

AIX Storage Management

Document Number GG24-4484-00

October 24, 1994

International Technical Support Organization
Austin Center

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Special Notices” on
page xiii.

First Edition (October 24, 1994)

This edition applies to the AIX Version 3.2 operating system, and where applicable to AIX Version 4.1.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

An ITSO Technical Bulletin Evaluation Form for reader's feedback appears facing Chapter 1. If the form has been removed,
comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 632B Building 821 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Abstract

This document provides a general introduction to storage management using AIX
on the RISC System/6000. Concepts and terminology are covered before
describing in more detail the operating system components: the Logical Volume
Manager, and file systems. Using this foundation, it then describes the additional
features and functions provided with AIX Version 4; useful commands are also
detailed, as well as a guide to designing storage subsystems. In order to illustrate
the topics covered, and provide examples of common practical application, a
section containing detailed step by step information on a variety of storage
management tasks is included.

This document is intended for customers and systems engineers who require a
more detailed understanding of storage management with AIX on the RISC
System/6000, particularly the additional features provided with AIX Version 4, and
who wish to have access to practical examples. Some knowledge of AIX Version 3
is assumed.

(367 pages)

 Copyright IBM Corp. 1994 iii

iv AIX Storage Management

 Contents

Abstract . iii

Special Notices . xiii

Preface . xv
How This Document is Organized . xv
Related Publications . xvii
International Technical Support Organization Publications xvii
Acknowledgments . xviii

Chapter 1. Storage Management Related Concepts 1
1.1 Overview . 1

1.1.1 General Concepts . 1
1.1.2 Hardware Concepts . 3
1.1.3 Software Concepts . 6

1.2 Storage Management . 8
1.2.1 Hardware Management . 8
1.2.2 Software Management . 12

1.3 Summary . 15

Chapter 2. Hardware Storage Components 17
2.1 Selecting the Hardware Components . 17

2.1.1 Points to Consider . 17
2.1.2 How to Make the Decision . 18

2.2 Selecting the Physical Hardware Devices 22
2.2.1 Hardware Attachment Adapters . 22
2.2.2 Disk Storage . 25
2.2.3 Tape Storage . 34
2.2.4 Optical Storage . 39

2.3 Summary . 43

Chapter 3. Operating System Software Components 45
3.1 The Operating System . 45

3.1.1 Page Space . 45
3.1.2 Device Drivers . 49
3.1.3 Logical Volume Manager . 49
3.1.4 File Systems . 57

3.2 Higher Level Tools . 63
3.2.1 Backup/Restore . 63
3.2.2 Hierarchical Storage Management . 64
3.2.3 Media Management . 65

3.3 Summary . 65

Chapter 4. AIX Version 4 Storage Management Enhancements 67
4.1 Fragmentation . 67

4.1.1 Disk Space Allocation . 69
4.1.2 Free Space Fragmentation . 70
4.1.3 Fragment Allocation Map . 70

4.2 Compression . 70
4.2.1 Implementation of Data Compression 71

 Copyright IBM Corp. 1994 v

4.2.2 Compression Algorithm . 71
4.3 Disk Striping . 72

4.3.1 Usage Implications . 73
4.4 Using Page Space for System Dumps . 73
4.5 Variable I-nodes . 74
4.6 File System Maximum Size Increase . 75

4.6.1 JFS Log Considerations . 75
4.7 Summary . 75

Chapter 5. Storage Subsystem Design . 77
5.1 Introduction . 77
5.2 Planning Disk Utilization . 77

5.2.1 Volume Groups . 77
5.2.2 Physical Volumes . 78
5.2.3 Logical Volumes . 79
5.2.4 File Systems . 79

5.3 Planning for Performance . 80
5.4 Planning for Availability . 84
5.5 Planning Backup Strategies . 87

5.5.1 Backup Overview . 87
5.5.2 Backup Planning . 88
5.5.3 Backup Methods . 89
5.5.4 Backup Media . 89

5.6 Summary . 90

Chapter 6. General AIX Storage Management 93
6.1 Introduction . 93
6.2 Managing Physical Volumes . 93

6.2.1 Configuration of Physical Volumes . 94
6.2.2 Modifying Physical Volume Characteristics 94
6.2.3 Removing Physical Volumes . 95
6.2.4 Monitoring Physical Volumes . 96
6.2.5 Listing Information about Physical Volumes 97

6.3 Managing Volume Groups . 101
6.3.1 Adding a Volume Group . 101
6.3.2 Modifying Volume Group Characteristics 102
6.3.3 Importing and Exporting a Volume Group 105
6.3.4 Varying On and Varying Off Volume Groups 106
6.3.5 Monitoring Volume Groups . 108

6.4 Managing Logical Volumes . 112
6.4.1 Adding a Logical Volume . 113
6.4.2 Removing a Logical Volume . 113
6.4.3 Increasing the Size of a Logical Volume 114
6.4.4 Copying a Logical Volume . 115
6.4.5 Migrating and Reorganizing Logical Volumes 115
6.4.6 Listing a Logical Volume . 116
6.4.7 Listing a Summary of a Logical Volume Allocation 117
6.4.8 Reading the VGDA on a Physical Volume 118

6.5 Managing the Storage Environment . 118
6.5.1 Disk Space and Performance/Availability Management 119
6.5.2 Backup and Restore Management 126

6.6 Summary . 134

Chapter 7. Storage Management Files and Commands Summary 137

vi AIX Storage Management

7.1 How to Understand and Use this Chapter 137
7.1.1 Major AIX Version 4 Filesets Relevant to Storage Management . . 138

7.2 Common Storage Management Commands Using AIX Version 3 Syntax 140
7.2.1 Using Logical Volume Manager Files 140
7.2.2 Using File System Administration Commands 149
7.2.3 Using System Backup and BOS Installation Utilities 153
7.2.4 Using Archive Commands . 154
7.2.5 Using Other Fileset Commands . 157

7.3 AIX Version 4 Specific File Features . 158
7.3.1 Using Logical Volume Manager Files in an AIX Version 4

Environment . 158
7.3.2 Using File System Administration Commands in an AIX Version 4

Environment . 160
7.3.3 Using System Backup and BOS Installation Utilities in an AIX Version

4 Environment . 161
7.3.4 Using Archive Commands in an AIX Version 4 Environment 162

7.4 Using Commands to View AIX Version 4 Logical Volume Manager
Information . 164

7.5 Using Commands to View AIX Version 4 Journaled File System
Information . 180

Chapter 8. Practical Examples . 185
8.1 Planning . 185
8.2 rootvg Mirroring - Implementation and Recovery 187
8.3 Storage Subsystem Design . 204

8.3.1 A Volume Group Design Example . 205
8.3.2 Map Files Usage and Contents . 207
8.3.3 A Design Example for Improved Availability 209
8.3.4 A Design Example for Improved Performance 220

8.4 Managing Backup and Restore . 247
8.4.1 How to Use the savevg and restvg Commands 249
8.4.2 How to Use the mksysb Command 259

8.5 Utilizing the New AIX Version 4 Features 271
8.5.1 Striped Logical Volumes . 272
8.5.2 How to Use Fragments for Disk Usage Efficiency 276
8.5.3 How to Use JFS Compression and Check its Consequences 282
8.5.4 How to Create and Use a JFS Greater than 2GB 291

8.6 Migrating to AIX Version 4 . 298
8.7 Manipulating Page Space . 303

8.7.1 How to Decrease the Default hd6 Paging Logical Volume 304
8.8 Common Disk Management and Error Recovery Procedures 315

8.8.1 How to Use the migratepv Command 315
8.8.2 How to Use the rvgrecover Shell Script 321
8.8.3 How to Use the dsksync Shell Script 324

Appendix A. Overview of Hardware Components 325
A.1 Storage Product Interface Adapters . 325

A.1.1 SCSI Adapters . 325
A.1.2 Serial Adapters . 329
A.1.3 HiPPI Adapters . 329
A.1.4 ESCON Adapters . 330
A.1.5 Channel Emulation Adapters . 330

A.2 Disk Storage Products . 330
A.2.1 Disk Drives . 331

 Contents vii

A.2.2 Disk Subsystems . 331
A.3 Tape Storage Products . 334

A.3.1 Tape Devices . 334
A.3.2 Tape Libraries . 336

A.4 Optical Storage Products . 338
A.4.1 Optical Devices . 338
A.4.2 Optical Libraries . 339

Appendix B. Higher Level Storage Management Products 341
B.1 ADSTAR Distributed Storage Manager 342
B.2 AIX File Storage Facility/6000 . 344
B.3 Legato NetWorker for RISC System/6000 345
B.4 UniTree for RISC System/6000 . 346

Appendix C. General Volume Group Recovery 349
C.1 Disk Power Supply Failure . 349
C.2 General Disk Failure . 350
C.3 Recovery After a Disk Is Replaced -- 1 351
C.4 Recovery After a Disk Replaced -- 2 . 353
C.5 Disk Failure Recovery -- rootvg . 356
C.6 Disk Failure -- rootvg . 357
C.7 Recovering after Losing VGDA . 359

Glossary . 361

List of Abbreviations . 367

Index . 369

viii AIX Storage Management

 Figures

1. Storage Subsystem Component Usage . 2
2. Diskette Types . 3
3. Tape Device Types . 4
4. Disk Device Types . 5
5. Optical Device Type . 5
6. Storage Software Organization . 7
7. Importance of Performance Management 10
8. Importance of Availability . 11
9. Space Management . 13

10. Recovery Management . 14
11. Simple Storage Component Selection . 19
12. Requirements Suggest Several Components 20
13. Complex Storage Component Selection 21
14. Summary of Device Attributes . 21
15. Anatomy of a Disk Device . 26
16. Helical Scan Principles . 34
17. Helical Scan Tape Paths . 35
18. Longitudinal Recording Principles . 36
19. Longitudinal Recording Tape Paths . 36
20. Rewritable Optical Media Technology . 40
21. Pulse Position Modulation Vs Pulse Width Modulation 41
22. Virtual Memory Manager Disk Usage . 47
23. Components of the Logical Volume Manager 52
24. Relationship Between the LVM and other Components 54
25. Physical Disk Partition Location . 55
26. Standard AIX Version 4.1 JFS Organization 57
27. JFS Physical Organization . 58
28. Anatomy of an I-node . 59
29. Fragmentation Example . 69
30. Striping Example . 72
31. Sample lsvg Output . 165
32. Sample lsvg -M Output . 166
33. Continued Sample lsvg -M Output . 167
34. Sample lslv Output . 168
35. Sample lslv -m Output . 169
36. Sample lslv -p Output . 170
37. Continued Sample lslv -p Output . 170
38. Continued Sample lslv -p Output . 171
39. Sample lspv Output . 172
40. Sample lspv -p Output . 173
41. Sample lspv -M Output . 174
42. Continued Sample lspv -M Output . 174
43. Continued Sample lspv -M Output . 175
44. Sample lspv Output to See all Known Physical Volumes and Volume

Groups . 176
45. Sample lqueryvg Output . 176
46. Sample lquerylv Output for the Mirrored datapg Logical Volume 177
47. Sample lquerylv Output for the Non-Mirrored datalv3 Logical Volume . 178
48. Sample lquerypv Output . 179
49. Accessing a Disk after Reading its VGDA to Check its Contents 180

 Copyright IBM Corp. 1994 ix

x AIX Storage Management

 Tables

1. Application Requirements for Disk Storage 27
2. Maximum Internal Storage Capacities . 28
3. Maximum External Storage Capacities . 28
4. Maximum External Storage Capacities (continued) 29
5. Maximum External Storage per Micro Channel 29
6. Individual Disk Drive Characteristics . 30
7. Comparison of Disk Device and Subsystem Features 33
8. Tape Drive Specifications . 38
9. Tape Library Specifications . 38

10. Optical Device Specifications . 42
11. Optical Library Specifications . 43

 Copyright IBM Corp. 1994 xi

xii AIX Storage Management

 Special Notices

This publication is intended to help customers and systems engineers understand
the basics of AIX storage management and the additional features and functions
provided by AIX Version 4. It also provides various examples to illustrate and help
explain various storage scenarios. The information in this publication is not
intended as the specification of any programming interfaces that are provided by
AIX Version 4. See the PUBLICATIONS section of the IBM Programming
Announcement for AIX Version 4 for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Ave., Thornwood, NY 10594, USA.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the implementation
of any of these techniques is a customer responsibility and depends on the
customer's ability to evaluate and integrate them into the customer's operational
environment. While each item may have been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be
obtained elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United States
and/or other countries:

The following terms, which are denoted by a double asterisk (**) in this publication,
are trademarks of other companies:

ADSTAR AIX
AIX/6000 AIXwindows
ESCON IBM
InfoExplorer Micro Channel
OS/2 RISC System/6000
RS/6000 System/36
System/360 S/370

Andrew File System, AFS Transarc Corporation
AT&T AT&T
EXABYTE EXABYTE Corporation

 Copyright IBM Corp. 1994 xiii

Other trademarks are trademarks of their respective companies.

UNIX, Novell Novell Inc.
NFS Sun Microsystems Inc.
HP-UX Hewlett Packard Company
Lago Systems LS/380L DataWheel Lago Systems
Legato Networker Legato Systems Inc.
SUN-OS Sun Microsystems Inc.
SCO The Santa Cruz Operation Inc.
SONY Sony Corporation
ULTRIX Digital Equipment Corporation
Unitree OpenVision Technologies Inc.

xiv AIX Storage Management

 Preface

This document is intended to assist customers and systems engineers in
understanding and utilizing storage management with AIX Version 4 on the RISC
System/6000. The concepts and terminology of AIX storage management are
explained first, providing a foundation for a more detailed examination of the
elements involved. This will allow less experienced readers to reach the level of
understanding necessary to appreciate the new features and functions provided
with AIX Version 4. Examples in the use of various storage management
commands are provided, as well as an overview of the issues involved in
organizing and managing storage with AIX Version 4 on the RISC System/6000. In
order to more effectively convey the information, a comprehensive set of detailed
scenarios provide step by step practical examples.

How This Document is Organized
The document is organized as follows:

� Chapter 1, “Storage Management Related Concepts”

This chapter describes general concepts relating to storage. It is designed to
bring those readers with little or no knowledge of storage management under
AIX to a level sufficient to appreciate the latter parts of this book. This chapter
can be skipped by those readers who already have a good grasp of general
storage management concepts.

� Chapter 2, “Hardware Storage Components”

This chapter discusses in more detail, the hardware components available for
use by AIX storage management products. Basic operation and functions are
outlined to provide a context for understanding the functions and options
provided by the storage management products. This chapter may be used as
reference to specific hardware types, or skipped by those readers who are
already familiar with the operation of all AIX hardware storage devices.

� Chapter 3, “Operating System Software Components”

This chapter describes the operating system software components involved in
AIX storage management. Specifically, the following areas are covered:

1. Device Drivers. An overview of the function and operation of device drivers
is included, as these provide the basic interface to storage products.

2. Paging Space. The operating system management of paging space will be
covered, as it relates to storage management.

3. The AIX Logical Volume Manager. The part of AIX responsible for
managing storage for higher level processes will also be covered here.

4. File systems. The creation of a directory structure for file storage on areas
of disk managed by the Logical Volume Manager will be discussed here
too.

This chapter can be skipped by readers who are already familiar with these
elements of AIX storage management.

� Chapter 4, “AIX Version 4 Storage Management Enhancements”

 Copyright IBM Corp. 1994 xv

This chapter contains descriptions of all of the new features and functions that
enhance AIX storage management, as included in AIX Version 4. This
information is new, and should be read by anyone who is planning to manage
storage on a RISC System/6000 using AIX Version 4; it may be skipped by
those readers who will not be moving to AIX Version 4 at this time.

� Chapter 5, “Storage Subsystem Design”

This chapter discusses the various issues involved in designing, configuring,
and managing storage under AIX Version 4 on the RISC System/6000. This
information is meant to allow readers to gain an insight into the considerations
involved in creating efficient storage resources and should be viewed by any
reader not familiar with designing efficient storage resource.

� Chapter 6, “General AIX Storage Management”

This chapter explores more practical aspects of storage management,
investigating the procedures necessary for successfully maintaining the storage
elements of a system. This chapter contains information applicable to Version 3
and Version 4 users, though readers familiar with management at Version 3
need only look at those sections pertaining to the Version 4 enhancements.

� Chapter 7, “Storage Management Files and Commands Summary”

This chapter provides examples of the usage of a variety of AIX commands for
the management of storage. The chapter is split into two sections, pre-Version
4 commands and post-Version 4 commands. Those commands included in the
former section are still relevant under Version 4, while the latter section
contains examples of new commands. Readers already familiar with Version 3
commands may therefore wish to skip the first section.

� Chapter 8, “Practical Examples”

This chapter consists of a number of practical examples of storage
management under AIX Version 4. The examples include topics such as
reducing page space utilization, common storage errors/recovery, setting
backup/restore policy, utilization of new Version 4 features, and many more.
Each example contains step by step details and explanations. This chapter
should be used by all readers for reference as required.

� Appendix A, “Overview of Hardware Components”

This appendix will provide an overview of the various hardware storage devices
available for attachment to the RISC System/6000. The emphasis is on the
basic features provided by the devices, and the mechanisms for attaching them
to the RS/6000.

� Appendix B, “Higher Level Storage Management Products”

This appendix contains a brief overview of the higher level storage
management products available. This redbook is primarily intended to cover
AIX Version 4 storage management, and as such this information is included
for reference only.

� Appendix C, “General Volume Group Recovery”

This appendix will provide several examples of techniques for recovering from
disk failures. These examples have not been tested in this project and are
presented as is.

xvi AIX Storage Management

 Related Publications
The publications listed in this section are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

� IBM RISC System/6000 Technology, SA23-2619

� RISC System/6000 System Overview, GC23-2406

� AIX Version 4.1 Installation Guide, SC23-2550

� AIX Version 4.1 Network Installation Management Guide and Reference,
SC23-2627

� AIX Version 4.1 Getting Started, SC23-2527

� AIX Version 4.1 System User's Guide: Operating System and Devices,
SC23-2544

� AIX Version 4.1 Messages Guide and Reference, SC23-2641

� AIX Version 4.1 Problem Solving Guide and Reference, SC23-2606

� AIX V3.2 Performance Monitoring and Tuning Guide, SC23-2365

� AIX Version 4.1 Commands Reference, Volume 1, SC23-2537

� AIX Version 4.1 Commands Reference, Volume 2, SC23-2538

� AIX Version 4.1 Commands Reference, Volume 3, SC23-2539

� AIX Version 4.1 Commands Reference, Volume 4, SC23-2540

� AIX Version 4.1 Commands Reference, Volume 5, SC23-2639

� AIX Version 4.1 Commands Reference, Volume 6, SC23-2640

� AIX Version 3.2 Files Reference, GC23-2200

� AIX Documentation Overview, SC23-2456

International Technical Support Organization Publications
� AIX V3.2 System Management Tips and Techniques, GG24-4161

� ADSM Presentation Guide, GG24-4146

� ADSM Implementation Examples, GG24-4034

� ADSM Advanced Implementation Experiences, GG24-4221

� Getting Started with ADSM/6000, GG24-4421

� Getting Started with ADSM/2, GG24-4321

A complete list of International Technical Support Organization publications, with a
brief description of each, may be found in:

Bibliography of International Technical Support Organization Technical
Bulletins, GG24-3070.

To get listings of redbooks online, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

 Preface xvii

How to Order Redbooks

IBM employees may order redbooks and CD-ROMs using PUBORDER.
Customers in the USA may order by calling 1-800-879-2755 or by faxing
1-800-284-4721. Visa and Master Cards are accepted. Outside the USA,
customers should contact their IBM branch office.

You may order individual books, CD-ROM collections, or customized sets,
called GBOFs, which relate to specific functions of interest to you.

 Acknowledgments
The advisor for this project was:

Nick Higham
International Technical Support Organization, Austin Center

The authors of this document are:

Nick Higham
IBM UK

Rash Gandhi
IBM UK

Robert Iacopetta
IBM Australia

This publication is the result of a residency conducted at the International Technical
Support Organization, Austin Center.

Thanks to the following people for the invaluable advice and guidance provided in
the production of this document:

Bob Minns
International Technical Support Organization, Austin Center

Pat Lockwood
IBM Chicago

Bill Baker
IBM Austin

Doris Stoessel
IBM San Jose

xviii AIX Storage Management

Chapter 1. Storage Management Related Concepts

This chapter examines the basic elements involved in storage subsystems, and
explains basic concepts related to the hardware and software involved.

 1.1 Overview
Storage subsystems may contain a variety of hardware and software products, but
primarily exist to supplement the relatively expensive main memory of a computer
with less expensive non-volatile storage. Secondary functions include information
exchange via removable storage media, backup of vital information for recovery in
the event of failure, and short term storage of frequently accessed information. This
overview will explain the rationale and some of the concepts involved in the
development and usage of the elements of storage subsystems.

 1.1.1 General Concepts
A computer system is composed of a number of different subsystems that
cooperate to carry out tasks on behalf of a user. Generally speaking, the process
works as follows. A user wishes to run an application to take some input, operate
on it, and produce some output. The application exists as a series of instructions to
the Central Processing Unit (CPU) of the computer system that tell it where to get
information, what to do with it, and where to put the results. For the CPU to load
these instructions and execute them, they must be located in the main memory of
the computer system. The first problem is that main memory is volatile, which
means that without power, it will lose whatever was stored in it. Thus when the
computer is first powered on, it must load its instructions from a non-volatile source,
and this is the first function of the storage subsystem, to provide the CPU with it's
operating system, and then access to applications and data for processing. This
function is usually provided by magnetic disks which are relatively fast, and allow
direct access to required information, although a brand new system may load it's
instructions initially from diskette, or more commonly magnetic tape.

Now the CPU has access to the required instructions and data, and can go ahead
and do useful work for a user. So much so however, that pretty soon the user
wants more work done, in parallel, and to support other users workloads. Clever
operating system design allows this multitasking, enabling many things to be done
at once, but the next problem is that there is not enough volatile main memory to
contain all the different applications and data that are in concurrent use. One
solution would be to keep purchasing more memory to enable all required
applications and data to be maintained in main memory, but this quickly becomes
prohibitively expensive. A better solution is to use a system called paging which
utilizes reasonably fast, much cheaper magnetic disk as an extension to the main
memory. An area of the disk is set aside as paging space, and those applications
and data, or parts of applications and data, that are not currently in use, are stored
in this space, or swapped out. When an instruction calls for a piece of this data, or
the next instruction exists in the page space, the page containing the required
information is swapped in, or copied from the disk back into main memory, and
something else temporarily not required is copied out. Page space is so named
because the main memory is divided into sections known as pages, and these form
the units of exchange.

 Copyright IBM Corp. 1994 1

Soon there are large amounts of vital data being produced by the computer, which
immediately develops a fault causing everything to be lost, and creating a great
many angry people. Not so. The third function of a storage subsystem is to provide
inexpensive non-volatile storage for copies of vital information that can be restored
to the system in the event of failure. Removable media, such as magnetic tape,
diskette, or optical disks are generally used for this, as transfer to and from the
devices is easy (though much slower than disk or main memory), and the media
can then be stored safely in a secure place for use in the event of failure.

With the advent of faster and faster low cost, high capacity devices such as tape
and optical, a fourth usage of storage subsystems is emerging. Space management
is the monitoring of information usage, so that less frequently accessed information
can be moved to lower cost, slower storage, thereby maximizing the use of the
higher cost, faster devices.

One final use of storage devices is for information exchange. Applications, data,
and even large directories of information can be stored on removable media, such
as optical, tape, diskette, or disk pack. The media can then be removed and
replaced for access on a different system, thereby allowing simple transfer for
common access to information. With the increase in performance and reduction in
the cost of communications networks, this function is becoming less necessary.

Figure 1. Storage Subsystem Component Usage

2 AIX Storage Management

 1.1.2 Hardware Concepts
As has been described in the previous section, storage subsystems components
have evolved to meet specific requirements within the computer system, and each
have different characteristics that enable these requirements to be met. A storage
subsystem may contain any or all of the following types of device.

 1. Diskette Storage

Diskettes, or floppy disks, were among the first permanent storage devices
developed. Information can be written to and read from a diskette via a diskette
drive unit attached to the computer system. The diskette can then be removed
and reinserted into a drive on another computer, where the information can be
utilized. Information can be accessed directly from anywhere on the diskette so
individual files can be quickly located and accessed if required.

There are quite a few different standards for diskettes, both in terms of physical
specifications, and information capacities. In size, diskettes range from 8-inch
diskettes, as used on the IBM System/36* for example, to the 5.25-inch and
more recently the 3.5-inch diskettes which are the most commonly used today.
Information capacity ranges from the earliest 320KB 5.25-inch diskettes to
2.8MB 3.5-inch diskettes today. Performance is relatively slow, and coupled
with the low maximum capacities, diskettes tend to be used mostly for
transferring small amounts of information between computers, and sometimes
for backing up information from small personal computers.

The 5.25 and 3.5-inch standards are common to most manufacturers machines,
as are certain data formats used; this means that diskettes are still one of the
simplest mechanisms for exchanging information between computers of
different types.

Figure 2. Diskette Types. 3.5 inch diskettes are the most commonly used diskettes on the RS/6000, though the
lower capacity 5.25 inch diskettes are still available.

 2. Tape Storage

Tape storage technology has also been in existence for some time. The earliest
computers would utilize tape in much the same way that disk is used today for
storage of programs and data. The main difference between tape and other
forms of storage device is that information is read and written sequentially. This
means that random access to information on a tape is slow, as the tape must

 Chapter 1. Storage Management Related Concepts 3

be sequentially searched from the beginning. The read/write speed can be very
fast, and the information capacity very high - up to 10GB per tape - which
means that tapes are currently best suited for backing up large amounts of
data, or for infrequent access to archived information.

There are two main types of tape device. Tape cartridges contain all of the tape
inside a case which is inserted into a drive in much the same way as a
diskette. Tape reels contain the tape wrapped around a single spool, and tend
to require more complex mounting operations.

There are many different sizes and types of tape device, as well as an equal
variety of recording formats. This means that tapes are not as easily
interchangeable as diskettes.

Figure 3. Tape Device Types. These are some of the different tape devices available for use on the RS/6000.

 3. Disk Storage

Magnetic disk, or Direct Access Storage Devices (DASD), are similar to diskette
in design. Also known as fixed disk, magnetic disk is not however generally
removable, and allows much higher read/write speeds and information capacity.
Single units are now capable of storing up to 2GB and the technology is
improving all the time. Disk also allows direct access to information, and
coupled with the capacity and performance, makes an ideal device for loading
information to, and saving from main memory.

There are models of disk drive that do allow the removal of the internal fixed
disks. The removed disk packs can then be transferred to and utilized by other
computers, although due to the proprietary nature of most disk information
organization, compatibility is usually only ensured between computers of the
same model.

4 AIX Storage Management

Figure 4. Disk Device Types. These are some of the different disk devices available for external attachment to the
RS/6000.

 4. Optical Storage

A relatively recent technology, optical storage is based on Compact Disc
technology, though there are several different mechanisms and formats in use.
The simplest utilizes standard CD technology providing a Read Only Memory
(ROM) capability, surprisingly known as CD-ROM. Later, more complex
evolutions allow the disk to be written to once and then read from as a normal
CD-ROM; this is known as Write Once, Read Many (WORM). The latest
products allow complete read write capability.

All of these products allow direct access to information, though the access time
is somewhat slower than for DASD. The capacities range from 640MB for a
CD-ROM to several GB in the latest products. Optical storage products are
improving all the time, and the latest products are best utilized as secondary
storage for less frequently accessed information, either working in parallel with
DASD, or as part of a storage management system. Many optical devices allow
for removable media, which make them ideal for software distribution on
CD-ROM; the extraordinarily long life of information recorded on optical media
(up to one hundred years) also makes this a good medium for information
archive.

Figure 5. Optical Device Type

This covers the various storage media available in overview. These devices also
require software to drive and utilize them to their fullest potential, as well as

 Chapter 1. Storage Management Related Concepts 5

hardware attachment methods. Both these topics will be discussed later in this
chapter.

 1.1.3 Software Concepts
So far, the purpose of the various hardware elements comprising a storage
subsystem, as well as their place in the overall scheme have been discussed. In
order to make these devices perform, some form of software is required to drive
them. In actuality, several levels of software products are involved, and this section
outlines the hierarchy.

 1. Operating System

As is fairly common knowledge, the key player in a computer system is the
operating system. This complex piece of software is responsible for making the
resources of the computer available to applications in a reasonably fair and
effective manner. Looking solely from the perspective of storage, the first
component involved is the device driver. This piece of software is written
specifically for the hardware device it provides an interface to. Essentially, it
understands how to talk to the device and obtain the best performance from it.
When an application wishes to communicate with the device (read or write
some information), the request is made ultimately to the device driver which
manages the device and executes the required function. Applications can
communicate directly with the device driver, known as raw device handling, or
through an intermediate software product which usually provides additional
capabilities. The commands made to a device driver are usually standard (read,
write, control commands) so applications need not be aware of differences in
the hardware devices they are using. This does mean that a specific device
driver must be provided for every device.

Utilizing device drivers to access the devices, a number of other operating
system components provide useful functions.

� Logical Volume Manager

This piece of software provides a number of convenience and protection
functions transparently to an application. The specifics of the LVM will be
discussed in a later chapter, but include the ability to generate multiple
copies of information (mirroring) for protection in the event of failure,
relocation of information in the event of damage to an area of disk, and the
implementation of information location policies to enable frequently
accessed information to be located more quickly.

 � File Systems

File systems provide the user with a hierarchical view of the space
available to them for application and data storage. Generally the view is
organized as a tree structure of directories for organizational convenience.
Operating system commands are provided to open, close, read, write and
control files within the structure. File systems use the LVM, which in turn
uses device drivers to access the hardware.

 � Backup/Restore commands

These operating system commands allow selected information, or even
entire systems to be saved to a storage device. In the event of failure, the
information can then be restored to the system from the device.

 � Miscellaneous

6 AIX Storage Management

There are a number of operating system commands that allow reading and
writing of information to a storage device. Some of these are designed for
specific devices, others generic, but they all use device drivers to
communicate with the device.

These components will be discussed in more detail in Chapter 3, “Operating
System Software Components” on page 45.

2. Higher Level Tools

Higher level tools are generally applications that are designed to provide more
complex storage management functions such as scheduled backup of files, disk
space management, and data archive for example. These tools will usually
employ many of the operating system functions to provide a more convenient
interface to managing storage, which means that some of the capabilities of
these products can be achieved with a good knowledge of the lower level
operating system functions. Although beyond the scope of this book, some of
these tools will be discussed in outline in Appendix B, “Higher Level Storage
Management Products” on page 341.

 3. Applications

Most applications will require access to information as part of their function.
Many of them will access files through the file systems mentioned earlier, thus
gaining the benefits of the more complex functions provided by this part of the
operating system. Some applications will use storage devices directly through
device drivers, which while being more complex in implementation, allows a
more flexible approach to the management of their information. Databases are
typical examples of applications that access storage devices in this way.

Figure 6. Storage Software Organization. The various levels of software used in storage subsystems make use of
lower levels of software as well as sometimes utilizing the hardware directly.

 Chapter 1. Storage Management Related Concepts 7

 1.2 Storage Management
So far, the computing environment in general has been described in order to allow
the storage elements of the system to be positioned and discussed generally. This
section will focus on storage management; what are the issues that this area
addresses, and what aspects of a storage subsystem does it focus on.

 1.2.1 Hardware Management
From the hardware point of view, all of the devices that can constitute a storage
subsystem have been briefly discussed, and will be explored in more detail in the
next chapter. The intention here is to look at what aspects of their operation are
critical to overall system operation, and therefore form the focus of storage
management. This should put into context the discussion in later chapters of the
operating system commands and higher level tools available.

There are three main considerations, performance, availability, and capacity.

 1.2.1.1 Performance
Performance is usually all about providing access to a resource such that particular
criteria are met. The resources in a storage subsystem all have different
characteristics and intended uses, and therefore the criteria applied are also
different. In general though, it is safe to say that performance in storage products is
about maximizing the throughput of information to and from the device.

As has been said, there are different criteria for each device and some examples
follow, though a more complete discussion of maximizing performance for storage
subsystems can be found in Chapter 5, “Storage Subsystem Design” on page 77
and Chapter 6, “General AIX Storage Management” on page 93.

 � System bus

All information passed to I/O devices must at some stage cross the system bus.
The performance of this device is a common factor for all devices, though
rarely a bottleneck.

� Hardware attachment adapter

The physical attachment of all I/O devices to the system is via some sort of
adapter. There are various types including SCSI, Serial, Optical, and Channel.
Some of the issues which affect performance at the adapter are the data rate,
the number of devices supported, and the command capability of the adapter.
For example, some adapters are capable of overlapping commands, duplex
communication, and sorting of requests for best performance.

 � Disk Devices

Throughput to a disk depends on a number of things, the most basic of which
is the maximum read/write capability of the disk for sequential operations, which
is fixed by the disk technology; the maximum possible data rate from a single
disk cannot be higher than this. The intended usage of the disk will also affect
performance. Random access requests, where the disk read/write head has to
move around the disk a great deal will take longer than sequential requests
which involve only the initial search for the data. There are other facilities such
as mirroring, where multiple copies of data are maintained in parallel. This can
provide higher throughput when access to the data occurs in parallel, as well

8 AIX Storage Management

as increased availability due to the multiple copies, though at the cost of
increased disk space requirements.

The design of a storage subsystem will involve considering these options and
more. As will be seen after the section on availability, many of these
possibilities involve trade-offs with performance and cost, the final decision
often being one of compromise. Actual subsystem design is covered in more
detail in Chapter 5, “Storage Subsystem Design” on page 77, and disk function
in 2.2.2.1, “Disk Technology” on page 25.

 � Tape Devices

Throughput to tape devices is also limited to the maximum read/write capability
of the drive. Tape devices access information sequentially by their nature,
information being read and written on a sequential medium. As such, random
access to information is slow, and tape devices are not normally called upon for
this requirement. Some tape devices provide for data compression when writing
and decompression when reading, thereby increasing the volume of data and
therefore the throughput. Some tape subsystems provide autochangers with
access to a library of tapes; in these instances, tape selection and load time
also become a throughput issue.

Performance in tape devices is therefore generally a straightforward
consideration of the physical specifications: features provided (for example
compression and libraries), throughput, and perhaps compatibility with other
tape media. Again, these issues will be discussed in Chapter 5, “Storage
Subsystem Design” on page 77. Tape function is covered in 2.2.3, “Tape
Storage” on page 34.

 � Optical Devices

Throughput to optical devices involves elements from both disk and tape
devices. Optical devices operate in a similar fashion to disks, allowing
sequential and random access, and therefore present similar design
considerations; optical devices do generally possess a lower data rate than
magnetic disk though.

In common with tape devices, it is possible to have optical libraries which again
present similar considerations to tape library access.

Performance of optical technology is also therefore dependent upon the
intended environment, as well as the basic characteristics of the media.
Design issues will be covered in more detail in Chapter 5, “Storage Subsystem
Design” on page 77, and the technology itself is discussed in 2.2.4, “Optical
Storage” on page 39.

 Chapter 1. Storage Management Related Concepts 9

Figure 7. Importance of Performance Management. Users can become a trifle irritable if information is not quickly
forthcoming from their computer systems.

 1.2.1.2 Availability
Availability concerns designing the storage subsystem to minimize the effects of
failure in any of the elements. Every environment will have different requirements in
this area, but essentially the intention is to ensure the continued operation of the
system despite failure in certain components. The level of redundancy, or
replication of devices for replacement purposes in the event of failure, is again a
trade-off with price and performance.

 � Tape Devices

As has been explained in the previous section on performance, tape devices
are generally used for backup/restore operations, which means that they do not
tend to be a critical part of the subsystem (unless failure occurs during restore
after a crash, or during usage of the device itself), and as such, having an
alternative device to use may be sufficient for most situations.

 � Optical Devices

Optical devices again do not tend to be used for primary data storage, due to
their slower access times, rather being used for archive or less frequently
accessed information. As such, providing a replacement device may also be
sufficient protection against failure. As with tape devices though, the exact
requirements will vary with the environment in question, and a more
comprehensive account of the design considerations can be found in the
section on storage subsystem design.

 � Disk Devices

Disk devices constitute the most vital element of a storage subsystem, indeed
of the computer system. Processors and memory can be replaced, but a disk
crash can cause the loss of irreplaceable information. Furthermore, disk
devices are in continuous use as extensions to main memory, and as storage
for frequently accessed data; as such, availability of these devices is of prime
concern.

10 AIX Storage Management

Availability in this context has several connotations. The first and most obvious,
relates to ensuring that required information is always available, and that
corruption or problems with access to this data can be compensated for.
Techniques for ensuring this include file journaling and mirroring, which are
discussed in the section on file systems and AIX* Storage Management
respectively. These techniques ensure access to data can be maintained
continuously, even in the event of a hardware disk failure. Generally, though,
some time will need to be spent with the system not operational to allow
rebuilding of file systems, or replacement of damaged parts; this activity should
of course be scheduled to minimize its impact, but is nevertheless a
requirement.

The second connotation relates to not only ensuring that data is always
available, but that any repairs can be effected whilst the system remains
operational. The main technique for ensuring this function, is utilizing some
form of RAID (Redundant Array of Independent Disks). RAID is beyond the
scope of this book, but basically involves providing an intelligent array of disks
that allows mirroring, parallel access to data, on-line replacement of failing
components, and high performance.

Figure 8. Importance of Availability. However carefully managed a computer system is, there will always be
unforeseen circumstances when information is lost.

 1.2.1.3 Capacity
The last main consideration is that of the capacity of the devices. Capacity is
generally related to performance, the more space that a device has, the longer the
average access time will be. This tends to be more important for devices that will
be used to access data for interactive use (such as disk or optical), and it can
sometimes be more prudent to utilize more lower capacity devices than fewer larger
capacity devices. This will be a trade-off between cost and performance again, and
there are other solutions to increasing performance through parallel access to
devices.

 Chapter 1. Storage Management Related Concepts 11

In the main, increasing capacity with disk devices involves purchasing either larger,
or more devices. With optical and tape devices there is another option, and that is
the library. Optical and tape libraries provide the capability to store many tapes or
optical cartridges within a managed library, such that when a request for a
particular piece of data arrives, the library knows which tape or optical cartridge the
information is on, and can then utilize robotics to select the item and load it into the
tape or optical device. Libraries are discussed in more detail in 2.2.3.2, “Selecting
the Correct Tape Storage Devices” on page 37 and 2.2.4.2, “Selecting the Correct
Optical Storage Devices” on page 42.

Thus the three major criteria from a hardware point of view, are the performance of
the storage subsystem, or more generally, it's throughput, the maintenance of the
required level of availability of the information stored, and the quantity of data that
can be kept, or capacity.

 1.2.2 Software Management
From the point of view of software in storage management, the main elements have
been described in overview, and will be covered in detail in the section on
Operating System Software Components. The intent of this section is to examine
the main issues that software management aims to address, in order to provide a
context for the discussion of the features currently available for storage
management, as well as the new features provided in AIX Version 4.

There are three considerations, space, recovery, and administration.

 1.2.2.1 Space
As has been discussed, in any computer system, there is a finite amount of fast
main system memory. This, coupled with the requirement for non-volatile storage,
leads to the necessity for the provision of cheaper, auxiliary storage. It is a truism
to say that anything grows to fill the available resource, and this is particularly true
of information stored in computer systems; thus the cheaper disk storage devices
used for accessing frequently used data will also become full over time, particularly
when availability designs are taken into account. Whilst cheap, disk devices are not
that cheap, and so some sort of plan for managing available disk space must be
developed.

Managing disk space usually involves moving less frequently accessed information
out to slower, larger capacity, and cheaper per unit of information, storage devices.
Optical storage devices supporting read and write capability are an ideal medium
for this less frequently accessed information. Optical storage can be treated in the
same way as disk, with only access time being slower. Using statistics on data
access, less frequently used information can be moved to the optical media, the
slightly longer delay in retrieval being acceptable for this type of information.

There is also a large amount of information that is very infrequently, if ever,
accessed; tax information must be kept for five years for example, in case an
inspection is required. This kind of information can be moved to even slower,
massive capacity devices, such as tape libraries.

Again, this process is a trade-off between space and access time, and is usually
called data archiving. Policies can be defined, and operating system tools used to
manage disk space, as will be shown in the chapters on operating system software.
There are also higher level tools designed specifically to provide automatic

12 AIX Storage Management

management, and some examples of these can be found in Appendix B, “Higher
Level Storage Management Products” on page 341.

Figure 9. Space Management. Organization of the available storage space on the computer system is very important
to ensure sufficient room for all of the currently required information, as well as projected growth.

 1.2.2.2 Recovery
The second consideration is concerned with making provisions for failures in the
storage subsystem. Disk devices can fail for a variety of reasons including
mechanical faults such as head crashes, electronic failures, and corrupted data on
the disk itself; optical storage can suffer from mechanical problems, tape devices
can fail, and information written to tape can be unreadable due to problems with the
tape media. Users of the system are also prone, on occasion, to accidentally erase
vital components of the system, operating system files, or data. There is also the
possibility of natural disasters such as fires, floods, or even lightning.

When a failure occurs, and it will, it would be fairly useful to be able to restore the
system to its state prior to the problem. This is what recovery management is all
about. There are several different strategies that can be employed, and these will
be discussed in detail in the chapters on storage management, but the main point
is to ensure that a current copy of the information stored in the system is available
to reload from. This copy is usually stored on tape, and its currency reflects the
amount of data that an organization can afford to lose. For example, if losing more
than a days worth of information would be fatal to a company, then copies of at
least the vital data need to be made daily. There are various ways to minimize the
amount of information that needs to be copied each time, as well as high level tools
to assist in managing the process. Some of the high level tools will be briefly
discussed in Appendix B, “Higher Level Storage Management Products” on
page 341. Again, the operating system provides the basic tools to manage this
process, and this area will be examined in more detail in the chapters on storage
management.

 Chapter 1. Storage Management Related Concepts 13

Figure 10. Recovery Management. The effects of disaster can be minimized if sensible backup precautions have
been taken. Having the right tools and procedures for the job eases the task of recovery.

 1.2.2.3 Administration
In order to make use of the devices constituting a storage subsystem, the operating
system needs to made aware of them, their capabilities, and how they are to be
used. Furthermore, in the event of failure, or for general maintenance, there are
tasks that need doing, such as making devices temporarily unavailable so that they
can be replaced, or reconfigured. Additionally, performance and usage statistics
may need to be gathered so that informed planning and management can take
place.

The operating system therefore provides administrative commands and tools that
enable these processes to be performed. Devices can be defined to the system,
made available or unavailable, configured, and monitored for performance and
usage. One other useful administrative tool gives the ability to define and manage
quotas for disk usage, thereby allowing a modicum of control to be exercised over
usage, and thereby ease the task of managing the subsystem. These activities are
examined in more detail in the chapters on operating system software components
and storage management.

Diskette devices have not been mentioned in this section on storage management,
mainly because their major usage is for simple transfer of small amounts of
information between computer systems that are not connected via a network. In the
past, when the quantity of information stored on computers (and still today for some
smaller personal computers), diskette devices were used for backup purposes.
Whilst remaining very inexpensive per diskette, and although the capacity has
grown to several megabytes, the sheer volume of information contained in a
general system backup precludes the use of diskettes for this purpose.

14 AIX Storage Management

 1.3 Summary
This chapter has looked at the basic concepts of storage management.

The first section examined the rationale behind storage subsystems, explaining at a
high level, the reasons why auxiliary storage is required. The components that
comprise storage subsystems:

 � Diskette devices

 � Tape devices

 � Disk devices

 � Optical devices

were looked at individually, and their basic capabilities discussed. Finally, the
software components used with storage subsystems were discussed:

� Logical Volume Manager

 � File systems

 � Device drivers

� Higher level tools

 � Applications

again at a high level, in order to demonstrate the levels of function provided by the
various parts.

The second section looked at the rationale behind storage management. The
considerations involved in hardware management:

 � Performance

 � Availability

 � Capacity

were discussed, along with an examination of the impact that particular devices
have in these areas. The issues addressed by software management:

 � Space

 � Recovery

 � Administration

were explained in overview to put into context discussion in later chapters of these
processes, and the tools and commands that enable them.

 Chapter 1. Storage Management Related Concepts 15

16 AIX Storage Management

Chapter 2. Hardware Storage Components

This chapter is intended to overview the capabilities and functions of the hardware
storage devices available to AIX. This will help to provide a context for
understanding more clearly the rationale behind some of the storage management
policies and the options and features of storage management software, as well as
enabling more informed decisions to be made when selecting hardware devices.

2.1 Selecting the Hardware Components
Selection of the components that will make up the storage subsystem ranges from
very easy to being a complex trade-off. First of all, the application requirements
need to be considered in terms of their storage necessities, the mix of storage
device types then needs to be decided, and finally specific products need to be
chosen.

2.1.1 Points to Consider
Selecting the correct products for inclusion into a storage management subsystem
involves consideration of a number of points:

� Cost per megabyte

The cost per megabyte of storing information on a device is always important.
This cost is usually proportional to the speed of access to data on the device,
and generally also proportional to the capacity. If rapid access to data is
essential, then the cost will be higher.

 � Access frequency

This figure represents the number of times data on the device will be accessed
in a given period. The higher this figure, the higher the data rate, access times,
and reliability usually need to be. Devices supporting frequent access are
usually required for interactive types of applications.

 � Access density

This value describes the number of I/O requests per gigabyte of data. This
value needs to be considered in conjunction with the access frequency. High
access density and low frequency suggests using optical storage; high density
and high frequency suggests disk; low density and low frequency suggests
tape; low density and high frequency may involve other decision points such as
cost.

 � Access type

This describes the required method for access to the data on the device, and
can be sequential or random. Random access means accessing small amounts
of data at many points on the device, whilst sequential access means
accessing large amounts of data from relatively few points. The difference is
mainly to do with just how easy it is to locate specific data elements on the
device. If it takes a long time to search for the required information, then
random access is not recommended. Database applications tend to involve
random requests, whilst backups or restores would be good examples of
sequential operations.

 � Data rate

 Copyright IBM Corp. 1994 17

This describes how rapidly the data can be obtained from the device (once
located). Interactive applications tend to require a high data rate, whilst batch
applications can usually tolerate lower data rates.

 � Online life

This describes how long data will need to be accessible on the device, and is
sometimes known as data age. Data age is usually inversely proportional to
access frequency, and therefore high values here usually imply the use of low
cost, low speed, high capacity devices.

 � Interchange requirements

Will the information stored on this device be exchanged with other systems? If
this is the case, then some form of removable media will be required.

 � Longevity

If archive, backup or even reference information is to be stored for long periods
of time, then the integrity of the media used is important. Most media have a
shelf life, after which degradation of stored information is likely.

 � Reliability

This is an extremely important consideration, particularly when mission critical
information is being considered.

 � Regulatory requirements

Some industries are under legal restrictions with regard to data management.
Restrictions can apply, among other things, to access security and length of
time that records must be retained for.

2.1.2 How to Make the Decision
The decision as to which storage device is best for a given environment can be
represented using a Venn diagram as in Figure 11 on page 19.

2.1.2.1 The Simple Case
This example shows the case where the decision is not complicated; examination
of the points discussed in 2.1.1, “Points to Consider” on page 17 has placed the
solution completely into one of the shaded areas:

 � Disk

Disk would be selected when the environment requires high performance and
response times are critical.

 � Tape

Tape would be the choice where low cost archive of information, high speed
sequential access to data, and/or backup/interchange of data is required.

 � Optical

Optical should be used if long term archive of information is the primary
requirement.

18 AIX Storage Management

Figure 11. Simple Storage Component Selection

It is not always this easy however, and requirements often generate a case for
more than one device type.

2.1.2.2 Things Become More Complicated
In these examples, the decision points in 2.1.1, “Points to Consider” on page 17
have resulted in requirements for more than one device type, as can be seen in
Figure 12 on page 20.

 � Disk/Optical

In this case, the requirements present arguments for both disk and optical
devices. Reasons for this include:

– Random access to information with medium to high performance
requirements

– Use of non-traditional applications such as image, which require medium
access frequency to large amounts of sequential data

– Long term storage of information is sometimes necessary

– Data usage allows migration of less frequently accessed information to
slower speed devices

– High availability and/or fault tolerance is required

 Chapter 2. Hardware Storage Components 19

Figure 12. Requirements Suggest Several Components

 � Disk/Tape

Here, the requirements include benefits from using both tape and disk. Some of
the reasons for this include:

– Access to large amounts of sequential data is required, with medium to low
performance

– Large amounts of space are required

– Time to access first byte of data is not significant, though the performance
requirements are then high

 � Tape/Optical

In this situation, it can be seen that there are requirements for both tape and
optical storage devices. This state of affairs may have arisen as a result of the
following points:

– Bulk of access to data will be low speed sequential

– Requirements for random access to information

– Time to access first byte of information is not important

– Migration of less frequently accessed information from reasonably fast
media to slower speed media is acceptable

– Data life is important

Sometimes the decision can be even more difficult though.

2.1.2.3 The Worst Case
The worst case is not terrible in the sense that it is a disaster, but it does mean that
the requirements are complex enough to merit selection of devices of all three
types (see Figure 13 on page 21). Some of the reasons that may have led to
these decisions include:

20 AIX Storage Management

Figure 13. Complex Storage Component Selection

� Strong requirements for high performance random access to information

� Large amounts of information need to be stored, though not all access will be
concurrent

� There is a need to store archive information, and data life is an issue

� Fault tolerance and high availability are important

� Capacity is likely to grow

The chart in Figure 14 summarizes the advantages of each of the device types.

Figure 14. Summary of Device Attributes

 Chapter 2. Hardware Storage Components 21

Selection of the correct devices for the storage subsystem does, therefore, involve
careful consideration of the types of information that will be stored, as well as the
access requirements. Once the correct mix of devices has been selected, it is then
necessary to choose specific devices from within each device class. Within each
class, the basic functions of the device (disk, optical or tape) can be implemented
in a number of different ways, with different costs associated, and different levels of
function provided. Selection of the actual device to be used is also a matter for
consideration, and the following sections endeavor to assist in this process by
discussing the features, functions and technologies involved in each class.

2.2 Selecting the Physical Hardware Devices
This section will look at the different physical implementations of the various
devices available, and explain some of the advantages and disadvantages involved
in their selection.

2.2.1 Hardware Attachment Adapters
As has been mentioned in the previous chapter (see 1.2.1, “Hardware
Management” on page 8), the adapter forms the primary interface between storage
devices and the rest of the computer system. The adapter is responsible for
communicating instructions and data between a controlling process and the storage
device. There are a number of different adapters available, each utilizing differing
communications protocols, and each with subsequent pros and cons. Each storage
device also supports different combinations of adapters, so it is well worth
understanding the difference in order to enable sensible decisions to be taken.

There are five main things to consider when looking at adapters:

 1. Cabling requirements

Every adapter technology places limitations upon the length of cable supported
between the adapter and a device, and then device to device (if supported).
This can have implications in terms of the amount of disk that can be attached
for example (the physical sizes of the devices may be greater than the cable
length allowed for connection). The size of the cable may also cause problems
if routing though ducting is necessary.

 2. Performance/Reliability

The maximum sustainable and burst data transfer rates govern how fast
information can be sent to and retrieved from the devices. This has implications
in the number and type of devices that can be attached to a particular adapter.
The reliability of the technology will also affect performance (some methods are
less error prone than others).

 3. Addressability

This governs both how many devices can be physically attached to an adapter,
as well as the type of device. Some adapter technologies allow attachment of
multiple systems; this means that more than one processor can share storage
devices using this mechanism.

 4. Device support

Obviously, the adapter selected must be capable of supporting the devices
required for attachment now, but consideration should also be given to future

22 AIX Storage Management

requirements, as well as range of devices supported (some standards are more
open than others).

 5. Cost

Both the cost of the adapter and the average cost of devices supporting
attachment to the adapter should be considered. Some technologies are more
expensive than others.

The following sections look at the various adapter options available.

2.2.1.1 Small Computer System Interface Adapter
The Small Computer System Interface or SCSI is one of the most common
mechanisms for attaching both IBM* and non-IBM peripherals. SCSI originated from
the selector channel on IBM System/360* computers, and was later scaled down by
the Shutgart Associates Company to make a universal, intelligent disk drive
interface. After around four years of discussions, in 1986, SCSI became an ANSI
standard, expanded to support other kinds of devices as well.

This standard, now referred to as SCSI-1, allows a maximum of seven devices to
be attached, and provides a one byte wide parallel bus. Each attached device has
a unique address to allow the operating system to communicate with it. Data can
be transmitted either synchronously, or asynchronously, depending upon the
capabilities of the device used; both asynchronous and synchronous devices can
share the same SCSI bus, and in fact, all devices must start up in asynchronous
mode initially to enable this compatibility. Asynchronous transfer rates are typically
around 1 to 2.5MB per second, while synchronous devices can communicate faster,
from 4 to 10MB per second. This original standard defined optional synchronous
clock speed of up to 5MHz, giving a maximum data rate of 5MB per second on the
one byte wide bus.

With the release of the SCSI-1 standard in 1986, work started on a new standard,
predictably called SCSI-2. This standard is still in the process of being officially
approved as an ANSI standard, though many vendors, including IBM, have
implemented most of the features in the draft standard. Among the new features
are the following improvements.

� Command Tag Queuing

This provides the ability to queue multiple commands to devices understanding
the SCSI-2 protocol, which improves performance by making more efficient use
of the available bandwidth.

 � Fast SCSI

The standard now defines permissible clock speeds of from 5 to 10MHz, which
increases the data rate to 10MB per second on a one byte wide bus.

 � Wide SCSI

The standard now also allows bus widths of up to four bytes, though in
practice, physical design limitations have meant that two byte wide buses are
generally used. With 10MHz clock speeds, a two byte wide bus gives burst
data rates of 20MB per second.

Downward compatibility is maintained so that SCSI-1 devices can be attached to
SCSI-2 buses. SCSI-1 will be used when communicating with these devices, and
SCSI-2 to devices on the same bus supporting the new functions.

 Chapter 2. Hardware Storage Components 23

There are two alternative electrical configurations possible for the SCSI-1 and
SCSI-2 standards.

 1. Single Ended

The single ended interface comprises a ground and single signal line for each
of the SCSI data and control functions. This is the simplest configuration
possible, but is prone to electrical interference, and therefore has
recommended cable lengths of from three to six meters.

 2. Differential

The differential interface comprises positive and negative signal lines for each
of the data and control functions. The binary value of the transmitted signal is
determined from the difference between the voltages of these two signals.
Interference will affect both signals equally, hence not changing the difference
between them; this provides for far more reliable communication, with
correspondingly greater cable lengths of up to 19 meters allowed.

There is a third SCSI standard currently being discussed, not surprisingly known as
SCSI-3. This standard will provide for even higher data rates, larger numbers of
addresses, and greater cable lengths between devices. This will be possible
through the utilization of serial buses and packetized protocols. New media will be
supported, such as fiber optics, twisted pair, or even wireless.

SCSI also supports the attachment of multiple processors to the SCSI bus, which
allows implementation of device sharing.

2.2.1.2 High Performance Disk Drive Subsystem Adapter
The High Performance Disk Drive Subsystem adapter provides for attachment of up
to four serially attached disk subsystems, each of which may address up to four
disk devices, giving a total addressability of 16 devices. The distances between
adapter and subsystem can be up to 10 meters using copper twisted pair cables.
The serial link uses full duplex packetized communications to the disk subsystems,
and can support a maximum total data transfer rate of 80MB per second.

2.2.1.3 High Performance Parallel Interface Adapter
The High Performance Parallel Interface (HiPPI) adapter provides an ANSI
standard parallel interface to other computers and to storage devices. The adapter
provides simplex or duplex point to point communication at burst data rates of up to
800Mb per second (in each direction) over copper cable at distances of up to 25
meters. This cable distance can be extended using fiber optic extenders or OEM
HiPPI switches. The adapter consists of three cards on the RS/6000*, requiring five
slots for power consumption reasons; only one is installable per Micro Channel*
bus. These points limit the environments that the HiPPI interface can be used in as
they restrict the possible configurations of the system.

2.2.1.4 ESCON Channel Adapter
The ESCON channel adapter supports the transfer of data between an RS/6000
and the ESCON channel at a maximum rate of 17MB per second. The adapter
supports connections over fiber optic links using LED or LASER technologies. The
link between control units, directors and systems can be up to three kilometers with
LED technology, and up to 20 kilometers using LASER.

24 AIX Storage Management

2.2.1.5 System/370 Channel Emulator Adapter
The System/370 channel emulator adapter provides parallel channel attachment
capability via the block multiplexor channel, and supports data transfer at rates of
up to 4.5MB per second. The block multiplexor channel cable length can be up to
61 meters in length, and up to four control units can be supported.

2.2.1.6 Serial Storage Architecture
Serial Storage Architecture, or SSA, is an emerging standard defining a new
connection mechanism for peripheral devices. The architecture specifies a serial
interface that has the benefits of more compact cables and connectors, higher
performance and reliability, and ultimately, a lower subsystem cost. A general
purpose transport layer provides for 20MB per second full duplex communications
over 10 meter copper cables. Devices are connected together in strings, with up to
128 nodes (devices) allowed per string. Information is transmitted in 128 byte
frames that are multiplexed to allow concurrent operations. In addition, the full
duplex communications allows simultaneous reading and writing of data.

 2.2.1.7 Other Adapters
There are a number of devices that can be connected via local area networks. In
the main, these devices support some form of networking protocol, such as TCP/IP
and NFS, that allow the computer system to access the device as though it were
local. In these cases, the computer system would be attached to the LAN using a
token ring or Ethernet adapter.

 2.2.2 Disk Storage
This section will look at disk technology generally, before going on to examine the
decision process necessary to select the correct disk subsystems for the
environment.

 2.2.2.1 Disk Technology
All disk devices are constructed in basically the same way (see Figure 15 on
page 26). A number of disk platters fixed to a central hub are rotated at high speed
by a motor. Both surfaces of each platter are coated with a thin film of magnetic
material where the data will be stored. Information is written to and read from the
magnetic surface via small read and write heads that are located at the end of
mechanical arms known as actuators The actuators move the heads back and forth
from the outer edge of the platters to the inner edge. Data is written to the disk
surface in concentric tracks , so the movement of the actuator locates the head
over the required track, and the rotation of the platter moves the track past the
heads allowing information to be read or written. Each platter surface has read and
write heads associated with it, though all heads are usually attached to the same
actuator assembly, moving in concert, with data read from one platter surface and
one track at a time. The length of time it takes for the actuator to move the head to
the required track is known as the seek time, while the time taken for the rotation of
the platter to bring the correct part of the track under the heads is known as the
rotational latency. Once correctly positioned, data is read or written in a continuous
stream, and the rate at which this occurs is called the data transfer rate. The
combination of the averages of seek time, rotational latency, and data transfer rate
define the performance of the disk device.

 Chapter 2. Hardware Storage Components 25

Figure 15. Anatomy of a Disk Device

The technology used for the read and write heads, as well as the composition of
the magnetic material used on the platter surface, defines the areal density or how
much information per unit area can be stored on the disk device. The earliest
mechanisms used small coils that generated a magnetic field when current was
passed through them, thereby changing the magnetic polarity of a small area of the
disk; the polarity of the area defining the binary value stored. Passing the coil back
over the surface causes it to intersect with the magnetic fields generated by each
area. When a magnetic field moves through a coil, it causes a current to flow, the
direction dependent upon the polarity of the field, thus allowing the information to
be read back. Greater areal densities and hence correspondingly greater capacities
per drive have since been achieved with new head technologies, such as thin film
heads which utilize the coil principle, and more recently magneto resistive or MR
heads (used for reading only). MR heads use a different principle for reading the
state of the magnetic domains, sensing the variation in electrical resistance of the
platter surface rather than using induction. This also gives much improved
performance.

Locating the information and passing it to the requesting processor is accomplished
by electronics in the drive assembly. The design and capabilities here also affect
the overall performance of the device. In the simplest case, requests arrive for
information located at a particular disk address, so the actuator is positioned at the
correct track and the required number of blocks are read and passed to the
requestor. The next request arrives, the actuator is repositioned and the request
again fulfilled. This involves much seeking back and forth, as well as waiting for the
correct parts of the track to arrive, thus introducing significant delay. In order to
minimize these periods of inactivity, some devices utilize a mechanism known as
elevator seeking where the incoming requests are sorted so that the actuator can
fulfill a sequential series of requests on an inward pass, and then again on the
outward pass. This minimizes seek delay. Some devices also utilize a mechanism
called read ahead whereby the remaining blocks in a track (after a read has been
satisfied) are read and cached locally in the device in anticipation of a sequential

26 AIX Storage Management

request. If this occurs, the information can be supplied directly from cache with no
costly seek or rotational latency delays.

One other hardware technique used is known as banding. This takes advantage of
the fact that if data is written at a fixed rate, then there will be larger gaps between
bits the further out from the center that writes occur. Banding therefore partitions
the disk into radial sections and raises the bit density as the heads move outwards
through them. This ensures an even data density, and consequently increases the
overall capacity of the device.

Disk devices vary enormously in their capacities and performance, with the highest
single drive capacities currently around 4GB.

2.2.2.2 Selecting the Correct Disk Storage Devices
The preceding section explained the basic technology utilized in disk storage
devices; this section will focus on selecting the right solution in terms of the drives
and subsystems currently available. There are three main considerations (as
outlined in 1.2.1, “Hardware Management” on page 8), performance, availability,
and capacity. In some situations, fault tolerance, or the ability to continue in the
event of component failure, is important. This consideration is really a subset of
availability, but is separated out in Table 1 for clarity. This table provides a guide
for various application types as to which of the above attributes are required, and
should therefore assist in the selection of the correct storage hardware.

Table 1. Application Requirements for Disk Storage

Application Random
Performance

Sequential
Performance

Capacity Availability Fault Tolerance

CAD/CAM I I I O -

CASE I I I I O

Communications
Routing

I E - O O

Database C E I I O

Fileserver I O I I I

Multimedia Server I C I I O

Scientific/NIC I C I O -

Transaction
Processing

C - I I I

Note:

� C - critical
� I - important
� O - optionally important
� E - emerging

:2 refid=idiskd.application requirements

Having looked at which elements are important on a per application basis,
requirements for each attribute can now be examined in terms of specific device
type selection.

 1. Capacity

If increased internal disk storage is required, then the choice is restricted by the
number of internal drives supported within the system itself, and then by the
capacities of the drives selected. The following table shows the maximum
capacities for each of the currently available systems.

 Chapter 2. Hardware Storage Components 27

Table 2. Maximum Internal Storage Capacities

RS/6000 System Maximum Number of Drives Maximum Drive Capacity (GB) Maximum Total Capacity (GB)

2xx Series 1 2 2

3xx Series 2 2 4

Models 41T/41W 1 + 1 1 + 2 3

Model C10 2 2 4

Model 52H 3 2 6

5xx Series 6 2 12

Model R10/R20 2 2 4

970B/980B/990/R24 4 2 8

Internal disks will generally be attached to a SCSI adapter, and may well share
the bus with other slower, asynchronous devices such as tape. This will affect
performance. Furthermore designing a highly available solution using only
internal disks can be difficult, as the maximum number of drives allowed is not
high. If either of these points is important, or just that more capacity than
supportable internally is required, then the considerations become slightly more
complex. In terms of maximizing storage capacity, Table 3 and Table 4 on
page 29 show the maximum sizes for all drives and subsystems that can be
attached to the RS/6000.

Table 3. Maximum External Storage Capacities

RS/6000
System

Configuration

9334
Single-ended
Capacity (GB)

9334
Single-ended
Max Drawers

9334
Differential

Capacity (GB)

9334
Differential

Max Drawers

7134 Capacity
(GB)

7134 Max
Subsystems

Model 250 18.5 2 28 4 NS NS

Rest of 2xx
series

9.2 1 NS NS NS NS

Models
41T/41W

18.5 2 28 4 NS NS

Model C10 27.7 3 42 6 42 1.5

Models
355/365/375

9.2 1 14 2 14 0.5

Models
360/370/380/390

36.9 4 28 4 28 1

Models
3AT/3BT

27.7 3 28 4 28 1

Model 52H 36.9 4 56 8 56 2

Model 550L 36.9 4 56 8 56 2

Rest of 5xx
series

64.6 7 98 14 98 3.5

Models
950/R10/R20

64.6 7 98 14 98 3.5

Models
970B/980B/990

R24

129.2 14 196 28 196 7

Note:

� 7135 RAIDiant array capacities are for RAID 3 or 5 with five disk drives in a bank
� All 9334 drives are 2GB except for single ended
� Differential 9334s are attached two per adapter
� NS is Not Supported

28 AIX Storage Management

Table 4. Maximum External Storage Capacities (continued)

RS/6000
System

Configuration

9333 Capacity
(GB)

9333 Max
Drawers

3514 Capacity
(GB)

3514 Max
Subsystems

7135 Capacity
(GB)

7135 Max
Subsystems

Model 250 NS NS 55.1 4 NS NS

Rest of 2xx
series

NS NS NS NS NS NS

Models
41T/41W

NS NS 55.1 4 NS NS

Model C10 64 8 82.6 6 288 6

Models
355/365/375

NS NS 55.1 4 192 4

Models
360/370/380/390

32 4 27.5 2 96 2

Models
3AT/3BT

NS NS 55.1 4 192 4

Model 52H 64 8 27.5 2 96 2

Model 550L 128 16 110.2 8 384 8

Rest of 5xx
series

192 24 110.2 8 384 8

Models
R10/R20

192 24 NS NS 384 8

Models
970B/980B/990

R24

224 28 NS NS 672 14

Note:

� All drives are 2GB
� Capacities of 7135 RAIDiant Array are for RAID 3 or RAID 5 configurations with 5 disk drives
� The 3514 Array capacity is calculated with 8 drives as 7 + P. Some capacity is used by the array subsystem so its actual capacity is 13.77GB

rather than 14GB.
� NS is Not Supported

This gives an indication of the capacity that can be expected when selecting
particular devices, but should be used in conjunction with the sections on
performance and availability before making any final decisions. Furthermore, it
must be noted that multiples and mixes of these subsystems and devices can
be attached, though there are limits on the total due to technology constraints.

� Cable lengths restrict the number of devices attachable in some cases. See
2.2.1, “Hardware Attachment Adapters” on page 22 for details.

� Addressing limitations restrict the number of devices attachable to an
adapter. See 2.2.1, “Hardware Attachment Adapters” on page 22 for
details.

� Micro Channel can support a maximum of four differential SCSI adapters
due to power considerations. See Table 5 for more information.

The following table shows the maximum numbers of external storage devices
that can be attached to a Micro Channel bus.

Table 5 (Page 1 of 2). Maximum External Storage per Micro Channel

System Maximum Capacity
(GB)

Number of Drawers or
Subsystems

Single Processor Max
Capacity (GB)

Dual Processor Max
Capacity (GB)

9334 Single Ended
Deskside

9.2 1 9.2 8.8

9334 Single Ended Rack 9.2 1 9.2 Not Supported

9334 Differential
Deskside

8 2 14 12

 Chapter 2. Hardware Storage Components 29

Table 5 (Page 2 of 2). Maximum External Storage per Micro Channel

System Maximum Capacity
(GB)

Number of Drawers or
Subsystems

Single Processor Max
Capacity (GB)

Dual Processor Max
Capacity (GB)

9334 Differential Rack 8/6 2 14 12

9333 High Performance 8 4 32 32

3514 Disk Array (RAID
0)

15.77 2 31.5 31.5

3514 Disk Array (RAID
5)

13.77 2 27.5 27.5

7134 Disk Subsystem 28 0.5 14 12

7135 RAIDiant Model
010

24 1 12 12

7135 Model 110 RAID 0 60 2 120 120

7135 Model 110 RAID
3/5

48 2 96 96

7135 Model 110 RAID 1 28 2 56 56

Note:

� The second drawer on a 9334 differential SCSI is limited to three drives in a single processor configuration, and two drives with dual
processors.

� The single processor configurations of a single ended 9334 use seven SCSI ids with three 2.4GB and one 2GB drive.
� The dual processor configuration of a single ended 9334 uses six SCSI ids with two 2.4GB drives and two 2GB drives.
� The 7135 model 010 can contain a maximum of 12 disk drives with six on each of two SCSI buses. A separate Micro Channel adapter is

required for each bus.

 2. Performance

With regard to the disk devices themselves, the major performance issue is
application related; that is to say, whether large numbers of small accesses will
be made (random), or smaller numbers of large accesses (sequential). For
random access, performance will generally be better using larger numbers of
smaller capacity drives; the opposite applying for sequential access. If the
overall capacity requirements are large however, then larger capacity disk
drives should be used, as there will be sufficient drives to enable performance
benefits to be gained from concurrent access. Individual disk drive performance
information can be found in Table 6.

Table 6. Individual Disk Drive Characteristics

Drive Capacity Random
Performance
4K ops/sec

Sequential
Performance
4KB (MB/s)

Sequential
Performance
64KB (MB/s)

Sequential
Performance
512KB (MB/s)

Interface
Speed (MB/s)

SCSI 3.5" 0.2 26 0.204 1.16 1.476 5

SCSI 3.5" 0.4 27 0.225 1.141 1.472 5

SCSI 3.5" 0.54 44 0.357 2.152 2.932 10

SCSI 3.5" 1.0 33 0.271 1.604 2.189 10

SCSI 3.5" 2.0 39 0.319 2.153 3.218 10

SCSI 5.25" 0.857 31 0.255 1.301 1.709 4

SCSI 5.25" 1.37 35 0.286 1.634 2.245 5

SCSI 5.25" 2.4 66 0.271 1.604 2.189 10

Serial 1.07 31 0.255 1.301 1.709 8

Serial 2.0 39 0.319 2.153 3.218 8

Note:

� Random performance is measured as the number of 4KB blocks a drive can sustain at a utilization of 50%. As the utilization approaches 100%
the response time increases significantly.

� Sequential performance is measured as the number of bytes per second that can be read from the drive. A random seek is done, a number of
bytes are read (4KB, 64KB, or 512KB), and then another random seek is done.

� Interface speeds shown are the burst data rates, and as such not sustainable for long periods of time. The serial drives are full duplex, and
can read and write data simultaneously.

30 AIX Storage Management

Generally speaking, when performance is the major issue, the best approach is
to benchmark the application set. If the applications spend most of their time
waiting for data from disk, then much benefit will be attained from selecting
faster storage subsystems. The quickest access to data can be achieved
through concurrency, which means being able to read/write from/to multiple disk
drives simultaneously in order to satisfy an application request. This
functionality is provided with RAID (Redundant Array of Independent Disks)
support, which a number of disk subsystems can utilize. Actual performance
characteristics will vary from subsystem to subsystem, but in the main, the
following points hold true for each of the RAID modes of operation.

 a. RAID 0

RAID 0 is also known as data striping. Conventionally, a file is written out
to (or read from) a disk in blocks of data. With striping, the information is
split into chunks (a fixed amount of data) and the chunks written to (or read
from) a series of disks in parallel. There are two main performance
advantages to this.

� Data transfer rates are higher for sequential operations due to the
overlapping of multiple I/O streams.

� Random access throughput is higher because access pattern skew is
eliminated due to the distribution of the data. This means that with data
distributed evenly across a number of disks, random accesses will most
likely find the required information spread across multiple disks and
thus benefit from the increased throughput of more than one drive.

RAID 0 is well suited for program libraries requiring rapid loading of large
tables, or more generally, applications requiring fast access to read-only
data, or fast writing. RAID 0 is only designed to increase performance,
there is no redundancy, so any disk failures will require reloading from
backups.

 b. RAID 1

RAID 1 is also known as disk mirroring. In this implementation, duplicate
copies of each chunk of data are kept on separate disks, or more usually,
each disk has a twin that contains an exact replica (or mirror image) of the
information. If any disk in the array fails, then the mirrored twin can take
over. Read performance can be enhanced as the disk with its actuator
closest to the required data is always used thereby minimizing seek times.
The response time for writes can be somewhat slower than for a single
disk, depending on the write policy; the writes can either be executed in
parallel for speed, or serially for safety (see “Logical Volume Manager
Policies” on page 54 for a complete explanation of mirroring policies). This
technique improves response time for read-mostly applications, and
improves availability at the cost of price (twice as many disks as disk space
required are required).

RAID 1 is most suited to applications that require high data availability,
good read response times, and where cost is a secondary issue.

 c. RAID 2/3

RAID 2 and RAID 3 are parallel process arrays, where all drives in the
array operate in unison. Similar to data striping, information to be written to
disk is split into chunks and each chunk written out to the same physical
position on separate disks (in parallel). When a read occurs, simultaneous
requests for the data can be sent to each disk, which then retrieve the data

 Chapter 2. Hardware Storage Components 31

from the same place and return it for assembly and presentation to the
requesting application. More advanced versions of RAID 2 and 3
synchronize the disk spindles so that the reads and writes can truly occur
simultaneously (minimizing rotational latency buildups between disks). This
architecture requires parity information to be written for each stripe of data,
the difference between RAID 2 and RAID 3 being that RAID 2 can utilize
multiple disk drives for parity, whilst RAID 3 uses only one. If a drive should
fail, the system can reconstruct the missing data from the parity and
remaining drives. Performance is very good for large amounts of data, but
poor for small requests as every drive is always involved, and there can be
no overlapped or independent operation.

RAID 2 is rarely used, but RAID 3 is well suited for large data objects such
as CAD/CAM or image files, or applications requiring sequential access to
large data files.

 d. RAID 4

RAID 4 addresses some of the disadvantages of RAID 3 by using larger
chunks of data and striping the data across all of the drives except the one
reserved for parity. Using disk striping means that I/O requests need only
reference the drive that the data required is actually on. This means that
simultaneous as well as independent reads are possible. Write requests
however, require a read/modify/update cycle that creates a bottleneck at
the single parity drive. This bottleneck means that RAID 4 is not used as
often as RAID 5, which implements the same process, but without the
bottleneck.

 e. RAID 5

RAID 5, as has been mentioned, is very similar to RAID 4. The difference
is that the parity information is distributed across the same disks used for
the data, thereby eliminating the bottleneck. Parity data is never stored on
the same drive as the chunk that it protects. This means that concurrent
read and write operations can now be performed, and there are
performance increases due to the availability of an extra disk (the disk
previously used for parity). There are other enhancements possible to
further increase data transfer rates, such as caching simultaneous reads
from the disks, then transferring that information whilst reading the next
blocks. This can generate data transfer rates at up to the adapter speed.
Similar to RAID 3, in the event of disk failure, the information can be rebuilt
from the remaining drives.

RAID 5 is best used in environments requiring high availability and fewer
writes than reads.

Disk subsystems that support RAID include:

� IBM 7135 RAIDiant array
� IBM 3514 High Availability External Disk Array
� IBM 9570 Disk Array Subsystem

To summarize, the key performance issues are listed below:

� Quantity of code executed per block of data (I/O ratio)

� Number of disks containing data

� Disk drive performance

� Disk drive data path performance (adapter to disk)

32 AIX Storage Management

� Size of data blocks accessed

� Pattern of data access (random/sequential/locality of reference)

� Ability to pipeline data (caching)

� Importance of response time

3. Availability and Fault Tolerance

The key assessment with regard to availability is how severe the impact of
losing data (however temporarily) would be to the business. If, for example,
being without access to vital information for two hours would cause
unacceptable loss of business, then the system must be designed in such a
way that any failures can be remedied within this period. Standard availability
usually means that the system is designed in such a way as to minimize the
risk of failure, but not prevent it altogether; choosing highly reliable devices for
example. High availability generally implies introducing some redundancy into
the system design, so that the system can continue (albeit usually at reduced
performance) while the failing component is replaced. If all vital components in
a subsystem have a back up in case of failure (total redundancy), then the
system is fault tolerant; this means duplication of all critical components,
including power supplies and cooling fans for example, as well as allowing
replacement of failing parts during continuing subsystem operation.

The price of redundancy for high availability or fault tolerance is usually the
increased cost.

Highly availability solutions include mirroring (RAID 1), as well as RAID 3 and
RAID 5 parity. Automatic recovery can be built into some of the RAID
supporting subsystems as well. Additionally, some subsystems allow
redundancy in power supplies, controllers, and cooling to provide fault tolerant,
highly available subsystems.

The various advantages and disadvantages of the disk devices and subsystems
available are summarized in Table 7, which can be used to compare disk solutions,
and select the most appropriate for the required environment.

Table 7 (Page 1 of 2). Comparison of Disk Device and Subsystem Features

Configuration Availability
Mechanism

Maximum
Capacity (GB)

Performance Cost Applications Fault
Tolerance

Internal Disk Mirroring System
Dependent

Medium Low General, OLTP No

7204-215 Mirroring 2 Medium Low General, OLTP Yes (#)

9334 Deskside Mirroring 8 Medium Medium General, OLTP Yes (#)

9334-011 8
Drawers

Mirroring 32 Medium Medium General, OLTP Yes (#)

9333 Deskside Mirroring 8 High Medium Fast Response Yes (#)

9333 32
Drawers

Mirroring 128 High Medium Fast Response Yes (#)

7135-110 (RAID
0)

None 56 High Medium Fast Response Yes

7135-110 (RAID
1)

Mirroring 28 Medium High General, OLTP Yes

7135-110 (RAID
3)

Parity 48 Medium Medium NIC, Sequential Yes

7135-110 (RAID
5)

Parity 48 Medium Medium General Yes

3514 (RAID 0) None 14 High Low General Some

 Chapter 2. Hardware Storage Components 33

Table 7 (Page 2 of 2). Comparison of Disk Device and Subsystem Features

Configuration Availability
Mechanism

Maximum
Capacity (GB)

Performance Cost Applications Fault
Tolerance

3514 (RAID 5) Parity 13.77 Medium Low General Some

9570 (RAID 1) Mirroring 116.2 High High Fast Response Yes

9570 (RAID 5) Parity 232.4 High High Fast Response Yes

Note:

� (#) indicates that fault tolerance is achieved through using duplicate devices
� Capacities are based upon the usage of 2GB drives

 2.2.3 Tape Storage
This section will look at tape technology, before continuing to examine the decision
process necessary to enable the best tape subsystems for the environment to be
selected.

 2.2.3.1 Tape Technology
There are two basic technologies incorporated into tape devices, and the specifics
of these will be discussed shortly. Both though, utilize the same essential
mechanism for writing and reading data: however it is packaged, and whatever
materials are used in its construction, tape consists of a long strip of material
ranging from 4mm wide, to half an inch. The strip is coated (in much the same way
as disk) with a magnetic material, and wound onto spools of some kind. Using a
transport mechanism dependant on the technology, the tape is moved past read
and write heads that utilize similar technology to those used in disk devices to alter
or sense the polarity of magnetic domains on the tape, thereby writing or reading
data.

It is at this point that the technologies differ, both in the methods used for tape
transport, and in the way in which the data is written onto the tape surface.

 1. Helical Scan

Figure 16. Helical Scan Principles

34 AIX Storage Management

Helical scan technology has its origins in consumer analog video devices, and
though there are a number of different formats, the basic principles are the
same in each case. As can be seen from Figure 16, the tape surface is wound
around a large cylindrical head inclined at an angle of some four to five
degrees. The tape moves relative to the head, which is itself spinning at high
speed. This results in data tracks written at an angle across the tape width as
well as being slightly overlapped. This makes very efficient use of the tape
capacity, and gives a good data rate for continuous writing of data (streaming).
This capacity is at the cost of start/stop performance, as synchronization
problems slow down the initial access. Additionally, helical scan is a
destructive process in the sense that the tape surface is in contact with the
read/write head and hence wears more rapidly. Tape is normally contained
within a cartridge and extracted to be wound around the head as shown in
Figure 17. This winding process also takes time and must be performed every
time the device is loaded or idle, as tape cannot be left in contact with the head
for too long as this would again cause excessive wear. Head replacement is
also difficult, due to the complexity of the transport mechanism.

Figure 17. Helical Scan Tape Paths

 2. Longitudinal Recording

Longitudinal recording was specifically designed for computer data storage.
Again there are a number of variations, though all utilize the same basic ideas.
As can be seen from Figure 18 on page 36, the tape is moved past stationary
read and write heads causing the data tracks to be recorded linearly along the
tape's length. In order to make full use of the tape, the heads normally contain
multiple elements allowing several tracks to be written or read concurrently. In
addition, when a continuous series of tracks has been written along the length
of the tape, the direction of motion can be switched, and the heads stepped
perpendicular to the movement of the tape, thereby allowing another series of
tracks to be written. This process can be repeated until the entire tape width is
used, and is known as serpentine track interleaving.

 Chapter 2. Hardware Storage Components 35

Figure 18. Longitudinal Recording Principles

Longitudinal recording is a non-destructive process with a consequently longer
media life. Performance is good for both streaming and start/stop activity, and
the data rate is high. Maintenance is a simpler process, and as can be seen
from Figure 19, the tape transport path and mechanism are generally simpler.

Two types of spooling method are common. Cartridges similar to helical scan
cartridges can be used, though with longitudinal recording, the tape transport
path can remain entirely within the cartridge. This makes load and unload
operations much faster, and the entire design much simpler. The other
mechanism utilizes a single reel within the cartridge, and requires the free end
of the tape to be threaded onto a spool within the tape device itself. This does
result in a slightly more complex design, and consequently longer load and
unload times.

Figure 19. Longitudinal Recording Tape Paths

36 AIX Storage Management

The simpler design of longitudinal devices generally results in greater reliability,
though for a given media size, helical scan will provide greater capacity. Start/stop
performance and load/unload times are also better with the longitudinal technology.

Both helical scan and longitudinal recording devices can make use of hardware
compression before writing data to the tape. In some cases (with the latest
Intelligent Data Recording Capability, or IDRC), this can result in up to a fourfold
increase in capacity, depending upon the characteristics of the data to be
compressed. Currently, maximum capacities for both technologies are at around
5GB per cartridge without compression.

The latest longitudinal devices now have such rapid load times, which when
coupled with new recording strategies, give access times to data anywhere on the
tape that are beginning to enter the acceptable range for interactive use. The next
section will look at specific product types with a view to selecting the best tape
devices for the environment.

2.2.3.2 Selecting the Correct Tape Storage Devices
The preceding section has looked at tape devices from the technical point of view.
This section will now examine the criteria that should be used to choose the correct
devices for an environment, as well as the devices available. As in the case of disk
devices, there are three main considerations, performance, availability, and
capacity.

 1. Capacity

The capacity of a tape drive refers to how much information can be stored on
the media that it uses. This varies as a function of the tape drive technology,
and the compression techniques used (see 2.2.3.1, “Tape Technology” on
page 34 for details). If the required capacity should exceed that of any single
tape available, and either time constraints exist, or there is a requirement for
unattended backup, then a tape library should be used. The various capacities
available from the individual tape devices are shown in Table 7 on page 33.
As can be seen, capacities are generally higher for the devices using helical
scan technology. Tape Libraries are discussed at the end of this section.

Most tape drives support some form of compression which can increase the
amount of data that can be stored on a tape. The degree of compression
depends upon the data to be compressed, so the figures shown in Table 8 on
page 38 are the maximum ratios. In order to arrive at a maximum compressed
capacity for a particular tape, the ratio should be multiplied with the
uncompressed capacity (for example a 5GB tape with a compression ratio of
2:1 would give 10GB of data). The tape device automatically uncompresses the
data when reading back from tape. There is a small overhead involved (small
because the compression is usually performed in hardware). As some types of
data do not benefit greatly from compression, and to remove the small
overhead, most devices allow compression to be turned off if required.
Generally though, it is of benefit to leave compression enabled.

 2. Performance

In the case of tape drives, performance mostly refers to the data rates to and
from the device. This is usually not limited by the attachment mechanism, but
by the device itself, though there are a number of adapters supported (see
Table 8 on page 38). In the case of tape libraries, the time taken to read the
first byte of data is usually also a performance measurement, and includes the

 Chapter 2. Hardware Storage Components 37

time taken to load and unload tapes from/to the library; this is discussed at the
end of this section. Data rates and attachment methods are detailed in Table 7
on page 33. Note that although the data rates are generally comparable,
start/stop performance is usually superior with longitudinal technology.

 3. Availability

Availability in this sense usually means reliability, and can be measured as the
Mean Time Between Failures for the device (MTBF), and the reliability of the
media. As was mentioned in 2.2.3.1, “Tape Technology” on page 34, media life
is greater for longitudinally recorded tapes, with correspondingly fewer errors;
additionally, the simpler transport mechanisms employed normally extend the
MTBF significantly.

Table 8. Tape Drive Specifications

Drive Uncompressed
Capacity

(GB)

Maximum
Compression

Ratio

Data Rate
(KB/s

uncompressed)

Time to
Write One
Cartridge

(hrs)

Save Rate
(GB/hr

uncompressed)

Interface Technology

7208-011
(8mm)

5 2:1 500 2.78 1.8 SCSI-2 Helical

7208-001
(8mm)

2.3 N/A 245 2.61 0.88 SCSI-1 Helical

7206-001
(4mm)

2 2:1 183 3.04 0.66 SCSI-1 Helical

7206-005
(4mm)

4 2:1 400 2.78 1.44 SCSI-2 Helical

7207-012
(1/4")

1.2 N/A 300 1.11 1.08 SCSI Longitudinal

9348-012
(1/2")

0.16 N/A 768 0.06 2.76 SCSI Longitudinal

3490-C10
(1/2")

4.8 3:1 3000 0.5 10.8 S/370 or
ESCON

Longitudinal

3490-C22
(1/2")

9.6 3:1 3000 0.5 10.8 S/370 or
ESCON or
SCSI-2 Diff

F/W

Longitudinal

3490-E01
(1/2")

5.6 3:1 3000 0.5 10.8 SCSI-2 Diff
F/W

Longitudinal

Note:

� The figures for the 9348-012 are using 6250 bpi

Tape libraries have been described in 2.2.3.1, “Tape Technology” on page 34, and
generally utilize automation to load/unload one of the drives in Table 8 from a
library. The library management software must usually be provided by an
application and needs to be written to understand the interface to the library. It is
important therefore, to confirm that the tape library selected is in fact supported by
the applications required. The intended usage is important too. If the library will be
used for backing up fileservers, or workstation clients overnight, then it is necessary
to ensure that the data rate is sufficient to do this. A comparison of current tape
library products can be seen in Table 9.

Table 9 (Page 1 of 2). Tape Library Specifications

Library Number of
Tapes

Maximum
Capacity

(GB)

Compression
Ratio

Number of
Drives

Data Rate
(MB/s un-

compressed)

Time to
Fill All
Media
(hrs)

Average
Exchange

Time
(secs)

Technology

0840-001
(8mm)

10 50 2:1 1 0.5 27.8 49 Helical

38 AIX Storage Management

Table 9 (Page 2 of 2). Tape Library Specifications

Library Number of
Tapes

Maximum
Capacity

(GB)

Compression
Ratio

Number of
Drives

Data Rate
(MB/s un-

compressed)

Time to
Fill All
Media
(hrs)

Average
Exchange

Time
(secs)

Technology

0572-001
(8mm)

54 270 N/A 2 1.0 75 49 Helical

3494-L10 210+ 168+ 3:1 1-8 3.0 42+ 7-17 Long-
itudinal

3495-L20
(1/2")

6440 5152 3:1 4-16 2.5 days 7-17 Long-
itudinal

Note:

� Average exchange times do not include access to first byte of data
� The 3490 supports the OEMI adapter at 2.5MB/s data rate

 2.2.4 Optical Storage
This section will look at optical storage technology, before going on to examine the
decision process required to choose the right optical storage devices for the
environment.

 2.2.4.1 Optical Technology
There are three basic optical technologies, each providing for different capabilities.
Some devices will cope with more than one kind of technology, though this is not
always so. In all three cases, information is stored in tracks on the media surface.
Each mechanism then uses different methods to read and write information on
these tracks.

