xhost +

 7. Set the hostname and uname to be the high speed switch hostname on the
TME server node:

hostname <hps_hostname>
uname -S <hps_hostname>

 8. Create the following directory:

/usr/local/Tivoli/install_dir

and enter a cd command to change to this directory.

 9. Ensure that there is enough disk space on the required filesystems:

/usr/local/Tivoli 42860 KB
/etc/Tivoli 36 KB
/var/spool/Tivoli 11558 KB

Note: Verify the current space requirements by reviewing the TME 10
Framework Release Notes packaged with your TME 10 software.

10. Run the preinstall script:

/mnt/wpreinst.sh

11. Run the actual install script:

./wserver -c /mnt

12. From the TME 10 Desktop generated on the control workstation, make sure
all the install options are correct (that is, the locations for all Tivoli libraries,
binaries, and so on). Select the option to create directories on install.

13. Specify the following:

• License key in the specified text gadget.

• Encryption level to be NONE.

• TMR policy region name (for example, SP).

• The TME server hostname (high speed switch hostname).

14. Click on Install & Close .

15. When the install is complete, revert the hostname and uname of the TME
server to their original values.

16. Edit the /etc/wlocalhost file and reflect the high speed switch hostname, if
you have not already done so.

17. From the command line run the following command:

odadmin environ get > /tmp/<any_filename>

Edit /tmp/<any_filename> to reflect the following variable definit ion:

20 Integrating TME 10 on the RS/6000 SP

ALI_HOST_NAME=<high_speed_switch_hostname>

From the command line, run the following command:

odadmin environ set < /tmp/<any_filename>

18. Shutdown the TME 10 Desktop

19. Run:

. /etc/Tivoli/setup_env.sh

20. Shutdown the oserv daemon:

/etc/Tivoli/oserv.rc stop

21. Restart the oserv daemon:

/etc/Tivoli/oserv.rc start

22. Start the TME 10 Desktop. From command line, type:

tivoli

23. Perform backup of the Tivoli database. Refer to the TME 10 Framework
Planning and Installation Guide for instructions on how to do this.

After completing these steps, you will have an SP node installed as your TME
server. You can install the other SP nodes as managed nodes by following the
normal installation procedures described in the TME 10 Framework Planning and
Installation Guide. You must specify the switch host name of the SP node as the
name of the node to be installed to force the installation across the switch. This
will also cause all future TMR database communications, profile and data
distributions, and so on, to occur across the switch.

If you decide at a later time that you do not wish to use the SP switch for your
Tivoli communications, you can follow the directions for changing IP names and
addresses described in the “TME 10 Maintenance and Troubleshooting” chapter
of the TME 10 Framework Planning and Installation Guide.

3.2 Tivoli Object Database Consistency
The information in this section is not specific to executing Tivoli on the RS/6000
SP. However, the importance of maintaining Tivoli Object Database consistency
and correctness is so critical to your Tivoli operation, that we felt it was
necessary to emphasize the information here.

It is important to make regular backups of the Tivoli Object Database. The first
reason for doing this is a common-sense one: the TME database contains
important system management information that you want to protect from
hardware or software failures.

The second reason is less obvious. When you install Tivoli products, the
installation process is in fact performing a sequence of actions:

 1. Installing code on the managed nodes

 2. Executing local configuration programs

 3. Updating configuration entries in the Tivoli Object Database

If there are any problems during installation, or if you need to reinstall a product,
the easiest way to reverse the process is to restore the Tivoli Object Database
from a backup prior to the installation.

Chapter 3. Installation 21

3.2.1 Database Backup
There are several ways to backup your Tivoli Object Database. The following list
describes some methods you can use:

Method 1 Use the CLI command wbkupdb directly. This command backs up and
restores TME 10 databases:

wbkupdb -d /tmp/Tivoli_DB.bk sp2en0

where /tmp/Tivoli_DB.bk is the name of the backup file and sp2en0 is
the name of the TME server.

Method 2 Issue the backup operation from the pull-down menu of the TME 10
Desktop. For details of this procedure, refer to the ITSO redbook TME
10 Cookbook for AIX Systems Management and Networking
Applications.

Method 3 Use the Tivoli Task Library function to create a task to execute the
CLI command wbkupdb, once or regularly. For details of this
procedure, refer to the ITSO redbook TME 10 Cookbook for AIX
Systems Management and Networking Applications.

Method 4 Use the cron utility to execute the CLI command wbkupdb regularly.

3.2.2 Database Restore
The following list describes two methods you can use to restore your Tivoli
Object Database:

Method 1 Use the CLI command wbkupdb directly:

wbkupdb -r -d /tmp/Tivoli_DB.bk sp2en0

where /tmp/Tivoli_DB.bk is the name of the backup file and sp2en0 is
the name of the TME server.

Method 2 If you encounter a situation where you cannot use the wbkupdb
command, or if the object dispatcher that is to be restored is not
running (and presumably cannot be run because its database is
corrupted or missing), or if you lost your root administrator, you can
extract the database manually and put the files in the correct location
in the database directory. The following is an example of how to
rescue a TME server using the previously saved /tmp/Tivoli_DB.bk file
for server sp2en0.

 Note:

Before testing this example, make sure that the object dispatcher
has been stopped.

. /etc/Tivoli/setup_env.sh
cd /worktmp/tivoli
tar xvf /tmp/Tivoli_DB.bk sp2en0
uncompress -c <sp2en0 | tar tvf -
cp imdb.bdb.restore $DBDIR/imdb.bdb
cp odb.bdb.restore $DBDIR/odb.bdb
cp odb.log.restore $DBDIR/odb.log
cp odlist.dat.restore $DBDIR/odlist.dat

22 Integrating TME 10 on the RS/6000 SP

3.2.3 Database Consistency Check
To check the consistency of the Tivoli Object Database, use the CLI command
wchkdb. This command verifies and repairs problems in the TME 10 database. It
does not affect system files; it only modifies resources in the TME 10
environment.

The first example checks and, if needed, repairs the TME 10 database. Object
references are checked across TMR boundaries:

wchkdb -u -x

The second example checks object references in the current TMR only. No
changes are made to the TME 10 database. Problems are, however, displayed
to stdout and written to a binary output file, /tmp/check.out.

wchkdb -o /tmp/check.out

The third example reads the results from a previous run of wchkdb
(/tmp/check.out) and updates the TME 10 database as needed:

wchkdb -u -f /tmp/check.out

3.2.4 Synchronizing Databases across TMRs
If you have a TME with multiple TMRs connected to each other, you must
synchronize the Tivoli Object Database of each TME server after you have
changed the configuration of TME, or at regular intervals.

The reason for doing this is that the name registry (Tivoli Object Database) is
used as an intra-TMR name service, and when TMRs are connected, as an
inter-TMR name service. To reduce the number of cross-TMR messages that
must be sent during name lookups, the resource information of one TMR is
maintained in the name registry of all connected TMRs.

During the initial connection process, the administrator is asked whether a
resource update should be performed immediately upon connection. This is the
only time that an update takes place automatically. To keep information on
remote resources current in the local name registry, updates must be scheduled
regularly.

TMR updates are always pull operations. This means that one TMR requests
information from one or more connected TMRs, but it cannot push its current
name registry to another connected TMR.

There are several ways to perform a TMR database update:

Method 1 Use the CLI command wupdate. The following example updates the
local name registry with the all resource type from all other TMRs.

wupdate -r All All

Method 2 Issue the update operation from the pull-down menu of the TME 10
Desktop. For details of this procedure, refer to the ITSO redbook TME
10 Cookbook for AIX Systems Management and Networking
Applications.

Method 3 Use the Tivoli Task Library function to create a task to execute the
CLI command wupdate, once or regularly. For details of this
procedure, refer to the ITSO redbook TME 10 Cookbook for AIX
Systems Management and Networking Applications.

Chapter 3. Installation 23

Method 4 Use the cron utility to execute the CLI command wupdate regularly.

24 Integrating TME 10 on the RS/6000 SP

Chapter 4. Event Management Integration

One of the most important issues of the integration of the RS/6000 SP and Tivoli
is the event management integration. In PSSP 2.2, the Event Manager and the
Problem Manager are the main components to realize specific RS/6000 SP event
detection and handling.

Tivoli has two components that can be used for monitoring managed nodes: TME
10 Distributed Monitoring and TME 10 Enterprise Console. These components
can only monitor the RS/6000 SP nodes as standard RS/6000 system resources.
To monitor SP-specific resources, the following possibilities were investigated to
forward events detected by Event Management and handled by Problem
Management:

• The TME 10 Enterprise Console adapter program.

The project team developed this program, tecad_pssp, at the PSSP lab in
Poughkeepsie. It creates a direct link between the Event Manager and the
TME 10 Enterprise Console using a new custom set of BAROC classes. The
contents of this program are listed in Appendix D, “Source files for the PSSP
T/EC Adapter” on page 153. Instructions to compile and create the
executable module are listed there. Finally, a diskette is attached to this
redbook, with a ready-to-use executable program, called tecad_pssp (the
event adapter).

• The TME 10 Enterprise Console SNMP event adapter.

Using the option in Problem Management to generate an SNMP trap, the trap
is caught by the SNMP adapter and forwarded to the TME 10 Enterprise
Console.

• The TME 10 Enterprise Console Logfile adapter.

When an event is generated, a log file entry can be written to a log file. The
Logfile adapter monitors this log file, and generates a Tivoli event when a
new entry occurs.

• NetView/6000 for AIX as interface between RS/6000 SP and TME 10
Enterprise Console.

Another way of using the SNMP mechanism is to use NetView/6000 for AIX
(or another SNMP manager) as an intermediate station. The SNMP trap is
sent to the NetView console and, using the NetView-Tivoli bridge, the
NetView message is forwarded to a TME 10 Enterprise Console.

• The TME 10 Distributed Monitoring wasync command.

The wasync command generates a string, which is sent to the TME 10
Distributed Monitoring console. The usage of this command is explained in
Figure 35 on page 88.

• The TME 10 Distributed Monitoring SNMP monitoring tool.

This option was not investigated because other SNMP interfaces investigated
in this chapter offer more flexibility.

These options are pictured in Figure 2 on page 26.

 Copyright IBM Corp. 1997 25

Figure 2. Available Integration Methods

4.1 Defining the TME 10 Enterprise Console
The TME 10 Enterprise Console, known as T/EC, is one of Tivoli′s availability
management applications. As a management tool, it assists in maintaining high
availability of the myriad of networks, system applications, and databases found
within the scope of an enterprise, and provides a centralized point of control for
all critical messages stemming from these resources.

The computing resources in the distributed environment generate messages in a
variety of formats. The function that captures these messages is called an event
adapter. Each event adapter installed on or near the monitored computing
resources is familiar with the structure of that raw data and transforms the
information it receives by parsing and restructuring it before sending it to the
T/EC event server in a T/EC-acceptable format, a special structured format
named BAROC (Basic Representation of Object in C). BAROC is a simple event
class structure that allows us to separate the important elements of a message
into a number of pieces of information called slots. Each event is defined as a
member of a class.

A number of different types of T/EC event adapters may exist on any
TCP/IP-connected system, not only on TME managed nodes. Besides generating
the events and sending them to the T/EC event server, the adapters are also
responsible for filtering out extraneous information so as to forward only
significant events to the T/EC event server. This helps reduce the demand on

26 Integrating TME 10 on the RS/6000 SP

the network and the amount of processing done by the T/EC event server when
the computing resources are sending out large numbers of messages. For
details on the procedures to install and use T/EC, refer to the ITSO redbook, TME
10 Cookbook for AIX Systems Management and Networking Applications.

Table 2 shows an overview of the different methods we investigated.

Table 2. Event Integration Methods. This table summarizes the event integration methods explored in this
book.

Method Producer 1 Consumer 2 Transport Advantage (+) Disadvantage (-)

PSSP T/EC Adapter Invoke tecad_pssp

command from PSSP

Problem Management

T/EC Tivo l i f ramework

(secure) or sockets

(insecure)

(+)Easy to use

(+)Flexible parsing in T/EC

()Support available through PRPQ

SNMP Adapter SNMP trap from

PSSP Problem

Management or AIX

error log

T/EC SNMP Adapter SNMP trap -> T/EC

event

(+)Trapids for sever i t ies or

 other user-defined information

(+)Traps can be used for both

 AIX (errorlog) and PSSP events

(-)Event info is all strings

(-)Diff icult to parse/f i l ter

(-)Diff icult as target

Logfi le Adapter T/EC Logfi le Adapter

scans system log f i le

(syslog)

T/EC Tivo l i Framework

(secure) or sockets

(insecure)

(+)Any f i le can be used as source

(+)GUI to conf igure

(-)Log fi le format must be known

NetView/6000 for AIX SNMP trap from

PSSP Problem

Management or AIX

error log

NetView forwards to

T/EC

SNMP trap -> T/EC

event

(+)May be good choice i f using

 NetView

(+)NetView can be used to f i l ter

(-)All data is str ings

TME 10 Distributed

Moni tor ing wasync

command

Invoke wasync

command from PSSP

Problem Management

TME 10 Distributed

Moni tor ing

TME 10 Distributed

Moni tor ing

(+)Cheap and s imple

(+)Can be forwarded to T/EC

(-)Inf lexible

4.2 The PSSP T/EC Adapter
The PSSP T/EC Adapter is a tool that forwards events generated by the PSSP
Event Manager subsystem to TME 10 Enterprise Console. The PSSP T/EC
Adapter receives the PSSP events, extracts all the event information, and
formats it into a T/EC event notification automatically. This tool greatly simplifies
the forwarding of events, since it does not require any other program or script to
parse the event strings. The PSSP T/EC Adapter receives all the event
information from the Event Manager subsystem and formats it into T/EC events
using the PSSP_EVENT classes, which are defined in the pssp_classes.baroc file.
Using the tecad_pssp program allows the system administrator to subscribe for
events using the Event Perspective GUI or the pmandef command, and have this
event forwarded to T/EC, thus enabling event forwarding in an integrated GUI
environment.

4.2.1 How the PSSP T/EC Adapter Forwards Events
The PSSP T/EC Adapter (tecad_pssp) forwards events created in PSSP by parsing
all the environment variables that are provided by the Problem Management
subsystem, and formatting them into T/EC event classes. It can forward an event
to a T/EC server that is in or outside the SP system, and it is recommended that
the adapter be installed on the control workstation.

1 Application that produces event.

2 Application where event is sent and processes event.

Chapter 4. Event Management Integration 27

The recommendation to install the tecad_pssp command only in the control
workstation is made for the following two reasons:

 1. The tecad_pssp command utilizes a configuration file (tecad_pssp.cfg), which
contains information about the T/EC server to which the event is to be
forwarded. By restricting the installation to the control workstation we
ensure the consistency of the communication settings throughout the SP
system.

 2. The tecad_pssp command can utilize a secure transport to forward the event
to the T/EC server (utilizing TME communications). If this mode of
communication is desired, the node where tecad_pssp runs must be
configured as a Tivoli Managed Node. A savings in disk space and a gain in
performance can be achieved by restricting the forwarding of events to the
control workstation, requiring only one node in the SP system to be
configured as a managed node.

The event subscription can be done using the PSSP Event Perspective or the
PSSP Problem Management Subsystem. The event forwarding process is
illustrated in Figure 3.

Figure 3. PSSP T/EC Adapter Control Flow

28 Integrating TME 10 on the RS/6000 SP

4.2.2 Using the PSSP T/EC Adapter
The PSSP T/EC Adapter was built using the standard Tivoli Event Integration
Facility (EIF). The procedure for forwarding PSSP events to the TME 10
Enterprise Console is as follows:

 1. Install the pssp_classes.baroc file in the T/EC server.

 2. Make an event source, group and filter for the PSSP events in the T/EC
server.

 3. Install the tecad_pssp program in the control workstation of the SP system.

 4. Make an event subscription using the PSSP Event Perspective GUI.

The last step is repeated for every event that is to be forwarded to the Tivoli
Enterprise Console.

4.2.3 Event Classes Defined for PSSP Events
The event classes defined in the pssp_classes.baroc file accommodate all the
standard PSSP Event Manager events into 20 classes. The primary objective in
the design of these classes was to group the PSSP Event Manager Events that
share common attributes, so as to produce a minimal set of classes that could
accommodate all events. It is quite possible to extend these classes to
accommodate user-defined events and user-defined resource variables. A user
interested in extending these classes should refer to 4.2.10, “Extending the PSSP
Event Classes” on page 35. The rvclasses.cfg file also contains comments that
show how the Event Management resource variables were mapped into T/EC
classes. The following illustration shows the class hierarchy defined for the
PSSP Events:

Chapter 4. Event Management Integration 29

Figure 4. PSSP T/EC Adapter Class Hierarchy

4.2.4 Installing the PSSP T/EC Adapter Classes in the T/EC Server
The first step for receiving PSSP events in the T/EC console is to install the
classes defined in the tecad_pssp.baroc file into a rule base. This procedure is
similar to the one followed in 4.3, “Using the TME 10 T/EC SNMP Adapter” on
page 45, and is covered in detail in TME 10 Cookbook for AIX Systems
Management and Networking Applications. The generic procedure to configure
the T/EC server is:

 1. Create a rule base in Event Server Console:

wcrtrb -d /your_rulebase_path pssp

Also refer to the wlsrb command to find the directory of existing rule bases.

 2. Copy the default rule base (class definition and rule) into the new rule base:

wcprb Default pssp

 3. Import a new class file (*.baroc.) into the rule base:

wimprbclass pssp_classes.baroc pssp

 4. Compile and load the new rule base:

wcomprules pssp
wloadrb pssp

 5. Shut down and restart the event server:

wstopesvr
wstartesvr

30 Integrating TME 10 on the RS/6000 SP

4.2.5 Configuring the T/EC Server to Receive PSSP Events
In this step, create an event source named “PSSP” and create an event group
that you will use to monitor SP events.

Then add an event filter to your event group. Utilize the superclass
PSSP_EVENT as the filtering class for all PSSP events. You will then receive all
the events generated by the SP system with this event filter.

If you would like to process only a subset of the PSSP events, it is recommended
that you utilize rules that match the resource_variable slot to the EM resource
variables which you are interested in. You cannot filter the SP events utilizing
the PSSP class names, because they are grouped by type (for example, integer,
real, string), and not by event nature (for example, network, file system, process
death, and so on). The grouping of the PSSP events according to event nature is
done in the resource variable name space, in order to be consistent with the
Event Manager event hierarchy. Consult the IBM PSSP for AIX Event
Management Programming Guide and Reference for information on the resource
variable hierarchy. A listing of the PSSP 2.2 resource variables is included in
Appendix A, “Event Management Resource Variables” on page 139.

An alternative way of filtering the events in the T/EC server is by applying rules
to the administrator slot or the subscription_handle slots, and filtering for the
subscription you made in the SP system.

In order to configure the T/EC server to receive PSSP events, you must:

 1. Create a new event source of type “PSSP.”

 2. Create a new event group that you wil l use to monitor SP events.

 3. Add a new event filter to this event group, selecting the PSSP_EVENT class
as the class to filter, and “PSSP” as the event source.

 4. Assign the new group to your event console.

You can test if the classes for PSSP events were correctly loaded, and the
source and event filters were properly defined, by using the wpostemsg command:

wpostemsg -m ″test″ PSSP_EVENT PSSP

This should create an event in your T/EC console.

4.2.6 Compiling the PSSP T/EC Adapter in the RS/6000 SP
The PSSP T/EC Adapter can reside anywhere in the SP system, but it is
recommended that it be installed at the control workstation, since the control
workstation has access to all partitions in the system. The distribution disk
attached to this book contains the source code for the PSSP T/EC Adapter, which
is written in C (tecad_pssp.c), as well as a precompiled executable version of the
adapter.

It is only necessary to compile this code and link it with the appropriate EIF
libraries if you are using a different version of TME 10 Enterprise Console, or if
you have made changes to the original source. The libraries that you use
depend on which communication model you want the adapter to use. For
unsecure communications, for example, communications that are not transmitted
using the T/EC channel, you will need to have the EIF libraries installed.
Compile the source code with the following command:

Chapter 4. Event Management Integration 31

gcc -g tecad_pssp.c -o tecad_pssp
-I/usr/include/local/Tivoli/include
-L/usr/local/Tivoli/lib/aix4-r1
-lteceif -lg++ -lm

To compile the PSSP T/EC Adapter code for secure communications (for
example, using the T/EC channels for transmitting the events), your control
workstation needs to be installed with T/EC at least as a managed node. You
will need to have the ADE libraries installed. Compile the source code with the
following command:

gcc -g tec_adapter.c -o tecad_pssp
-I/usr/local/Tivoli/include/aix4-r1
-L/usr/local/Tivoli/lib/aix4-r1
-ltec -las -las_imp -ltds -lui -ltas -ldes
-ltmfimp -ltmf -lthreads -lg++ -lm

 Note:

The command used to compile the tecad_pssp code was gcc, the GNU
C-Compiler. The gcc command is not available with AIX, but can be
downloaded from the internet. A suitable site to refer to for getting the GNU
C-Compiler is: http://www.fsf.org, the home page of the Free Software
Foundation.

The PSSP T/EC Adapter package contains a script for compiling the tecad_pssp
program, called makeit. You can build a secure or unsecure tecad_pssp by
typing:

makeit secure

or:

makeit unsecure

If you don′ t specify the channel option, unsecure is assumed.

4.2.7 Installing the PSSP T/EC Adapter in the RS/6000 SP
Once you have an executable version of the tecad_pssp command, you should
move the command and the tecad_pssp.cfg file to some directory in the control
workstation. If the control workstation is a managed node that has other
adapters, you should put both files in the /etc/Tivoli/tecad/bin directory. If not,
we recommend putting the tecad_pssp command in /usr/lpp/ssp/bin, and the
tecad_pssp.cfg file in /usr/lpp/ssp/config.

The next step in the installation process is to run the install_agent command.
This puts the mapping of the Event Management resource variables to T/EC
classes in the System Data Repository (SDR). The usage of install_agent is:

install_agent config_filename

where config_filename is a configuration file that contains the mapping. The
configuration file rvclasses.cfg is part of the PSSP T/EC Adapter package and is
available on the diskette attached to this redbook. You must first run the
install_agent command with this file:

install_agent rvclasses.cfg

You can also use the install_agent command to extend the classes defined by
rvclasses.cfg with your own configuration file. See 4.2.10, “Extending the PSSP
Event Classes” on page 35 for details on how to do this.

32 Integrating TME 10 on the RS/6000 SP

4.2.8 Using the tecad_pssp Command
The tecad_pssp command was designed to be executed by the PSSP Problem
Management subsystem. It should not be executed by any other subsystem,
since it depends on environment variables that are exported by the Problem
Management daemon, pmand. Therefore, to forward PSSP events using the
tecad_pssp command, you need to make a Problem Management subscription
using either the PSSP Event Perspective GUI (the procedure is outlined in 4.2.9.1,
“Making Subscriptions Using Event Perspectives” on page 34), or using Problem
Management directly (see 4.2.9.2, “Making subscriptions with the pmandef
command” on page 35). In either case, you should select tecad_pssp as the
command to run for that subscription, and provide the appropriate parameters.

The tecad_pssp syntax is:

tecad_pssp [-l path/filename]
[-Cc]
[-m text]
[-a tiv_admin_name]
[-s severity]
[-p port]

The flags of the command have the following meaning:

-l is the path/filename of the configuration file. The default value is
/usr/lpp/ssp/config/tecad_pssp.cfg. The only required value in this
file is the ServerLocation parameter. It should be one of the
following:

• ServerLocation=hostname.domain, for secure communications

• ServerLocation=@ServerName, for a managed node over a TME
channel

• ServerLocation=@ServerName#RegionName, for secure
transport in connected TMRs

You should consult TME 10 EIF User′s Guide for the correct values of
the other configuration parameters.

-C for connection-oriented protocol

-c for connectionless protocol (default)

-m adds text to the message field of the event

-a adds admin in the T/EC_administrator field of the event

-s sets the severity of the event to severity. The legal values for the
severity are the following strings:

FATAL

CRITICAL

WARNING

MINOR

HARMLESS

INDETERMINATE

If an illegal value is used, the default UNKNOWN is utilized.

-p sets the communication port number to port . Note that you can also
set the port number in the configuration file.

Chapter 4. Event Management Integration 33

Once tecad_pssp is compiled and the install_agent command has run without
errors, the tecad_pssp command is ready to be tested. The following illustration
shows a shell script that can be used for that purpose:

� �
export PMAN_IVECTOR=ProgName=′ marcos_test;UserName=root;NodeNum=0′
export PMAN_LOCATION=0
export PMAN_PRED=X@0==0
export PMAN_PRINCIPAL=root.admin@PPD.POK.IBM.COM
export PMAN_RVCOUNT=3
export PMAN_RVFIELD0=″CurPIDCount=0″
export PMAN_RVFIELD1=″PrevPIDCount=1″
export PMAN_RVFIELD2=″CurPIDList=123,456″
export PMAN_RVNAME=IBM.PSSP.prog.pcount
export PMAN_RVTYPE=sbs
export PMAN_TIME=′ Thu May 29 12:08:17 1997′
tecad_pssp -m ″This is a test″ -a myadmin -s WARNING

� �
Figure 5. The test script test_agent

The test_agent script should make the tecad_pssp command forward the event to
the T/EC server defined in the tecad_pssp.cfg file. If you have an Event Console
defined to receive PSSP events (see also 4.2.5, “Configuring the T/EC Server to
Receive PSSP Events” on page 31) you should receive the test event. If you do
not receive it, you may have incorrectly defined the event filter or event group.
You can check if the event was received at the T/EC console by using the
wtdumprl command.

4.2.9 Making Event Subscriptions in the RS/6000 SP
The High Availability Infrastructure allows you to define events in two different
ways:

 1. By using the Event Management Perspectives (spevent)

 2. By using the pmandef command, part of the Problem Management
subsystem

4.2.9.1 Making Subscriptions Using Event Perspectives
Using Event Management Perspectives makes the administration and
management of the events in the SP system relatively easy.

Detailed instructions for event subscription and management can be found in
IBM PSSP for AIX Administration Guide. Once the Event Perspectives is started,
the way to create an event is to select: Actions →Event Definitions →Create .
This will bring up the event definition window illustrated in Figure 6 on page 39,
where you can select the parameters for the event definition. Once the definition
is created, the response options to the event definition should be defined. The
illustration shown in Figure 8 on page 41 shows an example of the Response
Options screen in Event Perspectives. You should now select Take Actions when
event occurs , and enter the tecad_pssp command in the command window, as
illustrated in this example. Do not forget to give a full path to tecad_pssp and to
supply a full path to your configuration file, if you are not using the default.
Refer to 4.2.11, “An Example: Using the PSSP T/EC Adapter” on page 37 for a
complete example of the subscription process. Refer to 4.2.12, “Debugging the

34 Integrating TME 10 on the RS/6000 SP

Event Generation and Reception” on page 45 for information on debugging
subscription problems.

You should repeat the same thing for the rearm command if you wish. On the
lower part, you should select the control workstation (Node 0) as the node where
to run the command. Again, you could install the tecad_pssp command on all
nodes, but our recommendation is to utilize the control workstation as a central
point for event forwarding, since it is accessible by all partitions.

4.2.9.2 Making subscriptions with the pmandef command
The second way to create event subscriptions is by directly using the PSSP
pmandef command. Consult the pmandef command description in IBM PSSP for
AIX Administration Guide. A general example could be as follows:

pmandef -s example1
-e ″AnyResourceVariable;Any InstanceVector;AnyPredicate″
-c ″$AGENT_PATH/tecad_pssp -l $CONF_PATH/tecad_pssp.cfg″
-r ″AnyRearmPredicate″
-C ″$AGENT_PATH/tecad_pssp -l $CONF_PATH/tecad_pssp.cfg″
-n 0

 Note

It is recommended to run the event response command from the control
workstation. This saves installation efforts and keeps the management of
your environment easier. This results in the flag -n 0, indicating that the
command needs to be run on Node 0, the control workstation.

4.2.10 Extending the PSSP Event Classes
If you want to extend the tecad_pssp command to handle user-defined events, do
the following:

 1. Create the new resource variable and make it known to the Event
Management subsystem (see details in the IBM PSSP for AIX Event
Management Programming Guide and Reference).

 2. Map this new resource variable into some T/EC event class You can use one
of the T/EC classes created in the pssp_classes.baroc file, or create a new
one. If you create a new T/EC class, you will need to load it in the T/EC
server.

 3. Make the new class known to the tecad_pssp command, if you decide to
create one. To do this:

a. Create a new configuration file with a line that maps your new resource
variable to the new class name and the new class number. The class
numbers are defined by the enum statement in the tecad_pssp.c file, (the
numbers 0-17 are already taken).

b. You need to make the new class number known to the tecad_pssp
command. You should include it in enum class_names_t. You can use
the = operator to define your class number. For instance, if you are
going to define the class name PSSP_YOURCLASS, and you want the
class number to be 20, add the following to enum class_names_t:

Chapter 4. Event Management Integration 35

typedef enum
{
PSSP_LONG = 0,
PSSP_REAL,
PSSP_ADAPTER,
PSSP_PROCESS,
PSSP_STRING,
PSSP_NETWORK,
PSSP_FRAME,
PSSP_SWITCH,
PSSP_VSD,
PSSP_DISK,
PSSP_FS,
PSSP_KMEM,
PSSP_VG,
PSSP_CPU,
PSSP_PAGESPACE,
PSSP_ERRLOG,
PSSP_LLSTART,
PSSP_LLSCHED = 17,
PSSP_YOURCLASS = 20

} class_names_t;

Also, add a line in your new configuration file defining the new resource
variable to class name/number mapping. For instance, if your resource
variable is named:

Your.resource.name

 Note:

Refer to IBM PSSP for AIX Event Management Programming Guide
and Reference for the resource variable naming convention.

Then you create a configuration file with the following line:

Your.resource.name PSSP_YOURCLASS 20

 Note:

You may not need to define a new class. Look at the classes already
defined in the pssp_classes.baroc file for one that matches the slots
needed for your resource variable. For example, if your resource
variable only needs a node number and returns an integer value, you
could use the PSSP_LONG class. You should only define new
classes if your resource variable utilizes unique parameters or return
values.

 4. If you do not define a new class for your resource variable mapping, you
only need to change the rvclasses.cfg file. For example, if your resource
variable utilizes the PSSP_LONG class, you create a configuration file with
the following line:

Your.resource.name PSSP_LONG 0

Note that you need to know the number of the class, which is defined in the
enum class_names_t. Since the PSSP_LONG is the first one, it is 0,
PSSP_REAL is 1 and so on.

 5. After you create the new configuration file, you need to run install_agent
again:

36 Integrating TME 10 on the RS/6000 SP

install_agent your_configuration_file_name

To ensure that your class mapping is added to the SDR, you can issue the
following command:

SDRGetObjects tecad_pssp_Class rv_name=Your.resouce.name

And the command should return a mapping like the one previously
described.

 6. You should now be able to create an event subscription for your new
resource variable, select tecad_pssp as the command to run, and receive a
notification on the T/EC console of the proper class type.

4.2.11 An Example: Using the PSSP T/EC Adapter
This section demonstrates how the integration of the event management
capabilities of the PSSP 2.2 Problem Management subsystem and the TME 10
Enterprise Console can be done in an integrated GUI environment using the
PSSP T/EC Adapter.

The first step is to subscribe to the event of interest using the Event Perspective
GUI. In this particular example, we will utilize the process liveness event, which
monitors the presence of particular processes.

Using the Event Management process monitor facility of PSSP 2.2, we can
define events related to the “death” (when the process exits or is killed) and
“birth” of processes (when the process is executed). The Event Manager
resource variable associated with the process monitor is named
IBM.PSSP.Prog.pcount.

In our example, we will be monitoring the birth and death of a process named
“testing.” These conditions can be observed by monitoring the number of
processes currently running with the name “testing,” which were started by a
certain user (in our example, we will monitor processes associated with the root
userid), on a specific location (node). These parameters are specified in the
instance vector for the IBM.PSSP.Prog.pcount variable.

We defined two events associated with the “testing” process, the arm event and
the rearm event, as follows:

 1. The arm event wil l be triggered by the death of the “ test ing” process; that is,
when the total count of processes with the name “testing” under user root
on Node 3 is zero. The return value of the IBM.PSSP.Prog.pcount resource
variable is a structured byte string (see the Event Manager manual for the
definition of structured byte strings), with the following fields:

• Current count: the number of processes currently running

• Previous count: the number of processes running in the last observation
interval

• Current list: the list of PIDs (process IDs) of the processes currently
running

We will define the arm event to trigger when there are no copies of the
“testing” process running. Since the current count is the first field in the
structured byte string, the predicate for this is:

X@0==0

(that is, field 0 equates to 0).

Chapter 4. Event Management Integration 37

 2. The rearm event wil l be triggered when we have exactly one instance of the
“testing” process running. The predicate for this is:

X@0==1

With these definitions, one arm event will be issued every time that there are no
instances of “testing” running, and one rearm event will be issued every time
exactly one copy of “testing” is started. This example is very useful for
monitoring critical processes in your system. By making this kind of subscription
and receiving such events in your TE/C console, you could then define rules and
tasks which could re-start the critical processes.

The steps for making the subscription just described are as follows:

Step 1 Bring up the Event Perspective GUI. Then select the lower panel,
Event Definitions , to enable the proper menus for event creation.
Then select Actions →Event Definitons →Create . You will get a blank
event definition window.

Step 2 Fill the event definition as illustrated in Figure 6 on page 39.

38 Integrating TME 10 on the RS/6000 SP

Figure 6. Event Perspective Event Definitions Window

Step 3 Now click on the Create Condition button, fill in the condition page as
illustrated in Figure 7 on page 40, then click Ok .

Chapter 4. Event Management Integration 39

Figure 7. Event Perspective Create Condit ion Window

Step 4 After you click Ok in the Condition Page, you get back to the Event
Definition page. You should then select the Response Options marker
in the note book, and fill the reponse option as shown in Figure 8 on
page 41.

40 Integrating TME 10 on the RS/6000 SP

Figure 8. Event Perspective Response Options Window

Step 5 Now click on the Create button, and the subscription will be made to
the Event Management System.

You are now ready to test your subscription. Note that in our
example we are monitoring node number 3, and running the
tecad_pspp, as a result of the condition, on Node 0 (the control
workstation). To test the subscription you will have to write a little
program which basically just hangs on a loop, and call it “testing.”

Step 6 Test the event generation by starting the “testing” program with the
same userid which you have subscribed for, in the node which you
subscribed for. (In our case, we subscribed for user root running the
“testing” process on node 3. You can change the subscription to fit
your environment.)

Chapter 4. Event Management Integration 41

To test the subscription, you run the “testing” command for a couple
seconds, and then kill it. This should create an arm and a rearm
event.

Important: You should verify that the event was really generated and
properly subscribed for. One effective way to make this check is to
go to the control workstation and type the command:

#lssrc -ls pman.your_partition_name

where your_partition_name is the partition name for the node for
which you subscribed. In our case, this command shows the
following information:

� �[k21s] [/usr/lpp/ssp/bin]> lssrc -ls pman.k21s

Subsystem Group PID Status
 pman.k21s pman 21720 active

 pmand started at: Wed May 28 19:13:12 1997
 pmand last refreshed at:
 Tracing is off
 ===
 Events for which registrations are as yet unacknowledged:
 ===
 ===
 Events for which actions are currently being taken:
 ===
 ===
 Events currently ready to be acted on by this daemon:
 ===
 ------------------ test1 ----------------
 Currently ACTIVE
 Client root root.admin@PPD.POK.IBM.COM at k21s.ppd.pok.ibm.com
 Resource Variable: IBM.PSSP.Prog.pcount
 Instance: NodeNum=3;ProgName=testing;UserName=root
 Predicate: X@0==0
 Command to run: /usr/lpp/ssp/bin/tecad_pssp -s CRITICAL -a ″my_a
 dmin_ID″ -m ″the testing process died″ > /tmp/tecad.log
 Has run 1 times
 Last status: normal termination, exit status = 0
 Last run at: Wed Jun 4 14:53:28 1997
 Rearm predicate: X@0==1
 Command to run on rearm event: /usr/lpp/ssp/bin/tecad_pssp -s WA
 RNING -a ″my_admin_ID″ -m ″the testing process is back″ > /tmp/tecad.log
 Has run 1 times
 Last status: normal termination, exit status = 0
 Last run at: Wed Jun 4 15:36:07 1997� �

As you can see, the output of this command contains all the
information about our subscription, and also tells how many times
each arm/rearm event was triggered. It is essential that you verify
that the event is being properly triggered at this point. If it is not, you
must check your subscription. After you ensure that the event is
being triggered, you can launch your T/EC console and verify that the
events are being received.

Step 7 If you have not yet done so, define the PSSP event source and an
event group which utilizes the PSSP_EVENT class as a filter. Then
assign this event group to your Event Console.

Step 8 Repeat the event generation procedure in Step 5 . Use the lssrc
command to verify that the tecad_pssp command was run.

Step 9 You should now receive events from the PSSP source. In our case,
the arm and rearm events will appear as shown in Figure 9 on
page 43 and Figure 10 on page 44.

42 Integrating TME 10 on the RS/6000 SP

Figure 9. Arm Event Received from the PSSP Source

Chapter 4. Event Management Integration 43

Figure 10. Rearm Event Received from the PSSP Source

44 Integrating TME 10 on the RS/6000 SP

4.2.12 Debugging the Event Generation and Reception
If you fail to receive events, check the following:

• Check your event subscription and test the event generation by forcing the
event. Then use the lssrc command (as in Step 6 in 4.2.11, “An Example:
Using the PSSP T/EC Adapter” on page 37) to verify that the tecad_pssp
command is being run.

• Use the wtdumprl command in the T/EC side to see if you are getting any
event notifications from the PSSP source. If you are, the problem is not in
the SP system. You should then check your event source, event group, and
event filter definitions, as well as the event group assignments in your
console. If you are not getting anything, the problem may be in the SP
system side.

• If you suspect that the tecad_pssp command is being run, but nothing is being
generated at the T/EC side, check if you have the proper configuration file
installed (tecad_pssp.cfg), and that it points to your T/EC server. Use the
test_agent command to force the execution of the tecad_pssp command (see
Figure 5 on page 34). Also, you may want to check for network connectivity.

4.3 Using the TME 10 T/EC SNMP Adapter
PSSP 2.2 includes the Problem Management subsystem that provides an
infrastructure for acting on problem events within the SP system. The Problem
Management subsystem lets you subscribe to Event Management events, and to
specify an SNMP trap as a response to an event.

The ability to issue an SNMP trap in response to an event allows you to report
problem events occurring in your SP system directly to TME 10 Enterprise
Console, or indirectly to an existing SNMP network manager such as
NetView/6000 for AIX.

There are several ways to forward SNMP events from AIX to the TME 10
Enterprise Console. In Figure 11 on page 46, an overview is displayed of the
possible ways to forward SNMP traps to the TME 10 Enterprise Console.

Chapter 4. Event Management Integration 45

Figure 11. SNMP Connections

In this chapter, the connection to T/EC with TME 10 T/EC SNMP Adapter is
explained. For an explanation of the connection using NetView/6000 for AIX,
refer to 4.5, “Using NetView/6000 for AIX and TME 10 Enterprise Console” on
page 75.

The TME 10 Distributed Monitoring SNMP Monitor connection and the System
Monitor (MLM/SIA) were not investigated during the writing of this redbook.

4.3.1 Adapter Installation
The Tivoli documentation recommends that, by default, event adapters should be
installed on the host that generates the SNMP traps.

In our situation, this is Event Perspectives on the control workstation. Therefore,
the adapter was installed on the control workstation to receive SNMP traps
generated by Event Perspectives. The adapter software is distributed with T/EC
and can be installed following the directions in the TME 10 Enterprise Console
Event Adapter Guide: SNMP. The contents of this guide should be read and
understood before proceeding with this section.

Since the SNMP trap adapter listens on UDP socket 162 for incoming SNMP
traps, you should check that the following entries exist in the /etc/services file:

46 Integrating TME 10 on the RS/6000 SP

� �
snmp 161/tcp # snmp request port
snmp 161/udp # snmp request port
snmp-trap 162/tcp # snmp monitor trap port
snmp-trap 162/udp # snmp monitor trap port� �

4.3.2 SNMP Configuration
To let the SNMP daemon know what the trap destination will be, you have to
check that the IP address or hostname of the SNMP listener is correct in the
/etc/snmpd.conf file. When the adapter is on the monitoring host, the trap
destination should be the local loopback address of the control workstation, as
shown in the following example:

� �
trap public 127.0.0.1 1.2.3 fe # loopback� �

SNMP Adapter on T/EC Server Node

Although it is not mentioned in the Tivoli documentation, it is possible to
install the T/EC adapter on the T/EC server node and to send the SNMP traps
via the network to the adapter on the server node. In that case, you have to
change the trap destination address to the IP address of the T/EC server, as
in the following example:

trap public 9.12.1.38 1.2.3 fe #risc38

If the /etc/snmpd.conf file is changed, it is necessary to refresh the snmpd
daemon to re-read the configuration file. The snmpd daemon is a subsytem
controlled by the System Resource Controller (SRC). A refresh of the daemon
can be done by executing refresh -s snmpd.

4.3.3 Adapter Configuration
The SNMP event adapter has several files which are located in the
/etc/Tivoli/tecad/etc directory. Some of these files need configuration changes
before you can start the adapter.

4.3.3.1 The tecad_snmp.conf file
The tecad_snmp.conf file is the adapter configuration file. For the server
location, the ServerLocation keyword needs to be added to let the adapter know
which system the T/EC server node is.

ServerLocation=@risc38.itso.ibm.com

4.3.3.2 The tecad_snmp.oid file
One of the basic elements of SNMP is the Management Information Base (MIB),
which indicates the type of information SNMP can contain. For the RS/6000 SP,
three special groups of MIB are available:

• ibmSPconfig (1.3.6.1.4.1.2.6.117.1) contains SP system configuration
information.

• ibmSPErrlogVars (1.3.6.1.4.1.2.6.117.2) contains information about the latest
error log write that caused an SNMP trap.

• ibmSPEMVariables (1.3.6.1.4.1.2.6.117.3) contains information about the last
Event Management event that caused an SNMP trap.

Chapter 4. Event Management Integration 47

For more information about SNMP SP MIB, see RS/6000 SP High Availability
Infrastructure or the IBM PSSP for AIX Administration Guide. A listing of the
MIBs provided with PSSP 2.2 is included in Appendix B, “The SP MIBs” on
page 147.

The tecad_snmp.oid file contains a mapping of MIB values to variable names
which can be referenced in the tecad_snmp.cds file. In the example used, the
SNMP traps generated for Event Management events are forwarded. We have
added the object identifiers contained in Event Management traps to this
tecad_snmp.oid file. The tecad_snmp.oid file contains a mapping of MIB values
to variable names. These variables can be referenced in the tecad_snmp.cds
file.

