‘lllil

Implementing SAS on the RS/6000 Family

Ole Conradsen, Colin Cunningham, Jim West

International Technical Support Organization

www.redbooks.ibm.com

SG24-5513-00

http://www.redbooks.ibm.com/

SG24-5513-00

International Technical Support Organization

Implementing SAS on the RS/6000 Family

February 2000

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix H, “Special notices” on page 181.

First Edition (February 2000)
This edition applies to base SAS software Version 6.12, for use with the AIX 4.3.2 Operating System.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834

11400 Burnet Road

Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures. vii
Tables. e ix
Preface. Xi
The team that wrote thisredbook. Xi
Comments welcome. Xii
Chapter 1. RS/6000 hardware overview 1
1.1 RS/6000 history 1
1.2 RS/6000 design OVErVIEW ittt e e 1
1.2.1 RS/6000 system blocks 2
1.2.2 Processortechnologies 2
1.3 RS/6000 new technologies and directions 3
1.3.1 64-bittechnology 3
1.3.2 Storage technologies 3
1.4 RS/6000 facts and features summary. 4
1.5 Workstations and workgroup serversc. ... 12
1.6 Midrange enterprise servers. 12
1.7 High-end enterprise servers. 12
1.8 RS/6000 SP systems 13
1.9 PClstorage adapters 14
1.9.1 SCSI-2 fast/wide RAID adapter 14
1.9.2 PCI single-ended Ultra SCSl adapter 14
1.9.3 PCI differential Ultra SCSl adapter. 14
1.9.4 SCSI-2 fast/wide adapter4-A 14
1.9.5 SCSI-2 differential fast/wide adapter4-B 14
1.9.6 PCI 3-Channel Ultra SCSI RAID adapter 15
1.9.7 SSA RAID 5 adapter, SSA fast-write. 15
1.9.8 Advanced serialRAID, SSA fast-write 15
Chapter 2. SAS installation 17
2.1 SAS preinstallation file system planning. 19
2.2 Installing the base SAS software on AIX. 19
Chapter 3. Application test environment 23
3.1 AIX system configuration 23
3.2 SAS applications 26
3.2.1 Thetestenvironment 27
3.3 Applicationdataandtests, 27
3.3.1 US.Censusdata........ ... 27

© Copyright IBM Corp. 2000 iii

3.3.2 Computationaltestsanddata........................... 28

3.3.3 Testdiagnostics 29
Chapter 4. SAS tuning parameters 31
4.1 Base SAS softwareoptions 32

4.1.1 Inclusion of systemoptions., 32
4.2 Otherconsiderations i 34

4.2.1 WOrk Spacettt 34

4.2.2 Use SAS compressionwisely 35

4.2.3 INdexXing oo 36

4.2.4 Enabling very large file (>2 GB)access. 36
4.3 Data processing performance testresults. 37

4.3.1 Reading and writing, CPU-bound 37

4.3.2 SOorting ProCeSSES. . . o o ittt e 40

4.3.3 Sortsize andmemory usage 45

4.3.4 Lastthoughtsonsorting........... 46
4.4 Computationaltestresults 47

441 PROCREG i 47

442 PROCLOGISTIC e 48

443 Taming PHREG 49
Chapter 5. AlX performancetools.......... 51
5.1 Performance tools description 51

5.1.1 vmstatcommand 51

5.1.2 jostatcommand 53

5.1.3 svmoncommand 54

5.1.4 Ispscommand 56

5.1.5 vmtunecommand. 57

5.1.6 rmsscommand. 58
Chapter 6. Optimizing AlX parameters 59
6.1 CPUboundload. 60
6.2 Tuningmemory bound load 61
6.3 Tuning disk /O boundload. 64
Chapter 7. AIX file system, SAS system, and performance......... 67
7.1 Testing performance of SAS workspace. 68
7.2 Testing disk striping 70
Chapter 8. The user community and performance considerations . . . 77
8.1 Community assessment. 77

8.1.1 Generalusage 77

8.1.2 Userprofiles. 77

8.1.3 Expected SAS application L. 78

iv Implementing SAS on the RS/6000 Family

8.1.4 Access and interface of choice. 79

8.1.5 DIiSKaACCeSSo 79
8.1.6 Datasources 80
8.1.7 SASfilesondisk 81
8.1.8 Jobscheduling.......... 82
8.1.9 Othersoftware 83
8.1.10 System objectives. 83
8.2 Remote access setup. 83
Appendix A. The SAS System on an IBM RS/6000SP 85
A.1 SP configuration for clusteroperation. 85
A2 Loadbalancing e 86
A3 Datasharing e 87
Appendix B. Disk space and RAM requirements 89
Appendix C. Optimizing systems performance. 93
C.1 Techniques foroptimizing I/O. 93
C.2 Techniques for optimizing memory usage 94
C.3 Techniques for optimizing CPU performance. 94
C.4 SAS systemoptions 95
C.5 SAS procedures that use extraresources 100
C.6 Performance considerations of DATA stepviews. 104
Appendix D. Disk controller cache testresults. 107
D.1 EXECUTION time with write cacheisdisabled 108
D.2 EXECUTION time when disk adapter write cache is enabled 114
Appendix E. The SAS System and DB2 partitioned databases 121
E.1 SASonaclusterof SPnodes. 122
E.1.1 SP configuration for cluster operation. 122
E.1.2 Loadbalancing 123
E.1.3 Datasharing 123
E.1.4 Practical flexibility 127
E.1.5 SAS and DB2 partitioned databases on the RS/6000SP 128
E.1.6 SAS cleansing/transformingofdata........................ 128
E.2 Extracting large amounts of data from DB2 partitioned databases. 130
E.3 SAS to DB2 partitioned database parallel extract. 131
E.3.1 CAE for AIX configuration. 132
E.3.2 SQL modifications and table view definitions 133
E.3.3 Queryrestrictions 134
E.3.4 Parallel extract processingflow 134
E.3.5 Parallel extract SAS node alternatives 135
E.3.6 Single node parallel extract processing 136

E.3.7 Multiple node parallel extract processing 137

E.3.8 Multiple SAS nodes parallel extract implementation. 138
E.4 Hybrid parallel extract. 139
E.5 Multiple DB2 logical nodes implementation 140

E.5.1 Hybrid parallel extract. 141

E.5.2 Trueparallelextract i 142

E.5.3 Summary 143
Appendix F. The SAS systemand GPFS 145
F.1 GPFES overview e 145

F.1.1 Hardware configuration. 146

F.1.2 Software configuration 147

F.1.3 Physical disk configuration 147

F.1.4 System configuration i 147

F.1.5 Local disk configuration 148

F.1.6 NFS disk configuration 148

F.1.7 GPFS disk configuration., 148
F o2 Tests . . 149

F.2.1 Testresults 150

F.2.2 Notesontesting i 153
F.3 ConClUuSIONS. . ..o 155
Appendix G. Scalable performance. 157
Appendix H. Specialnotices 181
Appendix I. Related publications 185
[.1 IBM Redbooks publications 185
[.2 IBM Redbooks collectionst 185
[.3 Otherresources e 185
.4 Referenced Web sites 186
How to get IBM Redbooks 187
IBM Redbooks fax orderform 188
GloSSarY 189
Index 191
IBM Redbooks evaluation. 197

vi Implementing SAS on the RS/6000 Family

Figures

1. RS/6000 systems handbook productsinfocus 5
2. Diskadapters. e 23
3. Diskdrivesinthetestsystem 23
4. Paging space. e 24
5. Volume group rootVgo o e 24
6. Volume group mfs01 holding SAS Input dataset. 25
7. Volume group mfs02 holding SAS outputdataset. 25
8. Volume group dbvg holding SAS workspace. 26
9. VOIUME Group SASVQ . . o ot vt ettt e e e e e 26
10. SAS system diagnostics with FULLSTIMER 30
11. Typical output from the vmstatcommand 52
12. Typical output from the iostatcommand 53
13. Typical output from the symoncommand 54
14. svmon -Pa 56
15. Typical output from anlsps-acommand.......................... 57
16. Optimizing procedure. e 59
17. CPU usage for SAS ProCesS oottt e 60
18. Memory usage for SAS Processt 61
19. SAS job with finite memoryusage oL 62
20. SAS job using more memory than physical available 62
21. Time to run a SAS program as function of memory. 63
22. Free pages during program execution., 64
23. Memory usage during program funottt e e e 65
24. Execution times for various SAS workspace configurations 69
25. Non striped disk configuration 70
26. Striped disk configuration. 71
27. Average execution time withoutwritecache 73
28. Average execution time with write cacheenabled. 74
29. Non-striped test runs with relative performance change 75
30. Striped test runs with relative performance change. 75
31. SAS cluster configuration on SP, LoadLeveler ISS Pool -spsas 125
32. Data cleansing/transforming with SASon SP 129
33. SAS to DB2 partitioned database - Defaultaccess 131
34. SAS to DB2 partitioned database parallel extractaccess 132
35. SAS to DB2 partitioned database access 135
36. Single SAS node parallel extract implementation 137
37. Multiple SAS node parallel extract implementation 138
38. SAS to DB2 partitioned database hybrid parallel extract. 140
39. Multiple logical DB2 nodes perSMP node. 141
40. Hybrid parallel extract 142

© Copyright IBM Corp. 2000 vii

viii

41

42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

. True parallel extract. 143
Node configuration. 147
Local and NFS configurations 148
Single node GPFS configuration 149
GPFS configuration 149
Test1resulls e 150
Test2resulls e 151
Test3resulls e 152
Testdresulls e 153
Parallel extraction from DB2UDB. 158
Database extraction into sequential SASdata. 165
Parallel extractionusingOFS 166

Parallel extraction from DB2 creating a sequential dataset on a thinnode168
Scalability of parallel extraction from DB2 to equential SAS dataset. ... 168

Parallel SAS application. 171
SAS application run time versus number of processors 173
Superlinear speedup of SAS forecastingmodel 174

Implementing SAS on the RS/6000 Family

Tables

ONoOA~LD =

Facts and features for Models 140, 150,and 260 6
Facts and features for Models F40and F50 7
Facts and features for Models H50 and H70 8
Facts and features for Models S70 and S70 Advanced. 9

Facts and features for SP 332 MHz SMP Thin and SMP Wide Nodes . .. 10
SP 160 MHz and POWER3 SMP Thin and POWER3 SMP Wide Nodes . 11

Performance benchmark using default settings. 38

Test1 SAS datafilesizes i 38

Buffer versus performancein Test1 39
.BestcasesortforTest2 i 41
. Test2underreduced memory. 42
. Sorting data file larger than physicalmemory 43
. Unleashing SAS’s accesstomemory 43
. Overcommitting memory to SASinTest2. 44
. Four simultaneous executions of Test 2 runs with varying SORTSIZE . . . 45
. PROC REG decliningmemoryinTest3 48
. Logistic regressionand Test4. 48
. Staggered gains with memory with PHREG 49
. CPU time as function of MEMSIZE parameter 65
. .Table 20File systemusage. i 67
. Node name and rtemotehost, 133
. Catalogued databases. 133
.VSD parameters 154
Censusdata. ... 167
. Results of parallel SAS applicationtest. 172

© Copyright IBM Corp. 2000 ix

X Implementing SAS on the RS/6000 Family

Preface

We wrote this redbook to provide information for business partners and IBM
employees installing SAS on IBM RS/6000 systems. This redbook will help
you install, tailor, and configure the base SAS software on the IBM RISC
System 6000 platform. Throughout the book, we will describe the software
installation and how various configuration parameters influence function and
performance. We will also examine RS/6000 system configurations to help
you determine the best configuration.

It is our goal to describe the installation procedure, SAS configuration
parameters, and RS/6000 and AIX parameters. This information is the basis
for preinstallation planning and sizing as well as a guide during system setup.
After reading this redbook, you should be able to:

* Interview users/customers about their requirements and transform the
information into performance requirements

e Compare RS/6000 HW models and components (DASD, Memory, and so
on) with the type of load and requirements for the specific installation

* Install SAS on the IBM RS/6000 (AIX)
* Monitor performance and pinpoint bottlenecks

* Optimize SAS and AIX based on the information gathered from monitoring
the system

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Ole Conradsen is a Project Leader at the International Technical Support
Organization, Austin Center. Before joining the ITSO, he worked with AIX
projects in IBM Denmark for 11 years. Ole holds a master of science degree
in Electrical Engineering from the Technical University of Denmark.

Colin Cunningham joined the IBM Worldwide Database Marketing
department in 1998 after four years of statistical consulting roles for industry.
His statistical consulting has focused on predictive and segmentation
modeling applications to database marketing. Colin holds a degree in
Actuarial Mathematics from the University of Michigan and a master's degree
in Statistics from Pennsylvania State University. Colin lives in Seattle,
Washington.

© Copyright IBM Corp. 2000 xi

Jim West joined the IBM Federal Systems Division to work with the
Superconducting Super Collider Laboratory and continued with IBM Federal
Systems performing scientific technical benchmarking on the SP. In 1995, he
joined the RS/6000 Division to work with large commercial software vendors
in software enablement and benchmarking. Mr. West has a bachelor of arts
degree in Physics from Emory University and a master of science degree in
Nuclear Engineering from the Georgia Institute of Technology.

Thanks to the following people for their invaluable contributions to this
project:

Margaret Crevar, Leigh lhnen
SAS Institute Inc.Cary, North Carolina

Jack Rivers
IBM Raleigh, North Carolina

Harry T. Seifert
IBM Louisville, Kentucky

P.W. Leathem, Keith F. Olsen
IBM Corporation

Scott Vetter
IBM ITSO, Austin Center

Milos Radosavljevic
IBM ITSO, Austin Center

Comments welcome

Xii

Your comments are important to us!
We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

* Fax the evaluation form found in “IBM Redbooks evaluation” on page 197
to the fax number shown on the form.

¢ Use the online evaluation form found at http://www.redbooks . ibm.com/

e Send your comments in an Internet note to redbookeus. ibm.com

Implementing SAS on the RS/6000 Family

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Chapter 1.

RS/6000 hardware overview

The RS/6000 family combines the benefits of UNIX computing with
leading-edge IBM RISC technology in a broad product line that includes
powerful desktop workstations ideal for mechanical design, workgroup
servers for departments small businesses, enterprise servers for medium to
large companies, and massively-parallel RS/6000 SP systems that can
handle demanding technical computing, business intelligence, and
Web-serving tasks. Along with AlX, the award-winning IBM UNIX operating
system, and HACMP (the leading high-availability clustering solution), the
RS/6000 platform provides the power to create change and the flexibility to
manage it with a wide variety of applications that provide real value.

1.1 RS/6000 history

The first RS/6000 was announced February 1990 and shipped June 1990.
Since then, over 800,000 systems have shipped to over 125,000 customers.

* RS/6000 systems use POWER2, POWER3, and POWERPC CPU chips.
All CPUs are compatible and run the same AIX versions. However,
different CPUs have different performance characteristics.

* In the past, RS/6000 I/O buses were based on the Micro Channel
Architecture (MCA). Today, RS/6000 I/O buses are based on the
industry-standard Peripheral Component Interface (PCI) architecture.

* Processor speed, a key element of RS/6000 system performance, has
increased dramatically over time.

* There have been many machine types over the entire RS/6000 history.
However, in recent years, there has been considerable effort to reduce the
complexity of the model offerings without creating gaps in market
coverage.

1.2 RS/6000 design overview

© Copyright IBM Corp. 2000

This section provides information on the following elements, which are
important in the design of RS/6000 machines:

* An explanation of general system blocks

* RS/6000 processor architectures

1.2.1 RS/6000 system blocks

All platforms (from workstations to high-end servers) consist of one or more
processors, a volatile system memory separate from other subsystems, and a
number of I/O devices that may initiate transactions to system memory.

In general, 1/0 devices do not connect to the primary processor bus/switch.
The host bridges connect to secondary buses that have I/O devices
connected to them. Most commonly, the adapters use the PCI architecture.

1.2.1.1 PCl slots

The PCI architecture provides an industry-standard specification and protocol
that allows multiple adapters access to system resources through a set of
adapter slots. Each PCI bus has a limit on the number of slots (adapters) it
can support. Typically, this can range from two to six. To overcome this limit,
the system design can implement multiple PCI buses.

1.2.1.2 Integrated adapters

A number of devices are now integrated onto the main processor board, but
they physically connect to one of the PCI buses. For this reason, some of the
buses may only have two or three slots available to install adapters.
Examples of integrated PCI adapters are SCSI| adapters and Ethernet
adapters.

1.2.2 Processor technologies

2

IBM has developed industry-leading processor fabrication technologies.
These technologies are copper circuitry and silicon-on-insulator (SOI) on
complimentary metal oxide semiconductor (CMOS) chips.

These technologies, which contribute to higher performance and reduced
power requirements, are the basis for enhancements to the current IBM
POWERS3 processors and for the upcoming IBM POWER4 Gigahertz
processor. It is likely that these technologies will benefit many areas of
system development.

1.2.2.1 POWERS3 processor

The POWERS processor introduces a new generation of 64-bit processors
especially designed for high-performance and visual computing applications.
POWERS3 processors replaces the POWER2 and the POWER2 Super Chips
(P2SC) in high-end RS/6000 workstations and SP nodes. The RS/6000 43P
7043 Model 260 workstation features the POWERS processor as well as the
POWERS wide and thin nodes.

Implementing SAS on the RS/6000 Family

1.2.2.2 RS64 and RS64-Il processors

The RS64 processor, based on the PowerPC Architecture, was designed for
leading-edge performance in OLTP, e-business, BI, server consolidation,
SAS, SAP, Notesbench, and Web serving for the commercial and server
markets.

The RS64 processor focuses on commercial performance. It has 64 KB of L1
instruction and data caches, one cycle load support, four superscalar fixed
point pipelines, and one floating point pipeline.

1.3 RS/6000 new technologies and directions

This section gives a brief overview of the RS/6000 leading-edge technology
and directions.

1.3.1 64-bit technology

64-bit computing is the direction for all RS/6000 products. The essence of the
RS/6000 64-bit computing strategy can be summed up in three themes:

* Complementing the established scalability of the existing 32-bit product
set, 64-bit technology is the enabler for scaling enterprise SMP servers to
higher capacity, making high-end system performance one of the primary
customer benefits of 64-bit computing.

* 64-bit computing is complementary to 32-bit computing. Customers want
the benefits of 64-bit technology available to them, but know their 32-bit
systems and 32-bit applications will be important investments for a long
time.

* The transition from 32-bit computing to a future in which 64-bit and 32-bit
computing coexist will be, for RS/6000 customers, a very smooth
evolution.

These themes were also the design principles behind the product
implementation of AIX Version 4.3 as a 64-bit operating environment. AIX
Version 4.3 introduces significant functional and scalability enhancements
that benefit all RS/6000 customers. A single AIX product supporting both
64-bit computing as well as broad general improvements is a prime example
of the RS/6000 evolutionary vision at work.

1.3.2 Storage technologies

Although Serial Storage Architecture (SSA) has been IBMs major focus for
the disk storage technology for the past three years, other technologies,
namely Ultra SCSI and Fibre Channel, have been advancing throughout the

Chapter 1. RS/6000 hardware overview 3

industry. IBM has been deploying all these technologies across its product
sets.Ultra SCSI, Fibre Channel, and Serial Storage Architecture (SSA) are all
variations of SCSI-3 standard. These variations of SCSI-3 all support the
same command set, while differing in the physical cabling and low-level
protocols that are transparent to software. Both SSA and Fibre Channel
(including Fibre Channel Arbitrated Loop, FC-AL) offer a number of benefits
beyond Ultra SCSI, such as increased speed and distance. In terms of
bandwidth, Fibre Channel’s 1 GBps will outperform Ultra SCSI's 80 MBps.

1.4 RS/6000 facts and features summary

4

The following section, taken from the RS/6000 Facts and Features Brochure,
G320-9878, outlines the important characteristics of the featured RS/6000
models. Figure 1 on page 5 shows the RS/6000 Model family. Tables 1
through 6 gives a detailed description of the features and options for each
model.

Implementing SAS on the RS/6000 Family

9076-550 SP
Large Scale Servers 332 MHz PowerPC 604e,
160 MHz P2SC, and
200 MHz POWERS Nodes
1to 512 Nodes

High-End Enterprise Servers 7017-S70

125 MHz RSe4/
262 MHz RS64l

4- 1o 12-way SMP

7017-S7A
262 MHz RS644|
4-to 12-way SMP

F'f 2
P
Midrange Enterprise Servers —
3=
7025-F50 7026-H50 7026-H70

166/332 MHz PowerPC 604e 332 MHz PowerPC 604e 340 MHz RS64-I1

1-to 4-way SMP 1-to 4-way SMP 1- to 4-way SMP

A - |

o —

Workstations and : =

Workgroup Servers Pk =]

7043-140 43P Model 150 43P Model 260 7025-F40
233/332 MHz PowerPC 604e 375 MHz PowerPC 604e 200 MHz POWER3 233 MHz PowerPC 604e
Uniprocessor Uniprocessor 1-to 2-way SMP 1-to 2-way SMP

Figure 1. RS/6000 systems handbook products in focus

Chapter 1. RS/6000 hardware overview 5

Table 1. Facts and features for Models 140, 150, and 260

RS/6000 Model 140 150 260

Machine Type 7043 7043 7043
Processor type PowerPC 604e PowerPC 604e POWERS3
#processors/system 1 1 1or2

Clock rates available (standard/option) 233/332 MHz 375 MHz 200 MHz
System memory 64 MB/768 MB 128 MB/1 GB 256 MB/4 GB'

(standard/maximum)
Memory type

64-bit ECC DIMM

64-bit ECC SDRAM

64-bit ECC SDRAM

Data/instruction (L1) cache 32 KB/32 KB 32 KB/32 KB 64 KB/32 KB?

Level 2 (L2) cache 1 MB 1 MB 4 MB?

Memory slots 6 4 2

Capacity

Slots available 3 PCI (32-bit) + 5 PCI (32-bit) 2 PCI (64-bit) +
2 PCI/ISA (32-bit) 3 PCI (32-bit)

PCI bus speed 33 MHz 33 MHz 33/50 MHz

Disk/media bays 5 5 5

Standard/maximum internal disk

4.5 GB/27.3 GB

4.5 GB/27.3 GB

4.5 GB/27.3 GB

Storage interfaces

SCSI-2 Fast/Wide SE and SCSI-2
Fast/Wide Differential

SCSI-2 Fast/Wide RAID-5

Ultra SCSI SE and Ultra SCSI
Differential

SSA 8-way JBOD/2-way RAID EL (PCI
and MCA)

PCI 3-channel Ultra SCSI RAID
Fibre Channel

X

X

XS

XS

x

x

X X X!

Communications and connectivity
EIA RS232D/EIA RS422A
Token-ring 4/16 Mbps
Ethernet 10 Mbps
Ethernet 10/100 Mbps
Gigabit Ethernet

FDDI 100 Mbps

ATM 25 Mbps

ATM 155 Mbps

ISDN

X.25

SDLC

BSC

SP system attachment
3270 connection

ESCON

Block multiplexer

HIPPI 100 Mbps

T1/E1

Telephony

PX XXX XXX ' XX XX

XXX X XX ' X X X X

PX XXX XXX X XX X X

Graphics accelerators available

GXT120P, 250/255P,
550P, 800P; 2000P

GXT120P, 250/255P,
550P, 2000P, 3000P

GXT120P, 250/255P,
550P, 2000P, 3000P

6

Implementing SAS on the RS/6000 Family

Table 2. Facts and features for Models F40 and F50

RS/6000 Model F40 F50

Machine Type 7025 7025
Processor type PowerPC 604e PowerPC 604e
#processors/system 1or2 1,2,3,0r4
Clock rates available (standard/option) 233 MHz 166/332 MHz
System memory 64 MB/1 GB' 128 MB/3 GB'

(standard/maximum)
Memory type
Data/instruction (L1) cache
Level 2 (L2) cache
Memory slots

64-bit ECC DIMM
32 KB/32 KB?

1 MB?

8

64-bit ECC SDRAM
32 KB/32 KB?

256 KB?

2

Capacity
Slots available

PCI bus speed
Disk/media bays
Standard/maximum internal disk

7 PCI (5 32-bit + 2 64-bit) +
2 PCI/ISA (32-bit)

33/50 MHz

22

4.5 GB/172.8 GB

7 PCI (5 32-bit + 2 64-bit) +
2 PCI/ISA (32-bit)

33/50 MHz

18/4

4.5 GB/172.8 GB

Storage interfaces

SCSI-2 Fast/wide SE and SCSI-2
Fast/Wide Differential

SCSI-2 Fast/wide RAID-5

Ultra SCSI SE and Ultra SCSI
Differential

SSA 8-way JBOD/2-way RAID EL (PCI
and MCA)

PCI 3-channel Ultra SCSI RAID
Fibre Channel

X XX X

XX X XX X

Communications and connectivity
EIA RS232D/EIA RS422A
Token-ring 4/16 Mbps
Ethernet 10 Mbps
Ethernet 10/100 Mbps
Gigabit Ethernet

FDDI 100 Mbps

ATM 25 Mbps

ATM 155 Mbps

ISDN

X.25

SDLC

BSC

SP system attachment
3270 connection

ESCON

Block multiplexer

HIPPI 100 Mbps

T1/E14

Telephony*

PX XXX XXX ' XX XX

PX XXX X XX X XX X X

x

X
X

Graphics accelerators available

GXT120P, 250/255P, 550P, 800P

GXT120P, 800P°

Chapter 1. RS/6000 hardware overview

7

Table 3. Facts and features for Models H50 and H70

RS/6000 Model H50 H70

Machine Type 7026 7026

Processor type PowerPC 604e PowerPC RS64-I|
#processors/system 1,2,3,0r4 1,2,3,0r4
Clock rates available (standard/option) 332 MHz 340 MHz
System memory 128 MB/3 GB' 128 MB/8 GB'

(standard/maximum)
Memory type
Data/instruction (L1) cache
Level 2 (L2) cache
Memory slots

64-bit ECC SDRAM
32 KB/32 KB?

256 KB2

2

64-bit ECC SDRAM
64 KB/64 KB?

4 MB?

2

Capacity
Slots available

PCI bus speed
Disk/media bays
Standard/maximum internal disk

7 PCI (5 32-bit + 2 64-bit) + 2
PCI/ISA (32-bit)

33/50 MHz
13/3
4.5 GB/118.2 GB

8 PCI (4 32-bit + 4 64-bit)

33/50 MHz
13/3
4.5 GB/127.4 GB

Storage interfaces

SCSI-2 Fast/Wide SE and SCSI-2
Fast/Wide Differential

SCSI-2 Fast/Wide RAID-5

Ultra SCSI SE and Ultra SCSI
Differential

SSA 8-way JBOD/2-way RAID EL (PCI
and MCA)

PCI 3-channel Ultra SCSI RAID
Fibre Channel

x

XX X X!
()

XX X XX X
()

Communications and connectivity
EIA RS232D/EIA RS422A
Token-ring 4/16 Mbps
Ethernet 10 Mbps
Ethernet 10/100 Mbps
Gigabit Ethernet

FDDI 100 Mbps

ATM 25 Mbps

ATM 155 Mbps

ISDN

X.25

SDLC

BSC

SP system attachment
3270 connection

ESCON

Block multiplexer

HIPPI 100 Mbps

T1/E1

Telephony

XXX X X X X X X X X X

x

X
X

XXX X X X X X X X X X

x

X
X

Graphics accelerators available

GXT120P

GXT120P

8 Implementing SAS on the RS/6000 Family

Table 4. Facts and features for Models S70 and S70 Advanced

RS/6000 Model S70 S70 Advanced S80

Machine Type 7017 7017 7017

Processor type PowerPC RS64/RS64-118 PowerPC RS64-1I PowerPC RS64-111

#processors/system 4,8,0r12 4,8,0r12 6,12,18 or 24

Clock rates available 125 MHz/262 MHz 262 MHz 450 MHz

(standard/option)

System memory 512 MB/32 GB' 1 GB/ 32 GB' 2 GB/

(standard/maximum)

Memory type Card-based ECC SDRAM Card-based ECC Card-based ECC
SDRAM SDRAM

Data/instruction (L1) cache
Level 2 (L2) cache

Memory slots

64 KB/64 KB2

4 MB (125 MHz)/8 MB?
(262 MHz)

20

64 KB/64 KB2
8 MB (262 MHz)

20

128KB / 128 KB
8 MB

Capacity
Slots available

PCI bus speed
Disk/media bays

Standard/maximum
disk

internal

53 PCl (33 32-bit + 20
64-bit)

33 MHz

48/12

4.5 GB/436.8 GB

53 PCI (33 32-bit + 20
64-bit)

33 MHz

48/8

9.0 GB/436.8 GB

Storage interfaces

SCSI-2 Fast/Wide SE
SCSI-2 Fast/Wide Differential
SCSI-2 Fast/Wide RAID-5
UltraSCSI SE

Ultra SCSI Differential

SSA 8-way JBOD/2-way RAID
EL (PCI and MCA)

PCI 3-channel Ultra SCSI RAID
Fibre Channel

x

X X X ' X

x

X X X ' X

x

Communications and
connectivity

EIA RS232D/EIA RS422A
Token-ring 4/16 Mbps
Ethernet 10/100 Mbps
Gigabit Ethernet

FDDI 100 Mbps

ATM 25 Mbps

ATM 155 Mbps

ISDN

X.25, SDLC and BSC
SP system attachment
3270 connection
ESCON

Block multiplexer
HIPPI 100 Mbps
T1/E1

XXX X X P X X X X X

X

XXX X X P X X X X X

X

XXX X X P X X X X X

x

Graphics accelerators
available

GXT120P

GXT120P

Chapter 1. RS/6000 hardware overview

9

Table 5. Facts and features for SP 332 MHz SMP Thin and SMP Wide Nodes

RS/6000 Model
Machine Type

332 MHz SMP Thin

SP System (9076)°

332 MHz SMP Wide

Processor type

PowerPC 604e

PowerPC 604e

Min/max of each node type per system 1/128% 1/128*
Number of processors per node 2or4 2or4

Clock rates available (standard/option) 332 MHz 332 MHz
System memory per node 256 MB/3 GB' 256 MB/3 GB'

(standard/maximum)
Memory type
Data/instruction (L1) cache
Level 2 (L2) cache
Memory slots

64-bit ECC SDRAM
32 KB/32 KB?

256 KB?

2

64-bit ECC SDRAM
32 KB/32 KB?

256 KB?

2

Capacity

Slots available

PCI bus speed

Disk/media bays
Standard/maximum internal disk

2 PCI (32-bit)
33 MHz

2

0/36.4 GB

10 PCI (7 32-bit + 3 64-bit)

33/50 MHz
4
0/72.8 GB

Storage interfaces

SCSI-2 Fast/Wide SE and SCSI-2
Fast/Wide Differential

SCSI-2 Fast/Wide RAID-5

Ultra SCSI SE and Ultra SCSI
Differential

SSA 8-way JBOD/2-way RAID EL (PCI
and MCA)

PCI 3-channel Ultra SCSI RAID
Fibre Channel

X

X

Communications and connectivity
EIA RS232D/EIA RS422A
Token-ring 4/16 Mbps
Ethernet 10 Mbps
Ethernet 10/100 Mbps
Gigabit Ethernet

FDDI 100 Mbps

ATM 25 Mbps

ATM 155 Mbps

ISDN

X.25

SDLC

BSC

SP system attachment
3270 connection

ESCON

Block multiplexer

HIPPI 100 Mbps

T1/E1

Telephony

XXX P X P X X X X X X

x

10 Implementing SAS on the RS/6000 Family

XXX P X T X X X X X X

x

Table 6. SP 160 MHz and POWER3 SMP Thin and POWER3 SMP Wide Nodes

RS/6000 model

SP System (9076)

Machine type 160 MHz Thin POWERS SMP Thin POWERS SMP Wide
Processor type POWER2SC POWERS3 POWERS3

Min/max of each node type per system 1/128* 1/128* 1/128*

Number of processors per node 1 1or2 1or2

Clock rates available (standard/option) 160 MHz 200 MHz 200 MHz

System memory per node 64 MB/1 GB 256 MB/4 GB' 256 MB/4 GB'

(standard/maximum)
Memory type
Data/instruction (L1) cache
Level 2 (L2) cache
Memory slots

40-bit ECC SIMM
128 KB/32 KB

4

64-bit ECC SDRAM
64 KB/32 KB?
4 MB2

2

64 KB/32 KB?
4 MB?
2

64-bit ECC SDRAM

Capacity
Slots available

PCI bus speed
Disk/media bays
Standard/maximum internal disk

4 Micro Channel

N/A
2
4.5 GB/18.2GB

2 PCI (32-bit)

33 MHz

2

0 GB/36.4 GB

64-bit)
33/50 MHz

4

0 GB/72.8 GB

10 PCI (2 32-bit + 8

Storage interfaces

SCSI-2 Fast/Wide SE and SCSI-2
Fast/Wide Differential

SCSI-2 Fast/Wide RAID-5

Ultra SCSI SE and Ultra SCSI
Differential

SSA 8-way JBOD/2-way RAID EL (PCI
and MCA)

PCI 3-channel Ultra SCSI RAID
Fibre Channel

X

X

X

Communications and connectivity
EIA RS232D/EIA RS422A
Token-Ring 4/16 Mbps
Ethernet 10 Mbps
Ethernet 10/100 Mbps
Gigabit Ethernet

FDDI 100 Mbps

ATM 25 Mbps

ATM 155 Mbps

ISDN

X.25

SDLC

BSC

SP system attachment
3270 connection

ESCON

Block multiplexer

HIPPI 100 Mbps

T1/E1

Telephony

X ' X X X X

XXX P X!

X X X!

X X X X X X

% !

X X X!

X X X X X X

< !

X X X!

| Notes: 1 shared memory 2 per processor 3 statement of direction 4 up to 512 available in special order cases

Chapter 1. RS/6000 hardware overview

11

1.5 Workstations and workgroup servers
Workgroup servers covers the following models:

* 7043-140 - Entry-Level Workstation or Entry Workgroup Server

7043-150 - Price/Performance Workstation or Entry Workgroup Server
7043-260 - High Performance 3D Workstation or 64-Bit Workgroup Server
7025-F40 - Expandable Workgroup Server

7046-B50 - Rack mounted 2U Server, up to 20 B50s in one rack

Workgroup Servers can be defined as deskside machines that contain a
substantial amount of storage in order to support the clients a midsize
company or a medium- to large-size department has, depending on the
chosen application. All RS/6000 workstations can be equipped with features
that allow them to adopt to a workgroup server role.

Note

The 7043 Models 140, 150, and 260 are referred to as 43P machines
because they are the follow-on products to the 7248 Model 43P.

1.6 Midrange enterprise servers
Midrange servers are the following models:

* The Deskside Servers:
e 7025-F50 - Enterprise Server

* The Rack-Mounted Servers:
e 7026-H50 - Enterprise Server
e 7026-HA50 - Enterprise Server Solution
e 7026-H70 - 64-Bit Enterprise Server
* 7026-HA-H70 - Enterprise Server Solution

1.7 High-end enterprise servers

High-end servers are the following models:

RS/6000 Model S70
* 7013-S70 - Enterprise Server

12 Implementing SAS on the RS/6000 Family

* 7015-S70 - Enterprise Server
* 7017-S70 - Enterprise Server

RS/6000 Model S70 Advanced
e 7013-S7A - Enterprise Server
* 7015-S7A - Enterprise Server
* 7017-S7A - Enterprise Server

RS/6000 Model S80
e 7013-S80 - Enterprise Server
e 7015-S80 - Enterprise Server
e 7017-S80 - Enterprise Server

1.8 RS/6000 SP systems

This section provides information about the IBM RS/6000 large scale servers.
The servers that fall into this category are called the RS/6000 SP (Scalable
POWERparallel) systems.

The RS/6000 SP high-performance system uses the power of parallel
processing. Designed for performance and scalability, this system makes
feasible the processing of applications characterized by large-scale data
handling and computational intensity.

Customer uses include: Mission-critical commercial computing solutions to
address business intelligence applications, server consolidation, and
collaborative computing comprised of Lotus Domino Server, Internet, intranet,
extranet, and groupware application solutions. The SP database and
computation scalability, critical for business intelligence applications including
data warehousing, has led to many installations of more than a terabyte of
data.

Recognized in the industry as a high-capacity and reliable Web server, the
SP system is an ideal base for e-business applications. Numerous companies
and organizations worldwide use it to handle their Web sites. Scientific and
technical computing users, including corporations, universities, and research
laboratories, use the SP system for leading-edge applications ranging from
seismic processing, computational fluid dynamics, engineering
analysis/design, and medical simulation.

Chapter 1. RS/6000 hardware overview 13

1.9 PCI storage adapters

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

14

The purpose of this section is to provide some rules of thumb for the
performance of various PCI disk adapters.

Throughput information is provided; the information can be used to
approximate throughput with multiple adapters and for other systems. The
reason for including storage information here is that the disk performance is
essential for overall system performance.

SCSI-2 fast/wide RAID adapter

The SCSI-2 Fast/Wide RAID Adapter implements RAID level 0, 1, and 5
support for SCSI-2 attached disks.

Configuration management, RAID algorithms, and error recovery are handled
by an on-board 403 PowerPC. The maximum number of addressable device
IDs enabled by the adapter is 15 per bus or 45 devices per adapter.

PCI single-ended Ultra SCSI adapter

The PCI Single-Ended Ultra SCSI Adapter provides a single-ended SCSI-2
Ultra/Wide interface that can burst data between devices on the SCSI bus at
40 MBs (twice the fast/wide rate) using block sizes greater than 64 KB. It
conforms to SCSI-2 standards and Fast-20 (Ultra) documentation.

PCI differential Ultra SCSI adapter

The PCI Differential Ultra SCSI Adapter provides a differential SCSI-2
Ultra/Wide interface that can burst data between devices on the SCSI bus at
40 MBs. This adapter conforms to SCSI-2 standards and the Fast-20 (Ultra)
documentation.

SCSI-2 fast/wide adapter 4-A

The PCI SCSI-2 Fast/Wide Single Ended Adapter provides a single-ended
SCSI-2 Fast/Wide interface. It conforms to SCSI-2 standards and supports
fast/wide synchronous data rates of up to 10 MHz.

SCSI-2 differential fast/wide adapter 4-B

The PCI SCSI-2 Fast/Wide Differential Adapter provides a differential SCSI-2
Fast/Wide interface that can burst data between devices on the SCSI bus at
20 MB/s. It conforms to SCSI-2 standards and supports fast/wide
synchronous data rates of up to 10 MHz.