1. Compact Disk Read Only Memory

With Compact Disk Read Only Memory, or CD-ROM, information is molded into
the media during the manufacturing process as a series of pits in the surface.
The existence or absence of a pit determines the binary state at each point.
The information is read back by shining a laser onto the disk surface and
measuring the reflected intensity. The compact disk is spun at high speed
inside the device and the laser assembly moved radially in and out to give
access to the required blocks of information. CD-ROMs are cheap to make
and provide an excellent distribution medium. The only potential issue is that
there is no recording capability.

 2. Rewritable

Rewritable media uses magneto-optic technology to store information. As can
be seen from Figure 20 on page 40, the media surface is comprised of
concentric tracks of magnetic material. With this technique, the read/write head
consists of two components, an electromagnet and a laser. The media is first
prepared by heating each magnetic domain with a high powered laser in the
presence of a magnetic field. This causes the domains to adopt a common
polarity. Writing is accomplished by again heating up a domain with the laser
while applying a magnetic field of reverse polarity to flip its state. Reading back
information is achieved using the reflected light from a lower powered laser to
detect the original polarity domains (zeros) and the reversed polarity domains
(ones), through a polarization effect. Erasing is implemented by again heating
up the domains with a high powered laser and simultaneously using the
electromagnet to reset the polarity to its original state.

 Chapter 2. Hardware Storage Components 39

While providing the benefits of read, write and erase, this technology still
manages to be very stable, giving a shelf life of around 10,000 years, and
archival life of around 150 years.

Figure 20. Rewritable Optical Media Technology

3. Write Once Read Many

Write Once Read Many, or WORM technology is also implemented in a number
of different ways. The purpose in each case is the same, to allow information to
be recorded for permanent copy, that is to say once written, it cannot be
erased.

 � Ablative

The ablative WORM technique uses a higher powered laser to actually
physically alter the media surface by burning away material to create pits
similar to those used in CD-ROM. In the same way, a lower powered laser
is then used to read back information through reflected intensity. Erasing
of information so recorded is clearly not possible.

� Continuous Composite Write-Once

Continuous Composite Write-Once, or CCW uses the magneto-optic
technology described earlier to record and read back information. Erasure
of data is prevented by simply not allowing this function in the device
firmware.

 � Phase Change

This technology operates in a similar fashion to ablative. A higher powered
laser beam alters the physical properties of the material used to form the
disk surface, causing it to adopt its crystalline form at the high temperature

40 AIX Storage Management

induced by the laser. The crystalline form is lighter in color than the original
form, and the resulting lighter dots can be read as variations in reflected
intensity by a lower powered laser.

 � Dye-Polymer

Again similar to ablative, this technology uses a high powered laser to alter
the physical properties of an organic dye that is coated on the media
surface. When exposed to the high energy beam, the dye absorbs energy
and becomes darker. A lower powered laser can then be used to read back
information as differences in reflected intensity.

WORM media is also stable, giving the benefits of extremely long archival life
of over 500 years, with the additional advantage of allowing the initial
information recording.

 4. Multifunction

A fourth technology combines the capabilities of WORM and magneto-optical to
give drives that support both functions.

These optical technologies also come in a number of different form factors including
5.25 inch and 12 inch media, both single and double sided. The optical disk is
normally housed in a cartridge, and typical capacities per cartridge are currently
around 1.3GB for double sided, double density, 5.25 inch media.

Currently, lasers operating in the red light frequency range are being used; in the
future, switching to blue light frequency range lasers will increase the density
fourfold and consequently enlarge capacity. The binary state is currently read as a
function of the position of the element on the media (known as Pulse Position
Modulation, or PPM). In the future, Pulse Width Modulation, or PWM will be used.
This is also known as edge detection, where a state change is interpreted as one
level, and no state change as the other (binary 1 and 0). This allows up to a 50%
increase in density (see Figure 21), with a corresponding increase in capacity.
Lastly, banding as described in the section on disk technology will be used, the
overall capacity increase including banding being around 24 times.

Figure 21. Pulse Position Modulation Vs Pulse Width Modulation

 Chapter 2. Hardware Storage Components 41

2.2.4.2 Selecting the Correct Optical Storage Devices
Having looked at the technology used in optical storage devices in the previous
section, this section will now discuss the selection of the physical devices. Once
again, performance and capacity are important differentiators, and should be
considered; in addition, with optical media, the technology used is also important.

 1. Capacity

The capacity of optical media is mainly dependent upon the technology, but
within that, also varies with the number of bytes per sector supported. It is
important to ensure that the application that will be using the optical device
supports the sector size that gives the capacity required. The capacities (for the
different bytes per sector supported) are shown in Table 10. If the capacities
available are insufficient for the environment, then an optical library should be
considered; these are discussed at the end of this section.

 2. Performance

With optical devices, performance involves (similar to disk) a combination of the
read and write data rates, as well as access times (themselves a combination
of seek times and rotational latencies). The attachment method will not affect
the performance significantly, as the maximum data rates do not come close to
the data rates of the adapters; this does mean that optical devices can share
adapters with other devices without performance implications (the total data
rate should be calculated to be below the maximum adapter data rate). The
performance characteristics of the various optical devices available are
compared in Table 10.

 3. Technology

As was described in 2.2.4, “Optical Storage” on page 39, there are several
different optical technologies currently in use: CD-ROM, WORM, and
Rewritable. If the requirement is for distribution or reading only, at relatively low
data rates, then CD-ROM is adequate; higher data rates would require WORM
or rewritable media devices. WORM is ideal if there is a requirement for long
term storage of infrequently accessed information, or for distribution. Rewritable
media is more suitable for interactive use when performance is not critical.

Table 10. Optical Device Specifications

Drive Technology Capacity (GB) Read Data
Rate (KB/s)

Write Data
Rate (KB/s)

Average
Access Time

(ms)

Interface

7210-001 CD-ROM 0.6 150 N/A 325 SCSI

7210-005 CD-ROM 0.6 330 N/A 200 SCSI

7209-001 Rewritable 0.65 (0.595) 680 (620) 227 (207) 82.5 SCSI

7209-002 Rewritable 1.3 (1.19) 1600 (1400) 533 (467) 67.5 SCSI

Note:

� The figures for the 7209 models were measured at 1024 bytes per sector, the figures in brackets are for 512 bytes per sector media

Although generally slower than disk, optical storage is cheaper. Therefore, if there
is a requirement for large amounts of secondary storage, and performance is not
critical, then optical storage should be considered. If the storage capacity required
exceeds that of the optical drives available, then a library should be considered.
Using similar technology to that employed in tape libraries, optical libraries utilize
automation to load/unload optical drives from magazines of optical media. The
same performance, capacity, and technology considerations apply as in the case of
optical drives; similar to tape libraries though, library management software needs

42 AIX Storage Management

to be provided that understands how to control the optical library. A comparison of
the optical libraries currently available can be found in Table 11 on page 43.

Table 11. Optical Library Specifications

Library Number of
Cartridges

Technology Maximum
Capacity

(GB)

Number of
Drives

Average
Read Data

Rate
(MB/s)

Average
Write Data

Rate
(MB/s)

Average
Exchange

Time

Interface

3995-A63 16 Rewritable
& WORM

20 (19) 1 1.05 (0.96) 350 (320) 10 SCSI-2 &
SCSI-2 Diff

3995-063 32 Rewritable
& WORM

40 (38) 2 1.05 (0.96) 0.35 (0.32) 10 SCSI-2 &
SCSI-2 Diff

3995-163 144 Rewritable
& WORM

188 (171) 4 1.05 (0.96) 0.35 (0.32) 10 SCSI-2 &
SCSI-2 Diff

Note:

� The 3995 models support both 1024 and 512 bytes per sector media. The first figures are 1024 bytes per sector, the figures in brackets are
512 bytes per sector

In addition to the directly attachable library devices shown in Table 11, there are
also a number of LAN attached optical libraries that can be utilized via NFS. These
libraries utilize the same technologies as discussed in this section, the difference
being in the method of access. See 3.1.4, “File Systems” on page 57 for a
discussion of NFS. The models of the 3995 that can be attached in this fashion are:

 � 3995-A23

 � 3995-023

 � 3995-123

The capacities are the same as for the equivalent x63 models for direct attachment.

 2.3 Summary
This chapter has discussed in more detail the hardware components available for
use by AIX storage management products.

The first section looked at the considerations involved in choosing the types of
components appropriate for a particular environment:

� Costs per megabyte

 � Access frequency

 � Access density

 � Access type

 � Data rates

 � Online life

 � Interchange requirements

� Longevity of data

 � Reliability

 � Regulatory requirements

Various decision scenarios were examined, including:

� Simple cases for just disk, tape, or optical

 Chapter 2. Hardware Storage Components 43

� More complicated environments where combinations of disk, tape, and optical
may be required

� The most complex cases where disk, tape, and optical are all required

The second section examined the characteristics of the hardware devices
themselves with a view to selecting from the various products currently available.

Adapters were looked at from the points of view of:

 � Technology

 � Cabling requirements

 � Performance/reliability

 � Addressability

 � Device support

 � Cost

Disks were looked at from the points of view of:

 � Technology

 � Capacity

� Subsystem performance, including RAID levels

� Availability and fault tolerance

Tape devices were looked at from the points of view of:

� Helical and longitudinal technologies

� Device and library capacities

 � Availability

� Device and library performance

Optical devices were looked at from the points of view of:

� ROM, Rewritable, and WORM technologies

� Device and library capacities

� Device and library performance

44 AIX Storage Management

Chapter 3. Operating System Software Components

This chapter is intended to discuss the various software components within the
Operating System that are used to enable storage management. A brief overview of
the higher level software components available for storage management is also
included.

3.1 The Operating System
The operating system of a computer has been defined in many ways, but
essentially it is a set of software interfaces and functions designed to provide an
environment in which the hardware resources of the system can be utilized easily
to do work. Within this definition there can be arbitrary levels of complexity, ranging
from simple operating systems that allow a single process to execute at a time for a
single user, to those that manage multiple processors, large arrays of disk, huge
amounts of real memory, as well as many different devices on behalf of hundreds
of users, each running several processes concurrently.

The operating system can be subdivided into a number of components, each of
which perform essential tasks. This section will focus on those elements related to
storage management.

 3.1.1 Page Space
An application consists of four main elements:

 1. Library

The library segment contains shared instructions that perform common
functions that will be used by many processes.

 2. Text

The text segment contains any static information such as text strings, tables,
and instructions to the processor.

 3. Data

The data segment contains variable information that the application will use and
modify during the course of its operation.

 4. Files

Files contain the information that the application will actually process to
produce output that the user requires.

The text and data segments form an entity known as the executable and are stored
in a file system (file systems and the organization of disk space for their support
are described in more detail in 3.1.3, “Logical Volume Manager” on page 49, and
3.1.4, “File Systems” on page 57), usually on disk. When the user wishes to run
the application, the operating system must locate the executable in the file system,
and load it into real memory. Any shared libraries required, if not already being
used by other applications, and therefore already loaded, must also be loaded.

Memory under AIX is managed by the Virtual Memory Manager, which provides a
52 bit virtual address space (4 petabytes). This space is divided into segments,
each of 256MB. Segments can be of several different types:

 Copyright IBM Corp. 1994 45

 1. Working Segments

Working segments are those pages of memory that contain transient
information, such as application data, and shared library code.

 2. Persistent Segments

Persistent segments are those pages of memory that contain longer term
information, such as data files, or application text.

 3. Client Segments

Client segments are used for NFS files, or data from remote systems.

 4. Log Segments

Log segments contain meta information used by the journaled file system (see
3.1.4, “File Systems” on page 57 for more information on logs).

When the application is loaded, the VMM loads the various elements into virtual
memory segments (see Figure 22 on page 47). Application text and file data are
loaded into persistent segments, whilst application data and shared libraries are
loaded into working segments. If any of the libraries required have already been
loaded, then they obviously need not be loaded again.

Virtual memory segments are themselves divided into pages of 4096 bytes each,
and the VMM manages the mapping of these pages between real memory, paging
space, and disk. The first element of the application loaded is the text segment,
and the first few pages of this working segment are mapped to real memory
locations. This means that when the operating system loader issues instructions to
load the text segment to the required virtual memory segment, the VMM translates
the addresses of the first few pages, so that they actually correspond to real
memory page frames, and the corresponding pages are therefore loaded into real
memory.

As was described in 1.1.1, “General Concepts” on page 1, real memory is also
logically divided into pages frames, where each frame is a fixed number of bytes of
data (again 4096 bytes). When the application is loaded into memory, the virtual
memory pages are placed in real memory page frames, which is where they must
be for the processor to access information from them. The other pages in real
memory will contain other applications including those parts of the operating system
currently in use, also mapped by the VMM from the virtual memory locations where
they are actually addressed. The VMM maintains a free list of currently unused
real memory page frames; frames from this list are used for mapping the incoming
virtual memory pages to.

46 AIX Storage Management

Figure 22. Virtual Memory Manager Disk Usage

An entry in the process table is created containing essential information regarding
the application, such as the address of the current instruction, locks held, and other
application specific information. An entry is also put on a process dispatch queue
which is used by the operating system scheduler to select the application which will
run next.

The code segment, and shared libraries (if necessary) are also loaded in the same
manner.

The application eligible to run next is dispatched, which means that the address of
the next instruction in the process table is loaded into the processor, and the
application is now running. If at some point the application makes a jump to an
instruction contained in a page not currently in real memory (or requests a piece of
data on such a page,, or calls a library function whose instructions are on a page
not currently in real memory) a page fault occurs. In this case, the operating system
must copy the page required into real memory for use.

Sooner or later, the application will need to access information from a data file.
When the request to open the file is made, the physical file on disk is loaded into a
persistent virtual memory segment in the same manner as has been described for
the executable.

Each application also has a fixed time slice during which it can use the processor,
and once this expires the process is put to the back of the dispatch queue and the
next process scheduled. The next process may be part of the operating system
loading a new application that a user has started, in which case the new executable
is loaded into memory pages.

Relatively quickly, the memory pages will become full, and when a certain threshold
is reached, the VMM must act to maintain the number of pages in the free list. To
do this, it uses an algorithm to determine which of the in use pages are not likely to
be required in the near future. The criteria include:

 Chapter 3. Operating System Software Components 47

� Whether the page frame belongs to a persistent or working segment

� If persistent, whether it contains program text, or file data

� Whether the page frame has caused page faults before (page faults are
explained shortly)

� If so, whether the faults were new faults, or repages (a repage is a page of
information that has been required more than once)

� If repages, how many

� User tunable threshold parameters

Pages selected in this way (enough to bring the number of used pages back below
the threshold) are paged out, and page frames thus freed added to the free list.
The decisions are designed to favor those types of segment most likely to be
required in the near future, such as program text data, working segments, and
highly accessed information.

The actions taken for paging out (or swapping) vary depending upon the type of
segment from which the page comes, as well as its current state. If the page is
from a working segment, then it is copied to an area of disk reserved for this
purpose known as page space. The VMM changes the mapping to reflect that the
page is no longer in real memory, so that if a jump to an address (or request for
data at an address) on this page occurs, a page fault will result causing the page to
be reloaded. This is the case for any working segment page out. The page is then
added to the free list.

If the page is from a persistent segment, then the VMM will check to see whether
the page has been altered since it was first loaded, if not then the page is just
added to the free list; if a change has happened, then the page is first written out to
its original location on disk (usually in a file system). Again, the VMM changes the
virtual memory mapping to point to the pages new location back on disk, and then
adds the freed real memory page to the free list. Utilization of disk in this fashion is
known as single level storage.

Thus page space is used as an extension to real memory for situations where more
real memory than is available for working segments is necessary. Persistent
memory segments use their original locations on disk as overflow. In this way, the
VMM is able to effectively use more real memory than is physically available on the
system, as well as provide a huge address space.

There are certain mechanisms for file access such as the mmap() subroutine, or
accessing files via shared memory segments that will cause the file to be loaded
into a working segment in virtual memory. In these cases, the file information will
be treated in the same way as data or libraries and page faults may result in parts
being paged out to page space. Applications using these mechanisms will require
much more page space, particularly if large files are to be accessed.

The operating system monitors the number of free pages in paging space, and
when this falls below a certain level, all applications currently running on the system
are informed of the situation via a SIGDANGER signal. If the number of free pages
should then fall further, below a second threshold, those processes using the most
paging space will be sent the SIGKILL signal. This will continue until the number of
free pages has risen above the danger level. Well behaved applications will trap the

48 AIX Storage Management

SIGDANGER signal, and upon receipt, free up as much page space as they can by
releasing resources.

As can be seen, the allocation of paging space is critical to the operation of the
computer system. Furthermore, the design of the storage subsystems generally will
have a big impact due to the concept of single level storage. These considerations
are taken into account in Chapter 6, “General AIX Storage Management” on
page 93 and Chapter 5, “Storage Subsystem Design” on page 77, which cover
design and management.

 3.1.2 Device Drivers
Whenever an operating system component or an application needs to interact with
a physical device, such as a disk or tape, it does so through services provided by
another element of the operating system known as a device driver. Device drivers
provide a common mechanism for accessing the devices that they support.

Device drivers are treated as though they are ordinary files; thus when a process
needs to communicate with a device, it uses the open subroutine to initialize the
interface, and can then use the read and write calls to access data. Control of the
device is accomplished using the ioctl calls, and when the task requiring the device
is complete, the interface is ended with the close subroutine.

There are two main types of device driver; those designed for character oriented
devices, such as terminals, and printers, and those designed for block devices,
such as disks or tapes. Storage management devices are usually block devices, as
this is more efficient for transfer of larger quantities of information.

Device drivers normally consist of two parts:

1. The top half

This half is responsible for interacting with requestors, blocking and buffering
data, queuing up requests for service, and handling error recovery and logging.

2. The bottom half

This half is responsible for the actual I/O to and from the device, and can
perform some preprocessing on requests, such as sorting reads from disks for
maximum efficiency.

Device drivers provide the primary interface to devices. The logical volume
manager, which is discussed in the next section also provides a device driver
interface to higher level software, and makes use of the services provided by
device drivers to communicate with the physical devices themselves. A fuller
understanding of device drivers is really only necessary for those readers who
intend to develop applications that will interact directly with storage devices, such
as tape or optical library managers. More information can be found in the "Device
Driver Concepts Overview" in the InfoExplorer* online hypertext documentation.

3.1.3 Logical Volume Manager
The logical volume concept defines a higher level interface transparent to
applications and users, that allows the division, allocation, and management of
fixed disk storage space. This concept is implemented as a set of operating system
commands, subroutines, device drivers, and tools that are collectively known as the

 Chapter 3. Operating System Software Components 49

Logical Volume Manager (LVM). This section is relevant to both AIX Version 3 and
AIX Version 4, though any differences will be highlighted.

3.1.3.1 Logical Volume Manager Terminology
There are a number of specialized terms used to describe the various entities that
comprise Logical Volume Management.

Physical Volumes: The physical disk drive itself forms the basis of Logical
Volume Management. Before a disk can be used by the system, it must be defined.
Each disk is assigned certain configuration and identification information that
together define the disk as a Physical Volume (PV). This information is physically
recorded on the disk and includes a Physical Volume Identifier (PVid) that uniquely
identifies it. The disk is also assigned a physical volume name, typically hdiskx
where x is a system unique number. This physical volume name is also used for
the low level device driver interface to the disk (for example /dev/hdisk0).

Volume Groups:: A collection of between 1 and 32 physical volumes is known as
a Volume Group (VG). When physical volumes are created, they must be added to
a volume group in order to be used. A physical volume can only be in one volume
group on a system, though there can be multiple volume groups. Volume group
information includes a unique Volume Group Identifier (VGid), and the PVids of all
physical volumes in the volume group, as well as various status information. Each
disk in the volume group has an area on disk known as the VGDA or Volume
Group Descriptor Area, where this information is stored. The VGDA also contains
information describing all of the logical volumes (discussed later in this section) that
exist in the volume group.

If more than 32 physical volumes are attached to a system then more than one
volume group will definitely be required. It is usually sensible to design the system
such that different types of information are stored in different volume groups
though. For example, operating system information contained in one volume group,
and user information in a separate one, can assist in management and in particular
recovery; should a disk fault occur in a physical volume from one volume group,
then only information from that volume group will be affected.

Under AIX Version 3 and AIX Version 4, up to 255 volume groups can be defined.

Physical Partitions: When a physical volume is added into a volume group, the
space on the physical volume is divided up into equal chunks known as Physical
Partitions (PPs). The physical partition size is set when a volume group is created,
and all physical volumes that are added to the volume group inherit the value. The
physical partition size can range from 1 to 256MB, and must be a power of 2, the
AIX default being 4MB. Up to 1016 physical partitions can be defined per physical
volume under AIX Version 3 and AIX Version 4.

This is the smallest unit of disk space allocation in the logical volume paradigm.
Smaller units increase allocation flexibility at the cost of increased management
overhead.

Logical Partitions: A Logical Partition (LP) is effectively a pointer to from 1 to 3
physical partitions, this number specified when a logical volume (see next section)
is created. Information written to a logical partition will be physically written to the
physical partitions pointed to. Thus the number of physical partitions mapped to a

50 AIX Storage Management

logical partition defines the number of copies of that partition, or the level of
mirroring.

Up to 35,512 logical partitions can be defined per logical volume under AIX Version
3 and AIX Version 4.

Logical Volumes: Once a volume group has been created, and physical volumes
added to it, logical volumes can be created. A Logical Volume (LV) defines a
number of logical partitions, and therefore an area of disk that can be used to store
information. With AIX Version 3, the maximum size of a logical volume was 2GB,
with AIX Version 4, this limit has been raised to 256GB. The maximum number of
user-definable logical volumes in a volume group is 256.

Logical volumes are used to store such things as file systems, log volumes, page
space, boot data, and dump storage. The section on logical partitions explained
that a logical partition can be mapped to up to three physical partitions, which
means that up to two copies of the information contained in a logical volume can be
maintained; this is called mirroring, and is explained in more detail in “Logical
Volume Manager Policies” on page 54.

A logical volume can have its size changed by adding or removing logical partitions,
the number of copies can be increased or reduced, and even the physical location
of the logical volume on disk can be changed.

Further information on creating and managing volume groups, physical volumes,
logical volumes, physical partitions, and logical partitions can be found in
Chapter 6, “General AIX Storage Management” on page 93. The diagram in
Figure 23 on page 52, shows the relationship between these components.

 Chapter 3. Operating System Software Components 51

Figure 23. Components of the Logical Volume Manager

The logical volume manager provides the tools to create and manage these
entities. Structuring access to the physical disks in this manner provides the
following benefits.

� Transparent Control of Physical Storage

Data contained in a logical volume appears to be contiguous, but can in fact be
located on disk partitions that are not side by side, or even on the same
physical disk. This allows efficient usage of available disk space, particularly
when logical volumes require expanding.

� Mirrored Copies of Logical Volumes

Through being able to assign multiple physical partitions to each logical
partition, copies of vital information can be transparently maintained, even on
separate physical disks for additional security.

� Capacity Greater than Physical Disk Sizes

The logical partitions comprising a logical volume can span multiple disks,
which means that logical volumes are not limited to the sizes of the individual
physical disks attached to the system.

� Physical Partition Flexibility

The sizes of physical partitions can be defined when a volume group is
created. This gives flexibility in the use of disk resources. For example, logical
volumes can be increased in size by smaller increments, thereby utilizing the
available disk space more effectively.

52 AIX Storage Management

3.1.3.2 Logical Volume Manager Operation
General Operation: As has already been discussed, the logical volume manager
consists of a set of operating system commands, library subroutines, and other
tools that allow logical volumes to be established and controlled. The operating
system commands are discussed in detail in Chapter 6, “General AIX Storage
Management” on page 93, and Chapter 7, “Storage Management Files and
Commands Summary” on page 137. These commands use the library subroutines
to perform management and control tasks for the logical volumes, physical
volumes, and volume groups in a system. The interface to the logical volumes is
called the Logical Volume Device Driver (LVDD), and this is a pseudo device driver
that manages and processes all I/O to logical volumes. The logical volume device
driver is designed and utilized in the same way as any other device driver in the
system, consisting of two halves. In this case, the lower half is responsible for
mapping the logical addresses to actual physical disk addresses, for handling any
mirroring, and for maintaining Mirror Write Consistency (MWC). Mirror Write
Consistency uses a cache in the device driver where blocks that are mirrored are
stored until all copies have been updated. This ensures data consistency between
mirrors. The lower half also manages bad block detection and relocation if
necessary. If the physical disk is capable of this function, then the logical volume
device driver will make use of the hardware support, otherwise it will be done in
software. Both mirror write consistency and bad block relocation can be disabled on
a logical volume basis.

The list of data blocks to be written (or read) is finally passed by the logical volume
device driver to the physical disk device drivers, who interact directly with the disks.
In order for the logical volume manager to work with a disk device driver, it must
adhere to a number of criteria, the most significant of which is a fixed disk block
size of 512 bytes.

The relationship between the various software layers involved in disk access with
the logical volume manager is shown in Figure 24 on page 54.

 Chapter 3. Operating System Software Components 53

Figure 24. Relationship Between the LVM and other Components

Quorum Checking: In order for a volume group to be accessible to the system, it
must be varied on. The process of varying on a volume group is discussed in 6.3.4,
“Varying On and Varying Off Volume Groups” on page 106. During this process,
the logical volume manager reads management information from the physical
volumes in the volume group. This information includes the volume group descriptor
area already mentioned in 3.1.3.1, “Logical Volume Manager Terminology” on
page 50, and another on-disk information repository known as the Volume Group
Status Area (VGSA), which is also stored on all physical volumes in the volume
group. The VGSA contains information regarding the state of physical partitions and
volumes in the volume group, such as whether physical partitions are stale (used
for mirroring, but not reflecting the latest information), and whether physical
volumes are accessible or not. The VGDA is managed by the subroutine library,
and the VGSA is maintained by the LVDD. If the vary on command cannot access
a physical volume in the volume group it will mark it as missing in the VGDA. For
the command to succeed, a quorum of physical volumes must be available. A
quorum is defined as a majority of VGDAs and VGSAs (more than half of the total
number available). The only situation where this is slightly different is in the case
where there are one or two physical volumes in a volume group. In this case two
VGDAs and VGSAs will be written to one disk, and one (or none if only one disk) to
the other. If the disk with two sets is inaccessible, then a quorum will not be
achieved and the vary on will fail. For techniques to recover from quorum failure,
see Appendix C, “General Volume Group Recovery” on page 349.

Logical Volume Manager Policies: When logical volumes are created, there are
a number of attributes that can be defined for them that govern their subsequent
operation in terms of performance and availability. These attributes are really
policies that the logical volume manager enforces for the logical volume and include
the following:

1. Bad-Block Relocation Policy

54 AIX Storage Management

As was mentioned in “General Operation” on page 53, the logical volume
manager will perform bad-block relocation if required. This is the process of
redirecting read/write requests from a disk block that has become damaged to
one that is functional, transparently to an application.

2. Intra-Physical Volume Allocation Policy

The logical volume manager defines five concentric areas on a disk where
physical partitions can be located. These regions are shown in Figure 25, and
are combined into the following three policy choices for data location:

a. Edge and Inner Edge

These regions generally have the longest seek times, resulting in the
slowest average access times. Logical volumes containing relatively
infrequently accessed data are best located here.

b. Middle and Inner Middle

These regions provide lower average seek times, and consequently lower
average access times. Reasonably frequently accessed data should be
positioned here.

 c. Center

This region provides the lowest average seek times, and hence the best
response times. Information which is accessed regularly, and needs high
performance should be situated here.

The different average seek times are based upon the supposition that there is a
uniform distribution of disk I/O, meaning the disk head will spend more time
crossing the center section of the disk than any of the other regions.

Figure 25. Physical Disk Partition Location

When a logical volume is created, the preferred location policy for the logical
volume can be defined. The logical volume manager will then do its utmost to
locate the volume as closely to the required position as is possible.

 3. Mirroring

 Chapter 3. Operating System Software Components 55

The logical volume manager allows each logical partition in a logical volume to
be mapped to from one to three physical partitions. This means that up to two
copies of a logical volume can be transparently maintained for performance and
availability purposes. The scheduling policy explained below determines how
information is actually written. Should a disk with one of the copies of the
logical volume fail, or should some of the physical partitions in the copy
become damaged, then another copy can be transparently used while repairs
are effected. Furthermore, the copy that has the required partitions closest to a
read/write head will be used for reading, improving performance. The benefits
here are somewhat dependent upon the inter-physical volume allocation policy
which is explained next.

4. Inter-Physical Volume Allocation Policy

When the logical volume manager allocates partitions for a logical volume, the
partitions can be spread across multiple disks. The inter-physical volume
allocation policy governs how this will actually be implemented in terms of
numbers of physical volumes. There are two options:

 a. Minimum

The minimum option indicates that if mirroring is being used, then the
minimum number of physical volumes should be used per copy, and that
each copy should use separate physical volumes. If mirroring is not being
used, then just the minimum number of physical volumes necessary to hold
all of the required physical partitions should be used.

 b. Maximum

The maximum option predictably enough, attempts to spread the required
physical partitions over as many physical volumes as possible, thereby
improving performance. If mirroring is not used here, then this approach is
highly sensitive to physical volume failure.

 5. Scheduling Policy

When mirroring is being used, there are two ways in which the logical volume
manager can schedule I/O for the physical volumes:

 a. Sequential-write copy

When this option is selected for a logical volume, write requests are
performed to each copy successively, in the order primary, secondary, and
tertiary. A write to a copy must complete before the next copy can be
updated, thus ensuring maximum availability in the event of failure.

Read requests will be initially directed to the primary copy, and if this fails,
to the secondary, and then tertiary if necessary (and defined). While the
data is being read from the next copy, the failing copy (or copies) is
repaired by turning the read into a write with bad-block relocation switched
on.

 b. Parallel-write copy

In this case, write requests are scheduled for each of the copies
simultaneously. The write request returns when the copy that takes the
longest to update completes. This method provides the best performance.

Read requests are scheduled to the copy that can be most rapidly
accessed, thereby minimizing response time. If the read fails, repairs are
accomplished using the same mechanism as for sequential-write copy.

56 AIX Storage Management

There is a great deal of additional information on all aspects of the logical volume
manager in InfoExplorer online hypertext documentation, if required. Further
information on planning and managing the elements of the logical volume manager
can be found in Chapter 5, “Storage Subsystem Design” on page 77, and
Chapter 6, “General AIX Storage Management” on page 93.

 3.1.4 File Systems
One further level of abstraction is provided at the operating system level, and this is
the file system. A file system is essentially a hierarchical structure of directories,
each directory containing files, or further directories (known as subdirectories). The
diagram in Figure 26 shows the standard AIX journaled file system structure as of
AIX Version 4; the differences between this and AIX Version 3 structure are
organizational. The main purpose of a file system is to provide for improved
management of data by allowing different types of information to be organized and
maintained separately. As will be shown later in this section however, file systems
also provide many more facilities.

Figure 26. Standard AIX Version 4.1 JFS Organization

There many different types of file systems in existence, including the following:

� Journaled File System (JFS)

This is the native AIX file system, providing the full range of supported file
system operations for organizing and managing physical files. The JFS is
explored in more detail later in this section.

� Network File System (NFS)

This type of file system allows a remote file system (or part of a file system) to
be accessed as if it were part of a local file system.

� CD-ROM File System

 Chapter 3. Operating System Software Components 57

This type of file system allows the contents of a CD-ROM to be accessed as if
they were part of a local file system.

However there must be at least one base (or root) file system within which other file
systems can be accessed, on the local machine.

3.1.4.1 Journaled File System
Journaled file systems are implemented through a set of operating system
commands that allow creation, management, and deletion, and a set of subroutines
that allow lower level access such as open, read, write, and close to files in the file
system. A JFS is created inside a logical volume and is organized as shown in
Figure 27.

Figure 27. JFS Physical Organization

As can be seen, the JFS divides the logical volume into a number of fixed size
units or Logical Blocks. The logical block size is the block size used for I/O at the
file system interface - this means that the file system passes data to be written or
receives data that has been read in blocks of 4096 bytes to/from the LVM. The
block size was selected to be 4KB to be the same as memory page size for
maximum transfer efficiency, and to minimize free space fragmentation on the disk.
The logical blocks in the file system are organized as follows:

Logical Block 0: The first logical block in the file system is reserved and available
for a bootstrap program or any other required information; this block is unused by
the file system.

Superblock: The first and thirty first logical blocks are reserved for the superblock
(logical block 31 being a backup copy). The super block contains information such
as the overall size of the file system in 512 byte blocks, the file system name, file
system log device address (logs will be covered later in this section), version
number, and file system state.

58 AIX Storage Management

Allocation Groups: The rest of the logical blocks in the file system are divided
into a number of allocation groups. An allocation group consists of data blocks and
i-nodes to reference those data blocks when they are allocated to directories or
files. The purpose behind this extra level of abstraction is as follows:

1. Improve locality of reference

Files created within a directory will be maintained in an allocation group with
that directory. As allocation groups consist of contiguous logical blocks, this
should assist in maintaining locality of reference for the disk head.

2. Ease file system extension

Extending a file system is easier as a new allocation group of i-nodes and data
blocks can be added, maintaining the relationship between i-nodes and file
system size simply. Without allocation groups, the file system would either have
to be reorganized to increase the number of i-nodes, or the extension could
only increase the number of data blocks available, thereby conceivably limiting
the number of files and directories in the file system.

I-nodes are explained in the next section. For a pictorial representation of this
organization, please refer to Figure 27 on page 58.

Disk i-nodes: When the file system is created, files and directories within the file
system are located via i-nodes. An i-node is an on-disk structure that contains
information regarding the file and its physical location on disk. Under AIX Version 3,
an i-node is created for every 4KB of file system space, so for a 32MB file system,
8000 i-nodes would be created, and these i-nodes would be divided between the
allocation groups. This then defines the maximum number of files and directories
that can be created in the file system. The structure of an i-node is depicted in
Figure 28. The first part contains information such as the owner, and permissions
for the directory or file, the second part contains an array of 8 pointers to the actual
disk addresses of the 4KB logical blocks that make up the file or directory.

Figure 28. Anatomy of an I-node

 Chapter 3. Operating System Software Components 59

For files that can fit within the array storage area, such as most links, the file is
actually stored in the i-node itself, thus saving disk space.

For a file of size up to 32KB, each i-node pointer will directly reference a logical
block on the disk. For example, if the file is of size 27KB, then the first seven
pointers will be required, the last pointer referencing a 4KB logical block containing
the last 3KB of the file.

For files up to 4MB, the i-node points to a logical block that contains 1024 pointers
to logical blocks that will contain the files data; this gives a file size of up to 1024 x
4096 or 4MB.

For files greater in size than this, the i-node points to a logical block that contains
512 pointers to logical blocks that each contain 1024 pointers to the logical blocks
that will actually contain the files data; this gives a maximum file size of 512 x 1024
x 4096 or 2GB.

The mapping of file names to i-node numbers is stored within directory files.

The maximum size of the file system under AIX Version 3 is limited to 2GB. This is
due to limitations in the size of the internal pointer used by some system calls to
navigate the file system; the pointer is defined as a signed integer which means
there are 31 bits available for addressing. This gives a maximum range of 2 to the
power 31, or 2GB.

AIX Version 4 Enhancements to the JFS

 1. Fragments

While generally efficient from the point of view of loading into memory and
preventing physical disk fragmentation, having a fixed logical block size can
have drawbacks. If the majority of files stored in the file system are small (less
than 1 logical block in size), then there will be a great deal of wasted disk
space in the accumulation of those portions of the logical blocks that remain
unused by the smaller files. If all files are less than half of a logical block in
size, for example, then half of the total file system space will be unused, even
though the file system is full.

In order to address this type of situation, AIX Version 4 introduces the concept
of the fragment. A fragment is the smallest unit of file system disk space
allocation, and can be 512, 1024, 2048, or 4096 bytes in size. The fragment
size is defined at JFS creation time and is stored in the superblock.

2. Number of Bytes Per i-node

Under AIX Version 3, the number of i-nodes created for a file system was fixed,
as discussed in the section on i-nodes. With AIX Version 4, it is now possible
to vary the number of i-nodes created within a file system, and therefore the
amount of space required by the i-node structures can be tailored to maximize
utilization of the file system. If only a few very large files are going to be
created in a file system, then it is a waste of space to generate 8000 i-node
structures, and therefore the value of the Number of Bytes Per i-node or NBPI,
should be increased. For example, if the NBPI is set to 16KB, then in a file
system of size 32MB, 2000 i-nodes would be created rather than 8000 as in
AIX Version 3.

 3. Compression

60 AIX Storage Management

Another new feature in AIX Version 4 is JFS compression. This facility provides
for compression of regular files (as opposed to directories or links). The
compression is implemented on a logical block basis which means that when a
logical block of file data is to be written, an entire logical block is allocated for it;
the logical block is then compressed and the number of fragments now
required as a result of the compression, actually allocated. Thus in contrast to a
fragment file system which only allocates fragments for the final logical blocks
of files less than 32KB in size, compressed file systems allocate fragments for
every logical block in every file.

Compression is done block by block in order to fulfill the requirements for
efficient random I/O. The algorithm used by default is LZ1, although
user-defined compression algorithms are also supported.

4. File System Size

As discussed previously, the maximum size of a file system under AIX Version
3 was 2GB. With AIX Version 4, this maximum has been increased to 256GB.
This increase has been achieved by changing the file system pointers and data
types to 64 bits; the limitations restricting the maximum size are now JFS data
structure and algorithm related.

These enhancements are described in more detail in Chapter 4, “AIX Version 4
Storage Management Enhancements” on page 67.

3.1.4.2 Network File System
NFS allows files and directories located on other systems to be incorporated into a
local file system and accessed as though they were a part of that file system. NFS
provides its services on a client-server basis. Server systems can make selected
files and directories available for access by client systems. NFS provides a number
of services, including the following:

 � Mount Service

This service allows clients to mount the portion of the remote file system that
they wish to access into a local file system. Mounting is discussed in more
detail later in this section.

� Remote File Access

This service fulfills requests for file activity from the client to server (such as
opens, reads, and writes).

� Remote Execution Service

This service provides authorized clients with the ability to execute commands
on the server.

� Remote System Statistics Service

This service provides statistics on the recent availability of the server.

� Remote User Listing Service

This service provides information to clients on users of the server system.

NFS installation, configuration and management are covered in detail in the
InfoExplorer online hypertext documentation.

NFS operation is stateless, which means that the server does not maintain any
transaction information on behalf of clients. Each file operation is atomic, which

 Chapter 3. Operating System Software Components 61

means that once complete, no information on the operation is retained. Thus if a
connection should fail, it is up to the client to maintain any synchronization or
transaction logging to ensure consistency.

3.1.4.3 Other File Systems
As has been explained in this section, file systems provide an interface that
simplifies management and access to information. The native file system under AIX
is the JFS, but there are other types such as NFS for remote files, as well as the
following:

� CD-ROM File System

This file system provides access to information stored on a CD-ROM, such as
the infoExplorer hypertext information. Once created (see InfoExplorer for
details) a CD-ROM file system can be mounted and accessed like any other.

� File Storage Facility/6000 MFS

The File Storage Facility product (FSF) is discussed in overview in B.2, “AIX
File Storage Facility/6000” on page 344. This product provides a cache file
system on the client machine where files currently being accessed reside.
Viewing the contents of this file system can show more files than could actually
fit within the physical space on the client. This is accomplished through the
provision of another file system type known as MFS. The MFS intercepts
requests for file operations and works out whether the required file is currently
in local cache or stored remotely at the server; if remotely stored, the file is
transparently copied to the local cache for use. The MFS also manages the
removal from cache to the server of files that have not been accessed for a
defined period, or the largest files, so as to maintain enough working space in
the cache.

The MFS is created automatically when FSF/6000 is configured. For more
information on FSF/6000, see the documentation.

� Andrew File System** (AFS**)

The Andrew File System, or AFS, provides a similar basic service to NFS in
that it allows machines to access remote file systems as though they were
local. The major difference is that AFS defines its own hierarchy, where many
machines can participate in mounting sections of their local file systems into the
hierarchy. Client machines that are authorized can then mount the entire AFS
hierarchy into their local file system structure, and thereby access information
on a wide range of machines and file systems as though it were local.

For more information on AFS, please refer to the product manuals.

3.1.4.4 Accessing File Systems
Once a file system of whatever type has been created, it must be mounted in order
to access the information within it. The process of mounting creates the connection
between an existing and accessible local file system mount point and the root
directory of the directory structure to be accessed. A mount point can be either a
directory or a file in the local file system. If a new local file system, or remote
directory structure (using NFS for example) is to be accessed, then it must be
mounted over a directory. If only a single file is to be accessed then it must be
mounted over a local file. As shown in Figure 26 on page 57, the AIX operating
system starts with a root file system into which the /usr, /var, /tmp, and /home file
systems are mounted at boot time. Any other file systems required can then be
mounted wherever required (assuming relevant permissions).

62 AIX Storage Management

3.2 Higher Level Tools
So far in this chapter the basic operating system support providing access to
information stored on physical media (such as disk) has been discussed. This next
section will look briefly at some higher level functions provided either by the
operating system, or by applications designed to enhance storage management
capabilities.

 3.2.1 Backup/Restore
Backup facilities, as provided by the operating system, enable all information
(including both user and operating system data) to be copied (generally to
removable media such as tape), so that in the event of a major problem the
information can be easily restored.

There are three main areas to consider when designing a backup strategy:

1. Which information should be backed up

There is usually a large amount of information stored in a computer system.
Copying this information can take time, and there will usually be information
that is not important enough to warrant concern (such as temporary files, or
data that has already been archived).

2. What technology should be used for the backups

This will depend on the quantity of information, length of time available for
backup, length of time information needs to be stored on backup media, and
the cost of the technology used. As has been discussed in previous sections,
optical storage is generally faster and has longer potential shelf life, whilst
tapes are cheaper and generally larger capacity.

3. When and how often should backups occur

There are several strategies that can be used, depending on the nature of the
information produced by the business. For example, sites where there is a
great deal of static reference information with little day to day change, and
maybe monthly updates to the static information could benefit from an
incremental policy. This would mean taking full backups on a monthly basis,
and only backing up the changed information daily. Organizations processing
large amounts of information on a daily basis may choose to backup the data
daily.

The strategy chosen should reflect the business information cycles, but will also
be strongly tied to the criticality of the information. The decision is simply: how
long can the business survive without key information. If the answer is one day,
then backups of the information must be scheduled at least once a day.

Designing a backup strategy is an essential task, as however well maintained a
system is, the unexpected, by definition can always happen. Backup and recovery
planning and techniques are discussed in more detail in 5.5, “Planning Backup
Strategies” on page 87.

 Chapter 3. Operating System Software Components 63

3.2.2 Hierarchical Storage Management
Thus far, storage subsystems have been discussed from the point of view of
operating system level access. That is to say, covering the various storage devices
available, their pros and cons, and the way in which they can be made available to
higher level user applications. There are also many intermediate and higher level
applications that themselves provide services, both for system administrators, and
for higher level management of storage on behalf of users. These types of
application fall into the category of Hierarchical Storage Management.

The premise behind hierarchical storage management is to categorize storage
devices in terms of their basic properties and provide automatic mechanisms to
utilize them most efficiently within this context, usually in a networked environment.
For example, as has been discussed in 2.1.2, “How to Make the Decision” on
page 18, the basic property classifications shown in Figure 14 on page 21, apply.
This implies that frequently accessed information, or information that requires high
performance access (such as databases), should be located on fast disk devices.
Older, less frequently accessed information, or information with less restrictive
performance requirements, can be stored on optical media. Backup, archive, or
long term information that is rarely accessed, can be stored on tape. The process
of classifying information in this way, is however, really a dynamic one, and
therefore best done on a reasonably continuous basis. This is where hierarchical
storage managers can be useful.

ADSTAR* Distributed Storage Manager (ADSM) for example, can manage disk,
optical and tape storage in just this way. ADSM provides backup/restore and
archive/retrieve services to client systems in a distributed environment. Storage
pools are maintained on the server machine that ADSM uses to fulfill client
requests. These pools can be defined to form a hierarchy and information can be
automatically migrated between pools. For example, the first pool may be
composed of fast disk devices to support rapid satisfaction of client requests.
However, if this pool becomes full, then information can be automatically migrated
to another storage pool. Generally, the information so migrated will be the less
frequently accessed information, and so the lower level pool will be composed of
lower cost, slower, higher capacity devices, such as optical. The hierarchy so
defined is arbitrary, and can contain pools of tape devices lower in the hierarchy, to
which backup information can be directly (and automatically) written on behalf of
clients, or to which even less regularly accessed archive data can be migrated.

ADSM also has many other capabilities, and for a fuller description of these, please
refer to Appendix B, “Higher Level Storage Management Products” on page 341.

Some tools manage disk space at the client machine as well. FSF/6000 is an
example of such an application. In this case, the client fast disk space is
maintained merely as a cache (or window onto the real storage space). When
information is created or changed in any way, it is stored in the cache at the local
machine, but a copy is made and this is maintained at the server. When the cache
approaches a predefined high water mark, or percentage utilization, data is
automatically migrated to the server storage space, and a pointer to it left in the
cache. Subsequent requests for this information will result in the information being
transparently moved back (a copy is still maintained). In this way, the small client
storage space can be made to seem much larger than it really is; in addition, the
server storage pool can be managed by a tool such as ADSM (at the server) to
provide automatic backup, archive and migration.

64 AIX Storage Management

Using such tools additionally enhances storage management by providing a
centralized mechanism for information management, which can be useful, not only
from resource utilization management, but also from security, general availability,
and ease of use.

General information on some of the applications available in this area is available in
Appendix B, “Higher Level Storage Management Products” on page 341.

 3.2.3 Media Management
Media management refers to the control of the attached storage devices. This
chapter has already looked at the operating system supplied mechanisms to enable
this, including device drivers, the LVM, and file systems. In the previous two
sections, backup and restore, and hierarchical storage managers have also been
discussed, which provide higher level functions for storage. The capabilities of the
devices are thus made available through the operating system components, and
through higher level tools. Generally, the higher level applications make use of the
operating system provided components to access the required devices. There are
some device types that cannot currently be managed by the operating system,
including tape and optical libraries. In these cases an alternative mechanism must
be found to control the devices, if required; ADSM for example provides the
necessary support to control a range of libraries (both tape and optical). It is not
always the case that the complete functionality of a higher level tool be required,
merely just the ability to manage a tape library for a discrete system. In this case
an alternative solution may be necessary in order to provide the library
management component.

 3.3 Summary
This chapter has discussed in detail the operating system software components
that enable access and management of the physical storage devices, as well as
those aspects that require storage space for system operation. Higher level
functions provided by tools such as hierarchical storage managers, backup/restore
operations, and management of the physical media were also briefly discussed.

 1. Operating system

The components of the operating system discussed were:

 � Paging

This section explained paging and the requirement for paging space as a
means to maximize the usage of available real memory. The complete
mechanism used to execute an application was outlined illustrating how
secondary storage can be used to supplement real memory and thereby
greatly increase the address space of the system.

 � Device drivers

This section discussed the components of the operating system that
provide the low level management and access to physical devices. The
structure and capabilities of device drivers was briefly explained.

� Logical Volume Manager

The main component of storage management under AIX, the LVM was
explained in reasonable detail in this section. LVM concepts such as:

 – Physical Volumes

 Chapter 3. Operating System Software Components 65

 – Volume Groups
 – Physical Partitions
 – Logical Partitions
 – Logical Volumes

were explained, as well as their interrelationships. LVM operations and
services were also described, including:

 – Quorum checking
– Bad block relocation
– Intra-physical allocation policy

 – Mirroring
– Inter-physical allocation policy

 – Scheduling policy

 � File systems

The concept of file systems was then covered. The relationship of file
systems to the LVM as well as their general function were outlined. The
native AIX file system, the JFS was then described in detail, including the
AIX Version 3 implementation, and the enhancements provided with AIX
Version 4:

 – Fragments
– Number of bytes per i-node

 – Compression
– File system size increase

The NFS and other file systems were then briefly discussed, followed by a
concise outline of subsequent operating system procedures for accessing
file systems.

2. Higher level tools

The higher level tools discussed were:

 � Backup/restore

The purpose and basic considerations involved in backing up a system to
ensure recovery in the event of failure were discussed in this section.

� Hierarchical Storage Management

The principles of hierarchical storage management as a means to make the
most effective use of available storage devices, as well as provide
backup/restore and archive/retrieve services, were discussed in this
section. Several high level applications (including ADSM, and FSF/6000)
were used as examples.

 � Media Management

Certain devices provide extra capabilities that are not currently directly
supported by the operating system. Examples of this are tape and optical
library support. This section looks at the alternative methods available for
utilizing such functionality.

66 AIX Storage Management

Chapter 4. AIX Version 4 Storage Management
Enhancements

AIX Version 4 provides enhanced functional capabilities in the area of the storage
management. This chapter will examine these enhancements, in some detail.

 4.1 Fragmentation
Fragmentation is a concept introduced in BSD UNIX** which enables system
administrators to manage file systems in such a way that they make more efficient
use of the disk storage space available to them.

Research conducted in the area of disk space utilization has revealed that up to
45% of disk space is wasted by file systems that use a 4KB block as the allocation
unit. In AIX releases prior to AIX Version 4, the disk space allocation unit is in fact
4KB and not tunable, potentially giving rise to much wasted disk space. In AIX
Version 4 it is now possible to create journaled file systems with an allocation unit
or fragment size specified as one of 512, 1024, 2048 or 4096 bytes.

Although there is a distinct advantage in providing this enhancement for ensuring
optimal disk space utilization this can sometimes be at the expense of performance.

In AIX Version 4, as many whole fragments as necessary are used to store a file or
directory's data. Consider that we have chosen to use a JFS fragment size of 4KB
and we are attempting to store file data which only partially fills a JFS fragment.
Potentially, the amount of unused or wasted space in the partially filled fragment
can be quite high. For example, if only 500 bytes are stored in this fragment then
3596 bytes will be wasted. However, if a smaller JFS fragment size, say 512
bytes, was used, the amount of wasted disk space would be greatly reduced to
only 12 bytes. It is, therefore, better to use small fragment sizes if efficient use of
available disk space is required.

Although small fragment sizes can be beneficial in reducing disk space wastage,
this can have an adverse effect on disk I/O activity. For a file with a size of 4KB
stored in a single fragment of 4KB, only one disk I/O operation would be required to
either read or write the file. If the choice of the fragment size was 512 bytes, eight
fragments would be allocated to this file and for a read or write to complete, several
additional disk I/O operations (disk seeks, data transfers and allocation activity)
would be required. Therefore, for file systems which use a fragment size of 4KB,
the number of disk I/O operations will be far less than for file systems which employ
a smaller fragment size.

For files of greater than 32KB in size, whatever the fragment size, allocation is
performed in logical blocks of 4KB. The i-node pointers will therefore point to 4KB
logical blocks as before (indirection will also be the same). For those files of up to
32KB in size, fragments come in to play. Consider a file of 17KB in size. The first
16KB of this file will be allocated logical blocks as before, the disk addresses of
these blocks pointed to by the first four pointers in the i-node. The last 1KB of the
file will be allocated sufficient contiguous fragments to contain the remaining data, if
available. Assuming a fragment size of 512 bytes, two fragments in this case. The
fifth pointer in the i-node points to the disk address of the first fragment. In AIX
Version 3, the first four bits of the disk block addresses were unused and therefore

 Copyright IBM Corp. 1994 67

zeros. In AIX Version 4, when fragmentation is used, the last three of these bits are
used to indicate the number of fragments from the disk address that are required.
To ensure compatibility with previous releases, all zeros in these bits implies a full
block of fragments (which means that the disk address references a 4KB logical
block), and therefore in this example eight fragments (using logic 8 - 0 = 8
fragments). So, for the final data in the example file, two fragments are required, so
the number in the four bits should be 0110 (this is 6 in binary: 8 - 6 = 2 fragments).
The JFS will always subtract the first four bits from eight to see if there are
fragments at the disk address in the remainder of the pointer, and if so, how many.
The next file that is to be written is exactly 4KB in size. This is one complete logical
block, and will be written immediately after the two fragments from the previous
example, thus wasting no space. The first four bits will be zeros, indicating eight
fragments. If there had not been eight contiguous fragments free anywhere in the
file system, this write would have failed. See Figure 29 on page 69 for a diagram
of the allocation for this first file (file X). Now a third file is to be written (file Y). File
Y is four fragments (or 2048 bytes) in length. There are four fragments free after
file X, so file Y is written immediately after the fragments for file X. If there had not
been four contiguous fragments available, this write would have failed. File X is
now extended by three fragments (or 1536 bytes). There are three contiguous
fragments available after file Y, so the extension is written there (as shown in
Figure 29 on page 69). Note that both the pointer for file Ys fragments, as well as
for the second block of file Xs indicate partial blocks of fragments in the first four
bits of the address (file X: 0101 = 5; 8 - 5 = 3 fragments. File Y: 0100 = 4; 8 - 4 =
4 fragments).

It is very important to note the following:

1. Fragments are allocated contiguously or not at all

If the JFS cannot find sufficient contiguous fragments (up to 4KB worth),
allocation and therefore the write will fail. To elaborate, if 11 fragments needed
writing (following on from the preceding example), and there were eight free
contiguous fragments after file Y, and three free contiguous fragments before
file X, then file Z could be written. Having nine free fragments after, and two
before would not be sufficient.

2. Fragments will lead to free space fragmentation

As files are extended, reduced, and deleted, small groups of free fragments will
begin to become available (for example if file X in Figure 29 on page 69 is
reduced in size to six fragments, two free fragments will appear between files X
and Y. This will be used if another file should be created of size one or two
fragments, or if a file is extended by two fragments beyond a 4KB boundary,
otherwise it will remain unused). In order to reclaim this fragmented free
space, a tool is provided that will reorganize the file system to coalesce this
space as far as possible. The defragfs command is described in Chapter 7,
“Storage Management Files and Commands Summary” on page 137.

68 AIX Storage Management

Figure 29. Fragmentation Example

To expand on fragment allocation one step further, only the last 4KB block of a file
can be partially allocated, that is to say allocated as fragments of the logical block
size, and the file must be directly referenced by the i-node, not indirect. When
blocks (4KB) or partial blocks (a fragment multiple) are allocated, contiguous space
must be available for them. Hence the statement in the last example relating to
extending a file 2 fragments beyond a 4K boundary. If the file was 9 fragments, and
is extended to 18 fragments, then this is the case: 2 full blocks of 8 contiguous
fragments, and 2 contiguous fragments must be found for the write to succeed.

4.1.1 Disk Space Allocation
For file systems with a fragment size smaller than 4KB, there is likely to be an
increase in allocation activity when the size of existing files or directories are
extended.

As an example, assume that a file is extended by 500 bytes, and the file system
fragment size is 512 bytes, this will result in one allocation to this file of a 512 byte
fragment. If the file is extended by another 500 bytes, another allocation of a 512

 Chapter 4. AIX Version 4 Storage Management Enhancements 69

byte fragment will be made to this file. So far, two allocation operations have
already been performed. However, with a file system fragment size of 4KB, the
first file extension operation would have involved one allocation to this file of a 4KB
fragment and the second file extension operation would not have resulted in an
allocation as there would have been sufficient space from the first allocation. The
number of allocations made in the file system using a 512 byte fragment could
have been minimized if the two separate file extension operations were performed
as one extension of 1024 bytes. Although two 512 byte fragments would still be
allocated, this would involve only one file system operation to complete.

4.1.2 Free Space Fragmentation
As has been mentioned, free space fragmentation can occur much more within a
file system that uses smaller fragment sizes. To clarify, assume that there is a
portion of the disk consisting of 8 contiguous 512 byte fragments and that four files,
each 500 bytes in size, have written to these fragments in a non-contiguous
manner. The free disk space within this area of the disk (four 512 byte fragments)
are unallocated fragments which also reside in a non-contiguous manner. A file
extension operation which would require 2048 bytes would not be allocated these
free fragments as they would have to be contiguous for a single allocation to
succeed.

It is quite possible for a file system using a fragment size smaller than 4KB,
particularly 512 bytes, to reach high levels of free space fragmentation.

4.1.3 Fragment Allocation Map
The fragment allocation map, used to hold information about the state of each
fragment for each file system, is held on the disk and in virtual memory. The use
of smaller fragment sizes in file systems results in an increase in the length of
these maps and therefore requires more resources to hold.

 4.2 Compression
Compression, like fragmentation, is provided for journaled file systems in AIX
Version 4 for the better utilization of available disk space. The disk space savings
made by using compression on average increase by about a factor of two. Unlike
the JFS fragment support, which treats logical blocks of files and directories less
than 32K bytes in size differently to those that are larger, the JFS data compression
support will use the same data compression technique for all logical blocks of files,
irrespective of file size and fragment size. It does however, enforce that the
fragments used for the files logical blocks are contiguous.

The obvious advantage of the use of data compression supplemental to
fragmentation, is that there is no restriction to the file size, and so compression will
be efficient for both small and large files.

AIX Version 4 JFS data compression is supplemental to JFS fragment support, and
requires the installation of the data compression software package.

Only regular files and long symbolic links can be compressed in file systems
supporting compression. The fragment sizes supported in a compressed file
system are 512, 1024 and 2048 bytes only. A compressed file system cannot have
a fragment size of 4KB.

70 AIX Storage Management

The choice of the fragment size for compressed file systems must be made after
evaluating the size of files to be stored and the amount of compression that is
actually achieved. Where high amounts of compression are possible, higher disk
space savings can be achieved by using a small fragment size like 512 bytes.
However, at the same time performance will degrade quite substantially.

4.2.1 Implementation of Data Compression
In AIX Version 4, data is compressed at the level of individual files logical blocks.
To compress data in large units (all the logical blocks of a file together for
example), would result in the loss of more available disk space. By individually
compressing a files logical blocks, random seeks and updates are carried out much
more rapidly.

After compression of a logical block of a file takes place, the compressed logical
block is written to disk using only the number of fragments required for it. After
compression, it is likely that the data in the files logical block will occupy less than
4K bytes of disk space. However, if the data does not compress, then it is written
to disk in the uncompressed format and allocated the full 4KB of contiguous
fragments.

When a file or directory's logical block is first modified, 4KB of disk space are
allocated to it to guarantee that the write to disk of that logical block will be
successful. If this allocation fails, then an appropriate system error message is
returned.

In addition to increased disk I/O activity and free space fragmentation problems, file
systems using data compression have the following performance considerations:

1) Degradation in file system usability arising as a direct result of the data
compression/decompression activity. If the time to compress and decompress
data is quite lengthy, it may not always be possible to use a compressed file
system, particularly in a busy commercial environment where data needs to
be available immediately.

2) All logical blocks in a compressed file system, when modified for the first time,
will be allocated 4096 bytes of disk space, and this space will subsequently
be reallocated when the logical block is written to disk. Performance costs
are therefore associated with this allocation, which does not occur in
non-compressed file systems.

3) In order to perform data compression, approximately 50 CPU cycles per byte
are required, and about 10 CPU cycles per byte for decompression. Data
compression therefore places a load on the processor by increasing the
number of processor cycles.

 4.2.2 Compression Algorithm
An IBM version of the Lempel Zev (LZ) algorithm is used to perform data
compression. The LZ algorithm compresses data by representing the second and
subsequent occurrences of a given string with a pointer, identifying the position of
the first occurrence of the string and its length. At the start of the compression
process the first byte of data is represented as the raw character using a
pointer-byte pair (0, byte). The algorithm then processes a fixed amount of data,
say N bytes, for compression. Normally, the value of N is one of 512, 1024 or
2048. Every time a string in the N bytes is replicated it is replaced by a
pointer-length pair as described above. After compression of N bytes of data, the

 Chapter 4. AIX Version 4 Storage Management Enhancements 71

algorithm searches for the string starting at the next unprocessed byte in the N
bytes previously compressed. If the longest match found has a length of zero or
one, it represents the first byte in the unprocessed string as a raw character as
mentioned previously. If, on the other hand, the length of the matching string is
greater than one, the compression algorithm will represent the string using a
pointer-length pair and continue to process a further N bytes of data starting from
that string.

 4.3 Disk Striping
AIX allows the placement of logical volumes on a specific area of one or more
physical volumes. For example, the center of the disk may be chosen for the
placement of logical volumes when rapid access to data is required. Even though
this placement strategy can provide fast access to data, it is still restricted by the
fact that a disk I/O operation is performed to retrieve each data block.

In Part 1 of Figure 30, the numbered disk blocks for the file represent the
sequence of the data in the file. To read the entire file sequentially will involve
reading each disk block in turn.

Figure 30. Striping Example

72 AIX Storage Management

However, if we place the data in a logical volume over all available disks in a
specific manner to enable parallel access to that data then this would further
improve sequential access to that data (see Figure 30).

In user environments where sequential access to large data files is very frequent,
this technique will prove extremely efficient. In fact, AIX Version 4 provides for this
technique with a mechanism known as striping.

In non-striped logical volumes, data is accessed using addresses to data blocks
within physical partitions. In a striped logical volume, data is accessed using
addresses to stripe units. Consecutive stripe units are created on different physical
volumes. A single stripe consists of a stripe unit on each physical volume. The
size of a stripe unit must be specified at creation time and can be any power of 2 in
the range 4K to 128K bytes. As data in a striped logical volume is no longer
accessed using data block addresses, the LVM will track which blocks on which
physical drives actually hold the data being accessed. If the data being accessed
resides on more than one physical volume, the appropriate number of simultaneous
disk I/O operations will be scheduled for all drives concerned.

 4.3.1 Usage Implications
Disk striping definitely appears to provide very high-performance access to large
sequential files. However, to get optimal performance for sequential I/O, there
should be little or no other I/O activity on the physical volumes.

To make the most efficient use of striped logical volumes, some operating system
parameters must be tuned and application requirements for memory must also be
minimized. Results of a benchmark comparing the relative performance of striped
logical volumes against non-striped logical volumes are provided in section 8.5.1.3,
“Benchmark Results for an I/O Bound Test Using Striping” on page 275.

The constraints imposed by striping of logical volumes are:

� For striping to be possible, at least two physical volumes are required.

� Mirroring is not possible. Increased I/O activity resulting from mirror-writes
would impact performance.

4.4 Using Page Space for System Dumps
A collection of one or more logical volumes, used solely for providing a mechanism
for storing data temporarily not required to be in real memory, is known as Paging
Space. A description of how paging actually works can be found in 3.1.1, “Page
Space” on page 45. Unlike non-paging logical volumes, which are used to store
data permanently when a computer is powered on or rebooted, there is no
guarantee that data which previously resided in paging space would still remain
there.

In AIX Version 4, paging space is additionally used as a primary dump device for
system dumps. During installation of AIX Version 4, /dev/hd6, (the paging logical
volume), is automatically configured as the primary dump device. However, for AIX
systems being migrated to AIX Version 4, /dev/hd7 is still being maintained as the
primary dump device.

 Chapter 4. AIX Version 4 Storage Management Enhancements 73

After a system dump to the paging space (primary dump device) has taken place,
the system boot process has to move the dump data from this area to an
appropriate area on the disk. This has to be carried out since the paging space will
become re-activated and all data previously residing there is likely to become
over-written. By default, the dump is copied to the directory /var/adm/ras. The
sysdumpdev command now has an optional flag which can be used to specify a
different directory for the dump to be copied to.

The advantages of using paging space for the primary dump device are:

1. It makes better utilization of storage space by using an existing logical volume
as opposed to reserving one specifically for this purpose. A dedicated dump
device like /dev/hd7, as used in AIX Version 3, can be quite wasteful,
particularly within a stable system.

2. Since paging space is normally configured to be of the same size or larger than
RAM this would guarantee that it is has sufficient space for a dump.

3. The I/O operations, particularly when writing dump data to disk, are improved if
the paging logical volumes are strategically placed for fast access to data. For
example, at the center of the disk and also over as many physical volumes
within the volume group as possible.

 4.5 Variable I-nodes
In all UNIX implementations, when a file system is created, several data structures
known as i-nodes are written to the disk. For each file or directory one such data
structure is used which describes information pertaining to it. The sort of
information which is stored in the i-node includes file type, permissions, size, user
and group owner ids. Other critical pieces of information that are held in the i-node
are the disk addresses at which the files data is stored.

AIX, like other UNIX implementations, reserves a number of i-nodes for files and
directories in each file system that is created. In releases prior to AIX Version 4,
an i-node is generated for every 4KB of disk space that is allocated to the file
system being created.

In a 4MB file system this would result in 1024 i-nodes being generated. For earlier
releases this figure would probably suffice, since a file or directory is allocated at
minimum 4KB of disk space anyway. In AIX Version 4, since disk space is
allocated in fragments allowing better utilization of disk space 1024 i-nodes in a
4MB file system can quickly become exhausted if a large number of small files are
written (assuming a fragment size of 512 bytes). In a file system created using a
512 byte fragment size, 8192 files, at maximum, can be written if the largest file
size is 512 bytes.

AIX Version 4 JFS provides a parameter to tune the number of i-nodes generated
at file system creation time. This parameter, better known as
number-of-bytes-per-i-node (NBPI), can be any power of 2 in the range 512 through
16384 (examples include 512, 1024, 2048, 4096).

When NBPI is used in conjunction with the fragment size it can allow better storage
management, particularly when it is known beforehand the number and size of files
to be stored in the file system. See 3.1.4, “File Systems” on page 57 for more
information on i-nodes.

74 AIX Storage Management

4.6 File System Maximum Size Increase
In releases of AIX prior to Version 4, the maximum size a journaled file system or
logical volume can grow to is 2GB. The limitation is due to the usage of a 32 bit
signed integer value giving maximum file system addressability of 2GB: 2 raised to
the power of 31, the most significant bit giving the sign. With the growing needs of
commercial and scientific environments, this limit can be reached quite quickly. In
fact it is now becoming more commonplace for database application environments
to need to access larger volumes of data.

In AIX Version 4, the maximum size a journaled file system or logical volume can
grow to is 256GB. This is now possible since a 64 bit variable is used as for the
pointer.

However, note that the maximum file size is still limited to 2GB. This is because no
change has been implemented to the i-node structures used to reference the data
blocks. See 3.1.4, “File Systems” on page 57 for more information on file systems.

4.6.1 JFS Log Considerations
For journaled file systems, a transaction log is maintained which provides file
system recovery in case the system abnormally terminates. One JFS log, with a
default size of one logical partition, maintains log data for all the file systems within
a volume group. For file systems that are no larger than 2GB, the default log size
is sufficient. However, for file systems that are larger than 2GB, it may be
necessary for the log size to be increased proportionately.

 4.7 Summary
This chapter covers the latest enhancements to storage management made
available in AIX Version 4. These enhancements include:

 � Fragmentation

The basic unit of file system allocation is now the fragment, which can be 512,
1024, 2048, or 4096 bytes.

 � Compression

The JFS now supports compression which can result in a space saving of a
factor of 2.

 � Striping

The logical volume manager now support striping which can radically improve
performance.

� Page Space for System Dumps

Page space can now be allocated as a dump device.

 � Variable i-nodes

The number of i-nodes created within a file system can now be varied allowing
for improved management of disk resources.

� File System Size Increase

The maximum file system size is no longer limited to 2GB.

 Chapter 4. AIX Version 4 Storage Management Enhancements 75

76 AIX Storage Management

Chapter 5. Storage Subsystem Design

This chapter covers the issues and considerations involved in designing storage
subsystems. Guidance on actually implementing the ideas set out here can be
found in Chapter 6, “General AIX Storage Management” on page 93, and
Chapter 8, “Practical Examples” on page 185.

 5.1 Introduction
Designing storage subsystems involves evaluating the requirements that the
business processes that will be executed on the machine have, in terms of data
access and availability. Systems will generally be used for more than one purpose
(database applications may compete for resource with word processing and image
based applications for example), and it is important to attempt to configure the
environment in such a way that each process can perform within required
tolerances (these are usually performance and availability related - user response
time, and recovery in the event of error or failure for example). As each process will
have differing requirements, this task will of necessity involve some compromise.
The design of the AIX storage management components, as has been covered in
Chapter 3, “Operating System Software Components” on page 45, does allow
great flexibility in organization. The logical volume manager allows the physical
disks to be partitioned and the space thus created organized in different ways to
enable performance requirements to be met in one logical volume, and availability
requirements in another for example.

The first task is therefore to evaluate the storage requirements of the application
set that will be executed on the system in terms of:

 1. Performance requirements

 2. Availability requirements

 3. Recovery requirements

 4. Disk utilization

Each of these areas will now be examined in more detail.

5.2 Planning Disk Utilization
The design of the volume group and logical volume organization has a major
impact upon performance, availability, and recovery. The first consideration in the
process is volume group allocation.

 5.2.1 Volume Groups
The most common hardware failure in a storage subsystem is disk failure, followed
by failure of adapters and power supplies. When failures of this type occur,
recovery will be easier if a sensible volume group design has been implemented.
Multiple volume groups should generally be implemented for the following reasons:

 � Maintenance

 Copyright IBM Corp. 1994 77

– Maintaining only operating system information in the root volume group is a
good decision because operating system updates, reinstallations, and crash
recoveries can be effected without danger to user data.

– System updates or reinstallation generally only affect the root volume
group, so these regular and important processes can occur more quickly,
as only operating system or application data is included in the changes.

� Physical Partition Size

All physical volumes within a volume group must have the same physical
partition size. In some cases greater granularity may be required in allocation of
physical partitions to logical volumes, and the only way to implement this is to
place those logical volume with differing physical partition requirements into
separate volume groups. An example of when this might be necessary would
be an environment where many small logical volumes need to be created for
specialized file systems of a size that may entail much wasted space with 4MB
partitions (2MB file systems say). The greater flexibility afforded by the smaller
partition is offset by increased performance overhead to the LVM.

 � Quorum Characteristics

If there is a requirement for implementing a file system in a non-quorum volume
group, then a separate volume group that does not utilize quorum checking
needs to be created.

 � Security

In order to allow important confidential data to be removed and stored in a
secure place when required, a volume group including physical volumes on
removable disks should be created. At night, for example, the volume group
can be exported and the disks with the sensitive data removed and kept in a
secure place.

� Multiple JFS Logs

In order to reduce bottlenecks in a volume group with many journaled file
systems, multiple JFS logs may be required.

� Switching Physical Volumes Between Systems

In some cases there may be a requirement to share a physical volume
between systems, for availability or shared access for example. If the physical
volumes so utilized are maintained in a separate volume group, then this
volume group can be exported and varied off line for reuse on a second system
(import, vary on), without interrupting the normal operation of either system.

The number of volume groups created should therefore be decided based upon
consideration of these points.

 5.2.2 Physical Volumes
The next consideration should be the number of physical volumes per volume
group. This affects quorum checking and mirroring. A volume group with two disks
and quorum checking will fail to vary on if the disk with two VGDAs fails (see
“Quorum Checking” on page 54 for a description of this process). With more than
two disks, 51% or more of the VGDAs must become unavailable for the vary on to
fail, and data to become inaccessible. This is particularly true in a two disk
mirrored system, failure of the two VGDA disk will result in no access, even though
a good copy of the data is still available.

78 AIX Storage Management

Enough physical disks must also be included to support the mirroring strategy
required, both in terms of space for the mirrored copies, and number of disks for
the policies. If mirroring is to be done across the maximum number of physical
volumes possible, for availability purposes, then it makes sense to have at least
enough space to ensure the copies are stored on separate physical volumes. A
disk failure in this scenario will not impact access to the data.

 5.2.3 Logical Volumes
The delineating factors for deciding upon the number of logical volumes to create
are basically performance and availability. As many logical volumes should be
created as there are different performance and availability requirements. The
design of the logical volumes themselves to satisfy these requirements is covered
in 5.3, “Planning for Performance” on page 80, and 5.4, “Planning for Availability”
on page 84. Within this however, there is the consideration of disk space utilization.
Depending upon the intended purpose of file systems that will be created within
logical volumes, different fragment sizes may be required to optimally utilize the
available disk space in the logical volumes. As has been described in 4.1,
“Fragmentation” on page 67, choosing different fragment sizes can significantly
improve disk space use. If there is a need for file systems containing many small
files, then a logical volume for each file system with different requirements should
be created.

 5.2.4 File Systems
The primary considerations when creating file systems are as follows:

 � Fragment size

Fragment size should be considered only if there will be many files in the file
system less than 32KB in size, or compression will be used. In the former
case, the fragment size should be selected based upon the average size of the
files, in order to minimize wasted space. For example, file less than 512 bytes
or that will grow in chunks less than 512 bytes would be more economically
stored in a file system with a fragment size of 512. Compression is discussed
later in this section. This is an AIX Version 4 facility.

� Number of bytes per i-node (NBPI)

The number of bytes per i-node is described in 4.5, “Variable I-nodes” on
page 74. This parameter controls the number of i-nodes created in the file
system. The main consideration will be the number of expected files; if only a
few large files will be stored, then increase the NBPI to reduce the number of
i-nodes created, and hence free up disk resource that would have be used by
the extra i-nodes. The NBPI and fragment size together directly affect the
maximum possible size of the file system, and this is therefore a further
consideration. File system size is discussed later in this section. This is an AIX
Version 4 facility.

 � Compression

Compression is discussed in 4.2, “Compression” on page 70. If disk space is at
a premium, and performance is not the major issue, then file system
compression should be considered. Using compression can reduce the amount
of storage space required by files enormously, at the cost of the overhead
required for the compression. The algorithm is performed on a fragment basis,
and its effectiveness is dependent upon the type of information contained in the
file. Larger fragment sizes will help to offset the performance overhead, by

 Chapter 5. Storage Subsystem Design 79

reducing the number of allocation requests and physical I/O. This is an AIX
Version 4 facility.

� File system size

The size of the file system should be chosen to be large enough to
accommodate the required files. It is better to err on the small side, as file
systems can be easily expanded as the limit approaches, while reducing (which
can be done) is more work. Recovering free space within file systems lost due
to fragmentation can be accomplished using the defragfs command which is
discussed in Chapter 7, “Storage Management Files and Commands
Summary” on page 137.

Having created volume groups and added the required number of physical
volumes, the logical volumes and file systems need to be created. There are two
basic considerations: performance and availability. Generally, designing for high
performance will impact availability, and vice versa. The next two sections look at
design from these perspectives.

5.3 Planning for Performance
The performance of a disk subsystem is a combination of factors that includes:

 � Adapters

This includes the physical performance capabilities of the adapter, as well as
the organization of devices using the adapter. In order to maximize
performance to high speed disk devices on an adapter, the characteristics of
the adapter should be considered. For example, SCSI adapters can support
multiple devices operating in either synchronous or asynchronous modes (see
2.2.1.1, “Small Computer System Interface Adapter” on page 23 for information
on SCSI technology). To achieve maximum throughput for a synchronous disk
device, only other synchronous devices should be attached to the adapter, and
the total bandwidth (or throughput) of these devices should not exceed the
capabilities of the adapter itself.

The same considerations apply to adapters of other types. If multiple devices
are supported on the adapter, the total bandwidth available should not be
exceeded.

Finally, obviously the fastest adapter that meets the environmental
requirements of the site (in terms of cable lengths, and devices supported)
should be selected to maximize performance. Other functions like command tag
queuing (for some SCSI adapters), and differential communications (to reduce
errors) will also improve performance.

� Physical disk devices

Physical disk drives themselves support different levels of function in their
hardware. Some drives support bad block relocation and elevator seek
functions internally for example (see 2.2.2, “Disk Storage” on page 25 for a
discussion of disk technology). Off-loading these functions from the LVM will
increase performance.

Some subsystems, such as the 7135, support striping within the subsystem
(RAID 0) which will also increase performance.

Again, selecting disks with the fastest overall read/write performance figures
should be the policy for maximizing performance.

80 AIX Storage Management

� Logical Volume Manager

Selecting the highest performance hardware goes a long way to maximizing the
performance of a disk subsystem, but the software implementation in terms of
data placement on the disks and access methods (random or sequential) are
also vital to the overall result.

Under AIX Version 4, the LVM supports striping, which means that the logical
partitions of a logical volume can be spread across multiple disks and therefore
accessed concurrently (see 4.3, “Disk Striping” on page 72 for a discussion of
striping). Striping will maximize performance for sequential reads and writes,
where the LVM can schedule consecutive reads and writes simultaneously to
blocks on different disks. Performance will be further enhanced when the disks
are on different adapters, thereby allowing full concurrency. Setting up striping
is discussed in 8.5.1, “Striped Logical Volumes” on page 272.

Whether striping is to be used or not, the placement of the data on the disk
surface itself affects the performance of the subsystem. The LVM provides a
number of parameters at logical volume setup that govern the policies it will
enforce in terms of data placement and access. These policies are explained in
“Logical Volume Manager Policies” on page 54. In order to maximize
performance, the following policies should be adopted:

– Intra-physical volume allocation policy

For maximum performance logical partitions should be selected in the
center of the disk.

– Inter-physical volume allocation policy

For maximum performance the maximum number of physical volumes
available should be used for the logical volumes logical partitions. This will
allow the LVM to schedule requests for long sequential reads or writes
across physical disks in parallel.

 – Mirroring

Mirroring should generally be disabled for maximum performance. If it is
required however, then the scheduling policy should be set to parallel and
the allocation policy to strict. This will cause the LVM to place copies on
separate physical volumes, and to perform writes in parallel, thereby
maximizing performance. In addition, reads will be scheduled to the copy of
the data required that is closest to a disk head, improving read
performance. Write verification and mirror write consistency should also be
set to no. This will prevent the LVM from wasting a disk revolution on every
write to read back the data for validity, and also stop the LVM waiting for all
writes to copies to succeed before returning successful completion of the
write.

Adopting these policy settings in the LVM will maximize performance, but at the
expense of availability. If availability is an equally great issue, then
compromises will be necessary, such as using mirroring with reduced efficacy
(as described in this section).

 � File System

With regard to maximizing performance from the file system point of view, there
are several configuration options that can be taken at file system creation time:

 – Fragment size

 Chapter 5. Storage Subsystem Design 81

Using the largest fragment size of 4096KB will minimize allocation
operations and maximize throughput from the file system. This could be at
the expense of space utilization within the file system, depending upon the
sizes of files within (see 5.2, “Planning Disk Utilization” on page 77 for a
discussion of maximizing disk space utilization).

 – Compression

Using compression increases the overheads of reads and writes to the file
system, and therefore to maximize performance, compression should not
be used.

 – Log devices

If many file systems are using the same log device, then this can introduce
a bottleneck. Reducing the number of file systems that will be concurrently
accessing a log device will avoid this problem. In order to do this, multiple
log devices should be created within the volume group. To maximize
performance, the log device should be on a different physical volume, and
preferably a different adapter to the file systems sharing the log.

The JFS uses 4KB buffers for reading and writing, and returns success to a
requesting application on receipt of the data. The actual physical write is not
done until the buffer is full. This means that just using the JFS can improve
disk I/O performance.

 Warning

Some applications (some databases for example), rely on the fact that when
a write is requested, it is actually done immediately. In these cases, using
the JFS may speed up performance, but can introduce inconsistencies if a
crash should occur before a write actually took place - the database logs
would be out of sync with the JFS logs, resulting in an inconsistent state.
These type of applications should write directly to a logical volume. For
ordinary applications this would not be the case, and recovery to a stable
state should be possible from replaying the JFS log. In all cases, checking
with the application provider makes good sense.

Fragmentation of the file system will have an adverse effect on I/O performance
as it will increase the number of seeks required to access information. The
smaller the fragment size selected, the worse this problem can become.
Regular defragmentation of the file system, will alleviate this problem, and is
can be accomplished using the defragfs command, discussed in Chapter 7,
“Storage Management Files and Commands Summary” on page 137.

� Operating System Parameters

There are a number of operating system parameters that affect the
performance of I/O subsystems. These parameters should be adjusted with
caution as they have system wide scope; this means that though they may
radically improve performance for one application using one logical volume,
they may have a detrimental effect on others:

– Sequential Read Ahead

This is a Virtual Memory Manager feature that allows the VMM to read in
pages of information from disk before they are required. If the VMM
suspects that a large sequential read is about to take place, it will use the
values set in minpgahead and maxpgahead to decide on how many extra

82 AIX Storage Management

pages ahead of the current one to read in. This means that when requests
for subsequent pages arrive, the required pages are already in memory and
time is saved. More detail on the setting of these parameters is available in
the InfoExplorer section Tuning Sequential Read Ahead.

– Disk I/O Pacing

This feature is intended to prevent those programs that generate very large
amounts of I/O from saturating the I/O queues with requests, and thereby
causing the response time of less demanding applications to deteriorate.
Disk I/O pacing enforces high and low water mark values on the number of
I/O requests that can be outstanding for any memory segment (this
effectively means for any file). When the number of outstanding I/O
requests for a segment reaches the high water mark, the process making
the requests is put to sleep until the number of requests has reached the
low water mark.

This feature is set to off by default. See the InfoExplorer article on Use of
Disk-I/O Pacing for further details on tuning these parameters.

– SCSI Device Driver max_coalesce Parameter

When there are multiple requests in a SCSI device drivers queue, it
attempts to coalesce these requests into a smaller number of larger
requests. The largest request size (in terms of data actually transmitted)
that the device driver will build, is limited by the max_coalesce parameter.
See the InfoExplorer section on Modifying the SCSI Device Driver
max_coalesce Parameter for details on adjusting this setting.

– Setting SCSI Adapter and Disk Device Queue Limits

It is possible to enforce a limit on the maximum number of outstanding
requests on a queue for a given SCSI bus or disk drive. Setting these
parameters can improve performance for those devices that do not provide
sophisticated queue handling algorithms. See the InfoExplorer section on
Setting the SCSI-Adapter and Disk-Device Queue Limits for further
information on adjusting these parameters.

– Controlling the Number of System pbufs

The LVM uses a construct called a pbuf to control pending disk I/O. In AIX
Version 3, a pbuf is required for each page being read or written, which for
applications with heavy I/O can result in pbuf pool depletion. In AIX Version
4, a pbuf is used for every sequential I/O request, regardless of the number
of pages involved, thereby reducing the load on the pbuf pool. It is possible
to tune the number of pbufs available, and in some cases this can improve
performance. See the section in InfoExplorer on Controlling the Number of
System pbufs, for further information.

 � Applications

The final performance considerations are at the actual application level. The
design of the application can have a major effect upon performance. It is not
always possible to affect the way in which application operate, but on those
occasions where it is, the following considerations should be taken into
account:

– Asynchronous Disk I/O

Applications can use asynchronous disk I/O, which means that control
returns to the application from the read/write as soon as the request has

 Chapter 5. Storage Subsystem Design 83

been queued. The application can then continue working while the physical
disk operation takes place. Obviously not all applications will be able to
take advantage of this feature, but for those that can, the performance
benefits are significant. More information on this feature can be found in
InfoExplorer in the section on Performance Implications of Asynchronous
Disk I/O.

– sync and fsync

In a similar fashion to asynchronous disk I/O, the sync() system call
schedules a write of all modified memory data pages to disk, but returns
immediately. Conversely, the fsync() call will not return until the writing is
complete. Those application which must know whether the write was
successful will not be able to take advantage of this, but for those that can,
again the performance benefits can be significant. For more information,
see the InfoExplorer section on Performance Implications of sync/fsync.

Examples of using LVM and file system configuration commands to maximize
performance are detailed in 8.3.4, “A Design Example for Improved Performance”
on page 220.

5.4 Planning for Availability
Designing a disk subsystem for availability also involves a number of
considerations, including:

 � Adapters

From an availability standpoint, it is better to design a storage system using
more rather than less adapters. This is really of benefit in the case where
mirroring is to be used; having mirrored copies on separate adapters means
that failure of one adapter will still leave the information accessible from the
copy on the other adapter.

 � Redundancy

Redundancy is one of the most important mechanisms for ensuring availability.
This entails having backups for all vital system components in much the same
way as multiple adapters and mirroring above; within storage subsystem
components, this really means having backup power supplies, cooling fans,
adapters, data paths, and spare disk drives that can be automatically switched
in when required, with no service or information loss.

At a pure operating system level, redundancy is limited to mirroring and multiple
adapters. Much greater availability guarantees can be achieved using the
features of external devices providing many of the backup features discussed.
Devices available that support these kinds of features include the IBM 7135
and the 9570. Details of these and other similar devices can be found in A.2,
“Disk Storage Products” on page 330.

 � RAID

This set of performance and availability features is discussed in 2.2.2.2,
“Selecting the Correct Disk Storage Devices” on page 27. RAID levels 1, 3,
and 5 provide increasing levels of high availability and performance external to
the operating system. The attached subsystem performs all of the RAID
functionality under the covers, and presents an ordinary disk drive interface to
the operating system. Subsystems which support RAID to varying degrees

84 AIX Storage Management

include the IBM 7135, IBM 3514, and IBM 9570. A brief discussion of these
and other devices can be found in A.2, “Disk Storage Products” on page 330.

� Logical Volume Manager

As in the case of performance, there are several options that can be taken at
logical volume creation time to maximize availability of data. These options
include policies governing the placement of data on the physical disks and
mirroring. Data can be divided into two categories, operating system data, and
user data, and the mirroring setup is slightly different for each case:

– Mirroring the root volume group

This procedure will maximize availability of the operating system. At least
three physical disks should be in the rootvg to ensure that a quorum will
always be available in the event of a single disk failure.

 Note

A full system backup should be taken before performing any disk
reorganization procedures.

Mirroring the root volume group involves setting up one or two copies of
each logical volume in the volume group; the procedure for actually
implementing this is explained in 8.2, “rootvg Mirroring - Implementation
and Recovery” on page 187.

 Warning

The mirrored copies must each be on a bootable physical volume or
else a failure in the main bootable copy will not be easily recoverable.
The boot logical volume should not be mirrored, as this can cause
problems, rather a new boot logical volume should be created on each
physical disk containing a mirror copy.

The Non-Volatile RAM must be updated to reflect the new disks available
as boot devices, so that in the event of failure of the main copy of the
rootvg, a reboot can be effected from another copy.

– Mirroring user data

Mirroring user data also involves creating copies of all of those logical
volumes requiring high availability. For maximum availability, the following
policies should be selected:

- Number of mirrored copies

The number of copies of a logical volume maintained by the LVM can
be one, two, or three. Maximum protection against failure is provided
using three copies, though at increased overhead. Again, availability is
mainly achieved at the cost of performance, though this will depend on
the intended usage of the mirrored logical volume. If the volume will
mainly be used for reading, then performance can be enhanced, as the
LVM will schedule reads to the disk head closest to the required data.

- Inter-physical allocation policy

Having the logical partitions comprising the mirrored logical volume
spread across the minimum number of disks will optimize availability.
Ideally, each copy should be on a separate physical volume which is
itself on a separate adapter. To enable this, the range parameter

 Chapter 5. Storage Subsystem Design 85

should be set to minimum, and the strict parameter to yes; this will
force the LVM to restrict each copy of the logical volume to as few
disks as possible, and to maintain the copies separate (no copy may
share a disk). Prior planning to ensure space on the physical disks to
hold the entire logical volume will ensure each copy can be
successfully kept on a single physical volume.

- Intra-physical allocation policy

The actual location of the data on each physical disk will have no direct
impact on availability. If however, a center policy is selected for
example, then although the LVM will try and fulfill the request on all of
the mirrored copies, the inter-disk allocation policy will take preference.
This means essentially, that if there are not enough center located
logical partitions on a disk, then rather than look at spreading the
logical volume to another disk, edge or middle located partitions will be
used instead.

 - Scheduling policy

For maximum availability, a sequential policy should be adopted. This
means that writes will be scheduled one after the other to all copies of
the logical volume, each write having to complete before the next
occurs. This maximizes the chances of at least one copy surviving in
the event of a system crash during the process.