IBM SP
#
″ibmSPEMEventID″ ″1.3.6.1.4.1.2.6.117.3.1.1″
″ibmSPEMEventFlags″ ″1.3.6.1.4.1.2.6.117.3.1.2″
″ibmSPEMEventTime″ ″1.3.6.1.4.1.2.6.117.3.1.3″
″ibmSPEMEventLocation″ ″1.3.6.1.4.1.2.6.117.3.1.4″
″ibmSPEMEventPartitionAddress″ ″1.3.6.1.4.1.2.6.117.3.1.5″
″ibmSPEMEventVarsTableName″ ″1.3.6.1.4.1.2.6.117.3.1.6″
″ibmSPEMEventVarsTableInstanceID″ ″1.3.6.1.4.1.2.6.117.3.1.7″
″ibmSPEMEventVarName″ ″1.3.6.1.4.1.2.6.117.3.1.8″
″ibmSPEMEventVarValueInstanceVector″ ″1.3.6.1.4.1.2.6.117.3.1.9″
″ibmSPEMEventVarValuesTableInstanceID″ ″1.3.6.1.4.1.2.6.117.3.1.10″
″ibmSPEMEventVarValue″ ″1.3.6.1.4.1.2.6.117.3.1.11″
″ibmSPEMEventPredicate″ ″1.3.6.1.4.1.2.6.117.3.1.12″

4.3.3.3 The tecad_snmp.cds file
The T/EC server is using an event class structure to recognize events. These
event classes are described in the tecad_snmp.cds file for the adapter and the
tecad_snmp.baroc file for the T/EC server.

Both files are related to each other. The file tecad_snmp.cds defines how events
are constructed from information contained in the SNMP trap. Normally, only
default SNMP traps are defined in these files. Therefore, SP events generated
by Event Perspectives are not recognized by the adapter and will not be
forwarded or even recognized by the T/EC server. To make this all work, the
specific SP event definitions need to be defined in these files.

For each event class the SNMP adapter supports, one or more class definition
statements (CDS) have to be added to the configuration file to define which
incoming events map to that class and how the slots of the outgoing event
instance are to be filled. Figure 12 on page 49 shows an example of the class
entry for one type of SP event.

A complete example of a Class Definition Statement file used with our SNMP
adapter is listed in Appendix E, “Contents of SNMP Adapter Class Definition
Statements” on page 183. Each trapid listed in the following description list is
matched with a Class Definition in the TME 10 Enterprise Console.

In our example we used the convention of setting the trapid to indicate the
severity level of the event. The following mapping was used:

trapid=1 SP_SNMP_FATAL_TRAP

trapid=2 SP_SNMP_CRITICAL_TRAP

48 Integrating TME 10 on the RS/6000 SP

trapid=3 SP_SNMP_MINOR_TRAP

trapid=4 SP_SNMP_WARNING_TRAP

trapid=5 SP_SNMP_HARMLESS_TRAP

trapid=?? SP_SNMP_UNKNOWN_TRAP

All ibmSPEM* values in the MIB are set and passed to T/EC. The corresponding
BAROC file contains the same classes and variables.

You can add your own specific definitions to this example by copying one of the
existing classes and placing it before the SP_SNMP_UNKNOWN_TRAP class.

Change the $SPECIFIC selection test to contain the value of your unique trapid
as set in the PSSP event. Make the required changes to the BAROC file that is
loaded into T/EC. Refer to Figure 12 as an example.

� �
CLASS SP_SNMP_FATAL_TRAP
SELECT
1: ATTR(=,$ENTERPRISE),

VALUE(PREFIX, ″1.3.6.1.4.1.2.6.117″) ;
2: $SPECIFIC = 1;
3: ATTR(=, ″ibmSPEMEventID″) ;
4: ATTR(=, ″ibmSPEMEventFlags″) ;
5: ATTR(=, ″ibmSPEMEventTime″) ;
6: ATTR(=, ″ibmSPEMEventLocation″) ;
7: ATTR(=, ″ibmSPEMEventPartitionAddress″) ;
8: ATTR(=, ″ibmSPEMEventVarsTableName″) ;
9: ATTR(=, ″ibmSPEMEventVarsTableInstanceID″) ;
10: ATTR(=, ″ibmSPEMEventVarName″) ;
11: ATTR(=, ″ibmSPEMEventVarValueInstanceVector″) ;
12: ATTR(=, ″ibmSPEMEventVarValuesTableInstanceID″) ;
13: ATTR(=, ″ibmSPEMEventVarValue″) ;
14: ATTR(=, ″ibmSPEMEventPredicate″) ;
FETCH
1: IPNAME($SOURCE_ADDR) ;

MAP
hostname = $F1 ;
enterprise = $ENTERPRISE ;
pssp_EMEventID = $V3 ;
pssp_EMEventFlags = $V4 ;
pssp_EMEventTime = $V5 ;
pssp_EMEventLocation = $V6 ;
pssp_EMEventPartitionAddress = $V7 ;
pssp_EMEventVarsTableName = $V8 ;
pssp_EMEventVarsTableInstanceID = $V9 ;
pssp_EMEventVarName = $V10 ;
pssp_EMEventVarValueInstanceVector = $V11 ;
pssp_EMEventVarValuesTableInstanceID = $V12 ;
pssp_EMEventVarValue = $V13 ;
pssp_EMEventPredicate = $V14 ;

END� �
Figure 12. The tecad_snmp.cds file. Class Definit ion Example for FATAL Traps.

The SELECT code segment of the class definition must contain one or more test
statements that an incoming event must satisfy to match this specific class.

Chapter 4. Event Management Integration 49

In this example, the $ENTERPRISE needs to map with the specific SP MIB, and
the $SPECIFIC (that is, the trapid) needs to have the value 1. The event is then
recognized as FATAL based on the trapid convention used when creating the
SNMP event.

$SPECIFIC is the specific trapid which can be configured on the SP in Event
Perspectives. This trapid is now used to forward the severity of the event that
was sent by the SNMP trap. In this example six class definition entries were
defined, to map to the six severity levels supported by T/EC.

1 FATAL

2 CRITICAL

3 MINOR

4 WARNING

5 HARMLESS

other UNKNOWN (For errors that did not match with this field)

The MAP code segment contains map statements to place the SNMP variable
values in to corresponding BAROC variables defined in the tec_snmp.baroc file.
These variables will be set to the values which are described in the SELECT
field.

A complete listing of the SP-specific entries is shown in Appendix E, “Contents
of SNMP Adapter Class Definition Statements” on page 183.

4.3.3.4 The tecad_snmp.baroc file
For every event definition added or changed in the tecad_snmp.cds file, the
corresponding event class definition in the tecad_snmp.baroc file also needs to
be added or changed to recognize the forwarded SNMP trap information of the
adapter. Event definition content and syntax are described in the TME 10 EIF
User′s Guide.

Figure 13 on page 52 shows the event definitions added to the
tecad_snmp.baroc file which was installed in /etc/Tivoli/tecad/etc on the Tivoli
T/EC server.

The following classes have been defined to recognize SNMP traps that have
been generated by the PSSP Event Manager and forwarded by your SNMP
adapter. All ibmSPEM* data values set in the MIB have been translated to
variables. These values appear in the message displayed on the T/EC console.

SP_SNMP_TRAP a base class containing all of the BAROC
variable definitions for the MIB values

SP_SNMP_FATAL_TRAP flags trap as FATAL

SP_SNMP_CRITICAL_TRAP flags trap as CRITICAL

SP_SNMP_MINOR_TRAP flags trap as MINOR

SP_SNMP_WARNING_TRAP flags trap as WARNING

SP_SNMP_HARMLESS_TRAP flags trap as HARMLESS

SP_SNMP_UNKNOWN_TRAP flags trap as UNKNOWN

These classes have corresponding definitions in the SNMP adapter
tecad_snmp.cds file previously described in 4.3.3.3, “The tecad_snmp.cds file” on
page 48. The SP_SNMP_TRAP class is the base class for SNMP events. This

50 Integrating TME 10 on the RS/6000 SP

means that the characteristics of this class are inherited by the underlying
classes.

Chapter 4. Event Management Integration 51

� �
TEC_CLASS :

SP_SNMP_TRAP ISA Specific_SNMP_Trap
DEFINES {

origin: dup_detect = yes;
pssp_EMEventID: INT32;
pssp_EMEventFlags: INT32;
pssp_EMEventTime: INT32;
pssp_EMEventLocation: INT32;
pssp_EMEventPartitionAddress: STRING;
pssp_EMEventVarsTableName: STRING;
pssp_EMEventVarsTableInstanceID: STRING;
pssp_EMEventVarName: STRING;
pssp_EMEventVarValueInstanceVector: STRING;
pssp_EMEventVarValuesTableInstanceID: STRING;
pssp_EMEventVarValue: STRING;
pssp_EMEventPredicate: STRING;
};

END
TEC_CLASS :

SP_SNMP_FATAL_TRAP ISA SP_SNMP_TRAP
DEFINES {

severity: default = FATAL;
};

END
TEC_CLASS :

SP_SNMP_CRITICAL_TRAP ISA SP_SNMP_TRAP
DEFINES {

severity: default = CRITICAL;
};

END
TEC_CLASS :

SP_SNMP_MINOR_TRAP ISA SP_SNMP_TRAP
DEFINES {

severity: default = MINOR;
};

END
TEC_CLASS :

SP_SNMP_WARNING_TRAP ISA SP_SNMP_TRAP
DEFINES {

severity: default = WARNING;
};

END
TEC_CLASS :

SP_SNMP_HARMLESS_TRAP ISA SP_SNMP_TRAP
DEFINES {

severity: default = HARMLESS;
};

END
TEC_CLASS :

SP_SNMP_UNKNOWN_TRAP ISA SP_SNMP_TRAP
DEFINES {

severity: default = UNKNOWN;
};

END� �
Figure 13. The tecad_snmp.baroc file, SP-related entries

52 Integrating TME 10 on the RS/6000 SP

The T/EC server needs to be prepared to receive the SNMP traps. You have to
create a new source on the T/EC server with the name of SNMP. This process is
well described in TME 10 Cookbook for AIX Systems Management and
Networking Applications and TME 10 Enterprise Console User ′s Guide.

In summary, the steps involved are as follows:

 1. Create a new rule base that wil l be your working rule base.

 2. Copy the default rule base into your working rule base.

 3. Copy the special T/EC class definition file (the BAROC file) from the
distribution disk (for example on the control workstation) to the T/EC server.
The class definition file is called tecad_snmp.baroc and it is installed in the
directory /etc/Tivoli/tecad/etc.

 4. Update the BAROC file with SP_SNMP adapter customizations.

 5. Compile the rule base.

 6. Load the rule base.

 7. Stop and restart the event server.

After any change to the BAROC file, it has to be re-loaded into the rule base.
Compile the rule base and load it into the server. Then stop and restart the
server again.

In order to receive events in a T/EC console, an event group needs to be
defined. Also, to receive events in that event group, a filter has to be specified
as to what events should be directed to the event group.

There is a command available to simulate an event to test if the BAROC file is
loaded correctly. To test the SP-specific entries the following example can be
used:

wpostemsg -m ″test from wpostemsg″ SP_SNMP_FATAL_TRAP SNMP

4.3.4 Starting and Testing the Event Adapter
By default, the event adapter is always started when the control workstation is
booting up. When you start the adapter for the first time, it is called a cold start.
This can be done manually with the following command:

� �
tecad_snmp -c /etc/Tivoli/tecad/etc/tecad_snmp.conf

� �

Restarting a running adapter due to changes in the tecad_snmp.cds file is called
a warm start. This can be done by using the kill command, as follows:

� �
kill -HUP <process_id>

or

kill -1 <process_id>
� �

During adapter testing, it can be very useful to have extra information about the
functioning of the adapter. You can adjust the tracing options in the
/etc/Tivoli/tecad/etc/tecad_snmp.err file. By default all trace information is sent

Chapter 4. Event Management Integration 53

to /dev/null. Change /dev/null to a filename and you can follow the functioning
of the adapter on the control workstation. For more information about the
startup of the adapter, see TME 10 Enterprise Console Event Adapter Guide:
SNMP.

The wtdumprl command can be used to investigate all incoming T/EC events. It
will generate a report of events received.

The adapter and T/EC server are now ready to receive SNMP traps generated by
PSSP Event Perspectives. Figure 14 on page 55 shows the Event Perspectives
Definition window. For the event action, the SNMP trapid was defined with a
value of 4. This will result in a warning event on the T/EC console window when
this SNMP trap is generated.

54 Integrating TME 10 on the RS/6000 SP

Figure 14. Perspective Event Definition: Example of a WARNING SNMP Trap for T/EC

Figure 15 on page 56 shows the T/EC event Console for SNMP trap messages.
Here you can see the WARNING message indicating that the /tmp filesystem on
the control workstation is more than 90% used.

Chapter 4. Event Management Integration 55

Figure 15. T/EC SNMP Event Console: SNMP trap WARNING message

Figure 16 on page 57 shows the T/EC Event Group Message Viewer with a
message containing all available event information. You can see that all PSSP
event variables are forwarded to T/EC.

56 Integrating TME 10 on the RS/6000 SP

Figure 16. T/EC Message Viewer Window. T/EC message information describing the PSSP event that was
forwarded by the SNMP trap. (Note that this is an incomplete view. More data values are scrolled off the bottom.)

With this information, it is possible to take corrective actions on the RS/6000 SP
system. These corrective actions can be either automatically generated by T/EC
or by manual intervention.

Chapter 4. Event Management Integration 57

4.3.5 SNMP Adapter Value
The real advantage of using the SNMP adapter for forwarding SP events to the
TME 10 Enterprise Console is that the administrator is able to use different
trapid′s to assign severity levels, or any other distinguishing value, to an event.
The severity levels or other values can be used to filter the way the events will
appear in the TME 10 Enterprise Console, and what actions should be performed,
when an event is generated.

In this chapter, the granularity is limited to six levels, where each level
represents a severity level. Of course, a finer-grained level hierarchy could be
implemented to reflect certain system aspects in the SP in the trapid. For
example, the following method could be used:

trapid 10001 to 10005 can be used for switch-related traps.

trapid 11001 to 11005 can be used for SP hardware-related traps.

trapid 12001 to 12005 can be used for control workstation-related traps.

Moreover, this list could be extended in many directions. Of course when a finer
granularity is implemented, the Class Definitions Statement and the BAROC file
must be updated accordingly.

4.4 Using the TME 10 T/EC Logfile Adapter
One kind of general computing resource in the distributed environment is the log
file, which documents the running of programs and processes. Each entry in the
log file represents a confirmation of an activity, whether it was successful or not.

Log files are sometimes the only way to diagnose errors. However, it is not
easy to get the necessary information from them. First you have to determine
the location and filename of the log file. Also, the quantity of the information that
systems and applications place in log files varies enormously. You may find
yourself looking at a sequence of plain text messages, written one after another
with no consideration for severity or meaning.

Some operating systems provide a general purpose logging mechanism that
system components and applications can use. An example is the AIX syslogd
daemon. With the T/EC logfile event adapter it is possible to generate T/EC
events based on messages from syslogd, as well as from any log files on the
system. The T/EC logfile event adapter (the default) provides a set of BAROC
classes, imported into the rule base of the T/EC event server, to represent these
messages. For details on the procedures to install and use the T/EC logfile
event adapter, refer to the ITSO redbook, TME 10 Cookbook for AIX Systems
Management and Networking Applications.

The sequence of actions is as follows:

 1. The T/EC logfile event adapter analyzes the messages in the log file using
pattern matching predefined in the Class Definition Statements configuration
file, tecad_logfile.cds.

 2. If the message matches a specific pattern/class entry, the event adapter
transforms the message into an event and sends it to the T/EC event server.
The default filters in the tecad_logfile.conf file are:

• Logfile_Base

• Logfile_Sendmail

58 Integrating TME 10 on the RS/6000 SP

• Amd_Unmounted

• Amd_Mounted

 3. The T/EC event server then uses the BAROC file logfile.baroc with the T/EC
logfile event adapter to process the event.

Most of the classes in the configuration files tecad_logfile.cds and
tecad_logfile.baroc are predefined for general purpose solutions of system
management. It may be necessary to create a customized solution for using the
T/EC logfile event adapter to analyze the messages from specific applications,
and then construct them into an event that can be processed by the T/EC event
adapter.

The following sections describe an example of how to incorporate T/EC and the
T/EC logfile event adapter with the SP PSSP Problem Management subsystem to
perform system monitoring tasks. The basic concept of this example is that the
PSSP Problem Management subsystem client code, which is run where a
defined event occurs, uses the system syslog facility to pass a log file entry
containing an SP-specific message to the T/EC logfile event adapter. The logfile
adapter uses the customized logfile tecad_logfile.cds to match the message to a
specific class and send it as an event to the T/EC Event Server, which uses a
customized BAROC file to process the event and display it on the event console.

4.4.1 How to Forward Events from a Log File
The following steps document how an event defined by a client of the Problem
Management subsystem on the control workstation can be translated to the T/EC
console, using the logfile adapter. In this example, the SP-specific message in
the log file entry contains either the word busy or idle. Based on the difference
in the message, the logfile adapter is configured accordingly, such that the Class
Definition Statements file (xyz.cdf file) filters the description field of the
SP-specific log file entry.

The following steps were excecuted on the control workstation. Steps one to six
represent the steps to define the parsing method and the format of the log file
entry.

Step 1 Alter the configuration file of the system syslog daemon to save
SP-specific messages generated by the PSSP Problem Management
subsystem in a log file:

cat >> /etc/syslog.conf <<EOF
daemon.notice /tmp/log_pssp.log
EOF

Step 2 Create the log file that will contain the SP-specific messages:

/usr/bin/touch /tmp/log_pssp.log

Step 3 Notify the system syslog daemon that the configuration file has been
changed:

/usr/bin/refresh -s syslogd

Step 4 Use the PSSP Event Perspectives GUI or the pmandef command to
define an event to monitor the CPU utilization (for this example) on
the control workstation. In this example, an event will be generated
when the CPU utilization on the control workstation falls below a
predefined condition. The event definitions are shown in Figure 17 on

Chapter 4. Event Management Integration 59

page 60. (For details on the procedure to define events, refer to IBM
PSSP for AIX Administration Guide.

When the ratio of CPU idle time is less than twenty-five percent,
Problem Management writes a PSSP log entry to the syslog file to
indicate the CPU busy situation.

When the ratio of CPU idle time is greater than fifty percent, Problem
Management writes a SP-specific message to the syslog file to
indicate the CPU idle situation.

Figure 17. Event Definition. This event definit ion is created with the Event Management Perspectives.

The equivalent pmandef command would look like the following:

� �
pmandef -s LOG_PSSP_CPU

-e ″IBM.PSSP.aixos.cpu.%idle:CPU=cpu0;NodeNum=0;X<25″
-l ″The CPU is busy on the control workstation″
-r ″X>50″
-L ″The CPU is idle on the control workstation″

� �

60 Integrating TME 10 on the RS/6000 SP

Step 5 Analyze the string structure of the following two log file entries
containing the SP-specific messages written by Problem Management
client code which monitors CPU utilization in the log file
/tmp/log_pssp.log. The purpose of this step is to fetch SP-specific
elements from each log file entry and map them into slots in a
BAROC event format. The log file entry for a high-usage CPU in this
example looks like the following:

� �Mar 20 14:31:23 sp21en0 pmand[39444]: SP Problem Mgmt:
Monitored Situation Exists:
Name=LOGFILE_PSSP_CPU
Node Number=0
Resource Variable=IBM.PSSP.aixos.cpu.%idle
Instance Vector=CPU=cpu0;NodeNum=0
Predicate=X<25
Description=The CPU is busy on control workstation!� �

The log file entry for a low-usage CPU in this example looks like the
following:

� �Mar 20 14:32:08 sp21en0 pmand[39444]: SP Problem Mgmt:
Monitored Situation Cleared: Name=LOGFILE_PSSP_CPU
Node Number=0
Resource Variable=IBM.PSSP.aixos.cpu.%idle
Instance Vector=CPU=cpu0;NodeNum=0
Predicate=X>50
Description=The CPU is idle on control workstation!� �

Step 6 Remove the entry added in Step 1 from the configuration file of
system syslog daemon /etc/syslog.conf:

vi /etc/syslog.conf

In steps seven to twenty-two, the operating environment is defined and set up.
This includes configuring the event group in T/EC.

Step 7 Notify the system syslog daemon that the configuration file has been
changed:

/usr/bin/refresh -s syslogd

Step 8 On the T/EC Event Server, design and code the BAROC file, named
log_pssp.baroc, according to the analysis results from Step 5, as
shown in the following example:

Chapter 4. Event Management Integration 61

� �
cat > log_pssp.baroc <<EOF
Component : log_pssp.baroc
#

TEC_CLASS :
Log_PSSP ISA Logfile_Base
DEFINES {

pssp_daemon: STRING, default=″pmand″ ;
};
END

TEC_CLASS :
Log_PSSP_CPU ISA Log_PSSP
DEFINES {

pssp_EM_event_name: STRING, default=″N/A″ ;
pssp_node_number: STRING, default=″N/A″ ;
pssp_EM_resource_variable: STRING, default=″N/A″ ;
pssp_EM_IV_cpu: STRING, default=″N/A″ ;
pssp_EM_IV_node: STRING, default=″N/A″ ;
pssp_EM_predicate: STRING, default=″N/A″ ;
pssp_EM_discription: STRING, default=″N/A″ ;

};
END

TEC_CLASS :
Log_PSSP_CPU_High ISA Log_PSSP_CPU
DEFINES {
severity: default = CRITICAL;
};
END

TEC_CLASS :
Log_PSSP_CPU_Low ISA Log_PSSP_CPU
DEFINES {
severity: default = HARMLESS;
};
END
EOF

� �
Step 9 Define a new T/EC event source type, a log file labeled syslog, for the

log file events.

 Note:

It is recommended that the TME 10 Enterprise Console desktop be
used to perform all steps relative to T/EC.

Step 10 Create a new T/EC event group that selects log file events to be
displayed.

Step 11 Assign the T/EC event group to the event console of the appropriate
administrator.

Step 12 Create a new T/EC rule base. Copy all rules and classes of the
default rule base into the new rule base.

Step 13 Import log_pssp.baroc into this rule base. Its position in the class list
must be behind tecad_logfile.baroc.

Step 14 Compile and reload the rule base.

Step 15 Stop and start the T/EC event server.

Step 16 Copy tecad_logfile.fmt into the /tmp directory:

cd /tmp
cp /etc/Tivoli/tecad/etc/tecad_logfile.fmt tecad_logfile.fmt

Step 17 Copy /tmp/log_pssp.log from the control workstation into the local
/tmp directory:

62 Integrating TME 10 on the RS/6000 SP

cd /tmp
rcp sp21en0:/tmp/log_pssp.log /tmp/log_pssp.log

Step 18 Use the T/EC log file configuration facility to translate and add the two
SP-specific messages to /tmp/tecad_logfile.fmt, as follows:

 Note:

For details on the procedures to install and use the T/EC logfile
configuration facility, refer to the TME 10 Enterprise Console User′s
Guide.

• Click on the event server icon with the right button to start the
logfile configuration facility, as shown in Figure 18.

Figure 18. Using the Logfi le Configuration Facility. Starting the LCF.

Chapter 4. Event Management Integration 63

• Select File→Open Format and select /tmp/tecad_logfile.fmt .

• Select File→Open Classes and select Rule Base as your rule
base.

• Select File→Open Logfile and select /tmp/log_pssp.log .

Now the dialog of the logfile configuration facility will look like
Figure 19.

Figure 19. The Logfi le Configuration Facility Dialog

• Click on the first SP-specific message in the dialog and look at its
current mapping.

• Click Clear to start a new mapping. When finished, click Commit .

• Click Select Class... , then choose the Log_PSSP_CPU_High class,
as shown in Figure 20 on page 65.

64 Integrating TME 10 on the RS/6000 SP

Figure 20. Selecting the Class with the Logfi le Configuration Facility

• Click Assign Slots... to map the string structure of the message
into BAROC of the Log_PSSP_CPU_High class, as shown in
Figure 21 on page 66.

Chapter 4. Event Management Integration 65

Figure 21. Mapping the Structure into the BAROC File

• Click Set & Close to save the results. Repeat for the second
message, but map it to the Log_PSSP_CPU_Low class.

The following lines are added to /tmp/tecad_logfile.fmt by the T/EC
logfile configuration facility after you have finished this step.

66 Integrating TME 10 on the RS/6000 SP

� �FORMAT Log_PSSP_CPU_High FOLLOWS Logfile_Base
%t %s pmand[%s]: SP Problem Mgmt: Monitored Situation Exists:
Name=%s Node Number=%s Resource Variable=%s Instance Vector=CPU=%s;
NodeNum=%s Predicate=%s Description=%s+ busy %s+
pid $3
pssp_EM_event_name $4
pssp_node_number $5
pssp_EM_resource_variable $6
pssp_EM_IV_cpu $7
pssp_EM_IV_node $8
pssp_EM_predicate $9
END

FORMAT Log_PSSP_CPU_Low FOLLOWS Logfile_Base
%t %s pmand[%s]: SP Problem Mgmt: Monitored Situation Exists:
Name=%s Node Number=%s Resource Variable=%s Instance Vector=CPU=%s;
NodeNum=%s Predicate=%s Description=%s+ idle %s+
pid $3
pssp_EM_event_name $4
pssp_node_number $5
pssp_EM_resource_variable $6
pssp_EM_IV_cpu $7
pssp_EM_IV_node $8
pssp_EM_predicate $9
END� �

Step 19 On the control workstation, copy /tmp/tecad_logfile.fmt from the T/EC
server into the local /etc/Tivoli/tecad/etc directory:

cd /etc/Tivoli/tecad/etc
cp tecad_logfile.fmt tecad_logfile.fmt.orig
rcp risc38:/tmp/tecad_logfile.fmt tecad_logfile.fmt

Step 20 Generate a new Class Definition Statement configuration file for the
T/EC logfile event adapter:

cp tecad_logfile.cds tecad_logfile.cds.orig
../bin/logfile_gencds tecad_logfile.fmt > tecad_logfile.cds

Step 21 Notify the T/EC logfile event adapter that the configuration file has
been changed:

../bin/init.tecad_logfile stop

../bin/init.tecad_logfile start

Step 22 On the T/EC server, start up the event console of appropriate
administrator.

Later you will see the two major log file events with the two
SP-specific messages displayed in the event console, as shown in
Figure 22 on page 68.

Chapter 4. Event Management Integration 67

Figure 22. CPU Events Captured in T/EC

The information available in the T/EC console shows the availability of
the Problem Management variables, as parsed to the generated
event. Figure 23 on page 69 shows the detailed information of the
event in the T/EC console.

68 Integrating TME 10 on the RS/6000 SP

Figure 23. Problem Management Information. Available information in the detailed view.

4.4.2 How to Assign Severities Using a Log File
There is another, similar way to use the T/EC logfile event adapter, which is to
repeat all the steps of 4.4.1, “How to Forward Events from a Log File” on
page 59, except for the use of the Event Management class definitions as filters
in the logfile adapter.

In this example, the classes of the Event Management infrastructure are used to
assign a different severity level when an event from that class is generated.
This means that for the classes listed and defined in the SDR

Chapter 4. Event Management Integration 69

(EM_Resource_Class), different severity levels are assigned. The following
classes, available in a standard PSSP 2.2 installation, are assigned a matching
severity:

Class Severity

SP_HW CRITICAL

aixos MINOR

pm CRITICAL

CSS CRITICAL

HARMLD CRITICAL

LL CRITICAL

Membership CRITICAL

PRCRS CRITICAL

Prog CRITICAL

Response FATAL

VSD MINOR

 Important

Note, the assignments of severity levels in this example are arbitrary and
may be completely different in other implementations. They are solely meant
to show how to transfer information from the Problem Management
subsystem to TME 10.

Similarly, the resource variable classes can be mapped to T/EC classes:

Class TEC_CLASS

SP_HW EM_SP_HW

aixos EM_aixos

pm EM_pm

CSS EM_CSS

HARMLD EM_HARMLD

LL EM_LL

Membership EM_Membership

PRCRS EM_PRCRS

Prog EM_Prog

Response EM_Response

VSD EM_VSD

Since the different classes of the Event Manager are now used to generate a
different severity level in T/EC, a customized BAROC file should be created to
reflect these options in the T/EC event server. The following is an example of a
BAROC file for Event Management log entries:

70 Integrating TME 10 on the RS/6000 SP

#
Component : log_pssp_ex2.baroc
#

TEC_CLASS :
Log_EM ISA Logfile_Base
DEFINES {

severity: default = WARNING;
pssp_daemon: STRING, default=″pmand″ ;
PMAN_HANDLE: STRING;
PMAN_IVECTOR: STRING;
PMAN_LOCATION: STRING;
PMAN_PRED: STRING;
PMAN_PRINCIPAL: STRING;
PMAN_RVCOUNT: INTEGER;
PMAN_RVNAME: STRING;
PMAN_RVTYPE: STRING;
PMAN_TIME: STRING;
PMAN_RVFIELD0: STRING;
PMAN_RVFIELD1: STRING;
PMAN_RVFIELD2: STRING;
PMAN_RVFIELD3: STRING;
PMAN_RVFIELD4: STRING;
PMAN_RVFIELD5: STRING;
PMAN_RVFIELD6: STRING;
PMAN_RVFIELD7: STRING;
PMAN_RVFIELD8: STRING;
PMAN_RVFIELD9: STRING;

};
END

TEC_CLASS :
EM_SP_HW ISA Log_EM
DEFINES {

severity: default = CRITICAL;
};

END

TEC_CLASS :
EM_aixos ISA Log_EM
DEFINES {

severity: default = MINOR;
};

END

TEC_CLASS :
EM_pm ISA Log_EM
DEFINES {

severity: default = CRITICAL;
};

END

TEC_CLASS :
EM_CSS ISA Log_EM
DEFINES {

severity: default = CRITICAL;
};

END

Chapter 4. Event Management Integration 71

TEC_CLASS :
EM_HARMLD ISA Log_EM
DEFINES {

severity: default = CRITICAL;
};

END

TEC_CLASS :
EM_LL ISA Log_EM
DEFINES {

severity: default = CRITICAL;
};

END

TEC_CLASS :
EM_Membership ISA Log_EM
DEFINES {

severity: default = CRITICAL;
};

END

TEC_CLASS :
EM_PRCRS ISA Log_EM
DEFINES {

severity: default = CRITICAL;
};

END

TEC_CLASS :
EM_Prog ISA Log_EM
DEFINES {

severity: default = CRITICAL;
};

END

TEC_CLASS :
EM_Response ISA Log_EM
DEFINES {

severity: default = FATAL;
};

END

TEC_CLASS :
EM_VSD ISA Log_EM
DEFINES {

severity: default = MINOR;
};

END

To expand this example, the variable number of Problem Management variables,
when an SBS-type resource variable is parsed, is taken into consideration.

72 Integrating TME 10 on the RS/6000 SP

 Note:

An SBS-type resource variable is part of the resource variable types defined
in the Event Management infrastructure.

SBS stands for Structured Byte String and represents a one-dimensional
array containing variables. These variables can have one or more fields.
The number of fields is dependent on the resource monitor feeding the
specific SBS.

For example, the resource variable IBM.PSSP.Prog.xpcount is a SBS-type
resource variable, where a number of fields are provided. The first field
contains the current program count, and the second field contains the
previous program count. The variable type in each field can be of any type.

An SBS variable can have many entries. The T/EC console is not aware of this,
so to prepare the T/EC, the format file for the logfile adapter should be
configured such that all possibilities of messages are reflected.

In this example, we limited the number of SBS fields to one big field, containing
all the PMAN_RVFIELD variables. Also note that each class in the BAROC
definition should have a class definition statement. As an example, the following
entry represents the class deinition statement for EM_Prog. Similar definitions
should be made for all classes defined in the log_pssp_ex2.baroc file.

� �
FORMAT EM_Prog FOLLOWS Log_EM
%t %s %s: PMAN_HANDLE=%s PMAN_IVECTOR=%s PMAN_LOCATION=%s PMAN_PRED=%s
PMAN_PRINCIPAL=%s PMAN_RVCOUNT=%s PMAN_RVNAME=IBM.PSSP.Prog.%s
PMAN_RVTYPE=%s PMAN_TIME=%s+ PMAN_RVFIELD0=%s+
PMAN_HANDLE $4
PMAN_IVECTOR $5
PMAN_LOCATION $6
PMAN_PRED $7
PMAN_PRINCIPAL $8
PMAN_RVCOUNT $9
PMAN_RVNAME $10
PMAN_RVTYPE $11
PMAN_TIME $12
PMAN_RVFIELD0 $13
END� �

A complete class definition statement file as used in this example can be found
in Appendix F, “Logfile CDS” on page 189.

In order to get all PMAN_RVFIELD variables at the end of the log file message
string, the Problem Management variables must be sorted before they are sent
to the syslog daemon. At the writing of this document, a practical rather than
elegant solution was developed to make that possible. The command to sort the
Problem Management environment variables looks like this:

/usr/bin/env | /usr/bin/grep PMAN | sed ′ s/_RVFIELD/zzzz/′
| sort | sed ′ s/zzzz/_RVFIELD′

To reflect this, the filter should be added to the command in the event response
of the event definition. The event definition executes the logger command to
send a log entry to the syslog daemon with all the Problem Management
environment variables attached, as shown in the following example:

Chapter 4. Event Management Integration 73

� �
pmandef -s example2

-e ″AnyReourceVariable;AnyInstanceVector;AnyPredicate″
-c ″ / usr/bin/env | /usr/bin/grep PMAN |

sed ′ s/_RVFIELD/zzzz/′ | sort | sed ′ s/zzzz/_RVFIELD′ |
/usr/bin/xargs /usr/bin/logger −pdaemon.notice″

-r ″AnyReArmPredicate″
-C ″ / usr/bin/env | /usr/bin/grep PMAN |

sed ′ s/_RVFIELD/zzzz/′ | sort | sed ′ s/zzzz/_RVFIELD′ |
/usr/bin/xargs /usr/bin/logger −pdaemon.notice″

� �

After successful configuration of the log file source and the event group, the
event console is able to receive messages from the log file source. An example
of such a window is displayed in Figure 24.

Figure 24. T/EC LOGFILE Source. Display of Events from Problem Management.

The advantage of the second example is the ability to get more of the Problem
Management environment variables than the first one does. But through the
customization capability of the T/EC logfile, the event adapter operates on
non-pipe log files written by the syslog daemon. The first example is easily
modified to perform SP system management tasks based on the other SP system
log files, for example /var/adm/SPlogs/SPdaemon.log.

74 Integrating TME 10 on the RS/6000 SP

4.4.3 Summary of Using the Logfile Adapter
A large number of events can be captured with the logfile adapter.

The RS/6000 SP uses a variety of log files, which can be consolidated to the TME
10 Enterprise Console using the logfile adapter. As described in 4.4.1, “How to
Forward Events from a Log File” on page 59 and 4.4.2, “How to Assign
Severities Using a Log File” on page 69, there are a number of ways to interpret
the contents of a log file entry. In both examples, the TME 10 Enterprise Console
for log file events reads the contents of fields and, depending on the field
characteristics, a certain event with a certain severity will be generated.

Of course the best solution for assigning severity levels to typical events is to
make sure that the description field contains a string determining the severity of
the event. So, the most flexible implementation of using the logfile adapter is to
generate events from the Problem Management subsystem, where the log file
entry contains a message indicating the severity of the event. This case was not
investigated specifically for this residency, but would be easy to determine from
the contents of this chapter. Obviously, the format file (tecad_logfile.fmt) file
should be recreated and loaded in the TME 10 Enterprise Console, to reflect the
changed implementation.

4.5 Using NetView/6000 for AIX and TME 10 Enterprise Console
The objective of this section is to send the SNMP traps from NetView/6000 for
AIX to the TME 10 Enterprise Console. We created SP-specific events from PSSP
2.2, using the Problem Management component. These events will first go into
NetView/6000 for AIX and be displayed on the Event Console. The event
integration could possibly stop by using the NetView/6000 for AIX software only.
In this section, we extended the possibilities and also forwarded the events to
the T/EC. The T/EC rule engine will process the incoming event, display it on the
Event Console, and initiate actions defined to respond to that type of event.

4.5.1 Environment Introduction
The versions used in this example are NetView/6000 for AIX (Ver. 4.1.2) and T/EC
(Ver. 2.6) server running on systems named sp2en0 and risc38, respectively. We
used the SP2 control workstation named sp21en0 to generate the SNMP traps
from PSSP 2.2. Figure 25 on page 76 describes the different components that
processed the events used in our lab.

Chapter 4. Event Management Integration 75

Figure 25. Event Consoles. The forward function of NetView/6000 for AIX.

4.5.2 Setup procedure in NetView/6000 for AIX
This section describes the procedure to configure NetView/6000 for AIX to be
used as a forwarding mechanism to send messages to the T/EC.

Step 1 Load the SP MIBs.

The SP MIB located in /usr/lpp/ssp/config/snmp_proxy/ibmSPMIB.my
file must be copied into the NetView running station under
/usr/OV/snmp_mibs directory. The purpose of loading a MIB is to
define the MIB objects so that NetView/6000 for AIX can understand
those SP-specific MIB definitions.

The MIB must be loaded into NetView/6000 for AIX, using
Options →Load/Unload →SNMP... from the NetView window.

Once the MIB is loaded, as shown in Figure 26 on page 77, you can
traverse the MIB tree and select objects from the SP-specific MIB
(Enterprise ID 1.3.6.1.4.1.2.6.117) by selecting MIB Browser in the
Tools function menu to get or set the MIB values.

76 Integrating TME 10 on the RS/6000 SP

Figure 26. SP MIBS -- Loading the SP MIB

Figure 27 on page 78 shows the MIB browser as accessed from the
NetView console.

Chapter 4. Event Management Integration 77

Figure 27. The NetView MIB Browser -- Viewing the SP MIB

Step 2 Customize Traps.

Every vendor has a MIB that describes device operations that can be
performed. Vendors can specify traps that they expect to receive
from agents that support their MIBs. To provide more specific MIB
information for SP, first select Options →Event Configuration →Trap
Customization: SNMP from the NetView menu item.

78 Integrating TME 10 on the RS/6000 SP

Figure 28. Event Configuration -- Register the SP-specific Traps

Next, select the ibmSP enterprise in the table and add the traps
definition, using Option →Event Configuration →Trap Customization:
SNMP... in NetView menu bar to configure the SP traps from the
ibmSP category.

 Notes:

SNMP trap is an unsolicited event from an agent to the SNMP
manager. There are seven generic types:

 1. Agent cold start

 2. Agent warm start

 3. Link down

 4. Link up

 5. Authentication failure (community name error)

 6. EGP neighbor loss

 7. Enterprise-specific defined traps

Enterprise-specific traps have additional identifiers:

 1. Enterprise ID: object ID from the private entry of MIB tree

 2. Specific Trap ID: defined by source of the trap

Chapter 4. Event Management Integration 79

Figure 29. Register Traps -- Configuration of Trap Characteristics

When an event is configured, it is added to the
/usr/OV/conf/C/trapd.conf file. The configuration file is used by the
SNMP manager to activate the traps received.

Step 3 Set up NetView/6000 for AIX to send the event to T/EC.

On the command line, invoke:

smitty nv6000

then select Configure →Configure for Tivoli .

80 Integrating TME 10 on the RS/6000 SP

Figure 30. Using SMIT to Configure NetView. Forwarding NetView events to TME 10 Enterprise Console.

Set the Forward Events... option to yes and specify the name of the
T/EC server. Select the ruleset name from /usr/OV/conf/rulesets/
entry, then select forwardall.rs as the ruleset to use for forwarding all
NetView events to the T/EC event console. Note that NetView/6000 for
AIX must have the PTF U443133 installed to allow forwarding events
to T/EC directly, without having the NetView Adapter installed.

Step 4 To cause these changes to take effect, stop and restart the nvserverd
daemon by using the following commands:

ovstop nvserverd
ovstart nvserverd

To prepare the T/EC server to receive the events, you need to import the event
class definitions. There is only one BAROC file containing the single event class
used by this adapter: /usr/OV/conf/nvserverd.baroc.

The contents of our sample nvserverd.baroc file is shown in the following
example:

Chapter 4. Event Management Integration 81

� �
#!/bin/ksh
###
#
NetView generic trap
#
###
TEC_CLASS :

Nvserverd_Event ISA EVENT
DEFINES {

source: default = nvserverd;
nv_enterprise: STRING;
nv_generic: INT32;
nv_specific: INT32;
nv_var1: STRING;
nv_var2: STRING;
nv_var3: STRING;
nv_var4: STRING;
nv_var5: STRING;
nv_var6: STRING;
nv_var7: STRING;
nv_var8: STRING;
nv_var9: STRING;
nv_var10: STRING;
nv_var11: STRING;
nv_var12: STRING;
nv_var13: STRING;
nv_var14: STRING;
nv_var15: STRING;
};

END
� �

The slot defined in the class has the following meaning:

source Set to nvserverd.

nv_enterprise The enterprise ID (MIB object) from the trap. This is the
NetView Enterprise ID for internally generated events.

nv_generic The generic trap number.

nv_specific The specific trap number.

nv_varn The values of the variables within the trap or event. Fifteen
variables are defined in the BAROC file. Most traps only have a
few variables, so having a limit of 15 is not generally a problem.

The adapter also sets the event severity and the event message
text (severity and msg are slots inherited from the base event
class, so they are not redefined in the nvserverd.baroc file).
These values are translated from the values defined when the
event is configured in NetView/6000 for AIX. You perform the
configuration by selecting Options →Event Configuration →Trap
Customization from the NetView menu bar. The following
section is the step to import the event class into the T/EC
server, compile the rule base, load it, and restart the event
server.

82 Integrating TME 10 on the RS/6000 SP

4.5.3 Setup procedure in T/EC
This section describes the procedure to configure the T/EC event server for
receiving NetView events. The steps listed here describe a process similar to
the process described in 4.4.1, “How to Forward Events from a Log File” on
page 59. However, in these steps we use the equivalent command line
approach instead of the TME 10 Desktop.

A rule base contains two types information:

• Event class which defines the structure of an arriving event. The definitions
are provided in *.baroc file by the event adapter.

• Event rules which define the actions to be performed when an event is
received.

To load the rule base, do the following:

Step 1 Create a rule base in the Event Server Console (rulebase.gif):

wcrtrb -d /full/path/name RBname

Also refer to the lwlsrrb command to find the directory of existing rule
bases.

Step 2 Copy the default rule base (class definition and rule) so that it can be
imported into the new rule base:

wcprb -cr sourceRB destinationRB

Step 3 Import a new class file (*.baroc) into the rule base:

wimprbclass nvserverd.baroc RBname

The import of classes must be done in this order to make sure that
the class hierarchy can be resolved.

Step 4 Load and compile the new rule base.

Check the BAROC file class definition:

wchkclass nvserverd.baroc RBname

Import the BAROC file into rule base:

wimprbrules RBname

Compile the new rule base:

wcomprules RBname

Load the new rule base:

wloadrb RBname

Step 5 Shut down and restart the Event Server.

Shut down the Event server:

wstopesvr

Restart the Event server:

wstartesvr

The file /usr/OV/conf/nvserverd.baroc is generated, which can be
loaded in the active rule base.

Chapter 4. Event Management Integration 83

4.5.4 Implement Event Adapter, Event Source, and Group
The event server depends on events being received. The basic behavior of the
event server is that no events are processed until the event source is defined.
Event adapters send events to the reception engine of the event server. An
event source is simply a tag given to an event by the event adapter to assign
what type of event adapter sent the event. The value of the event source is
defined by the senior administrator. An event group is a collection of event
filters. An event group is used to logically represent a collection of hosts
running a particular application from a given event adapter source.

Create Event Source Select the New event sources menu item from the pop-up
menu on the event server icon.

wcrtsrc [-S server] [-b bitmap] [-l label] source

Event sources must be created by a senior administrator.