Implementing SAS on the RS/6000 Family

1.9.6 PCI 3-Channel Ultra SCSI RAID adapter

The RS/6000 PCI 3-Channel Ultra SCSI RAID Adapter is a non-bootable high
performance Ultra SCSI RAID Adapter providing RAID 0,1,or 5 capability and
can address up to forty-five 16-bit SCSI-2 physical disk drives on three
independent SCSI buses.

1.9.7 SSA RAID 5 adapter, SSA fast-write

The PCI SSA RAID 5 Adapter supports RAID 5 SSA disk arrays and can be
used to access non-RAID disks (JBOD) between multiple hosts. It has the
capability to improve write response time in the single initiator mode for both
RAID and non-RAID disks by the addition of the Fast-Write Cache Option.

1.9.8 Advanced serialRAID, SSA fast-write

The Advanced SerialRAID Adapter is a Serial Storage Architecture (SSA)
adapter providing a data transfer rate of up to 160 MBs per loop. The adapter
supports Hot Spare drives in RAID 5 mode.

— Note

e There is NO SSA boot support on PCI based RS/6000 for any SSA
adapter without Open Firmware. This means only the 6225 is bootable.

* The current 6225 will only boot from a JBOD disk. There is no boot
support at present for either RAID or Fast-write disks.

* The 6225 should be bootable on any machine which supports Open
Firmware boot in its IPL ROS. Check with your IBM support
representative for the most current information.

Chapter 1. RS/6000 hardware overview 15

16 Implementing SAS on the RS/6000 Family

Chapter 2.

SAS installation

The installation of SAS on AIX is well described in the documentation
delivered with the software package, and the same information is also
available online from the installation media. The documentation can be found
in the files Readme, alert_notes, install_instructions, and sys_req. All files,
except the Readme file, come in two formats: Postscript (.ps) for printout and
plain ascii text format (.txt). Before you start the installation, some
preparations should be made. Read the installation documentation, or look in
the file, sys_req.txt, and check your installation to see whether the system
requirements are fulfilled.

Plan disk space and disk layout; you will need disk space for the SAS
executables (SAS code) and SAS data disks. The installation of SAS 6.12
requires about 400 MB for the programs. This disk will not have traffic as
heavy as the data disks, and the SAS program can be placed almost
anywhere, possibly in your root volume group at the same physical drives as
AlX. You will also need space for your SAS data; the disk layout for the data
space depends on the usage, but you will need performance to be as high as
possible, and this means you want as many fast disk drives as possible.
Depending on the typical usage, you can chose different strategies. As shown
in the examples in this book, one strategy is to create one volume group for
the SAS work space, one for input datasets, and one for output datasets.
Before describing disk layout further, let us define some of the terms used in
the AIX disk system.

A hierarchy of structures is used to manage AlX fixed-disk storage. Each
individual fixed-disk drive, called a physical volume (PV), has a device name,
such as /dev/hdisk0. The disk connection can make use of different
technologies, such as SCSI (1, Il, or lll) or SSA; however, the name is
independent of the physical disk type. The disk numbering starts at 0 and
increases consecutively up to the number of disks in the system.

Every physical volume in use belongs to a volume group (VG). All of the
physical volumes in a volume group are divided into physical partitions (PPs)
of the same size. The PP size depends on the disk size; the larger the disk
space in a volume group, the bigger PP size. The PP size is a permanent
attribute for a volume group. Once the volume group is created, this size
cannot be changed, and a small PP size can limit the total amount of disk
space in the volume group. For space-allocation purposes, each physical
volume is divided into five regions (outer_edge, inner_edge, outer_middle,
inner_middle, and center). The number of physical partitions in each region
varies depending on the total capacity of the disk drive. If the volume group is

© Copyright IBM Corp. 2000 17

18

created with the -B option in the mkvg command, the above limits increase to
128 physical volumes and 512 logical volumes.

Within each volume group, one or more logical volumes (LVs) are defined.
Logical volumes are placeholders for information located on physical
volumes. Logical volumes typically hold a file system. The usage of a logical
volume is similar to a partition in other systems. Data space on logical
volumes appears to be contiguous to the user but can be discontiguous on
the physical volume. This allows file systems, paging space, and other logical
volumes to be resized or relocated, span multiple physical volumes, and have
their contents replicated for greater flexibility and availability in the storage of
data.

Each logical volume consists of one or more logical partitions (LPs). Each
logical partition corresponds to at least one physical partition. If mirroring is
specified for the logical volume, additional physical partitions are allocated to
store the additional copies of each logical partition. Although the logical
partitions are numbered consecutively, the underlying physical partitions are
not necessarily consecutive or contiguous, if mirroring is specified, it is
recommended to place each copy on separate physical volumes.

A number of attributes must be defined at logical volume creation. Some
attributes can be changed later and some cannot. The most used/important
are:

* Logical volume NAME - Any name given to the LV

VOLUME GROUP name - The VG where the LV belongs
Number of LOGICAL PARTITIONS - The size wanted for this LV
PHYSICAL VOLUME names - Restrict the use of PVs
POSITION on physical volume

Number of COPIES of each LV - One for standard, two for minored LV; this
determines if an LV is mirrored or not. Notice that the mirroring is on an LV
level.

* Stripe Size - If a stripe size is defined, the LV will be striped across all
volumes in the VG; here, it is assumed that the VG holds more physical
disks.

Logical volumes can serve a number of system purposes, such as paging
space or file system; each logical volume that holds ordinary system or user
data or programs contains a single journaled file system (JFS). Each JFS
consists of a pool of page-size (4KB) blocks. When data is to be written to a
file, one or more additional blocks are allocated to that file. These blocks may

Implementing SAS on the RS/6000 Family

or may not be contiguous with one another or with other blocks previously
allocated to the file.

After installation, the AIX system has one volume group defined: The rootvg
volume group consisting of a base set of logical volumes required to start the
system and any other volume groups you specified during the AIX
installation.

2.1 SAS preinstallation file system planning

File system configuration has a large effect on overall system performance
and is time-consuming to change after installation. Deciding on the number
and types of hard disks and the sizes and placements of paging spaces and
logical volumes on those hard disks is, therefore, a critical pre-installation
process. As mentioned before, the I/O traffic to the SAS programs is not very
intensive and can be placed on a LV in rootvg.

SAS data on the other hand, will be accessed heavily, and the placement
must be on dedicated disks and VGs. The SAS data can be subdivided into
three classes: SAS input data, SAS output data, and SAS work space. The
approach used for the tests in this book was to create separate VGs for each
type of data. The reason for doing this was to make it easier to track the I/O
load, and it gives excellent performance when the system has many physical
drives. On the other hand, in a production environment, one will expect
multiple users running multiple programs on different data sets, and, in this
case, it might be a better strategy to spread the data randomly across the
physical drives. That is, create one SAS data VG, and then create one or
more LVs for SAS data.

2.2 Installing the base SAS software on AIX

This section provides instructions for installing the SAS System on AlX.
Follow the steps outlined in this section, and then proceed as described in the
product documentation.

Extracting SAS Manager from the Tape or CD-ROM

You must extract the SAS Manager application from your distribution media
before proceeding with the installation. This section explains how to extract
the SAS Manager to begin the installation of the SAS System on AIX. You can
install the SAS System in any location on the system with sufficient space.
The installation requires that all SAS files exist in a directory named sas612,
which is created for you and contains all files associated with the SAS

Chapter 2. SAS installaton 19

20

System. SASROOQT is the pathname for the location of the SAS files.
SASROQOT is /sas in this description. It is not necessary to have root
privileges to install the SAS System. If the software is not installed as root,
the SAS system administrator should install the software using either the
administrator's user ID or a user ID created for the SAS System, such as
SAS. To complete future installs, the system administrator requires read and
write privileges on the SASROOQOT directory and its contents.

If you are installing the SAS System from an 8 mm tape, you must change the
block size parameters on the 8 mm tape drive to 0 as described below. To
determine the status of the block size, issue the following command:

lsattr -1 rmt0 -E

Record the block size information that is displayed. If the block size is not set
to 0, you must change it for the installation. To change the block size, issue
the following command:

chdev -1 rmt0 -a block size=0

— Note

You must have root privilege to issue this command.

You can also use the smit command to change these parameters. Use the
smit chgtpe command.

— Note

You must restore the original system tape parameters after you have
completed the installation, other system jobs as backup routine might
depend on these settings.

The following steps show you how to install SAS. The instructions use
/sas/sas612 as the pathname for the SASROOT directory. This pathname is
an example; substitute your installation directory:

1. Insert the media into the appropriate drive.

For tape drives, rewind the tape with the tctl -f /dev/rmtX.1 rewind
command where x corresponds to the actual tapedrive.

For CD-ROM drives, if there is no existing CD-ROM file system, create a
CD-ROM file system. Use the smit makcdr command.

To mount the CD-ROM, use the following command:

Implementing SAS on the RS/6000 Family

mount /dev/cdx where x corresponds to the actual CD-ROM drive.

2. Change to the directory where you want the SAS System installed by
issuing the following command:

cd /sas

3. Enter one of the following commands to extract the installation programs.
When you issue the tar command, the SAS System creates or appends to
a ./sas612 subdirectory.

For tape media, use:
tar xf /dev/rmt0.1
For CD-ROM media, use:

tar xf /cdrom/sas inst

4. Change directories to the SASROOT subdirectory by issuing a command
similar to the following:

cd /sas/sas612

5. Invoke the SAS Manager by typing./sasmanager at the prompt.

Note

¢ If you use Control C (~C) to exit the installation script, SAS Manager
does not retain the information you supplied about media type and
location.

¢ If you use Control C (AC) to exit the installation script, SAS Manager
does not retain the information you supplied about media type and
location.

6. From the SAS Manager Primary Menu, select Option 1, Load Software
From Media.You are prompted to indicate your installation media. Select
1 for tape or 2 for CD-ROM.

7. You are prompted for the location of the tape drive or CD-ROM.
If you are installing from a local tape drive or CD-ROM, enter local.

If you are installing from tape, you are prompted for a non-rewinding
device name. If you are installing from CD-ROM, you are prompted for the
pathname of the CD-ROM.

8. You are prompted for the correct pathname for your SETINIT program.
The default path should be correct for most installations.

Chapter 2. SAS installation 21

22

— Note

For Non-U.S. Customers Only:

Installations outside of the United States must manually update the
SETINIT information with the paper SETINIT included with your installation
materials before continuing with the installation.

You are given the chance to view the contents of the installation media.
Type vy at the prompt to view the contents or nto continue without viewing
the contents.

You are asked if you want to continue the installation. Press Enter to
continue, or type n at the prompt to stop the installation.

If you continue with the installation, the installation process completes the
following tasks:

1.

o oA N

Installs the SAS System on the selected file system with adequate
space

Creates the SAS configuration files config.sas612 and autoexec.sas
Applies new SETINIT information.

Applies Technical Support fixes supplied with the Usage Notes.
Patches the SASROOT directory to the SAS executable.

Executes the installation test streams. You will receive messages upon
completion of the test as to the validity of the installation.

The installation is now complete except for product-specific configuration. If
your installation includes products that need post-installation configuration,
the Product Configuration menu appears. Be sure to complete any necessary
post-installation configuration that is described in the corresponding product
documentation.

Implementing SAS on the RS/6000 Family

Chapter 3. Application test environment

The test environment consists of an RS/6000 system, AIX Version 4.3.2, and
base SAS software Version 6.12. In this chapter, the environment will be
described in more detail.

3.1 AIX system configuration

The test system used for all tests in this book was an IBM RS/6000 43P
model 260. The system was configured with two CPUs and 3 GB of memory.

The disk system is connected with an SCSI subsystem and an SSA disk
subsystem; as you can tell from the following configuration listings, there was
one SCSI adapter and two SSA adapters. See Figure 2.

scsi0 Available 10-60 Wide/Fast-20 SCSI I/O Controller
ssal Available 10-70 IBM SSA Enhanced RAID Adapter (14104500)
ssal Available 10-78 IBM SSA Enhanced RAID Adapter (14104500)

Figure 2. Disk adapters

The System was installed with 18 disk drives: Two connected with SCSI and
16 connected via the SSA adapter subsystem as shown in Figure 3.

4 N
hdisk0 Available 10-60-00-8,0 16 Bit SCSI Disk Drive
hdiskl Available 10-60-00-9,0 16 Bit SCSI Disk Drive
hdisk2 Available 10-70-L SSA Logical Disk Drive
hdisk3 Available 10-70-L SSA Logical Disk Drive
hdisk4 Available 10-70-L SSA Logical Disk Drive
hdisk5 Available 10-70-L SSA Logical Disk Drive
hdiské Available 10-70-L SSA Logical Disk Drive
hdisk7 Available 10-70-L SSA Logical Disk Drive
hdisk8 Available 10-70-L SSA Logical Disk Drive
hdisk9 Available 10-70-L SSA Logical Disk Drive
hdiskl0 Available 10-78-L SSA Logical Disk Drive
hdiskll Available 10-78-L SSA Logical Disk Drive
hdiskl2 Available 10-78-L SSA Logical Disk Drive
hdiskl3 Available 10-78-L SSA Logical Disk Drive
hdiskl4 Available 10-78-L SSA Logical Disk Drive
hdiskl5 Available 10-78-L SSA Logical Disk Drive
hdiskl6é Available 10-78-L SSA Logical Disk Drive
L hdiskl7 Available 10-78-L SSA Logical Disk Drive
J

Figure 3. Disk drives in the test system

© Copyright IBM Corp. 2000 23

The system was configured with three logical paging spaces placed on hdisks
0 and 1. The paging space was placed on hdisks 0 and 1 to minimize the
impact on other file systems.

The file systems, /mfs01 and /mfs02, are file systems striped across three
drives. SAS workspace is placed in /db/work on a non-striped disk.

The reason for this disk layout is that we wanted to place input (/mfs01),
output (/mfs02) and work (/db) datasets on different physical disk volumes
because this makes it easier to identify the disk traffic. The file systems,
/mfs01 and /mfs02, were placed on striped logical volumes to improve
performance because we expect the most data reads or writes to and from
these file systems. The paging space is placed in rootvg, and, in a separate
volume group, ps, the small paging space, hd6 in Figure 4, is generated by
the system in rootvg at installation time and is left there because we wanted
paging space on hdiskO and hdisk1, and the root filesystem at hdisk0 is not

busy.
, , , N
Page Space Physical Volume Volume Group Size %Used Active Auto Type
paging03 hdiskl ps 800MB 3 yes yes 1v
paging02 hdiskl ps 800MB 3 yes yes 1v
hde hdisk0 rootvg 512MB 5 yes no 1v
Y

Figure 4. Paging space

The system volume group, rootvg on hdisk0, contains all default file systems.

VOLUME GROUP: rootvg h
Physical Volumes:
hdisko0 active 537 00..00..00..00..00
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hds oot 1 1 1 closed/syncd N/A
hde paging 64 64 1 open/syncd N/A
hds jfslog 1 1 1 open/syncd N/A
hd4 jfs 3 3 1 open/syncd /
hd2 jfs 270 270 1 open/syncd /usr
hd9var jfs 10 10 1 open/syncd /var
hd3 jfs 10 10 1 open/syncd /tmp
hdl jfs 55 55 1 open/syncd /home
- J

Figure 5. Volume group rootvg

24 Implementing SAS on the RS/6000 Family

The file system, /mfs01, is used for SAS programs and input data.

4 N
VOLUME GROUP: mfs01lvg
Physical Volumes:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk4 active 268 0 00..00..00..00..00
hdisk5s active 268 1 00..00..00..00..01
hdiské active 268 1 00..00..00..00..01
Logical volumes:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
mfs011lv jfs 801 801 3 open/syncd /mfs0l
mfs01log jfslog 1 1 1 open/syncd N/A
N J
Figure 6. Volume group mfs01 holding SAS Input dataset
The file system, /mfs02, is used for SAS programs and output data.
4 N
VOLUME GROUP: mfs02vg
Physical Volumes:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk7 active 268 4 00..00..00..00..04
hdisk8 active 268 4 00..00..00..00..04
hdisk9 active 268 0 00..00..00..00..00
Logical volumes:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
mfs021v jfs 792 792 3 open/syncd /mfs02
mfs021log jfslog 1 1 1 open/syncd N/A
N J

Figure 7. Volume group mfs02 holding SAS output dataset

The file system /db is used for SAS workspace or temporary space. The
default installation path for SAS work space is /tmp; however, in a production
environment, it is important to create a large high-performance filesystem to
hold the SAS workspace because it is heavily used.

Chapter 3. Application test environment 25

VOLUME GROUP: dovg
Physical Volumes:

PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION

hdisk10 active 268 1 00..00..00..00..01
hdiskll active 268 1 00..00..00..00..01
hdiskl2 active 268 2 00..00..00..00..02
hdisk13 active 268 264 54..50..53..53..54

Logical volumes:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
dblv jfs 800 800 3 open/syncd /db
dblvlog jfslog 1 1 1 open/syncd N/A
N J

Figure 8. Volume group dbvg holding SAS workspace

The SAS binaries, programs, and libraries are placed in sasvg. The 1/O traffic
to this volume is small, and /sas could have been placed in another volume
group as rootvg. However, the I/O traffic is more easily identified when the file
system is isolated on a physical disk drive.

VOLUME GROUP: sasvg B
Physical Volumes:
sasvg:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdiskl7 active 537 12 00..00..00..00..12
Logical volumes:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
saslv jfs 524 524 1 open/syncd /sas
saslvlog jfslog 1 1 1 open/syncd N/A
-)

Figure 9. Volume group sasvg

3.2 SAS applications

26

We hope to entertain examples relevant to practices common among the SAS
user community on UNIX servers. Because our focus remains on system
performance, we will attempt to both document performance capabilities and
intentionally stress the AIX system at its boundaries. Having read this text,
the reader should be better prepared to both live within the constraints of a
fixed environment and adjust techniques for improved performance under
extreme conditions.

Usages of SAS vary so widely that it is not possible to define normal use. Sitill,
some functions of SAS are commonly and frequently applied across customer
installations. Some applications and tests to consider carefully are:

Implementing SAS on the RS/6000 Family

» Data input - Reading files into SAS data files
e Data processing - Editing, sub-setting, joining, and sorting SAS data files
* Analytic - Computationally heavy uses

Our applications will touch on these three very broad areas. The speed with
which the system completes the task will always be constrained by, at least,
one of: Available memory, 1/0 throughput, or CPU speed. That is, your job
would finish sooner if one of these components was somehow upgraded.

Improvements in this dynamic system environment ease each constraint in
separate, staggered increments. It has become very difficult for the SAS
programmer to assess which area is holding performance back.

What intuitively appears to a SAS user as a computationally-intensive, 1/O, or
memory exhaustive task may surprise some users. In fact, the same program
running against the same data on the same system may test one constraint at
one moment and another on the next submission. This would most often
occur when other users come on-line with tasks demanding a share of the
processor(s), physical memory, and paging space. Since the possible
combinations of events are infinite, it will be best to write your code and set
your parameters for the general case while minimizing the likelihood of
incurring catastrophic conditions.

3.2.1 The test environment

SAS Version 6.12 is still the most commonly used production quality
environment available to UNIX. We placed SASWORK on a local drive with
13.1 GB of free disk space. Our installation of SAS included most of the SAS
software family offerings, but only Base SAS and SAS/STAT components
were needed to conduct the tests written up in the this redbook.

3.3 Application data and tests

In order to push the test environment, the test data should be sufficiently
large and realistic in content to enable the application of multiple tasks. We
chose to use some U.S. Census Bureau files for our data processing
examples. We then borrowed from two additional sources to complete our
computational problems.

3.3.1 U.S. Census data

The United States Census Bureau makes available its Public Use Microdata
Sample (PUMS). This data comes from actual responses to the American

Chapter 3. Application test environment 27

Community Survey, which is conducted to record most participant population
and housing characteristics.

This data includes two types of record: A household record with
corresponding information and a personal record with details for each known
individual within a household. From a 5 percent sample of the 1990 survey,
the states of Alaska, Alabama, Arkansas, and California were used. These
five flat text files used 650 MB of storage.

These data sets will serve to test the majority of data input and processing
aspects of the SAS System.

3.3.1.1 Test 1 - Read Census Bureau data

In this case, the SAS DATA step reads from the five raw Census Bureau data
files and creates two SAS data files. The newly-created household records
file (HRECS) and the personal records file (PRECS) occupy roughly 170
megabytes and 475 megabytes, respectively.

The resulting HRECS data file is used in Test 2.

3.3.1.2 Test 2 - Sort the household data
PROC SORT is employed to sort the Census Bureau household data file.
This common task was expected to be very CPU intensive.

3.3.2 Computational tests and data

28

We acquired some examples that were previously used to benchmark
performance in statistical modeling.

The Boardroom data is a 183,000 record SAS data file with 297 fields used in
modeling response to some historical campaign. One field records the
campaign response while the rest were considered for their explanatory
power. The SAS file measured 221 megabytes.

The Home data set ultimately comprised 40,000 records that was the
consolidation of data on Home Price Index to that following unemployment.
This data, a 8.1 megabyte file, was used in Test 5.

The drink data set contains survey data on 601 records. This file contained
consumer data linking indicated consumer preferences to product and
consumer attributes. This 0.6 MB data file was used in Test 6.

Implementing SAS on the RS/6000 Family

3.3.2.1 Test 3 - Linear regression

Using PROC REG, a linear regression model was fit using the Boardroom
data. The stepwise selection method was used but was stopped after the first
variable was brought into the model.

3.3.2.2 Test 4 - Logistic regression

Using PROC LOGISTIC, a logistic regression model was fit to the Boardroom
data. Again, we employed stepwise selection to choose a single variable
model. Logistic regression is known to consume more CPU and memory than
linear regression models.

3.3.2.3 Test 5 - Survival/Event history analysis

PROC PHREG was chosen to exemplify a more computationally demanding
modeling application using the Home data file. Test 5 required PHREG to fit
proportional hazard rates using partial likelihood in a rather complex
econometric model. The example was said to be a case where performance
would increase were SAS given more memory by way of MEMSIZE.

3.3.2.4 Test 6 - Extreme modeling

This case uses actual consumer choice survey data to fit a multivariate model
to the Drink data file. PROC GLM was used to fit the multivariate regression.
This was chosen as an extreme example of how an unbalanced design might
tax memory requirements in SAS.

3.3.3 Test diagnostics

In Chapter 5, “AlX performance tools” on page 51, we begin to compile the
results of these tests under a variety of conditions. In that chapter, the focus
will be on the SAS System Options.

Our interest will focus on requirements and performance as they relate to I/O
and CPU utilization. SAS can produce some useful diagnostics that we will
closely follow while we run the tests under an assortment of system settings.

SAS always sends some basic system performance statistics to the SAS log.
However, detail on real, user CPU and system CPU times, along with full
memory use statistics are only available if the FULLSTIMER System Option
is turned on. This can be activated from either the command line or from the
Options statement in any SAS program.

Performance statistics are produced both for each PROC or DATA STEP, as
well as for the entire SAS process. Figure 10 below shows the summary
information for a Test 5 run.

Chapter 3. Application test environment 29

30

NOTE: The SAS System used:

time:
real 0:03:50.26
user cpu 0:03:15.84

system cpu 0:00:32.03
block I/0 operations:
input 0
output 0

\

memory :
page faults 36
page reclaims 18968

usage 18.18 M
context switches:
voluntary 2

involuntary 21

Figure 10. SAS system diagnostics with FULLSTIMER

These statistics were formatted nicely (time11.) by including an
undocumented System Option, -stimefmt <format>, where the format value

may be z for time11. or s for seconds output.

The real, user, and system times and memory-used values will be stored and
analyzed to make performance assessments. We will especially look for
changes in these values as we vary the available SAS and AlX tuning

parameters.

Implementing SAS on the RS/6000 Family

Chapter 4. SAS tuning parameters

When a user executes a SAS job, the goal is, obviously, to finish the
execution as quickly as possible. This can be achieved by letting the SAS
software take more system resources. The SAS software can, for example,
improve performance by using memory for sorting rather than disk. SAS
software supports such system tuning with various parameters with which you
can force SAS to use more resources, especially memory; however, the
performance improvement is most often insignificant since the system will
allocate a fair amount of resources to each process. Another much more
important reason to avoid changing the default (low) values for the SAS
parameters is that, if you start more concurrent instances of SAS with high
values for memory sizes, the system can easily run out of physical memory.
The insignificant performance improvement then turns into a situation in
which the system can’t handle all the system requests, and we see a
significant performance degradation. This chapter will describe the most
important system parameters and show the impact of changing the values or
setting the values too high.

Whenever a system is to be optimized and you are considering changing
parameters, it should be kept in mind that the most important decisions
impacting system performance stem from the SAS programmer. Efficient
code and limited reads and writes to disk (especially remote disk) will save
resources across the board.

Despite the warnings, the parameter settings can have a substantial effect on
execution time. However, settings appropriate for a single-user
single-process environment will often prove disastrous as the numbers of
simultaneous users and processes increases. Because changes impact the
entire system, these decisions are best left to the SAS administrator. It should
also be said that the initial option values arriving with the SAS distribution
were set for SAS jobs doing query and reporting tasks.

That being said, the System Options may be changed by any user with the
submission of any SAS process. Individuals should refrain from changing
these options. While some parameters will result in performance gains, some
alterations to these parameters may negatively impact individual and
collective user performance, sometimes catastrophically. Parameter settings
should be overridden only with a full understanding of their implications. This
chapter, along with practical experience within a UNIX environment, should
provide a SAS administrator or sophisticated user with the necessary level of
understanding.

© Copyright IBM Corp. 2000 31

This chapter will offer background information and usage instructions for the
SAS System Options, which particularly address the system’s Input/Output
(I/0) processing, memory allocation, and CPU utilization.

4.1 Base SAS software options

411

32

Base SAS software options define the session interaction with system
resources, note that each SAS user starts their own SAS session and
parameter values may vary from session to session. Discussion of system
performance optimization, as affected by the SAS System Options, should be
limited to the subset of four options: MEMSIZE, SORTSIZE, BUFSIZE, and
BUFNO. A full description of SAS System Options may be found in the SAS
Companion for UNIX Environments: Language, Version 6, Cary, NC: SAS
Institute Inc., 1993, ISBN 1-55544-565-9.

Inclusion of system options

At the start of each SAS session, the session will use the system options in
the configuration file(s) if not overruled by command line parameters. The
baseline and default configuration file, named config.sas612 in SAS Version
6.12, will be found within the directory where the SAS System is installed
(sasroot). Generally only system and/or SAS administrators will have write
permissions in this directory.

On execution, SAS looks first to sasroot, the user’s home directory, the local
directory, and the command line for gathering pertinent configurations. Those
coming later in the above list take precedence. Any user may include a file,
such as config.sas12, in one’s home directory, which would add or change
the options defined by the configuration file in sasroot.

All system option settings take the format - sasoption <value>, whether in the
configuration file or following the SAS executable at the command line. For a
complete explanation of the SAS System Options, see the SAS Language
manual.

The majority of SAS System Options deal with input and output formats and
file locations, but few directly impact physical and virtual memory usage and,
thus, system performance. Beyond improvements in application
programming, SAS and its user community have identified four options that
have been found most relevant in tuning for different system environments.
Our plan is to discuss and test these SAS options extensively, but a bit of
history should be kept in mind. Many of these options were originally found
useful for tuning SAS for use on a mainframe (IBM System 3xx) or on earlier
implementations of the UNIX environment. We will pursue, confirm, or rebut

Implementing SAS on the RS/6000 Family

these parameters’ continued relevance to the modern RS/6000 family running
AlX.

4.1.1.1 MEMSIZE = memory specification

The MEMSIZE option specifies a limit on the total amount of system memory,
physical or virtual, the SAS System may use at any moment. The operating
system will also have a fixed amount of memory available. It is preferable that
not all of it be allocated to supporting SAS applications. Clearly, the system
memory defines the upper bound of MEMSIZE. This parameter specifies only
the amount of memory available to SAS in any single process. But, in a
multi-user environment, all jobs must share a fixed amount of system memory
at any point in time.

The sub-statement below gives the syntax following the SAS executable with
the values:

-MEMSIZE n |nK | nM | nG | MAX
where

n - specifies the amount of memory in bytes

nK - specifies the amount of memory in kilobytes
nM - specifies the amount of memory in megabytes
nG - specifies the amount of memory in gigabytes

The default setting as supplied in config.sas612 for our AIX release is 32 MB.

4.1.1.2 SORTSIZE memory specification

The SORTSIZE option specifies a limit on the total amount of memory the
SAS System may allocate to the SORT procedure. This has an upward bound
per the MEMSIZE specification.

-SORTSIZE n | nK | nM | nG | MAX

The syntax for SORTSIZE follows that given for MEMSIZE. The default
setting in our installation is 16 MB.

4.1.1.3 BUFSIZE memory specification

The BUFSIZE option is a permanent characteristic of any SAS data set and
defines the I/0O buffer size to be used when addressing its data. If you choose
a BUFSIZE value of 0 or leave it out, the SAS System aims to choose a host
system default value that is optimal for the SAS data set. In AlX, this is 4096
bytes.

-BUFSIZE n | nK | nM | nG | MAX

Chapter 4. SAS tuning parameters 33

Here again, the syntax follows the pattern set for MEMSIZE. An increased
buffer size can reduce the number of I/O operations required in working with
a particular SAS data set, yet this will increase memory utilization. The
allowable range spans one kilobyte to two gigabytes.

4.1.1.4 BUFNO value

This number directs SAS as to how many buffers of size BUFSIZE to allocate
for any one move between physical and virtual memory. As with BUFSIZE,
higher parameter values assigned to BUFNO may also limit I/O operations
and, similarly, push memory utilization upwards.

-BUFNO n

The number of buffers of size BUFSIZE to utilize in paging was not explicitly
set in config.sas612; it defaults to one.

4.2 Other considerations

In addition to the system options provided by SAS, users may improve
performance by incorporating other data management techniques provided
by SAS. How data sets are defined and where file systems reside will have an
impact. Still, it is hard to recommend a rule of thumb when user requirements
vary so widely, both from company to company and from user to user.

4.2.1 Work space

34

Perhaps, more than any other disk, those associated with SASWORK will see
the most read and write activity. SASWORK is a directory to which all
temporary SAS data files are directed. Within SASWORK, every SAS process
creates a directory (named partially by the process ID). This will hold all files
beyond those elsewhere on disk or in memory that SAS needs to execute its
tasks. Upon the successful completion of any SAS process, the SASWORK
process directory and its contents are deleted.

4.2.1.1 Location and size

The best results will be found if SASWORK is placed on a disk optimized for
intense writing activity. It is safest to isolate SASWORK from other system
applications to protect both the SAS sessions and the those initiated by
another application. The default location setting for SASWORK is /tmp; this
is, most likely, an inappropriate choice for a production system and should be
changed immediately. If SASWORK were to fill up entirely (and it will on
occasion), all users would lose write access to /tmp, and much system
functionality would be lost with it.

Implementing SAS on the RS/6000 Family

4.2.1.2 Cleaning up after yourselves

If a SAS session terminates abnormally, the files and directories of the
SASWORK directory are not deleted. Because of this SASWORK can
become littered with process remains (both large and small files). It is wise to
clean this up at regular intervals. You may write your own shell cron script to
regularly (nightly) test for SASWORK subdirectories tied to dead processes
and, if any are found, to discard the directory and contents. However, the
SAS Institute has recognized this need and has provided such a script. The
simplest option is then to take this cleanwork script, found in
$SASROOT/utilities/bin, and tie it to a cron job. If SASWORK fills, all SAS
processes are killed, and more users will be affected.

To avoid the likelihood of SASWORK overflowing under normal
circumstances, SASWORK should be a large enough partition to
simultaneously handle all users’ temporary data files. A recommended
amount of space to reserve for SASWORK cannot be given without knowing
the exact use of SAS; larger jobs and big data sets will require more
workspace. Users with one-off work space requirements greater than
SASWORK could consider rethinking their task, or they could be advised to
redirect SASWORK to a disk with larger space using the -saswork
<directory> system option.

4.2.2 Use SAS compression wisely

SAS offers a compression option that differs dramatically from UNIX
compression tools. UNIX tools substantially reduce the size of files but are
not usable again until they are uncompressed. Thus, great savings are made
in file space, but processing costs may add up due to execution of the
compression and decompression commands themselves.

The SAS compress option has two driving motivations:
* Reducing the size of SAS data sets

* Reducing the time needed to process data

While users will see file size reductions varying by up to 50 percent
(sometimes, they will see a modest increase in size), our focus is on reducing
processing time and, thereby, improving system performance. The reduction
in storage space may lead to reduced processing time if the applications
executing on a particular data set primarily consist of input and output
operations. However, if your applications are primarily computational or
otherwise field specific, your processing costs will rise because SAS will need
to decompress variables in order to operate.

Chapter 4. SAS tuning parameters 35

An increase in processing occurs because SAS operates on numeric
variables at a full width of 8 bytes and must widen compressed or otherwise
reduced-format numeric data to 8 bytes. SAS moves data in 8-byte
boundaries, and your AIX system will struggle to properly align numeric or
character data. Therefore, the best performance will occur when operating on
character fields whose length is maintained in 8-byte multiples. (see
Appendix C, “Optimizing systems performance” on page 93).

Like the BUFSIZE system option discussed earlier, compression is a fixed
attribute of a SAS data set. One engages (or negates) SAS compression by
setting the compress=YES (or =NO) either as a system option or as a data
set option.

4.2.2.1 AIX compressed file system

We also note here that with AlX4, AIX will now support a compressed file
system. The compression is transparent to the user and SAS. What you gain
in reduced I/O and disk space may more than offset the additional CPU
required to process the compressed data.

4.2.3 Indexing

A user who routinely joins or merges individual SAS data sets would benefit
from utilizing the SAS indexing capabilities. The index is stored in a data
structure separate from the data itself and enables direct read access to
observations when selections are performed on the values of indexed
variables. (Indexes are leveraged with the use of WHERE or BY statements
in SAS when followed by indexed variables).

The price of indexing is the processing time required in creating the index
along with slight storage and administrative costs for the indexed structure
files. The processing costs are similar to those for sorting a data set. Indexing
will begin to pay for itself as repeated selections and merges on indexed data
sets are made.

4.2.4 Enabling very large file (> 2 GB) access
It is increasingly common to access or create very large files. On a 32-bit
operating system, such as AlX, it is natural for a 2 GB (2/32) threshold to
mark our entry into very large files.

SAS users may have years of practical experience before a log error
message states that large files are not supported. A user may not even be
aware that users are trying to read, write, or compose a SAS work space file

36 Implementing SAS on the RS/6000 Family

of such magnitude. Fortunately, getting around this natural restriction is a
simple process.

Since Release 6.12, SAS has been able to support native files in excess of 2
GB. This is enabled with the inclusion in the system of the - LARGEFILE
sasvlfs System Option or user SAS configuration file, or it is passed as a
parameter with the SAS executable. The SAS administrator may choose to
selectively disseminate this knowledge among the SAS users, if such activity
is judged inappropriate for any reason. Users might then be encouraged to
partition files manually or take advantage of advances with Release 6.12 that
enable the logical grouping of SAS data files that, in the aggregate, exceed 2
GB. Please contact your SAS consultant or reference the appropriate
manuals for complete details on file partitioning within SAS.

4.3 Data processing performance test results

Examples and test results will follow. We chose the programs of our test plan
for their ability to push on one or more of our three system performance
boundaries. We then submitted and resubmitted the test programs under
altered System Option and memory settings.

We hoped to highlight cases where a program would execute more efficiently
if the SAS parameters were optimally set. This was rarely the case. Aside
from some modeling exercises where SAS needs to cache the entire design
matrix in memory for it to run at all, programmers will rarely see benefit over
the default parameters.

4.3.1 Reading and writing, CPU-bound

Our first test seeks to look closer into the performance of the first task SAS
users are likely to encounter: Reading data into SAS. Reading data into SAS
and writing data into a SAS data file is, inherently, an input/output process.
Though the process was an I/O task, the constraint is not found there.

4.3.1.1 The benchmark

Test 1 was run using the default settings. These settings and the performance
output gathered from the SAS program log fullstimer option. When left alone
on the system, this reading and writing process is processing at 100%
capacity for almost the entirety of the process. This is evident in the lack of a
gap between the user time and the real time.

Table 7 on page 38 summarizes our parameter settings and performance
results for our initial run. Not only did this job run at full capacity, but it was an
essentially memory-free task. Just launching SAS consumes about 1

Chapter 4. SAS tuning parameters 37

38

megabyte of physical memory, and our log below shows a total consumption
by SAS of less than 2 MB. We know memory is not a constraint here.

Table 7. Performance benchmark using default settings

memsize 32 MB
bufsize 24576 KB real time 568.88 s
bufno 1 user time 542.73 s
file size (HRECS) 169.2 MB system time 19.54 s
file size (PRECS) 467.0 MB memory used 1.40 MB

Because the input files fit easily within physical memory, there is no paging to
inhibit our job. Nor is I/O contention an issue. If it were, the real time-to-user
time gap would have been larger. With less than 20 seconds of system time in
a 9 minute task, surely the I/0 movements themselves are not diverting much
of our processing resource. This is perhaps a best-case scenario, but only a
faster processor could lead to a reduction in completion time.

4.3.1.2 Buffer size: getting it right the first time

Whether you allow SAS to set the buffer size or override that decision, the
buffer size will remain a fixed attribute of that data set unless it is wiped out
and created anew. The effects of any sub-optimal decision will be amplified
as the data set’s size and shelf life increase. A bad decision here will waste
disk space when creating a new data set. The system will then have to supply
additional memory and CPU time each time that data is brought into SAS.

Setting the buffer size too low will have many knock-on effects. Minimimally,
the buffer size should exceed the record’s length, or your system will need to
access multiple pages to operate on a single record. Moreover, never choose
a page size below that used by the operating system (4096 bytes on AIX
V4.x), or some space on every page will be wasted. The result will be
additional paging along with additional storage and memory. The additional
storage needed was evident from the beginning of testing. Table 8 shows the
size of the PRECS data set under a variety of buffer size settings.

Table 8. Test 1 SAS data file sizes

Buffer size in kilobytes 1 4 8 24 64 5242

PRECS size in megabytes 505.8 | 476.1 | 472.0 | 467.0 | 467.5 | 472.0

HRECS size in megabytes 209.7 | 176.6 | 1721 169.2 169.4 | 168.9

The results in Table 8 on page 38 suggest that you could unnecessarily
produce a data set larger than the default by up to 15 percent, but, at the

Implementing SAS on the RS/6000 Family

same time, provide little hope of attaining a more compact data structure.
SAS employs an algorithm that attempts to optimize CPU and 1/0O
performance with its choice of BUFSIZE. It seeks the smallest multiple of 8
KB capable of holding 80 observations subject to a maximum of 64 KB.