 - Write verification

This feature should be switched on for maximum availability. Write
verification means that after every write to a disk, the data written is
read back to ensure its validity. This does have performance
implications as every write will involve one extra disk revolution for the
read verify.

 � File System

Using the JFS provides some availability features over writing to raw logical
volumes, or using NFS for example. The JFS records all changes to the
meta-data of a file system into a log (file systems are explained in 3.1.4, “File
Systems” on page 57). If there should be a system crash, on reboot, the log is
replayed and the file system returned to its last consistent state. This prevents
corruption of the file system and thereby assists in maintaining higher
availability.

 � Application

Applications themselves can be designed to be availability aware. In the
reverse of the requirements for high performance, applications should avoid
asynchronous I/O to ensure that any data written is committed to disk before
continuing and risking inconsistencies. In addition, the fsync() system call
should be used rather than sync(), so that the application can be sure that all
modified pages in memory have been written before continuing.

The section on application oriented performance considerations earlier in this
section gives more details on these operating system calls.

86 AIX Storage Management

5.5 Planning Backup Strategies
The rest of this chapter looks at backup strategies, and the elements involved in
planning them.

 5.5.1 Backup Overview
As soon as the system has been set up and the operating environment configured
as required, a backup strategy should be immediately implemented. From this point
on, valuable data will be created and stored within the storage subsystem that
represents time and effort, and in most cases that supports the business. The
organization of the system (operating system data and applications), and the user
information created (files and directories) are subject to misadventure, however
carefully managed; files can be accidentally erased, and hardware or software
faults can destroy some information or even the entire system. For these reasons,
it is important to be able to recover the system back to a point at which work can
continue. Backing up the system involves making copies of all the information
contained in it on a some medium that can be stored separately. The copies can
then be used to recreate the system after a failure has been repaired, or
information accidentally lost. The information in the system is usually highly
dynamic, and therefore frequent copies or updates to the copies (also known as
incremental backups) should be taken. The frequency and content of the updates
or full backups is unique for each business, and depends upon the rate of change
of information and the relative importance of that information. Evaluating this is the
process of developing a backup strategy. The following points should be
considered:

� Ensure recovery from major losses

Consider every potential catastrophe, however unlikely, and determine whether
recovery would be possible. If the backup media was lost in some natural
disaster, would recovery be possible? Obviously, it is necessary to factor in the
likelihood of a particular disaster, but this must be done in conjunction with
consideration of the value of the data. It's not much comfort to reflect how
unlikely the ball of lightning that destroyed the backup media inside a safe was,
when the business is ruined as a result.

� Check backups periodically

There are many different types of backup media, each with varying degrees of
reliability and longevity (see 2.2.3, “Tape Storage” on page 34 for a
comparison of backup media). Check the condition of backups on a regular
basis to ensure that they are still usable.

� Keep old backups

Although it is a good policy to develop a regular cycle for reusing backup
media, complete copies should be maintained for some time as it can often be
a while before it is noticed that a particular file is damaged or unusable, by
which time the backup copies may contain copies of the damage. It is therefore
a good plan to implement a recycling policy such as the following:

– Recycle all media except Friday backups weekly

– Recycle all Friday media except the last in the month monthly

– Recycle all monthly media except the last in the quarter quarterly

Keep the quarterly backups indefinitely. This will always ensure the ability to
access information up to three months old at various levels of currency.

 Chapter 5. Storage Subsystem Design 87

� Check file systems before backing up

Making a backup of a damaged file system will result in the ability to restore
that damaged file system in the event of failure. It is therefore a good idea to
check file systems before backing up to ensure integrity.

� Ensure files are not in use during backup

Files that are in use during a backup will be different to the backed up copy.
Backups should therefore be taken while the system, or files being backed up,
are not in use.

� Backup the system before implementing any major changes

Major changes introduce the possibility of errors and hence loss of data. It is
always sensible to take a backup prior to any such activity.

 5.5.2 Backup Planning
There are two main types of backup:

� Complete system backup

In a complete system backup, a copy is made of everything on the system. this
can then be used to completely restore the system in the event of a failure. The
complete backup can contain operating system and user data, although it is
more sensible to maintain these two separately for the following reasons:

1. User data changes more regularly than system data, and the backup will be
smaller if the two are kept separate.

2. It is quicker and easier to restore user data when kept separate from the
operating system. Crashes only affecting the operating system, only require
the operating system backup to be restored, and vice versa.

 � Incremental backup

In an incremental backup, only the data that has changed since the last backup
is backed up.

A complete system backup policy should be used when data does not change too
often. The backups should be scheduled at a frequency that allows complete
recovery of business critical information. For example, if database update runs are
done weekly, then a backup after the run each week is sensible.

An incremental policy should be used when information is extremely dynamic. Full
system backups are taken at a fixed interval, within which backups of changed
information are taken at shorter intervals. The frequency of the incremental backups
depends upon the criticality of the information, as in the complete system backup
policy. The frequency of the incremental backups depend upon the volumes of data
that have changed. As recovery with incremental backup requires reloading the last
full backup followed by application of the incremental backups up until the point of
failure, the frequency of incremental backups should be set at a value which is a
balance between criticality of information and number of incremental backups that
will need applying.

88 AIX Storage Management

 5.5.3 Backup Methods
There are several ways of backing up information:

� Backing up by name

This method is also called file name archive, and should be used to backup
individual files or directories, if required. This mechanism is most commonly
used by users to make backups of their own files.

� Back up by file system

This method is also known as backup by i-node, and is used to backup entire
file systems. This mechanism should be used by the system administrator to
back up large groups of files. It is also used for incremental backups.

� Backup by volume group

This method allows complete volume groups to be backed up. There are
separate commands for the root volume group and for user volume groups.

The following commands can be used to implement the backup policy created:

backup This command allows backup by file name or by file system.

mksysb This command creates an installable image of the root volume group.

savevg This command backs up a user volume group.

cpio This command copies files into and out of archive storage. The cpio

format is common across many platforms, and so can be used for
exchange of information between systems.

dd This command will convert and copy information from one device to
another. The dd command does not group multiple files in any particular
format, it just streams the data, performing any supported conversion
from the source to the target device.

tar This command manipulates archives of files and directories. The tar

command will create an archive on the output device, write files and
directories to it, and extract them when required.

rdump This command backs up files by file system to a device on a remote
machine.

pax This POSIX conformant command will read and write tar and cpio

compliant archives.

These commands are described in detail in Chapter 7, “Storage Management Files
and Commands Summary” on page 137. Examples of backing up a system are
detailed in 8.4, “Managing Backup and Restore” on page 247.

 5.5.4 Backup Media
So far, backup purposes, policies, and commands have been discussed. This
leaves the important topic of the actual media that the backup will be stored on.
Tape devices are the most common backup or long term archive medium, though
there are still several considerations:

 � Device Technology

This should be governed by the requirements below, but is more often just a
question of cost per megabyte. The most important factors should be the
reliability, longevity, performance and capacity.

 Chapter 5. Storage Subsystem Design 89

Volume of information should be considered too, as this might suggest a tape
library. Short term archive may suggest an optical device. These decisions are
covered in 2.1, “Selecting the Hardware Components” on page 17.

 � Performance

It is important to consider the length of time that a backup will require, and this
is a function of the volume of data and the speed with which the device can
write it. If backups need to be taken every evening, then a device capable of
completing the process in the time available should be chosen.

 � Capacity

This is a question of cost, storage space, and ease of use. The more
information that can be packed onto the media, the better generally, as this
means that less media will be required for backups. Storage space is therefore
less, and if a single cartridge is sufficient, no operator intervention may be
required. If multiple cartridges will be required, and operator intervention is not
possible, then a tape library should be considered.

 � Longevity

As was mentioned earlier in this section, the length of time that the media can
be safely stored is important. This governs not only the backup cycles, but for
how long the media can be safely reused.

 � Reliability

This is a very important issue. Although checks on the success of a backup
can and should be performed, unreliable devices that have a high percentage
of errors, and produce occasional unreadable backups, are time consuming
and dangerous. Some devices encounter read back problems too, even though
the media copy may be good.

 � Compatibility

Device technology improves and changes with time. It is a good idea to ensure
that next generation of devices support existing archive and backup media.

These considerations are discussed in relation to tape technology in 2.2.3, “Tape
Storage” on page 34.

 5.6 Summary
This chapter has looked in detail at the planning and design requirements for
storage subsystems. Design of the subsystem involves considering the following
points:

 1. Disk Utilization

How the physical subsystem will be organized from the perspective of:

 � Volume Groups

 � Physical Volumes

 � Logical Volumes

 � File Systems

 2. Performance

90 AIX Storage Management

For those applications that require high performance, designing the storage
subsystem for maximum performance. This involves optimizing:

� Adapter performance and function

� Physical disk device performance and function

� Optimizing the Logical Volume Manager for performance

� Optimizing file systems for performance

� Optimizing operating system parameters for performance

� Optimizing application design for performance

 3. Availability

For those applications that require high availability, designing the storage
subsystem for maximum availability. This involves optimizing:

� Adapter and disk organization

 � Implementing redundancy

� Possible use of RAID

� Optimizing the Logical Volume Manager for availability

� Using the JFS if possible

� Optimizing application design for availability

 4. Backup

Designing a strategy that allows for as full a recovery as necessary in the event
of failure, for the business to continue. This entails the following:

� Considering all possible failure scenarios and designing a strategy to cope
with them

� Selecting the appropriate backup type

� Selecting the relevant backup commands to use

� Selecting the appropriate devices

 Chapter 5. Storage Subsystem Design 91

92 AIX Storage Management

Chapter 6. General AIX Storage Management

This chapter will explore Storage Management from a more practical aspect. Much
of the functionality available with Version 3 is still included in Version 4, so this
chapter will provide useful information for Storage Management at either release.

 6.1 Introduction
The purpose of this chapter is to provide the reader with information, which it is
hoped will prove useful for applying the basic concepts of storage management into
their business environment. The areas which will be covered will include the
management of physical storage devices, volume groups and logical volumes using
the Logical Volume Manager (LVM) functions provided in AIX. Consideration will
also be given to issues relating to performance, availability and the capability of
backing up and restoring.

6.2 Managing Physical Volumes
Management of physical volumes involves day-to-day activities that not only ensure
that they are installed and configured correctly, but also that they are maintained in
a correct operating environment and monitored regularly so that disasters from
physical volume failures are prevented, by taking precautionary steps.

For a physical volume to be used for storage purposes, either by the LVM or
directly via a low-level interface, it must first be recognized by the system and
configured to be in an available state. This can be done fairly quickly and with
ease, using the AIX Systems Management Interface Tool (SMIT). Once recognized
by the system it can then be included in a volume group and a logical volume or a
journaled file system can then be created on it, providing users the ability to store
data in it.

When a RISC System/6000* computer system is powered on or rebooted, the AIX
operating system will attempt to configure all devices physically connected to it.
Some devices may be attached while the system is up, and these can normally be
configured using the cfgmgr command, or by using SMIT. The fact that a physical
volume is configured and known to the system does not mean that it is ready to be
used for storage purposes.

This section will attempt to describe only those areas specifically relating to
physical volumes. This will include:

� Configuring physical volumes

� Modifying physical volume characteristics

� Removing physical volumes

� Monitoring physical volumes

 Copyright IBM Corp. 1994 93

6.2.1 Configuration of Physical Volumes
It is possible to check the configured state of a physical volume which has been
correctly installed. This can be done using SMIT or by issuing the following
command:

à ð
lsdev -Cc disk

á ñ

The above command will produce output that will look something like the following:

à ð
hdiskð Available ðð-ð6-ðð-ðð 857 MB SCSI Disk Drive

hdisk1 Available ðð-ð6-ðð-1ð 857 MB SCSI Disk Drive

hdisk2 Available ðð-ð7-ðð-ðð 857 MB SCSI Disk Drive

hdisk3 Available ðð-ð7-ðð-1ð 857 MB SCSI Disk Drive

hdisk4 Defined ðð-ð8-ðð-ðð 857 MB SCSI Disk Drive

hdisk5 Defined ðð-ð8-ðð-1ð 857 MB SCSI Disk Drive

á ñ

The second column of this output indicates the configured state of each physical
volume. Only those disks with an Available state have been successfully
configured by the system. It is quite likely that disks in the Defined state were
switched off during the configuration process. If this is the case they can be
configured, as previously mentioned, by using the command cfgmgr or smit cfgmgr

after powering on.

à ð
cfgmgr

á ñ

6.2.2 Modifying Physical Volume Characteristics
There is very little that can be done with respect to modifying the characteristics of
a physical volume. The two characteristics which can be changed should be given
important consideration, since they provide a way of controlling the usage of
physical volumes.

It may sometimes be necessary to restrict further physical partitions from being
allocated to any new or existing logical volumes. When a new logical volume is
created or an existing one extended, free physical partitions are allocated to it.

The chpv command can be used to restrict further physical partition allocations from
occurring. This can easily be achieved by issuing the following command:

à ð
chpv -an PVname

á ñ

After issuing the above command any allocations for physical partitions for the
physical volume PVname will not be allowed. Note, however, that access to existing
journaled file systems and logical volumes is still possible.

If the physical volume characteristics need to be reversed, this can be carried out
by issuing the following command:

94 AIX Storage Management

à ð
chpv -ay PVname

á ñ

An active physical volume is considered to be in an Available state since it will
continue to allow logical I/O to it to occur. The state of a physical volume can be
changed from active to not active to stop all logical I/O to it from occurring. There
are instances when access to file system or logical volume data needs to be
stopped, particularly if the physical volume is partially or wholly damaged, and
needs to be repaired or replaced. In a high security environment, it may be
necessary to physically remove a disk from the system and secure it in a secure
place for overnight periods. This may be achieved by making the physical volume
unavailable or Removed.

Whatever the reason, the physical volume can be made unavailable by setting the
state to Removed using the command:

à ð
chpv -vr PVname

á ñ

In the above example, the state of physical volume, PVname, is changed from
Available to Removed. To check the state use the lsvg command.

The above modification is only allowed if there are two or more physical volumes in
a volume group and more importantly if this action can be performed without losing
quorum. In a two-disk volume group, the chpv command will fail if the disk
containing two copies of the VGDA/VGSA is being removed, since more than 50%
of the VGDA and VGSA copies will be lost. Also, before a physical volume can be
made unavailable, all file systems must be unmounted and all open logical volumes
must be closed.

To bring the physical volume PVname back into an Available state, thereby allowing
logical I/O to the device to occur, the following command needs to be executed:

à ð
chpv -va PVname

á ñ

6.2.3 Removing Physical Volumes
The configured state of physical volumes is Available when the system is powered
on. However, to unconfigure a physical volume, and place it in the Defined state,
the rmdev command can be used. Before a physical volume is disconnected from
the system, it must be unconfigured. In the Defined state, access to the physical
volume by the LVM will be prevented until it is again made available. The rmdev
command as invoked below, will result in the change of state of the physical
volume from Available to Defined:

à ð
rmdev -l PVname

á ñ

 Chapter 6. General AIX Storage Management 95

Although physical volume PVname will be unconfigured, its definition will still remain
in the ODM. This information must remain, particularly if the physical volume will
be reinstated with the same characteristics as before.

6.2.4 Monitoring Physical Volumes
Physical volume failures can and do occur for many reasons. More often than not
they are caused by inadequate operating conditions, such as cables connected to
physical volumes left loosely on the floor risking being pulled out, temperature and
humidity not controlled properly, physical volumes exposed to direct sunlight and
strong magnetic fields. These physical conditions need to be addressed for
physical volumes to function properly. The tolerances of physical volume may differ,
and these can be obtained from the hardware specifications supplied by the
manufacturers.

Failures arising as a result of these conditions can always be avoided. However,
sometimes physical volumes also suffer from other problems which cannot be
identified so easily. An example of this might include a non-operational cooling fan
in a physical volume, or a damaged sector on the disk. It is, therefore, imperative
that physical volumes are monitored regularly, both in terms of their physical
environment and their physical characteristics, while they remain in operation.

An important command available to a systems administrator is errpt which can
allow physical volume failures, and those impending, from being detected early.
Error reporting must be started on the system in order for this command to produce
useful information. Different levels of detail can be extracted by using different
command line options. Initially, it may only be necessary to extract summary
information to see what errors have been reported, how frequently they are
occurring, and whether or not they are of a permanent or temporary nature. This
can then be followed by a more detailed report to find out their causes. A summary
error report can be quickly produced by using the following command:

à ð
#errpt | pg

á ñ

This will produce a one line summary for each error logged on the system with the
most recent error first. The fields identifying the error will be:

IDENTIFIER: A numeric error identifier for the type of error that has
occurred.

TIMESTAMP: This will indicate the date and time the error occurred. The
format of this field is MMDDhhmmYY, representing the month,
day, hour, minute, and year respectively.

T: The error type used to identify if the error is permanent (P)

or temporary (T).

C: The error class used to identify if the error is hardware (H),
software (S) or operator (O) related.

RESOURCE_NAME: The name of the resource for which the error is being
reported.

DESCRIPTION: A short description of the error.

96 AIX Storage Management

The following example shows how the errpt command can be used to produce a
more detailed report for each logged error:

à ð
errpt -a | pg

á ñ

It is worth piping the output through either more or pg if there are many errors
logged.

Of all the fields displayed, the most useful in identifying the nature and cause of the
error are:

ERROR LABEL: This is a label used to identify the error. An example of a
physical volume error is DISK_ERR4.

Error Class: This describes if the error is caused by a hardware or
software problem denoted by (H) or (S) respectively.

Error Type: This describes if the error is permanent (PERM) or
temporary (TEMP).

Description: This will be a short description of the error.

Probable Causes: If included, this field will identify the likely cause of the
error which can be a software program or a physical
device.

Failure Causes: This will identify the exact cause of the reported failure.

Recommended Actions
This will describe any recovery or reporting action that will
need to be taken.

For more information about how to interpret the output of both the summary and
detailed reports, please refer to the errpt command and its associated
documentation in InfoExplorer.

6.2.5 Listing Information about Physical Volumes
A physical volume correctly installed on the system can be assigned to a volume
group and can subsequently be used to hold file systems and logical volumes.
Requirements of logical volumes can vary and sometimes their position within a
physical volume can be quite important. So information about free physical
partitions and their availability within different sectors on the disk can be very
useful. There are several commands which can be used to identify such
information pertinent to physical volumes. However, a single command which can
provide this is lspv.

6.2.5.1 Listing Physical Volumes on the System
The lspv command when executed without any arguments will produce output
which will identify the physical volume by the name that it is known to the system,
the unique physical volume identifier that has been assigned to it and the volume
group, if any, to which it belongs. It will appear as:

 Chapter 6. General AIX Storage Management 97

à ð
lspv

hdiskð ððððð31ðdf1bbcef rootvg

hdisk1 ððððð31ðdf26b596 rootvg

hdisk2 ððððð1856246d451 None

á ñ

In the above example, hdisk2 does not appear to be allocated to a volume group
yet and so the third field reflects this by appearing as None. Physical volumes,
hdiskð and hdisk1, on the other hand, are allocated to volume group rootvg.

6.2.5.2 Listing Physical Volume Characteristics
The lspv command can also be used to retrieve more detailed information about
physical volumes. The command must however be invoked with the name of the
disk for which information is required as the argument.

For example:

à ð
lspv hdiskð

á ñ

If the physical volume being interrogated is currently not allocated to a volume
group, no detailed information can be produced about it and an appropriate
message will be output to indicate this.

You will note that the information on the left shows detail pertinent to the physical
volume itself, whereas that on the right provides detail about the volume group that
the physical volume is allocated to. Some of the detail extracted from this output
will be discussed in more detail in sections 6.3, “Managing Volume Groups” on
page 101 and 6.4, “Managing Logical Volumes” on page 112, since it is more
relevant there.

In brief, the information produced is:

PHYSICAL VOLUME: The name of the physical volume.

PV IDENTIFIER: Physical volume identifier unique to the system.

PV STATE: Availability state of the physical volume for logical I/O.
This state can be changed using the chpv command
mentioned in section 6.2.2, “Modifying Physical Volume
Characteristics” on page 94.

STALE PARTITIONS: The number of physical partitions that are marked stale.
Partitions can become stale when the physical volume
is temporarily made unavailable while their mirrored
copies on other physical volumes change. This will be
reviewed in sections 6.3, “Managing Volume Groups”
on page 101 and 6.4, “Managing Logical Volumes” on
page 112.

PP SIZE: The size of the physical partition, set when the volume
group is added. This will be reviewed in sections 6.3,
“Managing Volume Groups” on page 101 and 6.4,
“Managing Logical Volumes” on page 112.

98 AIX Storage Management

TOTAL PPs: The total number of physical partitions that exist on the
physical volume.

FREE PPs: The number of physical partitions available on the
physical volume that have not been allocated to file
systems or logical volumes.

USED PPs: The number of physical partitions on the physical
volume that have already been allocated to file systems
or logical volumes.

FREE DISTRIBUTION: This lists the number of physical partitions that are
available in each of the various regions of the physical
volume. The use of this information will be discussed in
section 6.3, “Managing Volume Groups” on page 101
and 6.4, “Managing Logical Volumes” on page 112.

USED DISTRIBUTION: The same as FREE DISTRIBUTION, except that it lists
the number of allocated partitions.

VOLUME GROUP: The name of the volume group to which the physical
volume belongs. This will be reviewed in sections 6.3,
“Managing Volume Groups” on page 101 and 6.4,
“Managing Logical Volumes” on page 112

VG IDENTIFIER: Volume group identifier unique to the system.

VG STATE: The state of the volume group. This will be reviewed in
section 6.4, “Managing Logical Volumes” on page 112.

ALLOCATABLE: A yes/no setting to indicate whether or not free physical
partitions on this physical volume can be allocated. For
more information see the chpv command in section
6.2.2, “Modifying Physical Volume Characteristics” on
page 94.

LOGICAL VOLUMES: The number of logical volumes residing on this physical
volume.

VG DESCRIPTORS: The number of Volume Group Descriptor Areas
(VGDAs) residing on this physical volume.

6.2.5.3 Listing Logical Volume Allocation within a Physical
Volume
The lspv command can also be used to check how the physical volume is used. It
can provide information relating to each logical volume on the physical volume,
such as its name, number of logical and physical partitions allocated, distribution
across the physical volume, and mount point if one exists.

An example lspv invocation providing this detail is:

à ð
lspv -l hdisk3

hdisk3:

LV NAME LPs PPs DISTRIBUTION MOUNT POINT

lvðð 4 4 ðð..ð4..ðð..ðð..ðð /expfs

loglvðð 1 1 ðð..ð1..ðð..ðð..ðð N/A

á ñ

 Chapter 6. General AIX Storage Management 99

In this example, physical volume hdisk3 has two logical volumes on it, lvðð and
loglvðð. Logical volume lvðð is allocated 4 logical partitions and 4 physical
partitions on this physical volume. All four physical partitions reside in outer-middle
region of the disk. The logical volume is used in a file system whose mount point
is /expfs. As logical volume loglvðð is not associated with a file system, its mount
point is shown as N/A.

6.2.5.4 Listing Physical Partition Allocation by Physical Volume
Region
We have already seen how to retrieve information about the distribution of physical
partitions allocated to logical volumes on a particular physical volume. It may
sometimes be necessary to check, in more detail, the range of physical partitions
allocated to a logical volume and the region of the disk used for those partitions. A
file can be repositioned to the center of the disk to ensure that it is accessed more
quickly if performance is an issue.

The lspv command invocation providing this level of detail is:

à ð
lspv -p hdisk3

hdisk3:

PP RANGE STATE REGION LV ID TYPE MOUNT POINT

1-15 free outer edge

16-2ð free outer middle

21-23 used outer middle lvðð jfs /expfs

24-24 used outer middle loglvðð jfslog N/A

25-27 free outer middle

28-28 used outer middle lvðð jfs /expfs

29-3ð free outer middle

31-45 free center

46-6ð free inner middle

61-75 free inner edge

á ñ

From the above example, we note that physical partitions allocated to the file
system /expfs (logical volume lvðð) are 21 through 23, and 28, and are positioned
at the outer-middle region of the disk.

6.2.5.5 Listing Physical Partition Allocation Table
Although we can determine the range of physical partitions allocated to a logical
volume and its distribution, this information does not provide enough detail to
determine if a logical volume is allocated a contiguous range of physical partitions.
We may require this information if we are considering ways of improving the I/O
performance for a logical volume.

The lspv command, with the parameters as shown below, will produce such
information.

100 AIX Storage Management

à ð
lspv -M hdisk3

hdisk3:1-2ð

hdisk3:21 lvðð:3:2

hdisk3:22 lvðð:1:2

hdisk3:23 lvðð:2:2

hdisk3:24 loglvðð:1

hdisk3:25-27

hdisk3:28 lvðð:4:2

hdisk3:29-75

á ñ

The output above consists of the following space separated fields:

PVname:PP[-PP] PVname being the physical volume name and PP being the
physical partition number. The PP number will only be
specified as a range when there is more than one free
contiguous physical partition on the disk.

LVname:LP[:COPY] LVname being the logical volume name and LP the logical
volume partition. The COPY value is also output, if the logical
partition is mirrored.

In the above example output, we note that logical volume lvðð has been allocated
physical partitions 21, 22, 23, and 28, However, the order in which they are
allocated to logical partitions 1, 2, 3, and 4 is 22, 23, 21, and 28 respectively.

6.3 Managing Volume Groups
The section will describe the operations which can be performed on volume groups.

Like physical volumes, volume groups can be created and removed, and their
characteristics can also be modified. Additional operations such as varying
on/varying off and importing/exporting of volume groups can also be
performed. This section will describe the operations pertinent to volume groups.

6.3.1 Adding a Volume Group
Before a new volume group can be added to the system, one or more physical
volumes, not used in other volume groups, and in an Available state, must exist
on the system. Please see section 6.2, “Managing Physical Volumes” on page 93
for more detail.

It is important to decide upon certain information such as the volume group name
and the physical volumes to use prior to adding a volume group. Even though it is
possible at a later time to change such detail, it may not always be easy nor
convenient, and users may even have to be temporarily denied access to the data
if the volume groups need to be varied off.

New volume groups can be added to the system by using the mkvg command or
using SMIT. Of all the characteristics set at creation time, the following are
essentially the most important:

� Volume group name, unique on the system

� Names of all physical volumes to be used in the volume group

� Maximum number of physical volumes that can exist in the volume group

 Chapter 6. General AIX Storage Management 101

� Physical partition size for the volume group

� Flag to activate the volume group automatically at each system restart

For example:

à ð
mkvg -y myvg -d 1ð -s 8 hdisk1 hdisk5

á ñ

In this example, a volume group with the name myvg is created, using physical
volumes hdisk1 and hdisk5, and the physical partition size for this volume group is
set to 8KB. Since the volume group is limited to a maximum of 10 physical
volumes, eight more can still be added at a later time. The maximum number of
physical volumes, 10 in the above example, allowed in a volume group should be
given careful consideration since the physical volume space overhead increases
with larger numbers.

Volume groups can also be added through SMIT using the command smit mkvg.
Limited functionality is provided by the SMIT command. The main differences are:

� smit mkvg does not provide the -d flag to set the maximum number of physical
volumes, it uses a default value of 32.

� smit mkvg does not provide the -m flag to set the maximum size of the physical
volume. This flag will determine how many physical partitions are used, it uses
a default value of 1016 partitions.

� smit mkvg always uses the -f flag to force creation of the volume group.

For a new volume group to be successfully added to the system using the mkvg
command, the root file system should have between 1 to 2MB of free space.
Check this using the df command. This free space is required because a file is
written in the directory /etc/vg each time a new volume group is added. It is also
important to note that the -f flag will allow a physical volume which still has a
VGDA on it to be allocated to a new volume group. However, the physical volume
must not be part of another volume group that is varied on.

6.3.2 Modifying Volume Group Characteristics
Not many changes can be made to the characteristics of a volume group. The
changes that are possible are:

� Activation characteristics, which will determine whether or not the volume group
is automatically varied on at every system restart

� Unlocking a volume group

� Adding a physical volume

� Removing a physical volume

6.3.2.1 Modifying Volume Group Activation Characteristics
The command to allow a volume group to be varied on automatically each time a
system is restarted is:

à ð
chvg -ay VGname

á ñ

102 AIX Storage Management

In this example, volume group VGname will be varied on automatically each time the
system is restarted.

To turn off automatic varying on of a volume group, the following command needs
to be executed:

à ð
chvg -an VGname

á ñ

It may sometimes also be necessary to allow a volume group to remain varied on,
even though quorum is lost. In a two-disk volume group, if the physical volume
with the two VGDAs is damaged, then the volume group will be varied off since
quorum is lost. In AIX Version 4, it is now possible to prevent a volume group from
being varied off automatically when quorum is lost and access to data on the good
physical volumes still continues.

In the example below, the volume group VGname will remain varied on irrespective of
loss of quorum.

à ð
chvg -Qn VGname

á ñ

The following example command will ensure volume group VGname is varied off
after quorum is lost.

à ð
chvg -Qy VGname

á ñ

The chvg command invoked with the -Q flag will only have effect when the system
is restarted. It is important that the boot image is updated after executing the chvg

-Qy or chvg -Qn command. This can be done using either the bosboot or savebase
command. Failure to do so will not make the change to the volume group and will
have no effect when the system is restarted.

6.3.2.2 Unlocking a Volume Group
In AIX Version 4, it is now also possible to unlock a volume group. A volume group
can become locked when an LVM command terminates abnormally. This is quite
likely when the system crashes while an LVM operation is being performed on the
system or if an LVM command core dumps.

The example command below will unlock volume group, VGname.

à ð
chvg -u VGname

á ñ

In order for the above command to succeed no other LVM command must be
operating on the specific volume group.

 Chapter 6. General AIX Storage Management 103

6.3.2.3 Adding a Physical Volume
It may sometimes be necessary to increase the free space available in a volume
group so that existing file systems and logical volumes within the volume group can
be extended, or new ones can be added. To do this requires additional physical
volumes to be made available within the volume group. It is possible to add
physical volumes to a volume group, up to the maximum specified at creation time.
When adding physical volumes in this way, all data on the physical volume will be
destroyed.

A physical volume can be added using the extendvg command. In the following
example, physical volume hdisk3 is being added to volume group myvg.

à ð
extendvg myvg hdisk3

á ñ

The extendvg command will fail if the physical volume being added already belongs
to a varied on volume group on the current system. Also, if the physical volume
being added belongs to a volume group that is currently not varied on, the user will
be asked to confirm whether or not to continue.

6.3.2.4 Removing a Physical Volume
It may sometimes be necessary to free up one or more physical volumes from a
volume group. Suppose that three physical volumes have been allocated to a
volume group and only two are actually used for data storage. In this instance, the
unused physical volume could be removed from the volume group so that it can be
made available for use in other volume groups. It may also be necessary to
remove a physical volume if it becomes damaged so that maintenance work can be
carried out on it. Whatever the reason, physical volumes can be removed using
the reducevg command.

In the following example, physical volume hdisk3 is removed from the volume
group myvg:

à ð
reducevg myvg hdisk3

á ñ

The reducevg command will only succeed in removing a physical volume if:

� No logical volumes exist on the physical volume being removed.

� The volume group is varied on.

The reducevg command provides the -d and -f flags. The -d flag is useful since it
deallocates all logical partitions and deletes all logical volumes from the specified
physical volume upon user confirmation. The -f flag used in conjunction with the
-d flag will force the deallocation of logical partitions and deletion of logical volumes
without user confirmation.

If the logical volumes on the physical volume specified to be removed also span
other physical volumes in the volume group, the removal operation may destroy the
integrity of those logical volumes, regardless of the physical volume on which they
reside.

104 AIX Storage Management

6.3.3 Importing and Exporting a Volume Group
There may be times when a volume group may need to be moved from one RISC
System/6000 system to another, so that logical volume and file system data in the
volume group can be accessed directly on the target system. It may even be
necessary to remove all knowledge of a volume group from the system, if file
systems and logical volumes within it are no longer being accessed. By having
such redundant volume groups on the system. the physical volumes within it remain
tied up unnecessarily, when they could be used within other volume groups.

However, before the physical volumes in a volume group are actually disconnected,
it would be good practice to remove the system definition of the volume group to
which they are allocated. To remove all knowledge of a volume group from the
ODM database, the volume group needs to be exported using the exportvg

command. This command will not remove any user data in the volume group but
only remove its definition from the ODM database. Similarly, when a volume group
is moved, the target system needs to be made aware of the new volume group.
This can be achieved by importing the volume group using the importvg command
which will add an entry to the ODM database.

In the example below, volume group myvg will be exported:

à ð
exportvg myvg

á ñ

Once exported, a volume group can no longer be accessed.

There are some restrictions when using the exportvg command to export a volume
group. These are:

� The volume groups must be varied off. See 6.3.4, “Varying On and Varying Off
Volume Groups” on page 106 for more details.

� The rootvg volume group cannot be exported. This is because varying off the
rootvg is not possible. See 6.3.4, “Varying On and Varying Off Volume Groups”
on page 106 for more details.

� The volume group must not have any active paging space logical volumes on
it. In order to export a volume group with an active paging space on it you
must:

– Change the state of the paging space so that it is not automatically
activated on system restart

– Reboot the system

– Vary off the volume group

– Export the volume group

� A subset of physical volumes cannot be exported individually.

In the following example use of importvg, volume group myvg is being imported
onto the target system using hdisk3. The information about the volume group
characteristics, such as the other physical volumes in the group and the logical
volumes and file systems, will be read from the VGDA held on physical volume
hdisk3.

 Chapter 6. General AIX Storage Management 105

à ð
importvg -y myvg hdisk3

á ñ

In this example, the name to be given to the imported volume group is specified
using the -y flag. However, if the specified volume group name is already in use,
the importvg will fail with an appropriate error message, since duplicate volume
group names are not allowed. In this instance, the command can be rerun with a
unique volume group name specified, or it can be rerun without both the -y flag
and the volume group name, which gives the imported volume group a unique
system default name. It is also possible that some logical volume names may also
conflict with those already on the system. The importvg command will automatically
reassign these with system default names.

In AIX Version 4, when a volume group is imported it is automatically varied on,
whereas, in AIX Version 3, the volume group has to be varied on separately.

The important thing to remember when moving volume groups from system to
system, is that the exportvg command is always run on the source system prior to
importing the volume group to the target system. Consider that a volume group is
imported on system Y without actually performing an exportvg on system X. If
system Y makes a change to the volume group, such as removing a physical
volume from the volume group, and the volume group is imported back onto system
X the ODM database on system X will not be consistent with the changed
information for this volume group.

It is however, worth noting that a volume group can be moved to another system
without it first being exported on the source system.

6.3.4 Varying On and Varying Off Volume Groups
Before administrative activities such as opening of logical volumes and mounting of
file systems can be performed, the relevant volume groups need to be made
available. This can be achieved by varying on a volume group using the varyonvg

command. Likewise, when access to a volume group needs to be stopped entirely,
it can be varied off after unmounting all file systems and closing all open logical
volumes within it. The varyoffvg command can be used to vary off a volume
group.

During the varying on process, a number of different operations are performed in
order to make a volume group available. They are:

� The VGDA and VGSA information is read from each of the physical volumes in
the volume group.

� Each physical volume's VGDA and VGSA header and trailer timestamps are
validated. If, for example, the VGDA header and trailer timestamps on a
particular physical volume do not match, it is likely that the organizational
information held within it will be inconsistent.

� If the number of valid VGDAs found represents a majority, that is more than
50%, the volume group will be varied on. If not, the varying on process will fail.
The vary on process can be made to continue even when quorum is lost by
using this -f flag to varyonvg.

106 AIX Storage Management

� Since, the valid VGDA with the latest timestamp is likely to hold the most recent
information about the organization of the volume group, it is used to overwrite
all other VGDAs in the volume group.

� If any invalid VGSAs (where the timestamps do not match) are found, then
syncvg is run to resynchronize any stale partitions within the volume group.

The following example shows how varyonvg can be used to varyon a volume
group.

à ð
#varyonvg myvg

á ñ

This command will vary on volume group myvg based on the varying on process
mentioned above. If quorum was lost, the volume group myvg would not be varied
on. With a number of optional flags specified with the varyonvg command, the
default processing can be overridden.

The optional flags are:

-f Forces the volume group to be varied on even though a
majority of VGDAs does not exist. Forcing a volume group
to vary on could be quite dangerous, particularly if a
damaged physical volume is holding logical partitions of a
logical volume which is being updated. This would cause
corruption of the data.

-n Disables the synchronization of the stale physical partitions
within the volume group. This allows flexibility to the systems
administrator in providing control over how the volume group
can be recovered.

-p This permits a volume group to be varied on only when all
the physical volumes in the volume group are available.

-s Allows a volume group to be varied on in system
maintenance mode. In this mode no logical volumes can be
opened, thereby disallowing all logical I/O to logical volume
and file system data. Since logical volume commands can
still be run on the volume group, it provides a mechanism for
looking at and resolving any problems that may occur on it.

To vary off a volume group, the following command can be issued:

à ð
varyoffvg myvg

á ñ

Before a volume group can actually be varied off all open logical volumes must be
closed and all mounted file systems must be unmounted. If a volume group
exhibits some problems and needs to be repaired, this can be done by varying off
the volume group directly into maintenance mode. This can be achieved by using
the -s flag.

 Chapter 6. General AIX Storage Management 107

6.3.5 Monitoring Volume Groups
Volume groups rely on the underlying physical volumes to be operational the whole
time that they are activated. If, however, physical volumes become damaged, they
can affect the state of volume groups. Therefore, like physical volumes, it is
important that volume groups are also monitored regularly so that extensive
damage can be avoided. This section will review those AIX logical volume
commands which will help in monitoring volume groups and their characteristics.

6.3.5.1 Listing Volume Groups on the System
Although there are several AIX commands available to find out about the volume
groups on a system, the most preferred is lsvg. This command interrogates the
ODM database for all volume groups currently known to the system.

 Note

A volume group which has been exported using the exportvg command will not
appear in the output.

An example use of the lsvg command and its output is:

à ð
lsvg

rootvg

myvg

á ñ

Since the above command lists all known volume groups it may sometimes be
desired to list only those volume groups which are currently varied on.

Using the -o flag with lsvg will provide this detail.

For example:

à ð
lsvg -o

rootvg

á ñ

6.3.5.2 Listing the Characteristics of a Volume Group
A volume group has many characteristics which can be observed, such as the
physical partition size for it, the number of physical volumes it consists of, how
much free and used space there is and more. It may be essential to observe how
much free space there is within a volume group to help decide whether or not a
logical volume or file system can be extended by a particular amount, or even if a
new logical volume or file system can be created with the required size. Apart from
the free space, it may also be helpful to find if the varied on volume group shows
any problems with regards to the physical volumes and physical partitions. If a
volume group needed to be varied on forcibly, this could be attributed to a physical
volume not having valid VGDA information on it. There could also be stale physical
partitions within a volume group, particularly if mirrored copies of logical volumes on
damaged physical volumes are not updated. It is possible to see such information
at a glance, about any varied on volume group, by issuing the lsvg command as
follows:

108 AIX Storage Management

à ð
lsvg myvg

VOLUME GROUP: myvg VG IDENTIFIER: ððððð446f5eacðe3

VG STATE: active PP SIZE: 4 megabyte(s)

VG PERMISSION: read/write TOTAL PPs: 574 (2296 megabytes)

MAX LVs: 256 FREE PPs: 571 (2284 megabytes)

LVs: 2 USED PPs: 3 (12 megabytes)

OPEN LVs: ð QUORUM: 2

TOTAL PVs: 2 VG DESCRIPTORS: 2

STALE PVs: 1 STALE PPs 1

ACTIVE PVs: 1 AUTO ON: yes

á ñ

In this example, volume group myvg is being described.

The meaning of the fields in the above output and their values as found in the this
example will be explained.

VOLUME GROUP: This is the name of the volume group. In this example it is
myvg.

VG STATE: This describes if the volume group is varied on or varied off.
In our example, the content of this field is active indicating
that the volume group is varied on. This field can have any
one of the following values:

 � active/complete - varied on and all physical volumes active

 � active/partial - varied on but one or more physical volumes

are inactive

 � inactive - varied off

VG PERMISSION: This describes if the volume group is accessible with
read-only permission or both read and write permission. The
volume group in this example has read and write access
permission.

MAX LVs: This field represents that maximum number of logical
volumes that can be created within a volume group which is
256.

LVs: This represents the number of logical volumes that have so
far been created within the volume group. In our example,
only two logical volumes exist within the volume group myvg.

OPEN LVs: This describes the number of logical volumes that are
currently open for logical I/O. In the above example, there
are no logical volumes currently open.

TOTAL PVs: The total number of physical volumes that exist within the
volume group. In volume group myvg there are two physical
volumes.

STALE PVs: The number of inactive physical volumes in the volume
group. The example appears to have one physical volume
which is inactive. This indicates there is a problem with one
of the physical volumes in the volume group.

ACTIVE PVs: The number of active physical volumes within the volume
group. Volume group myvg has one active (working) physical
volume.

 Chapter 6. General AIX Storage Management 109

VG IDENTIFIER: This field shows the system wide unique alphanumeric
identifier for the volume group. In the example, this value is
ððððð446f5eacðe3.

PP SIZE: A numeric value representing the size, in megabytes, of each
physical partition within the volume group. This value is
specified when the volume group is created. The example
volume group uses the default physical partition size of 4MB.

TOTAL PPs: This field shows the total number of physical partitions which
exist in the volume group. It also shows, in brackets, the
size of the volume group which is calculated using the
physical partition size. Volume group myvg has 574 physical
partitions allocated.

FREE PPs: This field shows the amount of unallocated space in the
volume group in terms of physical partitions. The size in
megabytes, is also shown in brackets. The number of free
physical partitions in the above example is 571.

USED PPs: This field shows the number of used physical partitions. The
format of the contents of this field is the same as for the two
previous fields. In the above example, only 3 physical
partitions (12MB) have been used.

QUORUM: This field represents the number of physical volumes that
would be needed to represent a majority. For a two disk
volume group, this number represents the number of VGDAs,
rather than physical volumes, which would be required to
maintain quorum (a majority).

VG DESCRIPTORS: This value represents the number of VGDAs currently
available in the varied on volume group. In the example
volume group myvg, there appears to be 2 VGDAs available.
The example volume group consists of two physical volumes
and so there should really be 3 VGDAs available. From the
above output it can clearly be seen that there is a problem
accessing the third VGDA.

STALE PPs: This field represents the number of stale physical partitions.
The example shows 1 stale physical partition. This is likely
since one of the physical volumes is currently inactive.

AUTO ON: This field describes if the volume group will be varied on
automatically at system restart. This characteristic can be
changed using the chvg command. Volume group myvg, in
the above example, will be varied on automatically each time
the system is rebooted.

6.3.5.3 Listing the Logical Volumes in a Volume Group
The lsvg command can be used to list all the logical volumes in a varied on
volume group. To do so the -l flag needs to be specified together with the volume
group name.

For example:

110 AIX Storage Management

à ð
lsvg -l myvg

myvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

mylv jfs 6 12 2 open/syncd /myjfs

á ñ

The above command provides details of each logical volume on a separate line.
The information includes the following:

LV NAME: This is the name of the logical volume.

TYPE: This field describes the type of logical volume it is. This can
be any one of the following special types:

� paging (used for the paging device)

� boot (used for the boot device)

� sysdump (used for the system dump device)

� jfslog (used for the JFS log)

� jfs (used for the journaled file system)

If a user defined logical volume type has been specified, this
field will reflect this.

LPs: This will be the number of logical partitions allocated to the
logical volume.

PPs: This will be the number of physical partitions allocated to the
logical volume. If a logical volume has mirrored copies, this
number will be the LPs value multiplied by the number of
mirrored copies.

PVs: This represents the number of physical volumes across
which the physical partitions are spread.

LV STATE: The state of the logical volume specified as any one of the
following:

� open/syncd - This specifies the logical volume is open
and synchronized

� close/syncd - This specifies the logical volume is closed
and synchronized

MOUNT POINT: This is the mount point of a file system if one exists. If a file
system has not been added to a logical volume the entry will
appear as N/A.

6.3.5.4 Listing Physical Volume Status within a Volume Group
So far we have seen how the lsvg command can be used to list the volume
groups, their characteristics in detail and also information about the logical volumes
which have been created on them. The lsvg command can also be used to extract
information about the physical volumes that exist within a volume group. To view
this information the -p flag needs to be used.

For example:

 Chapter 6. General AIX Storage Management 111

à ð
lsvg -p myvg

myvg:

PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION

hdiskð active 287 267 58..37..57..57..58

hdisk2 active 287 28ð 58..5ð..57..57..58

hdisk3 active 287 28ð 58..5ð..57..57..58

á ñ

For each physical volume identified for the volume group, the following information
is provided:

PV_NAME: The name of the physical volume.

PV STATE: Indicates whether or not the physical volume is active.

TOTAL PPs: The number of physical partitions that exist on the
physical volume in question.

FREE PPs: The number of physical partitions on the physical
volume that have so far not been allocated to a logical
volume or file system.

FREE DISTRIBUTION: The distribution of unallocated physical partitions on the
physical volume over specific regions of the disk. The
regions being:

 � Outer edge

 � Outer middle

 � Center

 � Inner middle

 � Inner edge

It is useful to view the distribution of free (unallocated) physical partitions, according
to regions of the disk. This would be very beneficial, particularly when deciding for
the placement of logical volumes or file systems for fast access. It can provide
useful information about the placement of existing logical volumes and file systems,
and can help in determining if a reorganization of the logical volumes is required,
so that free contiguous physical partitions can be made available for other
allocation requests.

6.4 Managing Logical Volumes
Physical volumes and volume groups are normally not addressed directly by users
and applications to access data, and they cannot be manipulated to provide disk
space for use by users and applications. However, logical volumes provide the
mechanism to make disk space available for use, giving users and applications the
ability to access data stored on them.

Logical volumes need to be managed on a day-to-day basis, and this section will
highlight those management issues relating to logical volumes, and why they
should be given important consideration. The areas to be covered will be:

� Adding a logical volume

� Removing a logical volume

� Increasing the size of a logical volume

112 AIX Storage Management

� Copying a logical volume

� Migrating and reorganizing logical volumes

� Listing a logical volume

� Listing a summary of a logical volume allocation

� Using lslv to read the VGDA on a physical volume

6.4.1 Adding a Logical Volume
In order to provide users the ability to store and retrieve data on the disk, logical
volumes need to be added to a volume group on the system. However, before a
logical volume is actually created, certain characteristics about it, such as its size,
physical partition placement policy, and the volume group in which it should belong
need to be specified. These characteristics can be better determined by
understanding the needs of the users and applications that will utilize the logical
volume.

The command which will add a logical volume to a volume group is mklv. An
example of this command is:

à ð
mklv -y mylv -c 2 myvg 1ð

á ñ

The above example command will create a logical volume mylv in the volume
group myvg. The logical volume will be allocated 10 logical partitions and each
logical partition will consist of 2 physical partitions.

The two vital pieces of information that are mandatory when creating a logical
volume are:

1. The number of logical partitions

2. The name of the volume group to which it will belong

Many different characteristics for the logical volume can be set at creation time
using the mklv command. In AIX Version 4, since it is possible to create striped
logical volumes, the mklv command has been updated accordingly. For more
information about the use of mklv and its flags, please refer to the InfoExplorer
hypertext documentation.

6.4.2 Removing a Logical Volume
Under different circumstances, logical volumes may need to be removed from a
volume group. Consider that a logical volume is no longer used for storage
purposes by users and applications. The data within the logical volume could be
backed up and the space occupied by the logical volume could be freed by
removing the logical volume from the volume group. There may even be times
when a logical volume may need to be removed because it has more than the
required number of logical partitions allocated. In this instance, the following steps
could be performed to free up the excess logical partition allocation:

� Back up all data in the logical volume

� Remove the logical volume

� Recreate the logical volume with the reduced logical partition allocation

 Chapter 6. General AIX Storage Management 113

� Restore the data

The resulting free space could be put to better use by allocating it to other logical
volumes requiring it. Whatever the reason, a logical volume can be removed by
using the rmlv command. An example use of this command is:

à ð
rmlv mylv

á ñ

This command will remove the logical volume mylv from the system. The command
will appropriately remove all knowledge of the logical volume from the:

 � ODM database

� VGDAs on all physical volumes

 � /dev directory

It is also possible to remove all logical partitions on a particular physical volume by
using the rmlv command. For example:

à ð
rmlv -p hdisk4 mylv

á ñ

This command will remove copies of all logical partitions for the logical volume mylv
residing on the physical volume hdisk4.

 Warning

If the logical partitions being removed are the only ones remaining for the
logical volume, this command will also remove the logical volume from the
system.

Since by default, the rmlv command will perform its task requesting user
confirmation, the -f flag is provided to override this.

6.4.3 Increasing the Size of a Logical Volume
Over time, users and application needs for available disk space will definitely grow,
and for this reason, the size of logical volumes will also need to be increased. This
can be achieved by using the extendlv command. However, there must be
sufficient free (unallocated) physical partitions available within the volume group to
satisfy the operation.

For example:

à ð
extendlv mylv 1ð

á ñ

This will extend the logical volume mylv by 10 logical partitions using the available
free space in the volume group.

114 AIX Storage Management

Certain rules need to be adhered to when using the extendlv command to extend
striped logical volumes. For more information about the use of the extendlv
command and its flags, please refer to the InfoExplorer hypertext documentation.

6.4.4 Copying a Logical Volume
Logical volumes may need to be copied for a number of reasons. If a disk is to be
removed and replaced by a faster one, the logical volumes on that disk will need to
be copied to the new disk. Logical volumes can be copied to new logical volumes
or to existing logical volumes which are then over-written.

In order to copy a logical volume, use the cplv command, as in the following
example:

à ð
cplv -v myvg -y newlv oldlv

á ñ

This copies the contents of oldlv to a new logical volume called newlv in the
volume group myvg. If the volume group is not specified, the new logical volume will
be created in the same volume group as the old logical volume. This command
creates a new logical volume. The following example demonstrates how to copy a
logical volume to an existing logical volume.

à ð
cplv -e existinglv oldlv

á ñ

This copies the contents of oldlv to the logical volume existinglv. Confirmation
for the copy will be requested as all data in existinglv will be over-written.

 Warning

If existinglv is smaller than oldlv, then data will be lost, probably resulting in
corruption.

Copying a logical volume can also be done through smit using the smit cplv

fastpath.

6.4.5 Migrating and Reorganizing Logical Volumes
As the uses of existing logical volumes change, sooner or later there will be a
requirement to modify the placement some logical volumes to alter the performance
characteristics. There are two commands that can assist in this process:

 � migratepv

This command will move the contents of one physical volume to another. The
two physical volumes must be in the same volume group. It is also possible to
stipulate which logical volumes on the physical volume will be migrated. The
command can be used as follows:

à ð
migratepv -l lv oldpv newpv

á ñ

 Chapter 6. General AIX Storage Management 115

This will move the physical partitions belonging to lv from physical volume
oldpv to physical volume newpv. Omitting the -l flag will move all physical
partitions.

 � reorgvg

This command will attempt to reallocate physical partitions for logical volumes
in an attempt to adhere more closely to the policies defined in the logical
volume manager for the logical volumes. The command can be used as
follows:

à ð
reorgvg myvg mylv

á ñ

This will reorganize the physical partitions belonging to mylv in myvg in an
attempt to more closely satisfy the policies defined for mylv at creation time.

6.4.6 Listing a Logical Volume
All of the attributes defined for a logical volume can be listed using the lslv
command as follows:

à ð
lslv mylv

LOGICAL VOLUME: mylv VOLUME GROUP: myvg

LV IDENTIFIER: ððð13948bð189961.7 PERMISSION: read/write

VG STATE: inactive LV STATE: opened/syncd

TYPE: jfs WRITE VERIFY: off

MAX LPs: 5ðð PP SIZE: 4 megabyte(s)

COPIES: 1 SCHED POLICY: parallel

LPs: 1ð9 PPs: 1ð9

STALE PPs: ð BB POLICY: relocatable

INTER-POLICY: minimum RELOCATABLE: yes

INTRA-POLICY: center UPPER BOUND 32

MOUNT POINT: /myfs LABEL: /myfs

MIRROR WRITE CONSISTENCY: on

EACH LP COPY ON A SEPARATE PV ?: yes

á ñ

The fields displayed have the following meanings:

LOGICAL VOLUME: The name of the logical volume.

VOLUME GROUP: The name of the volume group that the logical volume is in.

LV IDENTIFIER: The system unique identifier for the logical volume.

PERMISSION: The access permission, which can be read-only, or
read-write.

VG STATE: The current state of the volume group. This can be one of:

1. active/complete - all physical volumes are active.

2. active/partial - not all physical volumes are active.

3. inactive - the volume group is not active.

LV STATE: The current state of the logical volume. This can be one of:

1. opened/stale - logical volume is open, but some physical
partitions do not contain current information.

2. opened/syncd - logical volume is open and synchronized.

116 AIX Storage Management

3. closed - logical volume has not been opened.

TYPE: The type of the logical volume (JFS for example).

WRITE VERIFY: Whether write verify is being used or not.

MAX LPs: The maximum number of logical partitions that the logical
volume can contain.

PP SIZE: The size of the physical partitions in the logical volume.

COPIES: The number of copies of the logical volume that exist.

SCHED POLICY: Whether writes are to be scheduled serially, or in parallel to
disk.

LPs: The current number of logical partitions in the logical volume.

PPs: The current number of physical partitions in the logical
volume.

STALE PPs: The number of physical partitions in the logical volume that
do not contain current information.

BB POLICY: Whether bad block allocation is to be used or not for this
logical volume.

INTER-POLICY: Whether the maximum or minimum range of disks should be
used for logical partition allocation for this logical volume.

RELOCATABLE: Whether partitions can be relocated if a reorganization
occurs.

INTRA-POLICY: Specifies the preferred location for physical partitions on the
disk. This can be edge, middle, or center.

UPPER BOUND: This indicates the maximum number of physical volumes
within the volume group that can be used for physical
partition allocation.

MOUNT POINT: If this logical volume contains a file system, then this
indicates the mount point for that file system.

MIRROR WRITE CONSISTENCY:
Whether writes are cached to help ensure consistency
between mirrored copies.

EACH LP COPY ON A SEPARATE PV ?:
Whether the allocation policy is strict meaning that logical
volume copies will be placed on separate physical volumes if
possible.

6.4.7 Listing a Summary of a Logical Volume Allocation
If a summary of the physical partition usage for a logical volume is required, rather
than a complete listing of all attributes, the following command can be used:

à ð
lslv -l mylv

mylv:/myfs

PV COPIES IN BAND DISTRIBUTION

hdiskð 1ð7:ððð:ððð 27% ð19:ðð4:ð29:ð32:ð23

hdisk1 ðð2:ððð:ððð 1ðð% ððð:ððð:ðð2:ððð:ððð

á ñ

 Chapter 6. General AIX Storage Management 117

The fields shown in the output above have the following meaning:

PV The physical volume name.

COPIES This field has the following three sub-fields:

� Number of single copy logical partitions.

� Number of two copy logical partitions.

� Number of three copy logical partitions.

IN BAND This shows the percentage of physical partitions that could be allocated
according to the intra-physical allocation policy.

DISTRIBUTION This shows for each disk region, the number of physical partitions
allocated to logical volumes.

6.4.8 Reading the VGDA on a Physical Volume
If it is required to interrogate the VGDA on the physical disk in order to find the
status of a logical volume, the following command can be used:

à ð
lslv -n mypvid mylv

á ñ

This will retrieve status information similar to that produced by the lslv mylv, but
from the VGDA, rather than the ODM.

6.5 Managing the Storage Environment
Managing storage is about optimizing the environment for the requirements of the
processes that will be using the subsystems within it. This will involve the following
considerations:

� Performance of logical volumes

� Availability of logical volumes

� Logical volume space usage

Management of the environment also involves ensuring recovery is possible in the
event of user errors or hardware and software failures. The key to this is the
development and implementation of a good backup strategy, and this will also be
discussed. Mechanisms for backing up the system and their capabilities have
changed somewhat from AIX Version 3 to AIX Version 4, and both environments
will be examined.

 Note

Please read this section in conjunction with Chapter 5, “Storage Subsystem
Design” on page 77, as there are many other considerations involved in
maximizing performance, availability and disk utilization.

118 AIX Storage Management

6.5.1 Disk Space and Performance/Availability Management
This section will look at the management issues inherent in controlling performance,
availability, and disk space utilization.

 6.5.1.1 Managing Performance
In order to maximize the performance of a disk subsystem, certain options can be
taken at logical volume and file system creation time. In addition, existing logical
volumes can be modified to increase performance, and volume groups can be
reorganized to improve performance.

Creating Logical Volumes and File Systems for Performance: In order to
maximize performance create logical volumes as follows; the smit menus for the
creation will be shown in this section. For changing logical volume characteristics,
the commands will be shown. Either approach is valid, and for a detailed
discussion of the commands involved, see Chapter 7, “Storage Management Files
and Commands Summary” on page 137, or the InfoExplorer documentation.

à ð
smit mklv

á ñ

This starts smit in the process for adding a new logical volume.

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

[perflv]

\ VOLUME GROUP name datavg

Number of LOGICAL PARTITIONS [25] #

PHYSICAL VOLUME names [hdisk8 hdisk1]+

Logical volume TYPE [jfs]

POSITION on physical volume center +

RANGE of physical volumes maximum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [2] #

to use for allocation

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? no +

Allocate each logical partition copy no +

on a SEPARATE physical volume? Performance

RELOCATE the logical volume during reorganization? yes +

Logical volume LABEL []

MAXIMUM NUMBER of LOGICAL PARTITIONS [128]

Enable BAD BLOCK relocation? yes +

SCHEDULING POLICY for writing logical parallel +

 partition copies

Enable WRITE VERIFY? no +

File containing ALLOCATION MAP []

 Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

This creates a logical volume with the following characteristics:

 Chapter 6. General AIX Storage Management 119

PHYSICAL VOLUME names: This field contains the names of the physical
volumes that are to be used for the physical partitions of the logical
volume being created.

POSITION on physical volume: This field specifies the desired location of the
physical partitions on the disk. Center is chosen for optimum
performance. The LVM will attempt to locate free center partitions on the
disks specified previously; if not available, middle partitions, then edge
partitions will be selected.

RANGE of physical volumes: This parameter governs the way in which the LVM
will allocate partitions on the physical volumes specified above.
Maximum constrains the LVM to allocating partitions across as many of
the physical volumes as possible.

Number of COPIES of each logical partition: This field controls the level of
mirroring. Set to 1 implies no mirroring.

Mirror Write Consistency: Only valid if mirroring.

Allocate each logical partition copy on a SEPARATE physical volume? Only
valid if mirroring.

RELOCATE the logical volume during reorganization? This allows the physical
partitions to be moved during reorganization if required. This can be
useful if performance requirements change.

SCHEDULING POLICY for writing logical partition copies: Only valid for
mirroring

Enable WRITE VERIFY: This parameter should be set to no to prevent the extra
disk rotation required for verification.

File containing ALLOCATION MAP: It is possible to override the LVMs allocation
policies and provide a file containing the physical partition locations
required. An example of this can be found in 8.3.2, “Map Files Usage
and Contents” on page 207.

Stripe Size? Striping is discussed later in this section.

Having created the logical volume, a file system must next be created within it:

à ð
smit crfs

á ñ

Select the option to Add a Journaled File System on a Previously Defined
Logical Volume .

120 AIX Storage Management

à ð
Add a Journaled File System on a Previously Defined Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Field]

\ LOGICAL VOLUME name perflv +

\ MOUNT POINT [/tmp/nick]

Mount AUTOMATICALLY at system restart? yes +

 PERMISSIONS read/write +

 Mount OPTIONS [] +

Start Disk Accounting? no +

Fragment Size (bytes) 4ð96 +

Number of bytes per inode 4ð96 +

 Compression algorithm no +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

This will create a file system with the following characteristics:

Fragment Size (bytes): This parameter controls the size of the basic unit of
allocation at the file system level. Setting this to 4096 creates fragments
of the largest size possible, thereby minimizing the overhead involved
and maximizing performance.

Number of bytes per inode: This parameter governs the number of i-nodes
actually created per number of bytes in the file system. This will have no
specific effect on performance.

Compression algorithm: To maximize performance, do not use compression.

Modifying Logical Volumes for Performance: In order to maximize the
performance of an existing logical volume do the following:

à ð
chlv -a c LVname

á ñ

This command will change the intra-disk physical allocation policy to use the center
of the disk if possible. In order for existing partitions to take advantage of the new
policy, the volume group will need reorganizing. This is discussed in the next
section. Partitions added if the logical volume is extended will be allocated using
the new policy. LVname should be the name of the logical volume that is to be
changed.

à ð
chlv -e x LVname

á ñ

This command will change the inter-disk physical allocation policy to use the
maximum number of disks possible within the volume group, for allocating further
physical partitions. Again, reorganization will be required if the existing partitions

 Chapter 6. General AIX Storage Management 121

that comprise the logical volume are to take advantage of this. LVname should be
the name of the logical volume that is to be changed.

Reorganizing Volume Groups for Performance: In order to reorganize a volume
group after policies have been changed for logical volumes within that group, the
following command should be executed:

à ð
reorgvg VGname LVname_1 LVname_2 LVname_3 ...

á ñ

This command will instruct the LVM to attempt to reshuffle the physical partition
allocations within the volume group VGname, in order to satisfy as far as possible the
policy requirements of the logical volumes specified in the list (LVname_1, LVname_2,

and LVname_3 in this example). The LVM will try and implement the policies for
logical volumes in the order specified. In this example, LVname_1s allocation will
take precedence over LVname_2.

Determining which logical volumes are in a volume group can be achieved using
the lsvg command as follows:

à ð
lsvg -l VGname

VGname:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

datalog jfslog 1 1 1 open/syncd N/A

datapg paging 5 1ð 2 closed/syncd N/A

perflv jfs 25 25 2 closed/syncd /tmp/nick

datalv4 jfs 1ð 1ð 1 closed/syncd /datajfs

#

á ñ

Using Striping: Further performance enhancement is possible by setting up a
logical volume to use striping. An example of this procedure can be found in “How
to Create a Striped Logical Volume” on page 273.

 6.5.1.2 Managing Availability
In order to maximize availability, there are certain options that can be selected at
logical volume creation time. Existing logical volumes can also be modified to
increase availability, and both possibilities will be examined.

Creating Logical Volumes for Availability: In order to maximize availability,
create logical volumes as follows. Logical volume creation will be shown using
smit, the commands are actually detailed in Chapter 7, “Storage Management Files
and Commands Summary” on page 137, and documented in InfoExplorer. There
are no particular availability related options during file system creation, though as
has been mentioned previously, having a journaled file system itself provides
enhanced availability through journaling.

à ð
smit mklv

á ñ

This starts smit in the process for adding a new logical volume.

122 AIX Storage Management

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

Logical volume NAME [availlv]

\ VOLUME GROUP name datavg

Number of LOGICAL PARTITIONS [25] #

PHYSICAL VOLUME names [hdisk8 hdisk1 h]+

Logical volume TYPE [jfs]

POSITION on physical volume center +

RANGE of physical volumes minimum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [1] #

to use for allocation

Number of COPIES of each logical 3 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +

Logical volume LABEL []

MAXIMUM NUMBER of LOGICAL PARTITIONS [128]

Enable BAD BLOCK relocation? yes +

SCHEDULING POLICY for writing logical sequential +

 partition copies

Enable WRITE VERIFY? yes +

File containing ALLOCATION MAP []

 Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

This creates a logical volume with the following characteristics:

PHYSICAL VOLUME names: This parameter specifies the physical volumes within
the volume group that should be used to hold the physical partitions that
will be created. In this case, there are 3 physical volumes specified, as
there will be 3 copies of the logical volume, and for maximum
availability, each copy should be on a separate disk.

POSITION on physical volume: There are no particular availability advantages to
be gained from whereabouts on the disk physical partitions are located.
In this case, center has been chosen to improve performance.

RANGE of physical volumes: This parameter governs how many physical
volumes the LVM will attempt to use when creating physical partitions
for each copy. Setting the value to minimum instructs the LVM to use as
few physical volumes as is possible.

Number of COPIES of each logical partition: This parameter specifies the
degree of mirroring that will be implemented. Setting the value to 3
provides maximum availability with two redundant copies of the data
existing.

Mirror Write Consistency? This parameter controls whether the LVM will cache
logical partitions until all copies of the partition have been updated.
Setting this to yes enhances availability by ensuring consistency
between mirrored copies.

 Chapter 6. General AIX Storage Management 123

Allocate each logical partition copy on a SEPARATE physical volume? This
parameter specifies whether copies should be allowed to share physical
volumes. For maximum availability, it should be set to yes.

RELOCATE the logical volume during reorganization? This parameter governs
whether the LVM will be allowed to move physical partitions belonging to
this logical volume during a reorganization. Set this to yes if there may
be a requirement to modify the policies controlling this logical volume.

SCHEDULING POLICY for writing logical partition copies: This parameter
controls how copies will be written to disk. For maximum availability, this
should be set to sequential, which ensures each write to a copy must
complete before the next occurs, thereby maximizing the probability of a
successful copy being made.

Enable WRITE VERIFY? This parameter toggles the write verification feature. For
maximum availability, it should be set to yes.

File containing ALLOCATION MAP: As described in the previous example, this
parameter allows the location of physical partitions on the physical
volumes to be directly controlled by the user. As physical location of
partitions on each disk is not an availability issue, this feature is not
required.

Stripe Size? This should be set to Not Striped, as striping cannot be used with
mirroring.

Modifying Logical Volumes for Availability: In order to maximize availability for
an existing logical volume, do the following. It will be necessary to check that
enough physical partitions exist on the selected physical volumes to support the
new number of mirror copies required. This can be achieved using the lsvg

command as shown here:

à ð
lsvg -p VGname

VGname:

PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION

hdisk8 active 75 18 15..ðð..ðð..ðð..ð3

hdisk1 active 287 2ð6 58..ð9..24..57..58

#

á ñ

This command shows the physical volumes in the volume group, and the free
partitions available, both in total, and in actual location.

à ð
mklvcopy -e m -u 1 -s y -k LVname 3 hdiskX hdiskY ...

á ñ

This modifies logical volume LVname as follows:

 -e m This flag sets the inter-disk physical policy, causing the LVM to use the
minimum number of disks for future partition allocations to LVname

-u 1 This flag sets the maximum number of physical volumes to be used in
each new allocation of partitions. Setting this to 1 means use the
minimum possible.

124 AIX Storage Management

-s y This flag instructs the LVM to use a different physical volume for each
new copy of the logical volume. This ensures maximum availability by
placing each copy on a separate physical disk.

-k This flag instructs the LVM to synchronize the data in the newly created
copies.

LVname 3 LVname is the name of the logical volume to be modified, and the
numeral following it, indicates the new number of copies of each logical
partition required (the level of mirroring). For maximum availability, set
this to 3.

hdiskX hdiskY ... The last part of this command should be a list of the physical
volumes that are to be used for the updated logical volume. The values
put in here should be the names of the physical disks. Using the smit
menus for this operation provides a prompt for the names of existing
physical volumes in the volume group. Alternatively use the lsvg

command, as detailed above, to list physical volumes in a volume group.

Next, the write verify and scheduling policies should be modified:

à ð
chlv -d s -v y -w y LVname

á ñ

This changes the policies for LVname as follows:

-d s This flag sets the scheduling policy for writing logical partitions to
sequential. This is explained in the previous section on creating the
logical volume for availability.

-v y This flag sets the write verification feature on. Again the purpose behind
this is explained in the previous section.

-w y This flag enables mirror write consistency, which is also explained in the
previous section.

Mirroring the Root Volume Group: An example of the process of mirroring the
root volume group is shown in 8.2, “rootvg Mirroring - Implementation and
Recovery” on page 187.

Reorganizing Volume Groups for Availability: This procedure is exactly the
same as has already been described in the previous section on performance.

6.5.1.3 Managing Disk Space Utilization
Maximizing disk space utilization is possible through configuration of the journaled
file system at creation time. As has already been described in 5.2.4, “File Systems”
on page 79, the primary configuration options are the fragment size, the number of
bytes per i-node, and whether compression will be used or not. This section will
show the smit and system commands used to create a file system, highlighting
those parameters important in disk space management.

To create a file system do the following:

à ð
smit crjfs

á ñ

 Chapter 6. General AIX Storage Management 125

Select the volume group that will contain the file system and then:

à ð
Add a Journaled File System

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

Volume group name datavg #

\ SIZE of file system (in 512-byte blocks) [2ðððð]

\ MOUNT POINT [/tmp/nick] +

Mount AUTOMATICALLY at system restart? no +

 PERMISSIONS read/write +

 Mount OPTIONS [] +

Start Disk Accounting? no +

Fragment Size (bytes) 512 +

Number of bytes per inode 512 +

 Compression algorithm LZ +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

This is the same as using the following system command:

à ð
crfs -v jfs -g datavg -a size=2ðððð -m /tmp/nick -A no -p rw -t no \

-a frag=512 -a nbpi=512 -a compress=LZ

á ñ

This will create the file system as follows:

-a frag=512: The same as Fragment Size (bytes), this parameter sets the size of
the minimum allocation unit within the file system.

-a nbpi=512: The same as Number of bytes per inode, this parameter controls how
many i-nodes will be created in the file system. As each i-node takes up
128 bytes of physical space, they can use up a great deal of disk.

-a compress=LZ: The same as compression algorithm, this option allows a
compression type to be selected. By default, the system provides the LZ
mechanism. Utilizing compression can improve disk space usage
(depending upon the file data) by up to a factor of 2.

6.5.2 Backup and Restore Management
This section will show how to use the smit menus and system commands available
to backup and restore both system and user information.

 6.5.2.1 Backups
 Note

Prior to any file system backup, run the fsck command to ensure file system
consistency.

126 AIX Storage Management

Backing Up User Files or File Systems

 Warning

Do not attempt to back up mounted file systems, as this may result in
inconsistencies in the backed up copy. This warning is not valid for the root file
system which is discussed in the next section.

Using the smit menus to effect these backups will not present the full range of
backup options, as this would become unnecessarily complicated, and negate the
purpose of smit (ease of use). To backup user files or file systems using smit enter
the following:

à ð
smit backfile

á ñ

This starts smit in the process for backing up files or directories by name:

à ð
Backup a File or Directory

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

This option will perform a backup by name.

\ Backup DEVICE [/dev/fdð] +/

\ FILE or DIRECTORY to backup [.]

Current working DIRECTORY [/u/nickh] /

Backup LOCAL files only? yes +

 VERBOSE output? no +

 PACK files? no +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

This will cause the backup command to be executed as follows:

à ð
cd /u/nickh ; find . -fstype jfs -print | backup -iq -f /dev/fdð

á ñ

Essentially, this changes directory to the required starting point, locates all specified
files, and passes them to the backup command which is implemented using the
following parameters:

-i This flag causes a backup by name

-q This flag indicates that the backup medium (in this case the diskette
drive) is ready to use, and a prompt is not required.

 Chapter 6. General AIX Storage Management 127

-f /dev/fd0 This flag indicates which device should be used for output, in this case
the diskette drive. The smit menu option provides a prompt for device
selection here.

After executing this command, the specified files will have been copied to the
requested device, assuming the device was ready and capable of executing the
request, and the files and/or directories specified could be found.

To back up user file systems, do the following, ensure that the file systems to be
backed up are unmounted first:

à ð
umount FSname

smit backfilesys

á ñ

This unmounts file system FSname, and starts smit in the process for backing up a
file system. If a message is returned to the effect that the file system is busy, then
someone is currently using the file system.

à ð
Backup a Filesystem

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

This option will perform a backup by inode.

\ FILESYSTEM to backup [/u] +/

\ Backup DEVICE [/dev/fdð] +/

Backup LEVEL (ð for a full backup) [ð] #

RECORD backup in /etc/dumpdates? no +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

This generates the system command shown below:

à ð
backup -f /dev/fdð -ð /u

á ñ

By default, the backup command performs a backup by i-node.

-f This flag specifies the device to use for the backup. In this case the
diskette device.

-0 This flag specifies the backup level. Level 0 is a full backup, levels 1 to
9 are incremental backups. In an incremental backup, only those files
that have changed since the last backup at or below that level are
backed up.

/u The last part of the command indicates which file system to actually
backup.

128 AIX Storage Management

 Warning

Any files with UID or GID greater than 65535 will not be backed up properly as
the UID and GID will be truncated to two bytes. Therefore they will be restored
with invalid UID and GID. This is only true for backup by i-node.

Backing Up the System Image Including User Volume Groups: This section
will show how to use smit menus and system commands to back up the operating
system volume group and user volume groups.

To back up the root volume group, ensure that all root volume group file systems
that require backing up are mounted, then do the following:

� Ensure no local directories are mounted over other local directories, as this will
cause the mounted over directory to be backed up twice. To check where
directories are mounted, use the mount command.

� Ensure at least 8.2MB of free space are available in the /tmp file system. Use
the df command to verify this.

� For AIX Version 4, ensure that the sysbr fileset (BOS System Management
Tools) is loaded. Use lslpp -l bos.sysmgt.sysbr to verify this.

� Ensure the backup device is fully operational.

à ð
smit mksysb

á ñ

This will start smit in the process for creating an installable backup of the operating
system (rootvg).

à ð
Back Up the System

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

WARNING: Execution of the mksysb command will

result in the loss of all material

previously stored on the selected

output medium. This command backs

up only rootvg volume group.

\ Backup DEVICE or FILE [/dev/rmtð] +/

Make BOOTABLE backup? yes +

(Applies only to tape media)

EXPAND /tmp if needed? (Applies only to bootable no +

 media)

Create MAP files? no +

 EXCLUDE files? no +

Number of BLOCKS to write in a single output [] #

(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

This will cause the following system command to be executed:

 Chapter 6. General AIX Storage Management 129

à ð
mksysb -i /dev/rmtð

á ñ

The command executed is much more complex, as it attempts to check various
prerequisites, and adjust space if required. The command shown will create a
bootable image of the system on the tape device specified (/dev/rmt0), but may fail
if there is insufficient space in /tmp.

-i This flag causes the generation of the /image.data file that contains
important install information on all the volume groups, logical volumes,
file systems, paging spaces, and physical volumes.

/dev/rmt0 The last part of this command specifies the output device to use. In
order for a bootable image to be created, this must be a tape device.

MAP Files: Using map files from the smit menu ensures that physical partitions are
allocated exactly as they were in the original, when the backup is
installed.

For a non-bootable backup of the operating system volume group, or for a backup
of a user volume group, do the following:

� Ensure that the volume group is varied on. This can be confirmed using lsvg
VGname.

� Ensure all file systems required in the volume group are mounted. This can be
confirmed with the mount command.

� Ensure the backup device is fully operational.

à ð
smit savevg

á ñ

This starts smit in the process for backing up a volume group:

à ð
Back Up a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

WARNING: Execution of the savevg command will

result in the loss of all material

previously stored on the selected

 output medium.

\ Backup DEVICE or FILE [/dev/rmtð] +/

\ VOLUME GROUP to back up [datavg] +

Create MAP files? no +

 EXCLUDE files? no +

Number of BLOCKS to write in a single output [] #

(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

130 AIX Storage Management

This generates the following system command:

à ð
savevg -i -f /dev/rmtð VGname

á ñ

If it is required to change the sizes of file systems, so that at restore of the volume
group, wasted space has been cut down, the following command should be run
prior to the savevg command:

à ð
mkvgdata -m VGname

á ñ

This will cause map files to be created for the volume group. The file
/tmp/vgdata/VGname/VGname.data can then be edited to alter the size of any file
systems in the volume group to that required. If this is done, the savevg command
must be executed without the -i or -m flags as these will cause the changes to be
overwritten. The savevg command should then be executed as follows:

à ð
savevg -mf/dev/rmtð VGname

á ñ

-i This causes the generation of the image.data file mentioned in the
section on backing up the system volume group.

-m This flag causes map files to be written with the backup data to enable
the exact replication of physical partition location upon restore.

-f /dev/rmt0 This flag specifies the device to be used for the backup, in this case
the tape device at rmt0.

Implementing Scheduled Backups: Implementing scheduled backups at the
operating system level involves using a combination of the backup commands
discussed already, and the system scheduler cron, to provide a basic automatic
backup. More sophisticated backup scheduling and control is possible using script
files to execute more complex functions such as checking file systems prior to
backup, checking for error conditions, and unmounting file systems prior to
execution. The highest level of control available can be found in higher level tools
as described in Appendix B, “Higher Level Storage Management Products” on
page 341.

For examples of this simple level of scheduling automatic backups, see
InfoExplorer documentation, in particular the article "Implementing Scheduled
Backups".

 6.5.2.2 Restores
This final section will look at some of the smit menus and system commands
available to restore backed up information.

Restoring Individual User Files: Restoring individual files that have been
accidentally erased requires locating the backup medium on which they were
stored. This can be time consuming and involves using the following command to
search the backup archives:

 Chapter 6. General AIX Storage Management 131

à ð
restore -T -f /dev/rmtð

á ñ

This will list the contents of the backup archive on device rmtð. Alternatively, the -i
flag can be used which will interactively prompt for which files and directories to
restore.

 Note

It is a good idea to restore files initially to the /tmp directory to avoid overwriting
information accidentally.

In order to restore from a complete level 0 backup of files or directories, do the
following:

à ð
smit restfile

á ñ

This will start smit in the process for restoring files or directories:

à ð
Restore a File or Directory

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ Restore DEVICE [/dev/fdð] +/

\ Target DIRECTORY [.] /

FILE or DIRECTORY to restore []

(Leave blank to restore entire archive.)

 VERBOSE output? no +

Number of BLOCKS to read in a single input [] #

 operation

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

This will execute the following system command:

à ð
cd . ; restore -xdq -f /dev/fdð

á ñ

This will change directory to the target directory, and then restore all files from the
backup media specified by the -f flag into it.

-x This flag causes the restore command to restore files by name.

-d This flag indicates that the file parameter is a directory, and all files in
the directory should be restored by name.

132 AIX Storage Management

-q This flag specifies that the medium specified by the -f flag is ready for
use and a prompt is not required.

Restoring a User File System: This section shows the method for restoring a full
level 0 backup of a file system or directory:

à ð
smit restfilesys

á ñ

This starts smit in the process for restoring a file system or directory:

à ð
Restore a Filesystem

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ Restore DEVICE [/dev/fdð] +/

\ Target DIRECTORY [.] /

 VERBOSE output? yes +

Number of BLOCKS to read in a single input [] #

 operation

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

This causes the following command to be executed:

à ð
cd . ; restore -rq -f /dev/rmtð -v

á ñ

This changes directory to the target directory and restores a complete file system.
The file parameter would be ignored in this case, even if included.

-r This flag specifies that a whole file system is to be restored.

-q This flag specifies that the media is ready for reading and a prompt is
not required.

-f This flag indicates the media device to be read from (the tape device at
rmtð in this case).

-v This flag shows more information about the restore process, such as file
sizes.

Restoring a User Volume Group: In order to restore an entire user volume
group, do the following:

à ð
smit restvg

á ñ

 Chapter 6. General AIX Storage Management 133

This starts smit in the process for remaking a volume group:

à ð
Remake a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ Restore DEVICE or FILE [/dev/rmtð] +/

SHRINK the filesystems? no +

PHYSICAL VOLUME names [] +

(Leave blank to use the PHYSICAL VOLUMES listed

in the vgname.data file in the backup image)

Number of BLOCKS to read in a single input [] #

(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

This causes the following system command to be executed:

à ð
restvg -f /dev/rmtð

á ñ

The restvg command will restore the complete volume group from the specified
media. If the option to shrink the file system is chosen, this is equivalent to using
the -s flag with the system command, and causes the logical volumes within the
volume group to be recreated at the minimum size necessary to contain their file
systems.

Physical volume names can also be appended to the command (or included in the
smit menu), and if they are, the specified physical volumes will be used to restore
the volume group to, rather than those found in the VGname.data file. The physical
volumes must be empty, and not belong to any other volume groups.

 6.6 Summary
This chapter has covered the actual physical management of the elements of
storage subsystems that have so far been discussed in theory. The following tasks
were detailed:

� Managing Physical Volumes

– How to configure new physical volumes

This section discusses how to make new physical volumes known to the
system.

– How to modify physical volume characteristics

This section discusses how to make physical volumes available and
unavailable for access by the logical volume manager.

– How to remove physical volumes from the system

134 AIX Storage Management

This section discusses how to remove physical volumes from the system.

– How to monitor the state of physical volumes

� Managing Volume Groups

This section discusses how to monitor physical volumes for error conditions. It
also looks at finding out what physical volumes are on the system, which
volume groups they belong to, and what is stored on them.

– How to add new volume groups

This section discusses how to create new volume groups and define their
initial characteristics.

– How to modify volume group characteristics

This section discusses how to modify the state of volume groups and their
characteristics. It looks at how to unlock volume groups, how to add
physical volumes to volume groups, and remove physical volumes from
volume groups.

– How to import and export volume groups

This section discusses how to make volume groups available and
unavailable to the system through import and export, for the purposes of
maintenance or transfer from system to system.

– How to vary on and off volume groups

This section discusses how to make volume groups ready for access by the
logical volume manager, and other processes that wish to access data
within a volume group.

– How to monitor volume groups

This section discusses monitoring volume groups from the point of view of
listing the volume groups on the system, listing their characteristics, looking
at the logical volumes contained within them, and listing the status of
physical volumes within the volume groups.

� Managing Logical Volumes

– How to add new logical volumes

This section discusses how to create new logical volumes within a volume
group.

– How to remove logical volumes

This section discusses how to remove logical volumes from volume groups.

– How to increase the size of logical volumes

This section discusses how to modify logical volumes in terms of increasing
their size.

� Managing the Storage Environment

 – Performance Management

This section discusses how to maximize performance when creating logical
volumes and file systems, when modifying them, and through the use of
striping. Reorganizing volume groups to improve performance is also
looked at.

 – Availability Management

 Chapter 6. General AIX Storage Management 135

This section discusses how to maximize availability when creating and
modifying logical volumes through mirroring. Reorganizing volume groups
to improve availability is also looked at.

– Disk Space Management

This section discusses how to maximize disk space utilization through
options available at file system creation.

� Managing Backup and Restore

 – Backup Management

This section discusses how to backup information from the user and
system perspectives. Backing up user files, directories, file systems, and
volume groups are examined, as well as creating installable system
backups and scheduling backups.

 – Restore Management

This section discusses how to restore backed up information. Restoring
user files, directories, file systems and volume groups are examined.

136 AIX Storage Management

Chapter 7. Storage Management Files and Commands
Summary

This chapter provides details of storage management commands and usage.
Commands common to AIX Version 3 and AIX Version 4 are covered, as well as
those specific to AIX Version 4. Although common commands are being reviewed
first, they will be initially grouped according to the AIX Version 4 fileset that they
belong to. This will help the reader become more familiar with the AIX Version 4
environment.

7.1 How to Understand and Use this Chapter
To learn more about a file in an AIX Version 4 environment, it is advisable to first
determine the fileset it belongs to, which is discussed in 7.1.1, “Major AIX Version 4
Filesets Relevant to Storage Management” on page 138. To learn more about a
file in an AIX Version 3 environment, it is helpful to know what logical function the
file has that corresponds to the AIX Version 4 fileset description. Otherwise, refer
to each of the four fileset groups in 7.2, “Common Storage Management
Commands Using AIX Version 3 Syntax” on page 140 and use the criteria in this
section to read about a specific file.

As discussed in 7.1.1, “Major AIX Version 4 Filesets Relevant to Storage
Management” on page 138, 7.2, “Common Storage Management Commands Using
AIX Version 3 Syntax” on page 140 refers to all files in the four major fileset logical
groups. It then advises the reader to check 7.3, “AIX Version 4 Specific File
Features” on page 158 if necessary.

The files listed in 7.2, “Common Storage Management Commands Using AIX
Version 3 Syntax” on page 140 and 7.3, “AIX Version 4 Specific File Features” on
page 158 are organized in a logical manner according to the fileset that they
belong to. Files in the same fileset are then grouped in the following logical
breakdown:

1. What part of the installation package they belong to (that is, the usr, root or
share part).

2. Which AIX Version 4 directory path are they in (it is assumed that the product
bos.compat that includes filesets such as AIX 3.2 to 4.1 Compatibility Links has
not been installed; the missing links are noted in 7.3, “AIX Version 4 Specific
File Features” on page 158).

3. Alphabetical order (this ensures that commands that do similar tasks, such as
the ch\ commands that change object attributes, are located near each other in
this chapter).

Each file is initially described by a brief statement that includes:

� A comment about the purpose of the file.

� Which of the following categories it belongs to:

– Object file commands

– Shell script commands (Korn shell, Bourne shell or C shell)

 Copyright IBM Corp. 1994 137

– ASCII data file (that can be editted by the systems administrator using a
text editor such as the vi editor)

– Other file types

There is then a reference to its documentation status which is one of:

 � Undocumented

Warning - DANGER - Warning

An undocumented command is usually not required to be used during setup
or regular operational systems management tasks. Hence, these
commands should be used with caution. Preferably, the equivalent high
level command should be used first. For example, to copy a logical volume,
try to use the documented cplv command before trying to use copyrawlv.

 � Documented

Search in AIX Version 4.1 Hypertext Information Base Library. In particular,
refer to the hardcopy or electronic versions of AIX Version 4.1 Commands
Reference and AIX Version 3.2 Files Reference for more details and examples
concerning this file.

Finally, the chapter concludes by mentioning some other useful commands that are
not part of the AIX Version 3 or AIX Version 4 base operating system. It then
shows you examples of how to look at logical volume manager and journaled file
system information.

7.1.1 Major AIX Version 4 Filesets Relevant to Storage Management
The AIX Version 4.1 Installation Guide describes how software is packaged, and
reminds us that that the systems administrator needs to consider what functions are
required, and hence what filesets should be installed. The command:

à ð
lslpp -l bos.\|pg

á ñ

will provide a list of base operating system filesets that are installed. The major
ones discussed in this chapter are:

bos.rte.lvm Logical Volume Manager

bos.rte.filesystem Filesystem Administration

bos.sysmgt.sysbr System Backup and BOS Installation Utilities

bos.rte.archive Archive Commands

All files in these four filesets are referred to in this chapter, and are listed in section
7.2, “Common Storage Management Commands Using AIX Version 3 Syntax” on
page 140. If a file has significant changes from AIX Version 3, or if it is a new file
that has been introduced by AIX Version 4, then a reference is given to look in
section 7.3, “AIX Version 4 Specific File Features” on page 158.

Other filesets that contain commands that are relevant to AIX storage management
include:

138 AIX Storage Management

bos.rte.boot Boot Commands

bos.rte.serv_aid Error Log Service Aids

bos.diag.rte Hardware Diagnostics

bos.rte.diag Diagnostics

bos.sysmgt.serv_aid
Software Error Logging and Dump Service Aids

bos.rte.compare File Compare Commands

bos.rte.methods Device Configuration Methods

bos.sysmgt.quota File System Quota Commands

Only some of the most important files from these filesets that are relevant to AIX
storage management are discussed in this chapter.

The contents of a fileset can be seen from the command:

à ð
lslpp -f fileset_name |pg

á ñ

Note that it is easy to find what fileset a file belongs to in an AIX Version 4 system,
if the filset in question is installed, by using the command:

à ð
lslpp -f all|pg

á ñ

and by then using the / search syntax at the colon prompt. For example, to find
that the cplv command belongs to the bos.rte.lvm fileset, type:

à ð
:/cplv

á ñ

and press the Enter key followed by entering:

à ð
:-

á ñ

once or twice to move backwards through the output until the fileset name appears,
such as:

à ð
 bos.rte.lvm 4.1.ð.ð /usr/lib/liblvm.a

á ñ

 Chapter 7. Storage Management Files and Commands Summary 139

7.2 Common Storage Management Commands Using AIX Version 3
Syntax

This section looks at the AIX Version 3 commands.