Create Event Group Select the New event group menu item from the pop-up
menu on the event server icon. Then, create the event group filter.

wcrteg [-s server] [-b bitmap] [event_group]

Assign Event Groups Select the Assign Event Group menu item from the pop-up
menu on the administrator ′s event console.

wassigneg console event_group [role ...]

4.5.5 Event correlation with NetView/6000 for AIX and T/EC
From PSSP, create a CPU monitor event, then select the SNMP trap options to
forward it to NetView, as shown in Figure 31

Figure 31. Event Perspectives -- Define an event that generates a trap

84 Integrating TME 10 on the RS/6000 SP

The NetView trapd daemon receives this trap and sends it to the event console,
as shown in Figure 32 on page 85.

Figure 32. The NetView Event Window -- Receiving SP Traps

The events that are forwarded by the ruleset are then converted into a T/EC
event. Figure 33 demonstrates how the events from NetView get presented in
the T/EC console.

Figure 33. The T/EC Event Console -- Receiving Forwarded Events from NetView

Chapter 4. Event Management Integration 85

The detailed view, derived from clicking on the event in the T/EC console, shows
all detailed information associated with the generated T/EC event. Figure 34 on
page 86 shows all the relevant information that was forwarded by NetView and
generated by the Problem Management subsystem.

Figure 34. Detailed T/EC View -- Information from NetView Events

4.5.6 Discussion on Event Adapter Implementation Options
There are two ways to get events from NetView/6000 for AIX:

 1. By using the NetView V4.1.2 (PTF U443133 installed) built-in ruleset adapter.
The NetView/6000 for AIX ruleset adapter uses a NetView event ruleset to
decide which events to pass to the T/EC. Furthermore, the event conversion
is a generic process, so there is no need to have specific mapping
definitions for each event type.

The ruleset adapter code is embedded in the nvserverd (which is the
daemon that passes events to NetView event display). It registers a NetView
ruleset to be executed by nvcorrd, the rule processing daemon. Any event
that is forwarded by the ruleset is then converted into a T/EC event.

Note: This is the recommended way to automate forwarding events to T/EC.

 2. By using the T/EC NetView Event Adapter. The T/EC NetView Event Adapter
uses the OvSNMP API (provided by NetView) to receive raw trap information
through registration with the NetView trapd daemon, and then generates

86 Integrating TME 10 on the RS/6000 SP

T/EC events based on configuration files. This was the previously
recommended solution before the TME 10 and SystemView applications were
merged.

4.6 Integration of TME 10 Distributed Monitoring and Event Management
Much of the power of recent computer applications lies in the fact that
processing is distributed among many server and client machines. Such
applications can take advantage of dispersed processing power and the
integration of multiple data sources.

From an enterprise system management point of view, however, distributed
applications lead to a number of problems. One of these is the problem of
monitoring. The system manager needs to be ensured of the health of each
component of the distributed system. This can put a strain on the support staff,
which has the task of monitoring an ever-increasing number of geographically
dispersed systems.

TME 10 Distributed Monitoring provides facilities for monitoring many aspects of
a managed system. These include system resources such as CPU utilization, as
well as application resources like log files.

TME 10 Distributed Monitoring is composed of two parts: an agent process
called the TME 10 Distributed Monitoring engine, which performs the monitoring
functions on the target system, and a set of monitors. The monitors are the
heart of the TME 10 Distributed Monitoring application. They define what
resource is to be monitored and what actions are to be taken if a threshold is
met or exceeded. These actions normally involve alerting a system
administrator to the fact that a threshold has been triggered. However,
automated responses can also be executed.

The distribution mechanism for the monitors uses the standard management
function of TME 10 Framework for profile subscriptions. For details about the
procedures to install and use TME 10 Distributed Monitoring, refer to the ITSO
redbook TME 10 Cookbook for AIX Systems Management and Networking
Applications.

Most of the monitors are predefined for general purpose solutions of system
management and are based on the polling mode. The TME 10 Distributed
Monitoring engine monitors the managed resources periodically and is always
running. It is possible that there needs to be a customized solution to trigger the
TME 10 Distributed Monitoring engine to take an action when some situation is
detected by the specific application in a push mode.

TME 10 Distributed Monitoring provides the asynchronous facility to fulfill such
requirements. Two things are necessary to establish the asynchronous channel:
an agent to send an asynchronous message to trigger the TME 10 Distributed
Monitoring engine, and the engine configured to wait for the triggering signal
and perform some task if the user-defined threshold is met or exceeded.

The asynchronous facility wasync allows the agent to send a message to the TME
10 Distributed Monitoring engine on the specified host. The asynchronous
message is tagged with the given channel name, data, and optional
informational text in the wasync command as shown in Figure 35 on page 88.

Chapter 4. Event Management Integration 87

� �
wasync -c channel [-f] [-i info]

-s data [host]

-channel Specifies the name of the asynchronous channel
on which transmission takes place.

-f Retries the command when the TME 10 Distributed Monitoring
engine does not respond, until it succeeds.

-i info Specifies text to be sent with the message.
The text is passed by TME 10 Distributed Monitoring
through any textual notification mechanisms
(Tivoli notice, e-mail, file log),
and placed in the environment of response
programs.

-s data Specifies data on which the monitor makes its
decisions.

host Specifies the name of the host (ManagedNode)
whose engine is signalled.

� �
Figure 35. Usage of the wasync command

The wasync command will work when the machine from which the command is
invoked is a Tivoli managed node.

Two examples are provided in the following sections to illustrate how to combine
the asynchronous facility of TME 10 Distributed Monitoring with the PSSP Version
2 Release 2 Problem Management subsystem to perform SP system monitoring
tasks.

The first example simply uses the wasync command directly from the Problem
Management subsystem to post an event to the TME 10 Distributed Monitoring
when a specified threshold is exceeded.

The second example is more complex, but also more robust and flexible. It uses
an agent script that receives SP event messages through a named pipe file,
analyzes and filters the information, and then uses the wasync command to
generate a detailed TME 10 Distributed Monitoring event.

4.6.1 Using the wasync command directly
A simple way to use the TME 10 Distributed Monitoring asynchronous facility is
to choose to execute the wasync command directly from the Problem
Management subsystem, as shown in Figure 36 on page 89.

88 Integrating TME 10 on the RS/6000 SP

Figure 36. Defining a wasync event using Event Persectives

The equivalent pmandef command would look like the following:

� �
pmandef -s SENTRY_PSSP

-e ″IBM.PSSP.aixos.cpu.%idle:CPU=cpu0;NodeNum=0;X<25″
-c ″ / usr/local/Tivoli/bin/aix4-r1/bin/wasync -c ″PSSP CPU″

-s High -i ″The CPU is busy on the control workstation!″
-r ″X>50″
-C ″ / usr/local/Tivoli/bin/aix4-r1/bin/wasync -c ″PSSP CPU″

-s Low -i ″The CPU is idle on the control workstation!″
� �

When the Problem Management subsystem detects that a threshold has been
exceeded, it invokes the wasync command, which sends an event to TME 10
Distributed Monitoring. A pop-up window with the event information will then
appear on your screen.

Chapter 4. Event Management Integration 89

4.6.2 How to integrate the SP Log File with TME 10 Distributed Monitoring
Although this example is more complex than using the wasync command directly
from the Problem Management subsystem, it is easily modified to perform SP
system management tasks based on the other SP system log files, for example
/var/adm/SPlogs/SPdaemon.log. It is a TME 10 Distributed Monitoring
alternative to the TME 10 Enterprise Console procedures described in 4.4, “Using
the TME 10 T/EC Logfile Adapter” on page 58.

The basic concept of this example is that the PSSP Version 2 Release 2 Problem
Management subsystem can be configured to use the system syslog facility to
pass an SP-specific message to an agent script through a named pipe file when
a user-defined event is generated. As the agent receives the message, it
analyzes it and uses the wasync command to trigger the local TME 10 Distributed
Monitoring engine immediately. The TME 10 Distributed Monitoring engine uses
the data sent by the wasync command to decide which severity level threshold is
met or exceeded, and takes a user-defined action.

Steps one to seven prepare the parsing method for TME 10 Distributed
Monitoring to understand the type of events, generated in the log file.

Step 1 On the control workstation, alter the configuration file of the system
syslog daemon to get SP-specific messages generated by the PSSP
Problem Management subsystem:

cat >> /etc/syslog.conf <<EOF
daemon.notice /tmp/log_pssp.log
EOF

Step 2 Create the log file that will store the SP-specific messages:

/usr/bin/touch /tmp/log_pssp.log

Step 3 Notify the system syslog daemon that the configuration file has been
changed:

/usr/bin/refresh -s syslogd

Step 4 Use the Event Perspectives GUI or the pmandef command to define an
event to monitor the CPU utilization on control workstation sp21en0
with the predefined condition, idlecpu. The event definitions are
shown in Figure 37 on page 91. (For a description of the procedure
to define such an event, refer to IBM PSSP for AIX Administration
Guide.

When CPU idle time is less than twenty-five percent, Problem
Management writes a PSSP log entry to the syslog file to indicate a
CPU busy situation. When CPU idle time is greater than fifty percent,
Problem Management will write a PSSP log entry to the syslog file to
indicate a CPU idle situation.

90 Integrating TME 10 on the RS/6000 SP

Figure 37. Defining a Log File Event Using Event Perspectives

The equivalent pmandef command looks like the following:

� �
pmandef -s SENTRY_PSSP

-e ″IBM.PSSP.aixos.cpu.&idle:CPU=cpu0;NodeNum=0:X<25″
-l ″The CPU is busy on the control workstation!″
-r ″X>50″
-L ″The CPU is idle on the control workstation!″

� �
Step 5 Analyze the string structure of the following two major SP-specific

messages written by Problem Management in the log file
/tmp/log_pssp.log. The purpose of this step is to match each of these
two SP-specific log file entries to a unique mapping pattern. The
following message patterns are found in the /tmp/log_pssp.log file:

• When the CPU is busy:

Chapter 4. Event Management Integration 91

� �Mar 20 14:31:23 sp21en0 pmand[39444]: SP Problem Mgmt:
Monitored Situation Exists:
Name=LOGFILE_PSSP_CPU
Node Number=0
Resource Variable=IBM.PSSP.aixos.cpu.idle
Instance Vector=CPU=cpu0;NodeNum=0
Predicate=X<25
Description=The CPU is busy on the control workstation!� �

• The following entry is found in the /tmp/log_pssp.log file when the
CPU is idle:

� �Mar 20 14:32:08 sp21en0 pmand[39444]: SP Problem Mgmt:
Monitored Situation Cleared:
Name=LOGFILE_PSSP_CPU
Node Number=0
Resource Variable=IBM.PSSP.aixos.cpu.idle
Instance Vector=CPU=cpu0;NodeNum=0
Predicate=X>50
Description=The CPU is idle on the control workstation!� �

Step 6 Design and code the agent script according to the results from Step 5:

� �
cat > log_pssp.ksh <<EOF
#!/bin/ksh

Open the named pipe as standard input
exec < /tmp/log_pssp.fifo
while read line; do

case ″$line″ in
*pmand*LOGFILE_PSSP_CPU*Predicate=X>50*(

/usr/local/Tivoli/bin/aix4-r1/bin/wasync
-c ″PSSP CPU″
-s Low
-i ″The CPU is idle on control workstation!″

logger ″The LOGFILE_PSSP_CPU_Low has been processed!″

*pmand*LOGFILE_PSSP_CPU*Predicate=X<25*(
/usr/local/Tivoli/bin/aix4-r1/bin/wasync \

-c ″PSSP CPU″
-s Low
-i ″The CPU is busy on control workstation!″

logger ″The LOGFILE_PSSP_CPU_High has been processed!″

*(

esac
done
EOF
#

� �
Step 7 Create a TME 10 Distributed Monitoring profile and a subscription of

type asynchronous string that looks for messages from channel PSSP
CPU:

• Open a profile manager, LOGFILE_Sentry, and create the TME 10
Distributed Monitoring profile, LOGFILE_SENTRY.

• Open the profile and click Add Monitor .

• Select Asynchronous (string) (Monitoring Sources) from the
choice list of Unix_Sentry or Sentry 2.0 (Monitoring Collections)
and give the channel name (PSSP CPU), then click Add Empty... .

• In the Edit Sentry Monitor dialog, select Matches for the critical
response level, and enter High in the text field. Choose the
Pop-Up response action.

92 Integrating TME 10 on the RS/6000 SP

• In the Edit Sentry Monitor dialog, select the relation Matches for
the warning response level, and type Low in the text field. Choose
the Pop-Up response action.

• Click Change & Close . Note that there is no Schedule button
because this is an asynchronous criterion.

• Save the profile and distribute it to the subscriber, which is the
control workstation.

The following steps install and define the operating environment for TME 10
Distributed Monitoring, to start monitoring the log file entries.

Step 8 Remove the entry added in Step 1 from the configuration file of the
system syslog daemon, /etc/syslog.conf:

vi /etc/syslog.conf

Step 9 Alter the configuration file of the system syslog daemon to get
SP-specific messages generated by the PSSP Problem Management
subsystem.

cat >> /etc/syslog.conf <<EOF
daemon.notice /tmp/log_pssp.fifo
EOF

Step 10 Create the named pipe file that will receive the SP-specific messages:

/etc/mknod /tmp/log_pssp.log p

Step 11 Run the agent script in the background to receive SP-specific
messages from the predefined named pipe file:

./log_pssp.ksh &

Step 12 Notify the system syslog daemon that the configuration file has been
changed:

/usr/bin/refresh -s syslogd

 Note:

Make sure that the agent script is running before executing this
step, or the syslogd daemon may be hung by writing a log entry to
a pipe file that does not have a reading process.

Step 13 Start up the administrator′s TME 10 Desktop:

. /etc/Tivoli/setup_env.sh
tivoli

When the CPU thresholds are exceeded, one of the two pop-up windows shown
in Figure 38 on page 94 will appear on your screen to reflect the CPU utilization
on the control workstation.

Chapter 4. Event Management Integration 93

Figure 38. TME 10 Distributed Monitor ing Pop-Up for CPU idle

94 Integrating TME 10 on the RS/6000 SP

Chapter 5. Task Libraries, Tasks, and Jobs

The TME 10 Framework task libraries can be used to provide a simple interface
to executing common RS/6000 SP commands. A task library is a collection of
tasks that have been defined to the system. A task is simply a command or
script that Tivoli can execute on behalf of the administrator. Execution roles and
userids can be assigned to a task, allowing you to control who can execute the
task and how that task is to be executed.

To support your RS/6000 SP from Tivoli, tasks can be defined to execute local
scripts that invoke a specific SP command or a set of commands to perform
routine SP administrative operations. A task can query system data, power
nodes on or off, launch Perspectives and other applications, manage the switch,
or perform just about any function that is routinely executed by an SP
administrator.

Once you have created a set of tasks in a task library, you can bind an instance
of one of those tasks to a set of managed nodes or profile managers to create a
job. Jobs contain execution-specific information and can be copied directly to an
administrator ′s TME 10 Desktop. This allows another level of control over which
administrators are authorized to perform specific SP tasks.

5.1 General Procedure for Creating Tasks
The simplest way to create a task is to use the TME 10 Desktop. The GUI allows
you to create simple tasks that do not require input parameters. If you have a
task that does require additional input to execute, you must develop the task
using the Task Library Language. In addition to the information provided in the
TME 10 Task Library Language Developer′s Guide, the TME 10 Cookbook for AIX
Systems Management and Networking Applications provides excellent detailed
descriptions on the process of creating task libraries, tasks and jobs. The
Cookbook also contains a very thorough explanation of using the Task Library
Language and implementing tasks requiring input as a way of adding function to
the TME 10 Desktop. It is highly recommended that the information in that
reference is understood before proceeding with the process outlined in this
chapter.

The general process of creating a task using the TME 10 Desktop is as follows:

 1. Create a policy region to contain your task libraries, or use an existing policy
region.

Since many SP commands require root authority to execute, it is
recommended that you create a separate policy region for SP task libraries.
You will need to modify the Managed Resource Policies for the TaskLibrary
resource such that the Validation Policy allows setting the root userid for
task execution.

 2. Within the policy region, create a task library.

 3. Within the task library, create a task specifying the script to execute.

Note: When creating a task, Tivoli will make a complete copy of the
executable that you specify when defining the task. If you specify a binary
executable, not only will making this copy use unnecessary disk space, it will
slow down execution time since Tivoli ships the executable to the target

 Copyright IBM Corp. 1997 95

machine to be executed. Also, since Tivoli maintains a copy of the
executable at the time the task was defined, you will need to delete and
recreate the task any time the executable is updated. Therefore, we
recommend that you write simple scripts as wrappers to the SP commands
that you wish to execute, and do not specify the SP command directly when
defining a task.

5.2 SP Task Libraries
Creating tasks to execute a script on the SP is a simple process. You can build
your own set of tasks tailored to the SP work your administrators perform most
often. This redbook includes two simple task libraries that you can use as
examples for creating your own tasks.

The first task library, called SPTasks, includes general tasks to perform the
following:

• List data for the SP using the splstdata command.

• List data for the SP node the task is run on using the splstdata command.

• Run any specified command.

• Launch the Perspectives application as a separate process.

• Launch a specified application as a separate process. This might be useful
for starting applications such as SMIT on your SP control workstation.

• Run the cstartup command on the control workstation using specified
parameters. This can be used to power on one or more nodes.

• Run the cshutdown command on the control workstation using specified
parameters. This can be used to power off one or more nodes.

The second task library, called SwitchTasks, includes tasks that are specific to
managing your SP switch:

• List data for the SP switch using the splstdata command.

• List the switch responds information using the SDRGetObjects command.

• List the primary node information returned by the Eprimary command.

• Set the specified oncoming primary and backup nodes using the Eprimary
command.

• Quiesce the switch for the specified partition.

• Start the switch for the specified partition.

• Fence the specified nodes.

• Unfence the specified nodes.

The source listings for these task libraries are included in Appendix G, “Sample
Task Library Listings” on page 193. They are also included with the software
distributed with this redbook. You may use these listings as examples to create
your own tasks. To load the task libraries and use them directly in your
environment, see 5.3, “Using the Task Library Language” on page 97.

There are many other tasks that you may wish to create. For example, if your
administrators are often invoking SMIT to do their work, you may wish to write a
task to invoke SMIT directly, similar to the one that invokes Perspectives, instead

96 Integrating TME 10 on the RS/6000 SP

of using the task that launches any application. If you often check to see which
daemons are active, you can write a task to invoke the lssrc -a command. The
possibilities here are endless.

5.3 Using the Task Library Language
The Task Library Language is described in the TME 10 Task Library Language
Developer′s Guide. While this guide provides a description of the language, it is
difficult to understand the process for creating and loading your own tasks.
Refer to the TME 10 Cookbook for AIX Systems Management and Networking
Applications for an excellent review of this process. We will only provide a
high-level overview of the process here.

You can load the task libraries distributed with our redbook by using the
following steps:

 1. Load the SPTasks.tll and SwitchTasks.tll files from the diskette onto a local
filesystem.

 2. Import the task libraries into Tivoli by using the following commands from
that local filesystem directory:

wtll -p PolicyRegion -P /bin/cat SPTasks.tll
wtll -p PolicyRegion -P /bin/cat SwitchTasks.tll

where PolicyRegion is the name of the existing policy region where you want
to place the task libraries.

You can then start the TME 10 Desktop and open your policy region. You should
see two new task libraries similar to those shown in Figure 39 on page 98.

Chapter 5. Task Libraries, Tasks, and Jobs 97

Figure 39. SP Task Libraries. Two task libraries, SPTasks and SwitchTasks, are distributed with this redbook.

If you open the two new task libraries, you will see the provided tasks as shown
in Figure 40 on page 99 and Figure 41 on page 99.

98 Integrating TME 10 on the RS/6000 SP

Figure 40. Tasks in the SPTasks Library. These tasks are examples of some general SP tasks you may wish to
invoke from Tivoli.

Figure 41. Tasks in the SwitchTask Library. These tasks are examples of some common SP switch tasks that you
may wish to invoke from Tivoli.

Chapter 5. Task Libraries, Tasks, and Jobs 99

5.3.1 Creating Customized Tasks
There are two ways to create your own customized tasks:

• You can use the task libraries distributed with this redbook as a starting
point, and modify them to include your own customized tasks.

• You can create your own new task library with only the tasks you need.

To customize the distributed task libraries, do the following:

 1. Install the task libraries following the directions in 5.3, “Using the Task
Library Language” on page 97.

 2. Edit the SPTasks.tll and SwitchTasks.tll files and add your own tasks. You
can use the existing tasks in those files as examples. Also, review the
chapter on “Adding Function to the Tivoli Desktop.” in the TME 10 Cookbook
for AIX Systems Management and Networking Applications to help with this
step.

You can create a new task library by copying one of those tll files to a new
file, changing the name of the task library, and replacing the existing tasks
with your own.

 3. After your source file is updated, import the task library into Tivoli. If you are
replacing an existing task library, use the following command:

wtll -r -p PolicyRegion -P /bin/cat tll

If you have changed the name of the task library and are creating a new one,
omit the -r option.

If you get errors while loading your task library, look carefully at the syntax
of your source file. The diagnostic messages are not very helpful. See the
TME 10 Cookbook for AIX Systems Management and Networking Applications
for some pointers.

 4. Test your new tasks by trying to execute them. If you find problems in your
executable scripts, you will need to edit the original tll file and reload the
task library.

The easiest way to create a new task library with the Task Library Language is
to export an existing task library from the TME 10 Framework and modify it:

 1. Using the TME 10 Desktop, create a new task library in your policy region.

 2. Create a simple task in that task library.

 3. From the AIX command line, export the task library using the command:

wtll -F TargetFile -l TaskLibrary

where TargetFile is the file name of a tar file that will be created containing
the exported task library, and TaskLibrary is the name of the task library to
be exported.

 4. Extract the files from the exported TargetFile:

tar -xvf TargetFile

 5. Continue with the previous steps to modify an existing task library and
reload it into your framework.

You must use the Task Library Language to create a task that requires input
from the user. The task libraries distributed with this redbook and listed in

100 Integrating TME 10 on the RS/6000 SP

Appendix G, “Sample Task Library Listings” on page 193 contain several
examples of these types of tasks.

For example, to execute the RunCommand task, the user must specify the
command to run. The listing for this task shows how to specify simple text input.
Here is an excerpt of this task:

� �
TaskLibrary ″SPTasks″ {

...

ArgLayout inputText {
Text;

};

...

Task RunCommand {
Description = (″_!_″,″Execute any command″ , 1) ;
HelpMessage = (″_!_″,″Input the command and any parameters″ , 1) ;
Uid = (″_!_″,″*″ , 1) ;
Comments = (″_!_″ ,″ ″ ,1) ;
Roles = (″_!_″,″admin″ , 1) ;
Argument (″_!_″,″Command to run: ″,1) {

Layout = (″ ″ , ″inputText″ , 1) ;
};
Implementation (″default″)

.#!/bin/ksh

.export PATH=/usr/lpp/ssp/bin:/tivoli/bin/aix4-r1/CUSTOM:$PATH

. . /etc/Tivoli/setup_env.sh

.export DISPLAY=$WD_DISPLAY

.$1
;

};

...� �

The Argument and ArgLayout constructs are one way to specify input text
parameters.

Another good example to look at, as shown in the following screen, is the
StartSwitch task in the SwitchTasks library. This shows an example of how you
can create a choice selection list of all the SP partitions and then how to execute
an SP command for the partition selected by the user.

Chapter 5. Task Libraries, Tasks, and Jobs 101

� �
TaskLibrary ″SwitchTasks″ {

...

ArgLayout Partitions {
TextChoice Program {

Implementation (″default″)
.#!/bin/ksh
.for i in /usr/lpp/ssp/bin/splst_syspars -n
.do
. echo $i
.done

;
 };
 };

 ...

Task StartSwitch {
Description = (″_!_″,″Start the switch in the specified partition″ , 1) ;
HelpMessage = (″_!_″,″Select partition to start switch in″ , 1) ;
Uid = (″_!_″,″root″ , 1) ;
Comments = (″_!_″ ,″ ″ ,1) ;
Roles = (″_!_″,″admin″ , 1) ;
Argument (″_!_″,″Partition to start switch in: ″,1) {

Layout = (″ ″ , ″Partitions″ , 1) ;
};
Implementation (″default″)

.#!/bin/ksh

.estart=″ / usr/lpp/ssp/bin/Estart″

.if [[! -a $estart]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.# set the current partition

.syspar=$1

.$estart
;

};

...� �

In this case, ArgLayout specifies a program for the TextChoice, and the
implementation is imbedded directly in the task library source.

When you create a job from a task that requires input, you can bind the task to a
specific set of target managed nodes. For SP commands, this will usually be the
control workstation. However, you cannot specify the input parameters until the
job is actually run. You may find yourself creating many small, special-purpose
tasks for those commands that do require input so that you can run them as
scheduled jobs or in response to messages received by your TME 10 Enterprise
Console.

One last example that is useful to look at is the task to invoke Perspectives as a
separate process, as shown in the following screen:

102 Integrating TME 10 on the RS/6000 SP

� �
TaskLibrary ″SPTasks″ {

...

Task Perspectives {
Description = (″_!_″,″Invoke Perspectives as a separate process″ , 1) ;
HelpMessage = (″_!_″,″No Help Available″ , 1) ;
Uid = (″_!_″,″*″ , 1) ;
Comments = (″_!_″ ,″ ″ ,1) ;
Roles = (″_!_″,″admin″ , 1) ;
Implementation (″default″)

.#!/bin/ksh

.persp=″ / usr/lpp/ssp/bin/perspectives″

.if [[! -a $persp]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. . /etc/Tivoli/setup_env.sh

.export DISPLAY=$WD_DISPLAY

.# We close stdin, stdout and stderr

.exec 0<&-

.exec 1<&-

.exec 2<&-

.$persp &
;

};

...� �

Notice that in the implementation section, we close the stdin, stdout, and stderr
file descriptors before invoking Perspectives as a background process. If we did
not close these file descriptors first, the TME 10 Desktop would not return control
until the process completed (in this case, you exited Perspectives).

Chapter 5. Task Libraries, Tasks, and Jobs 103

104 Integrating TME 10 on the RS/6000 SP

Chapter 6. AEF Customizations for the RS/6000 SP

Tivoli′s current technology permits the management of RS/6000 SP nodes as a
set of AIX workstations. User and group management, host management,
software distribution, job scheduling and other basic system management tasks
can be effectively implemented for the SP without the need of any modifications
to the TME 10.

When Tivoli′s client software has been loaded on SP nodes and the control
workstation, these appear in the TME 10 Desktop as AIX managed nodes.
Hence, the standard informational dialogs (windows) and capabilities of any
managed node (l ike subscribing to profile managers) are available.

However, system management capabilities specific to the SP, like hardware
monitoring, are not available in a standard Tivoli installation. In order to capture
the specific characteristics of the RS/6000 SP hardware and software, we have
customized the managed node resource to behave as either an SP node or as
an SP control workstation.

With these customizations, managed nodes appear in the TME 10 Desktop as
SP-specific objects, with extended dialogs and menus. Their standard dialogs
are not overridden, but merely extended. Hence, customized nodes are treated
as AIX managed nodes for all Tivoli standard system management functions.

With our customizations, the SP control workstation object has extended dialogs
to:

• List (and modify when the administrator has the appropriate permissions) its
SDR data.

• List all SP nodes it controls.

• Run commands against any number of nodes (regardless of whether or not
they are managed nodes).

• Power on/off any set of nodes.

• Fence and unfence any set of nodes.

• Launch SP applications, like Perspectives or the System Monitor GUI.

The SP node object has new dialogs to:

• List (and modify with the appropriate permissions) the SDR data.

• Run commands against the node.

These customizations are easy to modify to suit your system management
environment ′s needs. Furthermore, the user is at liberty to install these
customizations in any number of SP nodes or SP control workstations that are
managed nodes in a Tivoli environment. The customization of a managed node
as either an SP node or an SP control workstation is self-contained and is not
affected by the customization of other nodes or control workstations. For
example, you can install the customizations only for the SP control workstation
and you should still be able to power on/off nodes and perform the other
management functions provided for the control workstation object, even when
the SP nodes are not customized as such, or even when they have not been
defined as Tivoli managed nodes.

 Copyright IBM Corp. 1997 105

We have used the Application Extension Facility (AEF) to perform these
customizations. AEF is a Tivoli application toolkit that allows for the easy
extension of the behavior of the TME 10 Desktop resources. This chapter
contains a basic introduction to AEF development. The code for these
customizations, as well as installation and uninstallation scripts are listed in
Appendix H, “Contents of AEF Customization Scripts” on page 201 and provided
on the attached diskette. This code is free, provided on an “as is” basis.

The main goal of this chapter is to discuss this sample set of customizations:
how they were made, how to install them, and how you can easily modify them
or add your own customizations. We believe that the integration they provide
with the TME 10 Desktop will be very beneficial to customers who wish to fully
manage the SP as part of their TME.

Since the main topic of this chapter is the integration of the SP system
management functions and the TME 10 Desktop, basic familiarity with both is
assumed. For more information on these topics consult the TME 10 manuals, as
well as the IBM PSSP for AIX Administration Guide.

The material in this chapter is organized as follows:

• 6.1, “High Level Overview of a Sample Set of Customizations” on page 107.

This section provides a high-level overview of a sample set of AEF
customizations that extend managed nodes as either SP nodes or as the SP
control workstation.

• 6.2, “Installation of the Sample Customizations” on page 113.

This section provides the installation procedures for the
previously-mentioned set of customizations.

Users that are interested in understanding how these customizations were made
and in how to produce their own, should review the rest of the chapter, which
provides an overview of the TME 10 Application Extension Facility.

• 6.3, “What is AEF?” on page 115.

This section provides an introduction to AEF, followed by a discussion of its
strengths and weaknesses.

• 6.4, “Anatomy of an AEF/DSL Customization” on page 119.

This section provides a description of the basic steps of installing and
uninstalling customizations.

• 6.5, “TME 10 Desktop Dialogs” on page 123.

This section provides instructions on how to modify existing dialogs, or how
to design your own, using the Dialog Specification Language (DSL).

• 6.6, “Methods for Customized Objects” on page 129.

Every gadget in a dialog is associated with a method, which can be user
defined. This section provides a description of how to implement your own
methods, or how to use those provided by TME 10 method libraries.

• 6.7, “Bitmaps” on page 133.

Every TME 10 resource has a set of bitmaps associated with it. This section
provides an explanation of how these bitmaps can be customized.

• 6.7.1, “Icons” on page 134.

106 Integrating TME 10 on the RS/6000 SP

Icons are the graphical representations of resources in the TME 10 Desktop.
Formally, an icon is defined as a bitmap and its associated pop-up menu.
This section provides a description of how to customize icons to specifically
represent customized objects.

• 6.8, “Messages and Message Catalogs” on page 136.

AEF/DSL provides a basic internationalization support through message
catalogs. We have used such message catalogs extensively in our sample
customizations. This section discusses how to modify the existing message
catalogs, or implement new ones.

The present chapter is complemented by Appendix H, “Contents of AEF
Customization Scripts” on page 201, where the dialogs and callbacks of our
sample customization are listed. The complete source code for the
customizations is provided on the diskette distributed with this redbook.

6.1 High Level Overview of a Sample Set of Customizations
This section provides a functional overview of the sample customizations of
Tivoli managed nodes that we have implemented to accommodate SP system
management within the TME 10 Desktop. The next sections discuss them in
detail, through examples that users can easily modify to come up with their own
customizations.

The target user for these customizations is a Tivoli user that utilizes TME 10 to
manage an installation that includes RS/6000 SP systems. We assume this user
wants to execute routine administration functions specific to the RS/6000 SP,
without abandoning the Tivoli environment.

With this goal in mind, we have designed the customizations to increment the
current functionality of the Tivoli environment, not to override it. Hence, the
managed node has been enhanced with new dialogs, callbacks, icons and
message catalogs facilities, to provide basic internationalization support.

We have extended the managed node behavior to define two new objects:
sp_node and sp_cws. These objects appear with SP-specific icons on the TME
10 Desktop (as in Figure 42 and Figure 43 on page 108). When their properties
pop-up menu option has been selected, an extended dialog appears to provide
not only standard information about the OS Version or Hostname, but also SP
specific data and functionality.

Figure 42. A Managed Node customized as an SP Control Workstation

Chapter 6. AEF Customizations for the RS/6000 SP 107

Figure 43. A Managed Node customized as an SP Node

Specifically, when a managed node has been defined as an sp_node, its
properties dialog appears with extended capabilities (as indicated in the SP
Properties frame in Figure 44 on page 109).

108 Integrating TME 10 on the RS/6000 SP

Figure 44. Extended Managed Node Properties

In addition to the standard functionality of the properties dialog, the following
capabilities are provided for the sp_node object:

 1. System Repository Data associated with the node can be displayed and
changed (provided the administrator has the authorization role of super). A
new dialog displaying the SDR attributes appears when the user clicks on
the All Attributes button, as shown in Figure 45 on page 110.

Chapter 6. AEF Customizations for the RS/6000 SP 109

Figure 45. SDR Attributes Displayed for an SP Node. The value field for a selected attribute can be modified.

 2. A short path to run commands on the node can be launched directly off the
properties dialog when the user clicks on the Run button, as shown in
Figure 46.

Figure 46. Running a Command in an SP Node

When a managed node has been defined to be a sp_cws, its Properties dialog
offers extended capabilities, as shown in Figure 47 on page 111.

110 Integrating TME 10 on the RS/6000 SP

Figure 47. Control Workstation Properties List

The following behavior is available for the control workstation objects:

 1. Its System Repository data can be displayed and changed (provided the
administrator has the authorization role of super). This is accomplished
through the All Attributes button. This dialog is similar to the dialog shown
in Figure 45 on page 110.

Chapter 6. AEF Customizations for the RS/6000 SP 111

 2. A short path to run commands on the control workstation can be launched
directly off the Properties dialog (in the Run CW button).

 3. A node control panel is displayed to perform basic management operations
on any of the SP nodes that depend on the control workstation (see
Figure 48). Note that all SP nodes are displayed, whether they are also
Tivoli managed nodes or not. Once some nodes are selected, the Response
button provides an extended list that indicates whether each selected node
responds and whether they are Tivoli managed nodes.

Figure 48. Node Responds Information

 4. Any set of nodes from the Node Control list can be selected to perform
power on/off operations or to run a command concurrently against such
nodes (through the corresponding power on and power off buttons).
Similarly, fence and unfence operations can be performed against the set of
selected nodes.

 5. A new dialog is provided to serve as a launch pad for RS/6000 SP
applications. In the sample customization, the main panels of Perspectives
and the System Monitor GUI can be reached directly from Tivoli. This panel,
shown in Figure 49 on page 113, appears when the user clicks on the SP
Applications button in the properties dialog of the SP control workstation.
The launch pad can be easily modified by the customer to add or delete new
applications.

112 Integrating TME 10 on the RS/6000 SP

Figure 49. Launch Pad for SP Applications

Unless mentioned otherwise, all the customized SP system management
capabilities can be utilized by administrators with authorization roles of super or
senior. These permissions can be easily changed by editing the installation
scripts that we describe in the following sections.

Our proposed set of customizations are provided with this book. Users that are
not interested in providing their own customizations can simply install our
customizations, as explained in the next section, and can safely skip the rest of
this chapter.

Those interested in understanding how our AEF customizations were made, and
wishing to customize their TME 10 Desktop quickly, should read the entire
chapter, whose second part provides a basic primer on AEF development.

First, we will go through the installation procedure.

6.2 Installation of the Sample Customizations
Our sample customizations can be installed or uninstalled following the simple
procedures that we list in this section. We have provided several Korn shell
scripts to perform the basic installation of our customizations, and they can be
taken as a model for users who want to install their own.

Chapter 6. AEF Customizations for the RS/6000 SP 113

Before proceeding to the installation, the software has to be downloaded and the
appropriate environment variables set. We assume that the user has a Korn
shell available to do the following:

 1. Login to the Tivoli server machine as root.

 2. Create a /.netrc file which allows root access to the Tivoli server machine. It
should be owned by root, with file permissions of 600, and contain the
following stanza:

 machine <tivoli server ipaddress> login root password <root′ s password>

so if the server ip address is tivserver.domain.widgetco.com, and root
password is mypasswd we would have:

machine tivserver.domain.widgetco.com login root password mypasswd

 3. Establish the customization directory. For example:

mkdir /tivoli/spcust

Note: The following steps assume that the customization directory is
/tivoli/spcust.

 4. Copy the SPCustomizations.tar file from the diskette distributed with this
redbook to the customization directory.

 5. Extract the customization environment:

cd /tivoli/spcust
tar -xvf SPCustomizations.tar

This creates a directory called Resource in the current working directory
(/t ivoli/spcust).

 6. Customize the Resource/bin/tivoliPaths file (under /tivoli/spcust):

• SPAEF_TOP should point to the customization directory. For example:

export SPAEF_TOP=/tivoli/spcust

• SPAEF_SERVER should be the IP address of the server machine. This
value must be identical to the value of the Tivoli server ip address
previously set in the /.netrc file. For example:

SPAEF_SERVER=tivserver.domain.widgetco.com

• Alter, delete, or create command line aliases as desired.

 7. Execute the script tivoliPaths in the current shell.

. Resource/bin/tivoliPaths

Now everything is ready for the installation of the customizations. You have
to make sure that both the TME server and the managed nodes to be
customized are up and running correctly.

 8. Edit $SPAEF_TOP/Resource/ManagedNode/LIST and add the list of managed
nodes that you want to customize as SP objects. The format of the file is:

[#]<sp_cws|sp_node> <ManagedNode Instance Name>

The pound sign (#) indicates a comment. That line will be ignored by the
installation script.

Suppose that we want to customize the node sp2cw0.msc.itso.ibm.com as an
sp_cws, and nodes sp2n15.msc.itso.ibm.com and sp2n16.msc.itso.ibm.com as
sp_nodes. These are the names of the managed nodes as listed in Tivoli.

The file would look like the following:

114 Integrating TME 10 on the RS/6000 SP

sp_cws sp2cw0.msc.itso.ibm.com
sp_node sp2n15.msc.itso.ibm.com
sp_node sp2n16.msc.itso.ibm.com

 9. Execute either spcustomFastInstall or spcustomCustomInstall to install all the
customization items. Each script performs essentially the same function.
The scripts install all the customization items (callback scripts, dialogs,
icons, message catalog) for the managed nodes indicated in the
$SPAEF_TOP/Resource/ManagedNode/LIST file. This is accomplished by
invoking Tivoli AEF commands described in the following sections.

The difference between the two scripts is that spcustomFastInstall installs
the source files (dialogs, callbacks, and so on) that we have provided. This
option is used in those installations running TME 10. However, the
spcustomCustomInstall script first extracts the properties_dialog and the icon
bitmap and menu for the aix4-r1 managed node from the current Tivoli
installation. This script then directs the user to manually insert our
customization block into those source files.

Users with a standard TME 10 installation should use spcustomFastInstall,
since it is quick and simple.

Users who have already customized dialogs for managed nodes should use
spcustomCustomInstall. Users with other versions of the Tivoli environment
may have a properties_dialog of the managed node does not look like the
one in TME 10, and they should also use spcustomCustomInstall. The
customization of parent_dialog comes in a block of code that the user can
manually insert in their version of parent_dialog following the instructions of
the script. All the other dialogs are created for our customization, and can
be installed as provided. Once the parent_dialog is modified, the
customization process proceeds as in spcustomFastInstall.

The spcustomCustomInstall script can be used as a model for future
customizations in your environment.

To uninstall the sample AEF/DSL customizations for the SP, simply execute
the script spcustomUninstall in the distribution directory.

6.3 What is AEF?
Application Extension Facility (AEF) is a development toolkit provided by Tivoli
for the extension of the behavior and data attributes of the TME 10 Desktop
objects. These modifications can be taken advantage of from the Tivoli GUI by
including references to these methods in the TME 10 Desktop dialogs, which can
also be modified by the user.

In order to understand the scope and characteristics of an AEF customization,
we need to briefly discuss the basic architecture of an object in the TME 10
framework.

Classes, and instances of those classes (or in Tivoli′s terminology, resource
types and resource instances) are represented in a similar way: as objects, that
is, entities with data attributes and methods (operations).

Objects representing classes contain references to their class instances. For
example, there is an object that represents the managed node resource and
provides all services that are common to all managed nodes. This object also

Chapter 6. AEF Customizations for the RS/6000 SP 115

contains references (or pointers) to the managed node instances in the Tivoli
environment.

A resource or resource type is a composite of three basic objects: the behavior
object (which groups the standard methods of the resource), the presentation
object (which contains dialogs and bitmaps associated with the resource), and
the extension object (where user customizations are placed).

The first two objects (behavior and presentation) describe the standard behavior
of a Tivoli framework object and cannot be modified.

The extension object, however, is a placeholder for new methods, attributes, or
dialogs that users might want to add to an already defined resource or resource
type. You can think of the extension object as a built-in framework mechanism
that allows the quick extension of object behavior without reverting to standard
object-oriented methods like inheritance, which can be costly and complex in a
CORBA environment like Tivoli.

When a service (a method, an attribute, a dialog, a bitmap, and so on) is
requested for an object, the Tivoli run time system looks in the extension object
to see if that service is defined there. Only if it is not, the other two objects are
searched. This way, the original behavior of an object can be extended without
altering its original contents. In Figure 50, the structure of a framework object is
shown. Again, this framework object can represent a resource type (a class) or
a resource instance (an instance). The extension object is initially empty.

Figure 50. The Framework Object. AEF modifies the extension object.

116 Integrating TME 10 on the RS/6000 SP

Methods can be added and deleted from the extension object freely, without
affecting the original behavior of the resource type or resource instance. That is,
AEF customizations can be made both at the class level or at the instance level
and do not erase the original contents of an object.

Once objects have been extended, the TME 10 Desktop dialogs can be modified
to take advantage of the new methods and attributes.

Tivoli dialogs are written in the Dialog Specification Language (DSL) and they
are installed in the objects as if they were attributes.

• Dialogs installed at the class level can be used by any instance of the class.

• Dialogs installed at the instance level, override the global dialogs.

For example, in our sample customizations, we have customized the Properties
dialog (in Figure 44 on page 109 and Figure 47 on page 111) just for certain
instances of the managed nodes. Hence, these dialogs are installed at the
instance level.

It is worth noting that DSL development (which only affects the TME 10 Desktop
dialogs) is not, strictly speaking, part of AEF development. However, the
customization of dialogs is an integral part of AEF development. Hence, they are
always discussed together.

AEF/DSL development can be used in general for many purposes:

• Addition of methods (callbacks in AEF terminology) to both resource types
and resource instances.

• Addition of attributes to resource instances.

• Modification of the existing dialogs in the TME 10 Desktop.

• Addition of new dialogs to the TME 10 Desktop.

• Customization of bitmaps and icons, which are the representation of
resources in the TME 10 Desktop (an icon is defined as a pair consisting of
an icon and its associated pop-up menu). See Figure 51 on page 118.

Chapter 6. AEF Customizations for the RS/6000 SP 117

Figure 51. An Icon with its Associated Bitmap

• Definition and installation of message catalogs associated to a set of dialogs.

All these customizations are done at run time, through the command line
interface, without the need to reload the database or restart the TME server.

6.3.1 Strengths and Weaknesses of AEF/DSL
It is worth noting that modifying the behavior of the TME 10 Desktop through
AEF/DSL is considerably simpler than using the Advanced Development
Environment provided by Tivoli (ADE/Tivoli).