Since the SAS algorithm is proprietary, you cannot know in advance what
SAS will select as an optimal buffer size. Nonetheless, this solution delivers
data in structures that appeared at or near local minima with regard to both
space and time.

These tests considered quite a few alternatives to bufsize and none
succeeded in either lowering the data set size or enhancing the speed with
which the SAS data set was created. It is unlikely that most sites have time to
experiment, and the costs of experimentation grow with the magnitude of your
data. The only recommendation we offer is to give the SAS algorithm a
chance to perform. Only if this data set sees routine access and performance
diagnostics indicate that a change in buffer size is warranted should anybody
consider changing this parameter.

4.3.1.3 Protecting your I/O will cost you memory

Do you still think you should be saving I/O operations? Some users expect
better performance if fewer and larger memory chunks are employed. We can
demand fewer I/O operations, but only by agreeing to an increase in memory
usage. But, our RS/6000 carried out its paging and other I/O activity so
effortlessly that attempts to simply limit the number of movements between
physical memory and external storage will, generally, see slim (if even
measurable) decrements in execution time.

Nonetheless, increasing the number of pages to exchange can be done by
moving up the SAS BUFNO parameter from its initial value of one. One could
multiply this effect by simultaneously increasing BUFSIZE. Table 9 compiles
the results of such an exercise on Test 1.

Table 9 should bolster our confidence in the SAS default settings (seen in the
second row). Neither in this test, nor in any other, was there evidence
suggesting that reduced paging (partially evident in the form of reduced
system CPU) delivers any reduction in overall processing time.

Table 9. Buffer versus performance in Test 1

Bufno / no. | Bufsize Mean real | Mean user | Mean Maximum
of cases (KB) time (s) time (s) system memory

time (s) used (MB)
1/3 4 574.88 548.31 21.63 1.36

Chapter 4. SAS tuning parameters 39

Bufno / no. | Bufsize Mean real | Mean user | Mean Maximum

of cases (KB) time (s) time (s) system memory
time (s) used (MB)

1/3 24 565.93 544.87 16.17 1.40

1/3 64 565.98 546.85 14.20 1.48

1/1 512 563.72 545.58 14.02 15.18

30/3 4 579.13 550.44 23.43 1.61

30/3 24 567.08 546.33 16.20 2.79

30/3 64 565.58 546.76 15.10 5.09

30/1 5242 565.32 547.46 15.76 29.96

If it is the only active significant process, using a larger buffer should reduce
the paging activity and utilize more physical memory. While not a concern on
a single-user system, increasing bufno and taking more RAM in the process
may push physical memory requirements up against system limits in a loaded
system. It also increases the risk of reaching that state where thrashing
between physical and virtual memory begins.

The only reward to increasing buffer size seems to be reduced system time
use (primarily kernel processes), but this comprises merely 15 to 20 seconds
of a 9 minute process. Exaggerated cases employing one and thirty 512 MB
buffers saw no significant gains to completion time. However, these jobs
utilized significantly more physical memory than all the others combined.
Such settings will needlessly reduce the entire system’s capacities.

4.3.2 Sorting processes

Sorting a data set is an extremely common event for most SAS users. It is
routinely a prerequisite that SAS data files be sorted on variables for BY
processing, whether this occur in the DATA step or another SAS PROC. Data
files to be sorted will clearly vary in size.

The absolute size of the data set will not be our primary concern. It will help,
however, to understand the interdependency of the data set size, the amount
of physical memory available on the system, the subset of memory allocated
to SAS, and the portion of that allocated to PROC SORT.

40 Implementing SAS on the RS/6000 Family

— Note

In total, SAS will use an amount of memory just a few megabytes above the
SORTSIZE setting, if not constrained immediately by MEMSIZE.
Remember this, since it is the SORTSIZE parameter’s allocation of
memory to PROC SORT that drives the results in the following examples.

Scenarios of these possible memory conditions will be discussed in the
subsections to follow. In each, Test 2 is carried out under revealing settings of
SORTSIZE and available physical memory. Among the relative size scenarios
we found interesting were:

SORTSIZE < 2 x data < physical memory
SORTSIZE < 1 x data < physical memory < 2 x data
SORTSIZE < physical memory < data

1 x data < SORTSIZE < physical memory
SORTSIZE <= physical memory < 1 x data

During the sort, SAS is creating and reshuffling the output (sorted) data file
within its work space. Until completion of the sort, this data file is maintained
in the process’ /saswork directory; its size is equal to that of the input data
file. The system would prefer immediate access to both of these data sets.
Therefore, we can expect significant performance implications when physical
memory availability passes through thresholds defined at one and two times
the data file’s size.

After moving through examples, we will return with an overview of memory
use by PROC SORT, and the system that made this example set valuable.

4.3.2.1 Unlimited uncontested physical memory

Any process with essentially free access to RAM would be expected to run at
its best. This is the case with PROC SORT when the RS/6000 is able to
cache the entire data set into physical memory. In fact, we can cache both the
input (unsorted) and output (sorted) data sets.

Furthermore, if no other processes are consuming memory, no processing
will be consumed by paging, and no time will be wasted waiting for the return
of those 1/O operations. The CPU is free to concentrate on the sort.

Table 10. Best case sort for Test 2

Real time(s) User time(s) System time(s) | Memory used (MB)

60.92 20.67 21.52 17.47

Chapter 4. SAS tuning parameters 41

42

Notice that system time consumes a far greater share of the real time in
PROC SORT than in our previous example due to the large number of
changes to the output data set as the sort is processed. Not only that, but
there is a sizeable gap between real time and the sum of real and user times.
This 20 second bridge suggests that nearly one-third of the real time is in an
I/0 wait state. This is a gap we should keep an eye on because it will only
grow larger when we open up resources for competition. In Chapter 7, “AlX
file system, SAS system, and performance” on page 67, AlX tuning for I/O
bound processes will be addressed.

Still, not many users would object were their one-half gigabyte file to sortin a
single minute as did ours in the default case. This machine has fully three
gigabytes of physical memory allowing SAS to simultaneously hold the input
data and the output data set as it is sorted. The following tests exemplify the
performance declines as various resources are taxed.

4.3.2.2 Uncontested but limited

We now introduce the sort of file that is between one and two times physical
memory. Leaving the SAS parameters alone, the RS/6000 requires both
physical and virtual memory in handling such a sort.

Rather than searching for a 1.5-plus gigabyte file, we had our system run with
a simulated single gigabyte of RAM. Logging on as root, this can be done with
the mss -c 1024 command. Now that we are unable to hold input and output
data in physical memory, we force the system to page a bit.

Table 11. Test 2 under reduced memory

Real time(s) User time(s) System time(s) Memory used (MB)

92.95 20.22 25.79 17.47

The process’s increased reliance on paging and I/O to /saswork led to a 50
percent increase in real time, while user time and memory requirements saw
no effect. The few seconds increase in system time accounts for some of the
expansion in real time. However, the increase in time waiting for 1/0
operations to complete is the key factor.

In the coming examples, watch for the gap between user time and real time to
grow as increasingly more time is spent waiting on I/O (in the form of paging)
and less time is spent on the actual sort.

4.3.2.3 Memory below input size
In cases where either the input data set is truly large or competing processes
reduce available physical memory, not even a single copy of the data can be

Implementing SAS on the RS/6000 Family

held in RAM. This example simulated a system having only 256 MB of
physical memory, half the size of the object to be sorted. The same amount of
sorting will be required, so user time should be relatively static, but system
time and I/O waiting time will rise.

Table 12. Sorting data file larger than physical memory

Real time(s) User time(s) System time(s) RAM used(MB)

126.38 20.97 28.89 17.47

In the examples given so far, the memory used has been constant at 17.47
MB. The examples thus far have employed the SAS system defaults of 16 MB
of SORTSIZE and 32 MB of MEMSIZE.

These results should show that not having unlimited RAM on the system will
not destroy performance. At least in PROC SORT, SAS does not require
much physical memory to process a sort. Furthermore, the execution time
only doubled in this example where the data set could not be cached into
memory from that with unlimited RAM. It would be easy to recommend
purchasing twice the amount of physical memory relative to one’s largest data
set, but it is hardly practical.

4.3.2.4 Giving SAS everything

Having read the SAS System Options materials, one could come away with
the expectation that a sort would run fastest should you be able to fit the
entire data set within its SORTSIZE parameter. We looked into this by
allotting a full 768 MB to SORTSIZE and 1 GB to MEMSIZE. Table 13 shows
the processing results. Another case was run with outrageous SAS limits but
displayed simply to show that PROC SORT will not use much more physical
memory than that needed to contain the data set size.

In all three of the Table 13 cases, SAS is able to cache the entire output data
set eliminating the need to read or write to SASWORK entirely.

Table 13. Unleashing SAS’s access to memory

Sortsize/mem Real User System Memory used
size time(s) time(s) time(s) (MB)

512 MB /600 60.01 17.06 29.89 484.11

MB

768 MB / 1GB 60.42 17.76 28.12 484.11
1GB/2GB 61.13 17.97 28.15 484.11

Chapter 4. SAS tuning parameters 43

44

The results are equivalent. In fact, allowing SAS enough sorting space
through the SORTSIZE parameter led to no reduction in sort time. Provided
the data has already been cached into physical memory, SAS takes about
one minute to sort our Census data regardless of MEMSIZE and SORTSIZE
settings.

However, by moving up the SORTSIZE, SAS will consume more RAM for the
sort and leave less for other applications. Allocating more memory (in our
case, over 400 MB more) to a job without measurable gains in performance is
clearly wasteful and could needlessly put other users’ applications at risk.

4.3.2.5 Let AIX have it

Above that which is absolutely required by SAS to perform normal tasks,
MEMSIZE should not be increased. AlX is better positioned to properly
allocate physical memory. Individual and, more importantly, collective
performance will benefit if AlX is allowed to maximize the amount of data kept
in memory. With data more likely to be resident in memory, less disk access
and paging will be required.

Excessive paging is perhaps our greatest enemy. We moved towards this
state by reserving increasingly more memory into SORTSIZE. Table 14
illustrates how performance of a SAS sort can deteriorate on a system with
256 MB of accessible physical memory.

Table 14. Overcommitting memory to SAS in Test 2

Sortsize / Real User System Memory used
memsize (MB) time(s) time(s) time(s) (MB)
16/32 126.38 20.97 28.89 17.47
32/64 138.79 20.71 29.35 33.73
64/128 148.27 20.87 30.63 66.22
128 /256 799.05 21.30 41.64 131.31
256 / 256 1661.26 22.25 61.56 255.10

As the RAM available to AlX falls, the elapsed time before job completion
balooned. In the last row, not enough memory is left to comfortably run the
system; a system that actually had to run an increased number of paging
operations. These examples were run in an otherwise process-free
environment. If other applications were also calling for memory, these and
others would have seen their real times multiply.

Implementing SAS on the RS/6000 Family

AlX utilizes memory much more efficiently than SAS. Handing memory
resources over to AlX, versus internalizing memory inside a SAS job allows a
greater amount of the data set to sit in memory. This results in a greater
proportion of CPU use going to the user, a much better alternative to idling or
awaiting 1/0. Confirm this with the vmstat command.

4.3.3 Sortsize and memory usage

Remaining with the Census sorting example, we now consider testing a
multi-user scenario on a system with finite memory. By running four
processes simultaneously, each of our two CPUs will share the load. By
setting our physical memory below the size of any data set, physical memory
and virtual memory will also be economized among the four tasks.

Specifically, we are concerned with memory allocation and paging activity
under SORTSIZE settings (on individual tasks) from eight to 64 megabytes.
Four runs of Test 2 were run for each value of the SORTSIZE parameter. The
results follow.

Table 15. Four simultaneous executions of Test 2 runs with varying SORTSIZE

Sortsize Mean real Mean user Mean system Total
time(s) time(s) time(s) memory
used (MB)

8 612.63 24.21 33.83 38.07

12 628.70 23.57 34.53 54.34

16 595.80 23.77 34.13 70.59

20 640.55 23.34 34.39 86.86
24 700.13 23.39 34.47 103.12
28 746.08 23.94 36.00 119.38
32 771.00 23.95 36.81 135.65
36 854.25 24.08 36.71 151.90
40 1248.05 24.19 37.69 168.18
44 1403.33 23.86 39.24 184.46
48 993.55 23.64 38.70 199.76
52 5109.48 25.05 46.84 215.95
56 5662.58 25.37 48.50 233.08
64 6467.90 25.66 51.11 265.64

Chapter 4. SAS tuning parameters 45

Again, the SAS default proved best. The minimum real time was observed for
the 16 MB SORTSIZE case, although there was little penalty for choosing a
still lower value. The amount of sorting was identical in each of the 14 cases;
so, we expected and saw similar user times. The system time did not rise
much until higher SORTSIZE values cut severely into the system’s memory.

Severe performance deterioration was observed initially with the 52 MB
SORTSIZE. When asking for up to 200 MB of total memory SAS, we
observed a relatively scalar increase in real time. This threshold was pierced
with the 52 MB case where real times spiked upward four or five-fold.

At face value, four SAS processes demanding 65 MB of memory each would
consume more than 100 percent of the available 256 MB of RAM. Actually,
SAS does not differentiate between physical and virtual memory, but the
reliance on virtual memory to access SAS program data will dramatically slow
down any process. At this point, we are expecting and encouraging the
system to begin thrashing about among its paging space. And it does. The
average time to completion, at 108 minutes, was ten times that seen under
the default settings.

Actually, AlX needs some RAM to efficiently carry out its paging and kernel
operations while supporting AIXwindows. Leaving room for I/O in memory is
critical. These results indicate that AIX would prefer to keep aside at least 50
MB of physical memory for itself. That is, the sum of memory usage by SAS
processes should not be allowed to exceed your system’s available RAM by
less than 50 MB.

Further gains will result by offering AIX even more memory resources. The
test results convincingly show that SAS jobs run optimally when AlX, rather
than the SAS program, is given the power to allocate memory among
competing processes.

4.3.4 Last thoughts on sorting

46

PROC SORT will store as much of the input data into SORTSIZE as allowed.
That, plus about two megabytes, is as much memory as SAS will seek in any
one sorting process. Until it finishes, SAS is also working on another,
increasingly sorted, copy of the data set. As physical memory is available,
one or both of these copies might be maintained in memory. If held in
memory, no paging is required, and the process, or processes, will quickly
move along to completion.

Large data sets, limited physical memory, or a busy system will often disallow
sorting to take place entirely within memory. Paging is then a necessary

Implementing SAS on the RS/6000 Family

activity. Under normal conditions, an RS/6000 can effectively carry out SAS
sort processes with little difficulty. We have shown, however, that difficulties
will arrive should SAS processes collectively occupy too much of the physical
memory. Performance scales downward as memory is used but plummets as
the cumulative amount given to SAS approaches the system’s physical
memory.

In all but rare cases, we think the worst-case scenarios can be avoided if the
SAS community does not engage in altering individual process memory
assignments. Our testing has shown that individual sort processes do not
benefit from individual reserves of memory by way of MEMSIZE. Instead,
they work just as well with the standard allotment.

4.4 Computational test results

SAS’s most demanding user community includes those who call on SAS for
its statistical analysis capabilities. SAS offers an extensive suite of statistical
algorithms. The most complex of these are often those procedures designed
for the construction of statistical models. Statistical modeling often involves
matrix algebra. While some SAS users are aware of the matrix algebra
involved and its computational implications, many are not.

Some SAS procedures will try to fit part or all of the matrices into the memory
offered to the SAS program. Part of this section’s directive is to determine
whether that memory should necessarily be allocated to SAS by way of the
MEMSIZE System Option. And if not required, does the amount allocated
impact performance times?

In this section, we will examine a couple of computational examples and try to
measure performance relative to the SAS System Options that have already
been introduced. Most importantly, minimal requirements for the settings will
be sought. The section will also offer an attempt to introduce some guidelines
for anticipating these requirements. Since we cannot examine every SAS
procedure, we recommend you examine indexes with the appropriate SAS
manual under memory requirements.

4.4.1 PROC REG

Many users receive their practical introduction to simple and multiple linear
regression with the SAS PROC REG. Its versatility and frequency of use
demand our attention. Fortunately, for the user and the system, the equations
needed to fit a regression model have received much attention from
computational statisticians. The computations have successfully been

Chapter 4. SAS tuning parameters 47

partitioned so finely that very little of the data needs to be in memory at any
one time.

The example we chose fit models on 5, 25, and 100 percent samples of a 297
field data set. The results are for the stepwise selection allowing only one
step. Allowing more steps and using other selection methods did not affect
the memory usage, nor would it impact our conclusions.

Table 16. PROC REG declining memory in Test 3

Size of data (MB)

Memsize (MB)

Real time(s) Memory used (MB)

11.0 32 8.13 2.77
55.5 32 39.75 2.76
2221 32 156.64 2.78

the SAS system has clearly implemented many of the advances in
computational statistics allowing the program to concentrate on the
mathematics with very limited resource requirements. No matter how much
memory we offered it, PROC REG used a constant amount. The increase in
execution time also increased linearly with the size of the data set.

4.4.2 PROC LOGISTIC

48

Like linear regression, logistic regression also receives heavy use.
Unfortunately, the computations are not as simple. We shall see this reflected
in the amount of time SAS takes to produces results with PROC LOGISTIC
on the same data used in the prior section.

Computationally, the matrix algebra required by logistic regression cannot be
partitioned to the degree that it is in linear regression. Therefore, the matrices
must be carried around in memory. Given enough memory with MEMSIZE
setting, SAS will internalize these matrices. Otherwise, they can be kept in
the physical or virtual memory space of the RS/6000. The test data indicates
that it makes little difference in computing time until SAS returns with the
model.

In each case, a logistic regression model was fit using a single step of a
stepwise procedure.

Table 17. Logistic regression and Test 4

Size of data Memsize Real time(s) Memory System RAM
(MB) (MB) used (MB) (MB)
11.0 8 68.30 3.09 3072

Implementing SAS on the RS/6000 Family

Size of data Memsize Real time(s) Memory System RAM

(MB) (MB) used (MB) (MB)
11.0 16 68.08 3.09 3072
11.0 32 67.49 23.56 3072
2221 32 1164.39 9.09 3072
2221 32 1390.67 9.09 256
2221 32 1182.89 3.11 512
2221 512 1944.60 425.09 512
2221 512 1197.69 425.09 3072

In the small 11 MB data set examples, the MEMSIZE setting had no effect on
the real time results. In all cases, the memory used was extremely limited
unless the MEMSIZE setting allowed space for about two times the data’s
size.

This turns out to be a frivolous use of memory that can lead to trouble. This
trouble can arise even if no other users or processes are competing for
resources. Look to the full data set cases in Table 17. Whether we allotted 0.5
or 3 GB of RAM, or a MEMSIZE of 32 or 512 MB, the resulting real times
were similar. Only in the case where we allowed SAS to cache the working
data file without adequate physical memory (row 7) did the execution time
cause concern. With 425 of 512 MB of available memory taken by SAS, the
system was forced to excessively page.

PROC LOGISTIC will not benefit by topping off the MEMSIZE parameter. The
best results would again be obtained by staying with the defaults.

4.4.3 Taming PHREG

PHREG is the SAS survival analysis procedure, and it offers a more
interesting performance curve with respect to MEMSIZE. Our example data
set measured 41 MB in size. Memory usage climbs with memory allocation up
to the size of the data set. At that point, we see a step down in execution time
including a significant fall in system time required.

Table 18. Staggered gains with memory with PHREG

Memsize Real time(s) | User time(s) | System time(s) Memory
(MB) used (MB)
4 230.51 196.30 32.52 3.10

Chapter 4. SAS tuning parameters 49

50

Memsize Real time(s) | User time(s) | System time(s) Memory
(MB) used (MB)
32 230.26 195.84 32.03 18.18
64 195.12 184.34 8.29 39.09
512 192.55 184.04 7.83 41.64

PHREG is different for a couple of reasons. First, an implicit sort is called by
the program and, thus, attempts to bring the entire design matrix into the sort.
It then takes a bit more for the program and other data. (In our tests,
SORTSIZE was set to half the value of MEMSIZE). Next, PHREG, using
partial likelihood, essentially fits a logistic regression model for every unique
event time. With each fit, the data set is somewhat altered, which requires
additional I/O for the modeling data. This may partially explain why PHREG,
more than other SAS Procedures, may actually benefit from having a large
enough MEMSIZE to hold the design matrix.

This test is run optimally when it is able to bring the data set into the SAS
allocated memory space. The SORTSIZE should then be set a bit above the
data set size. However, you should watch your memory consumption.

What then is the penalty for setting the memory parameters a bit low? We
observed 10 to 15 percent more execution time even in the case where
MEMSIZE held a value of 2 MB. It is not a large sacrifice to make considering
the potential problems that might unfold should a user choose to be too
greedy with SAS memory consumption.

More tests should be run with differing numbers of observations, independent
variables, and observed (time) intervals. This would enable a full assessment
of the scalability of performance against parameter settings. Few of our test
cases exhibited dramatic changes in system time as did our PHREG
example. It would be interesting to see how it behaves in other situations. In
short, PHREG may warrant increased attention to the SAS System Options
settings.

Implementing SAS on the RS/6000 Family

Chapter 5. AIX performance tools

In this chapter, we will describe some AIX tools and methods to determine
and monitor work loads. It is necessary to use some tools (either these or
others) if you want to optimize the utilization of AIX and the RS/6000 system.

In a given system, when you are running a workload, there will be a
bottleneck. The system runs out of a resource, and performance is then
limited by this resource. The limitation is most likely to one of the four system
resources:

* Physical memory
* Virtual memory (paging space)
* Disk 1/0O
* CPU
The optimization task is, basically, to find the resource that caused the

limitation and either add some more resources or reconfigure the system to
use less of the limited resource.

5.1 Performance tools description

Five of the most important and used tools are vmstat, iostat, svmon, vmtune,
and rmss. In the following sections, we will give a short description of each.
For a complete description including all parameters, see the AIX Commands
Reference, Volumes 1 through 6, SBOF-1851. This section describes only a
subset of the parameters and the output.

5.1.1 vmstat command
The syntax of the vmstat command is as follows:

vmstat [Interval [Count]

The vmstat command reports statistics about virtual memory, disks, interrupts,
and CPU activity. Output from vmstat command gives an overview of system
activity. The Interval parameter specifies the amount of time in seconds
between each report. The first report contains statistics for the time since
system startup and is rarely used. Subsequent reports contain statistics
collected during the interval since the previous report. If no Interval parameter
is specified, the vmstat command generates a single report and then exits. If
the Count parameter is specified, its value determines the number of reports

© Copyright IBM Corp. 2000 51

52

generated and the number of seconds apart. If the Interval parameter is
specified without the Count parameter, reports are continuously generated.

Figure 11 show the results from three vmstat samples:

kthr memory page faults cpu
r b awm fre re pi po fr sr cy in sy c¢s us sy id wa
0 1 46712 2059 0 0 0 0 0 0 1406 232 101 3 3 94 O
0 1 46712 2058 0 0 0 0 0 0 1392 2075 2037 6 3 91 1
0 0

1 46712 2058 0 O 0 0 0 1395 2077 2076 2 4 94 0

Figure 11. Typical output from the vmstat command
Output description:

kthr: kernel thread state changes per second over the sampling interval.
e r - Number of kernel threads placed in run queue

* b - Number of kernel threads placed in wait queue (awaiting resource,
awaiting input/output)

Memory: information about the usage of virtual and real memory. Virtual
pages are considered active if they have been accessed. A page is 4K bytes.

avm Active 4K virtual pages. This is not physical memory.

fre Size of the free list. The number of pages on the free list is usually
small; it is controlled by the vmtune parameters maxfree and minfree. If
the number of pages on the free list drops below minfree, some pages will
be made free. If a page is marked dirty or used, it will be written to page
space on disk before it's made free. Note, this disk transfer appears only
in the po column for working-segment pages. If the page was a dirty
permanent-segment page, that I/0O does not appear in the po column.

Note

A large portion of real memory is utilized as a cache for file system data.

Page: information about page faults and paging activity. These are averaged
over the interval and given in units per second.

* re - Pager input/output list.
* pi - Pages paged in from paging space.

* po - Pages paged out to paging space.

Implementing SAS on the RS/6000 Family

5.1.2

e fr - Pages freed (page replacement).

CPU: breakdown of percentage usage of CPU time.
* us - User time.
* sy - System time.
e id - CPU idle time.

* wa -CPU cycles to determine that the current process is wait and there is
pending disk input/output.

iostat command

The syntax of the iostat command is as follows:
iostat [-d | -t][PhysicalVolume ...][Interval [Count]]

The iostat command reports statistics about virtual memory, disks, interrupts
and CPU activity. Output from the iostat command gives an overview of
system activity. The Interval parameters specify the amount of time in
seconds between each report. The first report contains statistics for the time
since system startup and is rarely used. Subsequent reports contain statistics
collected during the interval since the previous report. If no Interval parameter
is specified, the iostat command generates a single report and then exits. If
the Count parameter is specified, its value determines the number of reports
generated and the number of seconds apart. If the Interval parameter is
specified without the Count parameter, reports are continuously generated.

Figure 11 show the results from one sample with the vmstat command:

tty: tin tout avg-cpu: % user % sys % idle % lowait
0.0 6.8 2.7 2.7 94.2 0.4

Disks: % tm act Kops tps Kb read Kb wrtn

hdisk0 0.5 3.8 0.4 780813 7387862

hdiskl 0.0 0.0 0.0 0 0

cdo 0.0 0.1 0.0 320396 0

Figure 12. Typical output from the iostat command

Output Description

* % user - Shows the percentage of CPU utilization that occurred while
executing at the user level (application).

* % sys - Shows the percentage of CPU utilization that occurred while
executing at the system level (kernel).

Chapter 5. AlX performance tools 53

* % idle - Shows the percentage of time that the CPU or CPUs were idle
and the system did not have an outstanding disk I/O request.

* % iowait -Shows the percentage of time that the CPU or CPUs were idle
during which the system had an outstanding disk I/O request. This value
may be slightly inflated (in SMP systems with AlX 4.3.2 and before) if
several processors are idling at the same time, an unusual occurrence.

* % tm_act- Indicates the percentage of time the physical disk was active
(bandwidth utilization for the drive).

* Kbps - Indicates the amount of data transferred (read or written) to the
drive in KB per second.

* tps - Indicates the number of transfers per second that were issued to the
physical disk. A transfer is an 1/0O request to the physical disk. Multiple
logical requests can be combined into a single I/O request to the disk. A
transfer is of indeterminate size.

e Kb_read - the total number of KB read.

e Kb_wrtn - the total number of KB written.

5.1.3 svmon command

54

The svmon command reports information about the current state of memory.
The displayed information does not constitute a true snapshot of memory,
because the svmon command runs at user level with interrupts enabled.

swmon[-G][-P[nlsla]l[pidl..pidN]][-P[nlsla]{ulplglr}[Count
]1[-S sid1 ...sidN][-S {[nlsla][ulplglr]}[Count]][-D

sid1 ... sidN][-i Interval [Numlintervals]][-r]

Figure 13 show the output from the svmon command:

memory in wuse pin Pg space
size inuse free pin work pers clnt work pers clnt size inuse
98304 94727 1911 4288 45031 49696 0 4288 0 0 196608 10055

Figure 13. Typical output from the svmon command

The global report is printed when the -G flag is specified. The column
headings in a global report are as follows:
* memory - Specifies statistics describing the use of real memory, including:

* size - The number of real memory frames (the size of real memory)

Implementing SAS on the RS/6000 Family

— Note

This includes any free frames that have been made unusable by the
memory sizing tool, the rmss command.

* inuse - The number of frames containing pages

e free - The number of frames free

— Note

This includes any free frames that have been made unusable by the
memory sizing tool, the rmss command.

* pin - The number of frames containing pinned pages
* in use - Specifies statistics on the subset of real memory in use, including:

* work - Number of frames containing pages from working segments.
These are pages holding program data and shared memory segments.

* pers - Number of frames containing pages from persistent segments,
persistent storage Segments are used to manipulate files and
directories. When a persistent storage segment is accessed, the pages
are read and written from its file system.

* clnt - Number of frames containing pages from client segments. These
are file buffers for nfs file systems and CD-ROM file systems

* pin - Specifies statistics on the subset of real memory containing pinned
pages (pages that cannot be paged out to disk) including:

* work - The number of frames containing pinned pages from working
segments

* pers - The number of frames containing pinned pages from persistent
segments

* clnt - The number of frames containing pinned pages from client
segments

* pg space - Specifies statistics describing the use of paging space. This
data is reported only if the -r flag is not used.

* size - The size of paging space
* inuse -The number of paging space pages in use

* ref - Specifies the number of real memory frames that have been recently
referenced (reference bits are set). This data is reported only if the -r flag
is used.

Chapter 5. AlX performance tools 55

* inuse - The number of frames in use that have recently been
referenced

* pin - The number of pinned frames that have recently been referenced

In the example, we have a system with 786432 * 4 K pages = 3 GB of
physical memory, of which 567278 * 4 pages = 2215 MB are in use, and the
remaining 219154 is free.

The Inuse column shows 26492 * 4 K pages in work segments (program and
data) and 540786 * 4 K pages in persistent segments (file 1/0 buffers).

15510 * 4 K pages are pinned from programs.

The paging space on disk is 540672 pages = 2 GB, whereas 20862 pages are

in use.
~
Pid: 10506
Command: cp
Segid Type Description Inuse Pin Pgspace Address Range
10004 work kernel extension 22 22 0 0..24581
64019 work sreg[10] 0 0 0 0..-1
60018 work sreg[9] 0 0 0 0..-1
5c017 work sreg(8] 0 0 0 0..-1
2c00b work sregl(7] 508 508 0 0..507
3800e work sreg[5] 3200 1526 5501 0..65535
155095 pers /dev/mfs011v:2073 42260 0 0 0..123495
3400d work sreg[l] 6744 0 7820 0..20374
6701 work 1lib data 19 0 0 0..600
54015 work shared library text 464 0 1275 0..65535
59b36 work private 75 1 0 0..2 : 65310..65535
340 pers code,/dev/hd2:5491 4 0 0 0..3
0 work kernel 1448 1193 1137 0..32767 : 32768..65535
- J

Figure 14. svmon -Pa

In Figure 14, we show the output from the svwon -Pa <pid> command while
copying a big file. Because we expect a lot of memory, a 42260 page 1/0
buffer is used as the 1/0 buffer.

5.1.4 Isps command

The 1sps -a command shows all paging spaces; in the example, we have
three paging spaces in the system, placed on hdiskO and hdisk1.

56 Implementing SAS on the RS/6000 Family

Page Space Physical Volume Volume Group Size %Used Active Auto Type

paging03 hdiskl ps 800MB 4 yes yes 1v
paging02 hdiskl ps 800MB 4 yes yes 1v
hde hdisk0 rootvg 512MB 6 yes no v

Figure 15. Typical output from an Isps -a command

page Space - This describes the logical volume name.

Physical Volume - The name of the physical DASD(s) where the logical
volume is placed.

Volume Group - This describes the volume group name.

size - This describes the size of the logical volume.

sUsed - This describes how much of this paging space is actually used now.
Active - This field is Yes or No and tells if this paging space is active now.

auto - This field tells if this paging space is activated automatically during
boot.

Type - This describes the type of the logical volume name, always Iv.

The two next tools vmtune and rmss are not only for monitoring parameter
values. You can alter system settings; so, misuse of this command can cause
performance degradation or operating-system failure. Before experimenting
with vmtune, you should be thoroughly familiar with both "Performance
Overview of the Virtual Memory Manager (VMM)" and "Tuning VMM Page
Replacement" in the AIX Version 3.2 & 4 Performance Tuning Guide,
SC23-2365.

5.1.5 vmtune command

The vmtune command is described in the AIX Version 3.2 & 4 Performance
Tuning Guide, SC23-2365, and we will only describe the four parameters
related to large data 1/O traffic here.

* -pminperm - Specifies the point below which file pages are protected from
the repage algorithm. This value is a percentage of the total real-memory
page frames in the system. The specified value must be greater than or
equal to 5.

* -p maxperm - Specifies the point above which the page stealing algorithm
steals only file pages. This value is expressed as a percentage of the total
real-memory page frames in the system. The specified value must be
greater than or equal to 5.

Chapter 5. AIX performance tools 57

* -r minpgahead - Specifies the number of 4K pages with which sequential
read-ahead starts. This value can range from 0 through 4096. It should be
a power of 2.

* -R maxpgahead - Specifies the maximum number of 4K pages to be read
ahead. This value can range from 0 through 4096. It should be a power of
2 and should be greater than or equal to minpgahead.

5.1.6 rmss command

58

The rmss command is a tool to simulate RS/6000s with different sizes of real
memories that are smaller than your actual machine. Moreover, the rmss
command provides a facility to run an application over a range of memory
sizes, rmss is designed to help you answer the question: "How many
megabytes of real memory does a RS/6000 need to run AlX and a given
application?"--or in the multiuser context--"How many users can run this
application simultaneously in a machine with x megabytes of real memory?"
Rmss can operate in two ways with a number of parameters. One mode is to
issue the rmsss command with another command as parameter, this will
execute the parameter command, but simulating a system with less memory.
The second mode is to issue a rmss command with one of 3 flags We will only
describe the second method and the three flags here. The rmss command has
no output.

* -c flag Memsize - Changes the memory size to the specified value; the
memsize value must be smaller than the actual memory size.

e -p flag - Displays the current (emulated) memory size, that is, if the
effective memory size is reduced with the -c flag, rmss with the -p flag will
show the reduced memory size.

* -r flag - Resets the memory size to the real installed size.

Implementing SAS on the RS/6000 Family

Chapter 6. Optimizing AIX parameters

In this chapter, we will look at some SAS programs and monitor the usage of
system resources with the tools described in the previous chapter.

In real-life optimization, you would use the procedure described in Figure 16
to examine a workload and determine whether it is CPU-bound, I/O-bound, or
memory-bound. Then, when the bottleneck is known, we will know how to
improve the system and performance.

tprof
optimize
BLAS
reschedule
prioritize

svmon
rmss
add
memory

Is System
CPU-Bound

reorg
add vols
add p.s.
Is System reschedule
Memory-Bound add memory

tprof
optimize
BLAS
reschedule
prioritize

Is System
Disk-bound

_>

netstat
nfsstat

trace

Idle state
trashing

Figure 16. Optimizing procedure

However, in this chapter, we will use some known workloads and check the
effect of changing AIX system parameters.

© Copyright IBM Corp. 2000 59

6.1 CPU bound load

60

The screen shown in Figure 17 is taken from a very CPU-intensive SAS job
running alone on a two-CPU F50. In Figure 17, we see the output from a
vmstat command while the SAS program makes some calculations on two
large data sets. The single SAS job takes 50 percent of the two CPUs in the
system, that is, it is equal to one CPU. There is no waiting for I/O or paging,
and all the CPU time is counted as user time. We can conclude that this job,
with this system, is CPU bound since we have no paging activity and no wait
for I/0. The reason the SAS program only gets 50 percent CPU and not 100
percent, which would complete the job faster, is that SAS is a single-threaded
task, and when the SAS program is started on one CPU, it remains there. To
take advantage of our second CPU or any multi-CPU system, one must run
more SAS programs in parallel.

4 I
kthr memory page faults cpu
r b awm fre re pi po fr sr cy in sy cs us sy id wa
1 1 76333 650357 0 0 0 0 0 0 206 209 2950 050 O
1 1 76333 650357 0 0 0 0 0 0 205 173 28 50 0 50 O
1 1 76333 650357 0 0 0 0 0 0 205 173 2950 050 O
1 1 76333 650357 0 0 0 0 0 0 205 173 28 50 0 50 O
1 1 76333 650357 0 0 0 0 0 0 205 179 2950 050 O
1 1 76333 650357 0 0 0 0 0 0 205 172 28 50 0 50 O
- J

Figure 17. CPU usage for SAS process

In Figure 18 on page 61, there is a memory status sampled with the svmon
command for process 12736. The real memory consumption is 3074 4K
pages, and the paging space usage is 2620 4K pages.

Implementing SAS on the RS/6000 Family

4 A
pid Command Inuse Pin Pgspace
12736 sas 3074 1195 267
pid: 12736

Command: sas

Segid Type Description Inuse Pin Pgspace Address Range
4c013 work sregl[0] 5 1 0 0..20798
2f2ab work 1lib data 16 0 0 0..358
54015 work shared library text 1092 0 1483 0..65535
682% mmap mapped to segment id 0
1d6a7 work private 125 1 0 0..96 : 65304..65535
6ca%b pers code,/dev/saslv:79908 385 0 0 0..511
0 work kernel 1451 1193 1137 0..32767 : 32768..65535
N J

Figure 18. Memory usage for SAS process

CPU-bound programs, such as the one above, can neither be optimized by
parameter changes in AlX nor, most likely, by SAS parameters; the job is
spending all CPU cycles in the user program, and optimization must be done
in the program part where the most time is spent. In other words, to optimize
a program that is spending all its CPU time in user time, the only way is to
change the program code. In general, one can expect a 60/40 ratio between
user time and system time. If the user time rises significantly to more than 60
percent, one may consider optimizing the user program, and, if the system
time rises to more than 40 percent, one may consider optimizing the system
environment, that is, adding more memory disks and a larger paging space.

6.2 Tuning memory bound load

A load is memory-bound if the process or load require a large amount of
memory to run or to run fast. As the memory requirements increase, one
expects the process to run faster because it has more memory and can make
use of it. As the memory requirements increase, the system must free some
memory by paging out to paging space on disk, and this slows down the
system. The task in a memory-bound system is to find this balance. With
SAS, however, we have seen neither a a dramatic performance increase nor,
even, a moderate performance increase as a function of more memory (see
Chapter 5, “AlX performance tools” on page 51). Therefore, we conclude,
contrary to what one might expect, that, in general, SAS jobs are not
memory-bound. However, if the SAS parameter specifies a large value for the
MEMSIZE and/or SORTSIZE parameters, SAS will try to allocate more
memory. The performance gain, however, will not match the increase in
memory usage. Listings of SAS results running the same job on a 256 MB
system are shown in figures 19 and 20 on page 62. In the memory range of

Chapter 6. Optimizing AIX parameters 61

62

19 MB to 200 MB, there are no significant performance increases, but, as the
memory usage increases to all physical memory, the system starts to trash or,
in other words, spend all the CPU time in paging.

