
ibm.com/redbooks

AIX V6 Advanced
Security Features
Introduction and Configuration

Brad Gough
Christian Karpp

Rajeev Mishra
Liviu Rosca

Jacqueline Wilson
Chris Almond

A comprehensive overview of AIX V6
operating system security features

New features: Role Based Access
Control (RBAC), Trusted AIX (Multilevel
Security), and Trusted Execution

AIX V6 Security Expert
enhancements

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

AIX V6 Advanced Security Features
Introduction and Configuration

September 2007

International Technical Support Organization

SG24-7430-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (September 2007)

This edition applies to IBM AIX Version 6.1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Note: This book is based on a pre-GA version of a product and may not apply when the
product becomes generally available. We recommend that you consult the product
documentation or follow-on versions of this IBM Redbooks publication for more current
information.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this book . xiv
Acknowledgements . xv
Become a published author . xvi
Comments welcome. xvi

Part 1. AIX V6 operating system security features . 1

Chapter 1. Introduction . 3
1.1 Introduction: security in the enterprise . 5
1.2 Risk analysis . 6
1.3 Types of security threats . 7
1.4 AIX V6.1 security features and the threats they address 9
1.5 Types of security . 10
1.6 Purpose of security: establishing trust. 11
1.7 Overview of security enhancements to AIX V6 for establishing trust 12
1.8 Trusting the configuration of the OS with AIX Security Expert 14

1.8.1 AIX Security Expert enhancements for AIX V6 15
1.8.2 AIX Security Expert hardening groupings . 16
1.8.3 AIX Security Expert “undo” option. 17
1.8.4 Consistency check in AIX Security Expert . 17
1.8.5 Centralized AIX Security Expert policy distribution with LDAP 18

1.9 Trusting the installation of filesets with Secure by Default 20
1.10 Trusting system access with File Permission Manager. 21
1.11 Trusting executables with Trusted Execution . 22
1.12 Delegating trust for users and the processes with Role Based Access

Control . 24
1.12.1 AIX V6 Enhanced RBAC compared to AIX RBAC prior to AIX V6 . 25
1.12.2 Advantages of AIX V6 Role Based Access Control 26
1.12.3 Relationship of authorizations, roles, and privileges 27
1.12.4 Privileges versus authorizations . 28

1.13 Trusting file access and providing privacy of files with AIX Encrypted File
Systems . 31

1.13.1 Symmetric versus asymmetric encryption. 32
1.13.2 Advanced Encryption Standard (AES) . 34
1.13.3 Block versus streaming ciphers . 35
© Copyright IBM Corp. 2007. All rights reserved. iii

1.13.4 CBC mode versus ECB mode. 36
1.13.5 Selecting key length and modes . 38
1.13.6 RSA algorithm . 38
1.13.7 Creating the EFS keystore: installation of CLiC library 38
1.13.8 EFS key protection modes: Root Admin or Root Guard mode 39

1.14 Trusting the entire system: Trusted AIX . 39
1.14.1 Components of Trusted AIX . 41

1.15 In summary: total AIX security capabilities . 43
1.15.1 LDAP Active Directory enhancements . 45
1.15.2 TCP wrappers . 46
1.15.3 IP Security with AES . 46
1.15.4 ipfilter support . 47
1.15.5 Open SSH with Kerberos authentication. 47
1.15.6 Stack Execution Disable . 47
1.15.7 4764 Cryptographic Accelerator with CCA and PKCS11 support . . 49

1.16 AIX certifications: independent assurance of security functions 50
1.16.1 Background on security standards . 50
1.16.2 Security profiles for AIX V6.1: CAPP, LSPP, and RBACPP 51
1.16.3 The Controlled Access Protection Profile (CAPP) 51
1.16.4 Labeled Security Protection Profile (LSPP) 52
1.16.5 Role Based Access Control Protection Profile (RBACPP) 52
1.16.6 Current AIX certifications: CAPP and LSPP 52
1.16.7 Evaluation and assurance levels for Common Criteria 53
1.16.8 What does EAL4+ mean . 54
1.16.9 Definition of EAL4 . 55
1.16.10 Running a system in CAPP or LSPP mode 56

Chapter 2. Encrypted File System . 59
2.1 EFS . 60
2.2 EFS prerequisites . 60

2.2.1 CLiC installation . 60
2.2.2 Enabling EFS for file systems . 61
2.2.3 The efsenable command. 62
2.2.4 Usage of lock files . 64

2.3 Managing encrypted file systems and encrypted files. 65
2.3.1 Creating an EFS . 65
2.3.2 Operations with EFS-enabled file systems . 67
2.3.3 Encryption inheritance. 67

2.4 Encryption at file level . 70
2.4.1 Creating encrypted files and the umask command 70
2.4.2 Listing file encryption information . 72
2.4.3 Implication of encryption on file size and location of disk blocks . . . 73
2.4.4 Looking at disk blocks of an encrypted file . 74
iv AIX V6 Advanced Security Features: Introduction and Configuration

2.4.5 Decrypting a file . 77
2.4.6 Encrypting a file. 79
2.4.7 Changing file encryption key parameters . 80
2.4.8 File access permissions . 81
2.4.9 Changing file ownership . 85
2.4.10 Granting a user or a group access to a file 87
2.4.11 Revoking a user or group access to a file . 91
2.4.12 Granting/revoking access in root admin mode 94

2.5 Users management . 95
2.5.1 Defining users . 95
2.5.2 User keystore . 99
2.5.3 Keystore content . 100
2.5.4 Keystore operations . 104
2.5.5 Keystore operations . 105
2.5.6 Changing the user keystore password . 106
2.5.7 Granting access to the user keystore . 106
2.5.8 Revoking access to user keystore . 111
2.5.9 Accepting access keys . 113
2.5.10 Granting security credentials to a process 115
2.5.11 Exporting the content of keystore . 116
2.5.12 User private keys . 117
2.5.13 User public key . 128
2.5.14 Importance of deprecated keys. 131

2.6 Group management . 133
2.6.1 Defining groups . 133
2.6.2 Group keystore design and operations . 135
2.6.3 Defining a group and creating a group keystore 135
2.6.4 Sending the group keystore access key to a user 137
2.6.5 Removing the group keystore access key from a user keystore. . . 138
2.6.6 Adding/remove group access keys in root guard mode 140
2.6.7 Managing a group keystore private key . 141
2.6.8 Sending/removing the group keystore access key to/from another group

keystore . 145
2.7 Back up and restore . 148

2.7.1 Backing up encrypted files . 148
2.7.2 Restoring encrypted files. 154
2.7.3 User private keys impact on file backup/restore 159

Chapter 3. Role Based Access Control . 165
3.1 AIX V6 and Role Based Access Control (RBAC) 166
3.2 The traditional approach to AIX administration . 166

3.2.1 The superuser administrative account . 166
3.2.2 Discretionary Access Control (DAC) . 167
 Contents v

3.2.3 Authorization with User ID (UID) and Group ID (GID). 168
3.2.4 Privileged escalation with Set User Identification (setuid). 170

3.3 Introducing RBAC . 171
3.3.1 Legacy Mode versus Enhanced Mode RBAC. 171
3.3.2 Authorizations . 174
3.3.3 Roles . 174
3.3.4 Privileges. 175
3.3.5 Kernel Security Tables . 175
3.3.6 Remote database support using LDAP. 176
3.3.7 Legacy and Enhanced RBAC mode comparison 177

3.4 Configuring RBAC . 178
3.4.1 Configuring the RBAC operating mode. 178
3.4.2 Switching to Legacy RBAC mode . 178
3.4.3 The root user and Enhanced RBAC . 179

3.5 Predefined roles in RBAC . 179
3.5.1 Adding a role to a user . 181
3.5.2 Activating a role. 189
3.5.3 Role authentication . 190
3.5.4 Role activation. 191

3.6 User defined roles . 191
3.6.1 Planning for user defined roles . 191
3.6.2 Creating a user defined role . 192

3.7 System defined and user defined authorizations 200
3.7.1 Planning for user defined authorizations. 200
3.7.2 Creating a user defined authorizations . 203

3.8 The Privileged Command Database . 206
3.8.1 Privileges. 206
3.8.2 Process Privilege Sets . 207
3.8.3 Privileged commands . 211

3.9 The Privileged File Database . 213
3.9.1 Privileged file management with DAC. 213
3.9.2 Privileged File Management with RBAC . 213
3.9.3 Privileged File Database restrictions. 214
3.9.4 Adding a file to the Privileged File Database 215

3.10 The Privileged Device Database . 218
3.10.1 Privileged device management with RBAC. 218

3.11 Securing the root user . 219
3.11.1 Choosing to secure the root user . 219
3.11.2 Disabling the root user . 220
3.11.3 Considerations when disabling the root user 222
3.11.4 Summary of root disable mode with Enhanced RBAC 224
3.11.5 Using the FPM command to reduce SetUID programs. 224
vi AIX V6 Advanced Security Features: Introduction and Configuration

3.12 Enhanced RBAC and WPAR . 225
3.13 Migrating to Enhanced RBAC . 226

3.13.1 Migrating authorizations . 226
3.13.2 Role migration . 227

3.14 RBAC remote database support . 228
3.14.1 Prerequisites to using LDAP as an RBAC database repository . . 228
3.14.2 LDAP client configuration for RBAC . 229
3.14.3 Name service control file. 230
3.14.4 RBAC Command Enablement for LDAP. 232

3.15 RBAC scenarios . 233
3.15.1 Scenario 1: Division of roles . 233
3.15.2 Scenario 2: Remote RBAC security database 242

Chapter 4. Trusted Execution environment . 251
4.1 The Trusted Signature Database . 255
4.2 Auditing the integrity of the Trusted Signature Database (system integrity

check) . 258
4.2.1 Examples of TE’s auditing mode. 261
4.2.2 Checking the signing authority . 261

4.3 Configuring security policies (runtime integrity check) 263
4.4 Trusted Execution Path, Trusted Library Path, Trusted Shell, and Secure

Attention Key . 267
4.5 Signature creation and deployment. 268

4.5.1 Adding BFF files to the TSD . 268
4.5.2 Adding non-BFF files to the TSD . 269

Chapter 5. Trusted AIX/MLS . 273
5.1 Overview . 274

5.1.1 What is Multi Level Security . 274
5.1.2 What is the need for enhanced security . 274
5.1.3 What Trusted AIX provides . 275
5.1.4 Historical aspect . 276

5.2 Introduction to MLS . 277
5.2.1 What is new in Trusted AIX. 279
5.2.2 Mandatory Access Control . 281
5.2.3 Mandatory Integrity Control . 286
5.2.4 Other attributes . 287
5.2.5 Introduction to Trusted Networks . 292
5.2.6 Audit subsystem . 296
5.2.7 Partitioned directory . 299
 Contents vii

5.3 Applications on Trusted AIX . 301
5.4 Installation of Trusted AIX . 302
5.5 Configuring and managing the Trusted AIX system 310

5.5.1 Disabling root . 310
5.5.2 System configuration. 311
5.5.3 Label configuration . 312
5.5.4 User Account configuration . 314
5.5.5 Terminal configuration. 316
5.5.6 Trusted Network configuration . 317
5.5.7 File system configuration . 322
5.5.8 Printer configuration . 323

5.6 Trusted AIX scenario. 324
5.7 Best practices and ideas . 334

Chapter 6. AIX Security Expert . 335
6.1 Introducing AIX Security Expert . 336
6.2 The next generation AIX Security Expert in AIX V6 336
6.3 Secure by Default (SbD) . 339

6.3.1 Installing a Secure by Default system . 341
6.3.2 Reverting from Secure by Default back to regular AIX 345

6.4 Distributed security policy through AIX Security Expert and LDAP. 345
6.4.1 LDAP server preparation. 346
6.4.2 LDAP client preparation . 348

6.5 Customizable security policy through user defined AIX Security Expert XML
rules . 350

6.5.1 Adding rules for your own applications . 352
6.5.2 The predefined SOX-COBIT security policy 355

6.6 File Permission Manager for managing setuid and setgid programs . . . 357
6.7 Stringent check for weak passwords. 362

6.7.1 Adding entries to the dictionary. 363
6.8 Secure File Transfer Protocol . 364

6.8.1 Setting up ftpd to use TLS. 365
6.8.2 Setting up ftp to use TLS. 371
viii AIX V6 Advanced Security Features: Introduction and Configuration

Part 2. Appendixes . 375

Appendix A. Crypto Lib in C (CLiC) . 377
CLiCToken and PKCS #11 Software Token Support 378

Appendix B. LDIF file for supporting AIX Security Expert 381
AIX Security Expert LDIF file . 382

Related publications . 385
IBM Redbooks . 385
Other publications . 385
Online resources . 385
How to get Redbooks . 386
Help from IBM . 386

Index . 387
 Contents ix

x AIX V6 Advanced Security Features: Introduction and Configuration

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. xi

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
Argus®
DB2®
eServer™
HACMP™
IBM®

MVS™
OS/390®
OS/400®
POWER4™
pSeries®
Redbooks®
Redbooks (logo) ®

RS/6000®
System p™
System p5™
Tivoli®
z/OS®

The following terms are trademarks of other companies:

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Active Directory, Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xii AIX V6 Advanced Security Features: Introduction and Configuration

Preface

AIX Version 6.1 provides many significant new security technologies and security
enhancements. The purpose of this IBM® Redbooks® publication is to highlight
and explain the security features at the conceptual level, as well as provide
practical examples of how they may be implemented. Some features are
extensions of features made available in prior AIX® releases, and some are new
features introduced with AIX V6.

IT managers, system architects, and system administrators will find this book
useful for learning more about the different AIX V6 operating system security
features, at both the conceptual and more detailed practitioner levels.

In this IBM Redbooks publication, you will find a detailed introduction to the full
AIX V6 security tool set, with emphasis on the most significant extensions and
additional features provided in AIX Version 6.1, which include:

� Enhancements to AIX Security Expert, a security hardening tool.

� Secure By Default (SBD).

� File Permission Manager (FPM)

� A fully implemented enhanced Role Based Access Control system (RBAC)

� Encrypted File Systems (EFS)

� Trusted AIX (an implementation of Multilevel Security or MLS)

� Trusted Execution (TE)

� Workload Partitions (WPAR)1

This IBM Redbooks publication provides a technical introduction to these
features. The topics are both broad and very complex. This IBM Redbooks
publication will serve as an initial reference for describing all of these features
together in a single volume, to the security/system hardening oriented audience.

1 Workload Partitions (WPARs) are a new operating system virtualization feature introduced in AIX
V6. We present some security concerns related to working with WPARs. For a complete technical
introduction to WPAR features in AIX V6, you should refer to the IBM Redbooks publication
Introduction to Workload Partition Management in AIX V6, SG24-7431.
© Copyright IBM Corp. 2007. All rights reserved. xiii

The team that wrote this book

This IBM Redbooks publication was produced by a team of specialists that came
from around the world to work together at the IBM International Technical
Support Organization in Austin, Texas, in April and May of 2007.

Brad Gough is an AIX technical specialist working for IBM Global Services in
Sydney, Australia. Brad has been with IBM since 1997, starting as an RS/6000®
hardware engineer; in 2000, he moved to AIX support. His areas of expertise
include AIX, NIM, and HACMP™ on the IBM SP/2 and System p™ and System p
Virtualization. He is currently involved in the installation and design of System p
implementations in Australia and New Zealand. He is an IBM Certified Systems
Expert – IBM System p5™ Virtualization Technical Support and IBM eServer™
p5 and pSeries® Enterprise Technical Support AIX 5L™ V5.3. This is his second
IBM Redbooks publication.

Christian Karpp (CISSP) is an IT Specialist and Security Consultant at IBM in
Mannheim, Germany. He has worked at IBM for 12 years, consulting on and
implementing security projects with IBM customers in varied industries. Christian
has an extensive background in Information Security disciplines and System p
and has worked with AIX for over ten years. Christian studied Computer Science
and graduated from the University of Applied Science in Mannheim, Germany.

Rajeev Mishra is a System Software Engineer at the IBM India Software Labs,
Bangalore. He is currently working on the Functional Verification Testing of AIX
Security. He graduated from Institute of Technology, BHU, Varanasi with a
Bachelor of Technology degree in Computer Science and Engineering. He has
two years of experience in IBM. He has expertise in journaled file system (JFS),
enhanced journaled file system (JFS2), and various security topics in AIX.

Liviu Rosca is an IT Specialist with IBM Global Technology Services, Romania.
He has been working for IBM for five years providing support for pSeries, AIX,
HACMP, and WVR. His area of expertise include pSeries, AIX, HACMP,
networking, security, and telecommunications. He is IBM Certified AIX 5L and
HACMP System Administrator and CCNP. He teaches AIX and HACMP classes.
xiv AIX V6 Advanced Security Features: Introduction and Configuration

Jackie Wilson has recently become a member of the Advanced Technical Sales
team, based in Dallas Texas as an Executive IT Specialist. She has been in AIX
development since 1985, starting with writing communications firmware and
device driver code. After being in positions in customer service and test
architecture, she returned to development on the X.25 project. Her security
focused activities started with a role as technical lead for the AIX IP Security
team. Jackie has worked with many product and research teams in IBM. Jackie
became a Senior Technical Staff member in 2004, assuming the position of
security architect for AIX development. She has led the certification efforts for
AIX 5L V5.2 and V5.3, and the AIX software encryption projects. She worked in a
strategy role on the AIX security roadmap, developing AIX security plans and
conceiving of projects such as AIX Security Expert. She enjoys her new job
working with customers and educating field personnel on AIX security offerings.

Production of this IBM Redbooks publication was managed by:

Chris Almond, an ITSO Project Leader and IT Architect based at the ITSO
Center in Austin, Texas. In his current role, he specializes in managing content
development projects focused on Linux®, AIX 5L systems engineering, and other
innovation programs. He has a total of 16 years of IT industry experience,
including the last eight with IBM.

Acknowledgements
A complete and detailed IBM Redbooks publication on a topic such as this would
not be possible without generous support and guidance from key staff members
in the AIX 5L development organization, as well as many other IBMers.

The IBM Redbooks publication team would like to begin by acknowledging key
members of the AIX security development team that provided critical guidance
and support throughout the project and review cycle:

Ravi A. Shankar, AIX Architecture Team, Security Lead

Shawn Mullen, AIX Development, Team Lead

Drew Walters, AIX Development, Security Team

Additional technical and content review support was provided by:

Yantian (Tom) Lu, Marco A. Cabrera, Bipin Tomar, Bhargavi B. Reddy,
Hussaina N. Begum, Eduardo L Reyes, George M Koikara, Murali Vaddagiri,
Saurabh Desai, and Ted Sullivan
 Preface xv

Also, assistance with development of CliC content was provided by Tamas
Visegrady, JianHua Feng, Mihai Togan, Leo Moesgaard, Lars
Elmegaard-Fessel, and Dan Kyhl.

The team would also like to acknowledge the support efforts of Jay Kruemcke,
the System p AIX Offering Manager, Jay Beck, Development Manager, AIX
Security Development, Scott Vetter, IBM Redbooks System p Team Leader, and
our editor for this book, Wade Wallace, from the ITSO Authoring Services team.

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com
xvi AIX V6 Advanced Security Features: Introduction and Configuration

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xvii

xviii AIX V6 Advanced Security Features: Introduction and Configuration

Part 1 AIX V6 operating
system security
features

Chapter 1 begins this book by providing a review of operating system security
concepts and introductions to each of the significant security system features
provided in AIX V6. Subsequent chapters provide more detailed, practitioner
oriented discussion and examples. The book consists of the following chapters:

� Chapter 1, “Introduction” on page 3

� Chapter 2, “Encrypted File System” on page 59

� Chapter 3, “Role Based Access Control” on page 165

� Chapter 4, “Trusted Execution environment” on page 251

� Chapter 5, “Trusted AIX/MLS” on page 273

� Chapter 6, “AIX Security Expert” on page 335

Part 1
© Copyright IBM Corp. 2007. All rights reserved. 1

2 AIX V6 Advanced Security Features: Introduction and Configuration

Chapter 1. Introduction

A main goal of this chapter is to explain security concepts at a level that IT
managers responsible for systems security can understand. Later chapters will
focus on implementation specifics needed by security and system
administrators. Therefore, the highlights of those features are presented in this
chapter along with the context in which they are used. The Introduction chapter
consists of the following sections:

� 1.1, “Introduction: security in the enterprise” on page 5

� 1.2, “Risk analysis” on page 6

� 1.3, “Types of security threats” on page 7

� 1.4, “AIX V6.1 security features and the threats they address” on page 9

� 1.5, “Types of security” on page 10

� 1.6, “Purpose of security: establishing trust” on page 11

� 1.7, “Overview of security enhancements to AIX V6 for establishing trust” on
page 12

� 1.8, “Trusting the configuration of the OS with AIX Security Expert” on
page 14

� 1.9, “Trusting the installation of filesets with Secure by Default” on page 20

� Figure 1-2 on page 20

� 1.11, “Trusting executables with Trusted Execution” on page 22

1

© Copyright IBM Corp. 2007. All rights reserved. 3

� 1.12, “Delegating trust for users and the processes with Role Based Access
Control” on page 24

� 1.13, “Trusting file access and providing privacy of files with AIX Encrypted
File Systems” on page 31

� 1.14, “Trusting the entire system: Trusted AIX” on page 39

� 1.15, “In summary: total AIX security capabilities” on page 43

� 1.16, “AIX certifications: independent assurance of security functions” on
page 50
4 AIX V6 Advanced Security Features: Introduction and Configuration

1.1 Introduction: security in the enterprise

This chapter will describe how the new security features of AIX V6 address some
issues in traditional UNIX® security models and problems encountered by
businesses today. The area of computer security is a dynamic and changing
world, in which enterprises must be diligent to integrate and combine many
mechanisms to address varying threats. In order to create a good security policy,
an organization must understand its strengths and weakness, the value of its
assets, and its source of threats.

Towards the end of this chapter, we will also be reviewing important
complimentary security features released in prior releases, to give a complete
picture of the security relevant capabilities available to customers in all releases
of AIX. The customer documentation available in the AIX information center
should be consulted to review specific syntax and information for each security
feature.

The security of an enterprise consists of various aspects. In regards to IT
security, operating system security provides for the foundation around which the
rest of the software stack can build its security. AIX historically has provided for
strong operating system security. AIX V6 builds on that security and provides for
multiple security features addressing varied types of threats for different
operating environments.

Security threats are often thought of as activities originating from external
organizations, and traditionally firewalls and DMZs have been used to set up
protection for the corporate environment. Computer forensic data has
consistently shown that intrusions occur most often from within an enterprise.
This fact is often unsettling and some level of denial often results in computer
security practices that may be inadequate. Security exposures include
inadvertent misuse or misconfiguration of systems to intentional harm or theft of
intellectual property. Disgruntled employees or even “moles” can wreak havoc on
systems because they have a lot of knowledge on what security systems are in
place. Cleartext passwords, for example, are still a common practice within the
corporate network. Having a global and virtual workplace can often compound
the problem, where precious intellectual property leaves the country’s borders.
No one program or technology can solve the problem, but it is a combination of
technologies, business practices, and social engineering that must be employed
together to form a complete security model.
 Chapter 1. Introduction 5

Security solutions can often be difficult to understand or implement. One must
first understand the type of threat that exists for their particular situation, and the
cost of a security breach. Some describe this as the “toxicity” of the data. If the
cost of losing data is high, such as violating legal requirements for protecting
confidentiality and privacy, businesses must be vigilant in securing systems. AIX
has created several tools to simplify and enhance the administrator’s ability to
secure data within the operating system.

1.2 Risk analysis

Risk analysis is a critical component of establishing any security policy. Risk
analysis involves identifying assets, identifying threats, and calculating risks.

Assets can be tangible or intangible. Tangible assets include computer systems
and components, physical assets, data records, and so on. Intangible assets
include reputation, customer confidence, reliability, employee loyalty, privacy of
information, and configuration information.

When performing risk analysis, tangible and intangible assets should be listed so
a thorough risk analysis can be performed.

For each type of risk, there are countermeasures that can help mitigate risk, Risk
can be measured as:

Threat x vulnerability x asset value = total risk

Total risk x countermeasure = residual risk

There are several ways a customer can choose to deal with risk.

The risk can be transferred, for example, by purchasing insurance for certain
situations. The risk can be accepted, for example, by doing nothing. Or, a better
alternative, the risk can be reduced by implementing an effective
countermeasure. With AIX V6, we have several new features that enable
customers to reduce risk by implementing countermeasures.

The types of mechanisms that are included in AIX V6.1 can be considered a
group of countermeasures aimed at reducing risk by improving trust. There is
some cost in implementing countermeasures, whether by increasing training,
denying access at times to legitimate users who may forget or lose credentials,
or for example, requiring additional computations, such as with encryption
technology. The value of the assets and the cost of the damage caused by an
exploited vulnerability justify the increased cost of implementing security
measures.
6 AIX V6 Advanced Security Features: Introduction and Configuration

In this overview chapter, the goal is to not only explain the technology, but also
the associated cost and benefit of the technology so that professionals can
evaluate the types of threats they face, the assets that are being protected, and
the countermeasures available to make the best selection of security
technologies offered in AIX. There have been several security enhancements
recently released for AIX 5L Version 5 that provide other important security
benefits, and they will be mentioned as well as the new features in AIX V6.

1.3 Types of security threats

Threats to computer systems can be classified in different categories. One major
category is the threat to system integrity. With this type of threat, modules on a
system are replaced with rogue modules that leave the system open to future
access into and out of the system. It can also leave systems vulnerable to
destruction of key files and data. System integrity is the basis of all other security
aspects of a system. If the system integrity is compromised, all decisions and
operations of that system may be compromised as well, as key system files and
behavior cannot be trusted or predicted.

Another common threat to computer systems is the threat of unauthorized
access. This can be accomplished through several mechanisms. Direct brute
force attacks such as password cracking software, or more subtle attacks, such
as access gained by exploiting vulnerabilities in networking software, can result
in unauthorized access.

A further manifestation of the threat of unauthorized access is the threat of
unauthorized system administrator access. Buffer overflows are a common
mechanism used to gain unauthorized access. This type of attack gives a
program more input data than it expects. The extra input data is crafted as an
executable instruction set of some kind. When the program runs, the data area
overflows into the stack area, and when the program returns, the overflowed data
is executed. This is usually performed on privileged commands or executables. It
causes code to be executed on the stack in the privileged state. These are
commonly exploited mechanisms used to gain access to protected files or
directories. Fortunately, enhancements in AIX 5L V5.3 and AIX V6.1 have
features to specifically reduce or eliminate the ability to use these mechanisms
through proper policy configuration, definition of authorizations, and
cryptographic verification of executed code. This protection can also be achieved
by isolation of resources.
 Chapter 1. Introduction 7

The threat of violation of user security policy is another common threat
encountered in computer systems. It is expected that users of a system will have
the authority and ability to own and create files, and to restrict access to those
files by other users. There is a threat that the protection mechanisms under the
control of the user could be bypassed, allowing a user’s directories and files to be
viewed or modified without the owner’s consent or knowledge. Examples of
these attacks include superuser attacks and virus / Trojan horse attacks. Trojan
horse attacks would include those forms of attack where an agent process acting
on behalf of the user (such as a Java™ applet) violates the security policy of the
user.

The threat of violation of site security policy is a major concern to security
officers. It is expected that a site will have its own security policy that is enforced
without reliance on proper user behavior or voluntary adherence to site policy.

To illustrate, it is common to have several groups of people who are using the
same computer system (for example, a personnel division and an accounting
group), but files associated with each group must be accessible only to those in
the group. There is a threat that a user may accidentally or intentionally share a
file, or a copy of a file, and allow access to a user who is not authorized to have
access to the information, even though both users are authorized users of the
system. Standard UNIX systems have no mechanism to prohibit this type of
activity by users.

A threat that is getting more and more attention by computer professionals and
business practice professionals is the threat of lack of user accountability and
auditing. There is a threat that in the event of a breach or in normal business
monitoring, a system administration would be unable to associate activity on the
system with the individual responsible for initiating or permitting the activity. This
threat is caused by an inadequate audit system, a failure of the audit system to
protect audit files, the failure of the audit system to be enabled, or a failure of the
system to properly associate a user with system activity.
8 AIX V6 Advanced Security Features: Introduction and Configuration

1.4 AIX V6.1 security features and the threats they
address

AIX Security Enhancements address the various types of threats with
countermeasures built into AIX at no extra charge to the customer. These
features use different security and cryptographic mechanisms to determine and
maintain the desired state of a system. AIX V6.1 provides mechanisms beyond
traditional UNIX mechanisms to ensure trust of the components and data within
the computer system. Table 1-1 shows the threats and the features that provide
countermeasures to address them.

Table 1-1 Threats and countermeasures

Threat Feature Notes

System Integrity Trusted Execution

AIX Security Expert

Trusted AIX

Ensures binaries are not
altered and no execution of
malicious code occurs.

Reduces exposures by
setting security policy.

Trusted computing base
fundamental to Multilevel
System

Unauthorized Access AIX Security Expert

Role Based Access
Control

Secure by Default

File Permission Manager

Encrypted File System

Sets policies for network,
passwords.

Fine-grained control on
privileged operations.

Reduces network access.

Reduces setuid bits.

Files not readable by
unauthorized users.

Unauthorized System
Administrator Access

Role Based Access
Control

Trusted AIX

Divides root into separate
roles and sets privileges
for processes.

Removes the concept of
root.
 Chapter 1. Introduction 9

1.5 Types of security

There are many components to security for both users and administrators. These
components1 are broadly described as:

Data Integrity Data integrity ensures the data has not been altered in
any way. Hash functions are mathematical functions often
used to ensure integrity

Availability Protecting services and data so they are available to
people and programs when needed. Although not a strict
security function, data that is unavailable can be as
damaging as data that is deleted or compromised.

Consistency Making sure systems behave as expected by authorized
users. This includes behavior after fixes are installed or
being able to restore data after a disaster or outage.

Control Regulating access to data and systems through policy or
access control lists. This includes not only defining policy,
but having sound methods for authorizing users.

Audit Auditing is an area of increasing importance to the
enterprise. What was once part of a best practice is now
mandated by legislation such as the Sarbanes-Oxley law.
Applying such legislation to computer records and
practices can be a challenging endeavor, because the
people having the skill to understand the law and audit it
are not experts on how to implement it in a computer
system, and vice versa.

Violation of Site Security
Policy

AIX Security Expert

Trusted AIX

Centralized policy.

Mandatory access controls
with no concept of root.

User Accounting AIX Security Expert

Trusted AIX

Enables Auditing if not
already enabled.

Auditing required.

Threat Feature Notes

1 See Practical UNIX and Internet Security, Second Edition by Garfinkel, et al.
(http://www.orieilly.com/catalog/puis)
10 AIX V6 Advanced Security Features: Introduction and Configuration

http://www.orieilly.com/catalog/puis

Confidentiality Protecting information from being read or copied by
anyone without express permission. This is also referred
to as “privacy”.

Most security solutions address one or more of these types of security. This is
why they often need to be used in combination to achieve a desired level of
confidence that a computer system will be able to operate in a predictable
manner and protect the data contained on it or under its control.

1.6 Purpose of security: establishing trust

Fundamentally, security mechanisms are a way for various objects in the
operating system to establish trust. Trust is a level of confidence that a system
will behave as expected. Absolute security is not achievable, but mechanisms
are used to obtain a level of trust.

Trust is needed to ensure that users and programs are authenticated and
authorized to perform the function they are about to execute. Trust is also
needed to ensure that the system is in a known state, and that the software that
is loaded is unaltered. Systems also need to trust remote users and clients, in
order to allow access to the system over networks. Even though trust is given to
remote users or clients, they must still be controlled to prevent accidental or
malicious damage. Trust is also needed to determine what information leaves
the computer or corporate network, and those users and processes accessing
the data have proper authorization to read it and write it.

In addition to establishing trust, security of AIX V6 is enhanced by preventing
misuse of assets. Misuse can be intentional or inadvertent. Many computer
vulnerabilities exist because systems are misconfigured or default settings and
passwords are still in place. AIX provides many mechanisms for preventing
misconfigurations and reduce the availability of malicious code to compromise
systems.These services were initially released in AIX 5L V5.3 and have been
enhanced in AIX V6.
 Chapter 1. Introduction 11

1.7 Overview of security enhancements to AIX V6 for
establishing trust

We have listed the major security enhancements included in AIX V6 below.
These features are shipped as part of the operating system and are available to
customers free of charge. Because some filesets rely on underlying
cryptographic toolkits that are not allowed to be exported with the operating
system by United States export regulations, encryption toolkits may be required
to be installed separately.

� Enhancements to AIX Security Expert, a security hardening tool.

� Secure By Default (SbD).

� File Permission Manager (FPM)

� A fully implemented enhanced Role Based Access Control system (RBAC)

� Encrypted File Systems (EFS)

� Workload Partitions (WPAR)

� Trusted Execution (TE)

� Trusted AIX

� Secure FTP

� Long Passphrase Support

Note: Due to export control restrictions, related cryptographic modules are
shipped separately. To use some of these features, those cryptographic
modules would need to be installed.
12 AIX V6 Advanced Security Features: Introduction and Configuration

Table 1-2 shows the new features and a brief description of the type of customers
who would want to use those features.

Table 1-2 Security enhancements in AIX V6

Feature Who should use it

AIX Security Expert Everyone should use this capability. The
customer’s hardening scripts can be
added as additional rules and invoked by
an AIX Security Expert.

Secure By Default Users who want a minimal number of
filesets installed and want strict control on
what is added to the base operating
system. Network connectivity is disabled
in a Secure by Default installation. Also
applicable for systems installed on
untrusted networks.

File Permission Manager Customers who are concerned about
minimizing programs with setuid bits on.

Role Based Access Control Customers who have multiple
administrators who do not want everyone
to have root access and root abilities. This
is also useful for administrators from
outside companies that must manage
servers. RBAC is enabled by default on an
AIX V6 installation.

Encrypted File Systems Customers who want extra protection
thoroughly privacy and access achieved
by encrypting files, and customers who
are required by legislation or business
practices to encrypt sensitive data.
Requires the installation of a
cryptographic toolkit.

Trusted Execution Customers wanting integrity checking on
customer-specific files can add their files
to the Trusted Signature Database. AIX
operating system files are automatically
entered into the TSD. This is a
replacement for the Trusted Computing
Database.
 Chapter 1. Introduction 13

1.8 Trusting the configuration of the OS with AIX
Security Expert

Prior to the release of AIX Security Expert in AIX 5L V5.3 TL5, security settings
for AIX were distributed among a variety of system and network commands and
separate SMIT panels. Creating proper default settings required expertise in
many areas, and was a painstaking process. Many administrators ended up
hardening their systems after installation by running home-grown scripts that
evolved over time. It was difficult to ensure the compliance to settings created in
these scripts. Also, if changes to the settings were made that caused undesirable
behavior, there was not a good way to restore the original settings.

Workload Partitions Customers who want to have added
system isolation for applications, to
prevent applications from interfering with
each other. This allows a sandbox
environment where application code can
be separated from other code that may
offer opportunities for vulnerabilities to be
exploited.

Trusted AIX Customers whose data is of different
security classification levels, and where it
is imperative that data is not leaked from
one level to another. Also for customers
who want an mandatory access control
security schema where security policies
are defined in a top-down hierarchical
manner who want to remove the concept
of an all -powerful root ID.

Secure FTP Customers needing to authenticate users
using an FTP server for file transfers who
do not want to mandate the use of SSH.
Requires the creation of an OpenSSL
keystore.

Long Passphrase Support Customers wanting to use longer
passwords. No separate installation of
filesets is required.

Feature Who should use it
14 AIX V6 Advanced Security Features: Introduction and Configuration

AIX Security Expert addresses these concerns by building a policy-based set of
rules that are implemented by using standard AIX commands. Users can use the
graphical interface in WebSM to review a check box style of settings, generally
categorized as high, medium, and low security. AIX Security Expert allows
security settings to be standardized throughout the enterprise and to be invoked
early in the boot process to prevent systems from being vulnerable on the
network before customer scripts can be invoked. It also checks for software
prerequisites and creates a message if the prerequisites are not satisfied.

AIX will be described in more detail in a later chapter, with example screens.
Here we will describe the features and highlights of AIX Security Expert and its
enhancements in AIX V6.

1.8.1 AIX Security Expert enhancements for AIX V6

AIX Security Expert has been enhanced with some new features to further
improve the security and prevent intrusions. These features include:

1. Invoking Secure by Default for high security setting

2. Centralized Policy Distribution through Lightweight Directory Access Protocol
(LDAP)

3. Ability to customize and include user-defined policies

4. Invocation of File Permission Manager command for managing SUID
programs

5. More stringent check for weak passwords

6. Performance enhancements for the graphical interface by replacing some
Java calls with C code
 Chapter 1. Introduction 15

1.8.2 AIX Security Expert hardening groupings

� AIX Security Expert hardens systems by ensuring the proper configuration
based on a desired level of security. One of the more popular features of the
tool is its default password rules based on industry best practices. Requiring
passwords and password aging are fundamental to securing any system.
Table 1-3 shows the security settings AIX Security Experts includes.

Table 1-3 AIX Security Expert hardening groupings

Policy grouping Description

Password Aging, length, reset, expiration, and valid
chars.

/etc/inetd.conf Disables many programs, such as tftp,
telnet, UDP echo, rshd, and rexd.

/etc/tcpip settings Disables many TCP apps in high security.

Setuid Policy Removes setuid bits with FPM.

/etc/inttab Disables programs like qdaemon, lpd, and
piobe. Needs to be explicitly enabled.

Audit Policy Enables audit if it is not running.

usr/group PW definitions Passwords must be set and inobvious.

Network Security Port scan detection, and installs ipsec.

SOX-COBIT configuration assistant Sets policy to improve record keeping for
audits.

Check settings at a later time Verify that the initial settings are still valid.

Password checking Stringent dictionary checks for eliminating
weak passwords.
16 AIX V6 Advanced Security Features: Introduction and Configuration

1.8.3 AIX Security Expert “undo” option

AIX Security Expert also has the concept of recursive undo. If an administrator
finds running an AIX Security expert policy results in an undesired effect because
of changed settings, such as the settings being too restrictive to run their
environment or application, an “undo” option exists to restore the previous
settings. This feature is recursive, and undo can be used multiple times. Care
must be taken when changing security settings; not all AIX Security Expert
settings can be undone. Table 1-4 shows the settings that cannot be undone.

Table 1-4 Functions that cannot be undone in AIX Security Expert

1.8.4 Consistency check in AIX Security Expert

AIX Security Expert has the capability to ensure the system is running under the
original settings set in the policy file. The aixpert command must be run with
root authority, and will build a policy file in /etc/security/expert/core/aixpert.xml.
This file is used to check the system settings at a later time to ensure the system
is still in compliance.

Check password definitions for High Level Security, Medium Level Security, and Low
Level Security.

Enable X-Server access for High Level Security, Medium Level Security, and Low Level
Security.

Check user definitions for High Level Security, Medium Level Security, and Low Level
Security.

Remove dot from non-root path for High Level Security and AIX Standard Settings.

Check group definitions for High Level Security, Medium Level Security, and Low Level
Security.

Remove guest account for High Level Security, Medium Level Security, and Low Level
Security.

Changing of login banner.

TCB update for High Level Security, Medium Level Security, and Low Level Security.
 Chapter 1. Introduction 17

Example 1-1 shows an XML rule for the minimum number of weeks before a
password can be changed.

Example 1-1 XML rule for password change

<AIXPertEntry name=”minagehls”>
<AIXPertRuleType> 1 </<AIXPertRuleType>
<AIXPertRuleState>Desired</AIXPertRuleState>
<AIXPertDescription> Specifies the minimum number of weeks to 1 week,

before a password can be changed </AIXPertDescription>
<AIXPertPrereqList> bos.rte.date, bos.rte.commands, bos.rte.security,

bos.rte.shell, bos.rte.ILS </AIXPertPrereqList>
<AIXPertCommand>/etc/security/aixexpert/bin/chusrattr</AIXPertCommand>
<AIXPertArgs>minage= 1 ALL minagehls</AIXPertArgs>

</AIXPertEntry>

As you can see from Example 1-1, the policy file contains readable rules that
indicate the rule type, the description, the possible prerequisite software, the AIX
command to be executed, and the necessary arguments. The AIX Security
Expert files can be consulted to learn how AIX commands are used to set certain
policies and settings.

1.8.5 Centralized AIX Security Expert policy distribution with LDAP

An important enhancement to AIX Security Expert in AIX V6 is the support for a
centralized policy file that is stored in Lightweight Directory Access Protocol
(LDAP). Lightweight Directory Access Protocol is a protocol that allows
information to be stored centrally in a hierarchical database and can be fetched
using the LDAP protocol.

An AIX Security Expert policy file can be created and saved in a central location
on an LDAP server. The LDAP server stores the policy file containing the XML
rules that is read by AIX Security Expert to determine security settings. Then as
other systems in the network need to be hardened, the policy file is fetched from
the LDAP server and a consistent policy is distributed and maintained throughout
the enterprise.

The different security policies stored on the LDAP server represent the tailored
security needs of categorically different systems throughout an organization. For
example, a system in the DMZ may require a higher level of security than a
back-end test system. The AIX Security Expert GUI can automatically download
and graphically present the different security policies stored on the LDAP server.
This allows the system administrator to select the best security policy for their
environment. A single IT security officer should define and control the policies
stored on the LDAP server.
18 AIX V6 Advanced Security Features: Introduction and Configuration

Refer to Chapter 6, “AIX Security Expert” on page 335 for information about how
to set ACLs to limit write access to the policy files.

A centrally defined and stored policy file for AIX Security Expert can be used to
consistently configure and harden many systems on a network, as shown in
Figure 1-1.

Figure 1-1 Centralized storage of security settings

Centralized Storage of Security
Settings

LDAP Server

appliedaixpert.xml

LDAP Server

appliedaixpert.xml

LDAP
server
 Chapter 1. Introduction 19

1.9 Trusting the installation of filesets with Secure by
Default

Secure by Default is a new install function, which can be invoked as part of AIX
Security Expert to do a minimal installation. The Secure by Default is an even
more restricted installation than the high security setting in AIX Security Expert.
Secure by Default further protects systems by not allowing network programs to
be active before systems are hardened. One principle of security is the
fundamental rule of “that which is not explicitly permitted is denied.” Secure by
Default significantly reduces network vulnerabilities and vulnerabilities from
problems in software that can be exploited, by performing a minimal install
without network programs. After the initial installation, the administrator only
installs what is explicitly necessary on a system.

The customer who would use this function is someone who prefers a bottoms up
approach to security where they have the minimal number of filesets and
networking function installed, and would enable each specific fileset that is
desired. Secure by Default works by removing TCP client applications. Refer to
6.3, “Secure by Default (SbD)” on page 339.

Figure 1-2 shows the traditional installation approach versus the Secure by
Default approach.

Figure 1-2 Traditional installation approach versus Secure by Default approach

Traditional Approach

Full AIX
Install

Reduced
AIX

Capa-
bilities

Hardening Process

Secure by Default Approach

Mini-
mal
AIX
In-
stall

Enhanced
AIX

Capa-
bilities

Explicitly install and
Enable what is needed
20 AIX V6 Advanced Security Features: Introduction and Configuration

1.10 Trusting system access with File Permission
Manager

Reducing the number of set UID bit programs is a best practice for hardening
systems. Since AIX has been in existence for a long time and the behavior of the
operating system must be stable and predictable for our existing customer base,
the set UID bits on many system programs had not been modified. Many of our
customers have been writing their own scripts to reduce the number of set UID
and set GUID programs. It became clear that what was once a concern to a few
security specialists is now a common concern of most customers. As a result, a
command was designed to aid customers in reducing the number of set UID bit
programs.

File Permission Manager, or fpm, is the new command available in AIX to reduce
the number of set UID bit programs in AIX. A thorough investigation of each
program and a determination of which ones really in fact require the bits was
made. Each command affected by fpm was analyzed to determine if it was
commonly used by a privileged system administrator or if it was needed by the
average user. If in general the command was only used by administrators, then
fpm can reduce the security risk of the set UID permissions by removing these
permissions. The programs were divided into different categories, and it was
determined which ones would be needed in a high, medium, or low security
environment.

The command can be run at different levels with a flag to indicate the security
levels of high, medium, or low. Regarding programs that get the s-bit removed,
the process is more stringent at the high setting and less stringent with the low
setting. The list of bits removed is stored in
/usr/lib/security/fpm/data/xxx_fpm_data, where xxx is either high, medium, or
low. For example, a high security environment would run:

fpm -l high

Default AIX settings can be restored if the resulting behavior is not what was
expected. The default AIX setting can be restored by running:

fpm -l default

The majority of the programs that have set UID bits removed in the high security
setting are removed as well in the medium and low settings. To determine the
exact programs where the bits were preserved in the medium settings, one
would compare the list in /usr/lib/security/fpm/data/high_fpm_data with
/usr/lib/security/fpm/data/med_fpm_data. In order to create a custom list of files
with set UID bits removed, one would use the
/usr/lib/security/rpm/custom/med_fpm_data to create the custom settings.
 Chapter 1. Introduction 21

One might note that there is only high and medium list files in the data directory.
The fpm -l med command will disable both the set UID bits and the set GID bits
in the /usr/lib/security/fpm/data/med_fpm_data file. In the low setting, only the set
GID bits are removed.

Care must be taken when using the fpm command, because it may alter the
behavior of the system in sometimes adverse ways. If a program or script is
depending on using a command with the bits turned on, it may fail with the set uid
bits disabled. Therefore, thorough testing should be done when using the fpm
command to change the s-bit settings. For more details on using fpm, see 3.11.5,
“Using the FPM command to reduce SetUID programs” on page 224 and 6.6,
“File Permission Manager for managing setuid and setgid programs” on
page 357.

1.11 Trusting executables with Trusted Execution

Trusted execution includes a group of features that verify the integrity of files in
AIX. Trusted Execution provides for integrity checking of the operating system.
At any point in time an administrator can verify the state of the system by
comparing the attributes of the important files in the system against a reference
database. Additionally, Trusted Execution provides for monitoring of executables
and kernel extensions during the load time. It can thus block any attempts to
execute malicious code that is not part of the trusted database.

AIX automatically marks certain types of files as trusted, and their signatures will
be calculated during installation. Hashes are calculated for runtime checks using
the SHA256 hashing algorithm. SHA256 is the Secured Hash Algorithm with a
256-bit key. Additional trusted programs can be identified by the administrator as
trusted programs. Those executables are signed and their signature value
entered into the Trusted Signature Database (TSD). The values in the TSD are
checked by the loader, by calculating the hash value of module and comparing it
with the expected value stored in the database. Because even one bit change in
a file will radically alter the hash value for that file, a hash is an effective
mechanism to ensure the integrity of the file. Executables that do not pass the
signature comparison are not permitted to load.
22 AIX V6 Advanced Security Features: Introduction and Configuration

Trusted execution is used to prevent Trojan horses, rootkits, or other methods of
tampering with important system files. Bogus copies of files or altered files will
fail the integrity check. The types of files that would be appropriate to keep in the
TSD include:

� Kernels and kernel extensions

� All setuid root programs

� All setgid root programs

� Any program exclusively run by root or by a member of the system group

� Any program the must be run by the administrator while on the trusted
communications path

� Important configuration files

� Any program that may alter system configuration files

The AIX files of the above type are populated in the TSD database by default.
Customer-created files of the above type should be added to the Trusted
Signature Database to enable the integrity check of each customers’ key files.

Trusted execution is run in three different situations:

1. During initial fileset installation. The build process calculates signatures and
puts them in the information built in the file set. Selected key files have
signatures associated with them, and not all files in the fileset.

2. In “offline” mode, where the customer can use a cron job to re-verify the
signatures on a periodic basis to ensure files have not been altered. The
system administrator can run the integrity verification tool at any time to make
sure that the system state has not been modified.

3. During runtime, when certain trusted files are loaded.

During runtime, the loader checks the hash value of the file in the TSD, and
calculates the hash of the file. If they match, the file loads. If not, the load will fail.
Therefore, if an attacker was successful in loading a tampered version of a
system file or other executable file tracked in the TSD, the file would not be able
to load and run, and any damage from the compromised file is prevented. These
are very key elements in creating a trusted computing environment.

The Trusted Signature Database is organized as a stanza file. A file can be
added to the TSD by using the trustchk -a command. Once the entries in the
database are complete, the TSD can be put in a “locked-down” mode. In this
mode, no modifications can be made to the table. In order to take the system out
of this mode, a reboot is necessary.
 Chapter 1. Introduction 23

A policy can be created to broadly check defined classes of files, such as kernel
extensions, scripts, and executables. This is accomplished by using the trustchk
command with certain flags, such as CHKEXEC, CHKSCRIPTS, or
CHKKERNEXT. If the flag STOP_UNSTRUSTED is used, only programs in the
TSD will be allowed to run.

For a detailed discussion of Trusted Execution, see Chapter 4, “Trusted
Execution environment” on page 251.

1.12 Delegating trust for users and the processes with
Role Based Access Control

The traditional access control model in UNIX systems is known as Discretionary
Access Control (DAC). This means that the person owning the file or directory
has the discretion of setting the permissions for who may read, write, or execute
the file. This is the standard rwx to which all UNIX users are accustomed.

In order to perform privileged operations, users must either be part of the system
group, or elevate their privileges to root authority. Allowing many system
administrators access to the root password of a system or group of systems can
be an uncomfortable situation in today’s businesses. Responsibilities for various
parts of the computer resources and networks is often divided among several
administrators. In fact, in some cases administrators may be outside vendors
who administer a select application or piece of hardware. Although it requires
some planning and policy creation, using the fine-grained access control
implementation methods provided by RBAC can give you a lower risk strategy
than an alternative strategies where root passwords are distributed to several
people.

There are additional situations where it may be desirable to divide authorities
among two or more people to require multiple people to perform certain
operations. This prevents abuse of power, such as creating user accounts and
setting passwords, which can be misused to damage company assets or
important files, such as audit logs. Currently, the root user ID 0 is needed to
perform privileged operations, so root passwords must be shared among many
administrators. This can be a logistical headache when passwords need to be
updated or administrators leave the company and it is not secure to have
non-employees know root passwords.

If role based access controls are set up properly to define roles and privileges,
then the sudo command becomes obsolete.
24 AIX V6 Advanced Security Features: Introduction and Configuration

One popular workaround for tracking users switching to root to perform
administrative duties has been the sudo command. Using sudo still relies on
underlying setuid bits on commands. In addition, sudo has to be used for the
tracking to occur. In most cases, if someone wants to do something undesirable
to the system, and they had the root password, they would probably not use the
sudo command, in order to prevent the audit trail from being created. If role based
access controls are set up properly to define roles and privileges, the the sudo
command becomes obsolete.

1.12.1 AIX V6 Enhanced RBAC compared to AIX RBAC prior to AIX
V6

Prior to AIX V6, AIX had some common administrative authorizations defined to
do common administrative functions, such as backup, restore, diagnostics,
useradmin, groupadmin, passwdadmin, passwdmanage, useraudit, and
roleadmin. These roles were always enabled and available for use either by the
command-line interface or through SMIT. Although useful, they were limited in
scope and did not allow the application of roles to executable code. They
required membership in certain groups and often SUID bits or root access was
still required to complete most administrative tasks. This early RBAC support is
referred to as Legacy RBAC support in AIX (see Figure).

Figure 1-3 AIX legacy authorizations defined prior to AIX V6

PasswdAdmin.

Backup. Restore

Diagnostics

DiskQuotaAdmin

AIX Legacy Authorizations

Groupadmin

UserAdmin

RoleAdmin

PasswdMng UserAudit ListAuditClasses
 Chapter 1. Introduction 25

There is a system environment variable that indicates if the earlier roles or the
AIX V6 enhanced roles are being used. The setting can be changed, but requires
a reboot to take effect. The new AIX V6 RBAC support value is named
enhanced_RBAC. The setting for enhanced_RBAC=TRUE is the default setting
for an AIX V6 system.

The new RBAC support in AIX V6 defines authorizations and roles that can be
assigned to users. Privileges can be assigned to processes to give them certain
attributes so they can gain certain security privileges. These assigned privileges
allow the process to bypass privileged operation restrictions.

Enhanced RBAC is enabled on a default installation of AIX V6. RBAC mode in
the operating system can be retrieved by applications using the relevant APIs.
Refer to Chapter 3, “Role Based Access Control” on page 165 for more details.
Additionally, note that Workload Partitions (WPARs) require that AIX be
Operating in Enhanced RBAC mode.

Authorizations may be system-defined or user-defined. There are many system
defined authorizations that will satisfy many customer’s needs. If more
authorizations are required, users may create new authorizations and assign
them to a new role or one of the existing roles.

To list the system-defined authorizations, enter the command:

lsauth -f -a description ALL_SYS

1.12.2 Advantages of AIX V6 Role Based Access Control

There are many advantages of the AIX V6 Role Based Access Control
mechanisms. They include:

� Selective assignment of privileged access roles to system users

� More levels of granularity than previously offered

� Integration into centralized policy infrastructure with LDAP

� Option to eliminate the root user

� Re-authentication necessary when switching roles, which reduces
collaborative attacks

� Ability to define custom authorizations and roles without reprogramming
applications
26 AIX V6 Advanced Security Features: Introduction and Configuration

1.12.3 Relationship of authorizations, roles, and privileges

In the new version of RBAC supported in AIX V6, “authorizations” are low level
mechanisms that grant access to protected commands. These authorizations
can be collected in a group called a role. The user can be assigned a role, or
several roles (see Figure).

Figure 1-4 Relationship of RBAC authorizations, roles, and privileges

Authorizations can be viewed as keys that give access to privileged operations or
commands.

Authorizations are assigned to roles, and roles can be assigned to a particular
user. Users may have several roles. Roles are invoked for the time they are
needed. Users switch into and out of roles to perform certain privileged
operations. Although a user may be allowed to perform many roles, they will
assume one role at a time.

As with the distribution of root authority and passwords, assignment of roles
should be done with care and only to trusted users. Roles should be assigned for
the duration of time that user needs the role, and users should be diligently
removed with they leave the job or company.

• Authorizations
– Mechanism to grant access to

commands or certain functionality.

• Roles
– A container for authorizations that

can be assigned to a user.

• Privileges
– Process attribute that allows

process to bypass a security
restriction.

Elements of AIX 6 RBAC
 Chapter 1. Introduction 27

1.12.4 Privileges versus authorizations

Privileges assign special powers to processes to allow them to perform
privileged operations. The ability to assign specific privileges to processes allow
a computer system to use fine-grained controls and employ the practice of least
privilege. This allows the administrators to mitigate the threat of the
over-privileged administrator. Destruction to computers or files can be through
careless or malicious acts. The principle of least privilege is the practice where
users have the least privilege needed to perform their tasks. Using this approach
when configuring administration privileges can help limit possible damage by
reducing the scope of a person’s access to important files and directories.

Some typical operations that require elevated privileges include rebooting the
system, installing software, stopping and audit process, backing up files or
creating/removing users.

Figure gives a representation of users having many roles.

Figure 1-5 Representation of users having many roles

Using privileges assigned to processes to enable privileged commands removes
many common attacks that depend on exploiting elevated privileges of a
process. Since the user brings with them the authorizations that are defined by
the roles they have, they cannot simply inherit the process’ privileges.

RBAC Element Scenario
28 AIX V6 Advanced Security Features: Introduction and Configuration

AIX also has the concept of role sessions. When a user performs a swrole
command to switch roles, they must re-authenticate to enable the new role. The
new authorizations are active while the user is in that role. Once they switch out
of the role, their authorizations are removed. This makes it more difficult for
credentials to be hijacked, because re-authentication is required and the
authorizations are short-lived. Care must be taken when assigning roles to users.
Users should only be assigned the roles they need. If a user is no longer in that
role, their IDs need to be modified to remove the obsolete role.

Figure shows the changing of role IDs during role session transitions.

.

Figure 1-6 Changing of role IDs during role session transitions

As with assigning roles to users, care must be taken when assigning privileges to
trusted programs. Privileges should only be granted when and where necessary
for the operation of the application. The minimum set of privileges should be
granted to allow the program to run properly.

Role Session Transition

• Each invocation of swrole creates a new role session.
– Roles not inherited from previous session.

• User may exit role session to return to previous role session.
 Chapter 1. Introduction 29

AIX V6 predefines many authorizations in a hierarchical fashion. The AIX RBAC
authorizations are enabled by default. Infrastructure to create and track the
various authorizations, roles, and privileges are stored in separate RBAC
databases. These include:

� Authorization database

� Role database

� Privileged command database

� Privileged device database

� Privileged file database

Authorizations that are system defined start with “aix”. They use a dotted format
to show each level. There are aix-specific defined authorizations.

Figure 1-7 shows pictorial view of the AIX hierarchy of aix.system authorizations.

Figure 1-7 Authorization naming convention

To define user-defined authorizations, a similar hierarchy would be created, with
the top level being something other than “aix”. “aix” at the top level is a reserved
word. There is a maximum of nine levels that can be defined in the hierarchy.

Authorization Naming Convention

aix

device

fs

network

proc

ras

security

system

wpar

boot

config

install

stat

create "Create Boot Image"

halt "Halt the System"

info "Display Boot Information"

reboot "Reboot the System"

shutdown "Shutdown the System"

aix.system.boot.info
30 AIX V6 Advanced Security Features: Introduction and Configuration

Users may define their own hierarchy of authorizations and assign them to roles.
The base name of the hierarchy needs to be something other than aix. For more
information about Enhanced Role Based Access Control, please see Chapter 3,
“Role Based Access Control” on page 165.

1.13 Trusting file access and providing privacy of files
with AIX Encrypted File Systems

AIX V6 includes the capability to encrypt files in the J2 file system with the use of
the Encrypted File System (EFS). The encrypting file system encrypts files on a
per file basis. Users can either create their own key store, or use a group key
store of which they are a member.

The management of user key stores is integrated into the existing user
administrator keys. The cryptographic access to files is also integrated into
existing commands like chmod. This minimized the system administration tasks,
and reduces changes of misconfiguration errors. A few EFS specific commands
have been added to allow for complete control by the system administrator.

For most operations, the use of an encrypted file is transparent to the user. The
underlying commands encrypt and decrypt the data. The specific key and
algorithm information for each file is saved in the file meta data, and the
commands are programmed to know how to process the files. The keys used to
encrypt the files are protected by an asymmetric private key.

The user keystore to access the encrypted file system is opened and loaded
upon successful login. A process needing to access an encrypted file verifies the
user’s credentials and then is able to decrypt the file.

Only a few new commands are needed to use the Encrypted File System. The
commands

� efskeymgr is used to manage and administer the keys.

� efsmgr is used to manage the encryption of files, directories and file systems.
 Chapter 1. Introduction 31

The Encrypted File System has the following advantages over other encrypted
file systems:

� Transparent to users and system administrators.

� Increased file level encryption granularity: Many other encryption products
use volume level encryption. All users using files in the volume use the same
encryption keys. This type of encryption is useful for protecting the theft of a
disk, but does not protect data from being read by others allowed to use the
same volume.

� EFS has a unique mode that can protect against a compromised or malicious
root user.

� Can assign users to groups and use group keys.

� Centralized keystore.

� Employs AES symmetric encryption algorithm. AES Key length and mode
selectable by user.

� EFS is integrated into user administration commands.

1.13.1 Symmetric versus asymmetric encryption

Encrypted File Systems employ both symmetric and asymmetric encryption
techniques.

Symmetric ciphers use the same key to encrypt and decrypt. Some examples of
symmetric ciphers include DES and AES. Symmetric ciphers are faster, and are
commonly used for encrypting “bulk data”. They are the ciphers used to encrypt
the bulk of private data sent over secure networks, or data that is stored on disk.
The main problem with symmetric ciphers is that they require the same key to be
used for both encryption and decryption operations, so the keys must be
distributed securely to the party performing the decryption. Therefore, the
combination of symmetric and asymmetric encryption techniques keys are often
used, where the asymmetric keys are used to protect the symmetric keys.
32 AIX V6 Advanced Security Features: Introduction and Configuration

Figure shows symmetric encryption.

Figure 1-8 Diagram of symmetric encryption

Asymmetric ciphers use key pairs that are mathematically related, called private
and public keys. Asymmetric ciphers are a significant invention because the
public key, can be distributed safely to others. The private key is used by the
owner, and must be stored securely. Typically the owner of the private key
encrypts data with their private key, and the receiver or reader of the data
decrypts with the public key. There is no risk in distributing the public key in the
clear, and it can often be distributed with the encrypted data.

In Figure , P is the plaintext, C is ciphertext (encrypted data), E is the encryption
key, and D is the decryption key. In the symmetric case, E=D. In asymmetric,
E!=D.

Figure 1-9 Symmetric versus asymmetric algorithms

Encryption Decryption
Plaintext

Key Key

Ciphertext Original
Plaintext

Symmetric Encryption

Algorithms
Different types of ciphers determined by the key
relationship

Symmetric - Encryption and Decryption use Same key

Ek(P)=C
Dk(C)=P
Dk(Ek(P))=P

Asymmetric - Encryption and Decryption use Different
Keys which are mathematically related

Ek1(P)=C
Dk2(C)=P
Dk2(Ek1(P))=P
 Chapter 1. Introduction 33

Data protected by asymmetric algorithms is very secure because the message
cannot be guessed by having a sample of the encrypted data or having the public
key. The key strength is very large, but the operations are computationally
intensive and take a long time. Therefore, public key cryptography is used for
encrypting small amounts of important data, or for verifying that a remote party is
authentic by their ability to use their private key to decrypt data. In Encrypted File
System, asymmetric keys known as RSA keys are used to encrypt the symmetric
keys that encrypt the files.

Figure shows the types of encryption algorithms.

Figure 1-10 Types of encryption algorithms

1.13.2 Advanced Encryption Standard (AES)

Advanced Encryption Algorithm is a cipher that was selected by the National
Institute for Standards and Technology (NIST).

For many years, Data Encryption Standard (DES) was the commonly used
encryption algorithm. It has a 56-bit key and does bit operations to encipher data.
It was adopted by the American National Standards Institute (ANSI) as a
standard encryption algorithm in 1981. DES was sufficient to encrypt data
literally for decades, and is the algorithm upon which many other standards are
built in the field of retail and banking. But as computer processor speeds
improved dramatically, it became possible to launch a brute-force attack on data
encrypted by DES. In less than a day, computers working in cooperation could
try every possible key to unlock the encrypted data.

Types of Encryption
Encryption

(privacy and confidentiality)

Symmetric Asymmetric

Stream Block Discrete
LogFactoring

RC4 DES
3DES
IDEA
Blowfish
AES

DSA
ECC
Diffie-Hellman

RSA
34 AIX V6 Advanced Security Features: Introduction and Configuration

The algorithm works by doing 16 rounds of bit operations on each half of a 64bit
block, then combining the halves together again. Because the nature of the
algorithm is to manipulate individual bits, it is not easily optimized in software.

After DES was “cracked” several years ago, Triple DES was the more secure
alternative. It uses three encryption passes, once to encrypt, another to decrypt
with a different key, and then a third encryption operation was performed, either
with the same key used in the first encryption, or with a third key. The resulting
ciphertext was, and still is, impossible to crack with a brute force attack, but the
process is very computationally intensive. When comparing ciphers and key
strengths, one more bit of key length is an exponential increase in the possible
keys. Therefore, Triple DES is exponentially many orders of magnitude more
secure than DES, but it is three times slower to encrypt and decrypt.

Anticipating the need for a stronger, faster algorithm than DES, the National
Institute of Standards and Technology announced an open search for the next
cryptographic algorithm in 1996. It was be open to review by the worlds top
cryptographers. In November 2001, an algorithm submitted by two Belgium
cryptographers, Joan Daemen and Vincent Rijmen, who name it Rijndael
(pronounced “rhine-doll”), was selected to become the Advanced Encryption
Standard. It had to be secure, fast, and able to be optimized in both software and
hardware. AES, as standardized by NIST, is not exactly in the form the Rijndael
was originally submitted. It has a fixed block size of 128 bits, and has key sizes of
128, 192, and 512 bits. The original submission allowed for larger block sizes,
more choices for key sizes, and more rounds of operations.

AES provides the security of Triple DES with the encryption times of DES or
faster. It is used in many encryption products today. As described above, a
difference in key length represents an exponential difference in possible keys.
For very sensitive, top secret type data, longer key lengths should be used;
128-bit keys are acceptable for most classified type data.

1.13.3 Block versus streaming ciphers

Encryption algorithms are designed to work on either a block of data, or on one
byte of data at a time. Ciphers such as DES and AES operate on a block of data.
DES used 64-bit blocks and AES uses 128-bit blocks. In some ciphers, such as
the original Rijndael cipher in which AES is based, the block size is selectable.

Streaming ciphers encrypt data a byte at a time, and are good for real-time
applications, such as streaming voice or video. The most common streaming
cipher is RC4. In EFS, AES is a block cipher. Data is fetched from the file in
blocks, and it is encrypted or decrypted in 128-bit blocks.
 Chapter 1. Introduction 35

1.13.4 CBC mode versus ECB mode

In EFS, AES can be implemented in two modes called Cipher Block Chaining
(CBC) or Electronic Code Book (ECB) mode. Electronic Code Book is the
original method in which a certain byte will always encrypt to the same value. It
can be viewed as a substituting method whereby the encryption algorithm will
always produce the same result for the same plaintext. This can be seen as
undesirable, because parts of data often can be predictable, and then the data
can be cracked. For example, if a banner is well-known, the encrypted banner
data can be used to help determine the relationship between plaintext and
ciphertext, and can be used to guess other encrypted messages.

The CBC mode was developed to provide more randomness in the resulting
ciphertext. With CBC mode, an initial vector, known as an IV, is used to start the
encryption process. The IV is usually unpredictable, and is used as an input to
the algorithm for generating the block of ciphertext. Therefore, the data before a
block will modify the value of ciphertext. For the first block of data, the IV is a
selected, non-predictable value. After the first block is encrypted, the IV is usually
a part of the previous block and is fed into the algorithm to calculate the
ciphertext for the next block.

If the data to be encrypted is fairly random in nature, ECB mode is faster and
suitable. If the data is not random, then CBC mode is more secure and would be
preferable.

When an algorithm operates in ECB mode, the cleartext is divided into fixed-size
blocks. Each block is then encrypted separately using the same encrypting key.
For each cleartext block, there is one corresponding ciphertext block.

This mode of operation has a few characteristics:

� If identical blocks of cleartext are encrypted using the same key, the result is
identical blocks of ciphertext.

� Each cleartext block is encrypted independently of the other blocks, which
means that more than one cleartext block can be encrypted in parallel. If an
application requires I/O operations whose size is a multiple integer of the
block size, these operations can be performed simultaneously.

� A potential eavesdropper Eve that has access to cleartext blocks and their
corresponding ciphertext blocks can create a database with one-to-one
mappings of cleartext blocks and encrypted blocks. If the ciphertext blocks
appear in a different message, Eve would then be able to decrypt them
without knowing the key. This especially for standard parts of the cleartext
message such as headers, templates, forms, or footers, and opens the
opportunity to statistical attacks.
36 AIX V6 Advanced Security Features: Introduction and Configuration

� A potential intruder could substitute original cipher blocks with
maliciously-designed cipher blocks that would decrypt to a desired cleartext
block without knowing the key. The receiver of the message has no way to
realize that this happened.

� Insertion or deletion of a block does not affect the adjacent blocks.

� If a cleartext block gets some bits corrupted before the encryption takes
place, the errors are propagated only to the corresponding ciphertext block.

� If one or more bits errors from the ciphertext block get corrupted, decryption
of that block will affect only its corresponding cleartext block. In other words, if
an error occurs in one block, error propagation is confined within the limits of
that block only.

When an algorithm operates in CBC mode, the cleartext is divided into fixed-size
blocks. Each block is encrypted using the same encrypting key and the
ciphertext produced by the encryption of the previous cleartext block. The first
block is encrypted using the key and a data structure named initialization vector.
In this manner, the encryption of one block depends on the encryption of the
previous block. This mode of operation has a few characteristics:

� If identical cleartexts are encrypted using the same key and the same
initialization vectors, the result is identical blocks of ciphertext. However, if a
different initialization vector is used, the resulting ciphertext is different.

� Each ciphertext block is dependent on the value of the previous ciphertext,
which is in turn dependent on the value of its previous cipher block and so on.
This has impact on applications that perform random I/O operations.

� Insertion or deletion of a block does affect the subsequent blocks.

� If a cleartext block gets some bits corrupted before the encryption takes
place, the errors generated during encryption are propagated to all
subsequent ciphertext blocks. When decryption takes place, the cleartext
block will contain the initial erroneous bits.

If one or more bit errors from the ciphertext block get corrupted, decryption of
that block affects its corresponding cleartext block. Every single-bit error affects
one bit of the original plaintext.
 Chapter 1. Introduction 37

1.13.5 Selecting key length and modes

As described above, in Encrypted File Systems, AES is used for symmetric
encryption of the file data. One may choose between different key lengths and
algorithm modes. The longer key lengths will result in stronger encryption; 128
bits of key strength for AES is suitable for all but extremely sensitive data. Since
CBC is more secure the ECB, AES-128_CBC is the default choice. If users want
slightly better performance and the data is fairly random, AES_128_ECB is a
good option.

In informal performance tests made in the lab, there was an approximately
3-5%performance increase from ECB to CBC modes of encryption. Similarly,
there was about a 5-10% difference in increasing key lengths. Data encrypted
with the fasted choice, AES_128_EBC, was approximately 25-30% faster than
data encrypted with the most secure choice, AES_256_CBC.

1.13.6 RSA algorithm

The RSA public key algorithm is used by Encrypted File systems to ”wrap” the
symmetric key used for encrypting files. RSA is named for the three
cryptographers who invented the algorithm: Rivest, Shamir, and Aldeman. They
are also the founders of a company called RSA, which produces many
encryption software products.

Keys that are encrypted by another algorithm are known as “wrapped” keys. A
private RSA key is used to “wrap” the AES key. When an AES key is needed by
the file system, it is “unwrapped” with the RSA public key. The RSA algorithm,
with a 1024-bit key, is the default choice for the asymmetric algorithm. If users
desire a longer key length, RSA_2048 or RSA_4096 may be used. It will take
longer to do the wrapping and unwrapping, but it is an operation that is done less
frequently than the bulk encryption of the file data. Some applications may
require longer key sizes. Selecting the algorithm is done by the person setting
the security policy, or it is required by the environment on which the data is being
manipulated.

1.13.7 Creating the EFS keystore: installation of CLiC library

Before EFS can be configured, the CLiC library must be installed from the
expansion pack. It must be shipped on the expansion pack because import and
export laws handle encryption technology separately from operating system
code, and it is not possible to ship it with the base operating system. AIX and IBM
p servers must obtain a license to export encryption, and therefore cannot ship
encryption with the base media. This is an inconvenience, but is required as part
of US export and international import laws.
38 AIX V6 Advanced Security Features: Introduction and Configuration

Creating the EFS keystore is performed automatically by the efsenable
command with calls to the Cryptolite Library in the C library.

EFS can also be configured through SMIT panels, with the “Add an Enhanced
Journaled File System” menu. There is a choice for “Enable EFS?”, whose
default value is no. When this value is set to “yes”, the encrypted file system and
keystore will be created.

1.13.8 EFS key protection modes: Root Admin or Root Guard mode

EFS allows two modes for key store protection. In the normal Root Admin mode,
a root user can reset the user and group key store access passwords. In Root
Guard mode, root cannot reset group or user passwords for the keystore. There
are pros and cons to each approach. The security officer setting the security
policy must weigh the pros and cons and decide if they want to allow root to reset
the passwords. If Root Guard mode is selected, care must be taken to back up
keystore and password information, or else encrypted data may not be
recoverable in the event of a person no longer being able to provide the
password.

See Chapter 2, “Encrypted File System” on page 59 for more detailed
information about using the encrypted file system.

1.14 Trusting the entire system: Trusted AIX

Trusted AIX is the feature that provides the framework for Mandatory Access
Controls and Labeled Security. The roots of Mandatory Access Control (MAC)
systems come from the Department of Defense Orange book standards
developed in 1985. The labeling capability made it possible to categorize
resources and subjects based on security labels. This provided the ability to
create vertically defined hierarchies as well as horizontal compartmentalization
to separate data and prevent unauthorized access. This system eliminates the
concept of the all powerful root ID. Security policies are defined for a site-wide or
institution-wide basis and cannot be circumvented by local administrators.

