
SG24-5611-00

International Technical Support Organization

www.redbooks.ibm.com

Scientific Applications in RS/6000 SP
Environments

Marcelo Barrios, Stefan Andersson, Gyan Bhanot, John Hague, Frank Johnston, Swamy Kandadai,
David Klepacki, John Levesque, Jarek Nieplocha, Frank O’Connell, Farid Parpia, Christoph Pospiech,
Richard Treumann, Jim Tuccillo, Bob Walkup

Scientific Applications in RS/6000 SP Environments

December 1999

SG24-5611-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 1999)

This edition applies to Version 3, Release 1, Modification 1 of Parallel System Support Programs for AIX
(5765-D51) and to Version 2, Release 4 of IBM Parallel Environment for AIX (5765-543) for use with the
AIX Operating System Version 4, Release 3.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix A, “Special notices” on page 225.

Take Note!

Contents

Figures . vii

Tables. .ix

Preface .xi
The team that wrote this redbook. .xi
Comments welcome. xiv

Chapter 1. Introduction . 1
1.1 POWER3-based nodes . 3

1.1.1 Hardware architecture . 3

Chapter 2. Performance . 9
2.1 LINPACK and NAS 2 benchmarks . 9

2.1.1 LINPACK . 10
2.1.2 Discussion of LINPACK results. 11
2.1.3 Serial batch runs . 12
2.1.4 Discussion of serial batch results . 13
2.1.5 NAS 2 runs using shared memory MPI . 14

2.2 Spec95 benchmark . 15
2.3 Accessing memory effectively . 18

2.3.1 Avoiding cache misses . 18
2.3.2 Multiprocessor throughput . 20

Chapter 3. Distributed memory . 25
3.1 Introduction to MPI . 25

3.1.1 Basic concepts . 25
3.1.2 Pitfalls in point-to-point communication. 27
3.1.3 Suggestions for further reading. 38

3.2 MPI collective communication . 39
3.2.1 Design concepts . 39
3.2.2 Performance considerations . 53

3.3 MPI data types . 58
3.3.1 Basic concepts . 59
3.3.2 Use of derived data types in collective communications 62
3.3.3 Two dimensional parallel FFT. 63
3.3.4 Domain splitting . 70

3.4 MPI Performance assessment . 72
3.4.1 Timing considerations. 73
3.4.2 MPI intrinsic routines . 77
3.4.3 gprof profiling . 79
© Copyright IBM Corp. 1999 iii

3.4.4 IBM trace interface . 81
3.5 Low-level Application Programming Interface (LAPI) 83

3.5.1 Concepts . 84
3.5.2 Using LAPI . 91
3.5.3 Programming examples . 96

Chapter 4. Shared memory . 105
4.1 Shared memory parallelization with OpenMP 105

4.1.1 Introduction to shared memory parallelization. 105
4.1.2 OpenMP - Portable shared memory parallelization 108
4.1.3 Rationale for using OpenMP directives 109
4.1.4 Variable scoping. 111
4.1.5 Work sharing concepts . 119
4.1.6 Other directives . 121
4.1.7 Function calls . 122
4.1.8 Compiler options . 122
4.1.9 Automatic parallelization. 123
4.1.10 Granularity and parallelization overhead. 124
4.1.11 Parallelization examples . 126
4.1.12 Debugging an OpenMP program . 127
4.1.13 Compiler switches and environment variables 128

4.2 Programming with threads . 130
4.2.1 Thread creation and termination . 131
4.2.2 Thread attributes . 134
4.2.3 Programming models . 136
4.2.4 Synchronization . 137
4.2.5 Local vs. shared variables . 141
4.2.6 Ray-tracing example. 141
4.2.7 Overlapping communication or I/O with computation 142
4.2.8 Concluding remarks . 144
4.2.9 References . 145

Chapter 5. Hybrid programming model . 147
5.1 OpenMP+MPI. 147

5.1.1 Motivation. 147
5.1.2 Logistical considerations - Using POE 148
5.1.3 Logistical considerations - OpenMP . 149
5.1.4 Special hardware considerations . 150
5.1.5 Some MPI considerations . 151
5.1.6 Performance example. 151
5.1.7 Summary . 152

5.2 An example of the hybrid programming model 152
5.3 Mixed-mode MPI . 156
iv Scientific Applications in RS/6000 SP Environments

5.3.1 Point-to-point operations . 157
5.3.2 Collective communication . 158

Chapter 6. Input/output . 169
6.1 I/O hardware . 171

6.1.1 POWER3 SMP High Node I/O subsystem 171
6.1.2 Disk subsystems. 172
6.1.3 Communication subsystems . 172

6.2 File systems . 173
6.2.1 AIX file systems . 173
6.2.2 Large file support . 176

6.3 I/O optimization . 177
6.3.1 Characterizing I/O for non-intrusive optimization. 177
6.3.2 Non-intrusive optimizations exploiting high-performance FS . . . 182
6.3.3 Non-intrusive optimizations: Obviating contention. 183
6.3.4 Non-intrusive optimizations: The vmtune utility 185
6.3.5 Non-intrusive optimizations: Reorganizing a file system 188
6.3.6 Non-intrusive optimizations: Reorganizing an LV or an LVG . . . 189
6.3.7 Non-intrusive optimizations: The sync daemon interval. 189
6.3.8 Non-intrusive optimizations: Tuning the SCSI device driver . . . 189
6.3.9 Characterizing I/O for intrusive optimization 190
6.3.10 Intrusive optimizations: Exploiting high-performance FS 193
6.3.11 Intrusive optimizations: Obviating I/O 195
6.3.12 Formatted and unformatted I/O. 196
6.3.13 I/O Blocksize . 199
6.3.14 Intrusive optimizations: Memory-mapped I/O 201
6.3.15 Intrusive optimizations: Asynchronous I/O 202
6.3.16 Intrusive optimizations: Raw disk I/O 210

6.4 GPFS . 211
6.5 MPI-IO . 214

6.5.1 IBM implementation . 217
6.5.2 Using MPI-IO effectively . 219

Appendix A. Special notices . 225

Appendix B. Related publications . 229
B.1 IBM Redbooks publications . 229
B.2 IBM Redbooks collections. 229
B.3 Other resources . 229
B.4 Referenced Web sites. 230

How to get IBM Redbooks . 233
IBM Redbooks fax order form . 234
v

Glossary . 235

Index . 237

IBM Redbooks evaluation . 243
vi Scientific Applications in RS/6000 SP Environments

Figures

1. POWER3 SMP High node architecture . 4
2. Memory physical hierarchy . 6
3. POWER3 SMP High node I/O topology. 7
4. POWER3 SMP High node: Load with stride = 1024 bytes 18
5. POWER3 SMP High node: Rate for y=y+x(i). 21
6. POWER3 SMP High node: Rate for x(i)=1.d0 . 23
7. POWER3 SMP High node: Rate for y(i)=x(i) . 24
8. Different algorithms for message exchange . 38
9. Collective move functions (group of six processes). 41
10. Algorithms for all-to-all collective communication (two MPI tasks) 56
11. Algorithms for all-to-all collective communication (four MPI tasks) 56
12. Algorithms for all-to-all collective communication (eight MPI tasks) 57
13. Bandwidth for different all-to-all algorithms (eight MPI tasks) 58
14. General derived data types . 61
15. Matrix A for np=4 . 64
16. Memory layout of Type2 . 66
17. Memory layout of Type2 with MPI_UB moved. 67
18. Memory layout of Type2 with a “sticky” upper bound 68
19. Domain splitting with nine domains . 71
20. Active message concept . 85
21. Hierarchy of communication libraries. 87
22. Remote memory copy interfaces and progress of communication 92
23. Active message communication in LAPI . 95
24. Gather operation . 99
25. Reading from disk on remote node . 101
26. Stream benchmark on POWER3 SMP Thin/Wide and High nodes. 106
27. Stream rates for Triad . 107
28. Stream rates for Triad . 124
29. Comparisons of OpenMP and Automatic on SWIM. 126
30. NAS Benchmarks. 127
31. C version of "hello threads" - Template for thread creation 132
32. Fortran version of "hello threads" - Template for thread creation 133
33. Version of "hello threads" where initial thread shares the work 136
34. Sample code for setting the number of threads at run time 137
35. Listing for a thread synchronization function (in C) 139
36. Listing for a Fortran version of the thread synchronization routine 140
37. Sketch of a thread function for overlapping computation with I/O 143
38. Thread function for overlapping computation and I/O 144
39. Matrix columns distributed . 153
40. Matrix rows distributed . 153
© Copyright IBM Corp. 1999 vii

41. Each local column split onto threads . 154
42. Whole columns assigned to each thread . 154
43. MPI_Sendrecv latency . 157
44. MPI_Sendrecv (same node) . 158
45. POWER3 SMP High node: MPI_Barrier latency 160
46. POWER3 SMP High node: MPI_Reduce+MPI_Bcast latency 161
47. POWER3 SMP High node: MPI_Reduce+MPI_Bcast for two processes 162
48. POWER3 SMP High node: MPI_Reduce+MPI_Bcast for four processes 162
49. POWER3 SMP High node: MPI_Reduce+MPI_Bcast for eight processes163
50. POWER3 SMP High node: MPI_Reduce+MPI_Bcast for 16 processes . 163
51. POWER3 SMP High node: MPI_Alltoall Latency. 165
52. POWER3 SMP High node: MPI_Alltoall for two processes 165
53. POWER3 SMP High node: MPI_Alltoall for four processes 166
54. POWER3 SMP High node: MPI_Alltoall for eight processes. 166
55. POWER3 SMP High node: MPI_Alltoall for 16 processes. 167
viii Scientific Applications on RS/6000 SP Environments

Tables

1. POWER3 internal chip functionality . 5
2. LINPACK results . 10
3. Run times in seconds (as reported by the codes) 13
4. Times (in seconds) as reported by the codes . 14
5. Summary of individual benchmarks . 16
6. SPEC95 performance . 17
7. SPECrate results . 17
8. Cycle times for POWER3 SMP nodes . 20
9. MP_EAGER_LIMIT per tasks . 29
10. Predefined MPI operations . 50
11. MPI 1.2 Data types constructors . 59
12. MPI-2 Data types constructors. 59
13. MPI utility functions for creating derived data types. 60
14. Predefined MPI data types. 62
15. Timings for different parallel FFT’s (n1=n2==4096, np=4). 69
16. Clock source (MP_CLOCK_SOURCE variable) . 76
17. MP_TRACELEVEL values. 81
18. Properties of LAPI counters . 89
19. LAPI functionality . 91
20. Compatibility of LAPI with MPI library versions . 96
21. Iteration distribution . 121
22. XLF OpenMP summary . 129
23. Ray-tracing performance on an eight-way POWER3 SMP High node . . 142
24. MM5 performance on 332 MHz SMP nodes . 152
25. Results in seconds on two NH1 nodes for Example 1 156
26. Results in seconds on two NH1 nodes for Example 2 156
27. Data transfer rates . 169
28. Flags and parameters for the vmtune command. 186
29. MPI-2 subset included in PE 2.4 . 217
© Copyright IBM Corp. 1999 ix

x Scientific Applications on RS/6000 SP Environments

Preface

The announcement of POWER3-based Thin and Wide nodes in early 1999,
along with the addition of High nodes this fall, positions the RS/6000 SP with
a new and powerful offering for the scientific and technical community.

This redbook provides a description of the POWER3 SMP architecture
exploited by the new POWER3-based nodes and performance information for
standard benchmarks, such as LINPACK, NAS 2, and Spec95.

This redbook offers hints and tips as well as sample code for various aspects
of parallel programming on POWER3 SMP architectures. Discussions of
distributed memory, threads, MPI, OpenMP, LAPI, and several other facilities
for developing parallel applications will help the reader understand and use
these tools and take advantage of the parallel nature of the RS/6000 SP
empowered by these new nodes.

Due to the technical nature of the book, it will be most valuable to readers
with some background in parallel computing who are familiar with SMP and
parallel architectures.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Marcelo Barrios is a project leader at the International Technical Support
Organization, Poughkeepsie Center. He has been with IBM since 1993
working in different areas related to RS/6000. Currently, he is focusing on
RS/6000 SP technology by writing redbooks and teaching IBM classes
worldwide.

Stefan Andersson is an Advisory Engineer/Scientist at IBM Poughkeepsie.
He has an MS in Mathematics from the University of Heidelberg. He began
his work with IBM at the IBM Scientific Center, Heidelberg in 1990. He has
been involved in parallel computing on the IBM RS/6000 SP since 1992.
Currently, he is a member of the technical benchmark team at IBM
Poughkeepsie. His areas of expertise include performance tuning for the
POWER2 and POWER3 architectures and tuning and coding for distributed
and shared memory on the IBM RS/6000 SP.
© Copyright IBM Corp. 1999 xi

Gyan Bhanot earned his PhD in Theoretical Physics from Cornell University
in 1979. He worked on simulations in Particle Physics and Statistical
Mechanics at Brookhaven National Labs, The Institute for Advanced Study,
Princeton, CERN, Geneva, and ITP Santa Barbara before joining the
Supercomputer Institute at Florida State University and concentrating on
parallel computers and computation. He joined IBM Research as a Research
Staff Member in 1994 after working for five years at Thinking Machines
Corporation. His current interests are in Parallel Algorithms/Languages,
Computational Biology, and Computational Finance.

John Hague is an IBM IT Consultant in the UK. He obtained a PhD in High
Energy Physics at University College, London, and worked in this field at the
Rutherford Laboratory in the UK and the Lawrence Livermore Laboratory in
Berkeley until he joined IBM in 1970. John was assigned to the IBM ITSO in
Poughkeepsie in 1985 to provide worldwide technical support for the IBM
Vector Facility. Since then, he has worked exclusively in the scientific and
technical field and has considerable expertise in vectorizing, parallelizing,
and tuning scientific programs, particularly in the areas of Petroleum and
Weather Forecasting.

Frank Johnston works in the SP Performance Department at IBM,
Poughkeepsie, and specializes in the performance of standard floating-point
benchmarks on the SP.

Swamy Kandadai is a computational chemist by training and has been
published extensively on protein and nucleic acid simulations using parallel
processing. He has been involved with parallel computing in IBM since 1985,
initially working on the Loosely Coupled Attached Processors (LCAP) and on
RS/6000 SP. Currently, he is a member of the performance group in the
RS/6000 division responsible for SP performance.

David Klepacki holds a PhD degree in Theoretical Nuclear Physics from
Purdue University. He began working in IBM POWER Parallel Systems Group
in 1991 as a computational physicist and scientific applications specialist with
an emphasis on performance benchmarking. Today, he is the Assistant
Director of the Advanced Computing Technology Center at the IBM T.J.
Watson Research facility in Yorktown Heights, New York. His current interests
include scalable algorithms and portable high-performance computing tools.

John Levesque is the Director of the Advanced Computing Technology
Center centered at IBM Research. Mr. Levesque has over 25 years
experience in High Performance Computing. At IBM, Mr. Levesque leads a
group focusing on HPC computing within IBM and supply solutions for
customers porting numerically-intensive applications to IBM SP architecture.
xii Scientific Applications in RS/6000 SP Environments

The ACTC offers programming tools, optimized libraries, and applications as
well as training on optimizing scientific applications for shared/distributed
parallel computer systems.

Jarek Nieplocha is a Staff Scientist at Pacific Northwest National Laboratory.
His recent research has been in interprocessor communications with an
emphasis on one-sided communication, shared memory programming, and
high-performance I/O. He received two best paper awards at international
conferences in the parallel computing area and an R&D-100 award. As a
member of MPI Forum, he participated in the definition of the MPI-2 standard.

Frank O’Connell is a Senior Engineer at the RS/6000 Server Development
group in Austin, TX. He has been a member of the RS/6000
high-performance processor development effort since 1992. He has focused
on scientific and technical computing performance within IBM for the past 13
years including microprocessor and systems design as well as application
performance and tuning. Frank earned a BSME from the University of
Connecticut and an MSE in Engineering-Economic Systems from Stanford
University.

Farid Parpia is Senior Scientist in the Scientific, Technical, and Engineering
Benchmarking Group at IBM Poughkeepsie. He has a PhD in Atomic Physics
from the University of Notre Dame and still enjoys writing software for the
modeling of atomic and molecular systems using the Dirac theory of the
electron.

Christoph Pospiech is an IT specialist in Germany. He has 11 years of
experience in high-performance computing. He has done message passing
parallel computing ever since this was conceived within IBM. He holds a
doctor rerum naturae in Mathematics from Heidelberg University.

Richard Treumann is an Advisory Software Engineer and MPI development
team leader at IBM Poughkeepsie. He has a MS in Computer Science and
has worked in software development since 1984. He participated in
developing the MPI standard as an IBM representative on the MPI-2 Forum.
His primary areas of expertise include compiler parsers, optimizers, and code
generators as well as message passing systems for parallel programming.

Jim Tuccillo is an atmospheric scientist by training. He has attended Cornell
University, Old Dominion University, and Johns Hopkins University. Jim has
been involved in the development of Numerical Weather Prediction (NWP)
Models on high-performance vector, parallel vector, and distributed memory
systems since 1980. Jim has worked in the NWP development labs of the
U.S. Weather Service and NASA where he has been involved in the
xiii

development of research and operational NWP codes for weather forecasting
in the U.S. Jim currently works for the IBM Global Government Industry
organization where he is involved in issues associated with NWP and
high-performance computing on the IBM SP system. Jim has research
interests in the areas of parallel algorithms and parallel programming
paradigms for high-performance numerically-intensive computing.

Bob Walkup is a physicist by training. He received a PhD in physics from
M.I.T. and has been in the physical sciences department at the IBM Thomas
J. Watson Research Center for the past 17 years. He has been actively
involved with parallel programming since the initial days of IBM scalable
parallel systems.

Thanks to the following people for their invaluable contributions to this project:

Yoshinori Shimoda
IBM Japan

Dr. William G. Tuel, Jr.
IBM Poughkeepsie

Henry Zongaro
IBM Canada

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks evaluation” on page 243
to the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xiv Scientific Applications in RS/6000 SP Environments

Chapter 1. Introduction

The IBM RS/6000 SP is a general-purpose scalable parallel system based on
a shared-nothing architecture. Each processing unit, or node, runs its own
instance of the standard AIX operating system, and it can connect to any
other node through a high-bandwidth low-latency network (SP Switch) or
through any other TCP/IP network. Generally available SP systems range
from one to 128 nodes, although much larger systems (over 512 nodes) have
been built and delivered for the past few years.

The SP is a low-cost high-performance massively-parallel-processing (MPP)
system with the tools necessary to exploit the combined capacity of hundreds
of nodes for solving large problems. This ability is not only beneficial for
scientific and technical applications, but also for commercial environments,
such as business intelligence, data mining, or online transaction processing
(OLTP).

In addition to the MPP capabilities, the RS/6000 SP provides high scalability
to applications for both computation and data, far beyond what is possible
with conventional symmetric multiprocessing (SMP) systems.

In order to properly address these diverse applications and environments, the
RS/6000 SP is designed around three key areas: Programming models,
flexible architecture, and system availability. In this redbook, we concentrate
on the first of these three key areas: Programming models, and, within
programming models, we concentrate on technical computing.

Programming models for commercial environments are somewhat similar to
scientific and technical applications, but their scope is broader. The two main
areas where massive parallel processing is a key factor in commercial
environments are OLTP and data mining, where the data shipping or shared
nothing model for parallel transactions and query processing are a perfect fit
for the RS/6000 SP. Even for the shared data model, the SP offers high
performance SMP nodes, which allows applications to exploit both MPP and
SMP environments.

In technical computing, there are essentially three programming models used
in large scale systems: The message-passing programming model, the
shared-memory programming model, and the data parallel programming
model.

Each of these three models offers advantages and disadvantages for parallel
applications as follows:
© Copyright IBM Corp. 1999 1

• For the message-passing programming model, processes have their own
address spaces, and they share data through messages; the source
process explicitly sends a message, and the target process explicitly
receives this message. As discussed in Chapter 3, “Distributed memory”
on page 25, although synchronization may seem implicit in this send and
receive model, most current implementations of this model, such as MPI
or LAPI, offer asynchronous messaging, one-sided communication
protocols, or active messaging.

• In shared-memory programming models, processes in an application
share a common address space; so, there is no explicit action to share
data across multiple CPUs. Since all CPUs have access to the same
memory address space, the synchronization between them must be
explicit, that is, either done by the compiler, compiler directives, or explicit
calls. Chapter 4, “Shared memory” on page 105, provides a detailed
discussion of two aspects of shared memory parallelization: The
shared-memory directives in OpenMP with special emphasis on the new
POWER3 architecture available on the RS/6000 SP and multithread
programming with a focus on POSIX threads (Pthreads).

• The third programming model is the data parallel model. This model is
supported by data parallel languages, such as High Performance Fortran
(HPF). Programs are written using sequential Fortran to specify the
computations on the data (using either interactive constructs or the vector
operations provided by Fortran 90 and Fortran 95) and data mapping
directives to specify how large arrays should be distributed across
processes.

Another interesting implementation of this data parallel model is MPI-IO,
which is part of the MPI-2 standard discussed in Chapter 6, “Input/output” on
page 169. Through MPI-IO, processes can access non-overlapping regions of
a common set of data. This data parallel model has the advantage of freeing
the user from the need to explicitly distribute global arrays onto local arrays
and change names and indices accordingly allocating buffers for data that
must be communicated from one node to another and inserting the required
communication calls or the required synchronizations.

In addition, with the introduction of more powerful SMP nodes, as discussed
in Section 1.1, “POWER3-based nodes” on page 3, the RS/6000 SP provides
programmers with several alternatives for exploiting the multiple CPUs
available on each node. By using multiple nodes and multithreading the MPI
tasks in each node, programmers are better able to exploit RS/6000 SP
environments by using hybrid programming models.
2 Scientific Applications in RS/6000 SP Environments

When applications are parallelized for speed improvements using any
programming model, their I/O bandwidth requirements also increase
proportionately. The proper tuning of local I/O subsystems is critical to good
performance as is discussed in Chapter 6, “Input/output” on page 169.
However, even with the proper tuning, local I/O cannot cope with the I/O
requirements of parallelized applications.

Standard distributed file systems, such as NFS, AFS, or DFS, do not satisfy
the extremely high bandwidth to file data required by some I/O-intensive
applications. Fortunately, GPFS addresses these unique requirements by
providing a highly-scalable and highly-available parallel file system, which,
along with MPI-IO, may prove to be an excellent alternative to distributed I/O
and data sharing. The MPI-IO implementation is discussed in Section 6.5,
“MPI-IO” on page 214.

1.1 POWER3-based nodes

POWER3-based nodes are the latest addition to the RS/6000 SP. Combining
the POWER3 in SMP configurations and the tools available for parallel
programming, the RS/6000 SP provides the best platform for CPU- and
I/O-intensive applications.

This section provides an overview of the POWER3 SMP High node and
benchmark results from pre-GA environments, which position these new
nodes in the high end of the RS/6000 family.

1.1.1 Hardware architecture
The POWER3 SMP High node is a high-performance symmetric
multiprocessing (SMP) node for the RS/6000 SP. It is intended to perform as
a high-performance technical and workgroup server. The POWER3 SMP High
node drawer can accommodate up to four processor cards, each with two
processors per card, for a total of eight processors (valid configurations are
two, four, six, or eight processors). The drawer can also host up to four
memory cards for a maximum of 16 GB. The minimum memory configuration
is 256 MB.

The processors within POWER3 SMP High nodes are 222 MHz POWER3
processors with a 4 MB direct-mapped L2 cache also clocked at 222 MHz.
Each processor is attached to the memory subsystem via a 16-byte wide 111
MHz 6XX bus.

In its base configuration, the POWER3 SMP High node has two 32-bit 33
MHz PCI slots, an integrated service processor, a 10BaseT Ethernet
Chapter 1. Introduction 3

interface, three media bays, and two 6-pack DASD SLEDS. It can support up
to six Remote I/O expansion drawers (a seventh Remote I/O unit is supported
via PRPQ).

The POWER3 SMP High node memory subsystem consists of an address
and data-switched memory subsystem. Figure 1 shows the overall structure
of the POWER3 SMP High node design.

Figure 1. POWER3 SMP High node architecture

Each processor card has two 16-byte data bus connections that run at 111
MHz for a peak bandwidth of 3.5 GBps. The memory subsystem can provide
two data transfers to each of the four processor cards concurrently for a peak
aggregate rate of 14.2 GBps when fully populated with four memory cards.
Memory is interleaved both within and across cache lines for maximum
performance.

SABER

SABER

SP
Fabric

Adapter

NCA

NCD

250
MB/S
RIO

Links
16B

I/O Planar

POWER3
NCA

NCD

16B

L2

L2

Active Backplane Planar

Arrow

Crossbow

64B
Data

64B
Data

16B
Data

6XX, Buss
Memory
256MB -
4GB
(8GB)

Arrow

64B
Data

64B
Data

16B
Data

ASX

Processor Cards

Crossbow

POWER3

Memory
256MB -
4GB
(8GB)

Memory
256MB -
4GB
(8GB)

Memory
256MB -
4GB
(8GB)
4 Scientific Applications in RS/6000 SP Environments

Table 1 explains the functionality of each of the chips appearing in Figure 1
on page 4.

Table 1. POWER3 internal chip functionality

1.1.1.1 Memory subsystem
Figure 2 on page 6 shows a block diagram of the physical hierarchy for
system memory. Memory is packaged on up to four cards connected to the
four memory ports in the data cross point switch. Memory cards utilize 128
MB SDRAM modules. Each card can contain up to 4 GB of memory or up to
16 GB for the compute node. 1 GB of memory comes in the base system
design. Memory can be added in 1 GB increments with the addition of cards
and pluggable industry-standard DIMMs. This provides a highly-configurable
and upgradable offering, which will grow with the application requirements.

Chip Function

POWER3 Processor

NCA
Node Controller: Address. Handles address portion of all
transactions issued by processors and I/O elements and coordinates
data transfers among processors, memory, and I/O elements.

NCD
Node Controller: Data. Contains paths for interprocessor and
processor-memory data transfers. Forms a portion of the data
switch.

ASX Address Switch.

Crossbow Memory Controller. Controls data transfers across paths within the
Arrow chips.

Arrow Switch: Carries data to and from memory and between nodes. Forms
a portion of the data switch.

Saber Portal to I/O subsystems.

SP Fabric
Adapter

Portal to inter-High node communication interconnect.
Chapter 1. Introduction 5

Figure 2. Memory physical hierarchy

Each memory subsystem is capable of accepting an address transaction
every cycle at 111 MHz. Each memory data port is 64 bytes wide and
operates at 55.5 MHz, which translates to a delivered bandwidth of 14.2
GBps.

1.1.1.2 I/O subsystem
Figure 3 on page 7 shows a block diagram of the I/O subsystem. The figure
shows Sabers, which serve as portals to disk and communication
subsystems, and an SP Switch adapter, which allows a compute node to
connect to the SP Switch to form a multinode system.

Memory Subsystem
Memory Subsystem

8 Byte DIMM

64B

8 DIMMs per chip
select group

8 Byte DIMM

64B

8 Byte DIMM

64B

8 Byte DIMM

64B

Memory Card

64B

64B

Memory
Controller
on
Backplane

55.5 Mhz

Memory Card

4 internal banks
per each DRAM

111 Mhz

20, 16 Byte ports from
Node Controllers
on CPU & I/O cards

16B

16B

16B
6 Scientific Applications in RS/6000 SP Environments

Figure 3. POWER3 SMP High node I/O topology

The High node I/O consists of four 64-bit PCI slots and one 32-bit PCI slot
operating at 33 MHz. It provides integrated Ultra SCSI, 10/100 Ethernet,
parallel port, and three serial ports. In addition, there are six remote I/O (RIO)
connections. These connections allow SP Expansion I/O Expansion Units to
be connected to the High node providing incremental growth for applications
requiring more I/O connectivity.

The RIO ports operate full duplex at 250 MBps in each direction with cables
up to 15 meters long. This provides outstanding I/O bandwidth to each RIO
expansion node. With six SP Expansion I/O Units connected, a user can
obtain a node complex with 53 PCI slots and 26 DASD bays. This
combination of High node and SP Expansion I/O Units into a node complex
provides the highest I/O configuration yet on the RS/6000 SP system.

SABER

SABER

SP
Fabric

Adapter

NCA

NCD
4x2

XBar

16B

High Node I/O Planar

MIDWAY

RIO-MX

PYTHON
3

MX-PCI

PYTHON
3

MX-PCI

PYTHON
3

MX-PCI

PYTHON
3

MX-PCI

PC
IS

LO
T

S
P

C
IS

LO
T

S
P

C
IS

LO
T

S
P

C
IS

LO
T

S

SP Expansion I/O Unit

SP Switch Fabric

DUPLEX
500MB/S

0

1

2

3

4

5

6

7

8B x
33MHz

264 MB/S
Chapter 1. Introduction 7

8 Scientific Applications in RS/6000 SP Environments

Chapter 2. Performance

This chapter provides a comparison of the performance of POWER3 SMP
High to that of POWER3 SMP Thin/Wide. POWER3 SMP High runs at 222
MHz while POWER3 SMP Thin/Wide runs at 200 MHz.

The last section of this chapter discusses how to access memory effectively
in order to achieve better performance and to illustrate how multiple
processors of the POWER 3 SMP High Node are able to achieve high
efficiency when accessing memory concurrently.

2.1 LINPACK and NAS 2 benchmarks

The clock frequency suggests that POWER3 SMP High nodes should always
outperform POWER3 SMP Thin/Wide nodes. However, the cost of an
unprefetched cache miss on POWER3 SMP High nodes is more than double
the cost on POWER3 SMP Thin/Wide nodes. The lower memory latency
favors POWER3 SMP Thin/Wide nodes, but the higher clock frequency favors
POWER3 SMP High node; so, in general, the single CPU performance of the
two machines is similar.

Those applications that efficiently use all CPUs in an SMP should run faster
on a POWER3 SMP High node than on a POWER3 SMP Thin/Wide node.
The POWER3 SMP High node has eight CPUs compared to the two CPUs in
a POWER3 SMP Thin/Wide node. A POWER3 SMP High node can have up
to 16 GB of memory, which allows it to run problems that are too big to run on
a POWER3 SMP Thin/Wide node.

This section illustrates these points using performance data for the standard
LINPACK and NAS 2 benchmarks. These runs were done on POWER3 SMP

The POWER3 SMP High node runs were done on a system having pre-GA
hardware and software; so, there is no guarantee that these results will be
reproducible on GA systems.

The LINPACK and NAS 2 runs were done on POWER3 SMP Thin/Wide
nodes, which did not have the firmware patch described in the IBM Service
Bulletin dated July 8, 1999.

A pre-GA version of the ESSL library was used to run the tests presented
in this section. Results may vary with the GA version.

Note
© Copyright IBM Corp. 1999 9

High nodes with eight CPUs, 8 GB of memory (128 MB DIMMs), and four
memory cards per node. This configuration provides the maximum memory
bandwidth.

2.1.1 LINPACK
The LINPACK benchmarks all solve systems of linear equations. Double
precision (eight-byte) floating point data is used in all cases. A single
precision version of LINPACK exists, but it is obsolete. The smallest LINPACK
benchmark, LINPACK DP, solves a system of 100 equations. The source code
provided by Jack Dongarra cannot be changed; so, all optimization must
come from the Fortran compiler and preprocessor. Since this benchmark is
so small, it is only run on a single processor.

The next largest LINPACK problem, LINPACK TPP (Toward Peak
Performance), solves a system of 1000 equations. Tuned libraries, such as
ESSL, can be used with this benchmark, and the benchmark spends most of
its time in ESSL. This problem can be run on multiple CPUs in an SMP node,
but it is not large enough to perform well on multiple nodes.

LINPACK HPC (Highly Parallel Computing) can be run on multiple nodes
since the problem size is chosen to maximize performance. Larger problems
lead to increased efficiency and higher FLOP rates - as long as the problem is
not so large as to cause paging. Tuned libraries, such as PESSL and ESSL,
are used, and most of the time is spent in these libraries. The benchmark is
run with a single MPI task per node. Since PESSL/ESSL can run in parallel
within an SMP node, the benchmark is run with only one or two MPI tasks per
node. The POWER3 SMP Thin/Wide results were obtained with one MPI task
per node, but the POWER3 SMP High results were obtained with two tasks
per node.

Table 2 displays LINPACK results.

Table 2. LINPACK results

LINPACK POWER3 SMP Thin/Wide POWER3 SMP High

Variant CPU MFlops Size Nodes MFlops Size Nodes

DP 1 227 100 1 250 100 1

TPP 1 639 1000 1 684 1000 1

2 1168 1000 1 1247 1000 1

4 2153 1000 1

8 3516 1000 1
10 Scientific Applications in RS/6000 SP Environments

2.1.2 Discussion of LINPACK results
LINPACK DP is so small that it fits in L2 cache and scales like the clock
frequency. The ratio of the clock frequencies is High_MHz/Thin_MHz =
222/200 = 1.11. The ratio of DP performance is very close: High_DP/Thin_DP
= 250/227 = 1.10.

TPP runs seven percent faster on a POWER3 SMP High CPU than a
POWER3 SMP Thin/Wide CPU. This is less than the improvement in the
clock frequency, presumably because the higher memory latency on
POWER3 SMP High can affect the performance obtained for this relatively
small problem size. For two CPUs, the comparison is similar: POWER3 SMP
High delivers seven percent more performance than POWER3 SMP
Thin/Wide.

An eight-CPU POWER3 SMP High node delivers three times the LINPACK
TPP performance of the two-CPU POWER3 SMP Thin/Wide node.
Considering only the number of CPUs and the increase in clock speed, the
ratio would be (8*222)/(2*200) = 4.4. The relatively small problem size of
1000 limits the SMP parallel efficiency of the eight-CPU POWER3 SMP High
node.

Larger problems can be run for LINPACK HPC. In this case, an eight-CPU
POWER3 SMP High node outperforms 4 POWER3 SMP Thin/Wide nodes,
which have a total of eight CPUs. Since the calculation on POWER3 SMP
High is done within a single node, it can be done more efficiently, because it
can bypass PESSL and MPI. The larger problem size leads to excellent
eight-way SMP parallel efficiency on POWER3 SMP High.

For LINPACK HPC calculations across multiple nodes, two MPI tasks per
node were run on POWER3 SMP High. Since the xlf SMP run time binds its
threads to CPUs, it was necessary to use the bindprocessor subroutine to
prevent multiple compute threads from being bound to the same CPU. Shared
memory MPI (MP_SHARED_MEMORY=yes) was used for data transfers
within each node.

HPC 8 5130 22400 4 5540 13000 1

16 10040 31600 8 11080 27000 2

32 19920 44800 16 21000 38000 4

LINPACK POWER3 SMP Thin/Wide POWER3 SMP High

Variant CPU MFlops Size Nodes MFlops Size Nodes
Chapter 2. Performance 11

Most of the MPI communication needed for LINPACK HPC is done in
"interrupt" mode. Since the messages are long, increasing the hysteresis
delay (MP_INTRDELAY=100) allows more data to be processed per interrupt,
which improves performance. Since MPI currently supports only 32-bit
addressing, and since MPI needs to reserve one of the eight 256 MB data
segments for itself, the amount of user data per MPI task is limited to 1.75
GB. (When a 64 bit version of MPI is released, the memory available to a
single MPI task will be the amount of physical memory installed on the node
where it is running, less whatever is required by AIX, PSSP, etc.)

In order to run larger problems, two MPI tasks per node had to be used.
Running larger problems with two MPI tasks per node improved performance,
even though increasing the number of MPI tasks leads to additional MPI
communication, and running with two MPI tasks per node may increase
contention for the switch adapter.

Although multinode performance for equal numbers of CPUs is comparable,
the eight-CPU POWER3 SMP High node delivers much more performance
than the two-CPU POWER3 SMP Thin/Wide node. For four nodes, the ratio of
POWER3 SMP High performance to POWER3 SMP Thin/Wide performance
is NH_MFlop/WH_MFlop = 21000/5130 = 4.

The problem size was a larger on POWER3 SMP High, but that should not
affect this comparison since the problem size on POWER3 SMP Thin/Wide
was large enough to yield nearly maximum performance.

2.1.2.1 NAS 2 benchmarks
The NAS 2 benchmarks are a suite of eight codes developed by NASA Ames
to compare performance on different computers. There are five kernels: CG,
EP, FT, LU, and MG. These perform computation-intensive operations, such
as FFT (FT) and sparse matrix vector multiply (CG). The three simulated
applications, BT, LU, and SP, are intended to be more representative of full
CFD programs. Each NAS 2 code has three different problem sizes denoted
as Class A, B, and C, with A being smallest and C being largest. These are
MPI codes, and the source provided by NASA Ames was not modified. Two
codes, BT and SP, require that the number of MPI tasks be a perfect square
(1,4,9,16, and so on) while CG, FT, IS, LU, and MG require that the number of
tasks be a power of 2 (1,2,4,8, and so on).

2.1.3 Serial batch runs
Multiple copies of the single CPU class A problems were run. Since 1 is both
a power of 2 and a perfect square, all eight codes could be run. The class A
problem was chosen since it is the smallest, and eight simultaneous copies of
12 Scientific Applications in RS/6000 SP Environments

each code could easily be run on a POWER3 SMP High node. The POWER3
SMP Thin/Wide node 4 and 8 copy results are estimated, not measured. It is
assumed that one would run four copies on POWER3 SMP Thin/Wide nodes
by running two sets of two simultaneous copies back to back; so, the time for
four copies is assumed to be double the time for two copies. Similarly, the
time required to execute eight copies on POWER3 SMP Thin/Wide nodes is
assumed to be four times the time to required to execute two copies.

Table 3 displays the run times in seconds as reported by the codes.

Table 3. Run times in seconds (as reported by the codes)

2.1.4 Discussion of serial batch results
Immediately after a reboot, the time for a single copy of luA is about 700
seconds. The time increases to 845 sec after many jobs have been run. This
behavior is reproducible, but it is currently not well understood. It may be that
the allocation of pages in real memory immediately after a reboot allows this
particular code to use L2 cache more efficiently.

For these codes, a single POWER3 SMP Thin/Wide CPU generally
outperforms a single POWER3 SMP High CPU. The POWER3 SMP
Thin/Wide node is faster for six of the eight codes: BT, CG, FT, LU, MG, and
SP.

For BT, the POWER3 SMP Thin/Wide node is actually 20 percent faster than
the POWER3 SMP High node. The lower latency on POWER3 SMP
Thin/Wide nodes is responsible for the difference. The faster clock on

Code POWER3 SMP High number of copies POWER3 SMP Thin/Wide number of copies

1 2 4 8 1 2 4 (est) 8 (est)

btA 1606 1634 1693 1840 1333 1540 3080 6160

cgA 20.1 20.6 21.7 26.1 17.7 18.1 36.2 72.4

epA 206 206 206 206 226 227 454 908

ftA 68.5 69.8 74.1 79.0 64.7 70.4 140.8 281.6

isA 20.9 21.0 21.2 21.4 21.0 21.5 43.0 86.0

luA 845 865 875 913 755 789 1580 3160

mgA 33.0 33.3 34.5 37.2 27.6 30.8 61.6 123

spA 1104 1118 1158 1248 952 1070 2140 4280
Chapter 2. Performance 13

POWER3 SMP High nodes gives it better performance for the EP and IS
codes.

Since the POWER3 SMP High node has eight CPUs, the POWER3 SMP High
node can run eight copies of the serial NAS 2 codes much faster than a
POWER3 SMP Thin/Wide node, which has only 2 CPUs. Note that the eight
copy times on the POWER3 SMP Thin/Wide node are reasonable estimates,
not actual measurements. A POWER3 SMP High node runs eight copies of
most codes in less than 1/3 of the time estimated on a POWER3 SMP
Thin/Wide node.

2.1.5 NAS 2 runs using shared memory MPI
A subset of the NAS 2 codes were run using shared memory MPI on the
POWER3 SMP High node. Starting with PSSP 3.1.1, MPI supports a shared
memory path for communication between two tasks on the same node. The
POE environment variable MP_SHARED_MEMORY was set to yes. This
environment variable is new with PSSP 3.1.1. The TB3MX2 adapter allows
only four MPI/us tasks per node. These runs required eight MPI tasks on a
single node, so the "ip" version of shared memory MPI was used instead of
the "us" version. Since MP_EUILIB was set to "ip", MP_WAIT_MODE was set
to "poll" (the default for "ip" is "yield").

For more information about MPI/POE environment variables, see Parallel
Environment for AIX: Operation and Use, SC28-1979.

Those NAS 2 codes that can run with eight MPI tasks were run on single
POWER3 SMP High node with eight CPUs using shared memory MPI.
Results for class B and C problem sizes are shown. Those codes that would
run on a POWER3 SMP Thin/Wide node with two CPUs and three GB of
memory were run the same way. MPI/us results for four POWER3 SMP
Thin/Wide nodes running PSSP 3.1.0 (no shared memory MPI) are also
shown. Table 4 shows the times (in seconds) as reported by the codes.

Table 4. Times (in seconds) as reported by the codes

Code
Four POWER3
SMP Thin/Wide
nodes eight CPUs
MPI/us

One POWER3 SMP
Thin/Wide node
two CPUs MPI/shm

One POWER3 SMP
High node eight CPUs
MPI/shm

cgB 154 574 187

epB 117 477 104

ftB 175 571 162
14 Scientific Applications in RS/6000 SP Environments

2.1.5.1 Discussion of NAS 2 results with shared memory MPI
Since POWER3 SMP High nodes can have up to 16 GB of memory, the
largest class C problem size can be run for all six codes. The memory on
POWER3 SMP Thin/Wide nodes is currently limited to 4 GB; so, the FT class
C problem, which requires about 7 GB, will not fit on a single POWER3 SMP
Thin/Wide node. MG class C requires about 4 GB of memory, but this could
not be run since the POWER3 SMP Thin/Wide node had only 3 GB.

In general, the performance of a POWER3 SMP High node with eight CPUs is
similar to that of four POWER3 SMP Thin/Wide nodes having a total of eight
CPUs. Shared memory MPI helps the performance of FT and IS on POWER3
SMP High nodes. The higher frequency helps the performance of EP and IS
on POWER3 SMP High nodes. The other codes run somewhat faster on
POWER3 SMP Thin/Wide nodes. However, the performance of a single
POWER3 SMP High node is three to four times better than that of a single
POWER3 SMP Thin/Wide node.

2.2 Spec95 benchmark

The System Performance and Evaluation Cooperative (SPEC) benchmark
(CPU95) consists of 10 FORTRAN 77 programs (SPECfp95) and eight
C-language programs (SPECint95). The CFP95 group reflects
"numeric-scientific applications", while the CINT95 group are "system or
commercial". These benchmarks measure the performance of CPU, memory

isB 10.2 25 7.7

luB 425 1846 433

mgB 19.8 80.8 20.3

cgC 464 1874 553

epC 470 1904 414

ftC 829 N/A 775

isC 41.6 103 31.4

luC 1894 9089 2060

mgC 147 N/A 159

Code
Four POWER3
SMP Thin/Wide
nodes eight CPUs
MPI/us

One POWER3 SMP
Thin/Wide node
two CPUs MPI/shm

One POWER3 SMP
High node eight CPUs
MPI/shm
Chapter 2. Performance 15

system, and compiler code generation. The individual benchmarks are
summarized in Table 5.

Table 5. Summary of individual benchmarks

The CPU95 benchmarks are used in speed measurement and throughput
measurement. In the speed measurements, the results are expressed as the
ratio of the wall clock time to execute one single copy of the benchmark
compared to a fixed "SPEC reference time". For the CPU95 benchmarks, a
SUN SPARCstation 10/40 was chosen as the reference. The
SPECint_base95 and SPECfp_base95 provide the geometric mean when

Integer benchmarks: CINT95

099.go Artificial intelligence; plays the game "Go"

124.m88ksim Motorola 88K chip simulator; runs test program

126.gcc New version og GCC; builds SPARC code

129.compress Compresses and decompresses file in memory

130.li LISP interpreter

132.ijpeg Graphic compression and decompression

134.perl Manipulates strings (anagrams) and prime numbers in
Perl

147.vortex A database program

Floating point benchmarks: CFP95

101.tomcatv A mesh-generation program

102.swim Shallow water model with 513 x 513 grid

103.su2cor Quantum physics; Monte Carlo simulator

104.hydro2d Astrophysics; Hydrodynamical Navier-Stokes equation

107.mgrid Multi-grid solver in 3D potential field

110.applu Parabolic/elliptic partial differential equations

125.turb3d Simulates isotropic, homogeneous turbulence in a cube

141.apsi Calculates statistics on temperature and pollutants in a
grid

145.fpppp Quantum chemistry

146.wave5 Plasma physics; solves Maxwell's equations on a
cartesian mesh
16 Scientific Applications in RS/6000 SP Environments

compiled with conservative optimization for each benchmark while
SPECint95 and SPECfp95 give the geometric mean when compiled with
aggressive optimization for each benchmark.

In the throughput measurement, several copies of a benchmark are executed.
This method is particularly suitable for multiprocessor systems and clusters.
The results, called SPECrate, express how many jobs of a particular type
(characterized by the individual benchmarks) can be executed in a given time.
Therefore, the SPECrate characterizes the capacity of a system for
computation-intensive jobs of similar characteristics. Table 6 displays
SPEC95 performance.

Table 6. SPEC95 performance

Table 7 displays SPECrate results.

Table 7. SPECrate results

Benchmark POWER3 SMP
Thin/Wide (200 MHz)

POWER3 SMP High
(222 MHz)

SPECfp_base95 27.6 26.1

SPECfp95 30.1 28.2

SPECint_base95 12.5 13.1

SPECint95 13.2 14.2

Number of
CPUs

POWER3 Thin/Wide (200 MHz) POWER3 Thin/Wide (222 MHz)

CFP95 CINT95 CFP95 CINT95

Base Peak Bas
e

Peak Base Peak Base Peak

1 251 273 110 130 232 255 111 121

2 480 517 217 236 461 503 224 243

4 937 1008 375 402 900 977 441 472

8 1846 1983 738 794 1679 1849 872 931

16 3724 3984 1588 1716 3331 3611 1647 1801

32 7399 7894 2985 3260 6239 6830 3206 3325

64 14452 15291

128 26960 28250
Chapter 2. Performance 17

2.3 Accessing memory effectively

In order for a single processor to access memory efficiently, it is important to
use the L1 cache efficiently. This is discussed in Section 2.3.1, “Avoiding
cache misses” on page 18. Section 2.3.2, “Multiprocessor throughput” on
page 20, illustrates how the multiple processors of the POWER 3 SMP High
Node are able to achieve high efficiency when accessing memory
concurrently.

2.3.1 Avoiding cache misses
The key to avoiding L1 Cache misses is to understand how the Cache works.

In POWER3 SMP High nodes, as in POWER3 SMP Thin/Wide nodes, the L1
Cache is 64 KB in size and consists of 512 "lines". Each line is 128 bytes long
and is loaded (and stored) from memory or L2 cache as a whole. The cache
is 128-way associative, which means there are four blocks of 128 lines, and
each word in memory can be loaded into just one of those blocks and has 128
lines into which it can be loaded. If the address is X, the block it can be
loaded into can be determined from the algorithm (in Fortran notation):
MOD(MOD(X,128),4).

It is now easy to see how to ruin the performance by creating a pathological
situation with the Cache. If data is loaded with a stride of 1024 bytes, it will
use all available Cache lines if the data size is 128 Double Precision words.
For data sizes greater than this, the performance will be atrocious as shown
in Figure 4.

Figure 4. POWER3 SMP High node: Load with stride = 1024 bytes

10 100 1000

Length in 8 bytes words

0

500

1000

1500

2000

MB/sec
18 Scientific Applications in RS/6000 SP Environments

Data is being loaded from level 2 cache. The access rate is approximately
120 MB/sec, although, since a whole Cache line is loaded for every access,
the actual data transfer rate from L2 Cache is (128/8)*120 MB/sec = 1.9
MB/sec. The time taken to access the data is 220/(120/8) = approximately 15
cycles per word.

2.3.1.1 Array transpose
Obviously, to avoid cache misses, large strides should not be used if at all
possible. For example, if the stride is caused by accessing a matrix in the
"wrong" direction, the matrix can first be transposed using the ESSL routines.
If ESSL is not available, the matrix could be transposed using Fortran code
similar to the following:

do ii=1,N,NB
do j=1,N
do i=ii,min(ii+NB-1,N)
y(i,j)=x(j,i)

enddo
enddo

enddo

If NB is chosen correctly (somewhat less than 128), it will enable all values of
x during one pass of the inner loop to be held in the Cache so that successive
passes of the middle loop will find much of x data already in the Cache.
However, since it is somewhat difficult to determine the best value of NB, it is
preferable to use the ESSL routines.

2.3.1.2 Data prefetch
If data is accessed sequentially, the hardware will prefetch Cache lines. If
data is accessed randomly, up to four Cache lines may be fetched
concurrently. This can be illustrated by the following loops:

parameter(NS=16,N=32,M=2000)
real*8 x(NS,N,M)
. . .
do j=1,M
do i=1,N
y = y + x(1,i,j)

enddo
enddo
. . .
do j=1,M
do i=1,N
y = y + x(1,ind(i),j)

enddo
enddo
Chapter 2. Performance 19

In the first loop, the access is skip sequential, and one word is loaded from
each Cache line sequentially. The word is loaded from memory because the
total size of array x is 8 MB, which is too large for the 4 MB L2 Cache.

In the second loop, one word is loaded randomly from each line within a page.
The reason for creating multiple random accesses within one page at a time
(rather the whole array) is to avoid TLB (Translation Lookaside Buffer)
misses.

The cycle times for these loops on POWER3 SMP High and POWER3 SMP
Thin/Wide nodes are displayed in Table 8.

Table 8. Cycle times for POWER3 SMP nodes

If each line was fetched one at a time, the times would have a latency of
approximately 85 cycles on the POWER3 SMP High node (and 35 on the
POWER3 SMP Thin/Wide node) plus 16 cycles to transmit the line. These
measurements clearly show that the hardware is looking ahead, and multiple
lines are being fetched concurrently. However, remember that only four lines
can be fetched concurrently.

It is also very important to try to avoid TLB misses as illustrated in the
preceding code. There are 256 entries in the TLB buffer, each translating the
address of a virtual page to a real page. This covers just 1 MB of address
space. If an entry does not exist in the TLB buffer, an extra delay of about 50
cycles will occur.

2.3.2 Multiprocessor throughput
Some simple attempts were made to explore the throughput capabilities of
the eight processor POWER3 SMP High node. Since it is memory access that
is expected to cause conflict, three types of memory access were examined:
Load, Store, and Copy.

In order to make the measurements, rather than running separate programs,
Fortran's shared memory loop parallelization capability was used. The
memory access operation was placed inside a loop that could be parallelized
for multiple processes with Fortran directives (designated by CSMP$). The
number of participating processes was determined at run time by setting the
variable XLSMPOPTS to the required number.