4 N
NOTE: The SAS System used:
time: memory :
real 0:02:01.76 page faults 31944
user cpu 0:00:20.91 page reclaims 24119
system cpu 0:00:29.14 usage 19.100 M
block I/0 operations: context switches:
input 0 voluntary 2
output 0 involuntary 316
&)

Figure 19. SAS job with finite memory usage

We see in the listings that when the memory usage hits 255 MB, the real time
for the job is increased from 2 min. 01 to 30 min. 24. The system time
increases from 29 seconds to one minute due to increased paging
administration. The user time is the time spent in the user part of the program
and is constant around 20 seconds. One could expect this to decrease due to
the larger virtual memory for the process, but the user time actually increased
by 1.88 seconds.

time: memory :
real 0:30:24.57 page faults 189326
user cpu 0:00:22.79 page reclaims 421807
system cpu 0:01:02.86 usage 255.102 M
block I/0 operations: context switches:
input 0 voluntary 19
output 0 involuntary 596

Figure 20. SAS job using more memory than physical available

The goal is to increase the throughput of the system and to get the CPU time
spent in the program as low as possible. We find that the real time it takes to
execute a SAS program as a function of the memory size is, generally, as
shown in Figure 21 on page 63. If you allocate too small an amount of
memory the program will be slow because it lacks sufficient internal buffer
space; as the SAS program is allowed to increase the memory usage, the
runtime is constant or the increase insignificant until we hit the physical
memory limit. If we further increase the memory size allocated by SAS, the
execution time will increase dramatically because of paging activity and a
lack of space for I/O buffers.

Implementing SAS on the RS/6000 Family

Execution time vs. Memory size
2000

e

1500

1000 & walues

Exacution time

h
=
=

0 WMW
1] all 100 130 200 Za0 300
hemaony size

Figure 21. Time to run a SAS program as function of memory

In the tested program, there is no significant performance gain when the SAS
parameters, MEMSIZE and SORTSIZE, are increased from 5 MB to 50 MB
with input data set size at 500 MB. The recommendation is, therefore, to run
all SAS programs with a small amount of memory; we find that a value of 20
MB is good for most programs. The question from the system administrator is
then: How do we set restrictions on the memory usage for SAS users?

There are other ways to limit the memory usage; you can:
* Limit each user in the config.sas file in the user’s home directory
* Limit all SAS users in the config.sas file in the SAS root directory
e Limit the amount of memory for each process submitted by a SAS user

e Limit the number of concurrent processes for each user

A way to configure the system could be to configure system-wide default
values for memory size in the sas.config file in the SAS root directory. The
user can then overrule the defaults for each user by adding parameters to
command line SAS invocations or by adding parameter values to a local
config.sas file. The system administrator can put a system wide limit on the
amount of memory used by each SAS user process. This is done by editing
the file /etc/security/limits; the format is explained in the file, and the
parameters to change are rmss and data. The system administrator can also
set a maximum number of processes allowed per user preventing any single
user from stealing all the resources. To limit the number of processes per
user as the AlX system administrator, type

chdev -1 sysO -a maxuproc='<max procs>'

Chapter 6. Optimizing AIX parameters 63

The default value is 20, and be aware that this is a system-wide setting and
limits all users.

6.3 Tuning disk I/0 bound load

64

In Figure 22, we have captured a vmstat for an I/0 bound load. The load is
two SAS programs running on a system with 3 GB of memory. Figure 22
shows samples during the execution time, and the blank lines indicate a leap
in time. The system is clearly I/O bound because we are waiting for I/O, and
there is no paging activity. This system is reading and writing data to disk.
From the vmstat table, we can see that SAS is a very well-behaved program.
The column fre is the number of free 4K memory pages. The number is
dropping while data is read and sorted, but never below the minimum on the
free list. The memory pages are used for data buffers and I/O buffers. Figure
23 on page 65 shows the mix at one point in time during execution. If needed,
AIX will allow data storage to squeeze the I/O buffer before paging. In Figure
22, SAS finishes the calculations and releases some memory, and the
number of free pages increases. Now, when there are free pages, AIX uses
them for 1/O buffers, and the number of free pages drops again.

kthr memory page faults cpu

r b awm fre re pi po fr sr cy in sy cs us sy id wa
0 0 112941 625418 0 1 1 18 665 0109 175 29 2 1093 4

1 2 140169 595275 0 0 O 0 0 0 536 725 102 15 24 10 51
0 2 374913 110728 0 0 O 0 0 0339 244 38 1 5 0 %4
0 3 374913 99525 0 0 O 0 0 0331 305 38 3 8 0 88
0 2 374913 87224 0 0 O 0 0 0333 314 38 411 0 85
0 3 374913 75947 O 0 O 0 0 0341 319 40 4 8 0 88
0 3 374913 75947 O 0 O 0 0 0336 179 37 0 1 0 99
0 2 374913 64258 0 0 O 0 0 0321 332 40 3 9 0 88
0 3 374913 64258 0 0 O 0 0 0324 249 49 0 1 0 99
0 3 374913 53707 O 0 O 0 0 0312 372 49 4 7 0 89
0 3 374913 53707 O 0 O 0 0 0320 190 36 0 1 0 9
1 1 62871 355525 0 0 O 0 0 0 359 694 32 662 0 32
0 2 62871 340542 0 0 O 0 0 0591 857 34 6 17 0 77
0 3 62871 239290 0 0 O 0 0 0 513 1003 38 7 18 0 75
0 3 62871 223766 0 0 O 0 0 0546 889 38 6 16 0 78
0 2 62871 165734 0 0 O 0 0 0 511 1310 42 7 24 0 69
0 3 62871 153782 0 0 © 0 0 0525 761 41 4 14 0 83
1 2 62679 258039 O 0 O 0 0 0486 973 36 6 33 061
0 2 62679 379662 0 0 O 0 0 0410 311 40 019 0 80
1 1 61699 608991 O 0 © 0 0 0 277 262 55 0 27 28 45
0 1 61699 608991 O 0 O 0 0 0207 346 42 0 099 O
- J

Figure 22. Free pages during program execution

Implementing SAS on the RS/6000 Family

Figure 23 shows output from the svmon command during program execution.

memory in use
size inuse free pin work pers clnt
786432 571301 215131 15805 322510 238791 0

Figure 23. Memory usage during program run

From Figure 22, we can conclude that SAS is a well-behaved program that
uses the system efficiently and releases resources as soon as they are not
needed anymore; this can be seen by the fact that the memory on the free list
is increasing before the program actually ends. This means that SAS is giving
up memory as soon as it is no longer needed and before the SAS program is
terminated.

The next question is: How do we optimize SAS usage of the system? Table
19 shows average execution times for different values of MEMSIZE and
SORTSIZE = MEMSIZE * 0.5, all other parameters being constant. It is clear
that larger memory buffers do not improve performance. The Real time and
system time increase while the user time is constant. The explanation is that
the user program is fixed and has a given execution time, but, because AlX
has to handle I/O in smaller buffers, the system spends more time waiting
and moving data around.

Table 19. CPU time as function of MEMSIZE parameter

Memory size Real time User time Sys time
32 MB 145 21 24
256 MB 210 21 35
600 MB 333 21 40

As we see from Table 19, we do not get performance increments with larger
buffers. Therefore, we recommend that you keep default values for buffer

sizes around 32 MB. In the next chapter, we will examine RS/6000 and AlX to
investigate how the file system can be improved.

Chapter 6. Optimizing AIX parameters 65

66 Implementing SAS on the RS/6000 Family

Chapter 7.

AIX file system, SAS system, and performance

In this chapter, we will look at performance for various disk and file system
configurations. To test the performance, we are using our SAS sort program;
we are running the same SAS program with the same parameter settings in
all tests. The SAS program and command line parameters we are using are:

sas -memsize 32m -sortsize 16m -stimefmt z -sysparm 2 -log <LOGFILE>
sort.sas

sort.sas is @ SAS sort program, which takes an input dataset, sorts it, and
writes the output to a SAS output data set. Before we look at file system
configuration, we want to find out which ones are busy and which are not. The
iostat command gives information about disk usage during program
execution, and, with the information, we can determine how much each fileset
is used. The disk partitions and their usage are described in Figures 4
through 9 on pages 24 through 26.

Table 20 lists the number of busy intervals during program execution; we see
that the SAS workspace is the most used file system, and the SAS output file
system is the next most used. The disk system is described in detail in
Chapter 3, “Application test environment” on page 23.

We will, therefore, use these two most used file systems to test and tune file
system performance, since changes to these file systems will have the most
impact on execution time. The test system is a two-CPU RS/6000, and SAS is
a single threaded program; this means that one SAS program will run and use
only one CPU, and, to put a load on both CPUs, we must execute two
concurrent SAS instances during each test.

Table 20. .Table 20File system usage

File system and disk Avgerage usage number of busy
five-second intervals
Page space disk 0 and disk 1 7
Input dataset disk4 - disk6 16
Output dataset disk7 - disk 9 17
SAS workspace disk10 - disk13 29
Sas programs disk17 3
Free disks disk14 disk15 disk16 0

© Copyright IBM Corp. 2000 67

7.1 Testing performance of SAS workspace

68

Figure 24 on page 69 lists the execution time for five various disk
configurations for the SAS workspace file system. For each configuration, we
ran two tests with two instances at a time in all four program runs with each
disk configuration. As one might expect, the execution time is decreasing with
more disk drives. The most significant drop in execution time is from four to
five disks in the logical volume; more disks barely improve the performance.
This is because the time spent waiting for I/O to the SAS workspace is
decreasing with more disk drives, and so is the performance gain. The test
with seven disks is misleading; the performance improves with more disks
even though the improvement from six to seven disks is so small that the
uncertainty in the time measurement make it look different. The example
shows a slight decline in performance.

In conclusion, when configuring an AIX system for SAS, a large number of
disk drives improves the performance. A small RS/6000 two-CPU system,
such as the one tested, can utilize five to seven disks in each file system. The
most important ones are the SAS workspace, the SAS output file system, and
the SAS input file system.

Figure 24 on page 69 shows execution times for various SAS workspace
configurations.

Implementing SAS on the RS/6000 Family

-

- 3 disks in
real 215.76
real 221.45
real 225.01
real 225.04
AVG. 221.82

- 4 disks in
real 221.30
real 221.45
real 221.68
real 222.11
AVG. 221.64

- 5 disks in
real 131.24
real 131.27
real 121.39
real 121.42
AVG. 126.33

- 6 disks in
real 122.67
real 122.63
real 123.63
real 111.40
AVG. 120.08

- 7 disks in
real 125.73
real 125.73
real 117.59
real 117.53
AVG. 121.64

logical volume
user cpu 21.37
user cpu 20.86
user cpu 21.52
user cpu 21.27

21.26

logical volume
user cpu 20.63
user cpu 20.76
user cpu 21.42
user cpu 21.34

21.04

logical volume
user cpu 20.90
user cpu 20.75
user cpu 20.66
user cpu 20.62

20.73

logical volume
user cpu 21.56
user cpu 21.30
user cpu 21.16
user cpu 21.64

21.41

logical volume
user cpu 20.39
user cpu 20.39
user cpu 20.45
user cpu 20.99

20.55

SAS workspace

system cpu 25.
system cpu 26.
.26
.42
25.

system cpu 26
system cpu 25

SAS workspace

system cpu 26.
system cpu 26.
system cpu 26.
system cpu 26.

26.

SAS workspace
system cpu 24

system cpu 23.
system cpu 24.
system cpu 23.

24 .

SAS workspace

system cpu 25.
system cpu 23.
system cpu 25.
system cpu 23.

24.

SAS workspace

system cpu 24.
system cpu 24.
system cpu 24.
system cpu 25.

24.

77
11

89

61
57
34
52
51

.25

67
95
73
15

71
34
39
37

66
66
71
10
78

Figure 24. Execution times for various SAS workspace configurations

In Figure 25 on page 70, we see the impact of adding the spare disks to both
the SAS workspace and the SAS output file system. We are testing two
configurations: Four + five disks and five + five disks in an output file system
and SAS work space. We also see that the SAS output file system benefits
from having more disk drives because the average execution time decreases
from 133.25 Sec. to 103.10 Sec.

In conclusion, all the SAS file systems (the file system where the input
dataset is placed, the fileset where the output dataset is placed, and the
fileset where the SAS workspace is placed) benefit from having more disk
drives. Therefore, distribute all drives among the file systems with a focus on
the SAS workspace.

Chapter 7. AlX file system, SAS system, and performance 69

Output filesys = 4 disks SAS work = 5 disks

real 141.64 user cpu 20.67 system cpu 24.50
real 140.77 user cpu 20.54 system cpu 23.92
real 111.98 user cpu 20.23 system cpu 23.30
real 111.11 user cpu 20.59 system cpu 24.47
real 147.01 user cpu 20.45 system cpu 24.39
real 147.00 user cpu 20.49 system cpu 24.06
AVG. 133.25 20.50 24.11

Output filesys = 5 disks SAS work = 5 disks

real 148.04 user cpu 20.49 system cpu 23.92
real 148.88 user cpu 20.75 system cpu 24.36
real 63.92 user cpu 20.11 system cpu 24.20
real 76.79 user cpu 21.09 system cpu 23.27
real 85.98 user cpu 20.93 system cpu 22.93
real 95.01 user cpu 20.32 system cpu 23.98
AVG. 103.10 20.62 23.78

- /

Figure 25. Non striped disk configuration

7.2 Testing disk striping

70

The next test, shown in Figure 26 on page 71, is the same SAS test program
and two concurrent instances, but, now, the SAS workspace is configured as
a disk stripe with a disk stripe size of 8 KB. The rule for ideal disk stripe size
is: the number of disks in a stripe * stripe size, and it should be equal to or a
multiple of BUFSIZE * BUFNO. With a stripe size of 8KB, this rule is
observed, and the load will be evenly distributed among the disk drives.

Surprisingly, the performance does not improve with disk striping; however, it
is better the more disks we have in the stripe. The best runtime achieved was
154 seconds, and it was more stable around 190 seconds; however, we had
times of around 120-130 seconds with non-striped disks. The reason for this
is that the disk access is a high number of read and writes of small
randomly-placed disk blocks rather than large sequential disk access.

In conclusion, the SAS workspace should not be configured as a striped file
system. This may not be the case for the input and output datasets; these file
systems are accessed more sequentially and may benefit from striped file
systems.

Implementing SAS on the RS/6000 Family

Volumegroup with 5,6 or 7 disks in 8k disk stripe

-5 disk in disk stripe

real 218.49 user cpu 21.31 system cpu 23.45
real 218.44 user cpu 21.62 system cpu 24.56
real 216.88 user cpu 21.00 system cpu 23.85
real 217.73 user cpu 21.68 system cpu 24.15
real 223.12 user cpu 21.97 system cpu 23.34
real 221.58 user cpu 22.07 system cpu 22.53
AVG. 219.37 2l1.61 23.65

-6 disk in disk stripe

real 154.23 user cpu 21.19 system cpu 23.52
real 177.75 user cpu 22.01 system cpu 23.17
real 200.90 user cpu 21.39 system cpu 24.19
real 200.03 user cpu 21.71 system cpu 23.54
real 192.22 user cpu 21.86 system cpu 24.45
real 192.18 user cpu 21.40 system cpu 25.00
AVG. 186.22 21.59 23.98

-7 disk in disk stripe

real 182.41 user cpu 20.99 system cpu 24.46
real 183.32 user cpu 20.79 system cpu 24.70
real 181.01 user cpu 21.04 system cpu 24.99
real 181.02 user cpu 20.59 system cpu 24.48
real 182.62 user cpu 20.89 system cpu 25.93
real 182.76 user cpu 20.59 system cpu 24.50
AVG. 182.19 20.82 24 .84

k J

Figure 26. Striped disk configuration

In the next test cases, we will examine the effect of enabling the hardware
write cache on the disk adapter and, at the same time, increase the queue
depth from 3 to 5. The queue depth is the number of disk I/0 requests the
operating system can write ahead to the disk controller. In Figure 28 on page
74, we have the average execution time with the write cache enabled and
queue depth equal to 5, and, in Figure 27 on page 73, we have the numbers
with write cache disabled and queue depth equal to 3. A set of three tests are
performed with a different number of disks in the file system containing the
output dataset each time. The three tests in the test set are with three, four,
and five disks in the file system hosting the SAS work space. Finally, three
tests are performed with five disks in the file system holding the SAS output
dataset and the SAS workspace placed on a striped file system, also with five
disks. These 12 tests are made with the write cache enabled and disabled. All
tests are repeated 10 times, and a complete list of test results is presented in
Appendix A, “The SAS System on an IBM RS/6000 SP” on page 85. This
chapter only lists the average values.

The test set had the following configurations:

Chapter 7. AlX file system, SAS system, and performance 71

e Qutput data set= hdisk6 hdisk7 hdisk8
1. SAS work= hdisk9 hdisk10 hdisk11
2. SAS work= hdisk9 hdisk10 hdisk11 hdisk12
3. SAS work= hdisk9 hdisk10 hdisk11 hdisk12 hdisk13
* QOutput data set= hdisk6 hdisk7 hdisk8 hdisk14
4. SAS work= hdisk9 hdisk10 hdisk11
5. SAS work= hdisk9 hdisk10 hdisk11 hdisk12
6. SAS work= hdisk9 hdisk10 hdisk11 hdisk12 hdisk13
* Output data set= hdisk6 hdisk7 hdisk8 hdisk14 hdisk15
7. SAS work= hdisk9 hdisk10 hdisk11
8. SAS work= hdisk9 hdisk10 hdisk11 hdisk12
9. SAS work= hdisk9 hdisk10 hdisk11 hdisk12 hdisk13
* Output data set= hdisk6 hdisk7 hdisk8 hdisk14 hdisk15
10.SAS work on striped disk hdisk9 hdisk10 hdisk11
11.SAS work on striped disk= hdisk9 hdisk10 hdisk11 hdisk12
12.SAS work on striped disk= hdisk9 hdisk10 hdisk11 hdisk12 hdisk13

72 Implementing SAS on the RS/6000 Family

Without Cache

AVG. real 154

Without Cache

Without Cache

Without Cache

Without Cache

Without Cache

AVG. real 142

Without Cache

AVG. real 154

Without Cache

Without Cache

Without Cache

Without Cache

Without Cache

-

AVG. real 143.

AVG. real 125.

AVG. real 145.

AVG. real 131.

AVG. real 137.

AVG. real 114.

AVG. real 250.

AVG. real 210.

AVG. real 197.

1

.43

2
83

47

55

06

.42

.29

27

18

10
72

11
52

12
05

user

user

user

user

user

user

user

user

user

user

user

cpu

cpu

cpu

cpu

cpu

cpu

cpu

cpu

cpu

cpu

cpu

20

20

20

20

20

20

20

20

20

20

20

.72

.67

.72

.71

.73

.65

.73

.55

.76

.82

.67

system cpu

system cpu

system cpu

system cpu

system cpu

system cpu

system cpu

system cpu

system cpu

system cpu

system cpu

user cpu 20.70 system cpu

24

24

23

23.

24.

23.

23.

24.

23

23

23

23

.48

.35

.68

91

07

92

93

00

.58

.34

.78

.60

Figure 27. Average execution time without write cache

Chapter 7. AIX file system, SAS system, and performance

73

74

With writecachel
AVG. real 166.45 user cpu 20.63 system cpu 23.81

With writecache2
AVG. real 160.68 user cpu 20.56 system cpu 23.61

With writecache3
AVG. real 153.93 user cpu 20.58 system cpu 23.97

With writecache4
AVG. real 164.26 user cpu 20.75 system cpu 23.70

With writecache5
AVG. real 154.93 user cpu 20.57 system cpu 23.81

With writecacheé6
AVG. real 138.25 user cpu 20.62 system cpu 23.67

With writecache7
AVG. real 165.20 user cpu 20.72 system cpu 23.78

With writecache8
AVG. real 173.36 user cpu 20.60 system cpu 24.55

With writecache9
AVG. real 140.47 user cpu 20.71 system cpu 23.66

With writecachelO
AVG. real 211.78 wuser cpu 20.91 system cpu 23.64

With writecachell
AVG. real 190.97 user cpu 20.80 system cpu 23.73

With writecachel2
AVG. real 188.29 user cpu 20.99 system cpu 23.55

- J

Figure 28. Average execution time with write cache enabled

Figures 27 and 28 list the execution times for the twelve tests with the cache
disabled and the twelve tests with the cache enabled. The tables hold the
values for real time, user time, and system time. System time is the amount of
time the system spent in OS service routines for a process. User time is the
amount of time the system spends in the user program for a process. And the
real time is the time it takes to complete the process. All tests are the same
SAS job with the same SAS parameters. We expect the program steps
required to be the same for all test runs, and, accordingly, the user and
system time are constant for all test runs; only the real time differs when the
disk cache configuration is changed. The values are consolidated in the
following two figures.

Implementing SAS on the RS/6000 Family

Write cache DISABIE ENABLE Relative perf.
Test 1 AVG. real 154.43 166.45 93
Test 2 AVG. real 143.83 160.68 90
Test 3 AVG. real 125.47 153.93 82
Test 4 AVG. real 145.55 164.26 89
Test 5 AVG. real 131.06 154.93 85
Test 6 AVG. real 142.42 138.25 103
Test 7 AVG. real 154.29 165.20 93
Test 8 AVG. real 137.27 173.36 79
Test 9 AVG. real 114.18 140.47 81
- J

Figure 29. Non-striped test runs with relative performance change

In Figure 29, we have the real time values for the non-striped configuration
and the relative improvement of enabling the write cache over disabled write
cache. In all test cases (except test 6) the performance is decreased when
write cache is enabled; the value in test 6 is due to two fast test runs with the
cache enabled. There is some uncertainty in the numbers because no two
test runs are exactly the same. Data may be placed differently on disks from
run to run; interrupts may occur, and other parameters may influence the real
time. It seems as if the write cache decreases the performance for
non-striped disks. The reason for this is the way AIX and the JFS file system
work. When a program writes to disk, it can be done in two ways: Either
forced to disk immediately or write to I/O buffer. In a multiuser environment, it
is good behavior to write to the 1/O buffer rather than the hard drive, and SAS
is a very well-behaved program.

5 disks in SAS output dataset and

3, 4 and 5 striped disk in SAS work

Write cache DISABIE ENABLE Relative perf.
Test 10 AVG. real 250.72 211.78 118

Test 11 AVG. real 210.52 190.97 110

Test 12 AVG. real 197.05 188.29 105

Figure 30. Striped test runs with relative performance change

In Figure 30, we have the real time values for the striped configuration and
the relative improvement of enabling the write cache over disabled write
cache. In all test cases, the performance is improved when write cache is
enabled. The reason the write cache improves performance with striped disks
and not with unstriped disks is the different physical disk layout that exists
when running striped disk configuration, and the real time values are still
higher than the non-striped ones without write cache.

Chapter 7. AlX file system, SAS system, and performance 75

In conclusion, SAS uses the system in an efficient way, utilizes 1/O buffers,
and avoids forced I/O to disk write. Therefore, it is not recommended that you
make use of a disk write cache.

76 Implementing SAS on the RS/6000 Family

Chapter 8. The user community and performance considerations

This chapter hopes to raise some issues that require attention when you are
considering an installation and administration strategy. Before configuring the
system and setting default SAS or AIX parameters, it is imperative to have an
understanding of the user community, their requirements, and even their
motivations for using SAS.

Most systems and individuals will suffer in an unregulated application
environment. The SAS user, like any other, benefits from the invisible hand of
the system administrator providing some guidance and education. The
following sections ought to help outline system administration and user
education requirements based on a thorough understanding of the SAS
community.

8.1 Community assessment

Preparation for a SAS installation begins with an assessment of the user
community and their requirements. For each of the following subsections, you
should produce a relevant summary of the anticipated usage by the SAS
community. These profiles will be vital in creating user and functional
requirements documentation. These, in turn, will drive the technical
(hardware, software, and networking) requirements pertinent to a SAS/AIX
environment.

8.1.1 General usage
Size the SAS community.

* Simply knowing how many individuals require SAS access goes a long
way toward anticipating system demand. There is no need to grant every
AlIX user SAS privileges. Ultimately, it will prove simplest to create a
sasuser group. User privileges can be managed with AIX group
administration tools.

Compare the audience to the overall AIX community.

* The relative share of SAS users of all AIX accounts should help in guiding
an allocation strategy of disk, processor, and memory resources.

8.1.2 User profiles

Demands for system resources and administrator support are linked not only
to the SAS workload but also to the skills present in the user community.
Continue the community assessment by profiling users in the following areas:

© Copyright IBM Corp. 2000 77

SAS skill set

* SAS has very broad capabilities that interact with the abilities of its
users. Classifying users into, say, novice, intermediate, and expert
categories based on experience and self-reported ability can help
manage expectations.

UNIX skill set

* Users arrive with equally divergent AlX skills. For example, those with
little comfort on the platform may maximize time spent on a PC and
prefer an interactive session when on AIX. In contrast, those with
extensive AlX backgrounds will undoubtedly spend more time on the
server and be more likely to submit multiple processes.

Estimate the time to be spent on the SAS application.

e Poll your incoming SAS community on their expected usage needs to
supplement historical patterns, where available. Daily, weekly, or
intense but sporadic usage are possible groupings.

8.1.3 Expected SAS application

78

Why use SAS? Understanding the basic motivations behind SAS usage is
critical in forecasting and meeting user needs with minimal system impact.
Obtain estimates on how the SAS users will distribute their application work
among the following three broad functional categories:

Data processing

* The reading, writing, and manipulation of data files should be limited as
much as possible. Users should be encouraged to share multipurpose
SAS files wherever possible. Even though, in Chapter 5, “AIX
performance tools” on page 51, that data processing need not be
memory-intensive, the manipulation of very large files will benefit from
physical memory.

Modeling/data mining

* Modeling tends to promote interactive and intense SAS use. Given
more time or higher processing speed, these users will seek to
maximize work. Any system improvements could be partly offset as
users increase model complexity and the number of considered
solutions.

Reporting

* This can be the least demanding in terms of system resources.
However, if some users only use SAS for reporting purposes, their

Implementing SAS on the RS/6000 Family

skills may be limited or rusty which might lead to inefficient coding and
unnecessary repetition.

8.1.4 Access and interface of choice
Users will access SAS in one of two ways:

* Indirectly, using PC SAS and SAS/CONNECT, or

* Directly, using the AIX command line

Execution will either be in
* Interactive mode (GUI, PC, or AlX)

* Background or foreground (AIX command line only)

A user’s comfort with the operating system, file editors, and preference for a
graphical user interface (GUI) will drive both their access point decision and
their interface of choice.

Very different usage patterns will become evident among the groups. It is
possible, however, for a user to use both channels. The indirect users may
rely more on their PC’s SAS license (and processor). Server use might then
be limited to larger jobs or to accessing server files. At the same time, these
users may use other resources in copying and downloading SAS files to their
local disk.

The command line users generally have better AIX skills and will likely spend
a disproportionate amount of time on the server’s processor, whether or not
SAS is installed on their PC. With the command line comes increased
flexibility in job control. It is easier for these users to submit simultaneous
(background) jobs and demand more system resources.

8.1.5 Disk access

Administrators are expected to know which disks are locally or remotely
attached. Users are generally not expected to know this, especially when
multiple hosts are available. They cannot be assumed to know the costs of
processing data remotely or the benefits of processing locally. Everyone will
benefit if the users are educated about the differences and encouraged to:

* Act locally

Reading and writing speed will always be best when disks are mounted
locally. Speed is further increased if the disk being read from and the one
being written to are not the same.

¢ Limit remote disk I/0O

Chapter 8. The user community and performance considerations 79

Clearly, larger processes or projects will benefit most from improvements
in I/0 speed. Depending on the task, benefits might accrue if the user
observes an appropriate strategy:

* Use the server local to the disk. In a multiple host or node environment,
the user may be able to simple log in to an appropriate host and submit
SAS locally from there.

* Read from remote disk once and write locally. Limiting the number of
times the a remote file is read will dramatically cut processing time. The
problem need not be compounded by writing remotely as well. A user
may need to read from a remote disk but should be able to work and
write out SAS data files within locally. Use separate libnames.

* Read once, write once. If the end result must be delivered to the
remote disk and the project is large, a user should consider bringing
(necessary parts of) the file over to the local disk. Once localized, run
the data processing, reporting or modeling tasks locally before
returning the resulting data files back to the remote disk.

8.1.6 Data sources

80

The format and channel from which SAS users retrieve their data sources
should be considered. In all cases, a user should attempt to limit the number
of fields and records to those required. This objective can be aided by
executing the selection or data processing on the source system whenever
possible.

These could be the top three sources:

* FTPd flat files - It is perhaps simplest, but not necessarily most efficient, to
obtain files directly. Users may need some education on FTP. Remember
to transfer these files in binary mode.

* Relational databases (local or remote) - Drawing files from an RDBMS is
becoming easier with the SAS/CONNECT product. This will, undoubtedly,
require cooperation between the database and system administrators.
Users may require education on SQL usage. They should also be
encouraged to execute all possible selection and data processing
commands directly in SQL on the RDBMS and take full advantage of the
SAS pass-through SQL facility offered in SAS/CONNECT.

* Larger SAS files on a remote server - All efforts should be made to limit
the size of files being transferred. In many cases, a SAS licence will be
available on the remote server. Take advantage of this and use SAS
remotely to create SAS data file(s) while taking care of some record
selection and data processing. On compatible operating systems, SAS

Implementing SAS on the RS/6000 Family

files are directly readable once transferred; otherwise, SAS transport data
sets should be used.

In the latter two access methods, users’ efficiency should surge with inclusion
of the SAS/CONNECT software. See Section 8.2, “Remote access setup” on
page 83, for more extensive detail on SAS/CONNECT.

Documentation is available for each of these methods. Furthermore, it is very
specific to the SAS procedure, operating system, and ancillary software
involved. SAS documentation for the PROC’s SQL, CPORT, CIMPORT,
DATASET, DOWNLOAD, UPLOAD, and SAS/CONNECT are among the
useful and necessary references. Preempt difficulties by providing users with
both the educational and reference materials they need.

8.1.7 SAS files on disk

You will want to anticipate file usage on your system. A strategy covering the
access permissions and acceptable life and size constraints on permanent
SAS files requires adherence. An entirely unregulated approach will prove
problematic.

SASWORK should see the most I/O activity and should receive appropriate
attention. Refer back to Section 4.2.1, “Work space” on page 34, for a full
discussion.

Permanent SAS file disk space must also be planned for. Some issues you
need to consider are:
* Space - How much space need be set aside?

e Common versus shared - Will users need individually partitioned disk
space or will a common volume group prove sufficient?

* Durability - How long will users be allowed to keep SAS files before
deletion or archival?

¢ Archival - Develop and adhere to an archival policy.
* Large files - Do you want to allow for large files on your file system? See
Section 4.2.4, “Enabling very large file (> 2 GB) access” on page 36.

Old SAS files can be a nuisance and a drain on resources. You may also
think about implementing either AIX file compression or making the SAS
compression option the default.

Monitoring SAS disk space is an ongoing system administration requirement.
After reviewing opportunities for data compression or behavioral change, the
disk space dedicated to SAS might be expanded or altered as necessary.

Chapter 8. The user community and performance considerations 81

8.1.8 Job scheduling

82

SAS processes will complete faster if a bit of discipline in job scheduling is
employed. Our examples in Section 4.3.2, “Sorting processes” on page 40,
show just that.

Recall that an individual sort with memory constraints finished in 126
seconds. Four consecutively submitted jobs should finish in roughly 500
seconds. Yet, when four simultaneous jobs were submitted (under identical
conditions) on our two processor RS/6000, each process averaged 596
seconds. In the multi-process case, the jobs were competing over both CPU
and paging space. In the former, each job had the full attention of one
processor to itself, leaving the other available for other tasks and other users.

We submit that an optimal schedule for our four tasks would be to process in
pairs, thus, leveraging the power of both processors. (We leave this open for
confirmation.)

If it is optimal to have one process attached to a processor at any one time;
we must advise users never to submit more than one task. If multiple tasks
must be run, submit no more jobs than there are free processors available.
CPU, I/0, and paging space contention will likely deny users the resources
they expect when submitting many processes at once.

Admittedly, it is difficult to coordinate the actions of several users. Still, some
efficiencies are sure to be gained if users can reduce CPU allocation requests
on lower priority tasks or schedule the submission of certain tasks for
submission during periods of low system use. SAS jobs that might be ideal for
delayed or batch scheduling include:

* Routine data-intensive reports
* Model updates, model scoring, etc.
e Data file creation and regular downloads

* Any large tasks whose results are not immediately required

Users should first be educated in the use of the at command used to submit
commands at a later time (perhaps after everyone goes home). If large jobs
are run at regular intervals, distribute material on writing shell scripts that
release commands for execution at defined intervals. Introduce users to the
nice command, a useful AIX command that downgrades CPU allocation
requests on low-priority processes. Taken together, the above should
combine to produce a solid user introduction to job scheduling.

Implementing SAS on the RS/6000 Family

8.1.9 Other software

SAS is rarely the only application on a system. Be aware of what other
applications need to interact with SAS. You might categorize an application
among the following groups:

¢ Relational databases
¢ Statistical software in addition to SAS
¢ PC/Client software

* Other AIX applications

For some of these applications, notably RDBMS software, enabling ODBC
connectivity will be a primary concern. This is too specific a topic to address
here. SAS and application-specific documentation is a better source.

While AIX administrators rarely assume responsibility for PC applications, it
is still best to know which of these see the most use interactive use with SAS.
They may see unanticipated usage patterns that affect your system.

With a better understanding of available and preferred software and a grasp
of users’ motivations for running SAS, the administrator can help by making
productivity recommendations. In some cases, users could even be
encouraged to ease use of the SAS application by shifting their usage to
other more appropriate applications.

8.1.10 System objectives

SAS usage needs to be measured and tempered with an understanding of
the system’s purpose in the first place. If the server is primarily dedicated to
the needs of the SAS user group, this may not be a concern. SAS usage
defines just one of perhaps several user communities.

The areas of concern that should be addressed in balancing resources
among communities are the same that we have been stressing throughout:
Memory, CPU, I/0, and file space.

8.2 Remote access setup

For those with users not always resident on the LAN (that is, most systems),
a bit of additional thought and configuration is needed. Any end-user with
telnet capabilities should be able to access the server. Lead your users to a
preferred connectivity channel by distributing connectivity instructions.
Obviously, security will be an increased concern. Plan for this, and distribute
users with gateway information if a gateway server is used.

Chapter 8. The user community and performance considerations 83

84

A few PC users still prefer the AIX-Windows environment. Those with
sufficient bandwidth can install third-party X-Windows emulator software on
the client and manage their AIX sessions from within the emulator.

To enable remote users to run the SAS program on the server from SAS on
the client, SAS/CONNECT software must be installed. Once installed, users
can issue instructions to SAS. For example:

Computing services

* Enable users to submit SAS code on the server using data on the server
from the client’s SAS session.

Remote library services
* Manage and process remote SAS data libraries and files from the client.
Data transfer services

* Use PROC UPLOAD/DOWNLOAD to submit SAS files between client and
server, thus, obviating the need for creating and FTPing SAS XPORT files.

* Use the SAS Remote SQL Pass-through capabilities to submit SQL
commands directly to the server’s RDBMS, and output SAS data files to
local or remote libraries.

There are costs associated with using SAS/CONNECT. The most obvious will
be those for the SAS/CONNECT licence and SAS licences for the users’
client machines, if not they are already funded. Increases in data traffic and
related network administration duties are among the costs of another sort.

Benefits may accrue to the user and the server community. Increased
flexibility is certainly one. Users are free to move more processing from the
server to the client. For users more comfortable with the SAS GUI but not
privy to the bandwidth and software required to pipe the AIX SAS GUI back to
the client, SAS/CONNECT can provide a user-friendly environment.

Implementing SAS on the RS/6000 Family

Appendix A. The SAS System on an IBM RS/6000 SP

There are various approaches to implementing the SAS System on an
RS/6000 SP in such a way that it will take advantage of the scalable
architecture of the SP. This appendix will briefly describe how implementing
processes, conventions, and an infrastructure can provide a scalable, robust,
and powerful environment for SAS System computing on the SP.

In its simplest form, executing the SAS System on the SP entails installing the
SAS System on an SP node and running it only on that node. However, this
simple form does not exploit the scalable architecture of the SP.

One way to exploit the scalable architecture of the SP is to define a cluster of
SAS System nodes to provide processing power over and above what a
single uniprocessor or single SMP node provides. With the SP Switch and
built-in management facilities of the Parallel System Support Programs
(PSSP), the SP provides a scalable environment that, when properly planned
for and implemented, is extremely robust, easily scaled, and reliable for 24X7
applications.

Here are some areas that need to be discussed when setting up a cluster of
SAS System nodes:

» SP configuration for cluster operation

* Load balancing

* Data sharing

A.1 SP configuration for cluster operation

A set of SP nodes may be designated for interactive use for multiple SAS
users. This pool of nodes is sometimes referred to as a cluster. The SAS
System should be installed on every node participating in the SAS System
cluster. The nodes may or may not have the same version of the SAS System
installed; as long as they are downward/upward compatible, this is not an
issue. One reason for having different SAS System versions installed is to
test a new version/release of the SAS System against the SAS applications
before cluster-wide roll out of this new version/release.

When executing the SAS System, a work directory must be specified for the
SAS System to use as a temporary workspace. For the purposes of this
discussion, the name of this directory will be /saswork. A file system with a
mount point of /saswork must be defined on each node of the cluster.

© Copyright IBM Corp. 2000 85

Common user IDs, passwords, and home directories can be implemented in a
variety of ways. PSSPs user management provides a simple way to
accomplish this by propagating the required password and group files to all
nodes of the SP and utilizing the amd daemon to automatically mount the
users’ home directories when they log in to any node. Another method of
maintaining user IDs and passwords across multiple machines is NIS.
Explicitly mounting home directories or using the automount daemon will
ensure common home directories. Each customer environment or preference
will dictate which of these methods is chosen.

Once these steps are complete, we have a system in which a user may log in
to any node in the cluster and execute the SAS System. We will now discuss
a way to balance the workload across all nodes in the cluster.

A.2 Load balancing

86

Load balancing across a cluster of SP nodes is accomplished via a
LoadLeveler feature called Interactive Session Support (ISS), which is a
licensed program product provided at no extra charge with PSSP. ISS is used
to distribute logins and application sessions across a pool of servers in a
manner that is completely transparent to users and applications.