ADE/Tivoli requires proficiency in Interface Definition Language (IDL), which is
the language used to define objects in a standard CORBA system, and TEIDL
(Tivoli Extension IDL).

TEIDL is an extension of IDL including, among other features, exceptions (similar
to those of C+ +) and object-naming facilities. All Tivoli resources are defined in
TEIDL, and ADE development extends the original framework seamlessly.
However, ADE development is complex and requires a substantial investment in
development resources.

Since AEF/DSL provides a simple, yet powerful, mechanism to extend the
behavior of objects in the TME 10, we believe that most users can benefit from
this type of development in order to obtain an integrated management
environment for the SP. As we saw in the previous section, the behavior of

118 Integrating TME 10 on the RS/6000 SP

managed nodes can be easily extended to provide virtually any functionality
desired by the user.

However, it is important to remember that even though AEF/DSL facilitates the
customization of the TME 10 Desktop, it is not intended to be a complete
development facility for the TME 10. Only the ADE fulfills this role. Thus, the
reader should also be aware of the inherent limitations of AEF/DSL
customizations:

• Preexisting object methods and attributes cannot be edited or modified.

• Objects and dialogs are updated through commands issued at run time.
These changes are permanently registered in the TME database, and only
take effect when the TME 10 Desktop is restarted.

• In the TME 10 Desktop, object methods are invoked as callbacks associated
with gadgets in the context of the object who owns the dialog. Other objects′
methods cannot be directly called (this type of call can only be issued
through ADE).

• Drag-and-drop operations, as defined in the TME 10 Desktop, cannot be
modified.

• Strictly speaking, not all dialogs can be effectively modified. For example,
the create dialogs (dialogs used to create new instances of a resource from
the TME 10 Desktop) cannot be modified in the case of a managed node.
The reason for this is that when a managed node is created, its client
software has to be installed. This is a complex process and it should not be
tampered with.

For a complete list of the capabilities of AEF, refer to the TME 10 AEF User′s
Guide.

6.4 Anatomy of an AEF/DSL Customization
An AEF/DSL customization involves the addition of methods or attributes to an
object and the modification or creation of its dialogs in order to take advantage
of the new behavior. This section discusses the basic mechanism of the
customizations. The reader not interested in AEF development can safely skip
the rest of this chapter.

Even though the customization process is not complex, it does involve several
steps, which can be better illustrated if we go through an example. Throughout
the rest of the chapter we will refer to the customization of a managed node as
an SP control workstation (the customization of SP nodes is even simpler). In
our environment, the control workstation′s name is sp2cw0.

As we saw in Figure 47 on page 111, the Properties dialog (named
properties_dialog) of the managed node has to be modified to produce the
extended dialog shown there. This dialog contains buttons (Run CW , SP
Applications) that open new dialogs, specific to our sample customizations.
These dialogs were newly created and installed in the managed node resource.

Usually, the first step is to look at the dialogs that are currently installed in a
resource by issuing the wlsdialog command. An example of the results of this
command for a managed node is shown in the following screen:

Chapter 6. AEF Customizations for the RS/6000 SP 119

� �
wlsdialog -r ManagedNode

dialog name (customization status)

view_dialog (resource-wide customization)
view_dialog (resource-wide customization)
view_dialog
parent_dialog
add_dialog
...� �

The output of wlsdialog lists the dialog names and whether they are the product
of customizations or not. In the preceding example, add_dialog and
parent_dialog are standard dialogs, as well as the second occurrence of
view_dialog. The first occurrence of view_dialog is a resource-wide
customization.

As we mentioned before, AEF/DSL customizations add items (dialogs, methods,
icons, and so on) to Tivoli objects, never affecting the original contents of the
object (in this case, the managed node resource type). This is why customized
dialogs appear twice in the listing.

Once we have identified the dialog we want to modify (in this case,
parent_dialog), we can extract it as follows:

wgetdialog -r ManagedNode parent_dialog >parent_dialog.d

Dialogs are stored in binary. The output file can be given any name, but it
should have a suffix of .d. The contents of parent_dialog.d must be
reverse-compiled in order to obtain an editable file.

rdsl parent_dialog.d >parent_dialog.dsl

The file parent_dialog.dsl now contains the source code for the standard
parent_dialog of the managed node resource. This file can be edited, modified,
or augmented with new gadgets that invoke the methods of managed nodes (we
provide more details on DSL dialogs in 6.5, “TME 10 Desktop Dialogs” on
page 123). For the time being, suppose that parent_dialog.dsl contains all the
customizations that we have developed.

In order to install the dialog in the extension object of the managed node, enter
the commands as shown in the following example:

� �
#COMPILE THE SOURCE DIALOG
dsl parent_dialog.dsl >parent_dialog.d
#INSTALL IT AT THE RESOURCE LEVEL
wputdialog -r ManagedNode parent_dialog <parent_dialog.d� �

Now the dialog will appear whenever the managed node parent_dialog is
invoked. However, this is not exactly what we want, for not all nodes in our
installation will be SP control workstations.

We want this new parent_dialog to appear only in a specific node in our
installation, say sp2cw0. (We have shown the preceding example just as an
illustration of a resource-wide customization.) The real invocation of the
wputdialog command should be as follows:

120 Integrating TME 10 on the RS/6000 SP

� �
wputdialog -l @ManagedNode:sp2cw0 parent_dialog <
parent_dialog.dsl� �

This is how instances are referenced within AEF commands, with syntax
@ResourceType:resourceInstance. Now the customized parent_dialog will
appear only when the parent_dialog of sp2cw0 is invoked.

Now, the dialog is installed and ready to use. Use the wlsdialog command to
verify that it is correct, as shown in the following example:

� �
wlsdialog -r ManagedNode

dialog name (customization status)

view_dialog (resource-wide customization)
view_dialog
parent_dialog (customized for sp2cw0)
parent_dialog
add_dialog
...� �

Usually, your new dialogs also reference new methods of the resource. For
example, for our customizations of the parent dialog, we needed a list to display
the node numbers of all the nodes controlled by the control workstation (the list
that appears under the Node Control section in Figure 47 on page 111). This
method is invoked in the parent_dialog (the details of the method invocation and
implementation will be discussed in a later section), and it has been
implemented in the script sp_cws.GetNodeNumbers.ksh (written in Korn shell).

In this case, it makes sense to install the method as a resource-wide
customization, for it is only used from the customized parent_dialog. This way
we avoid having to install it remotely in the nodes customized as control
workstations (which is what would happen if we installed the method on a per
instance basis). Only one copy of the method in the TME server is necessary in
resource-wide customizations.

Let us walk through the case of installing the method implemented by the script
sp_cws.GetNodeNumbers.ksh.

If this is the first new callback that is installed in our environment, we must
create a new directory, called /$INSTALL_DIR/bin/$interp/CUSTOM, where
INSTALL_DIR is the path of the TME installation directory and $interp is the
platform for which the script was written (in our case, the value of $interp is
aix4-r1).

If the callback is intended for a resource-wide customization, this directory is in
the server file system. If the callback is intended for just an instance of a
managed node, then this directory should be created where the Tivoli local
database has been installed for the managed node.

The callback implementation file is placed in this directory with permissions 755.

The installation of a new callback is done through the command line, using the
wputmeth command, as shown in the following example:

Chapter 6. AEF Customizations for the RS/6000 SP 121

� �
wputmeth -i aix4-r1 -a user -a super -a senior -a admin -r ManagedNode
sp_cws.GetNodeNumbers /aix4-r1/CUSTOM/sp_cws.GetNodeNumbers.ksh� �

Note that the name of the method and the script that implements it do not need
to match, though we have used the name of the callback with a suffix of .ksh for
our scripts, for the sake of simplicity.

We need to say a few words about this wputmeth call. The method has been
installed for the aix4-r1 platform (Tivoli does not yet support AIX 4.2) as a
resource-wide customization of the managed node. The -a flag specifies
authorization roles for the method.

In the preceding example, all user roles are granted privileges to run this
method, since any user that can access this dialog should be able to display it
(otherwise, the parent_dialog would give an error indicating the method was not
found). In this case, the access control information is not necessary, for if no
access privileges are specified, any Tivoli user with access to the resource can
execute the method. If you wish to change the access privileges to a custom
method, you must uninstall it first (using wrmmeth) and reinstall it with the new
privileges.

Note finally that the method path (/aix4-r1/CUSTOM/sp_cws.spmon.ksh) is a
relative path with respect to $INSTALL_DIR/BIN.

Furthermore, we could have installed this method as part of an instance, say
sp2cw0, by using -l @ManagedNode:sp2cw0 instead of -r ManagedNode.

Once wputmeth has completed successfully, the sp_cws.GetNodeNumbers method
becomes part of the behavior of managed node resources. We need to repeat
the process for each new callback that our customized parent_dialog uses.

Once the new version of parent_dialog and its associated callbacks have been
installed, the customization can be tested. After restarting the TME 10 Desktop,
whenever the parent dialog of sp2cw0 is invoked, we should see the new
customized dialog, seamlessly integrated with the rest of the Tivoli environment.

This is how a basic AEF/DSL customization takes place. Of course, we have left
out many important details. More information about the commands used here is
available in the TME 10 AEF User′s Guide or in the Tivoli man pages. Also, we
need to know how to modify dialogs and how to construct the callbacks. This
will be covered in the next sections.

The reader has probably noticed from the figures in 6.1, “High Level Overview of
a Sample Set of Customizations” on page 107 that, in addition to the new
dialogs, we have also introduced new bitmaps for our customized nodes. Tivoli
icons can be modified so that managed nodes (or any other resources, like
policy regions or profile managers) can be visually distinguished in the TME 10
Desktop.

Before going into more details on AEF/DSL, we need to know how to remove an
unwanted customization.

122 Integrating TME 10 on the RS/6000 SP

6.4.1 Removing AEF/DSL Customizations
AEF/DSL customizations can be easily removed from your environment without
affecting the standard behavior of the Tivoli resources. Suppose we were not
satisfied with the customization of the parent_dialog and its associated method
sp_cws.GetNodeNumbers in the previous section. We can remove the dialog by
issuing:

wrmdialog -l @ManagedNode:sp2cw0 parent_dialog

If the dialog was installed as a resource-wide customization, then we would have
used, instead of the instance name, -r ManagedNode.

It is equally easy to remove a callback. Again, we use the -l flag to remove
instance customizations and -r to remove resource-wide customizations. In the
case of sp_cws.sp_applications, we issue:

wrmmeth -r ManagedNode sp_cws.sp_applications.

The customizations no longer exists and sp2cw0 should now behave like a
standard AIX managed node.

6.5 TME 10 Desktop Dialogs
Since AEF customizations are tailored to alter the behavior of the TME 10
Desktop, it is necessary to get aquainted with the Dialog Specification Language
(DSL), as an integral part of the customization process.

A full discussion of DSL is given in TME 10 AEF User′s Guide. We aim, in this
section, to provide enough background to carry out simple, yet meaningful,
customizations to the existing TME 10 Desktop dialogs.

In order to illustrate the process, we will work with the simplest of our dialogs.
This dialog offers a set of buttons to launch several SP applications, like SP
Perspectives and the SP System Monitor GUI, from an SP control workstation
object. This is illustrated in Figure 52 on page 124.

Chapter 6. AEF Customizations for the RS/6000 SP 123

Figure 52. SP Applications for the Control Workstation

This dialog has been created for our sample customizations and it is installed
following the procedure discussed in the last section. It appears when the user
clicks on SP Applications on the Properties dialog. We will not concern
ourselves with how the launch pad can be invoked from parent_dialog for now.
Let us concentrate only on its dialog definition.

The source code of this dialog starts as follows:

124 Integrating TME 10 on the RS/6000 SP

� �
Command Dialog
{

Variables
{

CString man_node_name;
}

Attributes
{

Name = sp_launch_applications;
Title = Msg(SpManagedNode, $man_node_name, 1, $man_node_name);

}

Group
{

Attributes
{

Name = g1;
Title = Msg(SpManagedNode, ″SP Perspectives″ , 2) ;
TitlePos = TOP;
Border = YES;
Layout = VERTICAL;
ChildColumnAlignment = STRETCH;

}
Gadgets
{

Button
{

Name = launch_pad;
Title = Msg(SpManagedNode, ″Launch Pad″ , 3) ;
Commands = sp_cws.LaunchPerspectives@(″perspectives″) ;

}

...
}

...
}

...
}

� �

This definition covers up to the first button (Launch Pad). The rest of the dialog
is a set of similar button definitions, and is provided in Appendix H, “Contents of
AEF Customization Scripts” on page 201. Here we will use these lines to
analyze the structure of a dialog.

A DSL specification consists essentially of a list of the gadgets (buttons, in the
case of the sp_cws.sp_applications dialog) of a dialog. Furthermore, each
gadget is associated to one or more actions that allow the administrator to send
messages from the dialog to its corresponding resource. In our example, the
command sp_cws.LaunchPerspectives (the last code line in the example) is a
method (a callback) of the control workstation object that launches the SP
Perspectives GUI. For the installation process of a callback, see 6.4.1,
“Removing AEF/DSL Customizations” on page 123.

Chapter 6. AEF Customizations for the RS/6000 SP 125

6.5.1 Basic Structure of a DSL File
A DSL dialog has a very simple structure. It is made up of blocks, which are
sets of statements enclosed within curly braces enclosed in turn in a main dialog
block (starting with the keywords Command Dialog). Every statement in a block
is terminated by a semicolon. Blocks can appear in any order in the file, and
can occur any number of times within the same file.

There are three types of blocks in DSL, each with a defining keyword: Attributes,
Variables, and Gadgets.

There are also group blocks. These group blocks can contain attribute, variable,
or gadget blocks, as in the case of the sp_cws.sp_applications dialog previously
listed.

We will take a brief look at these three types of blocks in the next sections.

6.5.2 Variables and Variable Blocks
Variables and variable blocks contain a set of variable declarations. DSL
supports three data types:

String Similar to a char* in C.

CString A data type encoded within a string.

CMsg A data type encoded as a message.

A variable is declared with the following syntax:

type variable_name = variable_value;

The variable value could be either a constant or a method invocation (in other
words, a callback).

When a variable is not assigned any value from the dialog itself, its value is
assumed to proceed from the calling dialog, as a parameter of the dialog
invocation. We will call these variables dialog parameters. We cover the details
of dialog invocation in the section 6.6, “Methods for Customized Objects” on
page 129.

In our preceding example, we have defined the variable man_node_name, which
is a CString. That is, when the dialog is invoked from a callback, the value for
this variable is provided (more details on this later). Note that when we
reference this variable, we prefix it with the dollar sign ($), as in the following
function call:

Title = Msg(SpManagedNode, $man_node_name, 1, $man_node_name);

There are also some predefined variables, called desktop variables, which are
available in any dialog. The most important desktop variables are:

$owner The object reference of the dialog owner; that is, the object that the
dialog belongs to (used as a callback argument).

$selects The object references of the objects that have been selected in a
collection of icons in the dialog.

$icon The object reference of the resource represented by an icon.

$self The identifier of the dialog (each dialog instance has associated with
it an instance ID, which is stored in this variable).

126 Integrating TME 10 on the RS/6000 SP

As an example of the use of one of these desktop variables, let us list the
definition of the Dismiss button in our sample dialog. This button is associated
to a library call, dtc_dismiss, that requires as a parameter the identifier of the
dialog to be dismissed (that is, the sp_cws.sp_applications itself), as shown in
the following example:

� �
Button
{

Name = dismiss;
Title = Msg(GenericCollectCat,Dismiss,40);
Commands = dtc_dismiss($owner,sp_launch_applications, $self);

}

� �

Constant strings are enclosed in double quotes (″). Comments are allowed and
they are enclosed in the sequences ′ / *′ and ′*/ ′. They can expand any number
of lines, but they cannot be nested.

6.5.3 Attribute Blocks
An attribute block is a list of attribute names and values. Each pair represents
an attribute of the dialog or a gadget. In our example, the following block
defines the name of the dialog (sp_launch_applications) and its title, which is the
name of the managed node (this is the title of the window the user sees):

� �
Attributes
{

Name = sp_launch_applications;
Title = $man_node_name

}
� �

If the control workstation is spcw0, we could have hardcoded this name in the
dialog:

Title=″spcw0″ ;

However, a more elegant approach is to use the value of $man_node_name,
which contains the name of the current managed node.

Attributes can appear in any order in DSL and all are optional, with the
exception of the Name attribute.

The attribute block of the example corresponds to the complete dialog, but there
can be attribute blocks specific to gadgets.

For example, the list gadget can have attributes like Visible (to indicate whether
the list is visible in the dialog), Sensitive (to indicate whether the list is sensitive
to user input) or Rows (the number of text rows to display).

As you would expect, some attributes are specific to a gadget. For a complete
list of the gadgets that can be defined in DSL, together with their specific
attributes, see the TME 10 AEF User′s Guide. Information on gadgets is also
available through the standard UNIX manual pages facility when AEF has been
installed in your system.

Chapter 6. AEF Customizations for the RS/6000 SP 127

6.5.4 Gadget Blocks
A gadget block contains a list of gadgets, such as Table, List, Button,
CommandButton, and so on. The definition of the gadget itself is similar to the
block definition. Again, we follow the example of the sp_cws.sp_applications
dialog, as shown in the following example:

� �
Gadgets
{

Button
{

Name = launch_pad;
Title = Msg(SpManagedNode, ″Launch Pad″ , 3) ;
Commands = sp_cws.LaunchPerspectives@(″perspectives″) ;

}

Button
{

Name = hardware;
Title = Msg(SpManagedNode, ″Hardware″ , 5) ;
Commands = sp_cws.LaunchPerspectives@(″sphardware″) ;

}
...
}

� �

In this gadget block we have defined two buttons; the first one invokes the SP
Perspectives launch pad, and the second one directly invokes the SP
Perspectives hardware view.

Each gadget must have a name attribute that identifies it uniquely within the
dialog. Also, gadgets like button have a title attribute, which is the name that
appears on the button in the TME 10 Desktop. In this case, we have used the
message catalogs facility in order to provide some internationalization support in
our messages. For now, the reader can think of the value of the title attribute as
a string, as if we had typed

Title = ″Launch Pad″ ;

or

Title = ″Hardware″ ;

The commands attribute references the callback associated with the gadget. In
this case, both buttons reference the same callback, sp_cws.LaunchPerspectives.
We do not need to concern ourselves with the details of the method call itself in
this section.

Note also that we do not need to specify the physical position of a gadget in a
dialog display. DSL determines the physical layout of the display, arranging
gadgets according to their order in the file (from left to right, from top to bottom)
unless otherwise specified by the developer.

Gadgets can be grouped in a Group{} block. Every group of gadgets has its own
attributes block, and it can serve to identify visually a group of gadgets. We
have used this facility in our sample dialog to separate the buttons that launch
SP Perspectives views from the button to invoke the SP System Monitor GUI, as
shown in the following screen:

128 Integrating TME 10 on the RS/6000 SP

� �
Group
{

Attributes
{

Name = g1;
Title = Msg(SpManagedNode, ″SP Perspectives″ , 2) ;
TitlePos = TOP;
Border = YES;
Layout = VERTICAL;
ChildColumnAlignment = STRETCH;

}
Gadgets
{

Button
{

...
}
Button
{

...
}
...

}
}

� �

In the preceding example, the button definitions are displayed within a frame.
The frame is determined visually by a border (indicated by the attribute Border
= YES). The buttons are placed vertically (Layout = VERTICAL) within the
frame, filling the space allocated for the group (Chi ldColumnAl ignment =
STRETCH).

6.6 Methods for Customized Objects
Callbacks are method invocations with two purposes in a DSL dialog: to assign
a value to a variable, or to be invoked when a gadget is selected. (They appear
as the value of the command attribute on a gadget, as we saw in previous
examples). Callbacks used in AEF/DSL are either provided by the developer
(custom callbacks) or by the Tivoli libraries.

The callbacks used in DSL dialogs correspond to several types:

• Desktop callbacks, which are library callbacks and handle various aspects of
the dialog presentation and gadget manipulation (l ike dismissing or
refreshing a dialog). These callbacks are passed from the dialog to the TME
10 Desktop, as opposed to the callbacks mentioned in the following section,
which are external programs to the TME 10 Desktop.

• Legacy callbacks, which are shell scripts (preferably written in Perl, Bourne,
or Korn shell) that take arguments on the command line, read from standard
input, and write to standard output.

• ADE callbacks, which are identified by a percent sign (%) suffix. These
callbacks belong to ADE development and will not be discussed here.

AEF development uses desktop callbacks and legacy callbacks. We cover them
in the next section, starting with the desktop callbacks.

Chapter 6. AEF Customizations for the RS/6000 SP 129

6.6.1 Desktop Callbacks
As previously mentioned, desktop callbacks are in libraries provided by Tivoli.
AEF makes them available to a dialog automatically. Two libraries are currently
provided: desktop command callbacks and gadget library callbacks.

Even though their functionality is similar, gadget library callbacks are more
comprehensive, and Tivoli recommends using them instead of desktop callbacks.
However, we have used desktop callbacks in our sample customizations,
because we have had problems with gadget library callbacks, especially when
used in managed node dialogs. Therefore, we have limited our use of desktop
callbacks to only dismiss a dialog.

Desktop command callbacks start with the prefix ′dtc′. For example, dtc_refresh
instructs the TME 10 Desktop to execute the refresh callbacks for the dialog, and
dtc_dismiss dismisses the current dialog.

All callbacks are used similarly. We have already seen an example of a desktop
callback in the button that dismisses the launch dialog, as shown in the following
screen:

� �
Button
{

Name = dismiss;
Title = Msg(GenericCollectCat,Dismiss,40);
Commands = dtc_dismiss($owner,sp_launch_applications, $self);

}

� �

This code defines a button that dismisses the window. The desktop command
callback is defined as the value of the commands attribute. Its parameters are
the predefined variables $owner, $self (defined in 6.5.2, “Variables and Variable
Blocks” on page 126) and the name of the current dialog,
sp_launch_applications. This is the only library callback that we have used in
our sample customizations.

Gadget library calls are identified with an ampersand sign (&). For example, the
following call loads the dialog given by descriptor, assigns it a name and loads
its variables given in the parameters list:

create&(name, descriptor, parameters)

Every gadget has also a set of specific gadget library callbacks (for example,
set_left_column, set_row_select or set_rows are library calls for the table
gadget). As we mentioned in the beginning of this section, we have not used
gadget library callbacks in our customizations.

6.6.2 Legacy Callbacks
All other callbacks implemented in our customizations are legacy callbacks.
They are used to gather data from the SP system or invoke SP applications. You
should think of legacy callbacks as scripts, written in Perl, Bourne, or Korn shell
languages, which execute RS/6000 SP commands and relay their output to the
appropriate gadget in a dialog.

130 Integrating TME 10 on the RS/6000 SP

Our sample customizations are written in Korn shell language. They are invoked
from a dialog, just as desktop callbacks are. Again, we follow the example of
the sp_cws.sp_applications dialog, as shown in the following screen:

� �
Button {
Name = system_monitor;
Title = Msg(SpManagedNode, ″System Monitor GUI″ , 16) ;
Commands = sp_cws.spmon@();
}

� �

Legacy callbacks calls are characterized by suffixing the symbol ′@′ after the
callback call. The method sp_cws.spmon is a very simple Korn shell script
(sp_cws.spmon.ksh) that invokes the SP System Monitor GUI to be displayed in
the administrator ′s TME 10 Desktop. We list it in the following example:

� �
#!/bin/ksh

export DISPLAY=$WD_DISPLAY

We close stdin, stdout and stderr
exec 0<&-
exec 1<&-
exec 2<&-

/usr/lpp/ssp/bin/spmon -g

exit 0
� �

This script raises several important issues about legacy callbacks, and it is
worth examining these issues in detail.

First, since we want to be able to launch the SP Hardware Monitor GUI in the
administrator ′s display, we set the DISPLAY variable of the shell executing the
script to $WD_DISPLAY. Callback methods receive a set of predefined
environment variables from Tivoli. Among them is WD_DISPLAY, which
identifies the display of the calling dialog (in this case, sp_launch_applications).

Other important environment variables passed to the shell executing the script
are PATH, LD_LIBRARY_PATH, and OWNER.

In the next three executable lines, we close the I/O streams associated with the
script. When the TME invokes the callback, it keeps control over the shell I/O
streams and all other file descriptors that are opened in the callback. Since we
want to be able to launch one application (in this case, the SPMon GUI) and
return control to the TME 10 Desktop immediately afterward, we must close all
file descriptors associated with the callback.

The last line of the script returns an exit code to the TME 10 Desktop. Callbacks
in Tivoli use the traditional error code semantics in UNIX. In general there are
three predefined codes that the TME 10 Desktop will understand:

0 Success

1 Error

2 Usage error

Chapter 6. AEF Customizations for the RS/6000 SP 131

As mentioned before, legacy callbacks can be used to perform multiple
functions. In our prespecified customizations, we can access (read and/or write)
the SP System Data Repository, execute commands against a set of SP nodes or
control workstations, or launch specific SP applications.

We also use callbacks to manipulate the TME 10 Desktop itself: posting new
dialogs, posting messages, or updating information on a visible dialog. All these
TME 10 Desktop management functions are performed through special callback
utilities provided by Tivoli which are described in 6.6.3, “Callback Method
Util it ies.”

6.6.3 Callback Method Utilities
Before returning control to the TME, a legacy callback might need to manipulate
the TME 10 Desktop by posting a new dialog or a message. In order to manage
desktop dialogs and messages, several CLI commands are provided in AEF. The
following list represents those commands that we have found helpful in our
development.

• wpostdialog

This command posts a new dialog from a callback and is part of the AEF
Command Line Interface. Its syntax is very simple:

wpostdialog dialog_name name1 ... nameN param1 ... paramN

where name1...nameN are the names of the dialog parameters (without the
preceding dollar sign) and param1...paramN are their corresponding values.
As a more concrete example, consider the call:

wpostdialog sp_cws.sp_applications man_node_name ″$1″

This call appears in the method sp_cws.LaunchApplicationsDriver which is
associated with the SP Applications button in the parent_dialog of the control
workstation. When this button is selected, the method posts the dialog
sp_cws.sp_applications, giving as the value of the variable man_node_name,
the first argument received by the script. That is, in the parent_dialog, we
have the following:

� �
Button

{
Name = launch_applications_driver;
Title = Msg(SpManagedNode, ″SP applications″, 23);
Commands = sp_cws.LaunchApplicationsDriver@($man_node_name);

}
� �
This is how we can invoke one new dialog (sp_cws.sp_applications) from a
modified one (parent_dialog) and pass variables from one to the other (see
the previous examples to find out how the variable man_node_name is
declared within the sp_cws.sp_applications dialog). Note that the variable
man_node_name is passed in quotes to the new dialog.

The new dialog is made a child of the dialog that invoked the callback, and
therefore it becomes a dialog that belongs to the same object (indicated by
$owner). The option -t could be used in the wpostdialog call to make the new
dialog independent of the current dialog.

• wdispmsg

This command displays a new window with a message in the TME 10
Desktop. For example:

132 Integrating TME 10 on the RS/6000 SP

wdispmsg ″$result″

We have used it when running a command against a node or the control
workstation on the SP in order to display the result of the computation
($result is a variable local to the script).

• wdisperr

This command is very similar to wdipsmsg, but it presents the window as an
error. Consider the example:

wdisperr ″Operation could not be completed″

• wdispconf

This command displays a confirmation window, asking the user to make sure
that critical operations should indeed be executed. We have used this
command to display a confirmation message after the user has issued a
power off request against a set of nodes:

ANSWER=wdispconf ″Are you sure you want to power off nodes $* ?″

The user will be prompted to enter YES or NO at the new window where the
message is displayed. The return value of wdispconf is this answer. There is
also a more general form of the wdispconf command where the user can
indicate the labels of the YES or NO buttons:

ANSWER=wdispconf -y ″Cancel″ -n ″Continue″
″Do you want to continue the operation?″

• wstatusline

This command displays a message on the status area of the main window in
the administrator ′s TME 10 Desktop. For example:

wstatusline ″nodes $* have been powered off″

• wgetvalue and wsetvalue

These commands get and set the values of a dialog gadget. The following
example is a simplification of the actual use of wgetvalue in our
customizations:

wgetvalue -o $OWNER -d $DIALOG -i $INSTANCE
$GADGET ″new_value″

6.7 Bitmaps
Bitmaps are a very effective way to present information in a GUI. Tivoli
associates bitmaps with all its managed resources. These bitmaps appear often
in the dialogs belonging to the resource. When a bitmap represents a resource
instance in the TME 10 Desktop (that is, it appears in the TME 10 Desktop and its
pop-up menu is available), then it is called an icon. We will cover icons in the
next section.

Bitmaps are stored in the X pixmap (XPM) format. There is a public domain
XPM editor included with the Tivoli Productivity package.

To list the bitmaps currently associated with a resource, issue:

wlsbitmap -r ResourceType

Suppose that we have already created our own bitmap, or modified any of the
bitmaps already available in the resource. The bitmap can now be installed at
the instance level, or as a resource-wide bitmap.

Chapter 6. AEF Customizations for the RS/6000 SP 133

In our sample customizations, we have created a new icon for managed nodes
to be represented as SP nodes. The bitmap name is sp_node.xpm, and we have
installed it using:

wputbitmap -r ManagedNode sp_node <sp_node.xpm

That is, the name of the bitmap is sp_node. This bitmap can be now used in
managed node dialogs. Also, a bitmap can be installed for a specific instance of
a managed node using the -l flag, as in the commands wputdialog and wputmeth,
explained in 6.4, “Anatomy of an AEF/DSL Customization” on page 119.

A bitmap can be removed using wrmbitmap. If we want to delete our previous
customization, we would issue:

wrmbitmap -r ManagedNode sp_node

6.7.1 Icons
You can think of an icon as a pair made up of a bitmap and a pop-up menu,
which is defined as a DSL dialog. Icons are treated as special entities that
identify a resource. In this sense, the icon can be viewed as a state for a
resource. Icons are installed at the resource level, and each instance is in a
given state when it appears in the TME 10 Desktop.

The idea of the state of a resource makes sense when thinking about managed
nodes and their different platforms. For example, in the standard Tivoli
installation, these are some of the states for a managed node resource:

sunos4-client
sunos4-server
solaris2-client
solaris2-server
aix4-r1-client
aix4-r1-server

Most other resources (policy region, profile manager, and so on) have only one
state: normal.

In order to list all the states of a resource, say, a managed node, we use the
command wlsicon, as follows:

wlsicon -r ManagedNode

134 Integrating TME 10 on the RS/6000 SP

and its associated pop-up menu

Figure 53. The Control Workstation Icon, which is a bitmap

New states can be added to a resource through the wputicon command, which
associates a bitmap with a pop-up dialog. In the case of our sample
customizations, we have used the same bitmap that was installed in the previous
section. However, if the user wants to retrieve the existing bitmap for an icon,
wgetbitmap with an option indicating the state of the resource must be used. In
the case of the managed node, issue the following:

wgetbitmap -I aix4-r1 -r ManagedNode >cust.xpm

Similarly, the pop-up menus must be retrieved using the state name:

wgetdialog -I aix4-r1 -r ManagedNode >cust.d

The pop-up menus are DSL-defined dialogs, like all other desktop dialogs. To
install the icon, issue the following:

wputicon -r ManagedNode sp_node sp_node.d sp_node.xpm

In order to remove the sp_node icon, we issue:

wrmicon -r ManagedNode sp_node

A resource instance has a state. This state can be changed through the
command wputstate. If we had a managed node (sp2n1.msc.itso.ibm.com) that
we want to customize as an sp_node, we would run:

wputstate -l @ManagedNode:ps2n1.msc.itso.ibm.com sp_node

As expected, wputstate can only be run as an instance.

Chapter 6. AEF Customizations for the RS/6000 SP 135

Note: States are only used when referring to icons. They cannot be used when
installing other dialogs.

The reader has probably noticed that customizations of the parent_dialog for the
control workstation (see 6.4, “Anatomy of an AEF/DSL Customization” on
page 119) were made at the instance level or at the resource type level, not at
the state level.

6.8 Messages and Message Catalogs
Tivoli offers a message catalog facility, where the text appearing in the dialog
can be separated from the dialog definition itself and stored in a message file.
This provides basic internationalization support.

In our experience, message catalogs are cumbersome to use. They should only
be taken advantage of in extensive customizations, or when internationalization
support becomes critical. Readers who are not interested in providing
internationalization support can safely skip this section.

Continuing the approach used in this chapter, we discuss message catalogs
through an example taken from our customizations. We have included the text
of our customized dialogs in a new message catalog called SpManagedNode.
To build the message catalog, we create the file SpManagedNode.msg that
contains all the text messages that users see in dialogs, using the following
format:

� �
$set 2
$ g1_Title
1 SP Perspectives
$ launch_pad_Title
2 Launch Pad
...

� �

This catalog is compiled using the gencat facility provided with the AEF/DSL
package:

gencat SpManagedNode.cat SpManagedNode.msg

The binary file (SpManagedNode.cat) has to be moved to the
$TIVOLIDIR/msg_cat/C directory (note that all directories under msg_cat are just
links to the C directory). Make sure that root bin owns the file and that
permissions are set to 755. SpManagedNode is now ready to be referenced
from any dialog.

In our sp_cws.sp_applications dialog, we have used liberally our message
catalog facility. Consider the attributes block for the group of all buttons to
launch SP Perspectives views (which was also discussed in section 6.5, “TME 10
Desktop Dialogs” on page 123), as shown in the following example:

136 Integrating TME 10 on the RS/6000 SP

� �
attributes

{
Name = g1;
Title = Msg(SpManagedNode, ″SP Perspectives″ , 2) ;
TitlePos = TOP;
Border = YES;
Layout = VERTICAL;
ChildColumnAlignment = STRETCH;
}

� �

The title attribute is the value of the msg call. This call returns message number
2 of catalog SpManagedNode. In the case of any errors (for example, the
message catalog was not found), it also returns the string “SP Perspectives.”
That is, “SP Perspectives” is the default message and the message in
SpManagedNode is the standard message.

Changing the standard messages of SpManagedNode to a language other than
English is easy. After SpManagedNode.msg has been edited, the user should
follow the preceding procedure to build and install the new SpManagedNode.
Dialogs that reference this catalog do not need to be recompiled.

Note that there is another way to implement message catalogs, this is by using
the key facility, where each message is preceded by a string that serves as a
key to the message, thus eliminating the need to reference the number of the
message in the catalog.

However, using the key facility is more cumbersome and may have
disadvantages. It requires not only building the catalog (gencat), but also
running a preprocessor (cpp-dsl) to insert in the source dialog file the default
messages. This preprocessor only comes with the ADE package, which may not
be available in some installations. Furthermore, whenever the dialog is
extracted (by using wgetdialog) the preprocessed source file is what is obtained,
not the original source file. That is, the unprocessed file is lost for future
customizations.

For these reasons, we did not use the key facility, but limited ourselves to
referencing the integer keys of the messages. For more information on how to
use keyed message catalogs, refer to TME 10 AEF User′s Guide.

Chapter 6. AEF Customizations for the RS/6000 SP 137

138 Integrating TME 10 on the RS/6000 SP

Appendix A. Event Management Resource Variables

This appendix includes a list of all the PSSP 2.2 Event Management resource
variables with their data types. It also contains a list of all the Event
Management rexource class definitions and the default resource monitors
provided with PSSP 2.2.

A.1.1 A List of All Resource Variables
Resource Resource Resource
Variable Variable Variable
Type Data Type Name
======== ========= ========

Quantity long IBM.PSSP.CSS.bcast_rx_ok
Quantity long IBM.PSSP.CSS.bcast_tx_ok
Quantity long IBM.PSSP.CSS.ibadpackets
Quantity long IBM.PSSP.CSS.ibytes_dlt
Quantity long IBM.PSSP.CSS.ibytes_lsw
Quantity long IBM.PSSP.CSS.ibytes_msw
Quantity long IBM.PSSP.CSS.ierrors
Quantity long IBM.PSSP.CSS.ipackets_dlt
Quantity long IBM.PSSP.CSS.ipackets_drop
Quantity long IBM.PSSP.CSS.ipackets_lsw
Quantity long IBM.PSSP.CSS.ipackets_msw
Quantity long IBM.PSSP.CSS.nobufs
Quantity long IBM.PSSP.CSS.obytes_dlt
Quantity long IBM.PSSP.CSS.obytes_lsw
Quantity long IBM.PSSP.CSS.obytes_msw
Quantity long IBM.PSSP.CSS.oerrors
Quantity long IBM.PSSP.CSS.opackets_dlt
Quantity long IBM.PSSP.CSS.opackets_drop
Quantity long IBM.PSSP.CSS.opackets_lsw
Quantity long IBM.PSSP.CSS.opackets_msw
Quantity long IBM.PSSP.CSS.recvintr_dlt
Quantity long IBM.PSSP.CSS.recvintr_lsw
Quantity long IBM.PSSP.CSS.recvintr_msw
Quantity long IBM.PSSP.CSS.xmitintr_dlt
Quantity long IBM.PSSP.CSS.xmitintr_lsw
Quantity long IBM.PSSP.CSS.xmitintr_msw
Quantity long IBM.PSSP.CSS.xmitque_cur
Quantity long IBM.PSSP.CSS.xmitque_max
Quantity long IBM.PSSP.CSS.xmitque_ovf
Quantity long IBM.PSSP.HARMLD.err_count
Quantity long IBM.PSSP.HARMLD.mgrs_conn
Quantity long IBM.PSSP.HARMLD.refresh_cntr
Quantity long IBM.PSSP.LL.SCHEDD.current_jobs
Quantity long IBM.PSSP.LL.SCHEDD.failed_connections
Quantity long IBM.PSSP.LL.SCHEDD.failed_in_transactions
Quantity long IBM.PSSP.LL.SCHEDD.failed_out_transactions
Quantity long IBM.PSSP.LL.SCHEDD.jobs_idle
Quantity long IBM.PSSP.LL.SCHEDD.jobs_pending
Quantity long IBM.PSSP.LL.SCHEDD.jobs_running
Quantity long IBM.PSSP.LL.SCHEDD.jobs_starting
Quantity long IBM.PSSP.LL.SCHEDD.total_connections
Quantity long IBM.PSSP.LL.SCHEDD.total_in_transactions
Quantity long IBM.PSSP.LL.SCHEDD.total_jobs_completed

 Copyright IBM Corp. 1997 139

Quantity long IBM.PSSP.LL.SCHEDD.total_jobs_rejected
Quantity long IBM.PSSP.LL.SCHEDD.total_jobs_removed
Quantity long IBM.PSSP.LL.SCHEDD.total_jobs_submitted
Quantity long IBM.PSSP.LL.SCHEDD.total_jobs_vacated
Quantity long IBM.PSSP.LL.SCHEDD.total_out_transactions
Quantity long IBM.PSSP.LL.STARTD.current_jobs
Quantity long IBM.PSSP.LL.STARTD.failed_connections
Quantity long IBM.PSSP.LL.STARTD.failed_in_transactions
Quantity long IBM.PSSP.LL.STARTD.failed_out_transactions
Quantity long IBM.PSSP.LL.STARTD.jobs_pending
Quantity long IBM.PSSP.LL.STARTD.jobs_running
Quantity long IBM.PSSP.LL.STARTD.jobs_suspended
Quantity long IBM.PSSP.LL.STARTD.total_connections
Quantity long IBM.PSSP.LL.STARTD.total_in_transactions
Quantity long IBM.PSSP.LL.STARTD.total_jobs_completed
Quantity long IBM.PSSP.LL.STARTD.total_jobs_received
Quantity long IBM.PSSP.LL.STARTD.total_jobs_rejected
Quantity long IBM.PSSP.LL.STARTD.total_jobs_removed
Quantity long IBM.PSSP.LL.STARTD.total_jobs_suspended
Quantity long IBM.PSSP.LL.STARTD.total_jobs_vacated
Quantity long IBM.PSSP.LL.STARTD.total_out_transactions
State long IBM.PSSP.Membership.LANAdapter.state
State long IBM.PSSP.Membership.Node.state
Quantity long IBM.PSSP.PRCRS.procs_online
State SBS IBM.PSSP.Prog.pcount
State SBS IBM.PSSP.Prog.xpcount
State long IBM.PSSP.Response.Host.state
State long IBM.PSSP.Response.Switch.state
State long IBM.PSSP.SP_HW.Frame.amp_ARange
State long IBM.PSSP.SP_HW.Frame.amp_BRange
State long IBM.PSSP.SP_HW.Frame.amp_CRange
State long IBM.PSSP.SP_HW.Frame.amp_DRange
State long IBM.PSSP.SP_HW.Frame.applicationLevel
State long IBM.PSSP.SP_HW.Frame.codeVersion
State long IBM.PSSP.SP_HW.Frame.controllerIDMismatch
State long IBM.PSSP.SP_HW.Frame.controllerResponds
State long IBM.PSSP.SP_HW.Frame.controllerTail
State long IBM.PSSP.SP_HW.Frame.controllerTail1LED
State long IBM.PSSP.SP_HW.Frame.controllerTail2LED
State long IBM.PSSP.SP_HW.Frame.controllerTailActive
State long IBM.PSSP.SP_HW.Frame.daemonPollRate
State long IBM.PSSP.SP_HW.Frame.feepromEmpty
State long IBM.PSSP.SP_HW.Frame.feepromEraseCount
State long IBM.PSSP.SP_HW.Frame.frACLED
State long IBM.PSSP.SP_HW.Frame.frDCLED
State long IBM.PSSP.SP_HW.Frame.frNoPowerModA
State long IBM.PSSP.SP_HW.Frame.frNoPowerModB
State long IBM.PSSP.SP_HW.Frame.frNoPowerModC
State long IBM.PSSP.SP_HW.Frame.frNoPowerModD
State long IBM.PSSP.SP_HW.Frame.frNodeComm
State long IBM.PSSP.SP_HW.Frame.frPowerDC_A
State long IBM.PSSP.SP_HW.Frame.frPowerDC_B
State long IBM.PSSP.SP_HW.Frame.frPowerDC_C
State long IBM.PSSP.SP_HW.Frame.frPowerDC_D
State long IBM.PSSP.SP_HW.Frame.frPowerLED
State long IBM.PSSP.SP_HW.Frame.frPowerModAbad
State long IBM.PSSP.SP_HW.Frame.frPowerModBbad
State long IBM.PSSP.SP_HW.Frame.frPowerModCbad
State long IBM.PSSP.SP_HW.Frame.frPowerModDbad