Axis pattern POWER3 SMP High POWER3 SMP Thin/Wide

Skip Sequential 36 27

Random 30 25
20 Scientific Applications in RS/6000 SP Environments

2.3.2.1 Load
The Load operation was represented by the following Fortran loop:

parameter(M=4*1024*1024+7)
real*8 y(100,8),x(M,8)
.

CSMP$ PARALLEL DO PRIVATE(it,irep,i)
do it=1,NPROC
do irep=1,NREP
do i=1,N
y(1,it)=y(1,it)+x(i,it)

enddo
enddo

enddo

The variables x and y were double precision (64 bit). The variable x was
summed, rather than simply loaded (for example, with y(1,it)=x(i,it)), to
prevent Fortran from optimizing away the whole loop! The results for various
values of N and NPROC are shown in Figure 5.

Figure 5. POWER3 SMP High node: Rate for y=y+x(i)

Note that the "1 proc" curve for a single processor reaches over 3000 MB/sec
as long as the data is in the 64 KB Level 1 Data Cache. This is nearly equal to
the maximum rate of 3.5 GBps. The lower rate for shorter lengths is due to
the overhead of setting up the summation loop and storing y.

When the data is too large to fit in the L1 Cache, the rate drops to about 1.2
GBps, which is a little less that the maximum rate of about 1.75 GBps that
can be expected from the 4 MB L2 Cache. As the data size approaches and

1 100 10000 1000000 100000000

Bytes

0

500

1000

1500

2000

2500

3000

3500

MB/sec/proc

1 proc 8 procs 8 procs*
Chapter 2. Performance 21

exceeds 4 MB, the data has to come directly from memory, and the rate falls
off further.

However, what is really impressive is that the rate per processor for the "8
procs" curve is very similar to that of the "1 proc" curve. This is particularly so
for large data sizes, which shows that there is very little memory interference.
The "8 procs" curve reaches almost the same value as the "1 proc" curve
while the data is in the L1 cache. This is to be expected since each processor
has its own Level 1 cache.

The "8 procs" rate is lower than the "1 proc" rate for very short lengths due to
the overhead of storing multiple y values and maintaining Cache coherence.
Indeed, the "8 procs*" curve shows that very significant overhead will be
incurred if the y values are stored in the same cache line (where each cache
line consists of 128 consecutive bytes). This undesirable effect was
inadvertently achieved by declaring y as "real*8 y(NPROC)". This caused a
huge degradation for small data sizes; so, parallel programmers BEWARE.

2.3.2.2 Store
The Store operation was represented by the following Fortran loop:

parameter(M=4*1024*1024+7)
real*8 x(M,NPROC)
.

CSMP$ PARALLEL DO PRIVATE(it,irep,i)
do it=1,NPROC
do irep=1,NREP
do i=1,N
x(i,it)=1.d0

enddo
enddo

enddo

The variable x was double precision (64 bit). The results, for various values of
N and NPROC, are shown in Figure 6 on page 23.
22 Scientific Applications in RS/6000 SP Environments

Figure 6. POWER3 SMP High node: Rate for x(i)=1.d0

Note that the rate per process for 8 processes is very similar to that for a
single process.

2.3.2.3 Copy
The Copy operation was represented by the following Fortran loop:

parameter(M=4*1024*1024+7)
real*8 y(M,8),x(M,8)
.

CSMP$ PARALLEL DO PRIVATE(it,irep,i)
do it=1,NPROC
do irep=1,NREP
do i=1,N
y(i,it)=x(i,it)

enddo
enddo

enddo

The variables x and y were double precision (64 bit). The results for various
values of N and NPROC are shown in Figure 7 on page 24.

1 100 10000 1000000 100000000

Bytes

0

500

1000

1500

2000

MB/sec/proc

1 proc 8 procs
Chapter 2. Performance 23

Figure 7. POWER3 SMP High node: Rate for y(i)=x(i)

Once again, note that the rate per process for eight processes is very similar
to that for a single process.

1 100 10000 1000000 100000000

Bytes

0

500

1000

1500

2000

MB/sec/proc

1 proc 8 procs
24 Scientific Applications in RS/6000 SP Environments

Chapter 3. Distributed memory

This chapter serves as an introduction to programming paradigms for
distributed memory parallelization. Mainly, the standardized Message
Passing Interface (MPI) is being discussed, with particular emphasis on
collective communications, MPI data types, and performance assessment.
Finally, we will cover the Low-level Application Programming Interface (LAPI).
After reading this chapter, you will understand advanced concepts of
message passing and be able to use it more efficiently.

3.1 Introduction to MPI

This subsection introduces the message passing concepts of MPI starting
with the basic functionality of send and receive subroutines. Next, we will
discuss the way pitfalls and deadlock situations can easily occur when this
basic functionality is used directly. This subsection is not intended to be a
comprehensive introduction to MPI; so, the last part of this subsection offers
suggestions for further reading.

3.1.1 Basic concepts
The message passing paradigm assumes that a computer program is split
into several tasks, each having its own private data and addressing space. No
global data is shared by several or all tasks of the program. All
synchronization and communication between the tasks is accomplished by
passing messages. This concept has been developed for parallel machines
with distributed memory but is not confined to this architecture. By the very
nature of this concept, any interaction between different tasks needs explicit
coding, which makes it difficult to have message passing automatically done
by the compiler. On the other hand, the programmer has total control over
task interaction; so, by carefully designing synchronization and
communication patterns, he or she can achieve better scalability than with
any other parallelization technique.

In order to make parallel programs portable, the Message Passing Interface
(MPI) was established. The goals of this standardization are best described
with a quote from "MPI: A Message Passing Interface Standard (Version
1.1)", available at http://www.mpi-forum.org/docs/docs.html.

“The MPI standardization effort involved about 60 people from 40
organizations mainly from the United States and Europe. Most of the
major vendors of concurrent computers were involved in MPI, along
with researchers from universities, government laboratories, and
© Copyright IBM Corp. 1999 25

industry. The standardization process began with the Workshop on
Standards for Message Passing in a Distributed Memory
Environment, sponsored by the Center for Research on Parallel
Computing, held April 29-30, 1992, in Williamsburg, Virginia. At this
workshop the basic features essential to a standard message
passing interface were discussed, and a working group established
to continue the standardization process.”

The main advantages of establishing a message-passing standard are
portability and ease of use. In a distributed memory communication
environment in which the higher-level routines and/or abstractions are built
upon lower-level message passing routines, the benefits of standardization
are particularly apparent. Furthermore, the definition of a message passing
standard, such as that proposed here, provides vendors with a
clearly-defined base set of routines that they can implement efficiently or, in
some cases, for which they can provide hardware support, thereby enhancing
scalability.

Simply stated, the goal of the Message Passing Interface is to develop a
widely-used standard for writing message-passing programs. As such, the
interface should establish a practical, portable, efficient, and flexible standard
for message passing.

A complete list of goals follows:

• Design an application programming interface (not necessarily for
compilers or a system implementation library).

• Allow efficient communication: Avoid memory-to-memory copying and
allow overlap of computation and communication and off-load to
communication coprocessor, where available.

• Allow for implementations that can be used in a heterogeneous
environment.

• Allow convenient C and Fortran 77 bindings for the interface.

• Assume a reliable communication interface: The user need not cope with
communication failures. Such failures are dealt with by the underlying
communication subsystem.

• Define an interface that is not too different from current practice, such as
PVM, NX, Express, p4, etc., and provides extensions that allow greater
flexibility.

• Define an interface that can be implemented on many vendors’ platforms
with no significant changes in the underlying communication and system
software.
26 Scientific Applications in RS/6000 SP Environments

• The semantics of the interface should be language-independent.

• The interface should be designed to allow for thread-safety.

3.1.2 Pitfalls in point-to-point communication
The atomic units of every message passing library are send and receive
operations, which have to come in pairs. The syntax of the blocking send
operation is as follows:

MPI_SEND(buf, count, datatype, dest, tag, comm)
[IN buf] initial address of send buffer (choice)
[IN count] number of elements in send buffer (nonnegative integer)
[IN datatype] datatype of each send buffer element (handle)
[IN dest] rank of destination (integer)
[IN tag] message tag (integer)
[IN comm] communicator (handle)

The send buffer specified by the MPI_SEND operation consists of count
successive entries of the type indicated by data type starting with the entry at
address buf. Note that we specify the message length in terms of the number
of elements, not the number of bytes. The former is machine-independent
and closer to the application level.

In addition to the data part, messages carry information that can be used to
distinguish messages and selectively receive them. This information consists
of a fixed number of fields, which we collectively call the message envelope.
These fields are:

• Source

• Destination

• Tag

• Communicator

The message source is implicitly determined by the identity of the message
sender. The other fields are specified by arguments in the send operation.

The message destination is specified by the dest argument.

The integer-valued message tag is specified by the tag argument. This
integer can be used by the program to distinguish different types of
messages.

A communicator specifies the communication context for a communication
operation. Each communication context provides a separate “communication
universe”. Messages are always received within the context they were sent,
Chapter 3. Distributed memory 27

and messages sent in different contexts do not interfere. A predefined
communicator, MPI_COMM_WORLD, is provided by MPI. It allows
communication with all processes that are accessible after MPI initialization,
and processes are identified by their rank in the group of
MPI_COMM_WORLD.

The syntax of the blocking receive operation is as follows:

MPI_RECV (buf, count, datatype, source, tag, comm, status)
[OUT buf] initial address of receive buffer (choice)
[IN count] number of elements in receive buffer (integer)
[IN datatype] datatype of each receive buffer element (handle)
[IN source] rank of source (integer)
[IN tag] message tag (integer)
[IN comm] communicator (handle)
[OUT status] status object (Status)

The receive buffer consists of the storage containing count-consecutive
elements of the type specified by data type starting at address buf. The length
of the received message must be less than or equal to the length of the
receive buffer. An overflow error occurs if all incoming data does not fit into
the receive buffer without truncation.

If a message that is shorter than the receive buffer arrives, only those
locations corresponding to the (shorter) message are modified.

Tag and source can be specified by the wild card constants MPI_ANY_TAG
and MPI_ANY_SOURCE.

The send call described above is blocking; it does not return until the
message data and envelope have been safely stored away so that the sender
is free to access and overwrite the send buffer. The message might be copied
directly into the matching receive buffer, or it might be copied into a temporary
system buffer. The receive is blocking as well; it returns when the message
has been received.

Note that a finished MPI_SEND may not imply that the message has actually
been sent. The MPI standard explicitly leaves it to the implementer to
determine when the send actually occurs. Instead, MPI defines three more
sending modes (each represented by a different MPI call).

A buffered mode send operation can be completed whether or not a matching
receive has been posted. However, unlike the standard send, its completion
never depends on the occurrence of a matching receive. Thus, if a send is
executed and no matching receive is posted, MPI must buffer the outgoing
message to allow the send call to complete. An error will occur if there is
28 Scientific Applications in RS/6000 SP Environments

insufficient buffer space. The amount of available buffer space is controlled by
the user. This send mode is closest to the PVM send.

A send that uses the synchronous mode can be started whether or not a
matching receive was posted. However, the send will only complete
successfully if a matching receive is posted and the receive operation has
started to receive the message sent by the synchronous send. Thus, the
completion of a synchronous send not only indicates that the send buffer can
be reused, but also that the receiver has reached a certain point in its
execution, namely, that it has started executing the matching receive.

A send that uses the ready communication mode may be started only if the
matching receive is already posted. Otherwise, the operation is erroneous,
and its outcome is undefined. The completion of the send operation does not
depend on the status of a matching receive; it merely indicates that the send
buffer can be reused. If a ready send is actually used without a corresponding
receive being posted, IBM MPI issues the following error message indicating
a fatal error:

ERROR: 0032-175 No receive posted for ready mode send in MPI_RSEND or
MPI_IRSEND, task 1
ERROR: 0031-250 task 0: Terminated
ERROR: 0031-250 task 1: Terminated
v01n01:/u/pospiech/Redbook $

For implementation of the standard send, the MPI standard suggests that you
use eager send for small messages and synchronous send for large
messages. IBM follows this suggestion by adding a buffer at the receiving
side for early arrival. This way, a standard send works very much like a
buffered send for small messages, except that the buffering takes place at the
receiver's side. The buffer size is controlled by the environment variable
MP_BUFFER_MEM (poe option -buffer_mem). The limit between the two
implementations is given by the environment variable MP_EAGER_LIMIT (the
poe option -eager_limit). If neither MP_BUFFER_MEM nor
MP_EAGER_LIMIT is set by the user, MP_EAGER_LIMIT defaults to Table 9.

Table 9. MP_EAGER_LIMIT per tasks

Number of Tasks MP_EAGER_LIMIT (in bytes)

1—16 4096

17—32 2048

33—64 1024

65—128 512
Chapter 3. Distributed memory 29

The following example may be used to demonstrate the use of
MP_EAGER_LIMIT and MP_BUFFER_MEM. If started with two MPI tasks,
the program mutually exchanges buffer contents. Both MPI tasks first call a
blocking send followed by a blocking receive. According to the standard, this
is an unsafe practice and risks a deadlock.

/**
* xchange.c
*
* Program for testing MP_EAGER_LIMIT and MP_BUFFER_MEM
* Run on 2 MPI tasks.
***/
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

int main(int argc, char *argv[])
{
int i, tag;
int bufsize;
char *sendbuf, *recvbuf;
int me, comm_size, partner;
MPI_Status status[2];

/* error check and allocation of sendbuf an recvbuf
removed for better readability */

/* meaning of command line argument */
bufsize = atoi(argv[1]);

/* initialize MPI */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
partner = (me ? 0 : 1);
tag = 1;

/* initialize buffers */
for (i=0; i<bufsize; i++) {
sendbuf[i] = (char) me;
}

/* do communication */
printf("Start sending now ...\n");
MPI_Send(sendbuf, bufsize, MPI_CHAR, partner, tag, MPI_COMM_WORLD);
printf("Posting receive now ...\n");
MPI_Recv(recvbuf, bufsize, MPI_CHAR, partner, tag, MPI_COMM_WORLD, status);
printf("Received on %d: %d\n",me,recvbuf[0]);
30 Scientific Applications in RS/6000 SP Environments

MPI_Finalize();
printf("done\n");
return(0);
}

We get the following results:

v01n01:/u/pospiech/Redbook $ poe xchange 4096
0:Start sending now ...
1:Start sending now ...
1:Posting receive now ...
1:Received on 1: 0
0:Posting receive now ...
0:Received on 0: 1
0:done
1:done
v01n01:/u/pospiech/Redbook $ poe xchange 4097
0:Start sending now ...
1:Start sending now ... (deadlock; has to be canceled with ^C)
^CERROR: 0031-250 task 0: Interrupt
ERROR: 0031-250 task 1: Interrupt
v01n01:/u/pospiech/Redbook $ poe xchange -eager_limit 4097 4097
0:Start sending now ...
1:Start sending now ...
1:Posting receive now ...
1:Received on 1: 0
0:Posting receive now ...
0:Received on 0: 1
0:done
1:done
v01n01:/u/pospiech/Redbook $

In the first case, the program was started with a message size just at
MP_EAGER_LIMIT. MPI chooses an eager send to handle the standard send,
which was actually coded. The message is buffered for early arrival, and the
send returns. Then, the receives are posted. Note that the return of the send
does not even mean that the receives have been posted - let alone that the
message has arrived.

In the second case, the message size surpasses the MP_EAGER_LIMIT; so,
MPI does a synchronous send. This can only complete if a receive is posted.
But this cannot happen since neither of the sends ever returns; so, neither of
the MPI tasks arrives at the call of MPI_Recv.

In the last case, MP_EAGER_LIMIT is increased by one, and the example
works again; so, if a program happens to show unstable behavior that
disappears by increasing the MP_EAGER_LIMIT, it is likely to contain a code
Chapter 3. Distributed memory 31

section similar to the preceding. A safe MPI program will be able to run with
MP_EAGER_LIMIT set to zero. It is recommended that you try this once if
you are aiming for a portable MPI code.

Note that it is not possible to set MP_EAGER_LIMIT to a value larger than
MP_BUFFER_MEM because MP_EAGER_LIMIT is limited to 65536 by
implementation. MP_BUFFER_MEM cannot be lowered below 1 MB (the
default for user space is 64 MB) because, otherwise, poe complains.

v01n01:/u/pospiech/Redbook $ poe xchange -buffer_mem 1000000 4096 1
1:ERROR: 0031-309 Connect failed during message passing initialization,

task 1, reason: There is not enough memory available now.
1:ERROR: 0031-007 Error initializing communication subsystem: return

code -1
0:ERROR: 0031-309 Connect failed during message passing initialization,

task 0, reason: There is not enough memory available now.
0:ERROR: 0031-007 Error initializing communication subsystem: return

code -1
v01n01:/u/pospiech/Redbook $

The standard way out of the aforementioned deadlock situation is to use
non-blocking communication calls. A non-blocking send start call initiates the
send operation but does not complete it. The send start call will return before
the message was copied out of the send buffer. A separate send complete
call is needed to complete the communication, for example, to verify that the
data has been copied out of the send buffer. Non-blocking send start calls
can use the same four modes as blocking sends: Standard, buffered,
synchronous, and ready. These carry the same meaning. Ready-excepted
sends of all modes can be started whether a matching receive has been
posted or not; a non-blocking ready send can be started only if a matching
receive is posted. In all cases, it returns immediately, irrespective of the
status of other processes.

A separate send complete call is needed to complete the communication, for
example, to verify that the data has been copied out of the send buffer. The
send-complete call returns when data has been copied out of the send buffer.
It may carry additional meaning depending on the send mode.

If the send mode is synchronous, the send complete call only succeeds if a
matching receive has started. That is, a receive has been posted and
matched with the send.

If the send mode is buffered, the message must be buffered if there is no
ending receive. In this case, the send-complete must succeed irrespective of
the status of a matching receive.
32 Scientific Applications in RS/6000 SP Environments

If the send mode is standard, the send-complete call may return before a
matching receive occurred if the message is buffered. On the other hand, the
send-complete may not complete until a matching receive occurs and the
message is copied into the receive buffer.

Nonblocking sends can be matched with blocking receives and vice-versa.

For example, the interface for standard send start is as follows:

MPI_ISEND(buf, count, datatype, dest, tag, comm, request)
[IN buf] initial address of send buffer (choice)
[IN count] number of elements in send buffer (integer)
[IN datatype] datatype of each send buffer element (handle)
[IN dest] rank of destination (integer)
[IN tag] message tag (integer)
[IN comm] communicator (handle)
[OUT request] communication request (handle)

C interface:

int MPI_Isend(void* buf, int count, MPI_Datatype datatype,int dest, int
tag, MPI_Comm comm, MPI_Request *request)

FORTRAN interface:

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

There are several send complete calls possible. For example, the interface for
MPI_WAIT is given. MPI_WAIT takes the request handle from the send start
command and returns when the corresponding send has completed.

MPI_WAIT(request, status)
[INOUT request] request (handle)
[OUT status] status object (handle)

C interface:

int MPI_Wait(MPI_Request *request, MPI_Status *status)

FORTRAN interface:

MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

But, even when nonblocking communication is used, an error, such as the
one shown above, can happen. As an example, one might consider the
following program, which shows a sneaky way to get along with only one
Chapter 3. Distributed memory 33

buffer for sending and receiving in an all-to-all communication. First, every
task starts all send operations in nonblocking mode. Then, an MPI_Waitany is
used to determine which send buffer can be reused. Whenever a buffer is
free, the corresponding receive places its data into this buffer.

/**
* all2all.c
*
* Try to save memory for all to all Communication
* Run on n MPI tasks.
***/

#include <stdio.h>
#include <stdlib.h>

#include "mpi.h"

int main(int argc, char *argv[])
{
int i, tag, sender;
int bufsize;
char *commbuf;
int me, comm_size;
MPI_Status status[2];
MPI_Request *requests;

/* error check and allocation and initialization of
commbuf removed for better readability */

/* meaning of command line argument */
bufsize = atoi(argv[1]);

/* initialize MPI */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
MPI_Comm_size(MPI_COMM_WORLD, &comm_size);
tag = 1;

/* do communication */

for (i=0; i<comm_size; i++) {
if (i==me) {continue;}
printf("Start sending now to %d...\n", i);
MPI_Isend(commbuf+i*bufsize, bufsize, MPI_CHAR, i, tag,

MPI_COMM_WORLD, requests+i);
}

for (i=0; i<comm_size; i++) {
34 Scientific Applications in RS/6000 SP Environments

printf("Waiting for a send to complete ...\n");
MPI_Waitany(comm_size, requests, &sender, status);
if (sender == MPI_UNDEFINED) {break;}
printf("Posting receive now for %d...\n", sender);
MPI_Recv(commbuf+sender*bufsize, bufsize, MPI_CHAR, sender, tag,

MPI_COMM_WORLD, status);
printf("Received on %d: %d\n",me,commbuf[sender*bufsize]);

}

MPI_Finalize();
printf("done\n");
return(0);
}

When run on three CPUs for different message sizes, the outcome of this
example is the following:

v01n01:/u/pospiech/Redbook $ poe all2all -procs 3 4096
0:Start sending now to 1...
0:Start sending now to 2...
0:Waiting for a send to complete ...
0:Posting receive now for 1...
2:Start sending now to 0...
1:Start sending now to 0...
1:Start sending now to 2...
1:Waiting for a send to complete ...
1:Posting receive now for 0...
1:Received on 1: 0
1:Waiting for a send to complete ...
1:Posting receive now for 2...
1:Received on 1: 2
1:Waiting for a send to complete ...
0:Received on 0: 1
0:Waiting for a send to complete ...
0:Posting receive now for 2...
0:Received on 0: 2
0:Waiting for a send to complete ...
2:Start sending now to 1...
2:Waiting for a send to complete ...
2:Posting receive now for 0...
2:Received on 2: 0
2:Waiting for a send to complete ...
2:Posting receive now for 1...
2:Received on 2: 1
2:Waiting for a send to complete ...
2:done
0:done
1:done
Chapter 3. Distributed memory 35

v01n01:/u/pospiech/Redbook $ poe all2all -procs 3 4097
0:Start sending now to 1...
0:Start sending now to 2...
0:Waiting for a send to complete ...
2:Start sending now to 0...
2:Start sending now to 1...
2:Waiting for a send to complete ...
1:Start sending now to 0...
1:Start sending now to 2...
1:Waiting for a send to complete ... (waiting forever; use ^C to stop)

^CERROR: 0031-250 task 0: Interrupt
ERROR: 0031-250 task 1: Interrupt
ERROR: 0031-250 task 2: Interrupt
v01n01:/u/pospiech/Redbook $

Again, this example shows significant dependence on the message size. If
the message size exceeds MP_EAGER_LIMIT, the program is in deadlock.
The explanation is easy and closely-linked to the question of where the data
resides between send and receive. Small messages are buffered; so, all
messages can take off, stay in the buffer, and land in their new destination.
Large messages can only leave their old position if the new place is already
free; so, all messages are waiting for someone to start the game. In fact, if
started on two processors, it is the very first example in a new disguise; so, it
is surprising that it behaves the same way. This is a good example of an
unsafe code, which would have been caught by setting MP_EAGER_LIMIT to
zero.

Note, however, that it is safe to call MPI_Waitany in a loop as shown in the
example above. MPI_Waitany never waits on the same request twice because
it is invalidating the request it has been waiting for.

Using nonblocking communication, there are indeed several ways to correct
the erroneous MPI program for buffer exchange shown above. The erroneous
statements were the following (for the sake of clarity, the printf statements are
removed):

MPI_Send(sendbuf, bufsize, MPI_CHAR, partner, tag, MPI_COMM_WORLD);
if (use_barrier)
{
MPI_Barrier(MPI_COMM_WORLD);

}
MPI_Recv(recvbuf, bufsize, MPI_CHAR, partner, tag, MPI_COMM_WORLD, status);

A standard send is implemented as synchronous send for message sizes
larger than MP_EAGER_LIMIT; so, the call to MPI_Send can only return if it
is matched by a posted receive. But, the receives are only posted after
36 Scientific Applications in RS/6000 SP Environments

completion of the send; so, the program deadlocks. The standard correction
would be to replace these statements with the following:

MPI_Isend(sendbuf, bufsize, MPI_CHAR, partner, tag, MPI_COMM_WORLD,
&request);
MPI_Recv(recvbuf, bufsize, MPI_CHAR, partner, tag, MPI_COMM_WORLD, status);
MPI_Wait(&request, status+1);

Now, the send is started, and control is immediately given back to the
program. Then, the receives are posted, and the sends can complete. An
MPI_Wait is called to complete the send operation and guarantee that the
send buffer can be reused safely. Thinking twice, one might note that the
send still has to wait for the receive being posted; so, it might be
advantageous to post the receive before starting the send. For obvious
reasons, the receive has to be nonblocking now.

MPI_Irecv(recvbuf, bufsize, MPI_CHAR, partner, tag, MPI_COMM_WORLD,
&request);
MPI_Send(sendbuf, bufsize, MPI_CHAR, partner, tag, MPI_COMM_WORLD);
MPI_Wait(&request, status);

This works as smoothly as the previous solution, but the execution time tends
to be slightly slower (see Figure 8 on page 38). Therefore, it may be tempting
to replace the standard send with a ready send, since the receive is posted
anyway. However, only the receive posted by the other MPI task counts; so,
the following error message is almost inevitable:

ERROR: 0032-175 No receive posted for ready mode send in MPI_RSEND or
MPI_IRSEND, task 0
ERROR: 0031-250 task 0: Terminated
ERROR: 0031-250 task 1: Terminated

Three errors occur because one task is ahead and gets to the send before
the other task is able to post the receive. This can either be mended through
the use of synchronous sends or by a barrier between receive and send. The
latter guarantees that sends are only started when all receives are posted.

MPI_Irecv(recvbuf, bufsize, MPI_CHAR, partner, tag, MPI_COMM_WORLD,
&request);
MPI_Barrier(MPI_COMM_WORLD);
MPI_Rsend(sendbuf, bufsize, MPI_CHAR, partner, tag, MPI_COMM_WORLD);
MPI_Wait(&request, status);

A comparison of execution times is shown in Figure 8.
Chapter 3. Distributed memory 37

Figure 8. Different algorithms for message exchange

First, note the jump in execution time for the first two examples at a message
size of 4096 bytes. This jump is due to the change in protocol for the standard
send. The barrier is expected to take a similar amount of time for the
rendezvous as takes place at the beginning of a synchronous send.
Nevertheless, for large messages, this solution shows a slight advantage in
execution time. Apparently, the barrier is too slow to make the last example
efficient for small messages.

3.1.3 Suggestions for further reading
This redbook is not intended to be a complete introduction to MPI; rather, it
concentrates on the effective use of possibly less-known parts of it. There are
also two comprehensive introductions.

To start with, there is another redbook on this topic: RS/6000 SP: Practical
MPI Programming, SG24-5380.

This redbook helps you write Message Passing Interface (MPI) programs
that run on distributed memory machines, such as the RS/6000 SP. This
publication concentrates on the real programs that RS/6000 SP solution
providers want to parallelize.

A indispensable reference is the MPI standard itself, which is available via the
Internet using the URL http://www.mpi-forum.org/docs/docs.html.

Quite a number of books have been published on this topic including the
following:
38 Scientific Applications in RS/6000 SP Environments

• Using MPI, by William Gropp, Ewing Lusk, and Anthony Skjellum
published by MIT Press ISBN 0-2625-7104-8. The example programs from
this book are available at ftp://ftp.mcs.anl.gov/pub/mpi/using.

• Designing and Building Parallel Programs, Ian Foster's online book
includes a chapter on MPI. It provides a succinct introduction to an MPI
subset. (ISBN 0-2015-7594-9; Published by Addison-Wesley)

• MPI: The Complete Reference, by Marc Snir, Steve Otto, Steven
Huss-Lederman, David Walker, and Jack Dongarra, The MIT Press .

• MPI: The Complete Reference - 2nd Edition: Volume 2, The MPI-2
extensions, by William Gropp, Steven Huss-Lederman, Andrew
Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir, The
MIT Press.

• Parallel Programming With MPI, by Peter S. Pacheco, published by
Morgan Kaufmann.

3.2 MPI collective communication

As discussed in the previous section, the use of vanilla send and receive
routines needs careful consideration; otherwise, a program may easily end up
deadlocking. Moreover, some communication constructs may go well for
some data but deadlock with others; so, at first sight, this just looks like the
very opposite of ease of use.

Before blaming MPI for this complicated and error-prone setup, the atomic
send and receive routines should be considered low-level layers. The
high-level approach would be to use the collective communication routines
discussed in this subsection.

3.2.1 Design concepts
Similar to the concept of Basic Linear Algebra Subroutines (BLAS), MPI also
provides a concept of larger building blocks. These building blocks allow for a
high-level approach to message-passing communication. This requires, as a
first step, that you identify the communication pattern rather than thinking of
single send and receive commands. The first question would be: Who has got
what part of the information, and who is going to need it? This has to be
compared with the given communication patterns provided by the collective
communication routines. Experience shows that most communication can be
mapped to collective communication routines, particularly in combination with
MPI data types.
Chapter 3. Distributed memory 39

This approach produces less code, which is easier to read. Next, it is much
less error-prone since all buffering, waiting, and blocking are done internally.
Finally, the code is, in general, more efficient, at least on the RS/6000 SP; so,
it is worth giving it a second thought. It is better to describe what
communication is needed, and leave the question of how to set up the
appropriate send and receive commands to MPI.

For better reading, a description of collective communication calls is quoted
here from the MPI 1.1 standard. The functions of this type provided by MPI
are the following:

• Barrier synchronization across all group members.

• Broadcast from one member to all members of a group. See Figure 9 on
page 41.

• Gather data from all group members to one member. See Figure 9 on
page 41.

• Scatter data from one member to all members of a group. See Figure 9 on
page 41.

• A variation on Gather where all members of the group receive the result.
This is shown as ‘‘allgather’’ in Figure 9 on page 41.

• Scatter/Gather data from all members to all members of a group (also
called complete exchange or all-to-all). This is shown as ‘‘alltoall’’ in Figure
9 on page 41.

• Global reduction operations, such as sum, max, min, user-defined
functions where the result is returned to all group members, and a
variation where the result is returned to only one member.

• A combined reduction and scatter operation.

• Scan across all members of a group (also called prefix).
40 Scientific Applications in RS/6000 SP Environments

Figure 9. Collective move functions (group of six processes)

In each case, each row of boxes represents data locations in one process.
Thus, in the broadcast, initially, only the first process contains the data
A_0, but, after the broadcast, all processes contain it.

A collective operation is executed by having all processes in the group call the
communication routine with matching arguments. The syntax and semantics
of the collective operations are defined to be consistent with the syntax and
semantics of the point-to-point operations. The key concept of the collective
functions is to have a “group” of participating processes. The routines do not
have a group identifier as an explicit argument. Instead, there is a
communicator argument. Several collective routines, such as broadcast and
gather, have a single originating or receiving process. Such processes are
called the root. Some arguments in the collective functions are specified as
“significant only at root” and are ignored for all participants except the root.

Collective routine calls can (but are not required to) return as soon as their
participation in the collective communication is complete. The completion of a
call indicates that the caller is now free to access locations in the
communication buffer. It does not indicate that other processes in the group
have completed or even started the operation (unless otherwise indicated in
the description of the operation). Thus, a collective communication call may
or may not have the effect of synchronizing all calling processes. Of course,
this statement excludes the barrier function.
Chapter 3. Distributed memory 41

It is dangerous to rely on synchronization side-effects of the collective
operations for program correctness. For example, even though a particular
implementation may provide a broadcast routine with a side-effect of
synchronization, the standard does not require this, and a program that relies
on this will not be portable. On the other hand, a correct portable program
must allow for the fact that a collective call may be synchronizing. Though one
cannot rely on any synchronization side-effect, one must program so as to
allow it.

MPI_BARRIER(comm)
[IN comm] communicator (handle)

C interface:

int MPI_Barrier(MPI_Comm comm)

Fortran interface:

MPI_BARRIER(COMM, IERROR) INTEGER COMM, IERROR

MPI_BARRIER blocks the caller until all group members have called it. The
call returns at any process only after all group members have entered the
call. If most (if not all) communication is done via collective communication
calls, an explicit barrier is rarely needed.

MPI_BCAST(buffer, count, datatype, root, comm)
[INOUT buffer] starting address of buffer (choice)
[IN count] number of entries in buffer (integer)
[IN datatype] data type of buffer (handle)
[IN root] rank of broadcast root (integer)
[IN comm] communicator (handle)

C interface:

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)

Fortran interface:

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

MPI_BCAST broadcasts a message from the process with rank root to all
processes of the group including itself. It is called by all members of the group
using the same arguments for communication (root). Upon its return, the
contents of root’s communication buffer have been copied to all processes.
42 Scientific Applications in RS/6000 SP Environments

MPI_GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
root, comm)
[IN sendbuf] starting address of send buffer (choice)
[IN sendcount] number of elements in send buffer (integer)
[IN sendtype] data type of send buffer elements (handle)
[OUT recvbuf] address of receive buffer (choice, significant only at root)
[IN recvcount] number of elements for any single receive (integer,
significant only at root)
[IN recvtype] data type of recv buffer elements (significant only at root)
(handle)
[IN root] rank of receiving process (integer)
[IN comm] communicator (handle)

C interface:

int MPI_Gather(void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Fortran interface:

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)
<type> SENDBUF(*),
RECVBUF(*) INTEGER SENDCOUNT, SENDTYPE,
RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

Each process (including the root process) sends the contents of its send
buffer to the root process. The root process receives the messages and
stores them in rank order. An alternative description is that the n messages
sent by the processes in the group are concatenated in rank order, and the
resulting message is received by the root as if by a call to
MPI_RECV(recvbuf, recvcount n, recvtype, ...).

The receive buffer is ignored for all non-root processes. All arguments to the
function are significant on process root while, on other processes, only the
sendbuf, sendcount, sendtype, root, and comm arguments are significant. All
processes must use the same communicator and the same value for root.
The specification of counts and types should not cause any location on the
root to be written more than once; such a call is erroneous. Note that the
recvcount argument at the root indicates the number of items it receives from
each process, not the total number of items it receives.

MPI_GATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
recvtype, root, comm)
[IN sendbuf] starting address of send buffer (choice)
[IN sendcount] number of elements in send buffer (integer)
[IN sendtype] data type of send buffer elements (handle)
Chapter 3. Distributed memory 43

[OUT recvbuf] address of receive buffer (choice, significant only at root)
[IN recvcounts] integer array (of length group size) containing the number
of elements that are received from each process (significant only at root)
[IN displs] integer array (of length group size). Entry i specifies the
displacement relative to recvbuf at which to place the incoming data from
process i (significant only at root)
[IN recvtype] data type of recv buffer elements (significant only at root)
(handle)
[IN root] rank of receiving process (integer)
[IN comm] communicator (handle)

C interface:

int MPI_Gatherv(void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int *recvcounts,
int *displs, MPI_Datatype recvtype, int root,
MPI_Comm comm)

Fortran interface:

MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, ROOT, COMM, IERROR)
<type> SENDBUF(*),
RECVBUF(*) INTEGER SENDCOUNT, SENDTYPE,
RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
COMM, IERROR

MPI_GATHERV extends the functionality of MPI_GATHER by allowing a
varying count of data from each process, since recvcounts is now an array. By
providing the new argument, displs, it also allows more flexibility as to where
the data is placed on the root. Messages are placed in the receive buffer of
the root process in rank order, that is, the data sent from process j is placed in
the jth portion of the receive buffer, recvbuf, on process root. The jth portion
of recvbuf begins at the offset of displs[j] elements (in terms of recvtype) into
recvbuf.

The receive buffer is ignored for all non-root processes. All arguments to the
function are significant on process root while, on other processes, only the
sendbuf, sendcount, sendtype, root, and comm arguments are significant. All
processes must use the same communicator and the same value for root.

The type signature implied by sendcount, sendtype, on process i must be
equal to the type signature implied by recvcounts[i], recvtype, at the root. This
implies that the amount of data sent must be equal to the amount of data
received pairwise between each process and the root.

MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
root, comm)
44 Scientific Applications in RS/6000 SP Environments

[IN sendbuf] address of send buffer (choice, significant only at root)
[IN sendcount] number of elements sent to each process (integer,
significant only at root)
[IN sendtype] data type of send buffer elements (significant only at root)
(handle)
[OUT recvbuf] address of receive buffer (choice)
[IN recvcount] number of elements in receive buffer (integer)
[IN recvtype] data type of receive buffer elements (handle)
[IN root] rank of sending process (integer)
[IN comm] communicator (handle)

C interface:

int MPI_Scatter(void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Fortran interface:

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)
<type> SENDBUF(*),
RECVBUF(*) INTEGER SENDCOUNT, SENDTYPE,
RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_SCATTER is the inverse operation to MPI_GATHER.

MPI_SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount,
recvtype, root, comm)
[IN sendbuf] address of send buffer (choice, significant only at root)
[IN sendcounts] integer array (of length group size) specifying the number
of elements to send to each processor
[IN displs] integer array (of length group size). Entry i specifies the
displacement (relative to sendbuf from which to take the outgoing data to
process i
[IN sendtype] data type of send buffer elements (handle)
[OUT recvbuf] address of receive buffer (choice)
[IN recvcount] number of elements in receive buffer (integer)
[IN recvtype] data type of receive buffer elements (handle)
[IN root] rank of sending process (integer)
[IN comm] communicator (handle)

C interface:

int MPI_Scatterv(void* sendbuf, int *sendcounts, int *displs,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)
Chapter 3. Distributed memory 45

Fortran interface:

MPI_SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, ROOT, COMM, IERROR)
<type> SENDBUF(*),
RECVBUF(*) INTEGER SENDCOUNTS(*), DISPLS(*),
SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM,
IERROR

MPI_SCATTERV is the inverse operation to MPI_GATHERV.

MPI_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm)
[IN sendbuf] starting address of send buffer (choice)
[IN sendcount] number of elements in send buffer (integer)
[IN sendtype] data type of send buffer elements (handle)
[OUT recvbuf] address of receive buffer (choice)
[IN recvcount] number of elements received from any process (integer)
[IN recvtype] data type of receive buffer elements (handle)
[IN comm] communicator (handle)

C interface:

int MPI_Allgather(void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

Fortran interface:

MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, COMM, IERROR)
<type> SENDBUF(*),
RECVBUF(*) INTEGER SENDCOUNT, SENDTYPE,
RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLGATHER can be thought of as MPI_GATHER, except that all
processes receive the result instead of just the root. The jth block of data sent
from each process is received by every process and placed in the jth block of
the buffer recvbuf. The type signature associated with sendcount, sendtype,
at a process must be equal to the type signature associated with recvcount,
recvtype, at any other process.

The outcome of a call to MPI_ALLGATHER() is as if all processes executed n
calls to MPI_GATHER (sendbuf, sendcount, sendtype, recvbuff, recvcount,
recvtype, root, comm) for root = 0 , ..., n-1. The rules for correct usage of
MPI_ALLGATHER are easily found from the corresponding rules for
MPI_GATHER.
46 Scientific Applications in RS/6000 SP Environments

MPI_ALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
recvtype, comm)
[IN sendbuf] starting address of send buffer (choice)
[IN sendcount] number of elements in send buffer (integer)
[IN sendtype] data type of send buffer elements (handle)
[OUT recvbuf] address of receive buffer (choice)
[IN recvcounts] integer array (of length group size) containing the number
of elements that are received from each process
[IN displs] integer array (of length group size). Entry i specifies the
displacement (relative to recvbuf) at which to place the incoming data from
process i
[IN recvtype] data type of receive buffer elements (handle)
[IN comm] communicator (handle)

C interface:

int MPI_Allgatherv(void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int *recvcounts,
int *displs, MPI_Datatype recvtype, MPI_Comm comm)

Fortran interface:

MPI_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,
DISPLS, RECVTYPE, COMM, IERROR)
<type> SENDBUF(*),
RECVBUF(*) INTEGER SENDCOUNT, SENDTYPE,
RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,
IERROR

MPI_ALLGATHERV can be thought of as MPI_GATHERV, except that all
processes receive the result instead of just the root. The jth block of data sent
from each process is received by every process and placed in the jth block of
the buffer recvbuf. These blocks need not all be the same size. The type
signature associated with sendcount, sendtype, at process j must be equal to
the type signature associated with recvcounts[j], recvtype, at any other
process.

The outcome is as if all processes executed calls to MPI_GATHERV (sendbuf,
sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root, comm) for
root = 0 , ..., n-1. The rules for correct usage of MPI_ALLGATHERV are easily
found from the corresponding rules for MPI_GATHERV.

MPI_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm)
[IN sendbuf] starting address of send buffer (choice)
[IN sendcount] number of elements sent to each process (integer)
[IN sendtype] data type of send buffer elements (handle)
[OUT recvbuf] address of receive buffer (choice)
Chapter 3. Distributed memory 47

[IN recvcount] number of elements received from any process (integer)
[IN recvtype] data type of receive buffer elements (handle)
[IN comm] communicator (handle)

C interface:

int MPI_Alltoall(void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

Fortran interface:

MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)
<type> SENDBUF(*),
RECVBUF(*) INTEGER SENDCOUNT, SENDTYPE,
RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLTOALL is an extension of MPI_ALLGATHER to the case where each
process sends distinct data to each of the receivers. The jth block sent from
process i is received by process j and is placed in the ith block of recvbuf.

The type signature associated with sendcount, sendtype, at a process must
be equal to the type signature associated with recvcount, recvtype, at any
other process. This implies that the amount of data sent must be equal to the
amount of data received pairwise between every pair of processes. As usual,
however, the type maps may be different.

All arguments on all processes are significant. All processes must use the
same communicator.

MPI_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
rdispls, recvtype, comm)
[IN sendbuf] starting address of send buffer (choice)
[IN sendcounts] integer array equal to the group size specifying the
number of elements to send to each processor
[IN sdispls] integer array (of length group size). Entry j specifies the
displacement (relative to sendbuf from which to take the outgoing data
destined for process j
[IN sendtype] data type of send buffer elements (handle)
[OUT recvbuf] address of receive buffer (choice)
[IN recvcounts] integer array equal to the group size specifying the
number of elements that can be received from each processor
[IN rdispls] integer array (of length group size). Entry i specifies the
displacement (relative to recvbuf at which to place the incoming data from
process i
[IN recvtype] data type of receive buffer elements (handle)
[IN comm] communicator (handle)
48 Scientific Applications in RS/6000 SP Environments

C interface:

int MPI_Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,
MPI_Datatype sendtype, void* recvbuf, int *recvcounts,
int *rdispls, MPI_Datatype recvtype, MPI_Comm comm)

Fortran interface:

MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,
RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR)
<type> SENDBUF(*),
RECVBUF(*) INTEGER SENDCOUNTS(*), SDISPLS(*),
SENDTYPE, RECVCOUNTS(*), RDISPLS(*),
RECVTYPE, COMM, IERROR

MPI_ALLTOALLV adds flexibility to MPI_ALLTOALL in that the location of data
for the send is specified by sdispls, and the location of the placement of the
data on the receive side is specified by rdispls.

The type signature associated with sendcount[j], sendtype, at process i must
be equal to the type signature associated with recvcount[i], recvtype, at
process j. This implies that the amount of data sent must be equal to the
amount of data received pairwise between every pair of processes. Distinct
type maps between sender and receiver are still allowed. All arguments on all
processes are significant. All processes must use the same communicator.

MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)
[IN sendbuf] address of send buffer (choice)
[OUT recvbuf] address of receive buffer (choice, significant only at root)
[IN count] number of elements in send buffer (integer)
[IN datatype] data type of elements of send buffer (handle)
[IN op] reduce operation (handle) [IN root] rank of root process
(integer)
[IN comm] communicator (handle)

C interface:

int MPI_Reduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root,
MPI_Comm comm)

Fortran interface:

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
<type> SENDBUF(*),
RECVBUF(*) INTEGER COUNT, DATATYPE, OP, ROOT,
COMM, IERROR
Chapter 3. Distributed memory 49

MPI_REDUCE combines the elements provided in the input buffer of each
process in the group, using the operation op, and returns the combined value
in the output buffer of the process with rank root. The input buffer is defined
by the arguments sendbuf, count, and datatype; the output buffer is defined
by the arguments recvbuf, count, and datatype; both have the same number
of elements with the same type. The routine is called by all group members
using the same arguments for count, data type, op, root, and identical
communicators. Thus, all processes provide input buffers and output buffers
of the same length, with elements of the same type. Each process can
provide one element or a sequence of elements, in which case the combine
operation is executed element-wise on each entry of the sequence.

The operation op is always assumed to be associative. All predefined
operations are also assumed to be commutative. Users may define
operations that are assumed to be associative but not commutative. The
“canonical’’ evaluation order of a reduction is determined by the ranks of the
processes in the group. However, the implementation can take advantage of
associativity, or associativity and commutativity, in order to change the order
of evaluation. This may change the result of the reduction for operations that
are not strictly associative and commutative, such as floating point addition.

The predefined operations displayed in Table 10 are supplied for
MPI_REDUCE and the related functions: MPI_ALLREDUCE,
MPI_REDUCE_SCATTER, and MPI_SCAN. These operations are invoked by
placing the following in op:

Table 10. Predefined MPI operations

Name Meaning

[MPI_MAX] maximum

[MPI_MIN] minimum

[MPI_SUM] sum

[MPI_PROD] product

[MPI_LAND] logical and

[MPI_BAND] bit-wise and

[MPI_LOR] logical or

[MPI_BOR] bit-wise or

[MPI_LXOR] logical xor

[MPI_BXOR] bit-wise xor
50 Scientific Applications in RS/6000 SP Environments

MPI includes variants of each of the reduce operations where the result is
returned to all processes in the group. MPI requires that all processes
participating in these operations receive identical results.

MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)
[IN sendbuf] starting address of send buffer (choice)
[OUT recvbuf] starting address of receive buffer (choice)
[IN count] number of elements in send buffer (integer)
[IN datatype] data type of elements of send buffer (handle)
[IN op] operation (handle)
[IN comm] communicator (handle)

C interface:

int MPI_Allreduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Fortran interface:

MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*),
RECVBUF(*) INTEGER COUNT, DATATYPE, OP, COMM,
IERROR

This is the same as MPI_REDUCE except that the result appears in the
receive buffer of all the group members. The all-reduce operation can be
thought as a reduce followed by a broadcast.

MPI includes variants of each of the reduce operations where the result is
scattered to all processes in the group upon return.

MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm)
[IN sendbuf] starting address of send buffer (choice)
[OUT recvbuf] starting address of receive buffer (choice)
[IN recvcounts] integer array specifying the number of elements in result
distributed to each process. Array must be identical on all calling
processes.
[IN datatype] data type of elements of input buffer (handle)
[IN op] operation (handle) [IN comm] communicator (handle)

C interface:

[MPI_MAXLOC] max value and location

[MPI_MINLOC] min value and location

Name Meaning
Chapter 3. Distributed memory 51

int MPI_Reduce_scatter(void* sendbuf, void* recvbuf,
int *recvcounts, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

Fortran interface:

MPI_REDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,
IERROR)
<type> SENDBUF(*),
RECVBUF(*) INTEGER RECVCOUNTS(*), DATATYPE,
OP, COMM, IERROR

MPI_REDUCE_SCATTER first does an element-wise reduction on the vector
in the send buffer defined by sendbuf, count, and data type. Next, the
resulting vector of results is split into n disjoint segments where n is the
number of members in the group. Segment i contains recvcounts[i] elements.
The ith segment is sent to process i and stored in the receive buffer defined
by recvbuf, recvcounts[i], and data type.

The MPI_REDUCE_SCATTER routine is functionally equivalent to an
MPI_REDUCE operation function with count equal to the sum of recvcounts[i]
followed by MPI_SCATTERV with sendcounts equal to recvcounts.

MPI_SCAN(sendbuf, recvbuf, count, datatype, op, comm)
[IN sendbuf] starting address of send buffer (choice)
[OUT recvbuf] starting address of receive buffer (choice)
[IN count] number of elements in input buffer (integer)
[IN datatype] data type of elements of input buffer (handle)
[IN op] operation (handle) [IN comm] communicator (handle)

C interface:

int MPI_Scan(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Fortran interface:

MPI_SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*),
RECVBUF(*) INTEGER COUNT, DATATYPE, OP, COMM,
IERROR

MPI_SCAN is used to perform a prefix reduction on data distributed across
the group. The operation returns, in the receive buffer of the process with
rank i, the reduction of the values in the send buffers of processes with ranks
0,...,i (inclusive). The type of operations supported, their semantics, and the
constraints on send and receive buffers are the same as for MPI_REDUCE.
52 Scientific Applications in RS/6000 SP Environments

3.2.2 Performance considerations
As an example, all-to-all communication is considered more closely. All tasks
send messages of equal length to every other task, and, consequently, they
also have to receive messages from all tasks. It is assumed that all outgoing
messages are stored in the same large buffer and aligned with the task ID of
the receiver. Similarly, the incoming messages are to be stored in another
larger buffer and aligned by the task ID of the sender. The send and receive
buffers are assumed to be disjointed. From the previous subsection, recall
that the example in which the last assumption was dropped turned out to be
erroneous. This is not surprising because the communication pattern can
also be described as each MPI task is mutually swapping message contents
with every other task. But, swapping of data cannot be done in place. At least,
a temporary buffer is needed, which, of course, may be hidden by the use of a
buffered send.

In the context of each MPI task occupying one CPU and one communication
adapter and message sizes being independent of the number of MPI tasks,
the execution time for all-to-all communication is expected to grow, at least
linearly, in the number of MPI tasks. This can easily be concluded from the
fact that all outgoing messages have to be processed by the same CPU and
have to pass through the same adapter, which serializes the communication.
This linear behavior can also be observed from the timings that follow shortly.

Given this, every all-to-all communication would spoil parallel scalability.
Fortunately, in most cases, the assumption of message sizes being
independent of the number of MPI tasks is false. The most common examples
for data to be communicated are vectors with elements distributed blockwise
among the tasks or, even, matrices with rows and columns distributed
blockwise. In the first case, the message size is inversely proportional to the
number of MPI tasks and the execution time stays constant, in the latter case
it is even inversely proportional to the square of the number of MPI tasks and
the execution time decreases with the number of MPI tasks.