7.2.1 Using Logical Volume Manager Files
The following commands are logical volume manager related.

7.2.1.1 Usr Part Files which are in the /usr/sbin Directory.
allocp allocp is an object file command that is used to generate an

allocation map that is required when a logical volume is created,
extended, reduced or removed.

It is an undocumented command whose usage is:

allocp: [-i LVid] [-t Type] [-c Copies]

[-s Size] [-k] [-u UpperBound>]

[-e InterPolicy] [-a InterPolicy]

cfgvg cfgvg is a Bourne shell script command that is called by /etc/rc to
varyon volume groups that have the auto-varyon flag set.

It is an undocumented command that requires no flags.

chlv chlv is a Bourne shell script command that changes only the
characteristics of a logical volume.

It is a documented command whose usage is:

chlv -n NewLVname LVname

chlv [-a IntraPolicy] [-e InterPolicy] [-L Label] [-u UpperBound]

[-s Strict] [-b BadBlocks] [-d Schedule] [-p Permission]

[-r Relocate] [-t Type] [-w MirrorWriteConsistency]

[-v Verify] [-x MaxLPs] LVname...

chps chps is an object file command that changes the attributes of a paging
space.

It is a documented command whose usage is:

chps [-s NewLPs] [-a {y|n}] Psname

chpv chpv is a Bourne shell script command that changes the
characteristics of a physical volume.

It is a documented command whose usage is:

chpv { -a Allocation | -v Availability } PVname

chvg chvg is a Bourne shell script command that changes the
characteristics of a volume group.

It is a documented command whose usage is:

chvg [-a Auto on] [-Q quorum] VGname...

Note that there is a new flag available, -u in AIX Version 4. Please
refer to the entry for chvg in 7.3, “AIX Version 4 Specific File
Features” on page 158.

copyrawlv copyrawlv is an object file command that is used by cplv to do the
actual copying on disk.

Extreme caution is required if this executable is used by the systems

140 AIX Storage Management

administrator The strings command suggests that copyrawlv does
not contain any built in syntax advice and hence is not likely to be
designed to used manually. However, as an example, after some
necessary set up work, cplv uses this command as follows:

Copy one lv to another.

copyrawlv /dev/sRawLVName /dev/dRawLVName Size

Where sRawLVName is the source logical volume, dRawLVName is the
destination, and Size is the size.

cplv cplv is a Bourne shell script command that copies a logical volume.

It is a documented command whose usage is:

cplv [-v VGname] [-y NewName | -Y Prefix] SourceLV

cplv -e [-f] DestinationLV SourceLV.

exportvg exportvg is a Bourne shell script command that exports the definition
of a volume group.

It is a documented command whose usage is:

exportvg VGname

Note that this command does not change any volume group
configuration information on any of the disks that belong to it, but the
command only removes all configuration information about the volume
group (and any associated journalled file systems), from the system
on which the exportvg is executed.

extendlv extendlv is a Bourne shell script command that extends the size of a
logical volume.

It is a documented command whose usage is:

extendlv [-a IntraPolicy] [-e InterPolicy] [-m MapFile]

[-s Strict] [-u UpperBound] LVname NumberOfLPs [PVname...]

extendvg extendvg is a Bourne shell script command that extends a volume
group by adding a physical volume.

It is a documented command whose usage is:

extendvg [-f] VGname PVname...

getlvcb getlvcb is an object file command that gets information about a
logical volume from the logical volume control block.

It is an undocumented command whose usage is: suggested by other
high level shell scripts, such as updatelv, that call it. This script tells
us that the syntax is like:

getlvcb -aceLrsSPtu LVName

getlvcb -f LVName

Please refer to the entry for getlvcb in 7.3, “AIX Version 4 Specific
File Features” on page 158.

getlvname cfgvg is an object file command that generates or checks a logical
volume name.

It is an undocumented command whose usage is:

getlvname [-Y Prefix] [-n LVname] [Type]

 Chapter 7. Storage Management Files and Commands Summary 141

getlvodm getlvodm is an object file command that obtains volume group and
logical volume information from the ODM.

It is an undocumented command whose usage is:

getlvodm [-a LVdescript] [-B LVdesrcript] [-b LVid]

[-cVid] [-C] [-d VGdescript]

[-e LVid] [-F] [-g PVid] [-h]

[-j PVdescript] [-k] [-L VGdescript]

[-l LVdescript] [-m LVid] [-p PVdescript]

[-r LVid] [-s VGdescript] [-t VGid]

[-u VGdescript] [-v VGdescript] [-w VGid]

 [-y LVid]

Please refer to the entry for getlvodm in 7.3, “AIX Version 4 Specific
File Features” on page 158.

getvgname getvgname is an object file command that is used to return a new
unused volume group name.

It is an undocumented command whose usage is:

getvgname [-n VGname]

importvg importvg is a Bourne shell script command that brings into the system
all the configuration details of a volume group from a set of physical
volumes.

It is a documented command whose usage is:

importvg [-V MajorNumber] [-y VGname] [-f] PVname

Please refer to the entry for importvg in 7.3, “AIX Version 4 Specific
File Features” on page 158.

ipl_varyon ipl_varyon is an object file command that is used to vary on the root
volume group during system boot processing.

It is an undocumented command whose usage is:

ipl_varyon [-d ipldevice] [-i] [-v]

lchangelv lchangelv is an object file command that changes logical volume
attributes in the VGDA on disk.

It is an undocumented command whose usage is:

lchangelv -l LVid [-s MaxPartitions] [-n LVname] [-M SchedulePolicy]

[-p Permissions] [-r BadBlocks] [-v WriteVerify][-w mirwrt_consist]

lchangepv lchangepv is an object file command that that changes physical
volume attributes in the VGDA on disk.

It is an undocumented command whose usage is:

lchangepv -g VGid -p PVid [-r RemoveMode] [-a AllocateMode]

lcreatelv lcreatelv is an object file command that creates a logical volume on
disk.

It is an undocumented command whose usage is:

lcreatelv -N LVname -g VGid -n MinorNumber [-M MirrorPolicy]

[-s MaxLPs] [-p Permissions] [-r Badblocks] [-v WriteVerify]

 [-w mirwrt_consist]

142 AIX Storage Management

lcreatevg lcreatevg is an object file command that creates the volume group on
the disk and populates the VGDA.

It is an undocumented command whose usage is:

lcreatevg -a VGname -V MajorNumber -N PVname -n MaxLVs

-D VGDescriptorSize -s PPSize [-f] [-t]

ldeletelv ldeletelv is an object file command that removes a logical volume
from a volume group.

It is an undocumented command whose usage is:

ldeletelv -l LVid

ldeletepv ldeletepv is an object file command that removes a physical volume
from a volume group.

It is an undocumented command whose usage is:

ldeletepv -g VGid -p PVid

lextendlv lextendlv is an object file command that extends a logical volume by
Size partitions according to the map file Filename and updates the
VGDA on disk.

It is an undocumented command whose usage is:

lextendlv -l LVid -s Size Filename

linstallpv linstallpv is an object file command that adds a physical volume to
a volume group and updates the VGDA on disk.

It is an undocumented command whose usage is:

linstallpv -N PVname -g VGid [-f]

lmigratepp lmigratepp is an object file command that is used by higher level
commands such as migratepv to copy a physical partition from one
physical volume to another.

It is an undocumented command whose usage is:

lmigratepp -g VGid -p SourcePVid -n SourcePPnumber

-P DestinationPVid -N DestinationPPnumber

lmktemp lmktemp is an object file command that is used to create temporary
map files for use by allocp during the creation and removal of logical
volumes (refer to the contents of the mklv and rmlv scripts).

It is an undocumented command whose usage is:

lmktemp TmpMapFile [size]

lquerylv lquerylv is an object file command that obtains logical volume
information from the VGDA for many other commands.

It is an undocumented command whose usage is:

lquerylv -L LVid [-p PVname] [-NGnMScsPRvoadlArtw]

Please refer to the entry for lquerylv in 7.3, “AIX Version 4 Specific
File Features” on page 158.

For examples on how to use lquerylv, please refer to 7.4, “Using
Commands to View AIX Version 4 Logical Volume Manager
Information” on page 164.

 Chapter 7. Storage Management Files and Commands Summary 143

lquerypv lquerypv is an object file command that obtains physical volume
information from structures in memory unless the PVname is
specified.

It is an undocumented command whose usage is:

lquerypv -p PVid [-g VGid | -N PVname] [-scPnaDdAt]

For examples on how to use lquerypv, please refer to 7.4, “Using
Commands to View AIX Version 4 Logical Volume Manager
Information” on page 164.

lqueryvg lqueryvg is an object file command that obtains volume group
information from structures in memory unless the PVname is
specified.

It is an undocumented command whose usage is:

lqueryvg [-g VGid | -p PVname] [-NsFncDaLPAvt]

For examples on how to use lqueryvg, please refer to 7.4, “Using
Commands to View AIX Version 4 Logical Volume Manager
Information” on page 164.

lqueryvgs lqueryvgs is an object file command that provides a summary of the
volume groups known to the system.

It is an undocumented command whose usage is:

lqueryvgs [-NGAt]

lreducelv lreducelv is an object file command that reduces the size of a logical
volume, not a journaled file system, and updates only the VGDA on
disk.

It is an undocumented command whose usage is:

lreducelv -l LVid -s Size Filename

lresynclp lresynclp is an object file command that synchronizes a stale logical
partition in a logical volume.

It is an undocumented command whose usage is:

lresynclp -l LVid -n LPnumber

lresynclv lresynclv is an object file command that synchronizes all stale logical
partitions in a logical volume.

It is an undocumented command whose usage is:

lresynclv -l LVid

lresyncpv lresyncpv is an object file command that will synchronize all physical
partitions on a physical volume with the related copies of the logical
partition to which they correspond.

It is an undocumented command whose usage is:

lresyncpv -g VGid -p PVid

lslv lslv is an object file command that shows you information about a
logical volume.

It is a documented command whose usage is:

lslv [-l | -m] [-n DescriptorPV] LVname

lslv: [-n DescriptorPV] -p PVname [LVname]

144 AIX Storage Management

For examples on how to use lslv, please refer to 7.4, “Using
Commands to View AIX Version 4 Logical Volume Manager
Information” on page 164.

Please refer to the entry for lslv in 7.3, “AIX Version 4 Specific File
Features” on page 158.

lsps lsps is an object file command that shows you information about
paging type logical volumes.

It is a documented command whose usage is:

lsps {-s | [-c | -l] {-a | Psname | -t {lv|nfs} } }

lspv lspv is an object file command that shows you information about a
physical volume in a volume group.

It is a documented command whose usage is:

lspv [-M | -l | -p] [-n DescriptorPV] [-v VGid] [PVname]

For examples on how to use lspv, please refer to 7.4, “Using
Commands to View AIX Version 4 Logical Volume Manager
Information” on page 164.

lsvg lsvg is an object file command that shows you information about the
volume groups in your system.

It is a documented command whose usage is:

lsvg [-o] [-n PVname]

lsvg [-i] [-M | -l | -p] VGname

For examples on how to use lslv, please refer to 7.4, “Using
Commands to View AIX Version 4 Logical Volume Manager
Information” on page 164.

lsvgfs lsvgfs is an object file command that lists the file systems that are in
the specified volume group.

It is a documented command whose usage is:

lsvgfs VGname

lvaryoffvg lvaryoffvg is an object file command that is called by the varyoffvg
command to vary off a volume group, and then update the VGDA on
disk, but not the ODM.

It is an undocumented command whose usage is:

lvaryoffvg -g VGid [-f]

lvaryonvg lvaryonvg is an object file command that is called by the mkvg
command to vary on a volume group.

It is an undocumented command whose usage is:

lvaryonvg -a VGname -V MajorNumber -g VGid

 [-ornpft] Filename

lvchkmajor lvchkmajor is an object file command that checks whether a major
device number is being used.

It is a documented command whose usage is:

lvchkmajor Majornumber VGname

 Chapter 7. Storage Management Files and Commands Summary 145

lvgenmajor lvgenmajor is an object file command that creates or gets the major
number for the logical volumes that belong to the volume group
specified as an argument to the redefinevg or mkvg commands.

It is an undocumented command whose usage is:

lvgenmajor VGname

lvgenminor lvgenminor is an object file command that returns a minor number
that is used during the creation of a logical volume.

It is an undocumented command whose usage is:

lvgenminor [-p PreferredNumber] MajorNumber NewDeviceName

lvlstmajor lvlstmajor is an object file command that lists currently unused major
numbers.

It is a documented command whose usage is:

lvlstmajor

lvmmsg lvmmsg is an object file command that is used by other logical volume
manager commands to generate messages.

It is an undocumented command whose usage is:

lvmmsg MessageNumber

lvrelmajor lvrelmajor is an object file command that frees up the major number
of a volume group when its removed from the system.

It is an undocumented command whose usage is:

lvrelmajor VGname

lvrelminor lvrelminor is an object file command that frees up a minor number
for a logical volume or volume group that's removed from the system.

It is an undocumented command whose usage is:

lvrelminor Name

migfix migfix is an object file command that is used by the reorgvg
command to help determine the proper order of physical partition
moves.

It is an undocumented command whose usage is:

migfix map_file_names

This command is used by the reorgvg script command.

migratepv migratepv is a Bourne shell script command that is used to move
physical partitions from one physical volume to another.

It is a documented command whose usage is:

migratepv [-i] [-l LVname] SourcePV DestinationPV...

For examples on how to use migratepv, please refer to 8.8.1, “How to
Use the migratepv Command” on page 315.

mklv mklv is a Bourne shell script command that creates a logical volume.

It is a documented command whose usage is:

146 AIX Storage Management

mklv [-a IntraPolicy] [-b BadBlocks] [-c Copies] [-d Schedule]

[-e InterPolicy] [-i] [-L Label] [-m MapFile] [-r Relocate]

[-s Strict] [-t Type] [-u UpperBound] [-v Verify] [-w MWC]

[-x MaxLPs] [-y LVname] [-Y Prefix] VGname NumberOfLPs [PVname...]

Please refer to the entry for mklv in 7.3, “AIX Version 4 Specific File
Features” on page 158.

mklvcopy mklvcopy is a Bourne shell script command that makes copies of
logical partitions for a logical volume

It is a documented command whose usage is:

mklvcopy [-a IntraPolicy] [-e InterPolicy]

[-k] [-m MapFile] [-u UpperBound] [-s Strict]

LVname LPcopies [PVname...]

mkps mkps is an object file command that creates a paging space using a
logical volume or an NFS server.

It is a documented command whose usage is:

mkps [-a] [-n] [-t lv] -s NumLPs Vgname Pvname

mkps [-a] [-n] -t nfs hostname pathname

mkvg mkvg is a Bourne shell script command that creates a volume group.

It is a documented command whose usage is:

mkvg [-d MaxPVs] [-f] [-i] [-m MaxPVsize]

[-n] [-s PPsize]

[-V MajorNumber] [-y VGname] PVname...

putlvcb putlvcb is an object file command that is used by high-level shell
scripts updatelv, rmlvcopy, mklvcopy mklv, extendlv, cplv and
chlv to update the logical volume control block. Hence, be very
careful when you change logical volume information.

It is an undocumented command whose usage is:

putlvcb [-a IntraPolicy] [-c Copies] [-e InterPolicy] [-i LVid]

[-n Size] [-r Relocate] [-L Label] [-t Type]

[-u UpperBound] [-s Strict] LVName

putlvcb [-f FileSystemName] LVName

Please refer to the entry for putlvcb in 7.3, “AIX Version 4 Specific
File Features” on page 158.

putlvodm putlvodm is an object file command that places logical volume
manager information only into the ODM, so it is called by many other
logical volume manager commands to help ensure that ODM
information is synchronized with data stored in other areas, such as
the disk VGDA.

It is an undocumented command whose usage is:

putlvodm [-a IntraPolicy] [-B label] [-c Copies] [-e InterPolicy]

[-L LVid] [-l LVname] [-n NewLVName] [-r Relocate]

[-s Strict] [-t Type] [-u UpperBound] [-y Copyflag]

[-z Size] LVid

putlvodm [-o Auto-on] [-k] [-K] [-q VGstate]

[-v VGname -m majornum] [-V] VGid

putlvodm [-p VGid] [-P] PVid

 Chapter 7. Storage Management Files and Commands Summary 147

Please refer to the entry for putlvodm in 7.3, “AIX Version 4 Specific
File Features” on page 158.

redefinevg redefinevg is a Bourne shell script command that redefines the set of
physical volumes of the specified volume group in the device
configuration database.

It is a documented command whose usage is:

redefinevg {-d PVname | -i VGid} [-V MajorNumber] VGname

reducevg reducevg is a Bourne shell script command that deletes physical
volumes from a specified volume group.

It is a documented command whose usage is:

reducevg [-d] [-f] VGname PVname...

reorgvg reorgvg is a Bourne shell script command that reorganizes the
physical partition allocation map for a volume group.

It is a documented command whose usage is:

reorgvg [-i] VGname [LVname...]

rmlv rmlv is a Bourne shell script command that removes logical volumes
from a volume group.

It is a documented command whose usage is:

rmlv [-f] LVname...

Please refer to the entry for rmlv in 7.3, “AIX Version 4 Specific File
Features” on page 158.

rmlvcopy rmlvcopy is a Bourne shell script command that removes copies from
a logical volume.

It is a documented command whose usage is:

rmlvcopy LVname LPcopies [PVname...]

rmps rmps is an object file command that removes a paging space.

It is a documented command whose usage is:

rmps Psname

synclvodm synclvodm is a Bourne shell script command that synchronizes logical
volume and volume group information.

It is a documented command whose usage is:

synclvodm [-v] VGname [LVname...]

syncvg syncvg is a Bourne shell script command that synchronizes logical
partition copies.

It is a documented command whose usage is:

syncvg [-i] [-f] {-l|-p|-v} Name

tstresp tstresp is an object file command that is used by the cplv,
extendvg, mkvg and rmlv shell scripts to convert a user's response to
a question into a return code, so that the calling command can act
appropriately.

It is an undocumented command whose usage is:

148 AIX Storage Management

à ð
tstresp yes

echo $?

1

tstresp no

echo $?

ð

á ñ

updatelv updatelv is a Bourne shell script command that updates the logical
volume control block and the ODM.

It is an undocumented command whose usage is:

updatelv LVname VGname

updatevg updatevg is a Bourne shell script command that is used to
synchronize volume group information in the ODM if the ODM has at
least a valid volume group identifier.

It is an undocumented command whose usage is:

updatevg VGname

varyoffvg varyoffvg is a Bourne shell script command that deactivates a volume
group so that it can't be accessed.

It is a documented command whose usage is:

varyoffvg [-s] VGname

varyonvg varyonvg is an object file command that activates a volume group so
that it can be accessed.

It is a documented command whose usage is:

varyonvg [-f] [-n] [-s] [-p] VGname

7.2.1.2 Usr Part Files which are in the /usr/lib Directory
liblvm.a This is the Logical Volume Manager Library that is used by many

logical volume manager subroutines. Please refer to programming
information in AIX Version 4.1 Hypertext Information Base Library.

libsm.a This is another logical volume manager library. You can use the what
command to see which functions are in this library. Please refer to
programming information in AIX Version 4.1 Hypertext Information
Base Library.

./methods/deflvm
This is a file that is used during device configurations. Again, it is
only of interest to programmers.

There are no files in the root or share parts of the bos.rte.lvm fileset.

7.2.2 Using File System Administration Commands

7.2.2.1 Usr Part Files which are in the /usr/sbin Directory.
chfs chfs is an object file command that changes file system attributes

such as mount point, permissions, and size.

It is a documented command whose usage is:

chfs [-n Nodename] [-m NewMountpoint] [-u Group] [-A {yes|no}]

[-t {yes|no}] [-p {ro|rw}] [-a Attribute=Value] [-d Attribute]

 FileSystem

 Chapter 7. Storage Management Files and Commands Summary 149

chvfs chvfs is an object file command that changes entries in the /etc/vfs
file.

It is a documented command whose usage is:

chvfs VfsEntry

crfs crfs is an object file command that creates a file system within a
previously created logical volume.

It is a documented command whose usage is:

crfs -v Vfs {-g Volumegroup | -d Device} -m Mountpoint

[-u Mountgroup] [-A {yes|no}] [-t {yes|no}] [-p {ro|rw}]

[-l Logpartitions] [-n nodename] [-a Attribute=Value]

crvfs crvfs is an object file command that adds entries to the /etc/vfs file.

It is a documented command whose usage is:

crvfs VfsEntry

dfsck dfsck is an object file command that checks for file system
consistency, and allows interactive repair of file systems.

It is a documented command whose usage is:

dfsck [-Options] Filesystem1 ... [-Options] Filesystem2 ...

dumpfs dumpfs is an object file command that prints out the superblock, i-node
map, and disk map for a file system or special device.

It is a documented command whose usage is:

dumpfs {FileSystem | Device}

fdformat fdformat is an object file command that formats diskettes or
read/write optical media disks.

It is a documented command whose usage is:

fdformat [-h] Device

ff ff is an object file command that reads i-node information for the
specified filesystem, and then writes it to stdout.

It is a documented command whose usage is:

ff [-3MIldsu -V Vfs -i Ilist -p Path -n File

-a # -m # -c #] /InputDevice

format format is an object file command that formats diskettes for use by the
system.

It is a documented command whose usage is:

format [-fl] [-d Device]

fsck fsck is an object file command that checks for file system
consistency, and allows interactive repair of file systems.

It is a documented command whose usage is:

fsck [-y|-n|-p] [-f] [-V Vfs] [-d #] [-i #]

[-t File] [-o Options] Filesystem ...

fsdb fsdb is an object file command that allows the user to examine, alter,
and debug the file system specified in the command.

It is a documented command whose usage is:

150 AIX Storage Management

fsdb FileSystem [-]

fuser fuser is an object file command that lists the process numbers of
local processes that use the file(s) specified.

It is a documented command whose usage is:

fuser [-ku] File ... [-]

See 7.3, “AIX Version 4 Specific File Features” on page 158 for
changes in the fuser command.

imfs imfs is an object file command that is uses information from
/etc/filesystems to export or import logical volumes.

It is an undocumented command whose usage is:

imfs [-xlf] vgname ...

See 7.3, “AIX Version 4 Specific File Features” on page 158 for
changes in the imfs command.

logform logform is an object file command that is used to initialize a logical
volume for use a journaled file system log.

It is a documented command whose usage is:

logform LogName

logredo logredo is an object file command that uses the journaled file system
log to reestablish consistency in the specified file system.

It is an undocumented command whose usage is:

logredo [-n] filename

lsfs lsfs is an object file command that displays characteristics of the
specified file system such as mount points, permissions, and file
system size.

It is a documented command whose usage is:

lsjfs [-q] {-a | -v Vfs| -u Group | Filesystem ...}

lsjfs lsjfs is a Korn shell script file that processes the output of the lsfs
command into a form acceptable by smit.

It is an undocumented command whose usage is:

lsjfs [-q] [-c|-l] {-a | -v vfstype | -u mtgroup | fsname [fsname ...]}

lsvfs lsvfs is an object file command that lists entries in the /etc/vfs file.

It is a documented command whose usage is:

lsvfs {-a | Vfsname}

mkfs mkfs is an object file command that makes a new file system on the
specified device.

It is a documented command whose usage is:

mkfs [-b BootProgram] [-i Inodes] [-l Label]

[-o Options] [-p Prototype]

[-s Size] [-v VolumeLabel] [-V vfs] {Device|Filesystem}

mklost+found
mklost+found is a Bourne shell script that creates a lost and found
directory in the current directory for the fsck command.

 Chapter 7. Storage Management Files and Commands Summary 151

It is a documented command whose usage is:

mklost+found

mknod mknod is an object file command that makes a directory entry and
creates an i-node for a special file when used by the root user.
Otherwise it creates a named pipeline.

It is a documented command whose usage is:

mknod Name {p}

mknod Name {b | p} Major Minor

mkproto mkproto is a Bourne shell script that constructs a prototype for a new
file system.

It is a documented command whose usage is:

mkproto Special Proto

mount mount is an object file command that instructs the operating system to
make the specified file system available for use from the specified
point.

It is a documented command whose usage is:

mount [-fipr] [-n Node] [-o Options] [-t Type] [-{v|V} Vfs]

[-a | all | [[Node:]Device] [Directory]]

ncheck ncheck is an object file command that displays the path name for files
specified by i-node in the specified file system.

It is a documented command whose usage is:

ncheck [[-a] [-i InodeNumbers ...] | [-s]] [FileSystem]

proto proto is an object file command that creates a prototype file for a file
system or part of a file system.

It is a documented command whose usage is:

proto Directory [Prefix]

rmfs rmfs is an object file command that removes a file system.

It is a documented command whose usage is:

rmfs [-r] FileSystem

rmvfs rmvfs is an object file command that removes entries from the /etc/vfs
file.

It is a documented command whose usage is:

rmvfs VfsName

umount umount is an object file command that unmounts a file system from its
mount point.

It is a documented command whose usage is:

umount [-sf] {-a|-n Node|-t Type|all|allr|Device|File|Directory|Filesystem}

unmount unmount is an object file command that has exactly the same function
as the umount command.

It is a documented command whose usage is:

unmount [-sf] {-a|-n Node|-t Type|all|allr|Device|File|Directory|Filesystem}

152 AIX Storage Management

7.2.2.2 Usr Part Files which are in the /usr/bin Directory
istat istat is an object file command that displays information about a

particular i-node number.

It is a documented command whose usage is:

istat {FileName | I-NodeNumber Device}

7.2.2.3 Root Part Files which are in the /etc Directory
filesystem

filesystems is a text file containing file system definitions for all file
systems.

vfs vfs is a text file containing definitions for all file system types.

7.2.2.4 Root Part Files which are in the /sbin/helpers Directory
v3fshelper v3fshelper is an object file command that is used by the mount and

umount commands to implement file system mounts and unmounts.

There are no files in the share parts of the bos.rte.filesystem fileset.

7.2.3 Using System Backup and BOS Installation Utilities
This section contains backup and installation commands.

7.2.3.1 Usr Part Files which are in the /usr/lpp/bosinst Directory
bosmenus bosmenus is an object file command that displays the BOS

administration menus. This command has changed in AIX
Version 4, please refer to 7.3, “AIX Version 4 Specific File
Features” on page 158 for details.

7.2.3.2 Usr Part Files which are in the /usr/bin Directory
mksysb mksysb is a Korn shell script that creates an installable image of

the root volume group.

It is a documented command whose usage is:

mksysb Device

mkszfile mkszfile is a Korn shell script that creates the /.fs.size file
for use by the mksysb command.

It is a documented command whose usage is:

mkszfile [-f]

7.2.3.3 Usr Part Files which are in the /usr/sbin Directory
mkinsttape mkinsttape is a Bourne shell script that creates the BOS

install/maintenance tape image.

It is an undocumented command whose usage is:

mkinsttape [/file]

There are no files in the root or share parts of the bos.sysmgt.sysbr fileset.

 Chapter 7. Storage Management Files and Commands Summary 153

7.2.4 Using Archive Commands
This section contains the archive commmands.

7.2.4.1 Usr Part Files which are in the /usr/bin Directory
compress compress is an object file command that reduces the size of the

specified file using the adaptive LZ algorithm.

It is a documented command whose usage is:

compress [-CcdFfnqVv] [-b Bits] [file ...]

cpio cpio is an object file command that copies files into and out of
archive storage.

It is a documented command whose usage is:

cpio -o[acvBC<value> <name-list >collection

cpio -i[bcdmrstuvfBC<value>S6] [pattern ...] <collection>

cpio -p[adlmuv] directory <name-list>

dd dd is an object file command that reads a file in, converts the data
(if required), and copies the file out.

It is a documented command whose usage is:

dd [cbs=BlockSize] [count=InputBlocks] [files= InputFiles]

[fskip=SkipEOFs] [if=InFile] [of=OutFile] [seek=RecordNumber]

[skip=SkipInputBlocks] [ibs=InputBlockSize] [obs=OutputBlockSize]

 [bs=BlockSize] [conv=[ascii|ebcdic|lcase|ucase|iblock|ibm|noerror

 |swab|sync|oblock|notrunc|block|unblock]]

mt mt is an object file command that sends commands to a streaming
tape device.

It is a documented command whose usage is:

mt [-f device] subcommand [count]

valid subcommands are: weof eof fsf bsf fsr bsr rewind offline

 rewoffl status

pack pack is an object file command that saves the specified file(s) in a
compressed form.

It is a documented command whose usage is:

pack [-] [-f] File ...

pax pax is object file command that extracts, writes and lists members
of archive files. It also copies file and directory hierarchies.

It is a documented command whose usage is:

pax -[cdnv] [-f archive] [-s replstr] [pattern...]

pax -r [-cdiknuvy] [-f archive] [-p string] [-s replstr] [pattern...]

pax -w [-dituvyX] [-b blocking] [[-a] -f archive] [-s replstr]

[-x format] [pathname...]

pax -r -w [-diklntuvyX] [-p string] [-s replstr] [pathname...] directory

See 7.3, “AIX Version 4 Specific File Features” on page 158 for
changes in AIX Version 4.

pcat pcat is an object file command that unpacks the specified files and
writes them to standard output.

It is a documented command whose usage is:

154 AIX Storage Management

pcat {File|File.Z} ...

tar tar is an object file command that writes files to, or retrieves files
from, archive storage media.

It is a documented command whose usage is:

tar -{crtux} [-BFdhilmpsvw] [-num] [-ffile[-num]]

[-bblocks] [-S feet] [-S feet@density] [-S blocksb]

[-Linputlist] [-C directory] [-Nblocks] file ...

See 7.3, “AIX Version 4 Specific File Features” on page 158 for
changes in AIX Version 4.

tcopy tcopy is an object file command that copies information from one
tape device to another.

It is a documented command whose usage is:

tcopy Source [Destination]

tctl tctl is an object file command that sends commands to a
streaming tape device.

It is a documented command whose usage is:

tctl [-Benv] [-b num] [-p num]

[-f device] subcommand [count]

valid subcommands are: weof eof fsf bsf fsr bsr rewind offline rewoffl

erase retension read write status

See 7.3, “AIX Version 4 Specific File Features” on page 158 for
changes in AIX Version 4.

uncompress uncompress is an object file command that restores files
compressed by the compress command to their original size.

It is a documented command whose usage is:

uncompress [-cFfnqVv] [file ...]

unpack unpack is an object file command that expands files that were
compressed using the pack command.

It is a documented command whose usage is:

unpack File ...

zcat zcat is an object file command that will uncompress data in tha
same way as the uncompress though always to standard output.

It is a documented command whose usage is:

zcat [-FfnV] [file ...]

See 7.3, “AIX Version 4 Specific File Features” on page 158 for
changes in AIX Version 4.

7.2.4.2 Usr Part Files which are in the /usr/sbin Directory
backbyinode

backbyinode is an object file command that uses the backup

command to backup files by i-node.

It is a documented command whose usage is:

backbyinode [-b Number1] [-f Device] [-l Number2]

[-u] [-?] [-c] [w|W]] [-Level] [Filesystem]

 Chapter 7. Storage Management Files and Commands Summary 155

backbyname
backbyname is an object file command that used the backup

command to backup files by name.

It is a documented command whose usage is:

backbyname -i [-b Number] [-p [-e RegularExpression]] [-f Device]

[-INumber] [-o] [-q] [-v]

backup backup is an object file command that backs up files or file systems
by i-node or name.

It is a documented command whose usage is:

backup [-b Number1] [-f Device] [-l Number2]

[-u] [-?] [-c] [w|W]] [-Level] [Filesystem]

backup -i [-b Number] [-p [-e RegularExpression]] [-f Device]

[-INumber] [-o] [-q] [-v]

flcopy flcopy is an object file command that copies information to and from
diskettes.

It is a documented command whose usage is:

flcopy [-f Device] [-h] [-r] [-t Number]

rdump rdump is an object file command that backups local files by i-node
number to a remote machine.

It is a documented command whose usage is:

rdump [-b Number1] [-d Density] -f Machine: Device [-sSize]

[-u] [-?] [-c] [w|W]] [-Level] [Filesystem]

restbyinode restbyinode is an object file command that uses the restore
command to restore files that were backed up by i-node.

It is an undocumented command whose usage is:

restbyinode -[thvy] [-f device] [-s #] [-b #] [file file ...]

restbyinode -[xhmvy] [-f device] [-s #] [-b #] [file file ...]

restbyinode -[ihmvy] [-f device] [-s #] [-b #]

restbyinode -[rvy] [-f device] [-s #] [-b #]

restbyinode -[Rvy] [-f device] [-s #] [-b #]

See 7.3, “AIX Version 4 Specific File Features” on page 158 for
changes in AIX Version 4.

restbyname restbyname is an object file command that uses the restore

command to restore files that were backed up by name.

It is a documented command whose usage is:

restbyname -[thvy] [-f device] [-s #] [-b #] [file file ...]

restbyname -[xhmvy] [-f device] [-s #] [-b #] [file file ...]

restbyname -[ihmvy] [-f device] [-s #] [-b #]

restbyname -[rvy] [-f device] [-s #] [-b #]

restbyname -[Rvy] [-f device] [-s #] [-b #]

restore restore is an object file command that restores files or file systems
that were backed up using the backup command.

It is a documented command whose usage is:

156 AIX Storage Management

For by name backups:

restore -[AxvqMd] [-f device] [-s #] [-b #] [file file ...]

restore -[t | T]vq] [-f device] [-s #] [-b #]

restore [-X # [-d]] [-f device] [-s #] [-b #] [file file ...]

For version 2 inode backups:

restore [-d] -[r] [-f device] [file ...]

For version 3 inode backups:

restore -[t | T]hvyB] [-f device] [-s #] [-b #] [file file ...]

restore -[xhmvyB] [-f device] [-s #] [-b #] [file file ...]

restore -[ihmvy] [-f device] [-s #] [-b #]

restore -[rvyB] [-f device] [-s #] [-b #]

restore -[RvyB] [-f device] [-s #] [-b #]

See 7.3, “AIX Version 4 Specific File Features” on page 158 for
changes in AIX Version 4.

rmt rmt is an object file command that allows control of remote tape
devices via subcommands.

It is a documented command whose usage is:

rmt

valid subcommands: O DeviceMode, C Device, L WhenceOffset

W Count, R Count, I OperationCount

rrestore rrestore is an object file command that restores files from a remote
machines device that were backed up by i-node.

It is a documented command whose usage is:

rrestore [-b Number] [-h] [-i] [-m] [-r] [-R] [-s Number]

[-t]

[-v] [-y] [-x] -fMachine: Device [FileSystem ...] [File ...]

See 7.3, “AIX Version 4 Specific File Features” on page 158 for
changes in AIX Version 4.

tapechk tapechk is Korn shell script that performs simple consistency
checking for streaming tape drives.

It is a documented command whose usage is:

tapechk [-?] Number1 Number2

There are no files in the share or usr parts of the bos.rte.archive fileset.

7.2.5 Using Other Fileset Commands
Other documented commands that are relevant to AIX storage management that
are in the filesets referred to in 7.1.1, “Major AIX Version 4 Filesets Relevant to
Storage Management” on page 138 include:

bootlist boot logical volume

Updates the list of boot devices.

bosboot Builds a boot logical volume.

bootinfo Gives information about the boot physical volume.

savebase Saves ODM information to the boot logical volume.

/sbin/rc.boot A shell script executed during the system boot.

/etc/rc A shell script executed during the system boot.

 Chapter 7. Storage Management Files and Commands Summary 157

swapspaces Activates paging devices.

snap A tool used to gather data for problem analysis.

diag Used to execute the hardware diagnostics utilities.

lscfg Gives detailed information about the RISC System/6000*
hardware configuration.

quotaon Starts the disk quota monitor.

errpt Formats the error log information.

diff Compares the contents of two text files.

lsdev Lists the devices known to the system.

lsattr Lists the attributes of the devices known to the system

mkdev Configures a device.

rmdev Removes a device.

lvedit Used for interactive definition and placement of logical
volumes within a volume group. Although this command was
part of the optional program product "Extended Commands"
(bosext1.extcmds.obj) in AIX V3.2, it is now part of the
separate licensed program product known as "Performance
Toolbox/6000", product number 5969-623, in AIX Version 4.

7.3 AIX Version 4 Specific File Features
This section looks at those commands that are new or changed in AIX Version 4.

7.3.1 Using Logical Volume Manager Files in an AIX Version 4
Environment

This section looks at logical volume manager commands.

7.3.1.1 Usr Part Files which are in the /usr/sbin Directory
As well as the specific AIX Version 4 noted for each individual file, the files listed in
this section no longer have symbolic links to the /etc directory. The current
workaround until you change all your pathnames is to install the AIX 3.2 to 4.1
Compatibility Links fileset.

chvg A new flag, -u allows the systems administrator to unlock a volume
group if another logical volume manager operation has abnormally
terminated. It is important to ensure that no other process is using
this volume group when this process is run.

It is a documented command whose usage is:

chvg [-a Auto on] [-Q quorum] [-u] VGname...

getlvcb The high level shell script updatelv that calls this command does so
with two new flags in AIX Version 4. These flags are

-P - stripe width

-S - the first physical partition number used on the 2nd disk when
P is 2.

It is an undocumented command whose usage is:

158 AIX Storage Management

getlvcb -aceLrsSPtu LVName

getlvcb -f LVName

getlvodm getlvodm obtains volume group and logical volume information from
the ODM. In AIX Version 4, it has a new flag, -G.

It is an undocumented command whose usage is:

getlvodm [-a LVdescript] [-B LVdesrcript] [-b LVid]

[-cVid] [-C] [-d VGdescript]

[-e LVid] [-F] [-g PVid] [-h]

[-j PVdescript] [-k] [-L VGdescript]

[-l LVdescript] [-m LVid] [-p PVdescript]

[-r LVid] [-s VGdescript] [-t VGid]

[-u VGdescript] [-v VGdescript] [-w VGid]

[-y LVid] [-G LVdescript]

importvg We found that on the level of AIX Version 4 that we used, an imported
volume group was left in a varied on state when importvg completed
its execution. This behaviour contradicts the information that we had
access to, but we believe that is a reasonable and logical step to want
to varyon and access a volume group after you have imported it.

lquerylv A new flag, -b, has been added that tells us the stripe exponent,
stripe_exp, so that 2 raised to the power of stripe_exp gives the stripe
size.

It is an undocumented command whose usage is:

lquerylv -L LVid [-p PVname] [-NGnMScsPRvoadlArtwb]

lslv Although this command does not have any new flags, it may have
more output if it used to obtain information about a striped logical
volume. In this case only, the following are two extra fields in the first
column of the output of the command lslv stripedlvname

STRIPE WIDTH: 2

STRIPE SIZE: 32K

It is a documented command whose usage is:

lslv [-l | -m] [-n DescriptorPV] LVname

lslv [-n DescriptorPV] -p PVname [LVname]

mklv This has a new flag if you want to use striping, -S StripeSize

It is a documented command whose usage is:

mklv [-a IntraPolicy] [-b BadBlocks] [-c Copies] [-d Schedule]

[-e InterPolicy] [-i] [-L Label] [-m MapFile] [-r Relocate]

[-s Strict] [-t Type] [-u UpperBound] [-v Verify] [-w MWC]

[-x MaxLPs] [-y LVname] [-Y Prefix] [-Y StripeSize]

VGname NumberOfLPs [PVname...]

putlvcb Use this command with extreme caution, and refer to the updatelv

command for some of its flags, including those that are for striping
parameters.

It is an undocumented command whose usage is:

putlvcb [-a IntraPolicy] [-c Copies] [-e InterPolicy] [-i LVid]

[-n Size] [-r BBReloc] [-L Label] [-s Strict]

[-t Type] [-u Upper] [-S StripeExponent]

[-O StripeWidth] LVName

putlvcb [-f FileSystemName] LVName

 Chapter 7. Storage Management Files and Commands Summary 159

putlvodm putlvodm has a new flag in AIX Version 4, the -S flag which specifies
the stripe size.

It is an undocumented command whose usage is:

putlvodm [-a IntraPolicy] [-B label] [-c Copies] [-e InterPolicy]

[-L LVid] [-l LVname] [-n NewLVName] [-r Relocate]

[-s Strict] [-t Type] [-u UpperBound] [-y Copyflag]

[-z Size] [-S StripeSize] LVid

putlvodm [-o Auto-on] [-k] [-K] [-q VGstate]

[-v VGname] [-V] VGid

putlvodm [-p VGid] [-P] PVid

In addition, the -m majornum flag that was used with a VGid is no
longer available.

rmlv The rmlv command allows a physical volume name to be specified.
Only logical partitions on this physical volume will be removed, and
the logical volume itself will not be removed unless no other partitions
exist on other physical volumes.

It is a documented command whose usage is:

rmlv [-f] [-p PVname] LVname...

7.3.1.2 Usr Part Files which are in the /usr/lib Directory
There are no files that were not in AIX Version 3.

There are no files in the root or share parts of the bos.rte.lvm fileset.

7.3.2 Using File System Administration Commands in an AIX Version
4 Environment

This section contains file system administration commands.

7.3.2.1 Usr Part Files which are in the /usr/sbin Directory
defragfs defragfs is an object file command that increases a file systems

contiguous free space by reorganizing file fragment allocations.

It is a documented command whose usage is:

defragfs [-q | -r] {device | mount-path}

fuser The AIX Version 4 version of the fuser command no longer has the -
flag. New flags automatically override the old settings.

It is a documented command whose usage is:

fuser [-ku] File ...

imfs The AIX Version 4 version of the imfs command no longer has the -f

flag.

It is an undocumented command whose usage is:

imfs [-xl] vgname ...

lsjfs In AIX Version 4 the lsjfs Korn shell script has been rewritten slightly
so that the lsfs command is now called with the -q command as well.

It is an undocumented command whose usage is:

lsfs {-a | -v Vfs| -u Group | Filesystem ...}

160 AIX Storage Management

7.3.2.2 Usr Part Files which are in the /usr/bin Directory
See the AIX Version 3 section for files in this fileset.

7.3.2.3 Root Part Files which are in the /etc Directory
See the section on AIX Version 3 for files in this fileset.

7.3.2.4 Root Part Files which are in the /sbin/helpers Directory
See the section on AIX Version 3 for files in this fileset.

There are no files in the share parts of the bos.rte.filesystem fileset.

7.3.3 Using System Backup and BOS Installation Utilities in an AIX
Version 4 Environment

This section contains backup and installation commands.

7.3.3.1 Usr Part Files which are in the /usr/lpp/bosinst Directory
BosMenus BosMenus performs the same function as the AIX Version 3

command bosmenus, though it operates slightly differently.

CheckSize CheckSize is used during the installation process to check that
there is enough disk space for the operating system.

It is an undocumented command whose usage is:

CheckSize [-s] [-p]

Get_RVG_Disks Get_RVG_Disks is used during the installation process to create
a database of available disks according to the volume groups
they are in.

It is an undocumented command whose usage is:

Get_RVG_Disks

bicfgsup bicfgsup runs the startup script from the installation device
before calling the Get_RVG_Disks.

It is an undocumented command whose usage is:

bicfgsup

bi_main bi_main performs the main operating system installation.

bosinst.template This file defines a template for the flow of the installation
process.

image.template This file contains template definitions for the installation
process.

tape This directory contains the following file:

tape/tapefiles1 This file contains a list of key operating system files.

7.3.3.2 Usr Part Files which are in the /usr/bin Directory
mksysb mksysb is a Korn shell script command that creates an

installable image of the root volume group.

It is a documented command whose usage is:

mksysb [-i] [-m] [-e] [-b blocks] device

 Chapter 7. Storage Management Files and Commands Summary 161

mkszfile mkszfile is a Korn shell script that saves the system state to a
file for use during reinstallation.

It is a documented command whose usage is:

mkszfile [-m]

mkvgdata mkvgdata is a symbolic link to mkszfile.

restvg restvg is a Korn shell script that restores a user volume group
from a backup image created by the savevg command.

It is a documented command whose usage is:

restvg [-b Blocks] [-f Device] [-q] [-s] [DiskName ...]

savevg savevg is a Korn shell script that finds and backs up all files for
a specified volume group.

It is a documented command whose usage is:

savevg [-i] [-m] [-e] [-b blocks] [-f device] vgName

This is a symbolic link to the mksysb command.

7.3.3.3 Usr Part Files which are in the /usr/sbin Directory
mkinsttape mkinsttape is a Korn shell script command that creates a BOS

installation/maintenance tape file image.

It is an undocumented command whose usage is:

mkinsttape [/file]

7.3.3.4 Root Part Files which are in the /etc Directory
preserve.list This file contains a list of files that will be copied during a

preservation installation.

There are no files in the share parts of the bos.sysmgt.sysbr fileset.

7.3.4 Using Archive Commands in an AIX Version 4 Environment
This section contains archive commands.

7.3.4.1 Usr Part Files which are in the /usr/bin Directory
pax pax has an options flag in AIX Version 4, which was not present in

AIX Version 3.

It is a documented command whose usage is:

pax -[cdnv] [-f archive] [-s replstr] [pattern...]

pax -r [-cdiknuvy] [-f archive] [-o options] [-p string] [-s replstr]

 [pattern...]

pax -w [-dituvyX] [-b blocking] [[-a] -f archive] [-o options]

[-s replstr] [-x format] [pathname...]

pax -r -w [-diklntuvyX] [-p string] [-s replstr] [pathname...] directory

tar tar is an object file command that enables writing data to, and
reading data from, an archive storage medium. There is a new -o
options flag that provides backwards compatibility with older
(non-AIX) versions of tar. The -S flag has also been enhanced.

It is a documented command whose usage is:

162 AIX Storage Management

tar -{c|r|t|u|x} [-BdFhilmopsvw]

 [-Number] [-fFile]

[-bBlocks] [-S [Feet] [Feet @Density] [Blocksb]]

[-LInputList] [-NBlocks] [-C Directory] File ...

tctl tctl is an object file command that sends commands to a
streaming tape device. In AIX Version 4 the -e flag is no longer
used, and there is an extra command, the reset command.

It is a documented command whose usage is:

tctl [-Bnv] [-b Blocks] [-p Num] [-f Device] Subcommand [Count]

valid subcommands are: weof, eof, fsf, bsf, fsr, bsr, rewind, offline,

rewoffl, erase, retension, read, write, reset,

 status

zcat zcat is an object file command that expands a file compressed
using the compress command to standard out. The AIX Version 4
version of this command no longer uses the -F and -f flags.

It is a documented command whose usage is:

zcat [-nV] [File...]

7.3.4.2 Usr Part Files which are in the /usr/sbin Directory
restbyinode restbyinode is an object file command that uses the restore

command to restore files that were backed up by inode.

It is an undocumented command whose usage is:

restbyinode -t[Dhvy] [-f Device] [-s Number] [-b Number] [File ...]

restbyinode -x[Dhmvy] [-f Device] [-s Number] [-b Number] [File ...]

restbyinode -i[Dhmvy] [-f Device] [-s Number] [-b Number]

restbyinode -r[Dvy] [-f Device] [-s Number] [-b Number]

restbyinode -R[Dvy] [-f Device] [-s Number] [-b Number]

There is a new flag in AIX Version 4, -D.

restore restore is an object file command that copies files recently backed
up on a local device, onto the system. There have been a number of
flag changes in AIX Version 4.

It is a documented command whose usage is:

Usage for Backup by Name:ber] [-f Device] [-s Number] [File ...]

restore -x[Mdqv] [-b Number] [-f Device] [-s Number] [File ...]

Extracts files by name.[-f Device] [-s Number] [File ...]

restore -T|-t [-qv] [-b Number] [-f Device] [-s Number]

Lists a table of contents or information about the backup.

restore -X Number [-Mdqv] [-b Number] [-f Device] [-s Number] [File ...]

Extracts beginning at a specified volume number.

Usage for Version 2 Backup by Inode:

restore -r[d] [-f Device] [File ...]ce] [-s Number]

Usage for Backup by Inode: systems.

restore -t[Bhqvy] [-b Number] [-f Device] [-s Number] [File ...]

Lists a table of contents.

restore -x[Bhmqvy] [-b Number] [-f Device] [-s Number] [File ...]

Extracts files by name.

restore -i[hmqvy] [-b Number] [-f Device] [-s Number]

Restores files interactively

restore -r[Bqvy] [-b Number] [-f Device] [-s Number]

Restores full file systems.

restore -R[Bvy] [-b Number] [-f Device] [-s Number]

 Chapter 7. Storage Management Files and Commands Summary 163

Restores full file systems.

rrestore rrestore is an object file command that copies previously backed up
file systems from a remote machine's device to the local machine.
The -D flag is new in AIX Version 4.

It is a documented command whose usage is:

rrestore -t[Dhvy] -f Host: Device [-s Number] [-b Number] [File ...]

rrestore -x[Dhmvy] -f Host: Device [-s Number] [-b Number] [File ...]

rrestore -i[Dhmvy] -f Host: Device [-s Number] [-b Number]

rrestore -r[Dvy] -f Host: Device [-s Number] [-b Number]

rrestore -R[Dvy] -f Host: Device [-s Number] [-b Number]

There are no files in the share or usr parts of the bos.rte.archive fileset.

7.4 Using Commands to View AIX Version 4 Logical Volume Manager
Information

This section discusses sample output from the various options of the following
commands:

 1. lsvg

 2. lslv

 3. lspv

 4. lqueryvg

 5. lquerylv

 6. lquerypv

Some of these commands are discussed further in Chapter 6, “General AIX
Storage Management” on page 93. You may decide to use the script command
to easily record the command syntax and output in one or more files. You can see
from the script command timestamps included in the output that we executed these
commands sequentially for the same logical volumes and all the physical volumes
in the datavg volume group. By comparing the different command output formats,
you can both understand the output and decide which commands you prefer. Note
that we had to filter the output files to remove control M characters from the end of
each line by executing commands like:

à ð
tr -d '\ð15' < lsvg.scr > lsvg.txt

á ñ

You can see the control M characters when you vi edit the output files.

First assume the volume group is normal, so run lsvg like:

164 AIX Storage Management

à ð
Script started on Wed Jul 27 17:26:48 1994

lsvg datavg

VOLUME GROUP: datavg VG IDENTIFIER: ððððð4467b689da1

VG STATE: active PP SIZE: 4 megabyte(s)

VG PERMISSION: read/write TOTAL PPs: 362 (1448 megabytes)

MAX LVs: 256 FREE PPs: 289 (1156 megabytes)

LVs: 6 USED PPs: 73 (292 megabytes)

OPEN LVs: ð QUORUM: 2

TOTAL PVs: 2 VG DESCRIPTORS: 3

STALE PVs: ð STALE PPs ð

ACTIVE PVs: 2 AUTO ON: yes

lsvg -l datavg

datavg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

datalv1 jfs 1ð 2ð 2 closed/syncd /datajfs1

datalv2 jfs 1ð 2ð 2 closed/syncd /datajfs2

datalv3 jfs 12 12 1 closed/syncd /datajfs3

datalv4 jfs 1ð 1ð 1 closed/syncd /datajfs4

datalog jfslog 1 1 1 closed/syncd N/A

datapg paging 5 1ð 2 closed/syncd N/A

lsvg -p datavg

datavg:

PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION

hdisk8 active 75 5ð 15..ðð..ð5..15..15

hdisk1 active 287 239 58..ð9..57..57..58

script done on Wed Jul 27 17:28:28 1994

á ñ

Figure 31. Sample lsvg Output

The first lsvg command quickly tells us how much of the volume group's disk
space is used, and how much can be allocated to new or existing logical volumes.
The -l flag provides us with a good volume group logical volume summary where
we can:

� Check which logical volumes are mirrored by the ratio of physical partitions to
logical partitions; in this case, there are two mirror copies of the logical volumes
datalv1, datalv2 and datapg.

� Check which logical volumes are open and therefore used by the operating
system; in this case all are closed and so we can varyoff the volume group.

The -p flag provides a simple indication of how well organized the volume group is;
in other words, if one physical volume is empty, and the other is almost full based
on the FREE PPs column, then a I/O workload imbalance may result in a
performance degradation.

For more detailed volume group output, execute:

 Chapter 7. Storage Management Files and Commands Summary 165

à ð
Script started on Wed Jul 27 17:28:37 1994

lsvg -M datavg

datavg

hdisk8:1-15

hdisk8:16 datalv1:1:1

hdisk8:17 datalv1:2:1

hdisk8:18 datalv1:3:1

hdisk8:19 datalv1:4:1

hdisk8:2ð datalv1:5:1

hdisk8:21 datalv1:6:1

hdisk8:22 datalv1:7:1

hdisk8:23 datalv1:8:1

hdisk8:24 datalv1:9:1

hdisk8:25 datalv1:1ð:1

hdisk8:26 datalv2:1:2

hdisk8:27 datalv2:2:2

hdisk8:28 datalv2:3:2

hdisk8:29 datalv2:4:2

hdisk8:3ð datalv2:5:2

hdisk8:31 datalv2:6:2

hdisk8:32 datalv2:7:2

hdisk8:33 datalv2:8:2

hdisk8:34 datalv2:9:2

hdisk8:35 datalv2:1ð:2

hdisk8:36 datapg:1:2

hdisk8:37 datapg:2:2

hdisk8:38 datapg:3:2

hdisk8:39 datapg:4:2

hdisk8:4ð datapg:5:2

hdisk8:41-75

hdisk1:1-58

hdisk1:59 datalv1:1:2

hdisk1:6ð datalv1:2:2

hdisk1:61 datalv1:3:2

hdisk1:62 datalv1:4:2

hdisk1:63 datalv1:5:2

hdisk1:64 datalv1:6:2

hdisk1:65 datalv1:7:2

hdisk1:66 datalv1:8:2

hdisk1:67 datalv1:9:2

hdisk1:68 datalv1:1ð:2

á ñ

Figure 32. Sample lsvg -M Output

and continuing on the next screen:

166 AIX Storage Management

à ð
hdisk1:69 datalv2:1:1

hdisk1:7ð datalv2:2:1

hdisk1:71 datalv2:3:1

hdisk1:72 datalv2:4:1

hdisk1:73 datalv2:5:1

hdisk1:74 datalv2:6:1

hdisk1:75 datalv2:7:1

hdisk1:76 datalv2:8:1

hdisk1:77 datalv2:9:1

hdisk1:78 datalv2:1ð:1

hdisk1:79 datalv3:1

hdisk1:8ð datalv3:2

hdisk1:81 datalv3:3

hdisk1:82 datalv3:4

hdisk1:83 datalv3:5

hdisk1:84 datalv3:6

hdisk1:85 datalv3:7

hdisk1:86 datalv3:8

hdisk1:87 datalv3:9

hdisk1:88 datalv3:1ð

hdisk1:89 datalv3:11

hdisk1:9ð datalv3:12

hdisk1:91 datalv4:1

hdisk1:92 datalv4:2

hdisk1:93 datalv4:3

hdisk1:94 datalv4:4

hdisk1:95 datalv4:5

hdisk1:96 datalv4:6

hdisk1:97 datalv4:7

hdisk1:98 datalv4:8

hdisk1:99 datalv4:9

hdisk1:1ðð datalv4:1ð

hdisk1:1ð1 datalog:1

hdisk1:1ð2 datapg:1:1

hdisk1:1ð3 datapg:2:1

hdisk1:1ð4 datapg:3:1

hdisk1:1ð5 datapg:4:1

hdisk1:1ð6 datapg:5:1

hdisk1:1ð7-287

script done on Wed Jul 27 17:28:53 1994

á ñ

Figure 33. Continued Sample lsvg -M Output

This is the most comprehensive output available from the lsvg command. We can
see how it documents the exact use of physical partitions on all physical volumes in
the volume group, compared to the summary presented by using the -p flag as
shown in Figure 31 on page 165. However, we can see from the lslv -p hdisk1

datalv3 command output shown in Figure 38 on page 171. and the lspv -p

hdisk1 command shown in Figure 40 on page 173 that there are more suitable
commands to use to check where the used physical partitions are. The lsvg -M

datavg information can be used to create logical volume map files and is hence
very useful if a corrupt VGDA needs to be fixed by recreating the datavg volume
group.

Now lets look at the output from the lslv command by executing:

 Chapter 7. Storage Management Files and Commands Summary 167

à ð
Script started on Wed Jul 27 17:57:ðð 1994

lslv datapg

LOGICAL VOLUME: datapg VOLUME GROUP: datavg

LV IDENTIFIER: ððððð4467b689da1.6 PERMISSION: read/write

VG STATE: active/complete LV STATE: closed/syncd

TYPE: paging WRITE VERIFY: off

MAX LPs: 128 PP SIZE: 4 megabyte(s)

COPIES: 2 SCHED POLICY: parallel

LPs: 5 PPs: 1ð

STALE PPs: ð BB POLICY: relocatable

INTER-POLICY: minimum RELOCATABLE: yes

INTRA-POLICY: middle UPPER BOUND: 32

MOUNT POINT: N/A LABEL: None

MIRROR WRITE CONSISTENCY: off

EACH LP COPY ON A SEPARATE PV ?: yes

lslv datalv3

LOGICAL VOLUME: datalv3 VOLUME GROUP: datavg

LV IDENTIFIER: ððððð4467b689da1.3 PERMISSION: read/write

VG STATE: active/complete LV STATE: closed/syncd

TYPE: jfs WRITE VERIFY: off

MAX LPs: 128 PP SIZE: 4 megabyte(s)

COPIES: 1 SCHED POLICY: parallel

LPs: 12 PPs: 12

STALE PPs: ð BB POLICY: relocatable

INTER-POLICY: minimum RELOCATABLE: yes

INTRA-POLICY: middle UPPER BOUND: 32

MOUNT POINT: /datajfs3 LABEL: /datajfs3

MIRROR WRITE CONSISTENCY: on

EACH LP COPY ON A SEPARATE PV ?: yes

lslv -l datapg

datapg:N/A

PV COPIES IN BAND DISTRIBUTION

hdisk1 ðð5:ððð:ððð 1ðð% ððð:ðð5:ððð:ððð:ððð

hdisk8 ðð5:ððð:ððð ð% ððð:ððð:ðð5:ððð:ððð

lslv -l datalv3

datalv3:/datajfs3

PV COPIES IN BAND DISTRIBUTION

hdisk1 ð12:ððð:ððð 1ðð% ððð:ð12:ððð:ððð:ððð

á ñ

Figure 34. Sample lslv Output

If no flags are used, the logical volume attributes are listed in a format similar to
that used for the lsvg command. As expected, the command lslv -l datapg

provides a better summary of where the datapg physical partitions are located on
disk than does the output of the lsvg command shown in Figure 31 on page 165.

To check how logical partitions have been mapped to physical partitions, execute:

168 AIX Storage Management

à ð
lslv -m datapg

datapg:N/A

LP PP1 PV1 PP2 PV2 PP3 PV3

ððð1 ð1ð2 hdisk1 ðð36 hdisk8

ððð2 ð1ð3 hdisk1 ðð37 hdisk8

ððð3 ð1ð4 hdisk1 ðð38 hdisk8

ððð4 ð1ð5 hdisk1 ðð39 hdisk8

ððð5 ð1ð6 hdisk1 ðð4ð hdisk8

lslv -m datalv3

datalv3:/datajfs3

LP PP1 PV1 PP2 PV2 PP3 PV3

ððð1 ðð79 hdisk1

ððð2 ðð8ð hdisk1

ððð3 ðð81 hdisk1

ððð4 ðð82 hdisk1

ððð5 ðð83 hdisk1

ððð6 ðð84 hdisk1

ððð7 ðð85 hdisk1

ððð8 ðð86 hdisk1

ððð9 ðð87 hdisk1

ðð1ð ðð88 hdisk1

ðð11 ðð89 hdisk1

ðð12 ðð9ð hdisk1

script done on Wed Jul 27 18:ð4:36 1994

á ñ

Figure 35. Sample lslv -m Output

This is probably the best way to check your configuration of a highly available
volume group. Since each mirror copy is listed in a separate column, you just have
to ensure that each row contains two or three different physical volume names,
depending on whether you have two or three copies of a logical volume. In other
words, you can quickly confirm that the copies are on different disks.

For detailed disk layout from lslv to see exact physical partition placement,
execute:

 Chapter 7. Storage Management Files and Commands Summary 169

à ð
Script started on Wed Jul 27 18:ð4:58 1994

lslv -p hdisk1 datapg

hdisk1:datapg:N/A

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 1-1ð

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 11-2ð

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 21-3ð

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 31-4ð

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 41-5ð

FREE FREE FREE FREE FREE FREE FREE FREE 51-58

USED USED USED USED USED USED USED USED USED USED 59-68

USED USED USED USED USED USED USED USED USED USED 69-78

USED USED USED USED USED USED USED USED USED USED 79-88

USED USED USED USED USED USED USED USED USED USED 89-98

USED USED USED ððð1 ððð2 ððð3 ððð4 ððð5 FREE FREE 99-1ð8

FREE FREE FREE FREE FREE FREE FREE 1ð9-115

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 116-125

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 126-135

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 136-145

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 146-155

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 156-165

FREE FREE FREE FREE FREE FREE FREE 166-172

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 173-182

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 183-192

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 193-2ð2

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 2ð3-212

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 213-222

FREE FREE FREE FREE FREE FREE FREE 223-229

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 23ð-239

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 24ð-249

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 25ð-259

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 26ð-269

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 27ð-279

FREE FREE FREE FREE FREE FREE FREE FREE 28ð-287

á ñ

Figure 36. Sample lslv -p Output

For the datapg logical volume on the hdisk8 physical volume, execute:

à ð
lslv -p hdisk8 datapg

hdisk8:datapg:N/A

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 1-1ð

FREE FREE FREE FREE FREE 11-15

USED USED USED USED USED USED USED USED USED USED 16-25

USED USED USED USED USED 26-3ð

USED USED USED USED USED ððð1 ððð2 ððð3 ððð4 ððð5 31-4ð

FREE FREE FREE FREE FREE 41-45

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 46-55

FREE FREE FREE FREE FREE 56-6ð

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 61-7ð

FREE FREE FREE FREE FREE 71-75

á ñ

Figure 37. Continued Sample lslv -p Output

For the datalv3 logical volume, execute:

170 AIX Storage Management

à ð
lslv -p hdisk1 datalv3

hdisk1:datalv3:/datajfs3

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 1-1ð

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 11-2ð

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 21-3ð

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 31-4ð

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 41-5ð

FREE FREE FREE FREE FREE FREE FREE FREE 51-58

USED USED USED USED USED USED USED USED USED USED 59-68

USED USED USED USED USED USED USED USED USED USED 69-78

ððð1 ððð2 ððð3 ððð4 ððð5 ððð6 ððð7 ððð8 ððð9 ðð1ð 79-88

ðð11 ðð12 USED USED USED USED USED USED USED USED 89-98

USED USED USED USED USED USED USED USED FREE FREE 99-1ð8

FREE FREE FREE FREE FREE FREE FREE 1ð9-115

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 116-125

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 126-135

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 136-145

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 146-155

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 156-165

FREE FREE FREE FREE FREE FREE FREE 166-172

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 173-182

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 183-192

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 193-2ð2

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 2ð3-212

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 213-222

FREE FREE FREE FREE FREE FREE FREE 223-229

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 23ð-239

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 24ð-249

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 25ð-259

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 26ð-269

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 27ð-279

FREE FREE FREE FREE FREE FREE FREE FREE 28ð-287

script done on Wed Jul 27 18:ð8:22 1994

á ñ

Figure 38. Continued Sample lslv -p Output

This is probably the best character based pictorial representation of the disk
regions that shows the exact location of the used and free physical partitions. It will
also show you exactly which physical partitions are stale if you have implemented
mirroring by printing the word STALE or by printing a ? character next to the logical
partition number. The number 0001 in Figure 38 indicates that the first logical
partition of the datalv3 logical volume uses physical partition 79 on hdisk1, so the
word USED on a physical partition refers to the fact that its used by a logical volume
other than datalv3. The numbering helps us determine how badly a logical volume
is fragmented within a physical volume, which may result in a performance
degradation. This is not the case in this example because the physical partitions of
each of the copies of the datapg and datalv3 logical volumes have been allocated
in a contiguous manner. You may find it easier to notice this contiguity from the
output of the lslv -m lvname commands shown in Figure 35 on page 169.

As can be seen from the outputs for hdisk1 in Figure 36 on page 170 or in
Figure 38 and for hdisk8 in Figure 37 on page 170, it is easy to compare both the
size and utilization of the disk regions of different disks. If you have many physical
volumes, a summarized view of this information can be obtained from the output of
the lspv -l disk_name command presented in Figure 39 on page 172. Finally, we

 Chapter 7. Storage Management Files and Commands Summary 171

can deduce the names of the different disk regions by comparing the numerical
ranges presented in Figure 38 with those in Figure 40 on page 173 for hdisk1.

Now, take a look at the lspv command by executing:

à ð
Script started on Wed Jul 27 18:11:12 1994

lspv hdisk1

PHYSICAL VOLUME: hdisk1 VOLUME GROUP: datavg

PV IDENTIFIER: ððððð2ð1dc8bðb32 VG IDENTIFIER ððððð4467b689da1

PV STATE: active

STALE PARTITIONS: ð ALLOCATABLE: yes

PP SIZE: 4 megabyte(s) LOGICAL VOLUMES: 6

TOTAL PPs: 287 (1148 megabytes) VG DESCRIPTORS: 1

FREE PPs: 239 (956 megabytes)

USED PPs: 48 (192 megabytes)

FREE DISTRIBUTION: 58..ð9..57..57..58

USED DISTRIBUTION: ðð..48..ðð..ðð..ðð

lspv hdisk8

PHYSICAL VOLUME: hdisk8 VOLUME GROUP: datavg

PV IDENTIFIER: ððð2479ð88f5f347 VG IDENTIFIER ððððð4467b689da1

PV STATE: active

STALE PARTITIONS: ð ALLOCATABLE: yes

PP SIZE: 4 megabyte(s) LOGICAL VOLUMES: 3

TOTAL PPs: 75 (3ðð megabytes) VG DESCRIPTORS: 2

FREE PPs: 5ð (2ðð megabytes)

USED PPs: 25 (1ðð megabytes)

FREE DISTRIBUTION: 15..ðð..ð5..15..15

USED DISTRIBUTION: ðð..15..1ð..ðð..ðð

lspv -l hdisk1

hdisk1:

LV NAME LPs PPs DISTRIBUTION MOUNT POINT

datalv1 1ð 1ð ðð..1ð..ðð..ðð..ðð /datajfs1

datalv2 1ð 1ð ðð..1ð..ðð..ðð..ðð /datajfs2

datalv3 12 12 ðð..12..ðð..ðð..ðð /datajfs3

datalv4 1ð 1ð ðð..1ð..ðð..ðð..ðð /datajfs4

datalog 1 1 ðð..ð1..ðð..ðð..ðð N/A

datapg 5 5 ðð..ð5..ðð..ðð..ðð N/A

lspv -l hdisk8

hdisk8:

LV NAME LPs PPs DISTRIBUTION MOUNT POINT

datalv1 1ð 1ð ðð..1ð..ðð..ðð..ðð /datajfs1

datalv2 1ð 1ð ðð..ð5..ð5..ðð..ðð /datajfs2

datapg 5 5 ðð..ðð..ð5..ðð..ðð N/A

á ñ

Figure 39. Sample lspv Output

Just like the lsvg and lslv commands, you can execute the lspv command with no
flags to display the disk attributes. Note that the output from the lspv -l hdisk1

command in Figure 39 is not the same as that from the lsvg -l datavg command
shown in Figure 31 on page 165, although both indicate the number of physical
partitions and logical partitions whose ratio indicates the extent of any mirroring
configuration.

However, if your logical volumes are not mirrored, then you may prefer to
summarize the logical volume information by executing lspv with a -p flag as
follows:

172 AIX Storage Management

à ð
lspv -p hdisk1

hdisk1:

PP RANGE STATE REGION LV ID TYPE MOUNT POINT

1-58 free outer edge

59-68 used outer middle datalv1 jfs /datajfs1

69-78 used outer middle datalv2 jfs /datajfs2

79-9ð used outer middle datalv3 jfs /datajfs3

 91-1ðð used outer middle datalv4 jfs /datajfs4

1ð1-1ð1 used outer middle datalog jfslog N/A

1ð2-1ð6 used outer middle datapg paging N/A

1ð7-115 free outer middle

116-172 free center

173-229 free inner middle

23ð-287 free inner edge

lspv -p hdisk8

hdisk8:

PP RANGE STATE REGION LV ID TYPE MOUNT POINT

1-15 free outer edge

16-25 used outer middle datalv1 jfs /datajfs1

26-3ð used outer middle datalv2 jfs /datajfs2

31-35 used center datalv2 jfs /datajfs2

36-4ð used center datapg paging N/A

41-45 free center

46-6ð free inner middle

61-75 free inner edge

script done on Wed Jul 27 18:13:ð4 1994

á ñ

Figure 40. Sample lspv -p Output

Like the lspv -l output shown in Figure 39 on page 172, we know:

� The names of the logical volumes on the specified physical volume

� The logical partition distribution

� The number of physical partitions used

We get this from the sum of the differences of the PP RANGE for each row that
refers to a particular logical volume Also, this number is the same as the
number of logical partitions for a non-mirrored logical volume.

� The associated journaled file system mount point

However, the lspv -p output shown in Figure 40 also tells us:

� The type of logical volume

� The unambiguous state of every physical partition

This is very useful because we can easily see if a logical volume on this disk
will become fragmented if we extend it on this disk, as would occur for
datalv1, datalv2, datalv3, datalv4, or datalog in this example.

If you need to create map files for logical volumes that exist only on one disk, then
you can execute lspv -M as shown in:

 Chapter 7. Storage Management Files and Commands Summary 173

à ð
Script started on Wed Jul 27 18:13:44 1994

lspv -M hdisk1

hdisk1:1-58

hdisk1:59 datalv1:1:2

hdisk1:6ð datalv1:2:2

hdisk1:61 datalv1:3:2

hdisk1:62 datalv1:4:2

hdisk1:63 datalv1:5:2

hdisk1:64 datalv1:6:2

hdisk1:65 datalv1:7:2

hdisk1:66 datalv1:8:2

hdisk1:67 datalv1:9:2

hdisk1:68 datalv1:1ð:2

hdisk1:69 datalv2:1:1

hdisk1:7ð datalv2:2:1

hdisk1:71 datalv2:3:1

hdisk1:72 datalv2:4:1

hdisk1:73 datalv2:5:1

hdisk1:74 datalv2:6:1

hdisk1:75 datalv2:7:1

hdisk1:76 datalv2:8:1

hdisk1:77 datalv2:9:1

hdisk1:78 datalv2:1ð:1

á ñ

Figure 41. Sample lspv -M Output

On the next screen:

à ð
hdisk1:79 datalv3:1

hdisk1:8ð datalv3:2

hdisk1:81 datalv3:3

hdisk1:82 datalv3:4

hdisk1:83 datalv3:5

hdisk1:84 datalv3:6

hdisk1:85 datalv3:7

hdisk1:86 datalv3:8

hdisk1:87 datalv3:9

hdisk1:88 datalv3:1ð

hdisk1:89 datalv3:11

hdisk1:9ð datalv3:12

hdisk1:91 datalv4:1

hdisk1:92 datalv4:2

hdisk1:93 datalv4:3

hdisk1:94 datalv4:4

hdisk1:95 datalv4:5

hdisk1:96 datalv4:6

hdisk1:97 datalv4:7

hdisk1:98 datalv4:8

hdisk1:99 datalv4:9

hdisk1:1ðð datalv4:1ð

hdisk1:1ð1 datalog:1

hdisk1:1ð2 datapg:1:1

hdisk1:1ð3 datapg:2:1

hdisk1:1ð4 datapg:3:1

hdisk1:1ð5 datapg:4:1

hdisk1:1ð6 datapg:5:1

hdisk1:1ð7-287

á ñ

Figure 42. Continued Sample lspv -M Output

For hdisk8, try:

174 AIX Storage Management

à ð
lspv -M hdisk8

hdisk8:1-15

hdisk8:16 datalv1:1:1

hdisk8:17 datalv1:2:1

hdisk8:18 datalv1:3:1

hdisk8:19 datalv1:4:1

hdisk8:2ð datalv1:5:1

hdisk8:21 datalv1:6:1

hdisk8:22 datalv1:7:1

hdisk8:23 datalv1:8:1

hdisk8:24 datalv1:9:1

hdisk8:25 datalv1:1ð:1

hdisk8:26 datalv2:1:2

hdisk8:27 datalv2:2:2

hdisk8:28 datalv2:3:2

hdisk8:29 datalv2:4:2

hdisk8:3ð datalv2:5:2

hdisk8:31 datalv2:6:2

hdisk8:32 datalv2:7:2

hdisk8:33 datalv2:8:2

hdisk8:34 datalv2:9:2

hdisk8:35 datalv2:1ð:2

hdisk8:36 datapg:1:2

hdisk8:37 datapg:2:2

hdisk8:38 datapg:3:2

hdisk8:39 datapg:4:2

hdisk8:4ð datapg:5:2

hdisk8:41-75

script done on Wed Jul 27 18:14:ð9 1994

á ñ

Figure 43. Continued Sample lspv -M Output

If you concatenate this lspv -M output from all the physical volumes in your volume
group, then the combined file is the same as that obtained from the lsvg -M

command, as shown in Figure 32 on page 166 and in Figure 33 on page 167.

If the volume group is varied off, it is still possible to get some volume group
information from lsvg -n hdiskx, and also, all the previous lslv and lspv output, if,
in each command, the -N PVName flag is used. Check in infoExplorer for the use of
this flag, as the returned data may not be current.

If the ODM is badly corrupted or if a volume group has not been configured, then
the previous commands may fail. However, the following commands will allow the
disks in a volume group to be read directly. As well as helping you repair the
ODM, you may also be able to determine what information is stored on a disk when
the other physical volumes in the disk's volume group are not available. We can
simulate these two scenario's by exporting the volume group so that the physical
volume assignment by the operating system is:

 Chapter 7. Storage Management Files and Commands Summary 175

à ð
lspv

hdiskð ððððð2ð158496d72 availvg

hdisk1 ððððð2ð1dc8bðb32 None

hdisk2 ððððð2ðð7bb618f5 availvg

hdisk3 ððððð44643155ðc9 availvg

hdisk4 ððð137231982cðf2 stripevg

hdisk5 ððð14732b1bd7f57 rootvg

hdisk6 ððð12218ððð7244ð stripevg

hdisk7 ððð12218da42ba76 rootvg

hdisk8 ððð2479ð88f5f347 None

á ñ

Figure 44. Sample lspv Output to See all Known Physical Volumes and Volume Groups

First, use lqueryvg on the unassigned disks hdisk1 and hdisk8 to obtain general
volume group information; always use the -t flag for field titles.

à ð
Script started on Wed Jul 27 19:13:24 1994

lqueryvg -p hdisk1 -Avt

Max LVs: 256

PP Size: 22

Free PPs: 289

LV count: 6

PV count: 2

Total VGDAs: 3

Logical: ððððð4467b689da1.1 datalv1 1

 ððððð4467b689da1.2 datalv2 1

 ððððð4467b689da1.3 datalv3 1

 ððððð4467b689da1.4 datalv4 1

 ððððð4467b689da1.5 datalog 1

 ððððð4467b689da1.6 datapg 1

Physical: ððð2479ð88f5f347 2 ð

 ððððð2ð1dc8bðb32 1 ð

VGid: ððððð4467b689da1

lqueryvg -p hdisk8 -Avt

Max LVs: 256

PP Size: 22

Free PPs: 289

LV count: 6

PV count: 2

Total VGDAs: 3

Logical: ððððð4467b689da1.1 datalv1 1

 ððððð4467b689da1.2 datalv2 1

 ððððð4467b689da1.3 datalv3 1

 ððððð4467b689da1.4 datalv4 1

 ððððð4467b689da1.5 datalog 1

 ððððð4467b689da1.6 datapg 1

Physical: ððð2479ð88f5f347 2 ð

 ððððð2ð1dc8bðb32 1 ð

VGid: ððððð4467b689da1

script done on Wed Jul 27 19:14:ð3 1994

á ñ

Figure 45. Sample lqueryvg Output

The same VGid proves that they both belong to the same volume group, and we
know that there are no other disks since the PV count is two. Since the names of
the logical volumes are included in this lqueryvg command output, it is clearly
beneficial to give them meaningful names to help you remember the contents of the
logical volumes.

176 AIX Storage Management

We can use a logical volume identifier and the physical volume name to execute
the following two commands to extract more logical volume and physical volume
information from the disk VGDA and VGSA:

à ð
Script started on Wed Jul 27 19:14:19 1994

lquerylv -p hdisk1 -Lððððð4467b689da1.6 -at

LVname: datapg

VGid: 4467b689da1

MaxLP: 128

MPolicy: 2

MWrtConsist: 2

LVstate: 1

Csize: 5

PPsize: 22

Permissions: 1

Relocation: 1

WrVerify: 2

open_close: 2

stripe_exp: ð

striping_wid ð

lquerylv -p hdisk1 -Lððððð4467b689da1.6 -rt

LVMAP: ððððð2ð1dc8bðb32 1ð2 1

LVMAP: ððð2479ð88f5f347 36 1

LVMAP: ððððð2ð1dc8bðb32 1ð3 2

LVMAP: ððð2479ð88f5f347 37 2

LVMAP: ððððð2ð1dc8bðb32 1ð4 3

LVMAP: ððð2479ð88f5f347 38 3

LVMAP: ððððð2ð1dc8bðb32 1ð5 4

LVMAP: ððð2479ð88f5f347 39 4

LVMAP: ððððð2ð1dc8bðb32 1ð6 5

LVMAP: ððð2479ð88f5f347 4ð 5

á ñ

Figure 46. Sample lquerylv Output for the Mirrored datapg Logical Volume

We now know that datapg has two mirror copies, and is configured for high
availability since we can see from the physical volume identifiers that each logical
partition copy is on a different physical volume. Of course, it was much easier to
view this information from the output of the lslv -m datapg command shown in
Figure 35 on page 169.

For the datalv3 logical volume, execute:

 Chapter 7. Storage Management Files and Commands Summary 177

à ð
lquerylv -p hdisk1 -Lððððð4467b689da1.3 -at

LVname: datalv3

VGid: 4467b689da1

MaxLP: 128

MPolicy: 2

MWrtConsist: 1

LVstate: 1

Csize: 12

PPsize: 22

Permissions: 1

Relocation: 1

WrVerify: 2

open_close: 2

stripe_exp: ð

striping_wid ð

lquerylv -p hdisk1 -Lððððð4467b689da1.3 -rt

LVMAP: ððððð2ð1dc8bðb32 79 1

LVMAP: ððððð2ð1dc8bðb32 8ð 2

LVMAP: ððððð2ð1dc8bðb32 81 3

LVMAP: ððððð2ð1dc8bðb32 82 4

LVMAP: ððððð2ð1dc8bðb32 83 5

LVMAP: ððððð2ð1dc8bðb32 84 6

LVMAP: ððððð2ð1dc8bðb32 85 7

LVMAP: ððððð2ð1dc8bðb32 86 8

LVMAP: ððððð2ð1dc8bðb32 87 9

LVMAP: ððððð2ð1dc8bðb32 88 1ð

LVMAP: ððððð2ð1dc8bðb32 89 11

LVMAP: ððððð2ð1dc8bðb32 9ð 12

Script done on Wed Jul 27 19:21:31 1994

á ñ

Figure 47. Sample lquerylv Output for the Non-Mirrored datalv3 Logical Volume

For more physical volume information, execute lquerypv. You'll need to use the
physical volume identifier to specify which disk you want to know about, and then
use the volume group identifier and a physical volume name to specify which disk
you want to read to get the information.

Note that you will need a terminal that's about 115 columns wide to view output
neatly as follows:

178 AIX Storage Management

à ð
Script started on Wed Jul 27 19:24:33 1994

lquerypv -p ððð2479ð88f5f347 -g 4467b689da1 -N hdisk8 -dt\

|grep ððððð4467b689da1.6|pg

PVMAP: ððð2479ð88f5f347:36 1 ODMtype ððððð4467b689da1.6 1

 ððððð2ð1dc8bðb32:1ð2 ðððððððððððððððð:ð

PVMAP: ððð2479ð88f5f347:37 1 ODMtype ððððð4467b689da1.6 2

 ððððð2ð1dc8bðb32:1ð3 ðððððððððððððððð:ð

PVMAP: ððð2479ð88f5f347:38 1 ODMtype ððððð4467b689da1.6 3

 ððððð2ð1dc8bðb32:1ð4 ðððððððððððððððð:ð

PVMAP: ððð2479ð88f5f347:39 1 ODMtype ððððð4467b689da1.6 4

 ððððð2ð1dc8bðb32:1ð5 ðððððððððððððððð:ð

PVMAP: ððð2479ð88f5f347:4ð 1 ODMtype ððððð4467b689da1.6 5

 ððððð2ð1dc8bðb32:1ð6 ðððððððððððððððð:ð

(EOF):

lquerypv -p ððððð2ð1dc8bðb32 -g 4467b689da1 -N hdisk1 -at

PP Size: 22

PV State: ð

Total PPs: 287

Alloc PPs: 48

Total VGDAs: 1

lquerypv -p ððð2479ð88f5f347 -g 4467b689da1 -N hdisk1 -at

PP Size: 22

PV State: ð

Total PPs: 75

Alloc PPs: 25

Total VGDAs: 2

#

lspv

hdiskð ððððð2ð158496d72 availvg

hdisk1 ððððð2ð1dc8bðb32 None

hdisk2 ððððð2ðð7bb618f5 availvg

hdisk3 ððððð44643155ðc9 availvg

hdisk4 ððð137231982cðf2 stripevg

hdisk5 ððð14732b1bd7f57 rootvg

hdisk6 ððð12218ððð7244ð stripevg

hdisk7 ððð12218da42ba76 rootvg

hdisk8 ððð2479ð88f5f347 None

á ñ

Figure 48. Sample lquerypv Output

The first lqueryvg command output has been simplified by being piped into the
grep command so that it only includes the lines that refer to the datapg logical
volume. The information here agrees with the physical partition allocation map
obtained from the lspv -p command that is displayed in Figure 40 on page 173.
The next two lqueryvg command outputs match the information obtained from the
lsvg commands as shown in Figure 31 on page 165. In particular, note that:

� The physical partition size is expressed as a power of 2, so 2 to the power of
22 is roughly 4MB

� We first obtained information about hdisk1, and then about hdisk8, but both
commands used the one copy of the VGDA that's on hdisk1. However, we
could have obtained exactly the same information by accessing either of the
VGDA copies on hdisk8. Recall that the two executions of the lqueryvg
command shown in Figure 45 on page 176 also provided identical output
because they read copies of the same VGDA information that is placed on
every physical volume in a volume group.

Now that we know exactly what these "mystery" physical volumes contain, we can
import them and access the data by executing:

 Chapter 7. Storage Management Files and Commands Summary 179

à ð
importvg -y datavg hdisk1

datavg

#

mount /datajfs1

ls -la /datajfs1

total 16

drwxr-sr-x 2 sys sys 512 Jul 25 14:33 .

drwxr-xr-x 35 bin bin 1ð24 Jul 27 17:33 ..

script done on Wed Jul 27 19:29:4ð 1994

á ñ

Figure 49. Accessing a Disk after Reading its VGDA to Check its Contents

Now we can complete the above steps by a comparison of the output. The main
point is that the same data can be obtained from many sources in many different
formats, so its up to the systems administrator to decide which format is preferred.

7.5 Using Commands to View AIX Version 4 Journaled File System
Information

This section discusses sample output for some of the options of the following:

1. Commands included in filesets of AIX Version 4:

The first two commands discussed, du and df, both produce similar output.
Before looking at the commands themselves a brief overview of their
differences in implementation will be given to account for the slight differences
in output.

On any given file system, execute:

à ð
du -sk /filesystem_path

á ñ

and then:

à ð
df /filesystem_path

á ñ

If you substract the number of free KB from the number of Total KB, you will
get a number of used KB. This number will be higher than that which the du
command will report as used on that same file system. The reason is the
methodology used by each command.

The du command basically walks down the directory tree taking the size of
each file and rounding it up to the next multiple of the cluster size, which is
4KB under AIX Version 3. The results of the rounding operation is then added
together to make a total, which is the number the du command returns. Thus, if
you run du -sk in a directory with two files under 4KB each, the number output
would be 12; 4KB for each of the two files and another 4KB for the directory
entry. If you had a file that was 4097 bytes long (one byte over 4KB) and
executed du -sk file then the number returned would be 8 because its size is
rounded to the next increment of 4 KB, in this case, 8192 bytes or 8KB. The
du command returns an approximation of the size of the file space used and
does not include any file system overhead.

180 AIX Storage Management

The df command looks at the super block of the file system to determine how
many 4KB data blocks are unallocated. Of the allocated storage, some of the
space will be allocated for I-nodes. I-nodes are part of the overhead necessary
for accessing information in the file system. As a result of this, both files and
I-nodes are added into the final total of allocated storage space and a more
accurate determination of file system usage is made.

The amount of space which is used by inodes can be determined from the
equation

kilobyte space = total i-nodes / 8

where the total i-nodes can be determined by running df -v and adding the
iused and ifree columns.

If you were to increase the size of that file system but not add any new files,
then the du command would return the same number as before. The df
command, however, would show more file system space was allocated than
before the file system was increased, because when the file system was
increased, more I-nodes were allocated.

 � du

à ð
du -ksr /home

1ð3325 /home

#

á ñ

This is a useful way of executing the disk usage command so that you get
a brief output that you can easily convert to MBs used, and you can easily
compare it to the following df output:

 � df

à ð
df -kI

Filesystem 1ð24-blocks Used Free %Used Mounted on

/dev/hd4 8192 43ð8 3884 52% /usr

 /dev/hd2 319488 31598ð 35ð8 98% /usr

/dev/hd9var 12288 94ð 11348 7% /var

/dev/hd3 12288 748 1154ð 6% /tmpe

 /dev/hd1 12288ð 11ð128 12752 89% /home

/dev/lvðð 1ð6496 24948 81548 23% /usr/local

á ñ

The previous display file systems command is beneficial because the block
numbers can easily be converted to MBs and the output is similar to that
for the df command in AIX V3.2. If you also want to display i-node
information in a wider output format, then use the -v flag as well in the
previous df command.

As is discussed elsewhere, du shows us that /home has physically used
103325 x 1024 byte blocks, whereas df says that 110128 x 1024 byte
blocks have been allocated. This means that we currently have an
overhead of about 6% ((110128 - 103325) / 122880) of the total size of
/home required to store the indices, or i-nodes, that are used by the
operating system when we want to access our data.

 � fsdb

 Chapter 7. Storage Management Files and Commands Summary 181

à ð
fsdb /home

File System: /home

File System Size: 24576ð (512 byte blocks)

Disk Map Size: 18 (4K blocks)

Inode Map Size: 4 (4K blocks)

Fragment Size: 512 (bytes)

Allocation Group Size: 8192 (fragments)

Inodes per Allocation Group: 1ð24

Total Inodes: 3ð72ð

Total Fragments: 24576ð

á ñ

Exit the fsdb command by typing q and pressing the Enter key.

 � lsfs

à ð
lsfs -q /home

Name Nodename Mount Pt VFS Size Options Auto

Accounting

/dev/hd1 -- /home jfs 24576ð -- yes

no

(lv size: 24576ð, fs size: 24576ð, frag size: 512, nbpi: 4ð96, compress: no)

#

á ñ

This command output complements the the journaled file system attributes
obtained from the fsdb command. Of course, not all of these attributes are
displayed if you execute these commands in AIX Version 3.

Warning - debug journaled file system carefully

The fsdb command, along with the dumpfs command that is not
discussed here, should only be used by very experienced systems
administrators as a last resort when they want to try to recover data
from a damaged journaled file system. If you think that you are likely to
need to use them, it would be wise to practice using these low-level
commands before a disaster.