Multi-level security associates subjects and objects. Subjects may be processes
or users. Objects may include things like devices, network packets, files and
segments. Authorities and policies are defined well before data is populated. The
concept of Mandatory Access Control is to prevent data leakage. Therefore, a
user or process is defined to operate in a range of values. The objects have a
certain classification level. Users may write up or read down. For instance, an
information gatherer can write a report that is labeled as higher than his or her
level. Once the report is written, he or she can no longer access it.
 Chapter 1. Introduction 39

Trusted AIX allows for the setting of two label types, Sensitivity Labels and
integrity labels. Objects are labeled with their level of security. Processes and
users operate in a range or sensitivity levels and the objects they access must be
defined within the range of security levels they are permitted to access.

Integrity levels provide a scheme for determining how a user or process can
modify an object. Even if it is within their range of security label, they can be
further restricted whether they can write the object, read the object, or append to
the object, for example.

Trusted AIX uses the Role Based Access Control capabilities to assign privileges
and authorizations. Trusted AIX’s strict definitions, security controls, and integrity
levels allows systems to:

� Protect servers from internal and external attackers

� Compartmentalize and secure applications

� Prevent malicious code from damaging systems

� Limit access to administrative (superuser/root) privileges

� Meet or exceed government standards for maximum security
40 AIX V6 Advanced Security Features: Introduction and Configuration

1.14.1 Components of Trusted AIX

There are several major components to the Trusted AIX system. They include:

� Sensitivity Labels that allow for a hierarchical separation of data and who and
what processes can access them. Mandatory access controls are applied in
addition to Discretionary Access Controls. Therefore, both policy checking
must succeed in order to access files. Figure 1-11 gives such an example of
Sensitivity Labels.

Figure 1-11 Bell-LaPadula Model for controlling access to sensitive data

� Horizontal classification based on labeling and compartmentalization.

MAC: Bell-LaPadula Model - MLS

– access control security attributes:
• Hierarchical security levels
• Non Hierarchical categories

– emphasis on leakage of information and the access
control

write same

read same
object
(HIGH SL)

subject
(HIGH SL)

read same

write same

subject
(LOW SL)

object
(LOW SL)

write
down

read
down

read
up

write
up
 Chapter 1. Introduction 41

� Integrity controls on how the data can be modified. This determines if data
can be read, written, appended, or removed. Figure 1-12 gives an example of
an integrity model.

Figure 1-12 Biba integrity model

� Partitioned directories allows for finer control of who can view files in a
directory. Partitioned directories may be desirable in a shared directory like
/tmp, where temporary files can be created in sub-directories that are
viewable only to users with the required security label access. This way,
those with lower security classification cannot view file names for files with
higher security labels, for example.

� Network controls using IETF defined Revised Internet Protocol Security
Option (RIPSO) headers to label network data and netrules to control the flow
of network data into and out of the system. AIX applies network controls to
both IPV4 and IPV6 data. Netrules are implemented as a combination of host
rules and interface rules. Trusted AIX configures default netrule settings.
More granular settings may be set by the network administrator.

� Device access limits who can mount and unmount devices, and who can
access devices

� Hardening of the operating system by removing certain components that are
vulnerable, such as X traffic.

� Labeling of printed pages with the appropriate security classification.

� The use of Role Based Access Controls to define authorizations, privileges,
and roles to eliminate the concept of root user.

- access control security attributes:
• Hierarchical integrity levels
• Non hierarchical integrity categories

– emphasis on modification of information and thus ensuing
integrity issues
• Focus on execution

write same

read same
object
(HIGH IL)

subject
(HIGH IL)

read same

write same

subject
(LOW IL)

object
(LOW IL)

write
down

read
down

write
up

read
up
42 AIX V6 Advanced Security Features: Introduction and Configuration

� Control of Interprocess Communication (IPC) objects through the use of
labels. IPC objects include message queues, semaphores, and shared
memory. The IPC objects are extended to include sensitivity and integrity
labels.

� Auditing of security events. This includes the successful completion of
security related actions as well as auditing attempts to violate security policy.

In summary, Trusted AIX is a comprehensive security solution that utilizes
Mandatory Access Controls Mandatory Integrity Controls with assigned levels of
sensitivity and integrity labeling. Objects are labeled,and users and processes
operate within sensitivity ranges.

1.15 In summary: total AIX security capabilities

In addition to describing the new security features that are available with AIX
V6.1, we want to present a complete picture of the security features available
with AIX. This chart shows the many security features offered with AIX and the
release in which they were first made available. Some of the new features for
V6.1 are also backported to available for AIX 5L V5.3, such as File Permission
Manager and Long Passphrase support. Some features, like Trusted AIX, RBAC,
and Trusted execution, were released exclusively on AIX V6.

Note that items listed in a column in the left part of the chart continue to the right.
One exception is where Trusted AIX is a replacement product for the vendor
product Pitbull Foundation for AIX.

There were some significant security functions that were released in the later
releases of V5.3 that should be highlighted because of their customer value. AIX
Security Expert was first release in AIX 5L V5.3 TL5, as were TCP wrappers,
ipfilters, and stack execution disable.
 Chapter 1. Introduction 43

In Table 1-5, the items in BOLD are new features released in AIX 5L V5.3 TL6
and AIX V6.

Table 1-5 New security features

Function AIX 5L V5.2 and
before

AIX 5L V5.3 AIX V6.1

Authorization � Local
Password

� LDAP

� Kerberos

� LDAP Active
Directory®
enhancements

� Long
Passphrase
support

� Expanded
password
algorithm
choices*

Access Control � Loadable Auth
Module

� Limited RBAC

� PAM

� File Permission
Manager

� Fully
Implemented
RBAC

Network Security-
Confidentiality,
integrity, and
access control

� IP Security

� Open SSH

� IP Version 6

� TCP wrappers

� IP Security with
AES

� ipfilters

� openSSH with
Kerberos
authentication

� AIX Security
Expert

� Secure TCP

� Secure FTP

� AIX Security
Expert
enhancement

� Secure by
Default

Integrity
Checking

� Trusted
Computing
Base

� Stack
Execution
Disable

� Trusted
Execution

File Encryption
Confidentiality,
access control

� Tape
Encryption

� Encrypted File
Systems

Multi-level
Security
(Mandatory
Access Control)

� Pitbull
Foundation for
AIX,

� LSPP
certification

� Pitbull
Foundation for
AIX

� LSPP
certification

� Trusted AIX
44 AIX V6 Advanced Security Features: Introduction and Configuration

1.15.1 LDAP Active Directory enhancements

Support in the mksecldap command has been added to seamlessly work with
Microsoft®’s Active Directory. Special requirements for working as a client to an
Active Directory server have been coded within the mksecldap command to make
connections to an Active Directory server much simpler. Users should be created
on the Microsoft server, and they can be managed by the AIX LDAP client.

System
Hardening

AIX CAPP install
and certification

� CAPP Install

� AIX Security
Expert with
high, medium,
and low
policies, and
recursive undo

� File Protection
Manager

� AIX Security
Expert with
SOX
compliance
assistant,
centralized
policy, and
custom
policies

� Secure by
Default

� Trusted AIX

Encryption
Support

4960 coprocessor,
4963 accelerator,
and CCA and
PKCS11 support

� 4764
accelerator
with CCA and
PKCS11
support, and
Crypto Library
in C support
with FIPS
certification

� Crypto Library
in C support
with
PKCS11based
cryptographic
framework

Auditing Support AIX Audit
framework

� More detailed
audit

� AIX Security
Expert
automatically
enables
auditing

� SOX/ COBIT
compliance
assistance
added to AIX
Security
Expert to
enhance
capture and
reporting
capabilities

Function AIX 5L V5.2 and
before

AIX 5L V5.3 AIX V6.1
 Chapter 1. Introduction 45

In order for Active Directory (AD) to use AIX as a client, it must be UNIX-enabled,
and have the UNIX schema installed.

A whitepaper has been written to describe the specifics of connecting to active
directory. It is located at:

http://www-128.ibm.com/developerworks/aix/library/au-aixadsupport.html?
ca=dgr-lnxw97AIXclientsupp

Additional support has been added to enable the management of users and
groups for RFC2307 schema users. Formerly, this support was limited to users
of the aix-schema.

1.15.2 TCP wrappers

TCP wrappers is a program that allows access control on TCP connections. It is
a commonly used open source product that has been popular in the UNIX space
for years. IP Security provides much higher level of authentication and
encryption services, but for some people, TCP wrappers are preferred.

TCP wrappers allow runtime ACL reconfiguration. It can protect traffic, such as
FTP, telnet, and r commands. Access from remote hosts can be explicitly
permitted or denied. It monitors access to these services and can log either to
the AIX log or to its own log file.

1.15.3 IP Security with AES

IP Security has been enhanced for support for the AES encryption algorithm.
This provides the equivalent encryption strength of Triple DES with the
performance of DES. Key sizes can be selected between 128-, 192-, and 256-bit
key lengths.

IP Security provides firewall capability, port scan detection, stateful filtering,
encrypted IKE tunnels using authentication with digital certificates, and
preshared keys. It supports ipsec tunnels over Network Address Translations
addresses (NAT). It also has the ability to shun hosts and do pattern matching on
ClamAV antivirus files.
46 AIX V6 Advanced Security Features: Introduction and Configuration

http://www-128.ibm.com/developerworks/aix/library/au-aixadsupport.html?ca=dgr-lnxw97AIXclientsupp
http://www-128.ibm.com/developerworks/aix/library/au-aixadsupport.html?ca=dgr-lnxw97AIXclientsupp

1.15.4 ipfilter support

Ipfilter is an open source filtering tool that is multi-platform. It runs on many
versions of UNIX and allows users to filter network packets and perform Network
Address Translation. The appeal of ipfilter to customers is that one set of rules
can be written and used on a variety of servers in a heterogeneous environment.

1.15.5 Open SSH with Kerberos authentication

AIX Open SSH and PAM support was enhanced in 2006 with support for
Kerberos authentication. Future security enhancements will be available in the
fall of 2007.

1.15.6 Stack Execution Disable

Stack Execution Disable (SED) is a very key security enhancement that became
available with AIX 5L V5.3 TL4. Stack Execution Disable is a feature that
prevents code from executing on the stack and heap. Buffer overflows are still
the most common mechanism for security exploits.

In Figure on page 48, input is taken into buf that is sized as a 10 character buffer.
The strcpy occurs without checking for the input length. If the length of the input
string is longer than buf, the variable will overflow on the stack. Attackers use this
to insert executable code. This is especially true for open source code, usually
network protocol code. Open source gives common protocols where these
situations can be found by hackers and exploited. The availability and publicizing
of security patches can cause the threats because hackers can often exploit a
vulnerability in hours, and people may not patch their systems for days, weeks, or
months after a vulnerability is made public. This is the “catch-22 situation” of
distributing security patches. With tools on the Web, it is easy to reverse engineer
code to find the bug from the patched code, and exploit it. It has been found that
exploits are created within hours of a security patch being released, where it may
take days, weeks, or months for patches to be installed. Therefore, the patch
itself becomes the vehicle for spreading viruses and other threats.
 Chapter 1. Introduction 47

Using a preventative approach such as Stack Execution Disable provides “zero
day” protection without any patching or code changes. “Zero Day” means the
countermeasure are effective even before the attack is launched. There are zero
days where systems are vulnerable.

Figure 1-13 Stack Execution Disable prevents buffer overflow attacks

Because Stack Execution Disable will change the behavior of a customer’s
system, it is not enabled by default. Customers must select it. There are a few
types of applications that execute on the stack in normal operating mode, such
as gcc and Java. Stack Execution Disable can be run in a monitor mode so that
customers can try the feature in their environment and determine if it would
trigger in a normal mode.

There is an ability to set the granularity in setting SED to run. It can run in an
overall on/off mode, or it can be selected for certain executables, or excluded for
certain files. It can also be enabled for setuid and setgid programs. This is a very
powerful setting, because escalating of privileges in a overflow of a setuid or
setgid program is a common attack profile. POWER4™ or later hardware is
required to run this feature.

If the SED feature is triggered by code executing on the stack, the process will be
terminated and an error log entry is generated.

Overflow

Stack Execution Disable (SED):

• Protection against the most common vulnerability:
– Privilege escalation through buffer overflow + eventual seize of control

int
main(int argc, char * argv[])
{

char buf[10];
……

strcpy(buf, argv[2]);
……

}

Setuid - root program

buf[10]

Return address

Stack
48 AIX V6 Advanced Security Features: Introduction and Configuration

Stack Execution Disable and port scan detection
SED can be combined with port scan detection for a more complete security
solution. Most attacks are preceded by scanning the computer for listening ports.
Using port scan detection will reduce a hacker’s access to the system. When
inactive connections are scanned, that remote ID is blocked automatically for five
minutes. No response is sent back, and the remote host’s IP address is saved for
denying future packets. A filter rule is automatically dropped into the filter table
and the offending host will not receive any response to their probes.

1.15.7 4764 Cryptographic Accelerator with CCA and PKCS11
support

AIX has support for the 4764 Cryptographic Accelerator. It is a PCIX adapter that
has self-destructing tamper-detecting packaging that is certified at the highest
level - FIPS 140 -2 level 4. FIPS is the Federal Information Processing Standard,
which is the government standard developed by NIST. Level 4 is the highest
level attainable and has very stringent security requirements. The 4764 has two
software application programming interfaces. It runs host code and firmware on
the adapter that can perform IBM Common Cryptographic Architecture (CCA)
calls as well as the industry standard PKCS11 interface.

CCA is a very robust set of application programming interfaces geared towards
the needs of the banking and finance industries. Firms that run ATM machines or
major bank servers need to have signing keys stored in tamper-detecting
hardware. Keys are typically loaded by a procedure that requires two different
administrators that each have a part of the key. Currently, CCA supports DES
and Triple DES symmetric algorithms, with RSA 1024 and 2048 key length for
key generation, encryption, and signing functions. It includes SHA1 and MD5
hashing mechanisms.

The PKCS11 interface supports DES, Triple DES, and AES symmetric
encryption. It also supports SHA1, SHA256, and MD5 hashing.

In addition, the card offers two cryptographic-quality hardware random number
generators. The entropy is obtained from a semiconductor junction.

The software is implemented on a Linux base, and it designed to be updated in
the field. This allows for future cryptographic enhancements to be
accommodated without requiring customers to update their adapters.
 Chapter 1. Introduction 49

1.16 AIX certifications: independent assurance of
security functions

IBM has invested much effort and expense in the independent assurance of
security functions through the process of obtaining security certifications. The
use of independent auditors with deep security skills provides for a thorough
review of designs, code, and security testing of AIX. Third party companies are
hired to review the documentation and code, write the necessary security
documents and respond to comments from the security standards bodies. Once
the entire process is complete, the security certification is granted.

1.16.1 Background on security standards

Many of today’s security standards have evolved from the Department of
Defense “Orange Book” security requirements. The United States had a security
standard known as Trusted Computer Security (TC Sec) evaluation criteria.
Similarly, European nations had their own standards, known as Information
Technology Security (ITSEC) evaluation criteria. These standards were similar,
but had differently named levels and protection profiles. This proved to be
problematic for customers and developers trying to create products to satisfy the
needs for both markets. Soon it was clear that a common standard was
necessary.

A new security organization was formed to create an international standard. This
organization is called Common Criteria. They converged the two standards into
one set of requirements and security level definitions. The standards are
internationally recognized. This greatly simplifies the manufacturer’s ability to
satisfy security requirements for equipment use in many different countries. The
Web site for Common Criteria information is available at:

http://www.commoncriteriaportal.org

With the Common Criteria method of certifying products, a manufacturer selects
the protection profile they want to use for their security evaluation. Then they
select the level at which they will be evaluated. Every profile has the same
Evaluation Assurance Levels (EAL) levels, from EAL1 to EAL7.

Then they must determine the target of evaluation (TOE), or basically the scope
of the evaluation. This includes the hardware and software being used to satisfy
the security requirements. The product definition and the scope of the evaluation
is documented in the key foundational document called the “security target.”
50 AIX V6 Advanced Security Features: Introduction and Configuration

http://www.commoncriteriaportal.org

In the past, AIX has certified its products against what is known as the CAPP and
LSPP profiles. A further description of these profiles are available on the
Common Criteria Web site at

http://www.commoncriteriaportal.org/public/developer/index.php?menu=8

From the home page, select Developer and then List of PPs. (A list of protection
profiles. All of the various protection profiles are available in PDF format).

1.16.2 Security profiles for AIX V6.1: CAPP, LSPP, and RBACPP

The security functions in AIX V6 will be submitted for certification against the
CAPP, LSPP, and RBACPP profiles. The RBACPP profile is the role based
access control profile. It will be using the enhanced RBAC functionality and will
be a new profile for AIX to certify.

1.16.3 The Controlled Access Protection Profile (CAPP)

The Controlled Access Protection Profile is a general purpose computer system
profile that includes many administrative, authentication, and authorization
services within the operating system. All system calls are reviewed as well as
password rules, lockout mechanism, authentication schemes, and complete
code development, build, distribution, fix, and warranty services. Vulnerability
programs for fixing bugs are reviewed in depth. During the certification process,
documents are submitted describing this different security mechanisms of AIX.
Design documents must exist, be approved, and be accurate to the current
product behavior. The code is reviewed for security function and possible flaws
during vulnerability analysis. Then the actual running system is tested by the
auditor at an on-site test visit. If code is developed at more than one location, all
locations must be reviewed and visited.

The description of the system under review is documented in the security target.
Since the system must undergo strict security review, a reduced version of AIX is
submitted for evaluation. The specifics of the functions included are described in
the security target document. The security target can be viewed at
http://www.commoncriteriaportal.org by selecting the Evaluated Products
link. Look in the section for operating systems.
 Chapter 1. Introduction 51

http://www.commoncriteriaportal.org/public/developer/index.php?menu=8
http://www.commoncriteriaportal.org

1.16.4 Labeled Security Protection Profile (LSPP)

Labeled Security Protection Profile is a profile for multi-level security products
that implement Mandatory Access Controls (MAC). This takes the control away
from the individual owner and moves it to a central scheme to determine access
to data and devices. It is used, for example, for managing confidential, secret,
and top secret data. The root user is not able to change the security settings.

With AIX V6, AIX will undergo LSPP evaluation with all native code. The prior
MLS features that required third-party software will be part of AIX with Trusted
AIX.

1.16.5 Role Based Access Control Protection Profile (RBACPP)

The Role Based Access Control Protection Profile is a profile defined by
Common Criteria. This profile is used for evaluating systems that have Role
Based Access Control schemes. Traditional system administration functions are
mapped to a set of roles that have the authority to make changes to system
settings for devices and files within the control of their role.

1.16.6 Current AIX certifications: CAPP and LSPP

AIX has several key security certifications. It has been certified according to the
Common Criteria’s Controlled Access Protection Profile (CAPP) at level EAL4+.
This certification is according to a protection profile defined by the security
consortium’s Common Criteria. It is an internationally recognized standard.
Information on the Common Criteria organization can be viewed at
http://www.commoncriteriaportal.org. This organization defines different
security profiles, and companies can certify their products at various levels of
security. AXI received the CAPP certification for AIX 5L V5.2 TL6 and AIX 5L
V5.3 TL5.

AIX and Pitbull Foundation by Argus® Systems is also certified at Labeled
Security Protection Profile (LSPP). This is a very strict security profile that
requires the use of Mandatory Access Controls and data labeling. Pitbull
Foundation is a specially modified version of AIX to implement data labeling that
is available for AIX 5L V5.2 and AIX 5L V5.3. In AIX V6.1, the Mandatory Access
Control and data labeling function is built into AIX.

At the time of the publishing of this book, AIX V6 is in the process of being
certified as well, for CAPP, LSPP and Role Based Protection Profile (RBPP).
Please contact the AIX security group with specific questions about the progress
of these certifications if they are required for your environment.
52 AIX V6 Advanced Security Features: Introduction and Configuration

http://www.commoncriteriaportal.org

AIX V6 is different than prior operating systems where different installs were
needed for CAPP and LSPP. In AIX V6, there will be an install option for whether
a CAPP system or a LSPP system is desired. The LSPP system builds upon the
security included in the CAPP profile, and extends it for the Labeled Security
function. Because many environments may require CAPP without the extra
security and configuration required of an LSPP system, there is a choice of
configuring AIX V6 in CAPP or LSPP mode.

1.16.7 Evaluation and assurance levels for Common Criteria

Common Criteria uses a numbering scheme of its evaluation levels from EAL1 to
EAL7. The earlier US standard TC Sec had levels known as C1, C2, and B1.
Early versions of AIX V4 were certified to the C2 level, and an early version of a
security product known as BestX by Group Bull was certified at B1, which was a
labeled security product. Since that time, the Common Criteria standards have
come about and now the EAL levels are used. AIX starting using the Common
Criteria profiles starting with AIX 5L V5.2. Sometimes people in the field will still
refer to the old standards and ask for a C2 level of AIX. They should be directed
to the EAL levels of the Common Criteria standards described in Figure .

Figure 1-14 Relationship of CC levels to TS Sec and IT Sec

Evaluation and Assurance Level - EAL

E6formally verified design and
tested

EAL7

E5semiformally verified design and
tested

EAL6

E4semiformally designed and
tested

EAL5

E3B1: Labeled Security Protection
(LSPP)

EAL4

E2C2: Controlled Access Prot.EAL3

E1C1: Descretionary Sec Prot.EAL2

European
ITSEC

US TCSECCommon
Criteria
 Chapter 1. Introduction 53

1.16.8 What does EAL4+ mean

EAL4+ is the evaluation level for which AIX obtained its security certification. It
means “Evaluation Assurance Level 4 Plus”. The “plus” refers to an additional
requirement known as “flaw remediation”. This means that there is a program in
place to actively respond to any reported security problems and to be able to
notify and distribute security patches to customers very quickly

Table 1-6 is a chart of the different certification levels and what they mean. Most
operating systems have code from many sources, and it is difficult to obtain more
than EAL4+ without the code being designed and written with the security
requirements in mind. In fact, many operating systems are evaluated at EAL3,
because design documents are required for security-related code, and this is a
huge task to create if the documents do not already exist.

A few operating systems are listed at the EAL5 level. It is very difficult to certify
code to the EAL5 level. When an product is assured at EAL5, it is at a
significantly more stringent standard. Practically speaking, the code has to be
written with strong security principles and architecture in mind, and it is very likely
that there will be a situation where the code is written by one company and the
security functions were planned from the inception of the product.

Unlike EAL1-EAL4, the EAL5 rating is only acknowledged by the country that
certified it, except in the case of Europe, where European countries have agreed
to recognize EAL5 from another European county.

Table 1-6 Common criteria EAL levels and their meaning

Evaluation and assurance levels

EAL1 Functionally tested

EAL2 Structurally tested

EAL3 Methodically tested and reviewed

EAL4 Methodically designed, tested, and reviewed

EAL4+ EAL4 with flaw remediation (AIX is EAL4+.)

EAL5 Semiformally designed and tested

EAL6 Semiformally verified design and tested

EAL7 Formally verified design and tested
54 AIX V6 Advanced Security Features: Introduction and Configuration

1.16.9 Definition of EAL4

Products that are evaluated at EAL4 are methodically designed, tested, and
reviewed. EAL4 permits a developer to maximize assurance gained from positive
security engineering based on good commercial development practices.
Although rigorous, these practices do not require substantial specialist
knowledge, skills, and other resources. EAL4 is the highest level at which it is
likely to be economically feasible to retrofit to an existing product line. It is
applicable in those circumstances where the developers or users require a
moderate to high level of independently assured security in conventional
commodity Target of Evaluations (TOEs) and there is a willingness to incur some
additional security-specific engineering costs.

An EAL4 evaluation provides an analysis supported by the low-level design of the
TOE and a subset of the implementation. Testing is supported by an independent
search for obvious vulnerabilities. Development controls are supported by a life
cycle model, identification of tools, and automated configuration management.
 Chapter 1. Introduction 55

EAL4+ requires the presence of a flaw remediation program. For AIX, there are
resources dedicated to monitor and respond to vulnerability reports. This
includes reports of other operating systems, protocols, and applications where a
similar vulnerability exists in AIX. Security vulnerabilities that are found during
internal testing must also be reported and fixes made available. There is a
subscription service that exists to distribute information about possible security
patches, as shown in Figure 1-15.

Figure 1-15 AIX Subscription Service for Security information and Fix Distribution

1.16.10 Running a system in CAPP or LSPP mode

In order to run a system in a strict CAPP mode, the exact version of the operating
system must be installed. This is an option on the installation menu. The AIX
operating system is hardened for CAPP and has some settings specifically set to
meet the requirements of the CAPP standard. Therefore, if a customer wants to
run a CAPP version of AIX, it must be a fresh install. There is no way to convert
an already installed system into an officially CAPP certified version of AIX.

One of the limitations of running a CAPP certified system is that maintenance
levels cannot be applied to it. The install tools do not allow a CAPP certified
system to be updated.

AIX Subscription Service
• https://www14.software.ibm.com/webapp/set2/subscriptions/pqvcmjd
• Or google: IBM AIX Subscription Service
56 AIX V6 Advanced Security Features: Introduction and Configuration

In some cases, customers feel that the patches that need to be applied are
important enough to warrant taking the system out of CAPP mode. If this is true,
the system must be taken out of CAPP mode and have the fixes applied.

It is possible to perform most of the same hardening procedures that are
performed in AIX after the patches are installed. First, the system must be taken
out of Common Criteria mode, or CC Mode. This is accomplished by issuing:

> odmchange -o PdAt -q "attribute=TCB_STATE" odm.data

Then the fixes are applied, the system is hardened according to the Common
Criteria scripts by running:

> set_state_to_CC

Once the setting is set back to CC, it is not strictly speaking in CC mode, as the
system has been modified, but it will behave similarly to a CC configured system.
 Chapter 1. Introduction 57

58 AIX V6 Advanced Security Features: Introduction and Configuration

Chapter 2. Encrypted File System

2

© Copyright IBM Corp. 2007. All rights reserved. 59

2.1 EFS

EFS is designed so that each file is encrypted with a unique key. The
cryptographic information is kept in file extended attributes for each file. EFS
uses EA (Extended Attributes) Version 2.

Each file is encrypted before being written to disk. The files are decrypted when
they are read from the disk into memory, so file data is kept in memory in clear
format. The advantage is that the data is decrypted only once. Although the file
data is already in memory in the clear format, when another user requires access
to the file, his or her security credentials are verified before being granted access
to the data. If the user is not entitled to access the file, the access will be refused.

File encryption does not eliminate the role of traditional access permissions, and
rather adds much more granularity and flexibility.

EFS internal features have also been integrated into fdb.

Traditional commands used for file manipulation such as mv or cp have had a new
flag added in order to support operations with encrypted file systems.

2.2 EFS prerequisites

In order to be able to create and use EFS-enabled file systems on your system,
there are a few prerequisites that need to be met:

� CryptoLite in C (CliC) cryptographic library needs to be installed.

� The RBAC has to be enabled.

� You must explicitly enable the system to use the EFS file systems.

2.2.1 CLiC installation

In order to create and use EFS, you must install the CLiC cryptographic fileset at
level 430.CLiC comes at no cost and can be found on the Expansion Pack that
comes along with the V Base CDs.
60 AIX V6 Advanced Security Features: Introduction and Configuration

After installing the CLiC filesets, you should obtain an output similar to the one
shown in Example 2-1.

Example 2-1 Summary of successful installation of CLiC filesets

Installation Summary

Name Level Part Event Result

clic.rte.lib 4.3.0.0 USR APPLY SUCCESS
clic.rte.kernext 4.3.0.0 USR APPLY SUCCESS
clic.rte.includes 4.3.0.0 USR APPLY SUCCESS
clic.rte.kernext 4.3.0.0 ROOT APPLY SUCCESS

More details about CliC and the way AIX uses it can be found in Appendix A,
“Crypto Lib in C (CLiC)” on page 377.

2.2.2 Enabling EFS for file systems

In order to enable the system to use encrypted file systems, you must run the
efsenable command.

You can enable file system encryption as follows:

� Log in to the system as a user who is entitled to run this command, either root
or a member of the group security with the additional aix.security.efs
authorization.

� Run the efsenable command to activate the EFS. If CLiC is not installed, the
command fails and displays an error message similar to the output shown in
Example 2-2.

� Type the password that is used to protect the initial keystore

Example 2-2 Trying to EFS-enable a system without having installed CLiC

efsenable -a
/usr/lib/drivers/crypto/clickext: A file or directory in the path name
does not exist.
Unable to load CLiC kernel extension. Please check your installation.

Important: If the login password and keystore password are the same, the
user keystore is opened automatically at login time and user security
credentials are associated with user processes. For root, this feature allows for
seamless integration of security privileges with all system administration
commands.
 Chapter 2. Encrypted File System 61

2.2.3 The efsenable command

Running the efsenable command does the following:

� Creates the /var/efs directory. In this directory, the following directories are
created:

– The efs_admin directory, which contains the efs_admin keystore and a
lock file.

– The users directory: This directory contains a lock file used to get
exclusive access to the /var/efs/users directory. For every user defined on
the system, a subdirectory having the same name as the user name is
created. Each subdirectory contains the corresponding user keystore and
a lock file. The lock file is used to get exclusive access to the
/var/efs/users/username directory. At the time of installation, a
subdirectory, a keystore, and a lock file are created corresponding to the
user that ran the efsenable command (usually root).

– The groups directory: This directory contains a lock file used to get
exclusive access to /var/efs/groups directory. For every group defined on
the system, a subdirectory having the same name as the group name is
created. Each subdirectory contains the corresponding group keystore
and a lock file. The lock file is used to get exclusive access to
/var/efs/groups/groupname directory. At the time of installation, a
subdirectory, a keystore, and a lock file are created corresponding to the
group security.

� Sets the default length for using public/private keys.

� Sets the default key length and mode for the AES algorithm that is used for
file encryption.

� Sets the default keystore administration mode.

� Sets the algorithm for EFS administration key.

� Specifies if the user can change the mode for how their keystore is
administered.

� Creates a file named /var/efs/efsenabled that shows that EFS has been
enabled on the system.

� Updates /etc/security/user and /etc/security/group to contain the new
EFS-specific attributes.

� Updates the Config_Rules ODM database.

� Loads the efs kernel extension.
62 AIX V6 Advanced Security Features: Introduction and Configuration

In Example 2-3, we show how to EFS-enable a system as follows:

� Log in as the root user.

� Running the efsenable command.

� Verify that efs kernel extension has been loaded in the kernel using the
genkex command.

� Display the structure of files and directories that have been created, as
described in 2.2.3, “The efsenable command” on page 62.

Example 2-3 Enabling file system encryption

id
uid=0(root) gid=0(system)
groups=2(bin),3(sys),7(security),8(cron),10(audit),11(lp)
efsenable -a
Enter password to protect your initial keystore:
Enter the same password again:
#
genkex -d|grep -i crypto
 4b44000 37748 4b73000 873c
/usr/lib/drivers/crypto/clickext

ls -al /var/efs
total 8
drwxr-xr-x 5 root system 256 May 09 11:03 .
drwxr-xr-x 29 bin bin 4096 May 09 11:03 ..
drwx------ 2 root system 256 May 09 11:03 efs_admin
-rw-r--r-- 1 root system 0 May 09 11:03 efsenabled
drwx------ 3 root system 256 May 09 11:03 groups
drwx------ 3 root system 256 May 09 11:03 users
ls -al /var/efs/efs_admin
total 8
drwx------ 2 root system 256 May 09 11:03 .
drwxr-xr-x 5 root system 256 May 09 11:03 ..
-rw------- 1 root system 0 May 09 11:03 .lock
-rw------- 1 root system 1709 May 09 11:03 keystore
ls -al /var/efs/users
total 0
drwx------ 3 root system 256 May 09 11:03 .
drwxr-xr-x 5 root system 256 May 09 11:03 ..
-rw------- 1 root system 0 May 09 11:03 .lock
drwx------ 2 root system 256 May 09 11:03 root
ls -al /var/efs/groups
total 0
drwx------ 3 root system 256 May 09 11:03 .
 Chapter 2. Encrypted File System 63

drwxr-xr-x 5 root system 256 May 09 11:03 ..
-rw------- 1 root system 0 May 09 11:03 .lock
drwx------ 2 root system 256 May 09 11:03 security
ls -al /var/efs/users/root
total 8
drwx------ 2 root system 256 May 09 11:03 .
drwx------ 3 root system 256 May 09 11:03 ..
-rw------- 1 root system 0 May 09 11:03 .lock
-rw------- 1 root system 2128 May 09 11:03 keystore
ls -al /var/efs/groups/security
total 8
drwx------ 2 root system 256 May 09 11:03 .
drwx------ 3 root system 256 May 09 11:03 ..
-rw------- 1 root system 0 May 09 11:03 .lock
-rw------- 1 root system 2062 May 09 11:03 keystore

When you want to run the efsenable command on a system that had already this
command run, you get the following message:

efsenable -a
EFS has already been enabled on this system.

2.2.4 Usage of lock files

Lock files are used to maintain the integrity of user and group keystores during
system operation.

When an operation that modifies a user keystore takes place, the following steps
occur:

� /var/efs/users is locked.

� /var/efs/users/user is locked.

� /var/efs/users is unlocked to allow subsequent access.

� /var/efs/users/user remains locked until the keystore operation completes.

� Keystore manipulation takes place.

� /var/efs/users/user is unlocked.

Tip: Detailed log messages generated during EFS related operations can be
found in the syslog.out file.
64 AIX V6 Advanced Security Features: Introduction and Configuration

2.3 Managing encrypted file systems and encrypted
files

In this section, we describe the main operations that can be performed upon an
EFS-enabled file system.

2.3.1 Creating an EFS

We present the interfaces used to create an EFS-enabled file system or to
convert an already existing JFS2 file system to an EFS-enabled one.

You can use the SMIT menu to create an encrypted file system, as shown in
Example 2-4. When you create a enhanced journaled file system, the option of
creating it encrypted is disable by default.

Example 2-4 Creating an encrypted file system using SMIT

Add an Enhanced Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 Volume group name rootvg
 SIZE of file system
 Unit Size Megabytes
+
* Number of units [100]
#
* MOUNT POINT [/fs1]
 Mount AUTOMATICALLY at system restart? no
+
 PERMISSIONS read/write
+
 Mount OPTIONS []
+
 Block Size (bytes) 4096
+
 Logical Volume for Log
+
 Inline Log size (MBytes) []
#
 Extended Attribute Format
+

 Chapter 2. Encrypted File System 65

 ENABLE Quota Management? no
+
 Enable EFS? yes
+
 Allow internal snapshots? no
+

F1=Help F2=Refresh F3=Cancel
F4=List
F5=Reset F6=Command F7=Edit
F8=Image
F9=Shell F10=Exit Enter=Do

You can create an EFS file system also using the command-line interface.

The following command creates an 100 MB encrypted file system that will be
mounted under /fs2:

crfs -v jfs2 -g rootvg -m /fs2 -a size=100M -a efs=yes

You can verify the creation of the stanza corresponding to the newly-created file
system using the lsfs -q command, as shown in Example 2-5.

Example 2-5 Using the lsfs command to display EFS attributes of the file systems

lsfs -q /efs
Name Nodename Mount Pt VFS Size Options
Auto Accounting
/dev/fslv00 -- /efs jfs2 212992 rw
no no
 (lv size: 212992, fs size: 212992, block size: 4096, sparse files:
yes, inline log: no, inline log size: 0, EAformat: v2, Quota: no,
DMAPI: no, VIX: no, EFS: yes, ISNAPSHOT: no)

Please note that EAformat for the encrypted file systems is Version 2 and the
value of the EFS attribute is set to yes.

You can enable the encryption for an already existing JFS2 file system using
either SMIT panels or the chfs command. You need to set the value of the efs
attribute to yes.

This operation automatically changes EA format from Version 1 to Version 2.
Data previously stored in EA Version 1 such as ACL is converted to EA Version
2.
66 AIX V6 Advanced Security Features: Introduction and Configuration

At the time of this writing, there is no WebSM interface available for creation of an
EFS-enabled file system or for converting a regular JFS2 file system to be
EFS-enabled.

2.3.2 Operations with EFS-enabled file systems

Because the EFS features are completely integrated in the JFS2 file system
design, all operations that can be performed on a regular JFS2 file system can
be performed on EFS-enabled file systems as well. These operations include:

� Mounting file system

� Unmounting file system

� Increasing the size of the file system

� Decreasing the size of the file system

� Defragmenting the file system

� Removing the file system

2.3.3 Encryption inheritance

The concept of encryption inheritance indicates if a file or directory inherits both
the property of being encrypted and all encryption parameters from its parent
directory.

Initially, after an EFS file system has just been created, inheritance is not yet
turned on. You need to activate it explicitly using the efsmgr command. After
inheritance is turned on, all files that are created inherit this property and are
implicitly encrypted. Directories themselves are never encrypted; they only inherit
encryption.

You can choose to set inheritance either at the file system level or at directory
level. The effects of turning on inheritance are as follows:

� When inheritance is set on a file system, all files that are newly created in this
file system are encrypted using the cipher specified at file system creation. All
newly created directories inherit the file system cipher.

Important: File systems /, /usr, /var, and /opt cannot be EFS enabled.

Restriction: Due to the fact that file security information is kept in file
metadata, the EFS file systems cannot be exported through NFS, and they
cannot be locally mounted through NFS.
 Chapter 2. Encrypted File System 67

� When inheritance is set on a directory, all files that are newly created in this
directory are encrypted using the cipher inherited from the directory. All newly
created subdirectories inherit the parent directory cipher.

If inheritance is set at both file system level and directory level, but is set to use
one cipher at file system level and another cipher at the directory level, the files
are encrypted using the directory cipher.

After you disable the inheritance for a directory or a file system, all new files that
are created are implicitly in clear format. Disabling the inheritance does not affect
files that have already been created in encrypted format. They will remain
encrypted.

In Example 2-6 on page 69, we show how to turn on inheritance at the file
system level and its impact on directories and files as follows:

� The crfs -v jfs2 -g rootvg -m /efs -a size=100M -a efs=yes command
creates an encrypted file system.

� Trying to set inheritance with the efsmgr -s -E /efs command for an
unmounted file system fails.

� The mount /efs command mounts the file system, and inheritance is
successfully set with the efsmgr -s -E /efs command.

� The content of the keystore is loaded in the current shell with the efskeymgr
-o ksh command.

� The mkdir command creates the dir1 directory.

� The efsmgr -E dir1 command sets inheritance for dir1.

� The getea and efsmgr -L commands show that inheritance has been set.

� file1 is created and the efskeymgr -l file1 command shows that file1 is
encrypted.

� The efsmgr -D dir1 command disables inheritance for dir1.

� The efsmgr -L and getea commands show that inheritance has been
disabled.

� file2 is created in cleartext format, as shown by the ls -U command.

� file1 can be individually decrypted using the efsmgr -d command.

� file2 can be individually encrypted using the efsmgr -e command. In other
words, files can be individually encrypted or decrypted irrespective of the
inheritance of their parent directory.

� The new values for file encryption flags are shown by the ls -U command.
68 AIX V6 Advanced Security Features: Introduction and Configuration

Example 2-6 Setting and using inheritance at the file system level

crfs -v jfs2 -g rootvg -m /efs -a size=100M -a efs=yes
File system created successfully.
106288 kilobytes total disk space.
New File System size is 212992
efsmgr -s -E /efs
/efs:
 Error setting EFS attributes: The media is not formatted or the
format is not correct.
mount /efs
efsmgr -s -E /efs
efskeymgr -o ksh
root's EFS password:
#mkdir dir1
efsmgr -E dir1
getea dir1
EAName: øSYSTEMø_NRE
EAValue:
efsmgr -L dir1
EFS inheritance is set with algorithm: AES_128_CBC
cd dir1
touch file1
efsmgr -l file1
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 0
 Key fingerprint : 569ae24b:c2da3415:6e7e651e:b7d2f29f:1dda5ab9
efsmgr -D dir1
efsmgr -L dir1
Error getting EFS attributes: Cannot find the requested security
attribute.
getea dir1
dir1 does not have any extended attributes.
touch file2
ls -U file2
-rw-r--r--- 1 root system 0 May 14 13:19 file2
efsmgr -d file1
efsmgr -e file2
ls -U file*
-rw-r--r--- 1 root system 0 May 14 13:22 file1
-rw-r--r--e 1 root system 0 May 14 13:22 file2
 Chapter 2. Encrypted File System 69

When you want to enable the encryption inheritance for a file system that has
already had inheritance set, you get the following message:

efsmgr -s -E /efs1
/efs1: The EFS attribute is already defined

2.4 Encryption at file level

Each file is encrypted using the AES algorithm. AES uses a unique symmetric
encryption key that is randomly generated at the time the file is created. The
other parameters required by AES, such as mode and key length, are inherited
from the directory or the file system in which the file resides.

Data from the file is encrypted when it is written on the disk and decrypted when
it is read from the disk.

The symmetric key used to encrypt the file is encrypted with the public key of the
user that created the file and stored in file extended attributes. This represents
the file cryptographic metadata. If a user or a group is granted access to the file,
the file symmetric key is encrypted with the user or group public key and added
to the extended attributes of the file. There is virtually no limit for the number of
users or groups that can be granted access to the file.

Only a user that has a private key that matches one of the public keys can gain
access to the data.

2.4.1 Creating encrypted files and the umask command

When you create an encrypted file, the file symmetric encryption key is
encrypted with the public key of the file owner and written in the file’s
cryptographic metadata. If the umask value allows group access, another copy of
the file symmetric encryption key is encrypted with the public key of the group
and added to the file’s cryptographic metadata.

The creation of default file access key and the way it is influenced by the umask
value is shown in Example 2-7 on page 71. We take the following steps:

� user2 is a member of group1.

� The umask value is 022.

� file1 is created. Since file1 is read-accessible by both user2 and group1, two
copies of file symmetric encryption key, one encrypted with the user2 public
key and one encrypted with the group1 public key, are added to the file’s
cryptographic metadata.
70 AIX V6 Advanced Security Features: Introduction and Configuration

� The umask value is changed and members of group1 do not have access
anymore.

� file2 is created. Since file2 is now accessible only by user2, only one copy of
the file symmetric encryption key is encrypted with the user2 public key and
added to the file’s cryptographic metadata.

Example 2-7 Default file access key and umask

$ id
uid=205(user2) gid=203(group1)
$ umask
022
$ touch file1
$ ls -aU file1
-rw-r--r--e 1 user2 group1 0 May 15 14:52 file1
$ efsmgr -l file1
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 205
 Key fingerprint : f9d25800:dae0c93b:7695424c:6c617cd6:53b3a7aa
 Key #2:
 Algorithm : RSA_1024
 Who : gid 203
 Key fingerprint : 4a73c007:bb0e6b35:abe672c6:cdaf2964:5dd69586
$ umask 077
$ touch file2
$ ls -aU file2
-rw-------e 1 user2 group1 0 May 15 14:53 file2
$ efsmgr -l file2
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 205
 Key fingerprint : f9d25800:dae0c93b:7695424c:6c617cd6:53b3a7aa
 Chapter 2. Encrypted File System 71

2.4.2 Listing file encryption information

There are several commands that can be used to display file security information,
named extended attribute information, and encryption information.

In Example 2-8, we use several commands to find information regarding file
encryption as follows:

� The ls -U command displays file security information. The e displayed at the
end of file permissions indicates the file is encrypted.

� The getea command displays the named extended security attributes that
shows the file is encrypted. You can see that the EA contains cryptographic
metadata for each file.

� The efsmgr -l command displays the cipher algorithm used to encrypt the
file, the algorithm mode, and the length of the key. It also displays the
fingerprint of the keys that can access the file along with uid/gid of user/group
that own these keys.

Example 2-8 Listing information about file encryption

ls -U file
-rw-r--r--e 1 root system 0 May 09 19:36 file
getea file
EAName: øSYSTEMø_NRE
EAValue:
efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 0
 Key fingerprint : 5363bd50:0ed7631d:08a93ee5:efdbde20:54f1028c
 Key #2:
 Algorithm : RSA_1024
 Who : gid 202
 Key fingerprint : 19f16934:20a54e8e:d59aea33:111a37bf:06261785
72 AIX V6 Advanced Security Features: Introduction and Configuration

2.4.3 Implication of encryption on file size and location of disk blocks

In this section, we study the impact of file encryption on file size, inode, and disk
blocks. We use a EFS-enabled file system named /efs. We take the following
steps, as shown in Example 2-9.

� The ls -iU file command shows a small encrypted file named file that is 5
bytes long and corresponds to inode 8.

� The istat 8 /dev/fslv00 command shows a pointer to block 2f.

� The du file command reports that 16 blocks are being used to store this file.

� The efsmgr -d file command decrypts the file.

� The ls -iU file command shows that file has been decrypted and its size
has not changed. The file has been allocated a new inode, inode 5.

� The istat 5 /dev/fslv00 command now shows a pointer to block 2c.

� The du file command now reports that eight blocks are now being used to
store this file.

Example 2-9 Effects of encryption on the file

ls -iU file
 8 -rw-r--r--e 1 root system 5 May 01 01:36 file
istat 8 /dev/fslv00
Inode 8 on device 10/10 File
Protection: rw-r--r--
Owner: 0(root) Group: 0(system)
Link count: 1 Length 5 bytes

Last updated: Tue May 1 01:36:23 MST 2007
Last modified: Tue May 1 01:36:23 MST 2007
Last accessed: Tue May 1 01:36:37 MST 2007

Block pointers (hexadecimal):
2f

du file
16 file
efsmgr -d file
ls -iU file
 5 -rw-r--r--- 1 root system 5 May 01 01:41 file
istat 5 /dev/fslv00
Inode 5 on device 10/10 File
Protection: rw-r--r--
Owner: 0(root) Group: 0(system)
 Chapter 2. Encrypted File System 73

Link count: 1 Length 5 bytes

Last updated: Tue May 1 01:41:38 MST 2007
Last modified: Tue May 1 01:41:38 MST 2007
Last accessed: Tue May 1 01:41:38 MST 2007

Block pointers (hexadecimal):
2c

du file
8 file
#

There are some scenarios in which you should take this behavior into account.

For example, if you are running a commercial Web server that has a large
number of small files in cache and the data in these files needs to be protected
by encryption, you need to closely monitor the storage space available.

Another scenario is an environment where a lot of file encryption/decryption
operations take place and the corresponding inode number of each file has a
particular importance for other applications. Pay special attention if you back up
your files using an inode number.

Since the processes of encryption and decryption change the inode number that
is allocated to a file, the time of last inode update, file modification, and file
reference is modified as well.

2.4.4 Looking at disk blocks of an encrypted file

In this section, we study the impact of file encryption on corresponding disk
blocks. We use a EFS-enabled file system named /efs. We take the following
steps, as shown in Example 2-10 on page 75.

� We create a cleartext file with a easy to recognize content within the /efs
encrypted file system. The inode corresponding to the file is 19.

� We look the information contained in the inode 19 and find that the file uses
block number 3d.

� We use fsdb to look at the content of block 3d and notice that data is stored
on the disk in clear format.

� We encrypt the file using the efsmgr command and observe that a new inode,
inode, 4 has been associated to the file.
74 AIX V6 Advanced Security Features: Introduction and Configuration

� We look at the information contained in the inode 19 and find that the file uses
block number 2d.

� We use fsdb to look at the content of block 2d and find that data is stored on
the disk in encrypted format.

Example 2-10 Examining disk blocks of an encrypted file

root@nimrod:/efs# ls -ailU
total 24
 2 drwxrwxrwxe 3 root system 256 May 08 16:49 ./
 2 drwxr-xr-x- 24 root system 4096 May 08 14:37 ../
 19 -rw-r--r--- 1 root system 144 May 08 16:36 file
 3 drwxr-xr-x- 2 root system 256 May 07 11:27
lost+found/
root@nimrod:/efs# cat file
111111111111111
222222222222222
333333333333333
444444444444444
555555555555555
666666666666666
777777777777777
888888888888888
999999999999999
root@nimrod:/efs# istat 19 /dev/fslv01
Inode 19 on device 10/12 File
Protection: rw-r--r--
Owner: 0(root) Group: 0(system)
Link count: 1 Length 144 bytes

Last updated: Tue May 8 16:36:34 CDT 2007
Last modified: Tue May 8 16:36:34 CDT 2007
Last accessed: Tue May 8 16:51:44 CDT 2007

Block pointers (hexadecimal):
3d
root@nimrod:/efs# fsdb /dev/fslv01
Filesystem /dev/fslv01 is mounted. Modification is not permitted.

File System: /dev/fslv01

File System Size: 212576 (512 byte blocks)
Aggregate Block Size: 4096
Allocation Group Size: 8192 (aggregate blocks)
 Chapter 2. Encrypted File System 75

> display 0x3d
Block: 61 Real Address 0x3d000
00000000: 31313131 31313131 31313131 3131310A |111111111111111.|
00000010: 32323232 32323232 32323232 3232320A |222222222222222.|
00000020: 33333333 33333333 33333333 3333330A |333333333333333.|
00000030: 34343434 34343434 34343434 3434340A |444444444444444.|
00000040: 35353535 35353535 35353535 3535350A |555555555555555.|
00000050: 36363636 36363636 36363636 3636360A |666666666666666.|
00000060: 37373737 37373737 37373737 3737370A |777777777777777.|
00000070: 38383838 38383838 38383838 3838380A |888888888888888.|
00000080: 39393939 39393939 39393939 3939390A |999999999999999.|
00000090: 00000000 00000000 00000000 00000000 |................|
000000a0: 00000000 00000000 00000000 00000000 |................|
000000b0: 00000000 00000000 00000000 00000000 |................|
000000c0: 00000000 00000000 00000000 00000000 |................|
000000d0: 00000000 00000000 00000000 00000000 |................|
000000e0: 00000000 00000000 00000000 00000000 |................|
000000f0: 00000000 00000000 00000000 00000000 |................|
-hit enter for more-
... lines skipped..
root@nimrod:/efs# efsmgr -e file
root@nimrod:/efs# ls -ialU
total 32
 2 drwxrwxrwxe 3 root system 256 May 08 17:02 ./
 2 drwxr-xr-x- 24 root system 4096 May 08 14:37 ../
 4 -rw-r--r--e 1 root system 144 May 08 17:02 file
 3 drwxr-xr-x- 2 root system 256 May 07 11:27
lost+found/
root@nimrod:/efs# istat 4 /dev/fslv01
Inode 4 on device 10/12 File
Protection: rw-r--r--
Owner: 0(root) Group: 0(system)
Link count: 1 Length 144 bytes

Last updated: Tue May 8 17:02:49 CDT 2007
Last modified: Tue May 8 17:02:49 CDT 2007
Last accessed: Tue May 8 17:02:49 CDT 2007

Block pointers (hexadecimal):
2d
root@nimrod:/efs# fsdb /dev/fslv01
Filesystem /dev/fslv01 is mounted. Modification is not permitted.

File System: /dev/fslv01
76 AIX V6 Advanced Security Features: Introduction and Configuration

File System Size: 212576 (512 byte blocks)
Aggregate Block Size: 4096
Allocation Group Size: 8192 (aggregate blocks)

> display 0x2d
Block: 45 Real Address 0x2d000
00000000: 484AC9D2 C83AE1AB EB598765 A1434DCC |HJ...:...Y.e.CM.|
00000010: 631ABD5A F41D5081 C88B154F 4776DD7B |c..Z..P....OGv.{|
00000020: 9ED051A5 9E4AD8C4 A1405607 2681ECE7 |..Q..J...@V.&...|
00000030: F736D795 32D183CF 1C30CD86 EB9009A2 |.6..2....0......|
00000040: 7A3D3142 3BFC6196 86490E10 4203FD52 |z=1B;.a..I..B..R|
00000050: 57F4E7A7 66C5A9CD E9E5CD71 8B64C368 |W...f......q.d.h|
00000060: 391963FA F2ED5A07 0A1BDEEF 20E9E8A4 |9.c...Z..... ...|
00000070: 85F888EF 32E95FCF 4BF03826 D62393C1 |....2._.K.8&.#..|
00000080: DD138A6E 4E70FD23 EF691605 ACCCDB01 |...nNp.#.i......|
00000090: AD59A23A F0D9E3E6 F32575EF 5DD8EF15 |.Y.:.....%u.]...|
000000a0: 0DA37573 0DFC54CE 505983F0 86648058 |..us..T.PY...d.X|
000000b0: DDF4EB20 F6A3C1DD 1A1FC8BD CFDFA163 |...c|
000000c0: 989EE442 5A82B98A 2AE34A77 0FE41338 |...BZ...*.Jw...8|
000000d0: 5E7C14DC D5C56B9E 093CC234 B9AF879E |^|....k..<.4....|
000000e0: 19638EBB A13C4154 5AE06F68 62B62326 |.c...<ATZ.ohb.#&|
000000f0: 91F6C0E5 5F9D87A8 D50DAA59 9662B6DE |...._......Y.b..|
-hit enter for more-

2.4.5 Decrypting a file

In this section, we show how to decrypt an encrypted file. We use a EFS-enabled
file system named /efs. We take the following steps as shown in Example 2-11 on
page 78:

� The efsmgr -l command displays encryption information about file.

� Decrypt the file using the efsmgr -d command.

� The ls command shows the file is no longer encrypted.

� The getea command shows the file does not have any extended attributes,
and therefore no cryptographic metadata.

� The efsmgr -l command displays an error since it cannot get a security
attribute.
 Chapter 2. Encrypted File System 77

Example 2-11 Decrypting an encrypted file

efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 0
 Key fingerprint : 5131afb9:95232d08:ae5c499d:dd9941fe:90163a89
efsmgr -d file
ls -U file
-rw-r--r--- 1 root system 21 Apr 24 06:18 file
getea file
file does not have any extended attributes.
efsmgr -l file
Error getting EFS attributes: Cannot find the requested security
attribute.

Even if you are the owner of a file, you must have the private key to be able to
decrypt the file, as shown in Example 2-12. An attempt to decrypt the file without
having the access key fails.

Example 2-12 Private key must be loaded into the process in order to decrypt a file

id
uid=0(root) gid=0(system)
groups=2(bin),3(sys),7(security),8(cron),10(audit),11(lp)
ls -U file
-rw-r--r--e 1 root system 21 Apr 24 06:29 file
efskeymgr -V
There is no key loaded in the current process.
cat file
cat: 0652-050 Cannot open file.
efskeymgr -o ksh
root's EFS password:
efskeymgr -d file
ls -U file
-rw-r--r--- 1 root system 21 Apr 24 06:29 file
78 AIX V6 Advanced Security Features: Introduction and Configuration

2.4.6 Encrypting a file

In this section, we show how to encrypt an encrypted file. We use an
EFS-enabled file system named /efs. We take the following steps shown in
Example 2-13:

� The ls -U command shows the file is no longer encrypted.

� The efsmgr -e command encrypts the file.

� The efsmgr -l command displays encryption information about the file.

Example 2-13 Encrypting a file

ls -U file
-rw-r--r--- 1 root system 21 Apr 24 06:18 file
efsmgr -e file
efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 0
 Key fingerprint : 5131afb9:95232d08:ae5c499d:dd9941fe:90163a89
 Chapter 2. Encrypted File System 79

Even if you are the owner of a file, you must have the private key to be able to
encrypt the file, as shown in Example 2-14. An attempt to encrypt the file without
having the access key fails.

Example 2-14 Private key must be loaded into the process in order to encrypt a file

efskeymgr -V
There is no key loaded in the current process.
ls -U ffff
-rw-r--r--- 1 root system 0 Apr 25 00:09 ffff
efsmgr -e ffff
./.efs.9Xqi7a: Cannot find the requested security attribute.
efskeymgr -o ksh
root's EFS password:
#efsmgr -e ffff
efsmgr -l ffff
EFS File information:
 Algorithm: AES_256_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 0
 Key fingerprint : 5131afb9:95232d08:ae5c499d:dd9941fe:90163a89

2.4.7 Changing file encryption key parameters

In Example 2-15 on page 81, we show how to change the length of encryption
key and the AES mode for an encrypted file. We use a EFS-enabled file system
named /efs. The initial key length is 128 and the initial mode is CBC. A new key
having the length of 256 is generated and the file is encrypted in ECB mode.
80 AIX V6 Advanced Security Features: Introduction and Configuration

Example 2-15 Changing the algorithm of file encryption

efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 0
 Key fingerprint : 5363bd50:0ed7631d:08a93ee5:efdbde20:54f1028c
efsmgr -t file -c AES_256_ECB
efsmgr -l file
EFS File information:
 Algorithm: AES_256_ECB
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 0
 Key fingerprint : 5363bd50:0ed7631d:08a93ee5:efdbde20:54f1028c

2.4.8 File access permissions

It is very important to understand how traditional AIX file permissions interact
with file encryption in terms of controlling file access. These two mechanisms do
not overlap. They cooperate to offer a even more granular control for file access.

When trying to use an encrypted file, Discretionary Access Control (DAC) and
Access Control List (ACL) are checked first for the file access permission. Only if
the access is granted at these levels does the key verification proceed.

Example 2-16 on page 82 shows how traditional file access permissions are
checked first. We took the following steps in our scenario:

� Log in as user1. user1 has uid 210.

� The ls command shows that the file is owned by user1. There is no read or
write access for users in the group staff.

� The efsmgr -l command displays the signatures for the keys that can access
the file. One key belongs to a user with uid 210 (user1) and the second
belongs to a user with uid 211 (user2)

Attention: If you change the key parameters or just the key, the file is
assigned a different inode. See 2.4.3, “Implication of encryption on file size
and location of disk blocks” on page 73 for more details.
 Chapter 2. Encrypted File System 81

� user2 logs in and the efsmgr -V command proves he or she has the access
key.

� Although user2 has the key, the cat command fails because user2 cannot
read the file (he or she has no read access).

� user1 logs in and grants read access to all users from group staff using the
chmod command.

� The cat command completes successfully because user2 has now both read
access and the key.

� user2 tries to append some text to the file to the file using the echo command
and fails, as he or she does not have write access.

� user1 logs in and grants write access to all users from the group staff using
the chmod command.

� user2 can now successfully append text to the file because he or she now has
both write access and the key.

Example 2-16 File access permissions and file security do not overlap

$ id
uid=210(user1) gid=1(staff)
$ ls -U file
-rwx------e 1 user1 staff 38 Apr 26 07:44 file
$ efsmgr -l file
EFS File information:
 Algorithm: AES_256_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 210
 Key fingerprint : 3cf44e44:2544568e:9377638d:adce70ca:5fd1c54d
 Key #2:
 Algorithm : RSA_1024
 Who : uid 211
 Key fingerprint : a9e9087f:82a41b75:a258f918:8de0c180:38028ac2
$ id
uid=211(user2) gid=1(staff)
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 211
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
82 AIX V6 Advanced Security Features: Introduction and Configuration

 Fingerprint
a9e9087f:82a41b75:a258f918:8de0c180:38028ac2
$ cat /home/user1/file
cat: 0652-050 Cannot open /home/user1/file.
$ id
uid=210(user1) gid=1(staff)
$ chmod g+r file
$ id
uid=211(user2) gid=1(staff)
$ cat /home/user1/file
If you can see this message it is ok
$ echo "Another message in the file " >> /home/user1/file
The file access permissions do not allow the specified action.
ksh: /home/user1/file: 0403-005 Cannot create the specified file.
$ id
uid=210(user1) gid=1(staff)
$ chmod g+w file
$ id
uid=211(user2) gid=1(staff)

$ echo "Another message in the file " >> /home/user1/file
$ cat /home/user1/file
If you can see this message it is ok

Another message in the file
$

When you use the chmod command to grant group permissions for a file, if the
group public access key is already contained in the file cryptographic metadata, it
will be automatically added. When you remove all group file permissions, the
public group key is also removed from file cryptographic metadata, as shown in
Example 2-17 on page 84:

� There are no group permissions for the file.

� Only user2 has the access key for the file shown by the efsmgr -l command.

� Write access is granted to members of group1 using the chmod command.

� The efsmgr -l command shows that another copy of the file symmetric
encryption key is encrypted with the public key of group1 and added to file
cryptographic metadata.

� Write access has been removed from members of group1 using the chmod
command.
 Chapter 2. Encrypted File System 83

� The efsmgr -l command shows that the copy of the file symmetric encryption
key that has been encrypted with the public key of the group was removed
from file cryptographic metadata.

Example 2-17 Group access permissions and group access key

$ ls -U file
-rw-------e 1 user2 group1 0 May 15 15:32 file
$ efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 205
 Key fingerprint : f9d25800:dae0c93b:7695424c:6c617cd6:53b3a7aa
$ chmod g+w file
$ efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 205
 Key fingerprint : f9d25800:dae0c93b:7695424c:6c617cd6:53b3a7aa
 Key #2:
 Algorithm : RSA_1024
 Who : gid 203
 Key fingerprint : 4a73c007:bb0e6b35:abe672c6:cdaf2964:5dd69586
$ chmod g-w file
$ ls -U file
-rw-------e 1 user2 group1 0 May 15 15:32 file
$ efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 205
 Key fingerprint : f9d25800:dae0c93b:7695424c:6c617cd6:53b3a7aa
84 AIX V6 Advanced Security Features: Introduction and Configuration

2.4.9 Changing file ownership

In this section, we study the interaction between file ownership and cryptographic
file metadata. We use an EFS-enabled file system named /efs, two users named
user2 and user3 that have access to the /efs file system, and a test file named file
that is initially owned by user2. We run the scenario in root admin mode and do
the following steps that are also shown in Example 2-18:

� Log in as user2. user2 has uid 204.

� The ls command shows that the file is encrypted and is owned by user2.

� The efsmgr -l file displays the signature for the key that can access file. The
key belongs to the user with uid 204 (user2).

� The efskeymgr -V command shows that user2 has the access key and the
cat command can be successfully used to read the file.

� Root logs in and changes file ownership using the chown command.

� The ls command shows that the file ownership has been changed.

� The efsmgr -l command displays the signature for the new key that can
access the file. The key belongs to the user with uid 205. The key belonging
to user2 has been removed from the file cryptographic metadata.

� user3 logs in. He or she has uid 205.

� The efsmgr -V command proves that user3 has the access key for file.

� The cat command can be successfully used to read the file.

� user2 does not have access to the file anymore and an attempt to read the file
using the cat command fails.

Example 2-18 Changing the ownership of a file

$ id
uid=204(user2) gid=1(staff)
$ ls -U file
-rw-r--r--e 1 user2 staff 23 May 10 10:13 file
$ efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 204
 Key fingerprint : 366da13e:e40d8c52:0d0492ce:3b8797b6:6f5f9bf2
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Chapter 2. Encrypted File System 85

 Kind User key
 Id (uid / gid) 204
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
366da13e:e40d8c52:0d0492ce:3b8797b6:6f5f9bf2
$ cat file
data in encrypted file
id
uid=0(root) gid=0(system)
groups=2(bin),3(sys),7(security),8(cron),10(audit),11(
lp)
chown user3:staff file
ls -U file
-rw-r--r--e 1 user3 staff 23 May 10 10:13 file
efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 205
 Key fingerprint : 30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
$ id
uid=205(user3) gid=1(staff)
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 205
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
$ cat file
data in encrypted file
$ id
uid=204(user2) gid=1(staff)
$ cat file
cat: 0652-050 Cannot open file.
86 AIX V6 Advanced Security Features: Introduction and Configuration

If you also change the group when you change file ownership, the symmetric file
key encrypted with the new group public key is added to file cryptographic
metadata, as shown in Example 2-19.

Example 2-19 Changing file ownership

ls -U file
-rw-r--r--e 1 user1 group1 5 May 13 15:03 file
efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 210
 Key fingerprint : ea2d177c:7776d3a2:c840b44b:1c2b1ccf:c875d55d
 Key #2:
 Algorithm : RSA_1024
 Who : gid 204
 Key fingerprint : 53cd3824:7c9d508e:b825a253:f3209fcf:76f1766f
chown user2:group2 file
ls -U file
-rw-r--r--e 1 user2 group2 5 May 13 15:03 file
efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 211
 Key fingerprint : 52dccf67:22ab2bc9:4caa4ec8:7ceb8675:972c1404
 Key #2:
 Algorithm : RSA_1024
 Who : gid 205
 Key fingerprint : 61e6538d:343c8313:df807f20:ab02451e:734309ca

2.4.10 Granting a user or a group access to a file

In this section, we explain and show how users and group members can be
granted access to files.

When a user/group is granted access to a file, a copy of the symmetric key used
to encrypt the file is encrypted with the public key of the user/group and added to
the file cryptographic metadata.
 Chapter 2. Encrypted File System 87

We use the following scenario: an EFS-enabled file system named /efs, three
users named user1, user2, and user3 that have access to the /efs file system,
and a test file named file, which is owned by user2. user1 is member of group1.
We run our scenario in root admin mode and take the following steps shown in
Example 2-20:

� Log in as user2. user2 has uid 204.

� The ls command shows that the file is encrypted and is owned by user2. It is
very important to understand that in root admin mode, only root and the
owner of the file can grant other users access.

� The efsmgr -l command displays the signature for the keys that can access
the file. There is only one key that belongs to the user with uid 204 (user2).

� The efskeymgr -V command shows user2 has the access key that is required
for granting access to the file.

� user2 grants user3 access to the file using the efsmgr command.

� The efsmgr -l command displays the signature for the key that can access
the file. The new key that has been added belongs to the user with uid 205
(user3).

� user2 grants group1 access to the file using the efsmgr command.

� The efsmgr -l command displays the signature for the keys that can access
the file. The new key that has been added belongs to group with gid 202
(group1). File cryptographic metadata has been updated.

� user3 logs in. He or she has uid 203.

� The efsmgr -V command shows user3 has a user access key that matches
one of the keys that are granted access to the file.

� The cat command can be successfully used to read the file.

� user1 logs in. He or she has uid 205.

� the efsmgr -V command shows that user1 has a group (group1) access key
that matches one of the keys that are granted access to the file.

� The cat command can be successfully used to read the file.

� user1 maliciously tries to grant user5 access to the file using the efsmgr
command and fails. In other words, a user that has been granted access to
file by the file owner cannot further grant access for a third party.

Example 2-20 Granting a user and a group access to a file

$ id
uid=204(user2) gid=1(staff)
$ ls -U file
-rw-r--r--e 1 user2 staff 23 May 10 10:55 file
88 AIX V6 Advanced Security Features: Introduction and Configuration

$ efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 204
 Key fingerprint : 366da13e:e40d8c52:0d0492ce:3b8797b6:6f5f9bf2
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 204
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
366da13e:e40d8c52:0d0492ce:3b8797b6:6f5f9bf2
$ efsmgr -a file -u user3
$ efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 204
 Key fingerprint : 366da13e:e40d8c52:0d0492ce:3b8797b6:6f5f9bf2
 Key #2:
 Algorithm : RSA_1024
 Who : uid 205
 Key fingerprint : 30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
$ efsmgr -a file -g group1
$ efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 204
 Key fingerprint : 366da13e:e40d8c52:0d0492ce:3b8797b6:6f5f9bf2
 Key #2:
 Algorithm : RSA_1024
 Who : uid 205
 Key fingerprint : 30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
 Key #3:
 Chapter 2. Encrypted File System 89

 Algorithm : RSA_1024
 Who : gid 202
 Key fingerprint : 19f16934:20a54e8e:d59aea33:111a37bf:06261785
$ id
uid=205(user3) gid=1(staff)
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 205
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
$ cat file
data in encrypted file
$ id
uid=203(user1) gid=1(staff) groups=202(group1)
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 203
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
eb1aab3e:39c3191c:15cb36d6:57bb2a7c:b3c6d356
 Key #1:
 Kind Group key
 Id (uid / gid) 202
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
19f16934:20a54e8e:d59aea33:111a37bf:06261785
$ cat file
data in encrypted file
$ efsmgr -a file -u user5
file: The file access permissions do not allow the specified action.
Cannot open or lock the file.
90 AIX V6 Advanced Security Features: Introduction and Configuration

2.4.11 Revoking a user or group access to a file

In this section, we explain and show how user access to files can be revoked.

When a user’s/group’s access to a file is revoked, the existing copy of the
symmetric key used to encrypt the file that has been encrypted with the public
key of the user/group is removed from the file cryptographic metadata.

We use the following scenario: an EFS-enabled file system named /efs, three
users named user1, user2, and user3 that have access to the /efs file system,
and a test file named file, which is owned by user2. user1 is member of group1.
user1 and group1 have been granted access to the file. We run our scenario in
root admin mode and take the following steps shown in Example 2-21 on
page 92:

� Log in as user2. user2 has uid 204.

� The ls command shows that the file is encrypted and is owned by user2.

� The efsmgr -l command displays the signature for the keys that can access
the file. There are three keys that can access the file: one key belongs to the
user with uid 204 (user2), one key belongs to the user with uid 205 (user3),
and one key belongs to the group with gid 202 (group1).

� user3 logs in and tries to revoke group1 access to the file using the efsmgr
command and fails. In other words, a user that has access to the file granted
by the file owner cannot revoke access for a third party.

� The efskeymgr -V command shows that user2 has the access key that is
required for revoking access to the file.

� user2 revokes user3 access to the file using the efsmgr command.

� The efsmgr -l command displays the signature for the keys that can still
access file. File cryptographic metadata has been updated and the key that
belongs to user with uid 205 (user3) has been deleted.

� user3 logs in, but can no longer access the file and the cat command fails.

Attention: Trying to give access to a user/group that is defined on the system
but does not have a keystore created yet fails because their is no public key to
encrypt the file symmetric encryption key and add to file cryptographic
metadata. Any attempt displays an error message similar to the following:

$efsmgr -a file -u user5
Unable to get public key from user “user5” (skipped): (Keystore does
not exist)
user5: The system call does not exist on this system.
 Chapter 2. Encrypted File System 91

� user2 revokes group1 access to the file using the efsmgr command.

� The efsmgr -l command displays the signature for the keys that can still
access the file. File cryptographic metadata has been updated and the key
that belongs to user with gid 202 (group1) has been deleted.

� user1 can no longer access the file and the cat commands fails.

� user2 tries and fails to revoke his or her own access. In other words, you
cannot revoke your own access.

Example 2-21 Revoking user and group access to a file

$ id
uid=204(user2) gid=1(staff)
$ ls -U file
-rw-r--r--e 1 user2 staff 23 May 10 10:55 file
$ efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 204
 Key fingerprint : 366da13e:e40d8c52:0d0492ce:3b8797b6:6f5f9bf2
 Key #2:
 Algorithm : RSA_1024
 Who : uid 205
 Key fingerprint : 30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
 Key #3:
 Algorithm : RSA_1024
 Who : gid 202
 Key fingerprint : 19f16934:20a54e8e:d59aea33:111a37bf:06261785
$ id
uid=205(user3) gid=1(staff)
$ efsmgr -r file -g group1
file: The file access permissions do not allow the specified action.
Cannot open or lock the file.
$ id
uid=204(user2) gid=1(staff)
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 204
 Type Private key
 Algorithm RSA_1024
92 AIX V6 Advanced Security Features: Introduction and Configuration

 Validity Key is valid
 Fingerprint
366da13e:e40d8c52:0d0492ce:3b8797b6:6f5f9bf2
$ efsmgr -r file -u user3
$ efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 204
 Key fingerprint : 366da13e:e40d8c52:0d0492ce:3b8797b6:6f5f9bf2
Key #2:
 Algorithm : RSA_1024
 Who : gid 202
 Key fingerprint : 19f16934:20a54e8e:d59aea33:111a37bf:06261785
$ id
uid=205(user3) gid=1(staff)
$ cat file
cat: 0652-050 Cannot open file.
$ efsmgr -r file -g group1
$ efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 204
 Key fingerprint : 366da13e:e40d8c52:0d0492ce:3b8797b6:6f5f9bf2
$ id
uid=203(user1) gid=1(staff) groups=202(group1)
$ cat file
cat: 0652-050 Cannot open file.
$ efsmgr -r file -u user2
Error editing file EFS access list: A system call received a parameter
that is not valid.

Attention: Trying to revoke access for a user/group that is defined on the
system but does not have a keystore is successful because during this
operation, the file’s symmetric encryption that is encrypted with user/group
public key is removed from the file’s cryptographic metadata.
 Chapter 2. Encrypted File System 93

2.4.12 Granting/revoking access in root admin mode

The following is illustrated in Example 2-22:

� The ls command shows that the file is encrypted and is owned by user2.

� The efsmgr -l command displays the signature for the keys that can access
the file. There are three keys that can access the file: one key belongs to the
user with uid 204 (user2), one key belongs to the user with uid 205 (user3),
and one key belongs to a group with gid 202 (group1).

� user2 grants root access to the file.