140 Integrating TME 10 on the RS/6000 SP

State long IBM.PSSP.SP_HW.Frame.frPowerMods
State long IBM.PSSP.SP_HW.Frame.frPowerOff
State long IBM.PSSP.SP_HW.Frame.frPowerOff_A
State long IBM.PSSP.SP_HW.Frame.frPowerOff_B
State long IBM.PSSP.SP_HW.Frame.frPowerOff_C
State long IBM.PSSP.SP_HW.Frame.frPowerOff_D
State long IBM.PSSP.SP_HW.Frame.frRS232Active
State long IBM.PSSP.SP_HW.Frame.frRS232Active1
State long IBM.PSSP.SP_HW.Frame.frRS232Active2
State long IBM.PSSP.SP_HW.Frame.frTTNodeComm
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen1
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen2
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen3
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen4
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen5
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen6
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen7
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen8
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen9
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen10
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen11
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen12
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen13
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen14
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen15
State long IBM.PSSP.SP_HW.Frame.nodeLinkOpen16
State long IBM.PSSP.SP_HW.Frame.nodefail1
State long IBM.PSSP.SP_HW.Frame.nodefail2
State long IBM.PSSP.SP_HW.Frame.nodefail3
State long IBM.PSSP.SP_HW.Frame.nodefail4
State long IBM.PSSP.SP_HW.Frame.nodefail5
State long IBM.PSSP.SP_HW.Frame.nodefail6
State long IBM.PSSP.SP_HW.Frame.nodefail7
State long IBM.PSSP.SP_HW.Frame.nodefail8
State long IBM.PSSP.SP_HW.Frame.nodefail9
State long IBM.PSSP.SP_HW.Frame.nodefail10
State long IBM.PSSP.SP_HW.Frame.nodefail11
State long IBM.PSSP.SP_HW.Frame.nodefail12
State long IBM.PSSP.SP_HW.Frame.nodefail13
State long IBM.PSSP.SP_HW.Frame.nodefail14
State long IBM.PSSP.SP_HW.Frame.nodefail15
State long IBM.PSSP.SP_HW.Frame.nodefail16
State long IBM.PSSP.SP_HW.Frame.nodefail17
State long IBM.PSSP.SP_HW.Frame.rs232CTS
State long IBM.PSSP.SP_HW.Frame.rs232DCD
State long IBM.PSSP.SP_HW.Frame.serialNum
State long IBM.PSSP.SP_HW.Frame.supFailure
State long IBM.PSSP.SP_HW.Frame.tempRange
State long IBM.PSSP.SP_HW.Frame.type
State long IBM.PSSP.SP_HW.Frame.voltP48Range
State long IBM.PSSP.SP_HW.Node.P2_5dPresent
State long IBM.PSSP.SP_HW.Node.P48OK
State long IBM.PSSP.SP_HW.Node.P48Off10Sec
State long IBM.PSSP.SP_HW.Node.P4dPresent
State long IBM.PSSP.SP_HW.Node.P5DCok
State long IBM.PSSP.SP_HW.Node.codeVersion
State long IBM.PSSP.SP_HW.Node.currentShutdown
State long IBM.PSSP.SP_HW.Node.envLED
State long IBM.PSSP.SP_HW.Node.fanfail1

Appendix A. Event Management Resource Variables 141

State long IBM.PSSP.SP_HW.Node.fanfail1d
State long IBM.PSSP.SP_HW.Node.fanfail2
State long IBM.PSSP.SP_HW.Node.fanfail2d
State long IBM.PSSP.SP_HW.Node.fanfail3
State long IBM.PSSP.SP_HW.Node.fanfail3d
State long IBM.PSSP.SP_HW.Node.fanfail4
State long IBM.PSSP.SP_HW.Node.fanfail4d
State long IBM.PSSP.SP_HW.Node.fanfail5d
State long IBM.PSSP.SP_HW.Node.keyModeSwitch
State SBS IBM.PSSP.SP_HW.Node.lcd1
State long IBM.PSSP.SP_HW.Node.lcd1flash
State SBS IBM.PSSP.SP_HW.Node.lcd2
State long IBM.PSSP.SP_HW.Node.lcd2flash
State long IBM.PSSP.SP_HW.Node.memoryProtect
State long IBM.PSSP.SP_HW.Node.nodePower
State long IBM.PSSP.SP_HW.Node.nodePowerOn10Sec
State long IBM.PSSP.SP_HW.Node.powerLED
State long IBM.PSSP.SP_HW.Node.s1PortDTR
State long IBM.PSSP.SP_HW.Node.serialLinkOpen
State long IBM.PSSP.SP_HW.Node.serialNum
State long IBM.PSSP.SP_HW.Node.shutdownN12High
State long IBM.PSSP.SP_HW.Node.shutdownN12Low
State long IBM.PSSP.SP_HW.Node.shutdownP12High
State long IBM.PSSP.SP_HW.Node.shutdownP12Low
State long IBM.PSSP.SP_HW.Node.shutdownP2_5dHigh
State long IBM.PSSP.SP_HW.Node.shutdownP2_5dLow
State long IBM.PSSP.SP_HW.Node.shutdownP48Low
State long IBM.PSSP.SP_HW.Node.shutdownP4High
State long IBM.PSSP.SP_HW.Node.shutdownP4Low
State long IBM.PSSP.SP_HW.Node.shutdownP4dHigh
State long IBM.PSSP.SP_HW.Node.shutdownP4dLow
State long IBM.PSSP.SP_HW.Node.shutdownP5High
State long IBM.PSSP.SP_HW.Node.shutdownP5Low
State long IBM.PSSP.SP_HW.Node.shutdownP5iHigh
State long IBM.PSSP.SP_HW.Node.shutdownP5iLow
State long IBM.PSSP.SP_HW.Node.shutdownP5mHigh
State long IBM.PSSP.SP_HW.Node.shutdownP5mLow
State long IBM.PSSP.SP_HW.Node.shutdownTemp
State long IBM.PSSP.SP_HW.Node.smpDiagLEDoff
State long IBM.PSSP.SP_HW.Node.smpPowerLEDoff
State long IBM.PSSP.SP_HW.Node.tempRange
State long IBM.PSSP.SP_HW.Node.type
State long IBM.PSSP.SP_HW.Node.voltN12Range
State long IBM.PSSP.SP_HW.Node.voltP12Range
State long IBM.PSSP.SP_HW.Node.voltP2_5dRange
State long IBM.PSSP.SP_HW.Node.voltP48Range
State long IBM.PSSP.SP_HW.Node.voltP4Range
State long IBM.PSSP.SP_HW.Node.voltP4dRange
State long IBM.PSSP.SP_HW.Node.voltP5Range
State long IBM.PSSP.SP_HW.Node.voltP5iRange
State long IBM.PSSP.SP_HW.Node.voltP5mRange
State long IBM.PSSP.SP_HW.Switch.P48OK
State long IBM.PSSP.SP_HW.Switch.P48Off10Sec
State long IBM.PSSP.SP_HW.Switch.applicationLevel
State long IBM.PSSP.SP_HW.Switch.chip
State long IBM.PSSP.SP_HW.Switch.chipClkMissing
State long IBM.PSSP.SP_HW.Switch.chipReceivedInit
State long IBM.PSSP.SP_HW.Switch.chipSelftest
State long IBM.PSSP.SP_HW.Switch.clockSource

142 Integrating TME 10 on the RS/6000 SP

State long IBM.PSSP.SP_HW.Switch.codeVersion
State long IBM.PSSP.SP_HW.Switch.envLED
State long IBM.PSSP.SP_HW.Switch.epromErase
State long IBM.PSSP.SP_HW.Switch.epromProgram
State long IBM.PSSP.SP_HW.Switch.fanfail1
State long IBM.PSSP.SP_HW.Switch.fanfail2
State long IBM.PSSP.SP_HW.Switch.fanfail3
State long IBM.PSSP.SP_HW.Switch.fanfail4
State long IBM.PSSP.SP_HW.Switch.fanfail5
State long IBM.PSSP.SP_HW.Switch.feepromEmpty
State long IBM.PSSP.SP_HW.Switch.feepromEraseCount
State long IBM.PSSP.SP_HW.Switch.mux
State long IBM.PSSP.SP_HW.Switch.nodePower
State long IBM.PSSP.SP_HW.Switch.nodePowerOn10Sec
State long IBM.PSSP.SP_HW.Switch.osc
State long IBM.PSSP.SP_HW.Switch.pll
State long IBM.PSSP.SP_HW.Switch.port
State long IBM.PSSP.SP_HW.Switch.portClkMissing
State long IBM.PSSP.SP_HW.Switch.powerLED
State long IBM.PSSP.SP_HW.Switch.powerOnReset
State long IBM.PSSP.SP_HW.Switch.powerS1
State long IBM.PSSP.SP_HW.Switch.powerS2
State long IBM.PSSP.SP_HW.Switch.ps1Fail
State long IBM.PSSP.SP_HW.Switch.ps1FuseGoodRange
State long IBM.PSSP.SP_HW.Switch.ps1PowerGoodRange
State long IBM.PSSP.SP_HW.Switch.ps2Fail
State long IBM.PSSP.SP_HW.Switch.ps2FuseGoodRange
State long IBM.PSSP.SP_HW.Switch.ps2PowerGoodRange
State long IBM.PSSP.SP_HW.Switch.psParallelFail
State long IBM.PSSP.SP_HW.Switch.psParallelRange
State long IBM.PSSP.SP_HW.Switch.recPortNotTuned
State long IBM.PSSP.SP_HW.Switch.sendPortNotTuned
State long IBM.PSSP.SP_HW.Switch.serialNum
State long IBM.PSSP.SP_HW.Switch.shutdownN5High
State long IBM.PSSP.SP_HW.Switch.shutdownN5Low
State long IBM.PSSP.SP_HW.Switch.shutdownOC
State long IBM.PSSP.SP_HW.Switch.shutdownP12High
State long IBM.PSSP.SP_HW.Switch.shutdownP12Low
State long IBM.PSSP.SP_HW.Switch.shutdownP3_3High
State long IBM.PSSP.SP_HW.Switch.shutdownP3_3Low
State long IBM.PSSP.SP_HW.Switch.shutdownP48Low
State long IBM.PSSP.SP_HW.Switch.shutdownP5High
State long IBM.PSSP.SP_HW.Switch.shutdownP5Low
State long IBM.PSSP.SP_HW.Switch.shutdownTemp
State long IBM.PSSP.SP_HW.Switch.subtype
State long IBM.PSSP.SP_HW.Switch.supFailure
State long IBM.PSSP.SP_HW.Switch.synchReset
State long IBM.PSSP.SP_HW.Switch.tempRange
State long IBM.PSSP.SP_HW.Switch.type
State long IBM.PSSP.SP_HW.Switch.voltN5Range
State long IBM.PSSP.SP_HW.Switch.voltP12Range
State long IBM.PSSP.SP_HW.Switch.voltP3_3Range
State long IBM.PSSP.SP_HW.Switch.voltP48Range
State long IBM.PSSP.SP_HW.Switch.voltP5Range
Counter long IBM.PSSP.VSD.bytes_read
Counter long IBM.PSSP.VSD.bytes_write
Counter long IBM.PSSP.VSD.cache_hits
Counter long IBM.PSSP.VSD.client_req_read
Counter long IBM.PSSP.VSD.client_req_write

Appendix A. Event Management Resource Variables 143

Counter long IBM.PSSP.VSD.local_req_read
Counter long IBM.PSSP.VSD.local_req_write
Counter long IBM.PSSP.VSD.physical_req_read
Counter long IBM.PSSP.VSD.physical_req_write
Counter long IBM.PSSP.VSD.remote_req_read
Counter long IBM.PSSP.VSD.remote_req_write
Quantity long IBM.PSSP.VSD.server
Quantity long IBM.PSSP.VSD.state
Counter long IBM.PSSP.VSDdrv.1_retry_count
Counter long IBM.PSSP.VSDdrv.2_retry_count
Counter long IBM.PSSP.VSDdrv.3_retry_count
Counter long IBM.PSSP.VSDdrv.4_retry_count
Counter long IBM.PSSP.VSDdrv.5_retry_count
Counter long IBM.PSSP.VSDdrv.6_retry_count
Counter long IBM.PSSP.VSDdrv.7_retry_count
Counter long IBM.PSSP.VSDdrv.8_retry_count
Counter long IBM.PSSP.VSDdrv.9_retry_count
Quantity float IBM.PSSP.VSDdrv.avg_buddy_wait
Counter long IBM.PSSP.VSDdrv.buddy_buffer_shortage
Counter long IBM.PSSP.VSDdrv.cache_shortage
Counter long IBM.PSSP.VSDdrv.comm_buf_shortage
Counter long IBM.PSSP.VSDdrv.indirect_io
Counter long IBM.PSSP.VSDdrv.pbuf_shortage
Counter long IBM.PSSP.VSDdrv.rejected_no_buddy_buffer
Counter long IBM.PSSP.VSDdrv.rejected_requests
Counter long IBM.PSSP.VSDdrv.rejected_responds
Counter long IBM.PSSP.VSDdrv.request_block_shortage
Counter long IBM.PSSP.VSDdrv.request_rework
Counter long IBM.PSSP.VSDdrv.timeout_error
Quantity float IBM.PSSP.aixos.CPU.glidle
Quantity float IBM.PSSP.aixos.CPU.glkern
Quantity float IBM.PSSP.aixos.CPU.gluser
Quantity float IBM.PSSP.aixos.CPU.glwait
Counter long IBM.PSSP.aixos.Disk.busy
Counter long IBM.PSSP.aixos.Disk.rblk
Counter long IBM.PSSP.aixos.Disk.wblk
Counter long IBM.PSSP.aixos.Disk.xfer
Quantity float IBM.PSSP.aixos.FS.%nodesused
Quantity float IBM.PSSP.aixos.FS.%totused
Counter long IBM.PSSP.aixos.LAN.rcverrors
Counter long IBM.PSSP.aixos.LAN.recvdrops
Counter long IBM.PSSP.aixos.LAN.xmitdrops
Counter long IBM.PSSP.aixos.LAN.xmiterrors
Counter long IBM.PSSP.aixos.LAN.xmitovfl
Counter long IBM.PSSP.aixos.Mem.Kmem.calls
Counter long IBM.PSSP.aixos.Mem.Kmem.failures
Quantity long IBM.PSSP.aixos.Mem.Kmem.inuse
Quantity long IBM.PSSP.aixos.Mem.Kmem.memuse
Quantity long IBM.PSSP.aixos.Mem.Real.%free
Quantity long IBM.PSSP.aixos.Mem.Real.%pinned
Quantity long IBM.PSSP.aixos.Mem.Real.numfrb
Quantity long IBM.PSSP.aixos.Mem.Real.size
Counter long IBM.PSSP.aixos.Mem.Virt.pagein
Counter long IBM.PSSP.aixos.Mem.Virt.pageout
Counter long IBM.PSSP.aixos.Mem.Virt.pagexct
Counter long IBM.PSSP.aixos.Mem.Virt.pgspgin
Counter long IBM.PSSP.aixos.Mem.Virt.pgspgout
Quantity float IBM.PSSP.aixos.PagSp.%totalfree
Quantity float IBM.PSSP.aixos.PagSp.%totalused

144 Integrating TME 10 on the RS/6000 SP

Quantity long IBM.PSSP.aixos.PagSp.totalfree
Quantity long IBM.PSSP.aixos.PagSp.totalsize
Quantity float IBM.PSSP.aixos.Proc.runque
Quantity float IBM.PSSP.aixos.Proc.swpque
Quantity long IBM.PSSP.aixos.VG.free
Quantity float IBM.PSSP.aixos.cpu.idle
Quantity float IBM.PSSP.aixos.cpu.kern
Quantity float IBM.PSSP.aixos.cpu.user
Quantity float IBM.PSSP.aixos.cpu.wait
Quantity long IBM.PSSP.aixos.pagsp.%free
Quantity long IBM.PSSP.aixos.pagsp.size
State SBS IBM.PSSP.pm.Errlog
State SBS IBM.PSSP.pm.User_state1
State SBS IBM.PSSP.pm.User_state2
State SBS IBM.PSSP.pm.User_state3
State SBS IBM.PSSP.pm.User_state4
State SBS IBM.PSSP.pm.User_state5
State SBS IBM.PSSP.pm.User_state6
State SBS IBM.PSSP.pm.User_state7
State SBS IBM.PSSP.pm.User_state8
State SBS IBM.PSSP.pm.User_state9
State SBS IBM.PSSP.pm.User_state10
State SBS IBM.PSSP.pm.User_state11
State SBS IBM.PSSP.pm.User_state12
State SBS IBM.PSSP.pm.User_state13
State SBS IBM.PSSP.pm.User_state14
State SBS IBM.PSSP.pm.User_state15
State SBS IBM.PSSP.pm.User_state16

A.1.2 The Resource Class Definitions
Resource Variable Resource_monitor Observation Reporting

Class Name Interval Interval
================= ================ =========== =========

IBM.PSSP.CSS IBM.PSSP.harmld 5 5
IBM.PSSP.HARMLD IBM.PSSP.harmld 30 30
IBM.PSSP.LL IBM.PSSP.harmld 250 250
IBM.PSSP.Membership Membership 0 0
IBM.PSSP.PRCRS IBM.PSSP.harmld 86400 86400
IBM.PSSP.Prog IBM.PSSP.harmpd 0 0
IBM.PSSP.Response Response 0 0
IBM.PSSP.SP_HW IBM.PSSP.hmrmd 0 0
IBM.PSSP.VSD IBM.PSSP.harmld 60 10
IBM.PSSP.aixos.CPU aixos 15 0
IBM.PSSP.aixos.Disk aixos 30 0
IBM.PSSP.aixos.FS aixos 60 0
IBM.PSSP.aixos.LAN aixos 40 0
IBM.PSSP.aixos.Mem aixos 15 0
IBM.PSSP.aixos.PagSp aixos 30 0
IBM.PSSP.aixos.Proc aixos 60 0
IBM.PSSP.pm IBM.PSSP.pmanrmd 0 0

Appendix A. Event Management Resource Variables 145

A.1.3 The Default Resource Monitors
Resource Monitor Resource Monitor Resource Monitor

Name Path Arguments
================ ================ ================

IBM.PSSP.harmld /usr/lpp/ssp/bin/haemRM/harmld -f
IBM.PSSP.harmpd /usr/lpp/ssp/bin/haemRM/harmpd
IBM.PSSP.hmrmd /usr/lpp/ssp/bin/haemRM/hmrmd IBM.PSSP.hmrmd
IBM.PSSP.pmanrmd /usr/lpp/ssp/bin/pmand
Membership (internal)
Response (internal)
aixos (internal)

146 Integrating TME 10 on the RS/6000 SP

Appendix B. The SP MIBs

This appendix lists the SP MIBs distributed with PSSP 2.2.

The following list was extracted from the /etc/mib.defs file:

-- object definitions compiled from RFC1155-SMI { iso 3 6 1 }

internet iso.3.6.1
directory internet.1
mgmt internet.2
experimental internet.3
private internet.4
enterprises private.1

-- object definitions compiled from IBMSP-MIB { iso 3 6 1 }

ibm enterprises.2
ibmProd ibm.6
ibmSP ibmProd.117
ibmSPConfig ibmSP.1
ibmSPEMVariables ibmSP.3

ibmSPhostnodenumber ibmSPConfig.1 INTEGER
ibmSPhostpartaddr ibmSPConfig.2 IpAddress
ibmSPCWScodeversion ibmSPConfig.3 DisplayString
ibmSPprimaryCWSname ibmSPConfig.4 DisplayString
ibmSPprimaryCWSoperstatus ibmSPConfig.5 INTEGER
ibmSPbackupCWSname ibmSPConfig.6 DisplayString
ibmSPbackupCWSoperstatus ibmSPConfig.7 INTEGER
ibmSPSystemTable ibmSPConfig.8 Aggregate
ibmSPNodeEntry ibmSPSystemTable.1 Aggregate
ibmSPpartitionaddr ibmSPNodeEntry.1 IpAddress
ibmSPnodenumber ibmSPNodeEntry.2 INTEGER
ibmSPframenumber ibmSPNodeEntry.3 INTEGER
ibmSPslotnumber ibmSPNodeEntry.4 INTEGER
ibmSPslotsused ibmSPNodeEntry.5 INTEGER
ibmSPinitialhostname ibmSPNodeEntry.6 DisplayString
ibmSPreliablehostname ibmSPNodeEntry.7 DisplayString
ibmSPsysparname ibmSPNodeEntry.8 DisplayString
ibmSPcodeversion ibmSPNodeEntry.9 DisplayString
ibmSPErrlogVars ibmSP.2 Aggregate
ibmSPellabel ibmSPErrlogVars.1 DisplayString
ibmSPelidentifier ibmSPErrlogVars.2 DisplayString
ibmSPeldatetime ibmSPErrlogVars.3 DisplayString
ibmSPelsequencenum ibmSPErrlogVars.4 DisplayString
ibmSPelmachineid ibmSPErrlogVars.5 DisplayString
ibmSPelnodeid ibmSPErrlogVars.6 DisplayString
ibmSPelclass ibmSPErrlogVars.7 DisplayString
ibmSPeltype ibmSPErrlogVars.8 DisplayString
ibmSPelresource ibmSPErrlogVars.9 DisplayString
ibmSPelrscclass ibmSPErrlogVars.10 DisplayString
ibmSPelrsctype ibmSPErrlogVars.11 DisplayString
ibmSPellocation ibmSPErrlogVars.12 DisplayString
ibmSPelvpd ibmSPErrlogVars.13 DisplayString
ibmSPetdescription ibmSPErrlogVars.14 DisplayString
ibmSPetprobcauses ibmSPErrlogVars.15 DisplayString

 Copyright IBM Corp. 1997 147

ibmSPetusercauses ibmSPErrlogVars.16 DisplayString
ibmSPetuseraction ibmSPErrlogVars.17 DisplayString
ibmSPetinstcauses ibmSPErrlogVars.18 DisplayString
ibmSPetinstaction ibmSPErrlogVars.19 DisplayString
ibmSPetfailcauses ibmSPErrlogVars.20 DisplayString
ibmSPetfailaction ibmSPErrlogVars.21 DisplayString
ibmSPeldetaildata ibmSPErrlogVars.22 DisplayString
ibmSPEMEvent ibmSPEMVariables.1 Aggregate
ibmSPEMEventID ibmSPEMEvent.1 INTEGER
ibmSPEMEventFlags ibmSPEMEvent.2 INTEGER
ibmSPEMEventTime ibmSPEMEvent.3 TimeTicks
ibmSPEMEventLocation ibmSPEMEvent.4 INTEGER
ibmSPEMEventPartitionAddress ibmSPEMEvent.5 IpAddress
ibmSPEMEventVarsTableName ibmSPEMEvent.6 DisplayString
ibmSPEMEventVarsTableInstanceID ibmSPEMEvent.7 DisplayString
ibmSPEMEventVarName ibmSPEMEvent.8 DisplayString
ibmSPEMEventVarValueInstanceVector ibmSPEMEvent.9 DisplayString
ibmSPEMEventVarValuesTableInstanceID ibmSPEMEvent.10 DisplayString
ibmSPEMEventVarValue ibmSPEMEvent.11 DisplayString
ibmSPEMEventPredicate ibmSPEMEvent.12 DisplayString
ibmSPEMNodeDepVarsTable ibmSPEMVariables.2 Aggregate
ibmSPEMNodeDepVarEntry ibmSPEMNodeDepVarsTable.1 Aggregate
ibmSPEMNodeDepVarName ibmSPEMNodeDepVarEntry.1 DisplayString
ibmSPEMNodeDepVarDescr ibmSPEMNodeDepVarEntry.2 DisplayString
ibmSPEMNodeDepVarType ibmSPEMNodeDepVarEntry.3 DisplayString
ibmSPEMNodeDepVarDataType ibmSPEMNodeDepVarEntry.4 DisplayString
ibmSPEMNodeDepVarSBSFormat ibmSPEMNodeDepVarEntry.5 DisplayString
ibmSPEMNodeDepVarInitValue ibmSPEMNodeDepVarEntry.6 DisplayString
ibmSPEMNodeDepVarCurValueIndex ibmSPEMNodeDepVarEntry.7 INTEGER
ibmSPEMNodeDepVarClass ibmSPEMNodeDepVarEntry.8 DisplayString
ibmSPEMNodeDepVarVecElDefn ibmSPEMNodeDepVarEntry.9 DisplayString
ibmSPEMNodeDepVarVecElDescr ibmSPEMNodeDepVarEntry.10 DisplayString
ibmSPEMNodeDepVarPTXName ibmSPEMNodeDepVarEntry.11 DisplayString
ibmSPEMNodeDepVarDefPred ibmSPEMNodeDepVarEntry.12 DisplayString
ibmSPEMNodeDepVarEventDescr ibmSPEMNodeDepVarEntry.13 DisplayString
ibmSPEMNodeDepVarLocator ibmSPEMNodeDepVarEntry.14 DisplayString
ibmSPEMNodeDepVarOrderGroup ibmSPEMNodeDepVarEntry.15 DisplayString
ibmSPEMNodeIndepVarsTable ibmSPEMVariables.3 Aggregate
ibmSPEMNodeIndepVarEntry ibmSPEMNodeIndepVarsTable.1 Aggregate
ibmSPEMNodeIndepPartaddr ibmSPEMNodeIndepVarEntry.1 IpAddress
ibmSPEMNodeIndepVarName ibmSPEMNodeIndepVarEntry.2 DisplayString
ibmSPEMNodeIndepVarDescr ibmSPEMNodeIndepVarEntry.3 DisplayString
ibmSPEMNodeIndepVarType ibmSPEMNodeIndepVarEntry.4 DisplayString
ibmSPEMNodeIndepVarDataType ibmSPEMNodeIndepVarEntry.5 DisplayString
ibmSPEMNodeIndepVarSBSFormat ibmSPEMNodeIndepVarEntry.6 DisplayString
ibmSPEMNodeIndepVarInitValue ibmSPEMNodeIndepVarEntry.7 DisplayString
ibmSPEMNodeIndepVarCurValueIndex ibmSPEMNodeIndepVarEntry.8 INTEGER
ibmSPEMNodeIndepVarClass ibmSPEMNodeIndepVarEntry.9 DisplayString
ibmSPEMNodeIndepVarVecElDefn ibmSPEMNodeIndepVarEntry.10 DisplayString
ibmSPEMNodeIndepVarVecElDescr ibmSPEMNodeIndepVarEntry.11 DisplayString
ibmSPEMNodeIndepVarPTXName ibmSPEMNodeIndepVarEntry.12 DisplayString
ibmSPEMNodeIndepVarDefPred ibmSPEMNodeIndepVarEntry.13 DisplayString
ibmSPEMNodeIndepVarEventDescr ibmSPEMNodeIndepVarEntry.14 DisplayString
ibmSPEMNodeIndepVarOrderGroup ibmSPEMNodeIndepVarEntry.15 DisplayString
ibmSPEMVarValuesTable ibmSPEMVariables.4 Aggregate
ibmSPEMVarValuesEntry ibmSPEMVarValuesTable.1 Aggregate
ibmSPEMVarValueIndex ibmSPEMVarValuesEntry.1 INTEGER
ibmSPEMVarValueInstanceVector ibmSPEMVarValuesEntry.2 DisplayString
ibmSPEMVarValuePartaddr ibmSPEMVarValuesEntry.3 IpAddress

148 Integrating TME 10 on the RS/6000 SP

ibmSPEMVarValueName ibmSPEMVarValuesEntry.4 DisplayString
ibmSPEMVarValue ibmSPEMVarValuesEntry.5 DisplayString

Appendix B. The SP MIBs 149

150 Integrating TME 10 on the RS/6000 SP

Appendix C. Contents of the Attached Diskette

This appendix contains a listing of the contents of the diskette distributed with
this redbook.

This is a copy of the README file that has been placed on the diskette:

(C) Copyright IBM Corp. 1997
All rights reserved.

This diskette is distributed with the IBM publication
″Integrating TME 10 on the RS/6000 SP″ , SG24-2071-00

A copy of the files provided on this diskette is also available on the
World Wide Web at the following URL:

ftp://www.redbooks.ibm.com/redbooks/SG242071
The latest version of these files can be found at that location.

This diskette contains 4 files:
README -- This file
tecad_pssp.tar -- A tar file containing all of the necessary files to

install and execute the PSSP T/EC Adapter.
SPCustomizations.tar -- A tar file containing all of the necessary files

to install and customize your TME 10 Desktop with SP-specific
customizations.

tasklibs.tar -- A tar file containing 2 sample task libraries to be
loaded into your TME 10 Framework to perform some common RS/6000 SP
administrative functions.

For details on using each set of files, refer to the ″Integrating
Tivoli on the RS/6000 SP″ redbook. Each tar file contains its own README
with instructions on loading and using the files.

To view the table of contents for one of the tar files, issue the
following AIX command:

/usr/bin/tar -tvf tar_file
where ″tar_file″ is the name of the tar file of interest.

To extract the files from one of the tar files, do the following:
1. Create a working directory to contain the files.
2. Make the working directory your current directory.
3. Copy the tar file from the diskette to the current directory.
4. Extract the files with the following command:

/usr/bin/tar -xvf tar_file .

The following is the table of contents for the tecad_pssp.tar file:
-rw-r----- 18018 1 7704 Jun 16 10:16:44 1997 README
-rwxr----- 18018 1 1253 Jun 16 10:16:44 1997 install_agent
-rwxr----- 18018 1 590 Jun 16 10:16:45 1997 makeit
-rw-r----- 18018 1 2532 Jun 16 10:16:44 1997 pssp_classes.baroc
-rw-r----- 18018 1 16374 Jun 16 10:16:44 1997 rvclasses.cfg
-rwxr-xr-x 18018 1 130265 Jun 16 13:23:20 1997 tecad_pssp
-rw-r----- 18018 1 28107 Jun 16 10:16:45 1997 tecad_pssp.c
-rw-r----- 18018 1 39 Jun 16 10:16:41 1997 tecad_pssp.cfg
-rwxr----- 18018 1 511 Jun 16 13:22:31 1997 test_agent

The following is the table of contents for the tasklibs.tar file:
-rw------- 19768 1 971 Jun 17 13:50:22 1997 README
-rw-r----- 19768 1 6116 Jun 02 07:51:23 1997 SPTasks.tll
-rw-r----- 19768 1 6556 Jun 02 07:51:37 1997 SwitchTasks.tll

The following is the table of contents for the SPCustomizations.tar file:
drwx--s--- 204 1 0 Jun 03 16:51:02 1997 Resource/
-rw------- 204 1 267 Jun 03 16:23:38 1997 Resource/Makefile
drwxr-sr-x 204 1 0 May 15 00:19:36 1997 Resource/Makefiles/
-rw------- 204 1 266 Feb 25 14:12:58 1997 Resource/Makefiles/Makefile.Bitmap
-rw------- 204 1 347 Feb 25 14:13:03 1997 Resource/Makefiles/Makefile.Callback
-rw------- 204 1 328 Mar 18 09:44:52 1997 Resource/Makefiles/Makefile.Common
-rw------- 204 1 266 Feb 25 14:13:18 1997 Resource/Makefiles/Makefile.Dialog
-rw------- 204 1 248 Feb 21 14:13:32 1997 Resource/Makefiles/Makefile.Icon
-rw------- 204 1 271 Jun 03 16:53:12 1997 Resource/Makefiles/Makefile.MsgCat
-rw------- 204 1 251 May 14 21:53:20 1997 Resource/Makefiles/Makefile.State
-rw------- 204 1 120 May 15 00:13:55 1997 Resource/README
drwxr-sr-x 204 1 0 Jun 03 17:10:10 1997 Resource/ManagedNode/
-rw-r--r-- 0 1 1274 Jun 03 17:10:10 1997 Resource/ManagedNode/Makefile
drwxr-sr-x 204 1 0 Jun 03 17:11:31 1997 Resource/ManagedNode/Bitmap/
-rw-r--r-- 0 0 4101 May 22 14:41:18 1997 Resource/ManagedNode/Bitmap/sp_cws.xpm
-rw-r--r-- 0 0 1701 May 22 14:41:18 1997 Resource/ManagedNode/Bitmap/sp_node.xpm
-rw------- 204 1 476 Feb 25 13:26:32 1997 Resource/ManagedNode/Bitmap/Makefile
-rw------- 204 1 2827 Feb 25 13:26:33 1997 Resource/ManagedNode/Bitmap/sp_cws.xpm.non_perspectives
-rw------- 204 1 2828 Feb 25 13:26:33 1997 Resource/ManagedNode/Bitmap/sp_node.xpm.non_perspectives
drwxr-sr-x 204 1 0 Jun 03 17:12:03 1997 Resource/ManagedNode/Callback/
-rw------- 204 1 1305 May 29 11:02:07 1997 Resource/ManagedNode/Callback/sp_cws.get_all_cw_attributes.ksh
-rw------- 204 1 919 May 29 12:22:16 1997 Resource/ManagedNode/Callback/sp_cws.get_node_numbers.ksh
-rw------- 204 1 566 May 29 12:22:31 1997 Resource/ManagedNode/Callback/sp_cws.launch_applications_driver.ksh
-rw------- 204 1 855 May 29 11:13:31 1997 Resource/ManagedNode/Callback/sp_cws.launch_perspectives.ksh

 Copyright IBM Corp. 1997 151

-rw------- 204 1 856 May 29 12:22:51 1997 Resource/ManagedNode/Callback/sp_cws.modify_attribute.ksh
-rw------- 204 1 795 May 29 13:03:15 1997 Resource/ManagedNode/Callback/sp_cws.modify_attribute_driver.ksh
-rw------- 204 1 1306 May 29 11:21:56 1997 Resource/ManagedNode/Callback/sp_cws.power_nodes_off.ksh
-rw------- 204 1 1301 May 29 11:22:14 1997 Resource/ManagedNode/Callback/sp_cws.power_nodes_on.ksh
-rw------- 204 1 457 May 29 11:30:54 1997 Resource/ManagedNode/Callback/sp_cws.spmon.ksh
-rw------- 204 1 727 May 29 11:26:01 1997 Resource/ManagedNode/Callback/sp_cws.run_command_driver_nodes.ksh
-rw------- 204 1 1512 May 29 14:58:53 1997 Resource/ManagedNode/Callback/sp_cws.run_command_nodes.ksh
-rw------- 204 1 646 May 29 10:50:03 1997 Resource/ManagedNode/Callback/sp.run_command.ksh
-rw------- 204 1 7251 May 29 15:27:01 1997 Resource/ManagedNode/Callback/Makefile
-rw------- 204 1 1384 May 29 11:34:34 1997 Resource/ManagedNode/Callback/sp_node.get_all_attributes.ksh
-rw------- 204 1 594 May 29 11:38:09 1997 Resource/ManagedNode/Callback/sp_node.get_frame_number.ksh
-rw------- 204 1 512 May 29 11:38:28 1997 Resource/ManagedNode/Callback/sp_node.get_node_number.ksh
-rw------- 204 1 589 May 29 11:38:49 1997 Resource/ManagedNode/Callback/sp_node.get_slot_number.ksh
-rw------- 204 1 825 May 29 11:42:30 1997 Resource/ManagedNode/Callback/sp_node.modify_attribute.ksh
-rw------- 204 1 775 May 29 12:24:43 1997 Resource/ManagedNode/Callback/sp_node.modify_attribute_driver.ksh
-rw------- 204 1 529 May 29 10:47:46 1997 Resource/ManagedNode/Callback/sp.run_command_driver.ksh
-rw------- 204 1 2640 May 29 12:21:36 1997 Resource/ManagedNode/Callback/sp_cws.check_node_response.ksh
-rw------- 204 1 884 May 29 10:58:34 1997 Resource/ManagedNode/Callback/sp_cws.efence_nodes.ksh
-rw------- 204 1 892 May 29 10:59:01 1997 Resource/ManagedNode/Callback/sp_cws.eunfence_nodes.ksh
drwxr-sr-x 204 1 0 Jun 03 17:12:20 1997 Resource/ManagedNode/Dialog/
-rw------- 204 1 1418 May 29 12:59:44 1997 Resource/ManagedNode/Dialog/sp_cws.cw_attributes_dialog
-rw------- 204 1 1248 May 29 13:05:44 1997 Resource/ManagedNode/Dialog/sp_cws.modify_attribute_dialog
-rw------- 204 1 2628 Mar 13 11:51:04 1997 Resource/ManagedNode/Dialog/Makefile
-rw------- 204 1 780 May 19 13:55:32 1997 Resource/ManagedNode/Dialog/sp_cws.run_dialog_nodes
-rw------- 204 1 2627 May 15 11:45:14 1997 Resource/ManagedNode/Dialog/sp_cws.sp_applications
-rw------- 204 1 1257 May 19 13:58:21 1997 Resource/ManagedNode/Dialog/sp_node.modify_attribute_dialog
-rw------- 204 1 1271 May 19 13:59:21 1997 Resource/ManagedNode/Dialog/sp_node.node_attributes_dialog
-rw------- 204 1 717 May 19 13:29:22 1997 Resource/ManagedNode/Dialog/sp.run_dialog
-rw------- 204 1 561 May 19 15:41:29 1997 Resource/ManagedNode/Dialog/sp_cws.node_response
-rw------- 204 1 5732 May 19 13:53:34 1997 Resource/ManagedNode/Dialog/sp_cws.parent_dialog.custom
-rw------- 204 1 4443 May 19 14:08:29 1997 Resource/ManagedNode/Dialog/sp_node.parent_dialog.custom
-rw------- 204 1 12780 May 19 13:54:19 1997 Resource/ManagedNode/Dialog/sp_cws.parent_dialog
-rw------- 204 1 12780 May 19 13:54:19 1997 Resource/ManagedNode/Dialog/sp_cws.parent_dialog.last
-rw------- 204 1 11503 May 19 14:09:00 1997 Resource/ManagedNode/Dialog/sp_node.parent_dialog
-rw------- 204 1 12780 May 19 13:54:19 1997 Resource/ManagedNode/Dialog/sp_cws.parent_dialog.sp
-rw------- 204 1 11503 May 19 14:09:00 1997 Resource/ManagedNode/Dialog/sp_node.parent_dialog.sp
-rw------- 204 1 11503 May 19 14:09:00 1997 Resource/ManagedNode/Dialog/sp_node.parent_dialog.last
drwxr-sr-x 204 1 0 Jun 03 17:12:07 1997 Resource/ManagedNode/Icon/
-rw------- 204 1 604 Feb 25 17:36:46 1997 Resource/ManagedNode/Icon/Makefile
-rw------- 204 1 2738 May 19 14:18:14 1997 Resource/ManagedNode/Icon/sp_cws.custom
-rw------- 204 1 2704 May 19 14:23:58 1997 Resource/ManagedNode/Icon/sp_node.custom
-rw------- 204 1 3448 May 19 14:18:46 1997 Resource/ManagedNode/Icon/sp_cws.last
-rw------- 204 1 3411 May 19 14:24:12 1997 Resource/ManagedNode/Icon/sp_node.last
-rw------- 204 1 3448 May 19 14:18:46 1997 Resource/ManagedNode/Icon/sp_cws
-rw------- 204 1 3411 May 19 14:24:12 1997 Resource/ManagedNode/Icon/sp_node
-rw------- 204 1 3448 May 19 14:18:46 1997 Resource/ManagedNode/Icon/sp_cws.sp
-rw------- 204 1 3411 May 19 14:24:12 1997 Resource/ManagedNode/Icon/sp_node.sp
drwxr-sr-x 204 1 0 Jun 03 17:12:11 1997 Resource/ManagedNode/State/
-rw------- 204 1 491 May 14 21:53:59 1997 Resource/ManagedNode/State/Makefile
-rw------- 204 1 0 Mar 19 12:50:53 1997 Resource/ManagedNode/State/sp_cws
-rw------- 204 1 0 Mar 19 12:50:56 1997 Resource/ManagedNode/State/sp_node
drwxr-sr-x 204 1 0 Mar 26 15:28:51 1997 Resource/ManagedNode/IconExt/
-rw------- 204 1 90 Mar 26 15:28:40 1997 Resource/ManagedNode/IconExt/Makefile
drwxr-sr-x 204 1 0 Jun 03 17:12:08 1997 Resource/ManagedNode/MsgCat/
-rw------- 204 1 196 Jun 03 16:31:32 1997 Resource/ManagedNode/MsgCat/Makefile
-rw------- 204 1 1904 May 19 15:48:52 1997 Resource/ManagedNode/MsgCat/SpManagedNode.msg
-rw-r--r-- 0 1 1274 Jun 03 17:08:11 1997 Resource/ManagedNode/Makefile.last
-rw------- 204 1 106 Jun 03 16:53:52 1997 Resource/ManagedNode/LIST
drwxr-sr-x 204 1 0 May 15 00:20:52 1997 Resource/bin/
-rwx------ 204 1 561 Mar 02 21:32:26 1997 Resource/bin/aefInstallIcon
-rwx------ 204 1 416 May 14 22:33:50 1997 Resource/bin/aefUninstallDialog
-rwx------ 204 1 416 Mar 02 21:36:19 1997 Resource/bin/aefUninstallBitmap
-rwx------ 204 1 312 Mar 02 21:39:14 1997 Resource/bin/aefUninstallIcon
-rwx------ 204 1 794 Mar 02 21:37:21 1997 Resource/bin/aefUninstallCallback
-rwx------ 204 1 365 Mar 02 21:33:53 1997 Resource/bin/aefPutRemoteFile
-rwx------ 204 1 222 Mar 19 12:52:53 1997 Resource/bin/aefChangeState
-rwx------ 204 1 442 Mar 02 21:29:01 1997 Resource/bin/aefInstallBitmap
-rwx------ 204 1 1044 Jun 03 16:25:34 1997 Resource/bin/aefInstallCallback
-rwx------ 204 1 649 Mar 19 13:34:44 1997 Resource/bin/aefInstallDialog
-rwx------ 204 1 117 Mar 02 21:34:30 1997 Resource/bin/aefRemoveRemoteFile
-rwx------ 204 1 726 Jun 03 16:55:27 1997 Resource/bin/tivoliPaths
-rwx------ 204 1 5156 Mar 02 21:35:12 1997 Resource/bin/aefResource
-rwx------ 204 1 434681 Nov 07 21:31:04 1996 Resource/bin/gmake
-rwx------ 204 1 543 Feb 25 13:26:10 1997 Resource/bin/aefInstall
-rwx------ 204 1 1175 May 14 22:41:17 1997 Resource/bin/aefUninstall
-rwx------ 204 1 1294 Mar 26 16:01:46 1997 Resource/bin/installAdminManagedNodeIconExtensions
-rwx------ 204 1 1703 May 14 22:55:37 1997 Resource/bin/createManagedNodeMakefile
-rwx------ 204 1 536 Jun 03 17:06:04 1997 Resource/bin/spcustomFastInstall
-rwx------ 204 1 3693 May 14 21:41:39 1997 Resource/bin/spcustomCustomInstall
-rwx------ 204 1 60 May 14 21:47:13 1997 Resource/bin/spcustomUninstall
-rw------- 204 1 2966 Jun 03 14:16:27 1997 Resource/INSTALL

152 Integrating TME 10 on the RS/6000 SP

Appendix D. Source files for the PSSP T/EC Adapter

The PSSP T/EC Adapter is not a standard part of PSSP and is therefore provided
on an as is basis. Support is available through a Programming Request for
Price Quotation (PRPQ).

However, in this appendix, we provide you with the source files to adapt the
tecad_pssp to your own requirements using the compilation scripts. These files
are also included on the diskette attached to this redbook.

The tecad_pssp program is adaptable to new resource classes and resource
variables. These classes and variables may come from other programs or
resource monitors.

D.1.1 The makeit file
Figure 54 shows a listing of the makeit file which creates the tecad_pssp
command from the C code tecad_pssp.c.

� �
(C) Copyright IBM Corp. 1997
All rights reserved.
#
add the gcc bin directory to your PATH
export PATH=$PATH:/usr/local/bin

if [[-z $1]]
then

mode=″unsecure″
else

mode=$1
fi
if [[$mode = ″unsecure″]]
then

gcc -g -I/usr/local/Tivoli/include/aix4-r1/tivoli \
-L/usr/local/Tivoli/lib/aix4-r1 tecad_pssp.c \
-lteceif -lg++ -lm -o tecad_pssp

exit 0
fi

if [[$mode = ″secure″]]
then

gcc -g -I/usr/local/Tivoli/include/aix4-r1/tivoli \
-L/usr/local/Tivoli/lib/aix4-r1 tecad_pssp.c \
-ltec -las -las_imp -ltds -lui -ltas -ldes \
-ltmfimp -ltmf -lthreads -lg++ -lm -o tecad_pssp

exit 0
fi

echo ″usage: makeit [unsecure/secure]″
exit 1

� �
Figure 54. PSSP T/EC Adapter makeit f i le

 Copyright IBM Corp. 1997 153

D.1.2 The PSSP T/EC Adapter BAROC File
This section provides a complete listing of the BAROC file tecad_pssp.baroc.