2. Commands included in filesets of other program products:

As you become familiar with the information discussed in the AIX V3.2
Performance Monitoring and Tuning Guide article "Monitoring and Tuning Disk
I/O" in the AIX Version 4.1 Hypertext Information Base Library, it is clear that
the following commands provide you with much more journaled file system
information. Although these commands were part of the optional program
product "Extended Commands" (bosext1.extcmds.obj) in AIX V3.2, they are
now part of the separate licensed program product known as "Performance
Toolbox/6000 , product number 5696-623" in AIX Version 4. Hence, this
product is a wise investment if you really want to fine tune and monitor your
journaled file system configuration and performance.

 � fileplace

This command tells us what physical and logical blocks are used by a file.
Consider the following example discussed in the AIX V3.2 Performance
Monitoring and Tuning Guide article "Monitoring and Tuning Disk I/O".

182 AIX Storage Management

à ð
fileplace -pv big1

The resulting report is:

File: big1 Size: 3554273 bytes Vol: /dev/hd1ð (4ð96 byte blks)

Inode: 19 Mode: -rwxr-xr-x Owner: frankw Group: system

Physical blocks (mirror copy 1) Logical blocks

------------------------------- --------------

ð1584-ð1591 hdiskð 8 blks, 32 KB, ð.9% ð1ð4ð-ð1ð47

ð1624-ð1671 hdiskð 48 blks, 192 KB, 5.5% ð1ð8ð-ð1127

ð1728-ð2539 hdiskð 812 blks, 3248 KB, 93.5% ð1184-ð1995

868 blocks over space of 956: space efficiency = 9ð.8%

3 fragments out of 868 possible: sequentiality = 99.8%

á ñ

The above numbers do accurately reflect the extent of file fragmentation;
the lower the percentages the greater the fragmentation. Each row above
represents a contiguous area of disk space, so this file occupies three disk
chunks, or fragments. The first physical block used is block 01584, and the
last is block 02539, so that the total number of contiguous physical disk
blocks that are available in this range is (02539 - 01584 + 1) = 956.

space efficiency = blocks_used / blocks_available

In this example, this is 868 / 956 = 90.8%. As expected, 100% efficiency
can be achieved if all available blocks are used for one contiguous file.

sequentiality = (blocks_used - (number_fragments - 1)) / blocks_used

Hence, in this case (868 - (3 - 1)) / 868 = 99.8%. This means that in the
ideal case where a single fragment file uses x contiguous blocks, its
sequentiality is (x - 0) / x = 100%.

 � filemon

The filemon command monitors a trace of file system and I/O system
events and reports on the file and I/O access performance during that
period. It can produce an extensive output, an example of which is
presented in the AIX V3.2 Performance Monitoring and Tuning Guide article
"Monitoring and Tuning Disk I/O". Note this article's recommendation to
experiment with this command. This will help you become familiar with its
output, and also estimate the performance degradation that you will
experience when you use this tool in a production environment.

 Chapter 7. Storage Management Files and Commands Summary 183

184 AIX Storage Management

 Chapter 8. Practical Examples

This chapter contains a series of practical examples covering a variety of storage
management and problem solving situations.

Each example has three major sections:

� An introduction and general description.

� A summary of the commands that can be used by an experienced systems
administrator.

� A detailed description that may include:

– What the output is and what it means.

– Why a particular command is used.

– How to use the commands, usually with ASCII smit screens, note that on
your screen, the output may vary due to:

- A different level of AIX Version 4.

- Different terminal attributes such as the number of lines displayed in an
output screen.

Warning - read smit documentation

Before using smit:

� Become familiar with relevant smit documentation, such as that
provided in AIX Version 4.1 System Management Guide:
Operating System and Devices.

� Be aware that some of the storage management menus have
been changed.

 8.1 Planning
Before a key is pressed to configure the available equipment, careful planning is a
wise investment. Hence, we begin by considering what volume group(s) our disks
should belong to, and how should they be connected to the RISC System/6000.

We have nine SCSI-1 disks available that range in capacity from 355MB to 1.2GB.
To show a number of different logical volume manager features coexisting in AIX
Version 4, these disks can be initially arranged in four volume groups. The
implementation of this volume group setup is shown and discussed in 8.3, “Storage
Subsystem Design” on page 204.

Since there are two SCSI-1 adapters available for the nine available SCSI-1 disks,
then four disks can be connected to one adapter, and five disks can be connected
to the second adapter. The CD-ROM and 8mm tape drive are not likely to be
involved in as much I/O as the disks, so their location is not as critical.

A typical setup of this hardware can be seen from the output of the following lsdev
command:

 Copyright IBM Corp. 1994 185

à ð
lsdev -Cc disk

hdiskð Available ðð-ð8-ðð-ð,ð 67ð MB SCSI Disk Drive

hdisk1 Available ðð-ð8-ðð-1,ð 67ð MB SCSI Disk Drive

hdisk2 Available ðð-ð8-ðð-2,ð 355 MB SCSI Disk Drive

hdisk4 Available ðð-ð7-ðð-ð,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk5 Available ðð-ð7-ðð-1,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk6 Available ðð-ð7-ðð-2,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk7 Available ðð-ð7-ðð-3,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk3 Available ðð-ð8-ðð-3,ð 32ð MB SCSI Disk Drive

hdisk8 Available ðð-ð7-ðð-4,ð 857 MB SCSI Disk Drive

lsdev -Cc cdrom

cd1 Available ðð-ð8-ðð-4,ð CD-ROM Drive

#

lsdev -Cc tape

rmtð Available ðð-ð8-ðð-6,ð 2.3 GB 8mm Tape Drive

á ñ

Note that the allocation of hdisk names resulted from the following:

� Lower SCSI addresses are configured first

� The SCSI adapter in slot seven was added after that in slot eight, so its
devices were also configured later

Warning - For hdiskx, x may change

We expect when this system is reinstalled, the disk devices will be reconfigured.
Depending on what is powered on at installation time, the disk name assigned
to a particular device at a particular SCSI address may change.

The devices connected to the SCSI adapter in slot seven are inside a model
9334-500, which is designed to provide extra storage capacity for the RISC
System/6000. The power supply in the 9334, and the second SCSI adapter in the
RISC System/6000, combine to help to reduce the number of single points of failure
that exists with the standard components in the RISC System/6000. All this
equipment is located in close proximity in an appropriate office environment.

Once the hardware is correctly connected and working, the operating system needs
to be installed, by default in the rootvg, before detailed configuration can be
completed. To enable the rootvg to be mirrored, AIX Version 4 is initially installed
only on hdisk0, before a copy is created on hdisk2. Please refer to the AIX Version
4.1 Installation Guide both before and during the initial installation of AIX Version 4
on hdisk0.

More detail regarding the level of AIX Version 4 in use can be obtained from the
commands lslpp or uname (please refer to the AIX Version 4.1 Commands
Reference for usage details). For these practical examples, we used:

à ð
uname -a

AIX 9421A-UP bilbo 1 4 ððððð4461ððð

#

á ñ

The mirrored operating system implementation is described in the next section.

186 AIX Storage Management

Warning - Always have good backups in place

It is very important that you are familiar with the backup concepts discussed
elsewhere in this book (see 5.5, “Planning Backup Strategies” on page 87), and
also in the book AIX Version 4.1 System Management Guide: Operating System
and Devices, (you may have AIX Version 4.1 System Management Guide:
Operating System and Devices available in your AIX Version 4.1 Hypertext
Information Base Library).

If any example in this document does not work in your particular circumstances,
then reinstallation from a backup may be your only viable recovery method.

8.2 rootvg Mirroring - Implementation and Recovery
Once AIX Version 4 has been installed, this section describes how to create a
mirror of rootvg and then how to test it. In the following example, a second copy of
each logical volume on hdisk0 is made on hdisk2 which is an externally powered
355MB disk unit. This device is then powered off at various times to test the
continued availability of the operating system. The availability test is discussed for
two scenarios:

� Disk power failure before AIX Version 4 is loaded when the RISC System/6000
is turned on.

� Disk power failure during normal operations.

This section is based on the suggestions provided by the AIX Version 4.1 Hypertext
Information Base Library articles Mirroring rootvg for Maximum Operating System
Availability and Recovering a Disk Drive without Reformatting. As suggested by the
title of this article, the availability test assumes that the disk media has not been
damaged and thus has a valid, unique PVID. This means that the recovery steps
can be as simple as a system reboot once the non-media related disk problem is
fixed.

However, if the media fails:

1. Remove all physical partitions from the failed disk.

2. Remove the failed disk from the volume group.

3. Add the new disk to the volume group.

4. Rebuild the logical volume copies and synchronize them.

5. Rebuild any single copy logical volumes and restore backups.

For more details, refer to the AIX Version 4.1 Hypertext Information Base Library
article Recovering from Disk Drive Problems.

The performance implications of rootvg mirroring is not investigated in this example.

 Chapter 8. Practical Examples 187

8.2.1.1 Command Line Summary
1. Document your initial rootvg configuration; the following commands produce the

necessary output:

à ð
lspv

lsvg -l rootvg

lsvg rootvg

lsvg -p rootvg

lslv -m hd9var

lsvg -M rootvg

á ñ

2. Create logical volume copies:

� Turn off quorum checking:

à ð
chvg -a y -Q n rootvg

á ñ

� Add a physical volume to mirror to (if necessary), in these examples we are
mirroring to a new physical volume called hdisk2:

à ð
extendvg -f rootvg hdisk2

á ñ

This command assumes that you wish to add a new physical volume called
hdisk2 to the root volume group.

� Create the mirrored copies for all logical volumes:

à ð
mklvcopy hd4 2 hdisk2

á ñ

Repeat this for every logical volume in rootvg:

 – hd1 (/home).

 – hd2 (/usr).

 – hd3 (/tmp).

 – hd8 (jfslog).

 – hd9var (/var).

– hd6 (default paging space).

– Any other logical volumes that you may have created, except the boot
logical volume (see detailed guidance for the reasoning behind this).

3. Create second boot logical volume, and build a boot image on it:

à ð
mklv -y hd5x -t boot -a e rootvg 1 hdisk2

bosboot -a -l /dev/hd5x -d /dev/hdisk2

á ñ

 4. Update bootlist:

à ð
bootlist -m normal hdiskð hdisk2

á ñ

188 AIX Storage Management

5. Synchronize rootvg copies:

à ð
varyonvg rootvg

á ñ

This completes the command line overview of the process. A detailed description of
how to achieve mirroring for the root volume group now follows.

 8.2.1.2 Detailed Guidance
How to Document the Initial rootvg Configuration: The initial layout of rootvg
can be seen from the output of the following commands. More examples
describing the use of these commands, and similar variations to them, are provided
in Chapter 7, “Storage Management Files and Commands Summary” on page 137.

In order to see how to use smit to execute most of these commands so that the
output can be viewed in the smit.log file, then please refer to “How to Document the
Volume Group Design” on page 236.

 Chapter 8. Practical Examples 189

à ð
lspv

hdiskð ððð14732b1bd7f57 rootvg

hdisk1 ððð12218ððð7244ð newvg

hdisk2 ððð12218da42ba76 None

hdisk6 ððððð2ðð7bb618f5 myvg

hdisk7 ððððð2ðð7bb623c1 None

hdisk3 ððð2479ð88f5f347 None

#

lsvg -l rootvg

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd6 paging 8 8 1 open/syncd N/A

hd5 boot 1 1 1 closed/syncd N/A

hd8 jfslog 1 1 1 open/syncd N/A

hd4 jfs 1 1 1 open/syncd /

hd2 jfs 5ð 5ð 1 open/syncd /usr

hd9var jfs 3 3 1 open/syncd /var

hd3 jfs 2 2 1 open/syncd /tmp

hd1 jfs 1 1 1 open/syncd /home

pagingðð paging 16 16 1 open/syncd N/A

lsvg rootvg

VOLUME GROUP: rootvg VG IDENTIFIER: ððððð446899fd1ð8

VG STATE: active PP SIZE: 4 megabyte(s)

VG PERMISSION: read/write TOTAL PPs: 159 (636 megabyte)

MAX LVs: 256 FREE PPs: 76 (3ð4 megabyte)

LVs: 9 USED PPs: 83 (332 megabyte)

OPEN LVs: 8 QUORUM: 2

TOTAL PVs: 1 VG DESCRIPTORS: 2

STALE PVs: ð STALE PPs ð

ACTIVE PVs: 1 AUTO ON: yes

#

lsvg -p rootvg

rootvg:

PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION

hdiskð active 159 76 28..24..ðð..ðð..24

#

lslv -m hd9var |pg

hd9var:/var

hd9var:/var

LP PP1 PV1 PP2 PV2 PP3 PV3

ððð1 ðð74 hdiskð

ððð2 ððð3 hdiskð

ððð3 ððð4 hdiskð

#

á ñ

It is also useful to document the complete current partition map of the rootvg
volume group by using the command lsvg -M rootvg|pg. This command may
produce a long output for a large volume group so its output is not included here.
However, the outputs of lsvg -l rootvg and lslv -m hd9var clearly show, from the
one to one ratio of logical to physical partitions, that no logical volume in the rootvg
is currently mirrored.

How to Create the rootvg Logical Volume Mirror Copies: In this example, the
mirrored rootvg consists of only two disks. This means that by default, one disk
contains two copies of the VGDA. This disk is thus required to be operational to
maintain quorum. To ensure that the rootvg volume group stays online when this
disk fails, using the mirror logical volume copies, quorum needs to be turned off.

Turn the rootvg quorum function off by entering:

 1. smitty vg.

190 AIX Storage Management

2. From the Volume Groups menu select Set Characteristics of a Volume
Group .

3. From the Set Characteristics of a Volume Group menu, select Change a
Volume Group .

4. On the menu Change a Volume Group, type in rootvg for the option labelled
VOLUME GROUP name and press the Enter key (this could also be selected from
the option F4=List).

5. Change the QUORUM field so the screen looks like:

à ð
Change a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ VOLUME GROUP name rootvg

\ Activate volume group AUTOMATICALLY yes +

at system restart?

\ A QUORUM of disks required to keep the volume no +

group on-line ?

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

6. As suggested by Enter=Do , press the Enter key.

When smit returns OK, a second disk is added to rootvg so that mirror copies of all
rootvg logical volumes can be created on it.

To add hdisk2 to the rootvg:

1. Use F3=Cancel to return the menu named Set Characteristics of a Volume
Group.

2. From this menu, select Add a Physical Volume to a Volume Group .

3. Type rootvg and hdisk2 so that the screen looks like:

 Chapter 8. Practical Examples 191

à ð
Add a Physical Volume to a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ VOLUME GROUP name [rootvg]

\ PHYSICAL VOLUME names [hdisk2]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

4. As suggested by Enter=Do , press the Enter key.

5. Use F10=Exit to return to the command prompt.

Now create a mirrored copy of all file systems, the file systems log, and the paging
spaces on hdisk2.

For the root file system:

 1. Type smitty lv.

2. Select Set Characteristic of a Logical Volume .

3. Select Add a Copy to a Logical Volume .

4. To select the root file system, either type hd4 and press the Enter=Do key, or
press F4=List to display a screen that looks like:

à ð
Add Copies to a Logical Volume

Type or select a value for the entry field.

Press Enter AFTER making all desired changes.

| LOGICAL VOLUME name |

\ | |

 | |

| Move cursor to desired item and press Enter. |

 | |

| loglvðð jfslog 1 1 1 closed/syncd N/A |

| lvðð jfs 1 2 2 closed/stale /myfs|

| hd6 paging 8 8 1 open/syncd N/A |

| hd5 boot 1 1 1 closed/syncd N/A |

| hd8 jfslog 1 1 1 open/syncd N/A |

| hd4 jfs 1 1 1 open/syncd / |

| hd2 jfs 5ð 5ð 1 open/syncd /usr |

| hd9var jfs 3 3 1 open/syncd /var |

| hd3 jfs 2 2 1 open/syncd /tmp |

| hd1 jfs 1 1 1 open/syncd /home|

| pagingðð paging 16 16 1 open/syncd N/A |

 | |

 | F1=Help F2=Refresh F3=Cancel |

F1| F8=Image F1ð=Exit Enter=Do |

F5| /=Find n=Find Next |

 |__|

á ñ

192 AIX Storage Management

5. Press the down key until the line that contains hd4 is highlighted, and then
press the Enter=Do key.

6. Move the cursor again to the field named NEW TOTAL number of logical

partition copies and then use the Tab key to select the value 2.

7. Leave the field SYNCHRONIZE the data in the new logical partition copies?

with its default of no since we'll synchronize it later in “How to Synchronize
rootvg” on page 196.

8. Move the cursor to the field named PHYSICAL VOLUME names and then either
type in hdisk2 or use the F4=List function key to select it so the screen looks
like:

à ð
Add Copies to a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ LOGICAL VOLUME name hd4

\ NEW TOTAL number of logical partition 2 +

 copies

PHYSICAL VOLUME names [hdisk2] +

POSITION on physical volume center +

RANGE of physical volumes minimum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #

to use for allocation

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

File containing ALLOCATION MAP []

SYNCHRONIZE the data in the new no +

logical partition copies?

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

9. When smit returns OK to indicate that the command is complete, use the
F3=Cancel key a few times to return to the menu with the title Logical
Volumes.

10. Repeat the above copy creation for each of the following logical volumes:

a. Copy hd1 that contains /home.

b. Copy hd2 that contains /usr.

c. Copy hd3 that contains /tmp.

d. Copy hd8 that contains the file system log.

e. Copy hd9var that contains /var.

f. Copy hd6 that contains the default paging device.

g. Copy paging00 that contains a second paging device.

 Chapter 8. Practical Examples 193

Warning - Check your dump device

If you have a new AIX Version 4 system, then the hd6 logical volume is
also likely to be the system dump device. This can be checked by the
command sysdumpdev.

If hd6 is the dump device and you want to be able to capture a valid
dump, then you must change the primary dump device by using the
command sysdumpdev -p /dev/dump_device_name -P.

Alternatively, you can follow the smit menus obtained from the
command smitty sysdumpdev to check and, if necessary, change the
primary dump device.

Do not mirror the dump device. Please refer to the article Developing a
Logical Volume Strategy in AIX Version 4.1 Hypertext Information Base
Library. Any dumps to a mirrored dump device will fail.

h. We can easily check that the copies have been created by using the
following lsvg command:

à ð
lsvg -l rootvg

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd6 paging 8 16 2 open/stale N/A

hd5 boot 1 1 1 closed/syncd N/A

hd8 jfslog 1 2 2 open/stale N/A

hd4 jfs 1 2 2 open/stale /

hd2 jfs 5ð 1ðð 2 open/stale /usr

hd9var jfs 3 6 2 open/stale /var

hd3 jfs 2 4 2 open/stale /tmp

hd1 jfs 1 2 2 open/stale /home

pagingðð paging 16 32 2 open/stale N/A

#

á ñ

Note that the logical volumes are currently in a stale state. This reflects
the fact that the data in the most recently created copies is older than that
in the original copies; the data is synchronized in a subsequent step.

i. As stated in the AIX Version 4.1 Hypertext Information Base Library article
Mirroring rootvg for Maximum Operating System Availability, the creation of
a mirror copy of hd5, the boot logical volume, is not recommended.
Instead, create a new boot logical volume called hd5x.

1) Select, in the Logical Volumes menu, the option Add a Logical
Volume .

2) When prompted for the VOLUME GROUP name, type in rootvg and press
Enter=Do , or use F4=List to select it.

3) In the Add a Logical Volume menu, leave all entries as default, except
for Logical volume NAME, Number of LOGICAL PARTITIONS, PHYSICAL
VOLUME names, and Logical volume TYPE, so that the screen looks like:

194 AIX Storage Management

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

Logical volume NAME [hd5x]

\ VOLUME GROUP name rootvg

\ Number of LOGICAL PARTITIONS [2] #

PHYSICAL VOLUME names [hdisk2] +

Logical volume TYPE [boot]

POSITION on physical volume outer_edge +

RANGE of physical volumes minimum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [] #

to use for allocation

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

Note that you can use any Logical volume NAME, and you can use
more than one physical partition, although this does waste space since
hd5 only occupies 4MB. For the Logical volume TYPE, you must type in
the word boot to ensure that you do not get the default type of jfs,
which is for an ordinary jfs file system like /home. Finally, do not forget
to type hdisk2 for the PHYSICAL VOLUME name so that hd5x is not
created on hdisk0, which is where hd5, the original boot logical volume,
exists.

4) Use F10=Exit to exit smit when the command completion is indicated
by:

à ð
 COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

hd5x

F1=Help F2=Refresh F3=Cancel F6=Command

F8=Image F9=Shell F1ð=Exit /=Find

n=Find Next

á ñ

5) Now that hd5x exists, build a boot image on it by entering the following
command after using the F10=Exit key to leave smit.

à ð
bosboot -a -l /dev/hd5x -d /dev/hdisk2

bosboot: Boot image is 4259 512 byte blocks.

á ñ

 Chapter 8. Practical Examples 195

The output will appear after approximately 30 seconds.

Warning - Be careful with bosboot

It is very important to be aware of the following advice given in the
AIX Version 4.1 Hypertext Information Base Library article Mirroring
rootvg for Maximum Operating System Availability.

If you put on a ptf that performs a bosboot or personally do bosboot
and you are mirroring the rootvg, you must remember to do a
bosboot to the secondary /blv.

Furthermore, we suggest that you execute the command bootlist

-m normal hdiskð hdisk2, and then reboot using hd5 which is on
hdisk0, before you execute any command that calls the bosboot
command.

If you do not do this, you may get errors such as:

à ð
installp: bosboot verification starting...

ð3ð1-168 bosboot: The current boot logical volume, /dev/hd5,

does not exist on /dev/hdisk2.

The installation or updating script is unable to continue

installp: An error occurred during bosboot processing.

Please correct the problem and rerun installp.

á ñ

11. Now that all logical volumes in the rootvg exist with their primary copy on
hdisk0 and their mirror copy on hdisk2, the list of devices to attempt to boot
from in normal mode needs to be updated so the RISC System/6000 can boot
from hdisk2 if hdisk0 is not available.

Use the command:

à ð
#

bootlist -m normal hdiskð hdisk2

#

á ñ

How to Synchronize rootvg: The newly created mirror copies need to be
synchronized with the originals to complete the creation of a mirrored rootvg. This
can be done with the command syncvg -v rootvg, or, to use smit:

 1. Type smitty vg.

2. From the Volume Groups menu, select Activate a Volume Group .

3. For the field VOLUME GROUP name, type rootvg or use the F4=List to select it so
that the screen looks like:

196 AIX Storage Management

à ð
Activate a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ VOLUME GROUP name [rootvg] +

RESYNCHRONIZE stale physical partitions? yes +

Activate volume group in SYSTEM no +

 MANAGEMENT mode?

FORCE activation of the volume group? no +

Warning--this may cause loss of data

 integrity.

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

4. Press Enter=Do to execute the synchronization process.

This smit menu actually starts the command varyonvg rootvg which can be
seen from the F6=Command function key. The varyonvg command actually
starts the syncvg command before varyonvg exits. This can be seen by
pressing F10=Exit when smit returns an OK prompt, and then searching through
the output of the ps -ef command to find:

à ð
root 7ð66 1 ð 13:33:36 pts/ð ð:ðð bsh /usr/sbin/syncvg -v root

root 7264 6494 ð 13:17:41 pts/1 ð:ðð -ksh

root 76ð4 7ð66 1 13:34:5ð pts/ð ð:ðð lresynclv -l ððððð446899fd1ð8

root 7858 7264 5 13:34:46 pts/1 ð:ðð lsvg -l rootvg

root 8118 6ð56 34 13:35:ð5 pts/ð ð:ðð ps -ef

á ñ

 Chapter 8. Practical Examples 197

Warning - syncvg continues

Although smit quickly returns an OK prompt, syncvg continues to run, and,
depending on the size of your rootvg, may run for a long time.

As well as the previous ps -ef command, you can regularly repeat the
following command until the field STALE PPs has a value of 0, which
indicates synchronization is complete.

à ð
lsvg rootvg

VOLUME GROUP: rootvg VG IDENTIFIER: ððððð446899fd1ð8

VG STATE: active PP SIZE: 4 megabyte(s)

VG PERMISSION: read/write TOTAL PPs: 243 (972 megabytes)

MAX LVs: 256 FREE PPs: 76 (3ð4 megabytes)

LVs: 1ð USED PPs: 167 (668 megabytes)

OPEN LVs: 8 QUORUM: 1

TOTAL PVs: 2 VG DESCRIPTORS: 3

STALE PVs: 1 STALE PPs 76

ACTIVE PVs: 2 AUTO ON: yes

á ñ

In this example, syncvg required approximately one hour and 15 minutes on
a quiesced system.

Note that the value of the QUORUM: field is 1 because the quorum function
has been turned off.

How to Check the Implementation of a Mirrored rootvg: When syncvg finally
completes, execute the following command:

à ð
lsvg -l rootvg

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd6 paging 8 16 2 open/syncd N/A

hd5 boot 1 1 1 closed/syncd N/A

hd8 jfslog 1 2 2 open/syncd N/A

hd4 jfs 1 2 2 open/syncd /

hd2 jfs 5ð 1ðð 2 open/syncd /usr

hd9var jfs 3 6 2 open/syncd /var

hd3 jfs 2 4 2 open/syncd /tmp

hd1 jfs 1 2 2 open/syncd /home

pagingðð paging 16 32 2 open/syncd N/A

hd5x boot 2 2 1 closed/syncd N/A

#

á ñ

This shows there now exists two boot type logical volumes, two copies of all other
logical volumes, (indicated by the 2:1 ratio of PPs to LPs), and all the rootvg logical
volumes are now in a syncd state.

Other commands you can use to check the new rootvg configuration include:

198 AIX Storage Management

à ð
lslv -m hd9var |pg

hd9var:/var

LP PP1 PV1 PP2 PV2 PP3 PV3

ððð1 ðð74 hdiskð ððð3 hdisk2

ððð2 ððð3 hdiskð ððð4 hdisk2

ððð3 ððð4 hdiskð ððð5 hdisk2

lsvg -p rootvg

rootvg:

PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION

hdiskð active 159 76 28..24..ðð..ðð..24

hdisk2 active 84 ð ðð..ðð..ðð..ðð..ðð

lsvg -M rootvg|pg

rootvg

more output.....

hdiskð:134 hd2:48:1

hdiskð:135 hd2:49:1

hdiskð:136-159

hdisk2:1 hd2:49:2

hdisk2:2 hd2:5ð:2

hdisk2:3 hd9var:1:2

more output.....

á ñ

Notice that hdisk2 is full. This means that we can not currently extend the rootvg
logical volumes that have mirror copies on hdisk2. However, we can create new
non-mirrored logical volumes on hdisk0 in the rootvg volume group, but their data
would be unavailable if hdisk0 fails.

The implementation of a mirrored rootvg is now complete.

How to Test the rootvg Logical Volume Mirror Copies: Recall that the
bootlist command used earlier forces the RISC System/6000 to try to boot from
hdisk0 before hdisk2. Hence, the first test requires AIX Version 4 to be shut down,
and then the internal disks must be disconnected from their power cables before
the RISC System/6000 is powered back on.

Warning - Handle hardware with care

Ensure that a qualified individual is available to follow the correct procedures
required when a RISC System/6000 unit is serviced.

There are error messages displayed during the boot sequence that are associated
with the powered off internal disks. You can easily confirm there is a disk problem
from the following commands:

 Chapter 8. Practical Examples 199

à ð
lsvg -l rootvg

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd6 paging 8 16 2 open/syncd N/A

hd5 boot 1 1 1 closed/syncd N/A

hd8 jfslog 1 2 2 open/stale N/A

hd4 jfs 1 2 2 open/stale /

hd2 jfs 5ð 1ðð 2 open/stale /usr

hd9var jfs 3 6 2 open/stale /var

hd3 jfs 2 4 2 open/stale /tmp

hd1 jfs 1 2 2 open/stale /home

pagingðð paging 16 32 2 open/syncd N/A

hd5x boot 2 2 1 closed/syncd N/A

#

lsdev -Cc disk

hdiskð Defined ðð-ð8-ðð-ð,ð 67ð MB SCSI Disk Drive

hdisk1 Defined ðð-ð8-ðð-1,ð 67ð MB SCSI Disk Drive

hdisk2 Available ðð-ð8-ðð-2,ð 355 MB SCSI Disk Drive

hdisk4 Available ðð-ð7-ðð-ð,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit

hdisk5 Available ðð-ð7-ðð-1,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit

hdisk6 Available ðð-ð7-ðð-2,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit

hdisk7 Available ðð-ð7-ðð-3,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit

hdisk3 Available ðð-ð8-ðð-3,ð 32ð MB SCSI Disk Drive

á ñ

The lsvg command shows how the rootvg logical volumes are now in a stale
state, and the lsdev shows that the internal hdisk0 is not available for normal
operations.

The command:

à ð
bootinfo -b

hdisk2

#

á ñ

shows that the mirrored rootvg configuration has worked, since AIX Version 4 has
now booted from hdisk2 instead of hdisk0.

Warning - do not change rootvg configuration

Do not make any changes to rootvg configuration at this point since this
information would only be recorded on the copies on hdisk2. Since this test
sequence involves a reboot next from hdisk0 while hdisk2 remains powered off,
then the VGSA on hdisk0 will be flagged as having the most recent copies of
the rootvg logical volumes.

Hence the hdisk0 copies are used to overwrite the hdisk2 copies during the
subsequent synchronization step after the external 355MB hdisk2 device is
powered back on.

Shut down the RISC System/6000 by executing the shutdown -f command, so that
power can then be restored to hdisk0. Since hdisk2 is an external 355MB disk unit,
leave it powered off when the RISC System/6000 is turned on so that the RISC
System/6000 will now boot from hdisk0 again instead of hdisk2.

Among the boot messages, you will see:

200 AIX Storage Management

à ð
varyonvg: Volume group rootvg is varied on.

PV Status: hdiskð ððð14732b1bd7f57 PVACTIVE

 hdisk2 ððð12218da42ba76 PVMISSING

ð516-ð68 lresynclv: Unable to completely resynchronize volume. Run

diagnostics if necessary.

ð516-932 /usr/sbin/syncvg: Unable to synchronize volume group rootvg.

ð516-ð68 lresynclv: Unable to completely resynchronize volume. Run

diagnostics if necessary.

ð516-932 /usr/sbin/syncvg: Unable to synchronize volume group rootvg.

á ñ

This is normal since hdisk2 really is unavailable. The varyonvg rootvg command is
run automatically during the boot sequence and thus the above errors are recorded.

We can again confirm that hdisk0 was used to boot by the command:

à ð
bootinfo -b

hdiskð

á ñ

You can also repeat the command lsvg -l rootvg to verify that the logical volumes
are still in a stale state.

In this example, we were surprised that the paging devices hd6 and paging00 were
not in a stale state. This may change in a later level of AIX Version 4 than the one
that we tested.

However, you can force the paging devices to become stale by starting many
memory intensive processes in a loop. For example, you can use the graphical
version of the AIX Version 4.1 Hypertext Information Base Library from the
command info &.

We can see that the paging devices are now stale from:

à ð
lsvg -l rootvg

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd6 paging 8 16 2 open/stale N/A

hd5 boot 1 1 1 closed/syncd N/A

hd8 jfslog 1 2 2 open/stale N/A

hd4 jfs 1 2 2 open/stale /

hd2 jfs 5ð 1ðð 2 open/stale /usr

hd9var jfs 3 6 2 open/stale /var

hd3 jfs 2 4 2 open/stale /tmp

hd1 jfs 1 2 2 open/stale /home

pagingðð paging 16 32 2 open/stale N/A

hd5x boot 2 2 1 closed/syncd N/A

#

á ñ

 Chapter 8. Practical Examples 201

Warning - Don't be misled by lsps

Note that the output of lsps:

à ð
lsps -a

Page Space Physical Volume Volume Group Size %Used Active Auto

 pagingðð hdiskð rootvg 64MB 43 yes yes

 pagingðð hdisk2 rootvg 64MB 43 yes yes

hd6 hdiskð rootvg 32MB 1ðð yes yes

hd6 hdisk2 rootvg 32MB 1ðð yes yes

#

á ñ

may indicate that all copies of paging devices are accessible, when in fact those
on hdisk2 are not.

More detailed information about the status of each logical partition and physical
partition can be obtained from the commands discussed in Chapter 7, “Storage
Management Files and Commands Summary” on page 137. For example, use:

à ð
lslv -p hdisk2 hd6

hdisk2:hd6:N/A

STALE USED STALE USED STALE STALE USED USED STALE STALE

STALE STALE STALE STALE STALE STALE STALE

ððð1? ððð2? ððð3? ððð4? ððð5? ððð6? ððð7? ððð8? STALE STALE

USED USED USED USED USED USED USED

more output.....

á ñ

to see that all copies of hd6 logical partitions on hdisk2 happen to be in a STALE

state, as indicated by the question mark.

Also note that not all physical partitions on hdisk2 are STALE; those physical
partitions that have not been accessed for any I/O operation are still in a USED state.
However, as seen from the lsvg -l rootvg command, the logical volumes that
these physical partitions belong to have been marked stale.

How to return to a synchronized state: The most simple method is to reboot the
RISC System/6000. However in this example, assuming there are other users
currently on the system, configure the defined hdisk2 using the following steps:

1. Execute the command smitty devices.

2. Select Fixed Disk .

3. Select Configure a Defined Disk .

4. From the Disk sub-menu that appears, select hdisk2 Defined 00-08-00-2,0
355 MB SCSI Disk Drive .

5. Press F10=Exit when smit returns an OK prompt.

After you've confirmed that the disk is Available from the lsdev -Cc disk

command, repeat the synchronization step used in the creation of the mirrored
rootvg. Hence:

1. Execute the command smitty vg.

202 AIX Storage Management

2. Select Activate a Volume Group .

3. Type rootvg or use F4=List to select it.

4. Press the Enter=Do key.

5. Press F10=Exit when smit returns an OK prompt.

 Note

We suggest that you use the varyonvg command rather than both the chpv and
syncvg commands to synchronize the rootvg volume group.

From the output of the following command:

à ð
iostat

tty: tin tout avg-cpu: % user % sys % idle % iowait

 ð.3 12.9 6.1 5.1 78.9 1ð.ð

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdiskð 14.9 55.5 5.3 231182 65737

hdisk3 ð.ð ð.2 ð.ð 1ð52 ð

hdisk1 ð.2 1.2 ð.ð 1ð7ð 5191

hdisk4 ð.2 2.8 ð.ð 14777 69

hdisk5 ð.1 1.6 ð.ð 8694 46

hdisk6 ð.ð ð.6 ð.ð 3172 154

hdisk7 ð.ð ð.2 ð.ð 1ð52 ð

hdisk2 1.2 1ð.9 ð.1 43 58171

#

á ñ

we can see that, as discussed earlier, the copies on hdisk0 are most recent and
are being read so that a write operation can update the copies on hdisk2 now that
it is available again.

Simulation of disk failure during normal operations: This test uses hdisk2, a
355MB external disk device. Since this is an external disk, we can power it off
while the system is being used to verify that normal processing is not halted (we
are not concerned about any performance implications in this scenario).

First execute the lsvg -l rootvg command to confirm that all rootvg logical
volumes are now in a syncd state.

Power off hdisk2 and repeat the command to obtain output such as:

 Chapter 8. Practical Examples 203

à ð
lsvg -l rootvg

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd6 paging 8 16 2 open/syncd N/A

hd5 boot 1 1 1 closed/syncd N/A

hd8 jfslog 1 2 2 open/stale N/A

hd4 jfs 1 2 2 open/stale /

hd2 jfs 5ð 1ðð 2 open/stale /usr

hd9var jfs 3 6 2 open/stale /var

hd3 jfs 2 4 2 open/syncd /tmp

hd1 jfs 1 2 2 open/syncd /home

pagingðð paging 16 32 2 open/syncd N/A

hd5x boot 2 2 1 closed/syncd N/A

#

á ñ

Note that not all rootvg logical volumes are now stale.

� hd8 is stale because a write occurred to a jfs.

� hd4 is stale because / contains the ODM files that are read to help produce
the command output.

� hd2 is stale because /usr contains the lsvg command that is read so that it
can be loaded into RAM and then executed.

� hd9var is stale because there have been some temporary files created since
hdisk2 was powered off.

The other logical volumes are not currently involved in an I/O operation and so they
remain in a syncd state.

Once power is restored to hdisk2, it can again be again synchronized with hdisk0
by using the varyonvg rootvg or the corresponding smitty vg selection.

8.3 Storage Subsystem Design
For this section, it is very beneficial for the reader to become familiar with the
concepts discussed in:

� Chapter 5, “Storage Subsystem Design” on page 77.

� Chapter 6, “General AIX Storage Management” on page 93.

� AIX Version 4.1 System Management Guide: Operating System and Devices,
which may be in :cit,AIX Version 4.1 Hypertext Information Base Library on
your system.

� AIX V3.2 Performance Monitoring and Tuning Guide, which may be in AIX
Version 4.1 Hypertext Information Base Library on your system.

� The following AIX Version 4.1 Hypertext Information Base Library articles:

– Developing a Logical Volume Strategy

– Configuring a Storage System for Maximum Performance

– Developing a Volume Group Strategy

– Configuring a Storage System for Maximum Availability

– Create a File System Log on a Dedicated Disk for a User-Defined Volume
Group

204 AIX Storage Management

– Backing Up Your System

– Installing BOS from a System Backup

– Logical Volume Storage Overview

– File Systems Overview

Once the available hardware has been reviewed (please refer to 8.1, “Planning” on
page 185), the next step in storage subsystem design is to plan and design your
volume group configuration.

8.3.1 A Volume Group Design Example
Two major aims in storage subsystem design are to achieve the optimum
performance for disk access requests (in other words, the fastest disk access
possible), and also to achieve the highest possible availability (in other words,
provide the system with as good a chance as is practically possible that disk
access requests will not fail). These aims are discussed in more detail elsewhere,
but it is important to note at this point that these aims can often interfere with each
other. In other words, a high availability configuration will often result in slower
access times to the data that is now stored in a highly available state.

Sometimes, a particular configuration option will be beneficial for both performance
and availability, but then there is likely to be an associated extra cost for that
choice. In this example, the price paid for a second SCSI adapter has bought us
the option of placing some disk devices on this second adapter. This can improve
performance because the I/O requests workload can now be shared between both
adapters. This also improves availability if disk mirroring is implemented using disks
on different adapters, because we would then still have access to one disk if one of
the adapters failed.

However, our particular configuration and storage needs does not allow us to fully
utilize this benefit. Recall from 8.1, “Planning” on page 185 that for this example,
we have a total of nine disks to allocate. We have already allocated one internal
670MB disk and the external 355MB disk to the rootvg volume group. We are not
interested in the performance of disk I/O for the logical volumes in the rootvg, so
we've allocated the slowest disks for the rootvg. We did not use both internal
670MB disks for rootvg because we wanted to be able to power off a rootvg disk
while the system is being used; please refer to 8.2, “rootvg Mirroring -
Implementation and Recovery” on page 187.

This leaves us with seven more disks to allocate, two on the SCSI adapter in slot
eight, and five on the adapter in slot seven. Ideally, a system with multiple disks
should consist of multiple volume groups; usually such a system should have at
least one non-rootvg volume group.

The guidelines for volume group design are discussed elsewhere, see Chapter 5,
“Storage Subsystem Design” on page 77, and also refer to the article Developing a
Volume Group Strategy, but for this example, we want to create three volume
groups, primarily for safe and easy maintenance. This allows us to do different
storage management related tasks in different volume groups, and hence we can
isolate the effects of theses tasks. In other words, a volume group synchronization
operation will potentially only result in extensive I/O in two or three disks, instead of
say seven disks if they are all grouped together as one volume group. Multiple
volume groups allow journaled file systems to be created in one volume group, and

 Chapter 8. Practical Examples 205

raw logical volumes can be used by databases in another volume group. Also, we
can destroy the configuration of one volume group and its associated components
(disks, logical volumes, data) during one example without affecting the integrity of
data, file systems, and logical volumes used in other examples in other volume
groups. Finally, we have the options of implementing different quorum
characteristics in the different volume groups, and we can use a different physical
partition size for each volume group.

Design Change - Now or later?

If you do not fully understand all the implications of a proposed design, but
need to implement a design today, then do so provided that you at least
understand that any future disk reallocation work may be a large job that may
require significant system maintenance time, and possible end-user
interruptions.

In our example, the seven disks left after the rootvg set up can be allocated to
one volume group, or up to seven different volume groups. There are
arguments for and against creating three volume groups. However, for
expediency and the reasons outlined above, we shall create three volume
groups, each with a physical partition size of 4MB, and we're ready to change
this in the future if required.

The choice of three volume groups also illustrates that any design has to work with
the available resources. We only have two disks available on the SCSI adapter in
slot eight and hence the benefits of using a second adapter will only be available to
at most two volume groups. Hence we need to prioritize the creation of our volume
groups. In this example design, assume that the created logical volumes will
require all available volume group physical partitions. Also assume that for some
logical volumes, their content is such that performance is more critical than
availability (for example, assume they store large archived databases). For other
logical volumes, assume that availability is more critical (for example, a small
customer database with names and phone numbers). Since this example has three
volume groups, then one of these volume groups will have to sacrifice either
performance or availability because it will use only one SCSI adapter. We place
priority on the logical volumes that require optimal performance, so, in this example,
create the following volume groups using the specified disks for the reasons stated:

 � stripevg

This volume group is primarily intended to contain examples associated with
the new AIX Version 4 logical volume manager and file system features.
Striping is most beneficial for large sequential I/O operations, so we want to
use two large disks of similar size. Striping is meant to improve performance,
so use disks on different adapters.

Since the adapter in slot eight only has a 670MB disk and a 320MB disk, use
the 670 disk for stripevg. There are four 1.2GB disks and one 857MB disk
configured using the adapter in slot seven, so use the 857MB disk as the
second disk in stripevg.

à ð
hdisk1 Available ðð-ð8-ðð-1,ð 67ð MB SCSI Disk Drive

hdisk8 Available ðð-ð7-ðð-4,ð 857 MB SCSI Disk Drive

á ñ

206 AIX Storage Management

Use hdisk1 and hdisk8 for stripevg.

 � availvg

This volume group is primarily intended to contain examples that show how to
implement a high availability strategy using two disks. Since availability is not
as important as performance, then we will use two 1.2GB disks. This is also a
realistic availability configuration because it allows the entire contents of one
disk to be duplicated on the other (conversely, if we used a 857MB and a
1.2GB disk here, then we could only protect the contents of the 857MB disk
from failure).

We must ensure that the disks can be independently powered on, so choose
hdisk4 and hdisk6 because these 1.2GB disks are physically located in different
parts of the 9334-500 machine used in these examples. To ensure that we can
continue to operate with only one of the two disks, then we also need to turn
off the quorum attribute of availvg.

à ð
hdisk4 Available ðð-ð7-ðð-ð,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk6 Available ðð-ð7-ðð-2,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

á ñ

Use hisk4 and hdisk6 for availvg.

 � perfvg

This volume group is primarily intended to contain examples that show how to
implement a good performance strategy. Use the 320MB disk connected to the
adapter in slot eight. There are two disks left, so this volume group can have
either two or three disks in it. However, we want to allow for future growth so
leave one 1.2GB disk unallocated. The two disks are sufficient for the design
examples in this volume group.

à ð
hdisk5 Available ðð-ð7-ðð-1,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk3 Available ðð-ð8-ðð-3,ð 32ð MB SCSI Disk Drive

á ñ

Use hdisk3 and hdisk5 in perfvg.

8.3.2 Map Files Usage and Contents
A map file is used to specify exactly which physical partitions on which disks will
contain the logical partitions for the primary, secondary, or tertiary copy of a logical
volume. The physical partitions are allocated to logical partitions for a logical
volume copy according to the order in which they appear in the map file. Each
logical volume copy should have its own map file, and the map files of each logical
volume copy should each allocate the same number of physical partitions. Hence it
offers very precise control when a logical volume is first created (the primary copy),
or when the secondary or tertiary copies of a logical volume are subsequently
created in a mirrored environment.

Before map files are created, we need to check the following:

� What is the numerical range of physical partitions for the different disk regions?

� Which physical partitions. are free on our target disks, hdisk5 and hdisk3?

You can easily check this with the following commands:

 Chapter 8. Practical Examples 207

à ð
lspv -p hdisk5

hdisk5:

PP RANGE STATE REGION LV ID TYPE MOUNT POINT

1-58 free outer edge

 59-115 free outer middle

116-172 free center

173-229 free inner middle

23ð-287 free inner edge

lspv -p hdisk3

hdisk3:

PP RANGE STATE REGION LV ID TYPE MOUNT POINT

1-15 free outer edge

16-3ð free outer middle

31-45 free center

46-6ð free inner middle

61-75 free inner edge

á ñ

An example of the use of map files is given in the AIX Version 4.1 Hypertext
Information Base Library article Developing a Logical Volume Strategy. However,
the examples that follow here in 8.3, “Storage Subsystem Design” on page 204 use
the following map files to create logical volumes in perfvg:

� badmir.map for perflv1:

à ð
hdisk5:1ð1-11ð

á ñ

� goodmir.map for perflv2:

à ð
hdisk5:2ð1-21ð

á ñ

� centre.map for perflv3:

à ð
hdisk5:111-112

hdisk3:44-45

hdisk5:113-114

hdisk3:42-43

hdisk5:115-116

hdisk3:4ð-41

á ñ

 � inedge.map for perflv4:

à ð
hdisk5:233-237

hdisk3:66-7ð

á ñ

 � badmir.map2 for perflv1:

à ð
hdisk5:91-1ðð

á ñ

 � goodmir.map2 for perflv2:

à ð
hdisk3:51-6ð

á ñ

208 AIX Storage Management

When you use map files to specify exactly which physical partitions on a disk to
use, you can ignore the inter-disk allocation policies specified by the smit options:

 � RANGE of physical volumes.

 � Allocate each logical partition copy on a SEPARATE physical volume?

You can also ignore the intra-disk smit option:

� POSITION on physical volume.

When you use smit, these fields have default values which can be ignored because
the map file physical partition allocation will have the higher precedence.

For example, the use of the two map files badmir.map and badmir.map2 to create
the two copies of the perflv1 logical volume later will result in both copies being
placed on hdisk5. Hence, this gives you the same result as you would obtain if you
set RANGE of physical volumes to minimum. This is why this field must be ignored.
If you try to change this field, you'll get an error like

à ð
ð516-69ð mklv: The -a, -e, -u, -s, and -c options cannot be

used with the -m option.

Usage: mklv [-a IntraPolicy] [-b BadBlocks] [-c Copies] [-d Schedule]

[-e InterPolicy] [-i] [-L Label] [-m MapFile] [-r Relocate]

[-s Strict] [-t Type] [-u UpperBound] [-v Verify&rbr. [-w MWC]

[-x MaxLPs] [-y LVname] [-Y Prefix] [-S StripeSize] VGname NumberOfLPs

 [PVname...]

Makes a logical volume.

á ñ

8.3.3 A Design Example for Improved Availability
This section will show you how to implement a mirrored environment that will help
you minimize the disruption caused by a hardware failure. The example in this
section assumes that you accept the cost of the extra disk capacity required to
implement mirroring.

If you do not have enough physical volumes to do this, then you can still improve
your availability by specifying minimum as the target range of physical volumes
during the creation of your logical volumes. This may be helpful if you know two
physical volumes in a volume group are much more reliable than another, because
if the less reliable physical volume fails, you may be able to access the logical
volumes that exist on one of the good disks.

We have already discussed a mirrored rootvg volume group, so this example
shows you how a non-rootvg volume group can be mirrored to provide higher
availability than in a non-mirrored environment.

Since mirroring requires a minimum of two physical volumes we will also show how
to identify these resources. We will use the name, availvg for our volume group
and and for our logical volume and journaled file system we expect to use the
names, availlv and availjfs respectively.

 Chapter 8. Practical Examples 209

8.3.3.1 Command Line Summary
1. First check to see what disks are available and that they are not assigned to an

existing volume group:

à ð
lspv

hdisk4 ððððð2ð158496d72 none

hdisk6 ððððð2ðð7bb618f5 none

#lsdev -Cc disk

hdisk4 Available ðð-ð7-ðð-ð,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk6 Available ðð-ð7-ðð-2,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

á ñ

2. Create original non-rootvg using both physical volumes:

à ð
mkvg -f -y'availvg' 'hdisk4 hdisk6'

á ñ

3. Add a logical volume to the the volume group availvg creating two copies, each
on a different physical volume. The logical volume will consist of six logical
partitions:

à ð
mklv -y'availlv' -e'x' -c'2' -v'y' 'availvg' '6'

á ñ

4. Create a journaled file system, /availjfs, using the logical volume created
above:

à ð
crfs -v jfs -d'availlv' -m'/availjfs' -A'yes' -p'rw' -t'no' \

-a frag='4ð96' -a nbpi='4ð96' -a compress='no'

á ñ

5. Mount the journaled file system:

à ð
mount /availjfs

á ñ

6. Create a copy of the journaled log logical volume:

à ð
mklvcopy -e'x' '-k' 'loglvðð' '2'

á ñ

7. Turn off quorum checking:

à ð
chvg -a'y' -Q'n' 'availvg'

á ñ

You now have a volume group with mirrored logical volumes and a file system
mounted and ready to be used.

210 AIX Storage Management

 8.3.3.2 Detailed Description
The above summary steps have shown us how to create a mirrored volume group.
In this section we will look at each command separately, showing its output and
also verify that we have successfully created a mirrored volume group.

How to Create a Mirrored non-rootvg Volume Group: In order to create a
mirrored volume group we need two or more free physical volumes. In our
example we have chosen hdisk4 and hdisk6, each capable of being powered on
and off separately. This will be useful in simulating a physical volume failure by
switching off one of the active physical volumes. A mirrored logical volume, availlv,
will be created with a size of six logical partitions (24MB), with each copy on a
separate physical volume.

In order to achieve high availability we need to make sure that for each of the
physical volumes selected for the volume group:

� They are on different SCSI adapters.

� They have their own power supply.

1. First let us look at the availability of the physical volumes for the volume group.
Execute the lspv command to check which physical volumes are currently not
assigned to a volume group:

à ð
lspv

hdiskð ððð14732b1bd7f57 rootvg

hdisk1 ððð137231982cðf2 stripevg

hdisk2 ððð12218da42ba76 rootvg

hdisk3 ððððð2ð1dc8bðb32 perfvg

hdisk4 ððððð2ð158496d72 none

hdisk5 ððð2479ð88f5f347 perfvg

hdisk6 ððððð2ðð7bb618f5 none

hdisk7 ððððð44643155ðc9 none

hdisk8 ððð12218ððð7244ð stripevg

á ñ

Since the physical volumes hdisk4, hdisk6, and hdisk7 are attached to the
same SCSI adapter and do not have their own power supply, we do not have
the optimal availability scenario. However, each of the physical volumes have
their own power switch, and so hdisk4 and hdisk6 will be chosen, since we will
be able to simulate a hard disk failure by switching off the power to either one
of these two disks.

2. Create a volume group that contains these two physical volumes by executing
the smitty mkvg command. On the following screen enter the name of the
volume group and the names of the physical volumes we have identified. After
filling out the fields press Enter .

 Chapter 8. Practical Examples 211

à ð
Add a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

VOLUME GROUP name [availvg]

Physical partition SIZE in megabytes 4 +

\ PHYSICAL VOLUME names [hdisk4 hdisk6] +

Activate volume group AUTOMATICALLY yes +

at system restart?

\ ACTIVATE volume group after it is yes +

 created?

Volume Group MAJOR NUMBER [] +#

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

Press the F10 key after smit returns with OK.

We have now created the volume group, availvg and are ready to add a logical
volume. Note that the volume group is automatically varied on.

3. To create the availlv logical volume:

a. Execute the smitty mklv command:

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

Logical volume NAME [availlv]

\ VOLUME GROUP name availvg

\ Number of LOGICAL PARTITIONS [6] #

PHYSICAL VOLUME names [] +

Logical volume TYPE []

POSITION on physical volume outer_middle +

RANGE of physical volumes maximum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [] #

to use for allocation

Number of COPIES of each logical 2 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

b. This is the first screen of this smit menu. On this screen enter information
for the following fields as shown above:

 � Logical volume NAME

 � Number of LOGICAL PARTITIONS

 � RANGE of physical volumes

 � Number of COPIES of each logical partition

For the range and copies fields use F4=List function key and select the
appropriate value. The RANGE field must be maximum so that each logical
partition copy is placed on a separate physical volume. The COPIES field
must be set to 2 so that two copies of each logical partition are created.

212 AIX Storage Management

c. To access information on the second screen use the PageDown key on the
keyboard. The second screen of the smit menu looks like:

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[MORE...9] [Entry Fields]

Number of COPIES of each logical 2 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +

Logical volume LABEL []

MAXIMUM NUMBER of LOGICAL PARTITIONS [128]

Enable BAD BLOCK relocation? yes +

SCHEDULING POLICY for writing logical parallel +

 partition copies

Enable WRITE VERIFY? yes +

File containing ALLOCATION MAP []

 Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

On this screen use the F4 key and select yes for the field Enable WRITE

VERIFY?. The effect of this to read the data after it has been written to
make sure that the write was successful.

d. Press Enter after making the above changes. When smit returns with OK,
press the F10 key to exit smit.

e. Execute the command lslv -m availlv to get information about the
physical partition map for the logical volume availlv:

à ð
lslv -m availlv

availlv:N/A

LP PP1 PV1 PP2 PV2 PP3 PV3

ððð1 ðð82 hdisk4 ðð85 hdisk6

ððð2 ðð82 hdisk6 ðð85 hdisk4

ððð3 ðð83 hdisk4 ðð86 hdisk6

ððð4 ðð83 hdisk6 ðð86 hdisk4

ððð5 ðð84 hdisk4 ðð87 hdisk6

ððð6 ðð84 hdisk6 ðð87 hdisk4

á ñ

Note copy location

Each logical partition copy is placed on a different physical volume.

f. Let us now check to see which region of each physical volume has been
used for logical volume availlv. Execute the following commands:

 Chapter 8. Practical Examples 213

à ð
lspv -p hdisk4

hdisk4:

PP RANGE STATE REGION LV ID TYPE MOUNT POINT

1-58 free outer edge

59-81 free outer middle

82-87 used outer middle availlv jfs N/A

 88-115 free outer middle

116-172 free center

173-229 free inner middle

23ð-287 free inner edge

lspv -p hdisk6

hdisk6:

PP RANGE STATE REGION LV ID TYPE MOUNT POINT

1-58 free outer edge

59-81 free outer middle

82-87 used outer middle availlv jfs N/A

 88-115 free outer middle

116-172 free center

173-229 free inner middle

23ð-287 free inner edge

á ñ

The above output shows that on both hdisk4 and hdisk6 the outer-middle
region of the disk is used, as expected.

4. Now type smitty jfs and select the menu option Add a Journaled File
System on a Previously Defined Logical Volume . On the smit screen, first
press F4 then choose the logical volume availlv from the list and press Enter .
Then enter /availjfs for the field MOUNT POINT, and change the default setting
for Mount AUTOMATICALLY at system restart? to yes by pressing the F4 key
and choosing yes from the list. The screen should look like the following when
all the fields have been entered:

à ð
Add a Journaled File System on a Previously Defined Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ LOGICAL VOLUME name availlv +

\ MOUNT POINT [/availjfs]

Mount AUTOMATICALLY at system restart? yes +

 PERMISSIONS read/write +

 Mount OPTIONS [] +

Start Disk Accounting? no +

Fragment Size (bytes) 4ð96 +

Number of bytes per inode 4ð96 +

 Compression algorithm no +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

Press Enter when all the fields have been filled out. The file system is created
when smit returns with OK as shown below:

214 AIX Storage Management

à ð
 COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

Based on the parameters chosen, the new /availjfs JFS file system

is limited to a maximum size of 134217728 (512 byte blocks)

New File System size is 49152

F1=Help F2=Refresh F3=Cancel F6=Command

F8=Image F9=Shell F1ð=Exit /=Find

n=Find Next

á ñ

Press F10 to exit smit.

5. Since this is the first journaled file system created in the volume group availvg,
a log logical volume (journal log) is automatically created. This log logical
volume also needs to be mirrored through the following procedure:

a. To identify the name of the journal log within the volume group availvg,
execute the command:

à ð
lsvg -l availvg

availvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

availlv jfs 6 12 2 closed/syncd /availjfs

loglvðð jfslog 1 1 1 closed/syncd N/A

á ñ

From the above output we can see that the journal log is called loglvðð

since it is of type jfslog.

b. Execute the following command to find out which physical volume is used
to hold the journal log:

à ð
lslv -m loglvðð

loglvðð:N/A

LP PP1 PV1 PP2 PV2 PP3 PV3

ððð1 ðð88 hdisk4

á ñ

From the output of the above two commands, also note that only one
physical partition has been allocated to loglvðð and it is not mirrored.

c. Now we need to create a copy of the log logical volume (journal log). Type
smitty mklvcopy and enter loglvðð for the LOGICAL VOLUME name field and
press Enter . On the next smit screen change the content of:

� NEW TOTAL number of logical partition copies to 2.

� RANGE of physical volumes to maximum.

 Chapter 8. Practical Examples 215

� SYNCHRONIZE the data in the new logical partition copies? to yes.

so that the screen looks like:

à ð
Add Copies to a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ LOGICAL VOLUME name loglvðð

\ NEW TOTAL number of logical partition 2 +

 copies

PHYSICAL VOLUME names [] +

POSITION on physical volume outer_middle +

RANGE of physical volumes maximum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #

to use for allocation

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

File containing ALLOCATION MAP []

SYNCHRONIZE the data in the new yes +

logical partition copies?

F1=Help F2=Refresh F3=Cancel F4=List

 F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

Press Enter after making the changes. When smit returns with OK press
F10 to exit smit.

6. Check that we have successfully mirrored the two logical volumes in the
volume group by typing:

à ð
lsvg -l availvg

availvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

availlv jfs 6 12 2 closed/syncd /availjfs

loglvðð jfslog 1 2 2 closed/syncd N/A

á ñ

The output indicates that the jfslog loglvðð consists of one logical partition
with each physical partition copy on a different physical volume. Likewise, for
availlv, the 6 logical partitions consist of 12 physical partitions with each copy
residing on a different physical volume.

7. Now mount the file system /availjfs using the command:

à ð
mount /availjfs

á ñ

8. We must now turn off quorum checking so that in the event of losing 51% or
more of the physical volumes (VGDAs), the volume group availvg is not varied
off automatically. Execute the command smitty chvg and enter availvg for the
field VOLUME GROUP name and press Enter . On the second smit screen, as
shown below, change the field A QUORUM of disks required to keep the

volume group on-line? to no by pressing F4 and selecting no from the list.
Then press Enter .

216 AIX Storage Management

à ð
Change a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ VOLUME GROUP name availvg

\ Activate volume group AUTOMATICALLY yes +

at system restart?

\ A QUORUM of disks required to keep the volume no +

group on-line ?

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

When smit returns with OK press F10 to exit smit.

Verify a Mirrored Volume Group for Availability: We are now ready to test the
mirrored volume group availvg. As explained before, the two physical volumes
hdisk4 and hdisk6 are connected to the same SCSI adapter so we will not be able
to test for SCSI failures. However, we can simulate a disk failure by powering off
one of these physical volumes since each physical volume has its own power
switch.

You can use a Korn shell script to simulate a disk failure and recovery. The script
automatically generates some logical I/O to the volume group availvg using the dd
command and then requests the user to switch off one of the physical volumes.
Stale physical partitions are automatically detected and the user is once again
prompted to power on the physical volume. Following this, the resynchronization of
the stale partitions is then performed using the varyonvg command. The dd
operations expects the InfoExplorer file,
/usr/lpp/info/lib/en_US/aix41/cmds/cmds.rom, to be installed on the system.

You can use the script in the following example test sequence that checks the
availability of the availvg volume group.

1. Save the following script as availvg.ksh.

 Chapter 8. Practical Examples 217

à ð
/var/tmp/availvg.ksh.out

integer syncrun=ð;

integer cnt=1;

while true

do

PS=yps -ef | grep -v grep | grep "dd if=/usr/lpp/" | \
awk '{print $8}'y

if ["$PS" != "timex"]

 then

echo dd number: $cnt started >> /var/tmp/availvg.ksh.out 2>&1

timex dd if=/usr/lpp/info/lib/en_US/aix41/cmds/cmds.rom \

of=/availjfs/cmds.rom.dd bs=1ððk >> \

/var/tmp/availvg.ksh.out 2>&1 &

 cnt=cnt+1

if [$syncrun > ð]

 then

ps -ef >> /var/tmp/availvg.ksh.out

 fi

 fi

 while true

 do

echo "Checking for stale partitions." | \

tee -a /var/tmp/availvg.ksh.out

echo "Please wait..." | tee -a /var/tmp/availvg.ksh.out

PPS=ylsvg availvg | grep "STALE PPs" | awk '{print $6}'y
if ["$PPS" = "ð"]

 then

echo "Stale partitions not found." | \

tee -a /var/tmp/availvg.ksh.out

 echo

"To recreate stale partitions power off one disk unit" | \

tee -a /var/tmp/availvg.ksh.out

echo "and press enter. To quit press CTRL-C." | \

tee -a /var/tmp/availvg.ksh.out

 syncrun=ð

 read a

 break

 else

echo "$PPS stale partitions currently found." |a\

tee -a /var/tmp/availvg.ksh.out

SYNC=yps -ef | grep -v grep | grep "/usr/sbin/syncvg" | \
awk '{print $9}'y

if ["$SYNC" = "/usr/sbin/syncvg"]

 then

 break

 else

echo "Press enter when power, cables etc checked." | \

tee -a /var/tmp/availvg.ksh.out

 read ans

echo "Varyonvg started..." >> \

 /var/tmp/availvg.ksh.out 2>&1

(time /usr/sbin/varyonvg availvg >> \

/var/tmp/availvg.ksh.out 2>&1) 2>> \

 /var/tmp/availvg.ksh.out &

 syncrun=1

 break

 fi

 fi

 done

done

á ñ

2. Before we execute the script let us look at the status of the logical volumes
using the lsvg -l availvg command:

à ð
lsvg -l availvg

availvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

availlv jfs 6 12 2 open/syncd /availjfs

loglvðð jfslog 1 2 2 open/syncd N/A

á ñ

218 AIX Storage Management

The output shows that the logical volumes availlv and loglvðð are open and
synchronized, (open/syncd).

3. Now execute the script availvg.ksh, as follows:

à ð
ksh availvg.ksh

Checking for stale partitions.

Please wait...

Stale partitions not found.

To recreate stale partitions power off one disk unit

and press enter. To quit press CTRL-C.

á ñ

4. At this point power off physical volume hdisk6 and then press Enter .

Since the file copy operation is started again after switching off the disk, we
now have stale partitions. This is shown by the following output:

à ð
Checking for stale partitions.

Please wait...

7 stale partitions currently found.

Press enter when power, cables etc checked.

á ñ

5. From another terminal let us look at the state of the logical volumes in availvg
before we power on hdisk6.

à ð
lsvg -l availvg

availvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

availlv jfs 6 12 2 open/stale /availjfs

loglvðð jfslog 1 2 2 open/stale N/A

á ñ

We now note that both availlv and loglvðð are marked stale. To get more
detailed information about the particular partitions that have become stale
execute the command lslv -p hdisk6 availlv. This command is described in
Chapter 7, “Storage Management Files and Commands Summary” on
page 137.

6. Now power on hdisk6 and press Enter . The following output is produced:

 Chapter 8. Practical Examples 219

à ð
Varyonvg started...

Checking for stale partitions.

Please wait...

6 stale partitions currently found.

Checking for stale partitions.

Please wait...

5 stale partitions currently found.

Checking for stale partitions.

Please wait...

4 stale partitions currently found.

Checking for stale partitions.

Please wait...

3 stale partitions currently found.

Checking for stale partitions.

Please wait...

2 stale partitions currently found.

Checking for stale partitions.

Please wait...

1 stale partitions currently found.

Checking for stale partitions.

Please wait...

Stale partitions not found.

To recreate stale partitions power off one disk unit

and press enter. To quit press Ctrl-C.

á ñ

7. At this point press Ctrl-C to exit the shell script.

During the availability verification test the file copy command continues to run,
even while the varyonvg command is executing, to synchronize stale partitions.
This is deliberately done to simulate continuous I/O activity which would occur
in a production system.

8. Since the test is now complete, let us look at the state of the logical volumes
using the lsvg -l availvg command.

à ð
lsvg -l availvg

availvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

availlv jfs 6 12 2 open/syncd /availjfs

loglvðð jfslog 1 2 2 open/syncd N/A

á ñ

As expected, the logical volume partitions have all been synchronized. From
the results of our test we can conclude that mirroring of a non-rootvg volume
group can be carried out with ease, and provides much higher availability than
a non-mirrored volume group. As we saw in our test, I/O to the good physical
volume continues during the disk failure.

8.3.4 A Design Example for Improved Performance
First, create perfvg that contains hdisk3 and hdisk5 using the same procedure as
for the creation of availvg.

 1. Execute smitty vg

2. Select Add a Volume Group

3. Type perfvg for VOLUME GROUP name

4. Type hdisk3 hdisk5 for PHYSICAL VOLUME names

5. Press Enter=Do and then F10=Exit when smit returns an OK prompt

6. Remember to ensure that perfvg is synchronized when you have finished
creating all the logical volumes in it, if some of them are mirrored. This

220 AIX Storage Management

procedure is discussed just before “How to Document the Volume Group
Design” on page 236.

8.3.4.1 Command Line Summary
In this section we will be creating two mapped mirrored logical volumes with
different performance characteristics, and then two mapped non-mirrored logical
volumes, also with differing performance characteristics. We will then create a jfs
log logical volume and a paging logical volume, before documenting our design.
This summary will take you through the steps you would need to follow at the
command line:

1. Create two mapped mirrored logical volumes:

� Create a logical volume with poor performance characteristics using the
following command:

à ð
mklv -y'perflv1' -d's' -m'/home/maps/badmir.map' 'perfvg' '1ð'

á ñ

This creates a logical volume of size 10 logical partitions in the perfvg
volume group. Scheduling will be done sequentially, and mirror write
consistency is on. The physical partitions will be allocated according to the
map file badmir.map.

� Add the mirrored copy:

à ð
mklvcopy -m'/home/maps/badmir.map2' 'perflv1' '2'

á ñ

This creates a copy of the physical partitions using the map file
badmir.map2 to allocate partitions.

� Create a logical volume with good performance characteristics using the
following command:

à ð
mklv -y'perflv2' -w'n' -m'/home/maps/goodmir.map' 'perfvg' '1ð

á ñ

This creates a logical volume of size 10 logical partitions in the perfvg
volume group. Scheduling will be done in parallel, and mirror write
consistency is off. The physical partitions will be allocated according to the
map file goodmir.map.

� Add the mirrored copy:

à ð
mklvcopy -m'/home/maps/goodmir.map2' 'perflv2' '2'

á ñ

This creates a copy of the physical partitions using the map file
goodmir.map2 to allocate partitions.

2. Create two mapped non-mirrored logical volumes:

� Create a logical volume with poor performance characteristics using the
following command:

 Chapter 8. Practical Examples 221

à ð
mklv -y'perflv4' -m'/home/maps/inedge.map' 'perfvg' '1ð'

á ñ

This creates a logical volume of size 10 logical partitions, the physical
partitions being allocated according to the map in inedge.map.

� Create a logical volume with good performance characteristics using the
following command:

à ð
mklv -y'perflv3' -m'/home/maps/center.map' 'perfvg' '1ð'

á ñ

This creates a logical volume of size 10 logical partitions, the physical
partitions being allocated according to the map in center.map.

3. Create a jfslog logical volume:

� Create the logical volume using the following command:

à ð
mklv -y'perflog' -t'jfslog' -a'c' 'perfvg' '1' 'hdisk5'

á ñ

This will create a jfslog logical volume of size 4MB, located in the center
partitions of the disk hdisk5 in the perfvg volume group.

� Format the jfslog using the following command:

à ð
/usr/sbin/logform /dev/perflog

logform: destroy /dev/perflog (y)?

#

á ñ

This initializes the jfslog logical volume for use.

4. Create a paging logical volume:

� Create the logical volume using the following command:

à ð
mklv -y'perfpg' -t'paging' -a'c' -e'x' -c'2' -w'n' 'perfvg' '5

á ñ

This will create a paging space logical volume of size 5 logical partitions,
using physical partitions located in the center of the disk for maximum
performance. A mirrored copy will be created, and mirror write consistency
will be set to off. The maximum number of disks possible will also be used
to maximize performance.

� Ensure the paging space will be activated at each system reboot using the
following command:

à ð
chps -a'y' 'perfps'

á ñ

� Activate the new paging space using the following command:

à ð
swapon /dev/'perfps'

á ñ

222 AIX Storage Management

This causes the system to begin using the new page space.

5. Synchronize the volume group:

When the following command exits, check that any commands that it calls,
such as syncvg, have also exited.

à ð
varyonvg perfvg

á ñ

6. Document the volume group design:

Create two files:

a. /home/vginfo/vg.detail to contain a complete detailed partition map from
the lsvg command:

à ð
lsvg -M perfvg > /home/vginfo/vg.detail

á ñ

b. /home/vginfo/vg.summary to contain a summary partition map from the
lspv command:

� Save logical volume description for hdisk3:

à ð
lspv -l hdisk3 > /home/vginfo/vg.summary

á ñ

� Save physical partitions description for hdisk3:

à ð
lspv -p hdisk3 >> /home/vginfo/vg.summary

á ñ

� Save logical volume description for hdisk5:

à ð
lspv -l hdisk5 >> /home/vginfo/vg.summary

á ñ

� Save physical partitions description for hdisk5:

à ð
lspv -p hdisk5 >> /home/vginfo/vg.summary

á ñ

c. Refer to “An Example Description of a Volume Group Design” on page 240
for the output files we obtained.

The performance characteristics of this volume group will be investigated in the
detailed guidance section that follows.

 8.3.4.2 Detailed Guidance
This section will now look at these processes in detail:

How to Create Two Mirrored Logical Volumes: This section shows how to
create two logical volumes which have different attribute settings for those attributes
that significantly affect performance in a mirrored environment. The different
attributes, described by their smit field name, are:

 Chapter 8. Practical Examples 223

 � Mirror Write Consistency?

 � SCHEDULING POLICY for writing logical partition copies

 � Enable WRITE VERIFY?

 � File containing ALLOCATION MAP

The main difference in the maps is that the good mirrored logical volume uses
a second disk for its copy, but the bad mirrored logical volume uses the same
disk for its primary and secondary copy.

The two logical volumes are:

� perflv1 - the bad mirrored logical volume

� perflv2 - the good mirrored logical volume

Warning - Choose attributes carefully

It is very important to note that when the above attributes are set to give optimal
performance, the availability of the good mirror perflv2 suffers. Hence, this
choice between performance and availability is a good example of the design
decisions that you will have to make.

Let's create two mirrored logical volumes; one whose attributes should give good
performance, and one whose attributes should give bad performance. Start by
creating only the primary copy so that allocation maps can be used.

If you want to avoid map files

Please refer to “How to Create a Paging Type Logical Volume” on page 233 for
an example of how to create a mirrored logical volume (two copies) with optimal
performance attributes, that does not use a physical partition allocation map file.

The good logical volume, perflv2, will use goodmir.map, and the bad logical
volume, perflv1, will use badmir.map. These map files were displayed earlier in 8.3,
“Storage Subsystem Design” on page 204.

For the bad mirror:

 1. Type smitty lv.

2. Select Add a Logical Volume .

3. Type perfvg and press Enter=Do , or select perfvg using F4=List .

4. Type the logical volume name, such as perflv1.

5. Type the number of logical partitions to allocate for this logical volume; in this
case type 1ð.

6. Leave the Number of COPIES of each logical partition set to the default of 1
since we'll add the second copy later.

7. Leave the Mirror Write Consistency? set as yes. This will only have meaning
once we create copies. It will then result in an extra disk I/O operation to the
edge of the disk where the Mirror Write Consistency data is stored. This extra
I/O will thus decrease performance.

224 AIX Storage Management

The smit screen at this stage looks like:

à ð

Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

Logical volume NAME [perflv1]

\ VOLUME GROUP name perfvg

\ Number of LOGICAL PARTITIONS [1ð] #

PHYSICAL VOLUME names [] +

Logical volume TYPE []

POSITION on physical volume outer_middle +

RANGE of physical volumes minimum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [] #

to use for allocation

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

8. Press the Page Down or Down Arrow key to get to the bottom of the next
page.

9. Type in the path name of the allocation map file /home/maps/badmir.map. This
file specifies 10 contiguous inner middle physical partitions to be used.

10. Change the SCHEDULING POLICY for writing logical partition copies from
the default of parallel to sequential by using the Tab key to toggle the value.
This will ensure that all updates to mirror copies will occur in sequence, which
will obviously be slower than parallel writes.

11. Leave Enable WRITE VERIFY? as the default, yes (again, this is the slower
option), so that the screen looks like:

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[MORE...9] [Entry Fields]

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +

Logical volume LABEL []

MAXIMUM NUMBER of LOGICAL PARTITIONS [128]

Enable BAD BLOCK relocation? yes +

SCHEDULING POLICY for writing logical sequential +

 partition copies

Enable WRITE VERIFY? yes +

File containing ALLOCATION MAP [/home/maps/badmir.map]

 Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

 Chapter 8. Practical Examples 225

12. Press the Enter=Do key to create the logical volume.

13. When smit returns OK, press F3=Cancel to return to the Logical Volumes menu.

Now create the primary copy of the mirrored logical volume with good mirroring
performance attributes.

1. Follow the same process as for the bad performance mirror example. Start by
again selecting Add a Logical Volume :

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

Logical volume NAME [perflv2]

\ VOLUME GROUP name perfvg

\ Number of LOGICAL PARTITIONS [1ð] #

PHYSICAL VOLUME names [] +

Logical volume TYPE []

POSITION on physical volume outer_middle +

RANGE of physical volumes minimum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [] #

to use for allocation

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? no +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

2. This time type perflv2 as the name of the logical volume.

3. Use the Tab key to toggle Mirror Write Consistency? to no.This will reduce
disk movement for each I/O request and so it should result in better
performance.

4. Leave the other fields with their defaults and press the Page Down key.

5. Leave the Number of COPIES of each logical partition set to the default of 1
since we'll add the second copy later.

6. The only field that now requires alteration is the File containing ALLOCATION

MAP field, where you should type /home/maps/goodmir.map.

7. Press the Enter=Do key on the screen that now looks like:

226 AIX Storage Management

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[MORE...9] [Entry Fields]

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? no +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +

Logical volume LABEL []

MAXIMUM NUMBER of LOGICAL PARTITIONS [128]

Enable BAD BLOCK relocation? yes +

SCHEDULING POLICY for writing logical parallel +

 partition copies

Enable WRITE VERIFY? no +

File containing ALLOCATION MAP [/home/maps/goodmir.map]

 Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

8. When smit returns OK, press F3=Cancel to return to the Logical Volumes

menu.

We now have two single copy logical volumes whose attributes, when mirroring is
implemented, will either give bad or optimal performance. Map files will also be
used to create the copies.

For the good mirror:

1. Select Set Characteristic of a Logical Volume from the following screen:

à ð
 Logical Volumes

Move cursor to desired item and press Enter.

List All Logical Volumes by Volume Group

Add a Logical Volume

Set Characteristic of a Logical Volume

Show Characteristics of a Logical Volume

Remove a Logical Volume

Copy a Logical Volume

F1=Help F2=Refresh F3=Cancel F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

2. Select Add a Copy to a Logical Volume .

3. Type perflv2 and press Enter=Do .

 Chapter 8. Practical Examples 227

4. Use the Tab key to change NEW TOTAL number of logical partition copies

to 2.

5. Leave the field SYNCHRONIZE the data in the new logical partition copies?

with its default of no since we'll synchronize it later, just before section “How to
Document the Volume Group Design” on page 236.

6. Change NEW TOTAL number of logical partition copies to 2.

7. Type /home/maps/goodmir.map2 in the File containing ALLOCATION MAP field.
This map uses physical partitions on the second disk so that parallel disk I/O
should give better performance. The screen should look like:

à ð
Add Copies to a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ LOGICAL VOLUME name perflv2

\ NEW TOTAL number of logical partition 2 +

 copies

PHYSICAL VOLUME names [] +

POSITION on physical volume outer_middle +

RANGE of physical volumes minimum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #

to use for allocation

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

File containing ALLOCATION MAP <home/maps/goodmir.m

SYNCHRONIZE the data in the new no +

logical partition copies?

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

8. Press the Enter=Do key to create the logical volume copy.

9. When smit returns OK, press F3=Cancel to return to the Set Characteristic of

a Logical Volume menu.

Now create the bad mirror copy:

1. Select Add a Copy to a Logical Volume .

2. Type perflv1 and press Enter=Do .

3. Use the Tab key to change NEW TOTAL number of logical partition copies

to 2.

4. Leave the field SYNCHRONIZE the data in the new logical partition copies?

with its default of no since we'll synchronize it later, just before section “How to
Document the Volume Group Design” on page 236.

5. Type /home/maps/badmir.map2 in the File containing ALLOCATION MAP field.
This map uses physical partitions on the same disk as the primary copy so that,
along with the sequential disk I/O, we should get the worst performance.

6. Press the Enter=Do key to create the logical volume copy.

7. When smit returns OK, press F10=Exit to return to the command prompt.

228 AIX Storage Management

How to Create Two Mapped Non-mirrored Logical Volumes: This section
shows how to create two logical volumes which have different logical partition
locations on hdisk3 and hdisk5. This enables us to investigate:

� How the Intra-Physical Volume Allocation Policy, described by smit as POSITION
on physical volume, affects performance in a non-mirrored environment.

� How to use a physical partition map; in smit, use File containing ALLOCATION

MAP, to get precise control of logical partition location.

The two logical volumes are:

� perflv3 - uses good disk regions according to centre.map.

� perflv4 - uses bad regions according to inedge.map.

Warning - Choose carefully

It is very important to note that when the above attributes are set to give optimal
performance, the availability of a logical volume, even when it is not mirrored,
and thus exists as only a single copy, may suffer. For example, if your map file
uses all disks in a volume group, or if the Inter-Physical Volume Allocation
Policy is set to maximum, then although the extra disk heads may reduce data
access time, access to a logical volume may become difficult or impossible if
any disk fails.

We could have also degraded performance but improved the reliability of a disk
write operation by changing Enable WRITE VERIFY? from its no default value to
yes This attribute is not investigated in this example.

Let's create both perflv3 and perflv4 using the map files that you can create using
your favorite editor, such as the vi text editor.

If you want to avoid map files

Please refer to “How to Create a Journal Log Type Logical Volume” on
page 231, for an example of how to create a non-mirrored logical volume (one
copy) with optimal performance attributes, that does not use a physical partition
allocation map file.

Since we're using map files, create these logical volumes using the smit defaults,
and once you've specified a map file, you only need to specify the Number of

LOGICAL PARTITIONS and the Logical volume NAME (note that Mirror Write

Consistency does not apply when only a single copy of a logical volume exists; that
is, there is no mirroring, and hence we can ignore this field).

To create perflv4:

1. Type smitty mklv to get to the menu whose title is Add a Logical Volume.

2. Type perfvg in the field VOLUME GROUP name and press the Enter=Do key, or
use F4=List to select it.

3. Type 1ð in the field Number of LOGICAL PARTITIONS.

4. Type perflv4 in the field Logical volume NAME so that the screen looks like:

 Chapter 8. Practical Examples 229

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

Logical volume NAME [perflv4]

\ VOLUME GROUP name perfvg

\ Number of LOGICAL PARTITIONS [1ð] #

PHYSICAL VOLUME names [] +

Logical volume TYPE []

POSITION on physical volume outer_middle +

RANGE of physical volumes minimum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [] #

to use for allocation

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

5. Press the Page Down or Down Arrow Key to get to the bottom of the next
page.

6. Type the map file path name, such as /home/maps/inedge.map, in the field
File containing ALLOCATION MAP so that the screen looks like:

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[MORE...9] [Entry Fields]

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +

Logical volume LABEL []

MAXIMUM NUMBER of LOGICAL PARTITIONS [128]

Enable BAD BLOCK relocation? yes +

SCHEDULING POLICY for writing logical parallel +

 partition copies

Enable WRITE VERIFY? no +

File containing ALLOCATION MAP [/home/maps/inedge.map]

 Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

á ñ

7. Press the Enter=Do key to create the logical volume.

8. When smit returns OK, press F3=Cancel to return to the command prompt.

To create perflv3:

1. Type smitty mklv to get to the menu whose title is Add a Logical Volume.

2. Type perfvg in the field VOLUME GROUP name and press the Enter=Do key, or
use F4=List to select it.

230 AIX Storage Management

3. Type 12 in the field Number of LOGICAL PARTITIONS; 12 physical partitions
allows us to place three partition pairs on each disk.

4. Type perflv3 in the field Logical volume NAME so that the screen looks like:

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

Logical volume NAME [perflv3]

\ VOLUME GROUP name perfvg

\ Number of LOGICAL PARTITIONS [12] #

PHYSICAL VOLUME names [] +

Logical volume TYPE []

POSITION on physical volume outer_middle +

RANGE of physical volumes minimum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [] #

to use for allocation

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

5. Press the Page Down or Down Arrow key to get to the bottom of the next
page.

6. Type the map file path name, such as /home/maps/centre.map, in the field File
containing ALLOCATION MAP, so that the screen looks like:

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[MORE...9] [Entry Fields]

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +

Logical volume LABEL []

MAXIMUM NUMBER of LOGICAL PARTITIONS [128]

Enable BAD BLOCK relocation? yes +

SCHEDULING POLICY for writing logical parallel +

 partition copies

Enable WRITE VERIFY? no +

File containing ALLOCATION MAP [/home/maps/centre.map]

 Stripe Size? [Not Striped] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

á ñ

7. Press the Enter=Do key to create the logical volume.

8. When smit returns OK, press F3=Cancel to return to the command prompt.

How to Create a Journal Log Type Logical Volume: This section shows how to
create a jfslog logical volume that can be used by one or more AIX Version 4
journaled file systems. You may want to do this to improve your system's

 Chapter 8. Practical Examples 231

performance, since the log can be placed on the center region of the fastest disk in
your volume group.

Create the journaled file system log device before any journaled file system is
created in the volume group. Otherwise a default device, such as loglv01, will be
created automatically. In this example, we'll create perflog before we create any
journaled file systems in the perfvg volume group.

For more information, refer to the AIX Version 4.1 Hypertext Information Base
Library article Create a File System Log on a Dedicated Disk for a User-Defined
volume group.

To create perflog:

1. Type smitty mklv to get to the menu whose title is Add a Logical Volume.

2. Type perfvg in the field VOLUME GROUP name and press the Enter=Do key, or
use F4=List to select it.

3. Type perflog in the field Logical volume NAME.

4. Type 1 in the field Number of LOGICAL PARTITIONS.

5. Type hdisk5 in the field PHYSICAL VOLUME names, or use F4=List to select it.

6. Type jfslog in the field Logical volume TYPE. Note that there is no select
option available here.

7. Use the Tab key to toggle POSITION on physical volume to the center setting
so that the screen looks like:

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

Logical volume NAME [perflog]

\ VOLUME GROUP name perfvg

\ Number of LOGICAL PARTITIONS [1] #

PHYSICAL VOLUME names [hdisk5] +

Logical volume TYPE [jfslog]

POSITION on physical volume center +

RANGE of physical volumes minimum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [] #

to use for allocation

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

8. We can execute this command with the rest of the fields left with their default
values, since most fields do not affect a logical volume that consists of one
physical partition. This logical volume can only exist as one copy on one disk.
Hence, instead of pressing the Page Down key to go to the next screen, press
the Enter=Do key to create the logical volume.

9. When smit returns OK, press F3=Cancel to return to the command prompt.

232 AIX Storage Management

10. We now need to format the newly created journaled file system log device
perflog with the following command:

à ð
/usr/sbin/logform /dev/perflog

logform: destroy /dev/perflog (y)?

#

á ñ

The following example illustrates that this command should not damage the
data in a clean (in other words, fsck has been used), unmounted journaled file
system. It just initializes the journaled file system log device, so that it can
record the changes to the pointers that reference the data stored in a journaled
file system.

Warning - Use logform carefully

For more information, refer to the AIX Version 4.1 Hypertext Information
Base Library article Create a File System Log on a Dedicated Disk for a
User-Defined volume group, and also refer to the logform command in the
AIX Version 4.1 Commands Reference.

à ð
lsvg -l vgname

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

perflog jfslog 1 1 1 closed/syncd N/A

lvð4 jfs 1 1 1 closed/syncd /ritest2

/usr/sbin/logform /dev/perflog

logform: destroy /dev/perflog (y)?

mount /ritest2

cp /etc/motd /ritest2

ls -la /ritest2

total 24

drwxr-sr-x 2 sys sys 512 Jul 2ð 16:51 .

drwxr-xr-x 29 bin bin 1ð24 Jul 2ð 15:29 ..

-r-xr--r-- 1 root sys 88ð Jul 2ð 16:51 motd

umount /ritest2

/usr/sbin/logform /dev/perflog

logform: destroy /dev/perflog (y)?

mount /ritest2

ls -la /ritest2

total 24

drwxr-sr-x 2 sys sys 512 Jul 2ð 16:51 .

drwxr-xr-x 29 bin bin 1ð24 Jul 2ð 15:29 ..

-r-xr--r-- 1 root sys 88ð Jul 2ð 16:51 motd

lsvg -l vgname

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

perflog jfslog 1 1 1 open/syncd N/A

lvð4 jfs 1 1 1 open/syncd /ritest2

á ñ

The logical volume perflog is now ready to be used.

How to Create a Paging Type Logical Volume: This section shows how to
create a mirrored paging device in a non-rootvg volume group with attributes that
give optimal performance. You may wish to do this for memory intensive
applications that will potentially result in a lot of I/O to the paging logical volumes.

Execute smitty pgsp so your screen looks like:

 Chapter 8. Practical Examples 233

à ð
 Paging Space

Move cursor to desired item and press Enter.

List All Paging Spaces

Add Another Paging Space

Change / Show Characteristics of a Paging Space

Remove a Paging Space

Activate a Paging Space

F1=Help F2=Refresh F3=Cancel F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

and then select Add Another Paging Space to display:

à ð
Add Another Paging Space

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

Volume group name perfvg

SIZE of paging space (in logical partitions) [5] #

PHYSICAL VOLUME name +

Start using this paging space NOW? yes +

Use this paging space each time the system is yes +

 RESTARTED?

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

You can easily see these menu choices provide no control over the placement of
the paging space logical partition, nor do they allow us to create multiple copies of
the paging logical volume.

We want to use all the disks in the volume group to provide more heads to respond
to access requests, so we'll use a maximum range. We'll leave the scheduling policy
as parallel so that all disks can handle I/O requests for this logical volume
simultaneously. We'll also specify the center disk region and turn off Mirror Write

Consistency? to minimize disk activity, since now the disk heads will have a better

234 AIX Storage Management

chance of being able to stay near the center of the disk platters during an I/O
request. Hence, use the familiar logical volume creation method as follows:

1. Type smitty mklv to get to the menu whose title is Add a Logical Volume.

2. Type perfvg in the field VOLUME GROUP name and press the Enter=Do key, or
use F4=List to select it.

3. Type perfpg in the field Logical volume NAME.

4. Type 5 in the field Number of LOGICAL PARTITIONS.

5. Type paging in the field Logical volume TYPE. Note that there is no select
option available here.

6. Use the Tab key to toggle POSITION on physical volume to the center setting.

7. Use the Tab key to toggle RANGE of physical volumes to the maximum setting.

8. Use the Tab key to toggle Number of COPIES of each logical partition to a
value of 2. This will result in the creation of both a primary and secondary copy
of the perfpg logical volume.