Following the lines of the previous subsection, a straightforward method of
implementation would be the following:

for (i=0; i<num_tasks; i++)
{
MPI_Irecv(recvbuf+i*bufsize, bufsize, MPI_CHAR, i, tag,

MPI_COMM_WORLD, requests+i);
}

MPI_Barrier(MPI_COMM_WORLD);
for (i=0; i<num_tasks; i++)
{
MPI_Rsend(sendbuf+i*bufsize, bufsize, MPI_CHAR, i, tag,
Chapter 3. Distributed memory 53

MPI_COMM_WORLD);
}

MPI_Waitall(comm_size, requests, status);

Given its simplicity, this version is shown below to work surprisingly well. The
barrier is needed to guarantee that all Ireceives are posted before the first
Rsend begins. The only drawback is that each task also communicates with
itself, which does not seem to be the most efficient way. Indeed, this can be
remedied in the following way:

for (i=0; i<num_tasks; i++)
{
if (i==me) {requests[i] = MPI_REQUEST_NULL; continue;}
MPI_Irecv(recvbuf+i*bufsize, bufsize, MPI_CHAR, i, tag,

MPI_COMM_WORLD, requests+i);
}

MPI_Barrier(MPI_COMM_WORLD);
for (i=0; i<num_tasks; i++)
{
if (i==me)
{

memcpy(recvbuf+me*bufsize, sendbuf+me*bufsize, bufsize);
continue;

}
MPI_Rsend(sendbuf+i*bufsize, bufsize, MPI_CHAR, i, tag,
MPI_COMM_WORLD);

}
MPI_Waitall(comm_size, requests, status);

Both versions just post all necessary sends and receives and leave it to the
communication subsystem to sort out how all messages travel through the
network without excessive congestion. This offers room for improvement by
designing congestion-free communication plans.

Breaking the all-to-all communication into mutual data exchanges, the design
of a congestion-free communication plan boils down to grouping the set of all
possible pairs into a minimal number of groups with disjoint members. This
problem is well known in the field of combinatorical mathematics. It goes by
the name of the"chess tournament problem". This is best described by the
task of planning a chess tournament with each participant playing against
everyone else in a minimum number of rounds. If the number of participants
is a power of two, there is an obvious solution by building the groups along
the parallel edges, face diagonals, and space diagonals of a hypercube. If
not, the next larger hypercube can be used to distribute the participants
among the corners of the hypercube. But, the grouping just described leaves
at least one participant without a partner in every round because not all
54 Scientific Applications in RS/6000 SP Environments

hypercube corners are occupied. This is congestion-free, but may not be
effective.

Relaxing the idea of mutual data exchange leads to the situation that each
MPI task sends and receives at the same time, except with different partners.
This paves the way for a very simple and congestion-free way of
implementing all-to-all communication, which is best described as follows: All
participants are arranged in a circle. In the first round, everyone talks to their
right neighbor but listens to their left neighbor. In the next round, everyone
talks to the next one on the right and listens to the next one on the left. This is
continued around the circle until everyone is talking to his left neighbor and
listening to his right neighbor. A C program implementing this might look like
the following:

size = num_tasks;
for (i=1; i<size; i++)
{
dest = (me+i<size ? me+i : me+i-size);
source = (me-i>=0 ? me-i : me-i+size);
MPI_Sendrecv(sendbuf+bufsize*dest, bufsize, MPI_CHAR, dest, tag,

recvbuf+bufsize*source, bufsize, MPI_CHAR, source, tag,
MPI_COMM_WORLD, &status);
}

memcpy(recvbuf+me*bufsize, sendbuf+me*bufsize, bufsize);

Finally, all these program examples have to be compared to the collective
communication version:

MPI_Alltoall(sendbuf, bufsize, MPI_CHAR,
recvbuf, bufsize, MPI_CHAR,
MPI_COMM_WORLD);

The following three figures show the timings of different all-to-all
implementations for different message sizes with two, four, and eight MPI
tasks.
Chapter 3. Distributed memory 55

Figure 10. Algorithms for all-to-all collective communication (two MPI tasks)

There are 10000 repetitions of all-to-all communication among two MPI tasks
for different message sizes (in bytes).

Figure 11. Algorithms for all-to-all collective communication (four MPI tasks)

There are 10000 repetitions of all-to-all communication among four MPI tasks
for different message sizes (in bytes).
56 Scientific Applications in RS/6000 SP Environments

Figure 12. Algorithms for all-to-all collective communication (eight MPI tasks)

There are 10000 repetitions of all-to-all communication among eight MPI
tasks for different message sizes (in bytes).

Not surprisingly, the difference between the first two methods decreases with
the number of MPI tasks. In the second method, one send and receive pair is
saved, but this loses importance as the total number of send and receive
operations grows.

At first sight, it may be surprising that the second method (Irecv-Rsend
without communication to itself) works so well for two MPI tasks. But, this is
just the exchange example from the previous subsection in disguise. In
particular, there is no congestion. If the number of MPI tasks and the
message size increases, this changes dramatically.

Both the Sendrecv and the collective communication version show the
characteristic jump at message size equal to MP_EAGER_LIMIT, which
indicates an internal use of standard sends.

Lastly, all examples show that the pain of designing a congestion-free
communication plan does not pay off. The sendrecv method is always worse
than the collective communication version. A closer examination shows that
the gap between the two versions matches the jump at MP_EAGER_LIMIT.
Apart from the fact that the curves are roughly parallel. Apparently, the
sendrecv version loses time during the hand shaking between sender and
receiver for messages larger than MP_EAGER_LIMIT.

This picture gets even clearer if the above timings are transformed to
bandwidth rates. This is done by dividing the message size by the time. This
has to be multiplied by 10000 to accommodate the number of repetitions and
Chapter 3. Distributed memory 57

by the number of MPI tasks to get the amount of data that is actually sent.
Figure 13 displays bandwidth for different all-to-all algorithms in the case of 8
MPI tasks.

Figure 13. Bandwidth for different all-to-all algorithms (eight MPI tasks)

This figure shows collective communication to be the clear winner over the
other alternatives that have been discussed in this subsection.

3.3 MPI data types

Most major message-passing libraries provide support for basic data types,
such as integer or reals. In PVM 3.x, the data is “packed” into a buffer using a
specific function for each data type. In MPI, each communication routine
takes the data type and the number of elements as arguments. The
disadvantage of the MPI approach compared to the PVM approach is that you
cannot mix data types in one communication routine, and you cannot send
noncontiguous data areas, such as a row in a matrix stored in column order,
as the memory layout of a Fortran program.

MPI has two solutions to this problem: First, it provides a pack and unpack
routine, but, more importantly, to solve this problem, MPI introduced the
concept of derived data types. You can define your own communication data
types using basic or derived data types.

There are several reasons to familiarize yourself with the new concept:

• Abstraction - By defining data types, you make an abstraction of your data
and memory layout. For example, instead of sending 100 reals, which are
on the border of your domain, you create a data type describing the
58 Scientific Applications in RS/6000 SP Environments

border; then, you can send the border directly. This will generally increase
the readability of your cod,e an, since you can use the data type in several
parts of your program, reusing the data structure will reduce the number
errors in your code.

• Performance - Because the MPI standard does not tell the vendors how to
implement derived data types, they do not have to go the PVM way and
copy the data elements into a buffer before sending them. This could
reduce memory movement and, therefore, make your program perform
better.

• MPI-IO - One of the chapters of the MPI-2 standard is MPI-IO. To use
MPI-IO efficiently, you have to be familiar with MPI derived data types.
MPI-IO is discussed in Section 6.5, “MPI-IO” on page 214.

In the following sections, we discuss the use of MPI derived data types. Note
that we point out differences between MPI-1.2 and MPI-2, even if some MPI-2
functions are not provided by the IBM implementation of MPI.

3.3.1 Basic concepts
Table 11 and Table 12 contain the MPI functions used to construct derived
data types. Table 12 shows the functions added in MPI-2. They correct some
problems with the MPI-1.x versions (mainly 64 bit addressing), and they
replace the old functions. Note that they are not supported in the IBM MPI
version at this time.

Table 11. MPI 1.2 Data types constructors

Table 12. MPI-2 Data types constructors

Syntax of constructor

MPI_Type_contiguous(count, oldtype, newtype)

MPI_Type_vector(count, blength, displ, oldtype, newtype)

MPI_Type_hvector(count, blength, displ, oldtype, newtype)

MPI_Type_indexed(count, blengths, displ’s, oldtype, newtype)

MPI_Type_hindexed(count, blengths, displ’s, oldtype, newtype)

MPI_Type_struct(count, blengths, displ’s, oldtypes, newtype)

Name of constructor

MPI_Type_create_hvector

MPI_Type_create_hindexed
Chapter 3. Distributed memory 59

Table 13 displays MPI functions, which helps you build the derived data types.
Again, the MPI-2 versions are not implemented in the IBM MPI.

Table 13. MPI utility functions for creating derived data types

Figure 14 on page 61 displays the general structure of the data type shown.
Each data type contains:

• A sequence of data types

• A sequence of integer displacements

The displacements are not required to be positive, distinct, or in increasing
order. A derived data type consists of n data types of type(i), each having the
displacement displ(i), i=0,n-1.

MPI_Type_create_struct

MPI_Type_create_subarrary

MPI_Type_create_darray

Name

MPI_Type_commit(type)

MPI_Type_free(type)

MPI_Type_extend(type, extend)

MPI_Type_size(type, size)

MPI_Type_lb(type, displ)

MPI_Type_ub(type, displ)

MPI_Address(location, address)

MPI_Get_address (MPI-2)

Name of constructor
60 Scientific Applications in RS/6000 SP Environments

Figure 14. General derived data types

The MPI standard defines the type signature to be

typesig={type(0),..., type(n-1)}

and the type map to be

typemap = {(type(0),displ(0)),...,(type(n-1),displ(n-1)}.

The type map together with a base address, buf, specifies a communication
buffer. The communication buffer consists of n entries where the i-th entry is
at address buf+displ(i) and has the type type(i).

The basic data types listed in Table 14 on page 62 can also be expressed by
a type map. For example, the basic data type MPI_INT has the type map,
{(int,0)}, which is an integer at a displacement of 0.

The extent of a data type is defined to be the span from the first byte to the
last byte occupied by entries in this data type and rounded to satisfy
alignment requirements.

lb(typemap) = min displ(i)
ub(typemap) = max (dipsl(i)+sizeof(type(i)))+eps
extent(typemap) = ub(typemap)-lb(typemap)

This definition is only true if none of the types are of MPI_UB or MPI_LB. This
case will be explained in more detail in Section 3.3.3, “Two dimensional
parallel FFT” on page 63.

The simplest data type constructor is MPI_Type_contiguous(). It replicates
one data type into contiguous locations.

To create a vector containing 100 single precision variables, you would type:

displ(1)

displ(2)

displ(3)

type(0) type(3)type(1)type(2)
Chapter 3. Distributed memory 61

call MPI_Type_contiguous(100, MPI_REAL, newtype, mpierr)

A more general constructor is MPI_Type_vector(). It allows replication of a
data type into locations that consist of equally-spaced blocks. Each block
contains the same number of copies of the old data type. The spacing
between each block is a multiple of the extent of the old data type. By using
the second version, MPI_Type_hvector(), you can specify the blocking in
bytes.

The next level of generalization is MPI_Type_indexed(). It allows each block
to have a different length and displacement. Again, there is a version of this
function, MPI_Type_hindex(), which takes the displacement in bytes rather
than oldtypes.

The most general type function in MPI is MPI_type_struct(). In addition to
MPI_Type_index(), it also allows all oldtypes to be distinct. This function can
be used to model a FORTRAN 90 type or a C structure to an MPI data type.

3.3.2 Use of derived data types in collective communications
The derived data types can be used as the basic data types in all
communication routines. The only problem is with routines, such as
MPI_Reduce or MPI_Allreduce, that perform operations on the data. Because
the reduction operations provided by MPI, such as MPI_SUM or MPI_MAX,
are not defined for derived data types; you have to create them.

Table 14. Predefined MPI data types

Type Permitted operations

MPI_INTEGER{1,2,4,8} MPI_BAND, MPI_BOR, MPI_BXOR,
MPI_MAX, MPI_MIN, MPI_PROD,
MPI_SUM

MPI_REAL{4,8,16} MPI_MAX, MPI_MIN, MPI_PROD,
MPI_SUM

MPI_COMPLEX{8,16,32} MPI_PROD, MPI_SUM

MPI_LOGICAL{1,2,4,8} MPI_LAND, MPI_LOR, MPI_LXOR

MPI_CHARACTER NONE

MPI_BYTE MPI_BAND, MPI_BOR, MPI_BXOR

MPI_UB NONE

MPI_LB NONE
62 Scientific Applications in RS/6000 SP Environments

3.3.3 Two dimensional parallel FFT
In this section, we solve the two-dimensional FFT problem in parallel. Our test
problem is the complex quadratic n x n matrix A:

The algorithm used to solve the two-dimensional FFT takes advantage of the
fact that you can express it with a series of one-dimensional FFT’s executed
first on the columns and then on the rows of the matrix. In order to keep the
examples small, we only allow the number of used processes np to be a
power of two and divide n.This leads to the following parallel algorithm:

1. Split the matrix A among np processes. Each process get a submatrix As
with the dimension n x (n/np).

2. Each process solves the one-dimensional FFT for each column of the
Matrix As. This involves no communication and is done by the ESSL
routine dcft().

3. Transpose matrix A globally.

4. Solve the one-dimensional FFT for each new column of matrix A using the
same routine as in step 2.

Figure 15 on page 64 shows the global transpose for np=4. Each MPI process
will store only a part of the matrix. Each of these matrix parts is further
divided into np quadratic submatrices; so, for example, process 1 stores the
four submatrices A1 through A4 in its local memory. In order to transpose the
matrix, we must do an Alltoall operation as described in Section 3.2.2,
“Performance considerations” on page 53. After this operation, process 1 has
the submatrices A1, B1, C1, and D1. Each of these submatrices must also be
transposed locally.

A

1 0,() 0 0,() … 0 0,()
0 0,() 0 0,() … 0 0,()
… …
0 0,() … … 0 0,()

=

Chapter 3. Distributed memory 63

Figure 15. Matrix A for np=4

Knowing MPI, the obvious way to perform this operation is to use the
MPI_Alltoall() call followed by the local transpositions, but there are other
strategies possible. We implemented some of them. The timing results are
listed in Table 15 on page 69.

The communication scheme using a buffered send and a blocking receive
looks like:

call MPI_Buffer_attach(vectorbuf, size, mpierr)
do i=1,np-1

dest=xor(myid,i)
row=dest*(n1/np)+1
do j=1, n2/np

call MPI_Bsend(a(row,j), n1/np, MPI_COMPLEX16, dest, j,...)
call MPI_Recv (a(row,j), n1/np, MPI_COMPLEX16, dest, j,...)

end do! j
end do! i
call MPI_Buffer_detach(vectorbuf, size, mpierr)

The i-loop covers each submatrix that has to be sent. The j-loop sends all
columns belonging to a specific submatrix. Since we restricted the number of
processes to be a power of two, we use a hypercube processor topology to
implement the communication. In a hypercube, we calculate the ID of the
neighbors with the exclusive or function xor(). Since we have the same
numbers of submatrices as we have processors, and since our numbering of
the submatrices is consistent with the numbering of the processors, we use a
destination variable to calculate the index of the submatrix to send and
receive.

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A1
64 Scientific Applications in RS/6000 SP Environments

The buffered send needs a buffer in which the data is stored. Unlike PVM, you
have to provide the buffer in MPI. In our case, this is done by allocating a
buffer using the FORTRAN 90 capability of declaring a variable allocatable. In
our case, the size of the buffer has to be at least:

(n2/np)*((n1/np)*sizeof(MPI_COMPLEX16)+MPI_BUFFER_OVERHEAD)

bytes. MPI_BUFFER_OVERHEAD is an MPI constant, which describes how
many extra bytes MPI needs for the buffering. If you are sending many
messages and are not sure when they will be received and you cannot check
the status of your buffer, you should also add an extra amount of “safety
bytes”. The buffer has to be made known to MPI by a call to
MPI_BUFFER_ATTACH(). You can remove the buffer with
MPI_BUFFER_DETACH(). The detach function will return as soon as all
messages in the buffer have been transmitted. This is why you should not
deallocate the buffer until it has been detached.

As can be seen in the Table 11 on page 59, this communication scheme is not
the fastest (bsend no data types). In order to improve it, we define an MPI
derived data type describing a submatrix. First, we define a subcolumn
containing of n1/np MPI_COMPLEX 16 data types:

call MPI_Type_contiguous(n1/np, MPI_COMPLEX16, Type1, mpierr)

Because we do not want to MPI_Type1 directly in a communication operation,
we do not have to commit it. The next step is to replicate this data type n2/np
times:

call MPI_Address(a(1,1), address1, mpierr)
call MPI_Address(a(1,2), address2, mpierr)
displ=address2-address1
call MPI_Type_hvector(n2/np,1,displ, Type1, Type2, mpierr)
call MPI_Type_commit(Type2, mpierr)

By using the Type2 data type in the communication,we get the following code
structure:

call MPI_Buffer_attach(vectorbuf, size, mpierr)
do i=1,np-1

dest=xor(myid,i)
row=dest*(n1/np)+1
call MPI_Bsend(a(row,j), 1, Type2, dest, j,...)
call MPI_Recv (a(row,j), 1, Type2, dest, j,...)

end do! i
call MPI_Buffer_detach(vectorbuf, size, mpierr)

Besides being faster than the first approach (bsend column type), the
communication pattern is written down more easily and, thus, is less error
Chapter 3. Distributed memory 65

prone. We still need the same extra buffer for the buffering. In order to reduce
the buffer, we introduce an extra call to MPI_Barrier() in the i-loop, which is
called every memfact iteration. In our example runs, we set memfact equal to
2. This allows us to make sure that all sends are completed and that the
buffer is available for reuse:

memfact=2
size=(n1/np)*(n2/np)*16+MPI_BUFFER_OVERHEAD! 16=sizeof(complex)
allocate(vectorbuf(memfact*size))
call MPI_Buffer_attach(vectorbuf, size, mpierr)
do i=1,np-1

dest=xor(myid,i)
row=dest*(n1/np)+1
call MPI_Bsend(a(row,j), 1, Type2, dest, j,...)
call MPI_Recv (a(row,j), 1, Type2, dest, j,...)
if (mod(i,memfact).eq.0) call MPI_Barrier(MPI_COMM_WORLD, mpierr)

end do! i
call MPI_Buffer_detach(vectorbuf, size, mpierr)

Surprisingly, this version is faster (bsend column barrier) than the version
without a call to MPI_Barrier(). This is consistent with the finding in Section
3.2, “MPI collective communication” on page 39.

If we use the MPI_Alltoall() call to do the communication, the code will fail
with the above definition of Type2. The reason for this is the extent of the data
type. Figure 16 shows the memory layout of this derived MPI Type with lb and
ub being the default lower and upper bounds of the data type.

Figure 16. Memory layout of Type2

The problem is that the default, ub, is pointing to the end of Type2. The MPI
standard says that you can view the receives in a collective communication, in
our case, MPI_Alltoall(), as if each message from a task, i, was received as:

mpi_recv(recvbuf+i*recvcount*extent(recvtype),....)

So, instead of interleaving the data in memory as we want, we attach them
together using memory that does not belong to our matrix. The solution to the

type1 type1type1type1

lb ub
66 Scientific Applications in RS/6000 SP Environments

problem is to move the MPI_UB pointer after the first type1. This can be seen
in Figure 17.

Figure 17. Memory layout of Type2 with MPI_UB moved

The easiest way to do this would be to use our Type2:

types(1)=TYPE2
types(2)=MPI_UB
len(1)=1
len(2)=1
displ(1)=0
call MPI_Address(a(1,1), address1, mpierr)
call MPI_Address(a(n1/np+1,1), address2, mpierr)
displ(2)=address2-address1
call MPI_Type_struct(2, len, displ, types, Type3, mpierr)

Another approach using Type1 and FORTRAN 90 vector notion would be:

types(1:n2/np)=Type1
types(n2/np+1)=MPI_UB
len(1:n2/np+1)=1
call MPI_Address(a(1,1), address1, mpierr)
call MPI_Address(a(1,2), address2, mpierr)
displ(1)=0
displ(2:n2/np)=displ(1:n2/np-1)+address2-address1
call MPI_Address(a(1,1), address1, mpierr)
call MPI_Address(a(n1/np+1,1), address2, mpierr)
displ(n2/np+12)=address2-address1
call MPI_Type_struct(n2/np+1, len, displ, types, Type3, mpierr)

Which version to use is a matter of taste and programming style. There is, at
least for the IBM RS/6000 SP, no performance difference.

There are some problems with using the above approach to move the upper
or lower bound in a data type. First, MPI_UB and MPI_LB are “sticky”. This
means that you cannot remove them once you put them into a data type. This
is important if you are building new data types using data types that already

type1 type1type1type1

lb MPI_UB
Chapter 3. Distributed memory 67

have MPI_UB or MPI_LB set directly. For example, consider a case where we
set MPI_UB explicitly for Type2 to point to the standard position as in Figure
16. We then use this new data type to build Type3 as in the first example
above. Type3 would contain two MPI_UB’s as shown in Figure 18.
MPI_UB_1, the MPI_UB with the highest memory address, would be used to
determine the extent of Type3, which, again, would be wrong for collective
communications.

Figure 18. Memory layout of Type2 with a “sticky” upper bound

The second problem with MPI_UB and MPI_LB is that the code gets more
error-prone because we have to add more lines of code to build the data type.

In MPI-2, there is a function to solve both problems:

MPI_Create_type_resized(oldtype, lb, extend, newtype, mpierr)

This function generates a new data type that is identical to the old data type -
except that the lower bound is set to lb, and the upper bound is set to
lb+extend. It also removes extra MPI_LB and MPI_UB in the new data type. To
create Typ3, the previous example would look like the following:

call MPI_Address(a(1,1), address1, mpierr)
call MPI_Address(a(n1/np+1,1), address2, mpierr)
extend=address2-address1
call MPI_Type_create_resized(Type2, 0, extend, Type3, mpierr)

Note that this function was not part of the IBM MPI version when this
publication was written.

Looking closer at the algorithm, we see that it has three parts: The
one-dimensional FFT calculation, the Alltoall communication, and the local
transposition of each submatrix. Since we are using ESSL to solve the
one-dimensional fft's, there is no optimization to be done here. We already
discussed the communication, leaving the transposition open. So far, we have
done this transposition using a subroutine, which, by unrolling, uses all four
prefetch streams of the POWER3 chip.

type1 type1type1type1

lb MPI_UB_2 MPI_UB_1
68 Scientific Applications in RS/6000 SP Environments

Another approach to the transposition is to let MPI do the work because MPI
does not require that the send and receive type be identical; it only requires
that the type signature on the receiver side match the type of signature of the
sender; so, by defining row-oriented submatrices as the opposite of the above
definition of column-oriented submatrices, we can let MPI do both the local
and global transposition.

call MPI_Type_vector(n2/np, 1, lda, MPI_COMPLEX16, MPI_Type1, mpierr)
call MPI_Type_hvector(n1/np, 1, 16, MPI_Type1, MPI_Type2, mpierr)

If we are using a collective communication, we also have to move the
MPI_UB as shown in the preceding code.

We have also tested the MPI_Pack and MPI_Unpack routine. As can be seen,
they perform about as well as our first version using MPI_Bsend().

The results of our runs are documented in Table 15. The numbers reported
are seconds as measured with the FORTRAN function rtc(). The Total Time is
the time to do the two-dimensional FFT on a double complex Matrix with the
dimension of 4096 x 4096. The first row is the timing for the two-dimensional
FFT solver provided by PESSL. The second row is our first implementation
followed by the version using the MPI submatrix column-oriented data type.
The fastest version is our implementation with calls to the MPI_Barrier(). The
next five rows show timings for different data types. The ssend example tries
to reduce the memory needed to synchronize the sends and receives. The
remaining three versions use the standard Alltoall implementation and the
MPI_Pack routine.

Table 15. Timings for different parallel FFT’s (n1=n2==4096, np=4)

Testcase Total Time Comm. Time Local Trans. Time

Parallel ESSL pdcft2 3.338 --- ---

bsend no data types 3.546 1.456 .336

bsend column type 3.275 1.182 .335

bsend column barrier 3.246 1.152 .335

bsend column/row 4.580 2.739 .084

bsend row/column 5.084 3.242 .084

bsend column thread 3.288 1.195 .335

bsend 1d column/row 4.636 2.795 .084

bsend 1d row/column 5.722 3.879 .084
Chapter 3. Distributed memory 69

Conclusions:

The idea of letting MPI take care of the local transposition was not a good
one. Even if the local transposition time went down, the increased
communication time was far higher. Knowing that we are transposing a matrix
and not simply moving data allows us to write a more efficient routine than
MPI can provide.

In this testcase, the version using MPI_Barrier performed a little better than
the PESSL version. There were several other test cases in which the PESSL
version were slightly faster and, considering that our versions are not yet as
general as the ESSL version, it is safe to say that the PESSL version is a very
good choice from a performance point of view. The main advantage our code
has is that it uses much less memory space than the PESSL version. The
MPI call Alltoall() requires that the input and output buffer of the
communication be disjointed. This increases the memory needed to solve the
problem by n1*n2/np data elements. Using our version, the memory increase
is only memfact*(n1/np)*(n2/np). This memory advantage would allow us to
solve the same problem as PESSL using a smaller number of MPI tasks or to
solve a bigger problem using the same number of tasks.

3.3.4 Domain splitting
Another good example for MPI is the Domain Splitting method. It assumes
you have a domain that you split onto different MPI processes. The problem
with this approach is that you will have to exchange border values between
the different processes as shown in Figure 19. In general, you have to send
information between processes that share a common edge. In our example,
this involves communication between domains A and B and B and C.
Depending on your problem, you might have communication between
domains sharing a common edge, C and A in our example. If you have to do
this, you might need a total of eight communications. There is an algorithm
that, in a two-dimensional domain splitting, reduces the number of
communications needed from eight unordered to four ordered ones. In a

ssend column (gen.) 3.551 1.464 .331

All2All column 3.654 1.279 .621

Pack standard 3.599 1.508 .335

Pack column 3.364 1.272 .335

Testcase Total Time Comm. Time Local Trans. Time
70 Scientific Applications in RS/6000 SP Environments

three-dimensional problem, you would only need six communication steps
instead of 26. Figure 19 illustrates domain splitting with nine domains.

Figure 19. Domain splitting with nine domains

Here is a code fragment that transfers MPI_COMM_WORLD into a two
dimensional Cartesian topology, defines two MPI data types on the border,
and, finally, uses MPI_Sendrecv() to do the update. The trick is to define the
data types to include the corners and also transfer them. In the code
fragment, the update of the corner between each communication step is
missing; this can be a problem depending on how the transposition is done.

call MPI_Cart_create(MPI_COMM_WORLD, dim, dims, period, reorder,
comm_cart, mpierr)
call MPI_Cart_coords(comm_cart, myid, dim, coords, mpierr)

! Get my neighbors
call MPI_Cart_shift(comm_cart, 0, 1, west, east, mpierr)
call MPI_Cart_shift(comm_cart, 1, 1, north, south, mpierr)

A B

C

Chapter 3. Distributed memory 71

! Build border
call MPI_Type_contiguous(n1/ny, MPI_REAL8, border_ns, mpierr)
call MPI_Type_vector(n2/nx, 1, n1, MPI_REAL8, border_we, mpierr)

! Exchange borders
call MPI_Sendrecv (domain(1,n2-1), 1, border_ns, east, 1,&

& domain(1,1) , 1, border_ns, west, 1,&
& comm_cart, status, mpierr)
call MPI_Sendrecv (domain(1,2) , 1, border_ns, west, 2,&

& domain(1,n2) , 1, border_ns, east, 2,&
& comm_cart, status, mpierr)
call MPI_Sendrecv (domain(n1-1,2), 1, border_we, south, 3,&

& domain(1,1) , 1, border_we, north, 3,&
& comm_cart, status, mpierr)
call MPI_Sendrecv (domain(2,2) , 1, border_we, north, 4,&

& domain(n1,1) , 1, border_we, south, 4,&
& comm_cart, status, mpierr)

The whole domain has the size of n1 × n2 grid points, and it is mapped onto
an ny × nx processor grid. In Figure 19 on page 71, a 3 × 3 processor grid is
shown.

This example is written using a structured grid called domain. The change to a
nonstructured grid or even a domain without a grid is rather easy. MPI
provides the function MPI_Graph_create() to describe a more general
processor topology than the above Cartesian one. If your border is irregular
but still constant in time, you can still define a data type describing it using
MPI_Type_indexed() or MPI_Type_struct(). In the more general case, where
your border is not constant in time, you might want to use MPI_Pack() to set up
the buffers for the communication.

3.4 MPI Performance assessment

After discussing various methods of efficient implementation in MPI in the
previous subsections, this subsection covers some easy ways of assessing
the performance of a parallel program. First, different ways of using the
time/timex command are discussed, followed by a discussion of different
timing calls in the program. MPI offers a portable API for profiling, which is
introduced next. The profiling support provided by the parallel operating
environment (POE) and, in particular, the visualization of profiling results by
xprofiler is highly recommended. The poe command also offers a trace facility
that allows detailed insight into various aspects of the parallel program.
72 Scientific Applications in RS/6000 SP Environments

3.4.1 Timing considerations
The quickest way to get some timing information is by using the /bin/time

command. But, there are some caveats to it. On the SP, the poe command is
used to start a parallel program (unless mpich is used). When /bin/time
precedes poe, the result looks like the following:

v07n01:/u/pospiech/Redbook $ /bin/time poe iall2all 8000 1 10000 -procs 6

[...] (Program output)

Real 70.68
User 0.06
System 0.09
v07n01:/u/pospiech/Redbook $

This way, the overall wall clock time for requesting six processors and loading
and executing the parallel program is measured. The user time refers to the
time used by poe, which, obviously, does not include the CPU time of the
parallel program. The situation does not change if time is replaced by timex.

v07n01:/u/pospiech/Redbook $ /bin/timex poe iall2all 8000 1 10000 -procs 6

[...] (Program output)

real 69.12
user 0.09
sys 0.12
v07n01:/u/pospiech/Redbook $

Unlike time, timex also includes CPU and Real time of all child processes of
the process under investigation. But, poe does not spawn the MPI tasks;
rather, it starts them by a process similar to rsh; so, these processes are not
accounted for by timex, and the difference between using time or timex this
way is negligible.

In order to get CPU time on the parallel program, the order of time and poe

should be exchanged.

v07n01:/u/pospiech/Redbook $ poe /bin/time iall2all 8000 1 10000 -procs 6

[...] (Program output)

3:
3:Real 60.71
3:User 36.64
3:System 1.95
2:
Chapter 3. Distributed memory 73

2:Real 60.71
2:User 35.70
2:System 2.93
0:
0:Real 60.66
0:User 51.75
0:System 2.23
1:
1:Real 60.66
1:User 52.21
1:System 2.28
4:
4:Real 60.72
4:User 55.04
4:System 2.13
5:
5:Real 60.72
5:User 54.93
5:System 2.24

v07n01:/u/pospiech/Redbook $

In this case, /bin/time gets the role of the parallel program. Thus, the timing
information is printed for each MPI task. poe actually copies the complete
environment to the parallel tasks including the value of $PATH; so, the
specification of the path for /bin/time is not necessary. The User time now has
a meaningful value. The Real time is somewhat less now because the time for
requesting the processors is no longer included. Note that the same trick
does not work for timex as can be seen from the following.

v07n01:/u/pospiech/Redbook $ export EUILIB=ip
v07n01:/u/pospiech/Redbook $ poe /bin/timex iall2all 8000 1 10000 -procs 6

1:ERROR: 0031-303 mp_euilib specifies us, css library loaded is not us.
0:ERROR: 0031-303 mp_euilib specifies us, css library loaded is not us.
0:
0:real 0.31
0:user 0.00
0:sys 0.01
0:
1:
1:real 0.18
1:user 0.00
1:sys 0.01
1:

ERROR: 0031-250 task 2: Terminated
ERROR: 0031-250 task 3: Terminated
ERROR: 0031-250 task 4: Terminated
74 Scientific Applications in RS/6000 SP Environments

ERROR: 0031-250 task 5: Terminated
v07n01:/u/pospiech/Redbook $

The reason that timex does not work as expected is because timex is a "set
uid" program. Such programs reset LIBPATH to NULL for security reasons,
but poe relies on being able to set LIBPATH to select between the User Space
and IP libraries, with the IP library as the default. In the example, had you set
MP_EUILIB=ip (not EUILIB=ip), it would have worked. If you need User
Space, you must specifically set -L/usr/lpp/ppe.poe/lib/us in your mpcc (or
mpxlf) compilation.

There is actually a point on how to interpret CPU-time for a parallel program.
Each MPI task is doing computation and communication, which may even
overlap. Even if they do not, part of the communication time accounts for CPU
time. Some other part is spent by the CPU on the adapter and may not be
caught at all; so, CPU time is very difficult to interpret.

Experience shows that, in many cases, wall clock time can be fitted quite well
to some model derived from Amdahl's law; so, some reasonable
interpretation can be easily derived from these timings. On the other hand,
reproducible results (if there are any) can only be obtained on a dedicated
system.

For timings inside the program, the Fortran function second() may not be the
right choice, given the preceding discussion. A better choice would be the
rtc() function, available only with xlf, which returns wall clock time in seconds
as a double precision value. Calling this function before and after the code
segment to be timed, the difference of both results is the wall clock time spent
in this code segment.

There is also a portable way, because MPI also defines a timer. Even though
it is not “message-passing”, a timer is specified because existing timers (in
both POSIX 1003.1-1988 and 1003.4D 14.1 and Fortran 90) are either
inconvenient or do not provide adequate access to high-resolution timers.

MPI_WTIME()

double MPI_Wtime(void)
DOUBLE PRECISION MPI_WTIME()

MPI_WTIME returns a floating-point number of seconds representing elapsed
wall-clock time since some time in the past.
Chapter 3. Distributed memory 75

The “time in the past” is guaranteed not to change during the life of the
process. The user is responsible for converting large numbers of seconds to
other units if they are preferred.

This function is portable (it returns seconds, not “ticks”); it allows higher
resolutions and carries no unnecessary baggage. One would use it in the
following way:

{
double starttime, endtime;
starttime = MPI_Wtime();
.... stuff to be timed ...
endtime = MPI_Wtime();
printf("That took %f seconds\n",endtime-starttime);

}

All timing in this chapter was done this way.

MPI_WTICK returns the resolution of MPI_WTIME in seconds. That is, it
returns the number of seconds between successive clock ticks as a double
precision value:

MPI_WTICK()

double MPI_Wtick(void)
DOUBLE PRECISION MPI_WTICK()

The resolution of MPI_WTIME on the SP depends on the actual hardware
clock that is being used for this function. AIX provides a clock on each node,
and there is also a synchronized clock on the switch. The
MP_CLOCK_SOURCE environment variable provides additional control on
this. Of course, the actual clock source depends on the availability of
hardware and is determined by Table 16.

Table 16. Clock source (MP_CLOCK_SOURCE variable)

MP_CLOCK_SOURCE Library Version All Nodes SP? Source used

not set ip yes switch

not set ip no AIX

not set us yes switch

not set us no Error

SWITCH ip yes switch

SWITCH ip no AIX
76 Scientific Applications in RS/6000 SP Environments

The time provided by MPI_WTIME may not be global (synchronized on all
nodes for example). The standard does not require this. It is only global if the
clock source is the switch. The parallel environment guarantees that the
MPI_COMM_WORLD attribute, MPI_WTIME_IS_GLOBAL, is set accordingly
to true or false on all nodes.

3.4.2 MPI intrinsic routines
MPI comes with its own profiling interface, which is just that - an interface. It
says nothing about the way in which it is used. What information is collected
through the interface or how the collected information is saved, filtered, or
displayed is entirely up to the user.

According to the MPI-1.1 standard, the objective of the MPI profiling interface
is to ensure that it is relatively easy for authors of profiling (and other similar)
tools to interface their codes to MPI implementations on different machines.

Since MPI is a machine-independent standard with many different
implementations, it is unreasonable to expect that the authors of profiling
tools for MPI will have access to the source code that implements MPI on any
particular machine. It is, therefore, necessary to provide a mechanism by
which the implementers of such tools can collect whatever performance
information they wish without access to the underlying implementation.

To accomplish this:

• All of the MPI defined functions may be accessed with a name shift. Thus,
all of the MPI functions, which normally start with the prefix “MPI_”', are
also accessible with the prefix “PMPI_”.

• Those MPI functions that are not replaced may still be linked into an
executable image without causing name clashes.

SWITCH us yes switch

SWITCH us no Error

AIX ip yes AIX

AIX ip no AIX

AIX us yes AIX

AIX us no AIX

MP_CLOCK_SOURCE Library Version All Nodes SP? Source used
Chapter 3. Distributed memory 77

Suppose that the user wishes to accumulate the total amount of data sent by
the MPI_SEND function along with the total elapsed time spent in the
function. This could trivially be achieved in the following manner:

static int totalBytes;
static double totalTime;

int MPI_Send(void * buffer, const int count, MPI_Datatype datatype,
int dest, int tag, MPI_comm comm)

{
double tstart = MPI_Wtime(); /* Pass on all the arguments */
int extent;
int result = PMPI_Send(buffer,count,datatype,dest,tag,comm);

MPI_Type_size(datatype, &extent); /* Compute size */
totalBytes += count*extent;

totalTime += MPI_Wtime() - tstart; /* and time */

return result;
}

To run this profiling, the following must be done

• Compile the above function with mpcc, and generate the file MPI_Send.o.

• Include MPI_Send.o in the list of objects for linking.

• Run the resulting executable normally.

The MPI-1.1 standard also provides an interface for dynamically controlling
the profiling at run time. This is normally used for (at least) the purposes of:

• Enabling and disabling profiling depending on the state of the calculation

• Flushing trace buffers at non-critical points in the calculation

• Adding user events to a trace file

These requirements are met by using MPI_PCONTROL:

MPI_PCONTROL(level, ...)
[IN level] Profiling level

C interface:

int MPI_Pcontrol(const int level, ...)

Fortran interface:

MPI_PCONTROL(level)
INTEGER LEVEL
78 Scientific Applications in RS/6000 SP Environments

MPI libraries themselves make no use of this routine and simply return
immediately to the user code. However, the presence of calls to this routine
allows a profiling package to be explicitly called by the user.

Since MPI has no control of the implementation of the profiling code, the
standard does not specify the number and types of arguments. To provide
some level of portability of user codes to different profiling libraries, the
following meanings for the first argument to MPI_PCONTROL are suggested
in the standard.

• level==0 - Profiling is disabled.

• level==1 - Profiling is enabled at a normal default level of detail.

• level==2 - Profile buffers are flushed. (This may be a no-op in some
profilers).

All other values of level have profile library-defined effects and additional
arguments.

The provision of MPI_PCONTROL as a no-op in the standard MPI library
allows them to modify their source code to obtain more detailed profiling
information but still be able to link exactly the same code against the standard
MPI library.

3.4.3 gprof profiling
The Application Development Toolbox on AIX (ADT) provides another way of
getting a code profiled. This applies to both serial and parallel applications.

To get the profiling started, the code has to be recompiled and linked with the
option -pg. Failing to link with -pg is, by far, the most frequent user error of an
inexperienced user of this tool. If properly recompiled and linked, the program
only has to be rerun in the same way as without profiling enabled. The -pg
option causes the compiler to insert a call to the mcount subroutine into the
object code generated for each recompiled function of your program. During
program execution, each time a parent calls a child function, the child calls
the mcount subroutine to increment a distinct counter for that parent-child
pair. Programs not recompiled with the -pg option do not have the mcount
subroutine inserted and, therefore, keep no record of who called them.

However, some profiling features are only available if the code has been
additionally compiled with -g and possibly with -qfullpath. The -g option adds
debugging information into the code. With this information, each assembler
opcode can be traced back to the original line of code from which it was
generated. This information includes the file name and the location of the line
Chapter 3. Distributed memory 79

of code given by relative path names. If either the object decks or the
executable are relocated prior to execution, the pathnames should be
absolute rather than relative. This feature is invoked by specifying the
-qfullpath option . The -g option is compatible with any optimization level. It is
recomended to use it with the same optimization level that has ben used for
the non-profiling run. This gives more reliable information than turning off
optimization despite the fact that the optimizer may “damage” the debugging
information. As a matter of experience, the amount of “damage” is, in general,
quite moderate, and little harm is done by it, provided the results are
interpreted with some care.

A serial run produces one extra file with the fixed name gmon.out. poe is
adapted to use this tool. A parallel run produces files gmon.out.<task-Id>,
where task_Id is a number ranging from 0 to one minus the number of MPI
tasks used for this run. The gmon.out.<task-Id> files are created in the user’s
current directory, initially named gmon.out, and then renamed
gmon.out.<task_id>.

The gmon.out files are binary, and two tools are available to make this
information readable. The syntax of the first is as follows:

/usr/ucb/gprof [.-b] [-e Name] [-E Name] [-f Name] [-F Name] [-L
PathName] [-s] [-z] [a.out [gmon.out ...]]

The gprof command produces three items:

• A flat profile is produced similar to that provided by the prof command.
This listing gives total execution times and call counts for each of the
functions in the program, sorted by decreasing time. The times are then
propagated along the edges of the call graph. Cycles are discovered and
calls into a cycle are made to share the time of the cycle.

• The functions are sorted according to the time they represent including the
time of their call-graph descendents. Below each function entry are its
(direct) call-graph children with an indication of how their times are
propagated to this function. A similar display above the function shows
how the time of the function and the time of its descendents are
propagated to its (direct) call-graph parents.

• Cycles are also shown with an entry for the cycle as a whole and a listing
of the members of the cycle and their contributions to the time and call
counts of the cycle.

While gprof produces ASCII output, Parallel Environment also provides a
user-friendly GUI for examination of gmon.out files, which is called Xprofiler.
80 Scientific Applications in RS/6000 SP Environments

Though provided by the Parallel Environment, Xprofiler can also be used for
serial programs.To run Xprofiler, type:

xprofiler a.out gmon.out [gmon2.out gmon3.out ...]

where a.out is the application's binary executable file, and one or more
gmon.out files can be specified. This tool is almost self-explanatory and
comes with an extensive help function. In addition to gprof, it also provides
profiling at the source code level, provided the executable has been compiled
with -g.

3.4.4 IBM trace interface
The Parallel Operating Environment (POE) comes with a built-in trace file
generator that is unleashed by setting the value of MP_TRACELEVEL to a
nonzero value prior to parallel execution. No recompilation or relink of the
code is needed.

However, some features are only available if the code has been compiled with
-g and possibly with -qfullpath.

If the code is rerun with a non-zero value of MP_TRACELEVEL set, a trace
file is generated. This trace file may contain the following:

• Separate entries for the start and end of each call of an MPI
communication routine - Each entry contains all relevant information about
this MPI call including message sizes and the status of completion and is
equipped with a time stamp generated by the synchronized switch
hardware clock, if available.

• Entries for AIX kernel statistics - Among much other information, each
entry contains average CPU usage and disk I/O from this MPI task.

• Entries for application markers - Application markers can be defined by the
user to mark different code portions.

Table 17 explains which of these features are switched on and off by different
values of MP_TRACELEVEL.

Table 17. MP_TRACELEVEL values

Flag Value Communication AIX Kernel
Statistics

Application Markers

0 NO NO NO

1 NO NO YES

2 NO YES YES
Chapter 3. Distributed memory 81

Due to this detailed information, the generated trace files tend to be large. A
couple of features are provided to control the size of the trace file. None of
them are found to work without some complications.

To view the trace file, Parallel Environment provides the graphical interface vt.

Synopsis

vt [-tracefile trace_file] [-tfile trace_file] [-configfile
configuration_file] [-cfile configuration_file] [-spath directory_list]
[-norm] [-cmap] [-go]

The vt command starts the Visualization Tool for visualizing performance
characteristics of a program or the system. This X-Windows tool consists of a
group of displays that present specific, often complex information in
easily-interpretable forms, such as bar charts and strip graphs. VT can be
used to play back traces generated during a program's execution (trace
visualization) or as an online monitor to study the operational status and
activity of processor nodes (performance monitoring).

Flags

• -tracefile or -tfile loads a specified trace file for playback. (A trace file can
also be loaded after VT is started.)

• -configfile or -cfile loads a specified configuration file. A configuration file
contains previously-saved arrangements of VT windows as well as input
field specifications. (A configuration file can also be loaded after VT is
started.)

• -spath indicates a search path to a program's source code. Like the AIX
PATH environment variable, this is a series of colon-delimited directory
names to search. Unless the program's source is in the current directory,
the search path is needed to display it in the VT's Source Code view. (A
search path to the program's source code can also be indicated after VT is
started.)

• -norm indicates that LoadLeveler is unavailable. In performance
monitoring mode, VT normally uses LoadLeveler to learn which nodes are
available for monitoring. If this flag is specified, VT instead gets this
information from the host list file indicated by the MP_HOSTFILE

3 YES NO YES

9 YES YES YES

Flag Value Communication AIX Kernel
Statistics

Application Markers
82 Scientific Applications in RS/6000 SP Environments

environment variable and from the LAN. If you are going to use VT for
online performance monitoring of a cluster or mixed environment, you
must use this flag.

• -cmap requests a private color map. If this flag is not used, VT attempts to
use the default color map shared by all active X-Windows applications.
Depending on the number of active X-Windows applications, there might
not be enough available colors for VT. When this happens, VT displays a
message indicating the spectrums it cannot allocate and uses black in
place of the unallocated colors. VT will still run, but, in extreme cases,
some display spectrums may be unusable because of the missing colors.
When you use this flag, VT makes a private copy of the default X-Windows
color map.

• -go starts playing back the trace file immediately upon starting VT. When
you use this flag, you must also specify a trace file and a configuration file
using the -tracefile (or -tfile) flag and the -configfile (or -cfile) flags.

• -log_file specifies the file name where the results of the trace file
post-processing will be written. The default name is
$HOME/tracefilename.pplog.

• -h, -?, or -helpVT_trc.h gets help information.

• -mp_source specifies which task's source code is displayed in the Source
Code view.

The structure of the trace file is open. The header file for the trace records
can be found in /usr/lpp/ppe.vt/include. These files enable a C programmer to
write his or her own program for working on the trace file. Each record in the
trace file starts with a common header, which contains the time stamp, the
process ID, the thread ID and the type of the following body of this record.
Any of these types are coded by a unique pair of numbers, which are
specified in the file VT_trc.h. The structure (and, thus, the length) of every
trace file record is described in either of the files VT_mpi.h or VT_trc.h .

3.5 Low-level Application Programming Interface (LAPI)

The Low-level Application Programming Interface (LAPI) is a low-level
programming interface designed to provide optimal communication
performance on the IBM SP equipped with a high-performance switch. It
offers remote memory copy, active messages, and synchronization
operations. Remote memory copy operations enable any process in a parallel
program to access data residing in the address space of another process.
This capability facilitates a system-wide shared memory-like programming
model. In addition, LAPI allows you to send a message to another process
Chapter 3. Distributed memory 83

that, upon arrival, will invoke a handler function (active message
communication). A variety of mechanisms are provided for interprocess and
communication synchronization. LAPI has been designed for use by libraries
and power programmers for whom performance is more important than code
portability.

3.5.1 Concepts
This section explains basic concepts in LAPI programming to a reader
familiar with other communication models, such as MPI.

LAPI offers a more flexible and lower-level interface than MPI. In fact, the
MPI interface can be implemented on top of LAPI. Unlike the point-to-point
message-passing model (MPI-1), which requires cooperation between sender
and receiver processes to move data between a pair of processes, LAPI
operations are unilateral. This means that any process can initiate a data
transfer between its local memory and the memory of another (remote)
process and that the data transfer will complete without any explicit
participation of the remote process. To expose application concurrency in
communication over the SP Switch, the LAPI remote memory copy (put and
get) were designed to operate in an asynchronous (non-blocking) fashion.
The user calls initiate a data transfer operation and return to the caller before
the data transfer is complete. This approach allows applications to overlap
data transfer with computations.

Remote memory copy operations in LAPI resemble the put/get operations in
the MPI-2 (a set of extensions to MPI standard approved by MPI Forum in
1997) one-sided communication model. However, the two models differ in
terms of progress rules (LAPI is less restrictive) and functionality (the MPI
model is a higher level than that of LAPI). In addition to remote memory copy,
LAPI, unlike MPI-2, offers active message operations. LAPI lacks the
accumulate operation of the MPI-2 specification. However, the accumulate
operation can be fairly easily implemented with the LAPI active messages.

Active message (AM) functionality in LAPI allows any process to send a
special type of a message (active message) to another process. The
message contains an address of a handler function that will be invoked in the
address space of the remote process upon the message arrival. In addition to
the function address, the message can deliver data to be available in the
active message handler when it is executing at the remote process. An
important difference between the active message and the traditional message
passing models is that the active messages are unilateral, that is, the AM
send operation does not have or need a matching receive operation.
84 Scientific Applications in RS/6000 SP Environments

Figure 20. Active message concept

LAPI provides a set of synchronization mechanisms for:

• Synchronization of all processes (global fence), similar to MPI_Barrier

• Synchronization of communication operations that allow tasks to wait for
completion of outstanding asynchronous communication operations

To support mutual exclusion in a shared memory style of programming,
interprocess synchronization can be implemented by using the atomic
read-modify-write operation available in LAPI. This operation updates an
integer variable in the remote process memory in an uninterruptible atomic
fashion and returns the original value of this variable to the calling process.
With this operation, shared memory synchronization operations, such as
locks or semaphores, can be implemented.

3.5.1.1 Properties of the SP Switch network
In order to use LAPI effectively, some knowledge of the IBM SP interconnect
properties is useful. The IBM SP network is a low-latency high-bandwidth
network with an omega-type interconnect topology. It is integrated with the
processing nodes through the SP Switch adapter. All the user-level
communication libraries available on the machine transfer data across the
network in packets. The packet size is fixed and equals 1024 bytes in the
most recent implementations of the network (as of 1999). Since the network
uses multiple-path adaptive routing, packets sent between any pair of nodes
can arrive out of order. In addition, the network hardware does not gurantee
reliable delivery of 100 percent of the packets.

3.5.1.2 Terminology
The following are important terms:

process A process B

data foo()

active message

call foo(data)
...
Chapter 3. Distributed memory 85

• target/origin - LAPI uses the term of origin task/process in the context of
active messages and remote memory copy operations to identify the
task/process that initiates a communication operation. The term target is
used to identify the remote task/process whose address space is targeted
by such an operation.

• nonblocking/blocking - These terms are used to distinguish between the
operations that return to the caller before (nonblocking) or after (blocking)
the data transfer completes.

• LAPI messages - LAPI messages are communication operations that
move data between origin and target and/or trigger the execution of the
user-specified handler function at the target process. Remote memory
copies and active messages are different user interfaces to the for LAPI
messages.

3.5.1.3 Infrastructure of LAPI
LAPI messages and Pthreads form an underlying infrastructure of LAPI.
LAPI makes extensive use of threads to achieve good performance.

Remote memory copy operations in LAPI are implemented with LAPI
messages. LAPI provides a generalized yet efficient mechanism for
customizing the communication interface to the specific requirements by
allowing applications to use their own handlers for the active messages. In
particular, applications can implement their own versions of remote memory
copies on top of active messages instead of using the ones provided.