ISS interfaces with a TCP/IP nameserver to translate machine names to
internet addresses. The function of ISS is to recommend to the nameserver
the IP address of the least loaded node. Instead of specifying the actual
machine name of a particular server, the user specifies the name of a pool
that has been set up by the LoadLeveler administrator. The set of nodes to be
used for SAS System processing are defined in a pool and given a name. In
this example, we will use the name spsas. A user connects via telnet or uses
SAS/CONNECT software, specifying spsas as the hostname. ISS has
recommended which actual IP address to route the session to based on the
current load of the servers in the pool. The definition of least loaded is
customizable and can be modified by the LoadLeveler administrator.

At this point, the user is ready to access data. In a load-balanced clustered
environment, the user(s) can be sent to any node in the cluster, but not
necessarily always to the same node. The user must be able to access the
required data no matter which node the data physically resides on. Next, we
will address sharing the data across all nodes in the SAS System cluster.

Implementing SAS on the RS/6000 Family

A.3 Data sharing

Sharing of data across the cluster of SP nodes can easily be accomplished
using the new general parallel file systems (GPFS). GPFS provides file
system services to parallel and serial applications running on the RS/6000
SP. Its main benefit to SAS applications is that it allows users shared access
to files that may span multiple disk drives on multiple SP nodes. You can get
more details on how GPFS can work with the SAS System via the white paper
located on the following external Web site:
http://www.sas.com/partners/ibm/Gpfsfina.pdf

With a little more administrative work, a similar approach can be done via
NFS mounting of the disks on the various SP nodes that will be used by the
SAS System. However, there are two areas of interest that must be
addressed if you want to pursue this approach. The first is the performance
implications of writing to NFS mounted file systems. The second is the
location of data, that is, knowing on which file system the data of interest is
located. Each of these can be addressed easily with proper planning and, by
setting a few conventions and SAS System operational procedures, can be
made transparent to the users. You can get more details on how this can be
done via the white paper located on the following external Web site:
http://www.sas.com/partners/ibm/RISC_DB2.pdf

To summarize, the SAS System can exploit the IBM RS/6000 SP architecture
very effectively.

Appendix A. The SAS System on an IBM RS/6000 SP 87

88 Implementing SAS on the RS/6000 Family

Appendix B. Disk space and RAM requirements

The following sections describe the memory and disk requirements for your
RS/6000 system when running SAS and SAS applications.

How much disk space and RAM do | need for my SAS application?
One of the most frequently asked questions with regard to the SAS System is
how much disk space (for both permanent and temporary SAS data files) and
memory does a customer need for their SAS applications. There is no exact
equation to determine this because every customer's usage of the SAS
System differs. However, there are some good guidelines in place to help
your customer determine, based on their SAS usage, how much disk space
will be needed.

Disk space for permanent SAS data files

The SAS System stores data in a SAS data file (formerly called a SAS data
set) in a tabular fashion. To determine the size of this data file, simply multiply
the number of rows in the table by the record length of the longest row. The
information stored in the header of the SAS data file is roughly the size of two
rows.

So, to determine the amount of disk space needed for the permanent SAS
data files, the customer can use the above equation to determine the size of
the data warehouse. Don't forget to query all the users with regard to how
much data they will be keeping in their personal area.

Memory needs

The amount of memory the SAS System uses depends on what tasks the
users are carrying out within the SAS System. Below are several common
SAS System tasks with some guidelines regarding how much memory is
needed for each task.

Data Warehouse Setup - These jobs are generally long running jobs with
many steps that run in batch mode after hours. The steps are more
I/0-intensive in nature; so, a lot of memory is not needed. If the steps include
manipulating the data through DATA steps, summarizations, and univariate
analysis, the jobs will rarely take more than 32 MB of physical RAM.

MDDB Cube Creation - The creation of these cubes requires enough memory
(preferably physical RAM) to build the N-way table for the MDDB (a formula is
available to help you determine how much memory is needed in the Tips to
Using the SAS System white paper).

© Copyright IBM Corp. 2000 89

90

FREQ Procedure - For each variable in a table request, PROC FREQ stores
all of the levels in memory. If all variables are numeric and not formatted, this
requires about 84 bytes for each variable level. When there are character
variables or formatted numeric variables, the memory that is required
depends on the formatted variable lengths, with longer formatted lengths
requiring more memory. The number of levels for each variable is limited only
by the largest integer that your operating environment can store.

MEANS and SUMMARY Procedures - These two procedures employ the
same memory allocation scheme across all host environments. When class
variables are involved, these procedures must keep a copy of each unique
value of each class variable in memory. There is a formula in the Version 7
documentation that can help you estimate the memory requirements needed
to group the class variable.

If you do not have enough memory allocated to the SAS session, you will get
a message that you need to adjust the SUMSIZE parameter associated with
the SAS session. There is more information about doing this in the Version 7
documentation for the MEANS procedure.

SORT Procedure - This procedure may run faster if the input data set can be
held in physical RAM. If not, it is best to limit the memory used by these
procedures by setting the SORTSIZE parameter between 16 MB and 32 MB.

Statistical Analysis - Several of the statistical analysis procedures (PHREG,
LOGISTIC, MIXED, and the Enterprise Miner product) create a utility file
while doing their calculations. These utility files are held in memory. In order
to get the best performance possible, these utility files need to fit in physical
memory. Starting with Version 7, we have documented the computer
resources needed for all the products.

GUI Applications - There are several SAS System applications that are built
using the SAS/AF product. These include SAS/EIS software and the
applications build with this tool, Enterprise Miner, CFO Vision software, HR
Vision software, the Analyst Application, just to name a few. We generally
recommend a minimum of 32 MB of physical RAM per user (unless there are
many graphics and images; in that case, we recommend 64 MB per user).

Work Space Needs

The amount of disk space needed in the SASWORK area depends on what
tasks within the SAS System the users are doing. Below are several common
SAS System tasks with some guidelines regarding how much disk space is
needed for each task.

Implementing SAS on the RS/6000 Family

Data Warehouse Setup - As mentioned previously, when building a data
warehouse, there are generally several steps to the process. The user can
start by extracting data from several sources and then merging the
information together. If the steps used in manipulating the original data create
temporary SASWORK files, you will need enough work space for all these
files in the SASWORK directory.

MEANS and SUMMARY Procedures - If these procedures do not have
enough memory to execute, they must write partially complete primary types
to disk while it processes input data. When this happens, one or more merge
passes may be required to combine type levels in memory with those on disk.
In addition, if you use an order other than DATA for any class variable, these
procedures group the completed type on disk. For this reason, the peak disk
space requirements can be more than twice the memory requirements for a
given type.

SORT Procedure - The SORT procedure creates two utility files during the
sort process as well as a temporary file containing the records in sorted order.
Because of this, it is good to plan on having disk space available for three
times the size of the file being sorted in the SASWORK area.

Enterprise Miner - When using the Enterprise Miner product to do data
mining, you need to make sure you have enough disk space for the files
stored in the project library. The amount of space needed depends on what
nodes are used in the project. As a general rule, you should plan on four
times the size of the input data file being analyzed, but note that this space
may be as much as 10 times the size of the input data file. (A paper detailing
the resources needed when using Enterprise Miner is available.)

Statistical Analysis - Several of the statistical analysis procedures (PHREG,
LOGISTIC, MIXED, and the Enterprise Miner product) create a utility file
while doing their calculations. Starting with Version 7, we have documented
the computer resources needed for all the products.

We realize that the preceding information is vague, but we hope it can help
you give your customers some pointers as to what resources (both memory
and disk space) are needed when running their SAS applications.

Appendix B. Disk space and RAM requirements 91

92 Implementing SAS on the RS/6000 Family

Appendix C. Optimizing systems performance

This Appendix is copied from the SAS Institute Homepage, which you can
visit at: http://www.sas.com/partners/ibm/optimize.html

This paper is designed to help you maximize the performance of the SAS
System. The following sections suggest ways to increase the efficiency of
your SAS job in terms of the three critical resources: I1/0, memory, and CPU
time. While you may not be able to take advantage of every technique for
every job, you can choose the ones that are best suited for your particular
job.

— Note

For a comprehensive list of efficient programming tips, see SAS
Programming Tips: A Guide to Efficient SAS Processing, MS56150, and
the SAS Companions for the various operating systems.

C.1 Techniques for optimizing I/O

I/0 is one of the most important factors for optimizing performance. Most SAS
jobs consist of repeated cycles of reading a particular set of data in order to
perform various data analyses and data manipulation tasks. To improve the
performance of a SAS job, you need to reduce the number of times the SAS
system accesses disk or tape devices.

You can do this in two ways:

* Modify your SAS programs to reduce the number of times you have to
process the data. There are ways to reduce the number of times you
process data including using WHERE processing, using indexes, using
both engines and data sets efficiently, and accessing data through views.

* Reduce the number of data accesses by processing more data each time
the device is accessed. See details on the BUFNO=, BUFSIZE=,
CATCACHE=, and COMPRESS= options in C.4, “SAS system options” on
page 95.

Another way of improving efficiency is to use the DROP, KEEP, and LENGTH
statements to reduce the size of any given observation and to use the OBS=
and FIRSTOBS= options to reduce the number of observations processed.

When you create a temporary data set and include only the needed variables
and observations, you can reduce the number of I/Os required to process the

© Copyright IBM Corp. 2000 93

data. See Chapter 4 "Starting with SAS Data Sets," in the book,SAS
Language and Procedures: Usage, Version 6, First Edition, ISBN
1-55544-371-0, for more information on DROP, KEEP, LENGTH, OBS, and
FIRSTOBS.

One final way to improve efficiency is to balance the 1/0O processing by
keeping the SAS WORK directory and system swap files on separate disk
drives. That way, you get the most for your money.

C.2 Techniques for optimizing memory usage

If memory is your critical resource, several techniques can reduce the
dependence on increased memory. However, most of them will also increase
I/0 processing or CPU usage.

By increasing the value of the MEMSIZE system option, you can decrease
the processing time because the amount of time spent on paging is reduced.

You can make trade-offs between memory and other resources. To make the
most of the I/O subsystem, you need to use more and larger buffers. These
buffers must share space with the other memory demands of your SAS
session.

C.3 Techniques for optimizing CPU performance

94

Executing a single stream of code takes approximately the same amount of

CPU each time that code is executed. Optimizing CPU performance in these
instances is usually a trade-off, and the cost is using more memory (see the
MEMSIZE System Option).

Because the CPU performs all the processing needed to perform an I/O
operation, options or techniques that reduce the number of 1/O operations
often have a positive effect on CPU usage:

e Storing Compiled Code for Computation-Intensive DATA Steps - Another
technique that can improve CPU performance is to store DATA step code
that is executed repeatedly as compiled code rather than as SAS source
code. This is especially true for large DATA step jobs that are not
I/0-intensive. For more information on the Stored Program Facility, see
Appendix 3 of the SAS Language, Version 6, Cary, NC: SAS Institute Inc.,
1990, ISBN 1-55544-381-8.

* Reducing Search Time for SAS Executable Files - Your default
configuration file specifies a certain order for the directories containing

Implementing SAS on the RS/6000 Family

SAS executable files. You can rearrange the directory specifications in the
PATH option so that the most commonly accessed directories are listed
first. Place the least commonly accessed directories last.

e Specifying Variable Lengths - When the SAS System processes the data
vector, it typically moves the data in one large operation rather than
individual variables. When data are properly aligned (in 8-byte
boundaries), data movement can occur in as little as two clock cycles (a
single load followed by a single store). Unaligned data are moved by more
complex means (at worst, a single byte at a time). This would be at least
eight times slower for an 8-byte variable. Many high-performance RISC
processors pay a very large penalty for movement of unaligned data.
When possible, follow these suggestions for keeping data aligned:

e Leave numeric data at full width (8-bytes) (Note that the SAS System
must widen short numeric data for any arithmetic operation. On the
other hand, short numeric data can save both memory and 1/O).

» Keep character data in multiples of 8 bytes in length. This obviously
wastes memory, but it does keep data aligned.

These suggestions are especially important when processing a data set by
selecting only specific variables and when clause processing. It is important
that the selected variables be properly aligned.

C.4 SAS system options

The following are SAS system options for controlling resource allocation by
SAS programs.

* BUFNO= Option

The BUFNO= system option specifies the number of buffers to be
allocated for processing a SAS data set. The number of buffers is not a
permanent attribute of the data set, and it is valid only for the current SAS
session or job. The BUFNO= option applies to SAS data sets opened for
input, output, or update.

— Note

Using the BUFNO= system option can speed up execution time by limiting
the number of input/output operations required for a particular SAS data
set. The improvement in execution time, however, comes at the expense of
increased memory consumption.

PC platform default - 3

Appendix C. Optimizing systems performance 95

96

UNIX platform default - 1
* BUFSIZE= Option

The BUFSIZE= option specifies the size of input/output buffers for SAS
data sets. The size of the input/output buffers is permanently associated
with the SAS data set. If the number of bytes is greater than 0 when a SAS
data set is created, that number is used as the default value for the
BUFSIZE= data set option. If the BUFSIZE= data set option is not used
and the number of bytes for the BUFSIZE= system option is 0, the SAS
System chooses a host system default value that is optimal for the SAS
data set.

— Note

Using the BUFSIZE= system option can speed up execution time by
limiting the number of input/output operations required for a particular SAS
data set.The improvement in execution time, however, comes at the
expense of increased memory consumption.

PC platform default - 0

UNIX platform default - 0
e CATCACHE= Option

CATCACHE=n

The CATCACHE= system option specifies the number of SAS catalogs to
keep open. If n is greater than 0, the SAS System places up to that
number of open-file descriptors in cache memory instead of closing the
catalogs. If n is 0, no open-file descriptors are kept in cache memory.

You can use the CATCACHE= system option to tune an application by
avoiding the overhead of repeatedly opening and closing the same SAS
catalogs. Increasing the value of the CATCACHE option can potentially
improve performance by keeping the catalogs needed for a SAS
application in memory during the entire SAS Session.

— Note

The increased performance in catalog I/O can also use considerable
memory resources; use this technique only if memory issues are not a
concern.

PC platform default - 0
UNIX platform default - 0

Implementing SAS on the RS/6000 Family

* COMPRESS= Option
COMPRESS= YESINO

The COMPRESS= system option specifies whether observations in a
newly-created SAS output data set are compressed (variable-length
records) or uncompressed (fixed-length records). The record type is a
permanent attribute of the SAS data set.

Compressing a data set reduces the size of the data set by reducing
repeated consecutive ¢ characters to two- or three-byte representations.
To uncompress observations, you must use a DATA step to copy the data
set and specify COMPRESS=NO for the new data set.

The advantages gained by using the COMPRESS= data set option include
the following:

* Reduced storage requirements for the data set

* Fewer input and output operations necessary to read from or write to
the data set during processing.

— Note

Using the COMPRESS= system option prevents access to a SAS data set
by observation number. Also, using this option increases the CPU time for
reading a data set because of the overhead of compressing and
uncompressing the records.

* IMPLMAC Option

The IMPLMAC system option controls whether macros defined as
statement-style macros can be invoked with statement-style macro calls or
if the call must be a name-style macro call.

— Note

When you use the IMPLMAC system option, processing time is increased
because the SAS System checks every SAS statement to determine
whether the beginning word is a macro call. When you use the IMPLMAC
system option in conjunction with the MAUTOSOURCE system option, the
MRECALL system, or both, processing time can be increased further.

e MEMSIZE= Invocation Option
-MEMSIZE= n I nK | nM | nG | MAX

The MEMSIZE option specifies a limit on the total amount of memory the
SAS System uses at any one time. The operating system may use

Appendix C. Optimizing systems performance 97

98

— Note

additional amounts of memory. A MEMSIZE option value of 0 tells the SAS
System to use all available memory, up to the system limit. Too low a value
will result in out-of-memory conditions. When you increase the value of
SORTSIZE, you will need to increase the value of MEMSIZE. This option
can take the following values:

* n - Specifies the amount of memory in bytes
* nK - Specifies the amount of memory in kilobytes
* nM - Specifies the amount of memory in megabytes

* nG - Specifies the amount of memory in gigabytes

The MEMSIZE option must be set during the invocation of the SAS System
by modifying the CONFIG.SAS file or passing it as parameter to the SAS
command.

PC platform default - 0
UNIX platform default - 32 MB

* MSYMTABMAX= Option

MSYMTABMAX=n I nK | nM | nG | MAX

The MSYMTABMAX= system option specifies the maximum amount of
memory available to the macro variable symbol table(s). Once this value is
reached, additional macro variables are written out to disk. The value you
specify with the MSYMTABMAX= system option can range from 0 to the
largest non-negative integer representable on your host. The values can
be expressed as follows:

* n - Specifies the amount of memory in bytes

nK - Specifies the amount of memory in kilobytes

nM - Specifies the amount of memory in megabytes

nG - Specifies the amount of memory in gigabytes

MAX - Specifies the maximum amount of memory available
PC platform default - 4M
UNIX platform default - 8K

* MVARSIZE= Option

MVARSIZE=n | nK | nM | nG | MAX

Implementing SAS on the RS/6000 Family

The MVARSIZE= system option specifies the maximum size for in-memory
macro variables. If the size is larger than this value, variables are written
out to disk. The value you specify with the MVARSIZE= system option can
range from 0 to the largest non-negative integer representable on your
host.

The value can be expressed as follows:

n - Specifies the amount of memory in bytes

nK - Specifies the amount of memory in kilobytes
* nM - Specifies the amount of memory in megabytes
* nG - Specifies the amount of memory in gigabytes
* MAX - Specifies the maximum amount of memory available
PC platform default - 4K
UNIX platform default - 512K
RESIDENT=num

RESIDENT= specifies whether an SCL entry is saved in resident memory
the first time that it is executed instead of being re-read from the catalog
on subsequent calls. Ranges for <num> are:

* < 0 to save in memory only SCL entries containing a METHOD
statement with the /RESIDENT option.

* = 0 to save no SCL entries in memory.

* > 0 to save <num> entries in memory. By default, the number of SCL
entries saved in memory is 64.

When an SCL entry executes, SCL searches resident memory for the
entry. If the search is successful, the entry moves to the top of the search
list. An SCL entry that is called frequently remains at or near the top of the
list and, thus, is found more quickly. When an SCL entry is not found on
the search list, the last entry on the search list (the least- recently used) is
removed, and the new entry is inserted at the top of the list.

SORTSIZE = memory-specification

The SORTSIZE= system option specifies the maximum amount of memory
available to the SORT procedure (or the sort utility specified with the
SORTPGM= system option). The 'memory-specification' can be one of the
following:

* MAX - Specifies that all available memory can be used

* n - Specifies the amount in bytes

Appendix C. Optimizing systems performance 99

— Note

* nK - Specifies the amount in kilobytes
* nM - Specifies the amount of memory in megabytes

Specifying the SORTSIZE= option in the PROC SORT statement
temporarily overrides the setting for the SORTSIZE= system option. The
value of the SORTSIZE= system option is the default. When you increase
the value of SORTSIZE, please make sure you increase the value of
MEMSIZE as well.

Using this option can help improve sort performance by restricting the
virtual memory paging controlled by the host operating system. It the SORT
procedure needs more memory than you specify, it uses a temporary utility
file. As a general rule, the value you use for SORTSOZE= should be set to
less than the physical memory available to your process.

PC platform default - 2M
UNIX platform default - 16M

C.5 SAS procedures that use extra resources

100

— Note

The following section describes options that will cause the SAS system to
take up more resources.

* CONTENTS with FMTLEN Option

The FMTLEN option prints the default length of formats and informats if
they do not have a specified length. If you omit the FMTLEN option, the
CONTENTS statement still prints the informat or format, but it does not
include the length unless the informat or format has a specified length.

When you use the FMTLEN option, the SAS system uses additional CPU
time, 1/O time, and memory to load the format and determine its length.

Default length of format: length of the longest formatted value
Default length of informat: longest informatted value

* FREQ with TABLES Statement - EXACT Option
TABLES requests / EXACT;

Implementing SAS on the RS/6000 Family

The EXACT option requests Fisher's exact test for tables that are larger
than 2X2. The computational algorithm is the network algorithm given by
Mehta and Patel (1983).

— Note
e This option is not turned on when the ALL option is specified.

* This test is very intensive in the use of memory and cpu time. It is NOT
recommended when n/ ((r-1)(c-1)) > 5 or when MIN(r, ¢) > 5. (n is the
sample size. r is the number of rows. ¢ is the number of columns.)

* LOGISTIC
For each BY group, define the following:

e K = number of response levels

e C =1 + number of explanatory variables
mi=K+C
m2 =1+ m1
m3 = 16m1(m1 + 5)
* m4 = 8C(C +4) + 4m2(m2 +3)

The minimum working space needed to process the BY group is m3 bytes.
For models with more than two response levels, a test of the parallel lines
assumption requires an additional workspace of m4 bytes. However, if this
additional memory is no available, the procedure skips the test and
finishes the other computations.

If sufficient space is available, the relevant variables and observations
from the input data set are also kept in memory; otherwise, the input data
set is reread for each evaluation of the likelihood function and its
derivatives, with the resulting execution time of the procedure
substantially increased.

* MDDB

The minimum working space and virtual memory needs for creating an
MDDB are as follows:

* For every MDDB, there are 900 bytes of overhead .
* For every analysis variable, there are 676 bytes of overhead.

* For every class variable, there are 340 bytes of overhead + (the
maximum formatted length of the variable * the number of values)+
(unformatted length of variable * the number of variables).

Appendix C. Optimizing systems performance 101

102

— Note

* For each hierarchy, there are 296 bytes of overhead (always at least
one - NWAY).

e For each hierarchy: (the number of dimensions * 4 + the number of
analysis vars * the number of stats * 8) * the number of crossings in the
hierarchy.

* MEANS with CLASS Statement

CLASS variable-list

The CLASS statement assigns the variables used to form subgroups. The
CLASS statement has basically the same effect on the statistics computed
as that of the BY statement. The differences are in the format of the
printed output and in the sorting requirements of the BY statement.

Theoretically, the maximum number of combinations of CLASS levels is
200 million. Realistically, it becomes a machine-dependent estimate,
limited solely by the amount of computer memory available. The maximum
number of CLASS variables is 30.

e MULTTEST

PROC MULTTEST keeps all of the data in memory to expedite
resampling. A large portion of the memory requirement is thus
8*NOBS*NVAR bytes, where NOBS is the number of observations in the
data set, and NVAR is the number of variables analyzed, including
CLASS, FREQ, and STRATA variables.

If you specify PERMUTATION=number (for exact permutation
distributions), then PROC MULTTEST requires additional memory. This
requirement is approximately
4*NTEST*NSTRATA*CMAX*number*(number+1) bytes, where NTEST is
the number of contrasts, NSTRATA is the number of STRATA levels, and
CMAX is the maximum contrast coefficient.

The execution time is linear in the number of resamples.

* NPARTWAY

Although the computational algorithm is fast, the computational time can
still be prohibitive depending on the number of groups, the number of
distinct response variables, the total sample size, and the speed and
memory available on your computer. You can terminate exact
computations and exit to the NPAR1WAY procedure at any time by
pressing the system interrupt key (refer to the SAS Companion for your
system) and choosing to stop computations.

Implementing SAS on the RS/6000 Family

* PHREG

The PHREG procedure performs regression analysis of survival data
based on the Cox proportional hazards model. This procedure is very
compute intensive and will perform faster if given more memory. A simple
algorithm to determine the minimum working space (in bytes) needed to
process the BY group is max{12n, 24pp+ 160p} where n is the number of
observations in a BY group, p is the number of explanatory variables, and
pp is the square of p.

If sufficient space is available, the input data set is also kept in memory.
Otherwise, the input data is reread from the utility file for each evaluation
of the likelihood function and its derivatives, with the resulting execution
time substantially increased.

* REG

The REG procedure is efficient for ordinary regression; however, requests
for optional features can greatly increase the amount of time required.

The major computational expense in the regression analysis is the
collection of the cross- products matrix. For p variables and n
observations, the time required is proportional to np2. For each model run,
REG needs time roughly proportional to k3, where k is the number of
regressors in the model. Add an additional nk2 for one of the R, CLM, or
CLI options and another nk2 for the INFLUENCE option.

Most of the memory REG needs to solve large problems is used for
crossproducts matrices. PROC REG requires 4p2 bytes for the main
crossproducts matrix plus 4k2 bytes for the largest model. If several output
data sets are requested, memory is also needed for buffers.

10) SORT

The SORT procedure sorts observations (arranging them in order by values
of one or more variables) and is one of the most common operations
performed with the SAS System. You can now specify the SORTSIZE= option
when you invoke this procedure. Specifying the SORTSIZE= option in the
PROC SORT statement temporarily overrides the setting of the SORTSIZE=
system option. The value of the SORTSIZE= systems option is the default.
The SORTSIZE= system option was discussed earlier in this appendix.

— Note

When you invoke the SORT procedure, the computer system uses either a
sorting module provided by SAS Institute, a sorting utility provided with the
operating system, or a sorting utility provided by an independent vendor.

Appendix C. Optimizing systems performance 103

It is important to remember that to sort a SAS data set, you need enough disk
space to hold the original file and at least two more files of the same size as
the original one. This will depend on the number of BY variables.

¢ SUMMARY with CLASS Statement
CLASS variable-list

The CLASS statement assigns the variables used to form subgroups. The
CLASS variable may be either numeric or character, but normally each
variable has a small number of discrete values or unique levels. The
CLASS statement has an effect on the statistics computed similar to that
of the BY statement.

— Note

Theoretically, the maximum number of combinations of CLASS levels is
200 million. Realistically, it becomes a machine-dependent estimate,
limited solely by the amount of available computer memory. The maximum
number of CLASS variables is 30.

C.6 Performance considerations of DATA step views

104

Using DATA step views can improve the efficiency of programming and
applications development. However, the requirements placed on machine
resources can increase or decrease depending on the methods of data
processing that you replace by using DATA step views. The impact on
machine resources is determined by the access pattern of the consuming
task (DATA step or PROC step). The consuming task can request the
retrieval of data in two ways: A single pass or multiple passes.

When one pass is requested, no data set is created. Compared to traditional
methods of processing, the one-pass access pattern increases performance
by decreasing the number of input/output operations and elapsed time.

When multiple passes are requested, the view must build a spill file that
contains all generated observations so that subsequent passes can read the
same data read by previous passes. Whenever the consuming task needs to
access only the data across BY groups, the SAS System optimizes multiple
passes by reusing space within the spill file whenever the BY groups change.
With this optimization, the amount of disk space required is the cumulative
size of the largest BY group generated rather than the cumulative size of all
observations generated by the view.

Implementing SAS on the RS/6000 Family

Both the single-pass access pattern and the multiple-pass access pattern
incur a certain overhead in CPU time and memory requirements. As a general
rule, CPU time increases by approximately 10 percent. This increase is due
to an internal host supervisor requirement and will be addressed in a future
release of the SAS System.

Concerning memory utilization, when a DATA step references a DATA step
view, the overhead incurred is associated with additional storage required to
execute the DATA step view. When a PROC step references a DATA step
view, the additional memory incurred is associated with the DATA step that
executes the view.

Appendix C. Optimizing systems performance 105

106 Implementing SAS on the RS/6000 Family

Appendix D. Disk controller cache test results

In Chapter 7, “AlIX file system, SAS system, and performance” on page 67,
we tested the impact of having writecache on the disk adapter. In this
appendix, we have the complete list of execution time results, whereas we
had only average values in Chapter 7.

Twelve tests were made with write cache, and twelve tests were made
without write cache. We tested various configurations of SAS output and work
datasets. The reason for choosing these datasets was that this is the most
used partition, and a change in performance would then have the most impact
here. The tests were done with three, four, and five disk drives in a
non-striped configuration holding the output dataset and a five disk striped
configuration with an 8 KB stripe size holding the output dataset. For each of
these four output dataset configurations, we had three configurations for the
SAS work space: Three, four, and five disks non-striped in all 12 tests. These
12 tests were done with and without the disk adapter write cache enabled.
Tests 1 -3 SAS output dataset on hdisk6, hdisk7, and hdisk8
* Test 1 SAS work dataset on hdisk9, hdisk10, and hdisk11
* Test 2 SAS work dataset on hdisk9, hdisk10, hdisk11, and hdisk12
* Test 3 SAS work dataset on hdisk9, hdisk10, hdisk11, hdisk12, and
hdisk13
Tests 4-6 SAS output dataset on hdisk6, hdisk7, hdisk8, and hdisk14
* Test 4 SAS work dataset on hdisk9, hdisk10, and hdisk11
* Test 5 SAS work dataset on hdisk9, hdisk10, hdisk11, and hdisk12
* Test 6 SAS work dataset on hdisk9, hdisk10, hdisk11, hdisk12, and
hdisk13
Tests 7-9 SAS output dataset on hdisk6, hdisk7, hdisk8, hdisk14, and hdisk15
* Test 7 SAS work dataset on hdisk9, hdisk10, and hdisk11
* Test 8 SAS work dataset on hdisk9, hdisk10, hdisk11, and hdisk12
* Test 9 SAS work dataset on hdisk9, hdisk10, hdisk11, hdisk12, and
hdisk13
Tests 10-12 SAS output dataset on hdisk6, hdisk7, hdisk8, hdisk14, and
hdisk15

e Test 10 SAS work dataset on hdisk9, hdisk10, and hdisk11

© Copyright IBM Corp. 2000 107

¢ Test 11 SAS work dataset on hdisk9, hdisk10, hdisk11, and hdisk12

e Test 12 SAS work dataset on hdisk9, hdisk10, hdisk11, hdisk12, and
hdisk13

D.1 EXECUTION time with write cache is disabled

In this section, we list the date from the test with write cache disabled and
disk write Queue depth = 3

Without writecache - Test 1
real 189.62 user cpu 20.02 system cpu 25.03

real 189.59 user cpu 20.66 system cpu 24.92
real 162.15 user cpu 20.90 system cpu 24.65
real 162.08 user cpu 20.90 system cpu 24.99
real 156.32 user cpu 20.94 system cpu 24.33
real 156.44 user cpu 20.86 system cpu 23.80
real 159.02 user cpu 20.95 system cpu 23.52
real 158.95 user cpu 20.54 system cpu 25.20
real 105.06 user cpu 20.90 system cpu 24.01
real 105.08 user cpu 20.51 system cpu 24.35
AVG. 154.43 20.72 24.48

Without writecache - Test 2
real 149.02 user cpu 20.25 system cpu 24.79

real 148.85 user cpu 20.52 system cpu 24.12
real 135.53 user cpu 21.07 system cpu 23.39
real 137.04 user cpu 20.79 system cpu 22.69
real 177.37 user cpu 20.38 system cpu 25.41
real 180.73 user cpu 20.94 system cpu 26.47

real 108.24 user cpu 20.94 system cpu 23.14

108 Implementing SAS on the RS/6000 Family

real 106.15 user cpu 20.59 system cpu 23.13
real 147.66 user cpu 20.66 system cpu 25.86
real 147.67 user cpu 20.58 system cpu 24.45

AVG. 143.83 20.67 24.35

Without writecache - Test 3
real 191.51 user cpu 20.30 system cpu 24.99

real 191.49 user cpu 20.67 system cpu 23.83
real 109.54 user cpu 21.27 system cpu 22.88
real 111.81 user cpu 21.15 system cpu 22.24
real 95.48 user cpu 20.32 system cpu 25.10
real 97.82 user cpu 21.07 system cpu 22.92
real 104.56 user cpu 20.74 system cpu 24.38
real 104.52 user cpu 20.42 system cpu 23.81
real 124.97 user cpu 20.56 system cpu 23.44
real 123.00 user cpu 20.67 system cpu 23.17

AVG. 125.47 20.72 23.68

Without writecache - Test 4
real 212.52 user cpu 20.67 system cpu 25.19

real 212.56 user cpu 20.51 system cpu 25.25
real 129.32 user cpu 20.95 system cpu 22.93
real 129.17 user cpu 21.22 system cpu 23.02
real 137.17 user cpu 20.43 system cpu 23.90

real 136.29 user cpu 20.73 system cpu 23.65

Appendix D. Disk controller cache test results

109

110

real 153.82 user cpu 20.50 system cpu 24.27
real 152.96 user cpu 20.40 system cpu 23.76
real 95.40 user cpu 20.52 system cpu 23.96
real 96.31 user cpu 21.17 system cpu 23.12

AVG. 145.55 20.71 23.91

Without writecache - Test 5
real 167.85 user cpu 20.80 system cpu 23.41

real 167.98 user cpu 20.91 system cpu 23.71
real 129.28 user cpu 20.59 system cpu 24.74
real 130.85 user cpu 20.60 system cpu 23.21
real 121.93 user cpu 20.42 system cpu 24.30
real 121.04 user cpu 20.28 system cpu 24.08
real 157.52 user cpu 21.20 system cpu 24.14
real 157.55 user cpu 21.28 system cpu 24.64
real 75.52 user cpu 20.66 system cpu 23.90
real 81.04 user cpu 20.52 system cpu 24.54

AVG. 131.06 20.73 24.07

Without writecache - Test 6
real 176.59 user cpu 20.59 system cpu 24.72

real 176.59 user cpu 20.31 system cpu 24.25
real 152.87 user cpu 20.48 system cpu 25.24
real 152.80 user cpu 20.42 system cpu 24.26

real 137.55 user cpu 20.22 system cpu 23.44

Implementing SAS on the RS/6000 Family

real 138.38 user cpu 21.01 system cpu 23.20
real 121.74 user cpu 20.31 system cpu 24.14
real 121.57 user cpu 20.71 system cpu 23.81
real 123.49 user cpu 20.96 system cpu 23.02
real 122.60 user cpu 21.50 system cpu 23.12

AVG. 142.42 20.65 23.92

Without writecache - Test 7
real 230.43 user cpu 20.61 system cpu 24.88

real 230.41 user cpu 21.06 system cpu 24.01
real 139.26 user cpu 20.55 system cpu 24.46
real 139.21 user cpu 20.85 system cpu 24.20
real 130.68 user cpu 21.43 system cpu 23.33
real 129.74 user cpu 20.05 system cpu 23.81
real 126.56 user cpu 20.60 system cpu 22.97
real 127.41 user cpu 20.12 system cpu 24.69
real 144.17 user cpu 21.11 system cpu 23.16
real 145.04 user cpu 20.87 system cpu 23.80

AVG. 154.29 20.73 23.93

Without writecache - Test 8
real 178.01 user cpu 20.59 system cpu 24.49

real 178.04 user cpu 20.51 system cpu 24.74
real 125.89 user cpu 21.08 system cpu 23.08

real 126.07 user cpu 20.51 system cpu 23.50

Appendix D. Disk controller cache test results

111

112

real 117.18 user cpu 20.80 system cpu 23.22
real 117.38 user cpu 20.48 system cpu 23.56
real 143.11 user cpu 20.22 system cpu 25.22
real 143.17 user cpu 20.79 system cpu 24.07
real 121.49 user cpu 19.88 system cpu 23.96
real 122.39 user cpu 20.59 system cpu 24.14

AVG. 137.27 20.55 24.00

Without writecache - Test 9
real 131.71 user cpu 20.89 system cpu 23.10

real 135.96 user cpu 20.39 system cpu 23.18
real 106.46 user cpu 20.59 system cpu 24.05
real 106.29 user cpu 21.24 system cpu 23.33
real 112.22 user cpu 20.58 system cpu 24.24
real 112.37 user cpu 20.16 system cpu 23.74
real 102.86 user cpu 20.99 system cpu 23.87
real 94.21 user cpu 20.71 system cpu 22.71

real 119.77 user cpu 20.84 system cpu 23.10
real 119.95 user cpu 21.16 system cpu 24.50

AVG. 114.18 20.76 23.58

Without writecache - Test 10
real 294.42 user cpu 21.04 system cpu 23.64

real 293.57 user cpu 20.88 system cpu 23.30

real 270.04 user cpu 21.01 system cpu 23.60

Implementing SAS on the RS/6000 Family

real 269.19 user cpu 20.75 system cpu 23.80
real 249.52 user cpu 21.09 system cpu 23.21
real 248.67 user cpu 20.38 system cpu 23.31
real 239.78 user cpu 20.56 system cpu 23.03
real 248.98 user cpu 20.83 system cpu 23.63
real 182.90 user cpu 20.78 system cpu 23.51
real 210.09 user cpu 20.89 system cpu 22.37

AVG. 250.72 20.82 23.34

Without writecache - Test 11
real 193.31 user cpu 20.70 system cpu 23.37

real 192.41 user cpu 20.48 system cpu 23.98
real 193.64 user cpu 20.98 system cpu 24.15
real 185.37 user cpu 20.08 system cpu 25.13
real 227.06 user cpu 20.87 system cpu 23.31
real 226.21 user cpu 20.90 system cpu 22.86
real 226.96 user cpu 20.73 system cpu 23.57
real 227.01 user cpu 20.54 system cpu 24.82
real 214.51 user cpu 20.52 system cpu 23.12
real 218.71 user cpu 20.92 system cpu 23.53

AVG. 210.52 20.67 23.78

Without writecache - Test 12
real 218.34 user cpu 20.73 system cpu 24.41

real 217.48 user cpu 20.63 system cpu 23.90

Appendix D. Disk controller cache test results

113

real 220.47 user cpu 20.48 system cpu 23.74
real 207.84 user cpu 20.68 system cpu 22.95
real 169.03 user cpu 20.85 system cpu 24.02
real 181.67 user cpu 20.83 system cpu 23.21
real 199.24 user cpu 20.89 system cpu 23.86
real 199.05 user cpu 21.12 system cpu 23.16
real 158.44 user cpu 20.11 system cpu 23.35
real 198.98 user cpu 20.66 system cpu 23.40

AVG. 197.05 20.70 23.60

D.2 EXECUTION time when disk adapter write cache is enabled

In this section, we list the date from the test with write cache enabled and disk
write Queue depth = 5; these settings are selected to achieve the highest
possible performance.