9. Use the Tab key to toggle Mirror Write Consistency? to the no setting so that
your screen looks like:

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

Logical volume NAME [perfpg]

\ VOLUME GROUP name perfvg

\ Number of LOGICAL PARTITIONS [5] #

PHYSICAL VOLUME names [] +

Logical volume TYPE [paging]

POSITION on physical volume center +

RANGE of physical volumes maximum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [] #

to use for allocation

Number of COPIES of each logical 2 +

 partition

Mirror Write Consistency? no +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

10. We can execute this command with the rest of the fields left with their default
values. Hence, instead of pressing Page Down to go to the next screen, press
the Enter=Do key to create the logical volume.

11. When smit returns OK, press F3=Cancel to return to the command prompt.

12. Now execute smitty pgsp, but this time select Change / Show Characteristics
of a Paging Space .

13. Move your cursor to highlight perfpg and then press the Enter=Do .

14. Use the Tab key to toggle Use this paging space each time the system is

RESTARTED? from no to yes so that your screen looks like:

 Chapter 8. Practical Examples 235

à ð
Change / Show Characteristics of a Paging Space

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

Paging space name perfpg

Volume group name perfvg

Physical volume name hdisk5

NUMBER of additional logical partitions [] #

Use this paging space each time the system is yes +

 RESTARTED?

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

15. Press the Enter=Do key to change the paging space.

16. When smit returns OK, press F3=Cancel to return to the Paging Space menu.

17. To immediately start to use the new paging device, you can now:

� Reboot AIX Version 4 using the shutdown -Fr command, or:

a. Select Activate a Paging Space .

b. Use the F4=List key to select perfpg .

c. Press the Enter=Do key to activate the perfpg logical volume.

d. When smit returns OK, press F10=Exit to return to the command
prompt.

Synchronize the Volume Group: The final step that we need to do is to
synchronize perfvg. The parts of this step, similar to that described in “How to
Synchronize rootvg” on page 196, are:

1. Execute the command smitty vg.

2. Select Activate a Volume Group .

3. Type perfvg or use F4=List to select it.

4. Press the Enter=Do key.

5. Press F10=Exit when smit returns an OK prompt.

If we have to create copies of many small logical volumes, it is more efficient for
the systems administrator to use one command after hours to synchronize them.
This means that the configuration work can be done during normal business hours
without any significant I/O burdens to normal operations.

How to Document the Volume Group Design: Now that we've created perfvg,
we can choose some of the commands discussed in Chapter 7, “Storage
Management Files and Commands Summary” on page 137 to enable us to:

� Check that all logical volumes have been created correctly.

236 AIX Storage Management

� Record the configuration in our system logbook for reference should we have to
manually recreate perfvg (of course, you should have multiple, tested volume
group backup images stored safely. This is discussed in 8.4, “Managing
Backup and Restore” on page 247).

If you refer to the Chapter 7, “Storage Management Files and Commands
Summary” on page 137 chapter, you can see that the commands:

 � lsvg

 � lspv

 � lslv

are quite simple since they only have a few flags. Hence we prefer to execute
these commands directly from the command line rather than through the smit
interface. Therefore, although the following is a brief summary of how to use the
correct smit options, you may prefer to follow the simple method outlined in the
previous command summary to enable you to document your volume group
configuration.

You should also note that the most comprehensive volume group command, lsvg

-M vgname, does not have a smit interface and hence must be executed from the
command line. It can also produce a long output for a large volume group with
many physical volumes in it. A smaller summarized version of its output can be
obtained by using the lspv command for each disk in the volume group, which you
can do using the method below. Note that you could also use lslv, but in this
case, we shall use lspv because we only have two disks compared to six logical
volumes, so we only have to execute lspv twice to get a complete description of
perfvg.

Execute lspv from smit using the following procedure (we will also show you how
you can execute lsvg and lslv from smit):

1. To get to the menu with the title Logical Volume Manager, execute the
command smitty lvm, or, if you do not like to use a fastpath:

a. Execute the command smitty.

b. Select System Storage Management (Physical & Logical Storage) .

c. Select Logical Volume Manager .

2. If you want to use the lsvg command:

a. Select Volume Groups .

b. Select List Contents of a Volume Group .

c. Type perfvg and press the Enter=Do key, or use F4=List to select it.

d. For the field List OPTION, press the F4=List key to display a screen like:

 Chapter 8. Practical Examples 237

à ð
List Contents of a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ VOLUME GROUP name [perfvg]

 List OPTION status +

 __

 | List OPTION |

 | |

| Move cursor to desired item and press Enter. |

 | |

 | status |

 | logical volumes |

 | physical volumes |

 | |

 | F1=Help F2=Refresh F3=Cancel |

F1| F8=Image F1ð=Exit Enter=Do |

F5| /=Find n=Find Next |

F9|___|

á ñ

� If you move the cursor to highlight status and press Enter=Do twice,
the F6=Command shows you that the displayed output is for the
command lsvg perfvg.

� If you move the cursor to highlight logical volumes and press
Enter=Do twice, the F6=Command shows you that the displayed
output is for the command lsvg -l perfvg.

� If you move the cursor to highlight physical volumes and press
Enter=Do twice, the F6=Command shows you that the displayed
output is for the command lsvg -p perfvg.

e. Press F10=Exit to return to the command prompt when you've finished
reading the output.

f. For an example of the output of lsvg, please refer to Chapter 7, “Storage
Management Files and Commands Summary” on page 137.

3. If you want to use the lslv command:

a. Select Logical Volumes .

b. Select Show Characteristics of a Logical Volume .

c. Type perlv1 and press the Enter=Do key, or use F4=List to select it.

d. For the field List OPTION, press the F4=List key to display a screen like:

238 AIX Storage Management

à ð
Show Characteristics of a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ LOGICAL VOLUME name [perflv1] +

 List OPTION status +

 __

 | List OPTION |

 | |

| Move cursor to desired item and press Enter. |

 | |

 | status |

| physical volume map |

| logical partition map |

 | |

 | F1=Help F2=Refresh F3=Cancel |

F1| F8=Image F1ð=Exit Enter=Do |

F5| /=Find n=Find Next |

F9|___|

á ñ

� If you move the cursor to highlight status and press Enter=Do twice,
the F6=Command shows you that the displayed output is for the
command lslv perflv1.

� If you move the cursor to highlight physical volume map and press
Enter=Do twice, the F6=Command shows you that the displayed
output is for the command lslv -l perflv1.

� If you move the cursor to highlight logical partition map and press
Enter=Do twice, the F6=Command shows you that the displayed
output is for the command lslv -m perflv1.

e. For an example of the output of lslv, please refer to Chapter 7, “Storage
Management Files and Commands Summary” on page 137.

f. Press F10=Exit to return to the command prompt when you've finished
reading the output.

4. For this volume group design, we can execute the following two smit
commands to get the sample output that follows:

a. Select Physical Volumes .

b. Select List Contents of a Physical Volume .

 c. For hdisk3:

1) Type hdisk3 and press the Enter=Do key, or use F4=List to select it.

2) For the field List OPTION, press the F4=List key to display a screen
like:

 Chapter 8. Practical Examples 239

à ð
List Contents of a Physical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

PHYSICAL VOLUME name [hdisk3] +

 List OPTION status +

 __

 | List OPTION |

 | |

| Move cursor to desired item and press Enter. |

 | |

 | status |

 | logical volumes |

 | physical partitions |

 | |

 | F1=Help F2=Refresh F3=Cancel |

F1| F8=Image F1ð=Exit Enter=Do |

F5| /=Find n=Find Next |

F9|___|

á ñ

3) Move the cursor to highlight logical volumes and press enter=Do
twice. The F6=Command shows you that the displayed output is for
the command lspv -l hdisk3.

4) Press F3=Cancel to return to the screen with the title List Contents

of a Physical Volume when you've finished reading the output.

5) For the field List OPTION, press the F4=List key again to bring up the
same menu as shown above.

6) Move the cursor to highlight physical partitions and press enter=Do
twice. The F6=Command shows you that the displayed output is for
the command lspv -p hdisk3.

7) Press F3=Cancel to return to the screen with the title List Contents

of a Physical Volume when you've finished reading the output.

d. For hdisk5, repeat the steps described for hdisk3.

5. Press F10=Exit to return to the command prompt when you've finished reading
the output.

6. Save the file /smit.log since it will contain the output of these lspv commands,
which will be similar to those given in the next section.

An Example Description of a Volume Group Design: The lspv commands
output in the /smit.log or /home/vginfo/vg.summary files for the physical volumes
in perfvg should look like:

240 AIX Storage Management

à ð
lspv -l hdisk3

hdisk3:

LV NAME LPs PPs DISTRIBUTION MOUNT POINT

perfpg 5 5 ðð..ðð..ð5..ðð..ðð N/A

perflv3 6 6 ðð..ðð..ð6..ðð..ðð N/A

perflv2 1ð 1ð ðð..ðð..ðð..1ð..ðð N/A

perflv4 5 5 ðð..ðð..ðð..ðð..ð5 N/A

lspv -p hdisk3

hdisk3:

PP RANGE STATE REGION LV ID TYPE MOUNT POINT

1-15 free outer edge

16-3ð free outer middle

31-34 free center

35-39 used center perfpg paging N/A

4ð-45 used center perflv3 jfs N/A

46-5ð free inner middle

 51-6ð stale inner middle perflv2 jfs N/A

61-65 free inner edge

66-7ð used inner edge perflv4 jfs N/A

71-75 free inner edge

#

lspv -l hdisk5

hdisk5:

LV NAME LPs PPs DISTRIBUTION MOUNT POINT

perflv1 1ð 2ð ðð..2ð..ðð..ðð..ðð N/A

perflv3 6 6 ðð..ð5..ð1..ðð..ðð N/A

perflog 1 1 ðð..ðð..ð1..ðð..ðð N/A

perfpg 5 5 ðð..ðð..ð5..ðð..ðð N/A

perflv2 1ð 1ð ðð..ðð..ðð..1ð..ðð N/A

perflv4 5 5 ðð..ðð..ðð..ðð..ð5 N/A

lspv -p hdisk5

hdisk5:

PP RANGE STATE REGION LV ID TYPE MOUNT POINT

1-58 free outer edge

59-9ð free outer middle

91-1ðð stale outer middle perflv1 jfs N/A

1ð1-11ð used outer middle perflv1 jfs N/A

111-115 used outer middle perflv3 jfs N/A

116-116 used center perflv3 jfs N/A

117-117 used center perflog jfslog N/A

118-139 free center

14ð-144 used center perfpg paging N/A

145-172 free center

173-2ðð free inner middle

2ð1-21ð used inner middle perflv2 jfs N/A

211-229 free inner middle

23ð-232 free inner edge

233-237 used inner edge perflv4 jfs N/A

238-287 free inner edge

#

á ñ

The lsvg -M perfvg command output in the /home/vginfo/vg.detail file should look
like:

 Chapter 8. Practical Examples 241

à ð
perfvg

hdisk3:1-34

hdisk3:35 perfpg:2:1

hdisk3:36 perfpg:4:1

hdisk3:37 perfpg:1:2

hdisk3:38 perfpg:3:2

hdisk3:39 perfpg:5:2

hdisk3:4ð perflv3:11

hdisk3:41 perflv3:12

hdisk3:42 perflv3:7

hdisk3:43 perflv3:8

hdisk3:44 perflv3:3

hdisk3:45 perflv3:4

hdisk3:46-5ð

hdisk3:51 perflv2:1:2

hdisk3:52 perflv2:2:2

hdisk3:53 perflv2:3:2

hdisk3:54 perflv2:4:2

hdisk3:55 perflv2:5:2

hdisk3:56 perflv2:6:2

hdisk3:57 perflv2:7:2

hdisk3:58 perflv2:8:2

hdisk3:59 perflv2:9:2

hdisk3:6ð perflv2:1ð:2

hdisk3:61-65

hdisk3:66 perflv4:6

hdisk3:67 perflv4:7

hdisk3:68 perflv4:8

hdisk3:69 perflv4:9

hdisk3:7ð perflv4:1ð

hdisk3:71-75

hdisk5:1-9ð

hdisk5:91 perflv1:1:2

hdisk5:92 perflv1:2:2

hdisk5:93 perflv1:3:2

hdisk5:94 perflv1:4:2

hdisk5:95 perflv1:5:2

hdisk5:96 perflv1:6:2

hdisk5:97 perflv1:7:2

hdisk5:98 perflv1:8:2

hdisk5:99 perflv1:9:2

hdisk5:1ðð perflv1:1ð:2

á ñ

the long output continues like this:

242 AIX Storage Management

à ð
hdisk5:1ð1 perflv1:1:1

hdisk5:1ð2 perflv1:2:1

hdisk5:1ð3 perflv1:3:1

hdisk5:1ð4 perflv1:4:1

hdisk5:1ð5 perflv1:5:1

hdisk5:1ð6 perflv1:6:1

hdisk5:1ð7 perflv1:7:1

hdisk5:1ð8 perflv1:8:1

hdisk5:1ð9 perflv1:9:1

hdisk5:11ð perflv1:1ð:1

hdisk5:111 perflv3:1

hdisk5:112 perflv3:2

hdisk5:113 perflv3:5

hdisk5:114 perflv3:6

hdisk5:115 perflv3:9

hdisk5:116 perflv3:1ð

hdisk5:117 perflog:1

hdisk5:118-139

hdisk5:14ð perfpg:1:1

hdisk5:141 perfpg:3:1

hdisk5:142 perfpg:5:1

hdisk5:143 perfpg:2:2

hdisk5:144 perfpg:4:2

hdisk5:145-2ðð

hdisk5:2ð1 perflv2:1:1

hdisk5:2ð2 perflv2:2:1

hdisk5:2ð3 perflv2:3:1

hdisk5:2ð4 perflv2:4:1

hdisk5:2ð5 perflv2:5:1

hdisk5:2ð6 perflv2:6:1

hdisk5:2ð7 perflv2:7:1

hdisk5:2ð8 perflv2:8:1

hdisk5:2ð9 perflv2:9:1

hdisk5:21ð perflv2:1ð:1

hdisk5:211-232

hdisk5:233 perflv4:1

hdisk5:234 perflv4:2

hdisk5:235 perflv4:3

hdisk5:236 perflv4:4

hdisk5:237 perflv4:5

hdisk5:238-287

á ñ

How to Test the Performance of the Design: This section gives an example of
how you can obtain an indication of what effect the different attributes can have
when you create a logical volume.

Warning - Your results will be different

Of course, every site may have its unique features, such as different hardware,
different I/O requests, and different system loads, which may result in different
results for you if you try the following commands.

You can do a simple test by just copying a very large file from the same fixed
location on another volume group to each of:

 � perflv1

 � perflv2

 � perflv3

 � perflv4

 Chapter 8. Practical Examples 243

To do this, we first need to create a journaled file system on each of these logical
volumes:

1. To create /perfjfs1 on perflv1:

a. Execute smitty jfs to get the Journaled File Systems menu.

b. Select Add a Journaled File System on a Previously Defined Logical
Volume .

c. For the field LOGICAL VOLUME name, use the F4=List key to select perflv1.

d. Type /perfjfs1 in the field MOUNT POINT.

e. Change the field Mount AUTOMATICALLY at system restart? to yes by
using the Tab key.

f. Leave the other fields with their default values so that the screen looks like:

à ð
Add a Journaled File System on a Previously Defined Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ LOGICAL VOLUME name perflv1 +

\ MOUNT POINT [/perfjfs1]

Mount AUTOMATICALLY at system restart? yes +

 PERMISSIONS read/write +

 Mount OPTIONS [] +

Start Disk Accounting? no +

Fragment Size (bytes) 4ð96 +

Number of bytes per inode 4ð96 +

 Compression algorithm no +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

g. Press the Enter=Do key.

h. Press the F3=Cancel key when smit returns an OK message to return to the
menu with the title Add a Journaled File System on a Previously Defined

Logical Volume.

2. For perflv2, repeat the above to create the /perflv2 journaled file system.

3. For perflv3, repeat the above to create the /perflv3 journaled file system.

4. For perflv4, repeat the above to create the /perflv4 journaled file system.

Now we need to check that we have a suitable source file, and copy it four times to
each of the newly created journaled file systems. Use the timex command to
record the time required by the cp copy command. If you have access to AIX
Version 4.1 Hypertext Information Base Library, then you may be able to do the
following (note that our test used files from a copy of InfoExplorer that was loaded
on a physical volume).

244 AIX Storage Management

à ð
cd /usr/lpp/info/lib/en_US/aix41

ls -l cmds/cmds.romm

-rw-r--r-- 1 root system 218ð5ð56 May 12 ð9:33 cmds/cmds.rom

timex cp cmds/cmds.rom manage/manage.rom /perfjfs1

real 59.53

user ð.35

sys 9.14

timex cp cmds/cmds.rom manage/manage.rom /perfjfs2

real 34.15

user ð.4ð

sys 1ð.64

timex cp cmds/cmds.rom manage/manage.rom /perfjfs3

real 28.62

user ð.37

sys 1ð.36

timex cp cmds/cmds.rom manage/manage.rom /perfjfs4

real 28.66

user ð.42

sys 9.99

á ñ

You may wish to use a command such as iostat 5 | tee iostat.perfjfsx to
monitor disk activity during each of these commands, which is what we did.

Let's now look at these results for the mirrored and non-mirrored tests:

1. Two copy logical volume tests - perflv1 and perflv2.

The 25 second difference clearly indicates the cost required to create a highly
available logical volume. As discussed in Chapter 5, “Storage Subsystem
Design” on page 77, and in the AIX V3.2 Performance Monitoring and Tuning
Guide, the following options will degrade performance during a write operation:

 � Scheduling policy

 � Write verify

� Mirror write consistency

� Placing both copies on the same physical volume

You can see the effect of the copy location data in the following output from the
iostat command:

� For the copy to perflv1 (one disk):

à ð
tty: tin tout avg-cpu: % user % sys % idle % io

 ð.2 158.9 4.ð 42.5 2ð.2 33.

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdiskð 35.1 157.3 23.8 756 32

hdisk1 ð.ð ð.ð ð.ð ð ð

hdisk2 31.7 229.9 13.ð 112ð 32

hdisk3 ð.ð ð.ð ð.ð ð ð

hdisk4 ð.ð ð.ð ð.ð ð ð

hdisk5 73.1 494.ð 11.2 4 2471

hdisk6 ð.ð ð.ð ð.ð ð ð

hdisk7 ð.ð ð.ð ð.ð ð ð

hdisk8 ð.ð ð.ð ð.ð ð ð

á ñ

You can see that a write is only occurring on one disk here.

 Chapter 8. Practical Examples 245

� For the copy to perflv2 (two disks):

à ð
tty: tin tout avg-cpu: % user % sys % idle % io

 ð.2 158.9 1ð.ð 21.2 5.8 63.

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdiskð 5ð.3 78.2 14.6 2ðð 192

hdisk1 ð.ð ð.ð ð.ð ð ð

hdisk2 77.8 411.2 17.8 1868 192

hdisk3 45.9 4ð8.8 15.2 ð 2ð48

hdisk4 ð.ð ð.ð ð.ð ð ð

hdisk5 53.3 414.4 26.1 24 2ð52

hdisk6 ð.ð ð.ð ð.ð ð ð

hdisk7 ð.ð ð.ð ð.ð ð ð

hdisk8 ð.ð ð.ð ð.ð ð ð

á ñ

You can see that write operations occur on both disks here.

2. Single copy logical volume tests - perflv3 and perflv4.

The main difference in the maps is that the good non-mirrored logical volume
uses a second disk for some of its logical partitions, arranged in a partially
contiguous manner using the center and outer middle regions of the disks. This
method of creating perflv3 shows the fine control available from the use of map
files. For example, the file centre.map:

à ð
#cat centre.map

hdisk5:111-112

hdisk3:44-45

hdisk5:113-114

hdisk3:42-43

hdisk5:115-116

hdisk3:4ð-41

á ñ

shows that a logical volume built with it will occupy the center region of hdisk3
and the center and outer middle regions of hdisk5. It also shows that we have
decided to use two physical partitions from hdisk5, then two physical partitions
from hdisk3, and so on. The allocation precision obtained from the use of a
map file can be seen in the output of the following command:

à ð
lslv -m perflv3

perflv3:/perfjfs3

LP PP1 PV1 PP2 PV2 PP3 PV3

ððð1 ð111 hdisk5

ððð2 ð112 hdisk5

ððð3 ðð44 hdisk3

ððð4 ðð45 hdisk3

ððð5 ð113 hdisk5

ððð6 ð114 hdisk5

ððð7 ðð42 hdisk3

ððð8 ðð43 hdisk3

ððð9 ð115 hdisk5

ðð1ð ð116 hdisk5

ðð11 ðð4ð hdisk3

ðð12 ðð41 hdisk3

á ñ

If the same logical volume had been built on hdisk3 and hdisk5 using a
maximum range for its Inter-Physical Volume Allocation Policy, then the pattern
would be one physical partition on hdisk5, one on hdisk3, and so on. This
would give better performance, so it's not surprising that for both single copy
physical volumes, the copy time was about 28.6 seconds.

246 AIX Storage Management

The fact that the time is approximately the same also suggests that the
center/middle disk region is not much faster than the edge region. However,
this write had no competition from other disk requests so the disk heads will
have minimal movement across the disk platter regions.

One final performance result of interest is that in our scenario, mirroring always
degraded performance, even when it was tuned for optimal performance. This is
not surprising since every logical write request is translated into two physical write
operations. However, you may obtain different results in another environment,
particularly if your test is based on a read rather than a write operation, which we
did not investigate here.

8.4 Managing Backup and Restore
It is critically important that a systems administrator both implements and
understands a reliable backup and recovery policy. This section shows you an
example of how to use the volume group backup utilities to save and recover your
system, if your data or configuration information is damaged beyond a practical
repair timeframe.

In particular, the examples in this section will describe:

� How to save the contents and configuration of the perfvg volume group.

� How to restore the contents and configuration of the perfvg volume group.

� How to use the mksysb command to save an image of the volume group.

� How to choose some of the storage management related installation options to
reinstall this rootvg image.

 Chapter 8. Practical Examples 247

Suggestion - One image

You should usually place one volume group image on one tape when you use
the smit defaults. This is what you may want to use as a simple backup rule.
Usually, volume groups will be several gigabytes large if they contain two to
three physical volumes, so each volume group will thus usually require at least
one tape cartridge. Also note that the smit fields that you see when you
execute smitty savevg:

� Only allow you to enter the name of one volume group in the VOLUME GROUP

to back up field.

� Do not allow you to specify a particular image on the backup device.

However, you may be able to get around this by using the tctl command and
the no-rewind tape device name as in the following sequence from the
command line:

à ð
savevg -i -f'/dev/rmtð.1' 'availvg'

savevg -i -f'/dev/rmtð.1' 'perfvg'

tctl -f/dev/rmtð rewind

restore -Tvf/dev/rmtð.1

restore -Tvf/dev/rmtð.1

á ñ

This seemed to work fine, but is not fully investigated in this example.

If you have a number of small machines attached to a server that has a large
capacity tape drive, then you may decide to use disk space on the server as a
temporary storage area for all your volume group images from the smaller
machines until you back them up.

You must become familiar with the backup and recovery issues and procedures
discussed in:

� 3.2.1, “Backup/Restore” on page 63.

� 5.5, “Planning Backup Strategies” on page 87.

� AIX Version 4.1 System Management Guide: Operating System and Devices
and AIX Version 4.1 Installation Guide.

These books may be in AIX Version 4.1 Hypertext Information Base Library on
your system. For these examples in particular, you should refer to the following
articles within them.

– Backing Up Your System.

This article appears in both documents at the level of AIX Version 4 that we
used for these examples. Although the articles are very similar, we found
that:

- The version in AIX Version 4.1 Installation Guide was easier to follow to
create a rootvg image.

- The version in AIX Version 4.1 System Management Guide: Operating
System and Devices had more information regarding how to backup
other volume groups that are part of your system configuration.

248 AIX Storage Management

� AIX Version 4.1 System Management Guide: Operating System and Devices.

The articles of interest for these examples in this document include:

– Restoring a User Volume Group.

– Backing Up the System Image Including User Volume Groups.

– Developing a Backup Strategy.

� AIX Version 4.1 Installation Guide.

The articles of interest for these examples in this document include:

– Installing BOS from a System Backup.

� AIX Version 4.1 System User.

This document may also be on AIX Version 4.1 Hypertext Information Base
Library on your system and so you may be able to refer to the articles in the
section called Backup Files and Storage Media.

8.4.1 How to Use the savevg and restvg Commands
This example follows the steps in Backing Up Your System and Restoring a User
Volume Group, in AIX Version 4.1 System Management Guide: Operating System
and Devices, to create and then restore a backup tape image of perfvg. Since we
can SHRINK the filesystems? when we restore the volume group with restvg, we'll
create one backup with map files to try to preserve our design efforts in 8.3.4, “A
Design Example for Improved Performance” on page 220.

We can then use the same backup to rebuild perfvg a second time, but this time
we'll try to shrink the journaled file systems. Note that if we shrink the journaled file
systems, then the resulting extra free physical partitions in the volume group means
that we can not maintain the physical partition map.

8.4.1.1 Command Line Summary
There is a simple sequence of commands that can be used by an experienced
systems administrator to manage the backup and recovery of user volume groups.
These simple commands come from a few smit menus which are described in the
next section.

If you want to discover what smit is doing under the covers, press the
F6=Command command key to see that:

� For savevg to build an image of perfvg that includes map files smit executes:

à ð
savevg -i -f'/dev/rmtð' -m'' 'perfvg'

á ñ

To check the backup, execute restore -Tqvf/dev/rmtð.1.

� For restvg to recreate perfvg with the same physical partition map, smit
executes:

à ð
restvg -f'/dev/rmtð'

á ñ

� For restvg to recreate perfvg with shrunken journaled file systems, smit
executes:

 Chapter 8. Practical Examples 249

à ð
restvg -f'/dev/rmtð' -s''

á ñ

You should note that:

� We found that for this example on our level of AIX Version 4, the mirror
secondary copies of the perfvg logical volumes were not restored unless we
used an image that had been built without map files, such as from:

à ð
savevg -i -f'/dev/rmtð' 'perfvg'

á ñ

Of course, you'll then have to check the new physical partition map to ensure
that it is satisfactory.

� If you want to rebuild a volume group, you must ensure that all target disks are
considered free for allocation by the operating system, so execute the lspv
command. Assume that you are recreating a volume group on the same disks
that were used by the volume group when savevg was executed. If these disks
are still being used by the volume group, then you can:

1. Unmount all journaled file systems (you may have to change paging
devices and reboot before this step if necessary).

2. Use the varyoffvg command on the volume group.

3. Use the exportvg command for the volume group.

4. Check with lspv.

5. If you still have trouble recreating the volume group using the backup
image, then you can try to format the target physical volumes.

 8.4.1.2 Detailed Guidance
To create the backup image of the perfvg volume group:

1. Execute smitty vg to get to the menu with the title Volume Groups.

2. Select Back Up a Volume Group , or, from the smit menu:

 a. Execute smitty.

b. Select System Storage Management (Physical & Logical Storage) .

c. Select Logical Volume Manager .

d. Select Volume Groups .

e. Select Back Up a Volume Group .

3. If your tape device is different to the default /dev/rmtð, then type the correct
target tape device (or file name) in the Backup DEVICE or FILE field, or use the
F4=List key to select it.

4. Type perfvg in the VOLUME GROUP to back up field, or use the F4=List key to
select it.

5. Use the Tab key to toggle the Create MAP files? field value from no to yes.

This should ensure that we maintain the precise physical partition allocation
documented in 8.3.2, “Map Files Usage and Contents” on page 207, that we
used to create perfvg. Your screen should look like:

250 AIX Storage Management

à ð
Back Up a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

WARNING: Execution of the savevg command will

result in the loss of all material

previously stored on the selected

 output medium.

\ Backup DEVICE or FILE [/dev/rmtð] +/

\ VOLUME GROUP to back up [perfvg] +

Create MAP files? yes +

 EXCLUDE files? no +

Number of BLOCKS to write in a single output [] #

(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

6. Press the Enter=Do key to backup perfvg.

7. Although your backup may require multiple tape volumes, our example fits on
one tape and the output screen should resemble:

à ð
 COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

a ./tmp/vgdata/vgdata.files

a ./tmp/vgdata/perfvg/filesystems

a ./tmp/vgdata/perfvg/perfvg.data

a ./tmp/vgdata/perfvg/perflog.map

a ./tmp/vgdata/perfvg/perflv1.map

a ./tmp/vgdata/perfvg/perflv2.map

a ./tmp/vgdata/perfvg/perflv3.map

a ./tmp/vgdata/perfvg/perflv4.map

a ./tmp/vgdata/perfvg/perfpg.map

a ./perfjfs4

a ./perfjfs3

a ./perfjfs2

a ./perfjfs1

ð512-ð38 savevg: Backup Completed Successfully.

F1=Help F2=Refresh F3=Cancel F6=Command

F8=Image F9=Shell F1ð=Exit /=Find

n=Find Next

á ñ

You must check the end of the output by using any appropriate key such as
End , or Page Down , or Ctrl-V to look for the string ð512-ð38 mksysb: Backup

Completed Successfully. This will ensure that there is no hidden error
message, although such a message may be only a warning. In this case, our
backup seems to be alright.

8. Press the F3=Cancel key to return to the Volume Groups menu.

9. You should check your backup by:

a. Selecting List Files in a Volume Group Backup from the Volume Groups

menu.

 Chapter 8. Practical Examples 251

b. If your tape device is different to the default /dev/rmtð, then type the
correct target tape device (or file name) in the Backup DEVICE or FILE field,
or use the F4=List key to select it.

c. Press the Enter=Do key to check the backup of your volume group. If your
backup is on multiple tape volumes, insert them as required.

10. Press the F10=Exit key to return to the command prompt when your backup
(and backup check) is complete.

Now that our backup is complete, we can try to rebuild the perfvg volume group
with the same physical partition layout as at the time of the backup.

Before we restored the backup, we ran the following commands:

à ð
lspv -M hdisk3 > /tmp/perfvg/hdisk3.map.before

lspv -M hdisk5 > /tmp/perfvg/hdisk5.map.before

á ñ

We can easily repeat similar commands after we've recreated perfvg so that we
can check if there are any changes to the physical partition layout by using the
diff command on the output files.

To recreate perfvg:

1. You must ensure that all target disks are considered free for allocation by the
operating system. In other words, you must see the word None next to the disk
name when you execute the lspv command. Assume that you are recreating a
volume group on the same disks that were used by the volume group when
savevg was executed. If these disks are still being used by the volume group
when you want to rebuild it, then you can:

a. Unmount all journaled file systems. (You will have to change paging
devices and reboot before this step if necessary.)

b. Use the varyoffvg command on the volume group.

c. Use the exportvg command for the volume group.

d. Check via lspv.

For this example, the procedure is:

1) Execute chps -a'n' 'perfpg' and reboot.

A smit menu for this deactivation of a paging logical volume, from the
command smitty chps, is discussed in 8.7, “Manipulating Page Space”
on page 303.

 2) Execute umount /perfjfs1.

 3) Execute umount /perfjfs2.

 4) Execute umount /perfjfs3.

 5) Execute umount /perfjfs4.

6) Vary off the perfvg volume group using varyoffvg perfvg.

7) Export the perfvg volume group using exportvg perfvg.

8) Check that the lspv output looks like:

252 AIX Storage Management

à ð
lspv

hdiskð ððð14732b1bd7f57 rootvg

hdisk1 ððð12218ððð7244ð stripevg

hdisk2 ððð12218da42ba76 rootvg

hdisk4 ððððð2ð158496d72 availvg

hdisk5 ððððð2ð1dc8bðb32 None

hdisk6 ððððð2ðð7bb618f5 availvg

hdisk3 ððð2479ð88f5f347 None

hdisk8 ððð137231982cðf2 stripevg

hdisk7 none None

á ñ

hdisk5 and hdisk3 are not associated with any volume group by the
operating system, and hence they can be used as the target physical
volumes for the recreation of perfvg.

 2. Execute smitty restvg.

Or, if you have come down from the main smit menu to the Volume Groups
menu, then select Remake a Volume Group . Don't select Restore Files in a
Volume Group Backup.

3. If your tape device is different from the default /dev/rmtð, then type the correct
source tape device (or file name) in the Restore DEVICE or FILE field, or use
the F4=List key to select it so that your screen looks like:

à ð
Remake a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ Restore DEVICE or FILE [/dev/rmtð] +/

SHRINK the filesystems? no +

PHYSICAL VOLUME names [] +

(Leave blank to use the PHYSICAL VOLUMES listed

in the vgname.data file in the backup image)

Number of BLOCKS to read in a single input [] #

(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

4. Press the Enter=Do key to get to the following menu prompt:

 Chapter 8. Practical Examples 253

à ð
 COMMAND STATUS

Command: running stdout: yes stderr: yes

Before command completion, additional instructions may appear below.

Will create the Volume Group: perfvg

Target Disks: hdisk3

hdisk5

 Allocation Policy:

 Shrink Filesystems: no

Preserve Physical Partitions for each Logical Volume: yes

Enter "y" to continue:

á ñ

5. Type the character y and press Enter=Do

Note that you are asked to confirm the target disks since they may contain data
that you want to keep. Remember that we only exported perfvg to free up these
disks, so hdisk3 and hdisk5 still contain valid data because exportvg does not
write to the physical volumes that are in the exported volume group.

If you did not check that your target disks are free, you may see an error such
as:

à ð
 COMMAND STATUS

Command: failed stdout: yes stderr: yes

Before command completion, additional instructions may appear below.

Will create the Volume Group: perfvg

Target Disks: hdisk3

hdisk5

 Allocation Policy:

 Shrink Filesystems: no

Preserve Physical Partitions for each Logical Volume: yes

Enter "y" to continue:

ð512-ð37 restvg: Target Disk hdisk3 Already belongs to a Volume Group. Restore

of Volume Group canceled.

F1=Help F2=Refresh F3=Cancel F6=Command

F8=Image F9=Shell F1ð=Exit /=Find

n=Find Next

á ñ

If you get this error even after you have exported the old volume group, you
may have to first double check using the lsdev -Cc disk command that the
physical volume names have not changed since you made the backup. You
may also have to format the target disks.

254 AIX Storage Management

However, you should usually have no problem getting to a screen like

à ð
 COMMAND STATUS

Command: OK stdout: yes stderr: yes

Before command completion, additional instructions may appear below.

[TOP]

Will create the Volume Group: perfvg

Target Disks: hdisk3

hdisk5

 Allocation Policy:

 Shrink Filesystems: no

Preserve Physical Partitions for each Logical Volume: yes

Enter "y" to continue: New volume on /dev/rmtð:

 Cluster 512ðð bytes (1ðð blocks).

Volume number 1

Date of backup: Tue Jul 12 19:14:13 1994

[MORE...18]

F1=Help F2=Refresh F3=Cancel F6=Command

F8=Image F9=Shell F1ð=Exit /=Find

n=Find Next

á ñ

You should go to the bottom of the smit output by using any appropriate key
such as End , or Page Down , or Ctrl-V to confirm there is no hidden error
message, although such a message may be only a warning.

6. In our example, the command seems to have completed successfully so press
the F10=Exit key to return to the command prompt so that we can confirm that:

� The physical partition layout has been restored.

� The data files have been restored.

Check the Restored Volume Group: The restvg command has automatically
mounted our file systems and there are no data access problems. Although we
expect our mirror setup to be maintained, the level of AIX Version 4 used in this
example has resulted in only one physical partition being allocated to each logical
partition in every logical volume in the perfvg volume group. This can be seen from
the output of:

à ð
lsvg -l perfvg

perfvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

perflv1 jfs 1ð 1ð 1 open/syncd /perfjfs1

perflv2 jfs 1ð 1ð 1 open/syncd /perfjfs2

perflv3 jfs 12 12 2 open/syncd /perfjfs3

perflv4 jfs 1ð 1ð 2 open/syncd /perfjfs4

perflog jfslog 1 1 1 open/syncd N/A

perfpg paging 5 5 2 closed/syncd N/A

á ñ

However, it is only the secondary copies that have been lost. The primary copies
have been restored to an identical physical partition layout. If you look at the
contents of the file badmir.map in 8.3.2, “Map Files Usage and Contents” on
page 207, you can see that the layout specified by this map file is consistent with
the output of the following command:

 Chapter 8. Practical Examples 255

à ð
lspv -M hdisk5 |grep perflv1

hdisk5:1ð1 perflv1:1

hdisk5:1ð2 perflv1:2

hdisk5:1ð3 perflv1:3

hdisk5:1ð4 perflv1:4

hdisk5:1ð5 perflv1:5

hdisk5:1ð6 perflv1:6

hdisk5:1ð7 perflv1:7

hdisk5:1ð8 perflv1:8

hdisk5:1ð9 perflv1:9

hdisk5:11ð perflv1:1ð

#

á ñ

If you have many large logical volumes in the volume group that you've recreated,
then it may not be easy to visually compare them. As an alternative, you can
execute the following commands:

à ð
lspv -M hdisk3 > hdisk3.map.after

lspv -M hdisk5 > hdisk5.map.after

diff hdisk5.map.after hdisk5.map.before|grep perflv3

diff hdisk3.map.after hdisk3.map.before|grep perflv3

#

á ñ

The diff command compares the ASCII text files that contain the physical volume
physical partition allocation map both before and after perfvg was rebuilt. The grep
command confirms that diff has found no difference for the perflv3 logical volume,
so we know that its layout has been maintained.

How to Recover Space in a User Volume Group: Unlike the rootvg volume
group journaled file systems, you may be able to recover space in a logical volume
in another volume group without affecting other users. For example, you may be
able to:

1. Make a current backup of logical volume data.

2. Close the logical volume (for example, by unmounting the associated &jfs).

3. Remove the logical volume.

4. Recreate the logical volume (and its associated journaled file system) with a
smaller size.

5. Restore the data.

However, if you have multiple logical volumes that you wish to recover data from in
one volume group, then the above process may be lengthy. It's probably easier to
backup the volume group using savevg, export it to deallocate its physical volumes,
and then recreate it with restvg, as in the following procedure that is almost
identical to the previous example.

1. Execute smitty restvg. to get to the menu with the title Remake a Volume
Group

2. If your tape device is different to the default /dev/rmtð, then type the correct
source tape device (or file name) in the Restore DEVICE or FILE field, or use
the F4=List key to select it.

256 AIX Storage Management

3. Press the Tab key to toggle the field SHRINK the filesystems? from no to yes
so that your screen should look like:

à ð
Remake a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ Restore DEVICE or FILE [/dev/rmtð] +/

SHRINK the filesystems? yes +

PHYSICAL VOLUME names [] +

(Leave blank to use the PHYSICAL VOLUMES listed

in the vgname.data file in the backup image)

Number of BLOCKS to read in a single input [] #

(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

4. Press the Enter=Do key to get to the following menu prompt:

à ð
 COMMAND STATUS

Command: running stdout: yes stderr: yes

Before command completion, additional instructions may appear below.

Will create the Volume Group: perfvg

Target Disks: hdisk3

hdisk5

 Allocation Policy:

 Shrink Filesystems: yes

Preserve Physical Partitions for each Logical Volume: no

Enter "y" to continue:

á ñ

5. Type the character y and press Enter=Do .

Note that you are asked to confirm the target disks since they may contain data
that you want to keep. Remember that we only exported perfvg to free up these
disks, so hdisk3 and hdisk5 still contain valid data because exportvg does not
write to the physical volumes that are in the exported volume group.

You should get to a screen like:

 Chapter 8. Practical Examples 257

à ð
 COMMAND STATUS

Command: OK stdout: yes stderr: yes

Before command completion, additional instructions may appear below.

[TOP]

Will create the Volume Group: perfvg

Target Disks: hdisk3

hdisk5

 Allocation Policy:

 Shrink Filesystems: yes

Preserve Physical Partitions for each Logical Volume: no

Enter "y" to continue: New volume on /dev/rmtð:

 Cluster 512ðð bytes (1ðð blocks).

Volume number 1

[MORE...18]

F1=Help F2=Refresh F3=Cancel F6=Command

F8=Image F9=Shell F1ð=Exit /=Find

n=Find Next

á ñ

You should go to the bottom of the smit output by using any appropriate key
such as End , or Page Down , or Ctrl-V to confirm there is no hidden error
message, although such a message may be only a warning.

6. In our example, the command seems to have completed successfully so press
the F10=Exit key to return to the command prompt so that we can confirm that:

� The journaled file systems and their logical volumes have been made as
small as is necessary to physically have enough room for the restored data
files.

� The data files have been restored.

The output of the following commands shows us that the space saving operation
has worked. The mirrored logical volumes have been correctly created, and the
journaled file systems have been mounted so that we can confirm that our data
files have been restored:

à ð
lsvg -l perfvg

perfvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

perflv1 jfs 1 2 2 open/syncd /perfjfs1

perflv2 jfs 1 2 2 open/syncd /perfjfs2

perflv3 jfs 1 1 1 open/syncd /perfjfs3

perflv4 jfs 1 1 1 open/syncd /perfjfs4

perflog jfslog 1 1 1 open/syncd N/A

perfpg paging 5 1ð 2 closed/syncd N/A

#

df -I /perf\

Filesystem 512-blocks Used Free %Used Mounted on

/dev/perflv1 264ð 2ð8 2432 7% /perfjfs1

/dev/perflv2 264ð 2ð8 2432 7% /perfjfs2

/dev/perflv3 3152 2ð8 2944 6% /perfjfs3

/dev/perflv4 264ð 2ð8 2432 7% /perfjfs4

#

á ñ

258 AIX Storage Management

Note that although each journaled file system requires one 4MB logical partition,
the journaled file system is actually much smaller than this, and can be expanded
to over 8000 512 byte blocks before a second logical partition will be allocated to it.

8.4.2 How to Use the mksysb Command
This example follows the steps in "Backing Up Your System", in the AIX Version
4.1 Installation Guide, to create a backup bootable tape image of rootvg. We can
do this twice:

� One backup with map files.

� One backup without map files.

Since we are concerned about the location of our logical volume copies in our
mirrored rootvg example, we only need to do a backup that will create map files. In
fact, creating map files provides more installation choices; we can change the field
in the installation menu from its default of yes so that we do not have to use the
map files on the tape to rebuild the rootvg.

Once the backup is complete, we can try to reinstall AIX Version 4 from our backup
tape and confirm that the mirror copies are on separate physical volumes:

� With the default installation options (no maps and no shrink).

� With the map file installation option.

� With the shrink option set to yes.

Note that the entry for the image.data file in the AIX Version 3.2 Files Reference
reminds us that this file in the / directory should not be modified.

8.4.2.1 Command Line Summary
Unlike AIX Version 3, the command called by smit is actually a script that for a
bootable tape effectively runs the following command:

à ð
/usr/bin/mksysb -i $BFLAG $EFLAG $MFLAG $DEVICE

á ñ

The script that is actually run is a great deal more complicated, and can be viewed
by using the F6=Command key from the smit Back Up the System menu.

 8.4.2.2 Detailed Guidance
Our first example shows how to create a backup that includes map files for the
rootvg. This should enable us to use this backup tape to rebuild a system that has
the same disk configuration, with the physical partitions of each logical volume
located in exactly the same place. This will ensure that your system performance
does not suffer because, for example, a paging logical volume could otherwise be
rebuilt on a slow physical volume instead of the fast physical volume that it was on
when the AIX Version 4 rootvg image was built.

Always Document the Current System: Before we start any backup, it is wise to
collect the output of a few commands to document the current system
configuration. This information may be very valuable if you encounter a problem
when you use this backup image to install AIX Version 4.

 Chapter 8. Practical Examples 259

You can record information such as:

à ð
lspv

hdiskð ððð14732b1bd7f57 rootvg

hdisk1 ððð12218ððð7244ð stripevg

hdisk2 ððð12218da42ba76 rootvg

hdisk4 ððððð2ð158496d72 availvg

hdisk5 ððððð2ð1dc8bðb32 perfvg

hdisk6 ððððð2ðð7bb618f5 availvg

hdisk3 ððð2479ð88f5f347 perfvg

hdisk8 ððð137231982cðf2 stripevg

hdisk7 none None

lsdev -Cc disk

hdiskð Available ðð-ð8-ðð-ð,ð 67ð MB SCSI Disk Drive

hdisk1 Available ðð-ð8-ðð-1,ð 67ð MB SCSI Disk Drive

hdisk2 Available ðð-ð8-ðð-2,ð 355 MB SCSI Disk Drive

hdisk4 Available ðð-ð7-ðð-ð,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk5 Available ðð-ð7-ðð-1,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk6 Available ðð-ð7-ðð-2,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk3 Available ðð-ð8-ðð-3,ð 32ð MB SCSI Disk Drive

hdisk8 Available ðð-ð7-ðð-4,ð 857 MB SCSI Disk Drive

hdisk7 Available ðð-ð7-ðð-3,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

df

Filesystem 512-blocks Free %Used Iused %Iused Mounted on

/dev/hd4 8192 448ð 45% 714 34% /

/dev/hd2 4ð9592 32688 92% 5ð44 9% /usr

/dev/hd9var 24576 3952 83% 95 3% /var

/dev/hd3 24576 23ðð8 6% 7ð 1% /tmp

/dev/hd1 8192 768ð 6% 7ð 6% /home

/dev/availlv 49152 4888 9ð% 17 ð% /availjfs

/dev/strlv16k 983ð4 9856 89% 18 ð% /strjfs16k

/dev/strlv32k 65536 264ð 95% 42 ð% /strjfs32k

/dev/lvð1 57344 616 98% 5726 8% /frag512

/dev/lvðð 57344 ð 1ðð% 51ðð 7% /frag4ð96

/dev/lvð2 16384 288 98% 1748 85% /frag512-1

/dev/perflv1 8192ð 7928ð 3% 16 ð% /perfjfs1

/dev/perflv2 8192ð 7928ð 3% 16 ð% /perfjfs2

/dev/perflv3 983ð4 95152 3% 16 ð% /perfjfs3

/dev/perflv4 8192ð 7928ð 3% 16 ð% /perfjfs4

#

lsps -a

Page Space Physical Volume Volume Group Size %Used Active Auto Type

perfpg hdisk5 perfvg 2ðMB ð no no lv

perfpg hdisk3 perfvg 2ðMB ð no no lv

hd6 hdiskð rootvg 32MB 24 yes yes lv

hd6 hdisk2 rootvg 32MB 24 yes yes lv

#

á ñ

Note that since the creation of the mirror copies of the rootvg logical volumes, we
deleted the pagingðð device and increased the /tmp journaled file system by 4MB.
An example of the output of lsvg -M rootvg before this change is shown in “How
to Check the Implementation of a Mirrored rootvg” on page 198. This is very
useful command output to keep when you want to create a rootvg image that
includes map files.

Create the rootvg Image on a Bootable Tape: As well as the prerequisites listed
in Backing Up Your System, in AIX Version 4.1 Installation Guide, you need to
ensure that you have:

� The fileset containing the required tape device software installed, if your tape
drive has been attached to your RISC System/6000 temporarily for the purpose
of backing it up (in other words, the tape device was not powered on and
attached to this RISC System/6000 when it was previously installed).

260 AIX Storage Management

� Given thought to the consequences of using this rootvg image to install a
different RISC System/6000. In other words, do you need to:

– Change the root password before the backup.

– Install additional filesets containing device driver software for the target
machine if its hardware configuration is not identical to the source RISC
System/6000 where the image was created.

– Change communication parameters to avoid a network conflict.

We can see from the above output of the df command that we have 23008 512
byte blocks free in the /tmp journaled file system. This is more than 8.2MB, so we
should have enough working space for the backup process. However, even if df
said that /tmp was almost full or on the borderline of being likely to run out of
space, then since we know that rootvg has some free physical partitions in it, we
can just change the smit field EXPAND /tmp if needed? as described below. We
also know that all the rootvg journaled file systems that we want to backup are
currently mounted. To create the rootvg image:

1. Execute the command smitty mksysb.

If you want to find this in the AIX Version 4 smit menu hierarchy:

a. Execute the command smitty.

b. Select System Storage Management (Physical & Logical Storage) .

c. Select System Backup Manager .

d. Select Back Up the System .

Your screen should now have a menu with the title Back Up the System.

2. Type the name of our backup device, such as /dev/rmtð, in the Backup DEVICE

or FILE field if its different to the default value that appears in the field.

3. Ensure that we'll have enough working space by using the Tab key to toggle
EXPAND /tmp if needed? to no.

4. Use the Tab key to toggle Create MAP files? from no to yes so that your
screen looks like:

 Chapter 8. Practical Examples 261

à ð
Back Up the System

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

WARNING: Execution of the mksysb command will

result in the loss of all material

previously stored on the selected

output medium. This command backs

up only rootvg volume group.

\ Backup DEVICE or FILE [/dev/rmtð] +/

Make BOOTABLE backup? yes +

(Applies only to tape media)

EXPAND /tmp if needed? (Applies only to bootable yes +

 media)

Create MAP files? yes +

 EXCLUDE files? no +

Number of BLOCKS to write in a single output [] #

#

(Leave blank to use a system default)

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

5. Press the Enter=Do key to create the backup using the write enabled tape that
we placed in the tape drive (we want to backup all files and we'll let the
operating system determine the appropriate number of blocks to use for the
/dev/rmt0 tape device).

6. Insert a second tape if required.

Our example backup image fits on one 2.3GB 8mm tape cartridge. If your
rootvg image requires multiple large capacity tapes, then you may need to
reconsider your volume group design.

7. Wait for the backup to complete, which will be indicated by a screen that looks
like:

à ð
 COMMAND STATUS

Command: OK stdout: yes stderr: yes

Before command completion, additional instructions may appear below.

[TOP]

File System size changed to 24576

bosboot: Boot image is 5173 512 byte blocks.

Backing up to /dev/rmtð.1

Cluster 512ðð bytes (1ðð blocks).

Volume 1 on /dev/rmtð.1

a 1ð ./tapeblksz

a 24 ./tmp/vgdata/rootvg/hd1.map

a 13ðð ./tmp/vgdata/rootvg/hd2.map

a 72 ./tmp/vgdata/rootvg/hd3.map

a 24 ./tmp/vgdata/rootvg/hd4.map

a 12 ./tmp/vgdata/rootvg/hd5.map

a 24 ./tmp/vgdata/rootvg/hd5x.map

[MORE...6679]

F1=Help F2=Refresh F3=Cancel F6=Command

F8=Image F9=Shell F1ð=Exit /=Find

n=Find Next

á ñ

As can be seen from this output, the map files that contain the physical
partition allocation data are the first files that are backed up.

262 AIX Storage Management

You should go to the bottom of the smit output by using any appropriate key
such as End , or Page Down , or Ctrl-V to confirm that the end of the output
looks like:

à ð
a ./perfjfs3

a ./perfjfs4

a ./availjfs

a ./strjfs16k

a ./strjfs32k

a ./frag4ð96

a ./bosinst.data

ð512-ð38 mksysb: Backup Completed Successfully.

á ñ

It is important to check that there is no hidden error message, although such a
message may be only a warning. In this case, our backup seems to be alright.

8. You may find that it is easier to read the first and last pages of this long output
by checking your smit.log file when you exit smit by pressing the F10=Exit key.

Warning - label all tapes

You will eventually become very frustrated if you do not correctly label your
backup tape(s) to include:

� The date of backup.

� The size of the rootvg image backed up (you may wish to keep a
printed copy of the /image.data file so that you can estimate how much
disk space is required on a target system installed with the SHRINK
option set to yes in the installation menu).

� The root password information.

� A communications configuration summary.

� The AIX version and release level.

� The tape name to identify it accurately in your backup tape pool.

9. Write protect and safely store your tape(s).

Check the rootvg Image: Briefly, it is important to note that you should check
your backups regularly. A bootable tape should be checked by actually trying to
boot the system in service mode using the tape. The actual files backed up should
be checked by the smit option List Files in a System Image found in the System
Backup Manager smit menu.

How to Do a Thorough Backup Tape Test: Use the tape to reinstall the source
system!!!

To do this, you should refer to Installing BOS from a System Backup in the AIX
Version 4.1 Installation Guide. This article describes in detail the steps required to
recover your mksysb image, which is what we did for this example. You will
improve your understanding of the installation process if you continue with the
prompted installation.

In this example, you will encounter a problem if you try to use map files. As we
discussed at the start of this chapter, the names of the physical volumes may be
reconfigured if some of the disks were added into the system at different times.
This resulted in the installation process thinking that hdisk5 and hdisk7 were the

 Chapter 8. Practical Examples 263

target disks for the rootvg. You can check the actual SCSI addresses of these disks
to confirm that this is correct. However, because the map files only contain the
names of the disks, then the installation process only recognized hdisk0 and hdisk3
(the original names of the rootvg disks) as having map files.

Hence, we are forced to install AIX Version 4 with the defaults of:

� Use Maps set to No.

� Shrink File System set to No.

� hdisk5 and hdisk7 as the Disk(s) Where You Want to Install.

This problem with the physical volume names shows us something useful; a
backup volume group image created with map files does not have to be installed
with the Use Maps set to yes.

When the installation is complete, we can see the following disk configuration:

à ð
lspv

hdiskð ððððð2ð158496d72 None

hdisk1 ððððð2ð1dc8bðb32 None

hdisk2 ððððð2ðð7bb618f5 None

hdisk3 none None

hdisk4 ððð137231982cðf2 None

hdisk5 ððð14732b1bd7f57 rootvg

hdisk6 ððð12218ððð7244ð None

hdisk7 ððð12218da42ba76 rootvg

hdisk8 ððð2479ð88f5f347 None

lsdev -Cc disk

hdiskð Available ðð-ð7-ðð-ð,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk1 Available ðð-ð7-ðð-1,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk2 Available ðð-ð7-ðð-2,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk3 Available ðð-ð7-ðð-3,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit)

hdisk4 Available ðð-ð7-ðð-4,ð 857 MB SCSI Disk Drive

hdisk5 Available ðð-ð8-ðð-ð,ð 67ð MB SCSI Disk Drive

hdisk6 Available ðð-ð8-ðð-1,ð 67ð MB SCSI Disk Drive

hdisk7 Available ðð-ð8-ðð-2,ð 355 MB SCSI Disk Drive

hdisk8 Available ðð-ð8-ðð-3,ð 32ð MB SCSI Disk Drive

#

á ñ

The new assignment of disk names reflects the following two precedents:

1. SCSI physical volumes connected to adapters that are in lower slot numbers
are configured first.

2. SCSI physical volumes with smaller addresses are configured first.

This means that the disk at address 00-08-00-0,0 which was hdisk0 is now called
hdisk5. Likewise, hdisk2 became hdisk7. However, note that the disk physical
volume identifiers have not changed. In other words, the number
00014732b1bd7f57 that was associated with the rootvg disk hdisk0 is still
associated with the same physical volume, which is now called hdisk5. This is
expected because when an identifier is given to a disk, it is actually recorded on
the VGDA of the disk.

Some of a physical volume Volume Group Descriptor Area can be seen by the
following low level command:

264 AIX Storage Management

à ð
lqueryvg -p hdiskð -At

Max LVs: 256

PP Size: 22

Free PPs: 56ð

LV count: 2

PV count: 2

Total VGDAs: 3

Logical: ððððð4461ed9e52e.1 availlv 1

 ððððð4461ed9e52e.2 loglvðð 1

Physical: ððððð2ð158496d72 2 ð

 ððððð2ðð7bb618f5 1 ð

#

á ñ

This tells us that the disk that is currently called hdiskð belongs to a volume group
that contains one other physical volume. Notice that the volume group physical
volumes are identified by their unique hexadecimal number rather than by a name
such as hdisk0.

The above command will also help us fix another problem that exists since our
installation of the backup tape. We can see from the earlier output of the lspv
command that the other non-rootvg physical volumes have the word None next to
them which reflects the fact that the current operating system does not know about
our user volume groups. This means that we will have to reimport these volume
groups. This is not difficult since we can use the output of the lspv command and
the lqueryvg command for some of the disks to determine how many user volume
groups we have.

Alternatively, we could use the following command for every disk to determine the
volume group configuration. When you can see the logical volume names on your
screen, you can press the Ctrl and C keys simultaneously to exit this command.

à ð
/usr/bin/strings /dev/rhdiskð| more

XImr

_LVM

DEFECT

_LVM

DEFECT

XImr

availlv

loglvðð

á ñ

Of course, since we had saved the output of the commands:

 � lspv

� lsdev -Cc disk

in our original system, then we do not have to use lqueryvg or strings.

 Chapter 8. Practical Examples 265

Warning - Name your logical volumes

This example clearly illustrates the value of using meaningful names for your
logical volumes and volume groups. We recommended that you always use the
option Add a Journaled File System on a Previously Defined Logical Volume

in the menu found from smitty jfs, rather than Add a Journaled File System

for long term data files.

It is easier for us to recognize something called availlv rather than lv00.

How to Import a Volume Group: To import the user volume groups:

1. Execute smitty importvg to get to the menu with the title Import a Volume
Group, or, more generally:

 a. Execute smitty.

b. Select System Storage Management (Physical & Logical Storage) .

c. Select Logical Volume Manager .

d. Select Volume Groups .

e. Select Import a Volume Group .

2. Type the name of the volume group, such as availvg, in the VOLUME GROUP

name field.

3. Type the name of one physical volume that you know belongs to this volume
group, such as hdiskð for availvg, in the PHYSICAL VOLUME name field, or use the
F4=List key to select it.

Note that only one physical volume is required to import a volume group. As we
saw from the earlier output of the lqueryvg command, each disk in a volume
group knows what physical volumes belong to the volume group, and what
logical volumes exist on the volume group.

4. Press the Enter=Do key when your screen looks like:

à ð
Import a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

VOLUME GROUP name [availvg]

\ PHYSICAL VOLUME name [hdiskð] +

\ ACTIVATE volume group after it is yes +

 imported?

Volume group MAJOR NUMBER [] +#

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

266 AIX Storage Management

5. Press the F10=Exit key to return to the command prompt when smit returns an
OK message.

Warning - Import user volume groups

With the level of AIX Version 4 that we used for these examples, we found
that it is always necessary to re-import your user volume groups when a
rootvg backup image is installed.

6. Repeat this sequence for all volume groups whose data you want to access. In
this example, repeat the command for the perfvg and stripevg volume groups.

We executed importvg directly from the command line as follows:

à ð
importvg -y availvg hdiskð

availvg

importvg -y perfvg hdisk1

perfvg

importvg -y stripevg hdisk4

stripevg

á ñ

We can easily confirm that the volume group configuration has been restored by
the following command:

à ð
lspv

hdiskð ððððð2ð158496d72 availvg

hdisk1 ððððð2ð1dc8bðb32 perfvg

hdisk2 ððððð2ðð7bb618f5 availvg

hdisk3 none None

hdisk4 ððð137231982cðf2 stripevg

hdisk5 ððð14732b1bd7f57 rootvg

hdisk6 ððð12218ððð7244ð stripevg

hdisk7 ððð12218da42ba76 rootvg

hdisk8 ððð2479ð88f5f347 perfvg

#

á ñ

Note that all volume groups were automatically varied on when they were imported,
as can be from the output of:

à ð
lsvg -o

stripevg

perfvg

availvg

rootvg

á ñ

Now that the volume group configuration has been restored, we can mount the
journaled file systems in these volume groups. to check that we can still access our
data by executing the command:

 Chapter 8. Practical Examples 267

à ð
mount all

mount: /dev/hd1 on /home: Device busy

mount: /dev/newlv on /newfs: No such file or directory

Replaying log for /dev/perflv1.

Replaying log for /dev/availlv.

á ñ

We can quickly check the restoration of the files in our journaled file systems from
the command:

à ð
df

Filesystem 512-blocks Free %Used Iused %Iused Mounted on

/dev/hd4 8192 452ð 44% 713 34% /

/dev/hd2 4ð9592 32712 92% 5ð44 9% /usr

/dev/hd9var 24576 21712 11% 76 1% /var

/dev/hd3 24576 2264ð 7% 59 1% /tmp

/dev/hd1 8192 7712 5% 51 4% /home

/dev/perflv1 8192ð 7928ð 3% 16 ð% /perfjfs1

/dev/perflv2 8192ð 7928ð 3% 16 ð% /perfjfs2

/dev/perflv3 983ð4 95152 3% 16 ð% /perfjfs3

/dev/perflv4 8192ð 7928ð 3% 16 ð% /perfjfs4

/dev/availlv 49152 4888 9ð% 17 ð% /availjfs

/dev/strlv16k 983ð4 9856 89% 18 ð% /strjfs16k

/dev/strlv32k 65536 264ð 95% 42 ð% /strjfs32k

/dev/lvð1 57344 616 98% 5726 8% /frag512

/dev/lvðð 57344 ð 1ðð% 51ðð 7% /frag4ð96

/dev/lvð2 16384 288 98% 1748 85% /frag512-1

á ñ

From a comparison with this command's output some time before the rootvg was
built, we can see that all journaled file systems are identical except for the fact that
the rootvg journaled file systems have more free space. This occurred because we
deleted some files before we built the image.

Finally, we need to check whether our rootvg mirrored configuration will protect us
from disk failure. The output of the following command suggests that we may be
safe:

à ð
lsvg -l rootvg

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd6 paging 8 16 2 open/syncd N/A

hd5 boot 1 1 1 closed/syncd N/A

hd8 jfslog 1 2 2 open/syncd N/A

hd4 jfs 1 2 2 open/syncd /

hd2 jfs 5ð 1ðð 2 open/syncd /usr

hd9var jfs 3 6 2 open/syncd /var

hd3 jfs 3 6 2 open/syncd /tmp

hd1 jfs 1 2 2 open/syncd /home

hd5x boot 2 2 1 closed/syncd N/A

#

á ñ

Now the last time our example system booted, it used the hd5 logical volume on
hdisk5, the 670MB disk at SCSI address 08-00. This can be seen from:

268 AIX Storage Management

à ð
bootinfo -b

hdisk5

#

á ñ

We used the strings command on both the hd5 and hd5x raw devices and thought
that we may be able to reboot from the hd5x logical volume after executing:

à ð
bootlist -m normal hdisk7 hdisk5

á ñ

However, our reboot hung at some point after the message PERFORM auto-varyon

of Volume Groups was displayed. This suggests that it is either a problem with
what we thought was a valid boot image on hd5x, and/or, that there is a problem
with the new physical partition map that was creation by the AIX Version 4
installation program.

When we checked the new rootvg physical partition map, we found that the hd5x
logical volume had been created on hdisk5 instead of hdisk7. Hence we used the
following commands:

à ð
migratepv -l hd5x hdisk5 hdisk7

bosboot -a -l /dev/hd5x -d /dev/hdisk7

bosboot: Boot image is 4275 512 byte blocks.

bosboot -a -l /dev/hd5 -d /dev/hdisk5

bosboot: Boot image is 4275 512 byte blocks.

á ñ

For more examples of how to use the migratepv command, please refer to 8.8.1,
“How to Use the migratepv Command” on page 315.

We are now able to successfully boot using either hdisk5 or hdisk7, so our first
example installation of a rootvg image is complete.

Warning - Always document rootvg

This boot problem reminds us that it is very important to use some commands,
such as those discussed in “How to Document the Volume Group Design” on
page 236, to record the physical partition map of a mirrored rootvg
configuration.

So far, we've tried to install a rootvg backup image that uses map files (and hence
does not change a journaled file systems' size). However, in our example, we were
forced to abandon the use of map files because the disk names changed. If you
do use map files, you should execute the command lsvg -M rootvg > filename on
both the source and target machines, and then use the diff command on the
output files to confirm that the physical partition maps are identical.

 Chapter 8. Practical Examples 269

How to Save Space in the rootvg: Now we can try to use the new SHRINK
option in the installation menus of AIX Version 4 to save space in the rootvg
volume group, if some of its logical volumes have unused space. For example, if
you de-install a large program product, you may end up with a lot of free space in
/usr that you would rather allocate to another logical volume in the rootvg volume
group.

Briefly, recall that our rootvg from the end of 8.4.2, “How to Use the mksysb
Command” on page 259 looks like:

à ð
lsvg -l rootvg

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd6 paging 8 16 2 open/syncd N/A

hd5 boot 1 1 1 closed/syncd N/A

hd8 jfslog 1 2 2 open/syncd N/A

hd4 jfs 1 2 2 open/syncd /

hd2 jfs 5ð 1ðð 2 open/syncd /usr

hd9var jfs 3 6 2 open/syncd /var

hd3 jfs 3 6 2 open/syncd /tmp

hd1 jfs 1 2 2 open/syncd /home

hd5x boot 2 2 1 closed/syncd N/A

#

á ñ

The disk space recovery installation procedure is almost identical to that
documented in the previous example in 8.4.2, “How to Use the mksysb Command”
on page 259. The only difference is that you must install AIX Version 4 with the
defaults of:

� Use Maps set to No.

� Shrink File System set to Yes.

This is the critical field.

� hdisk5 and hdisk7 as the Disk(s) Where You Want to Install.

Warning - Do not edit /image.data

Although the article Backing Up the System Image Including User Volume
Groups in AIX Version 4.1 System Management Guide: Operating System and
Devices, suggests that we can change the SHRINK variable in the image.data
file, the entry for this file in the AIX Version 3.2 Files Reference reminds us that
it is not wise to edit this file. Although it says that it is alright to edit the SHRINK
field, we suggest that you do not do this, since you can get the same effect by
changing the SHRINK field in the AIX Version 4 installation menu.

When the installation is complete, run the commands:

270 AIX Storage Management

à ð
df -kI

Filesystem 1ð24-blocks Used Free %Used Mounted on

/dev/hd4 4ð96 1928 2168 47% /

/dev/hd2 192512 188184 4328 97% /usr

/dev/hd9var 4ð96 1ð84 3ð12 26% /var

/dev/hd3 12288 1736 1ð552 14% /tmp

/dev/hd1 4ð96 24ð 3856 5% /home

and so on...

lsvg -l rootvg

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd6 paging 8 16 2 open/syncd N/A

hd5 boot 1 1 1 closed/syncd N/A

hd8 jfslog 1 2 2 open/syncd N/A

hd4 jfs 1 2 2 open/syncd /

hd2 jfs 47 94 2 open/syncd /usr

hd9var jfs 1 2 2 open/syncd /var

hd3 jfs 3 6 2 open/syncd /tmp

hd1 jfs 1 2 2 open/syncd /home

hd5x boot 2 2 1 closed/syncd N/A

#

á ñ

The df command also shows that we now have a minimal amount of free space in
each journaled file system. You can see that we've recovered three logical
partitions from hd2 (/usr) and two from hd9var (/var), so we have 10 more free
physical partitions in rootvg that can be used to increase or create other logical
volumes. This occurs because we recover two physical partitions for every logical
partition since we have implemented a double copy mirrored rootvg volume group.

Finally, do not forget to check the location of the hd5x logical volume. You may
have to move it using migratepv as was shown at the end of the last mksysb
example. Also, you will need to repeat the bosboot commands for both hd5 and
hd5x before you can simulate a rootvg physical volume failure.

8.5 Utilizing the New AIX Version 4 Features
This section contains some practical examples in the usage of the new storage
related features in AIX Version 4. This includes:

1. Striped logical volumes

 2. Fragments

 3. JFS compression

4. File systems greater than 2GB in size

First, create stripevg that contains hdisk1 and hdisk8 using the same procedure as
for the creation of availvg:

 1. Execute smitty vg..

2. Select Add a Volume Group .

3. Type stripevg for VOLUME GROUP name.

4. Type hdisk1 hdisk8 for PHYSICAL VOLUME names.

5. Press Enter=Do and then F10=Exit when smit returns an OK prompt.

 Chapter 8. Practical Examples 271

8.5.1 Striped Logical Volumes
There are performance benefits in using striped logical volumes, particularly when
sequential read/write access to large files is of importance. Although it is beyond
the scope of this book to provide a practical example which would demonstrate this,
results taken from a benchmark using striping are provided later in this section.

The purpose of the example to follow is to show how a striped logical volume can
be created in AIX Version 4.

8.5.1.1 Command Line Summary
1. Create a striped logical volume, consisting of 6ð logical partitions, called

stripelv32k, in the volume group stripevg using disks hdisk1 and hdisk8.
Specify a stripe size of 32k:

à ð
mklv -y'stripelv32k' -S'32K' 'stripevg' '6ð' 'hdisk1 hdisk8'

á ñ

2. Create a file system called strjfs32k using logical volume strlv32k:

à ð
crfs -v jfs -d'strlv32k' -m'/strjfs32k' -A'yes' -p'rw' -t'no' \

-a frag='4ð96' -a nbpi='4ð96' -a compress='no'

á ñ

3. Mount the file system:

à ð
mount /strjfs32k

á ñ

 8.5.1.2 Detailed Description
The above summary steps show how a striped logical volume can be created and
subsequently used to create a journaled file system. In the following section we will
use smit to create the same striped logical volume and file system, and will review
the steps necessary to identify the resources required.

In the example we will not discuss how to tune a striped logical volume for optimal
performance. There are many different factors which need to be considered when
tuning a striped logical volume for optimal performance. Some of these include
system-wide operating system parameters, real memory requirements of
applications, and the availability of hardware resources.

Changing a system-wide operating system parameter such as maxpgahead

(maximum number of pages to read ahead), to provide a high performance striped
logical volume for one application can sometimes cause degradation in
performance for another application running on the same system. Also, if striping is
done across two disks attached to a single SCSI adapter this would not provide a
performance increase over non-striped disks.

Therefore, a lot of research and preparation work needs to be carried out in order
to provide an optimal performance environment suitable to all applications. Since
the needs for each site will differ, a particular system configuration providing high
performance sequential access to files stored in a striped logical volume will not
necessarily provide the same performance benefits at another site.

272 AIX Storage Management

However, some basic principles should be followed when creating striped logical
volumes for high-performance. These are:

� Spread the logical volume across as many physical volumes as possible.

� Use as many disk drive adapters, as possible, for the physical volumes.

� Create striped logical volumes using a volume group which is dedicated to
striping alone. Do not mix non-striped logical volumes with striped logical
volumes.

How to Create a Striped Logical Volume: For this example we have chosen to
use an existing volume group, stripevg which consists of two physical volumes,
hdisk1 and hdisk8. The logical volume and filesystem we will create will be called
/strlv32k and /strjfs32k, respectively. The logical volume will consist of 60 logical
partitions.

1. Use the lsdev command to make sure that the physical volumes hdisk1 and
hdisk8 in the volume group stripevg are attached to different SCSI adapters:

à ð
lsdev -Cc disk

hdisk1 Available ðð-ð8-ðð-1,ð 67ð MB SCSI Disk Drive

hdisk8 Available ðð-ð7-ðð-4,ð 857 MB SCSI Disk Drive

á ñ

We can see from the above output that hdisk1 is attached to the SCSI adapter
located in slot ð8 and hdisk8 is attached to the SCSI adapter in slot ð7.

2. Check that the physical volumes used in the volume group stripevg have no
physical partitions allocated:

à ð
#lsvg -M stripevg

stripevg

hdisk1:1-159

hdisk8:1-2ð3

á ñ

The above output shows that no logical volumes currently exist and all
partitions on each physical volume are free.

3. Create a striped logical volume over these physical volumes using the
command smitty mklv:

a. On the first screen enter stripevg for the volume group name and press
Enter .

b. On the second screen, shown below, enter:

� strlv32k for the field Logical volume NAME.

� 6ð for the field Number of LOGICAL PARTITIONS.

� hdisk1 hdisk8 for the field PHYSICAL VOLUME names.

 Chapter 8. Practical Examples 273

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

Logical volume NAME [strlv32k]

\ VOLUME GROUP name stripevg

\ Number of LOGICAL PARTITIONS [6ð] #

PHYSICAL VOLUME names [hdisk1 hdisk8] +

Logical volume TYPE []

POSITION on physical volume outer_middle +

RANGE of physical volumes minimum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [] #

to use for allocation

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

[MORE...9]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

 á ñ

c. Press the PageDown key to move to the next page of this smit screen,
shown below:

à ð
Add a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[MORE...9] [Entry Fields]

Number of COPIES of each logical 1 +

 partition

Mirror Write Consistency? yes +

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +

Logical volume LABEL []

MAXIMUM NUMBER of LOGICAL PARTITIONS [128]

Enable BAD BLOCK relocation? yes +

SCHEDULING POLICY for writing logical parallel +

 partition copies

Enable WRITE VERIFY? no +

File containing ALLOCATION MAP []

 Stripe Size? [32K] +

[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

d. Using the Tab key toggle to the value 32K for the field Stripe Size?

 e. Press Enter .

f. Press F10 to exit when smit returns with OK.

4. Create a journaled files system using the logical volume strlv32k with the
command smitty crjfslv.

The following smit screen will appear:

274 AIX Storage Management

à ð
Add a Journaled File System on a Previously Defined Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ LOGICAL VOLUME name stripelv +

\ MOUNT POINT [/stripefs]

Mount AUTOMATICALLY at system restart? yes +

 PERMISSIONS read/write +

 Mount OPTIONS [] +

Start Disk Accounting? no +

Fragment Size (bytes) 4ð96 +

Number of bytes per inode 4ð96 +

 Compression algorithm no +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

On this smit screen:

a. Press F4 and select strlv32k from the list.

b. Enter /strjfs32k for the field MOUNT POINT.

c. Using the Tab toggle to the value yes for the field Mount AUTOMATICALLY at

system restart?

 d. Press Enter .

e. Press F10 to exit when smit returns with OK.

We have now successfully created a striped logical volume and journaled file
system.

8.5.1.3 Benchmark Results for an I/O Bound Test Using Striping
Based on a particular Motorola benchmark, an intensive I/O bound application was
developed in FORTRAN. The application test included performing continuous
sequential access to about 2.4GB of data held within a journaled file system. The
I/O activity performed by the application included reading forward, reading
backward, and reading then writing forward. For comparison, the test was
conducted, on separate occasions, using a striped logical volume and a non-striped
logical volume.

The striped logical volume was created with a stripe size of 32K and the block size
used for the disk I/O was 98304 bytes (96K). Certain operating system parameters
were tuned to achieve better performance using the vmtume command. For
example maxpgahead was set to 256 to allow up to this many 4K pages to be
read ahead sequentially.

The hardware environment used for the test consisted of an RISC System/6000
model 590 with 512MB of memory. Three corvette adapters and six 2GB disks
were configured for the striping test.

The results of this test was as follows:

 Chapter 8. Practical Examples 275

 Results

 Non-striped Run Striped Run

User System Elapsed User System Elapsed

 (hrs) (hrs) (hrs) (hrs) (hrs) (hrs)

 1ð.ð1 2.ð5 25.18 1ð.ð5 2.21 14.5ð

From the above timing results we can see that the test conducted using a striped
logical volume was completed in 14.50 hours, whereas the same test within a
non-striped logical volume took 25.18 hours. With the user and system times
similar for both tests we can conclude that striping provides much better
performance.

8.5.2 How to Use Fragments for Disk Usage Efficiency
The purpose of this example is to show how file systems created with a small
fragment size can provide better disk space utilization than file systems created
with a large fragment size when used to store a large number of small files. The
example will demonstrate how to set up file systems with different fragment sizes
and number-of-bytes-per-inode (NBPI) values.

For this exercise we will create two file systems, one with a fragment size of 512
bytes and the other with the default fragment size of 4096 bytes. For both file
systems we will use a value of 512 for NBPI so that more than the default number
of inodes are created. Each file system will be allocated 50000 512 byte blocks.

The test for efficient use of disk space will be determined by the disk space used
when a number of equal sized files are stored within each file system. In each of
these file systems we will store several small files, each 512 bytes in size.

8.5.2.1 Command Line Summary
1. First create a journaled file system called /frag512 with a 512 byte fragment

size and a 512 NBPI value in the existing volume group stripevg:

à ð
crfs -v jfs -g'stripevg' -a size='5ðððð' -m'/frag512' -A'yes' -p'rw' \

-t'no' -a frag='512' -a nbpi='512' -a compress='no'

á ñ

2. Next create a journaled file system with a 4ð96 byte fragment size and a 512
NBPI value in the existing volume group stripevg:

à ð
crfs -v jfs -g'stripevg' -a size='5ðððð' -m'/frag4ð96' -A'yes' \

-p'rw' -t'no' -a frag='4ð96' -a nbpi='512' -a compress='no'

á ñ

3. Mount each of the above file systems:

à ð
mount /frag512

mount /frag4ð96

á ñ

276 AIX Storage Management

 8.5.2.2 Detailed Description
The above two summary steps show how a file system can be created from the
command line. In the following section we will look at each command separately,
and also conduct example tests to verify the efficiency of using file systems with a
small fragment size.

How to Create a File System with a Different Fragment Size: In our example
we have chosen to use an existing volume group, stripevg which consists of
physical volumes hdisk1 and hdisk8. The file system created with the 512 byte
fragment size will be called /frag512 and that created with a fragment size of 4096
bytes will be called /frag4096.

1. Create the 512 byte fragment size file system using the command smitty

crjfs.

Select the volume group stripevg from the list by moving to it using the down
cursor key and pressing Enter .

On the second smit screen, shown below, enter or change details for the
following fields:

� SIZE of file system (in 512 byte blocks)

 � MOUNT POINT

� Mount AUTOMATICALLY at system restart?

� Fragment Size (bytes)

� Number of bytes per inode

à ð

Add a Journaled File System

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

Volume group name stripevg

\ SIZE of file system (in 512-byte blocks) [5ðððð]

\ MOUNT POINT [/frag512]

Mount AUTOMATICALLY at system restart? yes +

 PERMISSIONS read/write +

 Mount OPTIONS [] +

Start Disk Accounting? no +

Fragment Size (bytes) 512 +

Number of bytes per inode 512 +

 Compression algorithm no +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

a. Enter 5ðððð for the file system size.

b. Enter /frag512 for the mount point.

c. Using the Tab key rotate to yes for the field Mount AUTOMATICALLY at

system restart?

d. Enter 512 for the fragment size.

e. Enter 512 for number of bytes per inode.

f. Press Enter when all fields have been filled out.

 Chapter 8. Practical Examples 277

g. When processing finishes smit returns with OK, as shown below:

à ð

 COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

Based on the parameters chosen, the new /frag512 JFS file system

is limited to a maximum size of 16777216 (512 byte blocks)

New File System size is 57344

F1=Help F2=Refresh F3=Cancel F6=Command

F8=Image F9=Shell F1ð=Exit /=Find

n=Find Next

á ñ

Press F10 to exit smit.

 Note

The output on this screen shows that the new file system size is 57344 512
bytes instead of 50000. This is because the file system is rounded up to
the nearest allocation group size. See 3.1.4.1, “Journaled File System” on
page 58 for a description of file system structure.

2. Now repeat the above steps to create the file system called /frag4096.
However, this time use 4096 bytes for the file system fragment size instead of
512 bytes.

3. With both file systems now created we need to mount each in turn using the
commands:

à ð
mount /frag512

mount /frag4ð96

á ñ

Look at the output for the two mounted file systems produced by the df command:

à ð
df -I /frag512 /frag4ð96

Filesystem 512-blocks Used Free %Used Mounted on

/dev/lvð1 57344 16528 4ð816 28% /frag512

/dev/lvðð 57344 165ð4 4ð84ð 28% /frag4ð96

á ñ

The above output shows us that we have 4ð816 512 byte blocks available in the file
system /frag512 and 4ð84ð 512 byte blocks available in the file system /frag4ð96.

How to Test the Efficiency of Disk Space Utilization: Now that we have
created two file systems which have almost identical characteristics apart from their
fragment sizes, we can look at testing their efficiency for storing a large number of
very small files. For the test we will use a file whose size is 512 bytes which will
occupy only one 512 byte fragment.

278 AIX Storage Management

Use the following shell script, mkfile to create the file 512bytefile with a size of
512 bytes.

à ð
#!/bin/ksh

mkfile filesize

usage()

{

 clear

echo " "

echo " "

echo " "

echo " "

echo "Usage: mkfile filesize"

echo " filesize should be in multiples of 512 bytes"

echo " "

echo " "

echo " "

echo " "

 exit

}

Main...

if [$# != 1]

then

 usage

fi

filesize=$1

filename="$1"bytefile

integer mod=yexpr $filesize % 512y
integer div=yexpr $filesize / 512y
if [$mod != ð]

then

 usage

fi

integer i=ð;

integer j=yexpr $div \\ 128y
> $filename

echo " "

echo "Creating file \"$filename\". Please wait..."

while true

do

echo "yes" >> $filename

 i=i+1

if [$i = $j]

 then

 break

 fi

done

á ñ

Create the file using the command:

à ð
cd /var/tmp

mkfile 512

á ñ

To test the number of 512 byte files that can be stored in each file system we will
use the following sample Korn shell script called fragcopy. This shell script will
continue to make copies in the target file system until either the file system become
full or the target file count is reached. During processing a count will be displayed
showing the number of files that have been copied successfully. Note that the first
file has a count suffix of ð.

 Chapter 8. Practical Examples 279

à ð
#!/bin/ksh

fragcopy

usage()

{

 clear

echo " "

echo " "

echo " "

echo " "

echo "Usage: fragcopy numfiles dir/sourcefilename dir/targetfilename"

echo " "

echo " "

echo " "

echo " "

 exit

}

Main...

integer i=ð

integer cnt=$1

source=$2

target=$3

if [$# != 3]

then

 usage

fi

while true

do

cp $source $target.$i

if [$? != ð]

 then

echo " "

 exit

 fi

 i=i+1

echo " Files copied: \c"

 echo "$i\b\c"

if [$i = $cnt]

 then

echo " "

 break

 fi

done

á ñ

Create copies of the file 512bytefile in the file system /frag512 using the
command:

à ð
fragcopy 8 /var/tmp/512bytefile /frag512/frag8

á ñ

Now let us look at the contents of the directory /frag512:

280 AIX Storage Management

à ð
ls -lt /frag512

total 8

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.ð

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.1

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.2

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.3

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.4

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.5

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.6

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.7

á ñ

Before we look at the df output for /frag512 let us create eight occurrences of the
file 512bytefile in the filesystem /frag4096.

Create copies of the file 512bytefile in /frag4ð96 using the command:

à ð
fragcopy 8 /var/tmp/512bytefile /frag4ð96/frag8

á ñ

Look at the directory contents for /frag4ð96:

à ð
ls -lt /frag4ð96

total 8

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.ð

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.1

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.2

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.3

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.4

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.5

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.6

-rw-r--r-- 1 root sys 512 Jul 11 18:ð2 frag8.7

á ñ

Now that we have the two file systems with the same number of files let us see
how much disk space has been utilized in each using the df command:

à ð
df -I /frag512 /frag4ð96

Filesystem 512-blocks Used Free %Used Mounted on

/dev/lvð1 57344 16536 4ð8ð8 28% /frag512

/dev/lvðð 57344 16568 4ð776 28% /frag4ð96

á ñ

We expected the file system /frag512 to use one 4K block and /frag4096 to use
eight 4K blocks. We can verify this by comparing the results of df before and after
the file copy operation.

Looking at the change in the Used column of the df output the following calculation
shows how many 512 byte blocks have been used by each file system:

blks used by file copy = blks used before - blks used after

Based on this calculation the number of 512 byte blocks used by /frag512 is:

blks used by /frag512 = 16536 - 16528 = 8

 Chapter 8. Practical Examples 281

This is correct since we created eight 512 byte files in this file system.

The following calculation shows how many blocks were used by the file system
/frag4ð96.

blks used by /frag4ð96 = 16568 - 165ð4 = 64

This is also exactly as we expected since each file copied to /frag4096 is allocated
a 4K block. With eight files this has resulted in 32K bytes used, which expressed
in 512 byte blocks is 64.

We can therefore conclude, based on the results of the test, that the use of smaller
fragment sizes leads to more efficient use of disk space when a large number of
small files need to be stored. We have also observed that file systems using a
large fragment size can cause much wasted space particularly when the files being
stored are smaller than 4096 bytes.

8.5.3 How to Use JFS Compression and Check its Consequences
This example shows you how to create a compressed journaled file system, and
then how to use some simple commands to investigate the effects of compression
on both AIX Version 4 performance and disk space usage.

To investigate compression, let's use the availvg volume group. The example was
done after the migratepv example discussed in 8.8.1, “How to Use the migratepv
Command” on page 315. This means that we have three physical volumes
available, each with 287 4MB physical partitions, of which only 14 physical
partitions are currently used.

Finally, remember that compression can only be specified when a journaled file
system is created, and that compression must use a journaled file system with
fragments that are less than 4096 bytes; in other words either 512 or 1024 or 2048
bytes. This example also investigates the differences between choosing 512 or
2048 as a fragment size when you create a journaled file system.

 8.5.3.1 Command Summary
The following commands show you how to create and mount two compressed
journaled file system, one with a fragment size of 512, the other with a fragment
size of 2048. The other crfs command shows you how to create, for comparison, a
third journaled file system that also has a fragment size of 2048, but does not use
compression.

à ð
crfs -v jfs -g'availvg' -a size='8ðððð' -m'/compress' -A'yes' \

-p'rw' -t'no' -a frag='2ð48' -a nbpi='4ð96' -a compress='LZ'

... output follows... then execute

crfs -v jfs -g'availvg' -a size='8ðððð' -m'/compress512' -A'yes' \

-p'rw' -t'no' -a frag='512' -a nbpi='4ð96' -a compress='LZ'

... output follows... then execute

crfs -v jfs -g'availvg' -a size='8ðððð' -m'/uncompress' -A'yes' \

-p'rw' -t'no' -a frag='2ð48' -a nbpi='4ð96' -a compress='no'

á ñ

To check that the journaled file systems have been correctly created, use:

282 AIX Storage Management

à ð
lsfs -q

á ñ

To mount the journaled file systems, execute:

à ð
mount /compress

mount /compress512

mount /uncompress

á ñ

Next we can check the performance of the compressed file system by copying a
20MB file (bigfile) to each file system, and measuring the performance. First check
that the logical volume configuration is similar:

à ð
lspv -p hdiskð

á ñ

Now record copy times:

à ð
timex cp /strjfs16k/bigfile /compress

timex cp /strjfs16k/bigfile /uncompress

timex cp /strjfs16k/bigfile /compress512

á ñ

Finally, check that all files are the same size:

à ð
ls -lt /compress /uncompress /strjfs16k

á ñ

Lastly, we can check the disk utilization in order to investigate the efficiency of the
compression. Copy the following 2560 byte files:

à ð
cp /strjfs32k/fragdata/256ðbytefile /compress512/256ðbytefile

cp /strjfs32k/fragdata/256ðbytefile /compress/256ðbytefile

cp /strjfs32k/fragdata/256ðbytefile /uncompress/256ðbytefile

cp /strjfs32k/fragdata/256ðbytefile /frag512/256ðbytefile

á ñ

Use du to check much space is really used:

à ð
du /strjfs32k/fragdata/256ðbytefile

du /compress512/256ðbytefile

du /compress/256ðbytefile

du /uncompress/256ðbytefile

du /frag512/256ðbytefile

á ñ

Use ls to verify the normal size of each file:

 Chapter 8. Practical Examples 283

à ð
ls -l /strjfs32k/fragdata/256ðbytefile /frag512/256ðbytefile

ls -l /compress512/256ðbytefile /compress/256ðbytefile

ls -l /uncompress/256ðbytefile

á ñ

 8.5.3.2 Detailed Guidance
How to Create a Compressed JFS: Since the availvg volume group has plenty of
free space and one totally empty disk after the migration in 8.8.1, “How to Use the
migratepv Command” on page 315, then in this case we can create the journaled
file system straight away, without first creating a target logical volume for the
journaled file system. As you can see later in this section, the logical volume
manager in this case uses a physical partition map for the journaled file systems in
this example that does not have a significant effect on our performance results,
which are discussed in “How to Check the Performance of a Compressed File
System” on page 288.