LAPI supports error-free (reliable) interprocess communication. It uses the
Hardware Abstraction Layer (HAL) library that encapsulates the network
adapter-specific programming interfaces. HAL is responsible for sending and
receiving packets through the SP network, but it does not assure reliability.
LAPI assembles and disassembles packets into and from messages and
assures that data is delivered reliably. LAPI supports messages that can be
larger than the size supported by the underlying HAL. Data sent with an
active message will arrive in multiple packets; furthermore, these packets can
arrive out-of-order.
86 Scientific Applications in RS/6000 SP Environments

Figure 21. Hierarchy of communication libraries

LAPI is a thread-safe library and can be used by multithreaded applications.
LAPI itself is implemented with multiple threads. At initialization time, the
library creates two additional threads in the context of each user task. These
threads are blocked and do not consume CPU cycles in absence of the LAPI
communication traffic. They can be activated when they are needed to
process incoming LAPI messages. A centerpiece of the LAPI implementation
is the LAPI dispatcher. This software layer deals with the arrival of messages
and the invocation of handlers. LAPI dispatcher can be executed by the
application thread when it makes a LAPI function call, or it can be executed
by one of the threads that LAPI creates at initialization time.

When the active message brings with it data from the originating process, the
library requires that the “handler” be written as two separate routines:

• A header handler function: This is the function that is specified in the
active message call. It will be called when the message first arrives at the
target process, and it provides the LAPI dispatcher with:

• An address where the arriving data must be copied

• The address of the optional completion handler

• A completion handler will be called after the whole message has been
received. If the user supplies NULL as the completion handler, after the
data has been copied into the user-specified buffer, the active message
completes.

The Pthreads library provides locking functionality, which is needed to protect
user’s data structures that may be shared by user and LAPI threads in the
same task.

SP network

HAL

LAPI

Unreliable delivery of out-of-order packets

Reliable delivery of messages
(in LAPI packets can arrive out-of-order)MPI
Chapter 3. Distributed memory 87

3.5.1.4 Interrupt and polling modes of communication processing
Data transfers implemented by LAPI, MPI, and other communication libraries
require interactions with the hardware and the operating system. There are
two alternative modes in which communication libraries interact with the
network interfaces: Polling and interrupts.

Polling mode requires the user process to check the network interface for
occurrences of communication-related events, such as the arrival of a
message, and then initiate appropriate processing of such events, for
example, assembling packets into an MPI message. The network interface is
usually accessed implicitly from a communication library whenever a call to
the communication library is made by the application.

In the interrupt mode, a user process does not need to make any calls to the
communication library to assure communication progress. The execution of
the user task is interrupted, and the necessary processing of communication
events is accomplished through appropriate interrupt handler functions. They
are invoked by the system when a hardware event is detected. The handlers
can be provided by a communication library or defined by the user (for
example, active message handlers in LAPI or rcvncall handlers in the pre-MPI
IBM communication library called MPL on early implementations of the IBM
SP architecture).

The polling mode can offer a lower overhead of message processing than the
interrupt mode. However, this benefit can be realized when the arrival of
messages is expected, and the application can pass control to a
communication library in advance, for example, by issuing a blocking receive
call. Selection of the appropriate mode (interrupt or polling) depends on the
nature of the application. For regular and/or well-balanced applications,
polling mode usually works better. Applications with irregular data and/or
communication patterns or dynamic load balancing might work better when
interrupt mode is used. Although both MPI and LAPI allow users to select a
mode of communication processing, LAPI provides more flexibility in this
area. In MPI, the user-selected mode (through the MP_INTERRUPT
environment variable) applies to the entire program execution. The default
mode in LAPI is interrupt processing. However, using the LAPI_Setenv() call
applications can change this mode into polling for entire or only certain
phases of the program on some or all tasks.

3.5.1.5 Completion of operations and LAPI counters
Put, Get, and AM are unilateral communication operations that are initiated by
one task (the origin), but an indication of the completion of a communication
operation is provided at both ends. The definition of when a put or get
88 Scientific Applications in RS/6000 SP Environments

operation is complete needs some discussion. Intuitively, the origin may
consider a put as complete when the data has been moved from the origin to
the target, (for example, the data is available at the target, and the origin data
may be changed). However, another equally valid interpretation is one where
the origin task considers the operation to be complete when the data has
been copied out of its buffer and either the data is safely stored away or is on
its way to the target. The target task would consider the put complete when
the data has arrived into the target buffer. Similarly, for a get, the target task
may consider the operation to be complete when the data has been copied
out of the target buffer but has not yet been sent to the origin task.

In order to provide the ability to exploit these different intuitive notions, LAPI
has a completion notification mechanism via the use of counters. The user is
responsible for associating counters with events related to message
progress. However, as the counter structure is an opaque object internally
defined by the LAPI counter, it can be accessed using only the appropriate
interfaces provided in LAPI. The same counter can be used across multiple
messages. This allows you to group different communication calls with the
same counter and check their completion as a group. LAPI updates the
counters when a particular event (or one of the events) with which the counter
was associated has occurred. The application can either periodically check
the counter value (using the non-blocking polling LAPI function Getcntr) or
can wait until the counter reaches a specified value (using the blocking LAPI
Waitcntr function). Upon its return from the Waitcntr call, the counter value is
automatically decremented by the value specified in the Waitcntr call.

There are three types of counters in LAPI operations: Origin, target, and
completion counters. The origin counter is incremented when the buffer with
data sent by the origin process can be reused by the application. The target
counter is incremented at the target process when the data is copied into the
destination location at target. Finally, the completion counter at origin is
incremented when the entire data transfer operation completes. Applications
can ignore the capability provided by any or all counters by specifying NULL
pointer as the counter argument address.

Table 18. Properties of LAPI counters

Counter Location When incremented

origin sender (origin) data can be modified

target receiver (target) data reached destination

completion sender (origin) operation completed
Chapter 3. Distributed memory 89

3.5.1.6 Message ordering
Two LAPI operations that have the same origin task are considered to be
ordered with respect to the origin if one of the operations starts after the other
and has completed at the origin task. Similarly, two LAPI operations that have
the same target task are considered to be ordered with respect to that target
if one of the operations starts after the other and has completed at the target
task. If two operations are not ordered, they are concurrent.

LAPI provides no guarantees of ordering for concurrent communication
operations. For example, consider the case where a node issues two
non-blocking puts to the same target node where the target buffers overlap.
These two operations may complete in any order including the possibility of
the first put partially overlapping the second, in time. Therefore, the contents
of the overlapping region will be undefined, even after both puts complete.
Waiting for the first to complete (for instance, using the completion counter)
before starting the second will ensure that the overlapping region contains
the result of the second after both puts have completed. Alternatively, a fence
call (LAPI_Fence) can be used to enforce order.

3.5.1.7 Synchronization
In the message-passing (MPI) model, a message transfers data as well as
synchronizes the sender with receiver. Even the nonblocking (asynchronous)
message-passing communication that diffuses the synchronization of
processes does not eliminate it completely since a coordination between
sender and receiver is still necessary. On the other hand, truly one-sided
communication systems, such as LAPI, decouple synchronization from data
movement and make the bilateral coordination of data transfers between the
origin and target unnecessary.

For maximum performance, concurrent operations may complete out of order.
As a result, data dependencies between the source and the destination must
be enforced using explicit synchronization as is the case in the shared
memory programming style. However, in many cases, the program structure
makes it unnecessary to synchronize on each data transfer. LAPI provides
target counters and atomic operations to be used for synchronization if
necessary.
90 Scientific Applications in RS/6000 SP Environments

3.5.2 Using LAPI
The set of LAPI functions is shown in Table 19 and discussed briefly in the
following section.

Table 19. LAPI functionality

3.5.2.1 Operations on LAPI counters
The LAPI remote memory copy and active message operations allow an
application to control and monitor the progress of communication processing
by offering counter variables. These opaque data objects store integer
values. By using a set of LAPI operations, counters can be initialized, tested,
or waited on until they reach a certain value. A counter is incremented when a
corresponding phase in a communication process completes. Since LAPI
counters are opaque objects, LAPI provides three operations to access and
modify their values:

• LAPI_Setcntr - This initializes a specified counter to a desired value.

• LAPI_Getcntr - This reads the value of a counter.

• LAPI_Waitcntr - This waits until a counter reaches a specified value.

3.5.2.2 Remote memory copy operations
LAPI_Get and LAPI_Put are two versions of the remote memory copy
operation in LAPI. LAPI_Get transfers len bytes of data from the memory of
the emote process target starting at address tgt_addr to the memory of the
calling process starting at org_addr. LAPI_Put is similar except the direction
of data transfer is reversed: Data is moved from the memory of the calling
process to the memory of the remote (target) process. A variable handle in
LAPI operations identifies a communication context in which the operation is

Operations Functions

Setup LAPI_Init, LAPI_Term

Active Message LAPI_Amsend

Data Transfer LAPI_Put, LAPI_Get

Mutual Exclusion LAPI_Rmw

Signaling Communication Progress LAPI_Setcntr,LAPI_Waitcntr,
LAPI_Getcntr

Ordering LAPI_Fence, LAPI_Gfence

Address Exchange LAPI_Address_init

Environment Query/Setup LAPI_Qenv, LAPI_Senv
Chapter 3. Distributed memory 91

used. Both operations are nonblocking, that is, they initiate the data transfer
and return to the calling process as soon as possible. The progress of the
data transfer can be monitored using LAPI counters:

LAPI_Get(handle, target, len, tgt_addr, org_addr, tgt_cntr, org_cntr)
LAPI_Put(handle, target, len, tgt_addr, org_addr, tgt_cntr, org_cntr, cmpl_cntr)

For example, Figure 22 illustrates communication phases in the LAPI_Put
operation. The phases are numbered to identify a sequence of events
associated with the data transfer. LAPI_Put initiates data transfer and returns
control to the application as soon as possible. The buffer containing data at
the origin process can be modified by the program when the org_cntr origin
counter has been incremented. LAPI can increment this counter only when it
is certain that the user data cannot be lost in a transmission process over the
unreliable network.

Figure 22. Remote memory copy interfaces and progress of communication

For small requests, it is not necessary to wait for data to be delivered to the
target process; LAPI can copy user data to one of its internal (retransmission)
buffers and then release the user buffer by incrementing the origin counter.
This copy of the user data would be needed to repeat the transfer in the rare
case that the data does not reach the destination the first time it is sent. For
larger requests, LAPI does not copy the data to its retransmission buffers;
therefore, the counter cannot be incremented before the data safely reaches
the target process.

On the target side, LAPI, after copying data to the destination location,
increments the target counter tgt_cntr. For example, this counter can be used
to notify the target process that data has been put into its address space. In
the next step, LAPI sends a control packet to the origin to indicate that the

origin
process

target
process

org_cntr

cmpl_cntr

org_addr tgt_addr

tgt_cntr

LAPI_Put
1

2

3
4

len
92 Scientific Applications in RS/6000 SP Environments

data reached the destination safely. When that packet is received, the origin
process is notified by incrementing the cmpl_cntr completion counter that the
LAPI_Put operation completed at the origin and target sides. The counters
provide a convenient and efficient mechanism to monitor the progress of
communication events. The application can use any, all, or none of these
counters depending on its needs. In the case of the LAPI_Put operation, all
three counters can be ignored by simply specifying their addresses as NULL.

Example 1: Nonblocking put:

double a[100], *rem_b
lapi_cntr_t counter;
LAPI_Setcntr(&counter,0);
rc = LAPI_Put(handle, 0, 100*sizeof(double), rem_b, a, NULL, NULL,
&counter);
/* do some work overlapping comunication with computations*/
rc = LAPI_Waitcntr(handle, &counter, 0, NULL);
/* now we can be sure that data reached process 0 */

The interface to LAPI_Get is similar. However, since the origin counter is
incremented when data is fully copied from target to origin, a completion
counter is redundant and, therefore, not available. The incremented origin
counter indicates that the operation completed at the origin as well as the
target.

Example 2: Nonblocking get

double a[100], *rem_b
lapi_cntr_t counter;
LAPI_Setcntr(&counter,0);
rc = LAPI_Get(handle, 0, 100*sizeof(double), rem_b, a, NULL, &counter);
/* do some work overlapping comunication with computations*/
rc = LAPI_Waitcntr(handle, &counter, 1, NULL);
/* now we can use data in array a */

3.5.2.3 Active messages
The LAPI_Amsend operation is used to send an active message to a remote
(target) process. Upon arrival, LAPI invokes a handler function passed as an
argument to LAPI_Amsend. LAPI active message handlers are divided into a
header handler and a completion handler. The handler address specified by
the sender refers to header handler. A completion handler function is
specified by the header handler executing at target. In addition to invoking a
handler function, the LAPI_Amsend operation can transfer data to the target
process, similar to LAPI_Put. The data can be moved in two portions:
Chapter 3. Distributed memory 93

• User header data - This portion of data is available when the header
handler is executed. The amount of data that can be sent in this way is
fairly limited. Essentially, after LAPI fills its control information into a single
network packet, it makes the remaining space in the packet available to
the user. In the current SP network, the maximum size of user header data
is approximately over 900 bytes. The exact value of the limit
(MAX_UHDR_SZ) can be obtained by calling LAPI_Qenv.

• User data - This portion of data can be of arbitrary size. If it is larger than
zero, the header handler must return an address of a memory location to
which the data will be copied. LAPI copies the data before the completion
handler is called.

Because of the way LAPI dispatches are implemented, no LAPI operations
are allowed from within the header handler. Furthermore, if any blocking
system calls are made within the header handler, it is possible to deadlock
because no communication progress can be made until the header handler
returns. If an active message is short and carries no user data from the
originating process but requires communication or uses blocking calls in the
handler, it is still required to write the handler in two parts because of these
restrictions.

LAPI calls can be made from within the completion handler. However, caution
is required when writing completion handlers that do long computations and
then issue LAPI calls. While long computations take place, the arriving new
messages may cause the internal LAPI completion handler queues to fill up if
many active messages are received by the same process before the
completion handler completes. In such cases, forking a separate thread from
within the completion handler and having the forked thread make LAPI calls
eliminates the possibility of a deadlock occurring.

Figure 23 on page 95 illustrates the flow of data and control in an LAPI active
message. A process on the origin makes the LAPI_Amsend call. The call
initiates a transfer of the header uhdr and data udata at the origin process to
the target process specified in the LAPI active message call. As soon as the
application is allowed to reuse uhdr and udata, an indication is provided via
org_cntr at the origin process. At some point (Step 1), the header and data
arrive at the target. Upon arrival at the target, an interrupt that results in the
invocation of the LAPI dispatcher is generated. The LAPI dispatcher identifies
the incoming message as a new message and calls the hdr_hndlr specified
by the user (Step 2) in the LAPI active message call. The handler returns a
buffer pointer where the incoming data is to be copied (Step 3). The header
handler also provides LAPI with an indication of the completion handler that
must be executed when the entire message is copied into the target buffer
94 Scientific Applications in RS/6000 SP Environments

specified by the header handler. The LAPI library moves the data, which may
be transferred as multiple network packets, into the specified buffer. Upon
completion of the data transfer, the user-specified completion routine is
invoked (Step 4). After the completion routine finishes execution, the tgt_cntr
at the target process and cmpl_cntr at the origin process are updated
indicating that the LAPI active message call is now complete:

LAPI_Amsend(handle, target, hdr_hdl, uhdr, uhdr_len, udata, udata_len, tgt_cntr,org_cntr,
cmpl_cntr)

Figure 23. Active message communication in LAPI

When transferring large amounts of data with LAPI_Amsend, it is important to
consider availability of memory for udata at the target, especially if multiple
messages from different sources could be targeting the same task. Since the
application must provide buffer space for udata in every active message
arriving from the network, some form of flow control might be needed at the
application level to avoid depleting local memory in case of contention.

3.5.2.4 Thread scheduling
To provide high performance to the applications, the LAPI implementation
relies on the default thread scheduling policy in AIX. The application should
not change the scheduling policy; otherwise, the LAPI performance can
deteriorate.

origin
process

target
process

org_cntr

cmpl_cntr

uhdr

udata buffer

tgt_cntr

LAPI_Amsend
Lapi Dispatcher

1 Header Handler
hdr_hdl

buffer
cmpl_hdl

2

3

Completion
Handler

cmpl_hdl

4

Chapter 3. Distributed memory 95

3.5.2.5 LAPI environment variables and settings
LAPI provides two functions for querying its execution environment
parameters and changing some of its parameters.

Some of the parameters that can be retrieved with LAPI_Qenv are:

• TASK_ID - This is the current task/process ID.

• NUM_TASKS - This is the number of tasks.

• INTERRUPT_SET - This is the mode of operation polling (0) or interrupt
(1).

• ERROR_CHK - This indicates whether more extensive error checking
mode in LAPI is enabled (1) or not (0). The less extensive error-checking
mode offers higher performance.

The last two parameters can be modified with LAPI_Senv to change from
interrupt to polling mode and vice versa and set the desired error-checking
mode.

3.5.2.6 Address exchange
LAPI provides a collective operation, LAPI_Address_init, to exchange
addresses of memory areas that are to be used in the context of remote
memory copy operations. On IBM SP, even for statically-allocated data
structures on other tasks, the addresses might differ.

3.5.2.7 Interoperability of LAPI and MPI
LAPI is interoperable with MPI. This feature allows you to take advantage of
the LAPI functionality in the existing MPI applications, or develop new
applications that use hybrid MPI and LAPI programming models. The MPI
library on the IBM SP is available in four versions depending on the
implementation approach and communication protocols used. Table 20 shows
compatibility data for the MPI and LAPI libraries.

Table 20. Compatibility of LAPI with MPI library versions

Unlike MPI, there is no implementation of LAPI based on the IP protocol.

3.5.3 Programming examples
The following section offers programming examples.

Library version User space protocol IP protocol

Thread safe version + +

Signal version - -
96 Scientific Applications in RS/6000 SP Environments

3.5.3.1 Accumulate operation
Accumulate operation combines vector (S) on the calling process with
another vector (D) on the target node and puts the results in the vector at the
target:

D[0..N-1] = D[0..N-1] + S[0..N-1]

where

S[N] is a vector of length N in the address space of the origin process

D[N] is a vector of length N in the address space of the target process

We can implement the accumulate operation using LAPI active messages.
Before making the active message call, we obtained the address of the target
counter (targetcntraddr) and the address of the header handler to be
executed on the target process accumulateaddr (possibly using the
LAPI_Address_init function). The user header udhr is initialized based on the
header expected by accumulate. For our example, the structure of uhdr is as
follows:

typedef struct {
void *target_addr;
uint length;

} put_add_hdr_t;
put_add_hdr_t uhdr;
uhdr.target_addr = D;
uhdr.length = N;

In this case, the specific call to LAPI_Amsend is:

LAPI_Amsend(handle,target_process,accumulate_addr,&uhdr,sizeof(put_add_hdr
_t),&S[0], N*sizeof(S[0]), target_cntr_addr, &origin_cntr, &compl_cntr)

Upon receipt of this message at the target (assuming that all data is
contained within a packet without a loss of generality), the handler is invoked
by the LAPI dispatcher. The structure of the header handler is as follows:

void *header_handler (void *uhdr, uint uhdr_len, completion_handler_t
*completion_handler, void *saved_info)
void completion_handler(void *saved_info)

If any state information about the message is required by the completion
handler, this information should be saved by the header handler in a user
buffer. The header handler passes the address of this buffer to the dispatcher
through the parameter savedinfo. The dispatcher uses this pointer as a
parameter for the completion handler.

The specific calls for our example are as follows:
Chapter 3. Distributed memory 97

Within the dispatcher:

read lapi header
extract uhdr and uhdr_len from the lapi header
buf =(*accumulate_addr)(uhdr, uhdr_len, &completion_handler,

&saved_info);
copy udata into buf;
(*completion_handler)(saved_info);
/* Note that if the message was not contained within a packet, the LAPI
** layer will save the necessary information and will invoke the
** completion handler after all the udata has arrived and copied into
** buf
*/

User defined functions:

accumulate(uhdr, uhdr_len, completion_handler, saved_info)
{

buf = addr where incoming data should be buffered
saved_info = address where parameters to completion handler are

saved
save (target_addr=D, length=N, buf) in saved_info
completion_handler = complete_accumulate
return buf

}
complete_accumulate (saved_info)
{

retrieve required data (namely D, N and buf) from saved_info;
for (i=0; i<N; i++) D[i] = D[i] + buf[i];
return

}

The accumulate handler is the header handler and is called by the LAPI layer
when the message first arrives at the target process. The header handler
saves the information required by complete_accumulate (namely, target_addr,
length, and buf) in saved_info and passes back a pointer to the
complete_accumulate handler. Additionally, it returns the address of a buffer
buf.

The LAPI layer stores the incoming data as it arrives in buf. When all the data
has been received, it calls the complete_accumulate function, which uses
saved_info to access the two vectors, adds them, and stores them at the
desired location. After the return from the complete_accumulate routine, the
lapi layer bumps up target_cntr. The origin_cntr is incremented as soon as
the data has been copied out of the origin buffer and the origin buffer is
available for reuse (there are no guarantees about the data being available at
98 Scientific Applications in RS/6000 SP Environments

the target when origin_cntr is updated). compl_cntr is updated after the return
from the complete_accumulate routine.

3.5.3.2 Gather operation
Here, we implement a non-collective gather operation (unrelated to
MPI_Gather) that can transfer an arbitrary number of double precision
elements from a remote (target) process memory (see Figure 24). Unlike the
LAPI_Get operation, gather fetches elements that are stored in non-adjacent
locations in memory. We make the following assumptions:

• N is the number of elements.

• A[0..N-1] is the local array to which the data should be copied.

• ptrB[N..1] is the array of pointers to doubles (ptrB[i] stores an address of
the i-th element in memory of the target process).

• P is the target process.

Figure 24. Gather operation

The most straightforward implementation of gather uses a series of N
nonblocking LAPI_Get operations:

lapi_cntr_t counter;
LAPI_Setcntr(&counter,0);
for(i=0;i<N;i++)

rc = LAPI_Get(handle, P, sizeof(double), ptrB+i, a+i, NULL, &counter);
rc = LAPI_Waitcntr(handle, &counter, N, NULL);

memory of memory of
target processorigin process

A

Chapter 3. Distributed memory 99

With this approach, since each LAPI_Get operation is used to transfer only
one element at a time, the network utilization and expected performance
cannot be very good. A better solution is based on active messages.

We send an active message containing pointers to the elements we want to
gather to target process P. In addition, we include an address of a counter at
the origin that will be incremented when the response arrives.

API_Setcntr(&counter,0);
LAPI_Amsend(handle,P,header_handler,&uhdr,sizeof(uhdr),&ptrB,
N*sizeof(double*), NULL, NULL, NULL)
rc = LAPI_Waitcntr(handle, &counter, 1, NULL);

where

struct gather_request{
uint from; /* origin process */
double *A; /* array at origin where elements should be copied to */
int N; /* number of elements */
lapi_cntr_t *pcounter; /* =&counter address of Lapi counter at origin */

} uhdr;

The header handler is used to allocate memory for the addresses arriving as
the user data in the active messages. We cannot make any LAPI calls here.

void *header_handler(uhdr, uhdr_len, completion_handler, saved_info)
{

ptr_arr = malloc(((struct gather_request)uhdr).N * sizeof(double*));
memcpy(saved_info, uhdr, uhdr_len)
completion_handler = gather_handler;
return ptr_arr;

}

In the completion counter, we copy the requested data into a temporary array,
and then call LAPI_Put to transfer it back to the origin process. When
completed, this operation will increment two LAPI_Put counters:

• One in the memory of a process that issued LAPI_Amsend call (target
counter)

• One allocated in the completion handler counter (origin counter)

When incremented, Target counter will signal to the process expecting data
arrival that the operation has completed. When incremented, the origin
counter will signal that the data has been moved out and, therefore, the
temporary array can be freed.

gather_handler(struct gather_request *uhdr)
100 Scientific Applications in RS/6000 SP Environments

{
lapi_cntr_t cntr;

LAPI_Setcntr(&cntr,0);
double *tmp = malloc(uhdr->N * sizeof(double));
for(i=0; i< uhdr->N; i++) temp[i]=*ptr_arr[i];
LAPI_Put(handle, uhdr->from, tmp, uhdr->N, uhdr->A, uhdr->pcounter,

NULL, &cntr);
LAPI_Waitcntr(handle, &cntr, 1, NULL);
free(tmp);
free(ptr_arr);

}

On the IBM SP with P2SC processors, this implementation of gather achieves
17 times greater asymptotic bandwidth than our first (LAPI_Get based)
implementation.

3.5.3.3 Distant disk I/O operation
By combining I/O operations with LAPI active messages, we can perform
non-collective read/write operations on disk connected to a different node
than the one on which the given task is running. In this way, any task can
access data on local disks at any node (local or remote) that the application is
using.

For example, a read operation from a file created by a remote task could have
the following interface:

dio_read(fd, offset, bytes, buffer, task)

where fd is a file descriptor at a remote task, buffer represents the memory
area to which the data should be read, and task represents the remote task
ID.

Figure 25. Reading from disk on remote node

target taskorigin task

buffer

active message

read

put

1

2

3
tmp buffer

disk
Chapter 3. Distributed memory 101

We can implement this operation by sending fd, offset, and buffer address
arguments in uhdr of the LAPI_Amsend operation. In addition, a LAPI
counter, io_cntr, is used to notify the origin task when the requested data
arrives into buffer. dio_read is nonblocking; so, in order to access data in
buffer, we need to wait until the io_cntr is incremented.

struct read_request{
uint from; /* origin process */
int fd; /* remote file descriptor */
char *buffer; /* array at origin where elements should be copied to */
int bytes; /* number of bytes to read*/
off_t offset; /* offset in file to read from */
lapi_cntr_t *pcounter; /* address of io_cntr counter at origin */

} uhdr;

We assume that the file has already been opened by the target task in a
mode allowing writing to that file. The actual I/O operation is performed in a
LAPI completion counter at target:

read_cmpl_handler(struct read_request *uhdr)
{
lapi_cntr_t cntr;
char *tmp = malloc(uhdr->bytes); /* temporary buffer for reading */

LAPI_Setcntr(&cntr,0);
lseek(fd,uhdr->offset,SEEK_SET);
read(uhdr->fd, tmp, uhdr->bytes);
LAPI_Put(handle, uhdr->from, tmp, uhdr->bytes, uhdr->buffer,

uhdr->pcounter, NULL, &cntr);
LAPI_Waitcntr(handle, &cntr, 1, NULL); /*wait until all data is sent */
free(tmp);

}

Since the bandwidth of LAPI_Put operation on the IBM SP is much higher
than disk I/O bandwidth to the local SCSI disk at a node, the performance of
distant read operation can be very close to that of local I/O for all but very
small (<10KB) requests.

3.5.3.4 Ordering of remote memory copy operations
Certain applications require ordering of remote memory copy operations, for
example, to maintain a consistent view of shared data structures in the
presence of put operations targeting overlapping memory areas. If
overlapping put operations complete out-of-order, the result of the data
transfer is unpredictable. Ordering of operations is the simplest technique for
preserving consistency of the data structures.

Since LAPI messages arrive out-of-order, ordering should be addressed at
the application level. The LAPI fence and counter operations allow you to
order operations by enforcing completion of the outstanding operations:
102 Scientific Applications in RS/6000 SP Environments

LAPI_Put(handle, proc, len, rem_addr1, loc_addr1, NULL, NULL, NULL);
LAPI_Fence(proc)
LAPI_Put(handle, proc, len, rem_addr2, loc_addr2, NULL, NULL, NULL);

or using a completion counter

LAPI_Setcntr(&counter,0);
LAPI_Put(handle, proc, len, rem_addr1, loc_addr1, NULL, NULL, &counter);
LAPI_Waitcntr(&counter, 1, NULL)
LAPI_Put(handle, proc, len, rem_addr2, loc_addr2, NULL, NULL, &counter);

The ordering of operations by enforcing completion works, but it is not the
most efficient technique for maintaining consistency of remote data
structures. It reduces the potential concurrency in communication over the
network since it allows only one outstanding put operation to a given target
process. This constraint might not be necessary if all we need is to assure
that the overlapping puts complete in order. For example, we can use the
sliding window technique to monitor memory areas addressed by a certain
number of outstanding put operations and selectively block only the
operations that target overlapping memory areas.
Chapter 3. Distributed memory 103

104 Scientific Applications in RS/6000 SP Environments

Chapter 4. Shared memory

This chapter covers two aspects of shared-memory parallelization. The first
section discusses OpenMP shared memory directives on POWER3 SMP
nodes, and the second section discusses thread programming.

4.1 Shared memory parallelization with OpenMP

This section discusses OpenMP Shared Memory directives and how they can
be used to effectively parallelize a Fortran or C program on the POWER3
SMP nodes. These directives are designed to allow the user to specify
variable scoping and work sharing necessary for the compiler to generate a
threaded parallel application. With the release of Version 7.1 of XL Fortran,
the xlf compiler will be fully OpenMP-compliant.

This section does not discuss all of OpenMP - only those OpenMP features
pertaining to DO loop parallelism. A full discussion of the language can be
found at the following URL:

http://www.openmp.org

4.1.1 Introduction to shared memory parallelization
A majority of the High Performance Computing architectures today are
clusters of nodes in which each node is a high-performance SMP machine.
This section discusses the optimization of applications for Shared Memory.
This optimization comes from parallelizing the work across the processors on
the node. The two principal ways of accomplishing the parallelization is by
using hand-coded pthreads (see Section 4.2, “Programming with threads” on
page 130) and OpenMP directives. Either way, the user must be concerned
with issues that can degrade the performance.

First, we should be perfectly clear that parallelization does not reduce CPU
time; if anything, it will increase CPU time. Parallelization will, however,
decrease wallclock time. When you are timing your parallel code, be sure that
you use a library call that returns wallclock time and not CPU time. The rtc()
function measures wallclock and is recommended for measuring parallel
code. The major issues that the user should watch are:

• The overhead of parallelizing a piece of code including thread generation
and synchronization

• The bandwidth available on the SMP node and the amount of bandwidth
required by the application being parallelized
© Copyright IBM Corp. 1999 105

• Load balancing when parallelizing iterations of a loop with differing
compute times

The overhead for parallelizing on any RISC-based SMP is significant and
should not be ignored. Figure 26 shows the crossover point for the Stream
benchmark. Notice that one must have a significant loop iteration count
before a performance gain is realized by parallelization. This crossover point
will be dependent on the DO loop. It depends on the granularity of the
computation.

Figure 26. Stream benchmark on POWER3 SMP Thin/Wide and High nodes

Figure 26 shows Memory Bandwidth for the COPY kernel for the Stream
Benchmark. This simple benchmark measures the memory bandwidth
achieved for copying one array into another. There are four versions of the
kernel: The first is the sequential version measured for the generic Stream
Benchmark; the second is for the default automatic parallelization of the
compiler; the third is for an OpenMP version (in Section 4.1.9, “Automatic
parallelization” on page 123, we discuss the runtime parallelization analysis
that is used and how it affects performance), and, the fourth is a
manually-coded Pthread example. This timing was obtained on a
two-processor, SMP POWER3, Thin/Wide (200 MHZ) system.
106 Scientific Applications in RS/6000 SP Environments

Notice that, for iteration counts less than 1000000, the OpenMP example and
the Pthread implementation for this iteration count perform about 1.8 times
better on two processors. For iteration counts around 100000, the forced
automatic parallelization example and the Pthread example are twice as fast
as the sequential. The default, which uses a runtime decision that checks the
granularity of the loop, never uses the parallel version at these iteration
counts. Also, notice that, for iteration counts below 10000, the parallel version
runs slower than the sequential version. Remember that this loop is only
doing a copy, not a computation. If a more significant loop is used, say, the
vector = vector + scalar * vector, the granularity of the DO loop will be larger,
and the benefit from parallelization is better.

Figure 27 displays the stream rates for Triad.

Figure 27. Stream rates for Triad

The OpenMP example always runs as well as the sequential example;
however, we do not really get a good performance gain until we approach
100000 iterations. The cause of the poor scaling is simply a matter of the
overhead with managing the threads; the loop is entirely load balanced. As
the amount of computation increases in the DO loop or the iteration count
Chapter 4. Shared memory 107

increases, the crossover point, where the parallel version of the DO loop runs
significantly faster than the sequential, decreases.

Users are encouraged to test their major computational kernels with different
lengths to determine individual crossover points.

IBM hardware has a particularly high memory bandwidth, and the node
architecture is designed to supply enough memory bandwidth for the number
of processors supplied on the node. The POWER3 SMP Thin/Wide node has
a memory bandwidth of 1.6 Gbytes/sec and a maximum of four processors on
the node. The POWER3 SMP High node has a memory bandwidth of 14.2
Gbytes/sec if all memory slots are populated and there is a maximum of eight
processors. While the high node has significantly more memory bandwidth
than the thin node, it may vary with the amount of memory installed on the
high node.

The memory bandwidth on SMP nodes contributes to how well you will scale
as you add more and more processors. Once again, the scaling is a function
of the application, and the user should understand how much memory
bandwidth is needed within their application.

4.1.2 OpenMP - Portable shared memory parallelization
Shared memory parallel systems have been around for 30 years. Each
vendor had their own idea of how the user should program for their hardware.
Ten years ago, an attempt was made to standardized shared memory
parallelization; however, this failed because several vendors felt that they
would stay with their implementation. With the recent appearance of SMP
across all the RISC based systems, a new proposal has been put forth, which
has been accepted by all the major hardware vendors; so, now, users have an
approach to build portable shared memory parallel systems. A few of the
most widely-used directives follow.

!$OMP PARALLEL / !$OMP END PARALLEL - Indicate a parallel region for
each thread to execute - must scope all variables within the region.

• DefaultChange Default Scoping

The following directives are implemented as part of the IBM effort to
support OpenMP. Some clauses, such as THREADPRIVATE, COPYIN,
ORDERED, and others, are expected to be available in future versions of
IBM compilers.

Note
108 Scientific Applications in RS/6000 SP Environments

• PrivateAssure each thread has own copy

• SharedVariable to be addressable by each thread

• First PrivateMaster thread to copy its private variable to all threads

• ReductionFollowing specified operation to be applied across variable

• IfPerform following loop in parallel if test true

!$OMP PARALLEL DO / !$OMP END PARALLEL DO - Indicate a parallel do
for all threads to share in the work. This is a special case of PARALLEL where
the region and the loop are identical. Parallel DO is simply a shortcut for
combining the PARALLEL and the DO into one construct.

• Default - Change Default Scoping

• Private - Assure each thread has own copy

• Shared - Variable to be addressable by each thread

• First Private - Master thread to copy its private variable to all threads

• Last Private - Last value for private variable copied to Master thread

• Reduction - Following specified operation to be applied across variable

• If - Perform following loop in parallel if test true

• SCHEDULE - Specify work sharing option

!$OMP DO / !$OMP END DO - Indicates a parallel do for all threads to share
in the work.

• Private - Assures that each thread has its own copy

• First Private - Master thread copies its private variable to all threads

• Last Private - Gets the last value for the private variable copied to the
Master thread

• Reduction - Specifies the operation to be applied across variables

• Schedule - Specifies the work sharing option

4.1.3 Rationale for using OpenMP directives
The OpenMP directives address three important issues of parallelizing an
application: First, clauses and directives are available for scoping variables.
Frequently, variables should not be shared; that is, each processor should
have its own copy of the variable. Second, work sharing directives specify
how the work contained in a parallel region of code should be distributed
across the SMP processors. Finally, there are directives for synchronization
between the processors.
Chapter 4. Shared memory 109

OpenMP directives do not parallelize the program; they are a set of
commands to the compiler on how a particular DO loop should be
parallelized. The existence of the directives in the source removes the need
for the compiler to perform any parallel analysis on the parallel code. The use
of OpenMP directives dictates that the compiler should parallelize the
particular section of code, and wrong answers could result if the directives
are used incorrectly.

This variable must be replicated for each processor that executes the DO
loop; otherwise, one processor would set i, and then, prior to using the value
of i, processor 2 may set i. To solve this problem, we make n (the number of
processors) copies of i using the PRIVATE clause. Since the DO loop index is
made private automatically, this is not necessary; however, for completeness,
we include it.

Prior to investigating OpenMP directives in detail, a small example that
illustrates the use of the directives is given. Consider the following DO loop:

dimension a(1000000),b(1000000),c(1000000)
read *,n
sum = 0.0
call random (b)
call random (c)

!$omp PARALLEL DO
!$omp+PRIVATE (i)
!$omp+SHARED (a,b,n)
!$omp+REDUCTION (+:sum)

do i=1,n
a(i) = sqrt(b(i)**2+c(i)**2)
sum = sum + a(i)

enddo
print *,'sum = ',sum

end

Variable scoping is the hardest task the user must complete to parallelize a
DO loop. The question to be addressed is how a particular variable should be
allocated prior to the execution of the parallel DO loop. The first variable
encountered in the DO loop is the loop index itself (i).

The other variables in the first sample DO loop are either only read, or they
are arrays whose access is dependent upon the loop index. Any variable
satisfying either of these characteristics should be shared by all processors.

The variable sum is a special case. It actually introduces a loop-carried
dependency and could be an inhibitor to parallelization of the DO loop. Since
this type of construct occurs often, a special name is given, and a special
110 Scientific Applications in RS/6000 SP Environments

directive is supplied. sum is a reduction variable. The way to parallelize this
construct would be for each processor to calculate its own local sum and then
outside the loop to have each processor add its value into a global shared
value. Consider the following example:

sum = 0.0
!$omp PARALLEL
!$omp+PRIVATE (i,sumx)
!$omp+SHARED (a,b,n,sum)

sumx = 0.0
!$omp DO

do i=1,n
a(i) = sqrt(b(i)**2+c(i)**2)
sumx = sumx + a(i)

enddo
!$omp END DO
!$omp CRITICAL

sum = sum + sumx
!$omp END CRITICAL
!$omp END PARALLEL

print *,'sum = ',sum
end

Several new directives have been introduced. First, the PARALLEL—END
PARALLEL construct allows for scoping to be disjointed from work sharing.
This allows the user to have control over some private variables. In this
example, the private variable, sumx, is initialized outside the DO loop,
updated in a work-sharing directive, DO—END DO, and then summed into
the shared variable, sum, under the control of a synchronization directive,
CRITICAL—END CRITICAL. The shortcut for forcing the compiler to do this is
the use of the REDUCTION directive, which results in exactly this code.

We have one last comment on this example: One may get different answers
when parallelizing this example. The parallelization of this example sums the
elements of a(i) in a different order than the original sequential DO loop. Such
permutation of addition could get different answers due to the accuracy of the
computer functional units.

We now look at the variable scoping in more detail.

4.1.4 Variable scoping
Variable scoping tends to be most difficult in cases that benefit the most from
parallelization. To obtain good parallelization performance, the outermost DO
loops should be parallelized. In many cases, the outermost DO loop may
Chapter 4. Shared memory 111

contain subroutine and function calls. When a DO loop contains subroutine
and function calls, variable scoping is a challenge.

In earlier versions of Fortran, the user could be sure that, when a subroutine
was called, all local variables would retain their values when leaving the
subroutine or function. This implicit saving of the procedure's variables was
assured because memory for the subroutine and/or function was "statically"
stored in memory that lived throughout the execution of the program. With the
advent of parallel systems, particularly shared memory parallel systems, a
different way of handling a procedure's variables was formulated to assure
that two different processors would use different memory locations when the
procedure was called. The new method stored the variables on a "stack",
when the procedure was called and released them with the return from the
procedure.

Unfortunately, this method of allocating a procedure's local variables does not
save the value of the variable from one invocation of the procedure to the
next. With the advent of Fortran90, the default for saving a procedure's local
variables changed to "stack". If a user wants to retain a value for a variable
from one invocation to the next, he or she must use a SAVE statement.
Actually, the SAVE statement is like placing the local variable in a COMMON
block; it is still local, and it exists from one invocation to the next.

When using shared memory parallelization in a program, you must ensure
that all local variables in the routines called in parallel must be allocated on
the "stack". When using xlf on an IBM SMP, you must compile the routines
with -qnosave. This is not necessary when using xlf90 or xlf95. Care must be
taken to ensure that no SAVE statements are contained within the called
routine and that no variables have the SAVE attribute, namely, those that are
explicitly initialized.

In Fortran, there are two types of variables: GLOBAL variables and LOCAL
variables. GLOBAL variables are frequently allocated at compile time and
LOCAL variables without the SAVE attribute are always allocated on stack at
runtime. In OpenMP, there are two types of variables: SHARED and
PRIVATE. Variable scoping is much easier if you try to think of all GLOBAL
variables as being SHARED and all LOCAL variables as being PRIVATE.

Perhaps, understanding what a compiler does to generate a parallel version
of a DO loop after encountering an OpenMP directive will help. When an
OpenMP directive is encountered on a DO loop, the DO loop is encapsulated
in a subroutine, and, then, that subroutine is invoked by each active thread.
All variables that are scoped PRIVATE on the OpenMP directive are allocated
on "stack" when the routine is called, and all variables scoped SHARED are
112 Scientific Applications in RS/6000 SP Environments

passed to the subroutine in a COMMON block. In the transformed parallel DO
loop, the variable scoping strictly adheres to the Fortran notions of GLOBAL
and LOCAL.

PRIVATE variables are those variables that must be disjointed; that is, each
processor must have a separate copy during the execution of the parallel
code. SHARED variables are those variables that must be shared by each
processor, that is, all processors use the same memory location for SHARED
variables.

All variables that are scoped PRIVATE on the OpenMP directive are allocated
on "stack" when the routine is called, and all variables scoped SHARED are
passed to the subroutine as GLOBAL variables. In the transformed parallel
DO loop, the variable scoping strictly adheres to the Fortran notion of
GLOBAL and LOCAL.

Given this introduction to variable scoping, we now present some rules of
thumb to assist in scoping variables in a DO loop.

A PRIVATE variable is a variable that satisfies one of the following rules:

• A scalar variable that is set and then used within the DO is PRIVATE.

• An array whose subscript is constant with respect to the DO and is set and
then used within the DO is PRIVATE.

All other variables are SHARED including:

• A scalar or array whose subscript is constant with respect to the
PARALLEL DO that is only used.

• A scalar or array whose subscript is constant with respect to the DO that is
used and then set in the DO. This variable leads to loop-carried
dependencies, and a loop containing this type of variable can only be
parallelized when an ORDERED or CRITICAL region or a REDUCTION
clause is used. The use of one of these OpenMP constructs will be
dependent upon the use of the variable. An example of each will be given
later in this section.

• An array whose subscript is dependent upon the DO.

Given this set of rules, we will now talk about exceptions. First, strictly
speaking, a Fortran local variable can be an OpenMP SHARED variable. This
will occur when the DO is contained within the routine that allocates the local
variable. For example:

subroutine example1(n,b,c)
real*8 a(1000000),B(1000000),c(1000000)
Chapter 4. Shared memory 113

integer n,i
real*8 sum

c read *,n
sum = 0.0

c call random_number (B)
c call random_number (C)
!$omp PARALLEL DO
!$omp+PRIVATE (i)
!$omp+SHARED (a,b,n)
!$omp+REDUCTION (+:sum)

do i=1,n
a(i) = sqrt(b(i)**2+c(i)**2)
sum = sum + a(i)
enddo

print *,'sum = ',sum
end

The variable sum is local with respect to example1; however, it is SHARED
with respect to OpenMP and is one of those nasty used-before-being-set
variables. This occurrence of sum is handled quite nicely with the
REDUCTION clause.

Additionally, a global variable may necessarily be scoped as a PRIVATE
variable. When this occurs, there is almost always a problem. Consider the
following example:

subroutine example4(n,m,a,b,c)
real*8 a(100,100),B(100,100),c(100)
integer n,i
real*8 sum

!$omp PARALLEL DO
!$omp+PRIVATE (j,i,c)
!$omp+SHARED (a,b,m,n)

do j=1,m
do i=2,n-1
c(i) = sqrt(1.0+b(i,j)**2)
enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+c(i)**2)
enddo

enddo
end

The variable c is passed into the routine; while it may be local within some
other routine, it is definitely global with respect to example4. In the
PARALLEL DO — do j=1,m , c(i) must be a PRIVATE variable. If this isn't
clear, go back to the rules. c(i) is constant with respect to j, and it is set and
114 Scientific Applications in RS/6000 SP Environments

then used in the PARALLEL DO. Something is not quite right about this DO
loop. Why does the user even have c(i)? Why not substitute
sqrt(1.0+b(i,j)**2), and why are all values of c not being set? Well, maybe the
user does not want all of c to be set. Maybe the values c(1) and c(n) are
special and are passed into the subroutine. If the user really wants the c(1)
and c(n) that are passed into the routine, making it a PRIVATE variable is not
giving all of the processors a copy of c(1) and c(n). Basically, we have a
problem. Consider the following modification to the OpenMP directives:

!$omp PARALLEL DO
!$omp+PRIVATE (j,i)
!$omp+FIRSTPRIVATE (c)
!$omp+SHARED (a,b,m,n)

The FIRSTPRIVATE directive copies the values of c owned by the master
thread to each of the PRIVATE arrays c. This results in quite a large amount
of data motion that is not really required. Alternatively, the user can employ
the following code to produce a more efficient version of the parallel DO loop:

subroutine example5(n,m,a,b,c)
real*8 a(100,100),B(100,100),c(100)
real*8 cc(100)
integer m,n,i
real*8 sum

!$omp PARALLEL
!$omp+PRIVATE (j,i,cc)
!$omp+SHARED (a,b,m,n)

cc(1) = c(1)
cc(n) = c(n)

!$omp DO
do j=1,m
do i=2,n-1
cc(i) = sqrt(1.0+b(i,j)**2)

enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+cc(i)**2)

enddo
enddo

!$omp END DO
!$omp END PARALLEL
end

By using the PARALLEL/END PARALLEL construct, we have reduced the
memory copies and achieved the same parallelization.

Whenever a global variable is made private, another problem arises. What if
that variable is required when returning to the calling procedure? A global
Chapter 4. Shared memory 115

variable is either passed in as an argument or in a COMMON block. What if it
is needed after execution of the DO loop? In the OpenMP documentation, it is
not clear if you can have both:

!$omp PARALLEL DO
!$omp+PRIVATE (j,i)
!$omp+FIRSTPRIVATE (c)
!$omp+LASTPRIVATE (c)
!$omp+SHARED (a,b,m,n)

There certainly could be a case where both were required, or one could use
the PARALLEL/END PARALLEL construct:

!$omp PARALLEL
!$omp+PRIVATE (j,i,cc)
!$omp+SHARED (a,b,m,n)

cc(1) = c(1)
cc(n) = c(n)

!$omp DO
do j=1,m
do i=2,n-1
cc(i) = sqrt(1.0+b(i,j)**2)

enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+cc(i)**2)

enddo
enddo

!$omp END DO
do i=1,n
c(i) = cc(i)

enddo
!$omp END PARALLEL

Is this right? LASTPRIVATE says the processor that has the last iteration of
the DO loop must store all the values of c. Since we cannot be sure in which
order the iterations are performed, this is incorrect. Perhaps the following is
correct:

!$omp PARALLEL
cc(1) = c(1)
cc(n) = c(n)

!$omp DO
do j=1,m
do i=2,n-1
cc(i) = sqrt(1.0+b(i,j)**2)
enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+cc(i)**2)
116 Scientific Applications in RS/6000 SP Environments

enddo
enddo

!$omp END DO
if(j.eq.m+1)then
do i=1,n
c(i) = cc(i)
enddo
endif

!$omp END PARALLEL

Variable scoping becomes more difficult when the parallel DO calls an
external routine:

subroutine example5(n,m,a,b,c)
real*8 a(100,100),B(100,100),c(100)
integer m,n

!$omp PARALLEL DO
!$omp+PRIVATE (j)
!$omp+SHARED (a,b,m,n)

do j=1,m
call doit(j,n,a,b)

enddo
end
CEND EXAMPLE5
subroutine doit(j,n,a,b)

real*8 a(100,100),B(100,100)
COMMON cc(100)
do i=2,n-1
IF(a(i,j).gt.SIN(b(i,j)))THEN

cc(i) = sqrt(1.0+b(i,j)**2)
ENDIF

enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+cc(i)**2)

enddo
end

We have a global variable cc, which is contained in a COMMON block;
however, each processor needs a different copy in the routine doit(). There
are many problems with this one. We are not sure if the original values of cc
are needed; it looks like they probably are. The real problem is that all
processors will be using the same memory for cc and overwriting values,
which is nothing but trouble. Unfortunately, this type of construct occurs quite
often, especially when one parallelizes code at a very high level. OpenMP
thought of this and introduced the following directive:

!$omp THREADPRIVATE (/BCOM/)
Chapter 4. Shared memory 117

This construct specifies that the COMMON block BCOM will be allocated for
each participating thread. Unfortunately, blank COMMON cannot be specified
on a THREADPRIVATE directive, and we would have to change all
occurrences of COMMON cc to COMMON/BCOM/ cc. How do we deal with
getting a copy of cc for all the threads? This is handled by the COPYIN clause
as follows:

!$omp PARALLEL DO COPYIN(/BCOM/)

When the THREADPRIVATE directive is used, none of its variables should be
used in any PRIVATE or SHARED clause. The COMMON block variables can
only be used in the COPYIN clause. The previous DO loop would, therefore,
be changed as follows:

!$omp PARALLEL DO
!$omp+COPYIN(/BCOM/)
!$omp+PRIVATE (j)
!$omp+SHARED (a,b,m,n)

do j=1,m
call doit(j,n,a,b)
enddo

end
CEND EXAMPLE5
subroutine doit(j,n,a,b)

real*8 a(100,100),B(100,100)
COMMON/BCOM/ cc(100)

!$OMP THREADPRIVATE (/BCOM/)
do i=2,n-1
if(a(i,j).gt.SIN(b(i,j)))THEN
cc(i) = sqrt(1.0+b(i,j)**2)
endif
enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+cc(i)**2)
enddo

end

If one variable in a COMMON block must be made private, all variables must
be made private. COPYIN can specify a list of variables that need to obtain a
copy of the original value.

There are directives to specify default scoping for the compiler telling the
compiler to treat everything not mentioned on a scoping directive as PRIVATE
or SHARED depending on the directive (compilers typically have defaults for
these directives); however, these directives and the compiler defaults can
cause problems. The most important task of parallelizing a DO loop is
118 Scientific Applications in RS/6000 SP Environments

scoping all the variables; if this is not done correctly, wrong answers will be
obtained. It is important for the user to scope all variables used in a DO loop.

Also, do not assume that the compiler is scoping the variables for you. You
may get lucky, but, nine times out of ten, you will get incorrect answers if you
just put a !$omp PARALLEL DO on the DO loop.

4.1.5 Work sharing concepts
The most widely-used method for work sharing is chunk distribution. For
example, if there are four processors (np=4) being used, a simple work
allocation is:

!$omp Schedule(Static)
Processor Iteration Count
1 1,n/4
2 n/4+1, n/2
3 n/2+1, 3n/4
4 3n/4+1, n

Each processor will get an equivalent chunk of work, and the processor will
be given the work with one dispatch. A second option would be:

!$omp Schedule(Dynamic,1)
Processor Iteration Count
1 1,7,9,...
2 2,5,6,...
3 3,8,10,...
4 4,11,...