With writecache - Test 1
real 202.76 user cpu 20.86 system cpu 24.36

real 202.77 user cpu 21.30 system cpu 23.85
real 162.73 user cpu 20.62 system cpu 23.44
real 161.64 user cpu 20.47 system cpu 23.44
real 157.48 user cpu 20.69 system cpu 23.50
real 157.50 user cpu 20.50 system cpu 23.92
real 165.44 user cpu 20.35 system cpu 24.07
real 164.92 user cpu 21.10 system cpu 23.08
real 144.62 user cpu 20.30 system cpu 23.61
real 144.68 user cpu 20.14 system cpu 24.81

AVG. 166.45 20.63 23.81

114 Implementing SAS on the RS/6000 Family

With writecache - Test 2

real

real

real

real

real

real

real

real

181.57 user cpu 20.79 system cpu 23.48
182.40 user cpu 20.54 system cpu 24.06
144.32 user cpu 20.22 system cpu 23.31
143.40 user cpu 20.40 system cpu 23.01
191.57 user cpu 20.62 system cpu 24.42
191.61 user cpu 20.46 system cpu 24.29
124.82 user cpu 20.66 system cpu 23.28

125.76 user cpu 20.79 system cpu 23.04

AVG. 160.68 20.56 23.61

With writecache - Test 3

real

real

real

real

real

real

real

real

real

real

172.15 user cpu 20.52 system cpu 24.32
172.16 user cpu 20.95 system cpu 24.44
145.48 user cpu 20.66 system cpu 23.04
144.43 user cpu 21.02 system cpu 22.29
161.03 user cpu 20.49 system cpu 24.48
160.90 user cpu 19.95 system cpu 24.03
120.16 user cpu 20.84 system cpu 24.05
120.14 user cpu 20.23 system cpu 24.00
171.41 user cpu 20.73 system cpu 24.28

171.41 user cpu 20.45 system cpu 24.74

AVG. 153.93 20.58 23.97

Appendix D. Disk controller cache test results

115

116

With writecache - Test 4

real

real

real

real

real

real

real

real

real

real

200.07 user cpu 20.25 system cpu 24.26
199.21 user cpu 20.81 system cpu 24.00
179.14 user cpu 21.14 system cpu 23.49
178.94 user cpu 20.98 system cpu 23.08
178.43 user cpu 20.38 system cpu 24.63
178.42 user cpu 20.26 system cpu 24.57
90.18 user cpu 20.70 system cpu 23.06
93.87 user cpu 21.08 system cpu 23.37
171.75 user cpu 20.70 system cpu 23.64

172.57 user cpu 21.19 system cpu 22.87

AVG. 164.26 20.75 23.70

With writecache - Test 5

real

real

real

real

real

real

real

real

real

real

173.27 user cpu 20.41 system cpu 23.99
173.15 user cpu 20.68 system cpu 23.70
179.49 user cpu 20.49 system cpu 24.16
179.36 user cpu 20.57 system cpu 24.23
152.35 user cpu 20.60 system cpu 24.43
152.37 user cpu 20.18 system cpu 23.87
148.51 user cpu 20.83 system cpu 24.13
148.56 user cpu 20.44 system cpu 23.68
123.96 user cpu 20.72 system cpu 23.47

118.32 user cpu 20.80 system cpu 22.48

AVG. 154.93 20.57 23.81

Implementing SAS on the RS/6000 Family

With writecache - Test 6

real

real

real

real

real

real

real

real

real

real

171.09 user cpu 20.04 system cpu 24.50
170.23 user cpu 20.50 system cpu 23.90
130.57 user cpu 20.55 system cpu 23.60
130.42 user cpu 20.98 system cpu 23.12
133.44 user cpu 20.60 system cpu 22.16
119.58 user cpu 20.58 system cpu 23.40
159.78 user cpu 21.18 system cpu 24.11
159.62 user cpu 20.82 system cpu 24.00
103.43 user cpu 20.29 system cpu 24.49

104.31 user cpu 20.61 system cpu 23.46

AVG. 138.25 20.62 23.67

With writecache - Test 7

real

real

real

real

real

real

real

real

real

real

156.24 user cpu 20.32 system cpu 24.22
162.26 user cpu 20.78 system cpu 23.28
181.49 user cpu 20.03 system cpu 24.21
181.31 user cpu 21.07 system cpu 23.53
138.40 user cpu 21.11 system cpu 23.29
138.28 user cpu 20.63 system cpu 23.21
175.73 user cpu 20.97 system cpu 24.16
175.60 user cpu 20.75 system cpu 23.47
171.34 user cpu 20.91 system cpu 23.80

171.31 user cpu 20.63 system cpu 24.60

Appendix D. Disk controller cache test results

117

118

AVG. 165.20 20.72 23.78

With writecache - Test 8

real

real

real

real

real

real

177.28 user cpu 20.30 system cpu 24.65
177.13 user cpu 20.73 system cpu 24.05
194.82 user cpu 20.64 system cpu 25.55
194.76 user cpu 20.82 system cpu 24.79
148.07 user cpu 20.73 system cpu 23.78

148.07 user cpu 20.36 system cpu 24.48

AVG. 173.36 20.60 24.55

With writecache - Test 9

real

real

real

real

real

real

real

real

real

real

184.41 user cpu 20.73 system cpu 23.87
183.55 user cpu 20.95 system cpu 23.84
139.76 user cpu 20.40 system cpu 22.96
139.93 user cpu 20.46 system cpu 23.70
109.36 user cpu 20.80 system cpu 22.62
132.23 user cpu 20.84 system cpu 23.78
155.91 user cpu 20.62 system cpu 23.79
156.06 user cpu 20.68 system cpu 24.81
101.68 user cpu 20.62 system cpu 23.35

101.83 user cpu 20.98 system cpu 23.84

AVG. 140.47 20.71 23.66

Implementing SAS on the RS/6000 Family

With writecache - Test 10

real

real

real

real

real

real

233.14 user cpu 21.12 system cpu 23.85
230.14 user cpu 21.07 system cpu 23.79
195.15 user cpu 20.56 system cpu 22.85
196.03 user cpu 20.69 system cpu 24.66
208.06 user cpu 21.44 system cpu 23.20

208.18 user cpu 20.60 system cpu 23.51

AVG. 211.78 20.91 23.64

With writecache - Test 11

real

real

real

real

real

real

real

real

real

real

179.30 user cpu 20.60 system cpu 24.36
178.47 user cpu 20.66 system cpu 23.85
222.55 user cpu 20.63 system cpu 23.44
223.38 user cpu 20.54 system cpu 23.44
160.62 user cpu 20.62 system cpu 23.50
161.57 user cpu 21.35 system cpu 23.92
158.12 user cpu 20.76 system cpu 24.07
178.39 user cpu 21.12 system cpu 23.08
223.19 user cpu 20.56 system cpu 23.61

224.07 user cpu 20.82 system cpu 24.81

AVG. 190.97 20.80 23.73

With writecache - Test 12

real

real

183.44 user cpu 20.81 system cpu 24.00

183.59 user cpu 20.70 system cpu 24.69

Appendix D. Disk controller cache test results

119

120

real

real

real

real

real

real

real

real

186.64 user cpu 21.13 system cpu 24.33
186.78 user cpu 20.56 system cpu 23.17
190.49 user cpu 20.95 system cpu 24.02
190.35 user cpu 20.71 system cpu 23.95
178.38 user cpu 21.42 system cpu 24.58
177.49 user cpu 20.82 system cpu 22.43
202.96 user cpu 21.01 system cpu 23.05

202.81 user cpu 21.35 system cpu 22.89

AVG. 188.29 20.99 23.55

Implementing SAS on the RS/6000 Family

Appendix E. The SAS System and DB2 partitioned databases

This appendix is a white paper written by P.W. Leathem of the IBM
Corporation.

We will describe various approaches to implementing SAS on an RS/6000 SP
and integrating SAS and DB2 partitioned database processing. The paper will
describe how implementing processes, conventions, and an infrastructure
can provide a scaleable, robust, and powerful environment for SAS
computing on the SP. These approaches, processes, examples, and sample
scripts are the result of work conducted at multiple customer locations. We
will focus on the following topics:

* SAS on a cluster of SP nodes

» SP configuration for cluster operations

* Load balancing

* Data sharing
* Practical flexibility

* Scenarios
* SAS and DB2 partitioned databases on the RS/6000 SP
* SAS cleansing/transforming of data
» Extracting large amounts of data from db2 partitioned databases via SAS
* DB2 partitioned database parallel extract

* CAE for AlIX configuration

* SQL modifications and table view definitions

* Query restrictions

Parallel extract processing flow

Parallel extract SAS node alternatives

Single node parallel extract processing

Multiple node parallel extract processing

Multiple uniprocessor/multiple SMP SAS nodes parallel extract
* Implementation issues

* Hybrid parallel extract

* Multiple DB2 logical nodes implementation

* Hybrid parallel extract

© Copyright IBM Corp. 2000 121

* True parallel extract

e Summary

E.1 SAS on a cluster of SP nodes

In its simplest form, executing SAS on the SP entails installing SAS on an SP
node and running it. Nodes on an SP currently range from a 66 Mhz to a 160
Mhz uniprocessor up to a 12-way SMP node. This paper will describe the
implementation of a cluster of SAS nodes to provide processing power over
and above what a single uniprocessor or SMP node provides. With the SP
Switch and the built-in management facilities of PSSP, the SP provides a
scaleable environment that, when properly planned for and implemented, is
extremely robust, easily scaled, and reliable for 24X7 applications.

The following implementation steps will be discussed.
* SP configuration for cluster operation

* Load balancing

* Data sharing

E.1.1 SP configuration for cluster operation

122

The SP configuration that must be performed for the operation of a cluster of
SAS nodes consists of the following steps:

1. Install SAS on each node.

2. Create saswork file system on each node.
3. Ensure common user ID and password.
4

. Ensure common home directory.

SAS should be installed on every node participating in the SAS cluster. The
nodes may or may not have the same version of SAS installed, as long as
they are downward/upward compatible. This allows a convenient method of
new version/release testing before cluster-wide roll out.

When executing SAS, a work directory must be specified for SAS to use as a
temporary workspace. For the purposes of this discussion, the name of this
directory will be /saswork. A file system with a mount point of /saswork must
be defined on each node of the cluster.

Common user IDs, passwords, and home directories can be implemented in a
variety of ways. PSSP user management provides a simple way to
accomplish this by propagating the required passwd and group files to all

Implementing SAS on the RS/6000 Family

nodes of the SP and utilizing the amd daemon to automatically mount the
user’s home directory when they log in to any node. Another method of
maintaining user IDs and passwords across multiple machines is NIS.
Explicitly mounting home directories or using the SUN automount daemon
will ensure common home directories. Each customer environment or
preference will dictate which of these methods is chosen.

Once these steps are complete, we have a system by which a user may log in
to any node in the cluster and execute SAS. We will now discuss a way of
balancing the workload across all nodes in the cluster.

E.1.2 Load balancing

Load balancing across a cluster of SP nodes is accomplished via a
LoadLeveler feature called Interactive Session Support (ISS), which is
provided free with PSSP. ISS is used to distribute logins and application
sessions across a pool of servers in a manner that is completely transparent
to users and applications. ISS interfaces with a TCP/IP nameserver to
translate machine names to Internet addresses. The function of ISS is to
recommend to the nameserver the IP address to translate a machine name to
a name based on the load of each machine. Instead of specifying the actual
machine name of a particular server, the user specifies the name of a pool
that has been set up by the LoadLeveler administrator. The set of nodes to be
used for SAS processing is defined in a pool and given a name. In this
example, we will use the name spsas. A user telnets, or uses SAS/Connect,
specifying spsas as the hostname. ISS has recommended which actual IP
address to route the session to based on the current load of the servers in the
pool.

At this point, the user is ready to access data. In a load-balanced clustered
environment, the user(s) can be sent to any node in the cluster, but not
necessarily always to the same node. The user must be able to access the
required data no matter which node the data physically resides on. Next, we
will address sharing the data across all nodes in the SAS cluster.

E.1.3 Data sharing

Sharing of data across the cluster of SP nodes is accomplished via NFS the
same way it would be for any cluster of machines. The difference is that the
SP Switch makes NFS sharing of data practical due to the high bandwidth
available between nodes. The file systems on which users store permanent
SAS datasets that they wish to maintain will be termed data storage file
systems. The steps for configuring the data storage file systems for the
cluster include:

Appendix E. The SAS System and DB2 partitioned databases =~ 123

124

* Define data file system(s) on each node
* NFS export the file system to the other nodes

* NFS mount the other nodes’ file systems on each node

To provide a manageable environment for all of your users, it is strongly
recommended that you implement file and directory naming conventions for
your data storage. A suggested naming convention for file system names is to
include the node number (either SAS node number or SP node number) in
the file system name. It is also recommended that users utilize subdirectories
(using their user ID as the directory name) to prevent file-naming conflicts.
For example, it is very common for two different users to both specify an
output dataset named junk or test. If they write output to a common directory
rather than to their own subdirectory, conflicts will arise.

e For example, let us assume, for the purpose of this discussion, that we
have four nodes in our SAS cluster and that the data file systems have the
following names: /nxx/data where xx is the node number (01, 02, 03, or
04)

Each user will have a subdirectory under this file system based on their user
ID; so, the user, jgpublic, on node 02 would then use the following:
/n02/data/jqpublic for storing SAS data files.

Once each node has the data file system defined, NFS can export that file
system to the other nodes. Now, each node can NFS mount the other node
file systems over the SP switch.

We now have a cluster of SP nodes that is referenced by the name spsas.
The nodes all have SAS installed, and each has a SAS work file system

(/saswork). A data storage file system is defined locally on each node and
each node has NFS mounted the other nodes’ data storage file system(s).

Figure 31 on page 125 represents the configuration of a cluster of four nodes
providing SAS processing power.

Implementing SAS on the RS/6000 Family

03/ ckta /n0t/ceta - NFS mount /n01/deta - NFS mourt /r04/ckta

/n@/data - NFS mount /n@/data - NFS mount

/nB/cata - loca /r03data - NFS mount

/n¥data - NFS mount /nd/daa - local

/saswork - locdl /saswork - local

node3 nooed
SP Switch

/r0l/cata - locd /rOt/cita - NFS mourt

/n@/data - NFS mount /n2cata - loca

/nB/cata - NFS mount /n0@data - NFS mourt

/n¥data - NFS mount /4 cata - NFS mourt
- /sawark - local /saswork - local C
e ——

Figure 31. SAS cluster configuration on SP, LoadLeveler ISS Pool -spsas

There are two areas of interest in our configuration that must be addressed.
The first is the performance implications of writing to NFS mounted file
systems. The second is the location of data, that is, knowing on which file
system the data of interest is located. Each of these can be addressed easily
with proper planning and, by setting a few conventions and SAS operational
procedures, can be made transparent to the users. While reading files from
an NFS file system provides acceptable performance, writing large files to an
NFS mounted file system incurs severe performance penalties. When using
ISS to route users to the least utilized node, it is important that this NFS write
problem be resolved. If the user is sent to node 4, they need to specify
/n04/data/userid as the output library; if sent to node 2, the user needs to
specify /n02/data/userid as the output library. However, you cannot make the
assumption that the user will always know to which node he or she was
assigned; so, to make this transparent to the user, a simple
addition/modification to the autoexec.sas file can be made. Simply set a
macro variable &local equal to the appropriate file system for that user based
on the hostname that has been assigned to their login or connect session.
The user now simply specifies the libname &local for all large output
datasets, and their files will be saved in the appropriate directory structure.

Appendix E. The SAS System and DB2 partitioned databases 125

126

Now that we have a convention and method for ensuring that all writes of
large output datasets are to a local file system, we need to implement a way
to locate a dataset that we wish to work with. The following example will help
to illustrate this requirement.

* For example, a user telnets to spsas on Friday and is routed to node 3.
The autoexec.sas file has set the variable &localto be /n03/data/userid.
The user creates the SAS dataset myout.ssd01 specifying
libname=&local. The user now logs off and goes home for the weekend.
The same user telnets to spsas on Monday morning and is routed to node
1 this time. The user wants to perform some additional processing on the
dataset myout.ssd01 that was created on Friday. The dataset myout.ssd01
is in the file system /n03/data/userid, but this user is now assigned to
/n01/data/userid. We must provide a way for the user to know this. The
simplest way to accomplish this is to provide an AIX shell script that when
invoked with a dataset name, searches the data file systems on every
node in the SAS cluster and returns the directory that the dataset resides
on. A script developed at one customer site is shown below. This script
checks the four nodes of the SAS cluster for a specified dataset.
#!/bin/ksh
script name: /usr/local/bin/locate
clear
FILENAME=${1}"*"

EXISTS=0
echo \\n”"Date Created Owner Group File Name”\\n
FILES="find /n${DIR}/data/ -name “${FILENAME}” -print >
if [[${FILES} != ‘' 1]
then
EXISTS=1 1s -1 ${FILES} |awk ‘' { print $6,$7,%$8,” “,%$3,”
\\,$4,n “,$9 } 7
fi
if [[${EXISTS} = ‘0’ 1]
then
echo “ No files matching criteria “${FILENAME}\\n
fi

With this script, a user can locate a dataset and then specify the appropriate
libname to access this dataset. With a small amount of additional SAS
initialization processing, we can take this one step further and make locating
datasets completely transparent to the user. This involves implementing a

Implementing SAS on the RS/6000 Family

metadata concept, and your SAS representative should be contacted for
alternatives applicable to your specific environment.

E.1.4 Practical flexibility

Different workloads may run best on different machines. Long running
statistical models may run better on a uniprocessor as opposed to sharing the
resources with a high number of ad hoc users on an SMP node. In this
environment, both types of nodes can be incorporated, and workloads can be
segregated to provide optimum response to all user types. A discussion of
some of the scenarios that may be encountered will show the power and
flexibility of running SAS in this environment.

Scenarios:

* A customer has a group of users that are primarily ad hoc reporting users.
There are two or three users that run complex statistical models that
produce data that the reporting users then process. An SMP node is
configured as the only node in the ISS pool sasrpt. Two uniprocessors are
in a saspower pool. The data file systems are shared among all three
machines. The power users utilize the saspower pool to run their jobs and
ad hoc users use the sasrpt pool. If the ad hoc workload increases,
another SMP node can be added to the sasrpt pool and the data
redistributed without any inconvenience to users. Users do not even
realize that an additional machine was added. Likewise, if six months from
now the power users need additional horsepower, another uniprocessor
node can be added to the saspower pool. This approach will prevent
power users from adversely impacting the ad hoc users, but the data
generated by the power users is available to all.

* A cluster is configured with five nodes. One of the nodes takes a hit and is
down. If the IBM HACMP for machine takeover has been implemented, the
data file system from the problem node is taken over by another node; the
NFS mounts are adjusted, and processing continues. Once the problem
node is repaired, normal processing can be resumed.

* A cluster is configured with four nodes. A new SAS version is installed on
one node and complete regression testing can be performed against real
data. Once verified, the new version can be propagated to the remaining
nodes.

* A cluster is configured with six nodes. Four of these nodes are utilized for
parallel extracts from a parallel database. Since these extracts consume
large amounts of resources on these nodes, additional users are routed
via ISS to the other two nodes while these extracts are running. Once the

Appendix E. The SAS System and DB2 partitioned databases 127

extracts are complete, the datasets are available to all users in the SAS
cluster.

Parallel extract will be discussed later in this document.

E.1.5 SAS and DB2 partitioned databases on the RS/6000 SP

There are two topics that will be discussed in regard to using SAS and DB2
partitioned databases on an SP. The first is the use of SAS as a data
transformer/cleanser to prepare data to be loaded into a partitioned database.
The second is the extracting of large amounts of data from a DB2 partitioned
database for processing by SAS.

E.1.6 SAS cleansing/transforming of data

128

Data to be loaded into a parallel database frequently requires some type of
transformation, cleanup, or reduction. Any of these operations will be
generically termed cleansing for this discussion. This cleansing can take
place where the data currently exists (MVS for example) or on the SP since
this is the final destination. For this discussion, it is assumed the data is
currently on MVS and is to be cleansed on the SP.

There are three steps involved in moving the data from its current location to
its final destination in the parallel database. These steps are the following:

¢ Transfer the data to the SP
e Cleanse the data
e Load the data

Transferring the data to the SP

Transferring the data is typically done with standard FTP or a product, such
as Client Input Output/Sockets (CLIO/S). CLIO/S is an IBM product that
provides for high speed data transfer from an MVS system to an RS/6000 or
SP node. The destination on the target SP node can be either a disk file or an
AlIX named pipe. An AlX named pipe is a special file that can be written to by
one process and read by another via a memory buffer. A disk file must be
used if your SAS cleansing procedure must read through the data multiple
times. If the SP is not at AIX 4.2 or higher, splitting datasets larger than 2 GB
into smaller chunks (< 2 GB) will be required. AIX named pipes can be used if
your SAS cleansing procedure only needs to read the data once. AIX named
pipes reduce the disk space required on the SP node and eliminate the 2GB
file size limitation on pre-AlX 4.2 systems. To create a named pipe, use the
mknod command specifying the name of the pipe. When the FTP or CLIO/S
FTP is performed, specify the name of the pipe as the target file.

Implementing SAS on the RS/6000 Family

Cleansing the Data

Once the data has been transferred to the SP node (either on disk or in a pipe
waiting to be read), the cleansing can take place. The final output of the SAS
proc(s) must be either an ASCII delimited or non-delimited file, which may
include packed decimal and binary numeric fields. The restrictions on having
packed or binary numeric data in the dataset to be loaded are documented in
the DB2 UDB Command Reference. Again, the output of the SAS proc(s) can
be a disk file or an AlX named pipe. Since the DB2 split and load processes
are single pass, there is no instance that would require writing to a disk file.
The use of a named pipe will again save disk space and eliminate file size
limitations.

Loading the Data

Now that the cleansed data exists in a disk file or in a pipe waiting to be read,
the data can be split and loaded. Note that the use of AIX named pipes
requires both the pipe writer and pipe reader be executing concurrently. If you
submit the FTP job or command, the cleansing program must be running to
read data from the FTP pipe. To pipe the entire process, all pieces (FTP, SAS
cleanser, and autoloader) must be started together. Figure 32 represents the
processing flow when using SAS as a data cleanser.

autoloader

pSAS
Cleansing/

MVS

or other

data 1

source Transformafion

= 7]

// /
o ééwmmi

db2 data node 3 db2 data node 4

Figure 32. Data cleansing/transforming with SAS on SP

Appendix E. The SAS System and DB2 partitioned databases 129

E.2 Extracting large amounts of data from DB2 partitioned databases

The conventional method of accessing DB2 partitioned databases is to
configure DB2 Client Application Enabler (CAE) on a non-database node to
point to a node in the database complex, which then becomes the coordinator
node. Programs then utilize CAE to connect to the database via a TCP/IP
socket and issue SQL. The results are returned via the TCP/IP socket to the
application. This paper will assume that SAS is running on a non-database
node(s).

With no custom implementation steps, the default access of SAS to a DB2
partitioned database is as follows:
1. The SAS program connects to a database via the coordinator node.

2. The query is sent to the coordinator node, and the result set is gathered
and then sent back to the SAS program.

3. The coordinator node serializes the return of the result set and adversely
impacts the response time of large extracts of data.

4. Performance degradation is encountered because the coordinator must
accept the result set from each of the data nodes, combine them, and then
forward the result set to the SAS program. This access is depicted in
Figure 33 on page 131.

130 Implementing SAS on the RS/6000 Family

b2 data node 5 db2 data node 6

b2 data node 3 db2 data node 4
b2 data node 1 db2 data node 2
b2 coordinator node

/

SAS

CAE for AIX
node directory entry for
coordinator node
database directory entry for mycb

Figure 33. SAS to DB2 partitioned database - Default access

E.3 SAS to DB2 partitioned database parallel extract

A DB2 partitioned database is optimized to analyze extremely large amounts
of data and return the answer, where the answer implies a small result set.
Business requirements often necessitate the extraction of large amounts of
data from a partitioned database for processing by SAS. But just how much is
a large amount of data? This amount will depend on the response time that
can be tolerated, but it is typically over 500 MB. While results sets this size
are not large in relation to the amount of data in a warehouse or data mart,
they are large when compared to what most ad hoc or reporting users
process.

To greatly improve the extraction large amounts of data from a DB2
partitioned database, a method called parallel extract can be used. The
high-level concept of parallel extract is to operate on each node in the
partitioned database environment independently and then merge the results
received from each of the nodes. This is accomplished by connecting directly
to each of the data nodes and extracting only the data held on that particular
node. This eliminates the true coordinator node function. Figure 34 on page
132 represents this parallel extract access.

Appendix E. The SAS System and DB2 partitioned databases 131

b2 data node 5 b2 data node 6

b2 data node 3 b2 data node 4

b2 data node 1 b2 data node 2

&2 0y
SAS
CAEfor AX
node directory entry for each datanode
database directory entry for adatabase at

each data node (mydb1,mydb2, mydb3,
mydb4, mydb5,mydb6)

Figure 34. SAS to DB2 partitioned database parallel extract access

The following are required to support this type of access

* Infrastructure (CAE configuration and View Definition)

* SQL modifications

* SQL restrictions
The infrastructure that must be in place is implemented by configuring CAE
for AIX correctly and, optionally, defining the required views to the tables.

These views are only required if users will be accessing views or if the DBAs
require them.

E.3.1 CAE for AIX configuration

132

The connection to the database is provided by CAE for AIX. This is done to
reduce the resources of the SAS node(s) required to connect to the database.
This method also isolates the database from the SAS node(s). If the SAS
node is part of the database instance, a large amount of memory will be taken
up by DB2PE or UDB leaving less for SAS processing. To document the

Implementing SAS on the RS/6000 Family

configuration of CAE to support parallel extracts, the following assumptions
must be made.

* There are six data nodes
* The database name is mydb
* The switch interface names are sphps01, sphps02, ..., sphps06
The first step is to catalog the required TCP/IP nodes on the SAS node with

CAE. Examples of the node name and remote host parameters of the catalog
tcpip node command are the following:

Table 21. Node name and rtemote host

Node Name Remote host
dbdatan1 1sphps0
dbdatan 2sphps02
dbdatan3 3sphps0
dbdatan 4sphps04
dbdatan5 sphps05
dbdatan6 sphps06

Now the following databases can be catalogued.

Table 22. Catalogued databases

Alias Database name Node

mydb1 mydb dbdatan1
mydb2 mydb dbdatan2
mydb3 mydb dbdatan3
mydb4 mydb dbdatan4
mydb5 mydb dbdatan5

E.3.2 SQL modifications and table view definitions

To support parallel extraction of data from a DB2 partitioned database
environment, slight modifications are required to either the SQL statements
used or the table view definitions. DB2PE and UDB provide a “where
nodenumber(colname) = clause’, which is an extension to standard SQL.
The argument to the where clause can be either the keyword current node or
an integer denoting the DB2 node number to be operated on. If current node

Appendix E. The SAS System and DB2 partitioned databases 133

is specified, the node executing the query is the only node from which data is
considered. If users will be accessing the base tables directly (not via views),
the where nodenumber(colname)= current node can be specified directly in
the SAS Proc SQL.

If views are being used, the clause cannot be specified in the SAS proc as
DB2PE, and UDB only supports this clause when applied to base tables. If
views are desired or required, the where nodenumber(colname) = clause can
be specified in the view definition itself. The use of the current node keyword
requires that the SAS node(s) has a database cataloged in CAE for every
data node.

E.3.3 Query restrictions

If certain restrictions are not applied to all parallel extracts, the benefits of this
method may not be realized and/or the results may be unpredictable. These
restrictions include the following:

* Joins of two or more tables must result in a collocated join by DB2PE or
UDB.

e Functions, such as count distinct, sum, average, etc., must be done after
the extract via SAS processing.

e Order by and group by will not be correct unless further processing is
performed in SAS

E.3.4 Parallel extract processing flow

134

Now that CAE is configured and the required views are defined, we have the
ability to extract data from each of the data nodes. A SAS job that issues SQL
against a database and writes the data to a SAS dataset is the starting point
of a parallel extract. A process must be implemented that can take this SAS
job and generate multiple SAS jobs to extract data from each node. Once
these SAS jobs have been executed, the output from each must be merged
together for the complete answer. The goal is to automate this process via a
program or UNIX script. The processing flow of a parallel extract from a DB2
partitioned database environment is represented in Figure 35 on page 135.

Implementing SAS on the RS/6000 Family

SAS jobs

connectio db2
db=mydb1 -
ouput=myout1
connectto db2
db=mydb2
ouput=myout2
Final
Output
. driver connectio db2) Datasets
SAS job program db=mydb3 SAS job
it=l
connectto creates 1SAS ouput=myouts merge >8

db2 - | Programior output=myout

db=mydb each da
ouiputmyout node connectio db2
db=mydba
ouput=myoutd
connectto db2
db=mydb5
output=myouts
connectto db2
db=mydb6
output=myouts >

Figure 35. SAS to DB2 partitioned database access

E.3.5 Parallel extract SAS node alternatives

The SAS processing power for a parallel extract can be provided by either an
SMP node or a group of uniprocessor or SMP nodes. The number and types
of SAS nodes required are dictated by response time requirements and the
available resources. As discussed previously in this document, a cluster of
SAS nodes can be seamlessly integrated into this processing environment.
For parallel extracts, the following performance characteristics were observed
at one client location.

If the SAS nodes and database nodes are RS/6000 model 390 class
uniprocessors, a 1-SAS node to 4 or 5-database nodes relationship is fairly
balanced. This means that if a SAS node was running an extract against four
or five database nodes concurrently, all processor resources were consumed
on the SAS node. If the SAS node was running against less than four
database nodes, the SAS node processor has idle time left. This should only
be used as a rule of thumb. A parallel extract was run against 20 database
nodes using a single uniprocessor SAS node, and it was successful. This
takes longer, but it was still significantly faster than the standard access. If
choosing between multiple uniprocessors or a single SMP node for parallel

Appendix E. The SAS System and DB2 partitioned databases 135

extracts, the single SMP node is slightly easier to manage. For very large
partitioned database environments, multiple SMP nodes may be utilized.

An example of both a single node parallel extract and a multiple node parallel
extract will be illustrated next.

E.3.6 Single node parallel extract processing

136

When using a single uniprocessor or SMP node for the parallel extract, the
implementation of the parallel extract processing flow is straightforward. The
steps are as follows:

1. Generate the node-specific SAS programs.

2. Generate the merge program.

3. Execute the node-specific programs concurrently.

4. When all have completed, execute the merge program.

The driver program is invoked specifying myjob.sas as the program to run.
The driver program generates six SAS database access programs and a SAS
merge program. The six SAS database access programs are then submitted.
Each of these SAS programs writes a corresponding intermediate SAS
dataset named myoutx.ssd01. Once the driver program detects that all of the

database access programs have completed, the SAS merge program is
submitted. The SAS merge program then writes the final output dataset.

This is represented pictorially in Figure 36 on page 137.

Implementing SAS on the RS/6000 Family

myout2.ssdOth = =

w e W

myjob1.sas myjob2.sas = | myjob6.sas merge.sas

spawn and wait

for completion
spawnwhen all
myjobx.sast

driver pgm are complete

myjob.sasl-

Figure 36. Single SAS node parallel extract implementation

E.3.7 Multiple node parallel extract processing

When using multiple uniprocessor or SMP nodes for the parallel extract, the
parallel extract processing flow implementation is slightly modified. The
execution of the generated SAS programs is distributed evenly to the
participating nodes. As previously discussed, the participating nodes need to
be configured as a SAS cluster. The steps are as follows:

1. Generate the node-specific SAS programs.

2. Generate the merge program.

3. Distribute and execute the node-specific programs concurrently.

4. When all have completed, execute the merge program.

If we have two nodes in our SAS cluster, the following will occur: The driver
program is invoked specifying myjob.sas as the program to run. The driver
program generates six SAS database access programs and a SAS merge
program. Three of the SAS database access programs are submitted on the

local node, and three are submitted via rsh to the other SAS node. Each of
these SAS programs writes a corresponding intermediate SAS dataset

Appendix E. The SAS System and DB2 partitioned databases 137

named myoutx.ssd01. Once the driver program detects that all of the
database access programs have completed, the SAS merge program is
submitted on the local SAS node. The SAS merge program writes the final
output dataset. This is represented in Figure 37.

N

mergesas

ANN

myjobdsas | | myjobssas myjob6sas

myjobisas | | myjob2sas myjob3sas

'spawn when all
myjobx sast
are complete

spawn and wait
for completion

driver pgm

rshmyjob4, myjob5, and myjob6

Figure 37. Multiple SAS node parallel extract implementation

E.3.8 Multiple SAS nodes parallel extract implementation

138

When using multiple uniprocessors or multiple SMP nodes for a parallel
extract, the implementation of a cluster of SAS nodes discussed previously is
required. This allows multiple nodes to extract data from a set of the data
nodes and one of the SAS nodes to merge all of these intermediate datasets
together. SAS parallel extract users must also be able to rsh commands to
the other participating SAS nodes.

There are also a number of issues related to node availability that should be
considered. For example, if one of the SAS nodes is not operational, the
extract will not be complete, and the resources expended by the other nodes
and the database nodes are wasted. The following components on each SAS
node should be checked before each submission of a parallel extract:

* Node is up
* Switch is operational
* File systems used (saswork and data storage file systems) are ready

¢ Database is up

Implementing SAS on the RS/6000 Family

The driver program can check each of these conditions before actually
submitting the parallel extract jobs.

E.4 Hybrid parallel extract

For very large numbers of data nodes (>50) or when multiple logical database
nodes are running on SMP processors, a hybrid of the standard access and
the parallel extract may be desired or required. In a true parallel extract, each
database node is returning data for only one node, the node itself. In a hybrid
parallel extract, the node accepting the SQL from the SAS program returns
data for n number of nodes. Let us now modify our assumptions to illustrate a
hybrid parallel extract.

Assumptions:
e Six data nodes

* The odd number nodes, dbdatan1, dbdatan2, and dbdatan3, will function
as true coordinator nodes returning data from themselves and one other
data nodes.

After cataloging three TCP/IP nodes and three databases with CAE, we need
to define a view to select data from two nodes. If there are six data nodes and
the odd ones have been cataloged, then n = 2. The view that must be defined
has the following select syntax:

select coll,col2,...,colz from mytable
where nodenumber (colname) = current node and

nodenumber (colname) = (current node + 1)

The where clause could also be specified directly in the SAS Proc if base
tables are being accessed. This would result in three coordinator nodes with
each coordinator returning the data for two nodes. This would reduce the
number of SAS jobs being executed but increase the time required for the
extract because each coordinator is returning data for two data nodes.

The database access for this hybrid parallel extract is shown in Figure 38 on
page 140.

Appendix E. The SAS System and DB2 partitioned databases 139

db2 data node 5 db2 data node 6
coordinator node for
node 5 and node 6

db2 data node 3 db2 data node 4
coordinator node for
node 3 and node 4

db2 data node 1 db2 data node 2
coordinator node for
node 1 and node 2

SAS

CAE for AIX

— node directory entry for each odd nurrbered
daia node

— database directory entry for a database at

each odd nurrbered data node
(mydb1, mydb3, mydb5)

Figure 38. SAS to DB2 partitioned database hybrid parallel extract

E.5 Multiple DB2 logical nodes implementation

140

The use of SMP nodes running multiple logical DB2 nodes is increasing and
will continue to do so. This requires slightly more planning and infrastructure
than previously discussed. This is due to the fact that when you catalog a
node via CAE, you can only catalog a physical machine (IP address). The
first logical node running on that machine will be the one that accepts remote
connections. There are two options for proceeding:

* Use a Hybrid parallel extract with one coordinator per physical node

* Implement True parallel extract with SAS on every data node
To describe the first of these scenarios, assume there are two SMP nodes,
each running four DB2 logical nodes. Two databases, mydb1 and mydb2,

would be cataloged via CAE. This configuration is depicted in Figure 39 on
page 141.

Implementing SAS on the RS/6000 Family

[SMPnode 1

SMP node 2
DB2 lagical node 7 DB2 logical node 8
DB2 lagical node 5 DB2 logical node 6

DB2 logical nace 3 DE2 logical rode 4
DB2 logical e 1 DE2 logical roce 2
SAS
CAE for AIX

node directory entry for each SVPnode
database directory entry for one database
ateach SVPnode (mydb1 and mydb2)

Figure 39. Multiple logical DB2 nodes per SMP node

E.5.1 Hybrid parallel extract

To perform a hybrid parallel extract, a single view is required. The selected

syntax is the following:

select coll,col2, ..

where nodenumber (colname)

nodenumber (colname)

nodenumber (colname)

nodenumber (colname)

The driver program will generate two SAS jobs: One specifying mydb1 and
the other mydb2. When these SAS jobs access the view, the first logical DB2

.,colz from mytable

= current node and
(current node + 1)
(current node + 2)

(current node + 3)

node on each SMP node would become the coordinator node and would
return data for the four DB2 logical nodes on that machine. Again, this

reduces the number of SAS jobs required but will take longer to complete

than a true parallel extract. This is represented in Figure 40 on page 142.

Appendix E. The SAS System and DB2 partitioned databases

dbdata3

dbdata2

dbdatat

dbdata0

coordinator
node

input

dbdata7 dbdataé

dbdata5 dbdata4
coordinator
node

AV Z
myjob1.sas myjob1.sas
db=mydb1 db=mydb1
selects data from selects data from

dbnodes 0,1,2,3

dbnodes 0,1,2,3

o0m

driver

spawn when all myjobx.sast
are complete

merge.sas

Figure 40. Hybrid parallel extract

E.5.2 True parallel extract

To perform a true parallel extract with multiple logical DB2 nodes the

configuration requirements are different, and the submission of the node

specific SAS jobs requires an additional parameter:

e Configuration.

SAS Job Submission:

142 Implementing SAS on the RS/6000 Family

No CAE configuration is required.

SAS must be installed on the database machines.

Data Storage file systems must be available for that node’s intermediate
Datasets.

Data Storage file systems must be shared as in the cluster configuration.

When the node specific SAS jobs are distributed via rsh, an environment
variable must be set before the execution of each of the SAS jobs. The
DB2NODE parameter allows the user to specify which logical node to operate
on. This implementation is depicted in Figure 41.

dbdata3 dbdata2 cbdata7 dbdata6

dbdatal dbdatad cbdata5 dbdatad

PB2NODE=3 | [DB2NODE=2 PB2NODE=7 | [DB2NODE=6
> | [rvicb4.sas job3.sas — > | [vio8.sas myjoo7.sas —
m m myouts W

DB2NODE=1 [DB2NODE=0 PB2NODE=5 [DB2NODE=4

myjob2. sas jobl.sas Inyjob6.sas Imyjob5.sas

N N

rsh script to export DB2NODE rsh script to export DB2NDDE
and submit and st
SAS job SAS job

driver pgm

waitfor‘ ete
it i compl

merge.sas

Figure 41. True parallel extract

E.5.3 Summary

The approaches discussed in this paper are not meant to be presented as the
only way to implement SAS on an RS/6000 SP or to integrate SAS and DB2
partitioned database processing. They are merely an example of how
implementing processes, conventions, and an infrastructure can provide a
scaleable, robust, and powerful environment for SAS computing on the SP.
These approaches and processes were developed in response to delivering
solutions at multiple customer locations. They were refined as issues were
encountered and new ideas developed. Of course, every site is unique, and

Appendix E. The SAS System and DB2 partitioned databases 143

the skills of customer personnel will generate even more new ideas and
possibilities. Likewise, should these recommendations be implemented at
your site, further refinement, tuning, and improvements will need to be made
and tailored to your specific environment, personnel, and requirements.