Although we want to create three journaled file systems for this example, the
method is almost identical with only a few fields that are different. Hence smit
menus are only provided once.

To create a 40MB compressed journaled file system with a fragment size of 2048
bytes mounted at /compress:

1. Execute the fastpath smitty crjfs to get to the following volume group menu
selection:

à ð

 __

 | |

| Volume Group Name |

 | |

| Move cursor to desired item and press Enter. |

 | |

 | availvg |

 | rootvg |

 | perfvg |

 | stripevg |

 | |

 | F1=Help F2=Refresh F3=Cancel |

| F8=Image F1ð=Exit Enter=Do |

 | /=Find n=Find Next |

 |__|

á ñ

While availvg is highlighted, press the Enter=Do key to get to the menu with
the title Add a Journaled File System.

Alternatively, you can go through the smit hierarchy by:

 a. Executing smitty.

b. Selecting System Storage Management (Physical & Logical Storage) .

c. Selecting File Systems .

284 AIX Storage Management

d. Selecting Add / Change / Show / Delete File Systems .

e. Selecting Journaled File Systems .

f. Selecting Add a Journaled File System .

g. Selecting the availvg volume group. to get to the menu with the title Add a
Journaled File System.

2. Type 8ðððð for the field SIZE of file system (in 512-byte blocks). 80 000
times 512 bytes is roughly 40MB.

3. Type /compress for the field MOUNT POINT.

4. Use the Tab key to toggle the field Mount AUTOMATICALLY at system restart?

from no to yes.

5. Use the Tab key to toggle the field Fragment Size (bytes) from 4ð96 to 2ð48,
or use the F4=List key to select it.

6. Use the Tab key to toggle the field Compression algorithm from no to LZ so
that your screen looks like:

à ð
Add a Journaled File System

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

Volume group name availvg

\ SIZE of file system (in 512-byte blocks) [8ðððð] #

\ MOUNT POINT [/compress]

Mount AUTOMATICALLY at system restart? yes +

 PERMISSIONS read/write +

 Mount OPTIONS [] +

Start Disk Accounting? no +

Fragment Size (bytes) 2ð48 +

Number of bytes per inode 4ð96 +

 Compression algorithm LZ +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

7. Leave the other fields with their default values and press the Enter=Do key to
create the /compress journaled file system.

When the journaled file system has been created, your screen should look like:

 Chapter 8. Practical Examples 285

à ð
 COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

Based on the parameters chosen, the new /compress JFS file system

is limited to a maximum size of 134217728 (512 byte blocks)

New File System size is 8192ð

F1=Help F2=Refresh F3=Cancel F6=Command

F8=Image F9=Shell F1ð=Exit /=Find Next

á ñ

8. Press the key F10=Exit to return to the command prompt.

Now repeat the above procedure to:

1. Create a 40MB compressed journaled file system with a frag size of 512 bytes
mounted at /compress512:

a. Execute the fastpath smitty crjfs.

b. With availvg highlighted, press the Enter=Do key to get to the menu with
the title Add a Journaled File System.

c. Type 8ðððð for the field SIZE of file system (in 512-byte blocks).

d. Type /compress512 for the field MOUNT POINT.

e. Use the Tab key to toggle the field Mount AUTOMATICALLY at system

restart? from no to yes.

f. Use the Tab key to toggle the field Fragment Size (bytes) from 4ð96 to
512, or use the F4=List key to select it.

g. Use the Tab key to toggle the field Compression algorithm from no to LZ.

h. Leave the other fields with their default values and press the Enter=Do key
to create the /compress512 journaled file system.

i. Press the key F10=Exit to return to the command prompt.

2. Create a 40MB non-compressed journaled file system with a fragment size of
2048 bytes mounted at /uncompress:

a. Execute the fastpath smitty crjfs.

b. With availvg highlighted, press the Enter=Do key to get to the menu with
the title Add a Journaled File System.

c. Type 8ðððð for the field SIZE of file system (in 512-byte blocks).

d. Type /uncompress for the field MOUNT POINT.

e. Use the Tab key to toggle the field Mount AUTOMATICALLY at system

restart? from no to yes.

286 AIX Storage Management

f. Use the Tab key to toggle the field Fragment Size (bytes) from 4ð96 to
2ð48, or use the F4=List key to select it.

g. Do not change the field Compression algorithm; leave it with the default
setting of no.

h. Leave the other fields with their default values and press the Enter=Do key
to create the /uncompress journaled file system.

i. Press the key F10=Exit to return to the command prompt.

How to Check the Characteristics of the New JFS: We could use smit to check
the characteristics of each individual journaled file system by using the fastpath
smitty chjfs and selecting, for example, /compress . To view a summary for all
the journaled file systems, we could also:

1. Execute smitty fs to get to the File Systems menu.

2. Select List All File Systems to execute the command lsfs.

However, the flag -q now also tells us about the new AIX Version 4 journaled file
system attributes, so the best way to check our new journaled file systems is to
execute:

à ð
lsfs -q /compress\ /uncomp\ /frag512

Name Nodename Mount Pt VFS Size Options Auto Ac

/dev/lvð5 -- /compress jfs 8192ð rw yes no

(lv size: 8192ð, fs size: 8192ð, frag size: 2ð48, nbpi: 4ð96, compress: LZ)

/dev/lvð7 -- /compress512 jfs 8192ð rw yes no

(lv size: 8192ð, fs size: 8192ð, frag size: 512, nbpi: 4ð96, compress: LZ)

/dev/lvð6 -- /uncompress jfs 8192ð rw yes no

(lv size: 8192ð, fs size: 8192ð, frag size: 2ð48, nbpi: 4ð96, compress: no)

/dev/lvð1 -- /frag512 jfs 57344 rw yes no

(lv size: 57344, fs size: 57344, frag size: 512, nbpi: 512, compress: no)

/dev/strlv32k -- /strjfs32k jfs 65536 rw yes no

(lv size: 65536, fs size: 65536, frag size: 4ð96, nbpi: 4ð96, compress: no)

á ñ

Note that the output may appear distorted if your screen is not 90 columns wide.
We also included data for /frag512 and /strjfs32k since they will be used later in
“How to Check the Disk Usage of a Compressed File System” on page 289.

How to Mount the New JFS: To mount the newly created journaled file systems
so that we can use them, rather than use smit, we suggest that it is easier to
execute:

à ð
mount /compress

mount /uncompress

mount /compress512

á ñ

However, if you want to use smit, for example to access /compress:

 1. Execute smitty fs.

2. Select Mount a File System .

3. Based on the previous output of the lsfs -q command, type /dev/lvð5 in the
FILE SYSTEM name field, or use the F4=List key to select it.

 Chapter 8. Practical Examples 287

4. Again based on the previous output of the lsfs -q command, type /compress
in the DIRECTORY over which to mount field, or use the F4=List key to select it
so that your screen looks like:

à ð
Mount a File System

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

FILE SYSTEM name [/dev/lvð5] +

DIRECTORY over which to mount [/compress] +

TYPE of file system +

FORCE the mount? no +

REMOTE NODE containing the file system []

 to mount

Mount as a REMOVABLE file system? no +

Mount as a READ-ONLY system? no +

Disallow DEVICE access via this mount? no +

Disallow execution of SUID and sgid programs no +

in this file system?

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

5. Press the Enter=Do to execute the mount command:

6. When smit returns an OK message, press the F10=Exit key to return to the
command line.

How to Check the Performance of a Compressed File System: We can obtain
a simple indication of the performance degradation that we get when we use a
compressed journaled file system by recording how long it takes to copy a 20MB
file to each of the /compress, /compress512 and the /uncompress journaled file
systems. Of course, the exact nature of your data files, their access rate, and other
environmental conditions will give you quite different results from the sample values
that this example provides. Note we do not use smit to execute these simple
commands, so first let's summarize our test, and then discuss it afterwards.

Before we commence our test, we need to check that the underlying logical volume
configuration will not result in any bias in the results. We can check the logical
volumes by executing:

à ð
lspv -p hdiskð

hdiskð:

PP RANGE STATE REGION LV ID TYPE MOUNT POINT

1-58 free outer edge

59-68 used outer middle lvð5 jfs /compress

69-78 used outer middle lvð6 jfs /uncompress

79-88 used outer middle lvð7 jfs /compress512

 89-115 free outer middle

116-172 free center

173-229 free inner middle

23ð-287 free inner edge

á ñ

You can see that all 10 physical partitions of each logical volume are on the same
disk region (note that the logical volume manager automatically used the empty

288 AIX Storage Management

hdisk0, after the migratepv in 8.8.1, “How to Use the migratepv Command” on
page 315, to create the new logical volumes). Each copy operation will be done
sequentially from the same source file, so that the main reason for the copy time
differences is the attributes of each target journaled file system.

To test the copy times, execute:

à ð
timex cp /strjfs16k/bigfile /compress

real 42.7ð

user ð.27

sys 5.77

timex cp /strjfs16k/bigfile /uncompress

real 8.71

user ð.2ð

sys 5.94

df -kI /compress /uncompress

Filesystem 1ð24-blocks Used Free %Used Mounted on

/dev/lvð5 4ð96ð 11188 29772 27% /compress

/dev/lvð6 4ð96ð 21ð2ð 1994ð 51% /uncompress

timex cp /strjfs16k/bigfile /compress512

real 39.66

user ð.25

sys 4.31

ls -lt /compress /uncompress /strjfs16k

/strjfs16k:

total 39328

-rw-r--r-- 1 root sys 2ð131943 Jul 21 14:51 bigfile

/uncompress:

total 39328

-rw-r--r-- 1 root sys 2ð131943 Jul 21 14:57 bigfile

/compress:

total 19664

-rw-r--r-- 1 root sys 2ð131943 Jul 21 14:53 bigfile

á ñ

First, notice that although the ls output shows that each file is about 20MB big, the
df -kI output gives you an idea of how compression can save disk space. This is
looked into in more detail in the next section, “How to Check the Disk Usage of a
Compressed File System.”

However, the timex results indicate the performance costs of the disk saving
benefits when we used a compressed file system. We can see that it took about
40 seconds to copy bigfile to our compressed file system that uses 512 byte
fragments, then about 43 seconds to copy the same file to our compressed file
system that uses 2048 byte fragments, but only nine seconds to a non-compressed
file system that also uses 2048 byte fragments. Our copy time has increased by
about 370% (100 x 34/9), because bigfile was being compressed in /compress by
the journaled file system code while the cp command was actually writing the bigfile
file. Finally, notice that there was not much difference in our example between our
copy to a fragment size of 2048, 43 seconds, compared to when the fragment size
was decreased to 512 bytes, which only saved three seconds.

How to Check the Disk Usage of a Compressed File System: To check how
much disk space is available initially in the empty journaled file systems, execute:

 Chapter 8. Practical Examples 289

à ð
df -kI /compress /uncompress /compress512

Filesystem 1ð24-blocks Used Free %Used Mounted on

/dev/lvð5 4ð96ð 1332 39628 3% /compress

/dev/lvð6 4ð96ð 1332 39628 3% /uncompress

/dev/lvð7 4ð96ð 1344 39616 3% /compress512

á ñ

Note that the journaled file system with the smaller fragment (512 versus 2048),
has more space initially allocated for the journaled file system organizational data
(in other words, areas like the journaled file system maps).

If you refer to 8.5.2, “How to Use Fragments for Disk Usage Efficiency” on
page 276, you will see that we can use the ksh shell scripts mkfile and fragcopy
to create files with a size that is a multiple of 512 byte blocks. In this example, we
use the file 2560bytefile that consists of five 512 byte blocks. We can then use the
du command to see many disk blocks are really used.

If we copy the files using the cp commands given in the command summary, then
the following ls command confirms that we have five files that appear to occupy
the same amount of disk space.

à ð
ls -l /strjfs32k/fragdata/256ðbytefile /frag512/256ðbytefile

-rw-r--r-- 1 root sys 256ð Jul 21 16:53 /strjfs32k/fragdata/256ðbytefile

-rw-r--r-- 1 root sys 256ð Jul 21 17:ð9 /frag512/256ðbytefile

ls -l /compress512/256ðbytefile /compress/256ðbytefile

-rw-r--r-- 1 root sys 256ð Jul 21 16:56 /compress512/256ðbytefile

-rw-r--r-- 1 root sys 256ð Jul 21 16:57 /compress/256ðbytefile

ls -l /uncompress/256ðbytefile

-rw-r--r-- 1 root sys 256ð Jul 21 16:57 /uncompress/256ðbytefile

á ñ

However, the following du command output reports the true number of 512 byte
disk blocks that are actually used by each file:

à ð
du /strjfs32k/fragdata/256ðbytefile

8 /strjfs32k/fragdata/256ðbytefile

du /frag512/256ðbytefile

5 /frag512/256ðbytefile

du /compress512/256ðbytefile

1 /compress512/256ðbytefile

du /compress/256ðbytefile

4 /compress/256ðbytefile

du /uncompress/256ðbytefile

8 /uncompress/256ðbytefile

á ñ

To correctly interpret this data, we need to recall the journaled file system attributes
documented in “How to Check the Characteristics of the New JFS” on page 287.

As expected the source file /strjfs32k/fragdata/2560bytefile requires 8 x 512 = 4096
bytes because /strjfs32k was created with default journaled file system attributes,
so it has to use at least one complete 4K fragment to store 2560 bytes. Now the
file /uncompress/2560bytefile also uses 4096 bytes, but in this case, it used two
2048 byte fragments. The first fragment is completely full, but the second fragment
contains 3 x 512 = 1536 of wasted space that can't be used by any other file.

290 AIX Storage Management

If we now use compression, our disk space requirements are halved, since we now
only require 4 x 512 = 2048 bytes to store the /compress/2560bytefile file.
However, this is still using a full fragment or less in /compress which has a
fragment size of 2048 bytes. So when we check the space used by
/compress512/2560bytefile, we can see that the LZ compression algorithm has
actually shrunk the file to 20% (512 / 2560) or less of its original size. This is not
too surprising since we know that the shell script mkfile (as given in 8.5.2, “How to
Use Fragments for Disk Usage Efficiency” on page 276) just creates a file that has
the word yes repeated on each line many times. Such a repetitive file is likely to be
much easier to compress than your real data files.

Finally, we can see that if performance is not critical, it is wise to combine
compression with a low fragment size when you create a journaled file system.
The du output for the file /frag512/2560bytefile shows us that for journaled file
systems with a 512 byte fragment size, we require, as expected, five fragments to
store 2560 bytes. However this is reduced to only one fragment when the journaled
file system is also configured at creation to use compression as well as a 512 byte
fragment size.

8.5.4 How to Create and Use a JFS Greater than 2GB
This section shows you how to expand an existing journaled file system to a size
greater than 2GB, which is the maximum journaled file system size in AIX Version
3. Again, as in the section 8.5.3, “How to Use JFS Compression and Check its
Consequences” on page 282, we will use the availvg volume group, because it has
the most available disk space. We will be increasing the availlv to a new total size
of 3GB after removing its mirror copy so that we have enough disk space.

 8.5.4.1 Command Summary
First of all we reduce the number of copies of availlv to 1:

à ð
rmlvcopy 'availlv' '1'

á ñ

Next we increase the size of the logical volume to 9ðð logical partitions which
equates to 3600MB:

à ð
chlv -x'9ðð' 'availlv'

á ñ

Finally, we increase the size of the JFS availjfs to 6ðððððð 512 byte blocks which
equates to 3GB:

à ð
chfs -a size='6ðððððð' '/availjfs'

á ñ

 Chapter 8. Practical Examples 291

 8.5.4.2 Detailed Guidance
How to Remove a Logical Volume Copy: As can be seen from the following:

à ð
lsvg availvg

VOLUME GROUP: availvg VG IDENTIFIER: ððððð4461ed9e52e

VG STATE: active PP SIZE: 4 megabyte(s)

VG PERMISSION: read/write TOTAL PPs: 861 (3444 megabytes)

MAX LVs: 256 FREE PPs: 817 (3268 megabytes)

LVs: 5 USED PPs: 44 (176 megabytes)

OPEN LVs: 5 QUORUM: 1

TOTAL PVs: 3 VG DESCRIPTORS: 3

STALE PVs: ð STALE PPs ð

ACTIVE PVs: 3 AUTO ON: yes

lsvg -l availvg

availvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

availlv jfs 6 12 2 open/syncd /availjfs

loglvðð jfslog 1 2 2 open/syncd N/A

lvð5 jfs 1ð 1ð 1 open/syncd /compress

lvð6 jfs 1ð 1ð 1 open/syncd /uncompress

lvð7 jfs 1ð 1ð 1 open/syncd /compress512

#

á ñ

availlv currently has two mirror copies. However, the availvg volume group is not
big enough to hold two mirror copies of the availlv logical volume when it is
expanded to 3MB. This would require 6MB in availvg. We currently only have
3268MB available, as indicated by the FREE PPs: field in the second column of the
output of the lsvg availvg command.

Hence we can remove one of the mirror copies if we:

1. Execute the fastpath smitty rmlvcopy to get to the screen with the title
Remove Copies from a Logical Volume, or, to go through the smit hierarchy:

 a. Execute smitty.

b. Select System Storage Management (Physical & Logical Storage) .

c. Select Logical Volume Manager .

d. Select Logical Volumes .

e. Select Set Characteristic of a Logical Volume .

f. Select Remove Copies from a Logical Volume .

2. Type availlv in the LOGICAL VOLUME name field and press the Enter=Do key, or
use the F4=List key to select it.

3. Use the Tab key to toggle the contents of the field NEW maximum number of

logical partition copies from 2 to 1 so that the screen looks like:

292 AIX Storage Management

à ð
Remove Copies from a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ LOGICAL VOLUME name availlv

\ NEW maximum number of logical partition 1 +

 copies

PHYSICAL VOLUME name(s) to remove copies from [] +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

Since one copy of availlv currently exists on each of two identical disks (so that
we are protected from disk failure), then we can ignore the third field. However,
if one disk is not as fast or reliable as the other, then we may decide to remove
the copy of availlv that it contains.

4. Press the Enter=Do key to remove a copy of availlv.

5. When smit returns an OK prompt, press the F10=Exit key to return to the
command prompt.

How to Change a Logical Volume Copy: Now availlv only exists as a single
copy logical volume, and there is sufficient space available in availvg to expand it to
3GB. However, by default, when a logical volume is created, it is limited to a
maximum of 128 physical partitions. Since the availvg volume group uses a
physical partition size of 4MB, availlv can only grow to 4 x 128 = 512MB. This also
means that the /availjfs that uses this logical volume also can not get bigger than
512MB.

Fortunately, you can change the maximum number of logical partitions in a logical
volume if you:

1. Execute the fast path smitty chlv1 to get to the menu with the title Change a
Logical Volume, or, to go through the smit hierarchy:

 a. Execute smitty.

b. Select System Storage Management (Physical & Logical Storage) .

c. Select Logical Volume Manager .

d. Select Logical Volumes .

e. Select Set Characteristic of a Logical Volume .

f. Select Change a Logical Volume .

2. Type availlv in the LOGICAL VOLUME name field and press the Enter=Do key, or
use the F4=List key to select it.

 Chapter 8. Practical Examples 293

3. Type 9ðð in the MAXIMUM NUMBER of LOGICAL PARTITIONS field.

This enables us to increase the size of /availjfs journaled file system that uses
the availlv logical volume, up to 4 x 900 = 3600MB. Hence we still allow for a
growth of 600MB beyond our initial 3GB objective so that we can increase
/availjfs without having to first change the MAXIMUM NUMBER of LOGICAL

PARTITIONS (unless, of course we wanted to increase /availjfs by another 1GB).

4. We are not currently concerned about the other fields so we'll leave them with
default values so that the screen should look like:

à ð
Change a Logical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]

\ Logical volume NAME availlv

Logical volume TYPE [jfs]

POSITION on physical volume outer_middle +

RANGE of physical volumes maximum +

MAXIMUM NUMBER of PHYSICAL VOLUMES [32] #

to use for allocation

Allocate each logical partition copy yes +

on a SEPARATE physical volume?

RELOCATE the logical volume during reorganization? yes +

Logical volume LABEL [/availjfs]

MAXIMUM NUMBER of LOGICAL PARTITIONS [9ðð]

SCHEDULING POLICY for writing logical parallel +

 partition copies

 PERMISSIONS read/write +

[MORE...3]

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

5. Press the Enter=Do to change this logical volume.

6. When smit returns with an OK prompt, press the F10=Exit to return to the
command line.

How to Increase the Size of a JFS: Now that we have ensured that the availlv
logical volume can accommodate a 3GB journaled file system, we can increase the
/availjfs journaled file system.

To increase /availjfs so that it is a total of 3GB:

1. Execute the fast path smitty chjfs to get to a screen like:

294 AIX Storage Management

à ð

 __

 | |

| File System Name |

 | |

| Move cursor to desired item and press Enter. |

 | |

 | [TOP] |

 | / |

 | /home |

 | /usr |

 | /var |

 | /tmp |

 | /newfs |

 | /availjfs |

 | /strjfs32k |

 | /frag512 |

 | /frag4ð96 |

 | /frag512-1 |

 | [MORE...9] |

 | |

 | F1=Help F2=Refresh F3=Cancel |

| F8=Image F1ð=Exit Enter=Do |

 | /=Find n=Find Next |

 |__|

á ñ

Or, to go through the smit hierarchy to get to the above selection screen:

 a. Execute smitty.

b. Select System Storage Management (Physical & Logical Storage) .

c. Select File Systems .

d. Select Add / Change / Show / Delete File Systems .

e. Select Journaled File Systems .

f. Select Change / Show Characteristics of a Journaled File System .

2. Use the Down Arrow to move the cursor so that the journaled file system
/availjfs is highlighted.

3. Press the Enter=Do key.

4. Type 6ðððððð in the SIZE of file system (in 512-byte blocks) field, since
6000000 x 512 = 3000000000, or more simply, 3GB.

Since this is the only field we need to change, the screen should like:

 Chapter 8. Practical Examples 295

à ð
Change/Show Characteristics of a Journaled File System

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

File system name /availjfs

NEW mount point [/availjfs]

SIZE of file system (in 512-byte blocks) [6ðððððð]

 Mount GROUP []

Mount AUTOMATICALLY at system restart? yes +

 PERMISSIONS read/write +

 Mount OPTIONS [] +

Start Disk Accounting? no +

Fragment Size (bytes) 4ð96

Number of bytes per inode 4ð96

 Compression algorithm no

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

5. Press the Enter=Do key to change the journaled file system.

6. When the command is complete, your screen should look like:

à ð
 COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

File System size changed to 6ðð4736

F1=Help F2=Refresh F3=Cancel F6=Command

F8=Image F9=Shell F1ð=Exit /=Find

n=Find Next

á ñ

7. Press the F10=Exit key to return to the command prompt.

How to Check the Attributes of a JFS greater than 2GB: Now that we have
increased /availjfs to a total size of 3GB, we have also forced the availlv logical
volume that the /availjfs journaled file system uses to increase to 3GB. We can
check how availvg and availlv have changed by executing the following commands:

296 AIX Storage Management

à ð
lsvg availvg

VOLUME GROUP: availvg VG IDENTIFIER: ððððð4461ed9e52e

VG STATE: active PP SIZE: 4 megabyte(s)

VG PERMISSION: read/write TOTAL PPs: 861 (3444 megabytes)

MAX LVs: 256 FREE PPs: 96 (384 megabytes)

LVs: 5 USED PPs: 765 (3ð6ð megabytes)

OPEN LVs: 5 QUORUM: 1

TOTAL PVs: 3 VG DESCRIPTORS: 3

STALE PVs: ð STALE PPs ð

ACTIVE PVs: 3 AUTO ON: yes

lsvg -l availvg

availvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

availlv jfs 733 733 3 open/syncd /availjfs

loglvðð jfslog 1 2 2 open/syncd N/A

lvð5 jfs 1ð 1ð 1 open/syncd /compress

lvð6 jfs 1ð 1ð 1 open/syncd /uncompress

lvð7 jfs 1ð 1ð 1 open/syncd /compress51

#

á ñ

We can clearly see that the availvg volume group now uses 3060MB, with only
384MB that can currently be allocated, from the existing physical volumes in this
volume group, to new or existing logical volumes in this volume group. Also, we
note that the availlv logical volume now uses 733 4MB physical partitions, which
is approximately 4 x 733 = 2932MB (remember that 1MB may be 1048576 bytes or
1000000 bytes, depending upon the context in which it is used, so rounding errors
can become significant).

To verify that we can actually use all of this space, we again used the fragcopy
script from 8.5.2, “How to Use Fragments for Disk Usage Efficiency” on page 276,
to copy a 21MB file many times.

à ð
ls -l /availjfs/cmds.rom.dd

-rw-r--r-- 1 root sys 218ð5ð56 Jul 8 12:23 /availjfs/cmds.rom

ksh fragcopy 14ð /availjfs/cmds.rom.dd /availjfs/cmds.rom.dd &

ls -l /availjfs

total 726ð8

-rw-r--r-- 1 root sys 218ð5ð56 Jul 8 12:23 cmds.rom.dd

-rw-r--r-- 1 root sys 15368192 Jul 21 18:5ð cmds.rom.dd.ð

cp: /availjfs/cmds.rom.dd.135: No space left on device

df -kI /availjfs

Filesystem 1ð24-blocks Used Free %Used Mounted on

/dev/availlv 3ðð2368 3ðð2368 ð 1ðð% /availjfs

#

ls /availjfs |wc -l

 137

ls -lt /availjfs|more

total 58ð8264

-rw-r--r-- 1 root sys 8ð65ð24 Jul 21 19:4ð cmds.rom.dd.135

-rw-r--r-- 1 root sys 218ð5ð56 Jul 21 19:4ð cmds.rom.dd.134

-rw-r--r-- 1 root sys 218ð5ð56 Jul 21 19:39 cmds.rom.dd.133

á ñ

From the results of the ls commands, we can see that there was enough room for
134 + 1 = 135 complete new copies of the original 21MB file before we filled the
/availjfs journaled file system. The full journaled file system is indicated by both the
cp command error, and the output of the df -kI command.

 Chapter 8. Practical Examples 297

This example shows that AIX Version 4 allows us to successfully use journaled file
systems that have a capacity greater than the AIX Version 3 limit of 2GB. Although
we will not go into the details here, you can also specify a size greater than 2GB
when you initially create the logical volume and its associated journaled file system.

8.6 Migrating to AIX Version 4
This section discusses and shows how the logical volume manager and journaled
file system configuration of an existing AIX Version 3 system can be maintained
when it is upgraded to AIX Version 4 by a migration installation.

The actual migration installation is discussed in depth in the AIX Version 4.1
Installation Guide, which is the essential companion to this section.

8.6.1.1 Command Line Summary
Ensure that you have documented your storage organization prior to migration so
that you can confirm the process occurs successfully. Remember to take adequate
backups (as described in 8.4, “Managing Backup and Restore” on page 247),
before any reorganization.

Use the following command for each physical volume to establish partition
allocation:

à ð
lspv -M hdiskx > map.hdiskx

á ñ

This will store the output for hdiskx in the file map.hdiskx. Use the following
commands for volume groups to record the configuration:

à ð
lsvg volume_group > lsvg-volume_group

lsvg -l volume_group > lsvg-l-volume_group

á ñ

This will store information regarding volume group organization and the logical
volumes contained within them. Lastly record information about the file systems:

à ð
df > df.fs

cat /etc/filesystems > fs

á ñ

This will save information regarding the file systems and their configuration.

Given that all other planning and organizational tasks have been performed (see
AIX Version 4.1 Installation Guide), we can now restart our system with the AIX
Version 4 installation media loaded and the key in the service position. Selecting
the migration option from the Installation and Settings menu will cause a
migration to AIX Version 4 to occur. See the detailed guidance section in this
chapter for more information.

Lastly, once the migration has successfully taken place, we can confirm that our
storage organization is as we expected it to be. Essentially, we can perform the

298 AIX Storage Management

same documentation tasks that we instituted at the start of this process, and then
compare the results.

 8.6.1.2 Detailed Guidance
Our migration test uses a graphical console display and CD-ROM AIX Version 4
installation media. As well as the important prerequisite of having a good backup
of whatever operating system and data is on the target disks, it is also highly
advisable to have the current configuration documented. For this example,
documenting the AIX V3.2.5 logical volume manager and journaled file system
configuration also shows how this is preserved during the migration to AIX Version
4.

How to Document AIX Version 3.2.5 before a Migration

1. Logical volume manager configuration

Our example system has three physical volumes organized in two volume
groups that are rootvg and 325vg. The exact disk partition map can be saved
to a separate map file for each disk by executing the following familiar
sequence of commands:

à ð
lspv -M hdiskð > map.hdiskð

lspv -M hdisk1 > map.hdisk1

lspv -M hdisk2 > map.hdisk2

á ñ

Your file format should be similar to the following example for hdisk2:

à ð
hdisk2:1-17

hdisk2:18 loglvðð:1

hdisk2:19 lvðð:1

hdisk2:2ð lvðð:2

hdisk2:21 lvðð:3

hdisk2:22 lvðð:4

hdisk2:23 lvðð:5

hdisk2:24 lvðð:6

hdisk2:25 lvðð:7

hdisk2:26 lvðð:8

hdisk2:27 lvðð:9

hdisk2:28 lvðð:1ð

hdisk2:29-84

á ñ

To summarize the logical volume manager information, we can use many of the
commands discussed in Chapter 7, “Storage Management Files and
Commands Summary” on page 137. In our example, we use the following
sequence of lsvg commands:

à ð
lsvg rootvg > lsvg-rootvg

lsvg -l rootvg > lsvg-l-rootvg

lsvg 325vg > lsvg-325vg

lsvg -l 325vg > lsvg-l-325vg

á ñ

We can check the contents of these configuration files by executing the
following sequence of cat commands:

 Chapter 8. Practical Examples 299

à ð
cat lsvg-rootvg

VOLUME GROUP: rootvg VG IDENTIFIER: ððððð5ð83df45ð81

VG STATE: active PP SIZE: 4 megabyte(s)

VG PERMISSION: read/write TOTAL PPs: 243 (972 megabytes)

MAX LVs: 256 FREE PPs: 8 (32 megabytes)

LVs: 16 USED PPs: 235 (94ð megabytes)

OPEN LVs: 12 QUORUM: 2

TOTAL PVs: 2 VG DESCRIPTORS: 3

STALE PVs: ð STALE PPs ð

ACTIVE PVs: 2 AUTO ON: yes

#

cat lsvg-l-rootvg

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd6 paging 1ð 1ð 1 open/syncd N/A

hd61 paging 1ð 1ð 1 open/syncd N/A

hd5 boot 2 2 1 closed/syncd /blv

hd7 sysdump 2 2 1 open/syncd /mnt

hd8 jfslog 1 1 1 open/syncd N/A

hd4 jfs 2 2 1 open/syncd /

hd2 jfs 76 76 2 open/syncd /usr

hd1 jfs 1 1 1 open/syncd /home

hd3 jfs 82 82 2 open/syncd /tmp

hd9var jfs 31 31 1 open/syncd /var

hdag1 lfs 2 2 1 closed/syncd N/A

dumpfiles jfs 5 5 1 open/syncd /var/adm/ras

agroot lfs 1 1 1 closed/syncd N/A

tmpvar jfs 1 1 1 closed/syncd N/A

varrpc jfs 5 5 1 open/syncd /var/dce/rpc/socket

xmconsole jfs 4 4 1 open/syncd /tmp/xm

#

cat lsvg-325vg

VOLUME GROUP: 325vg VG IDENTIFIER: ððð116ð5f67f4ðe9

VG STATE: active PP SIZE: 4 megabyte(s)

VG PERMISSION: read/write TOTAL PPs: 84 (336 megabytes)

MAX LVs: 256 FREE PPs: 73 (292 megabytes)

LVs: 2 USED PPs: 11 (44 megabytes)

OPEN LVs: 2 QUORUM: 2

TOTAL PVs: 1 VG DESCRIPTORS: 2

STALE PVs: ð STALE PPs ð

ACTIVE PVs: 1 AUTO ON: yes

#

cat lsvg-l-325vg

325vg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

loglvðð jfslog 1 1 1 open/syncd N/A

lvðð jfs 1ð 1ð 1 open/syncd /325jfs

á ñ

The above information shows us that rootvg has two physical volumes in it and
that it contains some logical volumes for an application (DCE). We can also
see that there is one data logical volume in the 325vg that contains one
physical volume.

 2. JFS configuration

This is easier to record; in this example, we saved a copy of the file
/etc/filesystems, and we then saved the output of the df command to a file
named df.I. We can check its output by executing:

à ð
cat df.I

Filesystem Total KB used free %used Mounted on

/dev/hd4 8192 652ð 1672 79% /

/dev/hd9var 126976 13144 113832 1ð% /var

/dev/hd2 311296 299168 12128 96% /usr

/dev/hd3 335872 76472 2594ðð 22% /tmp

/dev/hd1 4ð96 496 36ðð 12% /home

/dev/dumpfiles 2ð48ð 1112ð 936ð 54% /var/adm/ras

/dev/varrpc 2ð48ð 928 19552 4% /var/dce/rpc/socket

/dev/xmconsole 16384 544 1584ð 3% /tmp/xm

/dev/lvðð 4ð96ð 138ð 3958ð 3% /325jfs

á ñ

300 AIX Storage Management

Installing AIX Version 4: Now that we have completed the documentation and all
the prerequisites documented in AIX Version 4.1 Installation Guide in the chapter
called Installing BOS from CD-ROM or Tape, we can continue the process
described in the Start the System section in the same chapter.

After we select English as an Installation language, and press the Enter key, we
arrive at the Welcome to Base Operating System Installation and Maintenance
menu. The simplest choice is to now select >>> 1 Installation and Settings so
that we can check and change the installation options. In our example, the defaults
in the following screen were suitable.

à ð
Installation and Settings

Either type ð and press Enter to install with current settings, or type the

number of the setting you want to change and press Enter.

 1 System Settings:

Method of Installation.............Migration

Disk Where You Want to Install.....hdiskð...

2 Primary Language Environment Settings (AFTER Install):

Cultural Convention................English (United States)

LanguageEnglish (United States)

KeyboardEnglish (United States)

3 Install Trusted Computing Base.......No

>>> ð Install AIX with the current settings listed above.

 +---

88 Help ? | WARNING: Base Operating System Installation will

99 Previous Menu | destroy or impair recovery of SOME data on the

| destination disk hdiskð.

>>> Choice [ð]:

á ñ

However, if you need to change any of the above values, please refer to the
references given in Verify the Default Installation and System Settings in the
chapter Installing BOS from CD-ROM or Tape in AIX Version 4.1 Installation Guide.
In particular, we found in AIX Version 4.1 Installation Guide. In particular, we found
that as we checked the physical volume allocation by following the procedure in
Change the Destination Disk in the same chapter, the AIX Version 4 installation
process correctly recognized which physical volumes belong to the rootvg, and
which belong to other volume groups, based on their unique SCSI addresses. We
can now complete the migration installation of AIX Version 4 by following the
procedure in the section Install from CD-ROM or Tape in the same chapter.

How to Check the Configuration after Migration: When the system reboots
after AIX Version 4 is installed, there may be many systems management tasks for
the systems administrator to complete. In our example, we want to quickly check
our storage configuration details. We can again generate a set of configuration files
as we did before the migration by executing the following set of similar commands:

 Chapter 8. Practical Examples 301

à ð
lspv -M hdiskð > map.hdiskð.41

lspv -M hdisk1 > map.hdisk1.41

lspv -M hdisk2 > map.hdisk2.41

lsvg rootvg > lsvg-rootvg.41

lsvg -l rootvg > lsvg-l-rootvg.41

lsvg 325vg > lsvg-325vg.41

lsvg -l 325vg > lsvg-l-325vg.41

df -Ik > df.Ik.41

á ñ

We can quickly use the diff command on the map files to verify that our partition
map has been maintained. Although diff for the hdisk0 and hdisk2 files gives no
output , as expected diff for hdisk1 results in the following:

à ð
diff map.hdisk1 map.hdisk1.41

11c11,14

< hdisk1:11-17

> hdisk1:11 hd2:77

> hdisk1:12 hd2:78

> hdisk1:13 hd2:79

> hdisk1:14-17

á ñ

This shows that /usr journaled file system on the hd2 logical volume has grown by
three physical partitions during the migration installation. The increase in the rootvg
volume group is also verified by the change in the lsvg rootvg output as follows:

à ð
diff lsvg-rootvg lsvg-rootvg.41

4,6c4,6

< MAX LVs: 256 FREE PPs: 8 (32 megabytes)

< LVs: 16 USED PPs: 235 (94ð megabytes)

< OPEN LVs: 12 QUORUM: 2

> MAX LVs: 256 FREE PPs: 5 (2ð megabytes)

> LVs: 16 USED PPs: 238 (952 megabytes)

> OPEN LVs: 11 QUORUM: 2

á ñ

You can see how the diff command used on configuration files can quickly help us
isolate any configuration changes, especially when the output files are large.
However, you need to carefully check its output because the differences may be
irrelevant. For example, the command diff lsvg-l-325vg lsvg-l-325vg.41

suggests that the entire 325vg logical volume configuration has changed. Close
inspection reveals that in our example, the only change is that the position of the
output columns, starting with PVs, has been moved.

Finally, we need to check the configuration of the journaled file system in AIX
Version 4. Although the command diff filesystems filesystems.41 has no
output and so none of the journaled file system attributes recorded in it have
changed, we should check the space utilization of the journaled file systems by
executing the command

302 AIX Storage Management

à ð
df -kI

Filesystem 1ð24-blocks Used Free %Used Mounted on

/dev/hd4 8192 69ð4 1288 84% /

/dev/hd2 323584 315948 7636 97% /usr

/dev/hd9var 126976 124ð4 114572 9% /var

/dev/hd3 335872 15656 32ð216 4% /tmp

/dev/hd1 4ð96 496 36ðð 12% /home

/dev/dumpfiles 2ð48ð 11128 9352 54% /var/adm/ras

/dev/varrpc 2ð48ð 928 19552 4% /var/dce/rpc/socket

/dev/lvðð 4ð96ð 1384 39576 3% /325jfs

á ñ

This verifies that only the /usr journaled file system has had more space allocated
to it and used, but the output also shows that other journaled file systems have
changes in the number of 1ð24-blocks used due to a variety of factors that may
include:

� A change in the number of LPPs installed, and/or their individual disk space
requirements.

� The size of the log files in / and /var. Note in particular the new AIX Version 4
logs in /var/adm/ras which include:

 – devinst.log

 – bosinstlog

 – BosMenus.log

 – bootlog

� The storage of some configuration information for the original AIX V3.2.5 in
/tmp/bos (this required about 5MB in our example).

� Any user changes; we deleted a large file from /tmp to create enough free
space for the AIX V3.2.5 configuration data.

Note that just like the lsvg -l command, the output format has changed so we do
not benefit from the diff command. In AIX Version 4, the default block size used
by df is 512 bytes, so we need to use the -k flag to report the output using 1024
bytes which is the default value for AIX Version 3.

Overall Effects of Migration: Our example shows that there are no major storage
management compatibility issues involved during a migration from AIX V3.2.5 to
AIX Version 4. However, of course we cannot use any new AIX Version 4 features,
such as journaled file system compression, on an existing journaled file system that
was migrated from AIX Version 3 unless we recreate it and restore its data. As
well as this, we must also be aware of any other migration issues, such as those
discussed in AIX Version 4.1 Installation Guide, in particular in the section
Compatibility Between AIX Version 3.2 and AIX Version 4.1.

8.7 Manipulating Page Space
This section shows you how to implement the most common maintenance tasks for
your paging logical volumes. The examples manipulate the hd6 logical volume in
AIX Version 4 that contains two mirror copies. However, you can easily apply the
procedures described here for other paging devices, where, depending on their
attributes, you may not need to:

 Chapter 8. Practical Examples 303

� Modify any boot files.

� Repeat commands such as bosboot, which is only necessary in this example
because we deal with a mirrored rootvg.

For this section, it is very beneficial for the reader to become familiar with the
concepts discussed in:

� 3.1.1, “Page Space” on page 45.

� Chapter 5, “Storage Subsystem Design” on page 77.

� Chapter 6, “General AIX Storage Management” on page 93.

� AIX Version 4.1 System Management Guide: Operating System and Devices,
which may be in AIX Version 4.1 Hypertext Information Base Library on your
system.

In particular, refer to the chapter that discusses paging space and virtual
memory. Note that the following articles in this chapter are used as a reference
for the examples in this section:

– Adding and Activating a Paging Space.

– Resizing or Moving the hd6 Paging Space.

– Changing or Removing a Paging Space.

Warning - Reboots required

It is important to note that paging devices can not be deactivated, so any
maintenance task that requires this, such as the removal of a paging logical
volume, will have to be done at an appropriate time to minimize user disruption.
This is probably a helpful limitation, since it reminds us that any system
maintenance task must be carefully scheduled to help you cope in case there
are any disasters, foreseen or unforeseen, during your maintenance work.

8.7.1 How to Decrease the Default hd6 Paging Logical Volume
This next section looks at reducing the size of the hd6 default paging space logical
volume.

8.7.1.1 Command Line Summary
This example demonstrates the tasks required to reduce the size of a paging
space. In particular, it provides the extra steps required in the more complex
scenario where we want to decrease the default rootvg paging logical volume, hd6,
when it is part of a mirrored rootvg. First, let's look at the paging spaces that we
have:

à ð
lsps -a

Page Space Physical Volume Volume Group Size %Used Active Auto Type

perfpg hdisk1 perfvg 2ðMB ð no yes lv

perfpg hdisk8 perfvg 2ðMB ð no yes lv

hd6 hdisk5 rootvg 32MB 22 yes yes lv

hd6 hdisk7 rootvg 32MB 22 yes yes lv

á ñ

This shows us the size of the paging space that we are interested in, as well as the
current paging space usage. Next let's see how much memory we have:

304 AIX Storage Management

à ð
lsattr -E -l sysð -a realmem

realmem 49152 Amount of usable physical memory in Kbytes False

á ñ

This gives us a basis for calculating how big page space needs to be, more
information being presented in the detailed guidance section. Before we alter this
though, we must create another temporary page space as it would be a bad idea to
be without it:

à ð
mkps -a -n -s 2ð rootvg

pagingðð

á ñ

This makes a new paging space of size 80MB. Next we make hd6 inactive, and
cause pagingðð to be used at the next reboot:

à ð
chps -a n hd6

#

edit the one entry in /sbin/rc.boot... search via /swapon to find line near

Start paging if no dump

[! -f /needcopydump] && swapon /dev/pagingðð

bosboot -l /dev/hd5x -d /dev/hdisk7 -a

bosboot: Boot image is 4275 512 byte blocks.

bosboot -l /dev/hd5 -d /dev/hdisk5 -a

bosboot: Boot image is 4275 512 byte blocks.

á ñ

We also recreate the boot images to reflect the change and then reboot. Now we
can remove and recreate the hd6 page space to be the size that we wish. First
ensure that the dump device is not hd6:

à ð
sysdumpdev -pP /dev/sysdumpnull

sysdumpdev -l

primary /dev/sysdumpnull

secondary /dev/sysdumpnull

copy directory /tmp

forced copy flag TRUE

á ñ

Then remove hd6, recreate the two mirror copies with the new required size, then
activate it:

à ð
rmps hd6

mklv -y'hd6' -e'x' -c'2' -v'y' 'rootvg' '7'

swapon /dev/hd6

á ñ

The rc.boot file must now be edited again to reflect the new page space, and the
boot images again updated:

 Chapter 8. Practical Examples 305

à ð
edit the one entry in /sbin/rc.boot... search via /swapon to find line near

Start paging if no dump

[! -f /needcopydump] && swapon /dev/hd6

bosboot -l /dev/hd5x -d /dev/hdisk7 -a

bosboot: Boot image is 4275 512 byte blocks.

bosboot -l /dev/hd5 -d /dev/hdisk5 -a

bosboot: Boot image is 4275 512 byte blocks.

á ñ

Now reboot the system and then update the bootlist:

à ð
shutdown -Fr

bootlist -m normal hdisk5 hdisk7

á ñ

Finally, remove the temporary page space:

à ð
chps -a n pagingðð

rmps pagingðð

á ñ

Don't forget to change the system dump device back if required.

 8.7.1.2 Detailed Guidance
This task has a number of component steps that also serve to illustrate general
paging space management tasks. Thus, although this entire section is based on the
one procedure given in the AIX Version 4.1 System Management Guide: Operating
System and Devices article Resizing or Moving the hd6 Paging Space, we do this
procedure in the following subsections.

How to Check Prerequisites before Changing hd6: The first task is that you
need to properly understand your system's performance so that you not remove too
much capacity from your paging logical volumes. In this example, we can execute
the following commands to give us a current snapshot:

à ð
lsps -a

Page Space Physical Volume Volume Group Size %Used Active Auto Type

perfpg hdisk1 perfvg 2ðMB ð no yes lv

perfpg hdisk8 perfvg 2ðMB ð no yes lv

hd6 hdisk5 rootvg 32MB 22 yes yes lv

hd6 hdisk7 rootvg 32MB 22 yes yes lv

#

lsattr -E -l sysð -a realmem

realmem 49152 Amount of usable physical memory in Kbytes False

#

á ñ

You can see that we are currently using only about 7MB of our paging space, even
though we have 49MB of RAM.

306 AIX Storage Management

Warning - Understand performance

It is very important to be familiar with the issues discussed in the AIX V3.2
Performance Monitoring and Tuning Guide (which may be available in the AIX
Version 4.1 Hypertext Information Base Library on your system) before you
decide exactly how much paging space you need.

This decision depends on many factors, such as application needs and the
number of users.

In this example, we want to maintain the amount of paging space suggested by the
following rule of thumb:

Use a 1:1 ratio of total paging space to system RAM.

This means that we only want to decrease hd6 by 4MB so that we will still have a
total of 48MB of paging space.

As is described in 6.2, “Managing Physical Volumes” on page 93, there are many
ways to check the physical partition layout and usage in a volume group. To check
rootvg, we can execute:

à ð
lspv -l hdisk5

hdisk5:

LV NAME LPs PPs DISTRIBUTION MOUNT POINT

hd5 1 1 ð1..ðð..ðð..ðð..ðð N/A

hd6 8 8 ðð..ð8..ðð..ðð..ðð N/A

hd8 1 1 ðð..ðð..ð1..ðð..ðð N/A

hd4 1 1 ðð..ðð..ð1..ðð..ðð /

hd2 5ð 5ð ðð..ðð..29..21..ðð /usr

hd9var 3 3 ðð..ðð..ðð..ð3..ðð /var

hd3 3 3 ðð..ðð..ðð..ð3..ðð /tmp

hd1 1 1 ðð..ðð..ðð..ð1..ðð /home

lspv -l hdisk7

hdisk7:

LV NAME LPs PPs DISTRIBUTION MOUNT POINT

hd2 5ð 5ð ð2..ðð..14..17..17 /usr

hd9var 3 3 ð3..ðð..ðð..ðð..ðð /var

hd3 3 3 ð3..ðð..ðð..ðð..ðð /tmp

hd1 1 1 ð1..ðð..ðð..ðð..ðð /home

hd5x 2 2 ð2..ðð..ðð..ðð..ðð N/A

hd6 8 8 ðð..ð8..ðð..ðð..ðð N/A

hd8 1 1 ðð..ðð..ð1..ðð..ðð N/A

hd4 1 1 ðð..ðð..ð1..ðð..ðð /

#

á ñ

We can clearly see that rootvg is mirrored in a high availability configuration to help
protect us from disk failure. So we know that we will gain a free, unallocated
physical partition, on each physical volume when we decrease hd6 by one logical
partition.

We also know from the lsdev -Cc disk command that hdisk7 is only a 355MB disk,
and so is almost full, whereas hdisk5 is a 670MB disk, and so has many more free
physical partitions, particularly near its edges (note the first and last columns are
mainly ðð under the heading DISTRIBUTION above).

 Chapter 8. Practical Examples 307

Based on this information, we have decided to create a non-mirrored temporary
paging space. We could make it small, but we'll follow the suggestion in the
Resizing or Moving the hd6 Paging Space article, and make it 80MB in size, since
we know that we have enough space.

Finally, note that it is not good enough to simply activate the perfpg paging logical
volume to use it while we work with hd6, because perfpg is in the perfvg volume
group. The AIX Version 3 and AIX Version 4 boot processes expect the hd6 logical
volume to be in the root volume group if hd6 is used, since this volume group is the
first one that is accessed during the boot process.

How to Add a New Paging Logical Volume to a Volume Group: Now that
we've checked the rootvg volume group, we need to create another paging device
to temporarily use as the main system paging device while we work with hd6. The
process described here is very similar to that documented in the article Adding and
Activating a Paging Space. Note that we could create a paging type logical
volume. However, this process has already been described in “How to Create a
Paging Type Logical Volume” on page 233, and we are not concerned about the
physical partition location here so we can use the mkps command.

To create a new paging logical volume:

1. Execute the fast path smitty mkps to get to the screen that looks like:

à ð

 | |

| VOLUME GROUP name |

 | |

| Move cursor to desired item and press Enter. |

 | |

 | availvg |

 | rootvg |

 | perfvg |

 | stripevg |

 | |

 | F1=Help F2=Refresh F3=Cancel |

| F8=Image F1ð=Exit Enter=Do |

 | /=Find n=Find Next |

 |___|

á ñ

Alternatively, you can go through the smit hierarchy by:

 a. Executing smitty.

b. Selecting System Storage Management (Physical & Logical Storage) .

c. Selecting Logical Volume Manager .

d. Selecting Paging Space .

e. Selecting Add Another Paging Space to get to a screen that prompts you
to select a volume group from a menu similar to that shown above.

2. Use the Arrow keys to highlight the rootvg volume group name, and then
press the Enter=Do key.

308 AIX Storage Management

3. Type 2ð for the field SIZE of paging space (in logical partitions), 20 times
4MB gives us an 80MB temporary paging logical volume.

4. Use the Tab key to toggle the field Start using this paging space NOW? from
no to to yes, or use the F4=List key to select it.

5. Use the Tab key to toggle the field Use this paging space each time the

system is RESTARTED? from no to yes so that your screen looks like:

à ð
Add Another Paging Space

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

Volume group name rootvg

SIZE of paging space (in logical partitions) [2ð] #

PHYSICAL VOLUME name +

Start using this paging space NOW? yes +

Use this paging space each time the system is yes +

 RESTARTED?

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

6. Press the Enter=Do to create the temporary paging logical volume.

7. When smit returns the device name, such as pagingðð in this example, with
smit's OK prompt, you can press the F10=Exit key to return to the command
line.

You can now use the command lsps -a to check that this new device is active. To
use smit:

 1. Execute smitty.

2. Select System Storage Management (Physical & Logical Storage) .

3. Select Logical Volume Manager .

4. Select Paging Space .

5. Select List All Paging Spaces .

6. When smit returns the lsps -a output, with smit's OK prompt, you can press the
F10=Exit key to return to the command line.

How to Change the Attributes of a Paging Logical Volume: We now need to
change the hd6 logical volume's boot attributes so that we can remove it. This
change example is based on that described in the AIX Version 4.1 Hypertext
Information Base Library article Changing or Removing a Paging Space.

To change the hd6 paging logical volume:

1. Execute the fast path smitty chps to get to a PAGING SPACE name prompt in a
screen like:

 Chapter 8. Practical Examples 309

à ð

 | |

| PAGING SPACE name |

 | |

| Move cursor to desired item and press Enter. |

 | |

 | pagingðð |

 | perfpg |

 | hd6 |

 | |

 | F1=Help F2=Refresh F3=Cancel |

| F8=Image F1ð=Exit Enter=Do |

 | /=Find n=Find Next |

 |___|

á ñ

Alternatively, you can go through the smit hierarchy by:

 a. Executing smitty.

b. Selecting System Storage Management (Physical & Logical Storage) .

c. Selecting Logical Volume Manager .

d. Selecting Paging Space .

e. Selecting Change / Show Characteristics of a Paging Space to get to a
screen that prompts you to select a paging logical volume from a menu
similar to that shown above.

2. Use the Arrow keys to highlight the hd6 paging space name, and then press
the Enter=Do key.

3. Use the Tab key to toggle the field Use this paging space each time the

system is RESTARTED? from yes to no so that your screen looks like:

310 AIX Storage Management

à ð
Change / Show Characteristics of a Paging Space

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

Paging space name hd6

Volume group name rootvg

Physical volume name hdisk5

NUMBER of additional logical partitions [] #

Use this paging space each time the system is no +

 RESTARTED?

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

4. Press the Enter=Do to change the hd6 paging logical volume.

5. When smit returns an OK prompt, you can press the F10=Exit key to return to
the command line.

How to Complete the Steps to Rebuild a Smaller hd6: Although we have
changed hd6, it is still an active logical volume (you can see that its LV STATE is
open/syncd if you execute the lsvg -l rootvg command). Hence we must use the
command shutdown -Fr to reboot the RISC System/6000, but we must first modify
the boot file that explicitly references a paging logical volume that is called hd6.
We also need to save our changes so far, to the boot logical volumes.

We need to edit the file /sbin/rc.boot. In this example we used the vi editor, so to
use vi:

 1. Execute vi /sbin/rc.boot.

2. Type the characters /swapon and press the Enter key to find the relevant line.

3. Press the character w four times while in command mode to move the cursor to
a position under the character h in the word hd6.

4. Press the characters cw to change the word hd6.

5. Type the word pagingðð so that the lines look like:

à ð
Start paging if no dump

[! -f /needcopydump] && swapon /dev/pagingðð

á ñ

6. Press the Esc key to return to command mode.

7. Use the capital zz sequence, in other words type the characters ZZ, to save our
updated rc.boot file.

Now if we try to update the boot disk as suggested in the article Resizing or Moving
the hd6 Paging Space in InfoExplorer, we will get the following error:

 Chapter 8. Practical Examples 311

à ð
bootinfo -b

hdisk7

bosboot -d /dev/hdisk7 -a

ð3ð1-168 bosboot: The current boot logical volume, /dev/hd5,

does not exist on /dev/hdisk7.

á ñ

Since we have a mirrored rootvg with two boot logical volumes on different disks,
then each boot image needs to be updated with the following commands:

à ð
bosboot -l /dev/hd5x -d /dev/hdisk7 -a

bosboot: Boot image is 4275 512 byte blocks.

bosboot -l /dev/hd5 -d /dev/hdisk5 -a

bosboot: Boot image is 4275 512 byte blocks.

á ñ

Now we can reboot the RISC System/6000 by executing the command shutdown

-Fr.

When the system is up, you can login to check that hd6 can now be removed by
executing the command:

à ð
lsvg -l rootvg |head

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd6 paging 8 16 2 closed/syncd N/A

hd5 boot 1 1 1 closed/syncd N/A

á ñ

We can now remove the hd6 logical volume.

312 AIX Storage Management

Warning - Check dump device

If you are using AIX Version 4, then you need to check what your dump device
is by executing the command sysdumpdev -l. If your command ouput looks
like:

à ð
sysdumpdev -l

primary /dev/hd6

secondary /dev/sysdumpnull

copy directory /tmp

forced copy flag TRUE

á ñ

then your hd6 logical volume will still be in an open state and hence cannot be
removed. If your primary dump device is hd6, then you can change it by
executing the following command (note that you can get to the equivalent smit
menus for these commands by executing smitty sysdumpdev):

à ð
sysdumpdev -Pp /dev/sysdumpnull

primary /dev/sysdumpnull

secondary /dev/sysdumpnull

copy directory /tmp

forced copy flag TRUE

á ñ

Now follow the procedure described in “How to Remove a Paging Logical Volume”
on page 314 to delete the hd6 logical volume.

We can now recreate hd6 to make it only 28MB in size, instead of its original
32MB, to save 4MB of disk space.

The procedure is almost identical to that described in 8.3.3, “A Design Example for
Improved Availability” on page 209, where we created availlv. The only differences
are:

� The name of the volume group is rootvg.

� The name of the 2 mirror copy logical volume that we are creating is hd6.

� Type paging for the field Logical volume TYPE.

Note that this command is different to the mklv command in the procedure
suggested by the Resizing or Moving the hd6 Paging Space article, since that
example only shows you how to work with a single copy hd6. Also note that we
are not following a procedure similar to that described in “How to Add a New
Paging Logical Volume to a Volume Group” on page 308, because it would require
an extra step to change the name of the new paging logical volume from a name
like paging01, to hd6.

Now that hd6 exists again, we need to activate it, so:

1. Execute the fast path smitty swapon to get to a menu with the title Activate a
Paging Space. Alternatively, you can go through the smit hierarchy by:

 a. Executing smitty.

b. Selecting System Storage Management (Physical & Logical Storage) .

 Chapter 8. Practical Examples 313

c. Selecting Logical Volume Manager .

d. Selecting Paging Space .

e. Selecting Activate a Paging Space to get to the same menu.

2. Press the F4=List to generate a list of paging logical volumes.

3. Use the Arrow keys to highlight the hd6 logical volume name, and then press
the Enter=Do key twice.

4. When smit returns an OK prompt, press the F10=Exit to return to the command
line.

Now that hd6 is active, we need to:

1. Reverse the previous change to the /sbin/rc.boot file.

2. Repeat the command bosboot -l /dev/hd5x -d /dev/hdisk7 -a.

3. Repeat the command bosboot -l /dev/hd5 -d /dev/hdisk5 -a.

4. Execute shutdown -Fr to reboot the RISC System/6000.

5. When the system comes up, execute the bootlist -m normal hdisk5 hdisk7

command to check that we can still boot from either rootvg mirror copy.

At this stage, your system is almost back to normal and your paging information
should look like:

à ð
lsps -a

Page Space Physical Volume Volume Group Size %Used Active Auto Type

pagingðð hdisk5 rootvg 8ðMB ð yes yes lv

perfpg hdisk1 perfvg 2ðMB 8 yes yes lv

perfpg hdisk8 perfvg 2ðMB 8 yes yes lv

hd6 hdisk5 rootvg 28MB 22 yes no lv

hd6 hdisk7 rootvg 28MB 21 yes no lv

á ñ

This verifies that we have recovered one logical partition, which is two physical
partitions (8MB) from the hd6 logical volume, so we can now remove the temporary
paging00 logical volume.

How to Remove a Paging Logical Volume

Now that the smaller hd6 logical volume has been returned to its original operating
conditions, we can follow the process described in the article Changing or
Removing a Paging Space to remove our temporary logical volume.

To remove the paging device paging00:

1. Follow the procedure given in “How to Change the Attributes of a Paging
Logical Volume” on page 309 to change paging00 so that it will not be active
after a reboot.

2. Reboot the RISC System/6000 by executing the shutdown -Fr command.

3. When the system is up, login in as root and execute the fast path smitty rmps

to get to the menu with the title Remove a Paging Space. Alternatively, you
can go through the smit hierarchy by:

314 AIX Storage Management

 a. Executing smitty.

b. Selecting System Storage Management (Physical & Logical Storage) .

c. Selecting Logical Volume Manager .

d. Selecting Paging Space .

e. Selecting Remove a Paging Space to get to the same menu.

4. Press the F4=List to generate a list of paging logical volumes.

5. Use the Arrow keys to highlight the pagingðð logical volume name, and then
press the Enter=Do key three times (once to enter the name in the field, once
to get the warning, and the third time to execute the command).

6. When smit returns an OK prompt, press the F10=Exit to return to the command
line.

8.8 Common Disk Management and Error Recovery Procedures
This section will show examples of the use of the migratepv and the rgrecover
command and shell script respectively. We also include the contents of the dsksyn
script that many people have used in AIX Version 3, although we did not test this
script in AIX Version 4.

For further examples of recovery procedures, see Appendix C, “General Volume
Group Recovery” on page 349.

8.8.1 How to Use the migratepv Command
In this section we will look at how to migrate the contents of one physical volume to
another physical volume within the same volume group.

The example will use the volume group availvg which consists of two physical
volumes hdisk0 and hdisk2, and the contents of the physical volume hdisk0. will be
migrated to physical volume hdisk3.

You will note that the physical volume names have changed for this volume group
and do not match those listed in 8.3.3, “A Design Example for Improved Availability”
on page 209. The change has occurred as a result of running the mksysb restore
example. See 8.4, “Managing Backup and Restore” on page 247 for more details.

Also note that in our tests we could not successfully migrate all logical volumes in
one step using the migratepv command, although this should have been possible.
To work around this problem we used a variant of the migratepv command which
allows migration of individual logical volumes. However, in the command line
summary we have used another variant of the migratepv command which performs
an entire physical volume migration.

8.8.1.1 Command Line Summary
1. Using the lspv command, check to see if there is a physical volume which is

currently not assigned to a volume group:

 Chapter 8. Practical Examples 315

à ð
lspv

hdiskð ððððð2ð158496d72 availvg

hdisk1 ððððð2ð1dc8bðb32 perfvg

hdisk2 ððððð2ðð7bb618f5 availvg

hdisk3 none None

hdisk4 ððð137231982cðf2 stripevg

hdisk5 ððð14732b1bd7f57 rootvg

hdisk6 ððð12218ððð7244ð stripevg

hdisk7 ððð12218da42ba76 rootvg

hdisk8 ððð2479ð88f5f347 perfvg

á ñ

2. Add physical volume hdisk3 to volume group availvg:

à ð
extendvg -f 'availvg' 'hdisk3'

á ñ

3. Identify the logical volumes in volume group availvg:

à ð
lsvg -l availvg

availvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

availlv jfs 6 12 2 open/syncd /availjfs

loglvðð jfslog 1 2 2 open/syncd N/A

á ñ

4. Migrate the contents of hdiskð to hdisk3:

à ð
migratepv 'hdiskð' 'hdisk3'

á ñ

5. To confirm that all physical partitions have been migrated, execute the lspv
command on hdiskð and hdisk3:

à ð
lspv -M hdiskð

hdiskð:1-287

#

lspv -M hdisk3

hdisk3:1-81

hdisk3:82 availlv:1:2

hdisk3:83 availlv:2:2

hdisk3:84 availlv:3:2

hdisk3:85 availlv:4:2

hdisk3:86 availlv:5:2

hdisk3:87 availlv:6:2

hdisk3:88 loglvðð:1:2

hdisk3:89-287

á ñ

The above results show that the migratepv command has moved the contents
of hdisk0 to hdisk3.

 8.8.1.2 Detailed Guidance
Let us now look at these steps in more detail, and see how a physical volume
migration can be done using smit. We will also look at the commands which help
us identify whether or not all physical partitions have been migrated.

How to Migrate Physical Volume contents to another disk: Before we start a
physical volume migration to another disk, we need to confirm that the target
physical volume has sufficient storage capability to hold all physical partitions which

316 AIX Storage Management

will be migrated. In this section we will look at the commands that provide this vital
information.

To reiterate, we will migrate physical volume hdisk0 to physical volume hdisk3.

1. Identify all physical volumes which are currently not assigned to a volume
group using the command:

à ð
lspv

hdiskð ððððð2ð158496d72 availvg

hdisk1 ððððð2ð1dc8bðb32 perfvg

hdisk2 ððððð2ðð7bb618f5 availvg

hdisk3 none None

hdisk4 ððð137231982cðf2 stripevg

hdisk5 ððð14732b1bd7f57 rootvg

hdisk6 ððð12218ððð7244ð stripevg

hdisk7 ððð12218da42ba76 rootvg

hdisk8 ððð2479ð88f5f347 perfvg

á ñ

Each line of the above output shows the name of a configured physical volume.
If this physical volume belongs to an existing volume group, the line also shows
its system-wide unique physical volume identifier and the name of the volume
group to which it belongs.

However, from the above information we note that physical volume hdisk3

does not currently belong any volume group, making it a candidate for the
target disk for this example.

2. Check the partition map for our source physical volume hdisk0:

à ð
lspv -M hdiskð

hdiskð:1-81

hdiskð:82 availlv:1:2

hdiskð:83 availlv:2:2

hdiskð:84 availlv:3:2

hdiskð:85 availlv:4:2

hdiskð:86 availlv:5:2

hdiskð:87 availlv:6:2

hdiskð:88 loglvðð:1:2

hdiskð:89-287

á ñ

Note that logical volumes availlv and loglvðð have their second logical
partition copies allocated on this physical volume. The logical volume availlv
has 6 physical partitions allocated on this physical volume, and logical volume
loglvðð has 1 physical partition.

3. Using the lsdev command, let us look at the size of physical volumes hdiskð
and hdisk3:

à ð
lsdev -Cc disk

hdiskð Available ðð-ð7-ðð-ð,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit

hdisk1 Available ðð-ð7-ðð-1,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit

hdisk2 Available ðð-ð7-ðð-2,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit

hdisk3 Available ðð-ð7-ðð-3,ð 1.2 GB SCSI Disk Drive (in 2.4 GB Disk Unit

hdisk4 Available ðð-ð7-ðð-4,ð 857 MB SCSI Disk Drive

hdisk5 Available ðð-ð8-ðð-ð,ð 67ð MB SCSI Disk Drive

hdisk6 Available ðð-ð8-ðð-1,ð 67ð MB SCSI Disk Drive

hdisk7 Available ðð-ð8-ðð-2,ð 355 MB SCSI Disk Drive

hdisk8 Available ðð-ð8-ðð-3,ð 32ð MB SCSI Disk Drive

á ñ

Since hdiskð and hdisk3 are of identical size, there should be no problems in
performing the physical volume migration.

 Chapter 8. Practical Examples 317

4. Add physical volume hdisk3 to the volume group availvg using the command
smitty extendvg.

The following screen will appear:

à ð
Add a Physical Volume to a Volume Group

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ VOLUME GROUP name [availvg] +

\ PHYSICAL VOLUME names [hdisk3] +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

á ñ

On this smit screen:

a. Enter availvg for the field VOLUME GROUP name.

b. Enter hdisk3 for the field PHYSICAL VOLUME names.

 c. Press Enter .

d. Press F10 after smit returns with OK.

e. Confirm that we now have three physical volumes in volume group availvg

using the command:

à ð
lsvg -p availvg

availvg:

 PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION

hdiskð active 287 28ð 58..5ð..57..57..58

hdisk2 active 287 28ð 58..5ð..57..57..58

hdisk3 active 287 287 58..57..57..57..58

 á ñ

From the above output we can see that three physical volumes now exist in
availvg, and as expected all physical partitions on hdisk3 are free.

 Note

It is not a requirement that a new target physical volume is added to the
volume group. For a migratepv to succeed it is only necessary that the
target physical volume has a sufficient number of free physical partitions
equal to or greater than the number of partitions being moved from the
source physical volume.

We are now ready to perform the migration test. However, since the migratepv
command will still allow access to the data being migrated, we will simulate this
by executing the following shell script, called migpvtst during the migration
process.

318 AIX Storage Management

à ð
#!/bin/ksh

migpvtst

cd /availjfs

while true

do

 ls

 sleep 1

done

á ñ

5. Execute migpvtst from another terminal:

à ð
ksh migpvtst

cmds.rom.dd

cmds.rom.dd

cmds.rom.dd

á ñ

The above sample output shows that the file cmds.rom.dd was displayed once
every second.

6. Migrate the contents of physical volume hdiskð to hdisk3 using the command
smitty migratepv:

à ð
Move Contents of a Physical Volume

Type or select a value for the entry field.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ SOURCE physical volume name [hdiskð] +

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

a. On this smit screen enter hdiskð for the field SOURCE physical volume

name.

 b. Press Enter .

On the next smit screen, shown below:

c. Enter hdisk3 for the field DESTINATION physical volumes.

 d. Press Enter .

e. Press F10 when smit return with OK.

 Chapter 8. Practical Examples 319

à ð
Move Contents of a Physical Volume

Type or select values in entry fields.

Press Enter AFTER making all desired changes.

 [Entry Fields]

\ SOURCE physical volume name hdiskð

\ DESTINATION physical volumes [hdisk3] +

Move only data belonging to this [] +

 LOGICAL VOLUME?

F1=Help F2=Refresh F3=Cancel F4=List

F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F1ð=Exit Enter=Do

á ñ

 Warning

If smit returns with OK and also displays error messages like:

ð516-158 lmigratepp: Destination physical partition number not

 entered.

Usage: lmigratepp -g VGid -p SourcePVid -n SourcePPnumber

-P DestinationPVid -N DestinationPPnumber

ð516-812 migratepv: Warning, migratepv did not completely

succeed; all physical partitions have not been

moved off the PV.

this indicates that the migration has failed. When this happens, rerun the
command for each logical volume that exists on the source physical volume.
The command lspv -l diskname will identify all logical volumes contained
on the physical volume specified by the diskname parameter. Alternatively,
press F4 on the field Move only data belonging to this LOGICAL VOLUME?

and select a logical volume from the displayed list.

7. Confirm that there are no physical partitions allocated on hdiskð by excuting
the command:

à ð
lspv -M hdiskð

hdiskð:1-287

á ñ

As expected all 287 physical partitions are now free on hdiskð.

8. Confirm that seven physical partitions now exist on hdisk3 using the command:

à ð
lspv -M hdisk3

hdisk3:1-81

hdisk3:82 availlv:1:2

hdisk3:83 availlv:2:2

hdisk3:84 availlv:3:2

hdisk3:85 availlv:4:2

hdisk3:86 availlv:5:2

hdisk3:87 availlv:6:2

hdisk3:88 loglvðð:1:2

hdisk3:89-287

á ñ

9. Press Ctrl-C to stop the shell script migpvtst from running.

320 AIX Storage Management

Note that the shell script migpvtst still continued to list the files in the directory
/availjfs both during and after the migration of physical volume hdiskð. The
above steps show us that a migration of the contents of one physical volume to
another can be easily performed, and furthermore, without denying users access to
data residing on the source physical volume.

8.8.2 How to Use the rvgrecover Shell Script
There are many references that you need to need to help you resolve problems
quickly. These include the article Recovering from Disk Drive Problems in AIX
Version 4.1 System Management Guide: Operating System and Devices, and also
the article Recovering Volume Groups in the AIX Version 4.1 Problem Solving
Guide and Reference. This latter article includes the following script called
rvgrecover:

à ð
PV=/dev/ipldevice

VG=rootvg

cp /etc/objrepos/CuAt /etc/objrepos/CuAt.$$

cp /etc/objrepos/CuDep /etc/objrepos/CuDep.$$

cp /etc/objrepos/CuDv /etc/objrepos/CuDv.$$

cp /etc/objrepos/CuDvDr /etc/objrepos/CuDvDr.$$

lqueryvg -Lp $PV | awk '{ print $2 }' | while read LVname; do

odmdelete -q "name = $LVname" -o CuAt

odmdelete -q "name = $LVname" -o CuDv

odmdelete -q "value3 = $LVname" -o CuDvDr

 done

odmdelete -q "name = $VG" -o CuAt

odmdelete -q "parent = $VG" -o CuDv

odmdelete -q "name = $VG" -o CuDv

odmdelete -q "name = $VG" -o CuDep

odmdelete -q "dependency = $VG" -o CuDep

odmdelete -q "value1 = 1ð" -o CuDvDr

odmdelete -q "value3 = $VG" -o CuDvDr

importvg -y $VG $PV # ignore lvaryoffvg errors

 varyonvg $VG

á ñ

To test this script, note that we start with a system whose ODM is fine as indicated
by:

à ð
lsdev -Cc disk

hdiskð Available ðð-ð8-ðð-ð,ð 67ð MB SCSI Disk Drive

hdisk1 Available ðð-ð8-ðð-1,ð 355 MB SCSI Disk Drive

hdisk2 Available ðð-ð8-ðð-2,ð 355 MB SCSI Disk Drive

lsvg rootvg

VOLUME GROUP: rootvg VG IDENTIFIER: ððððð5ð83df45ð81

VG STATE: active PP SIZE: 4 megabyte(s)

VG PERMISSION: read/write TOTAL PPs: 243 (972 megabytes)

MAX LVs: 256 FREE PPs: 5 (2ð megabytes)

LVs: 16 USED PPs: 238 (952 megabytes)

OPEN LVs: 11 QUORUM: 2

TOTAL PVs: 2 VG DESCRIPTORS: 3

STALE PVs: ð STALE PPs ð

ACTIVE PVs: 2 AUTO ON: yes

á ñ

To simulate a corrupt ODM, we can execute the following commands:

 Chapter 8. Practical Examples 321

Warning - DO NOT DO THIS

You must use a test machine to do this process, since if you have any
problems, you may have to reinstall.

à ð
odmdelete -o CuAt -q'name=rootvg'

ð518-3ð7 odmdelete: 3 objects deleted.

lsvg rootvg

ð516-31ð lsvg: Unable to find attribute rootvg in the Device

Configuration Database. Execute synclvodm to attempt to

correct the database.

#

odmdelete -o CuAt -q'name=hd3'

ð518-3ð7 odmdelete: 4 objects deleted.

odmdelete -o CuAt -q'name=hd5'

ð518-3ð7 odmdelete: 5 objects deleted.

lslv hd3

LOGICAL VOLUME: hd3 VOLUME GROUP: rootvg

LV IDENTIFIER: PERMISSION: ?

VG STATE: inactive LV STATE: ?

TYPE: jfs WRITE VERIFY: ?

MAX LPs: ? PP SIZE: ?

COPIES: 1 SCHED POLICY: ?

LPs: ? PPs: ?

STALE PPs: ? BB POLICY: ?

INTER-POLICY: minimum RELOCATABLE: yes

INTRA-POLICY: middle UPPER BOUND: 32

MOUNT POINT: /tmp LABEL: None

MIRROR WRITE CONSISTENCY: ?

EACH LP COPY ON A SEPARATE PV ?: yes

á ñ

Now we can execute the rvgrecover shell script. During the execution, you may
see messages on your screen like:

à ð
ð518-3ð7 odmdelete: 1 objects deleted.

ð518-3ð7 odmdelete: ð objects deleted.

ð516-51ð updatevg: Physical volume not found for physical volume

 identifier ððððð997cð2ð352d.

ð516-548 synclvodm: Partially successful with updating volume

 group rootvg.

ð516-782 importvg: Partially successful importing of /dev/ipldevice.

á ñ

We can then check that whether the rootvg has been recovered by executing:

322 AIX Storage Management

à ð
lsvg rootvg

VOLUME GROUP: rootvg VG IDENTIFIER: ððððð5ð83df45ð81

VG STATE: active PP SIZE: 4 megabyte(s)

VG PERMISSION: read/write TOTAL PPs: 243 (972 megabytes)

MAX LVs: 256 FREE PPs: 5 (2ð megabytes)

LVs: 16 USED PPs: 238 (952 megabytes)

OPEN LVs: 11 QUORUM: 2

TOTAL PVs: 2 VG DESCRIPTORS: 3

STALE PVs: ð STALE PPs ð

ACTIVE PVs: 2 AUTO ON: yes

lslv hd3

ð516-3ð4 lslv: Unable to find device id ððððð997cð2ð352d in the Device

 Configuration Database.

LOGICAL VOLUME: hd3 VOLUME GROUP: rootvg

LV IDENTIFIER: ððððð5ð83df45ð81.9 PERMISSION: read/write

VG STATE: active/complete LV STATE: opened/syncd

TYPE: jfs WRITE VERIFY: off

MAX LPs: 128 PP SIZE: 4 megabyte(s)

COPIES: 1 SCHED POLICY: parallel

LPs: 82 PPs: 82

STALE PPs: ð BB POLICY: relocatable

INTER-POLICY: minimum RELOCATABLE: yes

INTRA-POLICY: center UPPER BOUND: 32

MOUNT POINT: /tmp LABEL: /tmp

MIRROR WRITE CONSISTENCY: on

EACH LP COPY ON A SEPARATE PV ?: yes

á ñ

It seems that there is still an ODM problem as indicated by the ð516-3ð4 error
message. After the initial invocation of the rvgrecover script, only some objects in
the ODM database (CuAt) were recovered. The physical volume information for
hdisk0 has not immediately been recovered by this script. When we reboot the
RISC System/6000, we find that the PVid for hdisk0 is recovered from the VGDA
on one of the rootvg disks. However, as can be seen in the following, hdisk0 is still
not included as part of the rootvg volume group, since its status is none:

à ð
lspv

hdiskð ððððð997cð2ð352d none

hdisk1 ððððð997cð1fd413 rootvg

hdisk2 ðððð1ð732623885a 325vg

á ñ

However, we can repeat the execution of the rvgrecover script after this reboot,
and then we find that the ODM information for physical volume hdisk0 is updated
correctly. This can be seen from:

à ð
lspv

hdiskð ððððð997cð2ð352d rootvg

hdisk1 ððððð997cð1fd413 rootvg

hdisk2 ðððð1ð732623885a 325vg

á ñ

 Chapter 8. Practical Examples 323

8.8.3 How to Use the dsksync Shell Script
This shell script will synchronize your disks on a AIX Version 3 system so they will
be named in the correct order. The order may differ from that expected from the
configuration rules as physical volumes and adapters are added and removed over
a period of time to your system. For example: hdisk0, hdisk2, hdisk3 instead of
hdisk0, hdisk1, hdisk2. The order of the disk names generally does not cause
errors, but it may cause confusion for the user. Run the following dsksync script to
alleviate such confusion. The script will rename the hard disks.

You may need to use a shell script similar to that given in in 8.8.2, “How to Use the
rvgrecover Shell Script” on page 321 after you run this script. Make sure the key is
in the Normal position before running this script.

à ð
lsdev -Cc disk | awk '{ print $1 }' | while read HDname; do

odmdelete -q "name = $HDname" -o CuAt

odmdelete -q "value = $HDname" -o CuAt

odmdelete -q "name = $HDname" -o CuDep

odmdelete -q "name = $HDname" -o CuDv

odmdelete -q "value3 = $HDname" -o CuDvDr

odmdelete -q "name = $HDname" -o CuVPD

 done

rm -f /dev/hdisk\

rm -f /dev/rhdisk\

 savebase

á ñ

When the shell script completes successfully, run the shutdown -Fr command to
shutdown and reboot AIX Version 3.

324 AIX Storage Management

Appendix A. Overview of Hardware Components

This appendix contains highlights of hardware storage components available on the
RS/6000.

A.1 Storage Product Interface Adapters
This section looks at the hardware adapters available to connect various hardware
storage components to the RS/6000 system units.

 A.1.1 SCSI Adapters
The following are examples of SCSI adapters that are available to connect SCSI
devices to the RS/6000.

A.1.1.1 IBM SCSI High Performance I/O Controller
This Micro Channel adapter occupies one slot in the RS/6000 and provides:

� One SCSI internal and/or external bus interface

� 4MB/sec maximum synchronous data transfer

� 2MB/sec maximum asynchronous data transfer

� One byte wide single-ended implementation

� Maximum bus length of six meters

This adapter is supported in the following systems:

 � #2828

– RS/6000 Models 320, 32H, 32E

 � #2829

– RS/6000 500 series, all models

 � #2835

– RS/6000 200 series, all models except 250, 25S, 25W, 25T

– RS/6000 300 series, all models

– RS/6000 500 series, all models

– RS/6000 900 and R series, all models

A.1.1.2 IBM SCSI-2 High Performance I/O Controller
This Micro Channel adapter occupies one slot in the RS/6000 and provides:

� One SCSI-2 internal and/or external interface

� 10MB/sec maximum synchronous data transfer

� 2.5MB/sec maximum asynchronous data transfer

� One byte wide single-ended implementation

� Maximum bus length of three to six meters, depending upon configuration

� Command Tag Queueing

 Copyright IBM Corp. 1994 325

This adapter is supported in the following systems:

 � #2410

– RS/6000 200 series, all models

– RS/6000 Models 41T, 41W

– RS/6000 Model C10

– RS/6000 300 series, all models

– RS/6000 500 series, all models except 520, 530, 540

– RS/6000 900 and R series, all models except 930

 � #2831

– RS/6000 500 series, all models except 520, 530, 540

A.1.1.3 IBM SCSI-2 Differential High Performance External I/O
Controller
This Micro Channel adapter occupies one slot in the RS/6000 and provides:

� One SCSI-2 internal and/or external bus interface

� 10MB/sec maximum synchronous data transfer

� 2.5MB/sec maximum asynchronous data transfer

� One byte wide differential interface

� Maximum bus length of 19 meters

� Command Tag Queueing

This adapter is supported in the following systems:

 � #2420

– RS/6000 200 series, all models except 250, 25S, 25W, 25T

– RS/6000 models 41T, 41W

– RS/6000 model C10

– RS/6000 model 3AT, 3BT

– RS/6000 300 series, all models except 320, 32H, 32E

– RS/6000 500 series, all models except 520, 530, 540

– RS/6000 900 and R series, all models except 930

A.1.1.4 IBM SCSI-2 Fast/Wide Adapter/A
This Micro Channel adapter occupies one slot in the RS/6000 and provides:

� Two independent SCSI-2 bus interfaces, one internal, one external

� 20MB/sec maximum synchronous transfer rate

� 3.6MB/sec maximum asynchronous transfer rate

� Two byte wide single-ended implementation

� Maximum bus length of three to six meters, depending upon bus configuration

� Command Tag Queueing

326 AIX Storage Management

� Up to 30 total SCSI device addresses, 15 internal, and 15 external. This
capability is currently limited by AIX to 14 total addresses, 7 internal, and 7
external

This adapter is supported in the following systems:

 � #2415

– RS/6000 models 250, 25S, 25W, 25T

– RS/6000 models 41T, 41W

– RS/6000 model C10

– RS/6000 300 series, all models except 320

– RS/6000 500 series, all models except 520, 530, 540

– RS/6000 900 and R series, all models except 930

A.1.1.5 IBM SCSI-2 Differential Fast/Wide Adapter/A
This Micro Channel adapter occupies one slot in the RS/6000 and provides:

� Two independent SCSI-2 bus interfaces, one internal, one external

� 20MB/sec maximum synchronous data transfer

� 3.6MB/sec maximum asynchronous data transfer

� Maximum bus length of three to six meters, depending on internal bus
configuration

� Maximum bus length of 25 meters, depending on external bus configuration

� Command Tag Queueing

� Two byte wide single-ended implementation, internal bus

� Two byte wide differential implementation, external bus

� Up to 30 total SCSI device addresses, 15 internal, and 15 external. This
capability is currently limited by AIX to a total of 14 addresses, 7 internal, and 7
external

This adapter is supported in the following systems:

 � #2416

– RS/6000 models 250, 25S, 25W, 25T

– RS/6000 models 41T, 41W

– RS.6000 model C10

– RS/6000 300 series, all models except 320

– RS/6000 500 series, all models except 520, 530, 540

– RS/6000 900 and R series, all models except 930

A.1.1.6 Integrated IBM SCSI High-Performance I/O Controller
This integrated controller provides the following capabilities:

� One SCSI internal and/or external bus interface

� 4MB/sec maximum synchronous data transfer

� 2MB/sec maximum asynchronous data transfer

 Appendix A. Overview of Hardware Components 327

� One byte wide single-ended implementation

� Maximum bus length of six meters

The controller is integrated into the following models:

� RS/6000 models 340, 34H, 350, 355, 360, 365, 370, 37T, 375

� RS/6000 500 series, 570 and above

� RS/6000 900 and R series 970 and above, R10, R20

A.1.1.7 Integrated SCSI Controller
This integrated controller provides:

� One SCSI internal and/or external bus interface

� 5MB/sec maximum synchronous data transfer

� 5MB/sec maximum asynchronous data transfer

� One byte wide single-ended implementation

� Maximum bus length of six meters

The controller is integrated into the following models:

� RS/6000 model M20

� RS/6000 200 series, all models except 250, 25S, 25T, 25W

A.1.1.8 Integrated SCSI-2 Controller
This integrated controller provides:

� One SCSI-2 internal and/or external bus interface

� 10MB/sec maximum synchronous data transfer

� 5MB/sec maximum asynchronous data transfer

� One byte wide single-ended implementation

� Maximum bus length for models 250, 25S, 25T, 25W:

– Three meters at SCSI-2 data rates (5 - 10MB/sec)

– Six meters at SCSI data rates (<5MB/sec)

� Maximum bus length for models 41T, 41W, C10

– Bus length limited to 2.3 meters external to the system

A.1.1.9 Integrated IBM SCSI-2 Fast/Wide Adapter/A
This adapter provides the following capabilities:

� Two independent SCSI-2 bus interfaces, one internal, one external

� 20MB/sec maximum synchronous data transfer rate

� 3.6MB/sec maximum asynchronous data transfer rate

� Maximum bus length of three to six meters, depending upon bus configuration

� Command Tag Queueing

� Two byte wide single-ended implementation. Up to 30 total SCSI device
addresses, 15 internal, and 15 external. This capability is currently limited by
AIX to a total of 14 addresses, 7 internal, and 7 external

328 AIX Storage Management

This adapter is integrated into the following models:

� RS/6000 300 series, models 380, 390, 3AT, 3BT

 A.1.2 Serial Adapters
The following are examples of serial adapters that can be used to attach serial
devices to the RS/6000.

A.1.2.1 High Performance Disk Drive Subsystem Adapter
This Micro Channel adapter occupies one slot on the RS/6000 and provides:

� Support for up to four 9333 subsystems

� Support for up to 16 serial disk drives per adapter

� 8MB/sec full duplex operation with packet multiplexing allowing concurrent
communication with all attached devices

� Maximum cable length of 10 meters

The adapter is supported in the following systems:

 � #6212

– RS/6000 200 series, all models

– RS/6000 model C10

– RS/6000 300 series, all models

– RS/6000 500 series, all models

– RS/6000 900 and R series, all models

 A.1.3 HiPPI Adapters
The following adapter can be used to attache HiPPI compatible devices to the
RS/6000.

 A.1.3.1 HiPPI Adapter
This Micro Channel adapter occupies 3 adjacent slots in the RS/6000, though due
to power constraints, must be considered to occupy 5 slots. It provides:

� Peak rate simplex/duplex data transfer up to 800Mb/sec in each direction

� Maximum cable length of 25 meters (extendable via vendor switches and fibre
optic extenders)

� Connection to the 9570 Disk Array Subsystem

The adapter is supported in the following systems:

 � #2735

– RS/6000 500 series, models 570, 580, 58H, 590, 59H

– RS/6000 900 and R series, models 970, 97B, 980, 98B, 990, R24

 Appendix A. Overview of Hardware Components 329

 A.1.4 ESCON Adapters
The following adapter can be used to attach ESCON* compatible devices to the
RS/6000.

A.1.4.1 System/390 ESCON Channel Emulator
This Micro Channel adapter requires 2 slots on the RS/6000 and provides:

� 17MB/sec data transfer rate

� Support for attachment to all models of the 3490 and 3490E tape subsystems

� Support for attachment to the 3494 and 3495 tape library dataservers

This adapter is supported by the following systems:

 � #2754

– RS/6000 models 340, 34H, 350, 360, 36T, 370, 37T

– RS/6000 models 3AT, 3BT

– RS/6000 500 series, all models

– RS/6000 900 and R series, all models

A.1.5 Channel Emulation Adapters
The following adapter can be used to attach channel compatible devices to the
RS/6000.

A.1.5.1 System/370 Channel Emulator/A
This Micro Channel adapter requires one slot in an RS/6000 and provides:

� 4.5MB/sec data transfer rate

� Support for up to 4 control units per block multiplexer channel

� Maximum cable length of 61 meters

� Support for all models of the 3480, 3490 and 3490E tape subsystems

� Support for the 3495 tape library dataserver

The adapter is supported in the following systems:

 � #2759

– RS/6000 300 series, all models

– RS/6000 models 3AT, 3BT

– RS/6000 500 series, all models

– RS/6000 900 and R series, all models

A.2 Disk Storage Products
This section looks at the disk storage products that are available for attachment to
the RS/6000.

330 AIX Storage Management

 A.2.1 Disk Drives
The following drive units can be installed.

 A.2.1.1 SCSI Drives
3.5" Drives: The following drives are available. They are SCSI-2 single-ended
unless otherwise specified.