� root logs in and root revokes access from user3, group1 and user2 to the file
despite the fact that the file is owned by user2. In other words, root still has
complete control to the file access when running in root admin mode.

� efsmgr -l displays the signature for the keys that can still access the file. The
file cryptographic metadata has been updated and the only key that can
access the file belongs to the user with uid 0 (root).

� Although user2 is the file owner, user2 can no longer access the file and the
cat command fails.

� user2 cannot grant user3 access to the file.

� user2 cannot revoke root access to the file.

Example 2-22 Granting/removing access in root admin mode

$ ls -U file
-rw-r--r--e 1 user2 staff 9 May 10 15:01 file
$ efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 204
 Key fingerprint : 366da13e:e40d8c52:0d0492ce:3b8797b6:6f5f9bf2
 Key #2:
 Algorithm : RSA_1024
 Who : uid 205
 Key fingerprint : 30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
 Key #3:
 Algorithm : RSA_1024
 Who : gid 202
 Key fingerprint : 19f16934:20a54e8e:d59aea33:111a37bf:06261785
$ efsmgr -a file -u root
id
94 AIX V6 Advanced Security Features: Introduction and Configuration

uid=0(root) gid=0(system)
groups=2(bin),3(sys),7(security),8(cron),10(audit),11(lp)
efsmgr -r file -u user3
efsmgr -r file -g group1
efsmgr -r file -u user2
efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 0
 Key fingerprint : 5363bd50:0ed7631d:08a93ee5:efdbde20:54f1028c
$ id
uid=204(user2) gid=1(staff)
$ cat file
cat: 0652-050 Cannot open file.
$ efsmgr -a file -u user3
file: Security authentication is denied.
Cannot open or lock the file.
$ efsmgr -r file -u root
file: Security authentication is denied.
Cannot open or lock the file.

2.5 Users management

In this section, we show how user management functions incorporate new
cryptographic features.

2.5.1 Defining users

Every time you create a new user, you must define his or her security related
information. User security attributes that have been added to /etc/security/user
are shown in Example 2-23.

Example 2-23 New user attributes added in user security configuration file

default:
 admin = false
 login = true
 su = true
 daemon = true
 Chapter 2. Encrypted File System 95

 rlogin = true
 sugroups = ALL
 admgroups =
 ttys = ALL
 auth1 = SYSTEM
 auth2 = NONE
 tpath = nosak
 umask = 022
 expires = 0
 SYSTEM = "compat"
 logintimes =
 pwdwarntime = 0
 account_locked = false
 loginretries = 0
 histexpire = 0
 histsize = 0
 minage = 0
 maxage = 0
 maxexpired = -1
 minalpha = 0
 minother = 0
 minlen = 0
 mindiff = 0
 maxrepeats = 8
 dictionlist =
 pwdchecks =
 default_roles =
 efs_keystore_access = file
 efs_adminks_access = file
 efs_initialks_mode = admin
 efs_allowksmodechangebyuser = yes
 efs_keystore_algo = RSA_1024
 efs_file_algo = AES_128_CBC

In order to support the new features that have been added for user security, six
fields have been also added to the SMIT screens used for user management, as
shown in Example 2-24 on page 97.
96 AIX V6 Advanced Security Features: Introduction and Configuration

Example 2-24 New fields added in SMIT panel for user creation

Add a User

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[MORE...52] [Entry Fields]
 Hard NPROC per user []
#
 File creation UMASK [022]
 AUDIT classes []
+
 TRUSTED PATH? nosak
+
 PRIMARY authentication method [SYSTEM]
 SECONDARY authentication method [NONE]
 Projects []
+
 Keystore Access [file]
+
 Adminkeystore Access [file]
+
 Initial Keystore Mode [admin]
+
 Allow user to change Keystore Mode? [yes]
+
 Keystore Encryption Algorithm [RSA_1024]
+
 File Encryption Algorithm [AES_128_CBC]
+
[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
Esc+5=Reset Esc+6=Command Esc+7=Edit Esc+8=Image
Esc+9=Shell Esc+0=Exit Enter=Do

The meaning of the newly-added fields in Example 2-24 are:

Keystore Access The value of this field must be file or none. File means
local /var/efs/user/*. None means no keystore.

Adminkeystore Access
The field describes the location of the admin keystore.
The value of this field must be file.
 Chapter 2. Encrypted File System 97

Initial Keystore ModeThis field describes the initial mode of the user keystore.
The value of this field can be either admin or guard,
corresponding to either root admin mode or root guard
mode.

Allow user to change Keystore Mode
This field describes whether the user can change the
mode of his or her keystore. The value of this field can be
either yes or no.

Keystore Encryption Algorithm
This field describes the algorithm and the length of the
keys used for user private and public keys. If you change
the value of this field, the corresponding attribute from the
user stanza from /etc/security/user is changed
accordingly. The value can be one of the following:

RSA_1024

RSA_2048

RSA_4096

File Encryption Algorithm
This field describes the algorithm, the length of the key,
and the mode of the algorithm. If you change the value of
this field, the corresponding attribute from the user stanza
from /etc/security/user is changed accordingly The value
of this field can be one of the following:

AES_128_CBC

AES_128_ECB

AES_192_CBC

AES_192_ECB

AES_256_CBC

AES_256_ECB

When the user is defined by root, the security attributes from user stanza in
/etc/security/user are initialized using the default values. At this time, there is no
keystore for the user. Only after a password is assigned to the user is his or her
keystore created.
98 AIX V6 Advanced Security Features: Introduction and Configuration

2.5.2 User keystore

Keystores are containers for public and private data that is used for file
encryption/ decryption, for controlling access to files, and for user and group
management. For each user a keystore is automatically created when the user is
assigned a password. A public/ private key pair is automatically generated and
stored in the keystore. Parameters used to generate the public and private key,
such as key length, are read from /etc/security/user.

The user keystore may contain, apart from the owner’s public/private key, other
access keys. Keys are kept in PKCS12 format. Keys have no limit of expiration.

The user keystore is protected by an access key. The access key is derived
according to PKCS 5 specifications and is used to encrypt the private parts of the
keystore. If the system has been EFS-enabled, keystores are automatically
created for all already existing users when they log in for the first time.

If you migrate from a previous version to AIX 6, the keystores are automatically
created when the users log in for the first time.

If a user does not need access to an encrypted file system, and you do not want
to create a user keystore, you have to modify the corresponding user stanza in
the /etc/security/user file.

Tip: In large environments with a large number of users, it may be difficult for
an administrator to manually define a password for each and every user. If you
want to define a large number of users, assign them a password and create
corresponding user keystores (you can create a script that uses the chpasswd
command). This command will set a temporary password for the user and the
user must change his or her password the first time he or she logs in.

Important: When creating users in root guard mode, a security administrator
must understand that roots needs still needs to be considered trustworthy at
the time of keystore creation. Also, only root can specify the user keystore to
be root admin more or root guard mode and if user is allowed to change the
keystore mode.
 Chapter 2. Encrypted File System 99

2.5.3 Keystore content

Keystores contain both public and private information.

Public information kept in the keystore includes:

� User name.

� uid.

� Date of the last password modification.

� Keystore administrative mode: Can be either root guard or root admin. If root
guard, it prevents root for changing root guard mode to root admin.

� Self cookie: Keystore access key encrypted by the user public key.

� The user public key is signed with a x509 self-signed certificate.

� If keystore admin mode is root admin, an admin cookie exists.

Private information kept in the keystore includes:

� A user private key. It also contains user deprecated keys.

� Group access keys for all groups the user belongs to. When the user keystore
is opened, group access keys provide access to group keystores and group
keys are loaded in the kernel.

� If the keystore belongs to root, the access key for efs_admin keystore exists.

The information in the keystore is organized in bags that can be either private or
public. Public bags contain public information. Access to public bags has no
restrictions.However, an access key is required to access private bags. The
access is facilitated by using CliC objects.

The most important components of a keystore are the keys. Examples of private
keys from user keystore are shown in Example 2-25 on page 101 and the
meaning of their parameters is as follows:

Kind This field displays if the key belongs to a user, a group or
an administrator.

Id This field displays the ID of the user or group that owns
the key.

Type This fields shows if the key is public or private.

Algorithm This field shows that RSA algorithm is being used for the
key and the key length in bits.

Validity This filed shows if a key is still valid or if was deprecated.

Fingerprint This field displays a number which, as the name implies,
uniquely identifies any key.
100 AIX V6 Advanced Security Features: Introduction and Configuration

Example 2-25 Private key examples from user keystore

Key #0:
 Kind User key
 Id (uid / gid) 0
 Type Private key
 Algorithm RSA_1024
 Validity Key is deprecated
 Fingerprint
569ae24b:c2da3415:6e7e651e:b7d2f29f:1dda5ab9
 Key #1:
 Kind User key
 Id (uid / gid) 0
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
f72bfdaa:5bbd8f93:3c021f29:177eae6a:e7e884b7
 Key #2:
 Kind Group key
 Id (uid / gid) 7
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
648b67f3:f1f89672:14dcc664:231d0fe2:026a6314
 Key #3:
 Kind Group key
 Id (uid / gid) 203
 Type Private key
 Algorithm RSA_1024
 Validity Key is deprecated
 Fingerprint
4a73c007:bb0e6b35:abe672c6:cdaf2964:5dd69586
Key #4:
 Kind Admin key
 Id (uid / gid) 0
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
b8515c35:0829f5c9:f74fc031:3fac0195:8ab2ad99
 Chapter 2. Encrypted File System 101

Keystore content can be displayed using the efskeymgr -v command. When
running in root guard mode, all operations pending on the keystore are displayed
and you are prompted for action. The output will be similar to the one displayed in
Example 2-26 on page 103, as described below:

� There are four pending operations on the user3 keystore. The keystore owner
has been granted access to group1 keystore and user2 keystore. The
keystore owner has also had access to user1 keystore revoked and is
informed that the private key must be regenerated. user2 is prompted to
accept the cookies.

� The keystore owner displays the uid of the owner. This keystore is owned by
the user3 whose uid is 209.

� The keystore mode displays the keystore mode, either admin or guard. user3
keystore mode is root guard.

� The date the password was last changed.

� The algorithm, fingerprint, and validity of the private key of the keystore
owner.

� Access keys that have been previously sent to the user3 keystore and already
accepted. user3 has already accepted access cookies from user1 and
group2.

� Access keys that have been previously sent to the user3 keystore in the form
ok access cookies and not yet accepted. user3 has not accepted yet access
cookies from user2 and group1. user3 has also received a regeneration
cookie for private key regeneration and a remove cookie for revoking access
to user1 keystore.
102 AIX V6 Advanced Security Features: Introduction and Configuration

Example 2-26 Sample content of user keystore

$ efskeymgr -v
user3's EFS password:

The following operation(s) is(are) pending on your EFS keystore:
 You are granted access to group/group1 keystore.
Do you want to process this action now (y), later (n: default), or
never (d)? [y / n / d]n
 You are granted access to user/user2 keystore.
Do you want to process this action now (y), later (n: default), or
never (d)? [y / n / d]n
 You are removed access to user/user1 keystore.
Do you want to process this action now (y), later (n: default), or
never (d)? [y / n / d]n
 Your private key must be regenerated.
Do you want to process this action now (y), later (n: default), or
never (d)? [y / n / d]n
 Keystore content:
 Keystore owner : uid 209
 Keystore mode : guard: not managed by EFS
administrator
 Password changed last on .. : 05/15/07 at 18:09:58
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 6c921f21:b10c9740:29acee26:4b5dd72b:23ea0849
 Validity : This key is valid.
 Access key to keystore user/user1
 Access key to keystore group/group2
Cookie:
 Type : Regeneration (renew private key)
 Keystore .. : -
Cookie:
 Type : Remove (removes access to)
 Keystore .. : user/user1
Cookie:
 Type : Access (grants access to)
 Keystore .. : user/user2
Cookie:
 Type : Access (grants access to)
 Keystore .. : group/group1
 Chapter 2. Encrypted File System 103

2.5.4 Keystore operations

Operations that modify a keystore include:

� Changing algorithm

� Changing key length

� Generating a new key

� Deleting a deprecated key

� Adding/removing a key to/from keystore

� Granting/revoking access to keystore

� Adding/removing the user to/from a group

At any time you can use the efskeymgr -m command to list the pending
operations for the keystore. Example 2-27 shows four cookies’ keys that will
prompt for confirmation the first time the user open the keystore as follows:

� The first cookie has the type Regeneration and prompts the user for private
key regeneration.

� The second cookie has the type Remove and prompts the user to remove the
access key for the user1 keystore.

� The third cookie has the type Access the prompts the user to accept an
access key for the user2 keystore.

� The fourth cookie has the type Access and prompts the user to accept an
access key for group1 keystore.

Example 2-27 Pending operations on the keystore

$ efskeymgr -m
Cookie:
 Type : Regeneration (renew private key)
 Keystore .. : -
Cookie:
 Type : Remove (removes access to)
 Keystore .. : user/user1
Cookie:
 Type : Access (grants access to)
 Keystore .. : user/user2
Cookie:
 Type : Access (grants access to)
 Keystore .. : group/group1
104 AIX V6 Advanced Security Features: Introduction and Configuration

2.5.5 Keystore operations

User keystores permit two modes of operation: root admin mode and root guard
mode. Depending on the mode of operation, some operations are allowed or
prohibited.

Root admin mode
Root admin mode is the default mode of operation. In this mode, there are some
operations that are permitted, such as:

� Root can get access to the user keystore.

� Root can get access to the group keystore.

� Root can reset the user keystore password.

� Root can reset the group access key.

A consequence of root being able to get access to user keystore is that root can
access user files.

Root guard mode
Root guard mode is the default mode of operation. In this mode, there are some
operations that are not permitted, such as:

� Root cannot get access to the user keystore.

� Root cannot get access to the group keystore.

� Root cannot reset the user keystore password.

� Root cannot reset the group access key.

This mode of operation offers protection against a malicious root. It means that if
the system is hacked and the hacker somehow manages to get root privilege, the
hacker cannot have access to user or group keystores and therefore cannot have
access to user files.

On the other hand, if the user loses his or her password root can cannot reset it.
It means that no one can have access to user or group keystore and the
information from user files can no longer be decrypted.
 Chapter 2. Encrypted File System 105

2.5.6 Changing the user keystore password

The keystore password is distinct from the login password.

You can have a separate password for the keystore. However, if the login
password is identical to the keystore password, the user keystore is automatically
opened and data from the keystore is automatically pushed into the kernel. If the
passwords are not identical, the user must explicitly open the keystore and load
the access keys in the kernel.

A user that does not have a keystore is still allowed to log in using the login
password. The user will operate successfully if he or she does not access any
data that is stored in an encrypted file system.

It is very important to understand that running the password command changes
only login password and not the keystore password.

Any user can change his or her keystore password using the efskeymgr -n
command. When running in root admin mode, both root and the user can change
the user keystore password. Root changing a user keystore password is shown
in Example 2-28.

Example 2-28 Changing a user password when running in root admin mode

efskeymgr -k user/user3 -n
Enter new password for the keystore:
Enter the same password again:

2.5.7 Granting access to the user keystore

When running in root admin mode, there may be circumstances in which root
decides to give a user access to the keystore of another user. A regular user
cannot give access at his or her own keystore to another user.

In Example 2-29 on page 108, we show how the content of keystore changes
when access to another user keystore is granted. We also discuss the effects of
such operations in a more complex practical scenario. In Example 2-29 on
page 108, the following occurs:

� Run the efsmgr -v command to display the content of the user3 keystore. He
or she has access only at his or her own keystore.

� Root grants user3 access to the keystore of user1.

� Run the efsmgr -v command to display the content of the user3 keystore. The
access key to the user1 keystore has been added.
106 AIX V6 Advanced Security Features: Introduction and Configuration

� The lsuser command shows that user1 is also a member of group1 and
group2.

� The content of the user1 keystore is loaded in the shell process using the
efskeymgr -o command.

� The efskeymgr -V command shows the access key loaded in the current
shell:

– Access key for the user3 keystore

– Access key for the user1 keystore

– Access key for the keystore of the group with gid 202

– Access key for the keystore of the group with gid 203

user3 has access at his or her own key and all keys that are accessible from
the user1 keystore.

� Root grants user5 access to the keystore of user3. If running in user mode,
root would not be allowed to grant access to user keystore and would receive
an error message similar to that displayed below:

efskeymgr -k user/user1 -s user/user3
Encryption framework returned an error: (libefs bad parameter)
Unable to get the key to be sent

� user5 logs in and run the efsmgr -v command to display the content of his or
her keystore. The access key to user3 keystore has been added.

� user5 loads the content of his or her keystore in the current shell. The
efskeymgr -V command shows the access key loaded in current shell:

– Access key for the user3 keystore

– Access key for the user1 keystore

– Access key for the user5 keystore

– Access key for the keystore of the group with gid 202

– Access key for the keystore of the group with gid 203

user5 has access at his or her own key and all keys that are accessible from
user3 keystore, which in turn includes the all keys that are accessible from
user1 keystore.
 Chapter 2. Encrypted File System 107

Example 2-29 Granting access to user keystore

$ id
uid=205(user3) gid=1(staff)
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 205
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/10/07 at 09:41:20
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
 Validity : This key is valid.
efskeymgr -k user/user1 -s user/user3
root's EFS password:
$ id
uid=205(user3) gid=1(staff)
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 205
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/10/07 at 09:41:20
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
 Validity : This key is valid.
 Access key to keystore user/user1
$ lsuser user1
user1 id=203 pgrp=staff groups=staff,group1,group2 home=/home/user1
shell=/usr/bin/ksh
$ efskeymgr -o ksh
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 203
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
eb1aab3e:39c3191c:15cb36d6:57bb2a7c:b3c6d356
 Key #1:
 Kind User key
 Id (uid / gid) 205
 Type Private key
108 AIX V6 Advanced Security Features: Introduction and Configuration

 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
 Key #2:
 Kind Group key
 Id (uid / gid) 202
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
19f16934:20a54e8e:d59aea33:111a37bf:06261785
 Key #3:
 Kind Group key
 Id (uid / gid) 203
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
bdf38da7:57cd4486:6794c1bf:5329e0c4:4d042fcc
efskeymgr -k user/user3 -s user/user5
root's EFS password:
$ id
uid=207(user5) gid=1(staff)
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 207
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/10/07 at 11:41:51
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 6a9423b3:f59f0497:2f0f8ba0:9805a358:e18b16cd
 Validity : This key is valid.
 Access key to keystore user/user3
$ efskeymgr -o ksh
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 203
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
eb1aab3e:39c3191c:15cb36d6:57bb2a7c:b3c6d356
 Chapter 2. Encrypted File System 109

 Key #1:
 Kind User key
 Id (uid / gid) 205
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
 Key #2:
 Kind User key
 Id (uid / gid) 207
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
6a9423b3:f59f0497:2f0f8ba0:9805a358:e18b16cd
 Key #3:
 Kind Group key
 Id (uid / gid) 202
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
19f16934:20a54e8e:d59aea33:111a37bf:06261785
 Key #4:
 Kind Group key
 Id (uid / gid) 203
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
bdf38da7:57cd4486:6794c1bf:5329e0c4:4d042fcc
110 AIX V6 Advanced Security Features: Introduction and Configuration

2.5.8 Revoking access to user keystore

After root has granted access to a user keystore, he or she may decide to revoke
this access. The scenario presented in this section should be read only after
reading and understanding the scenario presented in 2.5.7, “Granting access to
the user keystore” on page 106. We take the following steps shown in
Example 2-30:

� Log in as user5 and run the efskeymgr -V command to show the access keys
he or she has access to:

– Access key for the user3 keystore

– Access key for the user1 keystore

– Access key for the user5 keystore

– Access key for the keystore of the group with gid 202

– Access key for the keystore of the group with gid 203

� Log in as user3 and run the efskeymgr -V command to show the access keys
he or she has access to:

– Access key for the user3 keystore

– Access key for the user1 keystore

– Access key for the keystore of the group with gid 202

– Access key for the keystore of the group with gid 203

� Root revokes user3’s access to the keystore of user1 using the efskeymgr
command.

� user3 runs the efsmgr -v command to display the content of the user3
keystore. He or she has now access only at his or her own keystore.

� user5 reloads in the current shell the content of his or her keystore. He or she
has now access only to his or her own key and the access key of the user3
keystore. The access keys from the user1 keystore are no longer available.

Example 2-30 Revoking access to user keystore

$ id
uid=207(user5) gid=1(staff)
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 203
 Type Private key
 Algorithm RSA_1024
 Chapter 2. Encrypted File System 111

 Validity Key is valid
 Fingerprint
eb1aab3e:39c3191c:15cb36d6:57bb2a7c:b3c6d356
 Key #1:
 Kind User key
 Id (uid / gid) 205
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
 Key #2:
 Kind User key
 Id (uid / gid) 207
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
6a9423b3:f59f0497:2f0f8ba0:9805a358:e18b16cd
 Key #3:
 Kind Group key
 Id (uid / gid) 202
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
19f16934:20a54e8e:d59aea33:111a37bf:06261785
 Key #4:
 Kind Group key
 Id (uid / gid) 203
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
bdf38da7:57cd4486:6794c1bf:5329e0c4:4d042fcc
efskeymgr -k user/user3 -S user/user1
root's EFS password:
$ id
uid=205(user3) gid=1(staff)
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 205
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/10/07 at 09:41:20
 Private key:
112 AIX V6 Advanced Security Features: Introduction and Configuration

 Algorithm : RSA_1024
 Fingerprint : 30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
 Validity : This key is valid.
$ id
uid=207(user5) gid=1(staff)
$ efskeymgr -o ksh
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 205
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
 Key #1:
 Kind User key
 Id (uid / gid) 207
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
6a9423b3:f59f0497:2f0f8ba0:9805a358:e18b16cd

2.5.9 Accepting access keys

When running in root guard mode, you may be prompted to accept access keys
that might have been granted to you. The access keys are sent to the user
keystore in the form of cookies. You can chose to accept the access key, to
decline the accept the access key, or to make a decision later. If you choose to
make a decision later, you are prompted for decision every time you open your
keystore. The content of the keystore is updated according to your actions. A
typical scenario in which an access cookie ia being sent is shown in
Example 2-31 on page 114:

� user1 is prompted to accept access key when trying to open his or her own
keystore.

� user1 accepts the access key for group1, refuses the access key for group2,
and postpones the decision regarding the access key for the user3 keystore.

� The new content of the keystore is displayed, including the access cookies.
 Chapter 2. Encrypted File System 113

Example 2-31 User is prompted to accept access keys

$ id
uid=214(user1) gid=1(staff) groups=206(group1),207(group2)
$ efskeymgr -v
user1's EFS password:

The following operation(s) is(are) pending on your EFS keystore:
 You are granted access to group/group1 keystore.
Do you want to process this action now (y), later (n: default), or
never (d)? [y / n / d]y
 You are granted access to group/group2 keystore.
Do you want to process this action now (y), later (n: default), or
never (d)? [y / n / d]n
 You are granted access to user/user3 keystore.
Do you want to process this action now (y), later (n: default), or
never (d)? [y / n / d]n
 Keystore content:
 Keystore owner : uid 214
 Keystore mode : guard: not managed by EFS
administrator
 Password changed last on .. : 05/13/07 at 15:28:06
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 55a4e75e:fe056880:8d305005:b2f817fa:3b9f2264
 Validity : This key is valid.
 Access key to keystore group/group1
Cookie:
 Type : Access (grants access to)
 Keystore .. : user/user3
Cookie:
 Type : Access (grants access to)
 Keystore .. : group/group2
114 AIX V6 Advanced Security Features: Introduction and Configuration

2.5.10 Granting security credentials to a process

In Example 2-32, we offer an example of granting security credentials to a
specific process, described as follows:

� Log in to the system as root. There are no keys loaded in the current process.

� Run the efskeymgr -o ksh command to create a new shell and load the keys
into this process.

� Verify that the keys are indeed loaded in the new shell that has just ben
created.

Example 2-32 Loading keys for a new shell

efskeymgr -V
There is no key loaded in the current process.
man efskeymgr
efskeymgr -o ksh
root's EFS password:
efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 0
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
59da6d2f:86c1295d:e6752cf5:73bde901:679ef770
 Key #1:
 Kind Group key
 Id (uid / gid) 7
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
973bc437:3e06bf57:a17b1fec:eb815727:950894e3
 Key #2:
 Kind Admin key
 Id (uid / gid) 0
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
32c9aff2:552a5a87:7e5bd819:e05d938e:21a077bf
 Chapter 2. Encrypted File System 115

2.5.11 Exporting the content of keystore

In Example 2-33, we offer an example of exporting the keystore in PKCS #12
format and importing it in OpenSSL as follows:

� Export the keystore into a file using the efskeymgr command. You will be
prompted twice for a password that will protect this file.

� Run OpenSSL if it is installed on your system.

� Use the pkcs12 -in /tmp/keyfile -info -nodes subcommand to display
the information contained in the keystore and avoid encryption of the private
key.

Example 2-33 Exporting keystore in PKCS #12 format and importing it using
OpenSSL

efskeymgr -e /tmp/keyfile
Enter password for the new PKCS#12-protected file:
Enter the same password again:
/usr/linux/bin/openssl
OpenSSL> pkcs12 -in /tmp/keyfile -info -nodes
Enter Import Password:
MAC Iteration 2000
MAC verified OK
PKCS7 Data
Certificate bag
Bag Attributes: <No Attributes>
subject=/CN=CLiC v4.0 0128D26E
issuer=/CN=CLiC v4.0 0128D26E
-----BEGIN CERTIFICATE-----
MIIBqjCCARMCBAEo0m4wCwYJKoZIhvcNAQEBMB0xGzAZBgNVBAMTEkNMaUMgdjQu
MCAwMTI4RDI2RTAeFw0wNjA1MDgwMDAwMDBaFw0xNjA1MDgwMDAwMDBaMB0xGzAZ
BgNVBAMTEkNMaUMgdjQuMCAwMTI4RDI2RTCBnzANBgkqhkiG9w0BAQEFAAOBjQAw
gYkCgYEAqx36ny+2jrpjE5SMlz+vOtldbub6928nEOvf5IdLz9qn+V8/OdwTSokr
zN9EnRHeflzuFMGy2Zrztd3yOlP2QJsfL3sQUT3l9Flf4NmTTTjg/ToWroduYm6O
cOoDPvxffNh4/YSN/J8JFXKGFi8U5zttObpMAQsNjiLXJbP3IfkCAwEAATANBgkq
hkiG9w0BAQUFAAOBgQB5soW0IQbccHj5Z8im5OZmqV6GG0hrtLAD9Qo/Wdu9hzVI
uzQ7eJ3a7yVkKWNaENT8nb522fNzvEef0dm+pkzOJr0EHCQQcksvEqjv8VHFt8oo
mTQXX5ZjyWcVG3p67LbyKHsiRWhVFp/siFAnRD9dXb6uZFNKzT3sD211pODh1Q==
-----END CERTIFICATE-----
Shrouded Keybag: pbeWithSHA1And3-KeyTripleDES-CBC, Iteration 2000
Bag Attributes: <No Attributes>
Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQCrHfqfL7aOumMTlIyXP6862V1u5vr3bycQ69/kh0vP2qf5Xz85
3BNKiSvM30SdEd5+XO4UwbLZmvO13fI6U/ZAmx8vexBRPeX0WV/g2ZNNOOD9Ohau
116 AIX V6 Advanced Security Features: Introduction and Configuration

h25ibo5w6gM+/F982Hj9hI38nwkVcoYWLxTnO205ukwBCw2OItcls/ch+QIDAQAB
AoGABxuKLEWHlYXGwBVKAlhKAi2YKhdHB7MNZ4Wx+Y89xhGaK4taGCBSNCTeywuK
Zo8g85UO6zwhHn/HWApdhDBg8zxPLlTNx4HcbAVnE9pV+o2nuLo8nRtWKHp16Rmc
dKw8JQZSE8BdLPRv24DXxxoJ+pj1y6pXzlwWFYoeSURbqNkCQQDWVR9dAoLrmgNB
ClLz/sSi7dTrwArgcdXkobl5UGmGh86frvpONGXjSEJhPtihZtvmVOLb4wC3nOXf
oat4xOY9AkEAzGId6Wkzr7QS53xCm6msFwdrRLLE0pz0zinCoRgPT11mjIJIUtYK
QRuY1hFP6LSlUUPaiADUcw8zlV8iLZEibQJACfcFMUbXnWqYsiJvvuZecBDMsHVK
TCsevbWDMQ+7CEUyJxx0iMRI5GtMosbQPZjRqoDR11VTiDXkPiR/G2tUJQJBAMhY
PZ35w/KuAAHuKpTQQ6LnYN0cqBcUSFx3TxP+s7NGiSme5CpfKfochTsCCWTA/3Sj
oOnEdny7IAOCF8y3AhkCQES0l8uLBDtGAng4SIqU/U0uogJtwaRdp+CnOG8So2WP
y9o6Hn7Q+mGOynsOiBV1mlTwVO6oAFZcU6BSQ4Ujx6c=
-----END RSA PRIVATE KEY-----
OpenSSL> quit

2.5.12 User private keys

User keys may be deprecated or deleted when they are no longer considered
secure. We show how user private keys can be exported from the user
keystore.We offer an in-depth view of keystore content.

In Example 2-34 on page 118, we offer an example of how private keys are
created, deprecated, and deleted as follows:

� Run the efskeymgr -v command to display the current keystore content. It
contains one 1024-bit RSA key.

� Export the current content of the keystore into keyfile1 using the efskeymgr -e
keyfile1 command.

� Verify the content of the keyfile1 using the OpenSSL subcommand pkcs12
-in keyfile1 -info -nodes. The 1024-bit RSA private key is displayed.

� Change the keystore private key to a 2048-bit RSA key using the efskeymgr
-R RSA_2048 command.

� Run the efskeymgr -v command to display the current keystore content. The
new 2048-bit key has been activated and the 1024-bit key was deprecated.

� Export the current content of the keystore into keyfile2 using the efskeymgr -e
keyfile2 command.

� Verify the content of the keyfile2 using the OpenSSL subcommand pkcs12
-in keyfile2 -info -nodes. Both 1024-bit and 2048-bit RSA private keys are
displayed.

� Change the keystore private key to a 4096-bit RSA key using the efskeymgr
-R RSA_4096 command.
 Chapter 2. Encrypted File System 117

� Run the efskeymgr -v command to display the current keystore content. The
new 4096-bit key has been activated and the 2048-bit key was deprecated.

� Export the current content of the keystore into keyfile3 using the efskeymgr -e
keyfile3 command.

� Verify the content of the keyfile3 using the OpenSSL command pkcs12 -in
keyfile3 -info -nodes. All three keys are displayed. Both deprecated keys
are displayed.

� Delete the 2048-bit key using the efskeymgr -D
3661bf34:530116eb:1861a3eb:0cf71b91:91ca25e9 command.

� Run the efskeymgr -v command to display the current keystore content. The
new 2048-bit key has been deleted.

� Export the current content of the keystore into keyfile4 using the efskeymgr -e
keyfile4 command.

� Verify the content of the keyfile4 using the OpenSSL subcommand pkcs12
-in keyfile4 -info -nodes. The new 2048-bit key has been deleted.

Example 2-34 Creating, deprecating, and deleting private RSA keys

efskeymgr -v
 Keystore content:
 Keystore owner : uid 0
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 04/18/07 at 04:08:43
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 47dab395:99d8aa70:82659beb:700a4a6e:e232c8e4
 Validity : This key is valid.
 Access key to keystore group/security
 Access key to keystore admin/

efskeymgr -e keyfile1
Enter password for the new PKCS#12-protected file:
Enter the same password again:

OpenSSL> pkcs12 -in keyfile1 -info -nodes
Enter Import Password:
MAC Iteration 2000
MAC verified OK
PKCS7 Data
Certificate bag
Bag Attributes: <No Attributes>
subject=/CN=CLiC v4.0 4613EBC8
issuer=/CN=CLiC v4.0 4613EBC8
118 AIX V6 Advanced Security Features: Introduction and Configuration

-----BEGIN CERTIFICATE-----
MIIBqjCCARMCBEYT68gwCwYJKoZIhvcNAQEBMB0xGzAZBgNVBAMTEkNMaUMgdjQu
MCA0NjEzRUJDODAeFw0wNjA1MDgwMDAwMDBaFw0xNjA1MDgwMDAwMDBaMB0xGzAZ
BgNVBAMTEkNMaUMgdjQuMCA0NjEzRUJDODCBnzANBgkqhkiG9w0BAQEFAAOBjQAw
gYkCgYEAvMey0sd1hh8YdoExhATlSR9KQP61zOQGQgp2c5aU97N30rxCqpwAcm6L
dE4yzOl9WsQWRg8yJqkzE3J9G2547aq2vNxRuo/zgM5YZnK1JAnRZyZO0NGDooVf
sb782Q9jL9n8sudFzEpIQ9jb68+kn7maXCGMHFImEnZjv3YGt0sCAwEAATANBgkq
hkiG9w0BAQUFAAOBgQAhFp2ujXe9la4/9c25loqONgBot8kiJoH70BuXRC8UexoP
w0Ip3Q17m8nyW3ymGcyfXtOUu2eC5NLWpr3W6orhr/ffwEVYJ6f7r5b4ADwBeHUL
3xYcQ4wnn/cO8E9NugmBM9ix5IyxPgZsy4VeN0sKY5YvtkNsWFX3vCqOUMA+Ig==
-----END CERTIFICATE-----
Shrouded Keybag: pbeWithSHA1And3-KeyTripleDES-CBC, Iteration 2000
Bag Attributes: <No Attributes>
Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQC8x7LSx3WGHxh2gTGEBOVJH0pA/rXM5AZCCnZzlpT3s3fSvEKq
nABybot0TjLM6X1axBZGDzImqTMTcn0bbnjtqra83FG6j/OAzlhmcrUkCdFnJk7Q
0YOihV+xvvzZD2Mv2fyy50XMSkhD2Nvrz6SfuZpcIYwcUiYSdmO/dga3SwIDAQAB
AoGAHJ7KtyxYiSQiEXv7wE/9B616lJ5T0gOItAQhujDMVpNlvqlzvVRCYxbsWzks
eCbhWNydTd4plHVBfO4gwS2/SnHGwnQwO6LcVgkqONSDqbf2yTJGBUDUwmZOq0xp
HPrFsl99VzrJM+/pgEQcqEbdwc7l82NgCBcuPYtNpNSKL9ECQQD6X5os5wTbWdzo
ukQlWTmKWpdn3K+muDwIwy2oGesSY2G24i5IZcrrsX5gzUlSI4Z22zG9m1JnaItC
/b44Tl9bAkEAwQW/8OG4Vd216ULbLNoasoA1GVGfIiVJCzqzEO2nt19bQwwNwwrt
zmzJVczCi8cEWSFQxbe/3geOAYiNfoT60QJBAO+1/IylGndQ0DpZq8j+ZiLanT8p
gVrj5UaWZ+4b8n6GfBV2880I+IE0TMUthteHf8PoFPVt8jVjWIHpIugR0SUCQBUp
XTa6eGwph3UQWFkdfEnPloK1GR40OkLZ56HWfEm1UZsTKjsU6qdz88rNTRLn+ckP
xvw2PfnImEAAyYpyZ9ECQQDSx4/ZF2/Uk/l0Be5SOBkYKKDnVrioXBjLqn161ERa
8ABuiz3EeI5knBx/sd8FVhNF+Izka5qcA4rd7XYvar1s
-----END RSA PRIVATE KEY-----

efskeymgr -R RSA_2048

efskeymgr -v
 Keystore content:
 Keystore owner : uid 0
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 04/18/07 at 04:08:43
 Private key:
 Algorithm : RSA_2048
 Fingerprint : 3661bf34:530116eb:1861a3eb:0cf71b91:91ca25e9
 Validity : This key is valid.
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 47dab395:99d8aa70:82659beb:700a4a6e:e232c8e4
 Validity : This key was deprecated on 04/20/07 at 07:35:45.
 Chapter 2. Encrypted File System 119

 Access key to keystore group/security
 Access key to keystore admin/

efskeymgr -e keyfile2
Enter password for the new PKCS#12-protected file:
Enter the same password again:

OpenSSL> pkcs12 -in keyfile2 -info -nodes
Enter Import Password:
MAC Iteration 2000
MAC verified OK
PKCS7 Data
Certificate bag
Bag Attributes: <No Attributes>
subject=/CN=CLiC v4.0 7F14828C
issuer=/CN=CLiC v4.0 7F14828C
-----BEGIN CERTIFICATE-----
MIICrzCCAZcCBH8UgowwCwYJKoZIhvcNAQEBMB0xGzAZBgNVBAMTEkNMaUMgdjQu
MCA3RjE0ODI4QzAeFw0wNjA1MDgwMDAwMDBaFw0xNjA1MDgwMDAwMDBaMB0xGzAZ
BgNVBAMTEkNMaUMgdjQuMCA3RjE0ODI4QzCCASIwDQYJKoZIhvcNAQEBBQADggEP
ADCCAQoCggEBAKT0YsK3m2dGTShLsYfKGwbJiGDvySziwkTQmiTd158Pkg4bNSKS
Jyrdgp77zZo07Es19377WgjJGOLW6GGpJmT0zp8yZBOJxdwLJ6nxdtOo2S6uhtb3
zbXpEuMdf10isPaztj0Rl1GlepT5Qz44el4LCqgJXcHqRR7ql9oRLhG0D1V6vzYR
hE1LuVdxuRFJoetDiTlpJzwu3OkXAVAsrRIIhJzt5apewv3Li6JVynGUX4EYSbRz
Xl+GnoQdChsFEG/ZZyA1Nlply3VJR8gb1z5SuguCPE4aG/vHpIfq/bl9B4L8OFvh
3VA4usZ45oz2kLwGTkUnpBxAk0Iv3GJ1Tf8CAwEAATANBgkqhkiG9w0BAQUFAAOC
AQEAdkwLxKnHtsJYwNqu62G5/d8FzAvEC2ky3RkPVjdGfySvS5LpKcEwc+DoZMWh
Ripey90uX/D4BlY/Qin+5vqiFD+MLA3w9yaHHsPaTZMczgaqGSyCTx+Z8GBdEdpQ
LybZCyI3NYNlibBAcYZ/g/jAn7Su0rxJwJgopJseGfqoqvfht/wA1ccBtmfBZWZO
CklxPErGVrkMFAuwl4PUPvZU/vpvV9yVUuDa/VL8ahxmCMby/WeQZJWNHZ8RJqi7
IO+JeQWtZ6uGoNTZUJdxvuwefYJts7vw6lx92j4JYDnWzVB8/kZHaa8QumZAU/pR
buDin1FTUmyt6cQ0eAnfaO8FMQ==
-----END CERTIFICATE-----
Shrouded Keybag: pbeWithSHA1And3-KeyTripleDES-CBC, Iteration 2000
Bag Attributes: <No Attributes>
Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQC8x7LSx3WGHxh2gTGEBOVJH0pA/rXM5AZCCnZzlpT3s3fSvEKq
nABybot0TjLM6X1axBZGDzImqTMTcn0bbnjtqra83FG6j/OAzlhmcrUkCdFnJk7Q
0YOihV+xvvzZD2Mv2fyy50XMSkhD2Nvrz6SfuZpcIYwcUiYSdmO/dga3SwIDAQAB
AoGAHJ7KtyxYiSQiEXv7wE/9B616lJ5T0gOItAQhujDMVpNlvqlzvVRCYxbsWzks
eCbhWNydTd4plHVBfO4gwS2/SnHGwnQwO6LcVgkqONSDqbf2yTJGBUDUwmZOq0xp
HPrFsl99VzrJM+/pgEQcqEbdwc7l82NgCBcuPYtNpNSKL9ECQQD6X5os5wTbWdzo
ukQlWTmKWpdn3K+muDwIwy2oGesSY2G24i5IZcrrsX5gzUlSI4Z22zG9m1JnaItC
/b44Tl9bAkEAwQW/8OG4Vd216ULbLNoasoA1GVGfIiVJCzqzEO2nt19bQwwNwwrt
120 AIX V6 Advanced Security Features: Introduction and Configuration

zmzJVczCi8cEWSFQxbe/3geOAYiNfoT60QJBAO+1/IylGndQ0DpZq8j+ZiLanT8p
gVrj5UaWZ+4b8n6GfBV2880I+IE0TMUthteHf8PoFPVt8jVjWIHpIugR0SUCQBUp
XTa6eGwph3UQWFkdfEnPloK1GR40OkLZ56HWfEm1UZsTKjsU6qdz88rNTRLn+ckP
xvw2PfnImEAAyYpyZ9ECQQDSx4/ZF2/Uk/l0Be5SOBkYKKDnVrioXBjLqn161ERa
8ABuiz3EeI5knBx/sd8FVhNF+Izka5qcA4rd7XYvar1s
-----END RSA PRIVATE KEY-----
Shrouded Keybag: pbeWithSHA1And3-KeyTripleDES-CBC, Iteration 2000
Bag Attributes: <No Attributes>
Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
MIIEowIBAAKCAQEApPRiwrebZ0ZNKEuxh8obBsmIYO/JLOLCRNCaJN3Xnw+SDhs1
IpInKt2CnvvNmjTsSzX3fvtaCMkY4tboYakmZPTOnzJkE4nF3AsnqfF206jZLq6G
1vfNtekS4x1/XSKw9rO2PRGXUaV6lPlDPjh6XgsKqAldwepFHuqX2hEuEbQPVXq/
NhGETUu5V3G5EUmh60OJOWknPC7c6RcBUCytEgiEnO3lql7C/cuLolXKcZRfgRhJ
tHNeX4aehB0KGwUQb9lnIDU2WmXLdUlHyBvXPlK6C4I8Thob+8ekh+r9uX0Hgvw4
W+HdUDi6xnjmjPaQvAZORSekHECTQi/cYnVN/wIDAQABAoIBAAE2WEUQ1NJCalGB
ig+gTizxZORkVMqQl1qCvRHCsTgBSVWMrCDaSr7GvzkBq6zX63A0YE68PldqdFr9
LmkBJzz+b8UP7LjlA97A7M+zDqQx+tucIDcqL5eN0GxXw/+58IU58RDK/G/MPc38
sz+LuenJmXmxseIf+bPvzBld9I5Gm0obm2X5JEZHXqHHhwAdwpFiD5hPq/CmUOjO
xV04JKfsfjL5eLM9QPYcgZ439pz5kfsbYxuuaZfUY2iYScnamar+XrwbPh79KmsE
+9Blc8PCFhdPndspr1eBahykIaY2EBoUvJLqgEQA1H48+Fce5+aI1ATV7iBzB+lK
gwtjoKECgYEA2iA35ZbC2Zqz8NWqJ3Ou0hg8a7KP2zLS/0Xw1LLIwU8dIfY4Bled
IhxSizEtJu29XeTvLEZIDBIhDEnxXOaVXhU8NAjfKJcG7ZInMRc6BnKE2Jz4ClyD
U0OvtwTyX27ZSTdCRCneQNxYt8WnZOGN/dlrIPP2UPfC12qZv85FtDkCgYEAwZiv
clSVu/F0B8WuZcu8xaZIYosvAjXAbRFsvRjMNf7swtGworslcjV5hgV+/JgIyooq
TMT6VefyY8475AFGfiyr0x5RHSL5G6IcTo7CW+e2B+cl0NdmKPafXxuKGS8hXkN8
NdCpBw3VNk+gNJZiIBGhNrt5mFInIUXGN95Vw/cCgYB4NFEZgN+YM5z+F4FRhHrO
5PRHFXwZfASzEMQLMwtXHFYdpSZyuE2rwpfqhQsw7Mryt3rml0SVAlicARO18oxV
8LXgpxLzt2bl/SkD8JzVeL6k8LvwWdM1S5PF9D/tP5UWuBEYp0oHzGZHv/Djszkg
r3ROEKOpMyB4vhJElVPsYQKBgCXydcFlTwxN4b58Qxj0/IWJeHrIaWh3fMZkOfo+
2BhlZacyTvs2z7o5PR7GCQQeEOsSdgQiQCeClYJ2tEqW7Whh/TQepyuc5VNDTWUg
mnxFSOr3pfPvpLi2zrpnvYP+Nv4xIDG0Os2FKpvAs9ha+dTrX7xItybiQ4VEFfxx
ekI1AoGBAKaMJPWH52UpgAzgW3CotoFv25kAcTnL4vJ6QK5SPKxWPRyduGaMnPgv
GawZhiCGM921ui/Zq521Keohik5Ak2flLtgMnnuzV6W2Nc7nfVqUqD7ekKhCPFog
C6t2lfrwq1aq2iZ6pkO4jpk7dsbeuUDHLoQIzZB3HVRrVhXfu/Ag
-----END RSA PRIVATE KEY-----

efskeymgr -v
 Keystore content:
 Keystore owner : uid 0
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 04/18/07 at 04:08:43
 Private key:
 Algorithm : RSA_4096
 Fingerprint : f961c000:8305d1ba:65a72c48:eeafde52:b954bf78
 Chapter 2. Encrypted File System 121

 Validity : This key is valid.
 Private key:
 Algorithm : RSA_2048
 Fingerprint : 3661bf34:530116eb:1861a3eb:0cf71b91:91ca25e9
 Validity : This key was deprecated on 04/20/07 at 08:08:44.
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 47dab395:99d8aa70:82659beb:700a4a6e:e232c8e4
 Validity : This key was deprecated on 04/20/07 at 07:35:45.
 Access key to keystore group/security
 Access key to keystore admin/
efskeymgr -e keyfile3
Enter password for the new PKCS#12-protected file:
Enter the same password again:
#
OpenSSL> pkcs12 -in keyfile3 -info -nodes
Enter Import Password:
MAC Iteration 2000
MAC verified OK
PKCS7 Data
Certificate bag
Bag Attributes: <No Attributes>
subject=/CN=CLiC v4.0 17162B54
issuer=/CN=CLiC v4.0 17162B54
-----BEGIN CERTIFICATE-----
MIIErzCCApcCBBcWK1QwCwYJKoZIhvcNAQEBMB0xGzAZBgNVBAMTEkNMaUMgdjQu
MCAxNzE2MkI1NDAeFw0wNjA1MDgwMDAwMDBaFw0xNjA1MDgwMDAwMDBaMB0xGzAZ
BgNVBAMTEkNMaUMgdjQuMCAxNzE2MkI1NDCCAiIwDQYJKoZIhvcNAQEBBQADggIP
ADCCAgoCggIBAOqqO3DViNm5C326mJdEmM1w/17RXUBxo7pPhAZxMnp0o+3Ku+g0
W8YQC22o8dxSGaEFUfm6jjPVyJyEb5fWNpDqk1huLdfM/uTv04O1TZNzPclHZXEQ
NpIxtgo1i3t1OGm+8DahvdfnILhWlrarvAYq0SbxelHcbnU6Ppr5kIfZez1xwGCv
3JWfQuvhf2y4JSwb7V8O36yuEwnS70mdGQl6itMtqZOw9hTyoRDaXNZM5G3MVCum
xQqxGeTjRyaLnbB2vs9z1aJ3brMM2jnJnph/Re/3K2xfn4idv/hKW3MhP2AakLIi
cOo1yhgHM7oy6vTGd4x/zkncbPD2FuxqQCgtso90Vd69A6x66uDPs+VbN/EXeW2J
yipClUr9Bclu1ZRxLaf9huWMQ/uQLXMChN9GEIhq+/nBfEkfLjdSSFdV0NeWAzoR
+0g9plOR/VV2ZhO/Yf2cZfKrNZ/pa5BvHeMzGBZG+mj4lpOnneaV8q2ZFX2XzaZ1
J1D1YsN3DRihz/uUu2vHfzDdSiCheALgn6MPk58mt5unRN7STWZJGeOQZbWG3Ijo
09HDXlDSnt3vzPoB0yFxh0YBP0+QxejHExhF9F2/HHJnzu+zk67dAxzVV/xfnoJl
VZ42hUbb3zRDWApxx9II9DWCHtmqpjrklSltJ/XAIENdz4nOuoAIK1G3AgMBAAEw
DQYJKoZIhvcNAQEFBQADggIBALr+B30WQPl8cGvP/ZPYV7KLyKH+TCQwRPp/WOye
wbDDrhwcVsEKeYhtFDcifVsXdM4FGbC14Fbv7UEQpW0hQO1IHHUOutXEyFe107wh
SItLBJJCKjvHPpwyDmey3pe/JsdKWt3hWWD8e7TwjcBY9lp7Z3fWH11CTnI8VA+3
12m0Y6DsBTwa1UfFoYR4Fl2GBzYvN8j3wXpdPGznvd4s/VHcopcu/ya6aEU+ZM0q
ehAnlfEDw9ASVHYzt77+XxskGicRV+OTe5X/pt4ja89MjRY/nXF046cnxTivH2eI
xI5Z47yFdyGVcsfWkhdIyV69XZ+WN29G7z143QyUWA1FFFq9vjF4KPERou5n03HU
122 AIX V6 Advanced Security Features: Introduction and Configuration

floFhRamhJDKyuZBHCcC4fw1CcXUK19vRUps1i1wM/oC9Iwd4h8oj+PFN/+tR53u
rbdYsMAP71duHon2AWTeaZlgRDx9Ts9vqywOo05C/0XXEnfKuF+AfDuv3jxHh84M
jRkEBOLasqZWrEDIMUoXyi7ypICQ5NOhroOPhw7QQjaJb7CeDtCzCt0wosqQODdL
87OmEWkNLY2pvg8T6VgqepNpqNIrKw4y6ILViyqPLT6/lnri7c7p5qm8XKgkyMdl
rPpS/9ZtxfujJSjjIAQrNKjoHhewrBB0gq2JZ37PU+BB/TOmjWOd0DX4q5QJOcXG
TUk7
-----END CERTIFICATE-----
Shrouded Keybag: pbeWithSHA1And3-KeyTripleDES-CBC, Iteration 2000
Bag Attributes: <No Attributes>
Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQC8x7LSx3WGHxh2gTGEBOVJH0pA/rXM5AZCCnZzlpT3s3fSvEKq
nABybot0TjLM6X1axBZGDzImqTMTcn0bbnjtqra83FG6j/OAzlhmcrUkCdFnJk7Q
0YOihV+xvvzZD2Mv2fyy50XMSkhD2Nvrz6SfuZpcIYwcUiYSdmO/dga3SwIDAQAB
AoGAHJ7KtyxYiSQiEXv7wE/9B616lJ5T0gOItAQhujDMVpNlvqlzvVRCYxbsWzks
eCbhWNydTd4plHVBfO4gwS2/SnHGwnQwO6LcVgkqONSDqbf2yTJGBUDUwmZOq0xp
HPrFsl99VzrJM+/pgEQcqEbdwc7l82NgCBcuPYtNpNSKL9ECQQD6X5os5wTbWdzo
ukQlWTmKWpdn3K+muDwIwy2oGesSY2G24i5IZcrrsX5gzUlSI4Z22zG9m1JnaItC
/b44Tl9bAkEAwQW/8OG4Vd216ULbLNoasoA1GVGfIiVJCzqzEO2nt19bQwwNwwrt
zmzJVczCi8cEWSFQxbe/3geOAYiNfoT60QJBAO+1/IylGndQ0DpZq8j+ZiLanT8p
gVrj5UaWZ+4b8n6GfBV2880I+IE0TMUthteHf8PoFPVt8jVjWIHpIugR0SUCQBUp
XTa6eGwph3UQWFkdfEnPloK1GR40OkLZ56HWfEm1UZsTKjsU6qdz88rNTRLn+ckP
xvw2PfnImEAAyYpyZ9ECQQDSx4/ZF2/Uk/l0Be5SOBkYKKDnVrioXBjLqn161ERa
8ABuiz3EeI5knBx/sd8FVhNF+Izka5qcA4rd7XYvar1s
-----END RSA PRIVATE KEY-----
Shrouded Keybag: pbeWithSHA1And3-KeyTripleDES-CBC, Iteration 2000
Bag Attributes: <No Attributes>
Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
MIIEowIBAAKCAQEApPRiwrebZ0ZNKEuxh8obBsmIYO/JLOLCRNCaJN3Xnw+SDhs1
IpInKt2CnvvNmjTsSzX3fvtaCMkY4tboYakmZPTOnzJkE4nF3AsnqfF206jZLq6G
1vfNtekS4x1/XSKw9rO2PRGXUaV6lPlDPjh6XgsKqAldwepFHuqX2hEuEbQPVXq/
NhGETUu5V3G5EUmh60OJOWknPC7c6RcBUCytEgiEnO3lql7C/cuLolXKcZRfgRhJ
tHNeX4aehB0KGwUQb9lnIDU2WmXLdUlHyBvXPlK6C4I8Thob+8ekh+r9uX0Hgvw4
W+HdUDi6xnjmjPaQvAZORSekHECTQi/cYnVN/wIDAQABAoIBAAE2WEUQ1NJCalGB
ig+gTizxZORkVMqQl1qCvRHCsTgBSVWMrCDaSr7GvzkBq6zX63A0YE68PldqdFr9
LmkBJzz+b8UP7LjlA97A7M+zDqQx+tucIDcqL5eN0GxXw/+58IU58RDK/G/MPc38
sz+LuenJmXmxseIf+bPvzBld9I5Gm0obm2X5JEZHXqHHhwAdwpFiD5hPq/CmUOjO
xV04JKfsfjL5eLM9QPYcgZ439pz5kfsbYxuuaZfUY2iYScnamar+XrwbPh79KmsE
+9Blc8PCFhdPndspr1eBahykIaY2EBoUvJLqgEQA1H48+Fce5+aI1ATV7iBzB+lK
gwtjoKECgYEA2iA35ZbC2Zqz8NWqJ3Ou0hg8a7KP2zLS/0Xw1LLIwU8dIfY4Bled
IhxSizEtJu29XeTvLEZIDBIhDEnxXOaVXhU8NAjfKJcG7ZInMRc6BnKE2Jz4ClyD
U0OvtwTyX27ZSTdCRCneQNxYt8WnZOGN/dlrIPP2UPfC12qZv85FtDkCgYEAwZiv
clSVu/F0B8WuZcu8xaZIYosvAjXAbRFsvRjMNf7swtGworslcjV5hgV+/JgIyooq
TMT6VefyY8475AFGfiyr0x5RHSL5G6IcTo7CW+e2B+cl0NdmKPafXxuKGS8hXkN8
 Chapter 2. Encrypted File System 123

NdCpBw3VNk+gNJZiIBGhNrt5mFInIUXGN95Vw/cCgYB4NFEZgN+YM5z+F4FRhHrO
5PRHFXwZfASzEMQLMwtXHFYdpSZyuE2rwpfqhQsw7Mryt3rml0SVAlicARO18oxV
8LXgpxLzt2bl/SkD8JzVeL6k8LvwWdM1S5PF9D/tP5UWuBEYp0oHzGZHv/Djszkg
r3ROEKOpMyB4vhJElVPsYQKBgCXydcFlTwxN4b58Qxj0/IWJeHrIaWh3fMZkOfo+
2BhlZacyTvs2z7o5PR7GCQQeEOsSdgQiQCeClYJ2tEqW7Whh/TQepyuc5VNDTWUg
mnxFSOr3pfPvpLi2zrpnvYP+Nv4xIDG0Os2FKpvAs9ha+dTrX7xItybiQ4VEFfxx
ekI1AoGBAKaMJPWH52UpgAzgW3CotoFv25kAcTnL4vJ6QK5SPKxWPRyduGaMnPgv
GawZhiCGM921ui/Zq521Keohik5Ak2flLtgMnnuzV6W2Nc7nfVqUqD7ekKhCPFog
C6t2lfrwq1aq2iZ6pkO4jpk7dsbeuUDHLoQIzZB3HVRrVhXfu/Ag
-----END RSA PRIVATE KEY-----
Shrouded Keybag: pbeWithSHA1And3-KeyTripleDES-CBC, Iteration 2000
Bag Attributes: <No Attributes>
Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
MIIJKAIBAAKCAgEA6qo7cNWI2bkLfbqYl0SYzXD/XtFdQHGjuk+EBnEyenSj7cq7
6DRbxhALbajx3FIZoQVR+bqOM9XInIRvl9Y2kOqTWG4t18z+5O/Tg7VNk3M9yUdl
cRA2kjG2CjWLe3U4ab7wNqG91+cguFaWtqu8BirRJvF6UdxudTo+mvmQh9l7PXHA
YK/clZ9C6+F/bLglLBvtXw7frK4TCdLvSZ0ZCXqK0y2pk7D2FPKhENpc1kzkbcxU
K6bFCrEZ5ONHJoudsHa+z3PVonduswzaOcmemH9F7/crbF+fiJ2/+EpbcyE/YBqQ
siJw6jXKGAczujLq9MZ3jH/OSdxs8PYW7GpAKC2yj3RV3r0DrHrq4M+z5Vs38Rd5
bYnKKkKVSv0FyW7VlHEtp/2G5YxD+5AtcwKE30YQiGr7+cF8SR8uN1JIV1XQ15YD
OhH7SD2mU5H9VXZmE79h/Zxl8qs1n+lrkG8d4zMYFkb6aPiWk6ed5pXyrZkVfZfN
pnUnUPViw3cNGKHP+5S7a8d/MN1KIKF4AuCfow+Tnya3m6dE3tJNZkkZ45BltYbc
iOjT0cNeUNKe3e/M+gHTIXGHRgE/T5DF6McTGEX0Xb8ccmfO77OTrt0DHNVX/F+e
gmVVnjaFRtvfNENYCnHH0gj0NYIe2aqmOuSVKW0n9cAgQ13Pic66gAgrUbcCAwEA
AQKCAgAafy5HB1V0gBh0EeW47t3yFJhBNJK6/Bnop6HYuF9ixFjeOM4O4hqauqUP
tMvafMq4C8m90PrNj44fXjTbiCyRIGuSyJ4Uh+kgIJRZgtdHlvObDpy9r3758vMD
JBij0BCWoCCvioPNJSPkrKJH7gxFBgCnzQxqweEXC4SWKyfOrxfjUDzQrgrSOjFs
QQIKXKCV4nFjEmLfNKihq1epkDuLfnK+daF4M7sVkm/tXzqsV/JTE4dNhn8pPeYW
mjMmfw1HJ6FT+1hcB/BP91uMut9ViMl01wvoKMPywR00A/FfhpmJWHaOJqVpTLmN
DQMiOy2chexpyOSaInGKo77i4vxrVZd/yWzO8/AtYes9DA3Yd540gTM+VQDY38+s
u6Tejq0xKFXFKowSxPo3LH8pBOqO7Ve4IljrVZNsY/2z20p9B694zX1+AVkuFkhR
MPzWQL+tLjbk7l8xnCG4vv9nupPFiCq+8ywigUkQGb7u+eFEvj7y/OROMxlIyzL+
F86efEWm2VAzb1vvLEloVWnnPXyHMVgqTfAXjdLiZ7OrgFQSOzd8vcxKK0JiDXMF
16m2hlfzSUlTqUSBgK/Nuqjm0aTv0UwEOLIuCk73sdoS32wwe9CcNsr/D8AAhA6v
UPwuXhz6isw4DFyr6sbk5Z1zfuEi/omvtNAD4NCNUwqv/oMdwQKCAQEA/4B3v2Dd
sjlHCmXOaIZQdtritOwQF2IPvM5YzpOK7AOmw+dqczwZrX2CWYFQdCduJd8a0s6W
ohYTdLfp3klu+lNwTcMUdQ8dGYNRplZ0CqzB+VlsJxjjGzVi18ih4LfVydDdmCGF
4JckABVlwkZ4trHhV0JCRQ+eskXYhck2xmskjnNQXStT14Fxlscnj9RFSBNTpuFt
WuPacpDm1pgRotwQ+UE6BLEdgTHPJPgxHbB7IenSc6+hCgUQPw2Ue9ovqX1y3VYP
wOTzLGLwTBKj1h33FWzpRdD1Qou+bibM8ya0ikTzxN+CZ9rQKYbPK+AnXxWWJ8HK
91UUQG4WbEUKbQKCAQEA6x9dJA3mK8E3s8AOjYwTdSc5Bq18KIp+r4xkpNe83b5I
0LyAgR3HIQZCvK4ogPT4vXAP+qqPu4h1ne+G+/DILatUA6yDwBlMpbbQVf6jgsQv
QH7pSOCSoVJEPVvZdEMtYPdE7qvbKDP41B/dPEc87VTmSkFj7oThbrWkjKOy/C9R
Ywcuhtr4sMys3lUW1uQc0KgFi6d+6BvR6i5pKx5gNJrNm2iprtc+FtMAEDEdvEzf
124 AIX V6 Advanced Security Features: Introduction and Configuration

JKoJb5VnWJnIgV6b4sFMlNwFAsOpWLIDJFO6o8qPagRUL6cEaOQhwVscgT/CkEjW
U8QVmOHER9VYgDYTkCPsM9NVaDkVkcahtm2EsIx2MwKCAQA0jZAT5TC0f+OE1/vk
s/vI9qy62fNVW+4wv6C0nNRuRzH+CZNzsGD3tmEhV9/chF+7mnBB/Awvuqq1zz5j
YmdZReBLnlyO11T88m3Q8OddartbNnFweUX9SrXR/IqPVkC7CiMKL5sB3xSgj8Ym
d6hMq7nV4OMQoW3a7VLj8cc6eL9ELaPSBh9wrEdY5A3XH6pAcPk70hJUJ5m/Bt70
NMMr5Gf5XNk6LdQLxtr8l7BCkxJAn3+SHAXbsb7tuTVZZD95dTwzGoiS/ISoFJGo
lAzu9ark1UoF+jz4OxYoQgLV4Jgx+IzLac3A3tkCMaBbPffbLu17r/i3duB7gClM
i8bhAoIBAAspPvuiKUX0cxd2S3qOprHN/dgCTj2CbYcZzAFDOHTyPnSiLhty9Wvs
5ygbwFJ2zoP3mNqWVCJb1PF9WFQHVwlL874E53AsA0Zuii862jov4+pU2/AYsP01
cYXUIVtygOn0cvI9eDbNWMeBB7h/zTWa7R+jQQImjqj5uGjwsGNmP5/KzHucU2fZ
H2+ibGYhB/kjsLezaMPN5kYOk/F3DKwSmSYCbuOc1haxR3R9UGMK5yDPbYk9d11u
V2VEv3OhJ2h9lUNPVG+ga6PC0b5KtEodEH3+mKf+BFgwYgcEptDAlGP/j+Lk/LNI
Pl4/sugJvIGtS4WaCBsWacDGLCFRWZ8CggEBAP1u5rnL3aRXiizzdeuhy+wiqQE1
3t6YIVR2Wu3Fk9naRS96uqTUdq0D1Bi7S0Ynf1Rg43erkNUThFTefiFfTvbL245X
WLCuBLSDH16bRvb09Tfnj2artxwpiTQs8fRHTg3WO0Dz8roGs8jlQnn/m9bA144i
zhyDroy4xVOpJBgLguU0eiJoxEBi9MXw2fXx7xT8ITpzy/v9L05BdBta+6CLNQ64
nyKE5+wS1fs6SRYc+X9zPwmOju6UrNHD8gsbzRPMep+s4IwCJ8clvV4z9kBkGYgB
86HBQ9Fgee+TkzDEj+ojwaZAyrH1G5oTmfaP2AlvHk8gBTPsOJuZjN2AXfE=
-----END RSA PRIVATE KEY-----

efskeymgr -D 3661bf34:530116eb:1861a3eb:0cf71b91:91ca25e9

efskeymgr -v
 Keystore content:
 Keystore owner : uid 0
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 04/18/07 at 04:08:43
 Private key:
 Algorithm : RSA_4096
 Fingerprint : f961c000:8305d1ba:65a72c48:eeafde52:b954bf78
 Validity : This key is valid.
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 47dab395:99d8aa70:82659beb:700a4a6e:e232c8e4
 Validity : This key was deprecated on 04/20/07 at 07:35:45.
 Access key to keystore group/security
 Access key to keystore admin/
#
efskeymgr -e keyfile4
Enter password for the new PKCS#12-protected file:
Enter the same password again:
#

OpenSSL> pkcs12 -in keyfile4 -info -nodes
 Chapter 2. Encrypted File System 125

Enter Import Password:
MAC Iteration 2000
MAC verified OK
PKCS7 Data
Certificate bag
Bag Attributes: <No Attributes>
subject=/CN=CLiC v4.0 17162B54
issuer=/CN=CLiC v4.0 17162B54
-----BEGIN CERTIFICATE-----
MIIErzCCApcCBBcWK1QwCwYJKoZIhvcNAQEBMB0xGzAZBgNVBAMTEkNMaUMgdjQu
MCAxNzE2MkI1NDAeFw0wNjA1MDgwMDAwMDBaFw0xNjA1MDgwMDAwMDBaMB0xGzAZ
BgNVBAMTEkNMaUMgdjQuMCAxNzE2MkI1NDCCAiIwDQYJKoZIhvcNAQEBBQADggIP
ADCCAgoCggIBAOqqO3DViNm5C326mJdEmM1w/17RXUBxo7pPhAZxMnp0o+3Ku+g0
W8YQC22o8dxSGaEFUfm6jjPVyJyEb5fWNpDqk1huLdfM/uTv04O1TZNzPclHZXEQ
NpIxtgo1i3t1OGm+8DahvdfnILhWlrarvAYq0SbxelHcbnU6Ppr5kIfZez1xwGCv
3JWfQuvhf2y4JSwb7V8O36yuEwnS70mdGQl6itMtqZOw9hTyoRDaXNZM5G3MVCum
xQqxGeTjRyaLnbB2vs9z1aJ3brMM2jnJnph/Re/3K2xfn4idv/hKW3MhP2AakLIi
cOo1yhgHM7oy6vTGd4x/zkncbPD2FuxqQCgtso90Vd69A6x66uDPs+VbN/EXeW2J
yipClUr9Bclu1ZRxLaf9huWMQ/uQLXMChN9GEIhq+/nBfEkfLjdSSFdV0NeWAzoR
+0g9plOR/VV2ZhO/Yf2cZfKrNZ/pa5BvHeMzGBZG+mj4lpOnneaV8q2ZFX2XzaZ1
J1D1YsN3DRihz/uUu2vHfzDdSiCheALgn6MPk58mt5unRN7STWZJGeOQZbWG3Ijo
09HDXlDSnt3vzPoB0yFxh0YBP0+QxejHExhF9F2/HHJnzu+zk67dAxzVV/xfnoJl
VZ42hUbb3zRDWApxx9II9DWCHtmqpjrklSltJ/XAIENdz4nOuoAIK1G3AgMBAAEw
DQYJKoZIhvcNAQEFBQADggIBALr+B30WQPl8cGvP/ZPYV7KLyKH+TCQwRPp/WOye
wbDDrhwcVsEKeYhtFDcifVsXdM4FGbC14Fbv7UEQpW0hQO1IHHUOutXEyFe107wh
SItLBJJCKjvHPpwyDmey3pe/JsdKWt3hWWD8e7TwjcBY9lp7Z3fWH11CTnI8VA+3
12m0Y6DsBTwa1UfFoYR4Fl2GBzYvN8j3wXpdPGznvd4s/VHcopcu/ya6aEU+ZM0q
ehAnlfEDw9ASVHYzt77+XxskGicRV+OTe5X/pt4ja89MjRY/nXF046cnxTivH2eI
xI5Z47yFdyGVcsfWkhdIyV69XZ+WN29G7z143QyUWA1FFFq9vjF4KPERou5n03HU
floFhRamhJDKyuZBHCcC4fw1CcXUK19vRUps1i1wM/oC9Iwd4h8oj+PFN/+tR53u
rbdYsMAP71duHon2AWTeaZlgRDx9Ts9vqywOo05C/0XXEnfKuF+AfDuv3jxHh84M
jRkEBOLasqZWrEDIMUoXyi7ypICQ5NOhroOPhw7QQjaJb7CeDtCzCt0wosqQODdL
87OmEWkNLY2pvg8T6VgqepNpqNIrKw4y6ILViyqPLT6/lnri7c7p5qm8XKgkyMdl
rPpS/9ZtxfujJSjjIAQrNKjoHhewrBB0gq2JZ37PU+BB/TOmjWOd0DX4q5QJOcXG
TUk7
-----END CERTIFICATE-----
Shrouded Keybag: pbeWithSHA1And3-KeyTripleDES-CBC, Iteration 2000
Bag Attributes: <No Attributes>
Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQC8x7LSx3WGHxh2gTGEBOVJH0pA/rXM5AZCCnZzlpT3s3fSvEKq
nABybot0TjLM6X1axBZGDzImqTMTcn0bbnjtqra83FG6j/OAzlhmcrUkCdFnJk7Q
0YOihV+xvvzZD2Mv2fyy50XMSkhD2Nvrz6SfuZpcIYwcUiYSdmO/dga3SwIDAQAB
AoGAHJ7KtyxYiSQiEXv7wE/9B616lJ5T0gOItAQhujDMVpNlvqlzvVRCYxbsWzks
eCbhWNydTd4plHVBfO4gwS2/SnHGwnQwO6LcVgkqONSDqbf2yTJGBUDUwmZOq0xp
126 AIX V6 Advanced Security Features: Introduction and Configuration

HPrFsl99VzrJM+/pgEQcqEbdwc7l82NgCBcuPYtNpNSKL9ECQQD6X5os5wTbWdzo
ukQlWTmKWpdn3K+muDwIwy2oGesSY2G24i5IZcrrsX5gzUlSI4Z22zG9m1JnaItC
/b44Tl9bAkEAwQW/8OG4Vd216ULbLNoasoA1GVGfIiVJCzqzEO2nt19bQwwNwwrt
zmzJVczCi8cEWSFQxbe/3geOAYiNfoT60QJBAO+1/IylGndQ0DpZq8j+ZiLanT8p
gVrj5UaWZ+4b8n6GfBV2880I+IE0TMUthteHf8PoFPVt8jVjWIHpIugR0SUCQBUp
XTa6eGwph3UQWFkdfEnPloK1GR40OkLZ56HWfEm1UZsTKjsU6qdz88rNTRLn+ckP
xvw2PfnImEAAyYpyZ9ECQQDSx4/ZF2/Uk/l0Be5SOBkYKKDnVrioXBjLqn161ERa
8ABuiz3EeI5knBx/sd8FVhNF+Izka5qcA4rd7XYvar1s
-----END RSA PRIVATE KEY-----
Shrouded Keybag: pbeWithSHA1And3-KeyTripleDES-CBC, Iteration 2000
Bag Attributes: <No Attributes>
Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
MIIJKAIBAAKCAgEA6qo7cNWI2bkLfbqYl0SYzXD/XtFdQHGjuk+EBnEyenSj7cq7
6DRbxhALbajx3FIZoQVR+bqOM9XInIRvl9Y2kOqTWG4t18z+5O/Tg7VNk3M9yUdl
cRA2kjG2CjWLe3U4ab7wNqG91+cguFaWtqu8BirRJvF6UdxudTo+mvmQh9l7PXHA
YK/clZ9C6+F/bLglLBvtXw7frK4TCdLvSZ0ZCXqK0y2pk7D2FPKhENpc1kzkbcxU
K6bFCrEZ5ONHJoudsHa+z3PVonduswzaOcmemH9F7/crbF+fiJ2/+EpbcyE/YBqQ
siJw6jXKGAczujLq9MZ3jH/OSdxs8PYW7GpAKC2yj3RV3r0DrHrq4M+z5Vs38Rd5
bYnKKkKVSv0FyW7VlHEtp/2G5YxD+5AtcwKE30YQiGr7+cF8SR8uN1JIV1XQ15YD
OhH7SD2mU5H9VXZmE79h/Zxl8qs1n+lrkG8d4zMYFkb6aPiWk6ed5pXyrZkVfZfN
pnUnUPViw3cNGKHP+5S7a8d/MN1KIKF4AuCfow+Tnya3m6dE3tJNZkkZ45BltYbc
iOjT0cNeUNKe3e/M+gHTIXGHRgE/T5DF6McTGEX0Xb8ccmfO77OTrt0DHNVX/F+e
gmVVnjaFRtvfNENYCnHH0gj0NYIe2aqmOuSVKW0n9cAgQ13Pic66gAgrUbcCAwEA
AQKCAgAafy5HB1V0gBh0EeW47t3yFJhBNJK6/Bnop6HYuF9ixFjeOM4O4hqauqUP
tMvafMq4C8m90PrNj44fXjTbiCyRIGuSyJ4Uh+kgIJRZgtdHlvObDpy9r3758vMD
JBij0BCWoCCvioPNJSPkrKJH7gxFBgCnzQxqweEXC4SWKyfOrxfjUDzQrgrSOjFs
QQIKXKCV4nFjEmLfNKihq1epkDuLfnK+daF4M7sVkm/tXzqsV/JTE4dNhn8pPeYW
mjMmfw1HJ6FT+1hcB/BP91uMut9ViMl01wvoKMPywR00A/FfhpmJWHaOJqVpTLmN
DQMiOy2chexpyOSaInGKo77i4vxrVZd/yWzO8/AtYes9DA3Yd540gTM+VQDY38+s
u6Tejq0xKFXFKowSxPo3LH8pBOqO7Ve4IljrVZNsY/2z20p9B694zX1+AVkuFkhR
MPzWQL+tLjbk7l8xnCG4vv9nupPFiCq+8ywigUkQGb7u+eFEvj7y/OROMxlIyzL+
F86efEWm2VAzb1vvLEloVWnnPXyHMVgqTfAXjdLiZ7OrgFQSOzd8vcxKK0JiDXMF
16m2hlfzSUlTqUSBgK/Nuqjm0aTv0UwEOLIuCk73sdoS32wwe9CcNsr/D8AAhA6v
UPwuXhz6isw4DFyr6sbk5Z1zfuEi/omvtNAD4NCNUwqv/oMdwQKCAQEA/4B3v2Dd
sjlHCmXOaIZQdtritOwQF2IPvM5YzpOK7AOmw+dqczwZrX2CWYFQdCduJd8a0s6W
ohYTdLfp3klu+lNwTcMUdQ8dGYNRplZ0CqzB+VlsJxjjGzVi18ih4LfVydDdmCGF
4JckABVlwkZ4trHhV0JCRQ+eskXYhck2xmskjnNQXStT14Fxlscnj9RFSBNTpuFt
WuPacpDm1pgRotwQ+UE6BLEdgTHPJPgxHbB7IenSc6+hCgUQPw2Ue9ovqX1y3VYP
wOTzLGLwTBKj1h33FWzpRdD1Qou+bibM8ya0ikTzxN+CZ9rQKYbPK+AnXxWWJ8HK
91UUQG4WbEUKbQKCAQEA6x9dJA3mK8E3s8AOjYwTdSc5Bq18KIp+r4xkpNe83b5I
0LyAgR3HIQZCvK4ogPT4vXAP+qqPu4h1ne+G+/DILatUA6yDwBlMpbbQVf6jgsQv
QH7pSOCSoVJEPVvZdEMtYPdE7qvbKDP41B/dPEc87VTmSkFj7oThbrWkjKOy/C9R
Ywcuhtr4sMys3lUW1uQc0KgFi6d+6BvR6i5pKx5gNJrNm2iprtc+FtMAEDEdvEzf
JKoJb5VnWJnIgV6b4sFMlNwFAsOpWLIDJFO6o8qPagRUL6cEaOQhwVscgT/CkEjW
 Chapter 2. Encrypted File System 127

U8QVmOHER9VYgDYTkCPsM9NVaDkVkcahtm2EsIx2MwKCAQA0jZAT5TC0f+OE1/vk
s/vI9qy62fNVW+4wv6C0nNRuRzH+CZNzsGD3tmEhV9/chF+7mnBB/Awvuqq1zz5j
YmdZReBLnlyO11T88m3Q8OddartbNnFweUX9SrXR/IqPVkC7CiMKL5sB3xSgj8Ym
d6hMq7nV4OMQoW3a7VLj8cc6eL9ELaPSBh9wrEdY5A3XH6pAcPk70hJUJ5m/Bt70
NMMr5Gf5XNk6LdQLxtr8l7BCkxJAn3+SHAXbsb7tuTVZZD95dTwzGoiS/ISoFJGo
lAzu9ark1UoF+jz4OxYoQgLV4Jgx+IzLac3A3tkCMaBbPffbLu17r/i3duB7gClM
i8bhAoIBAAspPvuiKUX0cxd2S3qOprHN/dgCTj2CbYcZzAFDOHTyPnSiLhty9Wvs
5ygbwFJ2zoP3mNqWVCJb1PF9WFQHVwlL874E53AsA0Zuii862jov4+pU2/AYsP01
cYXUIVtygOn0cvI9eDbNWMeBB7h/zTWa7R+jQQImjqj5uGjwsGNmP5/KzHucU2fZ
H2+ibGYhB/kjsLezaMPN5kYOk/F3DKwSmSYCbuOc1haxR3R9UGMK5yDPbYk9d11u
V2VEv3OhJ2h9lUNPVG+ga6PC0b5KtEodEH3+mKf+BFgwYgcEptDAlGP/j+Lk/LNI
Pl4/sugJvIGtS4WaCBsWacDGLCFRWZ8CggEBAP1u5rnL3aRXiizzdeuhy+wiqQE1
3t6YIVR2Wu3Fk9naRS96uqTUdq0D1Bi7S0Ynf1Rg43erkNUThFTefiFfTvbL245X
WLCuBLSDH16bRvb09Tfnj2artxwpiTQs8fRHTg3WO0Dz8roGs8jlQnn/m9bA144i
zhyDroy4xVOpJBgLguU0eiJoxEBi9MXw2fXx7xT8ITpzy/v9L05BdBta+6CLNQ64
nyKE5+wS1fs6SRYc+X9zPwmOju6UrNHD8gsbzRPMep+s4IwCJ8clvV4z9kBkGYgB
86HBQ9Fgee+TkzDEj+ojwaZAyrH1G5oTmfaP2AlvHk8gBTPsOJuZjN2AXfE=
-----END RSA PRIVATE KEY-----

2.5.13 User public key

Finding a user public key is also important, especially when you want to integrate
user keys in a certificate infrastructure.