144 Implementing SAS on the RS/6000 Family

Appendix F. The SAS system and GPFS

The GPFS file system on RS/6000 SP is a feature of SP systems that delivers
very fast data transfer rates. SAS performance will benefit from this, and,
therefore, the feature is of interest to SAS users. We include the following
article about the GPFS file system here.

Introduction

IBM has introduced a general purpose parallel file system, called the General
Parallel File System (GPFS), which runs on the RS/6000 SP. One of the ideas
behind developing a parallel file system for the SP is an idea that drives all
parallel implementations: Spread workload across many nodes in order to
scale up the amount of work you can do while delivering excellent
performance.

The RS/6000 and AlX are the platforms of choice for many SAS software
users. It was decided to proceed with a project to see whether the SAS
System could benefit from the use of GPFS on the RS/6000 SP. The goals of
the project were twofold: First, to prove that GPFS and the SAS System were
functional, and second, to measure performance characteristics and
scaleability.

The test project was run at the RS/6000 Teraplex Integration Center in
Poughkeepsie, NY. The Teraplex center is used for testing customer’s real
world environments, with a focus on large-scale Business Intelligence
environments. The Teraplex Integration center helps existing IBM customers,
potential new customers, business partners, and IBM hardware and software
development by integrating, optimizing, and stressing Bl systems on gigabyte
to terabyte class databases.

The hardware and software configuration, tests, test results, and
performance summarization's will be described in this appendix. We will
present a GPFS overview, which will describe the capabilities of GPFS, as
well as a high-level description of GPFS and how it was configured in these
tests. We will also share our experiences setting up and using GPFS in the
SAS System environment.

F.1 GPFS overview

The IBM General Parallel File System for AIX (GPFS) provides file system
services to parallel and serial applications running on the RS/6000 SP. GPFS
allows users shared access to files that may span multiple disk drives on
multiple SP nodes.

© Copyright IBM Corp. 2000 145

AlX file system utilities are supported by GPFS. All commands that are
currently used by AlX users can continue to be used unchanged for GPFS file
system users. The only unique commands are those for administering the
GPFS file system, and these commands are available through the automated
help panels.

GPFS allows parallel applications simultaneous access to the same files or
different files from any node in the configuration while managing a high level
of control over all file system operations. It offers extremely high
recoverability while maximizing data accessibility.

GPFS improves system performance in a number of ways. It allows multiple
processes or applications on all nodes of the SP simultaneous access to the
same file. It increases aggregate bandwidth of the file system by spreading
reads and writes across multiple disks. It balances the work load evenly
across all disks to maximize their combined throughput. It also supports large
amounts of data and allows you to have bigger file systems by removing the
physical limitation of a single node. It also allows for concurrent reads and
concurrent writes to the file system.

GPFS uses a sophisticated token management system to guarantee data
consistency while providing multiple independent paths to the same file, by
the same name, from anywhere in the SP system.

GPFS is also a logging file system that creates separate logs for each SP
node. These logs record the allocation of meta data and aid fast recovery and
consistency of data in the event of node failure, even when a node fails while
modifying file data.

GPFS allows for adding or deleting disks while the file system is mounted.
When the time is right and system demand is low, you can rebalance the file
system across all currently-configured disks.

F.1.1 Hardware configuration

146

The system used at the Teraplex center for the GPFS tests was an eight-node
RS/6000 SP. Each of the eight nodes was an identically-configured
Symmetric Multiprocessor (called a high node). The eight nodes spanned two
SP frames, and all the nodes were connected by the SP Switch, which is a
scalable, high-speed, high-availability network.

Each high node had the following configuration:
* Eight - 604 112 MHz PowerPC processors
* 2 GB Memory, two 2.2 GB Internal disks

Implementing SAS on the RS/6000 Family

e Two Serial Storage Architecture (SSA) adapters
* 16 - 4.5GB SSA disks

* Four loops (two loops per adapter), with four disks on each loop

F.1.2 Software configuration
The software configuration was as follows:

AIX Version 4.2.1 NFS Version 2.0 Parallel Systems Support Program
(PSSP) 2.4 GPFS Version 1.1 SAS System, Release 6.12.

F.1.3 Physical disk configuration

Each of the nodes had an identical physical disk configuration of two SSA
adapters, with two loops on each adapter, and four disks on each loop. See
Figure 42 for a diagram of the configuration.

554

Adapter 1

LR
Adapter 1

Figure 42. Node configuration

F.1.4 System configuration

The tests were run against three types of file systems: Local, NFS-mounted
across the switch, and GPFS. The first set of tests was run against an
identical configuration of disks on local, NFS, and GPFS. The second set of
tests was run on GPFS where the number of disks and adapters were four
times the size of the initial configuration. The disk configurations for each of
the different file systems are described in the following sections.

Appendix F. The SAS system and GPFS 147

F.1.5 Local disk configuration

Two file systems were defined in each file system type, /DATAFS and
/TEMPFS. The /DATAFS file system was used to store the newly-created
Household and Person data files. The /TEMPFS file system was used as the
\saswork directory.

The disk configuration for the local file system was six 4.5 GB Serial Storage
Architecture (SSA) disks for both /DATAFS and /TEMPFS, for a total of 12
disks. Each node of the system configuration had two SSA adapters with 16
disks and two loops on each adapter, each loop having four disks. The file
systems used 12 of those 16 disks.

See Figure 43 for the Local and NFS configurations.

MFE SAS

MFs 5A%

SP Switch SP Switch

Figure 43. Local and NFS configurations

F.1.6 NFS disk configuration

The local file systems were NFS mounted across the SP Switch for the NFS
tests. NFS Version 2.0 is used in AlX 4.2.1. The tests were run on one and
four nodes; each of those nodes was different than the node on which the
disk was locally attached.

Refer to Figure 43 for the NFS configuration.

F.1.7 GPFS disk configuration

The GPFS disk configuration was identical to the local configuration, in that
the /GPFS/DATAFS and /GPFS/TEMPFS file systems each consisted of six
4.5 GB disks on a single node containing two SSA adapters with two loops on
each adapter.

148 Implementing SAS on the RS/6000 Family

Refer to Figure 44 on page 149 for the single node GPFS configuration. The
second GPFS disk configuration was four nodes, each containing six 4.5 GB
disks for /GPFS/DATAFS and /GPFS/TEMPFS. This second configuration
was four times the size of the initial GPFS configuration and four times the
size of the local and NFS configurations.

GPFS
SO gerver

LPFa
Elieni

LEFS
Clienl

GRES
Clienl

3P Swilch 5P Swilch

Figure 44. Single node GPFS configuration

See Figure 45 for the four-node GPFS configuration.

LPFS
Client
LPFS
Clienl

GRS
Client

3P Swilch 5F Swilch

Figure 45. GPFS configuration

F.2 Tests
Four tests cases used in the GPFS testing follow:

Appendix F. The SAS system and GPFS 149

F.2.1 Test results

The Census_Test1.sas test case reads the raw data supplied from the
US Census Bureau files, and creates two SAS data sets: HRECS and
PRECS. The HRECS file, generated with data from the state of California,
is 120 MB in size, and the PRECS file from the state of California is 340
MB in size. The HRECS SAS data set describes attributes describing
households. The PRECS SAS data set describes attributes for individual
persons. The three other SAS test cases use the HRECS and PRECS
SAS data sets created by the Census_Test1.sas input file.

The Census_Test2.sas test case creates indexes in the HRECS and
PRECS SAS data sets to allow the two files to be joined in a later SAS test
case. The generation of the indexes is very memory-intensive and allows
for more efficient access to data inside a SAS data set.

The Census_Test3.sas test case is a statistical test generating frequency
data and summarization data of HRECS and PRECS. Many PROC FREQ
steps are executed on many combinations of data in the HRECS data set.
Many PROC SUMMARY steps are executed on data in the PRECS data
set. This test is very I/O intensive.

The Census_Test4.sas test case collects frequency data on the PRECS
data set. This test is very CPU-intensive and consists of two PROC
UNIVARIATE steps, a PROC SORT step, and two PROC Data sets steps
for cleanup.

The test results are documented in both table and graph formats. Figure 46
shows three sets of results.

M iccal I 4-GRFS
2400 Il MFS | R
W GPFs I 16GPFS
235 B 4-MFE

Figure 46. Test 1 results

150 Implementing SAS on the RS/6000 Family

Each job reads from the same input file and creates a new Household
(HREC) and Person (PREC) file. The first set of results, represented by the
leftmost three bars, indicates the time to run one job on local, NFS, and
one-node GPFS file systems. The results show that while GPFS is slightly
better than NFS, the local file system is the better solution for a single job.

The second set of results, indicated by the middle two bars, indicates the time
to run four concurrent jobs on NFS and GPFS. The four concurrent jobs use
four nodes, each running only one job. In this case, GPFS performs better, on
average, than NFS.

The third set of results, represented by the rightmost two bars, indicates the
time to run 16 concurrent jobs on NFS and the four node GPFS file system.
Four nodes are used, each node running four concurrent jobs. The results for
this higher workload indicate that GPFS again performs much better than
NFS. Figure 47 shows three sets of results.

i I Local 4-GPFS
I MES M 1a8-NF%
50 M crFs Il 16-GPFS
4-MFS
L ﬂ
=
2w
=
20
Ly

Figure 47. Test 2 results

Each test job sorts both the Household (HREC) and Person (PREC) files and
creates indexes to join the files together.

The first set of results, represented by the leftmost three bars, indicates the
time to run one job on local, NFS, and one-node GPFS file systems. Again,
we see slightly better performance on the local configuration as compared to
NFS and GPFS.

The second set of results, indicated by the middle two bars, indicates the time
to run four concurrent jobs on NFS and GPFS. The four concurrent jobs use

Appendix F. The SAS system and GPFS 151

152

four nodes, each node running only one job. There is no real difference in
performance in this test.

The third set of results, represented by the rightmost two bars, indicates the
time to run 16 concurrent jobs on NFS and the four node GPFS file system.
Four nodes are used, each node running four concurrent jobs.

As can be seen from the graph, the time to complete the task increases
slightly as the workload increases. When the workload is increased to 16
concurrent jobs, the NFS configuration performance is greatly affected. The
GPFS configuration sees little or no negative effect from the increased
workload and maintains the same relative response times to accomplish the
tasks.

Figure 48 shows three sets of results.

P I Lo<al 4-GPES
| B 16-MFS
B CPFE I 16-GPFS
4-NF5
- 20
¥
£
=
150
- i |

Figure 48. Test 3 results
Each job does sequence calculations and summarizations.

The first set of results, represented by the leftmost three bars, indicates the
time to run one job on local, NFS, and one-node GPFS file systems. The
aforementioned trend continues where the local configuration performs best.

The second set of results, indicated by the middle two bars, indicates the time
to run four concurrent jobs on NFS and GPFS. The four concurrent jobs use
four nodes, each node running only one job. In this test, we see that NFS
holds a slight advantage over GPFS.

Implementing SAS on the RS/6000 Family

The third set of results, represented by the rightmost two bars, indicates the
time to run 16 concurrent jobs on NFS and the four-node GPFS file system.
Four nodes are used, each node running four concurrent jobs. Again, we see
the GPFS advantage in this test case, where NFS performance is greatly
affected in a negative fashion while GPFS yields consistent results despite
the increased workload.

Figure 49 shows three sets of results.Each job collects statistics on the files.

I Local AGRFS

B NFE Il 16-NFS

M GPFS El 16-GPFS
4-MF5

12

Ll

Idinutes
o

Figure 49. Test 4 results

The first set of results, represented by the leftmost three bars, indicates the
time to run one job on local, NFS and one node GPFS file systems.

The second set of results, indicated by the middle two bars, indicates the time
to run four concurrent jobs on NFS and GPFS. The four concurrent jobs use
four nodes, each node running only one job.

The third set of results, represented by the rightmost two bars, indicates the
time to run 16 concurrent jobs on NFS and the four node GPFS file system.
Four nodes are used, each node running four concurrent jobs. This set of
results demonstrates the severe penalty paid by the NFS file system with a
high workload. The results also show how scaling up the number of resources
to handle I/O with GPFS can support the larger workload with ease.

F.2.2 Notes on testing

This test project was the first opportunity for us to work with GPFS. We
referred to three sources of information: A redbook on GPFS, a whitepaper

Appendix F. The SAS system and GPFS 153

154

that had been written regarding performance with GPFS, and the General
Parallel File System for AIX: Install & Admin Guide, SA22-7278.

There are a few key parameters that dramatically affect system performance.
Since the SP switch is used by GPFS, certain parameters must be set in
order to achieve maximum performance. In addition to switch tuning, certain
system parameters, such as GPFS block size and VSD buddy buffers, must
be set accordingly.

One key item to be aware of is that a few of these parameters come from the
kernel memory (heap), which is limited in AIX 4.2.1. This limitation is removed
in AIX 4.3. We ended up readjusting the number of buddy buffers in order to
achieve a proper switch tuning setting. The parameter settings we used were:
Switch:

* thewall=65536

* rpoolsize=16777216

* spoolsize=16777216

GPFS:
¢ Block size = 256K

VSD:

The VSDs were defined with the parameters shown in Table 23:
Table 23. VSD parameters

1P Initial Max VSD rw Buddy Buffer Size:#
packet | cache cache request | request | Min and max size
Size buffers | buffers | count count size

61440 64 256 256 48 4096 and 262144 33

The GPFS block size was changed to 64 KB, but there was little or no
positive effect on performance.

After running the initial set of tests with a one-node GPFS configuration, we
used the Systems Management Interface Tool (smit) to change the GPFS
configuration. We supplied a file that contained the physical disk descriptions
that would be used to define the VSDs. The SMIT panel allows you to specify
this disk descriptor file and uses it to automatically build and configure the
VSDs.

Implementing SAS on the RS/6000 Family

After the VSDs were configured, the file system was automatically changed to
include disks on all four nodes. Any data that was in the file system was also
automatically rebalanced across the entire file system using the 64 KB stripe
size.

While we did not use this option, GPFS allows for adding disks to the file
system while still online.

F.3 Conclusions

The two objectives of our test were achieved. Our first goal, which was to test
functionality between the SAS System and GPFS, was demonstrated in that
all the tests ran successfully with no changes required to any of the test
cases. The output files were compared between the local, NFS, and GPFS
tests and were identical. There were no problems with many SAS users on
separate nodes accessing the same file in the GPFS file system.

The second goal, which was to measure performance and scalability of the
GPFS file system, was also accomplished. The results showed us that
scaling up the number of disks, loops, disk adapters, I/0O buses, and
processors allows for more work to be done with comparable response times.
The ability to access a file from any node in an SP system also allows for the
scaling up of CPUs and memory to handle SAS workload.

One additional benefit that GPFS can provide SAS users is the ability to
define a large \saswork directory that provides a global name space. This
simplifies administration of a load-balancing environment. System
administrators and users do not have to concern themselves with details as to
where data is located and mounted. In defining a \saswork in GPFS, it allows
for an accessible file system to any node in an SP complex and allows for
simple automated administration of that directory. The system administration
of a GPFS file system is exceptionally easy, especially when compared to
having to administer a similar NFS configuration. The added benefits of a
GPFS configuration are availability and recoverability.

The ability of GPFS to add disks to a file system and rebalance data across

those new disks offers balanced scalable growth to a file system. This ability
to grow the file system in terms of processors, buses, disks, and adapters is
unprecedented. It offers the ability to maintain acceptable performance while
increasing workload.

The tests that were run indicate that GPFS is an excellent candidate for
solving problems introduced by large numbers of SAS users or jobs where

Appendix F. The SAS system and GPFS 155

156

data needs to be shared or where large amounts of I/0O activity can be helped
through the addition of disks and adapters.
For more information, see the following:

* An Introduction to GPFS R1 - White paper available on the Web at:

www . austin. ibm.com/resource/technology
* GPFS: A Parallel File System, SG24-5165
e General Parallel File System for AIX: Install & Admin Guide, SA22-7278
* RS/6000 Teraplex Integration Center

For more information about the RS/6000 Teraplex Integration Center, contact
Frank DeRobertis at DEROB @us.ibm.com.

The information in this appendix comes from an IBM whitepaper, The SAS
System and GPFS - A Scalable Solution, by Keith F. Olsen and James T.
West of the IBM Corporation.

Implementing SAS on the RS/6000 Family

Appendix G. Scalable performance

This appendix deals with achieving scalable performance for large SAS
applications and database extracts.

The dramatic drop in the price of computer disk storage from tens of dollars
per megabyte to tens of cents per megabyte has greatly increased the
collection and storage of massive amounts of data. Many organizations are
making significant investments in data warehousing, data marts, and
analytical applications to extract knowledge from their operational data.
Often, the ability to realize the full value of that data is limited because, even
with the fastest computer, the data volumes are so large that they make
processing within the requisite batch window impossible.

Not only are Business Intelligence systems likely to be large and grow rapidly
in complexity as well as size, but their growth and usage patterns may be
difficult to predict. Even more than with typical data processing systems, Bl
systems need to be built to be scalable. This includes the ability to grow in
increments and the ability to harness many resources, all working together to
provide computing power for high-performance on large applications when
needed. Traditional solutions can’t address these dynamic requirements.

Multiprocessor machines provide the ability to economically scale the number
of jobs and users as processors are added. These systems can also be used
to scale the throughput of single large jobs, such as data extract or analysis.
By making use of the many processors in an SMP or MPP system to divide
and conquer such large-scale jobs, the use of parallelism can allow users to
get maximum utility from their hardware investment.

Among the customers who are already facing the limitations of conventional
computing are those who run large SAS applications. The SAS system,
developed by the SAS Institute, is the industry leader in statistical data
processing. It provides an integrated set of tools for data access,
management, analysis, and presentation. SAS customers are looking for
ways to more efficiently access and process data, and many are showing
interest in parallelism as a solution. The obvious questions are: How much of
a benefit can be accrued from using parallelism, how is it implemented, and
how difficult is the development involved?

Torrent Systems in Cambridge, MA, provides an off-the-shelf environment for
building and deploying parallel applications. Torrent’s Orchestrate provides
the benefits of parallelism while freeing programmers from having to engage
in the complexities of parallel programming. Orchestrate enables any IT

© Copyright IBM Corp. 2000 157

158

professional or commercial developer to parallelize a new or existing
application for improved performance and scalability. To address the above
questions, Torrent Systems, along with IBM, developed and ran a set of
representative workloads to test the performance impact of applying
parallelism to data extraction and SAS analyses, with the goal of decreasing
overall processing time and measuring the effect of parallelism on various
segments of the applications.

The testing team ran two tests. Both were run on an IBM RS/6000 SP
massively parallel system. The first test extracted data from a parallel IBM
DB2 UDB database and passed it to a SAS application. The second test used
an IBM customer’s actual SAS inventory forecasting application, which
processed data from flat files. Without special parallel programming, such as
that provided by Torrent’s Orchestrator for the SAS System, neither could run
in parallel, despite the fact that they were running on a parallel hardware
platform. The tests were run sequentially and then in parallel, incrementally
increasing the number of nodes to test scalability, and the results were
compared.

g

150

Total Time (Minute s)
Lz B

=

Serial
Parallel 4

Parallel &

Parallel 16

Paraliel 30

Figure 50. Parallel extraction from DB2UDB

What the tests demonstrate is that the performance of both the database
extract and the SAS application are severely limited by the ability to only
process on one CPU at a time. This is an artificial limitation if the applications
are running on multiprocessor systems. Without adding hardware, in each
case, performance increased dramatically when the extracts and processing
were run in parallel as opposed to sequential mode on the same machine.

The tests further demonstrate that not only does the use of parallelism
provide immediate performance enhancements, but it also provides the ability

Implementing SAS on the RS/6000 Family

of the tested system to scale incrementally. In fact, results showed linear
scalability through all 32 processors tested. (An example of linear scalability
is where 12 processors provide 12 times the performance of a single
processor). Furthermore, because the Torrent software enabled and
managed the parallelization, the programmers did not have to write in
parallel. They simply executed their applications in the Torrent Orchestrate
environment to gain the full benefits of parallel execution. Orchestrate makes
scalable software systems commercially feasible.

Problem statement

According to Moore’s'! Law, the number of transistors that can fit on a chip
(and, thus, its power) doubles every 18 months. That is not fast enough to
keep up with today’s Business Intelligence demands. The Tower Group
predicts that the size of the average data warehouse will be 10 TB in the year
2000, and 100 TB by 2005. Scalable solutions require both scalable enabling
technologies and scalable application design.

Although multiprocessor systems (SMP, MPP, and clusters) are now common
in commercial environments, most software is designed to be run serially on a
single processor. This severely limits customers' ability to take advantage of
these powerful machines to provide the performance and scalability they
need to tackle the new class of business intelligence applications. Data
extract and refinement tools run slower than they should. Data warehouses
are artificially limited in size. The amount of historic data needed for
time-series models to be effective is compromised. Analysis applications are
run less frequently than desired; use of summarized data is required, and so
on.

Commercial processing has begun to make use of parallel technology with
parallel RDBMSs. Data in a single table can be partitioned across many
CPUs and processed in parallel for greater throughput of queries and other
database commands. The IBM DB2 UDB (Universal Database) partitions data
across multiple nodes and parallelizes all database functions including insert,
update, and delete. Joins, load balancing, table reorganization, data load,
index creation, indexed access, backup, and restore are all performed in
parallel on multiple nodes. However, the processes that occur outside the
database are still run sequentially, creating a bottleneck and limiting the
overall performance benefit of using a parallel database:

e SAS applications can very quickly consume large amounts of data.
Thus, it is important to avoid a situation where there is only one connection

between the SAS step and the parallel database, in essence, serializing the

database. Although the data has been partitioned across multiple nodes, a
1 Gordon Moore, Chairman of the board of Intel in the 1960s

Appendix G. Scalable performance 159

160

SAS process can only connect to one DB2 UDB node at a time. Thus, all the
data must be passed to that node and then funneled through a single cursor
to the SAS application, creating a bottleneck.

¢ Equally important is how the data tables are partitioned across the
processors in the first place.

The database must be partitioned in a way that is consistent with the
expected access. If that is not the case, users will find themselves asking for
data that is not local to the connected node and having to wait for it to be
transmitted, thus, greatly diminishing efficiency.

e SAS applications only run on one processor at a time.

Accessing a database with data on multiple processors is similar to traffic
flow on several heavily traveled expressways, with the task of flowing
selective vehicles to a large ball park from the expressways. The design
requires multiple points of entry to allow vehicles on the multiple expressways
to arrive in the ball park's parking lot at about the same time. The expressway
vehicles can’t all merge into a single traffic lane with one point of entry into
the ball park. This would constitute a self-imposed bottleneck.

Moving data from a parallel database to a software application is very similar.
The data must arrive at the application via multiple parallel routes, and not
back up, waiting to pass through a single entry point. You want to avoid
serializing a parallel database.

In fact, like databases, many tools and applications can benefit from the
application of parallelism. The steps involved in building a data warehouse or
data mart, such as data extract, transformation, cleansing, merge, sort, and
loading are easily parallelizable, and shortening their processing time can
provide substantial benefit. Likewise, parallel execution of many data mining
and analysis applications could mean the difference between compromise
and running the required jobs against the required data volumes in the
required frequency.

But, effective parallel processing includes full coordination of the partitioning,
processing, error handling, and merging events so that the results are the
same as if the application had been run serially. In addition, it means that the
processing is done efficiently so as to provide high-performance and
scalability as processors are added. Parallel programming has not come
without the high cost of development and management. Until now.

Implementing SAS on the RS/6000 Family

The parallel solution

Torrent Systems has developed a product called ORCHESTRATOR for the
SAS System (OFS) for enabling SAS applications to execute in parallel and
to interface in parallel to the IBM DB2 parallel database system on both SMP
and MPP architectures. OFS increases overall system performance by letting
you:

» Extract data in parallel from a parallel RDBMS
e Load the results of SAS programs back into the database in parallel

* Process parallel data streams with parallel instances of a SAS DATA or
PROC step for much higher throughput rates

e Store large data sets in parallel, thus, providing faster access and
eliminating storage restrictions

» Stream data between SAS steps without having to write intermediate
results to disk

The bottom line is that you can process much larger volumes of data.

Orchestrator for the SAS System is a commercially available and supported
product designed to solve the parallel interface issue with minimal user effort,
allowing SAS users to insert simple parallel directives into SAS programs.
SAS algorithms that can be partitioned into discrete components can be
parallelized using a Multiple Processor Independent Data (MPID) parallel
paradigm.

SQL statements that use a GROUP BY clause illustrate a class of problems
that could be executed in parallel with each SAS processor working on a
separate GROUP or PARTITION of the data. Data extracted from a database
in parallel is most efficiently processed in parallel local to the node containing
the extracted data. This involves no processor-to-processor communication
to move data. Executing SAS applications in parallel and using data extracted
in parallel from a DB2 parallel database makes efficient use of the IBM
RS/6000 SP system.

IBM and Torrent set out to demonstrate and measure the performance impact
of extracting data and running SAS applications in parallel. The results show
the dramatic improvements that can be realized by employing Torrent’s
Orchestrator for the SAS System to fully exploit the power of the IBM
RS/6000 SP system.

Testing methodology

There are no standard benchmarks for performance measurement of data
access and analytical processing, two time-consuming components of Bl

Appendix G. Scalable performance 161

162

systems. The testing team wanted to ensure that the workloads and
configuration were as realistic as possible and that the comparisons between
sequential and parallel processing were fair and meaningful. To this end, they
used real customer applications. One test used an actual SAS inventory
forecasting application running at an IBM customer site. The customer was
using an IBM RS/6000 SP system but running SAS applications on a single
node and not taking full advantage of the multiple processors.

Segments of the applications were tested independently to demonstrate the
impact of parallelism on each type of process, but the overall performance
was maximized when the system was run using end-to-end parallelism
eliminating sequential bottlenecks.

Both uniprocessor and SMP nodes were used in the system configuration
that is typical in customer environments and allows measurement of the
performance characteristics of each.

In addition, Richard Winter, president of Winter Corporation, and a leading
authority on the subject of Very Large Database implementation, conducted
an independent analysis of the test procedures, results, and conclusions. His
evaluation and comments can be found in “Evaluation and comments” on
page 176.

The tests were run at the IBM Teraplex Integration Center in Poughkeepsie,
NY. The $47-million Teraplex is used to integrate and test RS/6000 SP
hardware, IBM software, and products developed by IBM Business Partners
for very large, end-to-end customer solutions.

Test machine configuration

Readers need to be familiar with the basics of parallel architecture in order to
understand the testing procedures. They are explained in “Parallel
architecture basics” on page 179.

The IBM RS/6000 SP system hardware can best be described as a cabinet
with eight drawers. There are three types of nodes: Thin, high, and wide.
Each node type takes up space in these drawers.

The thin node is a uniprocessor node and takes up half a drawer.

The high node, which is an SMP node with between two and eight CPUs,
takes up two full drawers. It is twice as high as a normal thin or wide node.

The wide node (not used during this test) takes up one full drawer. It is a
uniprocessor node but has more 1/0O capability than a thin node.

Implementing SAS on the RS/6000 Family

The hardware configuration for the test consisted of high nodes and thin
nodes. The thin nodes were hosting the database in different configurations
consisting of 4, 8,16, 32, and, sometimes, 30 nodes. The high nodes were
used for running SAS jobs for the single node tests. All processors were
connected by a high-speed switching network.

The high nodes were configured as follows:
* Eight 604 PowerPC processors (112MHz)

2 GB memory
Two 2.2GB internal disks
Four SSA adapters

32 4.5GB disks (two loops on each adapter with four disks per loop)

The thin nodes were configured as follows:

e 120MHz Power2SuperChip processor

1 GB memory in 28 nodes

512MB memory in 4 nodes

Two 2.2GB internal disks

One SSA adapter

Eight 4.5GB disks (two loops with four disks per loop)

The software configuration consisted of currently available products from
IBM, the SAS Institute, and Torrent Systems:

* AIX V4.2.1 with Parallel System Support Program (PSSP) V2.3 for all
nodes

e DB2 UDB V5.0 parallel database

* SAS V6.12, and SAS/Access

* Orchestrate V3.0

e Orchestrator for the SAS System V3.0
The software used on each node varied depending on the test being run. For
example, in some tests, SAS applications only ran on one node, whereas, in

other tests, they ran on all nodes. The DB2 UDB database was configured on
differing numbers of nodes (4,8,16, or 32) depending on the test being run.

Appendix G. Scalable performance 163

164

Database configuration

The DB2 UDB parallel database was configured using System Managed
Storage (SMS).The AlX file system used by UDB was striped across four SSA
disks with a single SSA adapter. The stripe size was 64 KB.

Striped SSA file systems under AIX provide exceptional I/O bandwidth when
using four or more SSA disks. With a striped file system, all disks are kept
busy using striped 1/O with optimal data buffering and minimal disk head
movement. A disk striped file system provides optimal parallel utilization of
the SSA disks.

A study was performed to compare the performance difference between
Database Managed Storage (DMS) using user-defined segments on
individual disks and a striped file system using SMS. Large data extractions
with DB2 UDB measured the SMS striped file system technique as more than
10 percent faster than user-managed segments using DMS.

Census data was used, and the database was partitioned by serial number
for 4, 8, 16, and 32 thin nodes.

The tests

Leveraging parallel hardware for data extraction, processing, and load into a
parallel warehouse can yield huge gains in the performance of data
warehouse applications. To demonstrate the performance gains of both
parallel extract and parallel processing, IBM and Torrent devised two tests
that extract and then process large amounts of data from a DB2 UDB
database in parallel. As the number of CPUs is increased, the entire
application execution time falls off dramatically for both the extraction and
processing steps. This is referred to as scalable performance. The following
sections describe, in detail, the test scenarios and their results.

Test 1: Parallel extraction
Parallel extraction of data from a parallel database is a good example of
where SAS systems can benefit from parallelism.

Serial extraction of multiple gigabytes of data from a warehouse is a
time-consuming operation. Data distributed across a parallel table of an
RDBMS must be streamed from the various table nodes into a coordinator
node, that then streams the data out of the database. The flow of data is
bottlenecked by the rate at which the coordinator node within the database
can read and then write the data.

In the first test, Orchestrator for the SAS System was used to parallelize the
data extraction from the database. This was done by enabling SAS/Access to

Implementing SAS on the RS/6000 Family

run on every node, only extracting data local to that node. By executing a
SAS/Access process on each node of a parallel table, OFS is able to extract
all of the data from the parallel table. OFS removes the sequential bottleneck
found at the coordinator node by executing SAS/Access on all of the
database nodes.

Figure 51 shows a typical sequential SAS/Access database extraction vs. an
OFS-enabled parallel database extraction. Several parallel extractions were
performed on a table of data spread out over 4, 8, 16, and then 32 nodes of
the database. The volume of data extracted from the table was fixed at a
constant volume during all phases of the test. The tests extracted an entire
table composed of five million rows (records) of census data. Each record
was 304 bytes long and was composed of 126 fields. The total data volume
was 1.52 GB.

In the parallel extraction runs, OFS merges the parallel extraction streams
into a single SAS data set. This single SAS file acts as a data mart that the
SAS expert then uses for further data analysis.

Sequiential Extraction Parallel Extraction Using OFS
DRI UDE IMEZ LIE
nivle | nisle 2 last node mnde 1 mixle 2 last niode
Rz —— T
table file ok
(B I "]
BOL provess A
BAS pry b BAS
Auoiess Acvess || *F] [Aoces
——— SAR SAS SAS
LAL T
Acess
A% * .v“'f
Sequeniial L
SAS datasul SAS SA%
o data d.'.ll:lhl.'l I.|:L'Ii.1x|.'[
mari Dats mast nede Dot mart node

Figure 51. Database extraction into sequential SAS data

In order to evaluate the relative performance of high and thin nodes, tests
were run where the sequential SAS data set was collected onto both high and

Appendix G. Scalable performance 165

166

thin nodes. All processors were connected by a high-speed switched
network.

In the sequential extraction, the sequentialization of the distributed data
occurs when streaming data into the single coordinator node of the database.
SAS/Access then uses a single stream to extract the data out of the
database. In the parallel extraction test, the need to move data from node to
node within the database is eliminated, plus, data is streamed out of the
database in parallel. The sequential step that converges the data into a single
file occurs outside of the database under the control of OFS. As the tests will
show, only parallel extraction provides efficient scalable performance with
large volumes of data.

A key feature of the OFS parallel environment is its ability to land data to
disks in parallel. Figure 52 shows one of the applications that was run as part
of the parallel extraction tests. It is like the parallel extraction test above, but,
instead of generating a single sequential SAS data set, OFS generates a
parallel SAS data set. The parallel processing test demonstrates the utility
and power of parallel SAS data sets.

Parallel Extraction into Parallel OFS Duta

|I]1I-E LILxs
nede 1 nodee 2 last nods
LT
‘ ‘ YT &
|
¥ ¥ ¥
Y, SAS L
Acoess Adoess o Arces
SAR SAN A5
5 O 5 OF%
ditased || [[datasen datnzel

Figure 52. Parallel extraction using OFS

Results of the parallel extraction test
Table 24 shows the performance results of extracting the census data from
the parallel database. The subheadings of high and thin designate the data

Implementing SAS on the RS/6000 Family

mart node type. N-to-1 indicates extraction from N nodes into a single data
set. N-to-N indicates extraction from N nodes into an N-way parallel data set.

Table 24. Census data

High node Thin node
Sequential extraction
32-way to 1 3:16:34 2:48:42
Parallel extraction

4-way to 1 30:12 30:10
8-way to 1 16:01 16:01
16-way to 1 08:35 08:48
32-way to 1 06:39 05:13
32-way to 32 04:17
30-way to 30 04:07

Notice the sequential extraction times for the census data. These are the
runtimes of the left side of Figure 51 on page 165 for both high and thin node
data marts. Compare these to the 32-way-to-1 parallel extraction times (right
side panel of Figure 51 where N=32). The difference in these run times
(3:16:34 and 2:48:42 vs. 06:39and 05:13) is the difference between
converging a 32-way table to a single file stream inside versus outside of the
database.

OFS is extremely efficient at streaming large volumes of data.

Next, notice the drop in times in each of the columns as you progress from
the 4-way- to-1 extraction towards the 32-way-to-1 extraction. In this
progression, the same volume of data is extracted from the table that is
spread out over 4, 8, 16, and then 32 nodes of the database. The run times
are shown as a function of the number of nodes in Figure 53. Perfect linear
scalability is achieved when doubling the number of processors doubles the
increase in speed; four times the number of processors quadruples the
increase in speed, and so on.

Appendix G. Scalable performance 167

- - ta
& B8 =

i
£=]

Total The: (Minutes)

enial
Sequentia Paralbel 4
Parallel B

Paralbel 16

Parallel 30

Figure 53. Parallel extraction from DB2 creating a sequential dataset on a thinnode

Parallel extraction from DB2 creating a sequential SAS dataset on a Thin
Node OFS provides near linear scalability of the database extraction process.
The scalability is shown in Figure 54. The actual data points are plotted in the
black curve. The theoretical scalability limit that exists for applications with no
sequential bottlenecks is plotted with the heavy gray curve.

kT

Speadup
o
m\ X
%
w|
o

Mumber of Processors

Figure 54. Scalability of parallel extraction from DB2 to equential SAS dataset

As the number of processors used to extract the data increases, the deviation
from the 1:1 scalability line increases. This is particularly evident after 16
nodes. This deviation results from the inevitable sequential bottleneck that is
created when we merge the extracted data into a sequential SAS file. Parallel
extraction is so fast with many parallel clients, that regardless of whether data
is streaming from 30, 32, or 128 extraction nodes, the bottleneck becomes

168 Implementing SAS on the RS/6000 Family

writing data to disk on a single node. The difference between the 32-way-to-1
and the 32-way-to-32-way run times is approximately the time taken to write
the data to a single disk (see Table 24 on page 167). In the thin node census
data run, the difference is 66 seconds. For the census data set of 1.5 GB, this
is consistent with the data mart disk I/O of 23 Mbytes/second and is very
close to the hardware specification.

By writing to an OFS parallel data set instead of to the sequential data mart
file, OFS allows almost perfect scalability in the extraction. The 32-way-to0-32
run time graph lies right on top of the ideal scalability curve in the figure
above because its run time is exactly half of the 16-way-to-16 run time (see
run times in the table above). This feature means that you can frequently
avoid sequential bottlenecks in production mode applications by loading data
into parallel data sets. The parallel OFS data sets can be fed directly to the
parallel OFS application.

Test 2: Parallel SAS Application

The execution of complex sequential SAS applications against multiple
gigabytes of data can be a very time-consuming operation. Every record of
the data set passes through the same CPU to undergo processing. The
bottleneck of sequential processing can far exceed that observed in
sequential database extraction because the SAS application may be
CPU-intensive. Thus, you are no longer merely limited by the rate at which
you can stream data through a single node; you are further limited by the
speed of the processor.

In this second test, we parallelized a large, commercial, SAS inventory
forecasting model. This application is a SAS program with 526 lines of code,
containing 20 DATA steps and 33 PROC steps including linear regression,
freq, sort, sql, summary, transpose, and so forth. This application is one that
is currently running in sequential mode at an IBM customer site. The
customer stores the data in a flat file.

In the test, the processing was broken into three sections to demonstrate and
measure the impact of parallel processing on different steps within the
application.

Section 1: Sequential read

Reading the customer’s flat file is a sequential bottleneck. In the first section
of this test, OFS took the sequential flat file, converted it to a SAS data set,
and then created a parallel SAS data set by partitioning it onto multiple nodes
of the MPP or SMP measuring the difference in performance between writing
the data sets to high vs. thin nodes. This section of the test is very fast and
requires a small fraction of the time needed to run the actual SAS application.

Appendix G. Scalable performance 169

170

The output from this section is used as input to the next step, the SAS
application.

Section 2: Parallel execution

In the second section of the test, OFS executes the SAS model on the
multiple nodes of the MPP or the multiple CPUs of the SMP. The more nodes
executing the SAS model, the shorter the run time. Since each CPU only
needs to process that portion of the data residing locally on its node, and the
data has been divided up equally among N nodes (where N=1,2,4,8,16, or
32), each CPU must process only 1/Nth of the total data. The whole model
can now execute in 1/Nth the time required to run the SAS model
sequentially; so, for instance, the SAS model running on four nodes should
run in one-fourth the time of the sequential model. After processing, OFS
writes the SAS data set out to disk in parallel.

Section 3: Sequential write

In the final section of this test, the parallel data set created by the SAS model
is read into SAS in parallel and then merged into a single sequential SAS
data set, the output being easily inspected by the data analyst.