� #2490 - 200MB, supported on 200, 300 series

� #2560 - 400MB (SCSI), supported on 200, 300 series

� #2390 - 540MB, supported on 200, 300 series

� #2555 - 1.0GB, supported on 200, 300, 500, 900 series

� #2565 - 1.0GB (differential), supported on 9334

� #2580 - 2.0GB, supported on 200, 300, 500, 900 series

� #2585 - 2.0GB (differential), supported on 9334

5.25" Drives: The following drives are available:

� #2570 - 1.37GB (SCSI), supported on 500 series and 9334

� #2590 - 2.4GB (SCSI-2), supported on 500 series and 9334

 A.2.1.2 Serial Drives
The following drives are available:

� #3100 - 857MB (5.25"), supported on 9333

� #3110 - 1.07GB (5.25"), supported on 9333

� #3120 - 2.0GB (3.5"), supported on 9333

 A.2.2 Disk Subsystems
The following disk subsystems can be attached to the RS/6000.

A.2.2.1 IBM 7203 and 7204 External Disk Drives
The 7203 provides an external disk drive supporting a removable disk pack of
either 355MB or 1.0GB. This is useful for environments where security is an issue,
as the disk pack can be removed and stored in a secure place. Disk packs can
also be moved between machines, allowing easy sharing of information. The 7203
supports a standard SCSI interface, and is attachable to all systems.

The 7204 is an external disk unit supporting the following capacities:

� Model 320 - 320MB, SCSI-2 interface, supported on 200, 300, 500, 900 series

� Model 001 - 1.0GB, SCSI-2 interface, supported on 200, 300, 500, 900 series

� Model 010 - 1.0GB, SCSI-2 interface, supported on 200, 300, 500, 900 series,
this unit has faster access times

� Model 215 - 2.0GB, SCSI-2 differential interface, supported on 300, 500, 900
series

 Appendix A. Overview of Hardware Components 331

A.2.2.2 IBM 9334 SCSI Expansion Unit
The 9334 SCSI Expansion Unit provides support for up to four SCSI disk drives per
unit. There are four models:

� Model 010 (SCSI-2), rack mounted, supported by the 900 series

� Model 011 (SCSI-2 differential), rack mounted, supported by the 900 series

� Model 500 (SCSI-2), desk side, supported by the 200, 300, 500 series

� Model 501 (SCSI-2 differential), desk side, supported by the 300, 500 series

A.2.2.3 IBM 9333 High Performance Disk Drive Subsystem
The 9333 High Performance Disk Drive Subsystem attaches to a port on the High
Performance Disk Drive Subsystem adapter, and supports up to four serial disks.
The 9333 is designed to provide the fastest response time when an application
makes large numbers of requests for short blocks of data.

The 9333 also supports multiple paths from its controller to the processor, allowing
a 9333 to attach simultaneously to up to eight hosts processors. This is useful for
high availability environments or data sharing. Independent electrical paths are
provided to each host, so bandwidth is not shared, nor will electrical failure in one
path affect the others.

There are four models of the 9333:

� Model 010 - rack mounted, supported by the 900 series (4.3GB max)

� Model 011 - rack mounted, supported by the 900 series (8.0GB max)

� Model 500 - desk side, supported by 34H, 360, 370, and 500 series (4.3 GB
max)

� Model 501 - desk side, supported by 34H, 360, 370, and 500 series (8.0 GB
max)

A.2.2.4 IBM 7134 High Density SCSI Disk Subsystem
The 7134 High Density SCSI Disk Subsystem can hold 16 3.5" 2.0GB SCSI disk
drives. These drives are split into two banks of eight drives, each on a separate
internal (to the 7134) SCSI adapter. The 7134 itself requires a SCSI-2 differential
fast/wide adapter to attach to the system. The subsystem can be connected to two
hosts for availability reasons, and in this case, only six drives are supported in each
bank.

There is one model of the 7134:

� Model 010 - rack mounted, supported by the 300, 500, 900, and R series

A.2.2.5 IBM 7135 RAIDiant Array
The 7135 RAIDiant Array provides high data availability and/or performance using
RAID technology (RAID is explained in 2.2.2.2, “Selecting the Correct Disk Storage
Devices” on page 27); RAID levels 0, 1, 3, and 5 are supported. Essentially any
combination of RAID levels are concurrently supported on the 7135, with the
Logical Unit, or LUN of disks supporting each defined RAID level appearing as a
single SCSI disk drive to the operating system.

The 7135 is connected to the host system via either a SCSI-2 differential adapter,
or a SCSI-2 fast/wide differential adapter. The disks are connected internally to five

332 AIX Storage Management

SCSI-2 buses, giving a maximum number of 30 disks; either 2.0GB, or 1.3GB 3.5"
disks are supported.

The 7135 has an internal controller that manages the RAID functions, and a second
controller may be added operating in either standby mode (taking over in the event
of failure of the first), or in active mode (providing enhanced performance as well as
availability). In addition, redundant power supplies and cooling are standard, and
maintenance is supported concurrently on any failing hardware.

There are two models of the 7135:

� Model 010 (system rack), up to 12 disks, supported by 300, 500, 900, and R
series

� Model 110 (desk side), up to 30 disks, supported by 300, 500, 900, and R
series.

A.2.2.6 IBM 3514 High Availability Disk Array
The 3514 Disk Array provides a lower cost solution for those environments not
requiring the full range of RAID support. The 3514 allows a maximum of eight disk
drives, which can be either 1.0GB or 2.0GB (not mixed within the same unit). RAID
levels 0 and 5 are supported, configurable from the front panel of the unit. All drives
within the 3514 are used in the configured RAID level, and appear to the operating
system as a single SCSI disk drive (one drive can be designated at a hot spare, to
be used automatically in the event of failure of one of the other drives).

The 3514 is connected to the host system via a SCSI-2 fast/wide differential
adapter, or a SCSI-2 differential adapter; internally, the disks are connected to the
array controller via four SCSI-2 buses.

A redundant power supply is provided, but not cooling fans, or controller.

There are four models of the 3514:

� Model 212 (desk side), 1.0GB disks, supported by 250, 300 series, and 500
series

� Model 213 (desk side), 2.0GB disks, supported by 250, 300 series, and 500
series

� Model 312 (rack mount), 1.0GB disks, supported by 250, 300 series, and 500
series

� Model 313 (rack mount), 2.0GB disks, supported by 250, 300 series, and 500
series

A.2.2.7 IBM 9570 Disk Array Subsystem
The 9570 Disk Array is designed to support applications requiring very high
performance access to information, and/or enhanced availability. The 9570 R5
supports RAID levels 1 and 5 concurrently within a system in separately defined
partitions. The internal disks are 2.0GB SCSI disks supporting IPI-2 protocols, and
are supported in configurations ranging from 12.9GB to 232.4GB of data.

The 9570 is connected to the host system via the HiPPI adapter, and can support a
maximum sustained data transfer rate of over 60MB/sec.

 Appendix A. Overview of Hardware Components 333

Fault tolerance is provided in the form of redundant power supplies and cooling.
The subsystem also provides its own console for error detection, collection and
monitoring. Automatic log analysis and real time fault isolation can be performed.

The 9570 is rack based and there are many models depending upon the exact
configuration required. The first rack in a subsystem will always contain the array
controller, one or two HiPPI ports, and up to 10 drawers of disks (each drawer can
have up to four disks). Three additional racks may be daisy chained to the first
rack, also containing a maximum of 10 drawers. The model numbers are
constructed as follows. The first digit may be a 0, 1 or 2; 0 indicates an expansion
rack, 1 or 2 indicates a controller rack, the number determining how many HiPPI
ports the rack contains. The last two digits will be either 20 (five drawers in the
rack), or 40 (10 drawers in the rack). So, for example, a model 140 would be a
controller rack with one HiPPI port and 10 drawers of disk.

A.3 Tape Storage Products
The following section looks at the tape storage products that are available for
attachment to the RS/6000.

 A.3.1 Tape Devices
The following tape devices are available.

 A.3.1.1 IBM 7206
The 7206 is a standalone 4mm helical scan technology tape device (helical scan is
explained in 2.2.3, “Tape Storage” on page 34). The 7206 attaches to the system
via a SCSI, or SCSI-2 interface, depending upon the model. A media recognition
feature is included that ensures that only data grade tape cartridges can be used.
The 7206 support data compression, attach to all model of the RS/6000, and can
be mounted inside the 500 and 900 series.

There are two models:

 � Model 001

The model 001 offers 2.0GB native cartridge capacity (up to 4GB when using
compression). The data transfer rate is 183 KB/sec (up to 366 KB/sec when
using compression). This model attaches via a SCSI adapter.

 � Model 005

The model 005 offers 4.0GB native cartridge capacity (up to 8GB when using
compression). The data transfer rate is 400 KB/sec (up to 800 KB/sec when
using compression). This model attaches via a SCSI-2 adapter.

 A.3.1.2 IBM 7207
The 7207 is a standalone 0.25" longitudinal technology tape device (longitudinal
technology is explained in 2.2.3, “Tape Storage” on page 34). All models attach to
the system via a SCSI adapter, and none support compression. The 7207 attaches
to all models of the RS/6000 and can be mounted inside.

There are three models:

 � Model 001

334 AIX Storage Management

The model 001 provides a maximum data transfer rate of 90KB/sec, and a
maximum storage capacity of 150MB.

 � Model 011

The model 011 provides a maximum data transfer rate of 200KB/sec, and a
maximum storage capacity of 525MB.

 � Model 012

The model 012 provides a maximum data transfer rate of 300KB/sec, and a
maximum storage capacity of 1.2GB.

 A.3.1.3 IBM 7208
The 7208 is a standalone 8mm helical scan tape device (helical scan technology is
explained in 2.2.3, “Tape Storage” on page 34). The 7208 attaches to the system
via a single-ended SCSI-2 adapter. Data compression is provided using the IBM
IDRC (Improved Data Recording Capability) algorithm.

There is one model currently available for attachment to the RS/6000. The model
011 supports a sustained data transfer rate of 500KB/sec, and cartridge capacity of
5.0GB. With compression, data rates and capacities of up to 1MB/sec and 10GB
respectively are achievable. The model 011 is supported on all models and may be
mounted internally in the 500 and 900 series.

 A.3.1.4 IBM 9348
The 9348 is a standalone 0.5" reel, longitudinal technology tape device (longitudinal
technology is discussed in 2.2.3, “Tape Storage” on page 34). Tape recording
densities of 1600 and 6250 bits per inch are supported with a data rate of
200KB/sec at 1600bpi, and a maximum data rate of 781 KB/sec at 6250bpi. The
unit autoloads and autothreads tape reels, and attaches via a single-ended SCSI
interface to the system unit. Reel data capacities are 40MB at 1600bpi, and 160MB
at 6250bpi. There is only one model attachable to the RS/6000, the model 012,
though the unit can be mounted in a rack.

 A.3.1.5 IBM 3490
The 3490 includes a family of 0.5" longitudinal technology tape devices (longitudinal
technology is explained in 2.2.3, “Tape Storage” on page 34). There are two basic
components, the tape string controller and the tape devices themselves. The tape
devices can be either 18 track or 36 track, and contain either two or four physical
drives, each with a cartridge loader. The control units attach via SCSI-2 differential
fast/wide, S/370* channel, or ESCON, depending upon the model. All models use
the Improved Data Recording Capability (IDRC) algorithm to provide data
compression.

As has been mentioned, there are various models, summarized below:

 � Controllers

 – A0X Models

The A01 supports 1 x 18 track tape device (B02 or B04). The A02 supports
2 x 18 track tape devices (B02 or B04).

 – AX0 Models

The A10 supports 1 x 36 track tape device (B20 or B40). The A20 supports
2 x 36 track tape devices (B20 or B40).

 Appendix A. Overview of Hardware Components 335

All of these controllers attach to the host via ESCON or System/370 channel.

 � Devices

 – B0X Models

The B02 and B04 are both 18 track tape devices. Both support a data rate
of 3MB/sec and a tape capacity of 200MB. The B02 has two physical
drives, whil the B04 has four. All drives have cartridge loaders containing
up to six cartridges.

 – BX0 Models

The B20 and B40 are both 36 track tape devices. Both support a data rate
of 3MB/sec and a tape capacity of 400MB. The B20 has two physical
drives, whilst the B40 has four. All drives have cartridge loaders containing
up to six cartridges.

 � Combined Controller/Devices

 – CXX Models

The C11 and C22 both support a single 36 track tape device, though the
C11 supports a single physical drive, whilst the C22 supports two physical
drives. Both models support a data rate of 3MB/sec, and a cartridge
capacity of 400MB. Each physical device has a standard six cartridge ACL
(Automatic Cartridge Loader). Attachment to the host is via ESCON, S/370
Channel, or SCSI-2 differential fast/wide.

 – EXX Models

The E01 and E11 models both support maximum throughput of 3MB/sec,
and a maximum uncompressed capacity of 5.6GB (these units support a 7
cartridge ACL). With compression, this capacity increases to 16.8GB, and
the throughput to 6.5MB/sec. Both units attach to the host via a SCSI-2
differential or SCSI-2 differential fast/wide adapter. The E01 is the table top
version of the E11 rack mounted model.

 A.3.2 Tape Libraries
The following tape libraries are available.

 A.3.2.1 Exabyte EXB-10e
The Exabyte tape library (IBM model number 0840-001) combines an 8mm helical
scan technology device with a 10 cartridge autoloader. The cartridges fit into a
removable magazine that offers up to 50GB of storage without compression (up to
100GB can be achieved using the compression feature); the sustained data rate is
500MB/sec, and can reach 1.0MB/sec with compression. Attachment to the system
is via a SCSI-2 adapter.

The library has the following performance figures:

� Cartridge access time 24 seconds average

� Cartridge load/unload 25 seconds nominal

� Cartridge read/write 167 minutes

� File search time 136 seconds maximum

336 AIX Storage Management

This product is supported by ADSM, Legato, and Unitree storage management
products. These products are discussed briefly in Appendix B, “Higher Level
Storage Management Products” on page 341.

A.3.2.2 Lago LS/380L DataWheel
The Lago Systems LS/380L DataWheel** tape library (IBM model number
0562-001) combines two 8mm helical scan technology tape devices with a 54
cartridge removable carousel and loader. The unit offers up to 270GB of data
storage in uncompressed form (up to 540GB compressed). The DataWheel
attaches to the system unit via a SCSI-2 adapter for both tape drives and the
autoloader. An RS232 interface for control of the autoloader is also provided, if
required by the software using the device. Peak data transfer rate is 4MB/sec,
sustained transfer is 500KB/sec (uncompressed).

The Lago DataWheel has the following characteristics:

� Maximum cartridge search time 136 seconds

� Average file access time 0.75 seconds

 � Interchangeable carousels

� Two independent tape drives and loader mechanisms

This product is supported by ADSM, UniTree, and Legato storage management
products. These products are described briefly in Appendix B, “Higher Level
Storage Management Products” on page 341.

 A.3.2.3 IBM 3494-L10
The 3494 L10 is a single unit that combines a control unit with the automated
cartridge loaders, a library manager, the tape devices, and the storage cells for the
0.5" tapes. The cartridge capacity for the unit depends upon whether the optional
convenient I/O station for the library is installed or not. Without the I/O station, 240
cartridges can be stored, with it, 210. The I/O station allows cartridges to be easily
added and removed from the subsystem. Storage units can be added to the
subsystem, each of which provides capacity for 400 further cartridges. Up to seven
units can be added to the first, of which up to three may be further drive units, and
up to seven may be storage units. The drive units contain either C1A or C2A tape
devices, and 300 cartridges. The C1A has a single tape drive, and the C2A has
two. The maximum number of drives possible is therefore eight, with 2740
cartridges (one control unit, three drive units, and three storage units). The
maximum number of cartridges is 3040, with two tape drives (one control unit, and
seven storage units). This gives a maximum storage capacity of 2.4TB
uncompressed, 7.2TB compressed. The CXX tape devices support 36 track
bi-directional recording.

The C1A and C2A are analogous to the C11 and C22 devices mentioned in A.3.1,
“Tape Devices” on page 334. Attachment to the system is via ESCON, System/370
channel, or SCSI-2 differential fast/wide.

The 3494 is supported by the ADSM storage management product which is briefly
discussed in Appendix B, “Higher Level Storage Management Products” on
page 341.

 Appendix A. Overview of Hardware Components 337

 A.3.2.4 IBM 3495
The 3495 tape library dataserver utilizes the 3490 tape subsystem technology
inside an enhanced automated library, along with a library manager. The
subsystems attach to the host in the same way as discussed in the section on 3490
tape devices (see A.3.1, “Tape Devices” on page 334).

There are several models, each providing different levels of tape storage capacity:

 � Model L20

This model has an actual cartridge capacity of from 5660 to 6440. This gives
theoretical storage capacity of 13,584 to 15,456GB.

 � Model L30

This model has an actual cartridge capacity of from 8,480 to 10,590. This
gives theoretical storage capacity of 20,352 to 25,416GB.

 � Model L40

This model has an actual cartridge capacity of from 11,300 to 14,750. This
gives theoretical storage capacity of 27,120 to 35,400GB.

 � Model L50

This model has an actual cartridge capacity of from 14,120 to 18,910. This
gives theoretical storage capacity of 33,888 to 45,474GB.

 � Model M10

This model has an actual cartridge capacity of 100,000. This gives theoretical
storage capacity of 240,000GB (Wow).

A.4 Optical Storage Products
The following optical storage components are available for attachment to the
RS/6000.

 A.4.1 Optical Devices
The following optical devices are available.

 A.4.1.1 IBM 7209
The 7209 is a standalone external read/write optical disk drive. Optical technology
is discussed in 2.2.4, “Optical Storage” on page 39. The 7209 drive has a single
read/write head which means that only one side of the single optical cartridge
supported by the drive can be accessed at a time. In order to access the other
side, the cartridge must be physically removed and turned over by an operator. The
7209 uses a 5.25" double sided optical cartridge with a capacity of 595MB of data
per side at a sector size of 512 bytes. Attachment to the host is via a single-ended
SCSI adapter and the data transfer rate is 1424KB/sec.

 A.4.1.2 IBM 7210
The 7210 is a self powered external CD-ROM device supporting a single 600MB
optical read only disk. Optical technology is discussed in 2.2.4, “Optical Storage” on
page 39. Average access times to files on the CD-ROM range from 200ms to
380ms, with data transfer rates of from 150KB/sec to 330KB/sec depending upon
the model. Attachment to the system is via a single-ended SCSI adapter.

338 AIX Storage Management

There are two models:

 � Model 001

The model 001 has an average access time of 380ms, and supports a data
rate of 150KB/sec.

 � Model 002

The model 005 has an average access time of 200ms, and supports a data
rate of 330KB/sec.

Both models are available for mounting inside the system.

 A.4.2 Optical Libraries
The following optical libraries are available.

A.4.2.1 IBM 3995 Optical Library Dataserver
The 3995 combines multifunction optical drives (the number of drives depends
upon the model) with an automated picker and optical cartridge storage to provide
access to up to 376GB (unformatted) of optical storage. The 3995 models all
support both read/writeable as well as WORM optical technology on both single
sided and double sided 5.5" cartridges. Optical technology is discussed in 2.2.4,
“Optical Storage” on page 39. There are 4 types of cartridge:

� 1.3GB at 1024 bytes per sector (double sided)

� 650MB at 1024 bytes per sector (single sided)

� 1.19GB at 512 bytes per sector (double sided)

� 595MB at 512 bytes per sector (single sided)

There are three models directly attachable to the RS/6000:

 � Model A63

The 3995-A63 supports up to 16 optical cartridges giving a maximum total
unformatted capacity of 20GB of data. The unit contains a single multifunction
optical drive and attaches to the host system via either a SCSI-2 or SCSI-2
differential adapter.

 � Model 063

The 3995-063 supports up to 32 optical cartridges giving a maximum total
unformatted capacity of 40GB of data. The unit contains two multifunction
optical drives, and attaches to the host system via either a SCSI-2 or SCSI-2
differential adapter.

 � Model 163

The 3999 163 supports up to 144 optical cartridges giving a maximum total
unformatted capacity of 188GB of data. The unit contains four multifunction
optical drives and attaches to the host system via a SCSI-2 differential adapter.

Maximum data rates for the 3995 model optical drives are the same as for the IBM
7209 optical drive described in A.4.1.1, “IBM 7209” on page 338.

 Appendix A. Overview of Hardware Components 339

340 AIX Storage Management

Appendix B. Higher Level Storage Management Products

This appendix is intended to provide an overview of some of the higher level
storage management products available. The products will be compared in terms of
function and positioning.

The main areas in which higher level tools provide enhanced function are:

 1. Automation

The provision of mechanisms to define when information should be backed up,
archived or migrated, and what information should be selected. This allows the
defined operations to be scheduled as required without the need for operator
intervention.

 2. Backup/restore

The ability to create copies of a client system's vital data, so that in the event of
a failure, the client can be restored to the same state that it was at the time of
the last backup.

 3. Archive/retrieve

The ability to free up space at the client system by moving or archiving
infrequently accessed information from the client to the archive storage space
(usually at a server machine). If the information is required again, it can be
retrieved from the archive.

 4. Migration

The ability to structure the storage subsystems in such a way that elements of
the subsystem are used in the most efficient fashion. For example, frequently
accessed information, or information requiring high performance access should
be stored in fast storage (usually disk). Information that is less frequently
accessed should be moved to less expensive, lower performance, higher
capacity media such as optical; this should happen automatically if possible,
thereby freeing up space in the much in demand fast storage. If the second
level of storage (that used by the first movement, or migration) of information
becomes full, or for information that is accessed even more rarely, a third level
could be defined of even higher capacity, cheaper, slower media, such as tape.

Levels in the hierarchy should also be accessible for specific purposes; for
example, backups, or long term archives would be best stored in the tape level.

5. Disk space utilization

A mechanism by which disk space on a client can be utilized more efficiently.
This is usually implemented by using the client disk as a cache, and
maintaining the full information space at a server. When data is requested by
an application on the client, it can be transparently copied to the client cache -
clients see the cache to be as large as the information space at the server.

This can be used in conjunction with the capabilities mentioned in the previous
points. The server information space can be treated as a level in a storage
hierarchy, thereby increasing efficiency further. The space can also be backed
up more easily.

 6. Central management

 Copyright IBM Corp. 1994 341

The facility to manage the above capabilities from a central point, thereby
minimizing the effort, and maximizing the efficiency.

7. Ease of use

Provision of ergonomic interfaces to both the server and client functions. For
example, the ability to define backup and restore policies for every client
system in a network centrally, through a graphical user interface; from the client
point of view, being able to simply specify the required files for backup/restore
or archive/retrieve, again through a graphical user interface, and have the
requests automatically processed.

 8. Platform support

The range of operating systems and hardware platforms across which the
higher level application can operate.

The tools discussed below will be compared against the above points to enable a
reasonable comparison to be drawn.

Other points for consideration include:

 � Security

Consideration of access security from clients to the server, and from any
administrative components.

 � Performance

Consideration of the amount of time taken for backups or archive; usually
related to the performance of the physical devices supported, the network
protocols used, and whether concurrency is supported (multiple simultaneous
client access).

 � Device support

Relating to the range of devices supported by the product, and their
capabilities.

 � Scalability

What range of client support is available. Does the product support
environments ranging from small workgroups of common machines through to
large, complex networks of multiple system types?

 � API provision

Provision of an Application Programming Interface to allow other products to
make use of the services provided by the storage management tool. Allowing
applications such as databases for example to utilize storage managers to
automatically backup information.

B.1 ADSTAR Distributed Storage Manager
ADSM is a client/server based hierarchical storage manager that allows for centrally
managed and scheduled, automated, network based backup and archive function.
Both server and client components are supported across a wide range of platforms.
An administrator component provides for local or remote configuration and
management of the operation of ADSM via a command line or graphical user
interface.

 1. Automation

342 AIX Storage Management

ADSM provides a scheduling function that allows backups/restores and
archive/retrieves to be executed automatically by the server at the requested
times. This means that the client systems can be backed up overnight for
example, or at times when impact on user productivity is minimal.

 2. Backup/restore

Clients can have all of their vital data backed up across a network to the server
storage automatically on a regular basis. Users can also issue manual backup
requests for directory trees, directories, or even individual files if required. In the
event of loss of data, the backed up information can be restored (in the event
of complete loss for example) or requested directories or files can be
individually restored at user request.

ADSM also supports a large range of backup methods including full,
incremental and selective, as well as policy based.

 3. Archive/retrieve

In the same way as backups and restores are implemented, archival and
retrieval operations can be arranged. In the case of both backup and archive (if
authorized), users can select the storage pool to which their backup/archive is
directed.

 4. Migration

Storage at the server is organized into storage pools of similar device types
(disk, tape, and optical). These pools can be linked into a hierarchy if required,
and criteria set for movement (migration) of information down the hierarchy. For
example the top level of a hierarchy may be comprised of a disk pool, the
second layer optical, and the third tape. If the first pool approaches a preset
capacity limit, ADSM will automatically migrate information to the next pool
down to free up space. If a migrated file is requested, it is automatically copied
from its location in the hierarchy to the requesting client.

5. Disk space utilization

Client disk space utilization is not managed by ADSM at the current release,
although a future release will provide this function.

 6. Central management

All of the functions provided by the server and all of the data storage is
maintained centrally, and thus easily managed. An administrative component
provides the capability to monitor and configure ADSM, either locally at the
server, or remotely from any supported administration client machine in the
network.

7. Ease of use

ADSM provides command line and graphical user interfaces for both the
administrative and client components. This maximizes ease of use, as menus
present the available options, and icons depict the current configurations. The
learning curve is consequently shorter, and productivity higher. Availability of
the graphical user interface is dependant upon the platform; some platforms
only support the command line interface for example.

 8. Platform support

The server component is supported under AIX, OS/2*, OS/400*, MVS and VM.
ADSM for VSE is announced, and there is a statement of direction for
ADSM/HP and ADSM/SUN.

 Appendix B. Higher Level Storage Management Products 343

The client component is supported under DOS, Microsoft Windows, OS/2, AIX,
HP/UX**, SunOS**, DEC ULTRIX**, SCO 386 UNIX**, MAC, and Novell
Netware**.

The administrative component is supported on DOS, Microsoft Windows, OS/2,
AIX, HP/UX, SunOS, DEC ULTRIX, SCO 386 UNIX, TSO, and CMS.

B.2 AIX File Storage Facility/6000
FSF/6000 is a client/server based storage manager that provides automated disk
space management services to clients. Client disk space is managed by utilizing
administrator defined policies to remove files from the client disk to maintain free
space. The removed files are actually copied to the server and are transparently
returned when required.

 1. Automation

FSF maintains a designated area of the clients disk as cache. Information
created within this cache can be automatically maintained by FSF/6000. Data
can be migrated on the basis of size, time since last access, or it can be
pinned into the cache if it is regularly accessed. Information requested that has
been removed from the cache to free up space is automatically and
transparently copied back to the cache.

 2. Backup/restore

FSF does not provide this function.

 3. Archive/retrieve

FSF does not provide this function.

 4. Migration

FSF does not provide this function, although it can be configured to work with
ADSM, with the FSF server using an ADSM storage pool as its client file space
(location to maintain copies of client information). In this case, ADSM could
automatically migrate information from the filespace when it approached a
capacity threshold.

5. Disk space utilization

As outlined in the section on automation, FSF manages disk space on behalf of
clients. It does this by maintaining remote copies of any information created in
the managed area of the clients storage at the server, either using NFS, or
ADSM to do so (see 3.1.4.2, “Network File System” on page 61 for a brief
explanation of NFS). When space becomes critical in the cache, local copies of
the information are deleted using size or last access as selection criteria,
thereby maintaining free space. For performance reasons, very frequently
accessed files can be pinned locally (this prevents the file from being deleted,
although a copy is always kept at the server).

 6. Central management

Client data is usually maintained at the FSF server location, but could be
located on an NFS mounted directory from another machine. In the sense that
all configuration must be done at the server though, FSF is centrally
maintained, but only from the server.

7. Ease of use

344 AIX Storage Management

Configuration and management of FSF is performed via SMIT menus. Actual
usage should be transparent.

 8. Platform support

FSF/6000 is only supported under AIX.

B.3 Legato NetWorker for RISC System/6000
Legato Networker** is a client/server based product that provides automated
backup services in a networked environment. Networker client and server
components are supported across a range of platforms.

 1. Automation

Backup operations can be scheduled at the server to take place when required.

 2. Backup/restore

Legato Networker provides backup/restore services to clients in a networked
environment. Up to 12 different backup types may be scheduled:

 a. Full backup

All files at the client are backed up

b. Levels 1 through 9

All files that have changed since a previous full (level 0) backup or since a
previous lower level backup. For example, if a level 4 backup is scheduled
for Monday night, then only files that have changed since the last level 0, 1,
2, or 3 backup will be backed up.

 c. Incremental backup

All files that have changed since last backup, regardless of level, are
backed up.

d. Backup from client

This level allows a backup to be skipped at a given time; for example, if a
backup from client is scheduled for Saturday night, using this option will
prevent that backup from occurring.

 3. Archive/retrieve

Legato Networker does not provide this function.

 4. Migration

Legato Networker performs backups directly to tape or optical devices. The
concept of a hierarchy is not defined.

5. Disk space utilization

Legato Networker does not provide this function.

 6. Central management

A command line and graphical user interface based administrative component
is provided that allows Networker to be configured, managed, and monitored
from any client in the network.

7. Ease of use

 Appendix B. Higher Level Storage Management Products 345

Initial setup and configuration of Legato is manual, however once setup, the
graphical administrative component can be used to manage the product. There
is no requirement for client interaction, so no interface is provided to the client
components; the code for clients is accessed via NFS, or locally on disk, setup
is manual.

 8. Platform support

The server component is supported under AIX.

Client support is provided for AIX, Novell Netware, DOS, SunOS, Sony**
NEW-OS, HP/UX, DEC ULTRIX, RISC/os, and SGI IRIX.

B.4 UniTree for RISC System/6000
UniTree** is a client/server based hierarchical storage manager that provides
centrally managed, automated hierarchical storage management in a networked
environment.

 1. Automation

Similarly to FSF/6000, UniTree will automatically perform migration of client
data within the UniTree file system down the defined hierarchy of storage
devices, based on configurable criteria. When data is requested by a client,
UniTree can transparently retrieve the information from the lower level in the
hierarchy, and make it available to the requesting client.

 2. Backup/restore

UniTree does not provide backup/restore services for clients.

 3. Archive/retrieve

As with FSF/6000, UniTree provides remote access to a managed file system
for clients. The file system space is maintained through automatic archival of
files based upon configurable criteria (such as access frequency and size).
When data is required by a client, it is transparently recovered from its place in
the hierarchy.

 4. Migration

UniTree defines a hierarchy of storage devices, similar to ADSM, with faster,
more expensive media such as disk at the top, moving down to slower, larger
capacity, cheaper media at the bottom. Information is migrated down the
hierarchy as described in the previous two sections thus ensuring that the most
frequently accessed information is available on the fastest devices.

5. Disk space utilization

Disk space utilization is maximized at the server, as automatic archival through
migration ensures that there is always free space available. This does of
course depend upon there being enough free space lower down the hierarchy
for migration to succeed.

 6. Central management

The storage hierarchy is administered at the server, though all configuration
and management is via SMIT. Each client utilizes the services provided via
NFS (see 3.1.4.2, “Network File System” on page 61 for a brief description of
NFS), or FTP.

7. Ease of use

346 AIX Storage Management

Server management and administration is achieved via SMIT, and is therefore
performed on the server machine. Client access to the UniTree file systems is
via NFS or FTP, and should be transparent to the user. Likewise, migration
and archival/retrieval of information is performed automatically and should be
transparent.

 8. Platform support

The server is supported under AIX.

Client platforms supported with the AIX server include SUN, DEC, SGI, HP and
AT&T**.

 Appendix B. Higher Level Storage Management Products 347

348 AIX Storage Management

Appendix C. General Volume Group Recovery

This appendix contains examples of possible recovery techniques for various
potential failures. The examples are presented as is, with no guarantee, and should
be used only if the problem is fully understood.

Unlike the examples in Chapter 8, “Practical Examples” on page 185 that were
executed in an AIX Version 4 environment, the examples here are presented in an
AIX V3.2 environment. Hence, although the recovery principles are similar for AIX
Version 4 and AIX V3.2, some modifications of the following procedures may be
required.

C.1 Disk Power Supply Failure
Scenario: System has two volume groups, rootvg and vg00. Volume group vg00
has an external disk drive, hdisk4. The power supply fails on hdisk4, the disk media
itself is not harmed.

� Make hdisk4 unavailable

1. Remove PV from the VG:

à ð
chpv -vr hdisk4

á ñ

2. Remove the disk from the system configuration:

à ð
rmdev -l hdisk4

á ñ

3. Repair the power supply.

4. Add the disk back into the system configuration:

à ð
mkdev -l hdisk4

á ñ

5. Activate the PV in the VG:

à ð
chpv -v a hdisk4

á ñ

6. PV is still not active?

à ð
lsvg -p vgðð

vgðð:

PV_NAME PV STATE TOTAL PPs FREE PPs ...

hdisk2 active 75 6ð

hdisk3 active 75 55

hdisk4 missing 75 5ð

á ñ

7. Activate missing PV:

 Copyright IBM Corp. 1994 349

à ð
varyonvg vgðð

á ñ

8. Synchronize stale partitions on disk:

à ð
syncvg -p hdisk4

á ñ

C.2 General Disk Failure
Scenario: System has two volume groups, rootvg and vg00. A disk in vg00 fails and
must be replaced. The disk name is hdisk5. The LVs on hdisk5 are: /dev/lvpat,
/home/pat, /dev/lvcad, and /cad (mirror copy).

� Removing a failed PV

1. Remove the PV from the VG:

à ð
chpv -v r hdisk5

á ñ

2. Unmount all single-copy file systems on the disk:

à ð
umount /home/pat

á ñ

3. Remove all single-copy file systems on the disk:

à ð
rmfs /home/pat

á ñ

4. Remove physical partition copies from the disk:

à ð
rmlvcopy lvcad 1 hdisk5

á ñ

5. Remove the disk from the VG:

à ð
reducevg -df vgðð hdisk5

á ñ

6. Delete the disk from the system configuration:

à ð
rmdev -d -l hdisk5

á ñ

� Remove and replace hdisk5

1. Configure the new disk into the system:

à ð
cfgmgr (or an IPL)

á ñ

350 AIX Storage Management

2. Add the disk to the VG:

à ð
extendvg vgðð hdisk5

á ñ

3. Remake LVs and file systems:

à ð
mklv -t jfs -y lvpat vgðð 5 hdisk5

crfs -v jfs -d lvpat -m /home/pat

á ñ

4. Extend multiple-copy LVs onto disk:

à ð
mklvcopy lvcad 2 hdisk5

á ñ

5. Resynchronize copied physical partitions:

à ð
syncvg -p hdisk5

á ñ

� Restore data from backup for single-copy file systems

C.3 Recovery After a Disk Is Replaced -- 1
Scenario: System has two volume groups, rootvg and vg00. Volume group vg00
contains three drives, hdisk1, hdisk2 and hdisk3. hdisk3 failed and has been
replaced prior to any clean up. The LVs on hdisk3 are:

/dev/lvpat /home/pat

/dev/lvca /cad (mirror copy)

� VG information is in error

1. Run lsvg command to get VG status:

à ð
lsvg -p vgðð

PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIB.

 hdisk1 active 75 59 15..ð1..13..15..15

 hdisk2 active 84 65 17..ð6..ð8..17..17

ð516-3ð4 lsvg: Unable to find device id ðððð45af344545ef in the

Device Configuration Database

ðððð45af344545ef missing 95 4 ð3..ð1..ðð..ðð..ðð

á ñ

2. reducevg command produces errors:

à ð
reducevg vgðð hdisk3

ð516-ð22 ldeletepv: Illegal parameter or structure value.

ð516-884 reducevg: Unable to remove physical volume hdisk3.

á ñ

3. lspv does not show removed hdisk3:

 Appendix C. General Volume Group Recovery 351

à ð
lspv

hdiskð ðððð457a839d9efe rootvg

hdisk1 ðððð4224dce393ða vgðð

hdisk2 ðððð175ðð545ða7f vgðð

hdisk3 ððððð6ð1c3a717a4 none

á ñ

4. lqueryvg still lists hdisk3 as being part of vgðð:

à ð
lqueryvg -p hdisk1 -At

Max LVs: 256

PP Size: 22

Free PPs: 192

LV count: 6

PV count: 3

Total VGDAs: 3

Logical: ðððð175ðedð6a88b.1 pagingðð 1

 ðððð175ðedð6a88b.2 lvpat 1

ðððð175ðedð6a88b.3 loglvðð 1

 ðððð175ðedð6a88b.4 lvcad 1

Physical: ðððð175ðð545ða7f 1 ð

 ðððð4224dce393ða 1 ð

 ðððð45af244545ef 1 ð

á ñ

 � To recover

1. Remove all single-copy file systems on the disk:

à ð
rmfs /home/pat

á ñ

2. Remove LV mirror copies from the disk:

à ð
rmlvcopy lvcad 1

á ñ

3. Delete the PV from the VG in the VGDA:

à ð
ldeletepv -g ðððð175ðedð6a88b -p ðððð45af244545ef

á ñ

4. Delete the PV from the VG in the ODM:

à ð
odmdelete -q "value like 'ðððð45af244545ef\'" -o CuAt

á ñ

5. Save new ODM information to boot logical volume:

à ð
savebase

á ñ

352 AIX Storage Management

C.4 Recovery After a Disk Replaced -- 2
Scenario: System has two volume groups, rootvg and vg00. Volume group vg00
has three disk drives in it, hdisk1, hdisk2 and hdisk3. hdisk3 failed and has been
replaced prior to any clean up. Don't know what LVs were on hdisk3.

� VG information is erroneous

1. System has been rebooted.

2. lsvg command produces errors.

à ð
lsvg -p vgðð

PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIB.

hdisk1 active 75 59 15..ð1..13..15..15

hdisk2 active 84 65 17..ð6..ð8..17..17

ð516-3ð4 lsvg: Unable to find device id ðððð45af344545ef in the

Device Configuration Database

ðððð45af344545ef missing 95 4 ð3..ð3..ðð..ðð

á ñ

3. reducevg command produces errors:

à ð
reducevg vgðð hdisk3

ð516-ð22 ldeletepv: Illegal parameter or structure value.

ð516-884 reducevg: Unable to remove physical volume hdisk3.

á ñ

4. lspv does not show the removed hdisk3:

à ð
lspv

 hdiskð ðððð457a839d9efe rootvg

 hdisk1 ðððð4224dce393ða vgðð

 hdisk2 ðððð175ðð545ða7f vgðð

 hdisk3 ððððð6ð1c3a717a4 none

á ñ

5. lqueryvg still lists hdisk3 as being part of vg00:

à ð
lqueryvg -p hdisk1 -At

Max LVs: 256

PP Size: 22

Free PPs: 192

LV count: 6

PV count: 3

Total VGDAs: 3

Logical: ðððð175ðedð6a88b.1 pagingðð 1

 ðððð175ðedð6a88b.2 lvpat 1

ðððð175ðedð6a88b.3 loglvðð 1

 ðððð175ðedð6a88b.4 lvcad 1

Physical: ðððð175ðð545ða7f 1 ð

 ðððð4224dce393ða 1 ð

 ðððð45af244545ef 1 ð

á ñ

� Various LVM commands produce the following:

 Appendix C. General Volume Group Recovery 353

à ð
lsps -a

Page Space Physical Vol Vol Group Size %Used Active Auto

ð516-3ð4 : Unable to find device id ðððð45af244545ef in the Device

 Configuration Database.

hd6 hdiskð rootvg 64B 2 yes yes yes

lspv -l hdisk3

ð516-32ð : Physical volume ðððð45ab34dd34ab is not assigned to a

 volume group.

á ñ

� Try to remove via ldeletepv:

à ð
ldeletepv -g ðððð175ðedð6a88b -p ðððð45af244545ef

ð516-ð16 ldeletepv: Cannot delete physical volume with allocated

partitions. Use either migratepv to move the partitions or

reducevg with the -d option to delete the partitions.

á ñ

� Which LVs are on hdisk3?

1. The lspv command fails:

à ð
lspv -l hdisk3

ð516-32ð : Physical volume ððððð6ð1c3a717a4 is not assigned to a

 volume group.

á ñ

2. Use lquerypv command:

à ð
lquerypv -p ðððð45af244545ef -g ðððð175ðedð6a88b -dt | pg

 :

 :

PVMAP: ðððð45af244545ef:1 ð ODMTYPE ððððððððððððððð.ð ð

ðððððððððððððððð:ð ððððððððððððððð:ð

 :

 :

PVMAP: ðððð45af244545ef :21 ð ODMTYPE ðððð175ðedð6a88b.1 ð

ððððððððððððððð:ð ððððððððððððððð:ð

PVMAP: ðððð45af244545ef :22 ð ODMTYPE ðððð175ðedð6a88b.4 ð

ððððððððððððððð:ð ððððððððððððððð:ð

PVMAP: ðððð45af244545ef :23 ð ODMTYPE ðððð175ðedð6a88b.4 ð

ððððððððððððððð:ð ððððððððððððððð:ð

PVMAP: ðððð45af244545ef :24 ð ODMTYPE ðððð175ðedð6a88b.2 ð

ððððððððððððððð:ð ððððððððððððððð:ð

 :

 :

á ñ

� From lqueryvg and lquerypv determine which LVs were on hdisk4

– lvpat (part on hdisk4 part on hdisk3)

– lvcad (mirrored LV, only a copy on hdisk4)

– paging00 (paging space all on hdisk4)

� Remove the LVs from hdisk4:

354 AIX Storage Management

à ð
rmlvcopy lvcad 1

rmfs /home/pat

rmps pagingðð

ð517-ð62 rmps: Paging space pagingðð is active

ð517-ð61 rmps: Cannot remove paging space pagingðð

á ñ

� How to remove the paging space:

Edit /etc/swapspaces and remove the paging00 stanza:

à ð
pagingðð:

dev = /dev/pagingðð

á ñ

Reboot.

à ð
rmps pagingðð

rmlv: Logical volume pagingðð is removed

á ñ

� Remove the disk from the volume group:

à ð
ldeletepv -g ðððð175ðedð6a88b -p ðððð45af244545ef

ð516-ð1ð ldeletepv: Volume group must be varied on: use varyon

 command

á ñ

The volume group is varied on????

à ð
lchangepv -g ðððð175ðedð6a88b -p ðððð45af244545ef -r2

ldeletepv -g ðððð175ðedð6a88b -p ðððð45af244545ef

á ñ

� Remove information from ODM:

à ð
odmdelete -q "value like 'ðððð45af244545ef\'" -o CuAt

á ñ

� Rebuild LVM configuration:

à ð
extendvg vgðð hdisk3

mklvcopy lvcad 2 hdisk3

mklv -t jfs -y lvpat vgðð 5 hdisk3

crfs -v jfs -d lvpat -m /home/pat

mkps -s 1ð -n -a vgðð hdisk3

á ñ

� Re-sync mirrored copies:

à ð
syncvg -p hdisk3

á ñ

 Appendix C. General Volume Group Recovery 355

C.5 Disk Failure Recovery -- rootvg
Scenario: System has two disks in rootvg, hdisk0 and hdisk1. Most of the operating
system is on hdisk0. hdisk0 fails and there is data on hdisk1 that needs be
recovered. The logical volumes on hdisk1 are:

/dev/lvð /home/cad1

/dev/lvð1 /home/wordper

/dev/loglvðð log logical volume

� Accessing data in rootvg

A jfslog logical volume must be on hdisk1:

1. Boot from maintenance diskettes or tape. NEVER import disks from the
rootvg except in maintenance mode!

2. Select Start a limited function maintenance shell

3. Import the rootvg from an available disk:

à ð
importvg -y rootvg hdisk1

á ñ

4. Vary on the VG without a quorum:

à ð
varyonvg -f -n rootvg

á ñ

5. Check and clean all available file systems:

à ð
fsck -y -V jfs /dev/lvðð

fsck -y -V jfs /dev/lvðð

á ñ

6. Mount first file systems:

à ð
mount -o log=/dev/loglvðð /dev/lvðð /mnt

á ñ

7. Backup user data:

à ð
cd /mnt

for i in ./\ ./\/\ ./\/\/\

> do

> echo $i

> done | pax -wvf/dev/rmtð

á ñ

Note: This requires that you know the number of levels of subdirectories

8. Unmount first file system, then mount second:

à ð
umount /mnt

mount -o log=/dev/loglvðð /dev/lvð1 /mnt

á ñ

9. Backup user data:

356 AIX Storage Management

à ð
cd /mnt

for i in ./\ ./\/\ ./\/\/\

> do

> echo $i

> done | pax -wvf/dev/rmtð

á ñ

Note: This requires that you know the number of levels of subdirectories.

C.6 Disk Failure -- rootvg
Scenario: System has four disks in the rootvg. LVs hd1, hd2, hd3, hd4 hd6 and hd6
are on hdisk0. The LV hd9var is on hdisk1. Other user LVs are 1, on hdisk1,
hdisk2 and hdisk3. hdisk1 and hdisk2 fail, system now boots ot to 552 (cannot
varyon the rootvg due to lack of quorum).

� Boot from diskette, choose option 4, Start a limited function maintenance
shell :

à ð
getrootfs hdiskð

ð516-ð52 varyonvg: Volume group cannot be varied on without a

quorum. More physical volumes in the group must be active

Run diagnostics on inactive PVs.

ð516-78ð importvg: Unable to import volume group from hdiskð.

á ñ

� getrootfs does not do an importvg -f

� Change getrootfs -- From maintenance shell:

à ð
importvg -fy rootvg hdiskð

PV Status: hdiskð ððððð596ð941e8c2 PVACTIVE

 hdisk1 ðððð175ðð545ða7f NONAME

 hdisk2 ððððð33ðecbð948f NONAME

 hdisk4 ðððð188edbð944dd PVACTIVE

varyonvg: Volume group rootvg is varied on

ð516-51ð updatevg: Physical volume not found for physical volume

 identifier ðððð175ðð545ða7f.

ð516-51ð updatevg: Physical volume not found for physical volume

 identifier ððððð33ðecbð948f.

ð516-548 synclvodm: Partially successful with updating volume

 group rootvg.

ð516-782 importvg Partially successful importing of hdiskð and hdisk4.

varyonvg -fn rootvg

PV Status: hdiskð ððððð596ð941e8c2 PVACTIVE

 hdisk1 ðððð175ðð545ða7f NONAME

 hdisk2 ððððð33ðecbð948f NONAME

 hdisk4 ðððð188edbð944dd PVACTIVE

varyonvg: Volume group rootvg is varied on.

á ñ

� Now to change the getrootfs script from importvg -y rootvg $disk to
importvg -fy rootvg $disk.

1. Copy the required commands to the root file system:

 Appendix C. General Volume Group Recovery 357

à ð
fsck /dev/hd2

fsck /dev/hd4

mount /dev/hd4 /mnt

mount /dev/hd2 /mnt/usr

cd /mnt/usr/bin

cp sed /mnt/mysed

cp chmod /mnt/mychmod (Don't copy to /mnt/sed & /mnt/chmod)

sync; sync

á ñ

2. Reboot to maintenance mode:

à ð
fsck /dev/hd4

mount /dev/hd4 /mnt

cp /mnt/mysed /usr/sbin/sed

cp /mnt/mychmod /usr/sbin/chmod

á ñ

3. Change the getrootfs script:

à ð
cd /usr/sbin

cat getrootfs | sed "s/importvg -y rootvg/importvg -fy rootvg/" >myfs

chmod 777 myfs

umount /mnt

á ñ

4. Run new myfs script:

à ð
myfs hdiskð (whole bunch of messages)

mount

node mounted mounted over vfs date options

---- ------- ------------ --- ---- -------

 /dev/ramð / jfs Oct 14 rw

 /dev/hd4 / jfs Oct 14 rw...

 /dev/hd2 /usr jfs Oct 14 rw...

 /dev/hd3 /tmp jfs Oct 14 rw...

á ñ

� Make changes to allow normal boot:

1. In /etc/filesystems comment out the lines in the /var stanza type=bootfs

and mount = automatic. Comment character is \.

à ð
mkdir /var/tmp

TERM="whatever type terminal you are using"

export TERM

vi /etc/filesystems

á ñ

2. In /sbin/rc.boot change the following:

– Add a sleep 1 before line fsck -fp /var

– Comment out line fsck -fp /var

On 3.2.4 or later also comment out lines:

– /../etc/mount -f /var

– ["$?" -ne ð] && loopled ðx518

3. Run bosboot command:

358 AIX Storage Management

à ð
bosboot -a -d/dev/hdiskð

shutdown -F

á ñ

� Boot in normal mode

C.7 Recovering after Losing VGDA
Scenario: System had a volume group vg00. Volume group vg00 included hdisk2
and hdisk3. hdisk2 failed and VGDA is broken on hdisk3.

� Create new volume group on hdisk3:

à ð
mkvg -y newvg hdisk3

á ñ

� Create LVs on hdisk3 over previous LVs:

à ð
mklv -m /home/mapfile3.a -t jfs -y lvðð

mklv -m /home/mapfile3.b -t jfs -y lvð1

mklv -m /home/mapfile3.c -t jfs -y lvð2

mklv -t jfslog -y loglvðð newvg 1 hdisk3

logform /dev/loglvðð

á ñ

� But wait, where do I get the /home/mapfile3.* files?

– Save physical volume map information prior to daily backups:

à ð
for i in lspv | cut -f1 -d" "

> do

> lspv -M $i > /home/map.$i

> done

á ñ

– Map file is created from PV map information.

Format: PVname:PPnum1[2]

à ð
cat map.file

 hdisk1:1-1ð

 hdisk1:23

 hdisk1:33

á ñ

� Without map files, there is no way to recover

� Create entries in /etc/filesystems for new LVs:

à ð
cat /etc/filesystems

 :

/home/newfs1:

 dev = /dev/lvðð

 vfs = jfs

 log = /dev/loglvðð

 mount = true

 options = rw

 :

á ñ

� Mount all new file systems:

 Appendix C. General Volume Group Recovery 359

à ð
mount /home/newfs1

mount /home/newfs2

mount /home/newfs3

á ñ

360 AIX Storage Management

 Glossary

Ablative . Ablative technology utilizes heat to remove a
layer of some material. In this context, it relates to
writing information with a laser by using the lasers heat
to burn away a layer of the recording medium, thereby
representing a binary value.

Access pattern skew . This refers to the tendency for
reference to information to follow a pattern whereby,
information is referenced from a certain area for some
time, then another area, then a further one, rather than
completely random jumps. Thus, if information in a file
was written sequentially across a number of disks,
utilization would tend towards one disk at a time. If
however, the file data is split into blocks, and each
block written to a separate disk, the skew is eliminated.

Access time . This refers to the total length of time
from the initiation of a request for data, to the start of
the receipt of that data from a device.

Actuators . An actuator is the mechanical assembly
that is responsible for moving the disk head back and
forth across the disk surface.

Allocation group . An allocation group consists of a
set of i-node pointers to data blocks, and the data
blocks themselves. This is a file system entity used to
improve access to files within a file system based on
locality of reference.

Areal density . This defines the density at which
individual bits can resolved by the read head. This
equates to the maximum bit density supported by the
media.

Archive . Archiving involves moving data from the
location that it is usually accessed from (normally fast,
expensive storage), to lower cost storage such as tape.
Information is normally archived if access to it will be
very infrequent. Contrast with retrieval.

Asynchronous . This refers to an operation that can
occur independently of other operations. An
asynchronous communication for example, can be sent
and then other work initiated without waiting for a
response. Contrast with synchronous.

Autochanger . An autochanger is a mechanical device
designed to load an remove media from a drive
automatically. Tape and optical libraries have
autochangers.

Backup . Backup involves taking a copy of data,
usually on some form of removable media, so that in
the event that information is lost, it can be easily
recovered. Contrast with restore.

Bad block relocation . When a write of a block of data
to a disk occurs, some software (and in some cases the
hardware), is capable of detecting that the write failed
(usually with a read following the write to test). In this
case, transparently to the process that requested the
write, the hardware or software can mark the block as
bad so that it will not be used again, and redirect the
write to a fresh block.

Banding . Traditionally, writing of bits to a disk surface
occurs in a regular fashion; thus the further in toward
the center of the disk, the less information can be
stored. Banding refers to a process of dividing the disk
surface into a number of concentric regions. As the disk
write head moves into regions closer to the center of
the disk, the bit write frequency increases proportionally,
thereby maintaining the bit density.

Block . A block is a unit of data to be written or read.
There are various block sizes, depending upon the
media and software. Disk device drivers currently use a
block size of 512 bytes to write to the disk.

Bus . A bus is a data and control path between
devices. It consists of power lines, a number of data
lines, and a number of control lines. There are various
standards including Micro Channel and PCI.

Cache . A cache is a area of extremely fast (usually
expensive) memory that is used to maintain frequently
accessed information, or store information temporarily.
Caches are used in various parts of a computer system.
In disk subsystem controllers for example, writes to disk
will actually occur to the cache so that a completion
return code can be quickly returned to the writing
process. The actual write will occur from the cache
when the subsystem has time to satisfy it. The CPU
also maintains several caches where instructions and
data can be pre-loaded while the current instruction is
executing.

Caddy . A caddy is a removable casing that a
CD-ROM is placed in before being loaded into the
optical drive.

CCW. Continuous composite write describes the
magneto-optical implementation of WORM. Erasure and
rewriting are prevented by simply not allowing the
functions to take place. Contrast with WORM.

CD-ROM. A CD-ROM is an optical disk that has
information stored on it before it is distributed. The
information is permanently stored and cannot be erased
or rewritten.

Command tag queueing . Command tag queuing
refers to the SCSI-2 implementation of piggy-backing

 Copyright IBM Corp. 1994 361

commands together to a device on the SCSI bus. This
effectively allows commands to be overlapped, thereby
improving performance.

Compression . Compression techniques utilize
hardware or software implemented algorithms that are
able to reduce the amount of storage needed by data.
The reduction in space is dependent upon the data
used, as well as the compression algorithm. Contrast
with decompression.

Data transfer rate . This is the rate at which data can
be moved from the host system to a device. It is
normally measured in KB/sec or MB/sec.

Decompression . This is the process of restoring
compressed data to its original state, so that it can be
used again. Contrast with compression.

Device driver . A device driver is a piece of software
written to assist in the management of a specific device.
Other software will use the device driver as the
interface to the device for reading, writing and control
functions.

Differential . This refers to the communications
technique of transmitting information as the difference
voltage between two signals. Normally, information is
transmitted as a single signal and can be corrupted by
noise from external sources. Differential transmission
means that both signal lines will be equally affected by
any noise, the difference between them, the actual
information, remaining constant.

Directory . A directory is a file system entity that is
used to organize related information within file systems.
The space allocated to a file system for file storage can
be subdivided into directories so that files can be more
sensibly organized. Directories can have
sub-directories, thereby forming an organizational
hierarchy. Files themselves can be thought of as being
located within a specific directory, and access to them
is defined by a path that is the directory hierarchy
leading to them.

Diskette . A diskette contains a circular piece of
magnetic material that is read and written in the same
way as fixed magnetic disk. Diskettes are designed to
be removed and easily transported and to enable this
function, have lower tolerances and hence less storage
capacity than fixed disks.

Disk pack . A disk pack contains a traditional fixed disk
but can be removed in its entirety from the support
structure (power, cooling, and connection bus). It is far
less portable than a diskette, but can contain as much
information as a normal fixed disk.

Dispatch . This refers to the action of taking a process
that is waiting to use the processor from its wait queue
and loading it into the processor for execution.

Dump . Should an unrecoverable error occur within the
computer system, a dump usually occurs before the
system halts completely, if possible. The dump consists
of the contents of main memory and processor registers
immediately prior to the error.

Elevator seeking . In order to maximize the efficiency
of disk head seeks, a simple sort of the request queue
can be implemented in software or hardware. This will
allow the disk head to satisfy requests using the
smallest possible head movements moving into the
center of the disk and then out again, thereby
minimizing seek times.

Fast and wide . The SCSI-2 standard defines a data
bus up to 32 bits wide, and with a 10MHz cycle time.
This is currently utilized at 2 bytes giving a data rate of
20MB/sec. Fast refers to the clock speed, and wide to
the data bus.

Fault tolerance . Systems that have total redundancy
are called fault tolerant. This means that all operation
critical systems have a hot standby that can take over
in the event of failure of the primary component.

File system . A file system is a high level entity that
manages the storage of data. Through the file system,
information can be organized within directories and files
created, read, written, and erased.

Floppy disk . This is an earlier term for a diskette. It
originates from the fact that older diskette designs
utilized soft covers that were pliable.

Fragment . A fragment is a subdivision of a file system
block. Blocks can be divided into a number of fragments
(up to eight, dependent upon file system creation
parameters). The purpose of fragments is to minimize
the disk space wastage that occurs as a result of
partially allocated blocks.

Frame . Real memory in a computer system is divided
into sections for ease of manipulation. These sections
vary in size depending upon the system implementation,
and are known as page frames. Under AIX, a page
frame is 4KB in size.

HDA. The mechanical component composed of the
disk head, actuator, motor and platters, is known as the
head disk assembly.

Helical scan . This technology was introduced from the
consumer video marketplace. Tape is partially wrapped
around a spinning recording head that is mounted at an
angle to the tapes direction of travel. This results in
data tracks being recorded at an angle across the tapes
surface, thereby using the tape recording area most
efficiently, and maximizing capacity.

362 AIX Storage Management

Hierarchical . This refers to an organizational method
that involves levels that are accessed by moving from
one to another starting at the top of the hierarchy. An
example is a directory tree in a file system, where files
are found by navigating from the top of the tree through
a series of subdirectories, until the file is found.

Hierarchical storage management . At a higher level,
treating the various storage technologies available as
levels, with disk being the level for interactive access,
through optical for intermediate, to tape for
backup/archive, defines a storage hierarchy through
which data can be migrated according to space and
usage requirements. The process of managing this
mechanism is known as hierarchical storage
management.

IDRC. This is a compression technique implemented
on some IBM tape drives that allows data being written
to the tape to be compressed as the writing is being
done, thereby increasing the capacity of the tape
medium. When data is read back, it is decompressed
as the read occurs.

I-node . An i-node is a file system entity that is used to
locate a files data on the actual disk. It contains
pointers to the physical disk blocks containing the data.

JFS log . Every action that occurs within a file system
is recorded into a log known as the journaled file
system log. These actions include events such as
opening files, writes to files, and closing files. If the
system should fail during operation, upon reboot, the file
systems can be brought back to consistent states by
replaying the information contained in the log.

Journaled file system . The Journaled File System is
the main AIX file system implementation. It defines a
file system with a JFS log.

Library . A tape or optical drive coupled with an
autochanger and racks of media comprises a library.
Media can be unloaded and loaded from the racks
automatically, on request from the host system.

Licensed program products . All software products
purchased for use on the RS/6000 are known as
licensed program products.

Linear . Linear with regard to tape technology implies
recording information in a straight horizontal direction
along the length of the tape.

Locality of reference . If when a process is executing,
most of the time it runs is spent in several small
sections of the code, with occasional jumps to other
parts, then the process is said to display good locality of
reference. This is beneficial, as it means that the
operating system can maintain the small number of
most utilized sections of the process in memory, and
thereby achieve good performance.

Logical partition . A logical volume is composed of a
number of logical partitions. Each logical partition maps
directly to from one to three physical partitions where
data is actually stored.

Logical volume . A logical volume is an area of
physical disk storage comprising a number of logical
partitions. Logical volume can be written to directly, or a
file system can be created within them.

Logical volume device driver . The logical volume
manager device driver is one of the components of the
logical volume manager. It implements the logical
volume manager policies for logical volumes.

Logical volume manager . The logical volume
manager is a collection of device drivers, disk data
areas, daemons, and management subroutines that
collectively form a high level interface to disk storage. It
provides functions for the creation, manipulation,
access, and deletion of logical volumes.

Longitudinal . In terms of tape technology, longitudinal
recording defines a mechanism for data recording that
involves writing linear tracks on the tape surface.

Magneto-resistive . This technology is used to
implement rewritable optical disk storage. Magnetic
material in the optical media surface is heated with a
laser and then its polarity altered with an electromagnet.
The material used is such that a low powered laser
shined on the material is polarized in different directions
depending upon the magnetic polarity, thereby
representing binary states.

Mirroring . This refers to the practice of maintaining
two or more concurrent copies of information. All copies
are updated for each write of the information. In the
event of loss of a copy, the data can still be accessed
from another copy.

Mirror write consistency . When mirroring is
implemented and data is being written, there is a
danger that if the system should fail during the writing of
the data, all copies may end up in an inconsistent state.
Mirror write consistency utilizes cache storage to
maintain the data to be written until all copies have
been updated, thereby ensuring consistency between
copies.

MTBF. Mean time between failure is a measurement
of the reliability of hardware components. It is calculated
as total operating time of a group of components
making up a device divided by the number of
components in the device that fail over that period.

Multitasking . This is the capability of a computer
system to divide its time between multiple processes or
tasks, such that the processes all appear to be
executing concurrently.

 Glossary 363

NFS. The network file system is an implementation of
a remote file system. Files stored on a remote machine
are made to appear as if they were being accessed
from the local machine.

NIC. Numerically intensive computing generally refers
to applications that require much intensive calculation,
such as modelling or statistical analysis.

Non-volatile . This typically refers to memory storage
that is capable of retaining information during periods
without power.

OEMI. This is a standard third party interface used to
attach peripheral devices.

OLTP. This describes a category of application that
performs repetitive processing of records, such as bank
account processing.

Optical disk . A storage medium that is read using
optical technology, usually a laser. There are a number
of different writing mechanisms including ablative,
magneto-optical, and phase change.

Page. Generally, a page describes a block of
information. In AIX a page is 4KB.

Page fault . When a page of an application that was
waiting on some event, and has been paged out, is
required, the CPU will try and access it, and in so doing
generate a page fault as the page will not be in
memory. The fault causes the missing page to be
located in page space and copied back into memory,
probably causing some other currently inactive page to
be swapped out.

Page frame . Main memory is divided into a number of
pages frames, in AIX, these are 4KB in size. Pages of
information are then loaded into page frames.

Page space . Main memory is finite,and soon becomes
filled with the pages of many executing applications. If
at this point, more applications wish to run, there would
be no room and they would have to wait. Page space
defines a pool of storage on disk where pages of
applications that are waiting on some event can be
temporarily stored to make room for other application
pages.

Paging . Paging describes the process of temporarily
copying pages from main memory to page space in
order to free up memory page frames for other
applications to use.

Parallel write . When mirroring is being used, parallel
write means that data to be written will be
simultaneously scheduled to all copies. This is the
quickest way to implement mirroring, though a failure
during write will result in no valid copies. Contrast with
sequential write.

Physical partition . A physical volume is divided up
into a number of physical partitions whose size is
defined when the volume group containing the disk is
created. These partitions are then mapped to logical
partitions when a logical volume is created.

Physical volume . Before a physical disk can be
added to a volume group, it must be defined as a
physical volume. This process assigns the disk a unique
number by which it will be identified, and creates some
on-disk data areas which are used to store information
regarding the disks usage.

Physical volume identifier . The unique number
assigned to a physical volume is known as the physical
volume identifier.

Pipeline . Pipelining refers to the process of
pre-fetching instructions into an instruction cache in
order to speed up process execution.

Platter . Inside a disk drive is a spindle that connects a
number of disks coated with a magnetic material.
Read/write heads on arms are moved back and forth
radially over the disks, which are spun to allow a series
of concentric tracks to be written on each disk surface.
Each such disk is known as a platter.

PPM. This refers to the process of determining a
signal value by its presence or absence. Thus if the
signal is there, it represents logic one, if not, logic zero.
With optical disk, a low powered laser utilizes the same
mechanism to read data, a returned signal being logic
one, no returned signal logic zero.

PWM. This refers to the process of establishing a
signal value using the change in state from present to
absent. Thus a transition from absent to present is logic
one, a transition from present to absent is logic zero.
Using this technique means that data can be more
densely packed as discrete signals are no longer
required. Optical technology uses this technique where
dots on the disk can actually be overlapped as it is only
the change in state from a sequence of returned signals
to no signal (or vice versa) that indicates a binary value.

Quorum . The logical volume manager implements a
process known as quorum checking. This is used to
ensure that before a volume group can be made
available for use, over 50% of the disks in the group
have valid VGDAs, indicating that they contain
uncorrupted data. The quorum is the number of disks
required to constitute more than 50% of the total disks
in the group.

RAID. RAID arrays are designed to increase
performance or availability through the implementation
of one of the following modes of operation. RAID 0
stripes data across the disks for maximum performance.

364 AIX Storage Management

RAID 1 pairs off the disks and mirrors data on each
disk. RAID 3 stripes data across the disks and uses one
further disk to record parity information to allow data to
be reconstructed in the event of loss of one disk. RAID
5 splits the data into blocks and writes blocks
sequentially across the disks, intermixing parity blocks
with data blocks.

Read ahead . When an application wishes to access a
data file, just the first few pages of data are actually
read into memory. As the file is used, more pages are
read in according to two system parameters,
minpgahead, and maxpgahead. If the operating system
detects that the file is being accessed sequentially, then
it will read in minpgahead more pages when further
pages are required. If access is still sequential, the next
time pages are required, minpgahead + 2 will be read
in. This value is incremented by two as long as the
access remains sequential up to maxpgahead thereby
enhancing performance for sequential reads.

Redundancy . Providing a duplicate component within
a subsystem that can be switched in and used in the
event of failure of the primary component means that
the component has redundancy.

Restore . Restoring is the process of copying
information back from its safe location (usually some
form of removable media) to replace the original copy
that has somehow been lost. Contrast with backup.

Retrieve . Retrieval is the process of moving data back
from archive storage to its original location where it can
be accessed. Contrast with archive.

Rotational Latency . When a block of data is to be
read/written from a disk, the actuator moves the
read/write head to the track where the block is located
and then waits for the platter to rotate the start of the
block underneath so reading/writing can begin. This
delay before the start of the block arrives is called
rotational latency.

Scheduler . The operating system maintains several
priority queues of processes waiting for their turn to
execute on the processor. The scheduler is the
operating system component that decides which
process is eligible to run next, and selects it for
dispatch.

SCSI. The SCSI standards define a communications
protocol and physical interfaces to support the
attachment of SCSI compatible devices to a host
system, and thence the devices controlled, and
information read and written.

Seek time . The seek time is the sum of the time taken
for the disk head to be moved to the required track plus
the rotational latency.

Segment . The total AIX address space of 4 petabytes
is divided into segments of 256MB. There are several
different types of segment including working, persistent,
client, and log segments.

Sequential write . When mirroring is being used,
sequential write means that data to be written is
scheduled to each mirror copy in turn, with the next not
occurring until the previous has completed. This method
gives the highest chances of at least one copy surviving
in the event of failure during the write, but at the cost of
performance. Contrast with parallel write.

Serial . When data is sent a single bit at a time (usually
over two wires), the communications is said to be serial.

Serpentine track interleaving . This technology is an
enhancement to longitudinal recording where the data is
written to tape in a series of blocks. The tape head is
capable of writing/reading several tracks simultaneously
which it does during one pass down the length of the
tape. The head is then stepped laterally and the pass
restarted in the opposite direction. The stepping
continues until the tape width is full.

Single ended . Single ended technology refers to
non-differential communications where information is
transmitted serially using four wires, two to send and
two to receive.

SSA. This defines a new communications protocol and
physical interfaces for connecting peripherals to the
host system and communicating with them.

Stale . When mirroring is being used, should one of the
copies of the data fail, then the copy is marked as stale,
which reflects the fact that it can no longer be
considered accurate until it has been resynchronized
with the other copies after repairs have been effected.

Streaming . When data is written continuously to a
device in one long run, the data is said to be streamed
to the device, and the device itself capable of
streaming.

Striping . Splitting data to be written into equal sized
blocks and writing blocks simultaneously to separate
disk drives is called striping the data and maximizes
performance to the disks. Reading the data back is also
scheduled in parallel, with a block being read
concurrently from each disk then reassembled at the
host.

Stripe width . The size of the block that data is split
into for striping is known as the stripe width.

Subsystem . A subsystem is a collection of
components that together perform some function on
behalf of the host system. An example is a RAID array
subsystem.

 Glossary 365

Superblock . A file system is split into a number of
blocks whose size is 4KB in AIX. The second and thirty
first (a backup copy) are designated as the superblock
and contain administrative information regarding the file
system such as fragment size and overall file system
size.

Swapping . This is an alternative name for paging.

Swap space . This is an alternative name for page
space.

Synchronous . This defines an operation that must
occur with a fixed time relationship to another operation.
An example of this is synchronous communications
where each end maintains a clock, and data is sent at
regular intervals, each clock tick for example. Contrast
with asynchronous.

TCP/IP. This is a set of communications protocols that
support the transmission of information between
computers.

Thin film . This technology is used in the construction
of read heads for tape and disk devices. It allows a very
high degree of sensitivity and a correspondingly high bit
density on the recording medium.

Throughput . This defines the rate at which information
can be transferred across an interface and is a measure
of performance. It is usually measured in KB/sec or
MB/sec.

Track . This defines a single one bit wide stream of
physical data written on a storage medium. Tracks are

concentric circles on disk and most optical media,
horizontal lines on longitudinal technology tape, and
inclined lines on helical scan technology tape.

Volatile . Memory that does not maintain its contents
during periods of no power is known as volatile storage.
Contrast with non-volatile.

Volume group . This is a logical volume manager
entity that contains a number of physical volumes.

Volume group descriptor area . Each physical volume
has at least one VGDA stored on it. The VGDA
contains information regarding the organization and
location of all logical volumes and physical volumes
within the volume group.

Volume group identifier . Each volume group has a
unique number identifying it known as the volume group
identifier.

Volume group status area . Each physical volume has
at least one VGSA stored on it. The VGSA contains
information regarding the status of all logical volumes
and physical volumes within the volume group.

Virtual memory manager . This operating system
component is responsible for managing memory
allocation and usage. The VMM manages the mappings
between real memory, page space and the file systems,
and all addressing requests go through it.

WORM. Optical media that utilizes a destructive writing
process meaning that once written, information cannot
be erased. Contrast with CCW.

366 AIX Storage Management

List of Abbreviations

AFS Andrew File System

AG Allocation Group

CCW Continuous Composite Write

CD Compact Disc

CD-ROM Compact Disc Read Only
Memory

DASD Direct Access Storage Device

GB Gigabytes

IBM International Business
Machines Corporation

IDRC Improved Data Recording
Capability

I/O Input/Output

ITSO International Technical Support
Organization

JFS Journaled File System

KB Kilobytes

LP Logical Partition

LV Logical Volume

LVDD Logical Volume Device Driver

LVID Logical Volume Identifier

LVM Logical Volume Manager

LPP Licensed Program Product

LZ Lempel Zev

MWC Mirror Write Consistency

MTBF Mean Time Between Failure

NBPI Number of Bytes per I-node

NIC Numerically Intensive
Computing

NFS Network File System

OEMI Other Equipment Manufacturer
Interface

OLTP On Line Transaction Program

PP Physical Partition

PPM Pulse Position Modulation

PWM Pulse Width Modulation

PV Physical Volume

PVID Physical Volume Identifier

RAID Redundant Array of
Independent Disks

RAM Random Access Memory

ROM Read Only Memory

SCSI Small Computer System
Interface

SSA Serial Storage Architecture

TCP/IP Transmission Control
Protocol/Internet Protocol

VG Volume Group

VGDA Volume Group Descriptor Area

VGID Volume Group Identifier

VGSA Volume Group Status Area

VMM Virtual Memory Manager

WORM Write Once Read Many

 Copyright IBM Corp. 1994 367

368 AIX Storage Management

 Index

A
abbreviations 367
Ablative 40
Access density 17
Access frequency 17
Access time 42
Access type 17
acronyms 367
ACTIVE PVs 109
active/complete 109, 116
active/partial 109, 116
Actuator 25
Adapters

adapters available 325
addressability 22
availability design 84
cabling requirements 22
cost 23
device support 22
High Performance Disk Drive Subsystem 24
High Performance Parallel Interface 24
other adapters 25
performance 22
performance design 80
reliability 22
System/370 Channel Emulator 25

Address space 45
Administration overview 14
ADSM 64, 342
AFS 62
ALLOCATABLE 99
Allocate each logical partition copy on a SEPARATE

physical volume 120, 124
Allocation groups 59
API provision 342
Applications

availability design 86
components 45
data access 7
performance design 83

Archival life 40, 41
Archive 341, 343, 346
Areal density 26
Asynchronous 23
Asynchronous disk I/O 83, 86
AUTO ON 110
Autochanger 9
Automatic management 13
automation 341, 342, 344, 345, 346
Availability

device selection 18

Availability (continued)
disk devices 33
optical 10
overview 10
tape 10
tape devices 38

Availability Management
availability design example 209
creating LVs for availability 122
design 84
managing 122
modifying LVs for availability 124
reorganizing VGs for availability 125

Available 94, 95, 101

B
Backup 127, 128, 156

archive commands 154
backup design example 247
backup media 89
backup methods 89
complete system backup 88
concepts 2, 6
design 88
higher level tools 341, 343, 345
incremental backup 87, 88
longevity 18
making scheduled backups 131
managing 126
overview 63, 87
recycling backups 87
scheduled 7
system image and user VGs 129
user files and file systems 127
using mksysb example 259
V4 archive commands 162

Backup by file system 89
Backup by name 89
Backup by volume group 89
Bad block relocation 53, 54
Banding 27
BB POLICY 117

C
C 96
Cache 32, 64
Capacity

constraints 29
device selection 18
disk devices 27

 Copyright IBM Corp. 1994 369

Capacity (continued)
diskette 3
optical devices 42
overview 11
tape devices 37

CCW 40
CD-ROM file system 62
Central management 341, 343, 344, 345, 346
cfgmgr 93, 94
chlv

changing LV policies 125
command syntax 140
modifying LVs for performance 121

chpv
command syntax 140
making PVs available 95
making PVs unavailable 95
restricting PP allocation 94

chvg
command syntax 140
disable quorum checking 103
enable quorum checking 103
prevent VG autovaryon 103
unlocking a VG 103
V4 command syntax 158
varyon VG automatically 102

close/syncd 111
closed 117
Compatibility 90
Compression

JFS compression algorithm 71
JFS compression example 282
JFS compression implementation 71
JFS compression performance 71
JFS compression technology 70
JFS V4 overview 60
performance design 82
space design 79
tape 9

Compression algorithm 121
Concepts

design 77
general 1
hardware
software 6

Configuration 14
COPIES 117, 118
Cost per megabyte 17
cplv 115, 141
crfs 120, 126, 150

D
Data age 18
Data archive 7, 12

Data rate 17
Decompression 9
Defined 94, 95
defragfs 68, 160
DESCRIPTION 96, 97
Device attributes 22
Device driver 6
Device queue limits 83
df 180, 181
Directories 57
Disk Devices

availability 33
capacity 27
concepts 4
disk devices available 330
fault tolerance 33
performance 30
performance design 80
selecting disks 27
technology 25

Disk failure 13
Disk I/O pacing 83
Disk packs 4
Diskettes 3, 14
DISTRIBUTION 118
du 180, 181
dump space 73
Dye-polymer 41

E
EACH LP COPY ON A SEPARATE PV 117
Ease of use 342, 343, 344, 345, 346
Elevator seeking 26
Enable WRITE VERIFY 120, 124
Error Class 97
ERROR LABEL 97
Error Type 97
errpt 96
Executable 45
exportvg 105, 141
extendlv 114, 141
extendvg 104, 141

F
Failure Causes: 97
File containing ALLOCATION MAP 120, 124
File name archive 89
File system size design 80
File Systems

accessing file systems 62
administration commands 149
availability design 86
concepts 6
creating a compressed JFS example 284

370 AIX Storage Management

File Systems (continued)
creating a JFS greater than 2GB example 291
creating for performance 119
JFS fragment size example 277
JFS V4 size 61, 75
JFS version 4 enhancements 60
journaled file system 58
Network File System 61
organization 57
other file systems 62
overview 57
performance design 81
space design 79

fileplace 182
Fragment allocation 67, 69
Fragment size 67
Fragment Size (bytes) 121
Fragmentation 68, 70
Fragments

fragment allocation map 70
fragments example 276
overview 60
performance design 81
space design 79
technology 67

FREE DISTRIBUTION 99, 112
Free list 46
FREE PPs 99, 110, 112
fsdb 181
FSF/6000 62, 64, 344
fsync() 84, 86

G
glossary 361

H
Hardware components 17
Hardware management 8
Helical scan 35
Hierarchical storage management 64
High water mark 64, 83
Higher level products 341
Higher level tools 7, 63

I
I-nodes 59
IDENTIFIER 96
IDRC 37
importvg 106, 142, 159, 179
IN BAND 118
inactive 109, 116
Information exchange 2

Inter-physical allocation policy 56
Inter-physical volume allocation 81, 85
INTER-POLICY 117
Interchange requirements 18
Intra-physical volume allocation 55, 81, 86
INTRA-POLICY 117

J
JFS log 75, 78
JFS log performance design 82
Journaled file system 58

L
Legato Networker 345
Libraries

optical libraries available 339
tape libraries available 336

Library 42
Load/unload time 37
Logical blocks 58, 68
LOGICAL VOLUME 116
Logical volume device driver 53
Logical Volume Manager

availability design 85
command usage examples 164
concepts 6
logical partition 50
logical volume manager components 52
logical volumes 51
operation 53
performance design 81
physical partitions 50
physical volumes 50
policies 54
quorum checking 54
terminology 50
V3 commands reference 140
V4 commands 158
volume groups 50

Logical Volumes 99
adding 113
changing a LV copy example 293
copying a LV 115
creating a mirrored paging LV example 233
creating a striped LV example 273
creating for availability 122
creating for performance 119
creating JFS log LV example 231
creating mapped LVs example 229
design 79
increasing the size of a LV 114
listing LV allocation summary 117
listing LV characteristics 116
managing 112

 Index 371

Logical Volumes (continued)
migrating and reorganizing LVs 115
modifying for availability 124
modifying for performance 121
overview 51
reading the VGDA on a PV 118
removing 113
removing a LV copy example 292

Longevity 18, 90
Longitudinal 35
Low water mark 83
LPs 117
LPs: 111
lquerylv 143, 159, 177
lqueryvg 144, 176
lsdev 94, 185
lsfs 182
lslpp 138
lslv

command syntax 144
command usage examples 167
creating LVs for availability 123
determining LVs in a VG 122
listing LV allocation summary 117
listing LV characteristics 116
reading the VGDA on a PV 118
V4 command syntax 159

lspv
checking PV usage 100
command syntax 145
command usage examples 172
listing PP allocation table 101
listing PV allocation by region 100
listing PV characteristics 98
listing PVs 98

lsvg
checking PP availability 124
command syntax 145
command usage examples 164
listing LVs in a VG 111
listing only varied on VGs 108
listing PV status 112
listing VG characteristics 109
listing VGs 108

LV IDENTIFIER 116
LV NAME: 111
LV STATE 116
LV STATE: 111
LVs 109
LZ algorithm 71

M
Magneto resistive 26
Magneto-optic 39

Main memory 1, 12
Managing

backup and restore 126
dsksync example 324
introduction 93
logical volumes 112
migratepv example 315
new V4 feature examples 271
physical volumes 93
recovering space in a VG example 256
rvgrecover example 321
the storage environment 118
V4 migration example 298
volume groups 101

Map files 131, 207
MAX LPs 117
MAX LVs 109
max_coalesce 83
maxpgahead 82
Media management 65
migratepv 115, 146
Migration 341, 343, 344, 346
minpgahead 82
Mirror write consistency 53, 117, 120, 123
Mirroring

availability design 85
concepts 6
creating a mirrored VG example 211
logical partitions 51
LVM mirroring 55
performance design 81
raid 1 31
rootvg mirroring example 187

mklv 146
command syntax 159
creating a LV 113
creating an LV for performance 119

mklvcopy 124, 147
mkpv
mksysb 130, 153, 161, 259
mkvg 147

creating a VG 102
mkvgdata 131, 162
Mount 62
Mount point 62, 117
MOUNT POINT: 111
MTBF 38

N
NBPI 60, 74
NBPI space design 79
NFS 61
Non-volatile 1, 12
Number of bytes per i-node 60, 74, 121

372 AIX Storage Management

Number of COPIES of each logical partition 120, 123

O
Online life 18
OPEN LVs 109
open/syncd 111
opened/stale 116
opened/syncd 116
Operating System

concepts 1, 6
device drivers 49
file systems 57
logical volume manager 49
overview 45
page space 45
performance design 82

Optical Devices
backup device selection 89
capacity 42
CD-ROM 39
libraries 42
optical devcies available 338
performance 42
rewritable 39
selecting optical devices 42
selecting the correct technology 42
technology 39

Optical library 9

P
Page 1
Page frames 46
Page Space Management

adding a new paging LV example 308
advantages as dump device 74
changing paging space attributes example 309
creating a mirrored paging LV example 233
decreasing default paging LV example 304
low paging space 48
manipulating page space example 303
page faults 47
page replacement algorithm 47
removing a paging LV example 314
system dump space 73
technology 45

Pages 46
Parallel-write copy 56
Parity 32
pbuf control 83
Performance

adapters 8, 22
device selection 18
disk devices 8, 30
diskette 3

Performance (continued)
optical devices 9, 42
overview 8
system bus 8
tape devices 9, 37

Performance Management
backup design 90
design 80
managing 119
modifying LVs for performance 121
performance design example 220
reorganizing VGs for performance 122

PERMISSION 116
Phase change 40
Physical partition size 78
PHYSICAL VOLUME 98
Physical volume identifier 50
PHYSICAL VOLUME names 120, 123
Physical Volumes

configuration 94
design 78
listing information 97
managing 93
modifying 94
monitoring 96
overview 50
removing 95

Platform support 342, 343, 345, 346, 347
Platters 25
POSITION on physical volume 120, 123
PP SIZE 98, 110, 117
PPs 117
PPs: 111
Probable Causes 97
Pulse position modulation 41
Pulse width modulation 41
PV 118
PV IDENTIFIER 98
PV STATE 98, 112
PV_NAME 112
PVs: 111

Q
Quorum 54, 78, 110
Quorum characteristics 78

R
RAID

availability design 84
concepts 11
key performance issues 32
level 0 31
level 1 31
level 2 31

 Index 373

RAID (continued)
level 3 31
level 4 32
level 5 32
performance design 80
RAID products available 332, 333
supported subsystems 32

Random access 8, 17, 30
RANGE of physical volumes 120, 123
Read ahead 26
Recommended Actions: 97
Recovery Management

overview 13
reducevg 104, 148
Redundancy 33
redundancy design 84
Regulatory requirements 18
Reliability 18

adapters 22
availability design 84
backup design 90
tape devices 38

RELOCATABLE 117
RELOCATE the logical volume during

reorganization 120, 124
Removable media 5, 18
Removed 95
reorgvg 116, 122, 148
RESOURCE_NAME 96
Restore 132, 133, 156, 163

concepts 6
higher level tools 341, 343, 345
individual user files 131
managing 131
overview 63
restore commands 154
restore design example 247
user file systems 133
user VG 133
V4 restore commands 162

restvg 134, 162
Retrieve 341, 343, 346
rmdev 95
rmlv 114, 148, 160
Robot 12
Rotational latency 25

S
savevg 131, 162
Scalability 342
SCHED POLICY 117
Scheduler 47
Scheduling 86
Scheduling policy 56

SCHEDULING POLICY for writing logical partition
copies 120, 124

SCSI Devices
configuration 23
data rate 23
SCSI adapters available 325
SCSI-2 23
SCSI-3 24
technology 23

Sector size 42
Security 78, 342
Seek time 25
Segments 45
Selecting Hardware Components

choosing adapters 22
hardware component overviews 325
how to make the decision 18
points to consider 17

Sequential access 8, 9, 17, 30
Sequential read ahead 82
Sequential-write copy 56
Serial 24
Serpentine track interleaving 35
Shelf life 18
Shrink 134
Single level storage 48
Software components 45
Space Management

backup design 90
concepts 2, 7
higher level tools 341, 343, 344, 346
how to save space in the rootvg 270
managing 125
overview 12
planning disk space 77
recovering space in a VG example 256

Spindle synchronization 32
STALE PARTITIONS 98
STALE PPs 110, 117
STALE PVs 109
Start/stop 35, 36
Statistics 14
Storage Management Commands

archive commands 154
file system administration 149
filesets covered 138
JFS command usage examples 180
LVM command usage examples 164
LVM commands 140
other fileset commands 157
other filesets 138
understanding the chapter 137
V3 commands reference 140
V4 archive commands 162
V4 changed/specific commands 158
V4 LVM commands 158

374 AIX Storage Management

Streaming 35, 36
Stripe Size 120, 124
Striping

creating a striped LV 113
performance design 81
performance implications 73
raid 0 31
striped LV example 272
striping benchmark example 275
technology 72
units 73

Subsystem Design
availability design example 209
concepts 77
performance design example 220
physical planning example 185
planning backup strategies 87
planning disk space 77
planning for availability 84
planning for performance 80
storage subsystem design example 204

Superblock 58
Swap 1
sync() 84, 86
Synchronous 23
sysdumpdev 74

T
T 96
Tape Devices

availability 38
backup device selection 89
capacity 37
compression 37
concepts 3
libraries 38
performance 37
selecting tape devices 37
tape devices available 334
technology 34

Tape library 9
Testing Designs

testing a compressed file system 287
testing a JFS greater than 2GB 296
testing a mirrored VG for availability 217
testing a mirrored VG implementation 198
testing a performance design 243
testing a restored VG 255
testing disk space efficiency with fragments 278
testing LV mirror copies 199
testing the configuration after migration 301

Time slice 47
Time to read first byte 37
TIMESTAMP 96

TOTAL PPs 99, 110, 112
TOTAL PVs 109
Tracks 25
Transfer rate 25
TYPE 117
TYPE: 111

U
Unitree 346
Unlocking volume groups 102
UPPER BOUND 117
USED DISTRIBUTION 99
USED PPs 99, 110

V
V4 storage enhancements 67
Variable i-nodes 74
varyoffvg 106, 149
varyonvg 106, 149
VG DESCRIPTORS 99, 110
VG IDENTIFIER 99, 110
VG PERMISSION 109
VG STATE 99, 109, 116
VGDA 50
VGSA 54
Virtual memory manager 45
Volatile 1
VOLUME GROUP 99, 109, 116
Volume group descriptor area 50
Volume group design 77
Volume group identifier 50
Volume group status area 54
Volume Groups

adding 101
adding a PV 104
changing activation characteristics 102
import/export 105
importing a VG example 266
listing LVs in a VG 110
listing PV status 111
listing VG characteristics 108
listing VGs 108
managing 101
modifying 102
monitoring 108
removing a PV 104
reorganizing for availability 125
reorganizing for performance 122
synchronizing a VG 196
unlocking volume groups 103
varyon/varyoff 106
VG design example 205

 Index 375

W
WORM 5
Write verification 86
WRITE VERIFY 117

376 AIX Storage Management

ITSO Technical Bulletin Evaluation
RED000

AIX Storage Management

Publication No. GG24-4484-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

� Mail it to the address on the back (postage paid in U.S. only)
� Give it to an IBM marketing representative for mailing
� Fax it to: Your International Access Code + 1 914 432 8246
� Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spelling
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
GG24-4484-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 948, Building 821
Internal Zip 2834
11400 BURNET ROAD
AUSTIN TX
USA 78758-3493

Fold and Tape Please do not staple Fold and Tape

GG24-4484-00

IBM

Printed in U.S.A.

GG24-4484-ðð