In Example 2-35 on page 129, we offer an example of how to discover the value
of the public key as follows:

� Export the current content of the keystore into keyfile using the efskeymgr -e
keyfile command.

� Export the content of keyfile using the command openssl pkcs12 -in
keyfile -nodes -out file1.

� Display the content of file1 using the cat file1 command.

� Edit file1 to remove the private bag and leave only the content of the public
bag. The public key is enclosed in a certificate. We displayed the content of
file1 after it has been edited.

� Display the public key using the openssl x509 -in file1 -pubkey -noout
command.
128 AIX V6 Advanced Security Features: Introduction and Configuration

Example 2-35 Displaying the RSA public key

efskeymgr -e keyfile
Enter password for the new PKCS#12-protected file:
Enter the same password again:
openssl pkcs12 -in keyfile -nodes -out file1
cat file1
Bag Attributes: <No Attributes>
subject=/CN=CLiC v4.0 7CB79796
issuer=/CN=CLiC v4.0 7CB79796
-----BEGIN CERTIFICATE-----
MIICrzCCAZcCBHy3l5YwCwYJKoZIhvcNAQEBMB0xGzAZBgNVBAMTEkNMaUMgdjQu
MCA3Q0I3OTc5NjAeFw0wNjA1MDgwMDAwMDBaFw0xNjA1MDgwMDAwMDBaMB0xGzAZ
BgNVBAMTEkNMaUMgdjQuMCA3Q0I3OTc5NjCCASIwDQYJKoZIhvcNAQEBBQADggEP
ADCCAQoCggEBAMtIfI6Pc8UTNJj5GfAHBUCej7ftwsBXDJEheHsioHydNjnbeDfU
K8JLW0K8j7Sxy/WZx/DQrwMrfHBgrIlU9kNu7PY7rjHvi1Tv58EZpNZqQXTWo4ag
OdGFQ8GOvISUhWzRtL5+tclex66ULDEStBnQBmAuw0QUBdIUtpnvKlVJsphaRlc9
wKW8KDe2yi0J2ueSvspIEtW8PbQGuVPckrgu8HzfUAoybX654aoEKOQc0+ZaF12S
dZiO+5Zls2dGbdVjoItLLGe8y4NWQvLfe9oyBygz6NVaDUaVGIe/MpCZjvRboyMI
PXG4ghwsY75KNc2NOMafWRgHdXpcDNCh7cECAwEAATANBgkqhkiG9w0BAQUFAAOC
AQEAxub8XKecKI4iVscGL0tQiP91kXgn6Pfd4gcBWqLVznsTW4K+h2Jy8Zocjv1e
Ypgf5Zny9+Gw0OJ5C8FMOqfTmWVNiqbEhj4vudzfhA+i8n0bKsiLA8KvyQUtsmy+
IyTp3YYz3mvipKSSArVY0Eh9Hibtl3J6GO1am2KlHPDKKwfNkLt0vDkWihjtODop
IYxJBFCr3LzcZP1GnvcvfDbQdGqHuxwjAiHwwyph4QIixG4irLhx4QtFMUfEthAf
x/U6fW2h7uVy4E46Ra+/965zOeeLBJgSZaRiu9fRAcxp5U4a4Q6LTlvwcbSqAiQV
9CNCyS0PidTe6gHrmqzC5ZvQsA==
-----END CERTIFICATE-----
Bag Attributes: <No Attributes>
Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEAy0h8jo9zxRM0mPkZ8AcFQJ6Pt+3CwFcMkSF4eyKgfJ02Odt4
N9QrwktbQryPtLHL9ZnH8NCvAyt8cGCsiVT2Q27s9juuMe+LVO/nwRmk1mpBdNaj
hqA50YVDwY68hJSFbNG0vn61yV7HrpQsMRK0GdAGYC7DRBQF0hS2me8qVUmymFpG
Vz3ApbwoN7bKLQna55K+ykgS1bw9tAa5U9ySuC7wfN9QCjJtfrnhqgQo5BzT5loX
XZJ1mI77lmWzZ0Zt1WOgi0ssZ7zLg1ZC8t972jIHKDPo1VoNRpUYh78ykJmO9Fuj
Iwg9cbiCHCxjvko1zY04xp9ZGAd1elwM0KHtwQIDAQABAoIBAC/rE9VlElSjzNO8
cHVIql/LoLQqGyzMuD0jxys7g9osEuK7jdCXNoNz0Pzfxv5ApQPtbpihEIguQYSZ
/UHYIb7OkJQQiGTkAxOQA7DckyMp4+kfSWfMMCToBYtEUsLr4bG/kxwOcVqY+Xf5
HJuqvYKSK1aT31qWX7LgSBTsMC3vKFL1A1KaelIkf9Oez2a/+D15dAfWgbwZBvBR
KJXOkX08l3FEn18EkrJ9AUavzoM32kWyvhwoPXICikm8w4n85xLsnTmWC3cYiZdu
RDSM6BHIYsBBmMDRUPKNzXf/9freGFcNEVThzavLb7YqXqqvbd8EufRv12P4ibrg
pwyGgwsCgYEA6WsTgdJdbaE4GnOE9LdC908UjrfgCADl67mAicIML3UY9h01tmRg
+QK4YOZRG8s337UNdGjrBAh5Mh42yu1WWgNK1c1HVNPmLMqNPXM6UGvQn98bf+3s
0N+KsJ14iN1rsgCF8tLvZo7WUu49K4m+Od1N1h5tyHJYC5G95qdHCtsCgYEA3vMS
pYmLW1WaBPcQ4bSGnivujpKTXdFzy64UZKGP+HsFQ1SmXdLLFo7RsNN1DhdSg7K+
 Chapter 2. Encrypted File System 129

tR6Oiy+f3InOSyMSlf2AgBG0DQzmLWAbXIiVYBU+q3DC0ca0q4GVY1phm6RhPRZ6
cx/lwgFD2LN0mHVFtG0mvHY8H60eWr9XRFwNtpMCgYAHIHbTAupJW5/L5vULR8Eq
reZxyRl1BRoADYToL92RYWDmutOWAxCW6cdZZg7Z62WEVhHYGQ/76opQxm1j2sVF
ME6Lop3n8CRZ/8E6PBdutywChZxgVpJhekHQzK4Od7w/DhcI5/nZRskydQW3G5iM
Sb6DqCAv+5XGnKeQsFDR+wKBgQDJsqpZ7FeQ556Rg1tYdlObYS9O+LgtlkHmMLTu
XWO8br9SLJDeLMfivo5iJMuvVdYmo1z4yo42yX0credd/nrgCxlnw5xaeiL7Rgk6
664H4PBzdW4rDlOBHZii66+GeW4nL+DTqjXYEADrWV7QVrgbBOyYb3bxSVM+0gAH
LiiR1QKBgQCjyvFW10zSwPcsyb1AaktiqGBqD6Ne/XbSw69BiScwHJVyhOvmXAx+
QTEQca8uVbWvxCF6r542CI1pT8mwzl3twQ30uiaUmnEgXhYtGdQ8MPNYg6EO3Ncp
czd1J5qwVKDZf6BMkOByAysrG42c5xDg/SpaYSj/f0ZOS9wfNERVGA==
-----END RSA PRIVATE KEY-----
cat file1
subject=/CN=CLiC v4.0 7CB79796
issuer=/CN=CLiC v4.0 7CB79796
-----BEGIN CERTIFICATE-----
MIICrzCCAZcCBHy3l5YwCwYJKoZIhvcNAQEBMB0xGzAZBgNVBAMTEkNMaUMgdjQu
MCA3Q0I3OTc5NjAeFw0wNjA1MDgwMDAwMDBaFw0xNjA1MDgwMDAwMDBaMB0xGzAZ
BgNVBAMTEkNMaUMgdjQuMCA3Q0I3OTc5NjCCASIwDQYJKoZIhvcNAQEBBQADggEP
ADCCAQoCggEBAMtIfI6Pc8UTNJj5GfAHBUCej7ftwsBXDJEheHsioHydNjnbeDfU
K8JLW0K8j7Sxy/WZx/DQrwMrfHBgrIlU9kNu7PY7rjHvi1Tv58EZpNZqQXTWo4ag
OdGFQ8GOvISUhWzRtL5+tclex66ULDEStBnQBmAuw0QUBdIUtpnvKlVJsphaRlc9
wKW8KDe2yi0J2ueSvspIEtW8PbQGuVPckrgu8HzfUAoybX654aoEKOQc0+ZaF12S
dZiO+5Zls2dGbdVjoItLLGe8y4NWQvLfe9oyBygz6NVaDUaVGIe/MpCZjvRboyMI
PXG4ghwsY75KNc2NOMafWRgHdXpcDNCh7cECAwEAATANBgkqhkiG9w0BAQUFAAOC
AQEAxub8XKecKI4iVscGL0tQiP91kXgn6Pfd4gcBWqLVznsTW4K+h2Jy8Zocjv1e
Ypgf5Zny9+Gw0OJ5C8FMOqfTmWVNiqbEhj4vudzfhA+i8n0bKsiLA8KvyQUtsmy+
IyTp3YYz3mvipKSSArVY0Eh9Hibtl3J6GO1am2KlHPDKKwfNkLt0vDkWihjtODop
IYxJBFCr3LzcZP1GnvcvfDbQdGqHuxwjAiHwwyph4QIixG4irLhx4QtFMUfEthAf
x/U6fW2h7uVy4E46Ra+/965zOeeLBJgSZaRiu9fRAcxp5U4a4Q6LTlvwcbSqAiQV
9CNCyS0PidTe6gHrmqzC5ZvQsA==
-----END CERTIFICATE-----
openssl x509 -in file1 -pubkey -noout
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAy0h8jo9zxRM0mPkZ8AcF
QJ6Pt+3CwFcMkSF4eyKgfJ02Odt4N9QrwktbQryPtLHL9ZnH8NCvAyt8cGCsiVT2
Q27s9juuMe+LVO/nwRmk1mpBdNajhqA50YVDwY68hJSFbNG0vn61yV7HrpQsMRK0
GdAGYC7DRBQF0hS2me8qVUmymFpGVz3ApbwoN7bKLQna55K+ykgS1bw9tAa5U9yS
uC7wfN9QCjJtfrnhqgQo5BzT5loXXZJ1mI77lmWzZ0Zt1WOgi0ssZ7zLg1ZC8t97
2jIHKDPo1VoNRpUYh78ykJmO9FujIwg9cbiCHCxjvko1zY04xp9ZGAd1elwM0KHt
wQIDAQAB
-----END PUBLIC KEY-----
130 AIX V6 Advanced Security Features: Introduction and Configuration

2.5.14 Importance of deprecated keys

Private keys are vital to get file access. They are used to decrypt the file
symmetric key that was encrypted with the user public key at file creation. In this
way, the user obtains the symmetric encryption key and can get access to data in
the file.

The scenario in Example 2-36 shows this situation as follows:

� The efsmgr -l command displays the key that can have access to the file.

� The key that can access the file is present in the user keystore and is valid as
shown by the efskeymgr -v command.

� The user changes his or her private key using the efskeymgr -R command.

� The newly-generated key is stored in the user keystore along with the old key.
The old key is marked as deprecated.

� Although the old key is deprecated, it can be used to gain access to the file.

� The efskeymgr -V command shows that the old key is still loaded in the
current shell and the new key has not been automatically loaded.

� The user deletes the deprecated key using the efskeymgr -D command and
the efskeymgr -v command confirms that the old key has been deleted from
the keystore.

� The efskeymgr -o ksh command loads the content of the keystore.

� The efskeymgr -V command shows that only the new key is available. The old
key has been deleted.

� Since it does not have the proper key, the user is no longer able to access the
file.

Example 2-36 Using deprecated keys to access old files

$ efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 205
 Key fingerprint : 30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 205
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/10/07 at 09:41:20
 Chapter 2. Encrypted File System 131

 Private key:
 Algorithm : RSA_1024
 Fingerprint : 30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
 Validity : This key is valid.
$ efskeymgr -R RSA_1024
$ efskeymgr -v
user3's EFS password:
 Keystore content:
 Keystore owner : uid 205
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/10/07 at 09:41:20
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 44b0c7e1:53384985:ca1be27e:864b9431:3a57c0d1
 Validity : This key is valid.
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
 Validity : This key was deprecated on 05/10/07 at 19:24:35.
$ cat file
data in encrypted file
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 205
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
$ efskeymgr -D 30412121:e5a7b90d:dba7dd19:2c45b1e0:c331c09f
user3's EFS password:
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 205
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/10/07 at 09:41:20
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 44b0c7e1:53384985:ca1be27e:864b9431:3a57c0d1
 Validity : This key is valid.

$ efskeymgr -o ksh
user3's EFS password:
132 AIX V6 Advanced Security Features: Introduction and Configuration

$ k
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 205
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
44b0c7e1:53384985:ca1be27e:864b9431:3a57c0d1
$ cat file
cat: 0652-050 Cannot open file.

2.6 Group management

In this section, we show how group management functions are integrated with
new cryptographic features.

2.6.1 Defining groups

Every time you create a new group, you must define its security related
information. Group security attributes that have been added to
/etc/security/group are shown in Example 2-37.

Example 2-37 New attributes added in group security configuration file

cat /etc/security/group|grep -ip group2
group2:
 admin = false
 adms = root
 efs_keystore_access = file
 efs_initialks_mode = admin
 efs_keystore_algo = RSA_1024
 Chapter 2. Encrypted File System 133

In order to support the new features that have been added for group security,
three fields have been also added to SMIT screens used for group management,
as shown in Example 2-38.

Example 2-38 New fields added in the SMIT screen for group creation

Add a Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* Group NAME [group1]
 ADMINISTRATIVE group? false
+
 Group ID []
#
 USER list []
+
 ADMINISTRATOR list []
+
 Projects []
+
 Initial Keystore Mode []
+
 Keystore Encryption Algorithm []
+
 Keystore Access []
+

F1=Help F2=Refresh F3=Cancel
F4=List
Esc+5=Reset Esc+6=Command Esc+7=Edit
Esc+8=Image
Esc+9=Shell Esc+0=Exit Enter=Do

The meaning of the newly-added fields in Example 2-38 are:

Initial Keystore Mode
This field describes the initial mode of the user keystore.
The value of this field can be either admin or guard,
corresponding to either root admin mode or root guard
admin mode.
134 AIX V6 Advanced Security Features: Introduction and Configuration

Keystore Encryption Algorithm
This field describes the algorithm and the length of the
keys used for user private and public keys. If you change
the value of this field, the corresponding attribute from the
user stanza from /etc/security/user is changed
accordingly. The value can be one of the following:

• RSA_1024

• RSA_2048

• RSA_4096

Key store access The value of this field must be file or none. File means
local /var/efs/groups/*. None means no keystore. When
the group is created by root, the security attributes from
group stanza in /etc/security/group are initialized using
the default values. However, at this time there is no
keystore for the group.

When you define a group in root admin mode, root is automatically assigned as a
group administrator.

2.6.2 Group keystore design and operations

Group keystore internal design is similar to user keystore design.

Operations that modify a group keystore include:

� Changing algorithms

� Changing key length

� Generating a new key

� Deleting a deprecated key

2.6.3 Defining a group and creating a group keystore

In Example 2-39 on page 136, we show how to create a group keystore for a
group named group1 by doing the following:

� Define the group named group1. This group does not contain any users yet.
In /var/efs/groups, a new directory named group1 is created. This directory
does not contain any keystores yet.

� Create a user named user3. Add user3 to group1.

� Trying to create a group keystore at this time fails again because although the
group does contain a member, the user does not have any keystores yet.
 Chapter 2. Encrypted File System 135

� The password for user3 is initialized so the user keystore is created.

� The key store for group1 is now successfully created.

� The access key to group1 keystore has been automatically sent to user3
keystore. When user3 logs in, the access key for group1 keystore will be
automatically loaded.

Example 2-39 Creating a group keystore

mkgroup group1
lsgroup -a id users adms group1
group1 id=207 users=
ls -al /var/efs/groups
total 0
drwx------ 4 root system 256 May 02 14:12 .
drwxr-xr-x 5 root system 256 May 02 13:34 ..
-rw------- 1 root system 0 May 02 13:34 .lock
drwx------ 2 root system 256 May 02 14:12 group1
drwx------ 2 root system 256 May 02 13:34 security
ls -al /var/efs/groups/group1
total 0
drwx------ 2 root system 256 May 02 14:12 .
drwx------ 4 root system 256 May 02 14:12 ..
-rw------- 1 root system 0 May 02 14:12 .lock
efskeymgr -C group1
Encryption framework returned an error: (The group does not contain any
member with EFS crypto info)
kernel: The system call does not exist on this system.
mkuser user3;chgroup users=user3 group1;lsgroup -a id users adms
group1
group1 id=207 users=user3
efskeymgr -C group1
Encryption framework returned an error: (The group does not contain any
member with EFS crypto info)
kernel: The system call does not exist on this system.
passwd user3
Changing password for "user3"
user3's New password:
Enter the new password again:
efskeymgr -C group1
ls -al /var/efs/groups/group1
total 8
drwx------ 2 root system 256 May 02 14:27 .
drwx------ 4 root system 256 May 02 14:12 ..
-rw------- 1 root system 0 May 02 14:12 .lock
-rw------- 1 root system 1914 May 02 14:27 keystore
136 AIX V6 Advanced Security Features: Introduction and Configuration

$ id
uid=209(user3) gid=1(staff) groups=207(group1)
$ efskeymgr -v
user3's EFS password:
 Keystore content:
 Keystore owner : uid 209
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/02/07 at 14:27:21
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 7dc53a23:b8d1d7f0:c6f43e88:ae7be372:f585f4e4
 Validity : This key is valid.
 Access key to keystore group/group1

2.6.4 Sending the group keystore access key to a user

When running in root admin mode, you can use the efskeymgr command to send
an access key for a group store to a user keystore using the following steps
shown in Example 2-40:

� user5 has no access key for group1.

� The group keystore access key is sent to the user keystore.

� user5 now has the group keystore access key loaded into his or her own user
keystore. The key is not automatically loaded into active processes.

Example 2-40 Sending an group keystore access key to a user

$ id
uid=207(user5) gid=1(staff) groups=202(group1)
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 207
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/03/07 at 17:39:43
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 49e42532:e8c471bf:2be9ba03:3f9d12b4:4ba01cea
 Validity : This key is valid.
id
uid=0(root) gid=0(system)
groups=2(bin),3(sys),7(security),8(cron),10(audit),11(lp)
efskeymgr -k group/group1 -s user/user5
$ id
uid=207(user5) gid=1(staff) groups=202(group1)
 Chapter 2. Encrypted File System 137

$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 207
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/03/07 at 17:39:43
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 49e42532:e8c471bf:2be9ba03:3f9d12b4:4ba01cea
 Validity : This key is valid.
 Access key to keystore group/group1
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 207
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
49e42532:e8c471bf:2be9ba03:3f9d12b4:4ba01cea

When running in root admin mode, root can add himself as a member of any
group and will automatically receive the group access key. Any group member
user automatically accepts the group access key in his or her keystore.

2.6.5 Removing the group keystore access key from a user keystore

When running in root admin mode, you can use the efskeymgr command to
remove an access key for a group keystore from a user keystore using the
following steps shown in Example 2-41 on page 139:

� user5 has the access key for group1. The group access key is loaded in the
current shell.

� The group keystore access key is removed from the user keystore.

� Although user5 does not have the group keystore in his or her user keystore
any longer, the group keystore access key is not automatically unloaded from
active processes.

Important: When you add a user to a group, either using chuser or chgroup,
the group access key is automatically sent to the user keystore.
138 AIX V6 Advanced Security Features: Introduction and Configuration

Example 2-41 Sending an group keystore access key to a user

$ id
uid=207(user5) gid=1(staff) groups=202(group1)
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 207
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/03/07 at 17:39:43
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 49e42532:e8c471bf:2be9ba03:3f9d12b4:4ba01cea
 Validity : This key is valid.
 Access key to keystore group/group1
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 207
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/03/07 at 17:39:43
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 49e42532:e8c471bf:2be9ba03:3f9d12b4:4ba01cea
 Validity : This key is valid.
 Access key to keystore group/group1
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 207
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
49e42532:e8c471bf:2be9ba03:3f9d12b4:4ba01cea
 Key #1:
 Kind Group key
 Id (uid / gid) 202
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
5100b522:fbee1dbe:2aeddbd3:c2e51fea:86ab4b5c
id
uid=0(root) gid=0(system)
groups=2(bin),3(sys),7(security),8(cron),10(audit),11(lp)
 Chapter 2. Encrypted File System 139

efskeymgr -k user/user5 -S group/group1
$ id
uid=207(user5) gid=1(staff) groups=202(group1)
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 207
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/03/07 at 17:39:43
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 49e42532:e8c471bf:2be9ba03:3f9d12b4:4ba01cea
 Validity : This key is valid.
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 207
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
49e42532:e8c471bf:2be9ba03:3f9d12b4:4ba01cea
 Key #1:
 Kind Group key
 Id (uid / gid) 202
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
5100b522:fbee1dbe:2aeddbd3:c2e51fea:86ab4b5c

2.6.6 Adding/remove group access keys in root guard mode

When running in root guard mode, root cannot add himself as a member of the
group. When a group member is added/removed to/from a group by the group
administrator, a corresponding cookie is sent to user keystore.

The user is prompted to accept/decline the group access key first time he or she
opens his or her keystore, as shown in Example 2-42 on page 141.

Important: When a user is removed from a group, either using chuser or
chgroup, the group access key is not automatically deleted from the user
keystore.
140 AIX V6 Advanced Security Features: Introduction and Configuration

Example 2-42 Accepting/declining group access keys in root guard mode

$ efskeymgr -v

The following operation(s) is(are) pending on your EFS keystore:

 You are granted access to group/group2 keystore.
Do you want to process this action now (y), later (n: default), or
never (d)? [y / n / d]n
 You are removed access to group/group2 keystore.
Do you want to process this action now (y), later (n: default), or
never (d)? [y / n / d]n
 Keystore content:
 Keystore owner : uid 219
 Keystore mode : guard: not managed by EFS
administrator
 Password changed last on .. : 05/13/07 at 18:30:03
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 1d0b0ee6:00ec743a:db95715c:ce04ff89:0b1ecfea
 Validity : This key is valid.
Cookie:
 Type : Remove (removes access to)
 Keystore .. : group/group2
Cookie:
 Type : Access (grants access to)
 Keystore .. : group/group2

2.6.7 Managing a group keystore private key

When running in root admin mode, root can manage the group keystore as
shown in the scenario in Example 2-43 on page 142 as follows:

� The lsgroup commands show that user3 belongs to group1.

� The efskeymgr -v -k group/group1 command displays the fingerprint of the
group key.

� user3 has the group key loaded in the current shell.

� Root generates a new group key. The old key is still kept in the group keystore
and is marked as deprecated.

� The new key has automatically been sent to the user keystore. The old group
key is marked as deprecated in the user keystore. The new group key will be
the active key in all new processes.

� Root deletes the deprecated key from the group keystore.
 Chapter 2. Encrypted File System 141

� The deprecated key has been deleted from the user keystore, but not
unloaded form active processes, the current shell in our case. The
newly-generated shell does no contain the old key any more

Example 2-43 Changing group keystore private key

lsgroup -a users group1
group1 users=user1,user3
efskeymgr -v -k group/group1
 Keystore content:
 Keystore owner : gid 202
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/09/07 at 19:43:52
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 5967aba6:df046b56:8f4cc1b5:69f48c7a:ed88008f
 Validity : This key is valid.
$ id
uid=205(user3) gid=1(staff)
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 205
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/10/07 at 09:41:20
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 44b0c7e1:53384985:ca1be27e:864b9431:3a57c0d1
 Validity : This key is valid.
 Access key to keystore group/group1
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 205
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
44b0c7e1:53384985:ca1be27e:864b9431:3a57c0d1
 Key #1:
 Kind Group key
 Id (uid / gid) 202
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
142 AIX V6 Advanced Security Features: Introduction and Configuration

 Fingerprint
5967aba6:df046b56:8f4cc1b5:69f48c7a:ed88008f
efskeymgr -k group/group1 -R RSA_1024
efskeymgr -v -k group/group1
 Keystore content:
 Keystore owner : gid 202
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/09/07 at 19:43:52
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 9f5f057d:4f3f5a78:50058cd3:bf1a2e78:42ae3b20
 Validity : This key is valid.
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 5967aba6:df046b56:8f4cc1b5:69f48c7a:ed88008f
 Validity : This key was deprecated on 05/10/07 at 20:15:53.
$ id
uid=205(user3) gid=1(staff)
$ efskeymgr -o ksh
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 205
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
44b0c7e1:53384985:ca1be27e:864b9431:3a57c0d1
 Key #1:
 Kind Group key
 Id (uid / gid) 202
 Type Private key
 Algorithm RSA_1024
 Validity Key is deprecated
 Fingerprint
5967aba6:df046b56:8f4cc1b5:69f48c7a:ed88008f
 Key #2:
 Kind Group key
 Id (uid / gid) 202
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
9f5f057d:4f3f5a78:50058cd3:bf1a2e78:42ae3b20
 Chapter 2. Encrypted File System 143

efskeymgr -k group/group1 -D
5967aba6:df046b56:8f4cc1b5:69f48c7a:ed88008f
efskeymgr -v -k group/group1
 Keystore content:
 Keystore owner : gid 202
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/09/07 at 19:43:52
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 9f5f057d:4f3f5a78:50058cd3:bf1a2e78:42ae3b20
 Validity : This key is valid.
$ id
uid=205(user3) gid=1(staff)
$ efskeymgr -o ksh
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 205
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
44b0c7e1:53384985:ca1be27e:864b9431:3a57c0d1
 Key #1:
 Kind Group key
 Id (uid / gid) 202
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
9f5f057d:4f3f5a78:50058cd3:bf1a2e78:42ae3b20

When running in root guard mode, only a group administrator can generate a
new group access key, deprecate a key, or delete a deprecated key.
144 AIX V6 Advanced Security Features: Introduction and Configuration

2.6.8 Sending/removing the group keystore access key to/from
another group keystore

When running in root admin mode, you can use the efskeymgr command to send
the access key for a group store to a user group keystore using the following
steps as shown in Example 2-44:

� The efskeymgr command is used twice to display the content of the group
keystore for group1 and group2.

� user3 is a member of group2, as shown by the efskeymgr -v command.

� Root sends the access key of group1 to the group2 keystore using the
efskeymgr -s command.

� The efskeymgr -v -k group/group2 command shows that the group2
keystore contains the access key of the group1 keystore.

� The content of user3 keystore has not changed because the user has not
been directly granted any additional access

� When the content of the user3 keystore is reopened using the efskeymgr -o
ksh command, the newly-generated shell gets the group access key for
group1 as well.

� Root removes the access key of group1 from the group2 keystore using the
efskeymgr -S command.

� The efskeymgr -v -k group/group2 command shows that the group2
keystore no longer contains the access key of the group1 keystore.

� When the content of user3 keystore is reopened using the efskeymgr -o ksh
command, the newly-generated shell no longer has the group1 access key.

Example 2-44 Sending a group keystore access key to another group

efskeymgr -v -k group/group1
 Keystore content:
 Keystore owner : gid 204
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/13/07 at 13:17:25
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 53cd3824:7c9d508e:b825a253:f3209fcf:76f1766f
 Validity : This key is valid.
efskeymgr -v -k group/group2
 Keystore content:
 Keystore owner : gid 205
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/13/07 at 13:51:07
 Chapter 2. Encrypted File System 145

 Private key:
 Algorithm : RSA_1024
 Fingerprint : 61e6538d:343c8313:df807f20:ab02451e:734309ca
 Validity : This key is valid.
$ id
uid=212(user3) gid=1(staff)
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 212
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/13/07 at 13:48:07
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 1c9e287c:05a6b7b3:020ce4c5:0f578619:5c7ea3b6
 Validity : This key is valid.
 Access key to keystore group/group2
efskeymgr -k group/group1 -s group/group2
efskeymgr -v -k group/group2
 Keystore content:
 Keystore owner : gid 205
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/13/07 at 13:51:07
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 61e6538d:343c8313:df807f20:ab02451e:734309ca
 Validity : This key is valid.
 Access key to keystore group/group1
$ id
uid=212(user3) gid=1(staff)
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 212
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/13/07 at 13:48:07
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 1c9e287c:05a6b7b3:020ce4c5:0f578619:5c7ea3b6
 Validity : This key is valid.
 Access key to keystore group/group2
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 212
 Type Private key
146 AIX V6 Advanced Security Features: Introduction and Configuration

 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
61c9e287c:05a6b7b3:020ce4c5:0f578619:5c7ea3b6
 Key #1:
 Kind Group key
 Id (uid / gid) 204
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
53cd3824:7c9d508e:b825a253:f3209fcf:76f1766f
 Key #2:
 Kind Group key
 Id (uid / gid) 205
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
61e6538d:343c8313:df807f20:ab02451e:734309ca
efskeymgr -k group/group2 -S group/group1
efskeymgr -v -k group/group2
 Keystore content:
 Keystore owner : gid 205
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/13/07 at 13:51:07
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 61e6538d:343c8313:df807f20:ab02451e:734309ca
 Validity : This key is valid.
$ id
uid=212(user3) gid=1(staff)
$ efskeymgr -o ksh
$ efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 212
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
1c9e287c:05a6b7b3:020ce4c5:0f578619:5c7ea3b6
 Key #1:
 Kind Group key
 Chapter 2. Encrypted File System 147

 Id (uid / gid) 205
 Type Private key
 Algorithm RSA_1024
 Validity Key is valid
 Fingerprint
61e6538d:343c8313:df807f20:ab02451e:734309ca

2.7 Back up and restore

The backup command has a new flag that allows backups of encrypted files or
encrypted file systems. Along with the data from files or a file system, all
cryptographic metadata is also backed up. At restore time, this information is
restored as well. You must also be able to access this information, so you also
must back up any user keystore passwords.

To summarize, any viable backup should include:

� File or file system backup

� Keystores of all users that are the owners of the files being backed up

� Group keystores

� Passwords for all user keystores

2.7.1 Backing up encrypted files

In this section, we show:

� How you can back up both encrypted and cleartext file in the same archive.

� How access to an encrypted file is required in order to perform backup.

� How the internal format of the archive is dependent on the archive location.

� That the archive itself is in encrypted format.

� How the archive format can efficiently protect the information contained in the
archive.

In Example 2-45, we show how you can back up your files as follows:

Important: When running in root admin mode, the root user can reset the
password of a user keystore. When running in root guard mode, root cannot
get access to a user keystore, so you must save the user keystore password
as well.
148 AIX V6 Advanced Security Features: Introduction and Configuration

� In the encrypted file systems /efs, there are two files named file_encrypted
and file_in_clear, one in encrypted format, the other in cleartext format.

� The information contained in both files that are used in this scenarios is
displayed.

� The keys from the current shell are unloaded using the efskeymgr -c ksh
command.

� user1 tries to archive both files in an archive named tmp_archive located on
the non-encrypted file system /tmp using the ls file*|backup -ivZf
/tmp/tmp_archive command. The command fails to open the encrypted file.
However, the archive is created. Searching in the contents of the archive
using the cat /tmp/tmp_archive command reveals the name of the file
file_in_clear and the content of the file as well.

� user1 tries to archive both files in a archive named efs_archive located on the
encrypted file system /efs using the ls file*|backup -ivZf
/efs/tmp_archive command. The command fails and no archive is created.

� user1 must load the content of the keystore in the current shell.

� user1 tries to archive both files in an archive named efs_archive located on
the encrypted file system /efs using the ls file*|backup -ivZf
/efs/tmp_archive command. The command completes successfully and the
archive is created.The archive itself is an encrypted file.

� user1 tries to archive both files in a archive named tmp_archive located on
the non-encrypted file system /tmp using the ls file*|backup -ivZf
/tmp/tmp_archive command. The command completes successfully and the
archive is created. However, the archive itself is an not an encrypted file.

� user2 logs in. It has access to the /efs file system, but cannot access the file
efs_archive.

� user2 has access to the /tmp file system and to the file tmp_archive.
Searching in the content of the files reveals the name of the file file_in_clear
and the content of the file as well. The content of the encrypted file has not
been disclosed.

Example 2-45 File backup

user1@guadalupe/]id
uid=205(user1) gid=1(staff) groups=202(group1)
user1@guadalupe/]ls -alU
total 48
drwxrwxrwxe 3 root system 4096 May 07 20:52 .
drwxr-xr-x- 20 root system 4096 May 04 15:46 ..
-rw-r--r--e 1 user1 staff 15 May 07 19:35 file_encrypted
-rw-r--r--- 1 user1 staff 11 May 07 19:36 file_in_clear
drwxr-xr-x- 2 root system 256 May 03 15:46 lost+found
 Chapter 2. Encrypted File System 149

user1@guadalupe/]cat file_encrypted
encrypted text
user1@guadalupe/]cat file_in_clear
cleartext
user1@guadalupe/]efskeymgr -c ksh
user1@guadalupe/]ls file*|backup -ivZf /tmp/tmp_archive
Mount volume 1 on /tmp/tmp_archive.
 Press Enter to continue.
Backing up to /tmp/tmp_archive.
Cluster 51200 bytes (100 blocks).
Volume 1 on /tmp/tmp_archive
backup: 0511-449 An error occurred accessing file_encrypted: Cannot find the
requested security attribute.
a 11 file_in_clear
The total size is 11 bytes.
Backup finished on Mon May 7 21:04:49 CDT 2007; there are 100 blocks on 1 volumes.
user1@guadalupe/]cat /tmp/tmp_archive
 kêäÀÚ?FÀÚ?Fÿÿby nameby namerootd

kêtõ
 ¤Í
 RÚ?FÆ?FÆ?F

file_in_clearlc¤clear text
kê

user1@guadalupe/]ls file*|backup -ivZf /efs/efs_archive
Mount volume 1 on /efs/efs_archive.
 Press Enter to continue.
backup: 0511-089 Cannot open /efs/efs_archive: Cannot find the requested security
attribute.
Mount volume 1 on /efs/efs_archive.
user1@guadalupe/]efskeymgr -o ksh
user1's EFS password:
user1@guadalupe/]ls file*|backup -ivZf /efs/efs_archive
Mount volume 1 on /efs/efs_archive.
 Press Enter to continue.
Backing up to /efs/efs_archive.
Cluster 51200 bytes (100 blocks).
Volume 1 on /efs/efs_archive
a 4096 file_encrypted
a 11 file_in_clear
The total size is 4107 bytes.
150 AIX V6 Advanced Security Features: Introduction and Configuration

Backup finished on Mon May 7 21:18:45 CDT 2007; there are 100 blocks on 1 volumes.
user1@guadalupe/]efsmgr -l efs_archive
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 205
 Key fingerprint : 92441557:db77320c:daa7e5d4:cf2877ce:30c60454
user1@guadalupe/]ls file*|backup -ivZf /tmp/tmp_archive
Mount volume 1 on /tmp/tmp_archive.
 Press Enter to continue.
Backing up to /tmp/tmp_archive.
Cluster 51200 bytes (100 blocks).
Volume 1 on /tmp/tmp_archive
a 4096 file_encrypted
a 11 file_in_clear
The total size is 4107 bytes.
Backup finished on Mon May 7 21:23:04 CDT 2007; there are 100 blocks on 1 volumes.
user1@guadalupe/]echo $?
0
user2@guadalupe/]id
uid=204(user2) gid=1(staff) groups=202(group1)
user2@guadalupe/]cat efs_archive
cat: 0652-050 Cannot open efs_archive.
user2@guadalupe/]cat tmp_archive
 kêýß?Fß?Fÿÿby nameby namerootd
 kêªÑ¤HÍàÞ?FØÅ?FØÅ?F

file_encrypted×èÁμE "¥î¾,¡ÐJób)½ÌÔà
uØÄ¤ {¶!zùb-PÂy'[Gf«ÈUgX0u%;´kg

 Ë)Ö/#
ïÜîxÇÜçPrôbë
:íqöÅS ª´-"?`H[7ásVÅ7ü

æ¸âþ»¦ºn#NrÛôðw½ÏæQYkK.ÆÆwSE«-¦F|º¯}KbÀo]ýßòcI,£ÕpI¼ÛØÉ©LrìäC<rù×ªkà;ûXªñì8æ@
×èºA ÜkþA2Æ» `Ö2]ç
jnÝKiåêÿ3æùÎ¯+¢67\äμgzÕtÁäNÆqZ|n\¯ X§"EÚ4RpÜ¨éV
sdmå¸î1±1ÃRÌ¯ tûHõ_ñ&M÷ãâI
í Ì°+æ)ÊÄ}uÁÅgÊÛ÷ù0O]ÎcÁ 4^0ãAaÐ*¨;\]$÷ÝòÎ)&o5¶R+rha¡%ïGÑhºÉÇ¾e@ªÝ4ÔÁceö`WÙ'¿jxNhq?$î
ÞË¸`
 ÍáDÌÓé6
 VÓdówé
 Í ßXªQ8RÆ=õ9çÄ`J& /
 Chapter 2. Encrypted File System 151

 ý!#,uÑ)|
±¿=ÒbÃ¨Û¨{ÆþgëS:øç_35 qrS_|ór¥ÚíÍ¼¨°Ñpë#âêª<ùH æ¿-?P§qæ½'âÝZ[W
 lV÷ÈäÏ¯kÖM>ß<#,Ç¶
Jãëmμ °Ì 5?9Pöu¯´dîü9åq*μßGK àÜ¯r#ëtÊd ùVîË÷¸Þ{«¢¤ALù
 ¿f
áZð ó¾Å·±ÅqÊK±°M3þ?$Ï ÑzõxqÜÐ5=ei\ìg¦»ý.UìîÂ>öà):ÝÂ,6"Hò6©¶í
 Ký/ÆJf¿[cÔf5ln 9æÒwºx
Ô-Ì ~-Z`)Sq÷ÜÃþçþôÇñ.K_|éû Îxc£X¨òÜñëðã¯_©ÖHS¯íGæ
qÌNéP HÕÓ9}-μýÚr!¾~©BU?[
 46!7Õ]Fôò±T
 fq,ô,·ÇêÙÓ Gzõ/2%Þ{¾å-õ'e@hèUÙíÜà (6P¨iúÏ@
»J)R±(l¾QÕa¶e
 ´jïÃ)ðIÅ õ¸¯Íço(ßÎÏzÏ?úÔSGZô' D2
]Æ4YÛË´·èp÷o4ñüg¨@¶þôêdêôáª8ÈÛÆK5l©5}/ðá|E$3Õ ÷ýÏp
©íô¥êéáøäD¬Þ)sqÍ©£ì`º5?TV§çþÞ4μ ä*K.Àí
 joP½àkYbìz<]°fñ<¨=\M#Ó.ú*rä¤Ñ
`ÔäHxs×uZ`,¸OlY´=¢Õ¥ÿæäÒß ¾ÅGýÚlpãÚ-±QW_P_~ÛjÀ£eºT¡/EMI
 ËûÒQ·Fk2=AaQèÉz{A»É¾ÍRV«þç$ÞæíØxÖû¸\b
»ÿô´[¿ôNà-õú¸#Ð6(Ïuóá~fíF*Á¤xÙï0Ä*P+Û5*JóHíurv

¢¬1MzâØ1ÀÆ4f"á,ôöGÈP÷«Müþï?kªktTμ+"Yq¾º6o ©<^rÓ`¯Au
xjô¨: VpÿÂrèG[m9|Eú-jËFâÛáPkðëå±Ã[b2ç±,¦Ü%Û-ñÆv¼u
Q´Äãl± SLÄÒ-kMâôì9z-?1ÖVÉ¯T»Gv'{8C^+/× "¶Ì¼_Ôx-ÜWÐV
 økBTÙýñPs±_¦;KÑåõ{uÄÂò¬

+HãÊß½ZJUc#@ùw5RÛ!Ò@+¼Nhìh}EI åÇyMb$N¥e´"
N@ë?dnÀdè!n7jüp&È0ìÀPCò~âT¿þÙoraE¤jÉòçþ@F¤ÅVø]úì£#÷À*ÈÚ¸u-V?Àé=

 èÂSÊ3-#Jÿ<t^wÞmA euaÇÚâúçk@ Ü Â´Þä© É÷Á÷`Äpn4ZQèïM
à^£/]ûªUÅQg-=;5½Î
¤
 ÐDÜ¦ºþ.KÈe¾9 ÞY~ï Z:^éT &ÊH£WxÅd«5D V%"ñÈ4ko oëk
«èúK,μDÒnV# !û/<â`ÌC¢\gi'·åO
SÜgª;dÀçtX$6soÊ"·í-¬ë¡Ö km Wzè8àâiSÀÍh´6i}B
7fë1óÐÓ
á
fÆ"Á-úïX¥RøjD¾QZÜZ1 "
Äºt °vÏDì{i!}vÖiCÅTvhVtg]ÁÖμMcpAë¢ fíbÎ©¢A Øo°ÄÁFHôø¡'VXKG@¯ÜyK?A«=|ÜÄÜJ}ÙAù#þ
ö ñ÷ KwÓýê¶\VGwIìnÁßE
-Æ¶jû- !þ)lñóîå"Vò!Éº×=ìWBª×NÊ±9[¼î9ÎÊ¯(/W

Jlô÷ÈÊÑ½ðÂºGM-s!ac`¥ñ~§nÂyÆÉ+Þþ|hÓ+
 -c^ÿÍþÿé{"ü
1lÿWÔ±Ë
´ÛãÅqv>1Ykeó
 Ê~±'[/tc7ñý5KoμÏÙÿ¢ò
152 AIX V6 Advanced Security Features: Introduction and Configuration

 ao
 Ngp©$
ÙOÜeW!y
"C
èS&60¶Ú?%°Z¶Z_ÙãÆ>¥ø=¼Z%àrV$*!P!§Á×j bu©
 ¿ÃsØYyÀ'Ñ1nQÁoçDìYμÊúÏY3Iún2À -ØR
 «[§ÅË'{Fõ
x)ç¨0]ù|zï.täçc¬ÇÆ$½ÔÕåzY¿=ö¸ Éù×\ÜÌEÚñÆ]°¥gù/Á/ÙMþÏ
ÚÝ 1z±§¶)ñ6löi9ôÏí5!μÖTÁL3«¨2 ì+ZQx> E3'D7IÄQyÆx
 d¢Xvj¾#
í¢^ÙL´>þ4Ìû^áxüZ¼îôËÛCÝ¾ uãôÖj,ÿ(ÑÔÃ~#_t¶J3\U
OCÆyS9R£ ý};¡«·X7ÛÞÆ?õLïºR6 j¯×ëùÂiºmûgäZ¶§ Ç÷Öqü.Aó¿ÆUÀ`×*{ 1ßôÂ¢$++ùo,¸#LQêç)`
@~ÿÿ&Ù |ÅYH
 /ñé@8íÜ[UEú£SL
^?¡È+¤ÿ`Û mA
 }Äôð!Ö=K¢h YúÑ~"M?VE¾ÀÒQåxzo ËqGÁ=ÌÙ á×
k lgÇMýâ"D ¦,¤
Ñ
 äÛ9)ëæ:zSqç g>v~+¾H"ÏZÆ±{Õ,¢&e O!RQÔ#âiùfÑÅüìÏÓÊ?8ÐÃC=ØYÇÉd?
Ö¶ç!PÝËSÜ))Ú¤÷ïëhôÙ¦jùÆ*Eý± èçMÈàGV© *ïõCTºÎ´¿ ¡YE
4ê¯p0
+ÝÖ`Òra
 GåPïmÀRZ*\«C»´_2}'Ö.ØûPiau¥}¶o2ßá[\Ã](»¶6RR
 vD©nqBe3ÖJ(Y"äa1àO2μSK¼÷#¸Ö]
 [ý¾O
Ï!7
°zy½BÂ÷#úÓN~¡ªlÉ%Kç»Kõ
{
 ´º@-úÔcDæl¦Ü¯òå
kêD¶EFSFILESIZEDone15Ð4ô~þN~|8ÛÓÙÙ¿
kêÓ¤ß?FØÅ?FØÅ?F
øSYSTEMø_NREêñsÍDWÛw2
Ú§åÔÏ(wÎ0ÆT;a;óîFF+çWnùIz@0Á6êèHÊÕÅÔ´*ÂF
 *?·s¢ß49ìÙQé hÆ&¼@[¶*Yø
Àri7ÂÏ/±,6t_×§[}t+ ´È/Îà
 ïôÿ

 kê$)
 ¤Í
 àÞ?FÆ?FÆ?F

file_in_clearlc¤clear text
,¡kê
 Chapter 2. Encrypted File System 153

PuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTY
user2@guadalupe/]PuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTY ksh:
PuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTYPuTTY
: not found.

2.7.2 Restoring encrypted files

Here we discuss restoring encrypted files.

Scenario 1
We try to restore the archives created in Example 2-46 in a encrypted file
systems named /jfs2 as follows:

� user1 successfully copies efs_archive and tmp_archive in /efs2. Both files are
encrypted, although originally the file tmp_acrhive was in cleartext.

� Restoring the efs_archive is successful. Both original files can be accessed
and displayed.

� Restoring the tmp_archive is successful. Both original files can be accessed
and displayed

Example 2-46 Restoring files in an encrypted file system

user1@guadalupe/]ls -alU
total 240
drwxrwxrwxe 3 root system 256 May 07 22:15 .
drwxr-xr-x- 22 root system 4096 May 07 22:07 ..
-rw-r--r--e 1 user1 staff 51200 May 07 22:15 efs_archive
drwxr-xr-x- 2 root system 256 May 07 22:07 lost+found
-rw-r--r--e 1 user1 staff 51200 May 07 22:15 tmp_archive
user1@guadalupe/]restore -xvf efs_archive
Please mount volume 1 on efs_archive.
 Press the Enter key to continue.

New volume on efs_archive:
Cluster size is 51200 bytes (100 blocks).
The volume number is 1.
The backup date is: Mon May 7 21:18:44 CDT 2007
Files are backed up by name.
The user is root.
x 4096 file_encrypted
x 11 file_in_clear
The total size is 4107 bytes.
The number of restored files is 2.
user1@guadalupe/]ls -alU
154 AIX V6 Advanced Security Features: Introduction and Configuration

total 272
drwxrwxrwxe 3 root system 256 May 07 22:17 .
drwxr-xr-x- 22 root system 4096 May 07 22:07 ..
-rw-r--r--e 1 user1 staff 51200 May 07 22:15 efs_archive
-rw-r--r--e 1 user1 staff 15 May 07 19:35
file_encrypted
-rw-r--r--e 1 user1 staff 11 May 07 19:36
file_in_clear
drwxr-xr-x- 2 root system 256 May 07 22:07 lost+found
-rw-r--r--e 1 user1 staff 51200 May 07 22:15 tmp_archive
user1@guadalupe/]cat file_in_clear
clear text
user1@guadalupe/]cat file_encrypted
encrypted text
user1@guadalupe/]rm file*
user1@guadalupe/]restore -xvf tmp_archive
Please mount volume 1 on tmp_archive.
 Press the Enter key to continue.

New volume on tmp_archive:
Cluster size is 51200 bytes (100 blocks).
The volume number is 1.
The backup date is: Mon May 7 21:23:03 CDT 2007
Files are backed up by name.
The user is root.
x 4096 file_encrypted
x 11 file_in_clear
The total size is 4107 bytes.
The number of restored files is 2.
user1@guadalupe/]ls -alU
total 272
drwxrwxrwxe 3 root system 256 May 07 22:20 .
drwxr-xr-x- 22 root system 4096 May 07 22:07 ..
-rw-r--r--e 1 user1 staff 51200 May 07 22:15 efs_archive
-rw-r--r--e 1 user1 staff 15 May 07 19:35
file_encrypted
-rw-r--r--e 1 user1 staff 11 May 07 19:36
file_in_clear
drwxr-xr-x- 2 root system 256 May 07 22:07 lost+found
user1@guadalupe/]cat file_in_clear
clear text
user1@guadalupe/]cat file_encrypted
encrypted text
 Chapter 2. Encrypted File System 155

Scenario 2
In this scenario, we show how you can restore files backed up by a different user
than the file owner, as shown in Example 2-47:

� The file is owned by user2. He or she is the only user that can access the file.
Not even root can access the file and archive it.

� Access is granted to root to the file.

� The backup command succeeds. The archive file is owned by root.

� The restore command is successful. File attributes and access keys are
restored successfully.

� Access is granted for user5.

� The backup command succeeds. The archive file is owned by user5.

� The restore command is successful. The file that has been created has the
same permissions and the same access keys, but is owned now by user5.

Example 2-47 Restoring files owned by a different user

user2@guadalupe/]ls -alU
total 40
drwxrwxrwxe 3 root system 4096 May 08 12:22 .
drwxr-xr-x- 22 root system 4096 May 07 22:07 ..
-rw-r--r--e 1 user2 staff 13 May 08 12:17 file
drwxr-xr-x- 2 root system 256 May 03 15:46 lost+found
user2@guadalupe/]efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 204
 Key fingerprint : 047dcbd4:f7528784:44488eab:7420d4f2:af3e8bee
root@guadalupe/]ls file|backup -ivZf archive
Mount volume 1 on archive.
 Press Enter to continue.
Backing up to archive.
Cluster 51200 bytes (100 blocks).
Volume 1 on archive
backup: 0511-449 An error occurred accessing file: Security
authentication is denied.
The total size is 0 bytes.
Backup finished on Tue May 8 12:34:41 CDT 2007; there are 100 blocks
on 1 volumes.
user2@guadalupe/]efsmgr -a file -u root
156 AIX V6 Advanced Security Features: Introduction and Configuration

root@guadalupe/]ls file|backup -ivZf archive
Mount volume 1 on archive.
 Press Enter to continue.
Backing up to archive.
Cluster 51200 bytes (100 blocks).
Volume 1 on archive
a 4096 file
The total size is 4096 bytes.
Backup finished on Tue May 8 12:32:55 CDT 2007; there are 100 blocks
on 1 volumes.
root@guadalupe/]restore -xvf archive
Please mount volume 1 on archive.
 Press the Enter key to continue.

New volume on archive:
Cluster size is 51200 bytes (100 blocks).
The volume number is 1.
The backup date is: Tue May 8 13:37:16 CDT 2007
Files are backed up by name.
The user is root.
x 4096 file
The total size is 4096 bytes.
The number of restored files is 1.
root@guadalupe/]ls -alU file
-rw-r--r--e 1 user2 staff 13 May 08 13:34 file
root@guadalupe/]efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_2048
 Who : uid 0
 Key fingerprint : 3ea8581e:16982aa8:dfec5c5a:f02251f1:cfca0445
 Key #2:
 Algorithm : RSA_1024
 Who : uid 204
 Key fingerprint : 047dcbd4:f7528784:44488eab:7420d4f2:af3e8bee
user2@guadalupe/]efsmgr -a file -u user5
user2@guadalupe/]efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 204
 Chapter 2. Encrypted File System 157

 Key fingerprint : 047dcbd4:f7528784:44488eab:7420d4f2:af3e8bee
 Key #2:
 Algorithm : RSA_1024
 Who : uid 207
 Key fingerprint : 49e42532:e8c471bf:2be9ba03:3f9d12b4:4ba01cea
user5@guadalupe/]ls file|backup -ivZf archive_user
Mount volume 1 on archive_user.
 Press Enter to continue.
Backing up to archive_user.
Cluster 51200 bytes (100 blocks).
Volume 1 on archive_user
a 4096 file
The total size is 4096 bytes.
Backup finished on Tue May 8 13:50:16 CDT 2007; there are 100 blocks
on 1 volumes.
user5@guadalupe/]ls -al
total 152
drwxrwxrwx 3 root system 4096 May 08 13:50 .
drwxr-xr-x 22 root system 4096 May 07 22:07 ..
-rw-r--r-- 1 user5 staff 51200 May 08 13:50 archive_user
-rw-r--r-- 1 user2 staff 13 May 08 13:34 file
drwxr-xr-x 2 root system 256 May 03 15:46 lost+found
user5@guadalupe/]restore -xvf archive_user
Please mount volume 1 on archive_user.
 Press the Enter key to continue.

New volume on archive_user:
Cluster size is 51200 bytes (100 blocks).
The volume number is 1.
The backup date is: Tue May 8 13:50:16 CDT 2007
Files are backed up by name.
The user is root.
x 4096 file
The total size is 4096 bytes.
The number of restored files is 1.
user5@guadalupe/]ls -al
total 168
drwxrwxrwx 3 root system 4096 May 08 13:51 .
drwxr-xr-x 22 root system 4096 May 07 22:07 ..
-rw-r--r-- 1 user5 staff 51200 May 08 13:50 archive_user
-rw-r--r-- 1 user5 staff 13 May 08 13:34 file
drwxr-xr-x 2 root system 256 May 03 15:46 lost+found
user5@guadalupe/]efsmgr -l file
EFS File information:
 Algorithm: AES_128_CBC
158 AIX V6 Advanced Security Features: Introduction and Configuration

List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 204
 Key fingerprint : 047dcbd4:f7528784:44488eab:7420d4f2:af3e8bee
 Key #2:
 Algorithm : RSA_1024
 Who : uid 207
 Key fingerprint : 49e42532:e8c471bf:2be9ba03:3f9d12b4:4ba01cea

2.7.3 User private keys impact on file backup/restore

In this scenario, we show that information contained in user keystores is vital for
successful restoration of an archive. User and group keystores must also be
backed up in order to be able to access the files that are restored. You must also
ensure access to user and group keystores.

A practical backup/restore scenario is shown in Example 2-48 on page 160 as
follows:

� user6 creates file1 using the echo command.

� The efsmgr -l command shows that file1 can be accessed using the private
key whose fingerprint is c566b5cf:04921ffa:1480a2bc:b34d48f3:c9cccb9c.
For simplicity, we will refer it as key1.

� The efskeymgr -v command shows that key1 is stored in the user keystore.

� user6 generates a new private key named key2 using the efskeymgr -R
command.

� user6 loads the content of the keystore in the current shell so key2 will be
used instead of key1.

� user6 creates file2 using the echo command.

� Using the efsmgr -l command, the fingerprint of key2 is
ffcbef78:cf865d70:bfab5101:ab572d70:f3326d79.

� user6 generates a new private key named key3 using the efskeymgr -R
command.

� user6 loads the content of the keystore in the current shell so key3 will be
used instead of key2.

� user6 creates file3 using the echo command.

� Using the efsmgr -l command, the fingerprint of key3 is
340e3449:a1fb5712:6163de83:02c08db1:400d830e.
 Chapter 2. Encrypted File System 159

� The efskeymgr -v command shows that key3 is active and key1 and key2
have been deprecated. However, they are still present in the user keystore.

� user6 backs up file1, file2, and file3. He or she can add all files to the archive
because he or she still has the deprecated keys. The archive itself is an
encrypted file that can be accessed with key3.

� The original file1, file2, and file3 are removed.

� user6 restores all files using the restore command. All restored files preserve
the access key at the time they were created.

� user6 still has access to all files as shown by the cat command.

� key2 is deleted and removed from the user6 keystore, as shown by the
efskeymgr -D and efskeymgr -v commands.

� file1, file2, and file3 are removed again.

� user6 restores successfully all files using the restore command.

� Any new generated shell will not contain key2, as shown by the efskeymgr -o
and efskeymgr -V commands.

� user6 can access file3 using the active key (key3) and file1 using the
deprecated key (key1). file2 can no longer be accessed because key2 has
been deleted.

Example 2-48 Access keys must be saved along with files

$ echo 1111 > file1
$ efsmgr -l file1
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 208
 Key fingerprint : c566b5cf:04921ffa:1480a2bc:b34d48f3:c9cccb9c
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 208
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/11/07 at 16:10:19
 Private key:
 Algorithm : RSA_1024
 Fingerprint : c566b5cf:04921ffa:1480a2bc:b34d48f3:c9cccb9c
 Validity : This key is valid.

$ efskeymgr -R RSA_1024
160 AIX V6 Advanced Security Features: Introduction and Configuration

$ efskeymgr -o ksh
user6's EFS password:
$ touch file2
$ echo 2222> file2
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 208
 Key fingerprint : ffcbef78:cf865d70:bfab5101:ab572d70:f3326d79

$ efskeymgr -R RSA_1024
$ efskeymgr -o ksh
user6's EFS password:
$ echo 3333> file3
$ efsmgr -l file3
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 208
 Key fingerprint : 340e3449:a1fb5712:6163de83:02c08db1:400d830e
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 208
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/11/07 at 16:10:19
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 340e3449:a1fb5712:6163de83:02c08db1:400d830e
 Validity : This key is valid.
 Private key:
 Algorithm : RSA_1024
 Fingerprint : ffcbef78:cf865d70:bfab5101:ab572d70:f3326d79
 Validity : This key was deprecated on 05/11/07 at 16:41:27.
 Private key:
 Algorithm : RSA_1024
 Fingerprint : c566b5cf:04921ffa:1480a2bc:b34d48f3:c9cccb9c
 Validity : This key was deprecated on 05/11/07 at 16:33:10.
$ ls file*|backup -ivZf archive
Mount volume 1 on archive.
 Press Enter to continue.
Backing up to archive.
 Chapter 2. Encrypted File System 161

Cluster 51200 bytes (100 blocks).
Volume 1 on archive
a 4096 file1
a 4096 file2
a 4096 file3
The total size is 12288 bytes.
Backup finished on Fri May 11 17:03:46 CDT 2007; there are 100 blocks
on 1 volumes.
$ rm file*
$ restore -xvf archive
Please mount volume 1 on archive.
 Press the Enter key to continue.

New volume on archive:
Cluster size is 51200 bytes (100 blocks).
The volume number is 1.
The backup date is: Fri May 11 17:03:45 CDT 2007
Files are backed up by name.
The user is root.
x 4096 file1
x 4096 file2
x 4096 file3
The total size is 12288 bytes.
The number of restored files is 3.
$ efsmgr -l file1
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 208
 Key fingerprint : c566b5cf:04921ffa:1480a2bc:b34d48f3:c9cccb9c
$ efsmgr -l file2
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 208
 Key fingerprint : ffcbef78:cf865d70:bfab5101:ab572d70:f3326d79
$ efsmgr -l file3
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
162 AIX V6 Advanced Security Features: Introduction and Configuration

 Algorithm : RSA_1024
 Who : uid 208
 Key fingerprint : 340e3449:a1fb5712:6163de83:02c08db1:400d830e
$ cat file*
1111
2222
3333
$ efskeymgr -D ffcbef78:cf865d70:bfab5101:ab572d70:f3326d79
$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 208
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/11/07 at 16:10:19
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 340e3449:a1fb5712:6163de83:02c08db1:400d830e
 Validity : This key is valid.
 Private key:
 Algorithm : RSA_1024
 Fingerprint : c566b5cf:04921ffa:1480a2bc:b34d48f3:c9cccb9c
 Validity : This key was deprecated on 05/11/07 at 16:33:10.
$ rm file*
$ restore -xvf archive
Please mount volume 1 on archive.
 Press the Enter key to continue.

New volume on archive:
Cluster size is 51200 bytes (100 blocks).
The volume number is 1.
The backup date is: Fri May 11 17:03:45 CDT 2007
Files are backed up by name.
The user is root.
x 4096 file1
x 4096 file2
x 4096 file3
The total size is 12288 bytes.
The number of restored files is 3.
$ efskeymgr -o ksh
$ cat file*
1111
cat: 0652-050 Cannot open file2.
3333
 Chapter 2. Encrypted File System 163

Example 2-49 Reencrypting files with active user keys

$ efskeymgr -v
 Keystore content:
 Keystore owner : uid 208
 Keystore mode : admin: managed by EFS administrator
 Password changed last on .. : 05/11/07 at 16:10:19
 Private key:
 Algorithm : RSA_1024
 Fingerprint : 340e3449:a1fb5712:6163de83:02c08db1:400d830e
 Validity : This key is valid.
 Private key:
 Algorithm : RSA_1024
 Fingerprint : c566b5cf:04921ffa:1480a2bc:b34d48f3:c9cccb9c
 Validity : This key was deprecated on 05/11/07 at 16:33:10.
$ efsmgr -l file1
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 208
 Key fingerprint : c566b5cf:04921ffa:1480a2bc:b34d48f3:c9cccb9c
$ efsmgr -e file1
$ efsmgr -l file1
EFS File information:
 Algorithm: AES_128_CBC
List of keys that can open the file:
 Key #1:
 Algorithm : RSA_1024
 Who : uid 208
 Key fingerprint : 340e3449:a1fb5712:6163de83:02c08db1:400d830e

Important: If you are using a software product for backup, make sure that all
user and group keystores are also backed up.

Tip: Users may accidentally delete deprecated keys or company security
policy may enforce that user deprecated keys should be deleted. To avoid
losing information in such circumstances, you could update file security
information by simply reencrypting user files. The newly-generated symmetric
key will be encrypted with the user active public key and added to file
cryptographic metadata, as shown in Example 2-49.
164 AIX V6 Advanced Security Features: Introduction and Configuration

Chapter 3. Role Based Access Control

In this chapter, we introduce and discuss the use of Role Based Access Control.

This chapter contains the following sections:

� “AIX V6 and Role Based Access Control (RBAC)” on page 166

� “The traditional approach to AIX administration” on page 166

� “Introducing RBAC” on page 171

� “Configuring RBAC” on page 178

� “Predefined roles in RBAC” on page 179

� “User defined roles” on page 191

� “System defined and user defined authorizations” on page 200

� “The Privileged Command Database” on page 206

� “The Privileged File Database” on page 213

� “The Privileged Device Database” on page 218

� “Securing the root user” on page 219

� “Migrating to Enhanced RBAC” on page 226

� “RBAC remote database support” on page 228

� “RBAC scenarios” on page 233

3

© Copyright IBM Corp. 2007. All rights reserved. 165

3.1 AIX V6 and Role Based Access Control (RBAC)

AIX V6 introduces Enhanced RBAC, which is a method to delegate roles and
authorizations among one or more general user accounts.

RBAC provides the system administrator with the ability to designate tasks to
general users that traditionally would be performed by the root user, or through
setuid/setgid.

One benefit of RBAC is the minimizing of the use of the setuid/setgid programs
by restricting the privileges assigned to a command to only those privileges that
the command needs to execute its task.

There is no specific install package in AIX V6 for either Legacy or Enhanced
Mode RBAC. The majority of the Enhanced RBAC commands are included in the
bos.rte.security fileset.

The following sections will introduce and further discuss the components that are
included with Enhanced RBAC.

3.2 The traditional approach to AIX administration

Here we talk about the traditional approach to AIX administration and the tools
used for it.

3.2.1 The superuser administrative account

The traditional approach to privileged administration in the AIX operating system
has relied on a single system administrator account named root. The root
account is classed as the superuser, as the root user account has the authority to
perform all privileged system administration on the AIX system. The root user is
normally designated with user identity/uid 0.

Reliance on a single superuser for all aspects of system administration poses
problems in regards to the separation of administrative duties. While a single
administrative account may be acceptable in certain business environments,
many environments require multiple administrators, each with responsibility for
performing different tasks.
166 AIX V6 Advanced Security Features: Introduction and Configuration

Using a single administrative account may require that the superuser role is
shared among two or more system administrators. This shared administrative
approach may breach business audit guidelines in an environment that requires
that all privileged system administration is attributable to a single individual.

An alternative method of sharing the superuser role relied on creating another
user that has the same UID as the root user.

Sharing administration in either of these fashions may create issues from a
security perspective in that each administrator is granted complete control over
the system. There was no way to limit the operations that any given administrator
could perform. Since the root user is the most privileged user, the user could
perform unauthorized operations and also be able to erase any audits of these
activities, thereby making tracking of the administrative actions impossible.

3.2.2 Discretionary Access Control (DAC)

Discretionary Access Controls (DACs) are the aspects of security that are under
the control of the owner of a file or directory.

In AIX, DAC is provided using the traditional file object permission bit method of
owner/group/other and read/write/execute.

By using file object permission bits, an individual user determines whether
another user or group needs access to the data in a particular file object. The
DAC is generally based on the need to know criterion and grants or denies
access accordingly. This type of access is based on the UID and the GID(s) to
which a user belongs. All file system objects have associated permissions to
describe access for the owner, group, and other.

Attention: Using DAC a single user ID can be designated as the owner of an
executable file where only they can run it. If that user leaves the company,
then a systems administrator would have to modify the DAC on that file before
anyone else could run it. The same scenario would apply when using DAC
with group IDs too.
 Chapter 3. Role Based Access Control 167

In Example 3-1, we see the file objects contained in the oper1 user home
directory. The file MyBankBallance.txt is an example of how DAC may be used to
restrict the access to a file to an individual user or group.

Example 3-1 File object permission bit DAC for user “oper1”

oper1@trinity:/home/oper1# ls -ltra
total 48
-rwxr----- 1 oper1 staff 254 Apr 18 07:34 .profile
drwxr-xr-x 10 bin bin 256 Apr 18 07:35 ..
-rw-r--r-- 1 oper1 staff 553 Apr 19 23:24 smit.transaction
-rw-r--r-- 1 oper1 staff 418 Apr 19 23:24 smit.script
-rw-r--r-- 1 oper1 staff 1079 Apr 19 23:24 smit.log
drwxr-xr-x 2 oper1 staff 256 Apr 20 01:28 .
-rw------- 1 oper1 staff 79 Apr 20 01:59 MyBankBallance.txt
-rw------- 1 oper1 staff 390 Apr 20 02:00 .sh_history
oper1@trinity:/home/oper1#

3.2.3 Authorization with User ID (UID) and Group ID (GID)

As we discussed previously, DAC provides the ability to restrict access to a file
object based on read, write, or execute permissions. While DAC allows some
granularity by using the AIX file permissions and ownerships, DAC is unable to
protect against the malicious or accidental modification of a file object’s
permission or ownerships. If a file object is an executable program, then using
UID/GID access control is one method of further restricting access to only users
with the appropriate UID/GID.

If UID/GID checking is included in an executable program, then the program will
only successfully execute if the process UID/GID matches the embedded
UID/GID that has been included in the executable.

In the following example, we demonstrate:

1. Modifying a privileged file object’s DAC settings to allow execution by all users

2. Attempting to execute the shutdown command by a user that is not the root
user or in the shutdown group

The shutdown command is shell script owned by the root user and includes read
and execute permissions for the shutdown group. The shutdown shell script
includes a UID/GID checking mechanism to check whether the UID/GID is
root:shutdown. If the UID/GID does not comply, then the shutdown shell script
will call the exec_shutdown executable.
168 AIX V6 Advanced Security Features: Introduction and Configuration

To allow all users on the system to execute the shutdown command, we must
modify the permissions to allow read and execute for users outside of the
shutdown group.

In Example 3-2, we modify the shutdown and exec_shutdown commands to allow
execution by all users on the system.