Each processor may not get an equivalent amount of work; however, it will
receive dispatches of one iteration of work as long as they are available.
Giving a thread a chunk of work has associated overhead. Why would this
second approach be of any value? The answer has to do with load balancing
of the work. If our DO loop had an IF test prior to the calculation dependent
upon some loop dependent value, there would be a potential that the
calculation would not be executed for a number of loop iterations. The first
work-sharing mechanism assumes equal work for each iteration. The second
is the best for load balancing if the work is variable. OpenMP has other
mechanisms to allow the user to trade-off between minimizing overhead and
good load balancing.

Consider the following DO loop:

subroutine example5(n,m,a,b,c)
real*8 a(100,100),B(100,100),c(100,100)
integer i,j,m,n
Chapter 4. Shared memory 119

!$omp PARALLEL DO
!$omp+PRIVATE (i,j)
!$omp+SHARED (a,b,c,n,m)

do i=1,m
do j=i+1,n
a(j,i) = sqrt(b(j,i)**2 + c(j,i)**2)
enddo
enddo

end

In this example, each subsequent processor has less work than the previous
processor. The default method of giving processor one the first m/nprocs
iterations, the second processor the next m/nprocs iterations, and so on, will
give the last processor significantly less work than the first, and the last
processor will finish the DO loop first and wait for the rest. This DO loop is not
"Load Balanced". OpenMP has other options to cover this area. The following
directive:

!$omp SCHEDULE(STATIC,1)

would give each processor only one iteration at a time. This would give you
good "Load Balancing"; however, the overhead of issuing m parallel tasks
would be excessive. Consider the following:

!$omp SCHEDULE(STATIC,4)

This would give larger chunks of work; however, this could be dependent
upon the value of m. If m were a zillion, we should set the chunk size pretty
large:

!$omp SCHEDULE(STATIC,1000000)

There is a way to do this correctly. First, we figure out the size of the chunk
size that achieves a good parallel speedup. Let us say we determine that the
DO loop gets a factor of 3.7 on four processors for a value of around 250 if m
is typically 59000. A very good work sharing directive would be:

!$omp SCHEDULE(GUIDED,500)

This directive starts by handing the iterations out in chunks equal to n/nprocs
and then exponentially decreasing the chunk size to an iteration count of 50.
This will effectively hand out a balanced number of chunks.
120 Scientific Applications in RS/6000 SP Environments

Table 21 shows the difference in iteration distribution for several different
options for a DO loop that is not shown:

Table 21. Iteration distribution

4.1.6 Other directives
The next set of directives deals with synchronizing the processors. Several of
these directives have already been discussed. The major synchronization
directives are:

!$OMP CRITICAL
!$OMP END CRITICAL

The CRITICAL directive allows only one processor in the region encompassed
by the directives. Any order is allowed.

!$OMP ORDERED
!$OMP END ORDERED

The ORDERED directive allows only one processor in the region encompassed
by the directives in the order specified by the DO loop. The thread executing
the first iteration is followed by the thread executing the second iteration,
which is followed by the thread executing the third iteration, and so on.
Additionally, the PARALLEL DO must have an ORDERED clause.

!$OMP ATOMIC

Consider the following DO loop:

subroutine example8(n,m,a,b,c,ij)
real*8 a(1000000),b(1000000),c(1000000),ij(1000)
integer i,j,m,n

!$omp PARALLEL DO
!$omp+PRIVATE (i)

Iterations 1,000

static,10
1-10, 41-50, 81-90 ...
11-20, 51-60, 91-100 ...
21-30, 61-70, 101-110 ...
31-40, 71-80, 111-120 ...

Dynamic,10
1-10, 41-50,71-80, 81-90 ...
11-20,91-100 ...
21-30,51-60, 61-70, 101-110 ...
31-40, 71-80, 111-120 ...

Guided
1-250, 686-764,927-945,971-978, ...
251-438,824-868,902-926 439-579,765-823,960-970
580-685,869-901,946-959
Chapter 4. Shared memory 121

!$omp+SHARED (a,b,c,ij,m)
do i=1,m

!$omp ATOMIC
a(ij(i)) = a(ij(i)) + sqrt(b(i)**2 + c(i)**2)
enddo

end

In the PARALLEL DO, the update of a(ij(i)) is performed atomically. That
means that the load, update, and store of a(ij(i)) are performed under a
critical region; however, the expression sqrt(b(i)**2 + c(i)**2) can be
performed in parallel.

!$omp BARRIER

This directive specifies that all processors will wait at this point until all
processors have arrived at this point.

4.1.7 Function calls
The following calls are self-explanatory and are useful when performing
parallelism with OpenMP directives:

call OMP_SET_NUM_THREADS(integer expression)
nthrds = OMP_GET_NUM_THREADS()
nprocs = OMP_GET_NUM_PROCS()

The number of threads can be greater than the number of processors

myid = OMP_GET_THREAD_NUM()

4.1.8 Compiler options
When using shared memory parallelization, the _r version of the compiler
should be used. The three most popular versions are xlf_r, xlf90_r, or mpxlf_r.
These are the Fortran 77, Fortran 90, and distributed memory parallel
version. When these commands are used, the -qsmp option invokes the
parallelizer. Some sample uses follow:

xlf_r -qnosave -qsmp=omp

This invokes the Fortran compiler using default option settings that are
consistent with typical FORTRAN 77 compiler behavior, requesting that all
locals be stored on stack and asking for the recognition of OpenMP
directives.

xlf90_r -qsmp
122 Scientific Applications in RS/6000 SP Environments

This invokes the Fortran compiler using default option settings that are
consistent with typical FORTRAN 90 compiler behavior and requests
automatic parallelization.

mpxlf_r -qnosave -qsmp=noauto

Invokes the compiler with MPI libraries, requests no automatic parallelization,
and requests the interpretation of OpenMP and IBM directives. We strongly
recommend that users use the xlf90_r and xlf95_r with the -qfixed option
rather that xlf_r.

4.1.9 Automatic parallelization
The IBM compiler has state-of-the-art capabilities for parallelizing Fortran
programs. The major problem with automatic parallelization is the potential
that a parallelized DO loop may run slower than a sequential DO loop. When
applying automatic parallelization across an entire program, some loops will
result in a speed-up, and some may result in slower execution. The
combination is questionable. Selective use of automatic parallelization can be
very useful.

The runtime library performs checking of the execution of the parallel DO loop
to decide whether to run the loop sequentially the next time the loop is
encountered. This checking of the performance can be controlled with
environment variables. The following variables control this runtime check.

export XLSMPOPTS="parthreshold = .1"

parthreshold specifies the time in milliseconds below which the loop will run in
serial. The default value is 0.2.

export XLSMPOPTS=" profilefreq=1"

profilereq specifies the frequency with which the loop should be analyzed to
check for parallel execution (a value of zero specifies that profiling should be
turned offf).

export XLSMPOPTS=" seqthreshold = .05"

seqthreshold specifies the time in milliseconds beyond which a previously
sequential loop will be run in parallel when being rechecked. The default is 5
milliseconds.

Consider the following graph of the stream benchmark, the TRIAD loop.
Notice that the automatically-parallelized plot jumps from the sequential to
the OpenMP version at 200,000 iterations. This implies that the default value
for parthreshold is too large. Since the OpenMP version of this example best
Chapter 4. Shared memory 123

performs around 10,000 iterations, we should set this environment variable to
.05 or .025. Once again, the user is encouraged to make several tests to see
what works best for their application.

Figure 28. Stream rates for Triad

4.1.10 Granularity and parallelization overhead
When a parallel SMP program is executed, a single (master) thread executes
until a parallel Do loop or parallel Section is encountered. At this first
encounter of parallel code, the master creates the remaining threads; if the
number of threads is two, the master will create one additional thread. At the
end of this initial parallel code, the new thread(s) will either be put to sleep or
will be placed in a spin loop. Environment variables control how long the
thread will be in a spin loop before it goes to sleep. Since it takes longer to
wake up a sleeping thread, it is preferred to keeps the threads spinning when
they are not in use.

This spinning of threads will utilize 100 percent of the CPU that is running the
thread. If the SMP program is running dedicated, this is not an issue. If the
operating system is running multi-users simultaneously, the CPUs of the SMP
124 Scientific Applications in RS/6000 SP Environments

will not be utilized efficiently. The principal environment variable that controls
the sleeping/spinning state of the threads is:

export SPINLOOPTIME=5000

This variable should be set to the number of times the thread should retry a
busy lock before going to sleep.

From the Fortran documentation, two additional environment variables are
supplied, which are meant to control the spin time. These environment
variables, spins, and yields do not appear to have as positive an effect as
SPINLOOPTIME.

In addition to the overhead of the thread entering and leaving the work, there
is synchronization overhead. Most of the time, all threads must wait at the end
of a DO loop until all threads are complete with the execution of the parallel
code. This is what is known as a BARRIER, and it is the major source of
synchronization time. Another source of synchronization time is the execution
of LOCKS around a reduction function. In an earlier example, the reduction
function sum had to be updated outside the parallel DO loop, but inside the
parallel region. To keep more than one thread at a time from updating this
variable, a lock is imposed around sum's update. The lock consists of a
fetch/modify of a memory location. This introduces overhead to synchronize
the processors around the summation. This is the main reason for pulling the
summation outside the DO loop: Local sums are calculated inside the parallel
DO loop, and then each processor needs to execute the locked region only
once to update the global sum.

Synchronization within a parallel DO loop should be avoided. Sometimes, this
can be extremely difficult, particularly when a summation that must be
synchronized is in a subroutine or function called from the parallel DO loop.
The only time this synchronization should be used inside such a DO loop is if
the granularity of the DO loop is extremely large - large enough to overcome
the overhead of the synchronization.

While OpenMP has the notion of an ORDERED region, this should be
avoided at all costs. While the reduction function can be performed with a
CRITICAL region, that is, only one processor can enter the region at a time in
any order, the ORDERED region requires the processors to execute the
region in the order specified by the loop index. Whichever thread has the first
iteration must go through the region first, then, the thread that has the second
iteration, and so on. When an ORDERED region is used, the iterations should
be handed out one at a time, which reduces granularity, which cannot
overcome the overhead of the ORDERED region.
Chapter 4. Shared memory 125

4.1.11 Parallelization examples
The first example we will investigate is the shallow water benchmark. This is
one of the SPEC 95 benchmarks, and it parallelizes fairly well. Consider the
following loop from CALC1:

C$OMP PARALLELDO
C$OMP&SHARED (FSDY,FSDX,M,N,U,V,P,CU,CV,Z,H)
C$OMP&PRIVATE (I,J)

DO 100 j = 1, n
DO 100 i = 1, m
cu(i + 1, j) = .5 * (p(i + 1, j) + p(i, j)) * u(i + 1, j)
cv(i, j + 1) = .5 * (p(i, j + 1) + p(i, j)) * v(i, j + 1)
z(i + 1, j + 1) = (fsdx * (v(i + 1, j + 1) - v(i, j + 1)) -
. fsdy * (u(i + 1, j + 1) - u(i + 1, j))) / (p(i, j)
. + p(i + 1, j) + p(i + 1, j + 1) + p(i, j + 1))
h(i, j) = p(i, j) + .25 * (u(i + 1, j) * u(i + 1, j) + u(i, j)
. *u(i, j) + v(i, j + 1) * v(i, j + 1) + v(i, j) * v(i, j))

100 CONTINUE

This is a fairly simple DO loop that automatically parallelizes when -qsmp is
used. A second case was run where the parallelization was controlled by
OpenMP directives. This case was run using -qsmp=omp. The following plot
shows the execution of two versions of parallelization: -qsmp, which does
automatic parallelization, and -qsmp=omp, which only parallelizes DO loops
containing OpenMP directives.

Figure 29. Comparisons of OpenMP and Automatic on SWIM

Notice that the Automatic parallelization beats OpenMP for few numbers of
processors. This is because the automatic parallelizer parallelized more DO

1 2 4 8

Number of Processors

0

50

100

150

200

W
al

lc
lo

ck
(S

ec
)

-qsmp=omp
-qsmp
-qsmp & SPINLOOPTIME

Comparisons of OpenMP & Automatic on SWIM
126 Scientific Applications in RS/6000 SP Environments

loops than were parallelized by placing the OpenMP directives manually. For
eight processors, the OpenMP version ran faster. This is due to the
granularity of the DO loops parallelized by the automatic parallelizer. When
the SPINLOOPTIME environment variable is set to cause the threads to spin
all the time, the automatic parallelization runs faster.

Four of the NAS Benchmarks have been parallelized with OpenMP. These
represent a range of performance from the EP example that is exactly linear
to the MG example that scales fairly poorly. The next figure gives times for the
four benchmarks considered.

Figure 30. NAS Benchmarks

EP is a simple embarrassingly-parallel program that should run linearly. BT is
somewhat more complicated, and it runs very well. SP runs reasonably well;
however, we do not get close enough to linear scaling. This is due to the fact
that some of the important DO loops have not been parallelized. MGs lack of
scalability is primarily due to the granularity of the calculation at eight
processors. MG has a range of mesh sizes from the maximum of 256x256 to
a much smaller mesh. This variation of grid sizes results in more overhead for
the small grids, which degrades the overall performance.

4.1.12 Debugging an OpenMP program
Many of the parallel debuggers work with threads. For those who believe print
is the only way to debug, it is important to use the

myid = OMP_GET_THREAD_NUM()

1 2 4 6 8

Processors

0

1

2

3

4

5

6

7

8

9
S

pe
ed

up

bt
ep
mg
sp

NAS Benchmarks
Chapter 4. Shared memory 127

function to include in the print; so, the individual outputs can be separated.
The most common mistake in using OpenMP is not specifying the scoping
correctly. Particularly when an outer DO loop, which contains a large number
of subroutines and functions, is parallelized. Such a mistake can result in the
parallelized code giving correct answers sometimes and incorrect answers at
other times.

4.1.13 Compiler switches and environment variables
We have seen many examples using compiler switches. The following is a
review of everything that pertains to shared memory parallelization:

• -qsmp

• Recognizes OpenMP, SMP, and IBMP directives.
• Performs automatic parallelization.

• -qsmp=omp

• Recognizes OpenMP directive.
• Turns off automatic parallelization.

Other options

• auto | noauto

• Turns automatic parallelization on or off.

• omp | noomp

• Enforce stricter checking.

• schedule

• Allows a user to specify default scheduling options at compile time.

• Threshold

• Allows a user to specify the minimum number of iterations for a DO
loop to be automatically parallelized. Default is 100.

Additionally, there are several Environment variables that the user can set to
improve performance. These environment variables are set with the
XLSMPOPTS variable.

• schedule

• schedule options discussed earlier in this chapter can be set.

• parthds

• The number of threads to be used for parallel execution; Default is the
number of processors.
128 Scientific Applications in RS/6000 SP Environments

• usrthds

• The number of threads the program will create; Default is 0.

• stack

• The largest amount of space in bytes that a thread's stack will need.
Default is 4194304 bytes.

• spins/yields/delays

• This was discussed earlier. Controls the busy-waiting state of the
threads.

• parthreshold/seqthreshold/profilereq

• This was discussed earlier. Controls when to run loop parallelized
automatically in parallel.

Table 22 is a summary of xlf compliance with the OpenMP 1.0 Standard. In
this table, all items marked future will be in XLF 7.1.

Table 22. XLF OpenMP summary

OpenMP Feature XLF Rel.

Directive Sentinels !$omp c$omp *$omp XLFV5

Conditional compilation Future

Parallel regions support XLFV6

Worksharing DO/ENDDO w/NOWAIT XLFV6

Worksharing SECTIONS/END SECTIONS Future

SINGLE/END SINGLE Future

PARALLEL DO clauses (if, private, lastprivate, reduction,
schedule, shared)

XLFV5

PARALLEL DO clauses (firstprivate, default) XLFV6

END PARALLEL DO XLFV6

THREADPRIVATE directive and copyin clause Future

ORDERED directive and ordered clause Future

PARALLEL SECTIONS (if, private, reduction, shared) XLFV5

PARALLEL SECTIONS clauses (firstprivate, default,
lastprivate)

XLFV6

Scheduling algorithms: static, dynamic, guided, runtime XLFV5
Chapter 4. Shared memory 129

4.2 Programming with threads

Threads provide a low-level and very flexible method of distributing the work
in a given application into separate streams of execution that share a single
memory address space. Each thread executes its own function and can be
independently controlled by the operating system. This feature is particularly
useful for computers whose operating systems have access to multiple
processors. On such systems, a program begins to execute as a single
thread, and additional threads are created and terminated at will. These
threads can be used to concurrently schedule work onto the multiple
processors.

There is a standardized application interface for threads called Pthreads
(POSIX threads) that is part of the UNIX specification (see item 1 in Section
4.2.9, “References” on page 145). The fact that threads share a common
memory address space simplifies access to global memory, but protections
are required to ensure that updates to memory locations are properly
controlled. In this section, we focus on simple examples of thread
programming that we have found to be useful in the context of technical
computing with the IBM SP platform. For a more general discussion of
Pthreads, we refer the reader to the books about thread programming listed in
items 2 - 4 in Section 4.2.9, “References” on page 145).

Programming explicitly with threads is not recommended for the casual user.
It requires considerable care to write bulletproof multithreaded code. In many
cases, it is possible to get the benefits of multiple threads by using OpenMP
directives as discussed in Section 4.1, “Shared memory parallelization with

MASTER/END MASTER XLFV6

CRITICAL/END CRITICAL XLFV5

BARRIER XLFV6

ATOMIC Future

FLUSH Future

omp_get_thread_num_procedure XLFV6

OMP runtime library (remaining) Future

Environment variables Future (much function in
"XLSMPOPTS" today)

OpenMP Feature XLF Rel.
130 Scientific Applications in RS/6000 SP Environments

OpenMP” on page 105, by using SMP-enabled library routines, or by making
use of the automatic parallelization capability of compilers. We recommend
these simpler approaches in many cases. However, there are times when it is
preferable to take direct control of thread management, and, in those
situations, the Pthreads interface is required. On IBM systems, a Fortran
version of the Pthreads interface is available in addition to the standard C
Pthreads interface. This makes it relatively simple to introduce threads into
numerically-intensive Fortran applications. We give examples in both C and
Fortran, but the reader should recognize that the Fortran implementation is
not backed by an industry-wide standard.

4.2.1 Thread creation and termination
Many of the basic features of threads are best discussed within the context of
specific examples. We start with a simple "hello threads" program. Although
this particular example does not do any useful work, it serves as a good
starting point and provides a template for thread creation that can be directly
copied into many applications. A C version of "hello threads" is listed in
Figure 31 on page 132, and the corresponding Fortran code is listed in Figure
32 on page 133. In this example, the initial thread creates four worker
threads, and each worker thread prints a "hello" message and terminates.
The same steps would be taken in any multithreaded application where the
work is partitioned according to an integer thread identifier. The application
should be compiled and linked with cc_r, which defines the symbol
_THREAD_SAFE and links with the Pthreads library.
Chapter 4. Shared memory 131

Figure 31. C version of "hello threads" - Template for thread creation

Threads are created using the pthread_create function. This function has four
arguments: A thread identifier, which is returned upon successful completion,
a pointer to a thread-attributes object, the function that the thread will
execute, and the argument of the thread function. The thread function takes a
single pointer argument (of type void *) and returns a pointer (of type void *).
In practice, the argument to the thread function is often a pointer to a
structure, and the structure may contain many data items that are accessible
to the thread function.

In the "hello threads" example, the argument is a pointer to an integer, and
the integer is used to identify the thread. Error checking was not implemented
in this example. In real applications, it is advisable to #include <errno.h>,
check the return codes from the Pthread functions, and use the perror()
routine to print error messages if the return code indicates failure. The thread

#include <pthread.h>
#include <stdio.h>

void * thfunc(void * arg)
{

int id;

id = *((int *) arg);

printf("hello from thread %d \n", id);
return NULL;

}

int main(void)
{

pthread_t thread[4];
pthread_attr_t attr;
int arg[4] = {0,1,2,3};
int i;

// setup joinable threads with system scope
pthread_attr_init(&attr)
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

// create N threads
for (i=0; i<4; i++)
{

pthread_create(&thread[i], &attr, thfunc, (void *) &arg[i]);
}

// wait for the N threads to finish
for (i=0; i<4; i++) pthread_join(thread[i], NULL);

return 0 ;
}

132 Scientific Applications in RS/6000 SP Environments

attributes that are listed in Figure 31 and Figure 32 are explained in the next
section.

The IBM Fortran version of the Pthreads API is similar to the C version, where
the function names and data types from C are preceded with f_. Fortran
programs that use explicit Pthread routines must have a statement to include
the f_pthread module. A number of Fortran routines, including
f_pthread_create, have call sequences that differ from the standard C
version. For example, the f_pthread_create function takes an additional
parameter to specify properties of the argument to the thread function. The
IBM Fortran implementation of Pthreads is described in the XL Fortran for AIX
Language Reference, SC09-2718.

Multithreaded Fortran applications should be compiled and linked with xlf_r,
which sets certain compiler options, such as -qthreaded, and links with the
Pthreads library. In addition, for Fortran 77 applications, it is usually
necessary to turn on the -qnosave compiler option, which ensures that local
variables are allocated on the stack and, thus, thread-private.

Figure 32. Fortran version of "hello threads" - Template for thread creation

program hello
use f_pthread
implicit none
type(f_pthread_t) thread(4)
type(f_pthread_attr_t) attr
external thfunc
integer i, rc, flag, arg(4)
data arg/0,1,2,3/

! setup joinable threads with system scope
rc = f_pthread_attr_init(attr)
rc = f_pthread_attr_setdetachstate(attr, PTHREAD_CREATE_JOINABLE)
rc = f_pthread_attr_setscope(attr, PTHREAD_SCOPE_SYSTEM)

! create N threads
flag = FLAG_DEFAULT
do i = 1, 4

rc = f_pthread_create(thread(i), attr, flag, thfunc, arg(i))
end do

! wait for the N threads to exit
do i = 1, 4

rc = f_pthread_join(thread(i))
end do

end

subroutine thfunc(id)
implicit none
integer id
write(6,*) 'hello from thread ', id
end
Chapter 4. Shared memory 133

The time required for thread creation is an important factor in the
performance of multithreaded applications. The simplest method of
measuring the overhead is probably with the AIX trace facility. This can be
done with the following commands:

trace -a -o trcfile -j 465,467; mtcode; trcstop trcrpt -o trace.report
-O exe=on,pid=on trcfile

where mtcode is the multithreaded code that you want to trace. Such
measurements indicate a rather wide variance, except with typical thread
creation times of about 200 microseconds. One consequence is that it only
makes sense to create/terminate threads in routines that execute for longer
than about 1 millisecond. The time spent in each routine can be determined
by profiling the application; so, the profile provides valuable information about
which routines may be good candidates for creating threads within the
routine.

Threads terminate implicitly when they complete execution of the thread
function. A thread can terminate itself explicitly by calling pthread_exit. It is
also possible for one thread to terminate other threads by calling the
pthread_cancel function. The initial thread has a special property. If the initial
thread reaches the end of its execution stream and returns, the exit() routine
is invoked, and, at that time, all threads that belong to the process will be
terminated. However, the initial thread can create "detached" threads, and
then safely call pthread_exit(). In this case, the remaining threads will
continue execution of their thread functions, and the process will remain
active until the last thread exits.

4.2.2 Thread attributes
Although the Pthreads application interface is standardized, some thread
attributes may have implementation-dependent default values. In AIX version
4.3, the default thread attributes are that the state of a thread is "detached"
and that threads have "process" contention scope. These default values may
not be the best choices. In many applications, it is useful for the initial thread
to create a group of threads and then wait for them to terminate before
continuing further. This is best done with threads that are "joinable", not
"detached". To ensure that threads are "joinable", it is necessary to initialize a
thread-attributes object, and then call pthread_attr_setdetachstate to set the
state to "joinable" as shown in Figure 31 and Figure 32. With "joinable"
threads, one can use the function pthread_join to suspend the calling thread
until the referenced thread has terminated. In the "hello threads" example, the
call to pthread_join ensures that the initial thread does not exit until all of the
other threads have finished their work. The pthread_join function will return
with an error code if the referenced thread is "detached" instead of "joinable";
134 Scientific Applications in RS/6000 SP Environments

so, it is necessary to specify "joinable" threads if you want to use the
pthread_join function. The thread contention scope is very important from the
performance perspective. Threads with "process" scope share a kernel
thread with other threads of "process" scope. AIX 4.3 supports a general
thread-mapping model, which can map N user threads of "process" scope
onto M kernel threads. The default for AIX 4.3.2 is that there are eight threads
of "process" scope per kernel thread. The important consideration is that
threads with "process" scope do not directly correspond to kernel threads,
which are the entities that are scheduled onto processors by the operating
system. In contrast, threads with "system" scope are mapped one-to-one onto
kernel threads. In many applications, the intended benefit of creating P
threads is to ensure that P processors can work concurrently to improve the
performance of the application. This requires the creation of threads with
"system" scope. One can control the default AIX thread scope with an
environment variable, AIXTHREAD_SCOPE. This can be set to P for
"process", which is the AIX default, or S for "system", but it is preferable to
directly specify the thread scope attribute within the application using the
pthread_attr_setscope function as shown in the examples.

The default AIX thread attributes are discussed in detail in AIX V4 General
Programming Concepts: Writing and Debugging Programs, SC23-2533. In
our experience, instead of using the default attributes, it is often desirable to
make the threads "joinable" and set the contention scope to "system" as
shown in Figure 31 and Figure 32. There are many other thread-attributes
that can be customized. For example, the default thread-scheduling policy in
AIX is not round robin (RR) or first-in-first-out (FIFO); it is labeled as
SCHED_OTHER, and it uses processor affinity and dynamically-adjusted
thread priority values.

In AIX, only kernel threads with root authority can use a fixed priority
scheduling policy (RR or FIFO). In a normal user program, an attempt to
create a thread with the scheduling policy set to SCHED_RR or
SCHED_FIFO will fail with an error message indicating wrong ownership.
These scheduling policies are available to normal users only if the executable
is owned by root with the suitable permission bits set. Threads are, by default,
not bound to a specific processor. The operating system will occasionally
move threads among the available processors. However, the default
scheduling policy, SCHED_OTHER, takes processor affinity into
consideration. Our experience has been that the default scheduling attributes
are adequate for most purposes including numerically-intensive
multithreaded computations.
Chapter 4. Shared memory 135

4.2.3 Programming models
With Pthreads, one can implement different parallel programming models.
The "hello threads" examples listed in Figure 31 and Figure 32 illustrate the
master-slave model. The initial, or master, thread creates N worker threads
and then waits until the workers are done. One can modify the thread creation
template to make the master thread work too. For example, the initial thread
can create N-1 threads and then execute the thread function before calling
pthread_join as shown in Figure 33 on page 136. This technique can
significantly reduce the thread creation overhead compared to the
lazy-master model. In addition to the master-slave and equal-worker models,
one can construct workflow pipelines or other algorithms for distributing work
among threads:

Figure 33. Version of "hello threads" where initial thread shares the work

#include <pthread.h>
#include <stdio.h>

void * thfunc(void * arg)
{

int id;

id = *((int *) arg);

printf("hello from thread %d \n", id);
return NULL;

}

int main(void)
{

pthread_t thread[4];
pthread_attr_t attr;
int arg[4] = {0,1,2,3};
int i;

// set-up joinable threads with system scope
pthread_attr_init(&attr)
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

// create N-1 threads
for (i=1; i<4; i++)
{

pthread_create(&thread[i], &attr, thfunc, (void *) &arg[i]);
}

// call the thread function
Function((void *) &arg[0]);

// wait for all other threads to finish
for (i=1; i<4; i++) pthread_join(thread[i], NULL);

return 0 ;
}

136 Scientific Applications in RS/6000 SP Environments

So far, our simple examples have specified a fixed number of threads. In
many applications, it is useful to have the program decide how many threads
to create at run time while providing the ability to override the default behavior
by setting an environment variable. For numerically-intensive routines, a
sensible default is to ensure that the work is distributed over P threads when
there are P processors on line. In AIX, one can get the number of online
processors by calling sysconf(). A sample code in C is shown in Figure 34. It
includes an option to override the default behavior by checking an
environment variable called NUMTHREADS. The sysconf() system call is part
of the UNIX specification. However, this call is not required to provide the
number of online processors; so, this method may not port to other UNIX
flavors. After determining the number of threads to create, the program can
use dynamic memory allocation to set up storage for thread data. After that,
thread creation follows the templates listed in previous figures.

Figure 34. Sample code for setting the number of threads at run time

4.2.4 Synchronization
In many multithreaded applications, it is necessary to ensure that threads
update global memory locations in a controlled manner. This is usually done
with mutex (mutual exclusion) variables. A mutex object can be locked and
unlocked, and the operating system ensures that access to the mutex object
is serialized, that is, only one thread can lock the mutex at a given time.
Working with mutex variables can be rather tricky. Our experience has been
that, in many programs, a barrier synchronization routine for threads would
suffice to ensure proper behavior. For example, suppose that multiple threads
are working to fill out a table, and, once that is done, each thread needs read
access to the table for the next step. A barrier synchronization point would
ensure that no thread could proceed to the next step until all threads have
finished filling out the table. Instead of working directly with the low-level

#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
...
char * penv;
int ncpus, numthreads;
...
// get the number of online processors
ncpus = sysconf(_SC_NPROCESSORS_ONLN);
if (ncpus < 1) ncpus = 1;

// check the NUMTHREADS environment variable
penv = getenv("NUMTHREADS");
if (penv == NULL) numthreads = ncpus;
else numthreads = atoi(penv);
...
Chapter 4. Shared memory 137

pthread_mutex functions, a higher level thread synchronization function is
very useful. The construction of a barrier synchronization function provides a
good example of how to use mutex variables, and we will describe a thread
synchronization routine in some detail.

The main idea in our barrier synchronization example is that a global counter
is used to keep track of how many threads have called the barrier function. A
mutex lock is used to ensure that only one thread can update the global
counter. After updating the counter, the thread is suspended. Once the
prescribed number of threads has incremented the counter, all threads are
notified and resume execution. The waiting and notification steps require the
use of condition variables. A relatively simple thread synchronization function
in C is listed in Figure 35 on page 139. The corresponding Fortran version is
shown in Figure 36 on page 140.

There are some tricky parts to this routine. The objective is to synchronize N
threads. The call to pthread_mutex_lock ensures that only one thread at a
time can increment the counter of blocked threads. After incrementing this
counter, each of the first N-1 threads will wait on a condition by calling
pthread_cond_wait, which releases the mutex. Notice that the call to
pthread_cond_wait is placed inside a "while" loop. The reason for this is that
the Pthreads specification explicitly permits pthread_cond_wait to return
spuriously. The "while" loop should always test a relationship involving a
shared variable, which evaluates to true if the awakened thread should
continue to wait when pthread_cond_wait returns. The Nth thread to call the
synchronization function resets the shared counter of blocked threads to zero,
increments the barrier instance, and calls pthread_cond_broadcast, which
wakes up the threads that were suspended in the call to pthread_cond_wait.
When pthread_cond_wait returns, the calling thread gets the mutex; so, all
threads must call pthread_mutex_unlock. This ensures that, upon exit of the
synchronization routine, the mutex object is available for a subsequent barrier
synchronization call.
138 Scientific Applications in RS/6000 SP Environments

Figure 35. Listing for a thread synchronization function (in C)

#include <pthread.h>

int barrier_instance = 0;
int blocked_threads = 0;

pthread_mutex_t sync_lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t sync_cond = PTHREAD_COND_INITIALIZER;

int syncthreads(int nth)
{

int instance;

// the calling thread implements a lock, other threads block
pthread_mutex_lock(&sync_lock);

// the thread with the lock proceeds
instance = barrier_instance;
blocked_threads++;

if (blocked_threads == nth)
{

// notify all threads that the sync condition is met
blocked_threads = 0;
barrier_instance++;
pthread_cond_broadcast(&sync_cond);

}

while (instance == barrier_instance)
{

// release the lock and wait here
pthread_cond_wait(&sync_cond, &sync_lock);

}

// all threads call the unlock function and return
pthread_mutex_unlock(&sync_lock);

return(0);
}

Chapter 4. Shared memory 139

Figure 36. Listing for a Fortran version of the thread synchronization routine

The thread synchronization routines listed in Figure 35 and Figure 36 can be
generalized to include a group label so that one can synchronize threads
belonging to a particular group. This would provide a synchronization
capability that is roughly comparable to what is available in other parallel
programming libraries, such as MPI. In many cases, one can accomplish the
programming goals with general synchronization routines. This can help
simplify writing multithreaded code, and it minimizes the number of cases
where one has to deal directly with mutex and condition variables.

SUBROUTINE SYNCTHREADS(kth)
c This routine will synchronize kth threads

use f_pthread
implicit none
integer kth,rc,blocked,phase,myphase
type(f_pthread_mutex_t) :: mutex
type(f_pthread_cond_t) :: cond

save mutex, cond, blocked, phase
data blocked /0/, phase /0/
data mutex /PTHREAD_MUTEX_INITIALIZER/
data cond /PTHREAD_COND_INITIALIZER/

c one thread gets the lock, other threads block
rc = f_pthread_mutex_lock(mutex)

c the thread with the lock proceeds
myphase = phase
blocked = blocked + 1

if (blocked .eq. kth)then
blocked = 0
phase = 1 - phase
rc = f_pthread_cond_broadcast(cond)

endif

c wait until the phase variable is switched.
do while(phase .eq. myphase)

rc = f_pthread_cond_wait(cond, mutex)
end do

c All threads call the unlock function.
rc = f_pthread_mutex_unlock(mutex)
return
END

This example must be compiled with xlf_r using the -qnosave option for
correct behavior.

Note
140 Scientific Applications in RS/6000 SP Environments

4.2.5 Local vs. shared variables
The synchronization example also emphasizes the difference between local
variables and shared variables. In C, variables that are declared within a
function are thread-private unless they are explicitly given the "static" storage
specifier. Each thread has its own private stack. In contrast, static variables
are shared among all threads. Variables that are declared outside a scoping
unit have the static storage attribute by default and, thus, are shared among
all threads. In the synchronization example, the mutex lock (sync_lock) and
the condition variable (sync_cond) are shared objects. Also, the barrier
instance and the count of blocked threads are shared variables. In contrast,
the integer variable "instance" is declared inside the synchronization routine
and is private to each thread.

In xl Fortran, the default storage attributes depend on the language level. For
Fortran 77, the default storage attribute is static. When multithreaded Fortran
routines are compiled with xlf_r, it is necessary to specify the -qnosave option
to ensure that local variables are placed on the stack and are, thus,
thread-private. Variables that are specified in a "save" list are shared, as are
variables placed in a common block. For Fortran 90 codes, the default option
for xlf90_r is that all local variables are placed on the stack and are, thus,
thread-private, but variables in a "save" list or in common blocks are shared.

4.2.6 Ray-tracing example
Consider a ray-tracing program in which an image is constructed by tracing
rays backward from each pixel in the image plane. The computational work
can be done in parallel using threads. We started with a sequential program
and first tried to parallelize it for SMP systems using OpenMP directives. This
attempt failed, and it was necessary to resort to explicit multithreading with
Pthreads. The algorithm for this ray-tracing code could be described as
follows:

1. Read the input data.

2. Dynamically allocate arrays.

3. For each pixel in the image plane, trace a ray backward from the image to
the object.

4. Once the image is complete, display it and/or save it

The difficulty with automatic or directive-based parallelization was that each
ray needed its own private data-structures for lists. A compiler would need to
understand the whole algorithm in order to make the correct choices. In the
sequential code, the data-structures were dynamically allocated using malloc
near the top of the code. The simplest way to multithread the application was
Chapter 4. Shared memory 141

to convert the loop over pixels into a thread function. In order to ensure that
each thread has its own private work areas, the relevant calls to malloc were
moved to inside the thread function, and the associated pointer variables
were declared inside the thread function to make them thread-private. The
key programming challenge was to identify which data-structures needed to
be shared among threads and which ones needed to be thread-private. An
alternative way of getting thread-private memory allocation is to use the
alloca() routine inside the thread function. The alloca() function does dynamic
memory allocation on the stack, and each thread has its own stack. In AIX, it
is necessary to add a compiler flag (-qma) or a pragma directive (#pragma
alloca) in order to use the alloca() routine. With either technique, each thread
obtains private working areas, and the image can be constructed in parallel
with good parallel efficiency. The performance of the ray-tracing code on an
eight-CPU POWER3 SMP High node is shown in Table 23. The main reason
for the deviation from perfectly linear scaling is that there is a load imbalance,
that is, the work is not quite shared evenly among the worker threads.

Table 23. Ray-tracing performance on an eight-way POWER3 SMP High node

The ray-tracing example fits nicely into the master-slave model. The initial or
master thread reads input and sets up globally-accessible arrays. The master
thread creates worker threads to compute the image, using pthread_create,
and then calls pthread_join to wait for the workers to finish. After the workers
are done, the master thread goes on to display or save the resulting image.
Alternatively, the master could create N-1 threads and share the work before
calling pthread_join as shown in the listing in Figure 33 on page 136. For a
correct multithreaded code, it is critically important to identify the arrays or
lists that need to be thread-private and the data-structures that can be safely
shared among threads.

4.2.7 Overlapping communication or I/O with computation
The explicit creation of threads can be very useful in cases where one wants
a thread to handle a distinct task, such as communication or I/O while
computation is in progress. By overlapping computation with communication
or I/O, performance can be improved. We will describe an MPI example
where the overall work flow is:

Number of threads Elapsed time (sec) Speed-up factor

1 3.20 1.00

2 1.66 1.93

4 0.88 3.64

8 0.52 6.15
142 Scientific Applications in RS/6000 SP Environments

1. Initial Phase (initialize MPI, read input, etc.)

2. For many iterations or time-steps

Step A. Do some computation
Step B. Write results
Step C. Repeat steps A and B

3. Final phase (close files, finalize MPI, etc.)

Without threads, the elapsed time per time-step would be the sum of the
times for steps A and B above. With a threaded implementation, the time per
iteration could be reduced to approximately the larger of the times for steps A
and B, because the two steps can be scheduled concurrently by the operating
system. If you create threads at the top level to handle the different tasks, the
application template would be:

1. Initialize MPI, read input, etc.

2. Set up thread attributes for joinable threads with system scope.

3. Create threads using pthread_create.

4. Wait for all threads to finish using pthread_join 5.

5. Finalize MPI, close files, and exit.

The thread function would contain the iteration or time-step loop as sketched
in Figure 37.

Figure 37. Sketch of a thread function for overlapping computation with I/O

The thread with id = 0 first waits in a synchronization routine until the threads
that are handling the computation have completed one time-step. Then,
thread 0 can write output for the first time-step while computation is in

Begin Thread Function
For each iteration or time-step

if thread id = 0
synchronize threads
write output

else
do computation
synchronize threads

end if
End For

End Thread Function
Chapter 4. Shared memory 143

progress for the next step. The routines listed in Figure 35 and Figure 36 can
be used to ensure synchronization of the threads.

It is necessary to ensure that the buffer used by thread 0 for I/O is protected
against inappropriate updates by the other threads. This can be done with
mutex variables or with a barrier synchronization routine. For example, the
template for the thread function could be modified to the form shown in Figure
38.

Figure 38. Thread function for overlapping computation and I/O

This thread function includes shared data protection. The additional
synchronization point introduces a serial bottleneck that will negatively impact
performance, but it is necessary to ensure thread-safety.

4.2.8 Concluding remarks
The threads application interface offers great flexibility for making effective
use of nodes with multiple processors, but the flexibility comes at the cost of
considerable code complexity. In many cases, the simpler approach of using
OpenMP directives, SMP-enabled libraries, or the automatic SMP capabilities
of compilers is preferred, and it is not always the case that one can get better
performance with the explicit use of threads. Debugging multithreaded
applications is awkward at best. When the target platform is the IBM SP, it is
possible to mix threads with MPI, but a significant amount of care is required,
and things are simplest when only one thread is handling communication. For
many MPI applications, the best way to use nodes with multiple processors is
to have multiple MPI tasks on each node; so, why use threads at all? The
answer is that, in some cases, it is the only viable approach. We hope that the

Begin Thread Function
For each iteration or time-step

if thread id = 0
synchronize threads to ensure that all workers are done
copy shared data into a private buffer
synchronize threads to wait for the copy by thread 0
write output from the private buffer

else
do computation
synchronize threads to ensure that all workers are done
synchronize threads to wait for the copy by thread 0

end if
End For

End Thread Function
144 Scientific Applications in RS/6000 SP Environments

code fragments and discussions in this section will help those who choose to
go where only explicit threads can take them.

4.2.9 References
• CAE Specification, System Interfaces and Headers, Issue 5: Volume 1, the

Open Group 1997, ISBN 1-8591-2181-0. The UNIX specification including
the Pthreads interface is available online at www.opengroup.org.

• Programming With Posix Threads, by David R. Butenhof, Addison Wesley
1997.

• Thread Time: The Multithreaded Programming Guide, by Scott J. Norton,
Mark D. Depasquale, Prentice Hall 1996

• Pthreads Programming, by Bradford Nichols, et al, O’Reilly & Associates
1996
Chapter 4. Shared memory 145

146 Scientific Applications in RS/6000 SP Environments

Chapter 5. Hybrid programming model

With the availability of SMP (Symmetric Multi-Processor) nodes in the
RS/6000 SP system, the parallel application developer now has two choices
for exploiting the multiple CPUs of each node. With the first (traditional)
approach, an MPI task can be initiated for each CPU on each node. For
example, with 64 two-way POWER3 SMP Thin/Wide nodes (200 MHz), a
128-way MPI job can be initiated. With the second (combined) approach, a
single MPI task can be initiated on each node, and each MPI task can be
threaded to use the multiple CPUs on each node. For example, with 64
POWER3 SMP Thin/High nodes, a 64-way MPI job can be initiated where
each MPI task uses two threads.

5.1 OpenMP+MPI

With the traditional approach, interprocessor communication takes place
between nodes (internode) and within a node (intranode), and each MPI task
occupies a single CPU. With the combined approach, interprocessor
communication, in it is simplest form, only takes place between nodes, and
the computational (and possibly the communications) portions are threaded
to occupy the multiple CPUs. This second combined approach is fully
supported by the current system software and is currently being used in
several Numerical Weather Prediction applications.

Threading can be accomplished using either the Pthreads API or through the
use of OpenMP and #pragma directives to prescribe where thread level
parallelism exists. The OpenMP directives for Fortran and the #pragma
directives for C result in the generation of subroutine and function calls to the
Pthreads library and can be viewed as a form of preprocessing. It is
anticipated that most users will chose to use the OpenMP and #pragma
directives since the learning curve for the compiler directives is shorter than
for using the Pthreads library explicitly.

5.1.1 Motivation
It is anticipated that most MPI applications will use the traditional approach of
initiating as many MPI tasks on a node as CPUs since this approach requires
no additional effort. There are, however, some applications that can benefit
significantly, in a performance sense, from the combined approach.
Applications that are interprocessor communication-bound and/or exhibit a
high degree of load imbalance as the number of MPI tasks increases are
prime candidates for the combined approach.
© Copyright IBM Corp. 1999 147

The nature of the performance advantage of the combined approach stems
from the architecture of the SP system and the characteristics of MPI codes.
With the current SP interconnect fabric, there is one "adapter" per node that
is shared by all the MPI tasks performing communication on each node. The
net effect is that there is less interprocessor bandwidth and higher latency, on
a per-MPI task basis, with multiple MPI tasks per node when compared with a
single MPI task per node. For example, with two-way POWER3 SMP
Thin/Wide nodes, the per-MPI task nominal exchange bandwidth between
nodes is reduced by approximately one-half when comparing two MPI tasks
per node with one MPI task per node; this is not surprising since the single
adapter in the interconnect fabric is shared.

With regard to applications, codes that exploit a domain decomposition
strategy may be characterized by having the total amount of communication
directly proportional to the number of MPI tasks. Since the aggregate
interprocessor communication performance of a group of nodes is a constant,
a programming approach that results in fewer total MPI tasks on the group of
nodes will result in less total communication time. In other words, if an
application produces more total interprocessor communication with 128 MPI
tasks than with 64 MPI tasks, it will require more interprocessor
communication time when run on 64 nodes compared with using 64 MPI
tasks on 64 nodes. Of course, the computational portions must be effectively
threaded or the total runtime will be greater even though the communication
time is less.

5.1.2 Logistical considerations - Using POE
In this section, a quick review of how to use POE to initiate interactive parallel
jobs will be discussed followed by a discussion of how to use POE in the
context of LoadLeveler, the batch queuing system.

For interactive work, POE will either use command line arguments or
environment variables to obtain the needed information for initiating parallel
execution. The following subset of the POE environment variables is
applicable for the traditional and combined approach:

MP_PROCS= total number of MPI tasks

MP_NODES= total number of nodes

MP_TASKS_PER_NODE= number of tasks per node

For the traditional approach, MP_PROCS should be set to the total number of
MPI tasks, which is, essentially, the number of nodes multiplied by the
number of CPUs per node. Either MP_NODES or MP_TASKS_PER_NODE
should also be set. POE will either divide MP_PROCS by
148 Scientific Applications in RS/6000 SP Environments

MP_TASKS_PER_NODE to determine the total number of nodes, or it will
divide MP_PROCS by MP_NODES to determine the number of tasks per
node. Use MP_NODES if MP_PROCS does not divide evenly into
MP_TASKS_PER_NODE.

For the combined approach, MP_PROCS should be set to the total number of
nodes. Either MP_NODES can be set to MP_PROCS or
MP_TASKS_PER_NODE can be set to one.

When using LoadLeveler in batch processing, the MP_PROCS, MP_NODES,
and MP_TASKS_PER_NODE environment variables, as well as the command
line analogs, are ignored. POE will obtain this information directly from
LoadLeveler, and the user must supply the information via LoadLeveler
keywords. The relevant keywords are as follows:

#@ total_tasks = total number of MPI tasks

#@ node = total number of nodes

#@ tasks_per_node = number of tasks per node

For the traditional approach, #@ total_tasks should be set to the same value
that would be used for MP_PROCS if running interactively. The same applies
to #@ node (refer to MP_NODES) and #@ tasks_per_node (refer to
MP_TASKS_PER_NODE). The same logic should be applied when using the
combined approach. Refer to LoadLeveler User's Guide Release 2.1,
SH26-7226, and Parallel Environment for AIX: Operation and Use, Volume 1,
SC28-1979, for additional information as well as the system administration
staff for site-specific details.

5.1.3 Logistical considerations - OpenMP
In this section, a discussion of the logistics of building an application that
uses the combined approach is presented. The concepts regarding the use of
OpenMP can be found in the XL Fortran for AIX Language Reference,
SC09-2718, and at the following URL:

http://www.openmp.org

Assuming that the computational and/or communications portions have been
threaded via OpenMP directives for Fortran, use the following compiler and
options:

mpxlf90_r -qsmp=noauto ...

If the code uses fixed form Fortran syntax, add the -qfixed option as
mpxlf90_r assumes free form syntax. The "-qsmp=noauto" will only result in
the interpretation of OpenMP directives. If you wish to have automatic
Chapter 5. Hybrid programming model 149

detection of loop-level parallelism also take place, specify "-qsmp". The "_r"
version of mpxlf instructs the compiler to generate thread-safe code and
instructs the linker to link the thread-safe version of the system libraries.

Since the MASS scalar routines are not thread-safe, do not link the MASS
library if there are any references to MASS scalar intrinsics in any parallel
regions. MASS Version 2.5 does provide thread-safe vector intrinsics. If any
ESSL (Engineering and Scientific Subroutine Library) routines are called in
parallel regions, specify "-lessl_r" at link time to use the thread-safe version of
ESSL.

With respect to controlling the number of threads that are initiated, use the
XLSMPOPTS environment variable. For example:

export XLSMPOPTS="parthds=2"

will instruct the OpenMP runtime library to create two threads in the parallel
regions. If not set, "parthds" will default to the number of CPUs on the node.
Refer to the XL Fortran for AIX Language Reference, SC09-2718, for
additional details regarding the XLSMPOPTS environment variable and for
additional information on compiler options.

5.1.4 Special hardware considerations
For the new POWER3 SMP High node (eight-way) on the current generation
interconnect fabric, the combined approach may be the only way to fully
exploit the node for an MPI code. The current node adapters support a
maximum of four-MPI tasks in User Space. This capability is adequate for the
four-way 332 MHz SMP node and the two-way POWER3 SMP Thin/Wide
node. For the eight-way POWER3 SMP High node, there are now more CPUs
available than the maximum number of MPI tasks in User Space; eight MPI
tasks cannot be initiated in User Space. Eight MPI tasks can be initiated
using the IP protocol over the interconnect fabric, but the increase in latency
when using IP has negative performance implications. If an MPI application
wants to use all eight CPUs and User Space, the combined approach is
required. Of course, many permutations are possible.

For example, four MPI tasks can be initiated on each node, and the number of
threads per task can be set to 2 (via the XLSMPOPTS environment variable)
to create a scenario that uses all eight CPUs and exploits User Space.
Similarly, one MPI task per node with eight threads per task will also occupy
all eight CPUs.

It is expected that future hardware development for the SP Switch fabric
interconnection will increase the number of MPI tasks supported in User
150 Scientific Applications in RS/6000 SP Environments

Space. The combined approach (MPI tasks and threads) will be appropriate
for some applications since the number of "ports" from a node to the
interconnect fabric may be exceeded by the number of CPUs per node.
Greater per-MPI task performance can still be achieved by reducing the
number of MPI tasks per node. The availability of the multi-protocol MPI
(shared memory can be used for intranode communications) should provide
for some increase in the internode communication performance by reducing
the load on the adapters from MPI tasks that are performing intranode
communication.

5.1.5 Some MPI considerations
The most obvious scenario with the combined approach is to thread the
computational portions of the code that exist between the MPI calls. With this
scenario, the MPI calls are "single-threaded" and, therefore, only use a single
CPU. The MPI calls can also be threaded. If the message passing strategy is
to perform bidirectional exchanges, there may not be any performance
advantage to threading the MPI calls. Unidirectional transfers may exhibit a
performance improvement; test this with a simple code as part of your
decision making process.

Care must be taken if MPI collective communication routines are threaded.
The programmer must make sure that all participating tasks execute
collective communications on any given communicator in the same order. For
other MPI routines that use "tags", care should be taken to make sure that
unique communicators are used for each thread as appropriate.

5.1.6 Performance example
In this section, an example of the performance advantage of the combined
approach is presented. Although these results were obtained on four-way 332
MHz SMP nodes, they are representative of other SP node types.