The left panel of Figure 55 on page 171 shows the actual test mode used to
evaluate the execution time of the three separate sections described above.
The intermediate writing to disk was performed only so that a separate
runtime for each section could be evaluated. In production mode, you would
avoid this intermediate write to disk. The right side panel shows this
production mode configuration that avoids writing the data sets to disk.

The parallel model was run on 1, 2, 4, 8, 16, and 32 thin nodes of the
RS/6000 SP and on 1, 2, 3, 4, 5, 6, 7, and 8 CPUs of the SMP. Running the
parallel model on one node is equivalent to running the sequential model.
Regardless of the degree of parallelism of the model, the volume of data
processed was fixed at a constant volume during all phases of the test.

Pipelined parallelism

OFS applications containing multiple segments also take advantage of
pipelined parallelism. With pipelined parallelism, all OFS segments in an
application execute at the same time. A segment may be active, meaning it
has input data available to process, or a segment may be blocked as it waits
to receive input data from a previous segment.

In contrast, in a normal SAS application, one SAS step executes until
completion, then the next SAS step executes, and so on. In this situation, a
SAS step must consume all its input data and write all its output data before

Implementing SAS on the RS/6000 Family

the next step can begin. With pipelined parallelism, any OFS segment can
execute as long as there is data available for it to use.

Parallel 5AS Application, Test Mode Parallel SAS Application, Production hMode
Section | laa file Pipelined

Parallehsm

AN
oFs | [oFs | ., | oFs
dataset | [datasct datased
Gl #1 #1
Section 2 OFs L85 OFS
dataset datnset et dotaset
#l #] #1
L L 4
FAs | [5As | eee Ia_.i.sl | Fas] Fas | === [as_]
OFs 0OFS e OFs
\JHLII:\L" IJHJH.‘\L": di.‘ll.il:\'.'l
#2 #2 #2
Sechion 3 OFs OFsS e OFs
dataser | | dataser dataset

S

5A5
dataset

Figure 55. Parallel SAS application

Results of parallel SAS application test

Table 25 on page 172 shows the OFS parallel SAS application test
performance results. The second section (the most time-consuming and
CPU-intensive) runs the actual SAS application. This section actually scales
superlinearly, that is, as the number of processors doubles, the run time is cut
by more than a factor of two.

The first and third sections comprise a small fraction of the overall application
time. The first and third sections do not scale because they read from and
write to a sequential file. It does not matter how many nodes data streams to

Appendix G. Scalable performance 171

172

or from in these two short sections. The rate-limiting step is the speed of the
sequential node.

Table 25. Results of parallel SAS application test

High node Thin node
Section 1,
Flat file to N-way data set 10:17
1-way 12:02 07:43
2-way 07:34 07:07
4 way 06:41 07:26
8-way 07:15 07:17
16-way 07:00
32-way
Section 2,
Parallel SAS application 1:42:29
1-way 3:19:02 36:36
2-way 1:10:34 15:58
4-way 31:23 07:08
8-way 15:23 04:19
16-way 02:36
32-way
Section 3,
N-way dataset to 1-way dataset
1-way 01:01 01:01
2-way 01:00 01:02
4 way 01:03 01:04
8-way 01:06 01:08
16-way 01:15
32-way

Figure 56 on page 173 shows a composite bar chart for the run time of the
entire application as a function of the number of nodes executing the
application. Each band represents the run time of one of the three sections of
the test. The bottom dark-gray band represents the time taken to parallelize
the data; the middle light-gray band represents the time taken to run the
parallel SAS model code, and the top medium-gray band represents the time
taken to stream the reduced model results to a single node. As the number of
nodes increases, the fraction of the run time due to the actual SAS inventory
forecasting run time (Section 2) decreases.This is a result of the scalability of
this section and the lack of scalabilty of the other two sections. At 32 nodes,
section 2 accounts for only 20 percent of the total run time. By this point, the
run time is down to 10 minutes.

Implementing SAS on the RS/6000 Family

At 32 nodes, parallelization of the data (Section 1) requires seven minutes,
which is 70 percent of the total run time. By leveraging the ability of OFS to
create parallel data sets when performing extractions from your database, the
sequential nature of this step can be eliminated. In fact, all of Section 1 can
be eliminated. OFS provides the tools that will enable you to remove the
bottleneck that will invariably exist in your application if you rely on sequential
data sets.

E—
| QM
o o o

Time [(Minutes)
B om
oo

]
=

i=}

16 32
Number of Processors

Figure 56. SAS application run time versus number of processors

Figure 56 illustrates that the run times of parallel Section 2 decreased
dramatically while the run times of the sequential sections 1 and 3 did not
change as processors were added to this application. As discussed
previously, there is a fundamental absence of scalability in programs that
have sequential bottlenecks like those found in sections 1 and 3. We
investigate the scalability of Section 2 in greater detail below.

This chart also illustrates the value of OFS parallel data sets. By storing data
in OFS parallel data sets, all of the run time contribution from Section 1 in this
bar chart can be eliminated, making the application as a whole scale even
better.

Figure 57 on page 174 shows the superlinear increase in speed observed in
Section 2. Complex analytic applications running against large volumes of
data can be very memory-intensive. When memory limits are exceeded,
paging and thrashing can occur. By distributing data in parallel, OFS can
provide superlinear speedup because it reduces the memory requirements on
any single node below the threshold where these slow processes occur. The
paging is eliminated.

Appendix G. Scalable performance 173

174

This application achieved superlinear speedup using up to eight processors.
The slope of the performance curve is about 2.0 in this region. When using
more than eight processors, the slope levels off to a value of 1.0 indicating
normal linear scaling.

Figure 57 provides a dramatic illustration of how distributing data over many
nodes can lighten the load placed on the memory of each individual node
and, thereby, reduce the overall work performed by the system. OFS allows
an application to run against large volumes of data while still using hardware
in the regime for which it has been optimized. In this particular
application/hardware configuration, eight nodes were required to bring the
system into the optimal performance regime. Beyond eight nodes, the total
amount of work performed did not change, and there was normal 1:1 linear
scalability.

40
36 = ’/J‘
i
12 1,‘_:.'f"‘
dL‘-.'t“"
2 4 2 i
ys] d__ff 2"
& 2 o
[:E] '{._Bﬂ'
R 4 hi
i
12 /r"
]
ol
0
0 4] 1z 16 20 24 28 iz i
Number of Processors

Figure 57. Superlinear speedup of SAS forecasting model

Conclusions

The benchmark performance studies of Torrent System’s OFS undertaken at
the IBM Teraplex Center have demonstrated the scalable performance that
can be achieved when executing database extracts and SAS applications in
the OFS parallel environment on IBM SMP and MPP hardware.

Several significant conclusions can be drawn from these results:

» Extracts from a parallel database should be done in parallel.

Using OFS to perform parallel extracts of large data sets from DB2 UDB
allows linear scalability because of the extremely efficient mechanism that is

Implementing SAS on the RS/6000 Family

used to stream data. This advantage is achieved even when creating a
sequential SAS data set because OFS employs parallel access streams to
the database.

* Use of parallel data sets eliminates serious sequential bottlenecks.

Additionally, OFS allows the creation of parallel data sets directly when
streaming data out of a parallel RDBMS. OFS parallel data sets eliminate
many sequential bottlenecks that arise in the data plumbing between the
parallel RDBMS and SAS applications.

» Executing SAS applications in parallel yields linear and even superlinear
scalability.

Using OFS to execute SAS applications in parallel on the multiple CPUs of an
SMP or the multiple nodes of an SP can yield linear and even superlinear
scalability. Memory and disk constraints that arise in complex applications
running against large volumes of data in sequential applications are
overcome by using OFS to distribute the processing to all of the available
system hardware. Linear scalability results from distributing the processing
load to multiple CPUs. Super-linear scalability can result when distributing
memory-intensive applications among multiple nodes, thereby, optimizing the
memory processing.

* Repartitioning of a parallel database is necessary in a changing world, but
cumbersome and time-consuming without ORCHESTRATOR for the SAS
System

Finally, the OFS ability to provide parallel streams of large data sets into and
out of a parallel RDBMS allows redistribution of tables within the database in
a very simple and efficient manner. The database was re-partitioned
numerous times during the testing, from 1 to 4 to 8, etc. nodes in order to
measure processing scalability. In any environment, it may be necessary to
periodically add nodes or reconfigure a system. With OFS, it is not a daunting
task to re-partition the database to take advantage of the additional nodes.

Additionally, as the needs of database users change and the types of queries
submitted against various tables of the RDBMS evolve, the OFS ability to
dynamically repartition tables on the fly according to different keys for the
purpose of a particular operation will become more and more valuable.

All parallel all the time

Organizations performing data extraction and refinement, data warehouse
and data mart loading, models, analysis, data mining, and other such
large-scale batch jobs now have a way to cost-effectively handle growth in
volume and complexity. By implementing end-to-end parallelism (parallel

Appendix G. Scalable performance 175

176

hardware, parallel database, parallel applications) using scalable hardware,
such as the IBM SP system and off-the-shelf software from Torrent Systems,
they can create an environment that will scale to many times its sequential
capacity without having to purchase additional hardware. And, Torrent’s
software, which enables development and manages deployment of parallel
applications, allows users to take full advantage of parallelism without having
to invest in parallel programmers.

Being able to incrementally scale processing up to terabytes of data on
hundreds of processors provides a great deal of growth capacity for an
environment growing in data volume and application complexity.

Evaluation and comments

This section is an independent review of Benchmark of Orchestrator for the
SAS System by Richard Winter, President and Founder of Winter
Corporation.

Tests performed

Two principal tests were performed. The first illustrated extraction of data
from a DB2 UDB database. The second illustrated execution of a SAS
application. Without OFS, each of these tasks would ordinarily be performed
in a serial manner. This was illustrated in an initial run of each test. Each task
was then performed in parallel using OFS.

Results obtained: DB2 extraction test

In the DB2 UDB extraction test, a baseline is established with a run that
extracts 1.52 GB of data from DB2 to a single file written by a serial
application program. This is a typical first step in setting up SAS processing
of data that has been stored in a relational database. The benchmark showed
that running the serial output process took approximately three hours on each
of two different configurations.

This test points up an issue overlooked by many IT professionals: Even
though DB2 UDB is a sophisticated database capable of performing a parallel
scan in a highly-optimized manner, its output to any single application
program is ordinarily serialized. Thus, the user does not benefit from either
the parallel architecture of DB2 or the parallel architecture of the RS/6000 SP
in: (a), the feed from the database to the application, or (b), the output from
the application to a sequential file.

This same operation was then run under OFS demonstrating both the parallel
feed out of the database and parallel 1/0 from the application to the file
system. The resulting runs, operating on up to 32 nodes of the RS/6000 SP,
took approximately four minutes.

Implementing SAS on the RS/6000 Family

Linear scalability was demonstrated in this test, as the number of nodes
employed was increased from four to 32.

SAS application execution test

This test is designed to illustrate the effect of using OFS to run compute
intensive SAS applications in parallel on multiple nodes of the MPP
architecture. In this case, the baseline test establishes a serial runtime for the
computation-intensive component of the application ranging from about 100
minutes on a thin node to about 200 minutes on a high node.

Running the computation-intensive component in parallel on 32 thin nodes
reduced the execution time from 100 minutes to approximately 2.5 minutes.
Running the computation-intensive component in parallel on eight high nodes
yielded a speedup from approximately 200 minutes to approximately 15
minutes. In this case, the speedup was better than linear due to the
elimination of a thrashing effect that existed when the application was
executed on a single node.

In this test, there were two components of the SAS application that were not
parallelized: Reading from a sequential input file and writing to a sequential
output file. These components did not speed up in the test. However, if
parallel OFS files were used for these steps, additional parallelism and
speedup would be expected to occur.

Review process

In the review process, | examined listings of the tests executed and the
results produced by interviewed personnel who participated in the test
process; | reviewed a draft of the White Paper presenting the results and
conducted my own independent analysis of the test results and conclusions.

| am satisfied that the tests were conducted as described here, that the
results are as represented here, and that the conclusions described in the
White Paper are appropriate and supported by the test results.

Reviewer’s comment

Much of the significance of the capabilities provided by OFS is due to the
ease with which preexisting serial applications are transformed to operate in
parallel. OFS provides facilities to easily specify how such multistep parallel
operations should be set up; it readily feeds the output of one step as the
input to another and provides facilities for management of parallel execution.

In principle, this can be done without the use of such a product as OFS: Any
user could replicate his or her DB2 extraction application and run multiple
copies in parallel to achieve speedup. But, this is not commonly done,

Appendix G. Scalable performance 177

178

precisely because of the complexity of setting up and managing such
processes, particularly when they are simply one step in a larger process. As
the number of parallel processes increases and the number of steps
increases, it becomes impractical to set up and manage multistream
applications manually. The probability of human error becomes unacceptably
large, and the difficulties of even determining whether the process completed
correctly can become formidable.

Therefore, it is extremely significant that these tests were set up employing
previously serial applications and the highly automated facilities of OFS to

run them in parallel. It is also important to note that the SAS application did
require some straightforward modifications (the effort of one engineer for a
few hours) in order to achieve the speedups illustrated.

Some SAS applications could be run in parallel with literally no modification.
In my view, the tests are all the more realistic for Torrent’s choice to use a real
SAS application of some considerable complexity and include in the test
protocol the minor modifications required to parallelize it.

Implications of results

In my opinion, the significance of these results is as follows: Large scale
analysis, data mining and similar applications are comprised of complex
multistep processes. Much of this occurs outside of the relational database,
and most of it is, ordinarily, executed serially, even on a parallel hardware
architecture.

The steps that are performed outside the database, such as extraction of data
to a file or analysis of the data within SAS, must also be performed in parallel
to avoid lengthy delays. The two simple steps illustrated in the benchmark
(extracting 1.52 GB of data and analyzing it in SAS) would each take hours if
performed serially. In these cases, the benefits of parallel operation within the
database would be dwarfed by the long run times of the serial steps that
followed.

This benchmark shows that OFS can overcome the serial bottlenecks that
exist outside the database, dramatically shortening the process as a whole.
The results demonstrate linear speedups with up to 32-way parallelism. Steps
that would ordinarily take hours in serial execution are shortened to minutes.

The significance, then, is that OFS provides the means to parallelize (and,
thus, accelerate) the performance of entire analytic processes involving

multiple steps in addition to any database process. In doing so, it not only
delivers the performance to realize the speedup itself but also enables the

Implementing SAS on the RS/6000 Family

specification and management of these multi-step processes in a parallel
environment.

Conclusion

In my opinion, the OFS benchmark is a fair, appropriate, and accurate
demonstration of: (a), the scalability of OFS applications, and (b), OFS as an
environment for efficient parallel implementation of previously serial tasks.

About the reviewer

Richard Winter, founder and president of the Winter Corporation, has over 25
years of experience in research, product development, and implementation in
the very large database field. He speaks and publishes extensively on
scalable databases and is regarded as one of the world’s leading authorities
on the subject. He can be contacted at:

Winter Corporation

186 Lincoln Street, Suite 611
Boston, MA 02111

(617) 695-1800

Fax: (617) 338-4499

http://www.wintercorp.com

Parallel architecture basics
The following sections explain the basics of parallel architecture in order to
help the reader understand the testing procedures.

Symmetric Multiprocessing System (SMP)

This is a machine which has a shared memory, and one or more CPUs which
use that memory subsystem. It is running one instance of an operating
system, which handles the memory sharing, as well as other system
components.

Massively Parallel Processing System (MPP)

An MPP system is a collection of processing nodes connected by a
high-bandwidth switch. Each node runs its own copy of the operating system
and can be either a uniprocessor or an SMP system. The MPP system is
often referred to as a shared nothing architecture because each node has its
own operating system, memory, and disk. You can grow the computer by
adding more processors, memory, and disk.

Appendix G. Scalable performance 179

180

Each architecture is ideally suited for a certain class of applications. An
example of a task that requires an SMP system is one where all data needs to
be visible to all processors during the analysis. MPP architecture lends itself
well to applications in which large amounts of data can be grouped and the
groups then processed independently, such as alphabetizing. The IBM
RS/6000 Scalable POWERparallel (SP) system is an MPP system. One of
the strengths of the SP architecture is that nodes can be uniprocessors or
SMP systems combining the benefits of SMP and MPP approaches to
optimize processing for a wide range of workloads.

The tests were run on the SP system because of its flexibility and popularity
with SAS customers. The distributed memory architecture and
shared-nothing design offer an extremely scalable platform that can handle
incremental growth without encountering typical performance bottlenecks
where too little memory can be allocated to a large processing problem. The
configuration that had both SMP and uniprocessors for nodes demonstrated
dramatic scalability. This scalability was achieved because the software that
was used exploited the capabilities of both the SMP and MPP systems used.

The DB2 UDB parallel database, working in conjunction with the SAS
application and Torrent’s Orchestrator for the SAS System, made it possible
to run processes in parallel in order to achieve speedups and run applications
that were previously not possible with serial processing.

Additional information is available on the IBM and Torrent Web sites at

http://www.ibm.com/ and http://www.torrent.com/ or from representatives of
both companies.

Implementing SAS on the RS/6000 Family

Appendix H. Special notices

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

© Copyright IBM Corp. 2000 181

182

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

This document contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses
used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AIX ® AlXwindows ®
AS/400 ® AT

CT DB2 ®

ESCON ® IBM ®
LoadlLeveler ® SP

Magstar ® Micro Channel ®
Netfinity ® POWERparallel
PowerPC Architecture PowerPC 604 ®
RS/6000 ® System/390 ®
XT

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjgbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other

Implementing SAS on the RS/6000 Family

countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and other countries. (For a complete list of

Intel trademarks see www.intel.com/tradmarx.htm).

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.

Special notices 183

184 Implementing SAS on the RS/6000 Family

Appendix |. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

1.1 IBM Redbooks publications

For information on ordering these ITSO publications see “How to get IBM

Redbooks” on page 187.
* GPFS: A Parallel File System, SG24-5165

1.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks .ibm.com/ for information about all the CD-ROMs

offered, updates, and formats.
CD-ROM Title

System/390 Redbooks Collection

Networking and Systems Management Redbooks Collection
Transaction Processing and Data Management Redbooks Collection
Lotus Redbooks Collection

Tivoli Redbooks Collection

Netfinity Hardware and Software Redbooks Collection
AS/400 Redbooks Collection

Netfinity Hardware and Software Redbooks Collection
RS/6000 Redbooks Collection (BkMgr Format)

RS/6000 Redbooks Collection (PDF Format)

Application Development Redbooks Collection

IBM Enterprise Storage and Systems Management Solutions

Collection Kit

Number

SK2T-2177
SK2T-6022
SK2T-8038
SK2T-8039
SK2T-8044
SK2T-8046
SK2T-2849
SK2T-8046
SK2T-8040
SK2T-8043
SK2T-8037
SK3T-3694

1.3 Other resources

These publications are also relevant as further information sources:

* SAS Companion for UNIX Environments: Language, Version 6, Cary, NC:

SAS Institute Inc., 1993, ISBN 1-55544-565-9

e SAS Language, Version 6, Cary, NC: SAS Institute Inc., 1990, ISBN

1-55544-381-8

© Copyright IBM Corp. 2000

185

http://www.redbooks.ibm.com/contacts.html

e SAS Language and Procedures: Usage, Version 6, First Edition, ISBN

1-55544-371-0

e SAS/STAT User’s Guide, Volumes 1 and 2, Version 6, Fourth Editions,

Cary, NC: SAS Institute Inc., 1989, ISBN 1-55544-376-1

e SAS Procedures Guide, Version 6, Cary, NC: SAS Institute Inc., 1990,

ISBN 1-55544-378-8

* SAS Programming Tips: A Guide to Efficient SAS Processing, MS56150
e AIX Survival Guide, Andreas Siegart, New York, Addison-Wesley, 1996,

ISBN: 0-201-59388-2

* RS/6000 Facts and Features, G320-9878

e General Parallel File System for AIX: Install & Admin Guide, SA22-7278
e AIX Version 3.2 & 4 Performance Tuning Guide, SC23-2365

* AIX Commands Reference, Volumes 1 through 6, SBOF-1851

* An Introduction to GPFS R1 - White paper available on the Web at:

www . austin.ibm.com/resource/technology

* Tips to Using the SAS System, SAS Institute white paper

* The SAS System and GPFS - A Scalable Solution, white paper by Keith F.
Olsen and James T. West of the IBM Corporation

.4 Referenced Web sites

186

These Web sites are also relevant as further information sources:

® http://www.sas.com/partners/enterprise/ibm/Gpfsfina.pdf
® http://www.sas.com/partners/enterprise/ibm/RISC DB2.pdf

® http://www.sas.com/partners/ibm/optimize.html

Implementing SAS on the RS/6000 Family

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

* Redbooks Web Site http://www.redbooks . ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)

from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the

formal publishing process allows.

¢ E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

In United States
Outside North America

e Telephone Orders

United States (toll free)
Canada (toll free)
Outside North America

¢ Fax Orders

United States (toll free)
Canada
Outside North America

e-mail address

usib6fpl@ibmmail.com

Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

1-800-879-2755

1-800-1BM-4YOU

Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

1-800-445-9269

1-403-267-4455

Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

— IBM Intranet for Employees

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http:
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

//w3.itso.ibm.com/ and clicking the ITSO Mailing List button.

© Copyright IBM Corp. 2000

187

http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form

Please send me the following:

Title

Order Number Quantity

First name Last name

Company

Address

City Postal code

Country

Telephone number Telefax number

O Invoice to customer number

VAT number

O Credit card number

Credit card expiration date Card issued to

Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

188 Implementing SAS on the RS/6000 Family

Glossary

CMOS. Complimentary metal-oxide
semiconductor.

DASD. Direct Access Storage Device.

IBM. International Business Machines
Corporation.

ITSO. International Technical Support
Organization.

JFS. Journaled File System. This is the
standard file system in AIX.

LP. LogicalPartition. The term is used in AIX for
a Logical partition equal to the physical partition
unless we are using mirroring where one Logical
partition can exist in more PPs, one for each
copy in mirror.

LV. LogicalVolume. The term is used in AlX for a
Logical volume or disk partition.

OLTP. Online Transaction Processing.

PCI. PCl is a standard low-cost Bus system now
used in all RS/6000

PP. Physical Partition. This term is used in AIX
for the base physical chunk size in a volume
group.

PV. Physical Volume. This term is used in AIX
for a physical DASD.

SAS. This is base SAS software from the SAS
Institute Inc.

SCSI. Small Computer System Interface. SCSI
is a standard for device interface and is typically
used for DASD and other devices.

VG. Volume group. A group of physical volumes
with the same style.

© Copyright IBM Corp. 2000

189

190 Implementing SAS on the RS/6000 Family

Index

Symbols
% idle 54
% iowait 54
% sys 53
% tm_act 54
% user 53

Numerics

2493 SCSI-2 Fast/Wide RAID Adapter 14

2494 PCI 3-Channel Ulira SCSI RAID Adapter 15
43P Series 12

6206 PCI Single-Ended Ultra SCSI Adapter 14
6207 PCI Differential Ultra SCSI Adapter 14
6208 SCSI-2 Fast/Wide Adapter 4-A 14

6209 SCSI-2 Differential Fast/Wide Adapter 4-B 14
6215 SSA RAID 5 Adapter with 6222 SSA
Fast-Write Cache Option 15

6222 SSA Fast-Write Cache Option 15

6225 Advanced SerialRAID Adapter 15

64-bit technology 3

7043 Models 12

A
adapter performance 14
adapters, communications
performance notes 14
adapters, storage
performance notes 14
SCSI
2493 SCSI-2 Fast/Wide RAID Adapter 14
2494 PCI 3-Channel Ultra SCSI RAID Adapt-
er 15
6206 PCI Single-Ended Ultra SCSI Adapter
14
6207 PCI Differential Ultra SCSI Adapter 14
6208 SCSI-2 Fast/Wide Adapter 4-A 14
6209 SCSI-2 Differential Fast/Wide Adapter
4-B 14
SSA
6215 SSA RAID 5 Adapter with 6222 SSA
Fast-Write Cache Option 15
6225 Advanced SerialRAID Adapter 15
AIX 44, 46, 51
AlXwindows 46
algebra 47

© Copyright IBM Corp. 2000

aligned 95
aligned data 95

autoexec.sas 125

block diagram explanation 2

block size 20

Boardroom data 28
buddy buffers 154

buffer size 38, 40
BUFNO 32, 34, 3
bufno 40

BUFSIZE 32, 33, 34, 36, 39, 96

Business Intelligen
BY 36

C
CATCACHE 96
Census Bureau 2

Census Bureau files

center 17

CFO Vision 90
change block size
chdev 20
CLASS Statement
CLASS statement
cleanwork 35
CLIO/S 128
Cluster 121
Cluster Operations
CMAX 102
commercial compu
COMPRESS 97
compression 35

computer system block diagram explanation 2

config.sas612 32
COPIES 18
CPU 93

D

data disks 17
Data Sharing 87,
Data sharing 123
DATA STEP 29
data transformer
data warehouses

9

ce 157

7

20

102
104

121

ting

121

128
157

150

13

191

database access programs 137
DB2 Client Application Enabler 130
DB2 Partitioned Database 121
DB2 partitioned database 128
DB2NODE 143
design overview, RS/6000 1
Deskside Server

F50 12
Disk controller 107
disk layout 17
disk space 17, 89
distribution media 19
DROP 93

E

elapsed time 44
Enterprise Miner 90
EXACT 101
extranet 13

F
Facts and Features 4
FC-AL 3
feature codes
2493 SCSI-2 Fast/Wide RAID Adapter 14

2494 PCI 3-Channel Ultra SCSI RAID Adapter

15

6206 PCI Single-Ended Ultra SCSI Adapter
6207 PCI Differential Ultra SCSI Adapter 14
6208 SCSI-2 Fast/Wide Adapter 4-A 14

6209 SCSI-2 Differential Fast/Wide Adapter4-B

14
6215 SSA RAID 5 Adapter 15
6222 SSA Fast-Write Cache Option 15
6225 Advanced SerialRAID Adapter 15
Fibre Channel Arbitrated Loop 3
file system 18
file systems 24
FIRSTOBS 93
FMTLEN 100
formatted length 101
free list 52
FREQ Procedure 90
FULLSTIMER 29

G
GPFS 87,145

192 Implementing SAS on the RS/6000 Family

GPFS block size 154

GPFS Installation

H
high node 162
history

156

of RS/6000 product line
household record 28

HR Vision 90
HRECS 28

|
/0 19,93

IBM DB2 parallel database

IMPLMAC 97
Indexing 36
INFLUENCE 1
inner_edge 17
inner_middle 1
input 38
input data 19
input datasets
installation 17
Internet 13
intranet 13
iostat 51, 53

J
JFS 18

K
KEEP 93

L
large files 36

03

7

17

journaled file system

large SAS applications
Large Scale Servers

LENGTH 93
libraries 26

linear regression 29

linear speedup
Load Balancing

173
121

18

13

Load balancing 85, 86
LoadLeveler 86, 123

logical partitions
logical volumes

18
18

157

1

161

LOGISTIC 90, 101 N

LP 18 named pipes 128

Isattr 20 NPAR1WAY 102

LV 18 NSTRATA 102
NWAY 102

M

matrix algebra 47 (9]

MAUTOSOURCE 97 OBS 93

maxfree 52 OFS benchmark 179

MDDB 101 Optimizing /0 93

MDDB Cube Creation 89 optimizing performance 93

MEANS 90 ORCHESTRATOR 175

media 20 Orchestrator 158

memory 31, 54, 93 outer_edge 17

memory requirements 47 outer_middle 17

MEMSIZE 29, 32, 33, 34, 43, 47, 94 output data 19

METHOD 99 output datasets 17

minfree 52

mirroring 18 P

MIXED 90

Model 140 page faults 52

paging 44

facts and features summary 6 .
paging space 18
Model 150 aging spaces 24
facts and features summary 6 paging spaces
parallel applications 146
Model 260
Parallel Extract 121, 131
facts and features summary 6 .
Parallel extraction 164
Model F40
parallel extracts 174
facts and features summary 7 :
parallel file system 145
Model F50 ;
parallel processing 13
facts and features summary 7
PATH 95
Model H50
performance 37
facts and features summary 8 L
Model H70 adapters, communications and storage 14
facts and features summary 8 see also adapter performance
v PERMUTATION 102
Model S70

personal records 28
PHREG 29, 49, 90, 103
physical memory 31, 41
physical partitions 17
physical volume 17

facts and features summary 9
Model S70 Advanced

facts and features summary 9
Moore’s Law 159

mount 21 nysi _
MRECALL 97 pipelined parallehsm 170
MSYMTABMAX 98 POWER3 Microprocessor 2
Multiple Node parallel extract 121 PP size 17

PRECS 28

multiple node parallel extract 136

Multiple SMP SAS Nodes Parallel Extract 121
multiple uniprocessors for a parallel extract 138
MULTTEST 102

MVARSIZE 98

pre-installation 19

PROC GLM 29

PROC LOGISTIC 29, 49
PROC PHREG 29
PROC REG 29

Index 193

PROC SORT 28, 40
Process parallel data streams 161

processors
key new technologies 2
POWER3 2
RS64/RS64-1I 3

PSSP 85

R

Rack-Mounted Server
H50 - Entry-Level Enterprise Server 12,13
H70 - Entry-Level Enterprise Server 12
HAS5O0 - Entry-Level Enterprise Server Solution
12
HA-H70 - Entry-Level Enterprise Server Solution
12

RAM 40, 89

REG 103

RESIDENT 99

rewind 20

rmss 42, 51

root volume 17

rpoolsize 154

RS/6000 SP 13, 121

RS64/RS64-I1 Microprocessor 3

rsh 138

run queue 52

S

SAS Cleansing 121

SAS data 19

SAS data file 89

SAS Manager application 19

SAS workspace 25

SAS/AF 90

SAS/Connect 123

sas612 19

sasoption 32

SASROOT 20

sasvg 26

SASWORK 27, 34, 43

saswork 85

SCALABLE PERFORMANCE 157

Scalable solutions 159

SCSI 23

SCSI adapters
2493 SCSI-2 Fast/Wide RAID Adapter 14
2494 PCI 3-Channel Ultra SCSI RAID Adapter

194 Implementing SAS on the RS/6000 Family

15
6206 PCI Single-Ended Ultra SCSI Adapter 14
6207 PCI Differential Ultra SCSI Adapter 14
6208 SCSI-2 Fast/Wide Adapter 4-A 14
6209 SCSI-2 Differential Fast/Wide Adapter4-B
14
serial applications 178
Serial extraction 164
SETINIT 21
Sharing data 87
Single Node Parallel Extract 121
single node parallel extract 136
smit chgtpe 20
smit makedr 20
Sorting 40
SORTPGM 99
SORTSIZE 32, 33, 41, 43, 46, 99
SP 13,85
parallel processing 13
SP 160 MHz Thin node
facts and features summary 11
SP 332 MHz SMP Thin node
facts and features summary 10
SP 332 MHz SMP Wide node
facts and features summary 10
SP nodes 86
SP POWER3 SMP Thin node
facts and features summary 11
SP POWER3 SMP Wide node
facts and features summary 11
SP switch 154
spoolsize 154
SSA 23, 148
SSA adapters
6215 SSA RAID 5 Adapter with 6222 SSA
Fast-Write Cache Option 15
6225 Advanced SerialRAID Adapter 15
SSA Fast-Write Cache Option (# 6222) 15
statistical analysis 91
stimefmt 30
storage
new technologies 3
Store large data sets in parallel 161
STRATA 102
stripe size 18, 164
striped configuration 107
striped disk 24
SUMMARY 90
SUMSIZE 90

svmon 51,54

system activity 51

System Managed Storage 164
system performance 19
system planning 19

system resources 31

T

tar 21

tctl 20

technologies, key new 3
64-bit technology 3
processor technologies 2
storage technologies 3

test environment 23

thewall 154

thin node 162

Torrent Systems 158

True Parallel Extract 122

U

unaligned data 95
unformatted length 101
UNIX 27

utilities 35

Vv

VG 17

Virtual memory 51
virtual memory 53
vmstat 45, 51
vmtune 51
volume group 17

w

wait queue 52

WHERE 36, 93

wide node 162

Winter Corporation 176
work directory 122

work space 17, 19
workgroup server 12
Workgroup Servers (Entry) 12
Workstations 12

write cache disabled 108
write cache enabled 114

Index 195

196 Implementing SAS on the RS/6000 Family

IBM Redbooks evaluation

Implementing SAS on the RS/6000 Family
SG24-5513-00

Your feedback is very important to help us maintain the quality of IBM Redbooks. Please complete this
questionnaire and return it using one of the following methods:

¢ Use the online evaluation form found at http://www.redbooks. ibm.com/

* Fax this form to: USA International Access Code + 1 914 432 8264

¢ Send your comments in an Internet note to redbookeus . ibm. com/
Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 =very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfacton
Please answer the following questions:
Was this redbook published in time for your needs? Yes___ No_

If no, please explain:

What other Redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

© Copyright IBM Corp. 2000 197

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Implementing SAS on the RS/6000 Family SG24-5513-00

@
___m:__

Printed in the U.S.A.

SG24-5513-00

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. RS/6000 hardware overview
	1.1 RS/6000 history
	1.2 RS/6000 design overview
	1.2.1 RS/6000 system blocks
	1.2.2 Processor technologies

	1.3 RS/6000 new technologies and directions
	1.3.1 64-bit technology
	1.3.2 Storage technologies

	1.4 RS/6000 facts and features summary
	1.5 Workstations and workgroup servers
	1.6 Midrange enterprise servers
	1.7 High-end enterprise servers
	1.8 RS/6000 SP systems
	1.9 PCI storage adapters
	1.9.1 SCSI-2 fast/wide RAID adapter
	1.9.2 PCI single-ended Ultra SCSI adapter
	1.9.3 PCI differential Ultra SCSI adapter
	1.9.4 SCSI-2 fast/wide adapter 4-A
	1.9.5 SCSI-2 differential fast/wide adapter 4-B
	1.9.6 PCI 3-Channel Ultra SCSI RAID adapter
	1.9.7 SSA RAID 5 adapter, SSA fast-write
	1.9.8 Advanced serialRAID, SSA fast-write

	Chapter 2. SAS installation
	2.1 SAS preinstallation file system planning
	2.2 Installing the base SAS software on AIX

	Chapter 3. Application test environment
	3.1 AIX system configuration
	3.2 SAS applications
	3.2.1 The test environment

	3.3 Application data and tests
	3.3.1 U.S. Census data
	3.3.2 Computational tests and data
	3.3.3 Test diagnostics

	Chapter 4. SAS tuning parameters
	4.1 Base SAS software options
	4.1.1 Inclusion of system options

	4.2 Other considerations
	4.2.1 Work space
	4.2.2 Use SAS compression wisely
	4.2.3 Indexing
	4.2.4 Enabling very large file (> 2 GB) access

	4.3 Data processing performance test results
	4.3.1 Reading and writing, CPU-bound
	4.3.2 Sorting processes
	4.3.3 Sortsize and memory usage
	4.3.4 Last thoughts on sorting

	4.4 Computational test results
	4.4.1 PROC REG
	4.4.2 PROC LOGISTIC
	4.4.3 Taming PHREG

	Chapter 5. AIX performance tools
	5.1 Performance tools description
	5.1.1 vmstat command
	5.1.2 iostat command
	5.1.3 svmon command
	5.1.4 lsps command
	5.1.5 vmtune command
	5.1.6 rmss command

	Chapter 6. Optimizing AIX parameters
	6.1 CPU bound load
	6.2 Tuning memory bound load
	6.3 Tuning disk I/O bound load

	Chapter 7. AIX file system, SAS system, and performance
	7.1 Testing performance of SAS workspace
	7.2 Testing disk striping

	Chapter 8. The user community and performance considerations
	8.1 Community assessment
	8.1.1 General usage
	8.1.2 User profiles
	8.1.3 Expected SAS application
	8.1.4 Access and interface of choice
	8.1.5 Disk access
	8.1.6 Data sources
	8.1.7 SAS files on disk
	8.1.8 Job scheduling
	8.1.9 Other software
	8.1.10 System objectives

	8.2 Remote access setup

	Appendix A. The SAS System on an IBM RS/6000 SP
	A.1 SP configuration for cluster operation
	A.2 Load balancing
	A.3 Data sharing

	Appendix B. Disk space and RAM requirements
	Appendix C. Optimizing systems performance
	C.1 Techniques for optimizing I/O
	C.2 Techniques for optimizing memory usage
	C.3 Techniques for optimizing CPU performance
	C.4 SAS system options
	C.5 SAS procedures that use extra resources
	C.6 Performance considerations of DATA step views

	Appendix D. Disk controller cache test results
	D.1 EXECUTION time with write cache is disabled
	D.2 EXECUTION time when disk adapter write cache is enabled

	Appendix E. The SAS System and DB2 partitioned databases
	E.1 SAS on a cluster of SP nodes
	E.1.1 SP configuration for cluster operation
	E.1.2 Load balancing
	E.1.3 Data sharing
	E.1.4 Practical flexibility
	E.1.5 SAS and DB2 partitioned databases on the RS/6000 SP
	E.1.6 SAS cleansing/transforming of data

	E.2 Extracting large amounts of data from DB2 partitioned databases
	E.3 SAS to DB2 partitioned database parallel extract
	E.3.1 CAE for AIX configuration
	E.3.2 SQL modifications and table view definitions
	E.3.3 Query restrictions
	E.3.4 Parallel extract processing flow
	E.3.5 Parallel extract SAS node alternatives
	E.3.6 Single node parallel extract processing
	E.3.7 Multiple node parallel extract processing
	E.3.8 Multiple SAS nodes parallel extract implementation

	E.4 Hybrid parallel extract
	E.5 Multiple DB2 logical nodes implementation
	E.5.1 Hybrid parallel extract
	E.5.2 True parallel extract
	E.5.3 Summary

	Appendix F. The SAS system and GPFS
	F.1 GPFS overview
	F.1.1 Hardware configuration
	F.1.2 Software configuration
	F.1.3 Physical disk configuration
	F.1.4 System configuration
	F.1.5 Local disk configuration
	F.1.6 NFS disk configuration
	F.1.7 GPFS disk configuration

	F.2 Tests
	F.2.1 Test results
	F.2.2 Notes on testing

	F.3 Conclusions

	Appendix G. Scalable performance
	Appendix H. Special notices
	Appendix I. Related publications
	I.1 IBM Redbooks publications
	I.2 IBM Redbooks collections
	I.3 Other resources
	I.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Index
	IBM Redbooks evaluation