Example 3-2 Modifying the DAC permissions to allow execution

root@trinity:/root# ls -ltra /usr/sbin/shutdown
-r-xr-x--- 1 root shutdown 42939 Apr 17 10:26 /usr/sbin/shutdown
root@trinity:/root# ls -ltra /usr/sbin/exec_shutdown
-r-xr-x--- 1 root shutdown 2694 Apr 17 10:26 /usr/sbin/exec_shutdown
root@trinity:/root# chmod 555 /usr/sbin/shutdown
root@trinity:/root# chmod 555 /usr/sbin/exec_shutdown
root@trinity:/root# ls -ltr /usr/sbin/shutdown
-r-xr-xr-x 1 root shutdown 42939 Apr 17 10:26 /usr/sbin/shutdown
root@trinity:/root# ls -ltra /usr/sbin/exec_shutdown
-r-xr-xr-x 1 root shutdown 2694 Apr 17 10:26 /usr/sbin/exec_shutdown
root@trinity:/root#

Now that we have modified the DAC permissions of the shutdown and
exec_shutdown commands to allow execution by any user on the system, we will
log in as the user oper1 and execute the shutdown command. The user oper1 has
a UID of 208 and is in the staff group.

In Example 3-3, we execute the shutdown command as the user oper1.

Example 3-3 Executing the shutdown command as user oper1

oper1@trinity:/home/oper1# id
uid=208(oper1) gid=1(staff)
oper1@trinity:/home/oper1# ls -ltra /usr/sbin/shutdown
-r-xr-xr-x 1 root shutdown 42939 Apr 17 10:26 /usr/sbin/shutdown
oper1@trinity:/home/oper1# ls -ltra /usr/sbin/exec_shutdown
-r-xr-xr-x 1 root shutdown 2694 Apr 17 10:26 /usr/sbin/exec_shutdown
oper1@trinity:/home/oper1# shutdown -F
oper1@trinity:/home/oper1#

The shutdown command executes, but rather than performing the system
shutdown task, the command exits without the expected system shutdown action
being performed. This is because the exec_shutdown executable also checks for
the UID/GID of root:shutdown. If the UID/GID do not match the values coded into
the exec_shutdown executable, then the program will exit.
 Chapter 3. Role Based Access Control 169

This example of UID/GID access checking is not widely used in AIX 5L. Not all
critical commands have been coded this way to ensure that, regardless of the
DAC setting, the command will only perform the action when executed by a
privileged UID/GID.

In Figure 3-1, we outline the UID/GID process used by the shutdown command to
determine whether the oper1 user has the appropriate authorization to execute
the command and perform the shutdown procedure.

Figure 3-1 Explanation of UID/GID authorization control

3.2.4 Privileged escalation with Set User Identification (setuid)

The traditional approach to access control in AIX has been performed by using
the user identity associated with the process to determine access control based
on the DAC permissions of the executable. However, the root user ID of 0 has
traditionally been allowed to bypass permission checks, so a process that is
executing as the root user is able to succeed at any access checks on the system
and perform any operation desired. This becomes a security issue when using
setuid applications.

UID/GID Authorization Control

Does "oper 1" have
UID = 0 OR GID = 21

Continue
shutdown procedure

Continue shutdown
procedure

Does "oper 1" have
DAC execution rights
to /usr/sbin/shutdown

Login "oper 1"
UID = 208
GID = 1
/usr/sbin/shutdown

Program exits, no
shutdown

shutdown script
cannot execute

Execute
/usr/sbin/exec_shutdown

Does "oper 1" have
UID = 0 or GID = 21 Yes

No Yes

No

No

Yes
170 AIX V6 Advanced Security Features: Introduction and Configuration

The concept of setuid allows for a command to execute under a different user
identity then the user that invoked the command. setuid may be necessary for
situations when a general user needs to accomplish a privileged task. An
example of this is the passwd command. The /etc/passwd file uses DAC
permissions that restrict the read/write access to the file to the root user. Since
any user other then the root user not have access to the file that stores user
passwords, a general user needs additional privilege to change their password.
For this reason, the passwd command is setuid to the root user. When a user
other than the root user invokes the passwd command, it will appear to the
operating system that the root user is accessing the file and the access will be
granted.

While the setuid concept does allow for the desired access control functionality, it
carries with it an inherent security risk. Since the setuid program is effectively
executing in the context of the root user, if an attacker successfully takes over the
program that is being executed with the setuid bit before the program exits, then
the attacker would have all of the powers of the root user. The attacker may then
be able to bypass all access checks, as the attacker may remain with the
effective privileges of the root user and be able to perform all operations that the
root user could perform.

A more secure solution to privileged command execution would be to only assign
a subset of the root user privileges to the program so that the least privileged
principle is followed and the threat is mitigated.

The least privileged principle is an approach to security that grants a process or
an individual only the authority or privilege required to perform a specific task.
The user’s access to additional files or commands are restricted on a need to
know basis.

3.3 Introducing RBAC

In this section, we will introduce the components included in RBAC.

3.3.1 Legacy Mode versus Enhanced Mode RBAC

A limited implementation of RBAC was introduced in AIX V4.2. Beginning with
AIX Version 6.1, a new implementation of RBAC provides for a very fine granular
mechanism through which administration tasks can be better controlled, offering
the administrator a more precise and customized approach than control of the
privileged command execution.
 Chapter 3. Role Based Access Control 171

Since the two implementations of RBAC offer significant differences in their
operational scope and functionality, the two RBAC implementations will use the
following terms to describe their associated implementation:

Legacy RBAC Mode The historic behavior of AIX roles introduced in AIX V
4.2.1

Enhanced RBAC Mode
The new implementation introduced with AIX Version 6.1

Both modes of operation are supported in AIX V6, however, Enhanced RBAC
Mode will be the default on a newly installed system.

Legacy Mode RBAC
With the release of AIX V4.2.1, the AIX security infrastructure began to provide
limited RBAC functionality. This functionality, now know as Legacy Mode RBAC,
could allow users other than the root user to perform certain privileged system
administration tasks. In an Legacy RBAC implementation, when a given
administrative command is invoked by a user other than the root user, the code in
the executed command will determine if the user was assigned a role with the
required authorization. If the user is authorized, then the execution continues; if
not, the command fails with an error. Legacy RBAC often requires that the
command being controlled by an authorization be setuid to the root user in order
for an authorized invoker to have the proper privileges to accomplish the
operation.

The Legacy RBAC implementation also introduced a predefined set of
authorizations that can be used to determine access to administrative
commands. The predefined authorizations could be expanded by the
administrator. Additionally, a framework of administrative commands and
interfaces to create roles, assign authorizations to roles, and assign roles to
users is also provided.

While the Legacy RBAC implementation provides the ability to partially segment
the administration responsibilities, it includes the following restrictions:

� Framework requires changes to commands/applications for them to be RBAC
enabled.

� Predefined authorizations are not granular as Enhanced Mode RBAC.

� Users often required membership in a certain group as well as having a role
with a given authorization in order to execute a command.

� A true separation of duties is difficult to implement. If a user is assigned
multiple roles, then all assigned roles are always active. There is no method
to activate only a single role without activating all roles that the user is
assigned.
172 AIX V6 Advanced Security Features: Introduction and Configuration

� The least privilege principle not adopted in the operating system. Privileged
commands must typically be setuid to the root user.

While Legacy RBAC will continue to be supported, administrators are strongly
encouraged to move to Enhanced RBAC. Enhanced RBAC offers more granular
control of authorizations and its reduced reliance upon setuid programs.

Enhanced Mode RBAC
Beginning with AIX V6, a further implementation of RBAC has been provided.
This Enhanced Mode RBAC allows applications that require administrative
privileges for certain operations to be integrated into new functions included with
the Enhanced RBAC infrastructure.

The Enhanced RBAC integration options use granular privileges and
authorizations and allow the administrator the ability to configure any command
on the system as a privileged command. Features of Enhanced RBAC will be
installed and enabled by default on all installations of AIX beginning with AIX V6.

Enhanced RBAC allows the administrator to provide for a customizable set of
authorizations, roles, privileged commands, devices, and files through the
Enhanced RBAC security databases.

With enhanced RBAC, the security databases may reside either in the local file
system or be managed remotely through LDAP.

Enhanced RBAC consists of the following security database files:

� Authorization Database

� Role Database

� Privileged Command Database

� Privileged Device Database

� Privileged File Database

The Enhanced RBAC security database files are text files and do not require an
additional database subsystem to be installed on the AIX V6 system.

The Enhanced RBAC databases are further discussed later in this chapter.

Enhanced RBAC mode introduces a new naming convention for authorizations
that allows for a hierarchy of authorizations to be created. Enhanced RBAC
includes a granular set of system-defined authorizations and allows an
administrator to create additional user-defined authorizations as necessary.
 Chapter 3. Role Based Access Control 173

3.3.2 Authorizations

In Enhanced RBAC, an authorization is a text string associated with security
related functions or commands. Authorizations provide a mechanism to grant
rights to users to perform privileged actions and to provide different levels of
functionality to different classes of users. Authorizations are assigned to roles,
which may then be assigned to user.

When a command that is governed by an authorization is executed, access is
only granted if the invoking user has the required authorization. For this reason,
an authorization can be thought of as a key that is able to unlock one or more
commands.

3.3.3 Roles

With Enhanced RBAC, the behavior of roles has been further developed to
provide for a separation of duty functionality. Enhanced RBAC introduces the
concept of role sessions to AIX. A role session is defined as a process that has
one or more roles associated to it. Enhanced RBAC allows a user to choose to
activate a role session for any roles that they have been assigned. By default,
none of the users roles are active at login, giving the user the ability to activate
the role that is required for the currently activity.

Roles have further been enhanced to support the requirement that the user must
authenticate before activating the role. This authentication requires the user’s
login password to be authenticated before one of the user’s assigned roles may
be activated.

This authorization enhancement aids in protection of an attacker taking over a
user session since the attacker would still need to then authenticate by entering
the user’s login password to activate the user's roles.

Note: At the time of publication, Enhanced RBAC may be managed through
the command line or the SMIT tool. Enhanced RBAC support is not included in
WebSM.
174 AIX V6 Advanced Security Features: Introduction and Configuration

3.3.4 Privileges

The introduction of the Privileged Command Database allows for the
implementation of the least privileged principle. The least privileged principle is
a methodology that aims to assign a user only the minimum required privileges
for the user to complete a task/command/process.

Enhanced RBAC increases the granularity of privileges on the system allowing
for explicit privileges to be granted to a command and the execution of that
command to be governed by an authorization.

The Privileged Command Database provides the ability to remove the
dependency on setuid and setgid programs, allows the administrator to assign
commands only the privileges that are required for the successful execution of
the command, without requiring a code change to the actual command.

The Privileged Device Database allows read and write access to devices to be
controlled by privileges.

The Privileged File Database will allow unprivileged users read and write access
to restricted files based on authorizations.

The privileged command database, privileged command, and privileged file
database increase the granularity of system administrative tasks that can be
assigned to otherwise non-privileged users.

3.3.5 Kernel Security Tables

Enhanced RBAC provides a mechanism whereby information in the Enhanced
RBAC security database is gathered and verified and then sent to an area of the
kernel designated as the Kernel Security Tables (KST). The data in the KST
determines the security policy for the system. Entries modified in the file or LDAP
(also known as the user-level) RBAC security database are not used for security
decisions until that information has been verified and updated into the KST (also
known as the kernel-level).

The KST is updated with the setkst command. The contents of the KST may be
displayed with the lskst command.
 Chapter 3. Role Based Access Control 175

3.3.6 Remote database support using LDAP

In an environment that includes many servers, it may be more efficient to
maintain the RBAC security database in a centralized location. This may also be
true in an enterprise environment where implementing and enforcing a common
security policy across all systems is desired.

When the RBAC security databases that control the security policy are stored
independently on each system, management of the security policy becomes a
burden on the designated administrator.

The Enhanced RBAC mode in AIX V6 allows for the Enhanced RBAC security
database to be stored in LDAP. This allows the security policy to be centrally
managed for all systems in the LDAP environment.

Support is included in AIX V6 for all of the Enhanced RBAC security databases
to be located in LDAP, including:

� Authorization Database

� Role Database

� Privileged Command Database

� Privileged Device Database

� Privileged File Database

Included in AIX V6 are utilities that allow the administrator to:

� Export local RBAC security database data to LDAP.

� Configure the AIX V6 client to make use of RBAC data in LDAP.

� Control the domain lookup of RBAC security database data.

� Manage the RBAC security database LDAP data from a client system.

Remote database support using LDAP will be discussed in more detail in 3.14,
“RBAC remote database support” on page 228.

Restriction: Authorization databases stored in LDAP will only contain the
user-defined authorizations. System-defined authorizations cannot be stored
in LDAP and will remain local to each client system.
176 AIX V6 Advanced Security Features: Introduction and Configuration

3.3.7 Legacy and Enhanced RBAC mode comparison

Table 3-1 compares the features available in each mode of RBAC.

Table 3-1 RBAC Legacy and Enhanced Mode features

Table 3-2 shows the sizing limitations for Enhanced RBAC.

Table 3-2 Sizing limitations for Enhanced RBAC

Feature Legacy RBAC mode Enhanced RBAC mode

Selective role activation All user roles are active by
default.

No roles are active by default.
Roles are assumed with the
swrole command.

default_roles attribute No. Yes.

swrole command No. Yes.

Role management commands Yes. Yes.

Authorization management
commands

Yes. Yes.

Authorization Hierachy No authorization hierarchy, each
authorization is independent.

Supports the concept of
authorization hierarchy.

Authorization checking Only enforced if the command
checks for authorization at
execution.

Enforced through the Privileged
Command Database or by
command check authorization at
execution.

Granular privileges Yes. Yes.

pvi command No. Yes.

Kernel Security Tables No. Yes.

RBAC database location Local files. Local files or LDAP.

Description Limitation

Maximum Role name size 63 printable characters

Maximum roles per session 8

Maximum Authorization name size 63 printable characters

Maximum number of levels in an
Authorization hierarchy (including the top
level parent)

9

 Chapter 3. Role Based Access Control 177

3.4 Configuring RBAC

In this section, we will outline the installation and configuration of RBAC in AIX
V6.

3.4.1 Configuring the RBAC operating mode

As discussed in 3.3, “Introducing RBAC” on page 171, when AIX V6 is installed,
RBAC is, by default, activated in Enhanced Mode.

To determine the current mode in which RBAC is operating, display the
enhanced_RBAC mode of the sys0 resource.

In Example 3-4, we display the currently active RBAC mode using the lsattr
command and the sys0 resource.

Example 3-4 Displaying the RBAC mode

root@trinity:/root# lsattr -El sys0 -a enhanced_RBAC
enhanced_RBAC true Enhanced RBAC Mode True
root@trinity:/root#

3.4.2 Switching to Legacy RBAC mode

If you want to switch to Legacy RBAC mode, then this can be accomplished by
setting the enhanced_RBAC attribute to false. Changing the RBAC mode
requires a reboot of the server.

Maximum number of access
authorizations per command

8

Maximum Authorized Privileged Sets per
command

8

Description Limitation
178 AIX V6 Advanced Security Features: Introduction and Configuration

In Example 3-5, we use the chdev command to change the RBAC mode from
Enhanced to Legacy.

Example 3-5 Changing the RBAC mode from Enhanced to Legacy

root@trinity:/root# lsattr -El sys0 -a enhanced_RBAC
enhanced_RBAC true Enhanced RBAC Mode True
root@trinity:/root# chdev -l sys0 -a enhanced_RBAC=false
sys0 changed
root@trinity:/root# lsattr -El sys0 -a enhanced_RBAC
enhanced_RBAC false Enhanced RBAC Mode True
root@trinity:/root# shutdown -Fr

3.4.3 The root user and Enhanced RBAC

When using RBAC in Enhanced RBAC mode, the root user will continue to
function as in prior releases of AIX 5L and can remain in its traditional role as the
superuser account.

A feature of Enhanced RBAC is the ability to disable the root user account and
perform all privileged administration and commands through one or more user
accounts.

Disabling the root user account in Enhanced RBAC mode will be further
discussed in 3.11, “Securing the root user” on page 219.

3.5 Predefined roles in RBAC

In this section, we will discuss adding a predefined role to a user.

With the release of Enhanced RBAC in AIX V6, three predefined roles and
several subroles are included with the default configuration of RBAC.

Note: In a WPAR environment, the RBAC mode for the system will only be
configurable from the global system and will uniformly affect the global as well
as all the WPARs on the system.
 Chapter 3. Role Based Access Control 179

The three predefined roles are:

� ISSO: Information System Security Officer

The ISSO role is responsible for creating and assigning roles and is thus the
most powerful user-defined role on the system. Some of the ISSO
responsibilities include:

– Establishing and maintaining security policy

– Setting passwords for users

– Network configuration

– Device administration

� SA: Systems Administrator

The SA role provides the functionality for daily administration and is
responsible for:

– User administration (except password setting)

– File system administration

– Software installation update

– Network daemon management

– Device allocation

� SO: System Operator

The SO role provides the functionality for day to day operations and is
responsible for:

– System shutdown and reboot

– File system backup, restore, and quotas

– System error logging, trace, and statistics

– Workload administration

Each of these predefined roles come pre-configured with authorization
definitions and may be further customized, if required.

Note: The ISSO, SA, and SO roles are used by Trusted AIX. If your
environment includes Trusted AIX, you may wish to consider customizing your
RBAC environment by using user defined roles.
180 AIX V6 Advanced Security Features: Introduction and Configuration

3.5.1 Adding a role to a user

As discussed earlier in this section, the so predefined role includes the
authorization to execute the reboot and shutdown commands.

If we did not know if a predefined role included the shutdown and reboot
commands, the procedure to follow would be:

1. Identify the privileged command that needs to be executed. In this case, the
the shutdown and reboot commands need to be executed.

Add the fully qualified privileged command to the entry field area of the smitty
menu and select the Enter key.

Figure 3-2 shows the smit setsecattr_cmdmod fast path.

Figure 3-2 The smitty setsecattr_cmdmod fast path

2. Determine if the privileged command is included in an authorization. If the
command is not included in a predefined authorization, then a user-defined
authorization may need to be defined.

The smit setsecattr_cmdmod command displays the authorization for the
/usr/sbin/exec_shutdown command as aix.system.boot.shutdown.

Using the same method, we determine that the /usr/sbin/reboot command
is defined in the aix.system.boot.reboot authorization.

Alternatively, the lssecattr command could be used to obtain the information
without invoking the smitty menu.
 Chapter 3. Role Based Access Control 181

Figure 3-3 shows the lssecattr command.

Figure 3-3 lssecattr command

Figure 3-4 shows the exec_shutdown command with smitty setsecattr_cmdmod.

Figure 3-4 exec_shutdown command with smitty setsecattr_cmdmod

3. Determine if there is an appropriate role that includes the authorization. If an
appropriate role is not included in the predefined roles, then a user-defined
role may need to be defined.

The lsrole command may be used to list the defined roles. The lsrole and
grep commands can be combined to determine if an authorization is assigned
to a role.

root@trinity:/root# lssecattr -c /usr/sbin/exec_shutdown
/usr/sbin/exec_shutdown accessauths=aix.system.boot.shutdown
innateprivs=PV_DAC_R secflags=FSF_EPS

root@trinity:/root# lssecattr -c /usr/sbin/reboot
/usr/sbin/reboot accessauths=aix.system.boot.reboot
innateprivs=PV_KER_REBOOT,PV_SU_UID secflags=FSF_EPS
root@trinity:/root#
182 AIX V6 Advanced Security Features: Introduction and Configuration

Figure 3-5 shows the so role contains several authorizations, including
aix.system.boot.reboot and aix.system.boot.shutdown.

Figure 3-5 The lsrole command

Another option would be to use the lsauth command with the roles attribute
to display the role that an authorization is assigned to.

The lsauth command may be used with the “ * ” wildcard. The wild card may
be used at the end of a name to list an entire hierarchy. The entire string
specified before the wild card must be a valid authorization name.

Figure 3-6 shows the lsauth command used with the roles attribute.

Figure 3-6 The lsauth command

By using a combination of the lsrole and lsauth commands, we can
determine the role or roles that an authorization is assigned to as well as the
authorizations that are assigned to a role.

root@trinity:/root# lsrole ALL | grep -i aix.system.boot.shutdown
so
authorizations=aix.fs.manage.backup,aix.fs.manage.restore,aix.proc.k
ill,aix.ras.debug,aix.ras.dump,aix.ras.error,aix.ras.trace,aix.syste
m.boot.halt,aix.system.boot.info,aix.system.boot.reboot,aix.system.b
oot.shutdown,aix.system.config.init,aix.system.config.wlm rolelist=
groups= visibility=1 screens=* msgcat= id=3
root@trinity:/root#

root@trinity:/usr/sbin# lsauth -a roles aix.system.boot.*
aix.system.boot roles=
aix.system.boot.create roles=isso
aix.system.boot.halt roles=so
aix.system.boot.info roles=so
aix.system.boot.reboot roles=so
aix.system.boot.shutdown roles=so
root@trinity:/usr/sbin#
 Chapter 3. Role Based Access Control 183

4. Assign the role to the user.

RBAC roles may be assigned with the chuser command.

Figure 3-7 shows the lsuser command output prior to the so role being
assigned to the oper1 user. The oper1 user currently has no assigned roles,
therefore the roles value is blank.

Figure 3-7 lsuser of oper1 with no role assigned

The chuser command does not append new roles to existing roles. If the
oper1 user had existing roles assigned, these existing roles would need to be
included in the new role value in the chuser command.

root@trinity:/usr/sbin# lsuser oper1
oper1 id=208 pgrp=staff groups=staff home=/home/oper1
shell=/usr/bin/ksh gecos=operator login=true su=true rlogin=true
daemon=true admin=false sugroups=ALL admgroups= tpath=nosak ttys=ALL
expires=0 auth1=SYSTEM auth2=NONE umask=22 registry=files
SYSTEM=compat logintimes= loginretries=5 pwdwarntime=0
account_locked=false minage=1 maxage=13 maxexpired=-1 minalpha=1
minother=1 mindiff=1 maxrepeats=2 minlen=6 histexpire=4 histsize=4
pwdchecks= dictionlist= default_roles= fsize=2097151 cpu=-1
data=262144 stack=65536 core=2097151 rss=65536 nofiles=2000
time_last_login=1177326441 tty_last_login=/dev/pts/1
host_last_login=9.41.222.87 unsuccessful_login_count=0 roles=
184 AIX V6 Advanced Security Features: Introduction and Configuration

Figure 3-8 shows adding the so role to the oper1 user with the chuser
command.

Figure 3-8 Assign the so role to user “oper1” with the chuser command

5. Activate the role.

By default, a role is not active until the user logs into the system and uses the
swrole command. If the oper1 user were to execute the shutdown command
without activating the so role, the shutdown command would attempt to
execute as the oper1 user. As the oper user has no special privileges until it
activates one of its assigned roles, the shutdown command would fail to
complete successfully.

By activating the so role, the oper1 user will gain the access controls granted
to the so role. Any command that is executed by the oper1 user that is
included in an authorization contained in the so role will then execute with the
privileges required to execute the command.

root@trinity:/usr/sbin# chuser roles=so oper1
root@trinity:/usr/sbin# lsuser oper1
oper1 id=208 pgrp=staff groups=staff home=/home/oper1
shell=/usr/bin/ksh gecos=operator login=true su=true rlogin=true
daemon=true admin=false sugroups=ALL admgroups= tpath=nosak ttys=ALL
expires=0 auth1=SYSTEM auth2=NONE umask=22 registry=files
SYSTEM=compat logintimes= loginretries=5 pwdwarntime=0
account_locked=false minage=1 maxage=13 maxexpired=-1 minalpha=1
minother=1 mindiff=1 maxrepeats=2 minlen=6 histexpire=4 histsize=4
pwdchecks= dictionlist= default_roles= fsize=2097151 cpu=-1
data=262144 stack=65536 core=2097151 rss=65536 nofiles=2000
time_last_login=1177326441 tty_last_login=/dev/pts/1
host_last_login=9.41.222.87 unsuccessful_login_count=0 roles=so
root@trinity:/usr/sbin#
 Chapter 3. Role Based Access Control 185

In Figure 3-9, we log in as the oper1 user and execute the rolelist -a
command to display the roles and authorizations that oper1 is assigned.

We then execute the rolelist -e command to display the effective roles. The
effective roles can be thought of as the roles that are currently active and
available for use by the oper1 user.

As there are no effective roles active, any commands that are executed by the
oper1 user will be executed without any additional privilege, so the shutdown
-Fr command exits without performing the shutdown procedure.

Figure 3-9 The rolelist command

To activate a role, use the swrole command.

The swrole command will start a new shell that will require that the user
authenticate with their password.

Once the password is authenticated, the role will be active and commands
that are included in the authorizations defined to the role will be executed as
privileged commands.

oper1@trinity:/home/oper1# rolelist -a
so aix.fs.manage.backup
 aix.fs.manage.restore
 aix.proc.kill
 aix.ras.debug
 aix.ras.dump
 aix.ras.error
 aix.ras.trace
 aix.system.boot.halt
 aix.system.boot.info
 aix.system.boot.reboot
 aix.system.boot.shutdown
 aix.system.config.init
 aix.system.config.wlm
oper1@trinity:/home/oper1# rolelist -e
rolelist: 1420-062 There is no active role set.
oper1@trinity:/home/oper1# shutdown -Fr
oper1@trinity:/home/oper1#
186 AIX V6 Advanced Security Features: Introduction and Configuration

In Figure 3-10, we execute the swrole command. The swrole command
requires the role name as the argument, therefore we execute swrole so. This
will activate the so role.

Once the so role is active, the rolelist -ea command can be used to list the
effective role and authorizations.

Figure 3-10 The swrole command

6. The oper1 user now has the so role active and may execute the shutdown
command.

By adding the so role to the user oper1, it allows the user to perform the
shutdown and reboot procedures without access to the root user or
membership to the shutdown group. Additionally, there are no file object DAC
changes required.

oper1@trinity:/home/oper1# swrole so
oper1's Password:
oper1@trinity:/home/oper1# rolelist -ea
so aix.fs.manage.backup
 aix.fs.manage.restore
 aix.proc.kill
 aix.ras.debug
 aix.ras.dump
 aix.ras.error
 aix.ras.trace
 aix.system.boot.halt
 aix.system.boot.info
 aix.system.boot.reboot
 aix.system.boot.shutdown
 aix.system.config.init
 aix.system.config.wlm
oper1@trinity:/home/oper1#
 Chapter 3. Role Based Access Control 187

In Figure 3-11, we execute the shutdown command from the oper1 user.

Figure 3-11 Execute the shutdown command from user oper1

oper1@trinity:/home/oper1# id
uid=208(oper1) gid=1(staff)
oper1@trinity:/home/oper1# ls -ltra /usr/sbin/shutdown
-r-xr-x--- 1 root shutdown 42939 Apr 17 10:26
/usr/sbin/shutdown
oper1@trinity:/home/oper1# ls -ltra /usr/sbin/exec_shutdown
-r-xr-x--- 1 root shutdown 2694 Apr 17 10:26
/usr/sbin/exec_shutdown
oper1@trinity:/home/oper1# rolelist -ea
so aix.fs.manage.backup
 aix.fs.manage.restore
 aix.proc.kill
 aix.ras.debug
 aix.ras.dump
 aix.ras.error
 aix.ras.trace
 aix.system.boot.halt
 aix.system.boot.info
 aix.system.boot.reboot
 aix.system.boot.shutdown
 aix.system.config.init
 aix.system.config.wlm
oper1@trinity:/home/oper1# shutdown -Fr

SHUTDOWN PROGRAM
Wed Apr 25 02:35:30 MST 2007
0513-044 The sshd Subsystem was requested to stop.

Wait for 'Rebooting...' before stopping.
Error reporting has stopped.

Note: Roles should be assigned using the least privileged principle. Assigning
a user a role that includes authorizations that are more than a user requires
should be avoided.
188 AIX V6 Advanced Security Features: Introduction and Configuration

3.5.2 Activating a role

By default in AIX Version 6.1 with Enhanced RBAC, the default login process
does not assign or activate any of the users defined roles or associated
authorizations. The user will log in with only those privileges that it obtains from
DAC or, where relevant, any privileges obtained by executing setuid programs.

In order to associate a role to the session, the user must execute the swrole
command, which will then activate one of the role(s) that the user has assigned
to it. The user may only assume roles that have previously been assigned to the
user.

The act of activating a role and assuming the associated authorizations is know
as assuming a role-session.

By default, a user will be required to authenticate by entering their login password
when entering a role session or adding a role to their session. Roles may
optionally be configured to not require authentication through use of the
auth_mode role attribute. Additionally, roles may be configured to automatically
activate at user login through the use of the default_roles user attribute.

Role authorization and default roles will be further discussed later in this section.

Switching to a new role-session will create a new shell session without inheriting
roles from the prior role-session. This is accomplished by creating a new process
shell for the role-session and assigning the new role id (rid) to the process.
Creation of the new role-session is a similar procedure to that of the su
command, except that in the role-session only the role ID of the process is
changed and not the uid or gid.

The swrole command will allow for the user to create a role-session composed of
a single role or multiple roles. A user may switch from a current role-session to a
new role-session, though as the new role-session will be a new process, the new
role-session will not inherit any roles from the previous role-session. In order to
restore the previous role-session, the user must exit the current role-session.

Any roles assumed in a role-session or the active role set can be listed by
invoking the rolelist command in the session. Additionally, an administrator can
use the rolelist command to list the active role set for a given process on the
system.
 Chapter 3. Role Based Access Control 189

3.5.3 Role authentication

Roles may be defined or modified to allow the user to activate an assigned role
without requiring password authentication.

By default, when a role is activated with the swrole command, the user will be
required to authenticate by entering the user’s login password.

The chrole command may be used to modify a role so that authentication is not
required when the role is activated.

If a role has not had the auth_mode attribute modified from its default value, then
no value will be displayed for the auth_mode attribute or stanza.

Once the auth_mode has been modified, the stanza will be displayed with the
value of the auth_mode attribute.

Figure 3-12 shows the use of the chrole command to change the auth_mode for
the so role.

Figure 3-12 changing the authmode for the so role

When the lsrole command is first used to display the auth_mode stanza, there
is no stanza information or attribute value. This is because the auth_mode has
not been modified from its default setting of INVOKER.

Once the auth_mode is set to NONE, the stanza and attribute value are
displayed, and the so role would not require authentication when activated with
the swrole command.

To reinstated the default setting, the chrole command is then executed to modify
the auth_mode stanza back to enable INVOKER authorization. The so role will
once again require authentication when activated with the swrole command.

root@trinity:/etc/security# lsrole -a auth_mode so
so
root@trinity:/etc/security# chrole auth_mode=NONE so
root@trinity:/etc/security# lsrole -a auth_mode so
so auth_mode=NONE
root@trinity:/etc/security# chrole auth_mode=INVOKER so
root@trinity:/etc/security# lsrole -a auth_mode so
so auth_mode=INVOKER
root@trinity:/etc/security#
190 AIX V6 Advanced Security Features: Introduction and Configuration

3.5.4 Role activation

A user may have its defined role(s) optionally configured to be activated as part
of the user login process by using the default_roles user attribute. The
default_roles is a user attribute introduced in AIX V6 and is intended for use in
situations where processes created on behalf of a user always needs to be
associated with a given set of roles.

An example of a situation where the default_roles attribute would be used is the
cron process. The cron process runs in the background and executes commands
as the defined user. It is conceivable that some of the commands that are
executed will require authorizations. This necessitates the ability to designate
that a set of roles always be active for a user ID since there is no mechanism for
cron to later acquire the role.

The default_roles user attribute can be set to include up to eight role names or
the special value of ALL. Setting default_roles=ALL will assign all the user's
roles to the session. If the user has been assigned more then eight roles, then
only the first eight roles will be enabled for the session.

3.6 User defined roles

In this section, we will introduce user defined roles.

3.6.1 Planning for user defined roles

As we discussed in 3.5, “Predefined roles in RBAC” on page 179, AIX V6
includes three predefined roles. The predefined roles are a provided as a
suggested means of dividing administrative duties.

The predefined roles may be modified or removed, and new roles may be
created as deemed suitable for the individual environment.

Note: Modifying a role to allow its activation without authentication will allow a
user to activate the role without the user entering its login credentials. This
may allow an attacker to use an idle or unlocked user session to activate a role
and perform restricted commands without any authentication checking.
 Chapter 3. Role Based Access Control 191

While these predefined roles may be suitable for many administrative needs,
there may be instances where a further, more granular separation of duties is
required. In such instances, Enhanced RBAC allows for the creation of user
defined roles.

When creating a user defined role, consideration should be given to the following
points:

The name of the role The name of the role should include some description or
insight into the capabilities of the role. Role names are
limited to 63 printable characters.

Authorizations Consider which authorizations should be assigned to the
role.

Subroles Consider whether the role should contain subroles.
Subroles are a convenient way of assigning one or more
pre-existing roles to a user defined role.

Authentication Should the user be required to authenticate when
assuming the role through the swrole command.

3.6.2 Creating a user defined role

AIX V6 includes several role and KST management commands:

mkrole Create a new role. When the system is operating in
enhanced RBAC mode, roles created in the role database
may be immediately assigned to users but are not used
for security considerations until the database has been
sent to the Kernel Security Tables (KST) through the
setkst command.

rmrole Remove an existing role. When the system is operating in
enhanced RBAC mode, roles removed from the role
database will still exist in the KST until the KST has been
updated with the setkst command.

Note: The ISSO, SA and SO roles are used by Trusted AIX. If your
environment includes Trusted AIX, you may wish to consider customizing your
RBAC environment by using user defined roles.
192 AIX V6 Advanced Security Features: Introduction and Configuration

lsrole The lsrole command lists the role definitions available in
the roles database. When the system is operating in
enhanced RBAC mode, the information in the roles
database may differ from what is being used for security
considerations on the system in the KST. To view the state
of the roles database in the KST, use the lskst command.

chrole Change or modify an existing role. When the system is
operating in enhanced RBAC mode, modifications made
to the role database are not used for security
considerations until the database has been sent to the
KST through the setkst command.

swrole The swrole command activates a role. The activation of a
role may also be referred to as “swapping” a role. Only
roles that have been assigned to a user may be activated.

setkst Updates the Enhanced RBAC Kernel Security Tables.
RBAC security checking is performed at the kernel-level,
so any user-level changes to the RBAC security database
needs to be updated into the KST before the changes can
be used for RBAC security checking.

lskst Lists the contents of the Kernel Security Tables. The
contents of the RBAC security database may not always
match the KST, so the lskst command may be used to list
or compare the KST and user-level RBAC security
database.

In the previous section, we assigned the so role to the oper1. The so role allowed
the oper1 user to perform the shutdown and reboot commands, but also allowed
several other privileged commands, including the kill command.

Consider this scenario: After conducting an audit, the security controls officer has
requested that we restrict the oper1 user so that it can perform only the shutdown
and reboot commands and no other privileged commands. As there is no
predefined role that includes only these two commands, we must create a user
defined role.

To create a user defined role:

1. Log in as root or your role’s administrative user.

In Figure 3-13 on page 195, we will use the smitty mkrole fast path.
 Chapter 3. Role Based Access Control 193

The following entry fields are display:

Role Name The name that will be used for the used defined role.
This user defined role will be used for shutdown and
reboot operations, so we shall define the name as
shutdown_reboot.

Role ID The unique role identification number. If left blank, the
next available role number will be assigned. Using the
next available role number is the recommended
approach.

Authorizations The authorizations that should be assigned to the role.
These may be system or user defined authorizations.
In Figure 3-3 on page 182, we previously determined
that the authorizations required are
aix.system.boot.shutdown and
aix.system.boot.shutdown. By using the F4 key, these
two authorizations are chosen from the authorization
list.

Role List A list of subroles to add to this role, if required.

Groups A list of groups to assign this role, if required.

SMIT Screens Defines the SMITTY screens that this role will have
access to. The “ * “ wildcard defines ALL screens.

Visibility Specifies the role's visibility status to the system.

Description A description of the role.
194 AIX V6 Advanced Security Features: Introduction and Configuration

Figure 3-13 The smitty mkrole command

Once the field entries in the SMIT screen have been input, select Enter.

An alternative to using the SMIT screen would be to use the mkrole
command.

Figure 3-14 shows the mkrole command using the same input parameters as
used in Figure 3-13.

Figure 3-14 the mkrole command

root@trinity:/root# mkrole dfltmsg="Allows reboot and shutdown"
authorizations="aix.system.boot.reboot,aix.system.boot.shutdown"
shutdown_reboot
root@trinity:/root#
 Chapter 3. Role Based Access Control 195

2. The user defined role shutdown_reboot has now been defined.

In Figure 3-15, we use the lsrole command to list the shutdown_reboot role.
The role contains only the aix.system.boot.reboot and
aix.system.boot.shutdown authorizations.

By limiting the authorizations that are available to this role, we are able to
enforce the least privileged principle, granting the oper1 user access to only
those commands that are required for the user’s job function.

Figure 3-15 lsrole - list a user defined role

3. Assign the role to the user.

RBAC roles may be assigned with the chuser command.

Figure 3-16 shows the lsuser command output prior to the shutdown_reboot
role being assigned to the oper1 user. The oper1 user currently has the so
role assigned.

Figure 3-16 lsuser of “oper1” with the so role defined

root@trinity:/root# lsrole shutdown_reboot
shutdown_reboot
authorizations=aix.system.boot.reboot,aix.system.boot.shutdown
rolelist= groups= visibility=1 screens=* dfltmsg=Allows reboot and
shutdown msgcat= id=4
root@trinity:/root#

root@trinity:/root# lsuser oper1
oper1 id=208 pgrp=staff groups=staff home=/home/oper1
shell=/usr/bin/ksh gecos=operator login=true su=true rlogin=true
daemon=true admin=false sugroups=ALL admgroups= tpath=nosak ttys=ALL
expires=0 auth1=SYSTEM auth2=NONE umask=22 registry=files
SYSTEM=compat logintimes= loginretries=5 pwdwarntime=0
account_locked=false minage=1 maxage=13 maxexpired=-1 minalpha=1
minother=1 mindiff=1 maxrepeats=2 minlen=6 histexpire=4 histsize=4
pwdchecks= dictionlist= default_roles= fsize=2097151 cpu=-1
data=262144 stack=65536 core=2097151 rss=65536 nofiles=2000
time_last_login=1177326441 tty_last_login=/dev/pts/1
host_last_login=9.41.222.87 unsuccessful_login_count=0 roles=so
root@trinity:/root#
196 AIX V6 Advanced Security Features: Introduction and Configuration

The chuser command does not append new roles to existing roles. If the
oper1 user had existing roles assigned, these existing roles would need to be
included in the new role value in the chuser command.

Figure 3-17 shows adding the shutdown_reboot role to the oper1 user with
the chuser command.

Figure 3-17 Assign the shutdown_reboot role to user oper1 with the chuser command

4. Update the Kernel Security Tables.

When operating in Enhanced RBAC mode, authorization and privilege checks
are performed in the AIX kernel. If an addition or modification is made to the
RBAC role table, then this requires that the RBAC security database be
updated into the AIX kernel before the modifications are available for use.

AIX V6 and Enhanced RBAC introduces the setkst command to update the
RBAC tables into the AIX kernel.

The setkst command reads the RBAC security database files and loads the
information from the database files into the Kernel Security Tables (KST). By
default, all the security databases are sent to the KST.

root@trinity:/root# chuser roles=shutdown_reboot oper1
root@trinity:/root# lsuser oper1
oper1 id=208 pgrp=staff groups=staff home=/home/oper1
shell=/usr/bin/ksh gecos=operator login=true su=true rlogin=true
daemon=true admin=false sugroups=ALL admgroups= tpath=nosak ttys=ALL
expires=0 auth1=SYSTEM auth2=NONE umask=22 registry=files
SYSTEM=compat logintimes= loginretries=5 pwdwarntime=0
account_locked=false minage=1 maxage=13 maxexpired=-1 minalpha=1
minother=1 mindiff=1 maxrepeats=2 minlen=6 histexpire=4 histsize=4
pwdchecks= dictionlist= default_roles= fsize=2097151 cpu=-1
data=262144 stack=65536 core=2097151 rss=65536 nofiles=2000
time_last_login=1177326441 tty_last_login=/dev/pts/1
host_last_login=9.41.222.87 unsuccessful_login_count=0
roles=shutdown_reboot
root@trinity:/root#
 Chapter 3. Role Based Access Control 197

Figure 3-18 shows the oper1 user executing a rolelist command prior to the
RBAC security database files being updated into the KST with the setkst
command.

Figure 3-18 The rolelist command without the updated KST

Though the user defined role shutdown_reboot has been defined to the
RBAC security database, the KST has not been updated with the setkst
command since the new role has been defined. All RBAC security checks are
performed against the RBAC security information located in the KST, so the
security checks fail, as the shutdown_reboot role does not yet exist in the
KST.

Executing the setkst command will update the RBAC security database into
the KST.

The setkst will also perform a validity check of the RBAC security database
tables. If an error is encounted, depending on the severity of the error, the
setkst command will either list the error and continue or exit the procedure
without updating the KST.

Figure 3-19 shows the setkst command. Once the setkst command
completes successfully, the KST has been updated and the newly created
role will be available for use.

Figure 3-19 setkst command

oper1@trinity:/home/oper1# rolelist -e
rolelist: 1420-062 There is no active role set.
oper1@trinity:/home/oper1# swrole shutdown_reboot
swrole: 1420-050 shutdown_reboot is not a valid role.
oper1@trinity:/home/oper1# rolelist -a
rolelist: 1420-063 Role "shutdown_reboot" does not exist.
oper1@trinity:/home/oper1#

root@trinity:/root# setkst
Successfully updated the Kernel Authorization Table.
Successfully updated the Kernel Role Table.
Successfully updated the Kernel Command Table.
Successfully updated the Kernel Device Table.
root@trinity:/root#
198 AIX V6 Advanced Security Features: Introduction and Configuration

5. Activate the role.

By default, a role is not active until the user logs into the system and activates
the role with the swrole command. If the oper1 user were to execute the
shutdown command without activating the shutdown_reboot role, the shutdown
command would attempt to execute as the oper1 user.

To activate a role, we use the swrole command.

The swrole command will start a new role-session shell that will require that
the user authenticate with their password.

Once the password is authenticated, the role will be active and commands
that are included in the authorizations defined to the role will be executed as
privileged commands.

In Figure 3-20, we execute the swrole command. The swrole command
requires the role name as the argument, therefore we execute swrole
shutdown_reboot. This will activate the shutdown_reboot role.

Once the shutdown_reboot role is active, the rolelist -ea command can be
used to list the effective role and authorizations.

Figure 3-20 The swrole command

6. The oper1 user now has the so role active and may execute the shutdown and
reboot commands.

By adding the shutdown_reboot role to the user oper1, we can perform the
shutdown and reboot procedures without access to the root user or
membership to the shutdown group. Additionally, there are no file object DAC
changes required.

Note: A role may be assigned to a user without an update to the KST. The role
will not be available to the user until updated to the KST.

oper1@trinity:/home/oper1# swrole shutdown_reboot
oper1's Password:
oper1@trinity:/home/oper1# rolelist -ea
shutdown_reboot aix.system.boot.reboot
 aix.system.boot.shutdown
oper1@trinity:/home/oper1#
 Chapter 3. Role Based Access Control 199

In Figure 3-21, we execute the shutdown command from the oper1 user.

Figure 3-21 Execute the shutdown command from the oper1 user

3.7 System defined and user defined authorizations

In this section, we will discuss Enhanced RBAC authorizations and outline and
describe the procedure to create a user defined authorization.

3.7.1 Planning for user defined authorizations

The AIX 5L implementation of RBAC provides for two type of authorizations:

System Defined Authorizations that come predefined and are installed as
a part of the AIX 5L installation process. System defined
authorizations cannot be modified.

User Defined Any authorization that is not a system defined
authorization. Once created, user defined authorizations
may be modified or removed.

oper1@trinity:/home/oper1# id
uid=208(oper1) gid=1(staff)
oper1@trinity:/home/oper1# rolelist -ea
shutdown_reboot aix.system.boot.reboot
 aix.system.boot.shutdown
oper1@trinity:/home/oper1# shutdown -Fr

SHUTDOWN PROGRAM
Thu Apr 26 09:01:02 MST 2007
0513-044 The sshd Subsystem was requested to stop.

Wait for 'Rebooting...' before stopping.
Error reporting has stopped.
200 AIX V6 Advanced Security Features: Introduction and Configuration

System defined authorizations are prefixed with the “aix.” name in the
authorization hierarchy. System defined authorizations may not be modified or
removed. User defined authorizations may not be included in the system defined
authorization hierarchy. See Figure 3-22 below for an illustration of this situation.

Figure 3-22 Authorization naming convention

Users may define their own hierarchy of authorizations and assign them to roles.
The base name of the hierarchy needs to be something other than “aix”.

User defined authorizations support the same hierarchy concept as
system-defined authorizations.

When creating a user defined authorization, consideration should be given to the
following restrictions:

� User defined authorizations must be defined under a new top level parent. It is
not possible to create a user defined authorization under the existing “aix.”
hierarchy. User defined authorizations may not be children of the system
defined “aix.” hierarchy.

� An authorization name may be up to 63 printable characters with no spaces
allowed.

Authorization Naming Convention

aix

device

fs

network

proc

ras

security

system

wpar

boot

config

install

stat

create "Create Boot Image"

halt "Halt the System"

info "Display Boot Information"

reboot "Reboot the System"

shutdown "Shutdown the System"

aix.system.boot.info
 Chapter 3. Role Based Access Control 201

� An authorization may have at most eight parent levels.

� An authorization may have any number of immediate children but can only
have one immediate parent. There is no way for two independent
authorizations to have the same immediate child.

When creating a user defined authorization, consider the naming convention that
will be used. The name of the authorization should include some description or
insight into the authorizations purpose.

The following syntax is suggested when creating user-defined authorizations:

vendor_name.product_name.function.function1.function2…..

Table 3-3 further explains the suggested naming format to be used when creating
user defined authorizations.

Table 3-3 Suggested syntax for user defined authorization naming

An example of this naming convention is ibm.tsm.managment.admin.stgpool.
This user defined authorization could potentially be created to represent the
administrative management aspects of the IBM Tivoli® Storage Manager storage
pool device class.

Using such a format will assist in avoiding conflicts in regards to authorization
names across multiple software components. Additionally, this format can
provide an insight to the purpose of the authorization.

When creating a user defined authorization, consideration should be given to the
following points:

� Is there an existing system defined authorization that includes the appropriate
privileged commands? If so, consider whether using the existing authorization
would comply with the least privileged principal.

� Will the new authorization belong beneath an existing user-defined
authorization hierarchy or is it the first authorization of a new hierarchy?

Vendor Name Identifies the name of the vendor that
produces or provides this software
module.

Product Name The high level product name.

Function, Function1, Function2 .. These strings represent the functions that
are being managed using RBAC. Also,
when defined, these strings provide a
hierarchical representation of how these
functions are organized.
202 AIX V6 Advanced Security Features: Introduction and Configuration

� If the authorization will require a new hierarchy, what will the structure format
be?

� Should an authorization ID be specified when creating the authorization? It is
recommended that the mkauth command be allowed to generate the
authorization ID?

3.7.2 Creating a user defined authorizations

In this section, we will create a user defined authorization named operatorPVI.
This authorization will used later by the oper1 user to manage privileged files.

We will also create a user defined role named operator_pvi and assign the
operatorPVI authorization to the operator_pvi role.

AIX Version 6.1 includes several authorization management commands:

mkauth The mkauth command creates a new user defined
authorization. All parent elements in the specified
authorization name must already exist in the authorization
database before the new authorization can be created.
When the system is operating in enhanced RBAC mode,
authorizations created in the authorization database may
be assigned to roles immediately, but will not take affect
until the Kernel Security Tables have been updated.

rmauth The rmauth command removes a user defined
authorization. The rmauth command will only remove
existing user defined authorizations in the authorization
database. System-defined authorizations cannot be
removed with this command. When the system is
operating in enhanced RBAC mode, modifications made
to the authorization database are not used for security
considerations until the database has been sent to the
Kernel Security Tables through the setkst command.

lsauth Displays user or system defined authorization attributes.

Tip: In this example, we need only create an authorization for the oper1 user
so it will not use a hierarchical authorization tree. If multiple users required
different PVI management authorizations, it may be more appropriate to
create a hierarchical authorization, such as ibm.pvi.operator.oper1.
 Chapter 3. Role Based Access Control 203

chauth Modifies attributes for existing user-defined
authorizations. System-defined authorizations cannot be
modified. When the system is operating in enhanced
RBAC mode, modifications made to the authorization
database are not used for security considerations until the
database has been sent to the Kernel Security Tables
through the setkst command.

To create the operatorPVI user defined authorization:

1. Log in as your root or your authorization administrative user.

Figure 3-23 shows the mkauth command. In this example, we allow the ID to
be system generated and are using the Operator PVI management
description in the dfltmsg stanza.

Figure 3-23 mkauth command

2. Create the operator_pvi role and assign the operator_pvi authorization.

Once the operator_pvi role is created, we can display the role, and determine
which authorizations are assigned to the role. In this case, we have assigned
only the operatorPVI authorization.

Figure 3-24 shows the mkrole and lsrole commands.

Figure 3-24 The mkrole command

3. Assign the role to the user.

RBAC roles may be assigned with the chuser command.

The chuser command does not append new roles to existing roles. As the
oper1 user has an existing role assigned, this existing role will need to be
included in the new role value in the chuser command.

root@trinity:/root# mkauth dfltmsg="Operator PVI managment"
operatorPVI
root@trinity:/root# lsauth operatorPVI
operatorPVI id=10018 dfltmsg=Operator PVI managment
root@trinity:/root#

root@trinity:/root# mkrole dfltmsg='Operator PVI management'
authorizations=operatorPVI operator_pvi
root@trinity:/root# lsrole operator_pvi
operator_pvi authorizations=operatorPVI rolelist= groups=
visibility=1 screens=* dfltmsg=Operator PVI management msgcat= id=8
root@trinity:/root#
204 AIX V6 Advanced Security Features: Introduction and Configuration

Figure 3-25 shows the lsuser and chuser commands.

Figure 3-25 The lsuser and chuser commands

root@trinity:/root# lsuser oper1
oper1 id=208 pgrp=staff groups=staff home=/home/oper1
shell=/usr/bin/ksh gecos=operator login=true su=true rlogin=true
daemon=true admin=false sugroups=ALL admgroups= tpath=nosak ttys=ALL
expires=0 auth1=SYSTEM auth2=NONE umask=22 registry=files
SYSTEM=compat logintimes= loginretries=5 pwdwarntime=0
account_locked=false minage=1 maxage=13 maxexpired=-1 minalpha=1
minother=1 mindiff=1 maxrepeats=2 minlen=6 histexpire=4 histsize=4
pwdchecks= dictionlist= default_roles= fsize=2097151 cpu=-1
data=262144 stack=65536 core=2097151 rss=65536 nofiles=2000
time_last_login=1177326441 tty_last_login=/dev/pts/1
host_last_login=9.41.222.87 unsuccessful_login_count=0
roles=shutdown_reboot
root@trinity:/root#
root@trinity:/root# chuser roles=shutdown_reboot,operator_pvi oper1
root@trinity:/root#
root@trinity:/root# lsuser oper1
oper1 id=208 pgrp=staff groups=staff home=/home/oper1
shell=/usr/bin/ksh gecos=operator login=true su=true rlogin=true
daemon=true admin=false sugroups=ALL admgroups= tpath=nosak ttys=ALL
expires=0 auth1=SYSTEM auth2=NONE umask=22 registry=files
SYSTEM=compat logintimes= loginretries=5 pwdwarntime=0
account_locked=false minage=1 maxage=13 maxexpired=-1 minalpha=1
minother=1 mindiff=1 maxrepeats=2 minlen=6 histexpire=4 histsize=4
pwdchecks= dictionlist= default_roles= fsize=2097151 cpu=-1
data=262144 stack=65536 core=2097151 rss=65536 nofiles=2000
time_last_login=1177326441 tty_last_login=/dev/pts/1
host_last_login=9.41.222.87 unsuccessful_login_count=0
roles=shutdown_reboot,operator_pvi
root@trinity:/root#
 Chapter 3. Role Based Access Control 205

4. Update the KST with the setkst command.

Figure 3-26 shows the setkst command.

Figure 3-26 The setkst command

If the operatorPVI authorization were to be used for privileged commands, the
privileged commands could now be assigned to the authorization. As the
operatorPVI authorization will be used for privileged file access, no privileged
commands will be need to assigned to the authorization.

The privileged file access will be assigned to the operatorPVI authorization in
3.9, “The Privileged File Database” on page 213.

3.8 The Privileged Command Database

This section will introduce Enhanced RBAC privileges and process privilege sets.

3.8.1 Privileges

A privilege is a mechanism used to grant a process augmented functionality in
system calls. Privileges determine whether a command is eligible to perform an
action.

The defining difference between privileges and authorizations is that privileges
are associated with specific processes, and authorizations are associated to
users through roles.

The concept of privileges is for the most part a kernel-level construct, since the
definition and most of the checking occurs there. The assigning of privileges to
commands, devices, and processes is performed outside of the kernel, then
updated into the kernel with the setkst command.

AIX defines privileges as the individual bits of a bit-mask that enforce access
control over privileged operations. Over 100 privileges are shipped with AIX V6,
providing for a very fine granular control over the privileged operations.

root@trinity:/root# setkst
Successfully updated the Kernel Authorization Table.
Successfully updated the Kernel Role Table.
Successfully updated the Kernel Command Table.
Successfully updated the Kernel Device Table.
root@trinity:/root#
206 AIX V6 Advanced Security Features: Introduction and Configuration

Privileges are assigned to command invocations through the privileged
command database and privileges are used to control access to devices through
the privileged device database.

When determining access in a system call, the kernel will check that the process
has the required privilege bit associated and then grant or deny the request.

Privileges in AIX V6 are predefined and may not be modified, removed, or
created.

Privileges, like authorizations, are hierarchical. All privileges begin the “PV_”
prefix, which is a textual representation of the privilege bit. Privilege checking is
performed by the kernel in a hierarchical manner. When checking for privileges,
the system will first check to see if the process has the lowest privilege needed,
and then proceed up the hierarchy, checking for the presence of a more powerful
privilege.

The PV_ROOT privilege is a special privilege that represents the parent of all
privileges except for PV_SU_. A process that is assigned the PV_ROOT privilege
will behave as though it has been assigned every privilege on the system except
for PV_SU_.

3.8.2 Process Privilege Sets

Process Privilege Sets are used to dynamically restrict or limit privileged
operations. Multiple sets of privileges are defined in the kernel to provide for
varied controls in regards to privileged operations. Multiple privilege sets allow
the operating system to enforce dynamic privilege controls and for applications to
manage least privileged principles.

Privileges are associated with a process through the following privilege sets.

Limiting Privilege Set
The Limiting Privilege Set (LPS) defines the maximum or hard limit on privileges
for a given process.

The LPS defines the maximum privilege escalation; a process cannot acquire
any more privileges than this value using any of the defined interfaces in the
system. At any point in time, a process will be restricted to the LPS privileges.

This also means that the rest of the privilege sets will always be subsets of LPS.
 Chapter 3. Role Based Access Control 207

Although the LPS is the maximum or hard limit and may not be exceeded, every
process will have the right to reduce the LPS. Once a process has reduced the
LPS, the new reduced limit becomes the new LPS and cannot be expanded or
increased to its original value.

The lowering of the LPS allows a process to restrict the boundaries in regards to
associated privileges. For example, a process might reduce the LPS just before
executing a user provided custom program.

By default, all the privileges available on the system are set in the LPS for a
process.

Maximum Privilege Set
The Maximum Privilege Set (MPS) is the entire set of privileges that the process
has been authorized to use. The MPS may include any privilege in the LPS but
cannot ever exceed the LPS.

The MPS is not static and has a hard limit only within the limitations of the LPS.
For this reason, the value of the MPS could change during the lifetime of a
process.

Some examples of when an MPS could change would be:

� When the current process executes another privileged command and then
gains related additional privileges.

� If the process has the right privilege, then it can expand the MPS dynamically
programmatically.

Effective Privilege Set
The Effective Privilege Set (EPS) is the list of privileges that are currently active
for the process. The EPS is always a subset of the process' MPS and is used by
the kernel to perform access checks in regards to privileged operations. The EPS
is not static and can be manipulated by the process. The EPS can equal the MPS
but can never exceed the MPS.

A process may perform dynamic manipulation of the EPS to enforce the least
privileged principle.

Inheritable Privilege Set
The Inheritable Privilege Set (EPS) defines privileges that are passed from a
parent process to its child process's MPS and EPS.

The IPS may include any privilege in the LPS but cannot ever exceed the LPS.
208 AIX V6 Advanced Security Features: Introduction and Configuration

The IPS can be set in a process in the following ways:

� If the process has the proper privilege, it can expand the IPS
programmatically through the setppriv() system call.

� When a privileged command is executed, the privileges specified in the
"inheritprivs" attribute associated with the command are assigned to the IPS.

Used Privilege Set
The Used Privilege Set (UPS) describes the privileges that have been used for
access checks during the life of the process. The UPS can be used to determine
the privileges required by the process.

Whenever the kernel checks if a process has a given privilege, it will store a
successful check in the UPS for the privilege.

Workload Partition Privilege Set (WPS)
It is possible to configure a system WPAR to restrict the privileged operations
that are allowed in a global environment. The privileged operations allowed in a
system WPAR can be controlled through the WPS.

The global environment root may assign a limited set of privileges to a WPAR
using WPS. The WPS can be specified in the /etc/wpar/secattrs configuration file
or during the start of a WPAR using the startwpar command. All processes
running in a WPAR will have their LPS equal to their WPS.
 Chapter 3. Role Based Access Control 209

Figure 3-27 shows a graphical representation of the Enhanced RABAC Privilege
Set.

Figure 3-27 Enhanced RBAC privilege sets

Enhanced RBAC provides the following commands to administer privilege sets:

lssectattr The lssecattr command lists the security attributes of
one or more commands, devices, or processes. The
lssecattr can be used to list the LPS, MPS, EPS, IPS,
and UPS of an active process.

setsecattr The setsecattr command sets security attributes of the
command, device, or process. The setsecattr command
can be used to modify the LPS, MPS, EPS, and IPS of an
active process. The UPS cannot be modified with the
setsecattr command as the UPS is a read-only attribute.

UPS

EPS
MPS

LPS / IPS
210 AIX V6 Advanced Security Features: Introduction and Configuration

3.8.3 Privileged commands

As discussed previously, command authorization in AIX has traditionally relied on
either DAC or the authorization included directly in the code of the command.
Enhanced RBAC utilizes authorizations, roles, and privileges to provide for a
more granular security controls method.

The Enhanced RBAC mode provides a framework to enforce authorization
checks and grant associated privileges through the Privileged Command
Database without requiring changes to the executables on the system or
modification of the DAC permissions.

The Privileged Command Database allows the administrator to grant users
access and privileges to commands that they would not otherwise be able to
execute or would not have the appropriate privilege to perform the task. The
Privileged Command Database serves to save the authorization information for a
particular command as well as the privileges that are granted to the process if
authorization checks succeed.

When the Privileged Command Database is stored locally, it exists in the
/etc/security/privcmds file and contains stanzas of information in the form of
command versus security attributes.

Some of the key attributes in the Privileged Command Database are:

accessauths A list of access authorizations that protect the execution of
the command. A user with any one of the listed
authorizations is allowed to execute the command and
perform some or all of the privileged operations contained
within.

innateprivs Innate privileges are privileges assigned to the process if
the invoker succeeds the access authorization checks.

authprivs Authorized privileges are additional privileges assigned to
the process if the invoker has the associated
authorization. This attribute provides for a more granular
control of the command, which can allow a restricted set
of users to perform additional privileged operations.

inheritprivs Inheritable privileges are privileges that the process will
pass on to child processes.

secflags List of security flags.
 Chapter 3. Role Based Access Control 211

When a user on an Enhanced RBAC mode system attempts to execute a
command, the command is first looked up in the Privileged Command Database.

If the command exists in the database, a check will be performed against the
authorizations associated with the user's session and the value of the
accessauths attribute for the invoked command. If the session has one of the
authorizations listed, then the user will be allowed to execute the command
regardless of whether the user passes the DAC execution checks for the
command.

Figure 3-28 shows a graphical representation of the Enhanced RBAC command
execution process.

Figure 3-28 Enhanced RBAC command execution

When a command is included in the Privileged Command Database, it is
considered to be an RBAC Privileged Command. If a program uses setuid and is
not listed in the Privileged Command Database, it may still be classed as
privileged, but will not be referred to as an RBAC Privileged command.

If a command does not have an entry in the database, then it is not a RBAC
Privileged command and access to it is enforced by DAC and the command itself.

Execuion Allowed

Execuion Fails

Is
User

Authorized

Historic Behavior

New Decisions with
Enhanced RBAC

Color Key

Yes

Yes

No Yes

No

Start

Is Command
in the

Database?

Does Process
have File System
Access Rights?

No

Raise Priviledge
to Bypass

Access Rights Checks
212 AIX V6 Advanced Security Features: Introduction and Configuration

If a command is listed in the privileged command database but the invoker’s
session does not have an authorization that allows execution of the command,
the DAC and UID/GUID checking will still be used to allow execution if those
checks succeed.

3.9 The Privileged File Database

In this section, we will introduce the Privileged File Database and the pvi
command.

3.9.1 Privileged file management with DAC

Traditionally in AIX 5L, many system configuration files are owned by the root
user and utilize DAC file permissions settings that do not allow the system
configuration files to be modified by general users.

Some system configuration files use a command interface to allow their
modification and management. The /etc/inittab file uses DAC to allow only the
root user write access to the file. If the file requires an update by a user other
than the root user, RBAC could be used to create a role/authorization to allow
execution of the inittab management command set, including chitab, rmitab,
lsitab, and mkitab by the non-root user.

Not all system configuration files in AIX 5L have command interfaces to allow
modification of the files. These files are required to have a tool that allows an
administrator with the appropriate authorization to directly edit and save a file
that they otherwise would not have access to.

3.9.2 Privileged File Management with RBAC

The Privileged File Database contains the list of files that the administrator has
defined as requiring privileged authorization. When stored locally, the Privileged
File Database is located in the /etc/security/privfiles file. The Privileged File
Database maps privileged files to the authorizations required to view or modify
them.

The Privileged File Database is used by the pvi command to determine the
name and authorization modes for any privileged file.

Privileged files may include any system configuration file that does not use its
own command interface, as well as additional files that the administrator may
wish to restrict access.
 Chapter 3. Role Based Access Control 213

The Privileged File Database uses RBAC authorizations as a method of granting
or restricting file access.

The files contained in the Privileged File Database should conform to the same
tvi (trusted vi) command and should not be files that are not readable by the tvi
or vi commands.

3.9.3 Privileged File Database restrictions

The Privileged File Database enforces the following restrictions:

� All existing restrictions of the tvi command are retained in the pvi command.

� The system must be running in Enhanced RBAC mode.

� The file must exist before it can be managed by the Privileged File Database.
The pvi command cannot be used to create a file.

� Only files contained in the Privileged File Database may be edited by the pvi
command.

� The pvi command will only allow one file to be opened at a time.

� The pvi command disables the function for a file to be saved as a different
name than the name of the file when opened.

� The Privileged File Database cannot be edited with the pvi command.

� Only regular files can be opened with the pvi command. File links cannot be
opened with the pvi command.

� User defined macros are not supported with the pvi command.

� The Privileged File Database supports only read authorizations (readauth)
and write authorizations (writeauth).

� When granting writeauth, the readauth is implied, but authorization will not be
updated into the readauth stanza in the /etc/security/privfiles file.

Consideration: Files must exist before being added to the Privileged File
Database. The pvi command cannot be used to create a new file.
214 AIX V6 Advanced Security Features: Introduction and Configuration

3.9.4 Adding a file to the Privileged File Database

The security controls officer has asked us to allow the oper1 user to be given
read/write access to the /etc/hosts file. We will create a user defined role and
authorization and then add the /etc/hosts file to the Privileged File Database,
allowing the oper1 user to read and write to the /etc/hosts file.

The /etc/hosts file has the DAC permissions allowing the oper1 user, and all
other users other then root or system group members, read permission only.

Figure 3-29 shows the existing DAC permissions of the /etc/hosts file.

Figure 3-29 DAC permissions of the /etc/hosts file

To add a file to the Privileged File Database:

1. Create or determine an authorization and role that will be used for Privilege
File access.

The Privileged File Database uses RBAC authorizations to authenticate the
read or write access controls to the file.

For a file to be added to the Privileged File Database, the administrator must
know:

– The File name.

– The RBAC authorization for the read authorization (readauth). readauth is
not mandatory if writeauth is specified. readauth may be specified as a list
of authorizations.

– The RBAC authorization for the write authorization (writeauth), if required.
writeauth may be specified as a list of authorizations.

In this case, we will use the operatorPVI authorization and operator_pvi role
that we created earlier in 3.6, “User defined roles” on page 191.

2. Using the setsecattr command, we add the /etc/hosts file to the Privileged
File Database.

We will define the operatorPVI authorization write access to the /etc/hosts file.

oper1@trinity:/home/oper1# ls -ltra /etc/hosts
-rw-rw-r-- 1 root system 1853 May 04 01:40 /etc/hosts
oper1@trinity:/home/oper1#
 Chapter 3. Role Based Access Control 215

In Figure 3-30, we use the setsecattr command to add the /etc/hosts file into
the Privileged File Database and allow the authorization operatorPVI write
access to the file. Write access (writeauth) will also allow read access
(readauth) to the /etc/hosts file.

Figure 3-30 The setesattr command

3. Update the Kernel Security Tables with the setkst command.

If the oper1 user were to attempt to use the pvi command without the KST
being updated, the pvi command would fail as the security checks in the KST
would not find a valid entry for readauth or writeauth for the oper1 user.

Figure 3-31 shows the oper1 user executing the pvi command prior to
updating the KST.

Figure 3-31 The pvi command accesses the /etc/hosts file with KST updated

4. The oper1 user may now read and write to the /etc/hosts file with the pvi
command.

If the oper1 user were to try and modify and save the /etc/hosts file with the vi
command, the /etc/hosts DAC file permissions would be used to determine
whether the oper1 user has the authority to save changes to the file.

The oper1 user does not have DAC write access to the /etc/hosts file, so the
attempt to save the /etc/hosts file would not be successful.

root@trinity:/root# setsecattr -f writeauths=operatorPVI /etc/hosts
root@trinity:/root#

$ pvi /etc/hosts
"/etc/hosts"pvi: 0602-193 Authorization check failure.
$

216 AIX V6 Advanced Security Features: Introduction and Configuration

Figure 3-32 shows the oper1 user editing the /etc/hosts file with the vi
command. The file can be viewed, but an attempt to save the data fails, as the
DAC file permissions allow only read access for user oper1.

Figure 3-32 The /etc/hosts file edited by oper1 with the vi command

When the /etc/hosts file is edited with the pvi command, the outcome is
different.

When using the pvi command, the user oper1 may modify and save the
/etc/hosts file.
 Chapter 3. Role Based Access Control 217

Figure 3-33 shows the oper1 user editing the /etc/hosts file with the pvi
command. The file can be viewed, modified, and saved. Even though the DAC
file permissions allow only read access for user oper1.

Figure 3-33 The /etc/hosts file edited by oper1 with the pvi command

3.10 The Privileged Device Database

This section discusses the Privileged Device Database.

3.10.1 Privileged device management with RBAC

The Privileged Device Database is similar in concept to the Privileged File
Database, but instead of controlling access to a file, the Privileged Device
Database is used to control access to a device.

The Privileged Device Database can be used to provide further control access to
a database that could be managed through traditional device access controls.
When the database is stored locally, it is contained in the /etc/security/privdevs
file.
218 AIX V6 Advanced Security Features: Introduction and Configuration

The Privileged Device Database stores the privilege information for a device for
read or write operations in the following attributes:

readprivs Lists privileges that are allowed to read from the device.
When a read request is opened for a privileged device,
the open is allowed only if one of the privileges specified
in readprivs exists in the Effective Privilege Set (EPS) for
that process.

writeprivs Lists privileges that are allowed to write to the device.
When a write request is opened for a privileged device,
the open is allowed only if one of the privileges specified
in writeprivs exists in the Effective Privilege Set (EPS) for
that process.

Including a device in the Privileged Device Database may be performed with the
lssecattr and setsecattr commands.

Before including a device in the Privileged Device database, a thorough
investigation of the commands and applications that need to access the device
must be performed to ensure that the proper privileges are specified.

3.11 Securing the root user

The following section will discuss disabling the root user when running in
Enhanced RBAC mode.

3.11.1 Choosing to secure the root user

When the AIX system is operating in Enhanced RBAC mode, it is possible to
configure the system such that the root user has no super user privileges and is
disabled so that no login access will be available to the root user account.

Traditionally in AIX, the root user's UID value of 0 has been treated as a
privileged UID by the operating system and allowed the root user to bypass the
enforced security checks. By disabling the root user, these operating system
checks are effectively removed.

With the root user disabled, the root user would be restricted from accessing the
system, although it would still retain DAC ownership of files if the account were
able to be accessed. Though the root user can still own files objects, the root
user cannot be accessed through the su command or logged into remotely or
from the defined system console.
 Chapter 3. Role Based Access Control 219

As traditional UNIX administration relies on the root user being enabled for
privileged commands; an attacker will expect the root user to be enabled and
may attempt to concentrate their attack efforts on the root user.

An attacker may attempt to gain access to the root user, knowing that if the root
user's integrity is compromised, the attacker will be free to execute any privileged
command with malicious intent. If unauthorized root user access is obtained, the
attacker may cause extensive and unrestricted damage to the system. This
intentional damage is known as malicious root.

In an Enhanced RBAC system, where the root user is disabled, the damage an
attacker may cause can be minimized, since the root user is disabled. Were the
attacker to compromise whatever network security is in place and receive a login
prompt, the attacker cannot access the root account either remotely or at the
console or through the su command.

After disabling the root user, system administration must be performed by users
other than the root user. Access to privileged command and files that are owned
by the root user will need to be performed by one or more other user accounts.
One such way would be to utilize the isso, so, and sa roles that are predefined
with AIX V6.

3.11.2 Disabling the root user

The powers of the root user can be disabled through the setsecconf command.

In this scenario, we have first assigned the isso role to the oper1 user, so that we
may test the oper1 user execution of the privileged commands required to
disable or enable the root user mode.

The oper1 user still has the shutdown_reboot role, so the oper1 user will be able
to execute the reboot and shutdown commands to reboot the system.

Execute the following commands and then reboot the system to disable the
powers of the root user:

1. Log in as the oper1 user and execute the swrole command to the isso role:

swrole isso

Important: The isso, so, and sa roles may not include all privileged
commands or authorizations required to manage the system.

A careful analysis of the system and the applications being used on the
system should be performed before attempting to disable the powers of the
root user.
220 AIX V6 Advanced Security Features: Introduction and Configuration

2. After authenticating, set the runmode to configuration mode:

setrunmode -c

3. Execute the setseconf command to disable the root user:

setsecconf -o root=disable

4. Reboot the system.

In this case, we need to first swap roles to the shutdown_reboot role and
authenticate before executing the shutdown -Fr command:

swrole shutdown_reboot
shutdown -Fr

The system will now reboot and will restart with the root=disable mode.

Figure 3-34 shows disabling the root user in Enhanced RBAC mode.

Figure 3-34 Disabling the root user in Enhanced RBAC mode

oper1@trinity:/home/oper1# swrole isso
oper1's Password:
oper1@trinity:/home/oper1#
oper1@trinity:/home/oper1# setrunmode -c
System is already running in CONFIGURATION MODE.
oper1@trinity:/home/oper1# setsecconf -o root=disable
OPERATIONAL MODE Security Flags
ROOT : DISABLED
Changes take effect at next boot time.
oper1@trinity:/home/oper1# swrole shutdown_reboot
oper1's Password:
oper1@trinity:/home/oper1# shutdown -Fr

SHUTDOWN PROGRAM
Thu May 3 06:49:51 MST 2007
0513-044 The sshd Subsystem was requested to stop.

Wait for 'Rebooting...' before stopping.
 Chapter 3. Role Based Access Control 221

Figure 3-35 shows the console output when the server is rebooting with the root
user disabled.

Figure 3-35 Console reboot with root user disabled

After executing the setsecconf command and disabling the root user, the root
user is still a valid user identity on the system but cannot be accessed with the su
command or through a login from remote or local consoles.

3.11.3 Considerations when disabling the root user

When choosing to disable the root user, any root owned processes are no longer
assigned any special powers or privileges.

In an Enhanced RBAC system with the root user disabled, any command that
needs to perform privileged operations should be added to the Privileged
Command Database and assigned the appropriate privileges. This would include
any setuid applications or commands that are owned by the root user; as with the
root user disabled, the checking mechanism for the UID 0 will cease to bypass
enforced security checks.