MM5 is a popular Numerical Weather Prediction model that uses the
combined approach. The code uses a two-dimensional domain
decomposition strategy and the computational portions are very effectively
threaded using OpenMP directives. Table 24 on page 152 shows the results
of running the code on 16 four-way 332 MHz SMP nodes; the traditional
approach uses 64 MPI tasks (four per node), and the combined approach
uses 16 MPI tasks (one per node with four threads).
Chapter 5. Hybrid programming model 151

Table 24. MM5 performance on 332 MHz SMP nodes

Note that the total communication time is substantially reduced because the
total amount of communication is reduced with fewer total MPI tasks.
Specifically, the code produces approximately one-half the total
interprocessor communication with 16 MPI tasks as compared with 64 MPI
tasks; this factor of two is nearly realized in the measured communication
time. In addition, when using the combined approach, the reduced number of
MPI tasks results in a reduction in load-imbalance; this can be seen by
observing that the reduction in communications time is less than the
reduction in the total runtime of the code.

5.1.7 Summary
For certain applications, the combined approach can provide a performance
advantage when compared to initiating as many MPI tasks as CPUs on each
node. For POWER3 SMP High nodes on the current SP Switch, it may be the
only method for fully utilizing the CPUs on the node. In order for the combined
approach to be effectively exploited, the computational portions must be
efficiently threaded; otherwise, it will make more sense to use the traditional
approach of one MPI task per CPU on each node.

5.2 An example of the hybrid programming model

As an example of the hybrid programming model, we are going to look at the
matrix-vector multiplication. The example will show how to write a program
using the hybrid programming model. It will also shed light on some
implementation peculiarities and present some timing results.

The first thing to consider is how the MPI data distribution is going to be. In
the following examples, you can see the two basic possibilities to distribute
the data. The example shown in Figure 39 distributes the matrix columns, and
the example shown in Figure 40 distributes the matrix rows between the
different MPI tasks. Since we are going to use Fortran, which stores data
columns oriented in memory, we are going to use the first possibility, shown in
Figure 39.

Approach Communications Time (secs) Total Time (secs)

Traditional (64 MPI Tasks) 494 1,755

Combined (16 MPI Tasks) 281 1,505
152 Scientific Applications in RS/6000 SP Environments

For the Problem Ab=c, with Matrix A having the dimension ncols x nrows and
the vectors b and c having the dimension nrows, our serial main loop will look
like the following:

Figure 39. Matrix columns distributed

Using MPI for the distributed memory programming, there are only two
changes:

Figure 40. Matrix rows distributed

The loop length of the outer loop n_loc=ncols/nprocs is the number of
columns divided by the number of MPI tasks. For simplicity, it is assumed that
this division returns an integer number. The MPI call,
MPI_REDUCE_SCATTER, will use the MPI operator, MPI_ADD, to update all
local c on the root tasks and then "scatter" the results back to all tasks.

After the distributed memory part of our parallelization is done, we have to
decide how to parallelize the shared memory part. Again, as shown in in the
following examples, there are two basic ways to do this. The first approach,
shown in Figure 41 on page 154, splits each local column onto the threads.
The second approach, shown in Figure 42 on page 154, takes the same
approach we used for the distributed memory model and assigns whole
columns to each thread. We will look into both approaches.

The code fragment for the first example would look like:

DO j=1,ncols
DO i=1,nrows
c(i)=c(i)+a(i,j)*b(i)
END DO
END DO

DO j=1,n_loc ! My local part
DO i=1,nrows
c(i)=c(i)+a(i,j)*b(i)
END DO
END DO
CALL MPI_REDUCE_SCATTER(c) ! Update c
Chapter 5. Hybrid programming model 153

Figure 41. Each local column split onto threads

The second code fragment would look like:

Figure 42. Whole columns assigned to each thread

There are some problems with this code and OpenMP. The main problem is
that an OpenMP reduction variable has to be a scalar; so, we cannot use the
REDUCTION directive, but we have to program the reduction ourselves by
introducing a c_loc with the same dimension as c.

c=0.0
!$OMP parallel shared (c), private (c_loc)
c_loc=0.0
DO j=1,n_loc
!$OMP DO PRIVATE (i)
DO i=1,nrows
c_loc(i)=c_loc(i)+a(i,j)*b(j)
END DO
!$OMP END DO NOWAIT
END DO
!$OMP CRITICAL
DO i=1,nrows
c(i)=c(i)+c_loc(i)

DO j=1,n_loc ! My local part
!$OMP do parallel
!$OMP shared(a,b)
!$OMP private(i)
!$OMP reduction(c)
DO i=1,nrows
c(i)=c(i)+a(i,j)*b(i)
END DO
END DO
call MPI_REDUCE_SCATTER(c) ! Update c

!$OMP do parallel
!$OMP shared(a,b)
!$OMP private(i,j)
!$OMP reduction(c)
DO j=1,n_loc ! My local part
DO i=1,nrows
c(i)=c(i)+a(i,j)*b(i)
END DO
END DO
CALL MPI_REDUCE_SCATTER(c) ! Update c
154 Scientific Applications in RS/6000 SP Environments

END DO
!$OMP END CRITICAL
!$OMP END PARALLEL
CALL MPI_REDUCE_SCATTER(c)

The code for the next example looks exactly like the preceding example,
except the $OMP DO statement moves before the j-loop.

Using the IBM extension to the OpenMP standard allows us to use vectors in
a reduction statement.

c=0.0
!SMP$ PARALLEL REDUCTION(+:c)
c=0.0
DO j=1,n_loc
!SMP$ DO PRIVATE (i)
DO i=1,nrows
c(i)=c(i)+a(i,j)*b(j)
END DO
!SMP$ END DO NOWAIT
END DO
!SMP$ END PARALLEL
CALL MPI_REDUCE_SCATTER(c)

At first glance, it seems strange that the variable c is initialized twice, but
comparing it with the OpenMP code shows why this is necessary. The first
initialization sets the global variable c to zero, and the second sets the local
variable c, which corresponds to c_loc in the OpenMP example, to zero. Both
initializations are needed to get a properly-running program. Note that the
some compilers might initialize the reduction variables depending on the
reduction function.

We run both examples on two POWER3 SMP High nodes using the shared
memory implementation of MPI. The compilation was done as described
earlier, using optimization level -O4 -qtune=pwr3 -qarch=pwr3. For SMP, the
following options were used: -qsmp=noauto -qnosave. The results are
documented in Table 25 and Table 26 on page 156. As can be seen, the
preceding example not only scales better but is also faster than the first
example. This is a hint that, when you are programming for shared memory,
you should still think "distributed". Also, note that there was no measurable
Chapter 5. Hybrid programming model 155

performance difference between the OpenMP and IBM extension versions of
the code.

Table 25. Results in seconds on two NH1 nodes for Example 1

Table 26. Results in seconds on two NH1 nodes for Example 2

In conclusion, it should be said that this is just an example. Even more, it is
an example with very moderate MPI communication. Thus, it is not surprising
that the timings are favorable for MPI. The situation is likely to change if the
amount of MPI communication increases and several MPI tasks sharing the
same switch adapter generate a serious bottleneck. In this situation, it might
be strongly advisable to use mixed mode programming to relieve the adapter
from its workload.

5.3 Mixed-mode MPI

PSSP 3.1.1 supersedes the previous release (3.1.0) and provides MPI with
shared memory access between processes on the same node while still
using Userspace or IP space for communication between processes on
different nodes.

In order to enable the shared memory capability of PSSP 3.1.1, the
environment variable, MP_SHARED_MEMORY, must be set to YES. The
default is NO. In order to get good performance, the environment variable
MP_WAIT_MODE must be set to POLL. When PSSP 3.1.1 is referred to in

#(MPI tasks) Threads

1 2 4 8

1 218 127 90 173

2 114 64 46 90

4 57 33 26 --

8 31 19 -- --

#(MPI tasks) Threads

1 2 4 8

1 207 105 58 32

2 105 53 30 17

4 53 18 17 --

8 28 16 -- --
156 Scientific Applications in RS/6000 SP Environments

this section, it implies that the above environment variables are set for good
performance.

Operations can be performed either in Userspace or IP space (referred to in
this section as US and IP respectively). US gives the best performance, but
uses 100 percent CPU while waiting for MPI blocking operations to complete.

To be strictly accurate, some PSSP 3.1.0 measurements were made using
3.1.1 without setting MP_SHARED_MEMORY to YES. This is considered
equivalent to PSSP 3.1.0.

5.3.1 Point-to-point operations
The latency and transmission rates that can be achieved between two
processes on the same node were measured using the MPI_SENDRECV
function. Each process issued MPI_SENDRECV concurrently so as to
exchange data.

Figure 43 shows the Latency obtained using US and IP on the same node for
PSSP 3.1.1 and PSSP 3.1.0. The time taken for each MPI_SENDRECV call
was halved to give the one-way latency. For comparison, the latency for
processes on different nodes is also shown. The latency obtained with PSSP
3.1.1 is approximately the same for processes on the same node for both US
and IP. Clearly, the latency is much less than that previously obtained with
PSSP 3.1.0.

Figure 43. MPI_Sendrecv latency

Figure 44 on page 158 shows the MBps rate obtained (adding data rates in
both directions) for processes on the same node. Again, results achieved

IP US
0

20

40

60

80

100

120

Microsec

Different Nodes
Same Node (3.1.0)
Same Node (3.1.1)
Chapter 5. Hybrid programming model 157

with PSSP 3.1.1 are similar for US and IP and are much greater than those
achieved previously with PSSP 3.1.0.

Figure 44. MPI_Sendrecv (same node)

5.3.2 Collective communication
The collective communication operations in MPI involve multiple processes.
These processes may be on the same node or different nodes.

Because the entire pattern of communication between the processors is
known for each call, there is an excellent opportunity with these calls to make
the best use of shared memory and distributed memory.

Parallel programs using point-to-point calls between processes on the same
node and between processes on different nodes will probably be limited by
the time taken for communication between processes on different nodes. For
example, if each process exchanges data with its neighbor, the neighboring
processes on the same node will exchange data quickly, but the overall
program will be limited by the time the neighboring processes are on different
nodes.

For many programs, however, the largest amount of communication time
occurs in collective operations, such as MPI_REDUCE, MPI_ALLREDUCE,
and MPI_ALLTOALL.

In general, a significant time savings can be achieved by using shared
memory to perform as many of these calls as possible between processes on
the same node and by performing the minimum amount of communication

100 1000 10000 100000 1000000 10000000

Length in Bytes

0

50

100

150

200

250

300

350

MB/sec

3.1.1 IP or US 3.1.0 US 3.1.0 IP
158 Scientific Applications in RS/6000 SP Environments

between nodes. This is explained in more detail in the following sections for
the following specific calls.

• MPI_BARRIER

• MPI_BCAST

• MPI_REDUCE

• MPI_ALLTOALL

The time to execute these calls using the new PSSP 3.1.1 version of PSSP
has been measured for different message lengths and different numbers of
nodes. The times have been compared with the times taken by the previous
PSSP 3.1.0 version. In all cases involving processes on the same node, the
PSSP 3.1.1 version is significantly faster.

Measurements were made using both IP and US. When US is used, there is
a limitation that permits only four processes per node to participate in the
communication, even though the POWER3 SMP High node has eight
processors. Thus, when 16 processes participate in the communication, there
are four processes on each of the four nodes.

In the case of IP, there is no such limitation; so, for 16 processes, there are
eight processes on each of the two nodes. This discrepancy does lead to
some interesting comparisons, which are explained in more detail in the
following sections.

In the standard IBM implementation of MPI, which supports multiple threads,
MPI calls are implemented with a number of locks. The overall design of MPI
is explained in a paper by Richard Treumann on the ACTC Web site. The URL
for this paper is:

http://www.research.ibm.com/actc/Tools/MPI_Threads.htm

In order to improve performance even further, some code has been written for
certain specific cases of the calls discussed below. The code uses Shared
Memory segments, spin loops, and no locks to reduce the overhead to an
even smaller amount than in PSSP 3.1.1.

The code is written mostly in Fortran, with a few C routines to handle the
shared memory allocation. When one of the routines is called for the first
time, communication groups are created for all processes on the same node
and for all lowest process IDs on different nodes. This information is stored in
a common block. Specific collective communication calls can then be written
as required, making use of the common block information. The routines are
Chapter 5. Hybrid programming model 159

prefixed by MPJ_ (instead of MPI_) so that the application can call them
specifically.

This code is entirely unofficial, and results are shown here to indicate what
further performance enhancements might be achieved. In the following
sections, the enhancements are referred to as the "Turbo" version.

5.3.2.1 Barrier
The time taken (by process 0) for repeated MPI_BARRIER calls was
measured for two to 32 processes. The results are shown in Figure 45 on
page 160. The results are actually shown as Latency/N (where N is the
number of processes), simply to aid representation on a single chart.

As expected, PSSP 3.1.1 US is always lower than PSSP 3.1.0 US. This is
particularly so for two and FOUR processes when all the processors are on
the same node and all PSSP 3.1.1 communication is using shared memory.

PSSP 3.1.1 IP takes the same time as PSSP 3.1.1 US with two and four
processes, and take significantly less time for more than eight processes. For
eight processes, IP takes less time than US because all eight processes are
on the same node for IP, but are on two nodes for US.

Turbo IP and Turbo US are faster still, particularly when all processes are on
the same node. This is the case for two to four processors using US, and two
to eight processors using IP.

Figure 45. POWER3 SMP High node: MPI_Barrier latency

2 4 8 16 32

Number of Processes (N)

0

10

20

30

40

50

60

70

80

Microsec/N

3.1.0 US
3.1.1 IP

3.1.1 US Turbo IP Turbo US
160 Scientific Applications in RS/6000 SP Environments

5.3.2.2 Reduce plus broadcast
It is somewhat difficult to measure the time for repeated MPI_BCAST calls or
repeated MPI_REDUCE calls, because, for short message lengths (below the
MP_EAGER_LIMIT value), they are not blocked. Consequently, the available
buffer space fills up resulting in unpredictable timing.

One way around this problem is to follow each MPI_REDUCE call with an
MPI_BCAST call so that they block each other. This combination is actually
equivalent to a single MPI_ALLREDUCE call (although the time taken is
longer).

The time taken for very short messages is shown in Figure 46. Not
surprisingly, these times follow a similar pattern to those of MPI_BARRIER.

Figure 46. POWER3 SMP High node: MPI_Reduce+MPI_Bcast latency

Figure 47 on page 162 through Figure 50 on page 163 show the MBps rate
(for the combined calls) for two to 16 processes for various message lengths.

It is particularly noticeable that, for all numbers of processes and for all
message lengths, the PSSP 3.1.1 US rates are much faster than the PSSP
3.1.0 US rates. In fact, except for fairly short message lengths on 16
processors, PSSP 3.1.1 IP is also faster than PSSP 3.1.0 US. Exceptionally,
for eight processes, the PSSP 3.1.1 IP rates are faster than the PSSP 3.1.1
US rate. This is because, in the IP case, all processes are on the node.

Finally, note that the Turbo times are, usually, more than twice as fast as the
standard times.

2 4 8 16 32

Number of Processes (N)

0

10

20

30

40

50

60

70

Microsec/N

3.1.0 US
3.1.1 IP

3.1.1 US Turbo IP Turbo US
Chapter 5. Hybrid programming model 161

Figure 47. POWER3 SMP High node: MPI_Reduce+MPI_Bcast for two processes

Figure 48. POWER3 SMP High node: MPI_Reduce+MPI_Bcast for four processes

100 1000 10000 100000 1000000 10000000

Length in Bytes

0

10

20

30

40

50

60

70

80

90

MB/sec

3.1.1 US
3.1.1 IP

Turbo US Turbo IP 3.1.0 US

100 1000 10000 100000 1000000 10000000

Length in Bytes

0

10

20

30

40

50

60

70

MB/sec

3.1.1 US
3.1.1 IP

Turbo US Turbo IP 3.1.0 US
162 Scientific Applications in RS/6000 SP Environments

Figure 49. POWER3 SMP High node: MPI_Reduce+MPI_Bcast for eight processes

Figure 50. POWER3 SMP High node: MPI_Reduce+MPI_Bcast for 16 processes

5.3.2.3 Alltoall
In Alltoall communication, each processor sends a different message to every
other processor. There are a number of algorithms for implementing this
procedure.

One way of implementing this algorithm is for each process to start by
sending a message to the next highest numbered process and receiving a
message from the next lowest numbered process. Wraparound is assumed.
Each process then repeats the operation with the second next higher and

100 1000 10000 100000 1000000 10000000

Length in Bytes

0

10

20

30

40

50

60

MB/sec

3.1.1 US
3.1.1 IP

Turbo US Turbo IP 3.1.0 US

100 1000 10000 100000 1000000 10000000

Length in Bytes

0

5

10

15

20

MB/sec

3.1.1 US
3.1.1 IP

Turbo US Turbo IP 3.1.0 US
Chapter 5. Hybrid programming model 163

second next lower process and so on. For N processors, this results in N-1
latencies for each process.

Frequently, the message length exchanged between processes decreases
inversely with N so that, for large numbers of processes, the alltoall
communication time is dominated by the latency time.

For the Turbo implementation, the following modification to the above
procedure is used. The lowest numbered process on each node uses shared
memory to collect all messages from other processes on the same node. The
lowest numbered processes on each node then perform alltoall
communication between themselves. Finally, the lowest numbered process
on each node distributes messages to the other processes on the same node.

The amount of data exchanged between nodes remains the same, but the
number of latencies involved is only N-1, where N is the number of nodes
rather than the number of processes.

The time taken for very short messages is shown in Figure 51 on page 165.
Once again, the times for PSSP 3.1.1 US and IP are very much less than the
times for PSSP 3.1.0 US. For eight processors, the PSSP 3.1.1 IP time is
slightly less than the PSSP 3.1.1 US time because all processes are on the
same node for the IP case but on two nodes for the US case.

The figures on pages 1698 through 170 show the MBps rate for each process
for two to 16 processes for various message lengths (N). In this case, N is the
total length of all messages sent by each process. Rates for PSSP 3.1.1 US
markedly outperform rates for PSSP 3.1.0 US, except for 16 processors,
where the improvement is only slight. In fact, for 16 processors, there is a
marked improvement in the US times (for both PSSP 3.1.0 and PSSP 3.1.1)
when for N=40000. For eight processors, the PSSP 3.1.1 IP rate is greater
than the PSSP 3.1.1 US rate because processors are on the same node for
the IP case but on two nodes for the US case.

For a single node or for fairly small message lengths, the Turbo
implementation results in significant improvements, but, for larger message
lengths on more than one node, the overhead of collecting and distributing
messages on the same node sometimes exceeds the savings. More work is
required on this algorithm!
164 Scientific Applications in RS/6000 SP Environments

Figure 51. POWER3 SMP High node: MPI_Alltoall Latency

Figure 52. POWER3 SMP High node: MPI_Alltoall for two processes

2 4 8 16

Number of Processors (N)

0

100

200

300

400

500

Microsec/N

3.1.0 US
3.1.1 IP

3.1.1 US Turbo IP Turbo US

1000 10000 100000 1000000 10000000

Length in Bytes

0

20

40

60

80

100

120

140

MB/sec

3.1.1 US
3.1.1 IP

Turbo US Turbo IP 3.1.0 US
Chapter 5. Hybrid programming model 165

Figure 53. POWER3 SMP High node: MPI_Alltoall for four processes

Figure 54. POWER3 SMP High node: MPI_Alltoall for eight processes

1000 10000 100000 1000000 10000000

Length in Bytes

0

50

100

150

MB/sec

3.1.1 US
3.1.1 IP

Turbo US Turbo IP 3.1.0 US

1000 10000 100000 1000000 10000000

Length in Bytes

0

20

40

60

80

100

120

MB/sec

3.1.1 US
3.1.1 IP

Turbo US Turbo IP 3.1.0 US
166 Scientific Applications in RS/6000 SP Environments

Figure 55. POWER3 SMP High node: MPI_Alltoall for 16 processes

1000 10000 100000 1000000 10000000

Length in Bytes

0

5

10

15

20

MB/sec

3.1.1 US
3.1.1 IP

Turbo US Turbo IP 3.1.0 US
Chapter 5. Hybrid programming model 167

168 Scientific Applications in RS/6000 SP Environments

Chapter 6. Input/output

Most program packages execute input and output (I/O) operations, examples
of which are interactions with users, exchanges of data with other program
packages, and the reading and writing of disk files. In situations in which the
performance of such operations significantly influences the performance of a
package as a whole, the optimization of I/O is an important consideration. In
actual practice, however, this optimization is frequently given less than due
consideration not only because I/O can be difficult to characterize, but also
because modern computer systems (including the RS/6000 SP) provide an
almost bewildering variety of I/O options. Difficulties in the characterization of
I/O arise from the basic nature of time-sharing operating systems, which only
maintain accounting information for active processes and system processes
executing on their behalf and, so, do not reflect I/O wait time; the variety of
I/O options is the result of the combinations of facilities provided by the
designers of both hardware and system software to mitigate the delays
imposed primarily by the electromechanical or distance communication
components of I/O hardware.

The processor clock rate of the POWER3 SMP High Node is 222 MHz. See
Table 27. Therefore, the CPU cycle time is 4.505 ns (1 ns = 10-9 s). When
compared with the highest level in the memory hierarchy, transferring data
between RAM and disk requires approximately four orders of magnitude more
time per byte of data (1 ms = 10-3 s); this performance gap is likely to grow
rapidly in the near future because microprocessor performance
improvements significantly outpace those of disk drives.

Table 27. Data transfer rates

In this chapter, the presentation will emphasize the I/O of data that are either
destined for or being recovered from disk storage. This will permit a treatment
of I/O within a single chapter, but it will also address the type of I/O that is of
greatest interest to the majority of scientific users of RS/6000 SP systems.

Transfer type
Block size

(bytes)
Transfer time

CPU cycles Time

Register ← L1 cache 16 1 4.5 ns

Register → L1 cache 8 1 4.5 ns

L1 cache ↔ L2 cache 128 9 40.5 ns

L2 cache ↔ RAM 128 80 360 ns

RAM ↔ disk 4096 ~2.2 × 106 ~10 ms
© Copyright IBM Corp. 1999 169

An overview of the I/O hardware subsystem of the POWER3 SMP High Node
has already been presented in Section 1.1.1, “Hardware architecture” on
page 3. In Section 6.1.1, “POWER3 SMP High Node I/O subsystem” on page
171, we revisit this subsystem in more detail and, in Section 6.1.2, “Disk
subsystems” on page 172, we extend the overview to peripherals (disk drives
and adapters) that may be attached to the subsystem. The POWER3 SMP
High Node is, of course, an element of an RS/6000 SP system. The collective
aspect of an RS/6000 SP system in the context of disk I/O is manifested in its
network file systems, each of which exploits a communication subsystem to
carry data between file server and client nodes; to this extent, an
understanding of the communication subsystems is vital to an appreciation of
I/O on the RS/6000 SP system; also, for this reason, the communication
subsystem of the RS/6000 SP is revisited in Section 6.1.3, “Communication
subsystems” on page 172.

File systems are the topic of Section 6.2, “File systems” on page 173. An
overview of fixed-disk storage management in AIX is taken up in Section
6.2.1, “AIX file systems” on page 173. Applications that perform I/O
operations to files that exceed 2 GB in size may require special attention; this
is the topic of Section 6.2.2, “Large file support” on page 176.

The optimization of I/O is treated in Section 6.3, “I/O optimization” on page
177, which is, by far, the largest section of the present chapter and describes
proven methods for the improvement of I/O performance.

The IBM general parallel file system for AIX (GPFS) can provide enhanced
I/O performance on the RS/6000 SP. All XL Fortran applications as well as
POSIX-compliant C and C++ applications may be executed unchanged from
a GPFS file system; most will require less I/O time. A brief overview of the
GPFS file system from the user’s perspective appears in Section 6.4, “GPFS”
on page 211.

Parallel applications that exploit the MPI or LAPI libraries for communication
may be rewritten to use I/O facilities provided by the MPI-2 standard for
enhanced I/O performance. IBM has implemented a subset of the MPI-IO
specification; this is described in Section 6.5, “MPI-IO” on page 214.

There is some interdependency among the topics presented in this chapter
and its many suggested references. In many cases, more than one described
technique can be brought to bear to improve the performance of a program
package. The reader may, therefore, derive benefits from multiple passes
through the presented and cited material.
170 Scientific Applications in RS/6000 SP Environments

6.1 I/O hardware

Peripherals, such as disk drives, are connected to computer systems through
shared communication links known as I/O buses. Some common I/O bus
standards are MicroChannel, PCI (peripheral component interconnect), and
SCSI (small computer system interface). Bus adapters interconnect I/O buses
with memory subsystems and I/O buses with other buses.

The most common scheme by which a CPU addresses an I/O device is
known as memory mapping. Portions of the address space are associated
with I/O devices. The transfer of data by a CPU to and from these addresses
may cause data to be transferred between real memory and a disk
subsystem; the actual transfer is typically determined by the amount of
memory that can be assigned to serve as a "file cache" and the transfer policy
implemented by the operating system.

An I/O bus is physically a single set of wires usually shared by more than one
peripheral device. There is, therefore, contention among peripheral devices
for the shared link represented by the bus. Moreover, most buses do not
support simultaneous read (from memory) and write (to memory) operations.

6.1.1 POWER3 SMP High Node I/O subsystem
The interface between the memory subsystem of the POWER3 SMP High
Node and its I/O subsystem is a 6XX data bus; the I/O subsystem as a whole
is essentially a peer to each pair of POWER3 microprocessors.
Communication and storage devices may be attached to the I/O subsystem
through two high-performance interfaces, each of which supports
bidirectional communication, one at a peak rate of 2 × 500 MBps, the other at
2 × 250 MBps; two ports of the former type and seven of the latter are
available; an eighth port of the latter type drives the node’s on-board MX
(‘mezzanine’) and PCI buses. An Ultra2 SCSI bus is attached to the PCI bus;
the former services both on-board disk bays.

Under the POWER3 SMP High Node’s memory-mapped AIX operating
system, a CPU’s request for I/O data is serviced, when possible, from a file
cache in real memory; if this fails, a request is made for data resident on
devices attached to the I/O subsystem; data transferred between on-board
SCSI disk drives and memory traverses an Ultra2 SCSI bus, a bus adapter to
a PCI bus, another bus adapter to one of the 2 × 250 MBps interconnections,
and a switched 6XX data bus into a memory bus that delivers the data into
the region of memory corresponding to the I/O device; Serial Storage
Architecture (SSA) peripherals connect through an SSA controller to the PCI
bus bypassing the Ultra2 SCSI subsystem. The aggregate latency of the
Chapter 6. Input/output 171

longest hardware path described is much smaller than the latency associated
with the electromechanical components of currently available disk drives,
and, thus, it does not constitute a significant performance penalty.

6.1.2 Disk subsystems
Disk drives with (unformatted) capacities of 9.1 GB or 18.2 GB are available
for attachment to a node’s on-board SCSI adapter; in most cases, identical
disks occupying the node’s two on-board storage bays will be employed as a
mirrored pair.1

IBM SSA storage subsystems can yield significant improvements in
performance over the POWER3 High Node’s integrated Ultra2 SCSI interface,
which provides a peak bandwidth of 80 MBps. The SSA 6225 adapter is
capable of transferring data between IBM 7133 Advanced Models D40 and
T40 and an RS/6000 SP node at a rate of up to 160 MBps.2

The bandwidth of a disk subsystem is governed by the bandwidth of the
adapter, the number of disk drives attached to adapter, the media transfer
rates of the disk drives, and the scheme under which data are stored on the
drives. Essentially, the latency of a disk subsystem is governed by the disk
drives’ moving mechanical components, that is, the "seek time" to position the
magnetic head and the "rotational latency", after which the required disk
sector moves beneath the head.

6.1.3 Communication subsystems
An RS/6000 SP configured for scientific computing is typically equipped with
at least two complete and independent communication subsystems: An
Ethernet network and an SP Switch network. Ethernet networks comprise
adapters that are either those integrated into the system "planar" or
supplementary adapters occupying one or more PCI bus slots and
interconnection media; these support both the standard 10 megabits/s (10 ×
106 bps, or 1.25 × 106 Bps) and Fast 100 Mbps variants. The SP Switch
network comprises SPSMX adapters that occupy one MX slot and
interconnection media that join adapters and SP Switch ports.

All CPUs on a POWER3 SMP High Node share the communication
"channels" effectively provided by the adapters; this implies contention
among processors when more than one simultaneously performs
communication operations; contention is manifested as an increase in

1 Other schemes under which data may be stored on drives for AIX systems include striping and compression
2 Simultaneous read and write operations yield an aggregate bandwidth of 160 MBps. The peak bandwidth for read
operations is 85 MBps. Write operations proceed at up to 85 MBps in non RAID mode and up to 35 MBps in RAID 5
mode.
172 Scientific Applications in RS/6000 SP Environments

per-CPU effective latency and a decrease in per-CPU effective bandwidth,
with the degradation in each case increasing with the number of processors;
the trends are monotonic, that is, in a simple linear model, the per-CPU
effective latency when N CPUs are simultaneously performing communication
operations, LN, is related to the latency when only one CPU is performing
such operations, L1,

typically ∆L is substantially smaller than L1; however, when (N-1) is
sufficiently large, the second term may be comparable with the first. The
per-CPU effective bandwidth, in an analogous notation, is

In situations where communication channels are simultaneously exploited for
interprocess communication and file I/O, some degradation due to contention
in both of these functions is to be expected.

6.2 File systems

The file system plays a central role in the AIX operating system3. An overview
of the AIX file system as it pertains to the organization of fixed-disk storage
appears in Section 6.2.1, “AIX file systems” on page 173. A relatively-recent4

enhancement of the AIX file system is support for large files; this is discussed
in Section 6.2.2, “Large file support” on page 176.

6.2.1 AIX file systems
Fixed-disk storage is organized in a hierarchical fashion in AIX; this facilitates
its management for both system administrators and users. We shall discuss
these from the "bottom up" in this subsection.

An individual fixed-disk (the lowest level in the hierarchy) is a "physical
volume". A brief summary of AIX physical volumes may be generated by
issuing the lspv command at the command line; typical output is as follows:

hdisk0 0004400100025d1b rootvg
hdisk1 00000720c3a7dc2c rootvg
hdisk2 00002976ebbbdb12 vgssa
hdisk3 00040542e8435291 vgssa
hdisk4 00002976ebbc2469 vgssa

3 "Everything in the UNIX system is a file. This is less of an oversimplification than you might think.’’ — B. W. Kernighan
and R. Pike, The UNIX Programming Environment.
4 Large file support first appeared in AIX 4.2.1.

LN L1 N 1+() L∆×+= 6.1

BN B1 N⁄= 6.2
Chapter 6. Input/output 173

The entries in the first column are physical volume names. Additional device
information can be obtained by issuing the lscfg | grep -i hdisk command.
On the same system, one obtains the following:

+ hdisk0 10-68-00-0,0 16 Bit SCSI Disk Drive (9100 MB)
+ hdisk1 10-68-00-1,0 16 Bit SCSI Disk Drive (9100 MB)
* hdisk2 10-80-L SSA Logical Disk Drive
* hdisk3 10-80-L SSA Logical Disk Drive
* hdisk4 10-80-L SSA Logical Disk Drive

Physical volumes are combined in "volume groups". Volume group names can
be determined by issuing the lsvg command. On our prototype system, the
generated list is

rootvg
vgssa

The volume group to which a physical volume belongs is given in the last
column of the output of the lspv command (see above).

A volume group comprises one or more "logical volumes". Data belonging to
a logical volume may be distributed over more than one physical volume
within the same volume group. A summary of logical volume information is
obtained by issuing lsvg -o | lsvg -i -l. On the system used thus far, we
obtain:

vgssa:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
bench7 jfs 1599 1599 3 open/syncd /bench7
loglv00 jfslog 1 1 1 open/syncd N/A
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd5 boot 1 1 1 closed/syncd N/A
hd6 paging 280 280 1 open/syncd N/A
hd8 jfslog 1 1 1 open/syncd N/A
hd4 jfs 2 2 1 open/syncd /
hd2 jfs 134 134 2 open/syncd /usr
hd9var jfs 3 3 1 open/syncd /var
hd3 jfs 2 2 1 open/syncd /tmp
lv01 jfs 2 2 2 open/syncd N/A
lv00 jfs 1 1 1 open/syncd /var/adm/csd
lv02 jfs 32 32 1 open/syncd /scratch
benchlv jfs 300 300 2 open/syncd /bench1

A block of entries that occupies a row in the preceding output is seen to be
associated with each volume group. The name of the logical volume is the
first item, and the type is the second. The AIX "logical volume manager"
174 Scientific Applications in RS/6000 SP Environments

component supports enhanced disk storage performance ("striping"),
capacity ("compression"), and availability ("mirroring"). Issuing the lslv

command against a logical volume’s name provides a summary of the current
status of the logical volume; for instance, issuing lslv benchlv on our
prototype system yields the following:

LOGICAL VOLUME: benchlv VOLUME GROUP: rootvg
LV IDENTIFIER: 00000720c3a7df79.11 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 16 megabytes
COPIES: 1 SCHED POLICY: striped
LPs: 300 PPs: 300
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: maximum RELOCATABLE: no
INTRA-POLICY: middle UPPER BOUND: 2
MOUNT POINT: /bench1 LABEL: /bench1
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes
STRIPE WIDTH: 2
STRIPE SIZE: 64K

This indicates that blocks of data are "striped" across two disks in this logical
volume, each stripe consisting of 64 KB of data on each disk. Striping can
significantly improve disk I/O performance, especially for large amounts of
data that are read or written sequentially. Compression invariably imposes a
performance penalty due to the increase in processing effort associated with
the encoding and decoding of data into and out of more compact
representations. Mirroring, where redundant copies (COPIES > 1) of data are
written to protect against corruption of one or more copies, may, in some
cases, improve read performance because data are read from the least busy
disk; mirroring typically reduces write performance, and mirrored volumes
cannot be striped.

Data organized in the manner familiar to users of any UNIX-like file system
(directories and files) are managed by the journaled file system (JFS)
associated with a logical volume. Journaling is a database technique that
ensures recoverability if a file system is halted abnormally. Each JFS
comprises a pool of blocks of the size of a memory "page"; this is, currently,
4096 bytes or fragments of 512, 1024, or 2048 bytes. One or more such
blocks is allocated to each file in a JFS.

AIX supports the Network File System (NFS), which allows access to files on
network-connected systems as if they were local. NFS file systems may be
mounted over any network for which support for Remote Procedure Call
Chapter 6. Input/output 175

(RPC) and eXternal Data Representation (XDR) or comparable functionality
are available. It is noteworthy that NFS file systems can be mounted over the
SP Switch on RS/6000 SP systems so equipped.

Under the AIX operating system, disk files, when accessed in any manner,
are mapped into virtual memory. The "virtual memory manager" component
of the operating system caches file data in memory and actually transfers
data to disk storage only when this memory must be allocated to some other
service. This scheme can provide significant improvements in I/O
performance when it is possible to reuse file data that reside in memory.

6.2.2 Large file support
An AIX "large file" is one that exceeds 2 GB in length: Such a file has offsets5

that can exceed 231-1, which is the maximum (positive) value of a signed
integer in a 32-bit two’s complement representation. An AIX journaled file
system must be built by the system administrator to be large-file-enabled if it
is to contain large files6; an existing file system that is not large-file-enabled
cannot be converted.

Input and output operations executed from within Fortran code (and, thus,
handled by the Fortran runtime environment) require no modification to use
large files. The off_t datatype defined by the ISO C standard is a 32-bit
(signed) long (int) in AIX, unless _LARGE_FILES is defined, whereupon it is a
64-bit (signed) long long (int)7. I/O data structures and library calls are also
selected to be 32-bit offset or 64-bit offset versions based upon whether
_LARGE_FILES is defined or not. Programmers may exploit the large-file
capability of AIX and yet retain portability in 32-bit environments by following
some simple guidelines:

• Ensure that #include <fcntl.h> defines the system I/O call prototypes:
These prototypes should not be "hand coded".

• Use the off_t datatype for offsets; arithmetic manipulations that yield
offsets should employ datatypes that will not overflow; the appropriate
format specifier should be used to convert between strings and off_t
datatypes: Format selection can be based on whether sizeof(off_t) ==
sizeof (int) or not; the format specifier for the long long datatype is %lld.

• Replace the ISO C standard invocations of fseek and ftell with the POSIX
standard invocations fseeko and ftello: The former expect offsets to be of
datatype long, while the latter expect them to be of datatype off_t.

5 The relative location in bytes, measured from the beginning, current location, or end of a file.
6 AIX Version 4.3 Commands Reference, Volume I\/: see the -a bf flag of the crfs command. The maximum size of a large
file is 64 GB on AIX 4.3.2 systems.
7 See /usr/include/sys/types.h.
176 Scientific Applications in RS/6000 SP Environments

• Set the file size resource limit to RLIM_INFINITY; this will permit the use of
large files.

In this context, we remind the reader that the ISO C standard specifies that
the return type of a function with no prototype be assumed to be an int, and
that C programs that do not comply with the ISO C standard may exhibit
unexpected behaviors: For instance, the prototype of the malloc storage
allocation function appears in <stdlib.h> in an ISO C-compliant environment;
if the prototype is assumed to reside in <malloc.h>, pointers, which may have
64-bit integer values, may overflow when truncated to the default int type.8

6.3 I/O optimization

We shall base our discussion of I/O optimization on simple mathematical
models of the time, T, an application spends performing disk I/O. We begin
with the simplest model,

Here, η is the number of disk I/O requests; τ is the average "latency" of a disk
I/O request, which is the average time interval that must elapse before any
data are actually transferred and is typically measured in units of ms (10-3

seconds) when data are transferred to or from disk media; V is the total
volume of data transferred, that is, the number of bytes input and the number
of bytes output, and B is the average "bandwidth" , that is, the average rate of
data transfer, which is typically measured in MBps (106 bytes per second),
again, when data are transferred to or from disk media. The rationale for the
majority of optimization strategies can be understood in terms of this simplest
of I/O models.

Techniques for I/O optimization may be placed in two categories: Those that
require no program modifications on the part of the user and those that do;
we shall refer to these as "non-intrusive" and "intrusive" optimizations and
treat each in turn in the remainder of this section.

6.3.1 Characterizing I/O for non-intrusive optimization
The iostat utility provides summaries of I/O activity for physical volumes
that reside on the AIX system9 into which a user is logged. The syntax is:

iostat [-d|-t] [PhysicalVolume ...] [Interval[Count]]

8 This is, perhaps, the opportune location to mention that the AIX free call does not release paging-space slots: These are
released upon process termination or by the AIX disclaim system call (see /usr/include/sys/shm.h and the subprogram
freeiobuffer in Section 6.3.10, “Intrusive optimizations: Exploiting high-performance FS” on page 193).
9 In the present context, a POWER3 SMP High node is an AIX system.

T η τ⋅ V B⁄+= 6.3
Chapter 6. Input/output 177

The iostat command cannot be executed with any options in which case
statistics are gathered system-wide; on a lightly-loaded AIX uniprocessor
system, such an invocation yields

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.0 2.3 0.6 0.4 98.6 0.4

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 0.4 1.9 0.4 268973 20139673
hdisk1 0.0 0.1 0.0 11917 781264
hdisk2 0.0 0.3 0.0 443598 3072524
hdisk3 0.0 0.3 0.0 435410 2875620
hdisk4 0.0 0.3 0.0 427410 2833836
hdisk5 0.0 0.3 0.0 426026 2820732
cd0 0.0 0.0 0.0 0 0

The report comprises two parts that may be selected using either of the
mutually exclusive -t or -d options. The first part of the report is a tty and CPU
utilization summary; this information is updated at regular intervals by the
kernel (typically sixty times per second). tin and tout are the total number of
characters read and written by the system for all ttys; % user and % sys are the
fractions of CPU utilization at the user and system levels; % idle is the
fraction of time that the system was idle and did not have an outstanding disk
I/O request; finally, % iowait is the fraction of time during which the CPU(s)
were idle and the system had an outstanding disk I/O request. The second
part of the report is a disk and CD-ROM utilization summary; the statistics
apply to the interval between system boot and command invocation; % tm_act

is the fraction of time a storage device was active; Kbps is the rate of transfer
in kilobytes per second; tps is the number of transfers (potentially merged
multiple logical requests of unspecified size) per second; finally, Kb_read and
Kb_wrtn are the total number of kilobytes read and written.

The aggregate volume of disk I/O (measured in kilobytes) for the myexecutable

application may be determined by differencing the appropriate entries from
disk utilization summaries generated before and after the application is
executed:

iostat -d
myexecutable < myinput > myoutput
iostat -d

We remind the reader that system-wide (not process-specific) data are
generated by the iostat command; this data is approximately equal only
when the resource utilization of myexecutable dominates that for any other
process. In most cases, this can be ensured by granting the user of
myexecutable exclusive access to the system.
178 Scientific Applications in RS/6000 SP Environments

The "sampling" mode of the iostat command is obtained by specifying a
positive value for Interval; for instance, the sequence of keystrokes

iostat 3 &
myexecutable < myinput > myoutput
fg
^C

executed under the Korn or any other shell will cause iostat to generate a
report on stdout every three seconds interval from the background, execute
myexecutable in the foreground, return the iostat process to the foreground,
and, finally, interrupt the latter’s execution. An alternative that may be
preferable in some circumstances is to invoke iostat in one window and
myexecutable in another. In sampling mode, the second and all subsequent
reports apply to Interval not to the interval between system boot and the
generation of the most recent report; the number of reports generated by
iostat may be limited to Count instances by specifying the additional positive
integer.

Network file systems do not fall under the purview of the iostat utility
because they reside on physical volumes that are remote. The hostname or
the IP address of the remote server may be determined by issuing the df

command. A partial output from df on an arbitrarily selected system, which
we shall refer to as the current host, is

Filesystem 512-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 98304 20696 79% 4351 18% /
/dev/hd2 4390912 474584 90% 55829 11% /usr
/dev/hd9var 229376 120568 48% 739 3% /var
/dev/hd3 65536 63224 4% 55 1% /tmp
/dev/lv02 1048576 1015568 4% 16 1% /scratch
/dev/benchlv 8192000 4038728 51% 303 1% /bench1
v07l12:/aba60 32768000 24624800 25% 115947 3% /aba60
fsserver1.vendor.pok.ibm.com:/export/fs1fs9/parpia

16777216 3889200 77% 78060 4% /u/parpia

file systems with names containing a string immediately followed by a colon,
such as the last two file systems in the list generated by df above, are network
file systems; the hostname of the corresponding server connection is the
string that precedes the colon. The type of the connection v07l12 may be
determined as follows:

Issue

traceroute v07l12

to obtain a response of the form
Chapter 6. Input/output 179

traceroute to v07l12.vendor.pok.ibm.com (129.40.1.172)
from 129.40.1.161 (129.40.1.161), 30 hops max

outgoing MTU = 32768
trying to get source for v07l12
source should be 129.40.1.161
1 v07l12 (129.40.1.172) 2 ms 2 ms 2 ms

indicating that a single "hop" is required to transmit a data packet from IP
address 129.40.1.161 to IP address 129.40.1.172, no "routing" is done.
Next, issue

rsh v07l12 netstat -r | grep v07l12 | awk ’{ print $6 }’

to obtain the corresponding interface device name

css0

A more complete description of the interface is obtained by issuing

rsh v07l12 lscfg -l css0

which yields

DEVICE LOCATION DESCRIPTION
css0 00-f1000000 SP Switch Communications Adapter (Type 6-A)

so that file system /aba60 is mounted across the SP Switch network.

Data written to and read from the file system /u/parpia requires two hops:

traceroute fsserver1

yields

trying to get source for fsserver1
source should be 129.40.16.161
traceroute to fsserver1.vendor.pok.ibm.com (129.40.4.231)
from 129.40.16.161 (129.40.16.161), 30 hops max

outgoing MTU = 1500
1 wft7 (129.40.16.190) 4 ms 2 ms 2 ms
2 fsserver1 (129.40.4.231) 3 ms 3 ms 3 ms

indicating that data are routed by wft7 to server fsserver1. Executing

rsh fsserver1 netstat -r | grep fsserver1 | awk ’{ print $6 }’

yields

fi0

which, per
180 Scientific Applications in RS/6000 SP Environments

rsh fsserver1 lscfg

does not exist, although fddi0

DEVICE LOCATION DESCRIPTION
fddi0 00-07 FDDI Primary Card, Single Ring Fiber

does. Thus, all data are transferred between fsserver1 and wft7 over a
Fiber Distributed Data Interface (FDDI) 100 MBps fiber-optic network. Host
wft7 does not respond to the command

rsh wft7 netstat -r

indicating that it is, in fact, a router, not a general-purpose machine
performing routing functions. The output of the command

netstat -r | grep wft7 | awk ’{ print $6 }’

executed on the current host yields

en1

indicating that the router and the current host are connected through an
Ethernet network. Data in the file system /u/parpia are, thus, transferred
between the fileserver fsserver1 and the router wft7 through an FDDI
network, and between wft7 and the current host through an Ethernet
network.

Clearly, utilities that can monitor network traffic must be employed to
characterize I/O for network file systems. Networks are, of course, rarely used
exclusively for file I/O; so, care must be taken to ensure that network traffic
that is not associated with file I/O is somehow either controlled so as to be
negligible or explicitly accounted for. The command netstat -ni, when
issued before the transfer shows the following output:

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 link#1 518291 0 523696 0 0
lo0 16896 127 127.0.0.1 518291 0 523696 0 0
lo0 16896 ::1 518291 0 523696 0 0
en0 1500 link#2 0.60.94.e9.e.29 1780781 0 1610592 0 0
en0 1500 129.40.16.6 129.40.16.66 1780781 0 1610592 0 0
en1 1500 link#3 0.60.94.9d.6e.9b 11184736 0 12459433 2190233 0
en1 1500 129.40.16.1 129.40.16.161 11184736 0 12459433 2190233 0
css0 65520 link#4 6178062 0 7315527 0 0
css0 65520 129.40.1 129.40.1.161 6178062 0 7315527 0 0

and, after copying a file of length 29,768,419 bytes between two remote file
systems, the netstat -ni command shows the following output:

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 link#1 518337 0 523742 0 0
lo0 16896 127 127.0.0.1 518337 0 523742 0 0
lo0 16896 ::1 518337 0 523742 0 0
Chapter 6. Input/output 181

en0 1500 link#2 0.60.94.e9.e.29 1780885 0 1610685 0 0
en0 1500 129.40.16.6 129.40.16.66 1780885 0 1610685 0 0
en1 1500 link#3 0.60.94.9d.6e.9b 11207817 0 12482938 2190233 0
en1 1500 129.40.16.1 129.40.16.161 11207817 0 12482938 2190233 0
css0 65520 link#4 6178170 0 7315693 0 0
css0 65520 129.40.1 129.40.1.161 6178170 0 7315693 0 0

This shows that the great bulk of network traffic in this period was carried by
en1 adapter. The differences between the values of Ipkts (input packets)
and Opkts (output packets) in the two outputs of netstat -ni are 23,081 and
23,505. The actual volume of data transferred cannot be determined because
the size of a packet is not a fixed quantity; other AIX utilities, such as
entstat, fddistat, and tokstat, may be used to gather more detailed
information for a particular connection.

6.3.2 Non-intrusive optimizations exploiting high-performance FS
Data transferred to or from files in virtual file systems "mounted" on all nodes,
such as $HOME, generally traverse several hardware "layers": The memory
hierarchy of the "client" node on which the application is executing, the I/O
subsystem of the client node on which the application is executing, the
network that connects the client node with a file "server", and the I/O
subsystem and memory hierarchy of the server. In some instances, there is
more than one traversal of an I/O subsystem; for instance, data arriving at an
Ethernet adapter at a server node is copied to memory and then again to a
disk subsystem. System software overheads, such as those connected with
the processing of a "protocol stack" or a file system (operations, such as
journaling, token management, or instance) may dominate hardware delays
in some situations.

High-performance file systems reduce I/O delays by eliminating one or more
hardware layers, employing hardware with smaller delays (lower latencies
and higher bandwidths) or exploiting "lighter" protocols (those with reduced
processing overheads); more than one of these strategies can be combined
for greater benefit.

A disk subsystem is said to be "local" to a node of an RS/6000 SP system
when data destined for or recovered from this disk subsystem does not
traverse a communication subsystem. Since all overheads associated with
communication are eliminated, latencies [τ in Eq. (6.3)] are invariably
reduced; it is also frequently the case in a multiuser production computing
environment that local disk subsystems support higher average bandwidths
[B in Eq. (6.3)] than most network file systems because there is more
contention for network and fileserver resources. Local disk subsystems are
typically easily exploited by sequential applications or shared-memory
parallel applications; if relative file names are used, the application package
182 Scientific Applications in RS/6000 SP Environments

need only be copied to the local file system; if pathnames are used, but set in
input files, it is only necessary to modify the pathnames in the input files
suitably; if pathnames are "hard coded", a system administrator may be able
to remount the local file system to the required path. The exclusive use of
local file systems by distributed-memory parallel or hybrid (distributed- and
shared-memory) parallel applications frequently requires additional setup or
modification of source code. These topics are taken up in Section 6.3.2,
“Non-intrusive optimizations exploiting high-performance FS” on page 182,
and Section 6.3.10, “Intrusive optimizations: Exploiting high-performance FS”
on page 193.

Striping, which is touched upon in Section 6.2.1, “AIX file systems” on page
173, improves performance by eliminating the hardware bottleneck presented
to a disk I/O adapter by a single disk drive: Two or more disk drives are
simultaneously used to transfer a single "logical" block of data. A striped disk
subsystem is exploited in the same manner as a local disk subsystem10, that
is, program packages are relocated to the striped disk subsystem; pathnames
are suitably modified, or mount points are appropriately changed. Buffers
used in I/O operations should be aligned on page boundaries to obtain
maximum performance for striped logical volumes. The XL Fortran compiler
option -qalign=4k will ensure such alignment for large data objects11; the
explicit page alignment of I/O buffers in Fortran and of any buffer in C requires
modifications to source code and is, therefore, discussed in Section 6.3.10,
“Intrusive optimizations: Exploiting high-performance FS” on page 193.

Disk subsystems based on IBM SSA (Serial Storage Architecture) provide
performance enhancements at the hardware level through increased adapter
throughput for both reading and writing operations and simultaneous reading
and writing. An SSA disk subsystem is used in the same manner as a local
disk subsystem or a striped disk subsystem: Program packages are relocated
to the SSA disk subsystem, pathnames are suitably modified, or mount points
are appropriately changed.

The use of the GPFS file system constitutes a non-intrusive optimization
technique that is discussed in Section 6.4, “GPFS” on page 211.

6.3.3 Non-intrusive optimizations: Obviating contention
Parallel applications frequently require read-only access to one or more files;
if these files are replicated or scattered appropriately onto local file systems,
I/O subsystem contention between parallel tasks on different nodes can be
eliminated; also, communication subsystem contention between internode

10 Local disk subsystems are often striped.
11 The reader is referred to XL Fortran for AIX User’s Guide for details.
Chapter 6. Input/output 183

task messaging and switch mounted I/O is eliminated; these advantages
accrue in addition to those described for local file systems in the preceding
subsection. Many parallel applications perform I/O to files that are specific to
the rank of a parallel task; in such cases, local file systems may be used with
the same benefits as read-only files.