(C) Copyright IBM Corp. 1997
All rights reserved.

BASE CLASS FOR ALL PSSP CLASSES

TEC_CLASS:
PSSP_EVENT ISA EVENT
DEFINES
{

source: default= ″PSSP″ ;
sub_source: default= ″PSSP″ ;
sub_origin: default= ″N/A″ ;
msg_catalog: default= ″none″ ;
msg_index: default= 0;
repeat_count: default = 0;
subscription_handle: STRING;
predicate: STRING;
principal: STRING;
type : STRING;
resource_variable: STRING;

};
END

TEC_CLASS:
PSSP_REAL ISA PSSP_EVENT
DEFINES
{

value: REAL;
node_number: INTEGER;

};
END

TEC_CLASS:
PSSP_CPU ISA PSSP_REAL
DEFINES
{

CPU_number: INTEGER, default=1;
};

END

TEC_CLASS:
PSSP_FS ISA PSSP_REAL
DEFINES
{

logical_volume: STRING;
volume_group: STRING;

};
END

TEC_CLASS:
PSSP_LONG ISA PSSP_EVENT
DEFINES
{

value: INT32;
node_number: INTEGER;

154 Integrating TME 10 on the RS/6000 SP

};
END

TEC_CLASS:
PSSP_LLSTART ISA PSSP_LONG
DEFINES
{

STARTD: STRING;
};

END

TEC_CLASS:
PSSP_LLSCHED ISA PSSP_LONG
DEFINES
{

SCHEDD: STRING;
};

END

TEC_CLASS:
PSSP_PAGESPACE ISA PSSP_LONG
DEFINES
{

name: STRING;
};

END

TEC_CLASS:
PSSP_VG ISA PSSP_LONG
DEFINES
{

volume_group: STRING;
};

END

TEC_CLASS:
PSSP_KMEM ISA PSSP_LONG
DEFINES
{

memory_type: STRING;
};

END

TEC_CLASS:
PSSP_DISK ISA PSSP_LONG
DEFINES
{

disk_name: STRING;
};

END

TEC_CLASS:
PSSP_ADAPTER ISA PSSP_LONG
DEFINES
{

adapter_type: STRING;
adapter_number: INT32;

};
END

Appendix D. Source files for the PSSP T/EC Adapter 155

TEC_CLASS:
PSSP_PROCESS ISA PSSP_EVENT
DEFINES
{

node_number: INTEGER;
user_name: STRING;
program_name: STRING;
previous_count: INTEGER;
current_count: INTEGER;
current_list: STRING;

};
END

TEC_CLASS:
PSSP_USER ISA PSSP_EVENT
DEFINES
{

node_number: STRING;
user_string: STRING;

};
END

TEC_CLASS:
PSSP_ERRLOG ISA PSSP_EVENT
DEFINES
{

node_number : INTEGER;
resource_type: STRING;
resource_name: STRING;
alert_flag: STRING;
error_type: STRING;
error_class: STRING;
error_ID: STRING;
sequence_number: STRING;
resource_class: STRING;
error_label: STRING;

};
END

TEC_CLASS:
PSSP_VSD ISA PSSP_EVENT
DEFINES
{

L1 : STRING;
L2 : STRING;
VSD_name: STRING;
node_number: INTEGER;

};
END

TEC_CLASS:
PSSP_STRING ISA PSSP_EVENT
DEFINES
{

data_string : STRING;
node_number: INTEGER;

};
END

156 Integrating TME 10 on the RS/6000 SP

TEC_CLASS:
PSSP_NETWORK ISA PSSP_LONG
DEFINES
{

adapter: STRING;
};

END

TEC_CLASS:
PSSP_SWITCH ISA PSSP_EVENT
DEFINES
{

switch_number: INTEGER;
value: INT32;

};
END

TEC_CLASS:
PSSP_FRAME ISA PSSP_EVENT
DEFINES
{

frame_number: INTEGER;
value: INT32;

};
END

D.1.3 The tecad_pssp.c File
This section lists the tecad_pssp.c file. You can adapt this file to match your
own requirements and compile it using the makeit script listed in Figure 54 on
page 153.

/*
 * (C) Copyright IBM Corp. 1997
 * All Rights Reserved.
 */

/* test ″agent″ for either a TME or non-TME connection. Link with the
 * appropriate libraries to build a TME version or non-TME version
 */

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <assert.h>
#include <memory.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/stat.h>

#include ″agent_comm.h″

#define NAME_SIZE 256
#define PREFIX_SIZE 64
#define NUM_VAR 4
#define NUM_PREFIX 5

Appendix D. Source files for the PSSP T/EC Adapter 157

typedef enum
{
PSSP_LONG,
PSSP_REAL,
PSSP_ADAPTER,
PSSP_PROCESS,
PSSP_STRING,
PSSP_NETWORK,
PSSP_FRAME,
PSSP_SWITCH,
PSSP_VSD,
PSSP_DISK,
PSSP_FS,
PSSP_KMEM,
PSSP_VG,
PSSP_CPU,
PSSP_PAGESPACE,
PSSP_ERRLOG,
PSSP_LLSTART,
PSSP_LLSCHED

} class_names_t;

void DoLong(void);
void DoReal(void);
void DoAdapter(void);
void DoProcess(void);
void DoString(void);
void DoNetwork(void);
void DoFrame(void);
void DoSwitch(void);
void DoVSD(void);
void DoDisk(void);
void DoFS(void);
void DoKmem(void);
void DoVG(void);
void DoCPU(void);
void DoPageSpace(void);
void DoErrLog(void);
void DoLLStart(void);
void DoLLSched(void);
void ValidateSeverity(void);

void
print_usage_and_exit(char **argv)
{

fprintf(stderr, ″Usage: agent [-f cfgfile] [-c] [-p port] \
[server_host]\n″) ;

exit(1);
}

/* Global Variables */
int rc, i, n, theClassNumber;
char *theHandle, *theIVector, *theLocation, *thePredicate,
*thePrincipal, *theRVCount,*theRVName, *theRVType, *theRVTime;

int theRVCountValue;
char theSeverity[256];
char *theRVArray[NUM_VAR];

158 Integrating TME 10 on the RS/6000 SP

char *theRVPrefix[NUM_PREFIX];
char theClassName[256];
char s[2048], theMessage[256], theAdmin[256];
char tmp_str[256];
char names[18][256];
float real_value =0;
long long_value = 0;

int
main(int argc, char *argv[])
{

int c;
extern int optind;
extern char *optarg;
char *location = NULL;
char cfg_file_name[FILE_LEN];
char *cfg_file = NULL;
unsigned short port = 0;
tec_handle_t th;
extern int tec_errno;
int connectionless = 0;
int oneway = 0;
tec_delivery type = use_default;
struct stat sbuf;

FILE *cmdfp;

/* allocate arrays */
for(i = 0; i < NUM_VAR; i++)

if((theRVArray[i] = (char *)calloc(NAME_SIZE,sizeof(char)))
== NULL)

{
assert(theRVArray[i]);

}
for(i = 0; i < NUM_PREFIX; i++)

if((theRVPrefix[i] = (char *)calloc(PREFIX_SIZE,sizeof(char)))
== NULL)

{
assert(theRVPrefix[i]);

}

*theMessage = ′ \0′ ;
*theAdmin = ′ \0′ ;
*theSeverity = ′ \0′ ;
*cfg_file_name= ′ \0′ ;

while ((c = getopt(argc, argv, ″Ccl:a:m:p:s:″)) != -1) {
switch (c) {
case ′ l′ :
/* Specifies location of the agent configuration file */
strcpy(cfg_file_name, optarg);
if (stat(cfg_file_name, &sbuf) != 0) {
/* not existant */
printf(″%s: Not existant\n″ , cfg_file_name);
print_usage_and_exit(argv);

}
cfg_file = cfg_file_name;
break;

case ′ p′ :

Appendix D. Source files for the PSSP T/EC Adapter 159

/* Specifies the port to connect to on the Server */
if (!isdigit(*optarg)) {
print_usage_and_exit(argv);

}
port = atol(optarg);
break;

case ′ C′ :
oneway++;

case ′ c′ :
connectionless++;
type = connection_less;
break;

case ′ m′ :
strcpy(theMessage, optarg);
break;

case ′ s′ :
strcpy(theSeverity, optarg);
ValidateSeverity();
break;

case ′ a′ :
strcpy(theAdmin,optarg);
break;

default:
print_usage_and_exit(argv);
break;

}
}

if (optind + 1 == argc) {
location = argv[optind];

}

/* If cfg_file is NULL, the agent_init will look for
/etc/Tivoli/tecad_eif.conf, if this is unavailable, all
parameters to tec_create_handle must be provided */
if(*cfg_file_name == ′ \0′)
{
if (stat(″ . / tecad_pssp.cfg″, &sbuf) != 0)
{
/* not existant */
printf(″%s: Not existant\n″ , ″ . /tecad_pssp.cfg″) ;
print_usage_and_exit(argv);

}
else
strcpy(cfg_file_name,″ . / tecad_pssp.cfg″) ;

}

tecad_pssp_init(cfg_file_name);

if ((th = tec_create_handle(location, port, oneway, type)) == NULL)
{
fprintf(stderr, ″tec_create_handle failed, errno = %d\n″ , tec_errno);
exit(1);

}

/*

160 Integrating TME 10 on the RS/6000 SP

* Try to flush any buffered events before processing new ones.
* Note: If the TEC Server or Network is down all buffered
* events will still try to be sent; there is no abort - yet.
*/
tec_flush_events(th);

/* Grab all environment variables, and format the event accordingly */

theHandle = getenv(″PMAN_HANDLE″) ;
theIVector = getenv(″PMAN_IVECTOR″) ;
theLocation = getenv(″PMAN_LOCATION″) ;
thePredicate = getenv(″PMAN_PRED″) ;
thePrincipal = getenv(″PMAN_PRINCIPAL″) ;
theRVCount = getenv(″PMAN_RVCOUNT″) ;
theRVCountValue = atoi(theRVCount);
theRVArray[0] = getenv(″PMAN_RVFIELD0″) ;
if(theRVCountValue >= 2)

theRVArray[1] = getenv(″PMAN_RVFIELD1″) ;
else

*theRVArray[1] = ′ \0′ ;
if(theRVCountValue == 3)

theRVArray[2] = getenv(″PMAN_RVFIELD2″) ;
else

*theRVArray[2] = ′ \0′ ;
theRVName = getenv(″PMAN_RVNAME″) ;
theRVType = getenv(″PMAN_RVTYPE″) ;
theRVTime = getenv(″PMAN_TIME″) ; theHandle = getenv(″PMAN_HANDLE″) ;
theIVector = getenv(″PMAN_IVECTOR″) ;
theLocation = getenv(″PMAN_LOCATION″) ;
thePredicate = getenv(″PMAN_PRED″) ;
thePrincipal = getenv(″PMAN_PRINCIPAL″) ;
theRVCount = getenv(″PMAN_RVCOUNT″) ;
theRVCountValue = atoi(theRVCount);
theRVArray[0] = getenv(″PMAN_RVFIELD0″) ;
if(theRVCountValue >= 2)

theRVArray[1] = getenv(″PMAN_RVFIELD1″) ;
else

*theRVArray[1] = ′ \0′ ;
if(theRVCountValue == 3)

theRVArray[2] = getenv(″PMAN_RVFIELD2″) ;
else

*theRVArray[2] = ′ \0′ ;
theRVName = getenv(″PMAN_RVNAME″) ;
theRVType = getenv(″PMAN_RVTYPE″) ;
theRVTime = getenv(″PMAN_TIME″) ;

/* We need to classify what type of event to generate */

sscanf(theRVName, \
″%[̂ .].%[^.].%[^.].%[^.].%[^.]″ , \
theRVPrefix[0],theRVPrefix[1],theRVPrefix[2], \
theRVPrefix[3],theRVPrefix[4]);

/* initiate the message string */
*s = ′ \0′ ;

/* The SDRGetObjects command is used to retrieve the class
type from the SDR */

Appendix D. Source files for the PSSP T/EC Adapter 161

sprintf(tmp_str,
″ /usr/lpp/ssp/bin/SDRGetObjects tecad_pssp_Class rv_name==%s class_number″ ,
theRVName);

if((cmdfp = popen(tmp_str,″r″)) == NULL)
{
fprintf(stderr,″The SDRGetObjects command failed\n″) ;
exit(1);

}
fscanf(cmdfp,″%s″ ,tmp_str); /* get rid of the header */
if((n = fscanf(cmdfp,″%d″,&theClassNumber)) != 1)
{
fprintf(stderr,″The SDRGetObjects command failed\n″) ;
exit(2);

}
pclose(cmdfp);

switch(theClassNumber)
{
case PSSP_LONG:
DoLong();
break;

case PSSP_REAL:
DoReal();
break;

case PSSP_ADAPTER:
DoAdapter();
break;

case PSSP_PROCESS:
DoProcess();
break;

case PSSP_STRING:
DoString();
break;

case PSSP_NETWORK:
DoNetwork();
break;

case PSSP_FRAME:
DoFrame();
break;

case PSSP_SWITCH:
DoSwitch();
break;

case PSSP_VSD:
DoVSD();
break;

case PSSP_DISK:
DoDisk();
break;

case PSSP_FS:
DoFS();
break;

case PSSP_KMEM:
DoKmem();
break;

case PSSP_VG:
DoVG();
break;

162 Integrating TME 10 on the RS/6000 SP

case PSSP_CPU:
DoCPU();
break;

case PSSP_PAGESPACE:
DoPageSpace();
break;

case PSSP_ERRLOG:
DoErrLog();
break;

case PSSP_LLSTART:
DoLLStart();
break;

case PSSP_LLSCHED:
DoLLSched();
break;

default:
fprintf(stderr,

″tecad_pssp: Could not find class type, using default PSSP_Event\n″) ;
strcpy(theClassName,″PSSP_EVENT″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
break;

}

/* fill in the common slots for PSSP_EVENT */
sprintf(tmp_str,″subscription_handle=′%s′ ; ″ , theHandle);
strcat(s,tmp_str);
sprintf(tmp_str,″predicate=′%s′ ; ″ , thePredicate);
strcat(s,tmp_str);
sprintf(tmp_str,″principal=′%s′ ; ″ , thePrincipal);
strcat(s,tmp_str);
sprintf(tmp_str,″type=′%s′ ; ″ , theRVType);
strcat(s,tmp_str);
sprintf(tmp_str,″resource_variable=′%s′ ; ″ , theRVName);
strcat(s,tmp_str);
if(*theMessage != ′ \0′)
{
sprintf(tmp_str,″msg=′%s′ ; ″ , theMessage);
strcat(s,tmp_str);

}
if(*theAdmin != ′ \0′)
{
sprintf(tmp_str,″administrator=′%s′ ; ″ , theAdmin);
strcat(s,tmp_str);

}
sprintf(tmp_str,″severity=%s;″ ,theSeverity);
strcat(s,tmp_str);

/* Get the IP of the node number and put it in the origin field */

sscanf(theLocation,″%d″,&n);
if(n == 0)
{
sprintf(tmp_str,″host hostname″) ;

}
else
{
sprintf(tmp_str,″host /usr/lpp/ssp/bin/hostlist -dn %d\n″ ,n);
if((cmdfp = popen(tmp_str,″r″)) == NULL)

Appendix D. Source files for the PSSP T/EC Adapter 163

{
fprintf(stderr,″The hostlist command failed\n″) ;
exit(1);

}
}

if((cmdfp = popen(tmp_str,″r″)) == NULL)
{
fprintf(stderr,″The hostname command failed\n″) ;
exit(1);

}

fscanf(cmdfp,″%s″ ,tmp_str); /* get the hostname */
strcat(s,″hostname=′ ″) ;
strcat(s,tmp_str);
strcat(s,″ ′ ; ″) ;
fscanf(cmdfp,″%s″ ,tmp_str); /* get the word ′ is′ */
fscanf(cmdfp,″%s″ ,tmp_str); /* get the IP address */
strcat(s,″origin=′ ″) ;
strcat(s,tmp_str);
strcat(s,″ ′ ; ″) ;

pclose(cmdfp);

strcat(s,″END\n″) ;

/* keep the newline and adda ^A to the end, this makes
the message ″<msg>\n\001″ */

s[strlen(s)] = ′ \001′ ;
s[strlen(s)+1] = ′ \0′ ;

/* tec_put_event will send the event to the selected server */
rc = tec_put_event(th, s);

/* you may want to print out the event string to check it
printf(″%s″ ,s); */

if (rc == -1) {
fprintf(stderr, ″tec_put_event failed, errno = %d\n″ , tec_errno);
exit(1);

}

/* eof - close the connection and exit */
tec_destroy_handle(th);
exit(0);

}

void DoLong()
{
strcpy(theClassName,″PSSP_LONG″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_LONG\n″) ;

}
else
{
strcat(s,″value=″) ;
strcat(s,theRVArray[0]);

164 Integrating TME 10 on the RS/6000 SP

strcat(s,″ ; ″) ;
}

strcat(s,″node_number=″) ;
strcat(s,theLocation);
strcat(s,″ ; ″) ;

}

void DoReal()
{
strcpy(theClassName,″PSSP_REAL″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_LONG\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);
strcat(s,tmp_str);

}
sprintf(tmp_str,″node_number=%s″ ,theLocation);
strcat(s,tmp_str);

}

void DoAdapter()
{
strcpy(theClassName,″PSSP_ADAPTER″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
n = sscanf(theIVector, \

″%[̂ =]=%[^;];%[^=]=%[^;];%[^=]=%[^;]″ , \
names[0],names[1],names[2], \
names[3],names[4],names[5]);

if (n != 6)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_ADAPTER″) ;
exit(1);

}
for(i = 0; i < 5; i++)
{
if(!strcmp(names[i],″AdapterType″))
sprintf(tmp_str,″adapter_type=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″NodeNum″))
sprintf(tmp_str,″node_number=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″AdapterNum″))
sprintf(tmp_str,″adapter_number=%s;″ ,names[i+1]);

else continue;
strcat(s,tmp_str);

}
}
void DoProcess()
{
strcpy(theClassName,″PSSP_PROCESS″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
n = sscanf(theIVector, \

″%[̂ =]=%[^;];%[^=]=%[^;];%[^=]=%s″ , \
names[0],names[1],names[2], \
names[3],names[4],names[5]);

Appendix D. Source files for the PSSP T/EC Adapter 165

if (n != 6)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_PROCESS″) ;
exit(1);

}
for(i = 0; i < 5; i++)
{
if(!strcmp(names[i],″ProgName″))
sprintf(tmp_str,″program_name=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″NodeNum″))
sprintf(tmp_str,″node_number=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″UserName″))
sprintf(tmp_str,″user_name=%s;″ ,names[i+1]);

else continue;
strcat(s,tmp_str);

}
if(theRVCountValue != 3)
{
fprintf(stderr,″Incorrect number of arguments for the pcount event\n″) ;
exit(1);

}
sscanf(theRVArray[0],″%[̂ =]=%s″ ,names[0],names[1]);
sprintf(tmp_str,″current_count=%s;″ ,names[1]);
strcat(s,tmp_str);
sscanf(theRVArray[1],″%[̂ =]=%s″ ,names[0],names[1]);
sprintf(tmp_str,″previous_count=%s;″ ,names[1]);
strcat(s,tmp_str);
sscanf(theRVArray[2],″%[̂ =]=%s″ ,names[0],names[1]);
sprintf(tmp_str,″current_list=′%s′ ; ″ , names[1]);
strcat(s,tmp_str);

}

void DoString()
{
strcpy(theClassName,″PSSP_STRING″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_STRING\n″) ;

}
else
{
sprintf(tmp_str,″string=%s″ ,theRVArray[0]);
strcat(s,tmp_str);

}
sprintf(tmp_str,″node_number=%s″ ,theLocation);
strcat(s,tmp_str);

}

void DoNetwork()
{
strcpy(theClassName,″PSSP_NETWORK″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_NETWORK\n″) ;

166 Integrating TME 10 on the RS/6000 SP

}
else
{
sprintf(tmp_str,″value=%s″ ,theRVArray[0]);
strcat(s,tmp_str);

}
sprintf(tmp_str,″node_number=%s″ ,theLocation);
strcat(s,tmp_str);
n = sscanf(theIVector,″%[̂ =]=%s″ ,names[0],names[1]);
if (n != 2)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_Network″) ;
exit(1);

}

if(!strcmp(names[0],″Adapter″))
{
sprintf(tmp_str,″adapter=%s;″ ,names[1]);
strcat(s,tmp_str);

}
else
{
fprintf(stderr,

″tecad_pssp: wrong variable in instantiation vector \
for variable PSSP_Network\n″) ;

exit(1);
}

}

void DoFrame()
{
strcpy(theClassName,″PSSP_Frame″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_FRAME\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);
strcat(s,tmp_str);

}
n = sscanf(theIVector,″%[̂ =]=%s″ ,names[0],names[1]);
if (n != 2)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_Frame″) ;
exit(1);

}

if(!strcmp(names[0],″FrameNum″))
{
sprintf(tmp_str,″frame_number=%s;″ ,names[1]);
strcat(s,tmp_str);

}
else
{

Appendix D. Source files for the PSSP T/EC Adapter 167

fprintf(stderr,
″tecad_pssp: wrong variable in instantiation vector for variable PSSP_Frame\n″) ;

exit(1);
}

}

void DoSwitch()
{
strcpy(theClassName,″PSSP_Switch″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_SWITCH\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);
strcat(s,tmp_str);

}
n = sscanf(theIVector,″%[̂ =]=%s″ ,names[0],names[1]);
if (n != 2)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_Frame″) ;
exit(1);

}

if(!strcmp(names[0],″SwitchNum″))
{
sprintf(tmp_str,″switch_number=%s;″ ,names[1]);
strcat(s,tmp_str);

}
else
{
fprintf(stderr,

″tecad_pssp: wrong variable in instantiation vector for variable PSSP_Frame\n″) ;
exit(1);

}
}

void DoVSD()
{
strcpy(theClassName,″PSSP_VSD″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_VSD\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);
strcat(s,tmp_str);

}
n = sscanf(theIVector, \

″%[̂ =]=%[^;];%[^=]=%[^;]; \
%[^=]=%[^;];%[^=]=%s″ , \
names[0],names[1],names[2],names[3], \

168 Integrating TME 10 on the RS/6000 SP

names[4],names[5],names[6],names[7]);
if (n != 8)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_VSD″) ;
exit(1);

}
for(i = 0; i < 5; i++)
{
if(!strcmp(names[i],″VSD″))
sprintf(tmp_str,″VSD_name=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″L1″))
sprintf(tmp_str,″L1=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″L2″))
sprintf(tmp_str,″L2=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″NodeNum″))
sprintf(tmp_str,″node_number=%s;″ ,names[i+1]);

else continue;
strcat(s,tmp_str);

}
}

void DoDisk()
{
strcpy(theClassName,″PSSP_Disk″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_Disk\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);
strcat(s,tmp_str);

}
n = sscanf(theIVector, \

″%[̂ =]=%[^;];%[^=]=%s″ , \
names[0],names[1],names[2],names[3]);

if (n != 4)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_Disk″) ;
exit(1);

}
for(i = 0; i < 3; i++)
{
if(!strcmp(names[i],″Name″))
sprintf(tmp_str,″disk_name=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″NodeNum″))
sprintf(tmp_str,″node_number=%s;″ ,names[i+1]);

else continue;
strcat(s,tmp_str);

}
}

void DoFS()
{
strcpy(theClassName,″PSSP_FS″) ;

Appendix D. Source files for the PSSP T/EC Adapter 169

sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_FS\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);
strcat(s,tmp_str);

}
n = sscanf(theIVector, \
″%[̂ =]=%[^;];%[^=]=%[^;];%[^=]=%s″ , \
names[0],names[1],names[2],names[3],names[4],names[5]);
if (n != 6)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_FS″) ;
exit(1);

}
for(i = 0; i < 5; i++)
{
if(!strcmp(names[i],″LV″))
sprintf(tmp_str,″logical_volume=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″VG″))
sprintf(tmp_str,″volume_group=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″NodeNum″))
sprintf(tmp_str,″node_number=%s;″ ,names[i+1]);

else continue;
strcat(s,tmp_str);

}
}

void DoKmem()
{
strcpy(theClassName,″PSSP_Kmem″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_Kmem\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);
strcat(s,tmp_str);

}
n = sscanf(theIVector, \
″%[̂ =]=%[^;];%[^=]=%s″ , \
names[0],names[1],names[2],names[3]);
if(n != 4)
{
fprintf(stderr,

″tecad_pssp: received wrong number of output fields in variable PSSP_KMEM\n″) ;
exit(1);

}

for(i = 0; i < 3; i++)
{

170 Integrating TME 10 on the RS/6000 SP

if(!strcmp(names[i],″Type″))
sprintf(tmp_str,″memory_type=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″NodeNum″))
sprintf(tmp_str,″node_number=%s;″ ,names[i+1]);

else continue;
strcat(s,tmp_str);

}
}

void DoVG()
{
strcpy(theClassName,″PSSP_VG″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_VG\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);
strcat(s,tmp_str);

}
n = sscanf(theIVector, \
″%[̂ =]=%[^;];%[^=]=%s″ , \
names[0],names[1],names[2],names[3]);
if (n != 4)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_VG″) ;
exit(1);

}
for(i = 0; i < 3; i++)
{
if(!strcmp(names[i],″VG″))
sprintf(tmp_str,″volume_group=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″NodeNum″))
sprintf(tmp_str,″node_number=%s;″ ,names[i+1]);

else continue;
strcat(s,tmp_str);

}
}

void DoCPU()
{
strcpy(theClassName,″PSSP_CPU″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_CPU\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);
strcat(s,tmp_str);

}
n = sscanf(theIVector, \

Appendix D. Source files for the PSSP T/EC Adapter 171

″%[̂ =]=%[^;];%[^=]=%s″ , \
names[0],names[1],names[2],names[3]);
if (n != 4)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_CPU″) ;
exit(1);

}
for(i = 0; i < 3; i++)
{
if(!strcmp(names[i],″CPU″))
sprintf(tmp_str,″cpu_number=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″NodeNum″))
sprintf(tmp_str,″node_number=%s;″ ,names[i+1]);

else continue;
strcat(s,tmp_str);

}
}

void DoPageSpace()
{
strcpy(theClassName,″PSSP_PageSpace″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_PageSpace\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);

strcat(s,tmp_str);
}

n = sscanf(theIVector, \
″%[̂ =]=%[^;];%[^=]=%s″ , \
names[0],names[1],names[2],names[3]);
if (n != 4)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_PageSpace″) ;
exit(1);

}
for(i = 0; i < 3; i++)
{
if(!strcmp(names[i],″Name″))
sprintf(tmp_str,″name=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″NodeNum″))
sprintf(tmp_str,″node_number=%s;″ ,names[i+1]);

else continue;
strcat(s,tmp_str);

}
}

void DoErrLog()
{
strcpy(theClassName,″PSSP_Errlog″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{

172 Integrating TME 10 on the RS/6000 SP

/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_Errlog\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);
strcat(s,tmp_str);

}
n = sscanf(theIVector, \
″%[̂ =]=%[^;];%[^=]=%[^;];%[^=]=%[^;]; \
%[^=]=%[^;];%[^=]=%[^;];%[^=]=%[^;]; \
%[^=]=%[^;];%[^=]=%[^;];%[^=]=%s″ , \
names[0],names[1],names[2],names[3], \
names[4],names[5],names[6],names[7], \
names[8],names[9],names[10],names[11], \
names[12],names[13],names[13],names[14], \
names[15],names[16],names[17]);
if (n != 18)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_Errlog″) ;
exit(1);

}
for(i = 0; i < 17; i++)
{
if(!strcmp(names[i],″resourceType″))
sprintf(tmp_str,″resource_type=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″resourceName″))
sprintf(tmp_str,″resource_name=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″alertFlagsValue″))
sprintf(tmp_str,″alert_flags=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″errorType″))
sprintf(tmp_str,″error_type=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″errorClass″))
sprintf(tmp_str,″errorClass=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″errorID″))
sprintf(tmp_str,″error_ID=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″sequenceNumber″))
sprintf(tmp_str,″sequence_number=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″resourceClass″))
sprintf(tmp_str,″resource_class=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″errorLabel″))
sprintf(tmp_str,″error_label=%s;″ ,names[i+1]);

strcat(s,tmp_str);
}

}

void DoLLStart()
{
strcpy(theClassName,″PSSP_STARTD″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_LLStart\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);

Appendix D. Source files for the PSSP T/EC Adapter 173

strcat(s,tmp_str);
}

n = sscanf(theIVector, \
″%[̂ =]=%[^;];%[^=]=%s″ , \
names[0],names[1],names[2],names[3]);
if (n != 4)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_LLStart″) ;
exit(1);

}
for(i = 0; i < 3; i++)
{
if(!strcmp(names[i],″STARTD″))
sprintf(tmp_str,″STARTD=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″NodeNum″))
sprintf(tmp_str,″node_number=%s;″ ,names[i+1]);

else continue;
strcat(s,tmp_str);

}
}

void DoLLSched()
{
strcpy(theClassName,″PSSP_SCHEDD″) ;
sprintf(s,″%s;source=PSSP;″ ,theClassName);
if(theRVCountValue > 1)
{
/* there should not be more than one value here */
fprintf(stderr,″tec_adapter: wrong argument count for variable PSSP_SCHEDD\n″) ;

}
else
{
sprintf(tmp_str,″value=%s;″ ,theRVArray[0]);
strcat(s,tmp_str);

}
n = sscanf(theIVector, \

″%[̂ =]=%[^;];%[^=]=%s″ , \
names[0],names[1],names[2],names[3]);

if (n != 4)
{
fprintf(stderr,

″tecad_pssp: the parsing of the IVEC string failed for variable PSSP_SCHEDD″) ;
exit(1);

}
for(i = 0; i < 3; i++)
{
if(!strcmp(names[i],″SCHEDD″))
sprintf(tmp_str,″SCHEDD=%s;″ ,names[i+1]);

else if(!strcmp(names[i],″NodeNum″))
sprintf(tmp_str,″node_number=%s;″ ,names[i+1]);

else continue;
strcat(s,tmp_str);

}
}

void ValidateSeverity()
{
if(strcmp(theSeverity,″FATAL″) &&

174 Integrating TME 10 on the RS/6000 SP

strcmp(theSeverity,″CRITICAL″) &&
strcmp(theSeverity,″WARNING″) &&
strcmp(theSeverity,″MINOR″) &&
strcmp(theSeverity,″HARMLESS″) &&
strcmp(theSeverity,″UNKNOWN″))
strcpy(theSeverity,″WARNING″) ;

}

D.1.4 The rvclasses.cfg file
This is a listing of the rvclasses.cfg file. It is used to define the mapping of the
Event Management resource variables to T/EC classes and is loaded into the
SDR using the install_agent command.

IBM.PSSP.CSS.bcast_rx_ok PSSP_LONG 0
IBM.PSSP.CSS.bcast_tx_ok PSSP_LONG 0
IBM.PSSP.CSS.ibadpackets PSSP_LONG 0
IBM.PSSP.CSS.ibytes_dlt PSSP_LONG 0
IBM.PSSP.CSS.ibytes_lsw PSSP_LONG 0
IBM.PSSP.CSS.ibytes_msw PSSP_LONG 0
IBM.PSSP.CSS.ierrors PSSP_LONG 0
IBM.PSSP.CSS.ipackets_dlt PSSP_LONG 0
IBM.PSSP.CSS.ipackets_drop PSSP_LONG 0
IBM.PSSP.CSS.ipackets_lsw PSSP_LONG 0
IBM.PSSP.CSS.ipackets_msw PSSP_LONG 0
IBM.PSSP.CSS.nobufs PSSP_LONG 0
IBM.PSSP.CSS.obytes_dlt PSSP_LONG 0
IBM.PSSP.CSS.obytes_lsw PSSP_LONG 0
IBM.PSSP.CSS.obytes_msw PSSP_LONG 0
IBM.PSSP.CSS.oerrors PSSP_LONG 0
IBM.PSSP.CSS.opackets_dlt PSSP_LONG 0
IBM.PSSP.CSS.opackets_drop PSSP_LONG 0
IBM.PSSP.CSS.opackets_lsw PSSP_LONG 0
IBM.PSSP.CSS.opackets_msw PSSP_LONG 0
IBM.PSSP.CSS.recvintr_dlt PSSP_LONG 0
IBM.PSSP.CSS.recvintr_lsw PSSP_LONG 0
IBM.PSSP.CSS.recvintr_msw PSSP_LONG 0
IBM.PSSP.CSS.xmitintr_dlt PSSP_LONG 0
IBM.PSSP.CSS.xmitintr_lsw PSSP_LONG 0
IBM.PSSP.CSS.xmitintr_msw PSSP_LONG 0
IBM.PSSP.CSS.xmitque_cur PSSP_LONG 0
IBM.PSSP.CSS.xmitque_max PSSP_LONG 0
IBM.PSSP.CSS.xmitque_ovf PSSP_LONG 0
IBM.PSSP.HARMLD.err_count PSSP_LONG 0
IBM.PSSP.HARMLD.mgrs_conn PSSP_LONG 0
IBM.PSSP.HARMLD.refresh_cntr PSSP_LONG 0
IBM.PSSP.LL.SCHEDD.current_jobs PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.failed_connections PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.failed_in_transactions PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.failed_out_transactions PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.jobs_idle PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.jobs_pending PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.jobs_running PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.jobs_starting PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.total_connections PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.total_in_transactions PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.total_jobs_completed PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.total_jobs_rejected PSSP_LLSCHED 17

Appendix D. Source files for the PSSP T/EC Adapter 175

IBM.PSSP.LL.SCHEDD.total_jobs_removed PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.total_jobs_submitted PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.total_jobs_vacated PSSP_LLSCHED 17
IBM.PSSP.LL.SCHEDD.total_out_transactions PSSP_LLSCHED 17
IBM.PSSP.LL.STARTD.current_jobs PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.failed_connections PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.failed_in_transactions PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.failed_out_transactions PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.jobs_pending PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.jobs_running PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.jobs_suspended PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.total_connections PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.total_in_transactions PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.total_jobs_completed PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.total_jobs_received PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.total_jobs_rejected PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.total_jobs_removed PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.total_jobs_suspended PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.total_jobs_vacated PSSP_LLSTART 16
IBM.PSSP.LL.STARTD.total_out_transactions PSSP_LLSTART 16
IBM.PSSP.Membership.LANAdapter.state PSSP_ADAPTER 2
IBM.PSSP.Membership.Node.state PSSP_LONG 0
IBM.PSSP.PRCRS.procs_online PSSP_LONG 0
IBM.PSSP.Prog.pcount PSSP_PROCESS 3
IBM.PSSP.Prog.xpcount PSSP_PROCESS 3
IBM.PSSP.Response.Host.state PSSP_LONG 0
IBM.PSSP.Response.Switch.state PSSP_LONG 0
IBM.PSSP.SP_HW.Frame.amp_ARange PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.amp_BRange PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.amp_CRange PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.amp_DRange PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.applicationLevel PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.codeVersion PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.controllerIDMismatch PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.controllerResponds PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.controllerTail PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.controllerTail1LED PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.controllerTail2LED PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.controllerTailActive PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.daemonPollRate PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.feepromEmpty PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.feepromEraseCount PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frACLED PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frDCLED PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frNoPowerModA PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frNoPowerModB PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frNoPowerModC PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frNoPowerModD PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frNodeComm PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerDC_A PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerDC_B PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerDC_C PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerDC_D PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerLED PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerModAbad PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerModBbad PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerModCbad PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerModDbad PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerMods PSSP_Frame 6

176 Integrating TME 10 on the RS/6000 SP

IBM.PSSP.SP_HW.Frame.frPowerOff PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerOff_A PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerOff_B PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerOff_C PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frPowerOff_D PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frRS232Active PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frRS232Active1 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frRS232Active2 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.frTTNodeComm PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen1 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen10 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen11 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen12 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen13 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen14 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen15 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen16 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen2 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen3 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen4 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen5 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen6 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen7 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen8 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodeLinkOpen9 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail1 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail10 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail11 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail12 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail13 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail14 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail15 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail16 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail17 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail2 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail3 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail4 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail5 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail6 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail7 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail8 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.nodefail9 PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.rs232CTS PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.rs232DCD PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.serialNum PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.supFailure PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.tempRange PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.type PSSP_Frame 6
IBM.PSSP.SP_HW.Frame.voltP48Range PSSP_Frame 6
IBM.PSSP.SP_HW.Node.P2_5dPresent PSSP_LONG 0
IBM.PSSP.SP_HW.Node.P48OK PSSP_LONG 0
IBM.PSSP.SP_HW.Node.P48Off10Sec PSSP_LONG 0
IBM.PSSP.SP_HW.Node.P4dPresent PSSP_LONG 0
IBM.PSSP.SP_HW.Node.P5DCok PSSP_LONG 0
IBM.PSSP.SP_HW.Node.codeVersion PSSP_LONG 0
IBM.PSSP.SP_HW.Node.currentShutdown PSSP_LONG 0
IBM.PSSP.SP_HW.Node.envLED PSSP_LONG 0
IBM.PSSP.SP_HW.Node.fanfail1 PSSP_LONG 0
IBM.PSSP.SP_HW.Node.fanfail1d PSSP_LONG 0

Appendix D. Source files for the PSSP T/EC Adapter 177

IBM.PSSP.SP_HW.Node.fanfail2 PSSP_LONG 0
IBM.PSSP.SP_HW.Node.fanfail2d PSSP_LONG 0
IBM.PSSP.SP_HW.Node.fanfail3 PSSP_LONG 0
IBM.PSSP.SP_HW.Node.fanfail3d PSSP_LONG 0
IBM.PSSP.SP_HW.Node.fanfail4 PSSP_LONG 0
IBM.PSSP.SP_HW.Node.fanfail4d PSSP_LONG 0
IBM.PSSP.SP_HW.Node.fanfail5d PSSP_LONG 0
IBM.PSSP.SP_HW.Node.keyModeSwitch PSSP_LONG 0
IBM.PSSP.SP_HW.Node.lcd1 PSSP_STRING 4
IBM.PSSP.SP_HW.Node.lcd1flash PSSP_LONG 0
IBM.PSSP.SP_HW.Node.lcd2 PSSP_STRING 4
IBM.PSSP.SP_HW.Node.lcd2flash PSSP_LONG 0
IBM.PSSP.SP_HW.Node.memoryProtect PSSP_LONG 0
IBM.PSSP.SP_HW.Node.nodePower PSSP_LONG 0
IBM.PSSP.SP_HW.Node.nodePowerOn10Sec PSSP_LONG 0
IBM.PSSP.SP_HW.Node.powerLED PSSP_LONG 0
IBM.PSSP.SP_HW.Node.s1PortDTR PSSP_LONG 0
IBM.PSSP.SP_HW.Node.serialLinkOpen PSSP_LONG 0
IBM.PSSP.SP_HW.Node.serialNum PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownN12High PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownN12Low PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP12High PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP12Low PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP2_5dHigh PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP2_5dLow PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP48Low PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP4High PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP4Low PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP4dHigh PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP4dLow PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP5High PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP5Low PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP5iHigh PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP5iLow PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP5mHigh PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownP5mLow PSSP_LONG 0
IBM.PSSP.SP_HW.Node.shutdownTemp PSSP_LONG 0
IBM.PSSP.SP_HW.Node.smpDiagLEDoff PSSP_LONG 0
IBM.PSSP.SP_HW.Node.smpPowerLEDoff PSSP_LONG 0
IBM.PSSP.SP_HW.Node.tempRange PSSP_LONG 0
IBM.PSSP.SP_HW.Node.type PSSP_LONG 0
IBM.PSSP.SP_HW.Node.voltN12Range PSSP_LONG 0
IBM.PSSP.SP_HW.Node.voltP12Range PSSP_LONG 0
IBM.PSSP.SP_HW.Node.voltP2_5dRange PSSP_LONG 0
IBM.PSSP.SP_HW.Node.voltP48Range PSSP_LONG 0
IBM.PSSP.SP_HW.Node.voltP4Range PSSP_LONG 0
IBM.PSSP.SP_HW.Node.voltP4dRange PSSP_LONG 0
IBM.PSSP.SP_HW.Node.voltP5Range PSSP_LONG 0
IBM.PSSP.SP_HW.Node.voltP5iRange PSSP_LONG 0
IBM.PSSP.SP_HW.Node.voltP5mRange PSSP_LONG 0
IBM.PSSP.SP_HW.Switch.P48OK PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.P48Off10Sec PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.applicationLevel PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.chip PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.chipClkMissing PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.chipReceivedInit PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.chipSelftest PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.clockSource PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.codeVersion PSSP_Switch 7

178 Integrating TME 10 on the RS/6000 SP

IBM.PSSP.SP_HW.Switch.envLED PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.epromErase PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.epromProgram PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.fanfail1 PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.fanfail2 PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.fanfail3 PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.fanfail4 PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.fanfail5 PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.feepromEmpty PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.feepromEraseCount PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.mux PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.nodePower PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.nodePowerOn10Sec PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.osc PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.pll PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.port PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.portClkMissing PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.powerLED PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.powerOnReset PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.powerS1 PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.powerS2 PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.ps1Fail PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.ps1FuseGoodRange PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.ps1PowerGoodRange PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.ps2Fail PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.ps2FuseGoodRange PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.ps2PowerGoodRange PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.psParallelFail PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.psParallelRange PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.recPortNotTuned PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.sendPortNotTuned PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.serialNum PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.shutdownN5High PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.shutdownN5Low PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.shutdownOC PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.shutdownP12High PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.shutdownP12Low PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.shutdownP3_3High PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.shutdownP3_3Low PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.shutdownP48Low PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.shutdownP5High PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.shutdownP5Low PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.shutdownTemp PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.subtype PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.supFailure PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.synchReset PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.tempRange PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.type PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.voltN5Range PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.voltP12Range PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.voltP3_3Range PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.voltP48Range PSSP_Switch 7
IBM.PSSP.SP_HW.Switch.voltP5Range PSSP_Switch 7
IBM.PSSP.VSD.bytes_read PSSP_VSD 8
IBM.PSSP.VSD.bytes_write PSSP_VSD 8
IBM.PSSP.VSD.cache_hits PSSP_VSD 8
IBM.PSSP.VSD.client_req_read PSSP_VSD 8
IBM.PSSP.VSD.client_req_write PSSP_VSD 8
IBM.PSSP.VSD.local_req_read PSSP_VSD 8