System initialization completed.
TE=OFF
CHKEXEC=OFF
CHKSHLIB=OFF
CHKSCRIPT=OFF
CHKKERNEXT=OFF
STOP_UNTRUSTD=OFF
STOP_ON_CHKFAIL=OFF
TSD_FILES_LOCK=OFF
TSD_LOCK=OFF
TEP=OFF
TLP=OFF
Successfully updated the Kernel Authorization Table.
Successfully updated the Kernel Role Table.
Successfully updated the Kernel Command Table.
Successfully updated the Kernel Device Table.
OPERATIONAL MODE Security Flags
ROOT : DISABLED
System runtime mode is now OPERATIONAL MODE.
Setting tunable parameters...complete
Starting Multi-user Initialization
222 AIX V6 Advanced Security Features: Introduction and Configuration

Executing setuid applications or commands in a root disabled environment would
likely cause the command or application to perform with an unreliable or
unsuccessful completion.

When considering disabling the root user, ensure that any operational or
administrations tasks that would performed by the “root” user have been
identified and these tasks have been assigned to one or more user accounts.

To disable or enable the root user requires a system reboot, so if it was
discovered that a command or file was unable to be accessed or executed once
the root user was disabled, the enablement of the root user would disrupt the
operation of the server.

In this scenario, the root user may be enabled by switching roles to the isso role
and executing the setsecconf -o root=enable command and rebooting the
system.

Figure 3-36 shows enabling the root user in Enhanced RBAC mode.

Figure 3-36 Enabling the root user in Enhanced RBAC mode

oper1@trinity:/home/oper1# swrole isso
oper1's Password:
oper1@trinity:/home/oper1#setrunmode -c
System runtime mode is now CONFIGURATION MODE.
oper1@trinity:/home/oper1# setsecconf -o root=enable
OPERATIONAL MODE Security Flags
ROOT : ENABLED
Changes take effect at next boot time.
oper1@trinity:/home/oper1# swrole shutdown_reboot
oper1's Password:
oper1@trinity:/home/oper1# shutdown -Fr

SHUTDOWN PROGRAM
Thu May 3 08:57:25 MST 2007
0513-044 The sshd Subsystem was requested to stop.

Wait for 'Rebooting...' before stopping.

Important: A careful analysis of the system and the applications being used
on the system should be performed before attempting to disable the powers of
the root user.
 Chapter 3. Role Based Access Control 223

3.11.4 Summary of root disable mode with Enhanced RBAC

To summarize the disabling of the root user in Enhanced RBAC:

� The root user should only be disabled if operating in Enhanced RBAC mode.

� Disabling the root user is not a mandatory requirement for operating in
Enhanced RBAC mode.

� setuid applications or commands would likely cease to function in a root
disabled environment. These commands or applications would likely need
addition to the Privileged Command Database, and then further tested to
ensure their operation.

� A careful analysis of the system and the applications being used on the
system should be performed before attempting to disable the powers of the
root user. Thorough testing should be carried out before putting the system
into production.

� The isso, sa and so roles may not include all privileged commands or
authorizations required to manage the system.

� Any privileged command that may be required to administer the system
should be added to the privileged command database.

� Any privileged file owned by the root user that may require access by a
non-privileged user may need to be added to the Privileged File Database.

3.11.5 Using the FPM command to reduce SetUID programs

The File Permission Manager (FPM) command may be used to manage the
setuid and setgid DAC permissions on executable commands.

By combining the FPM with Enhanced RBAC, an administrator may choose to
modify the setuid or setgid bit on one or more executables and instead execute
these programs as RBAC privileged commands.

By using the fpm command to modify the executables to remove the s-bit, a
non-privileged user would no longer be able to assume the effective UID of 0 and
execute commands as the root user. The user would instead execute an RBAC
privileged command using an Enhanced RBAC authorization and role.

Note: The root disable mode is specific to each WPAR. This means that the
root user functionality can be selectively disabled/enabled on a given WPAR.
By default, when WPARs are created, root will be enabled regardless of
whether root is disabled in the global environment or not. Modification to this
flag requires a reboot of the corresponding WPAR.
224 AIX V6 Advanced Security Features: Introduction and Configuration

Enhanced RBAC does not require that the administrator use the FPM to remove
s-bits on setuid and setgid commands, though using the FPM in this manner may
be an attractive option to administrators whose environment demands that s-bit
execution be kept to a minimum.

As with any modification of the operating system environment, careful analysis of
the system and the applications being used on the system should be performed
before attempting to modify the s-bit executables.

3.12 Enhanced RBAC and WPAR

This section will discuss the use of Enhanced RBAC and the Workload Partition
(WPAR).

Restrictions
The following restrictions apply using RBAC with WPAR:

� Only Enhanced RBAC mode is supported when using WPAR.

� Enhanced RBAC is supported only on System WPAR.

� The system defined authorizations are contained in the Global Environment.
Each System WPAR KST will utilize the Global Environment system defined
authorizations.

� Each WPAR has its own WPAR KST, which resides in the Global Environment
kernel.

� Any WPAR that has a privilege limited by the use of the WPS will not be
authorized to access that privilege, even if present in the WPAR KST.
 Chapter 3. Role Based Access Control 225

Figure 3-37 shows the usage of Enhanced RBAC and System WPAR
authorizations, utilizing the Global Environment system defined authorizations.

Figure 3-37 System WPAR and Enhanced RBAC

3.13 Migrating to Enhanced RBAC

This section discuss migration to Enhanced RBAC mode from a pre-existing
RBAC environment.

3.13.1 Migrating authorizations

The Legacy RBAC product release in versions prior to AIX V6 consisted of a
limited predefined set of authorizations. These Legacy RBAC authorizations
were not defined in a file on the system, but could be readily assigned to roles.

In AIX V6, Enhanced RBAC supports these Legacy RBAC authorizations within
the new Enhanced RBAC framework as user-defined authorizations. These
user-defined authorizations are provided by default in the RBAC authorization
security database located in /etc/security/authorizations.

S -- System Defined Authorizations U -- User Defined Authorizations

U

Global
Environment System

WPAR 1
System
WPAR 2

S

Global
KST

U

U U

User
Kernel

U

System
WPAR 2

KST

U

System
WPAR 1

 KST
226 AIX V6 Advanced Security Features: Introduction and Configuration

Since AIX V6 uses a new naming convention for authorizations, any checks for
the old authorization names in AIX have been modified to additionally check for
the new Enhanced RBAC authorizations.

Table 3-4 lists the Legacy Mode predefined authorizations and the corresponding
Enhanced Mode system-defined authorizations.

Table 3-4 Authorizations in Legacy Mode and Enhanced Mode RBAC

3.13.2 Role migration

When an updating an existing system operating on a version of AIX prior to AIX
V6 through a migration install, migration of the /etc/security/roles file will attempt
to update the file for the new Enhanced RBAC functionality while maintaining the
current role abilities.

Role definitions in the file will be preserved and modified to include a unique role
ID so that the role may function in the new Enhanced RBAC framework.

Existing Legacy Mode authorization Enhanced Mode authorization

Backup aix.fs.manage.backup

Diagnostics aix.system.config.diag

DiskQuotaAdmin aix.fs.manage.quota

GroupAdmin aix.security.group

ListAuditClasses aix.security.audit.list

PasswdAdmin aix.security.passwd

PasswdManage aix.security.passwd.normal

UserAdmin aix.security.user

UserAudit aix.security.user.change

RoleAdmin aix.security.role

Restore aix.fs.manage.restore

Important: After a migration, the system administrator must verify that the
authorizations and roles are defined as desired for the environment.
 Chapter 3. Role Based Access Control 227

Any authorizations that appear in the /etc/security/roles file and are not known
predefined authorizations will be considered user-defined authorizations. During
migration, these authorization names will be added as entries into the local
/etc/security/authorizations authorization database. In addition to migration of the
Legacy RBAC role definitions, the new predefined roles will be appended to the
file.

3.14 RBAC remote database support

This section will discuss remote database support for Enhanced RBAC using
LDAP.

3.14.1 Prerequisites to using LDAP as an RBAC database repository

Prior to using LDAP as an RBAC database repository, the following prerequisites
must be completed:

� An LDAP server must be configured and available to host the RBAC security
database(s).

� There must be network connectivity between the LDAP server and LDAP
client.

� The LDAP client must have the LDAP client fileset installed.

� The LDAP client must be operating in Enhanced RBAC mode.

To host the RBAC security database on an LDAP server, the RBAC database
repository needs to be populated into the LDAP server.

AIX V6 provides the rbactoldif command, which can be used to read the data in
the local RBAC databases and output them in a format suitable for LDAP. The
output generated by rbactoldif can be saved to a file and then used to populate
the LDAP server.

Once the RBAC security database data has generated with the rbactoldif
command, the data can be uploaded to the LDAP server with the ldapadd
command.

Important: After a migration, the system administrator must verify that the
authorizations and roles are defined as desired for the environment.
228 AIX V6 Advanced Security Features: Introduction and Configuration

The following databases on the local system will be used by the rbactoldif
command to generate the RBAC security database data for LDAP:

� /etc/security/authorizations

� /etc/security/privcmds

� /etc/security/privdevs

� /etc/security/privfiles

� /etc/security/roles

Consideration should be given as to where to store the RBAC security database
data in LDAP. We suggest that the RBAC data in LDAP be placed under the
same parent DN as the user and group data. The ACLs on the data should then
be adjusted as appropriate for the security policy that has been chosen.

3.14.2 LDAP client configuration for RBAC

An AIX V6 system must be configured as an LDAP client in order to make use of
RBAC security database data stored in LDAP. The mksecldap command can be
used to configure the system as an LDAP client.

The mksecldap command will dynamically search the specified LDAP server to
determine the location of the authorization, role, and privileged
command/device/file data, and save the results to the /etc/security/ldap/ldap.cfg
file.

After successfully configuring the system as an LDAP client through the
mksecldap command, the system must be further configured to enable LDAP as
a lookup domain for RBAC data. The /etc/nscontrol.conf file must be modified to
include LDAP in the secorder attribute for databases that are to be stored on
LDAP.

Once the client system has been configured both as an LDAP client and as a
lookup domain for RBAC data, the client daemon secldapclntd can be
configured to periodically retrieve the RBAC data from LDAP and send the data
to the Kernel Security Tables (KST). The secldapclntd updates the KST by
executing the setkst command.

Restriction: Authorization databases stored in LDAP will only contain the
user-defined authorizations. System-defined authorizations cannot be stored
in LDAP and will remain local to each client system.
 Chapter 3. Role Based Access Control 229

The time period used by the secldapclntd daemon to retrieve the RBAC data
from LDAP is configurable through the rbacinterval attribute in
/etc/security/ldap/ldap.cfg. If the /etc/nscontrol.conf file is using the LDAP and
local file database, the setkst command will retrieve a merged copy of the
entries for a given database as defined in the /etc/nscontrol.conf file and then
load the resulting data into the client Kernel Security Tables.

By default, the value of the rbacinterval attribute is 3600, which denotes that the
automatic update of the KST is set to run each hour. If the rbacinterval attribute is
changed, then the restart-secldapclntd command should be run to restart the
secldapclntd daemon.

3.14.3 Name service control file

A system administrator may define the RBAC data to reside strictly in local files,
strictly in LDAP, or for a merge of the data in local files and LDAP. This option may
be set up to occur by configuring the lookup domain for each RBAC security
database in the name service control file /etc/nscontrol.conf.

The /etc/nscontrol.conf file individually specifies the search order for the
authorization, role, privileged command, device, and file databases. It is possible
to have a mixture of local file, LDAP, or combined domains for each of the five
LDAP security database.

The search order for a database is specified in the /etc/nscontrol.conf file through
the secorder attribute, which is a comma separated list of domains. The domain
would be either LDAP or file, with file referring to the local database files in the
/etc/security directory on the LDAP client.

Figure 3-38 shows an example of the configuration for the authorization
database in the /etc/nscontrol.conf file.

Figure 3-38 Example of the /etc/nscontrol.conf file

Note: If the rbacinterval is 0, then the KST is only updated when an
administrator manually executes the setkst command on the client system.

authorizations:
secorder = LDAP,files
230 AIX V6 Advanced Security Features: Introduction and Configuration

The example in Figure 3-38 on page 230 specifies that any domain lookup
queries on the authorizations security database should first search in LDAP. If an
authorization entry was not found in the LDAP database, then the local database
would be searched.

The collection of authorizations available to the client system will be the merge of
the authorizations provided by LDAP and those provided in the local files. The
merge is not a simple combination of the values from the two domains but rather
a union of the values. The merge comprises of the RBAC security database from
the first lookup domain, then any additional RBAC security database from the
remaining lookup domain.

For the configuration in Figure 3-38 on page 230, all authorizations from LDAP
would be included and then only unique authorizations from the
/etc/security/authorizations local file would be added to the result.

RBAC database modifications and deletions are attempted on the first domain
listed and only attempted on subsequent domain if the entity is not found in the
first domain.

In Figure 3-38 on page 230, the modification or deletion would first be attempted
on the LDAP database. If the LDAP database did not contain the authorization,
only then would the modification or deletion occur on the local files database.

New RBAC database entries are always created in the first domain listed in the
secorder attribute. In Figure 3-38 on page 230, the creation of a new
authorization will occur in the LDAP database.

In case there is no entry for a database in the /etc/nscontrol.conf file or the file
does not exist, queries and modifications on the RBAC database will only be
performed in the local files database.

It is possible to use the LDAP server for only selected security databases. The
configuration for an individual database may be set through the chsec command.
The configuration for a database may be listed through the lssec command.

To configure authorization data to be retrieved from LDAP first then local files,
execute the following command:

chsec -f /etc/nscontrol.conf -s authorizations -a secorder=LDAP,files

The configuration in the /etc/nscontrol.conf file controls both library and
command-line interfaces. Applications may retrieve the current value of the
secorder attribute for a database through the getsecorder() interface. The value
of the secorder attribute may be overridden for the process by using the
setsecorder() interface.
 Chapter 3. Role Based Access Control 231

3.14.4 RBAC Command Enablement for LDAP

All of the RBAC database management commands are enabled to follow the
database lookup order configured in the /etc/nscontrol.conf file.

The database management commands will, by default follow the lookup as
defined in the secorder attribute in the /etc/nscontrol.conf file.

If required, the lookup order may be specified by using the -R option on any
command, and then specifying the database (LDAP or files).

Specifying the -R option for an RBAC management command forces the
operation to occur on the specified domain and overrides the configuration in
/etc/nscontrol.conf.

The following RBAC database management commands are enabled for remote
domain support:

� mkauth, chauth, lsauth, and rmauth

� mkrole, chrole, lsrole, and rmrole

� setsecattr, lssecattr, and rmsecattr

� setkst

Figure 3-39 shows the lsrole database management command used with the -R
option to list the local files database instead of the LDAP database.

Figure 3-39 Using the -R flag with the lsrole database management command

The setkst command is enabled to honor the configuration contained within
/etc/nscontrol.conf. The setkst command will retrieve a merged copy of the
entries for a given database as defined in the /etc/nscontrol.conf file and then
load the resulting data into the client Kernel Security Tables.

root@trinity:/root# lsrole -R files operator_pvi
operator_pvi authorizations=operatorPVI rolelist= groups=
visibility=1 screens=* dfltmsg=Operator PVI management msgcat= id=8
root@trinity:/root#
232 AIX V6 Advanced Security Features: Introduction and Configuration

3.15 RBAC scenarios

In this section, we will discuss two RBAC scenarios.

Scenario one deals with the division of RBAC roles and defining a privileged
command.

Scenario two deals with hosting the Enhanced RBAC security database on an
LDAP server.

3.15.1 Scenario 1: Division of roles

In this scenario, an administrator has been asked to define an Enhanced RBAC
role that can be used by a storage support specialist to maintain the storage
environment on an AIX V6 system.

The storage support specialist is responsible for creating file systems and
managing the physical volumes that are assigned to the system.

The storage support specialist has listed the privileged commands that are
required for day to day and service support. These commands are:

� rmdev
� mkdev
� cfgmgr
� mklv
� rmlv
� crfs
� mount
� umount

By configuring a role and authorization for only the commands that the storage
support specialist requires to perform these commands, the administrator is able
to:

� Leave the root password unchanged.

� Provide the storage support specialist the authorization to use only a limited
number of privileged commands. This will limit the access to sensitive data
available to a non-privileged user.

� Minimize the potential for misuse of the root user.

� Minimize the potential for system definitions to be modified, whether by
accident or malicious intent.

� Comply with the least privileged principle.
 Chapter 3. Role Based Access Control 233

To create the storage support specialist role, we must first:

1. Use the lssecattr command to determine if the commands requested by the
storage support specialist currently exist in the privileged command
database. If they do exist, take note of the value in the accessauth stanza, so
that this authorization can be added to a role.

Figure 3-40 shows the lssecattr command used with the accessauths flag to
display the authorization for each privileged command.

The lssecattr command output produces an error that states that the cfgmgr
command is not defined in the privileged command database, so in step 2 of
this scenario, the cfgmgr command will be defined into the privileged
command database.

Figure 3-40 The lssecattr command using the accessauth flag

The authorizations displayed in the accessauths field will be used later in step
5 on page 239 when the user defined role is created.

2. In step 1, we saw that the cfgmgr command is not defined in the privileged
command database. If a command does not exist in the privileged command
database, then it must be defined in the RBAC privileged command database
before the command can be used as an RBAC privileged command.

root@trinity:/root# lssecattr -c -a accessauths /usr/sbin/rmdev
/usr/sbin/rmdev accessauths=aix.device.manage.remove
root@trinity:/root# lssecattr -c -a accessauths /usr/sbin/mkdev
/usr/sbin/mkdev accessauths=aix.device.manage.create
root@trinity:/root# lssecattr -c -a accessauths /usr/sbin/mklv
/usr/sbin/mklv accessauths=aix.lvm.manage.create
root@trinity:/root# lssecattr -c -a accessauths /usr/sbin/rmlv
/usr/sbin/rmlv accessauths=aix.lvm.manage.remove
root@trinity:/root# lssecattr -c -a accessauths /usr/sbin/crfs
/usr/sbin/crfs accessauths=aix.fs.manage.create
root@trinity:/root# lssecattr -c -a accessauths /usr/sbin/mount
/usr/sbin/mount accessauths=aix.fs.manage.mount
root@trinity:/root# lssecattr -c -a accessauths /usr/sbin/umount
/usr/sbin/umount accessauths=aix.fs.manage.unmount
root@trinity:/root# lssecattr -c -a accessauths /usr/sbin/cfgmgr
1420-012 "/usr/sbin/cfgmgr" does not exist in the privileged command
database.
234 AIX V6 Advanced Security Features: Introduction and Configuration

To add a command to the privileged command database:

a. Create a user-defined authorization.

In this scenario, we will create the ibm.aix.management.cfgmgr
authorization.

Figure 3-41 shows the mkauth command being used to create the
user-defined authorization ibm.aix.management.cfgmgr.

Figure 3-41 The mkauth command

b. Once the user-defined authorization is defined, use the tracepriv
command to determine the privileges required for the command not in the
privileged command database and add them to the privileged command
database.

To define the cfgmgr command in the privileged command database, we
first need to determine which privileges are required for the command to
execute successfully. To determine these privileges, we use the tracepriv
command.

The tracepriv command may be run with the privilege listing output being
output to the console or redirected to a text file. In this scenario, we will
redirect the output to the /tmp/cfgmgr.tracepriv.output file.

root@trinity:/root# mkauth dfltmsg='IBM Vendor Software Parent
Authorization' ibm
root@trinity:/root# mkauth dfltmsg='IBM AIX operating system
Authorization' ibm.aix
root@trinity:/root# mkauth dfltmsg='IBM AIX operating system
management Authorization' ibm.aix.management
root@trinity:/root# mkauth dfltmsg='IBM AIX operating system cfgmgr
Authorization' ibm.aix.management.cfgmgr

Note: As this is a new authorization and there is no IBM AIX
user-defined authorization, we first create the parent levels in the
hierarchy.
 Chapter 3. Role Based Access Control 235

Figure 3-42 shows the tracepriv being executed against the cfgmgr
command. The -f flag is used to follow forks. The -e flag is used to follow
execs.

Figure 3-42 The tracepriv command, redirected to /tmp/cfgmgr.tracepriv.output cfgmgr

Once the cfgmgr command has completed, the privileges required by the
cfgmgr command will be listed in the /tmp/cfgmgr.tracepriv.output file.

Figure 3-43 shows the first page of output from the tracepriv command,
written to the /tmp/cfgmgr.tracepriv.output file.

Figure 3-43 The tracepriv output from the cgfmgr command

root@trinity:/root# tracepriv -ef -o /tmp/cfgmgr.tracepriv.output
cfgmgr
root@trinity:/root#

Note: The tracepriv command may also be run by a non-root user that
has had its shell modified with EPS and MPS set to PV_ROOT. This
method can be used to ensure that GETUID() checks are properly traced.

root@trinity:/root# more /tmp/cfgmgr.tracepriv.output

352496: Used privileges for /etc/methods/cfgprobe:
 PV_DEV_QUERY PV_SU_UID

352498: Used privileges for /etc/methods/defsys:
 PV_DAC_O

340196: Used privileges for /usr/lib/boot/bin/chcod_chrp:
 PV_SU_UID

340198: Used privileges for /usr/sbin/lsitab:
 PV_SU_UID

Note: The entire list of privileges required for the cfgmgr command to
execute have not been listed in Figure 3-43 due to the length of the
output. The commands will be listed later in the scenario when
discussing the setsecattr command.
236 AIX V6 Advanced Security Features: Introduction and Configuration

By reading the tracepriv output, we can determine the names of the 15
privileges that the cfgmgr command uses to execute. These privileges will
be used in the setsecattr command to define the cfgmgr command in the
privileged command database.

c. Add the command to the privileged command database with the
setsecattr command.

The privileges that were listed by the tracepriv command will now be
assigned to the cfgmgr command as innate privileges in the innateprivs
stanza.

The authorization ibm.aix.management.cfgmgr that was defined in step 1
on page 234 will now be assigned to the cfgmgr command in the
authorization stanza.

Figure 3-44 shows the setsecattr command being used to define the
cfgmgr command in the privileged command database.

Figure 3-44 Defining the cfgmgr command with setsecattr

Once the cfgmgr command is defined in the privileged command
database, we can display the status with the lssecattr command.

Figure 3-45 shows the lssecattr command.

Figure 3-45 Displaying the privileged command cfgmgr with lssecattr

root@trinity:/root# setsecattr -c
innateprivs=PV_AU_ADD,PV_AU_PROC,PV_DAC_O,PV_FS_CHOWN,PV_SU_UID,PV_T
CB,PV_DAC_R,PV_DEV_LOAD,PV_DEV_QUERY,PV_DEV_CONFIG,PV_KER_ACCT,PV_NE
T_PORT,PV_PROC_PRIV,PV_NET_CNTL,PV_PROC_SIG
accessauths=ibm.aix.management.cfgmgr /usr/sbin/cfgmgr
root@trinity:/root#

root@trinity:/root# lssecattr -F -c /usr/sbin/cfgmgr
/usr/sbin/cfgmgr:
accessauths=ibm.aix.management.cfgmgr
innateprivs=PV_AU_ADD,PV_AU_PROC,PV_DAC_O,PV_FS_CHOWN,PV_SU_UID,PV_T
CB,PV_DAC_R,PV_DEV_LOAD,PV_DEV_QUERY,PV_DEV_CONFIG,PV_KER_ACCT,PV_NE
T_PORT,PV_PROC_PRIV,PV_NET_CNTL,PV_PROC_SIG

root@trinity:/root#
 Chapter 3. Role Based Access Control 237

The cfgmgr command has now been added to the privileged command
database and is now considered an RBAC privileged command.

3. Determine if there is an existing role that may be used that contains the
authorizations required to perform the storage support specialist’s command
list. Be sure you comply with the least privileged principle.

If there is no existing role on the system that contains the authorizations
required, then create a user defined role.

In this scenario we will define the storage_support role and assign to it the
authorization ibm.aix.management.cfgmgr as well as the authorizations listed
in Figure 3-40 on page 234.

Figure 3-46 shows the usage of the mkrole command when defining the
config_manager role.

Figure 3-46 The mkrole command

The attributes of the user-defined role can be displayed with the lsrole
command

Figure 3-47 shows the lsrole command usage.

Figure 3-47 The lsrole command

root@trinity:/root# mkrole
authorizations=ibm.aix.management.cfgmgr,aix.device.manage.remove,ai
x.device.manage.create,aix.fs.manage.create,aix.fs.manage.remove,aix
.fs.manage.create,aix.fs.manage.mount,aix.fs.manage.unmount
storage_support
root@trinity:/root#

root@trinity:/root# lsrole -f storage_support
storage_support:

authorizations=ibm.aix.management.cfgmgr,aix.device.manage.r
emove,aix.device.manage.create,aix.fs.manage.create,aix.fs.manage.re
move,aix.fs.manage.create,aix.fs.manage.mount,aix.fs.manage.unmount
 rolelist=
 groups=
 visibility=1
 screens=*
 msgcat=
 id=13

root@trinity:/root#
238 AIX V6 Advanced Security Features: Introduction and Configuration

4. Update the kernel security tables (KST) with the setkst command.

All RBAC security checking is performed in the AIX kernel. If the setkst
command is not executed, the changes made to the RBAC security database
will not be updated into the AIX kernel.

The setkst command is shown in Figure 3-48.

Figure 3-48 Updating the Kernel Security Tables with the setkst command

5. Assign the user defined role storage_support to the storage support specialist
user with the chuser command.

The storage support specialist has the AIX user name stor1.

In Figure 3-49, we list the roles (if any) assigned to the stor1 user.

Figure 3-49 The lsuser command

By using the lsuser command, we can determine that the stor1 user has no
roles assigned.

Use the chuser command to assign the storage_support user-defined role to
the stor1 user.

root@trinity:/root# setkst
Successfully updated the Kernel Authorization Table.
Successfully updated the Kernel Role Table.
Successfully updated the Kernel Command Table.
Successfully updated the Kernel Device Table.
root@trinity:/root#

root@trinity:/root# lsuser -a roles stor1
stor1 roles=
root@trinity:/root#
 Chapter 3. Role Based Access Control 239

Figure 3-50 shows the chuser command being used to assign the
storage_support role to the stor1 user.

Figure 3-50 Using the chuser command to assign a role

The stor1 user may now log in and use the swrole command to active the
storage_support role.

By logging in as the stor1 user, we can test the role and privileged commands
that we have assigned to the stor1 user.

Figure 3-51 shows the lspv command being executed by the stor1 user. Only
one physical volume, hdisk0, is assigned to the system.

The stor1 user then activates the storage_support role with the swrole
command.

Figure 3-51 the stor1 user using the swrole command

root@trinity:/root# chuser roles=storage_support stor1
root@trinity:/root# lsuser stor1
stor1 id=211 pgrp=storage groups=storage,staff home=/home/stor1
shell=/usr/bin/ksh gecos=John Smith login=true su=true rlogin=true
daemon=true admin=false sugroups=ALL admgroups= tpath=nosak ttys=ALL
expires=0 auth1=SYSTEM auth2=NONE umask=22 registry=files
SYSTEM=compat logintimes= loginretries=5 pwdwarntime=0
account_locked=false minage=1 maxage=13 maxexpired=-1 minalpha=1
minother=1 mindiff=1 maxrepeats=2 minlen=6 histexpire=4 histsize=4
pwdchecks= dictionlist= default_roles= fsize=2097151 cpu=-1
data=262144 stack=65536 core=2097151 rss=65536 nofiles=2000
roles=storage_support
root@trinity:/root#

stor1@trinity:/home/stor1# id
uid=211(stor1) gid=205(storage) groups=1(staff)
stor1@trinity:/home/stor1# lspv
hdisk0 00c4790e281766f5 rootvg
active
stor1@trinity:/home/stor1# swrole storage_support
stor1's Password:
stor1@trinity:/home/stor1#
240 AIX V6 Advanced Security Features: Introduction and Configuration

After activating the storage_support role, the stor1 user may now execute the
privileged commands that are assigned to the authorizations in the
storage_support role.

The storage support specialist has assigned another disk to the system from the
storage array and wishes to configure it. As the stor1 user has activated the
storage_support role, the cfgmgr command can now be executed by the stor1
user.

Figure 3-52 shows the stor1 user executing the privileged cfgmgr command.

Figure 3-52 The stor1 user executing the privileged command cfgmgr

The newly assigned disk is configured by the cfgmgr command and is defined as
hdisk1.

By using Enhanced RBAC, we have successfully assigned a role to a general
user that allows execution of a selected set of privileged commands.

We have complied with the least privileged principle and have not given the stor1
user access to any additional commands or files that are not required to
complete the storage support tasks.

stor1@trinity:/home/stor1# lspv
hdisk0 00c4790e281766f5 rootvg
active
stor1@trinity:/home/stor1# cfgmgr
stor1@trinity:/home/stor1# lspv
hdisk0 00c4790e281766f5 rootvg active
hdisk1 00c4790e2ce9abc4 None
stor1@trinity:/home/stor1# id
uid=211(stor1) gid=205(storage) groups=1(staff)
 Chapter 3. Role Based Access Control 241

3.15.2 Scenario 2: Remote RBAC security database

In this scenario, we will configure the Enhanced RBAC security database to
reside remotely on an LDAP server.

Prior to using LDAP as an RBAC database repository, the following prerequisites
must be completed:

� An LDAP server must be configured and available to host the RBAC security
database(s).

� The LDAP server must have the LDAP schema for RBAC installed. The RBAC
schema is located in the /etc/security/ldap/sec.ldif file on the AIX V6 client.

� There must be network connectivity between the LDAP server and LDAP
client.

� The LDAP client must have the LDAP client fileset installed.

� The LDAP client must be operating in Enhanced RBAC mode.

In this scenario, the administrator has chosen to host the RBAC security
database on an LDAP server. The LDAP server has been previously configured
by the LDAP administrator.

The administrator has chosen to host all five RBAC security databases on the
LDAP server and use the LDAP server as the first search location for any RBAC
database.

1. Export the RBAC security database.

The RBAC security database must be exported in a format that will allow it to
be updated into the LDAP server. By using the rbactoldif command, the
RBAC security database can be exported to a file that will be used as an input
for loading into the LDAP server with the ldapadd command.

The location and name of the file used by the rbactoldif command may
defined by the administrator. As with all system data files, the location of the
file should not be in a public location. The file will be used only for the initial
update of the LDAP database and may be removed once the initial LDPAP
database update has been completed. Our administrator has chosen the root
user’s home directory and named the file /root/RBAC_DB.txt.

Important: The procedure that follows outlines the steps to configure remote
database hosting on an LDAP server for this environment. Your own
environment may differ from the scenario environment, so consult your LDAP
administrator before configuring the RBAC security database for remote LDAP
hosting.
242 AIX V6 Advanced Security Features: Introduction and Configuration

If only the selected RBAC security databases are chosen to be hosted on the
LDAP server, then the rbactoldif command my be used with the -s option.
The -s option allows for the selected databases to be hosted on LDAP. In this
scenario, the administrator has chosen to use LDAP for all RBAC security
databases.

Figure 3-53 shows the rbactoldif command. We have chosen the “cn” of
aixdata. The output of the file is written to /root/RBAC_DB.txt.

Figure 3-53 Export RBAC security database with rbactoldif command

The RBAC security database output from the rbactoldif command can be
viewed with a text viewer/editor. In Figure 3-53, we have used the more
command to show the format of the data in the /root/RBAC_DB.txt file.

2. Update the RBAC security database to LDAP

The ldapadd command may be used to update the LDAP database with the
data in the /root/RBAC_DB.txt file. The /root/RBAC_DB.txt file contains the
information in the RBAC security database, that we exported in step 1 on
page 242.

Before configuring the LDAP client, ensure that the LDAP server has the
RBAC schema installed. The LDAP schema for RBAC is shipped with AIX V6
in the /etc/security/ldap/sec.ldif file. The LDAP administrator may need to
update the schema on the LDAP server using the ldapmodify command.

In this scenario, we have used the ldapadd command with the -c option, which
will cause the command to ignore an entry that may already exist and
continue.

root@trinity:/root# rbactoldif -d cn=aixdata > /root/RBAC_DB.txt
root@trinity:/root# more /root/RBAC_DB.txt
dn: ou=authorizations,cn=aixdata
objectclass: organizationalunit
ou:authorizations

dn: cn=Backup,ou=authorizations,cn=aixdata
cn: Backup
objectclass: ibm-authorization
ibm-authorizationid: 10001
 Chapter 3. Role Based Access Control 243

Figure 3-54 shows the ldapadd command being used to update the LDAP
server with the RBAC security database information from the
/root/RBAC_DB.txt file.

Figure 3-54 The ldapadd command

The ldapadd command has now updated the LDAP server with the RBAC
security database.

3. Configure the LDAP client.

The LDAP client fileset must first be installed, then the LDAP client may be
configured with the mksecldap command.

The mksecldap command will configure the LDAP client and dynamically
search the specified LDAP server to determine the location of the
authorization, role, privileged command, device, and file data, and save the
results to the /etc/security/ldap/ldap.cfg file.

Figure 3-55 shows the usage of the mksecldap command.

Figure 3-55 The mksecldap command

4. Update the RBAC security database domain lookup order.

After successfully configuring the system as an LDAP client through the
mksecldap command, the client must be further configured to enable LDAP as
a lookup domain for RBAC security database.

root@trinity:/root# ldapadd -h ldap -w admin -D cn=admin -c -i
/root/RBAC_DB.txt
root@trinity:/root#

Note: The LDAP client fileset may depend on your specific AIX installation.
At the time of publication, the LDAP client fileset used in this scenario is the
32-bit client, idsldap.clt32bit60.

root@trinity:/root# mksecldap -c -h ldap -a cn=admin -p admin
root@trinity:/root#

Note: The configuration variables used in Figure 3-55 are for this environment
and may not match your own environment. Consult your LDAP administrator
before configuring your LDAP client.
244 AIX V6 Advanced Security Features: Introduction and Configuration

The /etc/nscontrol.conf file is used by RBAC to determine the lookup order for
the RBAC security database domain.

By default, the RBAC security databases are located in the /etc/security/
directory. When the RBAC security databases are stored on an LDAP server,
the /etc/nscontrol.conf file must be updated to include the LDAP domain for
each RBAC security database stored on the LDAP server.

In this scenario, the administrator has chosen to have the five RBAC security
databases located on the LDAP server, so the /etc/nscontrol.conf file must
have the secorder stanza updated for the five RBAC security database.

Figure 3-56 shows the /etc/nscontrol.conf file prior to being configured to use
the LDAP server as a lookup domain for the RBAC security database.

Figure 3-56 the /etc/nscontrol.conf file, resolving local files only

The /etc/nscontrol.conf file may be updated using the chsec command to
update the secorder stanza for each RBAC security database.

root@trinity:/etc/security/ldap#
authorizations:
 secorder = files
roles:
 secorder = files
privcmds:
 secorder = files
privdevs:
 secorder = files
privfiles:
 secorder = files
root@trinity:/etc/security/ldap#
 Chapter 3. Role Based Access Control 245

Figure 3-57 shows the chsec command, updating the secorder stanza of the
/etc/nscontrol.conf file to set the LDAP domain as the first lookup domain.

Figure 3-57 Using the chsec command to update the secorder stanza of
/etc/nscontrol.conf

Figure 3-58 shows the /etc/nscontrol.conf file after being configured to use
the LDAP server as a lookup domain for the RBAC security database.

Figure 3-58 The /etc/nscontrol.conf file, resolving first LDAP, then local files

5. Define the Kernel Security Table (KST) update method.

By setting a value in the rbacinterval stanza in the /etc/security/ldap/ldap.cfg
file, the /usr/sbin/secldapclntd daemon can be configured to automatically
update the client KST.

root@trinity:/root# chsec -f /etc/nscontrol.conf -s authorizations
-a secorder=LDAP,files
root@trinity:/root# chsec -f /etc/nscontrol.conf -s roles -a
secorder=LDAP,files
root@trinity:/root# chsec -f /etc/nscontrol.conf -s privcmds -a
secorder=LDAP,files
root@trinity:/root# chsec -f /etc/nscontrol.conf -s privdevs -a
secorder=LDAP,files
root@trinity:/root# chsec -f /etc/nscontrol.conf -s privfiles -a
secorder=LDAP,files
root@trinity:/etc/security/ldap#

root@trinity:/root#
authorizations:
 secorder = LDAP,files
roles:
 secorder = LDAP,files
privcmds:
 secorder = LDAP,files
privdevs:
 secorder = LDAP,files
privfiles:
 secorder = LDAP,files
root@trinity:/root#
246 AIX V6 Advanced Security Features: Introduction and Configuration

By default in AIX V6, the rbacinterval stanza is set to 3600 seconds, but the
stanza is commented out. The /usr/sbin/secldapclntd daemon also has a
hard-coded value set of 3600 seconds. If no value is specified for the
rbacinterval stanza in the /etc/security/ldap/ldap.cfg file, then the
/usr/sbin/secldapclntd daemon will honor the 3600 value hard-coded in the
daemon code.

If a value is specified in the rbacinterval stanza, then the rbacinterval stanza
value will be used to determine the KST update frequency. An rbacinterval
stanza value of 0 means that automatic update of the KST is disabled and any
updates to the KST will need to be performed manually with the setkst
command.

Figure 3-59 shows the default setting of the rbacinterval stanza in the
/etc/security/ldap/ldap.cfg file.

Figure 3-59 The rbacinterval stanza in the /etc/security/ldap/ldap.cfg file

6. Test the domain lookup with an RBAC database management command.

By executing an RBAC database management command, the administrator
can make sure that the domain lookup is functioning as expected.

By using the mkrole command without specifying the -R option, the role will
be defined in the first database that is defined by the secorder stanza in the
/etc/nscontrol.conf file.

In Figure 3-60 on page 248, we use the mkrole command to define a role with
the name test_role. The secorder stanza defines the domain lookup as LDAP
files, so the test_role role will be defined in the LDAP database.

Time interval (seconds) for secldapclntd daemon to invoke setkst
command to update the kernel RBAC tables. The value must be
greater
than 60 seconds. Set to 0 to disable running of the setkst
command.
The default value is 3600.
#rbacinterval:3600

Note: In order to force an update of the KST from LDAP data, the setkst
command can be executed from the command line.
 Chapter 3. Role Based Access Control 247

Figure 3-60 shows the mkrole command.

Figure 3-60 Define a role in LDAP with the mkrole command

By using the lsrole command, we can see that the role has been defined in
the LDAP database, and is not listed in the local /etc/security/roles file.

This shows that the RBAC security database domain lookup is working as
defined in the /etc/nscontrol.conf field and LDAP client and server
communications are active.

Any new RBAC definitions will be created in the LDAP database. If the
administrator decides to create an RBAC definition in the RBAC security
database in the local files, then the RBAC database management command
lookup may be overruled by the use of the -R option.

Figure 3-61 shows the administrator using the mkrole command with the -R
option to define the test_role_local in the local RBAC security database.

Figure 3-61 The lsrole command with the -R option

When the lsrole command is executed without a specific domain, the
command returns the test_role_local information, because the domain search
defines LDAP domain followed by the files domain in the search order.

root@trinity:/# mkrole dfltmsg='test role only' test_role
root@trinity:/# lsrole -R files test_role
3004-733 Role "test_role" does not exist.
root@trinity:/# lsrole test_role
test_role dfltmsg=test role only id=11
root@trinity:/#

root@trinity:/# mkrole -R files dfltmsg='test role in local DB'
test_role_local
root@trinity:/# lsrole -R LDAP test_role_local
3004-733 Role "test_role_local" does not exist.
root@trinity:/# lsrole -R files test_role_local
test_role_local authorizations= rolelist= groups= visibility=1
screens=* dfltmsg=test role in local DB msgcat= id=12
root@trinity:/# lsrole test_role_local
test_role_local authorizations= rolelist= groups= visibility=1
screens=* dfltmsg=test role in local DB msgcat= id=12
root@trinity:/#
248 AIX V6 Advanced Security Features: Introduction and Configuration

When executing the lsrole -R LDAP test_role_local command, the search
order is limited to the LDAP database only, where the role is not defined and
cannot be listed.

The lsrole -f files test_role_local command lists the role from the local
files database, and ignores the LDAP database search.
 Chapter 3. Role Based Access Control 249

250 AIX V6 Advanced Security Features: Introduction and Configuration

Chapter 4. Trusted Execution
environment

This chapter describes the Trusted Execution (TE) feature of AIX V6. This new
component introduces a new command to verify a system’s integrity while the
Trusted Computing Base (TCB) is still available as an alternative. Unlike the
TCB, which maintains checksums for crucial files and verifies them periodically
(either triggered by cron or CLI), TE does such “offline checking” as well, but also
allows for checking a file’s integrity at its execution time, every time.

TE refers to a collection of features that are used to verify the integrity of the
system’s trusted computing base which in the context of TE is called Trusted
Signature Database (TSD). In addition, TE implements advance security policies,
which together can be used to enhance the trust level of the complete system.

The usual way for a malicious user to harm the system is to get access to the
system and then install trojan horses, rootkits, or tamper with some security
critical files such that the system becomes vulnerable/exploitable.

The central idea behind the set of features under TE is to be able to prevent such
activities or in worst case be able to identify if any such thing happens to the
system. Using the functionality provided by TE, the system administrator can
decide upon the actual set of executables that are allowed to execute or the set
of kernel extensions that are allowed to be loaded.

4

© Copyright IBM Corp. 2007. All rights reserved. 251

TE can also be used to audit the security state of the system and identify files
that have changed, thereby increasing the trusted level of the system and
making it more difficult for the malicious user to do harm to the system. The set of
features under Trusted Execution (TE) can be grouped into:

� Managing the Trusted Signature Database

� Auditing integrity of the Trusted Signature Database (system integrity check)

� Configuring security policies (runtime integrity check)

� Trusted Execution Path, Trusted Library Path, Trusted Shell, and Secure
Attention Key

Figure 4-1 shows Trusted Execution’s two modes of operation.

Figure 4-1 Trusted Execution’s two modes of operation

Executable/
Module

Memory

Run Time Integrity Check

Hash/
Signature
Database

Calculate
Hash

Policy Engine
Eg: Disallow loads on non-match

System Integrity Check

Certificates
Database

Integrity Checker
Tool

System Integrity Status
Trojan Horse Detection

Signature
Database

Install Time population

vs.
252 AIX V6 Advanced Security Features: Introduction and Configuration

In order for TE to work, the CryptoLight for C library (CLiC) and kernel extension
need to be installed and loaded on your system. These filesets are included on
the AIX Expansion Pack and are provided for free. To check whether they are
installed on your system and loaded into the kernel, run:

lslpp -l "clic*"
 Fileset Level State Description
 --
Path: /usr/lib/objrepos
 clic.rte.includes 4.3.0.0 COMMITTED CryptoLite for C Library
 Include File
 clic.rte.kernext 4.3.0.0 COMMITTED CryptoLite for C Kernel
 clic.rte.lib 4.3.0.0 COMMITTED CryptoLite for C Library

Path: /etc/objrepos
 clic.rte.kernext 4.3.0.0 COMMITTED CryptoLite for C Kernel
genkex|grep clic
 4562000 37748 /usr/lib/drivers/crypto/clickext

If the fileset is not installed, install it on your system through SMIT and load it into
the kernel, once installation has completed successfully, by running:

/usr/lib/methods/loadkclic

Note 1: Compared to TCB, TE is a more powerful and enhanced mechanism
that overlaps some of the TCB functionality. While it could be used in addition
on a TCB-enabled system, this would not result in a more secure system. It is
a good and common practice to keep things small and simple (the KISS
principle), hence you should choose one over the other.

Note 2: Trusted Execution is designed to run on a Trusted Software Stack
(TSS) once the Trusted Platform Modulea (TPM) becomes available for IBM
System p servers. Since there are no such devices available at this point in
time, TSS will not be enabled in AIX V6.

a. Typically, the TPM is a cryptographic acceleration hardware component that is
also used as a vault to store keys and other secrets. See also
https://www.trustedcomputinggroup.org/groups/tpm/.
 Chapter 4. Trusted Execution environment 253

https://www.trustedcomputinggroup.org/groups/tpm/

Note 3: Since Trusted Execution calculates cryptographic checksums on the
fly, an impact on performance comes with it. However, the impact during
testing for this book was not noticable. The overall impact heavily depends on
the complexity of policies configured.

Still, once a binary has been verified before execution, it will remain in memory
in case it gets called again. If the binary did not get paged out and has not
been tampered with, consecutive executions will be allowed without
calculating its hash again. This avoids any additional performance impact.
254 AIX V6 Advanced Security Features: Introduction and Configuration

4.1 The Trusted Signature Database

Similar to that of TCB, there exists a database that is used to store critical
security parameters of trusted files present on the system. This database resides
at /etc/security/tsd/tsd.dat and comes with any AIX media. In TE’s context,
trusted files are files that are critical from the security perspective of a system
and if compromised can jeopardize the security of the entire system. Typically
the files that match this definition are:

� Kernel (operating system)

� All SUID root programs

� All SGID root programs

� Any program that is exclusively run by root or by a member of the system
group

� Any program that must be run by the administrator while on the trusted
communication path (for example, the ls command)

� The configuration files that control system operation

� Any program that is run with the privilege or access rights to alter the kernel
or the system configuration files

Every trusted file should ideally have an associated stanza or a file definition
stored in the TSD. A file can be marked as trusted by adding its definition in the
TSD using the trustchk command. This command can be used to add/delete/list
entries from the TSD. If desired, the TSD can be locked so even root cannot
write to it any longer. (Locking the TSD becomes immediately effective. To
unlock the TSD, a system reboot is required. The procedure of locking the TSD is
described in detail in 4.3, “Configuring security policies (runtime integrity check)”
on page 263.)
 Chapter 4. Trusted Execution environment 255

Every trusted file in the TSD is associated with a unique cryptographic hash and
a digital signature. The cryptographic hash of the default set of trusted files is
generated using the SHA-256 algorithm and the digital signature is generated
using RSA by IBM AIX development and packaged as part of the AIX installation
filesets. These hash values and signatures will be shipped as part of any AIX
installation images and will be stored in the TSD on the destination system in a
stanza format, as shown in Example 4-1.

Example 4-1 Example stanza of ksh command in the TSD

/usr/bin/ksh:
 owner = bin
 group = bin
 mode = TCB,555
 type = FILE
 hardlinks = /usr/bin/sh,/usr/bin/psh,/usr/bin/tsh,/usr/bin/rksh
 symlinks =
 size = 250820
 cert_tag = 00dcfcbcb7b0d911bd
 signature =
4009457bd5126b7ccc8962776e3aa81f0415fa507ed500dadab7c407ee29
56226542e1b6c3d0ed6a0691856bde1551f7f816f496a67e4faa72967f68de45801d
 hash_value =
54346893f1e5c193838c1673888421e2c78b12799e2e7b4ef46a3cdb200
31069
 minslabel =
 maxslabel =
 intlabel =
 accessauths =
 innateprivs =
 proxyprivs =
 authprivs =
 secflags =
256 AIX V6 Advanced Security Features: Introduction and Configuration

Unneeded values in a stanza can either be set to NULL or completely skipped.
All currently supported attributes are shown in Table 4-1.

Table 4-1 Attributes of the Trusted Signature Database

Attribute Description

owner Owner of the file. This value is computed by trustchk when the file is
being added to the TSD.

group Owner of the file. This value is computed by trustchk when the file is
being added to the TSD.

mode Comma separated list of values. This value is computed by trustchk.
The permissible values are SUID, SGID, SVTX, and TCB. The file
permissions must be the last value and can be specified as an octal
value. For example, for a file that is set uid and has permission bits as
rwxr-xr-x, the value for the mode shall be SUID,755.

type Type of the file. This value is computed by trustchk. The possible
values are FILE, DIRECTORY, MPX_DEV, CHAR_DEV, BLK_DEV, and
FIFO.

hardlinks List of hardlinks to the file. This value cannot be computed by trustchk
and hence has to be supplied by the user while adding a file to the
database.

symlinks List of symlinks to the file. This value cannot be computed by trustchk
and hence has to be supplied by the user while adding a file to the
database.

size Defines the size of the file. This value is computed by trustchk. A value
of VOLATILE means the file gets changed frequently.

cert_tag This value is computed by trustchk at the time of the addition of the file
to the TSD. The field maps the digital signature of the file with the
associated certificate that can be used to verify the file’s signature.
(Currently the certificate’s ID is also its file name in
/etc/security/certificates, but this might change in future releases.)

signature The digital signature of the file. VOLATILE means the file gets changed
frequently. This field is computed by trustchk.

hash_value Cryptographic hash of the file. This value is computed by trustchk.
VOLATILE means the file gets changed frequently.

minslabel Defines the minimum Sensitivity Label for the object (when running
Trusted AIX).

maxlabel Defines the maximum Sensitivity Label for the object (when running
Trusted AIX). This attribute is not applicable to regular files and FIFO.
 Chapter 4. Trusted Execution environment 257

Adding files to the TSD is described in 4.5, “Signature creation and deployment”
on page 268.

4.2 Auditing the integrity of the Trusted Signature
Database (system integrity check)

The trustchk command can be used to audit the integrity state of the file
definitions in the TSD against the actual files. This can be done by triggering
trustchk periodically (either by cron or by CLI) just as you would have done with
tcbck.

intlabel Defines the integrity label for the object (when running Trusted AIX).

accessauths Defines the access authorization on the object (used in RBAC).

innateprivs Defines the innate privileges for the file (used in RBAC).

inheritprivs Defines the inherit privileges for the file (used in RBAC).

authprivs Defines the privileges that will be assigned to the user if he or she has
the given authorizations (used in RBAC).

secflags Defines the file security flags associated with the object (used in
RBAC). In addition to the values described in Chapter 3, “Role Based
Access Control” on page 165, there is also the FSF_TLIB flag. It will
mark the object as part of the Trusted Library.

t_accessauth Defines the additional Trusted AIX specific access authorizations.

t_innateprivs Defines the additional Trusted AIX specific innate privileges for the file.

t_authprivs Defines the additional Trusted AIX specific privileges that will be
assigned to the user if he or she has the given authorizations.

t_secflags Defines the additional Trusted AIX specific file security flags associated
with the object.

Note: Attributes of the TSD that are specific to Trusted AIX and RBAC are
described in detail in Chapter 3, “Role Based Access Control” on page 165
and Chapter 5, “Trusted AIX/MLS” on page 273 respectively.

Attribute Description
258 AIX V6 Advanced Security Features: Introduction and Configuration

If trustchk identifies an anomaly, it can be instructed to auto-correct it or prompt
the user before attempting any correction. In case of anomalies that are
considered severe like size, signature, cert_tag, or hash_value mismatch, the
correction is not possible since chances are likely that the original binary has
been replaced.

The trustchk command would in such cases make the file inaccessible by
removing all permissions from it. That way the file becomes useless and any
damage arising from it is contained. Actions taken by trustchk depending on
mismatched attributes are shown in Table 4-2.

Auditing with trustchk supports three options:

-n Specifies the checking mode and indicates that errors are
to be reported, but not fixed. Any discrepancy between
attributes in TSD and actual file parameters will be
reported by printing messages on stderr. the keyword
“ALL” can be used to check all entries in the TSD.

-t Specifies the checking mode and indicates that errors are
to be reported with a prompt asking whether the error
should be fixed. The keyword “ALL” can be used to check
all entries in the TSD.

-y Specifies the checking mode and indicates that errors are
to be reported and fixed. This option should be used with
care since it can potentially make a file unusable without
user intervention if it encounters a discrepancy as
described above. The keyword “ALL” can be used to
check all entries in the TSD.

You can also validate file definitions against an alternate database using the -F
option. This can be useful if you do not lock your local TSD or want to have one
reference TSD for all your systems. That way you might store the TSD at some
safe alternate location on a remote system and before running a periodic check
the TSD file gets copied back first and then the check is run against it.

Table 4-2 Corrective actions taken by trustchk

Attribute Corrective action

owner The owner of the file will be reset to the value in the TSD.

group The group of the file will be reset to the value in the TSD.

mode The mode bits of the file will be reset to the value in the TSD.

type The file will be made inaccessible.
 Chapter 4. Trusted Execution environment 259

hardlinks If the link points to some other file, it is modified to point to this file. If the
link does not exist, a new link is created to point to this file.

symlinks Same as hardlinks.

size The file will be made inaccessible except in the case of a VOLATILE file.

cert_tag The file will be made inaccessible.

signature The file will be made inaccessible except in the case of a VOLATILE file.

hash_value The file will be made inaccessible except in the case of a VOLATILE file.

minslabel On a Trusted AIX system, the minimum Sensitivity Label will be reset to
the value in the TSD.

maxlabel On a Trusted AIX system, the maximum Sensitivity Label will be reset to
the value in the TSD.

intlabel On a Trusted AIX system, the integrity label will be reset to the value in
the TSD.

accessauths The access authorizations (RBAC) will be reset to the value in TSD. On
Trusted AIX, the t_accessauths values are considered part of the
accessauths attribute.

innateprivs The innate privileges (RBAC) will be reset to the value in the TSD. On
Trusted AIX, the t_innateprivs values are considered part of the
innateprivs attribute.

inheritprivs The inheritable privileges (RBAC) will be reset to the value in the TSD.
On Trusted AIX, the t_inheritprivs values are considered part of the
inherit attribute.

authprivs The authorized privileges (RBAC) will be reset to the value in the TSD.
On Trusted AIX, the t_authprivs values are considered part of the
authprivs attribute.

secflags The security flags (RBAC) will be reset to the value in the TSD. On
Trusted AIX, the t_secflags values are considered part of the secflags
attribute.

Attribute Corrective action
260 AIX V6 Advanced Security Features: Introduction and Configuration

4.2.1 Examples of TE’s auditing mode

The first example shows how trustchk works when it detects a binary that is still
the original one but its file permissions and hardlinks have been changed:

ls -laei telnet
 856 -r-xr-xr-x- 1 root system 241568 May 09 18:27 telnet
trustchk -y /usr/bin/telnet
Verification of attributes failed: mode
Verification of attributes failed: hardlinks
Verification of stanza failed: /usr/bin/telnet
ls -laei telnet
 856 -r-sr-xr-x- 3 root system 241568 May 09 18:27 telnet

Because those anomalies are not considered severe, the automatic, unprompted
check simply reapplied the settings of the file as saved in the TSD.

In the next example, trustchk detects a severe anomaly, a change in size and
hash value, as well as some other differences. This time the automatic,
unprompted check renders the file inaccessible by removing its permissions:

trustchk -y /usr/bin/telnet
Verification of attributes failed: mode
Verification of attributes failed: hardlinks
Verification of attributes failed: size
Verification of attributes failed: hash
Verification of stanza failed: /usr/bin/telnet
ls -laei /usr/bin/telnet
 2456 ---------T- 1 root system 241570 May 09 18:30 /usr/bin/telnet

4.2.2 Checking the signing authority

To answer the legitimate question “who has actually signed this binary?”, you
simply need to take a quick look at the TSD. First, you discover the certificate ID
the binary was signed with:

trustchk -q /usr/sbin/telnetd|grep cert_tag
 cert_tag = 00dcfcbcb7b0d911bd

Next, check if a file with that name exists in /etc/security/certificates and run this
command against that file:

openssl x509 -inform DER -in 00dcfcbcb7b0d911bd -text -noout
 Chapter 4. Trusted Execution environment 261

The output might look similar to this:

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 dc:fc:bc:b7:b0:d9:11:bd
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, ST=TX, L=AU, O=IBM Corporation, OU=AIX,
CN=www.ibm.com
 Validity
 Not Before: Jan 25 06:33:57 2007 GMT
 Not After : Jan 24 06:33:57 2010 GMT
 Subject: C=US, ST=TX, L=AU, O=IBM Corporation, OU=AIX,
CN=www.ibm.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (512 bit)
 Modulus (512 bit):
 00:ea:26:f5:08:c0:d4:14:29:91:31:ee:d7:6c:e5:
 8c:71:a1:a8:d2:28:5d:ba:fd:f2:04:7d:b5:58:29:
 c7:72:ea:64:0b:c6:7f:a8:f8:f0:75:c7:8f:1e:1a:
 cc:f2:d1:fb:69:45:19:38:45:88:fc:38:5e:ea:3e:
 d2:64:36:cb:63
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:

F8:CE:2E:C3:D3:03:A3:B0:85:8D:1D:40:4B:82:A9:62:80:E9:01:35
 X509v3 Authority Key Identifier:

keyid:F8:CE:2E:C3:D3:03:A3:B0:85:8D:1D:40:4B:82:A9:62:80:E9:01:35
 DirName:/C=US/ST=TX/L=AU/O=IBM
Corporation/OU=AIX/CN=www.ibm.com
 serial:DC:FC:BC:B7:B0:D9:11:BD

 X509v3 Basic Constraints:
 CA:TRUE
 Signature Algorithm: sha1WithRSAEncryption
 79:c5:6c:dd:c5:8a:bb:1e:4d:71:1e:24:96:d2:96:a5:8a:86:
 8a:ab:cd:7a:58:a2:2d:50:b2:8a:f1:c2:e9:81:81:9c:fe:c0:
 90:5f:3d:57:fc:31:18:d4:11:6e:41:a9:b4:31:5f:35:06:ad:
 92:07:ce:45:f0:31:7d:00:3c:7b
262 AIX V6 Advanced Security Features: Introduction and Configuration

If you cannot find a matching file name, look at the default certificate called
/etc/security/certificates/certificate_540. The matching certificate has to be in
/etc/security/certificates, whatever its name might be. It is actually the
certificate’s ID that gets used by trustchk, but this ID does not necessarily have
to be the certificate’s file name as well. The TSD attribute cert_tag is in fact the
certificate’s serial number without colons and maybe some padding zeros at the
beginning. If no matching certificate is found at all on the system, integrity
checking will fail.

4.3 Configuring security policies (runtime integrity
check)

In addition to the system integrity check (described in the previous chapter),
which is very similar to the one offered by tcbck on a TCB-enabled system, TE
also provides you with a runtime file integrity verification mechanism. (Keep in
mind that TE is not an install-time-only option like TCB is, so you can use this
feature anytime.)

This mechanism checks the integrity of the trusted files before every request to
access those file, effectively allowing only the trusted files that pass the integrity
check to be accessed on the system.

When a file is marked as trusted (by adding its definition to the TSD), the TE
feature can be used to monitor its integrity on every access. TE can continuously
monitor the system and hence is capable of detecting tampering of any trusted
file (by a malicious user or application) present on the system at runtime (that is,
at load time). If the file has been tampered with, TE can take corrective actions
based on pre-configured policies. If a file is being opened or executed and has
an entry in the TSD, TE will behave as follows:

1. Before loading the binary, the component responsible for loading the file
(system loader) will invoke the TE subsystem, which will calculate the hash
value using the SHA-256 algorithm.

2. This runtime calculated hash value will be matched with the one stored in the
TSD.

3. Only if the values match, the file opening/execution will be allowed.
 Chapter 4. Trusted Execution environment 263

4. If the values do not match, because either the binary is tampered or somehow
compromised, the policy configured by you defines the relevant actions.
Available policies are shown in Table 4-3.

Table 4-3 Available policies for runtime integrity checking

Policy Action

CHKEXEC Checks the integrity of trusted executables before loading
them in memory for execution.

CHKSHLIB Checks the integrity of trusted shared libraries before loading
them in memory for execution.

CHKSCRIPT Checks the integrity of trusted shell scripts before loading them
in memory.

CHKKERNEXT Checks the integrity of kernel extensions before loading it in
memory.

STOP_UNTRUSTD Stops loading of files that are not trusted, that is, only files
belonging to the TSD will be loaded. This policy works in
combination with any of the CHK* policies mentioned above.
For example, if CHKEXEC=ON and STOP_UNTRUSTD=ON,
then any executable binary that does not belong to the TSD will
be blocked from execution.

STOP_ON_CHKFAIL Stops loading of trusted files that fail the integrity check. This
policy also works in combination with CHK* policies. For
example, if CHKSHLIB=ON and STOP_ON_CHKFAIL=ON,
then any shared library that does not belong to the TSD will be
blocked from getting loaded into memory for use.

TSD_LOCK Lock the TSD so that it is no longer available for modification
through the trustchk command. Enabling this policy
immediately locks the TSD; disabling it requires a reboot of the
system (as any change to an active policy).

TSD_FILES_LOCK Lock trusted files. No change to any TSD files is allowed.

TEP Sets the value of the Trusted Execution Path, and enables or
disables it. The TEP consists of a list of colon separated
absolute paths like /usr/bin:/usr/sbin. When this policy is
enabled, the files belonging to only these directory paths are
allowed to be executed. Any executable program requested to
be loaded that does not belong to the TEP will be blocked.
264 AIX V6 Advanced Security Features: Introduction and Configuration

Here are some examples for trustchk in runtime integrity mode:

To enable TSD protection, run:

trustchk -p tsd_lock=on
trustchk -p te=on

The TSD is immediately protected against any kind of modification then. Neither
trustchk nor a manual edit of the file is possible:

trustchk -d /usr/bin/ps
Error writing to database file
echo >> /etc/security/tsd/tsd.dat
Operation not permitted.

To enable the TSD for write access again, you either need to switch off TE
completely or set tsd_lock to off. Either way, you need to reboot in order to have
this change become active immediately:

trustchk -p te=off
Policy in use. Changes applicable on next boot only

TLP Sets the value of the Trusted Library Path, and enables or
disables it. The TLP consists of a list of colon separated
absolute paths like /usr/lib:/usr/ccs/lib. When this policy is
enabled, the libraries belonging to only these directory paths
are allowed to be loaded. Any program trying to load a library
that does not belong to the TLP will be blocked.

TE Enable/Disable Trusted Execution functionality. Only when this
policy is enabled does the above mentioned policies come into
effect. Table 4-4 on page 266 shows the interaction of different
CHK* policies with STOP* policies when enabled.

Note: A policy can be enabled or disabled at any time until TE is turned ON to
bring the policies into effect. Once a policy is in effect, then disabling that
policy will go into effect only on the next boot cycle. All the information
messages are logged to syslogd.

Policy Action
 Chapter 4. Trusted Execution environment 265

When blocking any untrusted shell scripts by using the CHKSCRIPT policy,
make sure all scripts needed by your services are included in the TSD. For
example, if you are using OpenSSH, make sure the Ssshd and Ksshd start and
stop scripts in /etc/rc.d/rc2.d are in the TSD. Otherwise, sshd will not get started
upon reboot and not be shut down on a system shutdown:

trustchk -p stop_untrustd=on
trustchk -p chkscript=on

When trying to start a script with chkscript=on and that script is not included in
the TSD, its execution will be denied, regardless of its permissions, even when
root is invoking it:

./foo
ksh: ./foo: 0403-006 Execute permission denied.
ls -l foo
-rwx------- root system 17 May 10 11:51 foo

In addition, TE will write a log message to syslogd, for example:

kern:info unix: Trusted Execution: Crypto hash verification failed:
./foo

Table 4-4 shows the interaction of CHK* with the STOP* policies.

Table 4-4 Interaction of CHK* with STOP* policies

CHK* Policy STOP_UNTRUSTD STOP_ON_CHKFAIL

CHKEXEC Stops loading of
executables that do not
belong to the TSD

Stops loading of
executables whose hash
values do not match the
TSD values

CHKSHLIB Stops loading of shared
libraries that do not belong
to the TSD

Stops loading of shared
libraries whose hash
values do not match with
the TSD values

CHKSCRIPT Stops loading of shell
scripts that do not belong
to the TSD

Stop loading of shell
scripts whose hash values
do not match with the TSD
values

CHKKERNEXT Stops loading of kernel
extensions that do not
belong to the TSD

Stop loading of kernel
extensions whose hash
values do not match with
the TSD values
266 AIX V6 Advanced Security Features: Introduction and Configuration

4.4 Trusted Execution Path, Trusted Library Path,
Trusted Shell, and Secure Attention Key

The Trusted Execution Path (TEP) defines a list of directories that contain the
trusted executables. Once TEP verification is enabled, the system loader allows
only binaries in the specified paths to execute. For example:

trustchk -p tep
TEP=OFF
TEP=/usr/bin:/usr/sbin
trustchk -p
tep=/usr/bin:/usr/sbin:/etc:/bin:/sbin:/usr/lib/instl:/usr/ccs/bin
trustchk -p tep
TEP=OFF
TEP=/usr/bin:/usr/sbin:/etc:/bin:/sbin:/usr/lib/instl:/usr/ccs/bin
trustchk -p tep=on
trustchk -p tep
TEP=ON

The Trusted Library Path (TLP) has the same functionality as TEP with the only
difference that it is used to define the directories that contain trusted libraries of
the system. Once TLP is enabled, the system loader will allow only the libraries
from this path to be linked to the binaries. The trustchk command can be used
to enable/disable the TEP/TLP as well as to set the colon-separated path list for
both using TEP and TLP command-line attributes of trustchk:

trustchk -p tlp
TLP=OFF
TLP=/usr/lib:/usr/ccs/lib:/lib:/var/lib

As already mentioned in Table 4-1 on page 257, TLP uses a flag to control its
operations: FSF_TLIB. If the file has the FSF_TLIB flag set in its TSD stanza,
then the process resulting from it will be set as a TLIB process. Processes
marked as TLIB processes can link only to *.so libraries that also have the TLIB
flag set.

Note: Be careful when changing either TEP or TLP. We do not recommend
removing paths from their default settings, which are currently set to:

TEP=/usr/bin:/usr/sbin:/etc:/bin:/sbin:/sbin/helpers/jfs2:/usr/lib/i
nstl:/usr/ccs/bin
TLP=/usr/lib:/usr/ccs/lib:/lib:/var/lib

Doing so will most probably result in a system that will not reboot and function
properly since it cannot access necessary files and data any longer.
 Chapter 4. Trusted Execution environment 267

The Trusted Shell (tsh) and the Secure Attention Key (SAK) behave in a similar
way to that of the Trusted Computing Base (TCB) with the only difference that if
TE is enabled on the system instead of TCB, tsh would execute files belonging to
TSD only. For more details, such as enabling SAK, and so on, please refer to the
SAK details in TCB documents for this or earlier AIX releases1.

4.5 Signature creation and deployment

In order for all checks and policies of TE to be trustworthy, signatures are
provided by IBM (or the respective ISV for any other product). In case signatures
are missing due to whatever circumstances, such files can be added to the TSD
in two ways:

1. The signature creation and deployment process, as conducted by IBM, is
designed as shown in Figure 4-2 on page 269.

2. You create your own binaries and include them into the TE framework.

4.5.1 Adding BFF files to the TSD

When a fileset gets assembled into Backup File Format (BFF), the hash values
for the TSD get created using IBM keys and certificates.This is done with the
help of development tools like builtsecattr and instsecattr. Only the latter
one will be shipped with the AIX media. The instsecattr command is called by
installp and geninstall to add a trusted file’s stanza to the TSD in order to
guarantee the integrity of these files from IBM install media. If you do not use
BFF files, then trustchk will be used to add a trusted file’s stanza to the TSD.

1 http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.sec
urity/doc/security/tcb_configuring_additional_config_sak.htm
268 AIX V6 Advanced Security Features: Introduction and Configuration

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.security/doc/security/tcb_configuring_additional_config_sak.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.security/doc/security/tcb_configuring_additional_config_sak.htm

Figure 4-2 Trusted Execution signature creation and deployment at IBM

4.5.2 Adding non-BFF files to the TSD

If you want to add your own (or ISV) binaries to the TSD, only trustchk and
openssl are needed. While trustchk is available on any AIX V6 system anyway,
openssl can be used on one dedicated system only to set up your private key
and certificate to be able to compute checksums for the TSD. This key and its
corresponding certificate need to be copied to all systems where you want to add
files to the TSD, unless you create the files’ stanzas on your development
system and copy the stanzas to your reference image or your other systems.

Make sure OpenSSL is installed on your AIX system. At least Version
openssl-0.9.7l-1.aix5.1.ppc.rpm needs to be installed, which can be found on the
AIX Toolbox for Linux Applications CD or on the respective IBM Web site, the
AIX Toolbox Cryptographic Content page2.

To check whether the proper version of OpenSSL is installed on your system,
run:

lslpp -L "openssl*"
 Fileset Level State Type Description (Uninstaller)
 --
 openssl 0.9.7l-1 C R Secure Sockets Layer and
 cryptography libraries and
 tools (/bin/rpm)

Install
Hash/
Signature
Database

Fileset.sec.S

buildsecattr
instsecattr

Fileset.sec
Package

Packaging process

Build process

/usr/bin/chuser:
owner = root
…..
size =
cert_tag =
signature =
hash_value =
….

instsecattr

RBAC
databases

·
·

Other Security databases

Efix/ifix
Service updates

2 http://www6.software.ibm.com/dl/aixtbx/aixtbx-p
 Chapter 4. Trusted Execution environment 269

http://www6.software.ibm.com/dl/aixtbx/aixtbx-p

If OpenSSL is not installed on your system or an older version is installed, install
the required version either from CD or from a file system where you have
downloaded the RPM file to:

rpm -i openssl-0.9.7l-1.aix5.1.ppc.rpm

The setup for a signed private/public keypair is much simpler than the one
described in 6.8, “Secure File Transfer Protocol” on page 364 for secure ftp setup
because trustchk does not need a complete chain of trust up to some root
Certificate Authority. Since openssl creates its keys and certificates in privacy
enhanced mail security certificate (PEM) format, they need to converted into
ASN.1/PKCS8/DER (distinguished encoding rules) format to become usable for
TE. This can be quickly done by using the following commands:

openssl genrsa -out privkey.pem 2048

Which will generate a 2048-bit private key in PEM format.

openssl req -new -x509 -key privkey.pem -outform DER -out cert.der
-days 3650

Which will create the public key and certificate that lasts approximately ten years:

openssl pkcs8 -inform PEM -in privkey.pem -topk8 -nocrypt -outform
DER -out privkey.der

Which will convert the private key from PEM into DER format. After the
conversion, the private key in PEM format is no longer needed. You only need
privkey.der and cert.der for the following examples. Now you can add any file
you would like to the TSD by simply issuing:

trustchk -s privkey.der -v cert.der -a /path/to/binary

Unless when adding a VOLATILE file, a directory, or a device file, it is necessary
to provide a private key during the addition of file definitions to the TSD using the
-s flag and an associated digital certificate carrying the associated public key
using the -v flag. The private key is used to generate the signature of the file and
subsequently it will be discarded, so it is up to you to store this key securely. (At
the time of writing, the certificate is stored in /etc/security/certificates and will be
used to verify the signatures whenever integrity verification is requested by you.
This might change in future releases of AIX.)

A direct update of an existing stanza for a binary that was modified deliberately
(that is, fixed) is not possible. The stanza needs to be deleted first and then
re-added:

trustchk -d /path/to/binary
trustchk -s privkey.der -v cert.der -a /path/to/binary
270 AIX V6 Advanced Security Features: Introduction and Configuration

When you are adding a new entry to the TSD and that trusted file has some
symbolic or hard links pointing to it, these links must be manually added to the
TSD by using the symlinks and hardlinks attributes at the command line along
with trustchk. Here is an example:

trustchk -s key -v cert -a /usr/bin/ksh
hardlinks=/usr/bin/sh,/usr/bin/psh,/usr/bin/tsh,/usr/bin/rksh

If the file being added is expected to be changing very frequently, then this can
be indicated to the trustchk command using size=VOLATILE on the command
line. This will instruct trustchk not to calculate the hash_value and signature
fields while generating the file definition for adding to the TSD. During integrity
verification of this file, the hash_value and signature fields will be ignored.

You can also supply any pre-computed file definitions (for example, from your
development system, as discussed in this section) through a file using the -f
option to be added to the TSD. In this case, trustchk will not compute any of the
values and will store the definitions into the TSD without any verification. When
doing so, the user is responsible for the sanity of the file definitions. Private key
and public certificate are not needed when using a pre-computed stanza file.

For a complete description of all options of trustchk, please refer to Table 4-1 on
page 257.

Note: As shown in Figure 4-2 on page 269, iFixes are not provided with hash
values by IBM. It is your responsibility to add the files included in such fixes to
the TSD if needed.
 Chapter 4. Trusted Execution environment 271

272 AIX V6 Advanced Security Features: Introduction and Configuration

Chapter 5. Trusted AIX/MLS

In this chapter, we cover the Multi-level Security feature introduced in Trusted
AIX. We will discuss the new security attributes added as part of the Multi-level
Security and show how they enhance the security of the information and make
the AIX a Trusted Operating System. This chapter also covers how do we install,
configure, and manage a trusted AIX system and what kind of installation options
are available. At the end of the chapter, we will show how to configure Trusted
AIX and how commercial applications can be set up to run successfully on
Trusted AIX.