The mcp command may be used to replicate a file infile from a
globally-mounted file system onto local file systems on all nodes in the
partition allocated to the user12. The syntax is as follows:

mcp infile [TargetFile|TargetDirectory] [POEOptions]

Only one infile can be specified per invocation of the command (although
the name of this file may be determined by shell pattern-matching), and this
file must reside on a globally-mounted file system. The mcp command will also
fail if TargetFile or TargetDirectory/infile already exists on any
node. To delete all local copies of a file LocalPathname, execute:

poe "/bin/rm -f LocalPathname" [POEOptions]

To delete LocalDirectory together with its contents, execute:

poe "/bin/rm -rf LocalDirectory" [POEOptions]

Omitting the -f option may lead to premature termination of parallel tasks on
one or more nodes as a result of the failure to find LocalPathname or
LocalDirectory on one or mode nodes. The mcp command is likely to fail if
more than one parallel task executes on a node. All tasks, except the first to
open the file on the local file system, encounter a file that already exists. Poor
performance of the mcp command will result from a failure to initialize PE to
use the user-space protocol over the SP Switch fabric or from contention for
file server access; in most cases, the latter may be eliminated by staging the
file to a globally-mounted high-performance file system.

A more general command is mcpscat, for which the syntax is as follows:

mcpscat [-i] InFile_0 [InFile_1] ... TargetDirectory [POEOptions]

or

mcpscat [-i] -f FileList TargetDirectory [POEOptions]

or

mcpscat [-i] SourceDirectory TargetDirectory [POEOptions]

12 The reader is reminded that the assignment of nodes to parallel tasks can only be explicitly controlled by using a
hostfile in interactive mode. Consecutive jobs that do not make use of hostfiles are unlikely to make use of the same
partition; this may explain the absence of files the user may expect to have prepared in a previous job.
184 Scientific Applications in RS/6000 SP Environments

The different forms of the command allow lists of files to be specified in
different ways; all files in the list must reside on globally-mounted file
systems. If the list comprises only one element, this one file is copied to
TargetDirectory by all tasks; in all other cases, the files are copied in "round
robin" fashion to the nodes executing the parallel tasks: The first file in the list
is copied to the TargetDirectory on the node on which task 0 is executing, the
second on the same directory on the node on which task 1 is executing, and
so on. In the first form, the list of files is determined from the file names
(including "wildcard characters" for shell pattern matching if desired) as
entered on the command line; in the second form, a list of files (one per line
with no wildcard characters) is read from the file FileList, and, in the last
syntax, all files in the directory are determined by the ls command. The -i
option activates checking for duplicated or missing files; if such file names are
detected, the copy operation is skipped and execution continues with the next
file and next parallel task.

The mcpgath command performs a "gather" operation, which, in some sense,
is the opposite of the mcpscat command, which "scatters" files. The syntax
is either

mcpgath [-ai] InFile_1 [InFile_2] ... TargetDirectory [POEOptions]

or

mcpgath [-ai] SourceDirectory TargetDirectory [POEOptions]

A list of files, such as InFile_1 [InFiFile_2] ..., may be explicitly
entered or generated using shell pattern-matching; the corresponding files
are copied with the same file names to the directory TargetDirectory on
task 0. Files with these names must be "visible" to all parallel tasks; to
prevent overwriting, the -a option should be used: its effect is to append a
task number to the file name. If the second form of the command is used, all
files in the directory SourceDirectory are copied to TargetDirectory
on task 0, and all caveats that apply to the first form of the command continue
to apply to the second.

6.3.4 Non-intrusive optimizations: The vmtune utility
At the end of Section 6.2.1, “AIX file systems” on page 173, we mentioned
that file data are mapped into virtual memory by the AIX operating system.
The performance of the AIX virtual memory manager (VMM) component,
thus, influences the performance of I/O operations. The VMM is "tunable" in
that some of its parameters may be modified to advantage when workload
characteristics are well known. The vmtune command (in directory
/usr/samples/kernel) may be used to this end; use of vmtune requires
Chapter 6. Input/output 185

root privileges because incorrect settings can lead to system performance
degradation and even failure13.

Virtual memory is partitioned into 256 MB "segments", which, in turn, are
partitioned into "pages" of 4 KB size. Real memory (RAM) is partitioned into
"page frames", also of 4 KB size. The VMM component of AIX manages the
mapping of data and instructions to pages, the mapping of pages to page
frames, the location of pages in RAM, disk paging, and file volumes. A "page
fault" occurs when data or instructions required by a CPU are not present in
its RAM, and, so, must be retrieved from disk paging or file volumes. We have
already noted that disk access is some orders of magnitude slower than RAM
access; much effort has been expended in minimizing these delays for the
VMM. Well-known strategies, such as caching, coalescing transfers, and
speculative transfer (read-ahead, write-behind), are employed to this end.
The syntax of the associated command is:

vmtune [ParameterFlag ParameterValue] ...

that is, vmtune followed by zero or more pairs of flags and values; the latter
are collected with summary information in Table 28. A list of current
parameter values is generated if vmtune is issued with no arguments.
Parameters revert to their default values when an AIX system is booted.
Administrators can conveniently set parameters to other values by making the
appropriate /etc/inittab entries.

Table 28. Flags and parameters for the vmtune command

13 Other system parameters are modified with privileged modes of commands, such as bosboot, chdev, chnfs, chps,
mkps, nfso, no, odmadd, odmdelete, schedtune (in directory /usr/samples/kernel), and syncd.

Flag Parameter Explanation; constrains Range Dflt

-b numfsbuf File system bufstructs ≥ 64 64

-B numpbuf LVM pbufs ≤ 128

-c numclust Number of 16 KB clusters
processed by write behind

≥ 1 1

-f minfree Minimum number of frames on
free list

[8-204800]

-F maxfree
Number of frames on free list at
which page "stealing" stops;
maxfree >= minfree +
maxpageahead

[16-204800]

-k npskill
Start killing processes when free
paging-space pages are fewer
than this parameter

128
186 Scientific Applications in RS/6000 SP Environments

Some defaults are configuration-dependent and are not listed above; the user
may determine them by issuing the vmtune command (with no options)
immediately following system boot (provided there are no vmtune entries in
/etc/inittab). A page is said to be "stolen" when it is transferred from real
memory to paging disk storage in order to free page frames for reuse.
Additional information on these parameters may be found in the AIX Version
3.2 and V4 Performance Monitoring and Tuning Guide, SC23-2365.

More efficient data transfer to and from high-performance disk subsystems
(striped logical volumes or disk arrays) is generally obtained by increasing the
numfsbuf14 and numclust parameters .

Speculative read-ahead for a minimum of minpageahead file pages is
triggered when sequential file access is deemed to have been detected by the
VMM; read-ahead continues for maxpageahead file pages. The performance
of applications that involve extensive sequential disk-RAM data transfers may
be improved by increasing the minpageahead and maxpageahead
parameters. It is suggested that minpageahead be set to twice the number of
disk drives and maxpageahead to 16 times the number of disk drives; a
concomitant increase of maxfree may be required; in some instances, it may
also be necessary to increase numpbuf.

-M maxpin
Maximum percentage of real
memory pinned kernel requires 4
MB unpinned

(0-100) 80

-p minperm
Percentage of real memory page
frames below which file pages
are protected from ’stealing’

[5,100)

-P maxperm
Percentage of real memory
pages frames above which only
file pages are ’stolen’

[5,100)

-r minpageahea
d

Number of pages with which
sequential read ahead starts

0,1<2n≤4096

-R
maxpage
ahead

Maximum number of pages read
ahead; maxpageahead >=
minpageahead

0,1≤2n≤4096

-w pswarn Number of free pages at which
SIGDANGER sent to processes

512

14 struct buf bufstruct stores a device request; see /usr/include/sys/buf.h.

Flag Parameter Explanation; constrains Range Dflt
Chapter 6. Input/output 187

The diagnostic information obtained from the iostat utility should be
supplemented by that from the vmstat utility in estimating suitable values for
the parameters shown in Table 28 on page 186.

6.3.5 Non-intrusive optimizations: Reorganizing a file system
File space in AIX is allocated entirely in blocks of 4096 bytes when the size of
a file equals or exceeds 32 KB, in blocks of 4096 bytes plus one or more
"fragments" when filesize is less than 32 KB but greater than 4096 bytes, and
entirely in fragments when the filesize is less than 4096 bytes. The default
fragment size is 4096 bytes, but it can also be set to 512 bytes, 1024 bytes, or
2048 bytes at the time a file system is created. Although the utilization of
storage capacity is generally more efficient when fragment sizes are small15,
‘space fragmentation’ (the scattering of logically-contiguous blocks across
physical disk space) is more likely to occur when the fragment size is small.
Access to a fragmented file is generally slower because of the increased
activity of the electromechanical components of disk drives. File allocations
can be rendered more contiguous by the execution of the defragfs
command by a system administrator; the syntax of the command is:

defragfs [-q|-r] [Device|Filesystem]

The presence of either of the mutually-exclusive options -q and -r precludes
the actual defragmentation of the named Device or Filesystem in favor of
generating reports on current statistics (-q) and both current and
potentially-reorganized file system statistics.

The frequency of JFS logging operations or access to such log information is
sometimes comparable to that of user data storage operations; a great deal of
time may then be expended in the constant repositioning of disk arms
between tracks associated with user data and those storing JFS logs. In such
cases, I/O performance can be significantly improved by placing the JFS log
on a logical volume that resides on drives different than those storing user
data.

By way of example, to create a JFS logging device, /dev/jfslognew, on a
newly-created volume group, newvg, first create a logical volume of type
jfslog:

mklv -t jfslog -y jfslognew newvg 1

In this case, the size of the logical volume, jfslognew, is 1 logical partition;
the logical volume is formatted by executing logform /dev/jfslognew, after
which it is ready to be used as a JFS log device. The association between the

15 A well known exception is a file system so highly fragmented that the paucity of blocks of size 4096 bytes prevents the
storage of files in excess of 4096 bytes.
188 Scientific Applications in RS/6000 SP Environments

new JFS, /fastfs, and log device, /dev/jfslognew, is established by
issuing the appropriate form of the chfs command:

chfs -a log=/dev/jfslognew /fastfs

6.3.6 Non-intrusive optimizations: Reorganizing an LV or an LVG
Fragmentation (see the preceding section) can also occur at the logical
volume level; this can be diagnosed using

lslv -p PhysicalVolume [LogicalVolume]

to generate an allocation map for PhysicalVolume or, more specifically, if it is
desired for its comprised LogicalVolume and is rectified using

reorgvg [-i] VolumeGroup [LogicalVolume ...]

6.3.7 Non-intrusive optimizations: The sync daemon interval
File data stored in I/O buffers in RAM are periodically written to disk to
maintain a high degree of consistency between RAM and disk copies. The
sync system call queues modified block buffers for such writing but does not
force the write in the manner of fsync. The sync daemon issues sync calls
with a period of Interval (typically 60 seconds) established in /sbin/rc.boot
with a record of the form

nohup /usr/sbin/syncd Interval > /dev/null 2>&1 &

The rc.boot file can only be modified by a user with root privileges.

An AIX sync system call consumes a small amount of CPU effort and always
leads to some disk activity; write-behind is, at least, partially defeated by its
hastening of data transfers to disk; it is, therefore, rarely beneficial to
decrease Interval, and the only situation in which this may yield some
performance benefit is when fsync is called very frequently in the course of a
system’s operation.

6.3.8 Non-intrusive optimizations: Tuning the SCSI device driver
The SCSI device driver can coalesce disk I/O requests to decrease latency
overheads [n in Eq. (6.3)]. By default, the largest request that can be
assembled is 64 KB (0x10000 in hexadecimal notation). The performance of
I/O operations to and from striped logical volumes and disk arrays may be
improved by increasing the value of max_coalesce in the PdAt (predefined
attribute object class) stanza in the ODM database. As an illustration, the
procedure to double the value of max_coalesce is as follows:

Recover the current version of the stanza (if it exists) into the file foo:
Chapter 6. Input/output 189

odmget -q "uniquetype=disk/scsi/osdisk AND \
attribute=max_coalesce" PdAt > foo

and modify all occurrences of 0x10000 to 0x20000 in foo; otherwise, create
foo from scratch to contain the following records

PdAt:
uniquetype = "disk/scsi/osdisk"
attribute = "max_coalesce"
deflt = "0x20000"
values = "0x20000"
width = ""
type = "R"
generic = ""
rep = "n"
nls_index = 0

Now, replace the old stanza

odmdelete -o PdAt \
-q "uniquetype=disk/scsi/osdisk AND attribute=max_coalesce"

odmadd < foo

and rebuild the kernel and reboot

bosboot -a -d hdisk0
shutdown -Fr

Local disk subsystems of the RS/6000 SP are frequently SCSI subsystems.

6.3.9 Characterizing I/O for intrusive optimization
Program packages of any complexity tend to exhibit unexpected behaviors in
the context of the breakdown of time among their component subprograms;
this is especially true when applications are employed in the new ways that
more powerful processors permit. Therefore, an indispensable step in
optimization is the characterization of an application’s behavior by empirical
means. Profiling utilities, such as prof16, tprof17, gprof18, and xprofiler19

16 This utility provides a "flat profile", that is, a report of user CPU time expended in each subprogram traversed in the
course of an application’s execution. This information is obtained by linking with the -p option. The number of entries into
each subprogram is also available when the -p option is added to the compiler invocation. Many, but not all, system
libraries have counterparts that are enabled in this manner. The definitive reference for the AIX prof utility is the AIX
Commands Reference.
17 This tool is capable of providing a "flat line-by-line profile" based on user CPU time in addition to "flat profile"
information, such as that provided by the prof tool. Applications must be compiled and linked with the -g compiler option
and must be executed "under" the tprof utility: for instance, myprog < myinput > myoutput would be executed
under tprof with tprof myprog < myinput > myoutput. The assignment of "ticks" (1 tick =10-2 s of user CPU
time) to lines is only approximate when optimizations that entail code movement are present. Use of tprof requires root
privileges in certain phases of its operation, and system administration policies may, therefore, preclude its general use.
The definitive reference for the AIX tprof tool is the AIX Commands Reference.
190 Scientific Applications in RS/6000 SP Environments

provide information about the expenditure of "user" CPU time by an
application, not the "real" time spent waiting for I/O requests to complete.

At the present time, the characterization of I/O must be accomplished by a
more tedious method, namely, the insertion of timer calls surrounding each
I/O call and the subsequent interpretation of the timing information thus
obtained20. This process may be facilitated to some extent by the use of a
simple library librtp.a (RTP: real-time profile); the use of this library with
Fortran applications is described here; the source will be made available at
the URL cited in the References section of this chapter. Four routines
comprise the interface to the library:

• SUBROUTINE RTP_INITIALIZE() must be invoked prior to any other RTP
call;

• SUBROUTINE RTP_START_CLOCK(IRTPA) is invoked to start or restart
the clock associated with the real-time accumulator IRTPA (this is a
sequence number 1, 2, 3, and so on, that is, a Fortran INTEGER; up to
1024 accumulators are available, and this can be increased by suitably
modifying rtp.include.);

• SUBROUTINE RTP_STOP_CLOCK(IRTPA) is called to stop the clock
associated with the real-time accumulator IRTPA; the accumulator is
updated when the latter subprogram is executed;

• SUBROUTINE RTP_FINALIZE() is called to dump all profiling data
including the elapsed time between the invocations of RTP_INITIALIZE()
and RTP_FINALIZE() to stdout.

All elapsed times are measured in the RTP package using the XL Fortran
timer utility, RTC(), which is expected to have a resolution of better than 1 µs.

The burdens of keeping track of the accumulator tags IRTPA so that the
wrong tag is not accidentally used where it is not intended as well as the
locations of the matched calls to RTP_START_CLOCK(IRTPA) and

18 This utility is capable of providing a "call-tree profile" of an application in addition to "flat profile" information, such as
that generated by the prof tool: A subprogram may be invoked by more than one subprogram constituting an application;
gprof separates the user CPU time expended in a subprogram by its calling subprogram; a by-product of this sorting
procedure is the call tree for the entire execution; this information is frequently useful in developing parallelization
schemes. Complete information is generated by gprof only when the -pg option is included in compilation as well as link
operations. The definitive reference for the AIX gprof utility is the AIX Commands Reference.
19 The author’s prejudice is that this is the tool of choice for application optimization based on user CPU time: the
graphical user interface of xprofiler provides a complete and readily-assimilated visual representation of the call-tree
profile (as would be generated by the gprof utility); line-by-line profile information (as would be generated by the tprof
tool) is available through a simple set of menus. Applications should be compiled and linked with both the -g and -pg
options to exploit the full functionality of xprofiler. The definitive reference for the xprofiler tool is PE Operation and Use
Vol. 2, Part 2 — Profiling.
20 The forthcoming availability of the Dynamic Probe Class Library (DPCL) and tools based upon DPCL is likely to
improve this situation substantially. Potential users of DPCL should be aware of the -qdpcl compiler option.
Chapter 6. Input/output 191

STOP_CLOCK(IRTPA), which must be known to interpret the dump
generated by RTP_FINALIZE(), lie with the user.

The explicit instrumentation of every subprogram that constitutes an
application to determine I/O wait time "hot spots" may be difficult; it is also
unnecessary: An iterative "winnowing" procedure may be adopted instead:
The main program is instrumented to determine which subprograms called at
this level manifest the greatest discrepancy between real time and CPU time
(CPU time is easily obtained with a tool, such as gprof); these subprograms
become candidates for instrumentation in the next step, and so on through a
few branches of the call tree. Finally, when the discrepancy is isolated to a
few subprograms, greater "resolution" is obtained by instrumenting sectors of
these subprograms (typically blocks of code). The following hypothetical
example illustrates the procedure:

Using a fairly obvious notation where indentation is proportional to calling
"depth", let the call tree be

MAIN
MYSUB1
MYSUB11
MYSUB12

MYSUB2
MYSUB21
MYSUB22
MYSUB221
MYSUB222

MYSUB23
MYSUB24
MYSUB241
MYSUB242
MYSUB243

MYSUB25
MYSUB3
MYSUB31

MYSUB4
MYSUB41

A typical code fragment that includes instrumentation in MAIN would be as
follows:

PROGRAM MAIN
...
CALL RTP_INITIALIZE ()
...
CALL RTP_START_CLOCK (1)
192 Scientific Applications in RS/6000 SP Environments

CALL MYSUB1 (ARG1, ARG2)
CALL RTP_STOP_CLOCK (1)
...
CALL RTP_START_CLOCK (2)
CALL MYSUB2 (ARG3)
CALL RTP_STOP_CLOCK (2)
...
CALL RTP_START_CLOCK (3)
CALL MYSUB3 (ARG4, ARG5, ARG6)
CALL RTP_STOP_CLOCK (3)
...
CALL RTP_START_CLOCK (4)
CALL MYSUB4 ()
CALL RTP_STOP_CLOCK (4)
...
CALL RTP_START_CLOCK (5)
CALL MYSUB4 ()
CALL RTP_STOP_CLOCK (5)
...
CALL RTP_FINALIZE ()
END

Note that MYSUB4 is called twice; accumulator 4 tracks the real time in one
case and 5 tracks the real time in another; the aggregate corresponding user
time information may be inferred from a profile generated by gprof or xprofiler.
The dump generated by RTP_FINALIZE() will indicate which call of
MYSUB1, MYSUB2, MYSUB3, and MYSUB4 contains the hotspots and, thus,
which of these subprograms should be instrumented with calls to
RTP_START_CLOCK and RTP_STOP_CLOCK. If, for instance, it were
determined that the hotspot were in MYSUB2, the calls to the clock routines
would surround calls to MYSUB21, MYSUB22, MYSUB23, MYSUB24, and
MYSUB25 in MYSUB2; the hotspot could then be traced to the next level of
ramification.

6.3.10 Intrusive optimizations: Exploiting high-performance FS
Local file systems have been defined in Section 6.3, “I/O optimization” on
page 177. Programs that use local file systems require modification if a
parallel task should require I/O to a file on a local file system that is "off
node". The following are some options that are available in such situations:

• Modify the underlying algorithm so that off-node I/O is not required.

• Reorganize I/O so that only shared data resides in a file system that is
mounted on all nodes; employ a high-performance file system for the
shared data.
Chapter 6. Input/output 193

• Program the intertask communication that is required to access off-node
I/O: Currently, LAPI provides facilities for one-sided communication, which
may be preferable to message passing in the present context; soon, the
IBM implementation of MPI-2 will provide facilities for one-sided
communication as well.

As described in Appendix 6.3.2, “Non-intrusive optimizations exploiting
high-performance FS” on page 182, the alignment of I/O buffers on page
boundaries improves performance for striped logical volumes. Explicit page
alignment of an I/O buffer of length nbytes may be achieved by invoking the
following function:

#include <stdlib.h>
#include <errno.h>
char *allociobuffer (int nbytes, void **lstart)
{
char *iobuffer;
if (!(*lstart = malloc (nbytes + 4096)));
perror ("allociobuf: malloc");

iobuffer = (char *)(((int) *lstart + 4096) & ~0xfff);
return iobuffer;

}

The declaration of lstart in the argument list of allociobuffer permits the latter
to return the value of lstart to a calling Fortran subprogram: Data are passed
by reference in Fortran, and the calling program would, thus, be passing the
address of a pointer, which is the address of an address. A counterpart for
allociobuffer to release storage allocated to an I/O buffer is

#include <stdlib.h>
#include <sys/shm.h>
#include <errno.h>
void freeoibuffer (int nbytes, void **lstart)
{
free (*lstart);
if (disclaim (*lstart, nbytes+4096, ZERO_MEM))
perror ("freeiobuffer: disclaim");

}

The following code fragment illustrates the invocation of allociobuffer and
freeiobuffer from an XL Fortran application:

...
INTEGER LBUFF
PARAMETER (LBUFF = 2000)
DOUBLE PRECISION BUFER
POINTER (PIOBUFFER,BUFFER(1:LBUFF))
194 Scientific Applications in RS/6000 SP Environments

INTEGER LSTART, NBYTES
INTEGER ALLOCIOBUFFER
EXTERNAL ALLOCIOBUFFER
...
NBYTES = 8*LBUFF
PIOBUFFER = ALLOCIOBUFFER (%VAL (NBYTES), LSTART)
...
CALL FREEIOBUFFER (%VAL (NBYTES), LSTART)
...

Note that ALLOCIOBUFFER should be declared to be INTEGER*8 if 64-bit
addressing is used. The exploitation of MPI-IO is an intrusive I/O
optimization; this topic is treated in Section 6.5, “MPI-IO” on page 214.

6.3.11 Intrusive optimizations: Obviating I/O
One strategy for the reduction of I/O delays is the elimination of some I/O. In
terms of Eq. (6.3), this is the simultaneous reduction of n and V; a side-effect
is the elimination of some contention: In terms of Equations (6.1) and (6.2),
this is the reduction of N. A great variety of techniques may be brought to
bear in these contexts; only a few are touched upon here.

Programs have sometimes been developed on machines with severely limited
real memory (RAM) but are eventually employed in production use on
better-endowed systems. This is especially true of older applications, that is,
those developed before any computer had real memory comparable to a
modern system; Such "legacy" programs can sometimes be relatively easily
rewritten so that most, if not all, frequently-accessed data remain resident in
real memory for the entire course of execution and, so, do not suffer repeated
transfer between real memory and disk. Some care must be exercised in the
process of revision: The AIX operating system supports virtual memory that
may be well in excess of real memory, especially in 64-bit addressing mode;
so, it is relatively easy for a programmer to provoke disk activity associated
with paging in the attempt to eliminate disk activity associated with data
transfer under his or her direct control.

Algorithmic improvements can provide substantial reductions in I/O traffic: For
instance, an iterative algorithm with improved convergence properties will
typically reduce the number of iterations and, therefore, the number of
associated transfers of data to or from disk; similarly, an algorithm that
sweeps through disk-based data only once to perform setup for many related
computational steps is likely to be superior to one that performs a sweep for
the setup of every step. There are rapidly-growing bodies of literature in the
computational sciences and engineering disciplines; application developers
who keep abreast of advances in their fields can often reap very substantial
Chapter 6. Input/output 195

benefits from the straightforward implementation of new algorithms or minor
modifications thereof.

Improved data structures can reduce the volume of data transferred between
real memory and disk storage by permitting a greater fraction of
frequently-accessed data to remain in memory or obviating storage for data of
known or repeated value or those that are never accessed. It is, however,
quite generally true that the use of data structures that are more efficient in
terms of demands placed on memory size also increases the complexity of a
program and incurs additional processing. Dimensions of large arrays should
be tailored to the size required by a problem; this is, typically, only an
important consideration in programs originally coded to the FORTRAN 77
standard, which provides no facility for dynamic storage allocation; in
production code of this type, which generally cannot be repeatedly
redimensioned and rebuilt, the dynamic allocation facilities provided by the
Fortran 90 and Fortran 95 standards or the INTEGER POINTER extension,
all supported by XL Fortran, may be employed21; a common by-product of
this type of revision is reduced stride, which frequently yields improved
performance because of improved data locality in the memory hierarchy.
Separate versions of an application should be maintained if problems are
very diverse and can have similarly diverse resource requirements.

Contention between multiple parallel tasks performing I/O operations to one
set of files may be reduced or eliminated in many cases simply by relegating
the processing of different I/O streams to different tasks; when possible, an
additional advantage accrues: All I/O operations can be performed using local
file systems, which are, ideally, on different nodes. The most common
optimization of this type is to relegate all I/O processing for stdin and stdout to
the root task (MPI task 0), which performs I/O to these streams from a local
file system.

6.3.12 Formatted and unformatted I/O
All data is represented as strings of binary digits in computers22, but must be
translated into some other form23 to be readily intelligible. The translation of
numerical data from a machine’s internal representation24 into a string of
base-10 digits, separated, if necessary, by delimiters for the decimal and
exponent parts, requires processing and generally increases the volume of
data: For instance, an eight-byte Fortran DOUBLE PRECISION or C (or C++)

21 Users of the INTEGER POINTER extension should be aware of the -qddim compiler option.
22 This is, of course, already an abstraction.
23 Anothre form, such as complex images, juxtapositions of simple images, such as the letters, numbers, and punctuation
that constitute this page, sounds, or, even, motion.
24 An excellent discussion of the IEEE floating-point standard can be found in Computer Arithmetic by David Goldberg,
and Appendix A of Computer Architecture: A Quantitative Approach.
196 Scientific Applications in RS/6000 SP Environments

double datum requires up to twenty-two characters for its accurate
representation in "scientific notation": The sign -, a decimal point (or a
comma), fifteen decimal digits for the numerical portion of the mantissa, one
of the characters D, E, or e, the sign + or -, and three decimal digits for the
exponent. Each character requires a byte of storage so that the factor for the
increase in storage is 22/8 = 2.75. The increase in processing time required
to convert data from the internal representation to the character
representation is generally insignificant compared with the increase in time
associated with the greater volume of data transferred between disk storage
and memory.

Numerical data expressed in "scientific notation" or as a simple string of
decimal digits as would be appropriate to the integer datatypes is said to be
"formatted"; their binary counterparts are (perhaps misleadingly) referred to
as "unformatted". In view of the increased time associated with the reading or
writing of formatted data, it is advisable to employ formatted I/O as rarely as
possible. Quite generally, data that will not be examined by typical users of an
application should remain unformatted.

Formatting is often adopted as an expedient for the generation of "portable"
data, that is, data that is generated on one machine and then transferred to
another for further processing. In such instances, it may, however, be
preferable to convert all data to a standard, such as the eXternal Data
Representation (XDR), which is likely to provide the necessary portability yet
also retain a relatively compact representation25.

Formatted I/O in Fortran is most efficient when the format specification can
be determined at compile time; thus, the WRITE statement in the fragment

WRITE (*, 200) I1, R2, R3
200 FORMAT (I10, F10.0, F2.2)

is likely to execute faster than the WRITE statement in the fragment

CHARACTER*18 FMT
...
FMT = '(I10, F10.0, F2.2)'
WRITE (*, FMT) I1, R2, R3

which, in turn, is likely to execute faster than the WRITE statement in the
fragment

WRITE (*, 200) I1, R2, R3
200 FORMAT (I<2+J>, F10.0, F2.2)

25 The reader is referred to Communications Programming Concepts for a detailed presentation of IBM facilities for
exploiting XDR; only a C language binding is available for this library; Fortran programmers may wish to consult the
chapter on interlanguage calls in the XL Fortran User’s Guide.
Chapter 6. Input/output 197

which employs a frequently convenient XL extension to the Fortran language
standards. The simplification of FORMAT statements into more compact forms
can also improve performance: For instance,

FORMAT (3I6, 2F3.2)

is likely to execute faster than

FORMAT (3(1X,I5),2(1X,F2.2))

which, in turn, is faster than

FORMAT (1X,I5,1X,I5,1X,I5,1X,F2.2,1X,F2.2)

It is important to note, however, that only the last two of the above three
FORMAT statements are strictly equivalent in the output they generate: The
ranges of data that will generate strings of asterisks (*...) indicating field
overflow are different for the descriptors I5 and I6 and the descriptors F2.2
and F3.2. It is more efficient to incorporate strings into FORMAT statements
than to store them as CHARACTER constants and print the latter out: for
instance, the form

WRITE (*,300) INDEX1, INDEX2
300 FORMAT ('Index_1 = ',1I3,', Index_2 = ',1I3)

should be preferred to the form

CHARACTER*10 SI1
CHARACTER*12 SI2
...
SI1 = 'Index_1 = '
SI2 = ', Index_2 = '
WRITE (*,300) SI1, INDEX1, SI2, INDEX2

300 FORMAT (A10,1I3,A12,1I3)

when the performance of the associated sector of code is an important
consideration.

Fortran NAMELIST processing incurs a significant per-datum processing
overhead and should be avoided in performance-sensitive I/O.

In the C language, input and output operations and conversions between
various representations of numerical data are performed by explicitly invoking
library subprograms. The standard C library includes functions for the
formatting of data that are for applications I/O as well as interfaces for the
conversion of numerical data between internal representations, such as int,
float, and double, and character strings corresponding to other
representations, which are controlled by user-specified control strings. An
198 Scientific Applications in RS/6000 SP Environments

overhead is associated with every function invocation; additional processing
overheads are associated with the parsing of control strings.

Optimization strategies that follow immediately from these observations are
that I/O functions should be invoked as infrequently as possible, and that
control specifications should be as simple as possible. Testing reveals that
the sprintf function, as implemented in recent versions of the C library,
requires less processing effort for the conversion of double data into their full
precision string counterparts than the gcvt utility in AIX 4.3.2; the opposite
conversion (from string to double) is faster when the atof function is used
rather than the more complex and versatile sscanf function.

6.3.13 I/O Blocksize
The efficiency of I/O operations generally increases with the size of the
quantum of data transfer: I/O bandwidths are actually an approximately
monotonic function of the size of the quantum (this is not made explicit in Eq.
6.3) and closely approach the asymptotic value even when this quantum is
relatively small; further, the latency overhead is incurred every time a
synchronous I/O request is made; finally, in Fortran I/O, 32-bit record-length
specifiers precede and follow every record written in sequential mode26. An
obvious corollary of these observations is that I/O requests should be
consolidated to the extent possible; for instance, the Fortran fragment

COMPLEX*16 TEGRAL
INTEGER*1 IA, IB, IC, ID
...
DO I = 1,MANY

*
* Calculate IA, IB, IC, ID, and TEGRAL
*

...
WRITE (OSTREAM) IA, IB, IC, ID, TEGRAL

ENDDO

causes the file attached to the output stream, OSTREAM, to store MANY
records of 28 bytes length, only 20 bytes (1\times COMPLEX*16+4 \times
INTEGER*1) of which are user data, incurring a storage volume overhead of
8/20 = 40%; rewriting the application to employ larger buffers in the form

INTEGER LBUFF
PARAMETER (LBUFF = 2000)
COMPLEX*16 TEGRAL, TEGRALB(LBUFF)
INTEGER*1 IA, IB, IC, ID, NBUFF,
: IAB(LBUFF), IBB(LBUFF), ICB(LBUFF), IDB(LBUFF)

26 The default value of the uwidth option (otherwise, specified using the XL Fortran XLRTEOPTS environment variable or
the SETRTEOPTS service procedure) is 32, but it may be set to 64 to permit record lengths in excess of 2 GB.
Chapter 6. Input/output 199

...
NBUFF = 0
DO I = 1,MANY

*
* Calculate IA, IB, IC, ID, and TEGRAL
*

...
*
* Buffer the output
*

NBUFF = NBUFF+1
IAB(NBUFF) = IA
IBB(NBUFF) = IB
ICB(LBUFF) = IC
IDB(NBUFF) = ID
TEGRALB(NBUFF) = TEGRAL

*
* Flush the buffer if it is full
*

IF (NBUFF .EQ. LBUFF) THEN
WRITE (OSTREAM) IAB, IBB, ICB, IDB, TEGRALB
NBUFF = 0

ENDIF
*

ENDDO
*
* Flush any unwritten buffer data to disk
*

IF (NBUFF .NE. 0) THEN
WRITE (OSTREAM) (IAB(I), I = 1,NBUFF),

: (IBB(I), I = 1,NBUFF),
: (ICB(I), I = 1,NBUFF),
: (IDB(I), I = 1,NBUFF),
: (TEGRALB(I), I = 1,NBUFF)

NBUFF = 0
ENDIF

is much more efficient in spite of the additional bookkeeping overhead
associated with ensuring that buffers IAB, IBB, ICB, IDB, and TEGRALB are
flushed appropriately: Now, the storage volume overhead is approximately
8/(20*2000) = 0.02 percent and limited only by the storage made available for
the I/O buffers through the value of PARAMETER LBUFF; indeed, if LBUFF
can be set to MANY, output to disk is most efficient in the form implied by the
following fragment:

COMPLEX*16 TEGRAL(MANY)
200 Scientific Applications in RS/6000 SP Environments

INTEGER*1 IA(MANY), IB(MANY), IC(MANY), ID(MANY)
...
DO I = 1,MANY

*
* Load arrays IA, IB, IC, ID, and TEGRAL
*

...
ENDDO

*
WRITE (OSTREAM) IA, IB, IC, ID, TEGRAL

No extra data, such as the record length specifiers in sequential FortranI/O,
are written to disk files by the I/O functions of the standard C library. As in
Fortran, it is much more efficient to perform I/O operations with large blocks
of data. A very small penalty is paid when block sizes are much larger than
the optimal size for the read, write, fread and fwrite functions

6.3.14 Intrusive optimizations: Memory-mapped I/O
A disk file or a portion thereof can be mapped into memory using the AIX
mmap function27. Once mapped in this fashion, file data may be manipulated
directly using their memory addresses, thus, entirely bypassing I/O library
subprograms, such as read, write, etc., and their associated data copying
overheads.

Memory-mapped I/O is limited by the virtual address space that can be made
available for file data. We will now discuss this in some detail.

• 32-bit address space model - The 4 GB 32-bit address space of AIX is
divided into 16 segments, 0x0 through x0F, each 256 MB in size.
Segment 0x2, beginning at virtual address 0x20000000, is the process
private segment, and stores most process-specific information including
user data, user stack, kernel stack, and user block. In the large address
space model28, the segments 0x3 through 0xA can be made available to
user data. Memory-mapped file data can occupy the ten segments 0x3
through 0xC for a total of 2.5 GB of data in early versions of AIX; in AIX
4.2.1 and later, segment 0xE is also available for this purpose allowing a
total of 2.75 GB of mapped data.

• 64-bit address space model - Now, 36 address bits (compared with four in
the 32-bit model) are used to select segments permitting, in principle,
segments 0x00000000 through 0xFFFFFFFF (a total of 68,719,476,736
segments); the prohibitive cost of very large amounts of RAM and disk

27 The current version of the GPFS file system does not support memory-mapped files.
28 This is activated when the o_maxdata field is set in the XCOFF header of the program; one way to set this field is
with the -bmaxdata option of the ld command.
Chapter 6. Input/output 201

storage constrain practically achievable address spaces to much smaller
sizes. Segments 0x07000000 through 0x07FFFFFF (16,777,216
segments and 4096 TB of address space) are available for
variable-location mappings (the only type discussed in this subsection).

A portion of size len bytes beginning at offset off bytes of a data file with
descriptor filedes may be mapped into a location in virtual memory
decided by the system with a call with the following synopsis:

#include <sys/mman.h>
void *mmap(0, size_t len, int prot, int flags, int filedes, int off);

The return value of the call is the address of the first byte of the memory
region into which the file is mapped. Depending on the access mode of the
file, prot is one of PROT_READ, PROT_WRITE or their bitwise inclusive "or":
PROT_READ|PROT_WRITE. Setting flags to MAP_SHARED associates the
region of memory with the disk file such that store operations are reflected in
the file, whereas setting it to MAP_PRIVATE restricts the modification to a
copy of the file in memory.

The storage of data into memory locations that are beyond the end of the file
associated with the descriptor specified to the mmap call will lead to the
generation of a SIGBUS signal; one method of avoiding application failure
associated with this signal is to ensure that the end of file is suitably relocated
using, for instance, the lseek call.

A region mapped by invoking mmap is implicitly unmapped when the calling
process terminates; explicit unmapping may be performed by invoking

#include <sys/mman.h>
int munmap(void *addr, size_t len);

The addr argument should be set to the return value of the call to mmap,
while the value of len should be the same as that in the invocation of mmap.

Additional information on virtual memory and the mmap and shmat families of
calls is available in : and AIX V4.3 General Programming Concepts; Writing
and Debugging Programs, SC23-4128.

6.3.15 Intrusive optimizations: Asynchronous I/O
The execution of standard Fortran I/O statements, such as READ, WRITE,
and PRINT statements, ISO C library I/O functions, such as fread, fscanf,
fwrite, and fprintf, and ISO C++ stream operations is "synchronous":
execution of the remainder of an application is blocked until the I/O operation
completes. An important technique for "hiding" the delay associated with I/O
202 Scientific Applications in RS/6000 SP Environments

operations is to exploit the parallelism permitted by "asynchrony": Execution
of an application continues after I/O requests are queued (not completed) so
that I/O operations can execute simultaneously with computation to the extent
permitted by the algorithm and system.

Asynchronous I/O must be explicitly enabled: A sequence of messages, such
as

XL Fortran (Asynchronous I/O Initialization):
AIX asynchronous I/O is disabled.

IOT/Abort trap(coredump)

or

Could not load program asyncio
Symbol kaio_rdwr in ksh is undefined
Symbol listio in ksh is undefined
Symbol acancel in ksh is undefined
Symbol iosuspend in ksh is undefined
Error was: Exec format error

indicates that such intercession by a system administrator is necessary; the
required commands are

chdev -l aio0 -P -a autoconfig='available'
mkdev -l aio0

The optimal configuration of asynchronous I/O is governed to a large extent
by the number of "servers", that is, kernel processes that service
asynchronous I/O requests29. The default maximum and minimum number of
servers, are 1 and 10, which is equivalent to issuing

chdev -l aio0 -a minservers='1' -a maxservers='10'

These settings are likely to be inadequate for systems in which heavy use is
made of asynchronous I/O; the symptom of such a deficiency is long intervals
between the queueing of a request and its servicing; the delay is exacerbated
by the reduced opportunity for the operating system's seek optimization
algorithm; in such situations it is recommended that the maximum number of
servers be set to 10 times the number of disk drives accessed
asynchronously and that the minimum number of servers be set to half the
maximum number of servers.

Fortran asynchronous I/O was first made available on RS/6000 platforms as
an extension to XL Fortran Version 5 Release 1. We introduce its use by
improving the performance of the timed portion of a simple (albeit contrived)
example that uses synchronous direct I/O:

29 Asynchronous I/O against raw logical volumes do not use kproc server processes.
Chapter 6. Input/output 203

PROGRAM SYNCIO
*

IMPLICIT NONE
*

INCLUDE 'param.h'
*

REAL*8 ARRAYI(NELEM), ARRAYO(NELEM),
: RTC, TREAD, TSTART, TWRITE !
INTEGER IELEM, IREC, ISTREAM, OSTREAM
EXTERNAL RTC

*
ISTREAM = 11
OPEN (ISTREAM, ACCESS = 'DIRECT', RECL = LREC,
: ASYNCH = 'NO', FORM = 'UNFORMATTED')
OSTREAM = 12
OPEN (OSTREAM, ACCESS = 'DIRECT', RECL = LREC,
: ASYNCH = 'NO', FORM = 'UNFORMATTED')

*
TREAD = 0.0D 00 !
TWRITE = 0.0D 00 !

*
DO IREC = 1,NREC

*
TSTART = RTC () !
READ (ISTREAM, REC = IREC) ARRAYI
TREAD = TREAD+RTC ()-TSTART !

*
DO IELEM = 1,NELEM
ARRAYO(IELEM) = GAMMA (ARRAYI(IELEM))

ENDDO
*

TSTART = RTC ()
WRITE (OSTREAM, REC = IREC) ARRAYO
TWRITE = TWRITE+RTC ()-TSTART !

*
ENDDO

*
PRINT *, 'READ time: ',TREAD !
PRINT *, 'WRITE time:',TWRITE !
PRINT *, ' Total: ',TREAD+TWRITE !

*
END

PROGRAM SYNCIO reads NREC records of length LREC bytes from stream
ISTREAM (disk file fort.11 by default), performs numerically-intensive
operations on the NELEM REAL*8 data items in each of these records, and
204 Scientific Applications in RS/6000 SP Environments

writes the results to stream OSTREAM (disk file fort.12 by default); file
param.h, which prescribes NREC and LREC, consists of the following two
records

INTEGER LREC, NELEM, NREC
PARAMETER (LREC = 2**20, NELEM = LREC/8, NREC = 2**10)

Calls to the XL Fortran high-resolution real-time clock (RTC()) utility surround
the READ and WRITE statements to obtain profiling information for I/O
operations. (The invocations of RTC() and the XL Fortran intrinsic
GAMMA(X), which computes the (complete) real gamma function,
$\Gamma(x)$, compromise the portability of PROGRAM SYNCIO.) The
input file for the PROGRAM SYNCIO is generated by PROGRAM SETUP:

PROGRAM SETUP
*

IMPLICIT NONE
*

INCLUDE 'param.h'
*

REAL*8 ARRAY(NELEM)
INTEGER IELEM, IREC, ISTREAM

*
ISTREAM = 11
OPEN (ISTREAM, ACCESS = 'DIRECT', RECL = LREC,
: ASYNCH = 'NO', FORM = 'UNFORMATTED')

*
DO IREC = 1,NRE
DO IELEM = 1,NELEM
ARRAY(IELEM) = LOG (0.5D 00*DBLE (IREC+IELEM))

ENDDO
WRITE (ISTREAM, REC = IREC) ARRAY

ENDDO
*

END

The sequential variants of PROGRAMS SYNCIO and SETUP are obtained by
modifying ACCESS = 'DIRECT', RECL = LREC to ACCESS = 'SEQUENTIAL',
in the OPEN statements and eliminating REC = IREC from the READ and
WRITE statements.

The user times for the execution of both variants of PROGRAM SYNCIO are
significantly larger than the total of the sys, READ, and WRITE times; this is
the gross characteristic of the necessary (but insufficient) conditions for the
successful exploitation of asynchronous I/O; PROGRAM SYNCIO has, of
course, deliberately been designed to exhibit the sufficient condition:
adequate non-I/O processing interleaved between I/O requests.
Chapter 6. Input/output 205

The scheme we select for the exploitation of asynchronous I/O is applied to
read and write operations in the same manner: The set of all READ or WRITE
requests is split into even and odd components based on the order in which
they are issued; an even component is prepared (computed, buffered, and
queued) while the preceding odd component is in transit from (or to) an I/O
device and vice versa, that is, with odd and even interchanged. PROGRAM
SYNCIO is rewritten to yield PROGRAM ASYNCIO with a view to maintaining
the numerically-intensive portion, which is, invariably, more complex than the
I/O sector in a "real" scientific application, in unchanged form; portability is
not a primary concern because no extant Fortran standard supports
asynchronous I/O.

PROGRAM ASYNCIO
*

IMPLICIT NONE
*

INCLUDE 'param.h'
*

REAL*8 ARRAYI, ARRAYO, ARIE, ARIO, AROE, AROO,
: RTC, TSTART, T(8) !
POINTER (PARI,ARRAYI(1)), (PARO,ARRAYO(1)),
: (PARIE,ARIE(1:NELEM)), (PARIO,ARIO(1:NELEM)),
: (PAROE,AROE(1:NELEM)), (PAROO,AROO(1:NELEM))
INTEGER I,IDREVN, IDRODD, IDWEVN, IDWODD,
: IELEM, IREC, ISTREAM, MALLOC, NBYTES, OSTREAM
EXTERNAL MALLOC, RTC

*
NBYTES = 8*NELEM
PARIE = MALLOC (%VAL (NBYTES))
PARIO = MALLOC (%VAL (NBYTES))
PAROE = MALLOC (%VAL (NBYTES))
PAROO = MALLOC (%VAL (NBYTES))

*
ISTREAM = 11
OPEN (ISTREAM, ACCESS = 'DIRECT', RECL = LREC,
: ASYNCH = 'YES', FORM = 'UNFORMATTED')
OSTREAM = 12
OPEN (OSTREAM, ACCESS = 'DIRECT', RECL = LREC,
: ASYNCH = 'YES', FORM = 'UNFORMATTED')

*
DO I = 1,8 !
T(I) = 0.0D 00 !

ENDDO !
*

TSTART = RTC () !
READ (ISTREAM, REC = 1, ID = IDRODD) ARIO
206 Scientific Applications in RS/6000 SP Environments

T(2) = T(2)+RTC ()-TSTART !
*

DO IREC = 1,NREC
*

IF (MOD (IREC,2) .EQ. 1) THEN
IF (IREC .LT. NREC) THEN
TSTART = RTC () !
READ (ISTREAM, REC = IREC+1, ID = IDREVN) ARIE
T(1) = T(1)+RTC ()-TSTART !

ENDIF
TSTART = RTC () !
WAIT (ID = IDRODD)
T(4) = T(4)+RTC ()-TSTART !
PARI = PARIO
IF (IREC .GT. 1) THEN
TSTART = RTC () !
WAIT (ID = IDWODD)
T(8) = T(8)+RTC ()-TSTART !

ENDIF
PARO = PAROO

ELSE
IF (IREC .LT. NREC) THEN
TSTART = RTC () !
READ (ISTREAM, REC = IREC+1, ID = IDRODD) ARIO
T(2) = T(2)+RTC ()-TSTART !

ENDIF
TSTART = RTC () !
WAIT (ID = IDREVN)
T(3) = T(3)+RTC ()-TSTART !
PARI = PARIE
IF (IREC .GT. 2) THEN
TSTART = RTC () !
WAIT (ID = IDWEVN)
T(7) = T(7)+RTC ()-TSTART !

ENDIF
PARO = PAROE

ENDIF
*

DO IELEM = 1,NELEM
ARRAYO(IELEM) = GAMMA (ARRAYI(IELEM))

ENDDO
*

IF (MOD (IREC,2) .EQ. 1) THEN
TSTART = RTC () !
WRITE (OSTREAM, REC = IREC, ID = IDWODD) AROO
T(6) = T(6)+RTC ()-TSTART !
IF (NREC-IREC .LE. 1) THEN
Chapter 6. Input/output 207

TSTART = RTC () !
WAIT (ID = IDWODD)
T(8) = T(8)+RTC ()-TSTART !

ENDIF
ELSE
TSTART = RTC () !
WRITE (OSTREAM, REC = IREC, ID = IDWEVN) AROE
T(5) = T(5)+RTC ()-TSTART !
IF (NREC-IREC .LE. 1) THEN
TSTART = RTC () !
WAIT (ID = IDWEVN)
T(7) = T(7)+RTC ()-TSTART !

ENDIF
ENDIF

*
ENDDO

*
PRINT *, 'Operation Time (in seconds)' !
PRINT *, 'Read request (even) ',T(1) !
PRINT *, 'Read request (odd) ',T(2) !
PRINT *, 'Read wait (even) ',T(3) !
PRINT *, 'Read wait (odd) ',T(4) !
PRINT *, 'Write request (even)',T(5) !
PRINT *, 'Write request (odd) ',T(6) !
PRINT *, 'Write wait (even) ',T(7) !
PRINT *, 'Write wait (odd) ',T(8) !
PRINT *, ' Total ',T(1)+T(2)+T(3)+T(4)+ !
: T(5)+T(6)+T(7)+T(8) !

*
END

Much of the complexity of PROGRAM ASYNCIO can be attributed to code for
the collection and reporting of timing data(): Such code is tagged with an
exclamation point (!) in column 60. The XL Fortran "integer POINTER"
datatype is used to alternately associate the name ARRAYI with the arrays
ARIE and ARIO, and the name ARRAYO with the arrays AROE and AROO.
Although the dimension of ARIE, ARIO, AROE, and AROO is declared to be
NELEM, storage is not allocated to each array until the appropriate MALLOC
call is issued; the dimension specification only serves to simplify the
structures of the READ and WRITE statements: For instance, the form

WRITE (OSTREAM, REC = IREC, ID = IDWODD) AROO

is equivalent to the more cumbersome but explicit form

WRITE (OSTREAM, REC = IREC, ID = IDWODD)
: (AROO(IELEM), IELEM = 1,NELEM)
208 Scientific Applications in RS/6000 SP Environments

The sequential variant of PROGRAM ASYNCIO is readily created by making
the same modifications that are required to create the sequential variant of
PROGRAM SYNCIO. Execution of the sequential version of PROGRAM
ASYNCIO confronts us with a surprise: Whereas the direct variant of
PROGRAM ASYNCIO is significantly faster than the direct variant of
PROGRAM SYNCIO, the opposite is true of the sequential variants. The
location of a sequential data record depends upon the location of the previous
record, which causes the serialization of I/O operations in most cases.
Synchronous I/O is performed regardless of the mode specified in the I/O
statement when the Fortran compiler must allocate temporary storage for an
I/O expression that is resolved at run time.