Appendix D. Source files for the PSSP T/EC Adapter 179

IBM.PSSP.VSD.local_req_write PSSP_VSD 8
IBM.PSSP.VSD.physical_req_read PSSP_VSD 8
IBM.PSSP.VSD.physical_req_write PSSP_VSD 8
IBM.PSSP.VSD.remote_req_read PSSP_VSD 8
IBM.PSSP.VSD.remote_req_write PSSP_VSD 8
IBM.PSSP.VSD.server PSSP_VSD 8
IBM.PSSP.VSD.state PSSP_VSD 8
IBM.PSSP.VSDdrv.1_retry_count PSSP_LONG 0
IBM.PSSP.VSDdrv.2_retry_count PSSP_LONG 0
IBM.PSSP.VSDdrv.3_retry_count PSSP_LONG 0
IBM.PSSP.VSDdrv.4_retry_count PSSP_LONG 0
IBM.PSSP.VSDdrv.5_retry_count PSSP_LONG 0
IBM.PSSP.VSDdrv.6_retry_count PSSP_LONG 0
IBM.PSSP.VSDdrv.7_retry_count PSSP_LONG 0
IBM.PSSP.VSDdrv.8_retry_count PSSP_LONG 0
IBM.PSSP.VSDdrv.9_retry_count PSSP_LONG 0
IBM.PSSP.VSDdrv.avg_buddy_wait PSSP_REAL 1
IBM.PSSP.VSDdrv.buddy_buffer_shortage PSSP_LONG 0
IBM.PSSP.VSDdrv.cache_shortage PSSP_LONG 0
IBM.PSSP.VSDdrv.comm_buf_shortage PSSP_LONG 0
IBM.PSSP.VSDdrv.indirect_io PSSP_LONG 0
IBM.PSSP.VSDdrv.pbuf_shortage PSSP_LONG 0
IBM.PSSP.VSDdrv.rejected_no_buddy_buffer PSSP_LONG 0
IBM.PSSP.VSDdrv.rejected_requests PSSP_LONG 0
IBM.PSSP.VSDdrv.rejected_responds PSSP_LONG 0
IBM.PSSP.VSDdrv.request_block_shortage PSSP_LONG 0
IBM.PSSP.VSDdrv.request_rework PSSP_LONG 0
IBM.PSSP.VSDdrv.timeout_error PSSP_LONG 0
IBM.PSSP.aixos.CPU.glidle PSSP_REAL 1
IBM.PSSP.aixos.CPU.glkern PSSP_REAL 1
IBM.PSSP.aixos.CPU.gluser PSSP_REAL 1
IBM.PSSP.aixos.CPU.glwait PSSP_REAL 1
IBM.PSSP.aixos.Disk.busy PSSP_Disk 9
IBM.PSSP.aixos.Disk.rblk PSSP_Disk 9
IBM.PSSP.aixos.Disk.wblk PSSP_Disk 9
IBM.PSSP.aixos.Disk.xfer PSSP_Disk 9
IBM.PSSP.aixos.FS.%nodesused PSSP_FS 10
IBM.PSSP.aixos.FS.%totused PSSP_FS 10
IBM.PSSP.aixos.LAN.rcverrors PSSP_Network 5
IBM.PSSP.aixos.LAN.recvdrops PSSP_Network 5
IBM.PSSP.aixos.LAN.xmitdrops PSSP_Network 5
IBM.PSSP.aixos.LAN.xmiterrors PSSP_Network 5
IBM.PSSP.aixos.LAN.xmitovfl PSSP_Network 5
IBM.PSSP.aixos.Mem.Kmem.calls PSSP_Kmem 11
IBM.PSSP.aixos.Mem.Kmem.failures PSSP_Kmem 11
IBM.PSSP.aixos.Mem.Kmem.inuse PSSP_Kmem 11
IBM.PSSP.aixos.Mem.Kmem.memuse PSSP_Kmem 11
IBM.PSSP.aixos.Mem.Real.%free PSSP_LONG 0
IBM.PSSP.aixos.Mem.Real.%pinned PSSP_LONG 0
IBM.PSSP.aixos.Mem.Real.numfrb PSSP_LONG 0
IBM.PSSP.aixos.Mem.Real.size PSSP_LONG 0
IBM.PSSP.aixos.Mem.Virt.pagein PSSP_LONG 0
IBM.PSSP.aixos.Mem.Virt.pageout PSSP_LONG 0
IBM.PSSP.aixos.Mem.Virt.pagexct PSSP_LONG 0
IBM.PSSP.aixos.Mem.Virt.pgspgin PSSP_LONG 0
IBM.PSSP.aixos.Mem.Virt.pgspgout PSSP_LONG 0
IBM.PSSP.aixos.PagSp.%totalfree PSSP_REAL 1
IBM.PSSP.aixos.PagSp.%totalused PSSP_REAL 1
IBM.PSSP.aixos.PagSp.totalfree PSSP_LONG 0

180 Integrating TME 10 on the RS/6000 SP

IBM.PSSP.aixos.PagSp.totalsize PSSP_LONG 0
IBM.PSSP.aixos.Proc.runque PSSP_REAL 1
IBM.PSSP.aixos.Proc.swpque PSSP_REAL 1
IBM.PSSP.aixos.VG.free PSSP_VG 12
IBM.PSSP.aixos.cpu.idle PSSP_REAL 1
IBM.PSSP.aixos.cpu.kern PSSP_REAL 1
IBM.PSSP.aixos.cpu.user PSSP_REAL 1
IBM.PSSP.aixos.cpu.wait PSSP_REAL 1
IBM.PSSP.aixos.pagsp.%free PSSP_PageSpace 14
IBM.PSSP.aixos.pagsp.size PSSP_PageSpace 14
IBM.PSSP.pm.Errlog PSSP_Errlog 15
IBM.PSSP.pm.User_state1 PSSP_STRING 4
IBM.PSSP.pm.User_state10 PSSP_STRING 4
IBM.PSSP.pm.User_state11 PSSP_STRING 4
IBM.PSSP.pm.User_state12 PSSP_STRING 4
IBM.PSSP.pm.User_state13 PSSP_STRING 4
IBM.PSSP.pm.User_state14 PSSP_STRING 4
IBM.PSSP.pm.User_state15 PSSP_STRING 4
IBM.PSSP.pm.User_state16 PSSP_STRING 4
IBM.PSSP.pm.User_state2 PSSP_STRING 4
IBM.PSSP.pm.User_state3 PSSP_STRING 4
IBM.PSSP.pm.User_state4 PSSP_STRING 4
IBM.PSSP.pm.User_state5 PSSP_STRING 4
IBM.PSSP.pm.User_state6 PSSP_STRING 4
IBM.PSSP.pm.User_state7 PSSP_STRING 4
IBM.PSSP.pm.User_state8 PSSP_STRING 4
IBM.PSSP.pm.User_state9 PSSP_STRING 4

Appendix D. Source files for the PSSP T/EC Adapter 181

182 Integrating TME 10 on the RS/6000 SP

Appendix E. Contents of SNMP Adapter Class Definition Statements

This appendix contains a listing of the Class Definition Statement file used in the
example described in 4.3, “Using the TME 10 T/EC SNMP Adapter” on page 45.

##########################
SP Traps
##
The following classes are defined to recognize SNMP traps
with the trapid (ibmSPEMEventID or SNMP specific trap)
set as follows:
trapid=1 SP_SNMP_FATAL_TRAP
trapid=2 SP_SNMP_CRITICAL_TRAP
trapid=3 SP_SNMP_MINOR_TRAP
trapid=4 SP_SNMP_WARNING_TRAP
trapid=5 SP_SNMP_HARMLESS_TRAP
trapid=?? SP_SNMP_UNKNOWN_TRAP
All ibmSPEM* values in the MIB are set and passed to TEC
The corresponding baroc file contains the same classes and
variables.
##
To add your own specific definitions, copy one of the existing
classes and place it BEFORE the SP_SNMP_UNKNOWN_TRAP class.
Change the $SPECIFIC selection test to contain the value of
your unique trapid as set in the PSSP event. Make the required
changes to the baroc file that is loaded into TEC.
##########################
CLASS SP_SNMP_FATAL_TRAP
SELECT
1: ATTR(=,$ENTERPRISE), VALUE(PREFIX, ″1.3.6.1.4.1.2.6.117″) ;
2: $SPECIFIC = 1;
3: ATTR(=, ″ibmSPEMEventID″) ;
4: ATTR(=, ″ibmSPEMEventFlags″) ;
5: ATTR(=, ″ibmSPEMEventTime″) ;
6: ATTR(=, ″ibmSPEMEventLocation″) ;
7: ATTR(=, ″ibmSPEMEventPartitionAddress″) ;
8: ATTR(=, ″ibmSPEMEventVarsTableName″) ;
9: ATTR(=, ″ibmSPEMEventVarsTableInstanceID″) ;
10: ATTR(=, ″ibmSPEMEventVarName″) ;
11: ATTR(=, ″ibmSPEMEventVarValueInstanceVector″) ;
12: ATTR(=, ″ibmSPEMEventVarValuesTableInstanceID″) ;
13: ATTR(=, ″ibmSPEMEventVarValue″) ;
14: ATTR(=, ″ibmSPEMEventPredicate″) ;
FETCH
1: IPNAME($SOURCE_ADDR) ;

MAP
hostname = $F1 ;
enterprise = $ENTERPRISE ;
pssp_EMEventID = $V3 ;
pssp_EMEventFlags = $V4 ;
pssp_EMEventTime = $V5 ;
pssp_EMEventLocation = $V6 ;
pssp_EMEventPartitionAddress = $V7 ;
pssp_EMEventVarsTableName = $V8 ;
pssp_EMEventVarsTableInstanceID = $V9 ;
pssp_EMEventVarName = $V10 ;
pssp_EMEventVarValueInstanceVector = $V11 ;
pssp_EMEventVarValuesTableInstanceID = $V12 ;

 Copyright IBM Corp. 1997 183

pssp_EMEventVarValue = $V13 ;
pssp_EMEventPredicate = $V14 ;

END

CLASS SP_SNMP_CRITICAL_TRAP
SELECT
1: ATTR(=,$ENTERPRISE), VALUE(PREFIX, ″1.3.6.1.4.1.2.6.117″) ;
2: $SPECIFIC = 2;
3: ATTR(=, ″ibmSPEMEventID″) ;
4: ATTR(=, ″ibmSPEMEventFlags″) ;
5: ATTR(=, ″ibmSPEMEventTime″) ;
6: ATTR(=, ″ibmSPEMEventLocation″) ;
7: ATTR(=, ″ibmSPEMEventPartitionAddress″) ;
8: ATTR(=, ″ibmSPEMEventVarsTableName″) ;
9: ATTR(=, ″ibmSPEMEventVarsTableInstanceID″) ;
10: ATTR(=, ″ibmSPEMEventVarName″) ;
11: ATTR(=, ″ibmSPEMEventVarValueInstanceVector″) ;
12: ATTR(=, ″ibmSPEMEventVarValuesTableInstanceID″) ;
13: ATTR(=, ″ibmSPEMEventVarValue″) ;
14: ATTR(=, ″ibmSPEMEventPredicate″) ;
FETCH
1: IPNAME($SOURCE_ADDR) ;

MAP
hostname = $F1 ;
enterprise = $ENTERPRISE ;
pssp_EMEventID = $V3 ;
pssp_EMEventFlags = $V4 ;
pssp_EMEventTime = $V5 ;
pssp_EMEventLocation = $V6 ;
pssp_EMEventPartitionAddress = $V7 ;
pssp_EMEventVarsTableName = $V8 ;
pssp_EMEventVarsTableInstanceID = $V9 ;
pssp_EMEventVarName = $V10 ;
pssp_EMEventVarValueInstanceVector = $V11 ;
pssp_EMEventVarValuesTableInstanceID = $V12 ;
pssp_EMEventVarValue = $V13 ;
pssp_EMEventPredicate = $V14 ;

END

CLASS SP_SNMP_MINOR_TRAP
SELECT
1: ATTR(=,$ENTERPRISE), VALUE(PREFIX, ″1.3.6.1.4.1.2.6.117″) ;
2: $SPECIFIC = 3;
3: ATTR(=, ″ibmSPEMEventID″) ;
4: ATTR(=, ″ibmSPEMEventFlags″) ;
5: ATTR(=, ″ibmSPEMEventTime″) ;
6: ATTR(=, ″ibmSPEMEventLocation″) ;
7: ATTR(=, ″ibmSPEMEventPartitionAddress″) ;
8: ATTR(=, ″ibmSPEMEventVarsTableName″) ;
9: ATTR(=, ″ibmSPEMEventVarsTableInstanceID″) ;
10: ATTR(=, ″ibmSPEMEventVarName″) ;
11: ATTR(=, ″ibmSPEMEventVarValueInstanceVector″) ;
12: ATTR(=, ″ibmSPEMEventVarValuesTableInstanceID″) ;
13: ATTR(=, ″ibmSPEMEventVarValue″) ;
14: ATTR(=, ″ibmSPEMEventPredicate″) ;
FETCH
1: IPNAME($SOURCE_ADDR) ;

MAP
hostname = $F1 ;

184 Integrating TME 10 on the RS/6000 SP

enterprise = $ENTERPRISE ;
pssp_EMEventID = $V3 ;
pssp_EMEventFlags = $V4 ;
pssp_EMEventTime = $V5 ;
pssp_EMEventLocation = $V6 ;
pssp_EMEventPartitionAddress = $V7 ;
pssp_EMEventVarsTableName = $V8 ;
pssp_EMEventVarsTableInstanceID = $V9 ;
pssp_EMEventVarName = $V10 ;
pssp_EMEventVarValueInstanceVector = $V11 ;
pssp_EMEventVarValuesTableInstanceID = $V12 ;
pssp_EMEventVarValue = $V13 ;
pssp_EMEventPredicate = $V14 ;

END

CLASS SP_SNMP_WARNING_TRAP
SELECT
1: ATTR(=,$ENTERPRISE), VALUE(PREFIX, ″1.3.6.1.4.1.2.6.117″) ;
2: $SPECIFIC = 4;
3: ATTR(=, ″ibmSPEMEventID″) ;
4: ATTR(=, ″ibmSPEMEventFlags″) ;
5: ATTR(=, ″ibmSPEMEventTime″) ;
6: ATTR(=, ″ibmSPEMEventLocation″) ;
7: ATTR(=, ″ibmSPEMEventPartitionAddress″) ;
8: ATTR(=, ″ibmSPEMEventVarsTableName″) ;
9: ATTR(=, ″ibmSPEMEventVarsTableInstanceID″) ;
10: ATTR(=, ″ibmSPEMEventVarName″) ;
11: ATTR(=, ″ibmSPEMEventVarValueInstanceVector″) ;
12: ATTR(=, ″ibmSPEMEventVarValuesTableInstanceID″) ;
13: ATTR(=, ″ibmSPEMEventVarValue″) ;
14: ATTR(=, ″ibmSPEMEventPredicate″) ;
FETCH
1: IPNAME($SOURCE_ADDR) ;

MAP
hostname = $F1 ;
enterprise = $ENTERPRISE ;
pssp_EMEventID = $V3 ;
pssp_EMEventFlags = $V4 ;
pssp_EMEventTime = $V5 ;
pssp_EMEventLocation = $V6 ;
pssp_EMEventPartitionAddress = $V7 ;
pssp_EMEventVarsTableName = $V8 ;
pssp_EMEventVarsTableInstanceID = $V9 ;
pssp_EMEventVarName = $V10 ;
pssp_EMEventVarValueInstanceVector = $V11 ;
pssp_EMEventVarValuesTableInstanceID = $V12 ;
pssp_EMEventVarValue = $V13 ;
pssp_EMEventPredicate = $V14 ;

END

CLASS SP_SNMP_HARMLESS_TRAP
SELECT
1: ATTR(=,$ENTERPRISE), VALUE(PREFIX, ″1.3.6.1.4.1.2.6.117″) ;
2: $SPECIFIC = 5;
3: ATTR(=, ″ibmSPEMEventID″) ;
4: ATTR(=, ″ibmSPEMEventFlags″) ;
5: ATTR(=, ″ibmSPEMEventTime″) ;
6: ATTR(=, ″ibmSPEMEventLocation″) ;
7: ATTR(=, ″ibmSPEMEventPartitionAddress″) ;

Appendix E. Contents of SNMP Adapter Class Definition Statements 185

8: ATTR(=, ″ibmSPEMEventVarsTableName″) ;
9: ATTR(=, ″ibmSPEMEventVarsTableInstanceID″) ;
10: ATTR(=, ″ibmSPEMEventVarName″) ;
11: ATTR(=, ″ibmSPEMEventVarValueInstanceVector″) ;
12: ATTR(=, ″ibmSPEMEventVarValuesTableInstanceID″) ;
13: ATTR(=, ″ibmSPEMEventVarValue″) ;
14: ATTR(=, ″ibmSPEMEventPredicate″) ;
FETCH
1: IPNAME($SOURCE_ADDR) ;

MAP
hostname = $F1 ;
enterprise = $ENTERPRISE ;
pssp_EMEventID = $V3 ;
pssp_EMEventFlags = $V4 ;
pssp_EMEventTime = $V5 ;
pssp_EMEventLocation = $V6 ;
pssp_EMEventPartitionAddress = $V7 ;
pssp_EMEventVarsTableName = $V8 ;
pssp_EMEventVarsTableInstanceID = $V9 ;
pssp_EMEventVarName = $V10 ;
pssp_EMEventVarValueInstanceVector = $V11 ;
pssp_EMEventVarValuesTableInstanceID = $V12 ;
pssp_EMEventVarValue = $V13 ;
pssp_EMEventPredicate = $V14 ;

END

CLASS SP_SNMP_UNKNOWN_TRAP
SELECT
1: ATTR(=,$ENTERPRISE), VALUE(PREFIX, ″1.3.6.1.4.1.2.6.117″) ;
2: ATTR(=, ″ibmSPEMEventID″) ;
3: ATTR(=, ″ibmSPEMEventFlags″) ;
4: ATTR(=, ″ibmSPEMEventTime″) ;
5: ATTR(=, ″ibmSPEMEventLocation″) ;
6: ATTR(=, ″ibmSPEMEventPartitionAddress″) ;
7: ATTR(=, ″ibmSPEMEventVarsTableName″) ;
8: ATTR(=, ″ibmSPEMEventVarsTableInstanceID″) ;
9: ATTR(=, ″ibmSPEMEventVarName″) ;
10: ATTR(=, ″ibmSPEMEventVarValueInstanceVector″) ;
11: ATTR(=, ″ibmSPEMEventVarValuesTableInstanceID″) ;
12: ATTR(=, ″ibmSPEMEventVarValue″) ;
13: ATTR(=, ″ibmSPEMEventPredicate″) ;
FETCH
1: IPNAME($SOURCE_ADDR) ;

MAP
hostname = $F1 ;
enterprise = $ENTERPRISE ;
pssp_EMEventID = $V2 ;
pssp_EMEventFlags = $V3 ;
pssp_EMEventTime = $V4 ;
pssp_EMEventLocation = $V5 ;
pssp_EMEventPartitionAddress = $V6 ;
pssp_EMEventVarsTableName = $V7 ;
pssp_EMEventVarsTableInstanceID = $V8 ;
pssp_EMEventVarName = $V9 ;
pssp_EMEventVarValueInstanceVector = $V10 ;
pssp_EMEventVarValuesTableInstanceID = $V11 ;
pssp_EMEventVarValue = $V12 ;
pssp_EMEventPredicate = $V13 ;

END

186 Integrating TME 10 on the RS/6000 SP

Appendix E. Contents of SNMP Adapter Class Definition Statements 187

188 Integrating TME 10 on the RS/6000 SP

Appendix F. Logfile CDS

This appendix contains an example of a class definition statement as used in the
example in 4.4, “Using the TME 10 T/EC Logfile Adapter” on page 58.

FORMAT EM_Prog FOLLOWS Log_EM
%t %s %s: PMAN_HANDLE=%s PMAN_IVECTOR=%s PMAN_LOCATION=%s PMAN_PRED=%s
PMAN_PRINCIPAL=%s PMAN_RVCOUNT=%s PMAN_RVNAME=IBM.PSSP.Prog.%s
PMAN_RVTYPE=%s PMAN_TIME=%s+ PMAN_RVFIELD0=%s+
PMAN_HANDLE $4
PMAN_IVECTOR $5
PMAN_LOCATION $6
PMAN_PRED $7
PMAN_PRINCIPAL $8
PMAN_RVCOUNT $9
PMAN_RVNAME $10
PMAN_RVTYPE $11
PMAN_TIME $12
PMAN_RVFIELD0 $13
END

FORMAT EM_PRCRS FOLLOWS Log_EM
%t %s %s: PMAN_HANDLE=%s PMAN_IVECTOR=%s PMAN_LOCATION=%s PMAN_PRED=%s
PMAN_PRINCIPAL=%s PMAN_RVCOUNT=%s PMAN_RVNAME=IBM.PSSP.PRCRS.%s
PMAN_RVTYPE=%s PMAN_TIME=%s+ PMAN_RVFIELD0=%s+
PMAN_HANDLE $4
PMAN_IVECTOR $5
PMAN_LOCATION $6
PMAN_PRED $7
PMAN_PRINCIPAL $8
PMAN_RVCOUNT $9
PMAN_RVNAME $10
PMAN_RVTYPE $11
PMAN_TIME $12
PMAN_RVFIELD0 $13
END

FORMAT EM_CSS FOLLOWS Log_EM
%t %s %s: PMAN_HANDLE=%s PMAN_IVECTOR=%s PMAN_LOCATION=%s PMAN_PRED=%s
PMAN_PRINCIPAL=%s PMAN_RVCOUNT=%s PMAN_RVNAME=IBM.PSSP.CSS.%s
PMAN_RVTYPE=%s PMAN_TIME=%s+ PMAN_RVFIELD0=%s+
PMAN_HANDLE $4
PMAN_IVECTOR $5
PMAN_LOCATION $6
PMAN_PRED $7
PMAN_PRINCIPAL $8
PMAN_RVCOUNT $9
PMAN_RVNAME $10
PMAN_RVTYPE $11
PMAN_TIME $12
PMAN_RVFIELD0 $13
END

FORMAT EM_HARMLD FOLLOWS Log_EM
%t %s %s: PMAN_HANDLE=%s PMAN_IVECTOR=%s PMAN_LOCATION=%s PMAN_PRED=%s
PMAN_PRINCIPAL=%s PMAN_RVCOUNT=%s PMAN_RVNAME=IBM.PSSP.HARMLD.%s
PMAN_RVTYPE=%s PMAN_TIME=%s+ PMAN_RVFIELD0=%s+
PMAN_HANDLE $4

 Copyright IBM Corp. 1997 189

PMAN_IVECTOR $5
PMAN_LOCATION $6
PMAN_PRED $7
PMAN_PRINCIPAL $8
PMAN_RVCOUNT $9
PMAN_RVNAME $10
PMAN_RVTYPE $11
PMAN_TIME $12
PMAN_RVFIELD0 $13
END

FORMAT EM_LL FOLLOWS Log_EM
%t %s %s: PMAN_HANDLE=%s PMAN_IVECTOR=%s PMAN_LOCATION=%s PMAN_PRED=%s
PMAN_PRINCIPAL=%s PMAN_RVCOUNT=%s PMAN_RVNAME=IBM.PSSP.LL.%s
PMAN_RVTYPE=%s PMAN_TIME=%s+ PMAN_RVFIELD0=%s+
PMAN_HANDLE $4
PMAN_IVECTOR $5
PMAN_LOCATION $6
PMAN_PRED $7
PMAN_PRINCIPAL $8
PMAN_RVCOUNT $9
PMAN_RVNAME $10
PMAN_RVTYPE $11
PMAN_TIME $12
PMAN_RVFIELD0 $13
END

FORMAT EM_Membership FOLLOWS Log_EM
%t %s %s: PMAN_HANDLE=%s PMAN_IVECTOR=%s PMAN_LOCATION=%s PMAN_PRED=%s
PMAN_PRINCIPAL=%s PMAN_RVCOUNT=%s PMAN_RVNAME=IBM.PSSP.Membership.%s
PMAN_RVTYPE=%s PMAN_TIME=%s+ PMAN_RVFIELD0=%s+
PMAN_HANDLE $4
PMAN_IVECTOR $5
PMAN_LOCATION $6
PMAN_PRED $7
PMAN_PRINCIPAL $8
PMAN_RVCOUNT $9
PMAN_RVNAME $10
PMAN_RVTYPE $11
PMAN_TIME $12
PMAN_RVFIELD0 $13
END

FORMAT EM_Response FOLLOWS Log_EM
%t %s %s: PMAN_HANDLE=%s PMAN_IVECTOR=%s PMAN_LOCATION=%s PMAN_PRED=%s
PMAN_PRINCIPAL=%s PMAN_RVCOUNT=%s PMAN_RVNAME=IBM.PSSP.Response.%s
PMAN_RVTYPE=%s PMAN_TIME=%s+ PMAN_RVFIELD0=%s+
PMAN_HANDLE $4
PMAN_IVECTOR $5
PMAN_LOCATION $6
PMAN_PRED $7
PMAN_PRINCIPAL $8
PMAN_RVCOUNT $9
PMAN_RVNAME $10
PMAN_RVTYPE $11
PMAN_TIME $12
PMAN_RVFIELD0 $13
END

190 Integrating TME 10 on the RS/6000 SP

FORMAT EM_SP_HW FOLLOWS Log_EM
%t %s %s: PMAN_HANDLE=%s PMAN_IVECTOR=%s PMAN_LOCATION=%s PMAN_PRED=%s
PMAN_PRINCIPAL=%s PMAN_RVCOUNT=%s PMAN_RVNAME=IBM.PSSP.SP_HW.%s
PMAN_RVTYPE=%s PMAN_TIME=%s+ PMAN_RVFIELD0=%s+
PMAN_HANDLE $4
PMAN_IVECTOR $5
PMAN_LOCATION $6
PMAN_PRED $7
PMAN_PRINCIPAL $8
PMAN_RVCOUNT $9
PMAN_RVNAME $10
PMAN_RVTYPE $11
PMAN_TIME $12
PMAN_RVFIELD0 $13
END

FORMAT EM_VSD FOLLOWS Log_EM
%t %s %s: PMAN_HANDLE=%s PMAN_IVECTOR=%s PMAN_LOCATION=%s PMAN_PRED=%s
PMAN_PRINCIPAL=%s PMAN_RVCOUNT=%s PMAN_RVNAME=IBM.PSSP.VSD.%s
PMAN_RVTYPE=%s PMAN_TIME=%s+ PMAN_RVFIELD0=%s+
PMAN_HANDLE $4
PMAN_IVECTOR $5
PMAN_LOCATION $6
PMAN_PRED $7
PMAN_PRINCIPAL $8
PMAN_RVCOUNT $9
PMAN_RVNAME $10
PMAN_RVTYPE $11
PMAN_TIME $12
PMAN_RVFIELD0 $13
END

FORMAT EM_aixos FOLLOWS Log_EM
%t %s %s: PMAN_HANDLE=%s PMAN_IVECTOR=%s PMAN_LOCATION=%s PMAN_PRED=%s
PMAN_PRINCIPAL=%s PMAN_RVCOUNT=%s PMAN_RVNAME=IBM.PSSP.aixos.%s
PMAN_RVTYPE=%s PMAN_TIME=%s+ PMAN_RVFIELD0=%s+
PMAN_HANDLE $4
PMAN_IVECTOR $5
PMAN_LOCATION $6
PMAN_PRED $7
PMAN_PRINCIPAL $8
PMAN_RVCOUNT $9
PMAN_RVNAME $10
PMAN_RVTYPE $11
PMAN_TIME $12
PMAN_RVFIELD0 $13
END

FORMAT EM_pm FOLLOWS Log_EM
%t %s %s: PMAN_HANDLE=%s PMAN_IVECTOR=%s PMAN_LOCATION=%s PMAN_PRED=%s
PMAN_PRINCIPAL=%s PMAN_RVCOUNT=%s PMAN_RVNAME=IBM.PSSP.pm.%s
PMAN_RVTYPE=%s PMAN_TIME=%s+ PMAN_RVFIELD0=%s+
PMAN_HANDLE $4
PMAN_IVECTOR $5
PMAN_LOCATION $6
PMAN_PRED $7
PMAN_PRINCIPAL $8
PMAN_RVCOUNT $9
PMAN_RVNAME $10

Appendix F. Logfi le CDS 191

PMAN_RVTYPE $11
PMAN_TIME $12
PMAN_RVFIELD0 $13
END

192 Integrating TME 10 on the RS/6000 SP

Appendix G. Sample Task Library Listings

This appendix contains sample task library listings for two task libraries. The
first contains general RS/6000 SP tasks, and the second contains tasks that are
specific to maintaining the switch.

See 5.3, “Using the Task Library Language” on page 97 for instructions on
importing these task libraries into your TME 10 Desktop.

G.1 SP Task Library Source Listing
The following source listing contains an example of a task library that performs
some common SP tasks. It includes operations such as:

SPData List data for the SP using the splstdata command.

NodeData List data for the SP node the task is run on using the
splstdata command.

RunCommand Run any specified command.

Perspectives Launch the Perspectives application as a separate process.

LaunchApplication Launch a specified application as a separate process.

Startup Run the cstartup command on the control workstation using
specified parameters.

Shutdown Run the cshutdown command on the control workstation
using specified parameters.

G.1.1 SPTasks.tll
TaskLibrary ″SPTasks″ {

Context = (″_!_″,″*″ , 1) ;
Distribute = (″_!_″,″ALI″ , 1) ;
HelpMessage = (″_!_″,″Conventional Task Library″ , 1) ;
Requires = (″_!_″,″>2.5″,1);
Version = (″_!_″,″1.0″,1);
ArgLayout inputText {

Text;
};

Task Perspectives {
Description = (″_!_″,″Invoke Perspectives as a separate process″ , 1) ;
HelpMessage = (″_!_″,″No Help Available″ , 1) ;
Uid = (″_!_″,″*″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Implementation (″default″)

.#!/bin/ksh

.persp=″ /usr/lpp/ssp/bin/perspectives″

.if [[! -a $persp]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. . /etc/Tivoli/setup_env.sh

.export DISPLAY=$WD_DISPLAY

 Copyright IBM Corp. 1997 193

.# We close stdin, stdout and stderr

.exec 0<&-

.exec 1<&-

.exec 2<&-

.$persp &
;

};

Task NodeData {
Description = (″_!_″,″List node data using splstdata command″ , 1) ;
HelpMessage = (″_!_″,″No Help Available″ , 1) ;
Uid = (″_!_″,″*″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Implementation (″default″)

.#!/bin/ksh

.# Get the SDR attributes for a node

.node_number=″ /usr/lpp/ssp/install/bin/node_number″

.lstdata=″ /usr/lpp/ssp/bin/splstdata″

.if [[! -a $node_number]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.this_node=$node_number

.if [[$this_node = 0]] then

. echo ″ERROR: This is a CWS. This task can only be run on a node.″

. exit 1

.fi

.$lstdata -G -n -l $this_node

.echo ″\n\n″

.$lstdata -G -A -l $this_node

.echo ″\n\n″

.$lstdata -G -b -l $this_node

.echo ″\n\n″

.$lstdata -G -a -l $this_node

.echo ″\n\n″

.$lstdata -G -u -l $this_node

.echo ″\n\n″

.$lstdata -G -h -l $this_node

.echo ″\n\n″

.$lstdata -G -i -l $this_node

.echo ″\n\n″

.$lstdata -G -d -l $this_node
;

};

Task SPData {
Description = (″_!_″,″List SP data using splstdata command″ , 1) ;
HelpMessage = (″_!_″,″No Help Available″ , 1) ;
Uid = (″_!_″,″*″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Implementation (″default″)

.#!/bin/ksh

.# Get the SP data for this machine

.lstdata=″ /usr/lpp/ssp/bin/splstdata″

.if [[! -a $lstdata]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

194 Integrating TME 10 on the RS/6000 SP

.fi

.$lstdata -e

.echo ″\n\n″

.$lstdata -f

.echo ″\n\n″

.$lstdata -p

.echo ″\n\n″

.$lstdata -G -n

.echo ″\n\n″

.$lstdata -G -s
;

};

Task RunCommand {
Description = (″_!_″,″Execute any command″ , 1) ;
HelpMessage = (″_!_″,″Input the command and any parameters″ , 1) ;
Uid = (″_!_″,″*″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Argument (″_!_″,″Command to run: ″,1) {

Layout = (″″ ,″inputText″ , 1) ;
};
Implementation (″default″)

.#!/bin/ksh

.export PATH=/usr/lpp/ssp/bin:/tivoli/bin/aix4-r1/CUSTOM:$PATH

. . /etc/Tivoli/setup_env.sh

.export DISPLAY=$WD_DISPLAY

.$1
;

};

Task LaunchApplication {
Description = (″_!_″,″Launch an application as a separate process″ , 1) ;
HelpMessage = (″_!_″,″Input the application and parameters.″ , 1) ;
Uid = (″_!_″,″*″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Argument (″_!_″,″Application to launch: ″,1) {

Layout = (″″ ,″inputText″ , 1) ;
};
Implementation (″default″)

.#!/bin/ksh

.export PATH=/usr/lpp/ssp/bin:/tivoli/bin/aix4-r1/CUSTOM:$PATH

. . /etc/Tivoli/setup_env.sh

.export DISPLAY=$WD_DISPLAY

.# We close stdin, stdout and stderr

.exec 0<&-

.exec 1<&-

.exec 2<&-

.$1 &
;

};

Task Startup {
Description = (″_!_″,″Run cstartup command″ , 1) ;
HelpMessage = (″_!_″,″Input parameters to cstartup command″ , 1) ;
Uid = (″_!_″,″root″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;

Appendix G. Sample Task Library Listings 195

Argument (″_!_″,″Parameters for cstartup command (e.g. node list): ″,1) {
Layout = (″″ ,″inputText″ , 1) ;

};
Implementation (″default″)

.#!/bin/ksh

.startup=″ /usr/lpp/ssp/bin/cstartup″

.if [[! -a $startup]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.this_node=/usr/lpp/ssp/install/bin/node_number

.if [[! $this_node = 0]] then

. echo ″ERROR: This is a not CWS. This task can only be run on the CWS.″

. exit 1

.fi

.# Run cstartup with the specified input

.$startup $1
;

};

Task Shutdown {
Description = (″_!_″,″Run cshutdown command″ , 1) ;
HelpMessage = (″_!_″,″Input parameters to cshutdown command″ , 1) ;
Uid = (″_!_″,″root″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Argument (″_!_″,″Parameters for cshutdown command (e.g. node list): ″,1) {

Layout = (″″ ,″inputText″ , 1) ;
};
Implementation (″default″)

.#!/bin/ksh

.shutdown=″ /usr/lpp/ssp/bin/cshutdown″

.if [[! -a $shutdown]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.this_node=/usr/lpp/ssp/install/bin/node_number

.if [[! $this_node = 0]] then

. echo ″ERROR: This is a not CWS. This task can only be run on the CWS.″

. exit 1

.fi

.# Run cshutdown with the specified input

.$shutdown $1
;

};
}

G.2 Switch Task Library Source Listing
The following source listing contains an example of a task library that performs
some common SP switch tasks. It includes operations such as:

SwitchData List data for the SP switch using the splstdata command.

SwitchResponds List the switch responds info using the SDRGetObjects
command.

196 Integrating TME 10 on the RS/6000 SP

ListPrimaryNode List the primary node information returned by the Eprimary
command.

SetPrimaryNode Set the specified oncoming primary and backup nodes using
the Eprimary command.

QuiesceSwitch Quiesce the switch for the specified partition.

StartSwitch Start the switch for the specified partition.

FenceNode Fence the specified nodes.

UnfenceNode Unfence the specified nodes.

G.2.1 SwitchTasks.tll
TaskLibrary ″SwitchTasks″ {

Context = (″_!_″,″*″ , 1) ;
Distribute = (″_!_″,″ALI″ , 1) ;
HelpMessage = (″_!_″,″Conventional Task Library″ , 1) ;
Requires = (″_!_″,″>2.5″,1);
Version = (″_!_″,″1.0″,1);
ArgLayout inputText {

Text;
};

ArgLayout Partitions {
TextChoice Program {

Implementation (″default″)
.#!/bin/ksh
.for i in /usr/lpp/ssp/bin/splst_syspars -n
.do
. echo $i
.done

;
};

};

Task SwitchResponds {
Description = (″_!_″,″List switch responds using SDRGetObjects″ , 1) ;
HelpMessage = (″_!_″,″No Help Available″ , 1) ;
Uid = (″_!_″,″*″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Implementation (″default″)

.#!/bin/ksh

.# get the switch responds info from the SDR

.getobjs=″ /usr/lpp/ssp/bin/SDRGetObjects″

.if [[! -a $getobjs]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.$getobjs switch_responds
;

};

Task SwitchData {
Description = (″_!_″,″List switch info using splstdata″ , 1) ;
HelpMessage = (″_!_″,″No Help Available″ , 1) ;
Uid = (″_!_″,″*″ , 1) ;
Comments = (″_!_″,″ ″,1);

Appendix G. Sample Task Library Listings 197

Roles = (″_!_″,″admin″ , 1) ;
Implementation (″default″)

.#!/bin/ksh

.# Get the SP data for this machine

.lstdata=″ /usr/lpp/ssp/bin/splstdata″

.if [[! -a $lstdata]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.$lstdata -G -s
;

};

Task ListPrimaryNode {
Description = (″_!_″,″List the switch primary node″ , 1) ;
HelpMessage = (″_!_″,″No Help Available″ , 1) ;
Uid = (″_!_″,″root″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Implementation (″default″)

.#!/bin/ksh

.# get the Primary switch node number

.eprimary=″ /usr/lpp/ssp/bin/Eprimary″

.if [[! -a $eprimary]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.# if this is a TB3 switch (SP switch), will return backup also

.echo ″Switch Primary Node:″

.$eprimary
;

};

Task SetPrimaryNode {
Description = (″_!_″,″Set the switch primary node″ , 1) ;
HelpMessage = (″_!_″,″Input primary node and optional backup node″ , 1) ;
Uid = (″_!_″,″root″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Argument (″_!_″,″New Primary Node: ″,1) {

Layout = (″″ ,″inputText″ , 1) ;
};
Argument (″_!_″,″New Backup Node: ″,1) {

Layout = (″″ ,″inputText″ , 1) ;
};
Implementation (″default″)

.#!/bin/ksh

.eprimary=″ /usr/lpp/ssp/bin/Eprimary″

.if [[! -a $eprimary]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.# set the Primary switch node number

.# if this is a TB3 switch (SP switch), can set backup also

.if [[! -z $2]]

.then

. backup=″-backup $2″

.else

. backup=″″

198 Integrating TME 10 on the RS/6000 SP

.fi

.$eprimary $1 $backup
;

};

Task FenceNode {
Description = (″_!_″,″Fence the specified nodes″ , 1) ;
HelpMessage = (″_!_″,″Input node list to be fenced.″ , 1) ;
Uid = (″_!_″,″root″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Argument (″_!_″,″Fence node list: ″,1) {

Layout = (″″ ,″inputText″ , 1) ;
};
Implementation (″default″)

.#!/bin/ksh

.efence=″ /usr/lpp/ssp/bin/Efence″

.if [[! -a $efence]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.# Fence the specified node regardless of partition

.$efence -G $1
;

};

Task UnfenceNode {
Description = (″_!_″,″Unfence the specified nodes″ , 1) ;
HelpMessage = (″_!_″,″Input node list to be unfenced.″ , 1) ;
Uid = (″_!_″,″root″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Argument (″_!_″,″Unfence node list: ″,1) {

Layout = (″″ ,″inputText″ , 1) ;
};
Implementation (″default″)

.#!/bin/ksh

.eunfence=″ /usr/lpp/ssp/bin/Eunfence″

.if [[! -a $eunfence]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.# Unfence the specified node regardless of partition

.$eunfence -G $1
;

};

Task QuiesceSwitch {
Description = (″_!_″,″Quiesce the switch in the specified partition″ , 1) ;
HelpMessage = (″_!_″,″Select partition to quiesce switch in″ , 1) ;
Uid = (″_!_″,″root″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Argument (″_!_″,″Partition to quiesce switch in: ″,1) {

Layout = (″″ ,″Partitions″ , 1) ;
};
Implementation (″default″)

.#!/bin/ksh

.equiesce=″ /usr/lpp/ssp/bin/Equiesce″

Appendix G. Sample Task Library Listings 199

.if [[! -a $equiesce]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.# set the current partition

.syspar=$1

.$equiesce
;

};

Task StartSwitch {
Description = (″_!_″,″Start the switch in the specified partition″ , 1) ;
HelpMessage = (″_!_″,″Select partition to start switch in″ , 1) ;
Uid = (″_!_″,″root″ , 1) ;
Comments = (″_!_″,″ ″,1);
Roles = (″_!_″,″admin″ , 1) ;
Argument (″_!_″,″Partition to start switch in: ″,1) {

Layout = (″″ ,″Partitions″ , 1) ;
};
Implementation (″default″)

.#!/bin/ksh

.estart=″ /usr/lpp/ssp/bin/Estart″

.if [[! -a $estart]]; then

. echo ″ERROR: This is a non-SP machine. This task can only be run on an SP.″

. exit 1

.fi

.# set the current partition

.syspar=$1

.$estart
;

};

}

200 Integrating TME 10 on the RS/6000 SP

Appendix H. Contents of AEF Customization Scripts

This appendix contains all AEF customization source files.

H.1 Dialog Listings
The dialog source files are listed in the following sections. Note that dialogs
specific to the SP nodes are prefixed with sp_node, and the dialogs specific to
the control workstation are prefixed by sp_cws.

• sp.run_dialog. This dialog is used both by the control workstation and sp
node objects when the user clicks on the run button on the properties
window.

• sp_cws.cw_attributes_dialog. This dialog displays the SDR attributes of the
control workstation.

• sp_cws.modify_attribute_dialog. This dialog appears when the user double
clicks in one of the attributes displayed in sp_cws.cw_attributes_dialog in
order to modify them. This operation is only allowed to an administrator with
the role of super.

• sp_cws.node_response. This dialog lists all the SP nodes controlled by the
control workstation objects, indicating whether they are managed by Tivoli
(wping) and whether they are responding.

• sp_cws.parent_dialog. This is the customized parent dialog.

• sp_cws.parent_dialog.custom. This dialog is similar to the customized
parent dialog, but it indicates customizations were made. The user should
utilize this version when updating a parent_dialog with her own
customizations.

• sp_cws.run_dialog_nodes. This dialog is similar to sp.run_dialog, but it takes
as target nodes a list of selected nodes from the parent_dialog of the control
workstation.

• sp_cws.sp_applications. This dialog displays a set of buttons to launch
SP-specific applications, SP Perspectives and the SP System Monitor GUI.

• sp_node.modify_attribute_dialog. This dialog is similar to
sp_cws.modify_attribute_dialog, but is used for the SP node object.

• sp_node.node_attributes_dialog. This dialog is similar to
sp_cws.cw_attributes_dialog, but it is specific to the SP node object.

• sp_node.parent_dialog. This dialog is a customized version of the parent
dialog of the managed node and is used to accommodate the specifics of an
SP node.

• sp_node.parent_dialog.custom. This dialog is similar to
sp_node.parent.dialog, but it indicates where the customizations were made.
The user should utilize this version when updating a parent dialog with her
own customizations.

 Copyright IBM Corp. 1997 201

H.1.1 sp.run_command.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp.run_command.ksh
CALLED FROM DIALOG(S): sp.run_dialog
INPUT: Command (with arguments) to be executed.
COMMENTS: Executes command (with arguments) and displays resulting
standard output, standard error, and exit status in a
′ wdispmsg′ dialog.
#
##

export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. /etc/Tivoli/setup_env.sh

output=/usr/lpp/ssp/install/bin/spcmdrc $* 2>&1

wdispmsg ″$output″

exit $?