5

© Copyright IBM Corp. 2007. All rights reserved. 273

5.1 Overview

This section gives an overview of what is Multi Level Security, what is the need of
enhanced security, and how does Trusted AIX provides the enhanced security.
We also talk about some standards for Multi Level Security.

5.1.1 What is Multi Level Security

Multi Level Security is about classifying information at various level and decide
the access policy based on their security level. In Trusted AIX, Multi Level
Security is based on labelling the information with different labels and controlling
the access based on the labels. As a Multi Level Security feature, Trusted AIX
introduces two more access controls over the traditional Discretionary Access
Control that is based on the discretion of the owner of the object. We discuss
these additional security layers, in detail, later in this chapter. These access
controls are enforced by the system and not by the user, which makes it more
secure. The additional security layers over Discretionary Access Control (DAC)
are known as:

� Mandatory Access Control (MAC)

� Mandatory Integrity Control (MIC)

5.1.2 What is the need for enhanced security

Today’s world is an information oriented world. The information manager finds it
difficult to secure the highly important corporate data from unauthorized users.
They need some means that is easy to maintain and protects their data

Traditional UNIX cannot completely provide such security because the user root
(the superuser of the system) can either in authorized or unauthorized manner
can do anything with the system and nothing in the system stops them from
doing so.

The threat involved is not only external but also internal; the information can be
leaked by the malicious insiders. Either way, state-of-the-art security systems
used by the financial industry have not been designed to prevent the
transmission of sensitive information within an organization.

It is possible that anyone in an organization, from low-level clerks to senior vice
presidents and other corporate officers, could transmit sensitive data outside of
these institution’s networks without detection by firewalls or other network traffic
monitoring systems designed to prevent this from happening.
274 AIX V6 Advanced Security Features: Introduction and Configuration

5.1.3 What Trusted AIX provides

Trusted AIX provides the Multi Level Security capability that is enforced by the
system and not by the owner of the system resources. A properly configured
system is resistant to attacks from the inside as well as outside of the system.
The system manages all the access to the data. Users who need to modify
system configuration parameters will have to be assigned sufficient
authorizations to be able to successfully execute the relevant commands. A user
cannot do any thing more than for which he is authorized. The system uses
assigned policies to control access.

Policy decision includes classifying the information, deciding the labels and their
hierarchy to be used, labelling the information with the labels, and enabling or
disabling various label checks.

The information is labeled in different levels and every one from high rank post to
low rank post has restricted access to the information based on labels assigned
to them in Trusted AIX. We will see in our hypothetical scenario how Trusted AIX
solves the problem of internal leakage, and how the information is classified and
saved from leakage.

The following are the four primary element of information security which Trusted
AIX addresses.

� Confidentiality

Threats related to disclosure of the information to the unauthorized users are
a confidentiality issue.

Trusted AIX provides an Object Reuse and Access control mechanism to
prohibit information leakage through system resources. Resources could be
internal to the system, such as buffers and caches, as well as external, such
as printer, disk, and tap drives. Object reuse refers to the allocation and
deallocation of system resources (storage objects) to the subject. The
security of the system requires that no system resources can be used to
transfer data from one process to another and from one user to another.

Trusted AIX provides Labeled Printing. Each print job is automatically
provided a banner page and a trailer page that shows all security relevant
labels. When writing data to disks and tape in AIX with the backup command,
Sensitivity Labels are included with the data. Only an authorized user can
import or export unlabeled data from tapes or disks.
 Chapter 5. Trusted AIX/MLS 275

� Integrity

Related to modification of the information by an unauthorized person.

Trusted AIX provides access control policy such that unauthorized users can
not modify the information, whether it is information generated inside the
system or coming from outside of the system. To prevent the modification of
the information by a malicious user, root privilege has been disabled in the
system.

� Availability

Related to the availability of the system resource or services to the authorized
users.

Trusted AIX protects the system by unauthorized users and processes that
create denial of services. If a malicious program fills up the disk space by
writing garbage data, the other users will not be able to create their files. In
Trusted AIX, unprivileged process are not allowed to create or read the files in
a directory.

� Accountability

Related to accounting which process or user performed what action.

The Audit subsystem records all security related events. The audit services
provide the administrator a set of auditable events and an audit trail of all
security related system events.

5.1.4 Historical aspect

Many standards have been published for the security of classified labeled
information.

The United State Government Department of Defense (DoD) published the
Trusted Computer System Evaluation Criteria (TCSEC) in December 1985. This
states the security requirements for the Automatic Data Processing systems.
This standard is used for assessing the effectiveness of the Computer Security
controls built in to a Computer system. The TCSEC was used to evaluate,
classify, and select computer systems being considered for the processing,
storage, and retrieval of sensitive or classified information.

TCSEC was then replaced by the Common Criteria International Standard
originally published in 2005.

Trusted AIX Multi Level Security has been designed keeping these standards in
mind.
276 AIX V6 Advanced Security Features: Introduction and Configuration

5.2 Introduction to MLS

We shall use a bookshelf metaphor to describe MLS. Books you do not want to
be accessed by everyone will be put in the topmost shelf and the ones you want
everyone to have access to will be placed in the lowest shelf, assuming that
height is our security criteria (see Figure 5-1).

Figure 5-1 People accessing the information at different level base on height
 Chapter 5. Trusted AIX/MLS 277

In exceptional cases where we need to provide access to a person who is at
lower level, users can be given privileges to cross these security checks, such as
when a user is running in lower level and runs an executable that needs to cross
these label checks. Trusted AIX provides the functionality to make it succeed
using privileges (see “Privilege” on page 292 and Figure 5-2).

Figure 5-2 Privilege to cross the security check
278 AIX V6 Advanced Security Features: Introduction and Configuration

5.2.1 What is new in Trusted AIX

Security features provided by a standard UNIX system include:

� A login password protected system and network access

� User group and world file access permission

� Access control list

� Audit subsystem

All the above attributes of the objects provided by the traditional UNIX system
are based on the discretion of the owner of that object; this is called
Discretionary Access Control. The owner may change the security information of
the object he owns, willingly or unwillingly. That could cause the leak of
information to other users who are not supposed to have that information.

In addition to these security attributes, Trusted AIX provides the security
attributes that are controlled not by the owner but by the system and the
administrator of the system. So a user with malicious intentions still cannot leak
the information by changing the security attributes of the object.

Trusted AIX provides access control based on the sensitivity and integrity of the
information. The access control based on the sensitivity of the information, object
holds, and the sensitivity clearance of the process or user is called Mandatory
Access Control. Such access is enforced by the system and not the owner of the
object or resource.

Access control based on maintaining the integrity of the information and verifying
the trustworthiness of the user is called Mandatory Integrity Control.
 Chapter 5. Trusted AIX/MLS 279

These three level of access controls can be viewed as shown in Figure 5-3. MAC
and MIC make two more layers of security around DAC to make the system
security better.

Figure 5-3 View of MAC, MIC, and DAC

The following are the new Security attributes introduced as part of the security
enhancement added in Trusted AIX.

� Sensitivity Label

� Integrity Label

� File Security Flags

� Kernel Security Flags

In addition to these new attributes, two very important attributes for Trusted AIX
were introduced as part of the RBAC, and Trusted AIX adds more privileges and
authorizations to the system. They are:

� Privileges

� Authorization
280 AIX V6 Advanced Security Features: Introduction and Configuration

All the file system entities and the resources are called objects and all the other
entities that use the resources are called subjects. For example files, directories
and IPC objects are called objects and the processes are called subjects.

5.2.2 Mandatory Access Control

Mandatory Access Control is based on the sensitivity of the information an object
holds and the sensitivity clearance of the subject. MAC is controlled by the
system. The system enforces access based on the level of sensitivity. In Trusted
AIX, the sensitivity of the information is measured by labels assigned to the
object or subject; this is called a Sensitivity Label (SL).

All the objects and the subjects in the system are assigned Sensitivity Levels and
the system compares the subject Sensitivity Label and object Sensitivity Label to
determine access.

See Figure 5-4 for more information.

Figure 5-4 Mandatory Access Control

Mandatory Access Control
(MAC)

Control by the
system

DAC

Access Object

ProcessSubject

(process)

MAC
 Chapter 5. Trusted AIX/MLS 281

What is a Sensitivity Label
A Sensitivity Label has two parts:

� Classification

� Compartments

Classification
Classification indicates the level of security. These are system defined
hierarchical labels. The maximum number of classifications possible in the
system is 32,000.

Trusted AIX comes with some default classification labels, that is, TOP SECRET,
SECRET, and CONFIDENTIAL (see Figure 5-5).

Figure 5-5 HIerarchy of classification

Compartments
We can have different departments or groups where we set the different levels of
security in the department as well as inter department or intergroup.
Compartments can be used for representing different departments and groups.
282 AIX V6 Advanced Security Features: Introduction and Configuration

Compartments are represented as strings. Strings can be any name.
Compartments do not have any intrinsic ordering, but the administrator can
impose constraints on which compartments and classifications can be combined.

Figure 5-6 shows some examples of compartments.

Figure 5-6 Example of compartments
 Chapter 5. Trusted AIX/MLS 283

A label is formed by the combination of a classification and the compartments, as
shown in Figure 5-7.

Figure 5-7 Labels as the combination of classification and compartments

These are used for the sensitivity of the data hold by the object(i.e. File,
Directory, Network Packet) and the sensitivity clearance of the subject (i.e.
processes). The information flow is decided by the sensitivity of the data and the
clearance of the process.

Relationship between Sensitivity Labels
There could be three kinds of relationship between labels. Table 5-1 on page 285
shows the relationships between two Sensitivity Labels SL1 and SL2 based on
the relationships between their classification and compartment.
284 AIX V6 Advanced Security Features: Introduction and Configuration

Table 5-1 Sensitivity Label relationships

Figure 5-8 shows the relationships of the Sensitivity Labels.

Figure 5-8 Relationship of the Sensitivity Labels

MAC enforcement rules
1. To read a process, SL should dominate file SL.
2. To write a process, SL must be equal to file SL.
3. To execute a process, SL should dominate file SL (same as read)
4. If SLs are disjoint, no access is allowed.

Relationship Classification
relationship

Compartment
relationship

Dominance SL1 >= SL2 SL1 compartments include
all SL2 compartments.

Equal SL1 = SL2 SL1 compartments are
same as the SL2
compartments.

Disjoint N/A If no compartments match.

Secret A B Secret

SL1 SL2

A B

Public A C Public B

SL1 SL2

Secret A B Public B

Dominance

Equal

Disjoint

SL1 SL2
 Chapter 5. Trusted AIX/MLS 285

MAC security policy
� A file owner cannot change the MAC settings of the file, unless specifically

authorized.

� A file owner cannot grant access to another user, unless the other user is
authorized to access that class of data.

� A process cannot alter its own security attribute.

� Access to the object is determined by:

– Sensitivity of the object (file being acted on)

– Clearance of the subject (Acting process)

Setting the labels for the process, user, file, directory, and specifying the labels in
the system is discussed in 5.5, “Configuring and managing the Trusted AIX
system” on page 310.

MAC on open file descriptor
For read/write and simple file access, MAC checks are performed when a
process accesses a file. Once a process has a file descriptor for the file, it can
read and write the file even if the process Sensitivity Label changes to a level
lower than the Sensitivity Label of the file. However, some operations, such as
setting the file owner, permissions, labels, and privileges, perform access checks
even after a process has obtained a file descriptor.

This means that MAC checks and partitioned directory path resolutions are not
performed when a process accesses a file using a file descriptor. The Sensitivity
Label of the file or process may change and access is still permitted.

5.2.3 Mandatory Integrity Control

As Trusted AIX provides access control based on the sensitivity of the
information, it also provides access control based on the integrity of the object
and subject. Integrity is related to unauthorized changes to the information.
Integrity is the measure of the trustworthiness of the object and the subject. If the
information is not trustworthy, the process should not be allowed to read that
information, and in the same way if the process is not trustworthy, it should not be
allowed to modify any information in the system.

Trusted AIX represents the integrity of the object or the subject using the
Integrity Labels (TL).
286 AIX V6 Advanced Security Features: Introduction and Configuration

What is an Integrity Label
Integrity Labels represent the level of trust in a system object or process. Integrity
labels consists of only classifications (See “Classification” on page 282). Integrity
labels are used for access check based on the integrity of the information held by
the objects and the trustworthiness of the process accessing the information or
writing the information.

Table 5-2 shows the relationships beween Integrity Labels

Table 5-2 Relationship between Integrity Labels

MIC enforcement rules
MIC is enforced whenever MAC is enforced. Additionally, MIC is enforced when a
file or directory is deleted or renamed.

NOTL
There is a special Integrity Label, NOTL, that can be put on a file or process.
When an object or process has an NOTL TL, no MIC checks are performed on
the object or process. Only privileged users can set a TL to NOTL or change a TL
if the TL is currently NOTL.

5.2.4 Other attributes

Other attributes are described as follows.

Run modes
In order to configure and maintain the system and for day-to-day operations,
there are two run modes:

1. Configuration mode

2. Operational mode

Attention: We use the abbreviation TL for Integrity Label in many places in
this chapter.

Relationship Classification relationship

Dominance TL1 >= TL2

Equal TL1 = TL2

Disjoint N/A
 Chapter 5. Trusted AIX/MLS 287

When the system boots up, it initially runs in configuration mode. After
initialization is complete, the run mode is changed to operational.

Configuration mode
Configuration mode is used to maintain and recover the system. Configuration
mode is intended to be used for administration of critical, security-relevant parts
of the system. The restrictions associated with configuration mode cannot be
overridden or bypassed by any mechanism.

Operational mode
Operational mode is used for day-to-day operations.Operational mode is
intended to be the standard operating mode of the system.The restrictions
associated with operational mode cannot be overridden or bypassed by any
mechanism.

These restrictions are:

1. The kernel security flags cannot be modified.

2. TCB objects cannot be created, modified, or deleted.

3. The Trusted Library Path cannot be modified. (See the description of Trusted
Library Path in 4.4, “Trusted Execution Path, Trusted Library Path, Trusted
Shell, and Secure Attention Key” on page 267.)

The only difference between operational mode and configuration mode is that in
the latter, some daemons and services are not started and not all file systems
may be mounted. Security mechanisms, however, such as Sensitivity Labels,
Discretionary Access Controls, Mandatory Access Controls, privilege checks,
and authorizations are in full force, as dictated by the relevant security
configuration flags.

System run mode can be displayed by the getrunmode command and can be set
using the setrunmode command by a authorized user, as shown in Example 5-1.

Example 5-1 System run mode

$ getrunmode
System is currently in CONFIGURATION MODE.
$ setrunmode -o
System runtime mode is now OPERATIONAL MODE.

Attention: We recommend that the system be operated in only operational
mode to ensure that all expected system functionality is available.
288 AIX V6 Advanced Security Features: Introduction and Configuration

File Security Flags
File Security Flags are flags that affect the way the files are accessed. Trusted
AIX provides the File Security Flags shown in Table 5-3.

Table 5-3 File Security Flags

The File Security Flag can be displayed using the lstxattr command. It can be
set using the settxattr command. A partitioned directory is represented by the
FSF flag FSF_PSDIR in Example 5-2.

Example 5-2 displaying file security flags

$ pdmkdir pdir
$ lstxattr -f -F pdir
pdir:
 maxsl=IMPLEMENTATION LOW
 minsl=IMPLEMENTATION LOW
 tl=TL IMPLEMENTATION LOW
 secflags=FSF_PSDIR

Flag Description

FSF_APPEND The file can only be appended to and not altered in operational
mode.

FSF_AUDIT The file is marked as a part of the audit subsystem. To
read/write these files, the process is required to have
PV_AU_READ/PV_AU_WRITE privileges respectively.

FSF_MAC_EXMPT Effective Privilege Set with PV_MAC_OVRRD ignores MAC
restrictions when attempting to access the object.

FSF_PDIR The directory is a partitioned directory.

FSF_PSDIR The directory is a partitioned subdirectory.

FSF_PSSDIR The directory is a partitioned sub-subdirectory.

FSF_TLIB The object is marked as part of the Trusted Library. To change
this property requires:
1. The system to be running in configuration mode.
OR
2. The kernel security flag trustedlib_enabled is OFF.

FSF_TLIB_PROC Processes marked as TLIB processes can link only to *.so
libraries that have the TLIB flag set. To change this property
requires:
1. The system to be running in configuration mode.
OR
2. The kernel security flag trustedlib_enabled is OFF.
 Chapter 5. Trusted AIX/MLS 289

Kernel Security Flag
Some kernel flags have been introduced to control the security policies. Using
these kernel flags, various security checks can be enabled or disabled. For
example, if the Sensitivity Label check has been disabled by the administrator of
the system, the system will not check for the labels for determining the access
permissions.

These flags are only supported when the Trusted AIX is enabled. In the user
space, these flags are stored in the ODM database. Trusted AIX has different
configuration of flags for different modes. Depending upon the run mode, the
kernel checks for the corresponding Kernel Security Flags.

Trusted AIX provides Kernel Security Flags shown in Table 5-4.

Table 5-4 Kernel security flags

Kernel
Security Flag

Enabled Disabled Operational
mode default

Configuration
mode default

tnet_enabled. Trusted
network
functionality
available.

Trusted
network
functionality
cannot be
configured or
used.

Disabled. Disabled.

tl_write_
enforced.

MIC enforced
on write, delete
and rename
operations.

Configuration
set so that TLs
are not used
for write
checks.

Enabled. Enabled.

tl_read_
enforced.

MIC enforced
on read
operations.

Configuration
set so that TLs
are not used
for read
checks.

Disabled. Enabled.

sl_enforced. MAC enforced. Configuration
set so that SLs
are not used
for access
control.

Enabled. Enabled.

trustedlib_
enabled.

FSF_TLIB flag
on file system
objects is
honored.

FSF_TLIB
flags are not
honored.

Disabled. Disabled.
290 AIX V6 Advanced Security Features: Introduction and Configuration

The current flag settings can be seen by the getsecconf command. The
command displays the setting for the mode the system is currently running in, as
shown in Example 5-3.

Example 5-3 Displaying run modes

$ getrunmode
System is currently in CONFIGURATION MODE.

$ getsecconf
CONFIGURATION MODE Security Flags
TRUSTED NETWORK : DISABLED
SL ENFORCEMENT : ENABLED
TL WRITE ENFORCEMENT : ENABLED
TL READ ENFORCEMENT : ENABLED
TLIB : DISABLED
ROOT : DISABLED

$ setrunmode -o
System runtime mode is now OPERATIONAL MODE.

$ getsecconf
OPERATIONAL MODE Security Flags
TRUSTED NETWORK : DISABLED
SL ENFORCEMENT : ENABLED
TL WRITE ENFORCEMENT : ENABLED
TL READ ENFORCEMENT : DISABLED
TLIB : DISABLED
ROOT : DISABLED

root. Root will be
enabled.

Root will be
disabled.

Disabled. Enabled.

Kernel
Security Flag

Enabled Disabled Operational
mode default

Configuration
mode default
 Chapter 5. Trusted AIX/MLS 291

Privilege
Privileges are associated with the process and can be used to bypass specific
restrictions and limitations of the system. In some cases we need some
applications to bypass some restrictions to make it function properly on a Trusted
AIX system. We can accomplish this task by providing proper privileges to the
application. Assignment of the privilege to the application for bypassing
restrictions and limitations can only be done by the authorized users. Trusted AIX
provides some tool to determine what all privileges are needed. The privilege
assignment is based on the least privileged principle, that is, any process should
be given only the least privileges needed to work properly. A detailed description
of this subject can be found in Chapter 3, “Role Based Access Control” on
page 165.

Authorization
Users are assigned some roles and those roles consist of some authorizations.
An administrator can assign different roles to the users. The functionality
available to the user depends on the roles provided to the user. A detailed
description of roles and authorizations can be found in Chapter 3, “Role Based
Access Control” on page 165.

Roles
Roles are a collection of authorizations. A role can be build up of any number of
authorizations. A user can be assigned different roles that decide what functions
that user is able to do in the system.

5.2.5 Introduction to Trusted Networks

The extended security attributes of enhanced security systems necessitate
certain functionality for secure networking. Trusted Networking is the set of
functions that process incoming/outgoing network traffic on Trusted AIX. It
supports a number of recognized networking standards, including U.S. DoD
RFC1108 and the Common/Commercial IP Security Option (CIPSO).

Trusted Network does two things:

1. Assigns labels to the traffic.

a. Incoming: Assigns a label if it is not in the packet.

b. Outgoing: Inserts the label in the packet if specified to do so.

2. Filtering traffic.

a. Determine what is allowed in and out.
292 AIX V6 Advanced Security Features: Introduction and Configuration

Figure 5-9 shows how incoming traffic is processed.

Figure 5-9 Processing incoming traffic

Processing Incoming Traffic

client

1.Trusted Network (TN)
assigns label to request .

2.Then Based on label and
net rules, TN either allows
or denies traffic

server

if allowed

Internet

TN

Application
 Chapter 5. Trusted AIX/MLS 293

Figure 5-10 shows how outgoing traffic is processed.

Figure 5-10 Processing outgoing traffic

Packet labels
Label information is attached to the packets in the IP header. These labels are
attached to the packet in the IP layer and transmitted to the next layer. These
labels depend on two protocols: RFC 1108 and CIPSO.

Network rules
There are two kinds of rules in the system. Based on these rules, a decision is
made to allow or deny the packet:

1. Host rule

2. Interface rule

Host and Network Interface rules govern the way that the system deals with
packets of incoming and outgoing data over the network. Host rules apply to
specific hosts. Network Interface rules apply to the interfaces through which
hosts connect to the network. If there are any conflicts between a host rule and
an interface rule, the host rule takes precedence.

Processing Outgoing Traffic

client

1. Server sends traffic with
label. Trusted Network (TN)
intercedes.

2. Based on net rules, TN
allows or denies traffic

3.If specified, TN puts label
on traffic

server

Internet

TN

Application

if allowed
294 AIX V6 Advanced Security Features: Introduction and Configuration

In general, the rules pertain to protocols used, ranges of addresses (both hosts
and ports) to which to apply the rules, and what Sensitivity Labels to assign to
the packets.

Unlabeled network traffic
This is used for most internet traffic:

� Incoming: Trusted Network assigns labels to the incoming packets and based
on the labels it allows or denies the traffic.

� Outgoing: Trusted Network does not attach a label to the outgoing packet.

Labeled network traffic
This is mostly used for communication among Trusted Systems. It is required for
the receiving and sending system to interpret labels.

� Incoming: The Trusted Network assigns a label to the packet based on the
rules setting and decides to deny or allow the traffic.

� Outgoing: The Trusted Network inserts the labels to the outgoing packet.

Commands
Trusted AIX provides two commands for enabling and maintaining the Trusted
Network:

tninit This command is used to initialize the Trusted Network
subsystem and maintain the rules database. The tninit
command supports four operations: init, load, save, and
display. The user must have the aix.mls.network.init
authorization to run this command.

netrule A command to add, remove, list, or query rules, flags, and
security labels for interfaces and hosts. The user must
have the aix.mls.network.config authorization to run this
command.

Some examples of how these two commands can be used are shown in 5.5.6,
“Trusted Network configuration” on page 317.
 Chapter 5. Trusted AIX/MLS 295

5.2.6 Audit subsystem

As the new security attributes have been added to the system, the audit system
has been modified to audit and display the new security attributes.

The following changes have been done to the audit system:

1. Commands have been modified for selecting and displaying the MLS
attributes in MLS audit records.

2. Sensitivity Label and Integrity Label (TL) ranges are specified in the
/etc/security/audit/config file. All the objects between these range will be
audited. The administrator can download the audit ranges.

3. The audit range is defined under the WAR stanza. One example of this is
given in Example 5-4.

Example 5-4 /etc/security/audit/config file with MLS attributes

start:
 binmode = on
 streammode = off

bin:
 freespace = 65536
 trail = /audit/trail
 bin1 = /audit/bin1
 bin2 = /audit/bin2
 binsize = 10240
 cmds = /etc/security/audit/bincmds

stream:
 cmds = /etc/security/audit/streamcmds

classes:
 general = MLS_getWAR, MLS_setWAR, MLS_SetSyslab, MLS_SetPLab
 files = File_Write

users:
 root = files

isso = Genral

WAR:
 obj_min_sl = SLSL
 obj_max_sl = SHSL
 obj_min_tl = SLTL
 obj_max_tl = SHTL
296 AIX V6 Advanced Security Features: Introduction and Configuration

 sub_min_sl = SLSL
 sub_max_sl = SHSL
 sub_min_tl = NOTL
 sub_max_tl = NOTL

4. The audit start command has been changed to download the audit range
on an MLS system; if it is a non-MLS system, it will not download the audit
range.

5. The auditpr command has been modified to print the MLS attributes. There
are three MLS fields in the audit header of a MLS audit record. Three new sub
parameters have been added under the auditpr -h command to display
those attributes:

– E: Effective privilege

– S: Effective Sensitivity Label

– I: Effective Integrity Label (TL)

6. A new parameter, -s, has been added to the auditpr command to display the
MLS data in the tail portion of a MLS audit record. If -s is omitted, no MLS
data in the MLS audit tail is displayed. The -v parameter to auditpr command
is unchanged. It does not display the MLS data.

7. MLS related field names for the auditselect command have been added, so
that user can select audit records based upon the MLS fields in the headers
of MLS audit records. The new MLS selection criteria are: effective privilege,
effective Sensitivity Label, and effective Integrity Label (TL). These new field
names will be used in the expression of the -e parameter of the auditselect
command (see Table 5-5).

Table 5-5 New keywords

8. The audirstream command has been modified to handle the MLS buffer
length in the /tail audit header.

9. MLS related events have been added to the /etc/security/audit/events. Those
events can be added to /etc/security/audit/config for the auditing.

New keyword Selection criteria

priv Privilege in string format

tl TL in string format

sl SL in string format
 Chapter 5. Trusted AIX/MLS 297

Example 5-5 is an example of the /etc/security/audit/events file with the MLS
events.

Example 5-5 /etc/scurity/audit/events file updated with MLS events

* sec_getauditrange()
 MLS_GetWAR = printf "cid=%d"

* sec_setauditrange()
 MLS_SetWAR = printf "cid=%d"

* sec_setrunmode()
 MLS_SetRunMode = printf "rc=%d"

* sec_getsecconf()
 MLS_GetSecconf = printf "conf_flag=%d, oper_flag=%d, rc=%d"

* sec_setsecconf()
 MLS_SetSecconf = printf "rc=%d"

* sec_settpmode()
 MLS_SetTPMode = printf "mode=%d, rc=%d"

* sec_setsyslab()
 MLS_SetSyslab = printf "err=%d"

* sec_getpsec()
 MLS_GetPsec = printf "pid=%d, err=%d"

* sec_setplab()
 MLS_SetPLab = printf "pid=%d, err=%d"

* sec_setptlibmode()
 MLS_SetPTLIBMode = printf "mode=%d, err=%d"

Now we add the config file above to our system and try to audit the
MLS_SetPLab event. We will use the auditpr command to list the MLS attributes
with the new options E, S, and I, which are introduced for MLS attributes.
298 AIX V6 Advanced Security Features: Introduction and Configuration

Only a user having the aix.ras.audit authorization can start, stop, or query the
audit subsystem. Only that user can print the report on the stdout (see
Example 5-6).

Example 5-6 Audit subsystem authorization

$ audit start
$ settxattr -p effsl=SEC $$
$ audit shutdown
auditing reset
$auditpr -i /audit/trail -h E,S,I
Privilege SL TL
--
PV_ROOT SEC TL_IMPL_LO

5.2.7 Partitioned directory

In Trusted AIX, the directories have a range of Sensitivity Labels. Any process
having an SL between that range can list the files inside that directory. Although a
user at a lower SL cannot access the files at a higher SL, being able to list the file
names could still gain information about them. To stop this kind of information
leak, a new feature has been added in the Trusted AIX called partitioned
directory. A partitioned directory has hidden subdirectories corresponding to
each SL.

There are two partitioned directory access modes in the system:

1. Virtual mode

2. Real mode

In virtual mode, the user will not be able to see the hidden subdirectories. In the
real mode, all the directories will behave same as the regular directory structure
and the hidden directories will be visible to the user. By default, the system is in
virtual mode. Mode change can only be done by an aix.mls.pdir.mode authorized
user.

There will be one hidden subdirectories corresponding to each Sensitivity Label.
Whenever a user used the cd command to change to a partitioned directory, he
will be redirected to the subdirectory corresponding to his or her or her SL, so he
will only be able to see the files inside the hidden subdirectory corresponding to
his or her process effective SL. The redirection is not apparent to the user. Users
will be allowed to see only those files whose labels match that of the process
labels.
 Chapter 5. Trusted AIX/MLS 299

Partitioned directories can be created by the pdmkdir command and can be
removed using the pdrmdir command. Partitioned directory access mode can be
changed by the pdmode command. For linking a file in a hidden directory to other
hidden directories that are at a higher SL, the pdlink command is used. A
regular directory can be converted to the partitioned directory using the pdset
command.

You can make the pdir using the pdmkdir command:

$ pdmkdir pdir

If we create the file inside the partitioned directory, it will be created under a
hidden directory:

$ touch pdir/file

We can change the Sensitivity Label of the process and create the file with same
name again because it will be created inside another hidden directory based on
the effective SL of the process:

$ settxattr -p effsl=SECRET $$
$ touch pdir/file
$ ls pdir
file

If we list the files inside the partitioned directory in the real mode using the
pdmode command, we will see the hidden directories, because in read mode
redirection is not done:

$ pdmode -r ls pdir
000000 07P000

Partitioned directories can be very useful in the environment where we do not
want the person operating in the lower level to see the files owned by others that
are at a different level.

A person can share his or her file to other person at the higher level by linking its
file using the pdlink command. The pdlink command creates a link to the files to
all the hidden directories that are of a higher level and exist at the time of
creation.
300 AIX V6 Advanced Security Features: Introduction and Configuration

5.3 Applications on Trusted AIX

There are two types of applications on Trusted AIX:

� Trusted application

� Untrusted application

Trusted applications are those that require privileges to run, that is, trusted
applications specifically check privileges and authorization, and grant access to
only those users with the required access controls in place.

Untrusted applications are those that do not require privileges to run on the
system. Virtually all commercial off-the-shelf applications that run on Trusted AIX
are untrusted applications. Even with untrusted applications, Trusted AIX applies
default labels and checks to make sure that untrusted applications cannot bypass
the system security mechanism.

Setup for porting applications on Trusted AIX
Unfortunately, not all commercial off-the-shelf applications are “well behaved”,
that is, they perform various functions that violate the system security policy of
the operating system. Some examples are applications that must execute as
superuser or root account. Trusted AIX has provided tools and features to run
such programs, while still minimizing the threats to system security:

� A fine-grained set of privileges that can be used by the isso authorized user to
assign privileges to an application on a case-by-case basis so that the
application functions correctly on the system in a minimal-risk, secure
manner. The principle of least privilege requires that application programs be
assigned only the minimal set of privileges necessary to allow the application
program's performance.

� A superuser emulation feature to allow those applications that assume the
superuser status to execute within the control of the Mandatory Access
Control (MAC) and Mandatory Integrity Control (MIC).

� A privilege-finding command, tracepriv, that shows the privileges used by a
given process.

Determining and assigning privileges
Many applications that run on your system will require privileges to run.You can
grant these privileges most easily by placing them in the executable binary's
innate privilege set. Thus, when the binary is executed, the resulting process
inherits the privileges it needs to run.
 Chapter 5. Trusted AIX/MLS 301

You need to set the minimum necessary privileges on the file to keep it as secure
as possible. Any privileges granted beyond those necessary for proper execution
violates the least privileged principle. Therefore, an important step in mounting
an application on your system is to determine the minimum required privileges.

To find the privilege needed for an application as an isso authorized user, assign
PV_ROOT to your shell and exercise the application vigorously and see what
privileges it has used. After you have executed and exercised an application, and
before you exit the application, run the tracepriv command on the application's
process. The system returns a list of all privileges used by the application since it
started. Add the command to the privilege command database with these
privileges in the innate privilege set. After you have done this, grant yourself no
privileges and run the application again, to make sure that it still runs properly.

In Example 5-7, for the script file myscript.sh, we show how to trace all
privileges needed to successfully run it.

Example 5-7 Tracing privileges

$ setsecattr -p eprivs=PV_ROOT mprivs=PV_ROOT $$
$ cat myscript.sh
mkdir testdir
$ tracepriv ./myscript.sh

294968: Used privileges for /usr/bin/sh:
 PV_AZ_ROOT PV_DAC_R
 PV_PROC_PRIV PV_TP_SET
 PV_KER_ACCT PV_KER_RAC

$ setsecattr -c
innateprivs=PV_AZ_ROOT,PV_DAC_R,PV_TP_SET,PV_PROC_PRIV,PV_KER_ACCT,PV_K
ER_RAC $PWD/myscript.sh

5.4 Installation of Trusted AIX

Trusted AIX can only be enabled when you initially install the AIX operating
system. The option appears as part of the operating system installation process.
Currently, only the preservation, New, and Overwrite installation options are
supported for Trusted AIX. Migration installation to Trusted AIX is not supported.
For the preservation installation, the file system should be JFS2 file system.

We now show the preservation installation from AIX 5L V5.3 to Trusted AIX and a
New and Complete Overwrite installation of the Trusted AIX.
302 AIX V6 Advanced Security Features: Introduction and Configuration

Preservation installation from AIX 5L V5.3 to Trusted AIX
To check whether the preservation installation from AIX 5L V5.3 to Trusted AIX
works properly, we will create some user IDs on the AIX 5L V5.3 system and
create some data for those users (user1 and user2) to check that the data is
preserved. User information for these two users is shown in Example 5-8. We will
create some other non-system file systems and one volume group other than
rootvg named testvg to check that the file systems and volume groups are
preserved. We will create some logical volumes and file systems in rootvg as well
as in testvg and check whether they will be preserved in the preservation
installation.

Example 5-8 User ID information

user1:
 admin = false
 login = true
 rlogin = false
 su = false

user2:
 admin = true
 login = true
 rlogin = true
 su = true

We have four file systems with the configuration shown in Example 5-9.

Example 5-9 File systems information

MountPoint:Device:Vfs:Nodename:Type:Size:Options:AutoMount:Acct
/home/user1/fs1:/dev/fslv00:jfs2:::32768:rw:no:no
/home/fs2:/dev/lv00:jfs:::32768:rw:no:no
/fs3:/dev/lv01:jfs:::32768:rw:no:no
/fs4:/dev/fslv01:jfs2:::32768:rw:no:no
 Chapter 5. Trusted AIX/MLS 303

We have two volume groups with the information shown in Example 5-10.

Example 5-10 Volume group information

testvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loglv00 jfs2log 1 1 1 open/syncd N/A
fslv00 jfs2 2 2 1 open/syncd /home/user1/fs1
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
lv00 jfs 2 2 1 open/syncd /home/fs2
lv01 jfs 2 2 1 closed/syncd /fs3
fslv01 jfs2 2 2 1 closed/syncd /fs4

The user is storing data in /home, as shown in Example 5-11.

Example 5-11 User data

cd /home
ls
esaadmin guest lost+found user1 user2
cd /home/user1
mkdir dir1 dir2 dir3
touch file1 file2 file3
ls
.profile dir1 dir2 dir3 file1 file2 file3
fs1
cd /home/user2
mkdir dir1 dir2 dir3
touch file1 file2 file3
ls
.profile dir1 dir2 dir3 file1 file2 file3

Now we try to do a preservation installation to see whether this information is
preserved. We see how the additional attributes are set.

Follow these steps to install Trusted AIX from CD or through a NIM installation:

1. Select the system console by pressing F1 (or 1 on a ASCII terminal) and
press Enter.

2. Select the English language for the base operating system (BOS) installation
menus by typing 1 in the choice field. Press Enter to open the Welcome to
Base Operating System Installation and Maintenance screen.
304 AIX V6 Advanced Security Features: Introduction and Configuration

3. Type 2 to select 2 Change/show Installation setting and Install in the choice
field and press Enter (see Figure 5-11).

Figure 5-11 Welcome menu for Base Operating System Installation and Maintenance
 Chapter 5. Trusted AIX/MLS 305

4. In the Installation and Settings screen, verify that the installation settings are
correct by checking the method of installation (see Figure 5-12).

Figure 5-12 Installation and Settings screen

5. To change the System settings, type 1 in the choice field and hit Enter.
Change the method of installation to preservation.

Restriction: For preservation installation, the file system should be JFS2. If it
is JFS, it will fail because JFS does not provide Extended Attributes V2 for
security labels. We cannot have migration installation for Trusted AIX because
we cannot change the Security Model in a migration installation.
306 AIX V6 Advanced Security Features: Introduction and Configuration

6. To install Trusted AIX, enter 3 in the choice field and hit Enter. By default, the
Trusted AIX option is No. Change it to Yes by entering 1 in the choice field of
the Security Models screen (see Figure 5-13).

Figure 5-13 Security Model Screen

7. To enable the configuration for certification, select 2 and then select 1.

8. Select 0 to install any other software; when finished, come back to the
Installation and Settings screen and continue with the installation.

Trusted AIX installation by default creates three different users with three
different roles. The detailed description can be found in Chapter 3, “Role Based
Access Control” on page 165. These three users are assigned three different
roles:

� ISSO: Information System Security Officer

� SA: System Administrator

� SO: System Operator

After the installation is complete, you will be prompted to choose the terminal
type. After choosing the terminal type, the Installation Assistant screen will
appear, where you can set the password for these three users created by default
and do some other configurations.

Log in to the system as an isso user and run swrole to change to the isso role.
Now we check for the data we had in the system before installation.
 Chapter 5. Trusted AIX/MLS 307

Both the volume groups are preserved (see Example 5-12).

Example 5-12 Listing the volume group information

$ lsvg -l testvg
testvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT
POINT
loglv00 jfs2log 1 1 1 closed/syncd N/A
fslv00 jfs2 1 1 1 closed/syncd
/home/user1/fs1

$ lsvg -l rootvg
rootvg:
lv00 jfs 1 1 1 closed/syncd /home/fs2
lv01 jfs 1 1 1 closed/syncd /fs3
fslv01 jfs2 1 1 1 closed/syncd /fs4

We need to mount the file system (Example 5-13).

Example 5-13 Mounting the file system after the preservation installation

$ mount /home/user1/fs1
Replaying log for /dev/fslv00.
$ mount /home/fs2
Replaying log for /dev/lv00.
$ mount /fs3
mount: /dev/lv01 on /fs3: No such file or directory
$ mount /fs4
mount: /dev/fslv01 on /fs4: No such file or directory

Because the mount point for two file systems were in the root file system and the
root file system is not preserved, we need to create the mount point and mount
those file systems again (Example 5-14).

Example 5-14 Creating the mount point and mounting the file systems

$ mkdir /fs3
$ mount /dev/lv01 /fs3
$ mkdir /fs4
$ mount /dev/fslv01 /fs4
308 AIX V6 Advanced Security Features: Introduction and Configuration

User definitions are not preserved (Example 5-15).

Example 5-15 User definition is not preserved

$ lsuser user1
3004-687 User "user1" does not exist.
$ lsuser user2
3004-687 User "user2" does not exist.

We need to create the user and assign them the Sensitivity Label and Integrity
Label (see “User account creation” on page 330 for more information).

By default, the users are assigned System Low Sensitivity Label (SLSL) and
System Low Integrity Label (SLTL) (Example 5-16). The isso user has to
customize labels for the users (see 5.5.4, “User Account configuration” on
page 314 for more information).

Example 5-16 Default values assigned to the user

default:
minsl = "SLSL"

 maxsl = "SLSL"
 defsl = "SLSL"
 mintl = "SLTL"
 maxtl = "SLTL"
 deftl = "SLTL"

User data is also preserved in the system. Because the user definition is not
preserved, we need to create the user and change the ownership of his or her
data as before.
.

New and Complete overwrite installation
Steps for a New and Compete overwrite installation are the same as for a
preservation installation. The only difference is that we have to change the
Installation type. After selecting the current terminal as your console and English
as the language of installation, follow the following steps.

1. Type 2 to select 2 Change/show Installation setting and Install in the choice
field and press Enter.

2. In the Installation and Settings screen, verify that the installation settings are
correct by checking the method of installation.

Important: Once Trusted AIX is enabled, it cannot be disabled. Evaluate your
need for Trusted AIX before choosing this mode.
 Chapter 5. Trusted AIX/MLS 309

3. To change the System settings, type 1 in the choice field and press Enter.
Change the method of installation to New and Complete overwrite.

4. For installing the Trusted AIX, enter 3 in the choice field and hit Enter. By
default, the Trusted AIX option is No. Change it to Yes by entering 1 in the
choice field of the Security Models screen.

The rest of the steps are same as described in “Preservation installation from
AIX 5L V5.3 to Trusted AIX” on page 303. In a New and Complete overwrite
installation, all the system as well as user data will be lost.

5.5 Configuring and managing the Trusted AIX system

Here we discuss configuring and managing the Trusted AIX system.

5.5.1 Disabling root

Root will be disabled in the Trusted AIX system. This is primarily to minimize the
damage that can be caused by a single user with all privileges.

All types of system logins as root user are disabled. Only the su command allows
root user logins. Processes owned by root are not assigned any special
privileges. The root-owned setuid and non-setuid programs work as before when
used by authorized users. For unauthorized users, the program will run if the
DAC modebits or ACLs allow execution, but the program will not be assigned any
privileges, so the program may not be able to perform privileged operations when
run by unauthorized users. Therefore, it is necessary to assign proper privileges
to newly installed applications if the applications need to perform privileged
operations (see 5.3, “Applications on Trusted AIX” on page 301 for information).

Trusted AIX by default has three roles. The system administrative tasks are
distributed between these three roles. These three roles are.

� isso: Information System Security Officer

� sa: System Administrator

� so: System Operator

The system can be administered by the users with these three roles. It is not
advised to assign all three roles to one user.
310 AIX V6 Advanced Security Features: Introduction and Configuration

5.5.2 System configuration

The Trusted AIX has two kind of run modes: operational mode and configuration
mode. The system can be configured to enable or disable various security
checks in the system based on the policy decision.

The security checks can be disabled or enabled only in Configuration Mode using
the setsecconf command. A user with aix.system.config.write authorization or a
user with isso role can do the configuration of the system. The following are the
options for system configuration:

tnet Trusted Network.

tlwrite Integrity Label (TL) enforcement when a process tries to
write to a file system object.

tlread If enabled, TLs are checked on the read operation.

sl Mandatory Access Control is enforced if this flag is
enabled.

tlib If enabled, then FSF_TLIB will be honored.

To change the system configuration, first we need to switch to the configuration
mode and then run the setsecconf command. The setting after the command
completion will be displayed.

For example, if the sl attribute has been disabled, then the Sensitivity Label will
not be checked for access decisions.

Example 5-17 How to set the system configuration

$ setrunmode -c
System runtime mode is now CONFIGURATION MODE.

$ setsecconf -c sl=enable tlread=enable tlwrite=enable
CONFIGURATION MODE Security Flags
TRUSTED NETWORK : DISABLED
SL ENFORCEMENT : ENABLED
TL WRITE ENFORCEMENT : ENABLED
TL READ ENFORCEMENT : ENABLED
TLIB : ENABLED
ROOT : DISABLED
 Chapter 5. Trusted AIX/MLS 311

5.5.3 Label configuration

All the labels are stored in a Label Encoding file. All the applications use this file
to convert the binary format of the label to human readable strings.

Label Encoding file
The label strings and its corresponding values are stored in a plaintext file that is
called the Label Encoding file, and is stored in the
/etc/security/enc/LabelEncodings path. This file follows the MITRE standard
format. The definition from this file is loaded into the kernel using the initlabeldb
API. Every command and API uses this file for the mapping between the human
readable string and the corresponding binary value.

Labels can be customized for each site after the installation of the Trusted AIX by
modifying this file by an isso user. No command line is provided for modification
of the Label Encoding file directly. For modifying the LEF file, the existing LEF file
is copied to a temporary file using the labck command. The temporary file can be
edited using any editor. While editing, we need to take care of the standards the
LEF file follows.

A Trusted AIX system defines a SYSTEM_LOW sensitivity and integrity label that
is dominated by all the labels and a SYSTEM_HIGH sensitivity and integrity label
that dominates all the labels. These definitions take the values of the highest and
lowest Sensitivity Labels as defined in the Label Encoding file.

The system also defines the accreditation range in the Label Encoding file. Users
cannot have labels that are not in the Accreditation Range section.

The System Labels can be seen by the getsyslab command (Example 5-18).
The system labels can be changed by isso or an aix.mls.system.label.write
authorized user.

Example 5-18 Getting system labels

$ getsyslab
System Minimum Sensitivity Label : IMPLEMENTATION LOW
System Maximum Sensitivity Label : TOP SECRET ALL
System Minimum Integrity Label : TL IMPLEMENTATION LOW
System Maximum Integrity Label : TL TOP SECRET

This file is protected by permission bit 000 and with SYSTEM Height SL and TL.
312 AIX V6 Advanced Security Features: Introduction and Configuration

Format of the LabelEncodings file
The label encoding contains versions and the following mandatory sections.
Each section should start with one of these section keywords followed by colon:

1. Classifications

2. Information labels

3. Sensitivity Labels

4. Clearances

5. Channels

6. Printer banners

7. Accreditation range

The Label Encoding file starts with the VERSION entry. This is a sequence of
characters that may contain white spaces.

Each of the following keywords can be present in a section. These keywords
terminate with a semi-colon (;):

� name=name

Keyword to define the full name of the classification or compartment.

� sname=name

Keyword to define an abbreviated name. Optional.

� aname=name

 Alternate keyword for the classification. Optional.

� value=value

Keyword to specify the internal integer value of the classification or
compartment.

� compartments=bit

Keyword to specify which compartment bit must be 0 or 1 if the word is
present in the label.
 Chapter 5. Trusted AIX/MLS 313

Example 5-19 shows the Classification section for the Labels.

Example 5-19 Version and Classification section of Label Encoding File

VERSION= AIX VERSION

CLASSIFICATIONS:

 name= IMPLEMENTATION LOW; sname= IMPL_LO; value= 0;
 name= UNCLASSIFIED; sname= U; value= 20;
 name= PUBLIC; sname= PUB; value= 40;
 name= SENSITIVE; sname= SEN; value= 60;
 name= RESTRICTED; sname= RES; value= 80;
 name= CONFIDENTIAL; sname= CON; value= 100;
 name= SECRET; sname= SEC; value= 120;
 name= TOP SECRET; sname= TS; value= 140;

5.5.4 User Account configuration

A user with the System Administrator role can create a user, but the password,
labels and other security attributes are assigned by the user with the isso role.

User labels
Every user in the system is assigned minimum and maximum clearance labels. A
user can operate only between this label range. Every user is also assigned one
default label. By default, that user will be operating in that default label. As the
user log ins to the system, that default label is assigned to the process.

The labels can only be assigned by a user with the isso role using the chuser
command:

chuser -a minsl=IMPL_LO maxsl=TS defsl=IMPL_LO bob

A user can only see his or her label using the lsuser and lssec commands, but
cannot change his or her label. To see other user labels, a user should have
aix.mls.clear.read authorization. To modify the clearance, the user should have
aix.mls.clear.write authorization.
314 AIX V6 Advanced Security Features: Introduction and Configuration

The security labels are stored in the stanza for the user in the /etc/security/user
file (Example 5-20).

Example 5-20 Labels stored in /etc/security/user file under the user’s stanza

bob:
minsl = "IMPL_LO"

 maxsl = "TS"
 defsl = "IMPL_LO"
 mintl = "SLTL"
 maxtl = "SHTL"
 deftl = "SLTL"

User login
To log in, all of the following dominance rules must be true:

� The minsl value must be dominated by the defsl value.

� The defsl value must be dominated by the maxsl value.

� The mintl value must be dominated by the deftl value.

� The deftl value must be dominated by the maxtl value.

You can specify the desired effective sensitivity and integrity labels at the time of
login using the –e and –t options of the login command.

To log in at a sensitivity level that is not in the accreditation range of the system,
you must have the aix.mls.outsideaccred authorization.

Trusted AIX does not allow system users (users with a uid less than 128) to log
in.

If a user uses the su command to switch to some other user label, the invoker
should dominate the new user.

Process labels
When the user log ins to the system, the user labels are assigned to the process.
The user’s default Sensitivity Label will be assigned as the effective Sensitivity
Label of the process.

When a process forks, the child will inherit the labels from the parent process.
Process labels can be changed by the settxattr command with the -p flag:

settxattr -p effsl=IMPL_LO efftl=TL_IMPL_LO $$
 Chapter 5. Trusted AIX/MLS 315

File and directory labels
All the objects in the system are labeled as the system starts. When a user
creates file system objects, the labels of the objects will be set to that of the
process effective Sensitivity Label. The labels of the files and directories can be
set using the settxattr command:

settxattr -f sl=IMPL_LO filename

Directories have a range of Sensitivity Labels assigned, that is, minsl and maxsl,
but has only one Integrity label:

settxattr -f minsl=IMPL_LO maxsl=SEC dirname

A process can access the file in the directory only if the process effective
Sensitivity Label dominated both the minsl and maxsl of the directory.

IPC and devices
All the IPC objects also have labels assigned to them. Devices have a range of
Sensitivity Labels. The labels can be listed and set using the lstxattr and
settxattr commands.

5.5.5 Terminal configuration

Every terminal in Trusted AIX is assigned one range of labels. A user can log in
to that terminal if his or her default Sensitivity Label is within the range of the
terminal Sensitivity Label and is within the system accreditation range. After
login, the user’s labels are assigned to the terminal.

The labels for the terminal are stored in the /etc/security/login.cfg file. By default,
all the terminals are assigned a range of SYSTEM_LOW SL and SYSTEM_HIGH
SL and Integrity Label (TL) value of NOTL, which means every one can log in to
the system having a valid Sensitivity Label.
316 AIX V6 Advanced Security Features: Introduction and Configuration

The administrator of the system should configure the Sensitivity Labels and
Integrity Labels according to the site policy (Example 5-21).

Example 5-21 /etc/security/login.cfg for terminals

default:
 sak_enabled = false
 logintimes =
 logindisable = 0
 logininterval = 0
 loginreenable = 0
 logindelay = 0
 minsl = "SLSL"
 maxsl = "SHSL"
 tl = "NOTL"

5.5.6 Trusted Network configuration

A Trusted Network can be configured using the netrule and tninit commands.
The network can be configured based on the interface and based on the host.
There could be separate rules for different interfaces and hosts.

The netrule command is used for configuring the interface rules and host rules.
Using netrule, we can add, delete, query, or list host or interface rules. A
network rule contains the following information:

� Name of the interface or the host.

� The range of the labels of the incoming packet that will be accepted.

� The default label that will be assigned to the incoming packet if it is not
labeled.

� Whether we have to drop or allow the packet from that interface or that host.

The drop flag can have three values:

– r: Required to drop.

– n: Not dropped.

– i: Use interface rule.

� The protocol it uses for sending the security information is either RFC 1108
(RIPSO) or CIPSO. The type of protocol is represented by the received and
transmit flags.
 Chapter 5. Trusted AIX/MLS 317

The received flag can have following values:

– r: RIPSO only.

– c: CIPSO only.

– e: Either CIPSO or RIPSO.

– n: Neither RIPSO nor CIPSO (system default).

– a: No restriction.

– i: Use interface/system default.

The transmit flag can have the following values:

– r: RIPSO placed on all outgoing packet IP headers.

– c: RIPSO placed on all outgoing packet IP headers.

– i: Use interface default (host default, host only).

� The RIPSO/CIPSO options include Classification, Protection Authority Flags
(PAF)1, and Domain of interpretation (DOI)2 and Tags.

� RIPSO is basically for DoD and CIPSO is for commercial purposes.

� Trusted AIX supports three tag types: 1, 2, or 5.

Host rule
We may have situation where we want to accept or drop all the packets from
some host in a specific port range. We may have to decide what protocol will be
used for the security information and what security attributes will be added based
on those protocols. If the host rule is not defined for a host, it will use the
interface rule of the interface on which it will be accepting the packet.

Here are some examples of the host rules. Example 5-22 shows a rule for
accepting all the CIPSO packets coming from the host 9.124.101.51 between the
ports 13 to 30.

Example 5-22 Host rule for accepting a packet for a host

$ netrule h+i 9.124.101.51 =tcp :13 :30 127.0.0.1 -dn -fc:c +impl_lo
+ts +impl_lo
IN SRC: 9.124.101.51/32 tcp:13-30 DST: 127.0.0.1/32 hopopt
 n:c:c: | IMPL_LO | TS | IMPL_LO |
 DOI: 0x00001000
 tagset: 1,2,5

1 PAF represents a different authority. This is basically for RIPSO.
2 DOI: A group of systems use the same “Domain of interpretation” to indicate that they agree on the

meaning of the particular value in the security option, such as classification and tags. This is for
CIPSO.
318 AIX V6 Advanced Security Features: Introduction and Configuration

Example 5-23 shows a rule for dropping all the packets coming to the port 23.

Example 5-23 Setting a host rule that drops all the packets coming from port 23

$ netrule h+i 9.124.101.51 =tcp :23 127.0.0.1 -dr +impl_lo +ts +impl_lo
IN SRC: 9.124.101.51/32 tcp:23 DST: 127.0.0.1/32 hopopt
 r:i:i: | IMPL_LO | TS | IMPL_LO |

Interface rules
We can set the network rule for the specific interface. When ever a packet arrives
at the interface, it will be checked for both the host rule and the interface rule.
host rule takes precedence over interface rules.

We can add and list the interface rules using the netrule command. The list of
the interfaces can be seen by the ifconfig -a command. The current rules can
be listed with the netrule il command.

Example 5-24 Listing the interface rules

$ netrule il
en0: n:i:n: | IMPL_LO | TS ALL | IMPL_LO |
lo0: n:i:n: | IMPL_LO | TS ALL | IMPL_LO |

We give one example of setting an interface rule. If we want to drop all the
packets coming from the lo0 interface and want to change the sensitivity range
and default label of the interface, we can do that using the netrule command.
The default value for DOI is 0x00001000.

Example 5-25 Add a interface rule

$ netrule i+u lo0 -dr -DOI=4096 -tags=1 +U +SEC +U
lo0: r:i:n: | U | SEC | U |

Initializing the Trusted Network System and loading, saving, and displaying the
rules requires the tninit command. Run the following command to initialize the
Trusted Network System:

$ tninit init

Note: If we have both a host rule and interface rule, the host rule takes
precedence.
 Chapter 5. Trusted AIX/MLS 319

This loads the tables into the kernel that are responsible for making the
translation between a local representation of an Sensitivity Label (SL) and what
is transmitted over the network. Load, save, and display options are used to load
the rules, save the rules in a file, and display the rule to the stdout. A file name
should be specified with all these with the mapping.

Incoming traffic processing
Once the packet comes into the system, do the following:

1. Check the drop flag in the IP header of the packet.

2. Set SL on request.

3. Allow or deny based on the SL range. SL on request must be within the
minSL and maxSL range.

Figure 5-14 shows the incoming traffic processing process.

Figure 5-14 Incoming traffic processing

denydeny

If SL of request greater than minSL and less than maxSL
of rule (host or NI as applicable), allow. Otherwise,
deny.

nn

drop
flag

drop
flag

Incoming traffic Processing

aa

receive
flag

receive
flag

as
spec’d?

as
spec’d?

Yes

denydeny

No

Yes

No apply
default SL

apply
default SL

denydeny
No

Yes

allowallow

IPSO
label?
IPSO
label?

in SL
range?
in SL

range?
cc

rr

ee

nn

ii

rr

ii
320 AIX V6 Advanced Security Features: Introduction and Configuration

Outgoing traffic processing
1. Check the drop flag in the IP header of the packet.

2. Set SL on request.

3. Send or drop based on the range of the SL range. SL on request must be with
in the minSL and maxSL range.

Figure 5-15 shows the outgoing traffic processing.

Figure 5-15 Outgoing traffic processing

Attention: The networking capabilities of AIX Trusted Network have been
carefully designed to allow any conceivably desired configuration. However,
you should not change the configuration from the default values in
/etc/security without a thorough understanding of how AIX Trusted Networking
works.

dropdrop

SL of request must be within range specified in
applicable host rule or NI rule.

nn

drop
flag

drop
flag

Outgoing traffic processing
transmit

flag
transmit

flag
No apply

process ESL
apply

process ESLIPSO
label?
IPSO
label?

rr

ii
as

spec’d?
as

spec’d?

Yes

dropdrop

No

cc

rr

nn

ii

Yes

dropdrop
No

sendsend

in SL
range?
in SL

range? Yes
 Chapter 5. Trusted AIX/MLS 321

5.5.7 File system configuration

The primary file system supported by Trusted AIX is the JFS2 file system with
Extended Attributes V2. Multi Level Security attributes of the objects are stored
as the Extended Attributes.

A non-JFS2 file system object will not have security attributes associated with it.
When the non-JFS2 file system is mounted over a JFS2 file system mount point,
security attributes are used for access checks, because non-JFS2 file system
objects do not have eav2 to store security attributes. While listing the security
attributes for the object, the security attributes of the mount point will be
displayed. The non-JFS2 file systems are called a single level file system
(Example 5-26).

Example 5-26 Single level file system

$ crfs -v jfs -g rootvg -m /mlsfs -a size=16M
$ mount /mlsfs
$ lstxattr -f -F /mlsfs
/mlsfs:
 maxsl=SECRET
 minsl=SECRET
 tl=TL IMPLEMENTATION LOW
 secflags=
$ touch /mlsfs/file
$ lstxattr -f -F /mlsfs/file
/mlsfs/file:
 sl=SECRET
 tl=TL IMPLEMENTATION LOW
 secflags=
$ mkdir /mlsfs/dir
$ lstxattr -f -F /mlsfs/dir
/mlsfs/dir:
 maxsl=SECRET
 minsl=SECRET
 tl=TL IMPLEMENTATION LOW
 secflags=
322 AIX V6 Advanced Security Features: Introduction and Configuration

When a JFS2 file system is mounted over a JFS2 file system, it will be a
Multilevel File System, because the object security attributes will be used for
access checks, not the mount point security attributes. When listing the security
attributes the object attributes will be displayed.

Example 5-27 Multilevel File System

$ crfs -v jfs2 -g rootvg -m /mlsfs -a size=16M
$ lstxattr -f -F /mlsfs
/mlsfs:
 maxsl=SECRET
 minsl=SECRET
 tl=TL IMPLEMENTATION LOW
 secflags=
$ touch /mlsfs/file
$ lstxattr -f -F /mlsfs/file
/mlsfs/file:
 sl=UNCLASSIFIED
 tl=TL IMPLEMENTATION LOW
 secflags=

A file system can be mounted from a non-Trusted AIX system to a Trusted AIX
system. The NFS mount will be Single Level Mount, that is, a security attribute of
the mount point will be used for access checking.

5.5.8 Printer configuration

Once the printer has been installed on the system, the user with the isso role
assigns a label range to the printer. MAC access to the printer is determined by
the process Sensitivity Label and the label range assigned to the printer. The
process Sensitivity Label is printed on the banner, header/footer, and trailer
pages. Labels at the header/footer of each page should be dominated by the
Label on the banner page. The process running the lp command must have
MAC, MIC, and DAC access to the file it is trying to print.

Labels to the printer are assigned using the lpadmin command:

$ lpadmin -p laser -J SECRET -L IMPL_LO

This sets the label range of the printer named laser as IMPL_LO to SECRET,
which means only processes that has effective Sensitivity Label between this
range can submit print jobs to the printer laser. Any process having an effective
Sensitivity Label out of this range will be denied permission to submit print jobs.
 Chapter 5. Trusted AIX/MLS 323

A label check is done every time a user submits the print job using the lp
command and before the submitted job is printed by the lpsched daemon.

5.6 Trusted AIX scenario

All too often the cyber criminals robbing the financial service industry actually
work for them. Some of the most notorious recent cases of ID theft are suspected
to be the work of insiders. Either way, state-of-the-art security systems used by
the financial industry have not been designed to prevent the transmission of
sensitive information originating inside the organization.

What standard UNIX provides could be sufficient for protection from the outside
world, but what if the inside user itself becomes malicious? In standard UNIX,
you cannot stop an information leak if it is done by a malicious insider with
access to the systems.

One approach to stop important information leaks is by classifying information at
different levels and labeling them according to their level. You need to design a
policy for the accessing information based on their different levels.

We can use an example of how can we use Trusted AIX for classifying
information and labeling it accordingly and decide the policy that is good for
stopping sensitive information leaks.

Health care industry
In the health care industry, we have information regarding the patient. We have
different kinds of information that could be classified based on their sensitivity.
For example, the previous treatments received by and the current treatment
needed to the patient is sensitive information and should only be readable by the
person with need-to-know. Information that is general, such as name and
address, can be readable by other staff as well. So here is a classification of the
information based on the sensitivity of the information.

For example, information that is needed to be readable only by doctors might be:

� Previous treatments received
� Current Treatment

Information needed to be readable only by a lab assistant and administrators
might be:

� Medical test required
324 AIX V6 Advanced Security Features: Introduction and Configuration

Information that should only be readable by the pharmacy department and
administrators might be:

� Medicine
� Old Balance

Information that might be visible to all staff might be:

� Name
� Address
� Membership account number

Now that we have classified the information, we can label the information with
different labels.

Let us assume that we have the labels and the mapping between the information
and labels shown in Table 5-6.

Table 5-6 Example labels and information

The different persons have been assigned the labels shown in Table 5-7.

Table 5-7 Example person assignment

Information Sensitivity Label

Classifications Compartments

1. History of the treatment received
2. Current Treatment

TREATMENTS ENT,GYNO,
ORTHO,
OPTHAL, and
ALL_DEP3. Medical test required RECORDS

4. Medicine
5. Old Balance

MEDICINE

6. Name
7. Address
8. Membership account number

GENERAL

Person Classification Compartment

Doctors TREATMENTS <Department Name>

Lab Assistant RECORDS <Department Name>

Medical store cum cashier MEDICINE ALL_DEP

Receptionist GENERAL ALL_DEP
 Chapter 5. Trusted AIX/MLS 325

Doctors will have the classification of TREATMENTS and the compartment as
their department name. Lab assistants will also be specific to the departments
and will have the classification of RECORDS and compartment as the
department name they belong to. The pharmacy and the receptionist will belong
to all the departments, so they will have the compartment as ALL_DEP, that is,
all departments.

How classifying helps in this situation
� Confidentiality:

– Information leakage is not possible. Doctors cannot write to the lower level
file and will not be able to leak the information to lower level people.

– Keeping the labels of the doctors as different compartments makes them
access only the records related to their departments. They cannot access
or modify the records for other departments.

– There could be one head doctor who will have the label TREATMENT
ALL_DEP and can access all department records and can refer to a
specific department doctor.

– A person working at lower level cannot access the files at a higher level.
They cannot read the information that they are not supposed to read.

– The printer can be configured so that no one can print out confidential
documents.

– Other external storage devices can be set at a high level so that the staff
will not be able to write those documents to the external media.

� Integrity:

The lower level people cannot modify the file at upper levels based on the
MAC policy.

� Accountability:

An enhanced Audit system can be configured for the Multilevel Security
Attributes auditing to take care of accountability.

Managing system
Most of the system management is done by the users with ISSO (information
system security officer) and SA (System administrator) roles.
326 AIX V6 Advanced Security Features: Introduction and Configuration

The configuration tasks to be done by them are shown in Table 5-8.

Table 5-8 Configuration tasks

Label configuration
To add the additional label to the Label Encoding file, we need to copy the
Standard LEF file to some other file, edit that file, and then replace the standard
LEF file with the modified file. This can be done by using the labck command,
which can be run by an aix.mls.lef authorized user or an isso user:

$ labck -c temp_lef

Edit the file temp_lef to include the new classifications in the CLASSIFICATION
section. We will be merging the new labels in between the existing label. You can
replace the full API.

Example 5-28 Add the labels to the CLASSIFICATION section

VERSION= AIX VERSION

CLASSIFICATIONS:

 name= IMPLEMENTATION LOW; sname= IMPL_LO; value= 0;
 name= GENERAL; sname= GEN; valur= 3;
 name= MEDICINE; sname= MED; value= 5;
 name= RECORDS; sname= REC; value= 10;
 name= TREATMENTS; sname= TRET; valure= 15;

Configuration task Who OR

Label configuration isso A user with aix.mls.lef authorization

User creation sa A user with aix.security.user.create
authorization

Assignment of labels isso A user with aix.mls.clear.write authorization

System configuration isso A user with aix.mls.system.config.write
authorization

Printer configuration isso A user with aix.device.config.printer
authorization

Network configuration isso A user with aix.mls.network.config and
aix.mls.network.init authorization
 Chapter 5. Trusted AIX/MLS 327

As the values assigned to them are in increasing order, the dominance
relationship will be same. That is, TREAMENTS will dominate RECORDS and
RECORDS will dominate MEDICINE.

Now add the different compartments to the SENSITIVITY LABEL section under
WORD: subsection (see Example 5-29). We have added the new compartments
between the existing ones. Old ones can be removed, but we do not recommend
this action.

Example 5-29 Sensitivity Labels

SENSITIVITY LABELS:

WORDS:

 name= ALL; sname= ALL; compartments= 0-89;
 name= GIBRALTAR;sname= GIB; compartments= 1-5;
 name= COMP_A; sname= A; compartments= 1;
 name= COMP_B; sname= B; compartments= 2;
 name= COMP_C; sname= C; compartments= 3;
 name= COMP_D; sname= D; compartments= 4;
 name= ENT; sname= E; compartments= 6;
 name= GYNO; sname= G; compartments= 7;
 name= ORTHO; sname= O; compartments= 8;
 name= OPTHAL; sname= OP; compartments= 9;
 name= ALL_DEP; sname= AD; compartments= 6-10
 name= INTERNET; sname= INET; compartments= 67;

Important: Follow the MITRE standard to modify the file and check the file for
correctness using the labck command before replacing the LEF file.
328 AIX V6 Advanced Security Features: Introduction and Configuration

Add the labels in Example 5-30 to the ACCREDITATION RANGE section.

Example 5-30 Add the new labels to ACCREDITATION RANGE section

ACCREDITATION RANGE:

 classification= IMPL_LO; only valid compartment
combinations:

 impl_lo

 classification= GEN; all compartment combinations valid;
 classification= MED; all compartment combinations valid;
 classification= TRET; all compartment combinations valid;
 classification= REC; all compartment combinations valid;

After editing the file, we can replace the standard file with the modified one.

Important: Check that the Label Encoding File is valid after the modification
using the labck command before replacing the Standard Label Encoding file:

$ labck -f temp_lef

Note: Take a backup of the original file before replacing it with the modified
one:

$ labck -r temp_lef
 Chapter 5. Trusted AIX/MLS 329

System configuration
Enable or disable the services according to your needs. For enabling the
Sensitivity Label checking, enable the sl flag with the setsecconf command, if it
is not already enabled. The current setting can be checked by the getsecconf
command.

Example 5-31 Enable the SL enforcements

$ setsecconf -o sl=enable
OPERATIONAL MODE Security Flags
TRUSTED NETWORK : DISABLED
SL ENFORCEMENT : ENABLED
TL WRITE ENFORCEMENT : ENABLED
TL READ ENFORCEMENT : ENABLED
TLIB : DISABLED
ROOT : DISABLED

User account creation
Only a user with the sa role can create the user. Log in as the user with the sa
role and create the user using the mkuser command (Example 5-32).

Example 5-32 Create user as a user with sa role

$ su sa
$ swrole sa
sa’s password:
$ mkuser doctENT
$ mkuser doctORTH
$ mkuser labENT
$ mkuser labORTH
$ mkuser medicALL
$ mkuser recept
330 AIX V6 Advanced Security Features: Introduction and Configuration

We have created a name that could represent the person as the job he does and
the department he is in (Table 5-9).

Table 5-9 Person/label assignment

Label assignment
Assigning a password to the users and assigning labels can only be done by the
user with the ISSO role.

A label can be assigned to the users by the chuser command by the isso
administrator (Example 5-33).

Example 5-33 Assign label to the users based on their job and department

$ chuser minsl="GEN ALL_DEP" defsl="GEN ALL_DEP" maxsl="GEN ALL_DEP"
recept

$ chuser minsl="MED ALL_DEP" defsl="MED ALL_DEP" maxsl="MED ALL_DEP"
medicALL

$ chuser minsl="REC ORTHO" defsl="REC ORTHO" maxsl="REC ORTHO" labORTH

$ chuser minsl="REC ENT" defsl="REC ENT" maxsl="REC ENT" labENT

$ chuser minsl="TRET ENT" defsl="TRET ENT" maxsl="TRET ENT" doctENT

$ chuser minsl="TRET ORTHO" defsl="TRET ORTHO" maxsl="TRET ORTHO"
doctORTH

Person Labels assigned Description

doctENT TRET ENT Doctor in ENT department

doctORTH TRET ORTHO Doctor in ORTHOPAEDICS department

labENT REC ENT Lab Assistant from ENT department

labORTH REC ENT Lab Assistant from ORTHOPAEDICS department

medicALL MED ALL_DEP Person form Medical store

recept GEN ALL_DEP The receptionist

Note: Change the home directory label of the users as well change them to
the same level so that they can create files in that directory.
 Chapter 5. Trusted AIX/MLS 331

Creating and reading a file
1. doctENT logs in to the system and stores the information in a file treatment.

2. The file will be created at the same level (Example 5-34).

Example 5-34 User doctENT logs in to the system and creates a file with treatments

$ su - doctENT
$ lstxattr -p -F $$
430314:
 effsl=TREATMENTS ENT
 maxcl=TREATMENTS ENT
 mincl=TREATMENTS ENT
$ cat > treatment
Current Treatments
Previous treatments
$ lstxattr -f -F treatment
treatment:
 sl=TREATMENTS ENT

3. Now the doctors from the other departments and the other staff will not be
able to read these files.

4. Log in as the receptionist and try to read that file (Example 5-35).

Example 5-35 Log in as the receptionist and try to read the file

$ su - recept
$ lstxattr -p -F $$
368672:
 effsl=GENERAL ENT GYNO ORTHO OPTHAL ALL_DEP
 maxcl=GENERAL ENT GYNO ORTHO OPTHAL ALL_DEP
 mincl=GENERAL ENT GYNO ORTHO OPTHAL ALL_DEP
$ cat /home/doctENT/treatment
cat: 0652-050 Cannot open /home/doctENT/treatment.

5. The person at the lower level will be able to read and write to the file at the
same level.
332 AIX V6 Advanced Security Features: Introduction and Configuration

Printer configuration
The administrator can configure the range of the labels for the printer. (See 5.5.8,
“Printer configuration” on page 323). He can prevent users from printing the data
on the printer (Figure 5-16).

Figure 5-16 Pictorial view

Advantages
In UNIX, we can have groups and we can arrange our setup so that different
groups cannot access the files of the other group. But what if we have a situation
where we have people in the same group and we want to distinguish them from
the rest of the group? Multi level security is more granular.

In standard UNIX, if the person changes the permission bits, intentionally or
unintentionally, information could be readable to every one. In Multi Level
Security, a user cannot change the level of his or her file. The security is
controlled by the system.
 Chapter 5. Trusted AIX/MLS 333

A user operating at a higher label cannot write to the files in the lower level. He
cannot leak the information by writing to the lower level files, which are readable
by the person operating at lower level. The lower level person cannot read the
files at a higher level, so he cannot read the information at higher level.

Because the printer and other external storage devices can be configured to be
accessed only by people within specific label ranges, not everyone can print or
write the data to the external device. In this way, information leaked by writing it
to the external media or printing can be avoided.

5.7 Best practices and ideas

� We recommend that the system is always operated in operational mode so
that all their services can be available.

� The maximum security level in the system's accreditation range should not be
greater than the maximum security level for the site in which it is located.

� The system hardware should be in a secure location. The most secure places
are generally interior rooms that are not on the ground floor.

� Physical access to the system hardware should be restricted, monitored, and
documented.

� System backups and archival media should be stored in a secure location,
one separate from the system hardware site. Physical access to the media
should be restricted in the same manner as access to the system hardware.

� Access to operating manuals and administrative documentation should be
restricted on a valid need-to-know basis.

� Unusual or unexpected behavior of any system software should be
documented and reported, and its cause determined.