The POSIX.1b asynchronous I/O facility comprises the "include file" <aio.h>
and the following C language bindings:

int aio_cancel(int FileDescriptor, struct aiocb *aiocbp): requests cancellation
of asynchronous I/O requests defined by the aiocb control block pointed to by
aiocbp pending against the file with descriptor FileDescriptor; return value
AIO_CANCELED indicates successful cancelation of all requests defined by
the arguments; AIO_ALLDONE indicates that all I/O defined by the
arguments completed before the request for cancellation; the return value
AIO_NOTCANCELED indicates that all requests defined by the arguments
were not successfully canceled.

int aio_error(const struct aiocb *aiocbp) returns the error status associated
with the asynchronous I/O requests defined by the aiocb control block pointed
to by aiocbp; error statuses are the same as those returned by the
(synchronous) read, write, and fsync functions.

int aio_fsync(int opcode, struct aiocb *aiocbp) is an asynchronous request to
write all modified I/O block buffers associated with the aiocb control block
pointed to by aiocbp so that disk and RAM resident copies are identical; this
is not implemented in AIX 4.3.2.

int aio_read(struct aiocb *aiocbp) queues the read request defined by the
aiocb control block pointed to by aiocbp; the corresponding AIX 4.3.2 call is
aio_read(int FileDescriptor, struct aiocb *aiocbp).

int aio_return(struct aiocb *aiocbp) returns the return status associated with
the asynchronous I/O requests defined by the aiocb control block pointed to
by aiocbp; return statuses are the same as those returned by the
(synchronous) read, write, and fsync functions; the corresponding AIX 4.3.2
call is aio_return(aio_handle_t handle).
Chapter 6. Input/output 209

int aio_suspend(const struct aiocb * const list[], int count, const struct
timespec *timeout) suspends the calling thread until one or more of the
asynchronous I/O requests defined by the aiocb control block array list has
completed or is interrupted by a signal, or if timeout is satisfied; it is
implemented in AIX 4.3.2 as aio_suspend(const struct aiocb * const list[]).

int aio_write(struct aiocb *aiocbp) queues the write request defined by the
aiocb control block pointed to by aiocbp; the corresponding AIX 4.3.2 call is
aio_write(int FileDescriptor, struct aiocb *aiocbp).

int lio_listio(int mode, struct aiocb * const list[], int count, struct event *eventp)
queues the asynchronous I/O requests defined by the aiocb control block
array list with count entries with behavior mode; the setting mode to
LIO_WAIT; the last argument is ignored in the AIX 4.3.2 implementation.

The _LARGE_FILES counterpart of the asynchronous I/O interface as
defined by AIX 4.2.1 is also available in AIX 4.3.3.

We remind the user that writing code to nonstandard interfaces to gain
performance typically results in reduced portability; this latter failing can
usually be greatly mitigated by isolating non-portable code in a few ‘wrapper’
subprograms that provide the required functionality; porting efforts can then
be focussed on the wrapper routines rather than on non-portable code
scattered throughout an application.

An alternative to asynchronous I/O as described above is the use of familiar
synchronous I/O that is under the control of one or more spawned threads.

6.3.16 Intrusive optimizations: Raw disk I/O
All overheads associated with the use of the journaled file system (JFS) may
be eliminated by performing I/O directly to a logical volume; however, the
burden of many storage management operations is now placed upon the
user. The benefits of logical volume striping remain available. The system
administrator's intercession is required to permit direct reading from or writing
to a logical volume. Logical volumes that have been enabled in this manner
should not simultaneously be used for JFS file systems; indeed, existing JFS
file systems on such a volume will be destroyed by raw I/O. Access to a
suitably-prepared logical volume is gained by opening the corresponding
special file (/dev/...) as a single direct-access file with a record length that is
an integer multiple of the sector size (almost invariably 512 bytes).
Operations that attempt to access data outside the boundaries of the logical
volume may not be detected by the I/O support provided by languages or
libraries. Mechanisms for the protection of files from simultaneous access by
210 Scientific Applications in RS/6000 SP Environments

different processes are not provided at the logical volume level and must be
explicitly prepared if required. In XL Fortran applications, the
STATUS='SCRATCH' or STATUS='DELETE' specifiers are ignored, and the
maximum volume of data that can be stored is that of the logical volume less
one stripe, which is reserved by the runtime library. Optimal performance
requires that buffers be aligned on 64-byte boundaries; such alignment may
be obtained as described in the latter portion of Section 6.3.10, “Intrusive
optimizations: Exploiting high-performance FS” on page 19330.

6.4 GPFS

The interface presented by the General Parallel File System (GPFS) to the
user is essentially that of a standard AIX "virtual file system" (JFS or NFS); in
particular, the great majority of POSIX file system calls31 are available; large
file support is provided as described in Section 6.2.2, “Large file support” on
page 176. Scalability results from the distribution of file data across storage
devices attached to multiple nodes, each of which is equipped with a
high-speed communication subsystem; the "availability" of a GPFS file
system (its usability in the face of component failure) depends on the degree
of replication of data (in particular, the mirroring of file "metadata") and
connectivity (the "multitailing" of disk subsystems).

An application package that makes use of relative file names only (this is true
of the majority) can exploit GPFS simply by being relocated to a GPFS file
system; if, on the other hand, pathnames are "hard coded" in a package, a
system administrator may be able to remount a GPFS file system to the
required path; more typically, some input data, source code, shellscript, or
other editing may be required to reconfigure an application to the pathname
of the available GPFS file system.

Applications that are communication-intensive are likely to suffer significant
performance degradation if large volumes of data are transferred between the
nodes on which they are executing and a GPFS file system because of
contention for the communication subsystem between interprocess
communication and file data transfer; this may be eliminated by the exclusive
use of local file systems (see Section 6.3.2, “Non-intrusive optimizations
exploiting high-performance FS” on page 182, Section 6.3.3, “Non-intrusive
optimizations: Obviating contention” on page 183, and Section 6.3.10,
“Intrusive optimizations: Exploiting high-performance FS” on page 193) or
mitigated by the use of such file systems for some, but not all, file I/O. In most

30 The subprograms allociobuffer and freeiobuffer force alignment on page boundaries, which is more restrictive than is
required in the present context; to obtain alignment on 64-byte boundaries, every occurrence of 4096 and 0xfff in these
functions should be replaced by 64 and 0x3f.
31 The few exceptions are listed in detail towards the end of the present subsection.
Chapter 6. Input/output 211

RS/6000 SP production environments, GPFS file systems are shared among
the users of the system. Some reduction in file system performance will result
from contention for disk and communication subsystem resources on VSD
server nodes. Again, local file systems may be exploited to improve
performance.

The GPFS Token Manager provides a byte-range locking mechanism to
provide a parallel task exclusive access to non-overlapping file blocks.
Application I/O performance (and, thus, overall application performance) can
deteriorate if the token management overhead is significant in comparison to
the I/O time; this situation typically arises when I/O requests are small
compared to stripe size.

The performance of an application that uses a GPFS file system can be
sensitive to aspects of the file system that are under the control of system
administrators.

Memory-mapped files (see Section 6.3.15, “Intrusive optimizations:
Asynchronous I/O” on page 202) are not supported in GPFS Version 1
Release 2. In particular, the calls mmap, munmap, msync, shmat are not
supported by GPFS 1.2; IBM intends to support these calls in a future release
of GPFS. Some system software, such as the XL Fortran compiler, may be
programmed to switch from file-based I/O to memory-mapped I/O in certain
circumstances; this switching will fail if I/O is to a GPFS 1.2 file system.

The accuracy of the components time_t st_atime, time_t st_ctime, and time_t
st_mtime of struct stat (see /usr/include/sys/stat.h) as returned by the stat,
fstat, and lstat functions, is only guaranteed when a GPFS file is closed. The
maintenance of similar accuracy for these members at other times imposes
an unacceptable performance penalty; it follows that applications that depend
upon the accurate reporting of these fields at other times may not work as
expected.

The process filesize resource limit (file(blocks), for instance, as returned by
the ulimit command is not enforced in GPFS 1.2; IBM intends to provide
support in future releases of GPFS.

The GPFS programming interface currently comprises one subprogram with a
C language binding; the syntax specification is available in the header file
/usr/include/gpfs.h:

int gpfs_prealloc (int fileDesc, offset_t StartOffset,
offset_t BytesToPrealloc);
212 Scientific Applications in RS/6000 SP Environments

Applications incorporating this call should be linked with the GPFS library,
/usr/lib/libgpfs.a. The file with descriptor fileDesc must be opened prior to the
invocation of gpfs_prealloc. The return value is 0 for a successful invocation;
otherwise, the return value is -1 and the global errno variable is set.
Preallocation can result in faster I/O as compared with an incremental file
enlargement.
Chapter 6. Input/output 213

References

• AIX Commands Reference, A set of manuals with this title has been
issued with every release of the AIX operating system for some time; for
AIX Version 4.3 (Version 4 Release 3), the IBM publication number is
SBOF-1877

• Communications Programming Concepts: A manual with this title has
been issued with every release of the AIX operating system for some time;
for AIX Version 4.3, the IBM Publication number is SC23-4124. The
information in this book can also be found in HTML format on the AIX
Version 4.3 Base Documentation CD. This online documentation is
designed for use with an HTML version 3.2 compatible Web browser.

• Computer Architecture: A Quantitative Approach, Second Edition, J. L.
Hennessy and D. A. Patterson, published by Morgan Kaufman, 1996

• General Programming Concepts: Writing and Debugging Programs: A
manual with this title has been issued with every release of the AIX
operating system for some time; for AIX Version 4.3 (Version 4 Release 3),
the IBM Publication number is SC23-4128.

• Go Solo 2: The Authorized Guide to Version 2 of the Single UNIX
Specification: The Open Group

• GPFS: A Parallel File System, IBM Redbook SG24-5165

• IBM General Parallel File System for AIX: Installation and Administration
Guide, IBM Publication Number SA22-7278

• Optimization and Tuning Guide for Fortran, C, and C++: for AIX Version 4,
the IBM Publication number is SC09-1705 PE Operation and Use Vol. 2,
Part 2 — Profiling, IBM Publication SC28-1980.

• Performance Tuning Guide, AIX Versions 3.2 and 4, IBM Publication
SC23-2365

• The UNIX Programming Environment, B. W. Kernighan and R. Pike,
Prentice-Hall, Inc. 1984.

• XL Fortran for AIX User’s Guide: A manual with this title has been issued
with every release of the XL Fortran Compiler; for XL Fortran Version 66
Release 1, the IBM Publication number is SC09-2719.

6.5 MPI-IO

The MPI-1 standard was a big step forward in defining an expressive and
portable interface for developing message passing programs. Some of the
most useful tools that MPI-1 adds to the basic send/receive model have
214 Scientific Applications in RS/6000 SP Environments

already been discussed in this book. These include collective communication,
communicators, MPI datatypes, and nonblocking send/receive. One
longstanding problem in developing good message passing parallel programs
has been file IO. Parallel codes are used to solve large problems. Often, this
means that large data sets must be read and written and that each task will
be concerned only with distinct pieces of these large sets. MPI-1 did not deal
with IO even though it was clear that moving data between files and tasks
should be similar in many ways to moving data among tasks. In what is
arguably the most valuable addition to MPI, the MPI-2 standard has defined
an interface for reading and writing files that extends MPI’s expressive power
and portability to doing parallel IO.

POSIX IO is quite portable because it is supported by most platforms on
which MPI is implemented. However, traditional POSIX operations for reading
and writing files have serious limitations in large parallel applications. POSIX
read/write does not give a program any way to express that more than one
task is interested in a particular file; so, the program must be designed to
work around this limitation. There are several techniques, and none of them is
entirely satisfactory. For example, a parallel program in which each task has
generated some portion of the whole output picture might do one of the
following:

• Use message passing to collect the data at one task, which then does a
write()

• Have each task write() its data to a unique file and either keep the set of
files or post process to make a single file

• Have each task write() to different parts of a common file and let the file
system sort it out

Similar techniques can apply to large input data sets. The third technique is
much more likely to give satisfactory performance for reading than for writing.
Not all shared or distributed files systems can guarantee to sort out the
scattered writes of option three correctly.

IBM GPFS does provide a POSIX read/write interface that can make the third
approach safe for writing and, in cases where each task writes to its own
large contiguous section of the file, quite efficient. When tasks write smaller
interleaved file fragments, the token management that GPFS or any parallel
file system must do to assure correct results will have a serious performance
cost. The problem is inherent in the write() function because it offers no way
of indicating what any other task will do or what the calling task will do when it
makes additional write() calls. When the goal is to have a single output file,
the first and second approaches take extra programming and serialize much
Chapter 6. Input/output 215

of the actual output. The use of distinct output files that are kept distinct can
allow writing to proceed in parallel and with high efficiency, but an output set
from an eight task job is probably only useful as input to another eight task
job that wants the data exactly as the previous job partitioned it. Post
processing the distinct files into a single file with a serial job is likely to be too
time-consuming to consider.

Parallel processing with MPI is most useful for solving a problem structured in
a way that allows it to be subdivided among several tasks and big enough to
be worth the effort. Any MPI job, whether it has two or 1000 tasks typically
involves cooperation among the tasks to solve one problem, and, from this
perspective, there can be one set of input data and one set of output data.
Assume a user wants to produce one output file representing an
400x400x400 matrix of C ints and uses eight tasks with each task producing
a 200x200x200 corner cube. If each task tries to distribute its 8,000,000 ints
directly to the right places in the file with POSIX write() calls, there will be
thousands of write calls per task and much contention. If the output operation
is viewed globally, its intent is a single 8*8,000,000*sizeof(int) write from one
job to one file. Without MPI-IO, the programmer probably will choose to write
additional MPI code to shuffle the data among tasks and into large
contiguous blocks that can be written more efficiently.

Other chapters in this book have illustrated some of the ways an MPI program
might use collective communication and datatypes to express
communications or interactions among tasks. Such tools do not solve any
problem that the programmer could not also solve with enough extra code.
What they really do is allow the programmer to express the intent rather than
write the extra code and let the MPI library choose a way to carry out this
intent. MPI-IO has the same goal: Let the programmer specify the intent of
each task at a higher level and with collective operations where appropriate.
Let MPI carry it out efficiently. A POSIX write() at some task can only identify
one fragment of data from that task. It cannot identify whether other tasks will
contribute other fragments or even what fragment the next local write() will
contribute. The single task call, MPI_FILE_WRITE_AT(), depends on
MPI_Datatypes to identify a set of data fragments at the call. The collective
call, MPI_FILE_WRITE_AT_ALL(), not only identifies a set of file fragments
the calling task wishes to write but also declares that every other task in the
group will also make the call and identify a set of fragments. The collective
operation is most appropriate when fragments from each task fit with those
from the other tasks in a way that allows MPI to coalesce them into a few
larger fragments.
216 Scientific Applications in RS/6000 SP Environments

6.5.1 IBM implementation
Parallel Environment 2.4 is the first release to provide features of MPI-IO on
the SP. IBM is developing its own implementation of MPI-IO, which is
tightly-integrated with the rest of the MPI implementation. The long-range
intent is that this will provide the best performance because it can directly
utilize features of the IBM underlying communication subsystem and can
provide the best integration with GPFS. The public domain version of MPI
(MPICH) does provide an implementation of MPI-IO (ROMIO) that is nearly
complete but is layered on top of other MPI functions. IBM had to choose
between porting ROMIO and having a complete MPI-IO quickly vs.
developing an integrated MPI-IO implementation and staging its delivery. PE
Release 2.4 contains a subset of the MPI-IO API, and work on completing the
interface as well as improving performance will continue.

The subset of MPI-IO to be provided in the first release was selected by
surveying technical users who were already familiar with the MPI-2 standard.
They were asked what parts of the MPI-2 standard they thought would be
needed to make MPI-IO useful to the applications which concerned them.
There was general agreement on the subset which PE 2.4 provides. This
includes the information displayed in Table 29.

Table 29. MPI-2 subset included in PE 2.4

MPI Functionality MPI routines

File manipulation

MPI_FILE_OPEN
MPI_FILE_CLOSE
MPI_FILE_DELETE
MPI_FILE_SET_SIZE
MPI_FILE_GET_SIZE

File views MPI_FILE_SET_VIEW
MPI_FILE_GET_VIEW

File hints MPI_FILE_SET_INFO
MPI_FILE_GET_INFO

Blocking single task I/O MPI_FILE_READ_AT
MPI_FILE_WRITE_AT

Blocking collective I/O MPI_FILE_READ_AT_ALL
MPI_FILE_WRITE_AT_ALL

Non blocking single task I/O MPI_FILE_IREAD_AT
MPI_FILE_IWRITE_AT

Inquiry
MPI_FILE_GET_GROUP
MPI_FILE_GET_AMODE
MPI_FILE_GET_ATOMICITY
Chapter 6. Input/output 217

There is often confusion about what MPI-IO is. It is not a file system; rather, it
is an application interface to a file system. MPI-IO does not deal with disk
drives, RAID arrays, striping across drives, or hardware failure recoverability.
That is all left to lower-level systems. The implementation of MPI-IO in PE 2.4
is designed to work with the GPFS file system. MPI lets GPFS/VSD take care
of the details that make a GPFS file visible to all SP nodes on which the file
system is mounted and ensures that the data committed to it by an MPI
program is reliably delivered to disk drives. The MPI-IO implementation
requires that a file opened via MPI_FILE_OPEN() be visible to every task in
the MPI job and presumes that GPFS will maintain the file’s integrity when
operations, such as write() or fsync(), occur from within MPI on more than
one node. A single call to MPI_FILE_WRITE_AT() by one task can result in
many tasks making concurrent (but never conflicting) write() calls to GPFS.
Even when only a subset of MPI_COMM_WORLD tasks opens a file or make
MPI-IO calls to access it, any task in the job may do read() or write() calls to
GPFS in support of the access. That is why every task must be on a node that
has the GPFS file system mounted.

GPFS manages access to a file distributed across nodes in terms of blocks.
The block size is configured by the administrator with 256K being fairly
typical. GPFS uses a token management scheme to control which node has
current authority for each block. When a task on some node touches a block
with a read() or write(), there are three possibilities: The best case is when
the node has previously touched the block and still holds the token (no other
node has stolen it). The second best case is when no node has touched the
block so far, and the current node can be quickly granted a token. The worst

File consistency MPI_FILE_SYNC

Filetype constructors MPI_TYPE_CREATE_SUBARRAY
MPI_TYPE_CREATE_DARRAY

Error handler management
MPI_FILE_CREATE_ERRHANDLER
MPI_FILE_SET_ERRHANDLER
MPI_FILE_GET_ERRHANDLER

MPI Info functions

MPI_INFO_CREATEMPI_INFO_SET
MPI_INFO_DELETE
MPI_INFO_GET
MPI_INFO_GET_VALUELEN
MPI_INFO_GET_NKEYS
MPI_INFO_GET_NTHKEY
MPI_INFO_DUP
MPI_INFO_FREE

MPI Functionality MPI routines
218 Scientific Applications in RS/6000 SP Environments

case by far is when some other node has been writing to the block, and GPFS
must wait until it can complete and commit any pending activity at that node,
reclaim the token, and grant it to the new node.

The MPI-IO implementation is designed with a data shipping strategy to
ensure that, for each GPFS block, there is only one node that will issue reads
and writes to GPFS. This is done by defining a file partition size within MPI to
be a multiple of the GPFS block size and then associating each MPI file
partition with one task of MPI_COMM_WORLD. The partition size for PE 2.4
is set to 1 meg and the partitions are mapped to tasks in round-robin rank
order. In a four-task job, rank 0 is responsible for the first, fifth, ninth, and so
on 1 meg partitions. A write to the file made through any MPI-IO call at any
task is done by determining which parts of the output data fall within each
MPI file partition and sending a command (descriptor) and data to the nodes
that own each affected file partition. A mechanism (called a “responder”) is
waiting at each task to asynchronously accept a command and assign it to a
background thread to be executed. The task and thread on which a user
program call to an MPI-IO read or write occurs plans both the actions it must
take and the complementary actions the responder must take. The command
built at the task where the call occurs details the steps for the responder to
take. For a single task (non collective) write operation, responder execution
involves receiving the data and doing one or more write() calls on the
responder thread. For a collective write operation, the responder expects a
command and, probably, data from every task in the group. The data sent by
each task is merged in a memory buffer with data from other tasks, and, after
all tasks have contributed, the minimum number of write() calls is used to
transfer the coalesced data to the file. Once a responder thread finishes a
command, it sends a report to the task at which the MPI-IO call was made.
When every command that the operation requires has been carried out and
reported back, the MPI-IO call is complete and can return either
MPI_SUCCESS or an error to the calling task. An MPI-IO read from a file
uses a similar approach, except that the responders do read() calls and
distribute the data rather than accept and write() it.

6.5.2 Using MPI-IO effectively
The MPI data shipping approach described above is a trade-off, and the first
release of MPI-IO uses it for all IO done by MPI-IO calls. When the fragments
of data to be read or written are small and scattered across tasks, this MPI
data shipping is a clear winner. The savings from eliminating GPFS token
thrashing far outweigh the cost of shipping the data. When the data to be read
or written by each task is in large fragments or when each task accesses
different large regions of the file without touching any region accessed by
other tasks, there is little or no GPFS token thrashing to avoid. In such cases,
Chapter 6. Input/output 219

using GPFS directly via read() or write() calls will outperform MPI-IO. In later
releases, MPI-IO is expected to use data shipping when it can pay off and
bypass it when it cannot. For this release, the performance-sensitive user of
the current version may want to consider whether to use MPI-IO or direct
read()/write() in each case.

Opening a file is done with MPI_FILE_OPEN(), which is a collective
operation; this means that it must be called by every task of the input
communicator. Often, the input communicator will be MPI_COMM_WORLD,
but any communicator may be used. MPI_FILE_OPEN() returns an MPI file
handle (MPI_File) to each calling task, and all further MPI-IO operations on
the file use this file handle as an identifier. An MPI_File has much in common
with an MPI_Comm. It is defined across some group of tasks; all collective
operations on an MPI_File involve that group, tasks outside the group have no
access to it, and, finally, operations on one MPI_File are semantically
independent of operations on another MPI_File. MPI-IO does allow more than
one MPI_FILE_OPEN() to be done on a file; so, more than one MPI_File
handle may represent the same actual file. MPI does not define how
conflicting operations on the two MPI_Files behave. MPI_FILE_SYNC() on an
MPI_File commits all preceding operations on the file and ensures all
subsequent operations see any actions committed before the sync. By using
MPI_FILE_SYNC() properly, you can enforce a well-defined semantic
because you can guarantee that file operations on a single file via different
MPI_File handles are not conflicting. When a file is opened, each task has the
same default view of it: An array of MPI_BYTE beginning at the first byte of
the actual file. Any open MPI_File has an associated view, either this default
view or some other view defined by the program to replace the default. In this
default view, the elementary type or etype of the file is MPI_BYTE. In any file
view, offsets are counted by etype. In the default case, every task sees byte n
of the actual file as offset n in its view. An MPI-IO file read or write call at a
task specifies an MPI_File and MPI_Offset (in etype units) as well as a buffer
address, datatype, and count. The buffer, datatype, and count dictate how
much data is to be read or written and the memory locations for that data. The
byte location in the actual file is determined by MPI based on the etype offset
within the view. With the default file view, MPI_Offset is equivalent to byte
displacement, and, for some applications, this is enough.

The real expressive power of MPI-IO in supporting efficiency is exploited by
using MPI_FILE_SET_VIEW() at each task to replace the default view with
one that fits that task’s role in the application. Each view begins at an explicit
byte displacement from the beginning of the file and is defined by etype and
filetype. The etype is an MPI_Datatype that the programmer selects as the
elementary type from which the file is built. It can be either a predefined or
220 Scientific Applications in RS/6000 SP Environments

user-defined datatype. The filetype of the view is an MPI_Datatype made of
etype components, and it normally has gaps to account for the portions of the
file that belong to other tasks. Each gap must be the size of an integral
number of etypes. The view of the file as seen from each task is as if the
filetype was tiled contiguously across the file, that is, as if by
MPI_TYPE_CONTIGUOUS() with the filetype datatype and an arbitrarily
large count. Usually, each task will have a different view, perhaps at a
different displacement, but the set of views should be designed to
complement each other. MPI_FILE_SET_VIEW() is collective; so, all tasks in
the MPI_File group must participate in changing views, but views may be
changed as often as necessary. To illustrate a use of file views, we will take a
look at how the problem above with eight tasks can be solved with file views
and a collective write. The following example program is scaled down to
produce a 4×4×4 matrix in the file with each task contributing a 2×2×2 corner
sub-matrix.

Sample program:

#include "mpi.h"
#define CHECK(X) if (X) \

{printf("OOPS at line %d.\n",__LINE__); MPI_Abort(MPI_COMM_WORLD,0);}
/* dims of corner each task will tackle */
#define TASK_X 2
#define TASK_Y 3
#define TASK_Z 2
/* dims of matrix in file with all 8 contributions */
#define FILE_X (2*TASK_X)
#define FILE_Y (2*TASK_Y)
#define FILE_Z (2*TASK_Z)
void main() {

int i, j, k, numtasks, me;
int rem, disp, etype_ext;
MPI_Datatype file_row, file_slice, corner, file_corner, aot[2];
MPI_File fh;
MPI_Status status;
int gsizes[3] = {FILE_X, FILE_Y, FILE_Z};

int distribs[3] = {MPI_DISTRIBUTE_BLOCK, MPI_DISTRIBUTE_BLOCK,
MPI_DISTRIBUTE_BLOCK};

int dargs[3] = {MPI_DISTRIBUTE_DFLT_DARG, MPI_DISTRIBUTE_DFLT_DARG,
MPI_DISTRIBUTE_DFLT_DARG};

int psizes[3] = {2, 2, 2};
int matrix[TASK_Z][TASK_Y][TASK_X]; /* C is row major - let X coord be contiguous */
MPI_Init(0,0);
/* MPE_ERRORS_WARN is an IBM extension, not standard MPI. */
MPI_File_set_errhandler(MPI_FILE_NULL,MPE_ERRORS_WARN);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
if (numtasks != 8){
if (me == 0) printf("This sample program requires 8 tasks.\n");
MPI_Abort(MPI_COMM_WORLD, 0);

}
/* Init task array with values we can take apart later to illustrate the effect */
for (i=0; i<TASK_Z; i++)
for (j=0; j<TASK_Y; j++)
for (k=0; k<TASK_X; k++)
matrix[i][j][k] = me*1000000 + i*10000 + j*100 + k;
Chapter 6. Input/output 221

/* create filetype MPI_Datatype */
MPI_Type_create_darray(numtasks,me,3,gsizes,distribs,dargs,psizes,MPI_ORDER_C,

MPI_INT, &file_corner);
MPI_Type_commit(&file_corner);
CHECK(MPI_File_open(MPI_COMM_WORLD, "./iotest",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh))
CHECK(MPI_File_set_view(fh, 0, MPI_INT, file_corner, "native", MPI_INFO_NULL))

/* We could build an MPI_Datatype to describe all or parts of matrix as well but
this example is about using file views. We take a shortcut in picking up matrix
from memory as a flat array based on knowing how C stores the matrix. */

CHECK(MPI_File_write_at_all(fh,0,matrix,TASK_X*TASK_Y*TASK_Z,
MPI_INT, &status))

CHECK(MPI_File_close(&fh))
/* We read back file with one task just to format and print the file content */
if (me==0) {
int file_matrix[FILE_Z][FILE_Y][FILE_X];
int temp, t, x, y, z;
CHECK(MPI_File_open(MPI_COMM_SELF, "./iotest",MPI_MODE_RDONLY,

MPI_INFO_NULL, &fh))
CHECK(MPI_File_read_at(fh, 0, file_matrix, FILE_X*FILE_Y*FILE_Z,

MPI_INT, &status))
CHECK(MPI_File_close(&fh))
printf("File matrix dims, in row major order (Z Y X) are: [%d][%d][%d]\n",

FILE_Z, FILE_Y, FILE_X);
printf("Each slice is one XY plane so there are Z slices\n");
printf("Each cell shows task# and matrix position within that task\n");
for (i=0; i<FILE_Z; i++) {
printf("========= File Slice %d ============\n", i);
for (j=0; j<FILE_Y; j++) {
for (k=0; k<FILE_X; k++) {
t = file_matrix[i][j][k] / 1000000;
temp = file_matrix[i][j][k] % 1000000;
z = temp / 10000;
temp %= 10000;
y = temp /100;
x = temp % 100;
printf("%d[%d][%d][%d] ", t, z, y, x);

}
printf("\n");

}
}
}

MPI_Finalize();
exit(0);

}

There are a few points about the sample program that are worth discussing.

First, we will briefly discuss the simplifications used in the program. An
MPI_FILE_WRITE_AT_ALL() or other MPI-IO write can be visualized as an
MPI_SEND() to the file with the appropriate MPI_RECV() already waiting.
The etype and filetype used in the MPI_FILE_SET_VIEW() call provide the
information MPI uses to create this implicit MPI_RECV().

The sample program’s FILE_WRITE treated the three dimensional matrix in
task memory as a contiguous array of MPI_INT because the way C stores a
matrix in memory allows such a shortcut, and all of the data was to go to the
222 Scientific Applications in RS/6000 SP Environments

file in its natural order. Other sections of this book deal with user-defined
datatypes for describing fragmented data in memory.

Any user-defined datatype may be used in an MPI-IO read or write as long as
its type signature matches the type signature of the filetype. The default view
in which both etype and filetype are MPI_BYTE is the only exception to the
type signature rule and allows the simple file read back; so, results can be
printed. No matter what datatype is used for the MPI-IO read or write, each
operation must represent on integral number of etypes.

A comment in the program mentions that it may be run as eight tasks on a
single workstation without GPFS. When MPI-IO is used from a single node or
workstation, the file systems available on the RS/6000 provide the level of file
consistency protection required by MPI-IO. This includes at least JFS, NFS,
AFS, and DFS. Only GPFS can provide this consistency across multiple
nodes. The option of running MPI-IO on a single node is not expected to be
useful in production but can be useful for learning or experimentation.

The sample program also illustrates some points about MPI-IO and errors. An
important difference between MPI-IO functions and all other MPI functions is
that, for all MPI-IO calls, the default error handler is
MPI_ERRORS_RETURN. Many of the errors that occur in doing IO are
predictable, and well-written programs will try to recover (for example, file not
found or permission denied). For all other MPI functions, the default is
MPI_ERRORS_ARE_FATAL because attempting recovery would usually not
be safe anyway. It has become common for MPI programmers to assume any
error will result in job termination and not bother to check return codes. With
MPI-IO, it is essential that the programmer take responsibility for detecting
errors and deciding what to do about them. One option is to use
MPI_FILE_SET_ERRHANDLER() to replace the default ERRORS_RETURN
with another errorhandler. In the sample, the IBM-defined errorhandler
MPE_ERRORS_WARN is attached to MPI_FILE_NULL, which has the effect
of making it the default error handler for any MPI_File (this errorhandler is an
IBM extension to standard MPI. It behaves like MPI_ERRORS_RETURN
except that it prints an error message before returning). The sample also puts
each MPI-IO call within a macro that provides a return code check and
terminates the job on error. Notice that the calls that are not part of MPI-IO do
not check return codes. Errors are fatal by default for these calls; so, checking
return codes is pointless unless their default errorhandler is replaced.

The sample program has some characteristics that make file views and
collective write especially appropriate. One is the complementary roles each
task plays in generating the full result; another is that the relatively fine
granularity of the fragments coming from each task MPI-IO is able to combine
Chapter 6. Input/output 223

the many small contributions into contiguous buffers that can be written
efficiently. When granularity is small but task contributions to a file do not
come along in a reasonably synchronized way, the use of MPI-IO with file
views may still make sense, but use of the collective calls probably does not.
A collective read or write that does not offer MPI any opportunity to coalesce
contributions from different tasks into larger contiguous fragments for read()
or write() is unlikely to perform as well as the non-collective operations. A
collective read or write is synchronizing (although this is not guaranteed by
the MPI standard). When tasks can make independent progress and would
otherwise suffer from non-essential synchronizations, the non-collective
versions are, again, likely to be better.

Files created by MPI-IO and files created by POSIX are fully-interchangeable.
MPI-IO provides powerful features for defining the layout of data in a file but
never adds any hidden data of its own. MPI does not create self-defining files.
MPI-IO will make use of much the same file metadata POSIX does (for
example, file size). Beyond this, all interpretation of the data in a file, whether
via POSIX or MPI-IO, depends on the program that reads the file and
understands the format in which it was written.
224 Scientific Applications in RS/6000 SP Environments

Appendix A. Special notices

This publication is intended for developers of numerically-intensive code,
parallel programmers for the RS/6000 SP, business partners and sales
specialists wanting supporting metrics for the POWER3 performance
potentials, and technical specialists who require detailed product information
to help demonstrate IBM industry-leading technology. See the
PUBLICATIONS sections of the IBM Programming Announcement for Parallel
System Support Programs for AIX and IBM Parallel Environment for AIX for
more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only the IBM product, program, or service may
be used. Any functionally-equivalent program that does not infringe any IBM
intellectual property rights may be used instead of the IBM product, program,
or service.

Information in this book was developed in conjunction with the use of the
equipment specified and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between
independently-created programs and other programs (including this one) and
(ii) the mutual use of the information that has been exchanged should contact
IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including, in some cases, the payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor, and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
© Copyright IBM Corp. 1999 225

responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

AIX® AIX/6000®
AS/400® DB2®
IBM ® LoadLeveler®
Power PC 603® Power PC 604®
PowerPC 601® PowerPC 603®
PowerPC 601e® POWER2 Architecture®
POWER3 Architecture® RISC System/6000®
RS/6000® SP®
System/390®
226 Scientific Applications in RS/6000 SP Environments

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries. (For a complete list
of Intel trademarks see www.intel.com/tradmarx.htm)

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix A. Special notices 227

228 Scientific Applications in RS/6000 SP Environments

Appendix B. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 IBM Redbooks publications

For information on ordering these publications, see “How to get IBM
Redbooks” on page 233.

• AIX Version 4.3 Differences Guide, SG24-2014

• AIX 64-Bit Performance in Focus, SG24-5103

• RS/6000 SP: Practical MPI Programming, SG24-5380

B.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates, and formats.

B.3 Other resources

These publications are also relevant as further information sources:

• AIX Commands References for AIX Version 4.3, SBOF-1877

• Communication Programming Concepts, SC23-4124

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbooks Collection SK2T-8038

Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849

RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040

RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037

IBM Enterprise Storage and Systems Management Solutions SK3T-3694

Netfinity Hardware and Software Redbooks Collection SK2T-8046
© Copyright IBM Corp. 1999 229

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

• Optimization and Tuning Guide for Fortran, C, and C++ for AIX Version 4,
SC09-1705

• Parallel Environment Operation and USE Vol. 2, Part 2 - Profiling,
SC28-1980

• AIX Version 3.2 and V4, Performance Monitoring and Tuning Guide,
SC23-2365

• XL Fortran for AIX User’s Guide, SC09-2719

• Computer Architecture: A Quantitative Approach, Second Edition, J. L.
Hennessy and D.A. Patterson, Morgan Kaufman, 1996

• The UNIX Programming Environment, B.W. Kernighan and R. Pike,
Prentice-Hall Inc., 1984

• Parallel Environment for AIX:Operation and Use, SC28-1979

• AIX V4 General Programming Concepts: Writing and Debugging
Programs, SC23-2533

• LoadLeveler User's Guide Release 2.1, SH26-7226

• XL Fortran for AIX Language Reference V6.1, SC09-2718

• AIX V3.4 General Programming Concepts; Writing and Debugging
Programs, SC23-4128

• Using MPI, ISBN 0-2625-7104-8

• Designing and Building Parallel Programs, ISBN 0-2015-7594-9

• MPI: The Complete Reference - 2nd Edition: Volume 2 - The MPI-2
extensions, MIT Press

• Parallel Programming With MPI, Morgan Kaufmann publishers

• CAE Specification, System Interfaces and Headers, Issue 5: Volume 1, the
Open Group 1997, ISBN 1-8591-2181-0

• Programming With Posix Threads, Addison Wesley publishers

• Thread Time: The Multithreaded Programming Guide, Prentice Hall

• Pthreads Programming, O’Reilly & Associates

B.4 Referenced Web sites

The following Web sites are also relevant as further information sources:

• http://www.mpi-forum.org/docs/docs.html

• ftp://ftp.mcs.anl.gov/pub/mpi/using
230 Scientific Applications in RS/6000 SP Environments

• http://www.openmp.org

• www.opengroup.org

• http://www.openmp.org

• http://www.research.ibm.com/actc/Tools/MPI_Threads.htm
Appendix B. Related publications 231

232 Scientific Applications in RS/6000 SP Environments

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROM Redbooks from the Redbooks web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information for customer may be found at http://www.redbooks.ibm.com/ and for IBM employees at
http://w3.itso.ibm.com/.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 233

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
234 Scientific Applications in RS/6000 SP Environments

Glossary

API Application Program
Interface

ASCI Accelerated Strategic
Computing Initiative

BCT Branch on Count

BHT Branch History Table

BLAS Basic Linear Algebra
Subroutines

BLACS Basic Linear Algebra
Communications
Subroutines

BT Block Tridiagonal

BTAC Branch Target Address
Cache

CCR Condition-Code Register

CFD Computational Fluid
Dynamics

CPU Central Processing Unit

DASD Direct Access Storage
Device

DFL Divide Float

DIMM Dual Inline Memory
Modules

DOE Department of Energy

ESSL Engineering and Scientific
Subroutine Library

FMA Floating-point Multiply-Add

FPR Floating-Point Register

FPU Floating Point Unit
© Copyright IBM Corp. 1999
GAMESS General Atomic and
Molecular Electronic
Structure System

GPR General-Purpose Register

IBM International Business
Machines

ITSO International Technical
Support Organization

LFD Load Float Double

LLNL Lawrence Livermore
National Laboratory

LRU Least Recently Used

MASS Mathematical Acceleration
Subsystem

MFLOPS Millions of Floating-Point
Operations per Second

MPI Message Passing
Interface

MTU Maximum Transmission
Unit

NUS Numerical Aerodynamic
Simulation

NWP Numerical Weather
Prediction

P2SC POWER2 Single/Super
Chip

PBLAS Parallel Basic Linear
Algebra Subroutines

PPM Piecewise Parabolic
Method

PSSP Parallel System Support
Programs
235

RISC Reduced Instruction-Set
Computer

RSC RISC Single Chip

SPEC System Performance
Evaluation Cooperative

SOI Silicon-on-Insulator

SMP Symmetric Multiprocessing
236 Scientific Applications in RS/6000 SP Environments

Index

Symbols
_LARGE_FILES 176

Numerics
6225 172

A
Accumulate operation 97
ACTC 159
Active message 84
ADT 79
AIO_ALLDONE 209
AIO_CANCELED 209
AIO_NOTCANCELED 209
AIXTHREAD_SCOPE 135
Alltoall 163
all-to-all communication 55
Array transpose 19
Arrow 5
ASX 5

B
Barrier 160
barrier synchronization 137
BLAS 39

C
cache misses 18
call-graph 80
cc_r 131
CFD 12
CFP95 15
CG 12
chdev 203
chess tournament problem 54
chfs 189
CINT95 15
Collective communication 158
collective communication 39
COMMON block 117
contention scope 134
Copy 23
COPYIN 118
CPU time 105
© Copyright IBM Corp. 1999
CRITICAL 111
Crossbow 5
CSMP 20

D
D40 172
DASD 7
defragfs 188
detached threads 134
direct-mapped 3
Distant disk I/O operation 101
DO loop parallelism 105
Domain splitting 70

E
EP 12, 127
errno 213
ERRORS_RETURN 223
ESSL 10, 19, 150
EUILIB 74

F
f_pthread_create 133
FFT 63
FIFO 135
First Private 109
FLOP 10
Fortran 77 122
Fortran 90 122
FT 12

G
Gather operation 99
Getcntr 89
GLOBAL 112
global fence 85
gmon.out 80
gprof 193
gprof profiling 79

H
HAL 86
high-bandwidth 85
HPF 2
237

I
I/O subsystem 6
iostat 177

J
jfslog 188

L
L1 cache 18
L2 cache 3
LAPI 83
LAPI counters 89
LAPI dispatcher 87, 94
LAPI environment variables 96
LAPI functions 91
LAPI_Address_init 96
LAPI_Amsend 93
LAPI_Fence 90
LAPI_Get 91
LAPI_Put 91
LAPI_Qenv 94, 96
LAPI_Setenv 88
Last Private 109
LASTPRIVATE 116
LIBPATH 75
LINPACK 9

DP 10
HPC 10
results 10
TPP 10

LoadLeveler 149
LOCAL 112
low-latency 85
lseek 202
lslv 189
LU 12

M
MAP_PRIVATE 202
MASS 150
max_coalesce 189
MAX_UHDR_SZ 94
maxfree 187
maxpageahead 187
mcpgath 185
Memory cards 5
Message ordering 90

MG 12
minpageahead 187
mklv 188
MM5 151
MP_BUFFER_MEM 29
MP_CLOCK_SOURCE 76
MP_EAGER_LIMIT 29
MP_EUILIB 14
MP_HOSTFILE 83
MP_INTERRUPT 88
MP_INTRDELAY 12
MP_NODES 148
MP_PROCS 148
MP_SHARED_MEMORY 11, 14, 156
MP_TASKS_PER_NODE 148
MP_TRACELEVEL 81
MP_WAIT_MODE 14, 156
MPE_ERRORS_WARN 223
MPI 25
MPI 1.2 Data types 59
MPI data types 58
MPI derived datatypes 61
MPI intrinsic routines 77
MPI Performance 72
MPI profiling 77
MPI_ADD 153
MPI_Address 65
MPI_ALLGATHER 46
MPI_ALLGATHERV 47
MPI_ALLREDUCE 50
MPI_ALLTOALL 48
MPI_ALLTOALLV 49
MPI_ANY_SOURCE 28
MPI_ANY_TAG 28
MPI_BARRIER 42
MPI_BCAST 42
MPI_Bsend 69
MPI_BUFFER_ATTACH 65
MPI_BUFFER_DETACH 65
MPI_BUFFER_OVERHEAD 65
MPI_BYTE 220
MPI_COMM_WORLD 28, 71, 218
MPI_COMPLEX 65
MPI_Create_type_resized 68
MPI_Datatype 220
MPI_ERRORS_ARE_FATAL 223
MPI_ERRORS_RETURN 223
MPI_FILE_NULL 223
MPI_FILE_OPEN 218
238 Scientific Applications in RS/6000 SP Environments

MPI_FILE_SET_ERRHANDLER 223
MPI_FILE_SET_VIEW 220
MPI_FILE_SYNC 220
MPI_FILE_WRITE_AT 218
MPI_FILE_WRITE_AT_ALL 216
MPI_Files 220
MPI_GATHER 43
MPI_GATHERV 43
MPI_Graph_create 72
MPI_INT 61
MPI_ISEND 33
MPI_LB 61
MPI_Offset 220
MPI_Pack 69
MPI_PCONTROL 78
MPI_RECV 28
MPI_REDUCE 50
MPI_REDUCE_SCATTER 52
MPI_SCAN 50
MPI_SCATTER 45
MPI_SCATTERV 46
MPI_SEND 27
MPI_SENDRECV 157
MPI_Sendrecv 71
MPI_SUCCESS 219
MPI_TYPE_CONTIGUOUS 221
MPI_Type_hvector 62
MPI_Type_index 62
MPI_Type_vector 62
MPI_UB 61
MPI_Unpack 69
MPI_WAIT 33
MPI_Waitany 36
MPI_WTICK 76
MPI_WTIME 75
MPI_WTIME_IS_GLOBAL 77
MPI-2 Data types 59
MPICH 217
MPI-IO 216
mpxlf_r 122
mpxlf90_r 149

N
NAS 2 9

Run times 13
Using shared memory MPI 14

NASA Ames 12
NCA 5

NCD 5
non-blocking 84
Nonblocking get 93
Nonblocking put 93
numpbuf 187
NUMTHREADS 137

O
odmdelete 190
odmget 190
OMP DO 109
OMP PARALLEL 108
OMP PARALLEL DO 109
OMP_GET_THREAD_NUM 127
OpenMP 105
OpenMP Feature 129
ORDERED 113

P
PCI 7
PdAt 189
PESSL 10
PMPI_ prefix 77
poe 73
point-to-point 27
point-to-point communication 84
POSIX 1003.1-1988 75
POSIX 1003.4D 14.1 75
POSIX threads 130
POWER3

architecture 4
I/O Subsystem 6
I/O topology 7
Memory physical hierarchy 6
memory subsystem 4
performance 9
SMP High node 3
SMP Thin/Wide 9

prefetch 19
pre-GA 9
PROT_READ 202
PROT_WRITE 202
pthread_attr_setdetachstate 134
pthread_attr_setscope 135
pthread_cancel 134
pthread_cond_broadcast 138
pthread_cond_wait 138
pthread_exit 134
Index 239

pthread_join 134, 136
pthread_mutex 138
pthread_mutex_lock 138
Pthreads 130
PVM 3.x 58
PVM send 29

Q
qalign 183
qarch=pwr3 155
qfullpath 79
qma 142
qnosave 140
qsmp=noauto 149
qthreaded 133
qtune=pwr3 155

R
Ray-Tracing example 141
rc.boot 189
REDUCTION 111, 113
Remote I/O 4
reorgvg 189
responder 219
RIO 7
RLIM_INFINITY 177
ROMIO 217

S
Saber 5
Sabers 6
SAVE statement 112
SCHED_FIFO 135
SCHED_OTHER 135
SCHED_RR 135
SCHEDULE 109
scope 134
scoping 110
SCSI 7
SDRAM 5
Serial batch 12
shared memory 105
Shared memory MPI 11
SIGBUS 202
SMP

High node 3
Thin/Wide 9

Spec95 15
Performance 17
Summary 16

SPSMX 172
Store 22
Stream benchmark 106
stride 18
SWIM 126
sync 189
sync_cond 141
sync_lock 141
sysconf 137

T
T40 172
TB3MX2 14
Thread scheduling 95
THREAD_SAFE 131
THREADPRIVATE 117
threads 130
TLB 20
trace interface 81
Triad 107

U
Ultra SCSI 7

V
Variable scoping 110
vmtune 185
VT 82

W
Waitcntr 89
wallclock time 105
Weather Prediction 147

X
XDR 197
xlf 11
XLF 7.1 129
xlf_r 122, 133
xlf90 112
xlf90_r 122
xlf95 112
XLSMPOPTS 20, 123, 150
Xprofiler 81
240 Scientific Applications in RS/6000 SP Environments

xprofiler 72, 193
Index 241

242 Scientific Applications in RS/6000 SP Environments

© Copyright IBM Corp. 1999 243

IBM Redbooks evaluation

Scientific Applications in RS/6000 SP Environments
SG24-5611-00

Your feedback is very important to help us maintain the quality of IBM Redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other Redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Printed in the U.S.A.

SG24-5611-00

Scientific
A

pplications
in

R
S/6000

S
P

E
nvironm

en
ts

S
G

24-5611-00

®

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction
	1.1 POWER3-based nodes
	1.1.1 Hardware architecture

	Chapter 2. Performance
	2.1 LINPACK and NAS 2 benchmarks
	2.1.1 LINPACK
	2.1.2 Discussion of LINPACK results
	2.1.3 Serial batch runs
	2.1.4 Discussion of serial batch results
	2.1.5 NAS 2 runs using shared memory MPI

	2.2 Spec95 benchmark
	2.3 Accessing memory effectively
	2.3.1 Avoiding cache misses
	2.3.2 Multiprocessor throughput

	Chapter 3. Distributed memory
	3.1 Introduction to MPI
	3.1.1 Basic concepts
	3.1.2 Pitfalls in point-to-point communication
	3.1.3 Suggestions for further reading

	3.2 MPI collective communication
	3.2.1 Design concepts
	3.2.2 Performance considerations

	3.3 MPI data types
	3.3.1 Basic concepts
	3.3.2 Use of derived data types in collective communications
	3.3.3 Two dimensional parallel FFT
	3.3.4 Domain splitting

	3.4 MPI Performance assessment
	3.4.1 Timing considerations
	3.4.2 MPI intrinsic routines
	3.4.3 gprof profiling
	3.4.4 IBM trace interface

	3.5 Low-level Application Programming Interface (LAPI)
	3.5.1 Concepts
	3.5.2 Using LAPI
	3.5.3 Programming examples

	Chapter 4. Shared memory
	4.1 Shared memory parallelization with OpenMP
	4.1.1 Introduction to shared memory parallelization
	4.1.2 OpenMP - Portable shared memory parallelization
	4.1.3 Rationale for using OpenMP directives
	4.1.4 Variable scoping
	4.1.5 Work sharing concepts
	4.1.6 Other directives
	4.1.7 Function calls
	4.1.8 Compiler options
	4.1.9 Automatic parallelization
	4.1.10 Granularity and parallelization overhead
	4.1.11 Parallelization examples
	4.1.12 Debugging an OpenMP program
	4.1.13 Compiler switches and environment variables

	4.2 Programming with threads
	4.2.1 Thread creation and termination
	4.2.2 Thread attributes
	4.2.3 Programming models
	4.2.4 Synchronization
	4.2.5 Local vs. shared variables
	4.2.6 Ray-tracing example
	4.2.7 Overlapping communication or I/O with computation
	4.2.8 Concluding remarks
	4.2.9 References

	Chapter 5. Hybrid programming model
	5.1 OpenMP+MPI
	5.1.1 Motivation
	5.1.2 Logistical considerations - Using POE
	5.1.3 Logistical considerations - OpenMP
	5.1.4 Special hardware considerations
	5.1.5 Some MPI considerations
	5.1.6 Performance example
	5.1.7 Summary

	5.2 An example of the hybrid programming model
	5.3 Mixed-mode MPI
	5.3.1 Point-to-point operations
	5.3.2 Collective communication

	Chapter 6. Input/output
	6.1 I/O hardware
	6.1.1 POWER3 SMP High Node I/O subsystem
	6.1.2 Disk subsystems
	6.1.3 Communication subsystems

	6.2 File systems
	6.2.1 AIX file systems
	6.2.2 Large file support

	6.3 I/O optimization
	6.3.1 Characterizing I/O for non-intrusive optimization
	6.3.2 Non-intrusive optimizations exploiting high-performance FS
	6.3.3 Non-intrusive optimizations: Obviating contention
	6.3.4 Non-intrusive optimizations: The vmtune utility
	6.3.5 Non-intrusive optimizations: Reorganizing a file system
	6.3.6 Non-intrusive optimizations: Reorganizing an LV or an LVG
	6.3.7 Non-intrusive optimizations: The sync daemon interval
	6.3.8 Non-intrusive optimizations: Tuning the SCSI device driver
	6.3.9 Characterizing I/O for intrusive optimization
	6.3.10 Intrusive optimizations: Exploiting high-performance FS
	6.3.11 Intrusive optimizations: Obviating I/O
	6.3.12 Formatted and unformatted I/O
	6.3.13 I/O Blocksize
	6.3.14 Intrusive optimizations: Memory-mapped I/O
	6.3.15 Intrusive optimizations: Asynchronous I/O
	6.3.16 Intrusive optimizations: Raw disk I/O

	6.4 GPFS
	6.5 MPI-IO
	6.5.1 IBM implementation
	6.5.2 Using MPI-IO effectively

	Appendix A. Special notices
	Appendix B. Related publications
	B.1 IBM Redbooks publications
	B.2 IBM Redbooks collections
	B.3 Other resources
	B.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Index
	IBM Redbooks evaluation