H.1.2 sp.run_command_driver.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp.run_command_driver.ksh
CALLED FROM DIALOG(S): sp_cws.parent_dialog, sp_node.parent_dialog
INPUT: none
COMMENTS: Posts dialog which accepts command (with arguments) to be
executed.
#
##

export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. /etc/Tivoli/setup_env.sh

wpostdialog sp.run_dialog

exit $?

202 Integrating TME 10 on the RS/6000 SP

H.1.3 sp_cws.check_node_response.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.check_node_response.ksh
CALLED FROM DIALOG(S): sp_cws.parent_dialog
INPUT: whitespace-separated list of one or more node numbers
COMMENTS: Posts ′ sp_cws.node_response′ dialog which is a list
containing (for each row) node number, whether or not
the node can be ping′ d (i.e. responds), and whether or
not the node is considered to be managed by Tivoli
(i.e. has a running ′ oserv′ daemon).
#
##

function doit
{

typeset -i rc=0

nodeNumber=$1

hostname=/usr/lpp/ssp/bin/SDRGetObjects -x -G Node node_number==$nodeNumber
reliable_hostname

if [-z ″$hostname″]
then

echo ″[ERROR: hostname not found for node ′ $nodeNumber′] []\c″
return 0

fi

pingResult=/etc/ping -q -c 1 $hostname 2>/dev/null | grep ″received,″

if [-z ″$pingResult″]
then

pingResult=″[NOT FOUND]″
rc=1

else
set $pingResult

if [″$4″ = ″0″]
then

pingResult=″[NOT RESPONDING]″
rc=2

else
pingResult=″[RESPONDS]″
fi

fi

wpingResult=wping $hostname 5 2>&1
#
there are actually three possibilities, here, but we′ re doing
only two... the three are:
1) managed and object dispatcher is alive
2) managed and no response from object dispatcher
3) no such instance of ManagedNode found
#

Appendix H. Contents of AEF Customization Scripts 203

wresult=echo ″$wpingResult″ | grep ″ alive″
#
if [-n ″$wresult″]
then wpingResult=″[MANAGED]″
else wpingResult=″[NOT MANAGED]″
fi

Do the following instead of ′ wping′ (see code commented out, above)
because ′ wping′ only seems to work if executed on the TME server machine

if [″$pingResult″ = ″[RESPONDS]″]
then

wresult=/usr/lpp/ssp/bin/dsh -w $hostname ps -u root \| grep oserv
if [-n ″$wresult″]
then

wpingResult=″[MANAGED]″
else

wpingResult=″[NOT MANAGED]″
fi

else
wpingResult=″[UNKNOWN]″

fi

awk -v nodeNumber=$nodeNumber -v hostname=$hostname \
-v pingResult=″$pingResult″ -v wpingResult=″$wpingResult″ ′

BEGIN {
printf(″\″%5s %-28s%-19s%s\″{\″\″}″, nodeNumber, hostname, pingResult,

wpingResult);
}

{
}′ </dev/null

return $rc
}

. /etc/Tivoli/setup_env.sh

if [-z ″$*″ -o ″$*″ = ″__unchanged__″]
then

wdispmsg ″You must first select one or more nodes...″
exit 0

fi

typeset -i num=$#

while [[$num != 0]]
do

result=$resultdoit $1
if [[$num != 1]]

 then result=″$result,″
 fi
 num=$num-1
 shift
done

wpostdialog sp_cws.node_response node_list ″$result″

204 Integrating TME 10 on the RS/6000 SP

exit 0

H.1.4 sp_cws.efence_nodes.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.efence_nodes.ksh
CALLED FROM DIALOG(S): sp_cws.parent_dialog
INPUT: whitespace-separated list of one or more node numbers
COMMENTS: Executes the ssp ′ Efence′ command for all specified
node numbers and displays the resulting standard output
and standard error in a ′ wdispmsg′ dialog.
#
##

. /etc/Tivoli/setup_env.sh

if [-z ″$*″ -o ″$*″ = ″__unchanged__″]
then

wdispmsg ″You must first select one or more nodes...″
exit 0

fi

ANSWER=wdispconf ″Are you sure you want to fence nodes $* ?″

if [″$ANSWER″ = ″NO″]
then

exit 0
fi

result=/usr/lpp/ssp/bin/Efence -G $* 2>&1

if [-n ″$result″]
then

wdispmsg ″$result″
fi

exit 0

H.1.5 sp_cws.eunfence_nodes.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.eunfence_nodes.ksh
CALLED FROM DIALOG(S): sp_cws.parent_dialog
INPUT: whitespace-separated list of one or more node numbers
COMMENTS: Executes the ssp ′ Eunfence′ command for all specified
node numbers and displays the resulting standard output
and standard error in a ′ wdispmsg′ dialog.

Appendix H. Contents of AEF Customization Scripts 205

#
##

. /etc/Tivoli/setup_env.sh

if [-z ″$*″ -o ″$*″ = ″__unchanged__″]
then

wdispmsg ″You must first select one or more nodes...″
exit 0

fi

ANSWER=wdispconf ″Are you sure you want to unfence nodes $* ?″

if [″$ANSWER″ = ″NO″]
then

exit 0
fi

result=/usr/lpp/ssp/bin/Eunfence -G $* 2>&1

if [-n ″$result″]
then

wdispmsg ″$result″
fi

exit 0

H.1.6 sp_cws.get_all_cw_attributes.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.get_all_cw_attributes.ksh
CALLED FROM DIALOG(S): sp_cws.parent_dialog
INPUT: none
COMMENTS: Obtains names and values of all attributes in the SDR
′ SP′ class and displays them in row/column format.
#
##

function doit {
/usr/lpp/ssp/bin/SDRGetObjects SP | awk ′

BEGIN {
firstRow = 1;

}

{
if (firstRow)
{

columns = split($0, key, ″ ″) ;
firstRow = 0;

}
else
{

206 Integrating TME 10 on the RS/6000 SP

split($0, value, ″ ″) ;
}

}

END {
maxKeyLength = 0;
for (i=1; i<=columns; i++)
{

if ((currentKeyLength = length(key[i])) > maxKeyLength)
maxKeyLength = currentKeyLength;

}
maxKeyLength += 2;
for (i=1; i<=columns; i++)
{

printf(″\″%s″ , key[i]);
padding = maxKeyLength - length(key[i]);
for (j=1; j<padding; j++) printf(″ ″) ;
if (value[i] == ″\″\″″) value[i] = ″″ ;
printf(″%s\″{″, value[i]);
printf(″\″%s″ , key[i]);
for (j=1; j<padding; j++) printf(″ ″) ;
printf(″%s\″}″, value[i]);
if (i < columns) printf(″ , ″) ;

}
}′
}

export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. /etc/Tivoli/setup_env.sh

wpostdialog sp_cws.cw_attributes_dialog cw_attributes ″doit″

exit $?

H.1.7 sp_cws.get_node_numbers.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.get_node_numbers.ksh
CALLED FROM DIALOG(S): sp_cws.parent_dialog
INPUT: none
COMMENTS: Obtains list of all node numbers (with their respective
reliable hostnames) in all system partitions. The list
is formatted to be displayed by an DSL List gadget.
#
##

. /etc/Tivoli/setup_env.sh

export PATH=/etc:/tivoli/bin/aix4-r1/CUSTOM:$PATH

nodes=/usr/lpp/ssp/bin/SDRGetObjects -x -G Node node_number reliable_hostname

Appendix H. Contents of AEF Customization Scripts 207

set $nodes

typeset -i num=$#

while [[$num != 0]]
do

temp=echo ″$1 $2″ | awk ′ {printf(″\″%5s %s\″{\″%s\″}″, $1, $2, $1);}′
result=″$result$temp″
if [[$num != 2]]
then

result=$result″ , ″
fi
num=$num-2
shift
shift

done

echo ″$result″

H.1.8 sp_cws.launch_applications_driver.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.launch_applications_driver.ksh
CALLED FROM DIALOG(S): sp_cws.parent_dialog
INPUT: name of control workstation that owns the window
COMMENTS: Posts dialog from which SP applications may be launched.
#
##

export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. /etc/Tivoli/setup_env.sh

wpostdialog sp_cws.sp_applications man_node_name ″$1″

exit 0

H.1.9 sp_cws.launch_perspectives.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.launch_perspectives.ksh
CALLED FROM DIALOG(S): sp_cws.sp_applications
INPUT PARAMETERS: name of the Perspective application
(vsd, launch pad, etc.)
COMMENTS: Launches the SP Perspective application indicated by the
first argument. Must first close all file descriptors to
be able to return control to the calling window after a
Perspectives application has been invoked.

208 Integrating TME 10 on the RS/6000 SP

#
##

export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. /etc/Tivoli/setup_env.sh

export DISPLAY=$WD_DISPLAY

close stdin, stdout and stderr
exec 0<&-
exec 1<&-
exec 2<&-

/usr/lpp/ssp/bin/$1&

exit 0

H.1.10 sp_cws.modify_attribute.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.modify_attribute.ksh
CALLED FROM DIALOG(S): sp_cws.modify_attribute_dialog
INPUT: control workstation name, name of attribute being modified,
new value for attribute being modified
COMMENTS: Modifies the specified attribute to the specified new
value for the specified control workstation name.
#
##

export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. /etc/Tivoli/setup_env.sh

if [″$3″ = ″__unchanged__″]
then value=″″
else value=″$3″
fi

result=/usr/lpp/ssp/bin/SDRChangeAttrValues SP \
control_workstation==″$1″ ″$2″=″$value″ 2>&1

rc=$?

if [[$rc != 0]]
then

wdisperr ″Failure($rc): $result″
fi

exit $rc

Appendix H. Contents of AEF Customization Scripts 209

H.1.11 sp_cws.modify_attribute_driver.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.modify_attribute_driver.ksh
CALLED FROM DIALOG(S): sp_cws.cw_attributes_dialog
INPUT: name of attribute being modified, current value of attribute
being modified
COMMENTS: Posts dialog which accepts new value of attribute being
modified.
#
##

export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. /etc/Tivoli/setup_env.sh

echo ″$*″ >/tmp/BUBJUNK

set $*
name=$1
shift

sp_name=/usr/lpp/ssp/bin/SDRGetObjects SP -x control_workstation

wpostdialog sp_cws.modify_attribute_dialog sp_name \
″$sp_name″ attribute_name ″$name″ attribute_value ″$*″

exit $?

H.1.12 sp_cws.power_nodes_off.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.power_nodes_off.ksh
CALLED FROM DIALOG(S): sp_cws.parent_dialog
INPUT: whitespace-separate list of one or more node numbers
COMMENTS: Powers off specified nodes via the ssp ′ hmcmds′ command.
If there is any standard output or standard error, it
is displayed in a wdispmsg dialog.
#
##

. /etc/Tivoli/setup_env.sh

if [-z ″$*″ -o ″$*″ = ″__unchanged__″]
then

wdispmsg ″You must first select one or more nodes...″
exit 0

fi

210 Integrating TME 10 on the RS/6000 SP

ANSWER=wdispconf ″Are you sure you want to power off nodes $* ?″

if [″$ANSWER″ = ″NO″]
then

exit 0
fi

typeset -i num=$#
typeset -i frameNumber
typeset -i slotNumber

while [[$num != 0]]
do

frameNumber=/usr/lpp/ssp/bin/SDRGetObjects -x -G Node \
node_number==$1 frame_number

slotNumber=/usr/lpp/ssp/bin/SDRGetObjects -x -G Node \
node_number==$1 slot_number

allCommands=″$allCommands /usr/lpp/ssp/bin/hmcmds -G off \
$frameNumber:$slotNumber″

result=/usr/lpp/ssp/bin/hmcmds -G off \
$frameNumber:$slotNumber 2>&1

if [-n ″$result″]
then

wdispmsg ″$result″
fi
num=$num-1
shift

done

wdispmsg ″$allCommands″

exit 0

H.1.13 sp_cws.power_nodes_on.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.power_nodes_on.ksh
CALLED FROM DIALOG(S): sp_cws.parent_dialog
INPUT: whitespace-separate list of one or more node numbers
COMMENTS: Powers on specified nodes via the ssp ′ hmcmds′ command.
If there is any standard output or standard error, it
is displayed in a wdispmsg dialog.
#
##

. /etc/Tivoli/setup_env.sh

if [-z ″$*″ -o ″$*″ = ″__unchanged__″]
then

wdispmsg ″You must first select one or more nodes...″
exit 0

fi

Appendix H. Contents of AEF Customization Scripts 211

ANSWER=wdispconf ″Are you sure you want to power on nodes $* ?″

if [″$ANSWER″ = ″NO″]
then

exit 0
fi

typeset -i num=$#
typeset -i frameNumber
typeset -i slotNumber

while [[$num != 0]]
do

frameNumber=/usr/lpp/ssp/bin/SDRGetObjects -x -G Node \
node_number==$1 frame_number

slotNumber=/usr/lpp/ssp/bin/SDRGetObjects -x -G Node \
node_number==$1 slot_number

allCommands=″$allCommands /usr/lpp/ssp/bin/hmcmds -G on \
$frameNumber:$slotNumber″

result=/usr/lpp/ssp/bin/hmcmds -G on \
$frameNumber:$slotNumber 2>&1

if [-n ″$result″]
then

wdispmsg ″$result″
fi
num=$num-1
shift

done

wdispmsg ″$allCommands″

exit 0

H.1.14 sp_cws.run_command_driver_nodes.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.run_command_driver_nodes.ksh
CALLED FROM DIALOG(S): sp_cws.parent_dialog
INPUT: whitespace-separated list of one or more node numbers
COMMENTS: Posts dialog which accepts command (with arguments)
to be run on input-specified nodes.
#
##

export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. /etc/Tivoli/setup_env.sh

if [-z ″$*″ -o ″$*″ = ″__unchanged__″]
then

wdispmsg ″You must first select one or more nodes...″

212 Integrating TME 10 on the RS/6000 SP

exit 0
fi

wpostdialog sp_cws.run_dialog_nodes node_list ″\″$*\″″

exit $?

H.1.15 sp_cws.run_command_nodes.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.run_command_nodes.ksh
CALLED FROM DIALOG(S): sp_cws.run_dialog_nodes
INPUT: whitespace-separated list of nodes and command (with arguments)
to run on specified nodes
COMMENTS: Executes specified command (with arguments) on specified
nodes via ′ dsh′ . All resulting standard output, standard
error, and exit statuses are displayed in a wdispmsg dialog.
#
##

export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. /etc/Tivoli/setup_env.sh

the following breaks up incoming args so all whitespace is used as separator
otherwise the list of nodes comes in as ONE argument (instead of many)
set $*

typeset -i num=$#
typeset -i maxNum=$#

while [[$num != 0]]
do

if [″$num″ = ″$maxNum″]
then

nodes=$1
else

nodes=″$nodes $1″
fi

reliableHostname=/usr/lpp/ssp/bin/SDRGetObjects -x -G Node \
node_number==$1 reliable_hostname

if [″$num″ = ″$maxNum″]
then

hosts=${reliableHostname%% *}
else

hosts=$hosts,${reliableHostname%% *}
fi

num=$num-1
shift
if [″$1″ = ″ArGuMeNtSePaRaToR″]
then

Appendix H. Contents of AEF Customization Scripts 213

shift
break

fi
done

ANSWER=wdispconf ″Are you sure you want to run the command on nodes $nodes ?″

if [″$ANSWER″ = ″NO″]
then

exit 0
fi

result=/usr/lpp/ssp/bin/dsh -w $hosts \
″ /usr/lpp/ssp/install/bin/spcmdrc $* 2>&1″

wdispmsg ″$result″

exit $?

H.1.16 sp_cws.spmon.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_cws.spmon.ksh
CALLED FROM DIALOG(S): sp_cws.sp_applications
INPUT: none
COMMENTS: Executes ″spmon -g″ .
#
##

export DISPLAY=$WD_DISPLAY

close stdin, stdout and stderr
exec 0<&-
exec 1<&-
exec 2<&-

/usr/lpp/ssp/bin/spmon -g

exit 0

H.1.17 sp_node.get_all_attributes.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_node.get_all_attributes.ksh
CALLED FROM DIALOG(S): sp_node.parent_dialog
INPUT: node number
COMMENTS: Obtains names and values of all attributes in the SDR
′ Node′ class for the specified node number and displays

214 Integrating TME 10 on the RS/6000 SP

them in row/column format.
#
##

function doit
{
/usr/lpp/ssp/bin/SDRGetObjects -G Node node_number==$1 | awk ′

BEGIN {
firstRow = 1;

}

{
if (firstRow)
{

columns = split($0, key, ″ ″) ;
firstRow = 0;

}
else
{

split($0, value, ″ ″) ;
}

}

END {
maxKeyLength = 0;
for (i=1; i<=columns; i++)
{

if ((currentKeyLength = length(key[i])) > maxKeyLength)
maxKeyLength = currentKeyLength;

}
maxKeyLength += 2;
for (i=1; i<=columns; i++)
{

printf(″\″%s″ , key[i]);
padding = maxKeyLength - length(key[i]);
for (j=1; j<padding; j++) printf(″ ″) ;
if (value[i] == ″\″\″″) value[i] = ″″ ;
printf(″%s\″{″, value[i]);
printf(″\″%s″ , key[i]);
for (j=1; j<padding; j++) printf(″ ″) ;
printf(″%s\″}″, value[i]);
if (i < columns) printf(″ , ″) ;

}
}′
}

export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. /etc/Tivoli/setup_env.sh

wpostdialog sp_node.node_attributes_dialog node_attributes ″doit $1″

exit $?

Appendix H. Contents of AEF Customization Scripts 215

H.1.18 sp_node.get_frame_number.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_node.get_frame_number.ksh
CALLED FROM DIALOG(S): sp_node.parent_dialog
INPUT: none
COMMENTS: Writes to standard output the frame number for node on
which this script is executing.
#
##

ODMDIR=/etc/objrepos
export ODMDIR

NODE=/usr/lpp/ssp/install/bin/node_number
FRAME=/usr/lpp/ssp/bin/SDRGetObjects -x Node \

node_number==$NODE frame_number

echo ″$FRAME″

H.1.19 sp_node.get_node_number.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_node.get_node_number.ksh
CALLED FROM DIALOG(S): sp_node.parent_dialog
INPUT: none
COMMENTS: Writes to standard output the node number for node on
which this script is executing.
#
##

ODMDIR=/etc/objrepos
export ODMDIR

NODE=/usr/lpp/ssp/install/bin/node_number

echo ″$NODE″

H.1.20 sp_node.get_slot_number.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_node.get_slot_number.ksh

216 Integrating TME 10 on the RS/6000 SP

CALLED FROM DIALOG(S): sp_node.parent_dialog
INPUT: none
COMMENTS: Writes to standard output the slot number for node on
which this script is executing.
#
##

ODMDIR=/etc/objrepos
export ODMDIR

NODE=/usr/lpp/ssp/install/bin/node_number
SLOT=/usr/lpp/ssp/bin/SDRGetObjects -x Node node_number==$NODE slot_number

echo ″$SLOT″

H.1.21 sp_node.modify_attribute.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_node.modify_attribute.ksh
CALLED FROM DIALOG(S): sp_node.modify_attribute_dialog
INPUT: node number, name of attribute to modify, and new value of
attribute being modified
COMMENTS: Modifies the specified attribute value for the specified
node to the newly specified value.
#
##

export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. /etc/Tivoli/setup_env.sh

if [″$3″ = ″__unchanged__″]
then

value=″″
else

value=″$3″
fi

result=/usr/lpp/ssp/bin/SDRChangeAttrValues Node \
node_number==″$1″ ″$2″=″$value″ 2>&1

rc=$?

if [[$rc != 0]]
then

wdisperr ″Failure($rc): $result″
fi

exit $rc

Appendix H. Contents of AEF Customization Scripts 217

H.1.22 sp_node.modify_attribute_driver.ksh
#!/bin/ksh
##
(C) Copyright IBM Corp. 1997
All rights reserved.
#
Sample Tivoli customizations for the SP.
#
CALLBACK: sp_node.modify_attribute_driver.ksh
CALLED FROM DIALOG(S): sp_node.node_attributes_dialog
INPUT: name of attribute being modified, and current attribute value
COMMENTS: Posts dialog to receive new value for SDR attribute being
modified.
#
##

export PATH=/tivoli/bin/aix4-r1/CUSTOM:$PATH

. /etc/Tivoli/setup_env.sh

set $*
name=$1
shift

export ODMDIR=/etc/objrepos

node_number=/usr/lpp/ssp/install/bin/node_number

wpostdialog sp_node.modify_attribute_dialog node_number ″$node_number″ \
attribute_name ″$name″ attribute_value ″$*″

exit $?

H.2 Examples of AEF Customization Dialogs

/*
| NAME: sp_cws.parent_dialog
*/

 Command Dialog
{

Variables
{

 CString man_node_name;
 CString man_node_hostid;
 CString man_node_memory;
 CString man_node_os_name;
 CString man_node_os_version;
 CString man_node_os_release;
 CString interface_list;
 CString interpreter;
/*-------------------->>>>> BEGIN SP CUSTOMIZATIONS <<<<<--------------------*/
CString node_numbers = sp_cws.GetNodeNumbers@();
/*--------------------->>>>> END SP CUSTOMIZATIONS <<<<<---------------------*/

}

Attributes

218 Integrating TME 10 on the RS/6000 SP

{
 BitmapTitle = $interpreter;
 Iconic = NO;
 Default = ok;
 HelpMessage = Msg(ManagedNodeHelp,

″Message catalog not found.
Consult your system administrator for assistance.
If the message catalog cannot be found in the NLSPATH,
contact your Tivoli support provider.″ , 2) ;

 Name = managed_node_properties;
 PopDown =

cancel¬$owner();
 Purpose = ICONIFY;
/*-------------------->>>>> BEGIN SP CUSTOMIZATIONS <<<<<--------------------*/
Title = Msg(SpManagedNode, ″SP Control Workstation″, 24);
/*--------------------->>>>> END SP CUSTOMIZATIONS <<<<<---------------------*/

}

Gadgets
{

 Group
 {

Attributes
{

Border = YES;
Layout = HORIZONTAL;
Name = g3;
ChildColumnAlignment = STRETCH;

}

Gadgets
{

Message
{

BitmapTitle = $interpreter;
Name = managed_node_icon;
ChildColumnAlignment = LEFT;
ChildRowAlignment = CENTER;

}

Message
{

Name = node_name;
/*-------------------->>>>> BEGIN SP CUSTOMIZATIONS <<<<<--------------------*/
Title = Msg(SpManagedNode, ″SP Control Workstation:″, 25);
/*--------------------->>>>> END SP CUSTOMIZATIONS <<<<<---------------------*/

Value = $man_node_name;
ChildColumnAlignment = LEFT;
ChildRowAlignment = CENTER;

}

}
 }

 Group
 {

Attributes
{

Border = YES;

Appendix H. Contents of AEF Customization Scripts 219

Layout = GRID;
Name = g0;
Title = Msg(ManagedNodeCatalog,″Properties:″ ,19) ;
TitlePos = TOP;

}

Gadgets
{

Message
{

Name = node_name_label;
Title = Msg(ManagedNodeCatalog,″SystemName:″ ,20) ;
GridHorizontal = 2;
GridVertical = 1;
ChildColumnAlignment = LEFT;

}

Message
{

Name = node_name;
Title = ″″ ;
Value = $man_node_name;
GridHorizontal = 4;
GridVertical = 1;
ChildColumnAlignment = LEFT;

}

Message
{

Name = host_id_label;
Title = Msg(ManagedNodeCatalog,″Host ID:″ ,21) ;
GridHorizontal = 2;
GridVertical = 2;
ChildColumnAlignment = LEFT;

}

Message
{

Name = host_id;
Title = ″″ ;
Value = $man_node_hostid;
GridHorizontal = 4;
GridVertical = 2;
ChildColumnAlignment = LEFT;

}

Message
{

Name = memory_label;
Title = Msg(ManagedNodeCatalog,″Physical Memory (Mb):″ ,22) ;
GridHorizontal = 2;
GridVertical = 3;
ChildColumnAlignment = LEFT;

}

Message
{

Name = memory;
Title = ″″ ;

220 Integrating TME 10 on the RS/6000 SP

Value = $man_node_memory;
GridHorizontal = 4;
GridVertical = 3;
ChildColumnAlignment = LEFT;

}

Message
{

Name = os_name_label;
Title = Msg(ManagedNodeCatalog,

″Operating System Name:″ ,23) ;
GridHorizontal = 2;
GridVertical = 4;
ChildColumnAlignment = LEFT;

}

Message
{

Name = os_name;
Title = ″″ ;
Value = $man_node_os_name;
GridHorizontal = 4;
GridVertical = 4;
ChildColumnAlignment = LEFT;

}

Message
{

Name = os_release_label;
Title = Msg(ManagedNodeCatalog,

″Operating System Release:″ ,25) ;
GridHorizontal = 2;
GridVertical = 5;
ChildColumnAlignment = LEFT;

}

Message
{

Name = os_release;
Title = ″″ ;
Value = $man_node_os_release;
GridHorizontal = 4;
GridVertical = 5;
ChildColumnAlignment = LEFT;

}

Message
{

Name = os_version_label;
Title = Msg(ManagedNodeCatalog,

″Operating System Version:″ ,24) ;
GridHorizontal = 2;
GridVertical = 6;
ChildColumnAlignment = LEFT;

}

Message
{

Name = os_version;

Appendix H. Contents of AEF Customization Scripts 221

Title = ″″ ;
Value = $man_node_os_version;
GridHorizontal = 4;
GridVertical = 6;
ChildColumnAlignment = LEFT;

}

}
 }

/*-------------------->>>>> BEGIN SP CUSTOMIZATIONS <<<<<--------------------*/
Message
{
 Name = unnamed-GADGET-1-SP;
 Title = ″″ ;
}

Group
{
 Attributes
 {
Name = g_sp;
Title = Msg(SpManagedNode, ″SP Properties:″, 26);
TitlePos = TOP;
Border = YES;
Layout = VERTICAL;

 }

 Gadgets
 {
Group
{
Attributes
{
Name = g4;
Title = Msg(SpManagedNode, ″Node Control:″, 27);
TitlePos = TOP;
Border = YES;
Layout = HORIZONTAL;
}

Gadgets
{
List
{
Name = node_list;
Border = NO;
Choices = $node_numbers;
Columns = 5;
Rows = 6;
ReadOnly = NO;
Show = SOME;
Sort = YES;
ShowBrowser = YES;
}

Group
{
Attributes

222 Integrating TME 10 on the RS/6000 SP

{
Name = power_buttons;
Alignment = LEFT;
Layout = VERTICAL;
}

Gadgets
{
Button
{
Name = check_node_response;
Title = Msg(SpManagedNode, ″Response″, 28);
Commands = sp_cws.CheckNodeResponse@($g_sp.g4.node_list);
HelpMessage = Msg(ManagedNodeHelp,

″check node response of selected
nodes of the adjacent list″ , 2) ;

}

Button
{
Name = run_command_driver_nodes;
Title = Msg(SpManagedNode, ″Run″, 29);
Commands = sp_cws.RunCommandDriverNodes@($g_sp.g4.node_list);
HelpMessage = Msg(ManagedNodeHelp,

″run a command on selected nodes on the adjacent list″ , 2) ;
}

Button
{
Name = power_node_on;
Title = Msg(SpManagedNode, ″Power On″, 30);
Commands = sp_cws.PowerNodesOn@($g_sp.g4.node_list);
HelpMessage = Msg(ManagedNodeHelp,

″power on selected nodes on the adjacent list″ , 2) ;
}

Button
{
Name = power_node_off;
Title = Msg(SpManagedNode, ″Power Off″, 31);
Commands = sp_cws.PowerNodesOff@($g_sp.g4.node_list);
HelpMessage = Msg(ManagedNodeHelp,

″power off selected nodes on the adjacent list″ , 2) ;
}

Button
{
Name = efence;
Title = Msg(SpManagedNode, ″Efence″, 32);
Commands = sp_cws.EfenceNodes@($g_sp.g4.node_list);
HelpMessage = Msg(ManagedNodeHelp,

″fence selected nodes on the adjacent list″ , 2) ;
}

Button
{
Name = eunfence;
Title = Msg(SpManagedNode, ″Eunfence″, 33);
Commands = sp_cws.EunfenceNodes@($g_sp.g4.node_list);

Appendix H. Contents of AEF Customization Scripts 223

HelpMessage = Msg(ManagedNodeHelp,
″unfence selected nodes on the adjacent list″ , 2) ;

}
}
}
}
}

Message
{
Name = unnamed-GADGET-2-SP;
Title = ″″ ;
}

Group
{
Attributes
{
Name = attribute_buttons;
Alignment = LEFT;
Layout = HORIZONTAL;
}

Gadgets
{
Button
{
Name = cw_attributes;
Title = Msg(SpManagedNode, ″All Attributes″, 34);

/* Commands = sp_cws.GetAllCwAttributes@(); */
Commands = sp_cws.GetAllCwAttributes@();
HelpMessage = Msg(ManagedNodeHelp,

″Read/Write all SDR information about
this control workstation″ , 2) ;

}

Button
{
Name = run_command_driver;
Title = Msg(SpManagedNode, ″Run CW″, 35);
Commands = sp.RunCommandDriver@();
HelpMessage = Msg(ManagedNodeHelp,

″Command line interface to the control workstation″ , 2) ;
}

Button
{
Name = launch_applications_driver;
Title = Msg(SpManagedNode, ″SP Applications″, 36);
Commands = sp_cws.LaunchApplicationsDriver@($man_node_name);
HelpMessage = Msg(ManagedNodeHelp,

″Launch SP applications (Perspectives and System Monitor)″ , 2) ;
}
}
}

 }
}
/*--------------------->>>>> END SP CUSTOMIZATIONS <<<<<---------------------*/

224 Integrating TME 10 on the RS/6000 SP

Message
{

Name = unnamed-GADGET-2;
Title = ″″ ;

 }

 Group
 {

Attributes
{

Border = YES;
Layout = HORIZONTAL;
Name = g2;
Title = Msg(ManagedNodeCatalog,″IP Interfaces:″ ,26) ;
TitlePos = TOP;

}

Gadgets
{

Choice
{

Border = NO;
Choices = $interface_list;
Name = ip_list;
ShowBrowser = NO;

}

Group
{

Attributes
{

Alignment = LEFT;
Layout = VERTICAL;
Name = ip_buttons;
ChildRowAlignment = STRETCH;

}

Gadgets
{

Button
{

Commands =
add_interface¬$owner();

Name = add_interface;
Title = Msg(ManagedNodeCatalog,

″Add Interface...″ ,27) ;
ChildColumnAlignment = STRETCH;

}

Button
{

Commands =
remove_interface¬$owner($g2.ip_list);

Name = remove_interface;
Title = Msg(ManagedNodeCatalog,

″Remove Interface″ ,28) ;
ChildColumnAlignment = STRETCH;

}

Appendix H. Contents of AEF Customization Scripts 225

Button
{

Commands =
edit_interface¬$owner($g2.ip_list);

Name = edit_interface;
Title = Msg(ManagedNodeCatalog,

″Edit Interface″ ,29) ;
ChildColumnAlignment = STRETCH;

}

Button
{

Commands =
reset¬$owner();

Name = reset_interfaces;
Title = Msg(ManagedNodeCatalog,Reset,30);
ChildColumnAlignment = STRETCH;

}

}
}

}
 }

 Message
 {

Name = unnamed-GADGET-4;
Title = ″″ ;

 }

 CommandButton
 {

Commands =
ok¬$owner();

Name = ok;
Title = Msg(ManagedNodeCatalog,″Update & Close″ ,14) ;

 }

 CommandButton
 {

Commands =
cancel¬$owner();

Name = cancel;
Title = Msg(GenericCollectCat,Close,40);

 }

}
 }
/*==
| Dialog which launches various pre-existing SP applications.
| NAME: sp_cws.sp_applications
==*/

Command Dialog
{
 Variables
 {
CString man_node_name;

226 Integrating TME 10 on the RS/6000 SP

}

Attributes
{
Name = sp_launch_applications;
Title = $man_node_name;

 }

 Group
 {
Attributes
{
Name = g1;
Title = Msg(SpManagedNode, ″SP Perspectives″ , 1) ;
TitlePos = TOP;
Border = YES;
Layout = VERTICAL;
ChildColumnAlignment = STRETCH;
}

Gadgets
{
Button
{
Name = launch_pad;
Title = Msg(SpManagedNode, ″Launch Pad″ , 2) ;
Commands = sp_cws.LaunchPerspectives@(″perspectives″) ;
HelpMessage = Msg(SpManagedNode,

″Start the SP Perspectives Launch Pad″ , 3) ;
}

Button
{
Name = hardware;
Title = Msg(SpManagedNode, ″Hardware″ , 4) ;
Commands = sp_cws.LaunchPerspectives@(″sphardware″) ;
HelpMessage = Msg(SpManagedNode,

″Launch the SP Perspectives Hardware view″ , 5) ;
}

Button
{
Name = event;
Title = Msg(SpManagedNode, ″Event″ , 6) ;
Commands = sp_cws.LaunchPerspectives@(″spevent″) ;
HelpMessage = Msg(SpManagedNode,

″Launch the SP Perspectives Event view″ , 7) ;
}

Button
{
Name = vsd;
Title = Msg(SpManagedNode, ″VSD″ , 8) ;
Commands = sp_cws.LaunchPerspectives@(″spvsd″) ;
HelpMessage = Msg(SpManagedNode,

″Launch the SP Perspectives Virtual Share Disk view″ , 9) ;
}

Button

Appendix H. Contents of AEF Customization Scripts 227

{
Name = syspar;
Title = Msg(SpManagedNode, ″System Partitioning Aid″, 10);
Commands = sp_cws.LaunchPerspectives@(″spsyspar″) ;
HelpMessage = Msg(SpManagedNode,

″Launch the SP Perspectives System Partitioning Aid view″, 11);
}

Button
{
Name = perfmon;
Title = Msg(SpManagedNode, ″System Performance Tool″, 12);
Commands = sp_cws.LaunchPerspectives@(″spperfmon″) ;
HelpMessage = Msg(SpManagedNode,

″Launch the SP Perspectives System Performance Tool view″, 13);
}
}

 }

 Group
 {
Attributes
{
Name = g2;
Title = Msg(SpManagedNode, ″SP System Monitor″, 14);
Border = YES;
Layout = VERTICAL;
ChildColumnAlignment = STRETCH;
TitlePos = TOP;
}

Gadgets
{
Button
{
Name = system_monitor;
Title = Msg(SpManagedNode, ″System Monitor GUI″, 15);
Commands = sp_cws.spmon@();
HelpMessage = Msg(SpManagedNode,

″Launch the SP Hardware Monitor GUI″, 16);
TitlePos = TOP;
}
}

 }

 Group
 {
Button
{
Name = dismiss;
Title = Msg(GenericCollectCat,Dismiss,40);
Commands = dtc_dismiss($owner,sp_launch_applications, $self);
}

 }
}

228 Integrating TME 10 on the RS/6000 SP

Appendix I. Special Notices

This publication is intended to help customers, business partners and IBM
personnel to integrate the RS/6000 SP-specific system management data into a
Tivoli management environment. The information in this publication is not
intended as the specification of any programming interfaces that are provided by
Tivoli Management Environment 10 and Parallel System Support Program. See
the PUBLICATIONS section of the IBM Programming Announcement for Tivoli
Management Environment 10 and Parallel System Support Program for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

 Copyright IBM Corp. 1997 229

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

You can reproduce a page in this document as a transparency, if that page has
the copyright notice on it. The copyright notice must appear on each page being
reproduced.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Tivoli/Enterprise Console, TME 10 are trademarks
of Tivoli Systems, an IBM Company.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service
marks of others.

AIX AIX/6000
AS/400 BookManager
IBM NetView
POWERparallel RS/6000
Scalable POWERparallel Systems SP
System/390 SystemView

230 Integrating TME 10 on the RS/6000 SP

Appendix J. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

J.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 233.

• RS/6000 SP High Availability Infrastructure, SG24-4838

• RS/6000 SP: Problem Determination Guide, SG24-4778

• RS/6000 SP Monitoring: Keeping It Alive, SG24-4873

• Understanding Tivoli′s TME 3.0 and TME 10, SG24-4948

• TME 10 Cookbook for AIX Systems Management and Networking
Applications, SG24-4867

J.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

J.3 Other Publications
These publications are also relevant as further information sources:

• IBM Parallel System Support Programs for AIX: Administration Guide,
GC23-3897

• IBM Parallel System Support Programs for AIX: Command and Technical
Reference, GC23-3900

• IBM Parallel System Support Programs for AIX: Event Management
Programming Guide and Reference, SC23-3996

• IBM Parallel System Support Programs for AIX, SBOF-8587

• Tivoli Courier User′s Guide, GC31-8330

• TME 10 Inventory User′s Guide, GC31-8381

• Tivoli Enterprise Console Event Integration Facility Guide, GC31-8337

• Tivoli AEF User′s Guide, GC31-8345

These publications are distributed with the TME 10 products:

 Copyright IBM Corp. 1997 231

• TME 10 Framework Reference Manual, SC31-8434

• TME 10 Framework Planning and Installation Guide, SC31-8432

• TME 10 Framework Release Notes Version 3.1, Revision C, GI10-3082

• TME 10 Framework User′s Guide, GC31-8433

• TME 10 User Administration Installation Guide, SC31-8389

• Tivoli User Administration User and Group Management Guide, SC31-8391

• TME 10 Task Library Language Developer′s Guide, SC31-8436

• Tivoli Sentry User′s Guide, GC31-8382

• Tivoli Enterprise Console User′s Guide Volume I, GC31-8334

• Tivoli Enterprise Console User′s Guide Volume II, GC31-8335

• Tivoli Enterprise Console Rule Builder′s Guide, GC31-8336

• Tivoli Enterprise Console Event Adapter Guide: SNMP, SC31-8342

• Tivoli Enterprise Console Event Adapter Guide: LogFile, SC31-8343

• Tivoli Enterprise Console Event Adapter Guide: IBM NetView, SC31-8339

232 Integrating TME 10 on the RS/6000 SP

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type one of the following commands:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO: type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

 Copyright IBM Corp. 1997 233

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Web Site http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

234 Integrating TME 10 on the RS/6000 SP

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 235

236 Integrating TME 10 on the RS/6000 SP

ITSO Redbook Evaluation

Integrating TME 10 on the RS/6000 SP
SG24-2071-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1997 237

238 Integrating TME 10 on the RS/6000 SP

List of Abbreviations

ADE TME 10 Application
Developers Environment

AEF TME 10 Application Extension
Facility

AIX Advanced Interactive
Executive

API Application Programming
Interface

BAROC Basic Representation of
Object in C

EIF TME 10 Event Integration
Facility

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

PSSP Parallel Systems Support
Program

SBS Structured Byte String

SDR System Data Repository

SMIT System Management
Interface Tool

SNMP Simple Network Management
Protocol

TCP/IP Transmission Control
Protocol/Internet Protocol

TME Tivoli Management
Environment

 Copyright IBM Corp. 1997 239

240 Integrating TME 10 on the RS/6000 SP

Index

Special Characters
/etc/snmpd.conf 47

A
abbreviations 239
acronyms 239
ADE 4
administrator 4
administrator roles 14
AEF 4
AEF Customization
alert ing 87
authorization roles 5, 14

B
backup 22
backups 21
BAROC definit ion 26
BAROC file 27, 70
bibliography 231

C
class definition statement 48, 58, 67
clients 11
control workstation 9, 11, 19, 27

D
database 21
diskette 25

E
EIF 4, 29
event adapter 2

BAROC file 27, 29
description 27
installing the BAROC file 30
tecad_pssp command 27, 33
testing the tecad_pssp command 34

event adapter BAROC file 29
event correlation 84
event definit ion 29
event f i l ter 31
event f i l ters 84
event integration

distributed monitoring 91
using 58

event integration facil i ty 31
event management

assigning severity levels 69
event management 69

Event Manager 2

F
f i le collections 5
file distr ibution 5
forwarding log fi le events 59

G
gcc compiler 32

I
install_adapter command 32
install_agent command 32, 37
installation 19

backups 21
planning 19
restore 22
system installation 5
TMR 8

J
jobs 95

K
Kerberos 5, 7

L
log file 25
log files 74, 90
logfile adapter 25

BAROC file 61, 70
class definition statement 67
forwarding events 59
log file integration 88
log_pssp.baroc 61
recommendations 75
severity levels 69
using 58

logfile BAROC file 61
logging 58

M
makeit script 32
managed node 12, 13, 21
managed resource 4
MIB 47
monitor ing 87

 Copyright IBM Corp. 1997 241

N
named pipe 92, 93
NetView adapter 81
NetView/6000 for AIX

BAROC file 81
customizing traps 78
forwarding events 75, 81
loading MIB objects 76
setup procedure 76
setup procedure in T/EC 83

network 10, 11

P
parti t ions 9, 13, 15, 31
passwords 6
Perspectives 2

defining events 34, 90
log file event definition 60
sentry event definit ion 89

planning 4
pmandef 27, 34, 35, 59, 60, 74, 89, 91
policy 3
policy region 3, 6, 12, 97
policy subregion 12
Problem Management

generating log fi le events 59
tecad_pssp 33
trap generation 86

profi le 3, 11
profi le manager 3, 6, 11, 13, 14
PSSP 1
PSSP T/EC Adapter 2

R
resource variable 29, 61, 66, 73
response option 35
restore 22
rule base 30, 53, 62, 83

S
SBS 73
SDR 37, 69
security 5, 8
severi ty 58, 70
sizing 12
SNMP adapter

/etc/snmpd.conf 47
adapter value 58
BAROC file 50, 53
class definition statement 48
installation 46
rule base 53
severity definit ion 48
severity levels 50, 58
tecad_snmpd.conf file 47

SNMP adapter (continued)
testing the adapter 53

SNMP traps 45
socket 46
software levels xii i
SP Ethernet 10
SP switch 10, 19
SP-MIBS 47
structured byte string 73
subscribers 14
switch 10, 19
sysctl 7
syslog 58, 59, 73, 74, 90

T
T/EC 2, 26
T/EC Event Server 59
task libraries 5, 7, 95, 96
task l ibrary 2
Task Library Language 95, 97
tasks 5, 7, 95
tecad_pssp 25
tecad_pssp command 27, 33
terminology 3
Tivoli Enterprise Console 26
Tivoli Management Environment, see TME
Tivoli Management Platform 3
Tivoli Object Database 21
TME 1, 3, 4, 8
TME 10 Application Developers Environment, see ADE
TME 10 Application Extension Facility, see AEF
TME 10 Distributed Monitoring 2

asynchronous 87
log file integration 88
monitoring function 87
wasync command 87

TME 10 Enterprise Console, see T/EC
assigning severity levels 70

TME 10 Event Integration Facility, see EIF
TME 10 Framework 3, 12
TME 10 Software Distribution 6
TME client 9, 10, 11
TME server 9, 10, 12
TME server load 10, 11
TMP 3
TMR 3, 8
TMR configuration 8
TMR connections 11, 12, 23
traps 45, 48, 58

BAROC file 49
class definition statement file 49

U
URL xi, xiii
user administration

planning 6

242 Integrating TME 10 on the RS/6000 SP

W
wasync command 25, 87, 88
wbkupdb command 22
wchkdb command 23
World Wide Web xi, xiii
wpasswd command 6
wpostemsg command 31
wtdumprl command 34, 45
wtl l command 97

Index 243

IBML 

Printed in U.S.A.

SG24-2071-00