� Whenever possible, at least two individuals should administer a system. One
should be assigned ISSO authorization and the other should be assigned SA
authorization.

� The PV_ROOT privilege should not be used. To administer the system, the
execution of privileged programs by ISSO, SA, or SO authorized users should
suffice.

� Audit information should be collected into logs and reviewed regularly.
Irregular or unusual events should be noted and their cause investigated.

� One user should not be assigned all three roles of ISSO, SA, and SO.
334 AIX V6 Advanced Security Features: Introduction and Configuration

Chapter 6. AIX Security Expert

This chapter describes the AIX Security Expert tool in AIX V6. It was originally
introduced with AIX 5L V5.3 TL05 to provide a single point of administration for
all security settings in AIX.

� 6.1, “Introducing AIX Security Expert” on page 336

� 6.2, “The next generation AIX Security Expert in AIX V6” on page 336

� 6.3, “Secure by Default (SbD)” on page 339

� 6.4, “Distributed security policy through AIX Security Expert and LDAP” on
page 345

� 6.5, “Customizable security policy through user defined AIX Security Expert
XML rules” on page 350

� 6.6, “File Permission Manager for managing setuid and setgid programs” on
page 357

� 6.7, “Stringent check for weak passwords” on page 362

� 6.8, “Secure File Transfer Protocol” on page 364

6

© Copyright IBM Corp. 2007. All rights reserved. 335

6.1 Introducing AIX Security Expert

Starting with AIX 5L V5.3 TL05, this system security hardening tool assists an
AIX admin in having a single consistent view to all of security configuration and
enablement, for example, TCP/IP, IPSec, system security settings, and auditing,
just to name a few.

The admin does not have to be a security expert or maintain a huge collection of
individual tools to bring a system to a required security level, keep it there, and to
comply with regulations. AIX Security Expert can be run from Web-based
System Manager, SMIT, or by using the aixpert command.

The features of AIX Security Expert that were introduced in AIX 5L V5.3 TL05,
like setting various security levels at the click of one button or creating snapshots
of a system’s current security settings, have been extended to include new
features, such as:

� Secure by Default installation

� Distributed security policy through AIX Security Expert and LDAP

� Customizable security policy through user defined AIX Security export XML
rules and rule check

� The File Permission Manager fpm command for managing setuid and setgid
programs

� Stringent check for weak passwords

� Secure File Transfer Protocol (ftp on TLS)

6.2 The next generation AIX Security Expert in AIX V6

Compared to the previous release of AIX Security Expert, much focus has been
put on centralized policy distribution and compliance checking. The new options
for both the CLI and GUI flavor of aixpert are illustrated in Example 6-1 on
page 337.
336 AIX V6 Advanced Security Features: Introduction and Configuration

Example 6-1 New AIX Security Expert options

aixpert -?
aixpert -l high|medium|low|default|sox-cobit [-p] [-n -o filename] [
-a -o filename]
aixpert -l h|m|l|a|d|c|s [-p] [-n -o filename] [-a -o filename]
aixpert -c [-l <level>] [-p]
aixpert -u [-p]
aixpert -d
aixpert [-f filename] [-a -o filename] [-p]

As in its previous version, the three security levels low, medium, and high still
exist, as does the advanced option and the default settings (factory reset). For
ease of use, however, the advanced settings have been removed from the CLI of
aixpert. The GUI (either wsm or the Remote WebSM Client) is viewed as the best
practices use case to security harden a single system. After the single system is
configured with the GUI and tested, the AIX Security Expert is then used to
distribute and apply these settings to other systems. This process is explained in
detail later on.

The undo option (-u) no longer needs an XML file to be provided. All changes
(with very little exceptions, which are explained later) made through aixpert will
be saved in /etc/security/aixpert/core/undo.xml and can be undone any time. For
example, aixpert -u will undo all actions that are stored in the undo.xml file,
whereas when using the GUI you will be prompted first about which actions from
the undo file you wish to undo. Some actions cannot be undone. For a complete
list of these modifications, please refer to Table 1-4 on page 17.

Compliance checking against the active configuration is still done with the -c
option, but it has been extended to check against a predefined level as well.

All options that would change the system settings now come with a preview
mode (the -p option). That way the admin can run the command and see what is
going to be changed without actually altering the system.
 Chapter 6. AIX Security Expert 337

The GUI’s main menu is shown in Figure 6-1.

Figure 6-1 The AIX Security Expert Main Menu
338 AIX V6 Advanced Security Features: Introduction and Configuration

All configuration data still resides in and under /etc/security/aixpert. Table 6-1
gives a rundown of AIX Security Expert’s sub-directories.

Table 6-1 AIX Security Expert’s directories

6.3 Secure by Default (SbD)

Up to AIX 5L V5.3, there used to be two security related options that could be
enabled at install time only: Trusted Computing Base (TCB) and CAPP/EAL4+
(CCEVAL). Starting with AIX V6, three new options have been introduced:
Trusted AIX, LSPP/EAL4+, and Secure by Default (SbD). Like the existing ones
in AIX 5L V5.3, these options can only be enabled at install time.

Directory name Purpose

bin All scripts (ksh) needed to perform AIX Security Expert’s actions
are stored in here. If needed, add your own scripts here as well.

core Repository of XML files of all predefined levels and policies.

custom If this directory does not exist, create it. It will be used to hold any
self-defined policies. The GUI’s “Customized Options” will check for
any XML file in this directory and present it in a selection menu.

dictionary Directory to hold the predefined English dictionary (can be any
language, since it is just a word list) file for weak root password
detection. Additional dictionaries should be saved in here as well.

ldap If this directory does not exist, create it. The GUI’s “Distributed
Security Options” will check for any AIX Security Expert policy file
available on an LDAP server, will download those XML files, and
will place them in here for further usage.

log Holds the aixpert.log file, a trail of all activities conducted by the AIX
Security Expert.

tmp Directory for temporary files that are needed during AIX Security
Expert operations.

undo This directory is used by the hardening scripts in bin to keep track
of their undo operations. You might want to use it for self-written
scripts as well.

Attention: We use the abbreviation SbD for Secure by Default in many places
throughout this chapter.
 Chapter 6. AIX Security Expert 339

Trusted AIX (either in regular mode or in Common Criteria certified LSPP mode)
introduces a completely new concept of running and administrating an AIX
system. Trusted AIX, which is an Multi Level Security (MLS) system is described
in Chapter 4, “Trusted Execution environment” on page 251.

Secure by Default takes a bottom-up approach in hardening an AIX system by
installing a minimal set of software, because any additional software could
potentially be exploited as a security vulnerability and then applying a “high
security level” hardening to those components (Figure 6-2). This approach is
opposite to starting with a regular, full-blown AIX installation and then use the
AIX Security Expert to apply hardening (top-down approach) by disabling
unneeded components.

Figure 6-2 The Functionality versus Security Dilemma

Note: Since a Secure by Default system is missing parts of the
bos.net.tcp.{client|server} filesets, thorough planning and testing is required in
order to fulfill all requirements your applications might have.

Lots

Few

Low High

O
S

C
om

po
ne

nt
s

Level of Security

Achieved Level of Security

Top-Down Approach
(AIXpert Hardening)

Bottom-Up Approach
(Secure by Default)
340 AIX V6 Advanced Security Features: Introduction and Configuration

6.3.1 Installing a Secure by Default system

When Secure by Default (SbD) is selected at install time, only a minimal AIX
installation (approximately 100 filesets) occurs. This is significantly less than
what would be installed during a regular, full-blown AIX installation (at least 250
filesets). The idea is that SbD provides a minimal but working AIX system to
start. It is up to you and your requirements to add filesets later as needed.

Figure 6-3 through Figure 6-6 on page 343 show the screens you have to
navigate through to start an SbD installation:

Figure 6-3 Main installation screen
 Chapter 6. AIX Security Expert 341

Figure 6-4 Security Model install-time-only options

Figure 6-5 The Standard Security Options screen
342 AIX V6 Advanced Security Features: Introduction and Configuration

Figure 6-6 Final screen for Secure by Default installation

Secure by Default is a system state that gets saved in the ODM (just like TCB or
CCEVAL enabled). You can query this state later on a running system by
running:

odmget -q attribute=SbD_STATE PdAt

PdAt:
 uniquetype = ""
 attribute = "SbD_STATE"
 deflt = "sbd_enabled"
 values = ""
 width = ""
 type = ""
 generic = ""
 rep = ""
 nls_index = 0
 Chapter 6. AIX Security Expert 343

During installation, this state is checked by the installation routines of the TCP
client and server filesets. If an sbd_enabled system is detected, a number of
binaries are removed because they are considered to be insecure (that is, they
use very weak authorization only, if at all). From the bos.net.tcp.client fileset
these are:

/usr/bin/rcp /usr/bin/rexec /usr/bin/rsh /usr/bin/remsh /usr/bin/tftp
/usr/bin/utftp /usr/lib/boot/tftp /usr/bin/traceroute
/usr/sbin/sendmail_nonssl /usr/sbin/sendmail_ssl /usr/sbin/sendmail
/usr/sbin/mailq /usr/sbin/newaliases /usr/lib/sendmail
/usr/sbin/sendmail_load /usr/sbin/netcd /usr/sbin/netcdctrl
/usr/samples/tcpip/netcd.conf /usr/lib/drivers/if_op

These files will be removed from the bos.net.tcp.server fileset:

/usr/sbin/gated /usr/sbin/imapd /usr/sbin/ipreport /usr/sbin/iptrace
/usr/sbin/named8 /usr/sbin/named8-xfer /usr/sbin/named9
/usr/sbin/pop3ds /usr/sbin/routed /usr/sbin/tcpdump /usr/sbin/timed

Once installation finishes and the system reboots, aixpert is executed once
through /etc/firstboot using the predefined policy SbD.xml, that is, the command
that gets actually executed is aixpert -f
/etc/security/aixpert/core/SbD.xml. (This file is also your reference for what
is changed on an SbD system in addition to the initial removal of binaries.)

After this initial hardening is completed, the reboot finishes like any regular AIX
installation, that is, you get prompted by the Installation Assistant to apply some
basic settings to the system (accept licences, set the date and time, set root
password, and so on). Since the SbD policy is based on the high security level
policy, strict password rules are already in place.

Adding filesets should be done from either a CD/DVD or in a secure and
segregated networking environment to avoid exposure. We highly recommend
that OpenSSH is installed right after the initial installation, because SbD will
remove any remote services that use clear-text passwords (for example, telnet,
ftp, rlogin, and so on). Any further customization can then be done remotely in
a secure manner.
344 AIX V6 Advanced Security Features: Introduction and Configuration

6.3.2 Reverting from Secure by Default back to regular AIX

Any Secure by Default installed system can be turned back into a regular system
later if you have the need to do so (for example, you need to add filesets from the
bos.net package that were deleted by SbD). To revert back to regular AIX, follow
these steps:

1. Run odmget -q attribute=SbD_STATE PdAt > sbd_state.

2. Edit the sbd_state file and change sbd_enabled to sbd_disabled.

3. Run odmdelete -o PdAt -q attribute=SbD_STATE PdAt.

4. Run odmadd sbd_state.

5. Re-install (with the force flag) bos.net.tcp.client and bos.net.tcp.server.

6. Run aixpert -l d[efault].

6.4 Distributed security policy through AIX Security
Expert and LDAP

In AIX V6, the AIX Security Expert offers a new method of distributing policy files
from one system to another: LDAP. (At the time of writing, AIX V6 supported both
LDAP Server V5.2 and V6.0.) When an LDAP server is available, policy files can
be stored in the LDAP database. When applying policies on other systems, that
LDAP server gets asked whether there are policy files available in the LDAP
database. If XML files are found, they GUI will offer to load them onto the system.

We highly recommend that your LDAP server supports two types of LDAP
clients. Only one system (or very few systems) should have admin rights on the
LDAP server while the majority of clients should be allowed to just do their usual
userID/PW housekeeping and the likes.

Note: If bos.net commands and functions like telnet, ftp, rlogin, and so on
are required for your operating environment, then the SbD option is not for
you. If the SbD install option is chosen, and at a later date it is determined that
these functions are required for your operating environment, or newly installed
filesets, then the SbD state of the system can be reset. Re-adding those
binaries to the system and leaving it in the SbD state might result in undesired
effects when verifying the system’s security status through aixpert or when
applying updates to the base operating system. See 6.3.2, “Reverting from
Secure by Default back to regular AIX” on page 345 on how to reset the ODM
entry.
 Chapter 6. AIX Security Expert 345

This kind of restriction is even more important when we are talking about security
policies. You should only have a very few clients that are actually allowed to
upload policies while the majority of clients just need to download these policies.

6.4.1 LDAP server preparation

After the successful installation of the LDAP server and the DB2® prerequisite
filesets, you need to configure the system as an LDAP server. In order to be able
to support the aforementioned two groups of clients, the LDAP server needs to
be set up with a fully privileged admin CN and a less privileged proxy CN. Do so
by simply using the mksecldap command (feel free to use whatever CNs you
like):

mksecldap -s -a cn=admin -p admin -S rfc2307aix -x
cn=aixpp,cn=aixdata -X aixpp

Of course you might as well use any existing LDAP server in your environment if
it supports any schema AIX needs (that is, AIX, RFC2307, or RFC2307AIX).

Whatever LDAP server you will be using, the next thing to do is to extend the
schema in order to be able to store your XML files in there. This is accomplished
by the following command and the LDIF file, which will be included in the
bos.aixpert.* filesets and can also be found in Appendix B, “LDIF file for
supporting AIX Security Expert” on page 381:

ldapmodify -D cn=admin -w admin -i IBM.V3.aixpert.schema.ldif
modifying entry cn=schema

One common pitfall of this command is when the LDIF file was not transferred
correctly between different types of operating systems that use different CR/LF
characters (as, for example Windows® and AIX). So, in case you run into those
error messages:

modifying entry cn=schema
ldap_modify: DSA is unwilling to perform
ldap_modify: additional info: Invalid attribute type for schema entry

the LDIF file simply needs to be converted into the proper text format (either by
transferring it again using ftp in ASCII mode or by any other tool of your choice).
346 AIX V6 Advanced Security Features: Introduction and Configuration

The last step in LDAP server preparation is to restrict the permissions on policy
files for the proxy CN. Create an LDIF file with these lines and save it to some
name:

dn: cn=aixpp,cn=aixdata
changetype: modify
replace: aclentry
aclentry:
access-id:cn=aixpp,cn=aixdata:at.ibm-aixpertXmlConfigFile:grant:r

dn: cn=aixpp,cn=aixdata
changetype: modify
replace: aclpropagate
aclpropagate: TRUE

and add it to your server’s schema by using:

ldapmodify -D cn=admin -w admin -i <some_name>

Your LDAP server is now ready to store AIX Security Expert policy files and will
support two bind IDs with different privileges. Of course, you can configure your
LDAP server to be an LDAP client as well by using:

mksecldap -c -h localhost -a <the privileged or unprivileged CN> -p
<the resp. password> -A ldap_auth.

Tip: In case you ever need to start from scratch with your LDAP server
configuration, make sure to drop the DB2 instance, because information about
this will be preserved even across deinstallation and reinstallation of LDAP
and DB2 filesets and deletion of the DB2 files directory.

The proper steps for cleaning up any existing LDAP server configuration in
order to start all over are (to be run as root):

1. On LDAPv5.2, kill the ibmslapd process; on LDAPv6, run ibmslapd -k.

2. Run su - ldapdb2 -c db2 drop database ldapdb2.

3. on LDAPv5.2, run /usr/ldap/db2/instance/db2idrop ldapdb2;
on LDAPv6, run /usr/opt/db2_08_01/instance/db2idrop ldapdb2 and
idsidrop -nI ldapdb2.

4. Run mksecldap -s -U.

5. Run rmuser -p ldapdb2.

6. Run rm -rf /home/ldapdb2.
 Chapter 6. AIX Security Expert 347

6.4.2 LDAP client preparation

In order to be able to upload policies to your LDAP server, the system you are
about to harden needs to be configured as an LDAP client first. Install either the
ldap.client.* filesets for LDAP Server V5.2 or the idsldap.clt32bit* filesets for
LDAP Server V6.0.

As mentioned in 6.4.1, “LDAP server preparation” on page 346, we want to be
able to restrict the ability to upload policies to a very few clients only while
providing general read access to all policies for any other client.

Setting up an LDAP client with admin rights
You can configure the system to run as a privileged LDAP client.

To configure the system as a privileged LDAP client, run the following command:

mksecldap -c -h <ldap_server> -a cn=admin -p admin -A ldap_auth

You should use ldap_auth in order for the ACLs to work properly.

Use either aixpertldap to upload and download policies or the GUI to download
only.

We provide some examples showing how to use aixpertldap on an admin client.
Example 6-2 shows how to upload the current configuration under the system’s
name. In Example 6-2, /etc/security/aixpert/core/appliedaixpert.xml will get
uploaded to the LDAP DB.

Example 6-2 aixpertldap upload

aixpertldap -u
adding new entry ibm-aixpertLabel=brazos,ou=aixpert,cn=aixdata
aixpertldap.sh: successfully uploaded XML config file on brazldap
348 AIX V6 Advanced Security Features: Introduction and Configuration

Example 6-3 shows how to upload the file given the -f option and store it under
the name given the -l option in the LDAP DB. Please note that when uploading
any XML file, it must be given its complete path name starting with a slash (/).
After the two policies have been successfully uploaded to the server, click
Distributed Security Options to bring up a window like that shown in
Figure 6-7.

Example 6-3 aixpertldap upload with options

aixpertldap -u -f /path/to/mypolicy.xml -l mysec
adding new entry ibm-aixpertLabel=mysec,ou=aixpert,cn=aixdata
aixpertldap.sh: successfully uploaded XML config file on brazldap

Figure 6-7 Distributed security policy selection window

In addition, all available policies have already been downloaded into the querying
client’s /etc/security/aixpert/ldap directory. They then can either be activated
from the GUI or by using the following command in the CLI:

aixpert -f /etc/security/aixpert/ldap/<policy>

Setting up an LDAP client with restricted rights
To configure the system as a restricted LDAP client, run the following command:

mksecldap -c -h <ldap_server> -a cn=aixpp,cn=aixdata -p aixpp -A
ldap_auth

You should use ldap_auth in order for the ACLs to work properly.
 Chapter 6. AIX Security Expert 349

Any client using our proxy CN to connect to the LDAP server will be able to
manage its user IDs and passwords as usual, but will have read-only access to
uploaded security policies.

Use either aixpertldap or the GUI to download policies. If you try to upload a
policy from such a client, it will now result in an insufficient permissions error:

ldap_add: Insufficient access
aixpertldap.sh: ldapadd command failed with code 50

6.5 Customizable security policy through user defined
AIX Security Expert XML rules

It is possible to define your own security policy or rules that will automatically be
integrated into the AIX Security Expert tool and GUI. Therefore, any security
configuration policies unique to your environment or relating to third-party
software, can be easily brought under the control and management of aixpert.

All security settings controlled by the AIX Security Expert are stored in XML
format. The files shipping with AIX contain the settings for the predefined security
levels high, medium, and low, as well as settings that assist in compliance with
the SOX/COBIT standards.
350 AIX V6 Advanced Security Features: Introduction and Configuration

One way to set up your own, customized policy might be to use the Advanced
menu in the GUI. When selecting this menu, a window will pop up showing all
available options from the /etc/security/aixpert/core/aixpertall.xml file. Figure 6-8
shows a snapshot of the first few options.

Figure 6-8 Some options from the Advanced Level Security Menu
 Chapter 6. AIX Security Expert 351

You might as well use any text editor to create your own XML file from scratch or
use parts of existing XML files and combine them to meet your specific
requirements. Either way you do it, once you are finished, place your policy file
into /etc/security/aixpert/custom/<your_policy>.xml. The GUI will automatically
discover and display these XLM files as user selectable options in the Custom
Security Files window.

So, in our example, when you click Custom Options in the main menu, you will
see a window popping up, presenting all your customized policy files for
selection, as shown in Figure 6-9.

Figure 6-9 Custom security policy selection window

6.5.1 Adding rules for your own applications

When OEM products get installed in AIX, they can be added to AIX Security
Expert in order to get managed by this tool as well.
352 AIX V6 Advanced Security Features: Introduction and Configuration

In order to add components to the AIX Security Expert database or to modify
existing profiles, this simply needs to be coded into the XML files. The XML DTD
(Document Type Declaration) is shown in Example 6-4.

Example 6-4 XML DTD for AIX Security Expert Database

<?xml version='1.0'?>
<!--START-->
<!ELEMENT AIXPertSecurityHardening (AIXPertEntry+)>
<!-- AIXPertEntry should contain only one instance of the following
 elements.
-->
<!ELEMENT AIXPertEntry (AIXPertRuleType,
 AIXPertDescription, AIXPertPrereqList, AIXPertCommand,
 AIXPertArgs,AIXPertGroup)
>

<!-- AIXPertEntry's name should be unique.
-->

<!ATTLIST AIXPertEntry
 name ID #REQUIRED
 function CDATA ""
>

<!ELEMENT AIXPertRuleType EMPTY>
<!ATTLIST AIXPertRuleType
 type (LLS|MLS|HLS|DLS|SCBPS|Prereq) "DLS"
>
<!ELEMENT AIXPertDescription (#PCDATA)>
<!-- the AIXPertDescription tag will allow you in insert a detailed description
of this option. When the admin views this custom configuration and places their
mouse over it, this detailed description will automatically be displayed in a
pop up information window -->

<!ELEMENT AIXPertPrereqList (#PCDATA)>
<!-- The AIXPertPrereqList tag allows this particular entry to reference a
prereq entry. If a prereq is listed here, aixpert will run the prereq rule
prior to displaying or running this rule. The prereq list must consist of the
unique name, AIXPertEntry tag, of the prereq. This is how aixpert finds and
executes the prereq rule. If the prereq rule returns “fail” (i.e. returns a
non-zero value) then this rule will not be selectable or run-able by aixpert.
Also on prereq failure, the aixpert GUI will grayout this rule and display the
description of the prereq rule, therefore, the prereq rule description should
describe how to resolve the prereq rule, i.e. "install openssh.base.server" -->

<!ELEMENT AIXPertCommand (#PCDATA)>
<!-- AIXPertCommand tag is the full path and command which aixpert will execute
-->
 Chapter 6. AIX Security Expert 353

<!ELEMENT AIXPertArgs (#PCDATA)*>
<!-- The AIXPertArgs tag is all arguments which aixpert will apply to the above
command -->

<!ELEMENT AIXPertGroup (#PCDATA)*>

Let us, for example, include OpenSSH to the AIXpert database to be started in
selected security levels. The AIXPertEntry name needs to be unique in your XML
file; the function can be anything meaningful to you. Such an entry in XML could
look like what is provided in Example 6-5.

Example 6-5 Definition example of a custom rule

<?xml version="1.0" encoding="UTF-8"?>

<AIXPertSecurityHardening>
 <AIXPertEntry name="xn_sshd" function="sshd">
 <AIXPertRuleType type="LLS"/>
 <AIXPertDescription>Activate OpenSSH, if
installed.</AIXPertDescription>
 <AIXPertPrereqList>openssh.base.server</AIXPertPrereqList>
 <AIXPertCommand>/usr/bin/startsrc</AIXPertCommand>
 <AIXPertArgs>-s sshd</AIXPertArgs>
 <AIXPertGroup>Start secure daemons</AIXPertGroup>
 </AIXPertEntry>
</AIXPertSecurityHardening>

When this file is placed in /etc/security/aixpert/custom, it can be either activated
by aixpert -f mypol.xml from that directory or be selected from the GUI, where
all options will be offered in a subsequent window (in Figure 6-10, it is only one
option).

Figure 6-10 Example window of customized rule
354 AIX V6 Advanced Security Features: Introduction and Configuration

When the script successfully completes (by having sshd activated), the status
detail window will appear as shown in Figure 6-11.

Figure 6-11 Result details of customized rule

6.5.2 The predefined SOX-COBIT security policy

The IT industry often uses COBIT IT Governance (Control Objectives for
Information and related Technology, which is a set of best practices for IT
management created by the Information Systems Audit and Control Association
(ISACA) and the IT Governance Institute (ITGI) in 1992) as the de facto standard
to comply with the Internal Controls Section 404 of the Sarbanes-Oxley1 (SOX)
act of 2002 (a United States federal law passed in response to a number of major
corporate and accounting scandals). It is a focus of the AIX Security Expert to aid
the admin in system compliance configuration and auditing.

Policies to common standards and best practices in IT security can be defined in
XML to check for as many settings as possible. Currently, AIX Security Expert
only ships with one predefined policy, but policy enhancements are envisioned in
future releases. AIX V6 comes with one predefined policy for assisting you in
SOX-COBIT compliancy setups and checks.

The SOX-COBIT policy of the AIX Security Expert is enforced by rules defined in
/etc/security/aixpert/core/aixpertall.xml starting with SCBPS. At the time of
writing, these rules trigger four scripts:

� /etc/security/aixpert/bin/pwdpolicyenf: Sets password quality rules.
� /etc/security/aixpert/bin/virusdetsw: Runs integrity checks of system binaries.
� /etc/security/aixpert/bin/firewsetup: Sets up shunning port filter rules.

1 Pub. L. No. 107-204, 116 Stat. 745, also known as the Public Company Accounting Reform and
Investor Protection Act of 2002 and commonly called SOX or Sarbox; July 30, 2002.
 Chapter 6. AIX Security Expert 355

� /etc/security/aixpert/bin/secactreport: Creates a status report ## difference to
“SOX/COBIT Audit”?

These files can be separately selected form the GUI when clicking SOX-COBIT
Best Practices Security, as shown in Figure 6-12.

Figure 6-12 The SOX/COBIT Rules menu
356 AIX V6 Advanced Security Features: Introduction and Configuration

The menu SOX-COBIT Best Practices Security Audit will run a check to see
whether the current settings still match the ones defined in these script and will
print a report (as shown in Figure 6-13). The aim of this report is to have a quick
and easy statement of the system’s current compliance status to be reported to
some auditor, for example.

Figure 6-13 Screen capture of a SOX/COBIT audit

6.6 File Permission Manager for managing setuid and
setgid programs

AIX has a long history of having many setuid and setgid programs. This used to
cause concern to admins and auditors when using platform independent security
tools that did not know much about this peculiarity. While releases prior to AIX V6
demand those s-bits (both setuid and setgid) in order to make TCB, earlier roles,
and the auditing subsystem work correctly, the role based access control
(RBAC) introduced with AIX V6 remedies this situation.

The File Permission Manager (fpm) will help you to cut down the number of
setuid and setgid files whether you will be using RBAC or not. IBM has put quite
some effort in investigating which files do need s-bits and which ones get along
without. Each command affected by fpm was reviewed by IBM to determine if it
was commonly used by the general user, or if its use was more specific to admin
functions. If it was determined that a command’s primary use was by admins,
then fpm will turn off the setuid permission.
 Chapter 6. AIX Security Expert 357

Use of the fpm command will limit the functionality of AIX to non-privileged users.
Since fpm is a virtually self-containing tool, it will also become available for both
AIX 5L V5.2 and 5L V 5.3, which do not offer RBAC.

The fpm command offers:

� Removing the setuid or setgid permissions from executables owned by
privileged users, as well as any other non-privileged files to address the
specific needs of unique computer environments.

� Logging the permission state of the files prior to changing them. The fpm log
files are created in /var/security/fpm/log/<date><time>. If necessary, these
log files can be used to restore the system's file permissions recorded in a
previously saved log file.

Example 6-6 Restoring default permissions using fpm

chmod 555 /usr/bin/acctctl
ls -l /usr/bin/acctctl
-r-xr-xr-x 1 root adm 201032 Apr 30 10:26 /usr/bin/acctctl
fpm -l default
fpm will restore the AIX file permissions to the installed settings and any
customized defaults listed in /usr/lib/security/fpm/custom/default. If you had
done other customizations outside fpm and wish to return the file permissions
to a state representing a particular time and date, use the command:
 fpm -l default -f /var/security/fpm/log/<in_file>
Where <in_file> is a previously saved timestamped file representing this
system's file permission state at a particular date and time.
ls -l /usr/bin/acctctl
-r-sr-s--- 1 root adm 201032 Apr 30 10:26 /usr/bin/acctctl

Note 1: Run thorough tests on your system after removing s-bits from
binaries, especially user-created scripts that are used by non-privileged users
and are calling those binaries that might not work any longer as expected. The
fpm command provides the capability to restore the original AIX install default
permissions (or undo any previous, specific change) using the -l default flag
(Example 6-6).
358 AIX V6 Advanced Security Features: Introduction and Configuration

Example 6-7 The fmp command and extended permissions

ls -l /usr/bin/vmstat
-r-sr-xr-x 1 root bin 63394 Apr 30 10:00 /usr/bin/vmstat
aclget /usr/bin/acctctl
*
* ACL_type AIXC
*
attributes: SUID SGID
base permissions
 owner(root): r-x
 group(adm): r-x
 others: ---
extended permissions
 enabled
 permit r-x u:foo
fpm -l default
[fpm’s default output deleted]
aclget /usr/bin/acctctl
*
* ACL_type AIXC
*
attributes: SUID SGID
base permissions
 owner(root): r-x
 group(adm): r-x
 others: ---
extended permissions
 disabled
 permit r-x u:foo

Note 2: When the fpm command is used on files that have extended
permissions (ACLs), it disables extended permissions, though any extended
permission data that existed prior to the fpm invocation is retained in the
extended ACL (Example 6-7).

Note 3: After the fpm command has changed s-bits on binaries, it does not
propagate these changes on a TCB-enabled system. It is the admin’s
responsibility to run an update to the syschk.cfg file to include the changes
made by fpm.
 Chapter 6. AIX Security Expert 359

Usage of the fpm command is pretty much straight forward and self-explaining,
as you can see in Example 6-8.

Example 6-8 fpm usage

fpm -?
Usage: fpm -l <level> | -f <file> [-c] [-v] [-p] [-q] [-?]
 Where <level> = high | medium | low | default
 -l <level> determines the security level, where <level> may be one of the following:
 'high' - High level security. Removes suid and sgid permission from files listed in
/usr/lib/security/fpm/data/high_fpm_list.
 'medium' - Mediem level security. Removes suid and sgid permission from files listed in
/usr/lib/security/fpm/data/med_fpm_list.
 'low' - Low level security. Removes only the suid permission from files listed in
/usr/lib/security/fpm/data/med_fpm_list.
 'default' - Default level security returns file permissions to AIX default settings.
 -p passive mode prints out what changes would be made, but takes no action
 -s - Status of the current setting is displayed. More precisely this flag displays the last
actionable running of the fpm command.
 -f <file> - Where <file> is a filename containing a list of files from which the permissions
should be removed. The command will use this file instead of the default file list when
specifying -l <level> of security. This option must be used in conjunction with -l <level>
option.
 -c - Checks that the files have the correct permission bits in accordance with a particular
level, but takes no action. This option must be used in conjunction with -l <level>.
 -v - Verbose output.
 -q - quiet or minimal output.
 -? - Prints this usage statement.
360 AIX V6 Advanced Security Features: Introduction and Configuration

The fpm command also offers a passive (or preview) mode. That way an admin
gets an overview of what is going to be changed first, as shown in Example 6-9.

Example 6-9 fpm output in passive mode

fpm -l low -p
chmod 0555 /opt/IBMinvscout/bin/invscoutClient_VPD_Survey
chmod 0555 /opt/IBMinvscout/bin/invscoutClient_PartitionID
chmod 0550 /usr/lpp/diagnostics/bin/diagsetrto
chmod 0550 /usr/lpp/diagnostics/bin/Dctrl
chmod 0550 /usr/lpp/diagnostics/bin/diagTasksWebSM
One or more file is already secure. Therefore, the current file permissions may not
match the default permissions. If you wish to return to the snapshot of permissions
prior to running this command, then use the command:
 /usr/bin/fpm -l default -f /var/security/fpm/log/04232007_11:57:36

 fpm will now continue to remove the SUID permissions.
chmod 0550 /usr/lpp/diagnostics/bin/diagela_exec
chmod 0555 /usr/lpp/diagnostics/bin/diagrpt
chmod 0550 /usr/lpp/diagnostics/bin/diagrto
chmod 0550 /usr/lpp/diagnostics/bin/diaggetrto
[...]
 Chapter 6. AIX Security Expert 361

6.7 Stringent check for weak passwords

In the medium level and high level security policy, AIX Security Expert offers an
option to check for weak root passwords (Figure 6-14).

Figure 6-14 Root password strength check

This option will not check any existing root password, but it will enable the
dictionary check in root’s user stanza in /etc/security/user in order to accept only
passwords not listed in the dictionary whenever the existing one is changed the
next time.

Example 6-10 Checking for weak root passwords

root:
 admin = true
 SYSTEM = "compat"
 registry = files
 loginretries = 0
 account_locked = false
 dictionlist = /etc/security/aixpert/dictionary/English

This check guards against the use of English dictionary words and the 1000 most
common US first names according to a recent US Census.
362 AIX V6 Advanced Security Features: Introduction and Configuration

6.7.1 Adding entries to the dictionary

Since the AIX Security Expert simply uses the dictionlist option of the root user’s
stanza, it is very simple to add your own entries to the dictionary. Any dictionary
file needs to be formatted as one word per line. The word begins in the first
column and terminates with a new-line character. Only 7-bit ASCII words are
supported for passwords in such dictionary files.

Depending on your requirements, you can either add your own set of weak
passwords to the existing file or create a new file from scratch.

When adding words to an existing dictionary, you can simply append your entries
to the file. The dictionary file does not have to be sorted. (It can even include an
empty line that would catch null passwords, just in case such would slip through
all other checking rules.)

If you would like to create a completely new dictionary, you might copy the
existing one that ships with AIX Security Expert to a new file name and name
your new dictionary English in path /etc/security/aixpert/dictionary/. That way no
further modification to the XML database needs to be done.

If you would like to create a new dictionary and add it to the XML database to
become available as an additional option, it is done the same way as you would
set up a rule of your own (which is shown in 6.5.1, “Adding rules for your own
applications” on page 352). The script that gets called to make this change is
called chuserstanza in /etc/security/aixpert/bin.
 Chapter 6. AIX Security Expert 363

For example, if your new dictionary is called Special and resides in
/etc/security/aixpert/dictionary/, the stanza you have to add to
/etc/security/aixpert/core/aixpertall.xml, in order to have this additional option
available at the high level security settings, would need to be similar to what is
shown in Example 6-11.

Example 6-11 Sample stanza to define another dictionary for password checks

<AIXPertEntry name="hls_rootpwdintchk2" function="rootpwdintchk">
 <AIXPertRuleType type="HLS"/>
 <AIXPertDescription>Root Password Integrity Check: Makes sure that
the root password being set is not weak (special
dict)</AIXPertDescription>

<AIXPertPrereqList>bos.rte.date,bos.rte.commands,bos.rte.security,bos.r
te.sh
ell,bos.rte.ILS</AIXPertPrereqList>

<AIXPertCommand>/etc/security/aixpert/bin/chuserstanza</AIXPertCommand>
 <AIXPertArgs>/etc/security/user
dictionlist=/etc/security/aixpert/dictionary
/Special root hls_rootpwdintchk</AIXPertArgs>
 <AIXPertGroup>Miscellaneous Rules</AIXPertGroup>
 </AIXPertEntry>

6.8 Secure File Transfer Protocol

AIX V6 introduces a secure flavor of ftp (and ftpd), based on OpenSSL, using
Transport Layer Security (TLS) (This extension to FTP is defined in RFC 4217.)
to encrypt both the command and the data channel. TLS is a cryptographic
protocol that provides secure communication between clients and servers.This
enables any user on the system to exchange files in a secure manner if their
counterpart offers this extension as well.

Note: If you want to have more than one dictionary checked, you need to
modify the <AIXPertArgs> element to have dictionlist set to a comma
separated list of all desired dictionaries.
364 AIX V6 Advanced Security Features: Introduction and Configuration

While on first sight using secure ftp only and no secure telnet might not be the
most desirable option, this method is in fact a sensible alternative for
environments where you are not able to use OpenSSH. For example, if your
most trusted systems run on a dedicated and segregated network, it makes
perfect sense to use telnet for remote access within that very network zone (or
working from the console).

But even in such scenarios, you might very well have the need to transfer data
from or to this secure zone, which can be accomplished now by using secure ftp.

Another scenario might be when you use OpenSSH already but you still have to
exchange data with outside systems that do not support any form of SSH (either
scp or sftp). Most often, such systems offer “ftp through ssl” (often called ftps)
instead.

Since TLS relies on Secure Sockets Layer, make sure OpenSSL is installed on
your AIX system (ftp -s depends on libssl.a and libcrypto.a). At least Version
openssl-0.9.7l-1.aix5.1.ppc.rpm needs to be installed, which can be found on the
AIX Toolbox for Linux Applications CD or on the respective IBM web site on the
AIX Toolbox Cryptographic Content page:

http://www6.software.ibm.com/dl/aixtbx/aixtbx-p

Example 6-12 shows the command for checking the version of OpenSSL that is
installed on your system.

Example 6-12 checking OpenSSL version

lslpp -L "openssl*"
 Fileset Level State Type Description (Uninstaller)
 --
 openssl 0.9.7l-1 C R Secure Sockets Layer and
 cryptography libraries and
 tools (/bin/rpm)

If OpenSSL is not installed on your system or an older version is installed, you
will need to install the required version.

6.8.1 Setting up ftpd to use TLS

Before any client can connect to your ftp daemon using TLS, a few preparations
need to be made. If you already have a running Certification Authority (CA) in
your environment, simply create your server certificates and copy them onto the
systems you want to use encrypted FTP with. Set the server’s /etc/ftpd.cnf file
accordingly and you are all set. Do so according with your CA’s public key, copy
this one onto all your clients to let them know about your CA (in their ~/.ftpcnf
 Chapter 6. AIX Security Expert 365

http://www6.software.ibm.com/dl/aixtbx/aixtbx-p

files) and complete the chain of trust. (See “Using self-signed certificates” on
page 366 on how to set up the client and server configuration files correctly.)

Both openssl 0.9.71-1 and ftp/ftpd that ship with AIX V6 support V1 and V3 type
X.509 certificates including certificate revocation lists (CRLs). However, for the
sake of simplicity, the following sections will describe steps for two scenarios:

� Set up a simple V1 root CA to create self-signed certificates (without CRLs).

and

� Import commercially signed certificates (v3) to be used with secure ftp.

The keys and certificates need to be present on all ftp servers you wish to
exchange encrypted data with.

Using self-signed certificates
In this example, we will store all TLS relevant keys and certificates in root’s ~/.tls
directory on our server, but you can pick your own location if you wish. You
simply need to change /etc/ftpd.cnf later to reflect the actual paths for the keys
and certificates after completion.

1. Setting up the directory structure on the first server. This one will also have
the CA keys and root certificate stored:

cd
mkdir .tls
cd .tls
mkdir rootCA
chmod 700 rootCA
cd rootCA

2. Creating a root level private key and root level certificate request (holding the
public key):

openssl req -newkey rsa:2048 -sha1 -keyout root_key.pem -out
root_req.pem
Generating a 2048 bit RSA private key
..
..
...+++
..+++
writing new private key to 'root_key.pem'
Enter PEM pass phrase:<type anything here, at least 4 chars>
Verifying - Enter PEM pass phrase:<repeat the above>

You are about to be asked to enter information that will be
incorporated into your certificate request.
366 AIX V6 Advanced Security Features: Introduction and Configuration

What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank.
For some fields there will be a default value.
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [Some-State]:TX
Locality Name (eg, city) []:Austin
Organization Name (eg, company) [Internet Widgits Pty Ltd]:IBM
Organizational Unit Name (eg, section) []:CA
Common Name (eg, YOUR name) []:
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

You must enter a PEM pass phrase in order to protect your private root key. You
should also enter some data for at least the first five fields in order to create a
complete DN. Using less entries will result in certificates that will not work.
(Please note that depending on the entropy on your system, the progress
indicator will probably look different.)

3. Generating the certificate for root (valid approximately 10 years) by
self-signing it:

openssl x509 -req -days 3650 -in root_req.pem -signkey
root_key.pem -out root_cert.pem
Signature ok
subject=/C=US/ST=TX/L=Austin/O=IBM/OU=ITSO
Getting Private key
Enter pass phrase for root_key.pem: <enter your PEM pass phrase from
step 2>
 Chapter 6. AIX Security Expert 367

You can have a look at your root certificate just to make sure everything is
right by using:

openssl x509 -in root_cert.pem -text -noout
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number:
 d2:01:13:b6:2d:b3:a8:b8
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=US, ST=TX, L=Austin, O=IBM, OU=CA
 Validity
 Not Before: Apr 26 19:45:52 2007 GMT
 Not After : May 23 19:45:52 2017 GMT
 Subject: C=US, ST=TX, L=Austin, O=IBM, OU=CA
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (2048 bit)
 Modulus (2048 bit):
 00:97:57:11:84:e5:bb:a7:21:06:36:5b:1f:7b:b7:

[...]

When things look fine, you are finished with setting up your own root CA. We
go up one directory level to create the first server key and certificate:

cd ..

4. Now we are creating an RSA key for the first FTP server without a PEM pass
phrase, hence we use a different command than the one we used in step 2 to
create a new key:

openssl genrsa 2048 > server_key.pem
Generating RSA private key, 2048 bit long modulus
...........+++
..
..+++
e is 65537 (0x10001)

It is important not to use any pass phrases on such server keys. Otherwise, it
would be required to input that pass phrase every time the key gets used
(which is impossible to accomplish when ftpd is using it).
368 AIX V6 Advanced Security Features: Introduction and Configuration

5. Next, we are creating a certificate request for the key we have just created
(including its public key):

openssl req -new -key server_key.pem -out server_req.pem
You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [Some-State]:TX
Locality Name (eg, city) []:Austin
Organization Name (eg, company) [Internet Widgits Pty Ltd]:IBM
Organizational Unit Name (eg, section) []:ITSO
Common Name (eg, YOUR name) []:
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

6. Next, we are signing the server key request with our root CA’s private and
self-signed public key. This will create the server certificate (again, this is
valid for approximately 10 years):

openssl x509 -req -days 3650 -in server_req.pem -CA
rootCA/root_cert.pem -CAkey rootCA/root_key.pem -CAcreateserial -out
server_cert.pem
Signature ok
subject=/C=US/ST=TX/L=Austin/O=IBM/OU=ITSO
Getting CA Private Key
Enter pass phrase for rootCA/root_key.pem: <enter your PEM pass
phrase from step 2>

7. In order to make server configurations easier as well as the distribution of
certified key files, it is handy to have the server key, the server certificate, and
the root certificate in one single file (OpenSSL supports this). So we are
combining all three files to one file now:

cat server_key.pem server_cert.pem rootCA/root_cert.pem >
server.pem
 Chapter 6. AIX Security Expert 369

This file should be protected with respective file permissions to be accessible
by root only (for example, 600). It can be copied to any other FTP server or
you can repeat steps 4 through 7 for any additional FTP server you want to
have its own signed key.

8. Finally, we adjust the path names in /etc/ftpd.cnf file:

CERTIFICATE /root/.tls/server.pem
CERTIFICATE_PRIVATE_KEY /root/.tls/server.pem

Since we have combined all the keys and certificates in one file, we use that
name for both the certificate and the key. Depending on your individual setup,
this might be different if you are using separate files. All other lines must be left
as comments. They are not needed in this simple self-signed rootCA scenario.

Using commercially signed certificates
If you are using commercially signed certificates already that can also be used
for SSL (that is, if this is within their scope / key use), you can easily import them
into your secure ftp setup. The following example uses certificates in privacy
enhanced mail (PEM) security certificate format, but OpenSSL is supporting
many other certificate formats (for example, PKCS#12) and offers easy to use
conversion schemes for those (for example,
http://gagravarr.org/writing/openssl-certs/general.shtml#cert-convert)
as well as the option to remove any associated pass phrases.

1. Usually, you start with a private and public key pair. The private key needs to
be referred to in /etc/ftpd.cnf by the CERTIFICATE_PRIVATE_KEY option.

2. Next, you get your public key signed by some trusted CA. This signed public
key (along with the CA’s root certificate) will become your server’s certificate,
which needs to be referred to in /etc/ftpd.cnf by the CERTIFICATE option.

In order to complete the chain of trust, all clients need to know all root CAs’
certificates as well. Those can be downloaded from the Internet
(http://www.columbia.edu/~ariel/good-certs/ is one of many places to start
looking for CAs) and need to be referred to in any client user’s ~/.ftpcnf by the
CA_PATH option. (See also 6.8.2, “Setting up ftp to use TLS” on page 371.)
370 AIX V6 Advanced Security Features: Introduction and Configuration

http://gagravarr.org/writing/openssl-certs/general.shtml#cert-convert
http://www.columbia.edu/~ariel/good-certs/

6.8.2 Setting up ftp to use TLS

You can use /usr/bin/ftp to connect to the FTP daemon on any remote
system, whether this target host is TLS-enabled or not. Once you have
completed the TLS setup on your server, in order to transfer files to or from that
server, simply issue:

ftp -s remote_host

This will establish an encrypted session, as shown in Example 6-13, without any
modifications needed on the client side. If the certificate however is self-signed,
the client has to blindly trust the server, hence the ftp command will display the
most important data of the certificate it received during TLS handshake to leave
the decision up to the user whether they want to connect or not.

Example 6-13 Encrypted ftp session using a self-signed certificate

ftp -s nimrod
Connected to nimrod.
220 nimrod FTP server (Version 4.2 Mon Apr 9 11:38:07 CDT 2007) ready.
234 Using authentication type TLSv1
TLS Auth Entered.
TLS handshake succeeded, though Server signed it's own cert!
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number:
 ca:6d:1c:d0:7b:8d:ad:ea
 Issuer: C=US, ST=TX, L=Austin, O=IBM, OU=CA
 Validity
 Not Before: Apr 27 02:09:17 2007 GMT
 Not After : Apr 24 02:09:17 2017 GMT
 Subject: C=US, ST=TX, L=Austin, O=IBM, OU=Server
TLSv1/SSLv3 (DHE-RSA-AES256-SHA), 256 bits
Name (nimrod:root):

There is one further step of security by means of trust that can be established
with such self-signed certificates: The rootCA’s certificate needs to be copied to
every client and referred to in their ~/.ftpcnt files of any user wishing to use
encrypted and authenticated ftp sessions. (Currently there is no system-wide
client config file. That way, trust must be assigned to individual users and not to
whole systems.)
 Chapter 6. AIX Security Expert 371

1. Connect from your client to the server setup in 6.8.1, “Setting up ftpd to use
TLS” on page 365 and transfer the root certificate to the client
(Example 6-14).

Example 6-14 Initial transfer of self-signed root CA certificate

ftp -s nimrod
Connected to nimrod.
220 nimrod FTP server (Version 4.2 Mon Apr 9 11:38:07 CDT 2007) ready.
234 Using authentication type TLSv1
TLS Auth Entered.
TLS handshake succeeded, though Server signed it's own cert!
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number:
 ca:6d:1c:d0:7b:8d:ad:ea
 Issuer: C=US, ST=TX, L=Austin, O=IBM, OU=CA
 Validity
 Not Before: Apr 27 02:09:17 2007 GMT
 Not After : Apr 24 02:09:17 2017 GMT
 Subject: C=US, ST=TX, L=Austin, O=IBM, OU=Server
TLSv1/SSLv3 (DHE-RSA-AES256-SHA), 256 bits
Name (nimrod:root):
331 Password required for root.
Password:
230-Last unsuccessful login: Thu Apr 26 12:31:41 CDT 2007 on ftp from
brazos
230-Last login: Thu Apr 26 21:00:30 CDT 2007 on /dev/pts/1 from
sig-9-145-145-117.de.ibm.com
230 User root logged in.
200 PBSZ=0
200 Protection level set to Private.
ftp> cd /root/.tls/rootCA
250 CWD command successful.
ftp> get rootcert.pem
200 PORT command successful.
150 Opening data connection for rootcert.pem (1111 bytes).
TLSv1/SSLv3 (DHE-RSA-AES256-SHA), 256 bits
226 Transfer complete.
1130 bytes received in 0.1793 seconds (6.156 Kbytes/s)
local: rootcert.pem remote: rootcert.pem
ftp> by
221 Goodbye.
372 AIX V6 Advanced Security Features: Introduction and Configuration

2. Adjust the user’s .ftpcnt file to point to the CA certificate by only changing the
one line and leaving all other options in that file as comments:

CA_PATH ./rootcert.pem

3. When you connect to your server, no further warning about (potentially
bogus) self-signed certificates is displayed. The chain of trust is complete and
the ftp session will start with something similar to Example 6-15.

Example 6-15 Secure FTP session using a complete chain of trust

ftp -s nimrod
Connected to nimrod.
220 nimrod FTP server (Version 4.2 Mon Apr 9 11:38:07 CDT 2007) ready.
234 Using authentication type TLSv1
TLS Auth Entered.
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number:
 ca:6d:1c:d0:7b:8d:ad:ea
 Issuer: C=US, ST=TX, L=Austin, O=IBM, OU=CA
 Validity
 Not Before: Apr 27 02:09:17 2007 GMT
 Not After : Apr 24 02:09:17 2017 GMT
 Subject: C=US, ST=TX, L=Austin, O=IBM, OU=Server
TLSv1/SSLv3 (DHE-RSA-AES256-SHA), 256 bits
Name (nimrod:root):
 Chapter 6. AIX Security Expert 373

When using commercially signed certificates, it is exactly the same, that is, the
client has to know about the root CA’s certificates (their signed public keys). As
mentioned earlier in “Using commercially signed certificates” on page 370, those
certificates can be downloaded from the Internet at
http://www.columbia.edu/~ariel/good-certs/. They need to be installed on
any client system. Any user’s ~./.ftpcnf file needs to have them referred to (as
shown in step 2 of the previous example). A secure ftp session will then look
something like Example 6-16 (which is in fact the same as in Example 6-15 on
page 373, except for the CA information):

Example 6-16 Same as previous example but using a third-party signed certificate

ftp -s brazsbd
Connected to brazsbd.
220 brazsbd FTP server (Version 4.2 Mon Apr 16 13:51:54 CDT 2007)
ready.
234 Using authentication type TLSv1
TLS Auth Entered.
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1000096493 (0x3b9c42ed)
 Issuer: C=US, O=Entrust, OU=Entrust PKI Demonstration
Certificates
 Validity
 Not Before: Apr 27 18:20:23 2007 GMT
 Not After : Jun 27 18:50:23 2007 GMT
 Subject: C=US, O=Entrust, OU=Entrust PKI Demonstration
Certificates, OU=Entrust/Web Connector, OU=No Liability as per
http://freecerts.entrust.com/license.htm, CN=www.foo.com
TLSv1/SSLv3 (DHE-RSA-AES256-SHA), 256 bits
Name (brazsbd:root):
374 AIX V6 Advanced Security Features: Introduction and Configuration

http://www.columbia.edu/~ariel/good-certs/

Part 2 Appendixes

Part 2
© Copyright IBM Corp. 2007. All rights reserved. 375

376 AIX V6 Advanced Security Features: Introduction and Configuration

Appendix A. Crypto Lib in C (CLiC)

AIX operating system relies on CliC library in order to use such features as EFS,
NFS Version 4, and Trusted Execution.

CliC library also provides application programmers with the cryptographic
primitives required for applications that contain cryptographic features.

The level of abstraction of this library makes this library usable also for
application developers who are not necessarily cryptography specialists.

API documentation is available as an easy to use HTML package.

Usage of this library offers various advantages that include:

� The IBM patented true random number generator is used to provide a
key-generation process with high quality random numbers.

� Support for RSA signature generation and verification in hardware using the
IBM Common Cryptographic Architecture (CCA) API.

� CliC is highly flexible and allows customization to include precisely the
functions needed by your application, especially when it comes to embedded
software on small devices.

A

© Copyright IBM Corp. 2007. All rights reserved. 377

� CliC is available for a a wide variety of platforms and architectures including:

– Windows 95/98/Me/NT/2000/XP/Vista

– Linux

– AIX

– OS/390® (MVS™ and z/OS®)

– OS/400® and MacOS

� High Level features include all necessarily features for supporting PKI
Certificate management. Encryption and checksum support for Kerberos 5 is
also provided.

CLiCToken and PKCS #11 Software Token Support

CLiCToken is a software crypto module derived from the RSA Security Inc.
PKCS #11 Cryptographic Token Interface (Cryptoki). All cryptographic and PKI
operations are carried out using the CLiC crypto libraries and persistent
cryptographic objects will be stored in password-protected PKCS #12 files.
CLiCToken is available as dynamic link libraries pkcs11-SW.so,
pkcs11-SW.so64, and libpkcs11-SW.a for UNIX platforms.

The features of the PKCS #11 interface to CliC includes:

� PKCS #11 standard programming API

� PKCS #11 V2.20 compliance

� High cryptographic performance using CLiC V4 libraries

� Secure object storage in password-protected PKCS #12 files

� Support for multi-threaded access

� Support for multiple slots/tokens (PKCS #12 files)

Supported PKCS #11 mechanisms are described in Table A-1 on page 379.
378 AIX V6 Advanced Security Features: Introduction and Configuration

Table A-1 PKCS #11 supported mechanisms

Mechanism Encryption+
Decryption

Sign+
Verify

Digest Key-
gen

Wrap+
Unwrap

Min Max

CKM_MD5 x n/a n/a

CKM_SHA_1 x n/a n/a

CKM_SHA256 x n/a n/a

CKM_SHA384 x n/a n/a

CKM_SHA512 x n/a n/a

CKM_RSA_PKCS_KEY_P
AIR_GEN

x 512 4096

CKM_RSA_X_509 x x 512 4096

CKM_RSA_PKCS x x x 512 4096

CKM_MD5_RSA_PKCS x 512 4096

CKM_SHA1_RSA_PKCS x 512 4096

CKM_SHA256_RSA_PKC
S

x 512 4096

CKM_SHA384_RSA_PKC
S

x 512 4096

CKM_SHA512_RSA_PKC
S

x 512 4096

CKM_MD5_HMAC x 128 512

CKM_MD5_HMAC_GENE
RAL

x 128 512

CKM_SHA1_HMAC x 160 512

CKM_SHA1_HMAC_GEN
ERAL

x 160 512

CKM_SHA256_HMAC x 256 512

CKM_SHA256_HMAC_GE
NERAL

x 256 512

CKM_SHA384_HMAC x 384 512

CKM_SHA384_HMAC_GE
NERAL

x 384 512
 Appendix A. Crypto Lib in C (CLiC) 379

CKM_SHA512_HMAC x 512 1024

CKM_SHA512_HMAC_GE
NERAL

x 512 11024

CKM_AES_ECB x 128 256

CKM_AES_CBC x 128 256

CKM_AES_CBC_PAD x 128 256

CKM_DES_ECB x 56 56

CKM_DES_CBC x 56 56

CKM_DES_CBC_PAD x 56 56

CKM_DES3_ECB x 168 168

CKM_DES3_CBC x 168 168

CKM_DES3_CBC_PAD x 168 168

CKM_GENERIC_SECRET
_KEY_GEN

x 128 1024

CKM_DES_KEY_GEN x 8 8

CKM_DES2_KEY_GEN x 16 16

CKM_DES3_KEY_GEN x 24 24

CKM_AES_KEY_GEN x 16 32

Mechanism Encryption+
Decryption

Sign+
Verify

Digest Key-
gen

Wrap+
Unwrap

Min Max
380 AIX V6 Advanced Security Features: Introduction and Configuration

Appendix B. LDIF file for supporting AIX
Security Expert

This appendix contains an example LDIF file for extending the schema to support
AIX Security Expert, as referenced in 6.4.1, “LDAP server preparation” on
page 346.

B

© Copyright IBM Corp. 2007. All rights reserved. 381

AIX Security Expert LDIF file

Example B-1 shows the AIX Security Expert LDIF file.

Example: B-1 AIX Security Expert LDIF

File generated at 19:37:39 on 02/02/2007 from IBM LDAP schema version
1.5
Module Name: AIXpert (v 1) (AIXpert-oid)
Dependencies:
#
dn:cn=schema
changetype: modify
add: attributetypes
attributetypes: (
 ibm-aixpertLabel-oid
 NAME 'ibm-aixpertLabel'
 DESC 'An unique lable of XML file'
 EQUALITY caseExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
 USAGE userApplications
)
ibmattributetypes: (
 ibm-aixpertLabel-oid
 DBNAME('aixpertLabel' 'aixpertLabel')
 ACCESS-CLASS normal
 LENGTH 256
)

dn:cn=schema
changetype: modify
add: attributetypes
attributetypes: (
 ibm-aixpertXmlConfigFile-oid
 NAME 'ibm-aixpertXmlConfigFile'
 DESC 'AIXpert XML Configuration file'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
 SINGLE-VALUE
 USAGE userApplications
)
ibmattributetypes: (
 ibm-aixpertXmlConfigFile-oid
 DBNAME('aixpertXmlConfigF' 'aixpertXmlConfigF')
 ACCESS-CLASS normal
382 AIX V6 Advanced Security Features: Introduction and Configuration

)

dn:cn=schema
changetype: modify
add: objectclasses
objectclasses: (
 ibm-aixAixpert-oid
 NAME 'ibm-aixAixpert'
 STRUCTURAL
)

dn:cn=schema
changetype: modify
replace: objectclasses
objectclasses: (
 ibm-aixAixpert-oid
 NAME 'ibm-aixAixpert'
 DESC 'For storing AIXpert specific data'
 SUP top
 STRUCTURAL
 MUST (ibm-aixpertLabel $ ibm-aixpertXmlConfigFile)
)
 Appendix B. LDIF file for supporting AIX Security Expert 383

384 AIX V6 Advanced Security Features: Introduction and Configuration

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 386. Note that some of the documents referenced here may be available in
softcopy only.

� AIX 5L Differences Guide Version 5.3 Addendum, SG24-7414

� AIX 5L Differences Guide Version 5.3 Edition, SG24-7463

� AIX 5L Version 5.2 Security Supplement, SG24-6066

� Securing NFS in AIX An Introduction to NFS v4 in AIX 5L Version 5.3,
SG24-7204

Other publications

These publications are also relevant as further information sources:

� Garfinkel, et al., Practical UNIX and Internet Security, Third Edition, O’Reilly
Media, 2003, 0596003234

� Strengthening AIX Security: A System-Hardening Approach, found at:

http://www-03.ibm.com/servers/aix/whitepapers/aix_security.html

Online resources

These Web sites are also relevant as further information sources:

� Multilevel Security:

http://en.wikipedia.org/wiki/Multilevel_security
© Copyright IBM Corp. 2007. All rights reserved. 385

http://www-03.ibm.com/servers/aix/whitepapers/aix_security.html
http://en.wikipedia.org/wiki/Multilevel_security

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
386 AIX V6 Advanced Security Features: Introduction and Configuration

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
/var/efs/users 62

Numerics
4764 accelerator 45
4764 Cryptographic Accelerator 49
4960 coprocessor 45
4963 accelerator 45

A
Access Control List 81
access key 136–138
accountability 276
accreditation range 313, 316
Active Directory 45
adding aixpert rules 352
Adding BFF files to the TSD 268
Adding non-BFF files to the TSD 269
Advanced Encryption Standard 34
AES 32, 34, 80

default key length 62
default mode 62
file encryption 70

AES_256_CBC 38
AES-128_CBC 38
AIX Certifications 50
AIX Security

Total AIX Capabilities 43
AIX Security Expert 14

“Undo” Option 17
Consistency Check 17
overview 335
Policy Distribution 18

AIX Security Expert LDIF file 346
AIX Subscription Service 56
aixpert 336
algorithm mode 72
ANSI 34
asymmetric algorithms 34
asymmetric encryption 32
Audit 10
audit header 297
© Copyright IBM Corp. 2007. All rights reserved.
Audit Policy 16
audit range 296
audit start 297
audit subsystem 296

accountability 276
MLS attributes 296
MLS audit records 296
MLS related event 297

auditpr 297
E 297
I 297
S 297
-s 297
-v 297

auditselect 297
-e 297

authorizations 27
RBAC authorizations 174
suggest syntax 202
system defined 200
user defined 200
Using UID/GID authorization in an executable
168

availability 10, 276

B
Bell-LaPadula Model 41
Block Ciphers 35

C
CAPP 45, 51
CAPP profiles 51
CBC mode 36
Centralized AIX Security Expert Policy 18
Certifications 50
channels 313
chauth 204
chdev 179
chgroup 140
chmod 82–83
chrole 193
chuser 140, 314
cipher algorithm 72
 387

ciphers
block vs. streaming 35

ciphertext 33
CIPSO 292
classifications 282, 313
clearances 313
CLiC

filesets 61
CliC

CryptoLite 60
installation 60

Command
efskeymgr 31
efsmgr 32

Commands
chauth 204
chdev 179
chgroup 140
chmod 82–83
chrole 193
crfs 66, 68
du 73
efsenable 61–62
efskeymgr 116
efsmgr 67–68, 70, 73, 77, 79, 83
fsdb 74
getea 68, 72, 77
istat 73
ldapadd 228
ls 77, 79
lsauth 203
lsfs 66
lsgroup 141
lskst 193
lsrole 193
lssecattr 210
mkauth 203
mkrole

mkrole 192
mksecldap 229
pvi 213
rbactoldif 228
rmauth 203
rmrole 192
setkst 193
setrunmode 221
setsecattr 210
setsecconf 221
swrol 193

commands
chuser 140
du 73
efsmgr 81

commercially signed certificates for secure ftp 370
Common Criteria 50, 276
compartments 282
confidentiality 11, 275
configuration mode 288
consistency 10
control 10
countermeasures 6
Creating encrypted files 70
crfs 66, 68
Crypto Library in C 45
Cryptographic Accelerator 49
cryptographic metadata 70, 72
cryptographic modules 12
customizing aixpert rules 350

D
Data Integrity 10
decrypt 77
default label 314
Department of Defense Orange Book 50
deprecated key 144
DES 32
device access 42
devices labels 316
directory labels 316
disabling the inheritance 68
Discretionary Access Control 24, 81, 274, 279

AIX 167
disjoint 285, 287
disk blocks 73–74
dominance 285, 287
du 73

E
EA 72
EA format 66

conversion 66
EAL 50
EAL4+ 54
EAL5 54
ECB mode 36
effective Sensitivity Label 315
EFS 60
388 AIX V6 Advanced Security Features: Introduction and Configuration

/etc/security/group 62
/etc/security/user 62
/var/efs/groups 62
converting 66
creating 65
creating interfaces 65
creating using WebSM interface 67
creating with command line interface 66
creating with SMIT menu 65
decreasing size 67
defragmenting 67
EAformat 66
efsenable 64
enabling 61–62
group attributes 62
increasing size 67
kernel extension 62–63
key protection Mode 39
lock files 64
log operations 64
managing 65
mounting 67
ODM 62
Operations 67
prerequisites 60
removing 67
stanza 66
unmounting 67
user attributes 62

efs_admin directory 62
efsenable 61–62

/var/efs directory 62
prerequisites 61

efskeymgr 31, 116
efsmgr 31–32, 67–68, 70, 73, 77, 79, 81, 83
encrypt 79
Encrypted File System 31
encrypting 79
encrypting files 70
encryption 32

key lengths 38
modes 38
symmetric vs. asymmetric 32
types of 34

encryption inheritance 67
equal 285, 287
Establishing Trust 12
Evaluation Assurance Levels 50, 53
export control restrictions 12

extended security attributes 72

F
file

decrypting 77
encryption 70, 79
encryption information 72
inheritance 68
inode 74
owner 78, 80
ownership 85
permissions 81, 83
size 73
symmetric key 70

file access 81
group level 70
user level 70

file cryptographic metadata 70, 83–84
file encryption 80

disk blocks 74
file encryption/decryption 74
file labels 316
file ownership 85
File Permission Manager 21, 357
file permissions 81, 83
File Security Flags 289
file security information 72
file size 73
file symmetric encryption key 70, 83–84
fpm 357
fpm usage 360
fsdb 74
FSF_APPEND 289
FSF_AUDIT 289
FSF_MAC_EXMPT 289
FSF_PDIR 289
FSF_PSDIR 289
FSF_TLIB 289
FSF_TLIB_PROC 289

G
getea 68, 72, 77
getrunmode 288
getsecconf 291
getsyslab 312
group administrator 144
 Index 389

H
hardening 42
hidden subdirectories 299
horizontal classification 41

I
Independent Assurance of Security Functions 50
information labels 313
inheritance 67

directory level 68
disable 68
file system level 67
overriding 68

initlabeldb 312
inode 73–74, 81

change 74
inode update 74
installation 302

certification 307
installation assitant 307
migration installation 302
New and Complete overwrite installation 309
New and Overwrite installation 302
preservation 303
security models 307

instsecattr 268
integrity 276
Integrity controls 42
integrity label 287
IP header 294
IP Security 46
IP Version 6 44
IPC object labels 316
ipfilter 47
ipfilters 44
ISSO 307
isso 180
istat 73

K
Kerberos 44
Kerberos Authentication 47
kernel extension 63
Kernel Security Flags 290
key length 72, 80
key parameters 81
Key Protection Modes 39
keystore 135, 137, 145

Creating EFS keystore 38
creating EFS keystore 38
default key length 62
default mode 62
exporting 116
group keystore location 62
initial password 61
integrity 64
login password 61
modifying 64
OpenSSl 116
user keystore location 62

L
labck 312
label encoding file 312

aname 313
compartments 313
format 312
name 313
sname 313
value 313

labeled network traffic 295
Incoming 295
Outgoing 295

LDAP
Name service control file 230
RBAC schema 243
Remote RBAC database support 176
Remote RBAC security database 229

LDAP Active Directory Enhancements 45
ldapadd 228
least privileged principle 171, 292, 302
Legacy RBAC 25
listing file encryption information 72
lock files 64
login 315
Long Passphrase support 44
ls 77, 79
lsauth 203
lsfs 66
lsgroup 141
lskst 193
LSPP 52
LSPP certification 44
LSPP profiles 51
lsrole 193
lssec 314
390 AIX V6 Advanced Security Features: Introduction and Configuration

lssecattr 210
lstxattr 289
lsuser 314

M
MAC 39

enforcement rule 285
on open filedescriptor 286
security policy 286

Mandatory Access Control 39, 279, 281
Mandatory Integrity Control 279, 286
maximum clearance label 314
MIC

enforcement rule 287
minimum clearance labels 314
MITRE 312
mkauth 203
mksecldap 229
MLS_SetPLab 298
mode 80
Multi Level Security

analogy 277
Multi level Security 274

N
National Institute of Standards and Technology 35
netrule 295
network controls 42
network rules 294
NOTL 287

O
object 281
object reuse 275
Open SSH 44, 47

Kerberos Authentication 47
operational mode 288

restrictions 288
Orange Book 50
owner 78, 80

P
packet labels 294
PAM 44
partitioned directory 42, 299

cd 299
redirection 299

password checking 16
password dictionary 363
pdlink 300
pdmkdir 300
pdmode 300
pdrmdir 300
pdset 300
Pitbull Foundation for AIX 44
PKCS11 45
Policy Distribution 18
printer banners 313
private key 80
Privileged Command Database 175
privileges 27, 206, 292

Effective Privilege Set 208
Inheritable Privilege Set 208
Limiting Privilege Set 207
Maximum Privilege Set 208
Used Privilege Set 209
Workload Partition Privilege Set 209

process labels 315
public key 83–84
public key cryptography 34
pvi 213

R
RBAC

accessauths 211
Adding a privileged command 234
Assuming a role 189
authorizations 174
authprivs 211
Before AIX6 166
Configuring the RBAC mode 178
detailed description 165
elements of 27
Enhanced Mode 173
File Permission Manger 224
fileset install package 166
inheritprivs 211
innateprivs 211
introduction in AIX 4.2.1 171
Kernel Security Tables 175
kernel-level 175
Legacy and Enhanced mode comparison 177
Legacy Mode 172
planning for user defined roles 191
predefined role 179
 Index 391

Privileged Command Database 175
privileged commands 211
Privileged Device Database 175
Privileged File Database 175, 213
privileges 175
RBAC and Workload Partition 225
readprivs 219
role activation 191
role authentication 190
roles 174
secflags 211
securing the "root" user account 219
user-level 175
writeprivs 219

RBACPP 52
rbactoldif 228
read access 82
real mode 299
Redbooks Web site 386

Contact us xvi
restricting LDAP client permissions 347
RFC1108 292
Risk Analysis 6
rmauth 203
rmrole 192
Role Based Access Control 24
roles 27

pre-defined 180
SO 180

predefined 180
root 291
root admin 145
root disable mode 224
root disablement 310
root guard 144
RSA keys 34
RSA_2048 38
RSA_4096 38
run modes 287

configuration mode 288
operational mode 288

S
SA 180, 307
SAK 268
sbd_enabled 344
Secure Attention Key 268
Secure by Default 20, 339

Secure File Transfer Protocol 364
Secured Hash Algorithm 22
security attributes 280
Security Risk Analysis 6
security threats 5, 7
self-signed certificates for secure ftp 366
Sensitivity Label 41, 281–282, 313

relationship 284
set inheritance 67
setkst 193
setrunmode 221, 288
setsecattr 210
setsecconf 221, 311
settxattr 315
setuid

"root" user takeover 171
passwd command 171
priveleged escelation 170

SHA256 22
signing authority 261
sl 311
sl_enforced 290
smit

setsecattr_cmdmod 181
SO 307
SOX/ COBIT compliance 45
SOX-COBIT 16
SOX-COBIT security policy 355
Stack Execution Disable 47
Streaming Ciphers 35
su 310
subject 281
swrole 193, 307
symmetric encryption 32
symmetric key 70
System Low Integrity Label 309
System Low Sensitivity Label 309
SYSTEM_HIGH Sensitivity Label 312
SYSTEM_LOW Sensitivity Label 312

T
Tape Encryption 44
TCP Wrappers 46
TCP wrappers 44
TEP 267
tl_read_enforced 290
tl_write_enforced 290
tlib 311
392 AIX V6 Advanced Security Features: Introduction and Configuration

TLP 267
tlread 311
tlwrite 311
tnet 311
tnet_enabled 290
tninit 295
tracepriv 301
Triple DES 35, 46
Trusted AIX 39

Bell-LaPadula Model 41
Components 39
configuration 310
label configuration 312
system configuration 311
terminal configuration 316
user account configuration 314

trusted application 301
Trusted Computer System Evaluation Criteria 276
Trusted Execution 22, 251

policies 263
run-time integrity check 263
Signature creation and deploymen 268
system integrity check 258

Trusted Execution Path 267
Trusted Library Path 267
Trusted Network

introduction 292
Trusted Platform Module 253
Trusted Shell 268
Trusted Signature Database 255
Trusted Software Stack 253
trustedlib_enabled 290
Trusting executables

Trusted Execution 22
trusting filesets

Secure by Default 20
tsh 268
Types of encryption 34

U
umask 70
unlabeled network traffic 295

Incoming 295
Outgoing 295

untrusted application 301
uploading aixpert policies 348
user labels 314
user login 315

V
VERSION 313
virtual mode 299

W
WAR stanza 296
weak root password check 362
WPAR

root disable mode 224
write access 82–83
 Index 393

394 AIX V6 Advanced Security Features: Introduction and Configuration

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

AIX V6 Advanced Security Features Introduction and Configuration

®

SG24-7430-00 ISBN 0738489247

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

AIX V6 Advanced Security
Features
Introduction and Configuration

A comprehensive
overview of AIX V6
operating system
security features

New features: Role
Based Access
Control (RBAC),
Trusted AIX
(Multilevel Security),
and Trusted
Execution

AIX V6 Security
Expert
enhancements

AIX Version 6.1 provides many significant new security
technologies and security enhancements. The purpose of
this IBM Redbooks publication is to highlight and explain the
security features at the conceptual level, as well as provide
practical examples of how they may be implemented. Some
features are extensions of features made available in prior
AIX releases, and some are new features introduced with AIX
V6.

Major new security enhancements will be introduced with
AIX V6 in 2007:

- Trusted AIX (Multilevel Security)
- Role Based Access Control (RBAC)
- Encrypted File System
- Trusted Execution
- AIX Security Expert Enhancements

This IBM Redbooks publication will provide a technical
introduction to these new enhancements. The topics are both
broad and very complex. This book will serve as an initial
effort in describing all of the enhancements together in a
single volume to the security/system hardening oriented
audience.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Acknowledgements
	Become a published author
	Comments welcome

	Part 1 AIX V6 operating system security features
	Chapter 1. Introduction
	1.1 Introduction: security in the enterprise
	1.2 Risk analysis
	1.3 Types of security threats
	1.4 AIX V6.1 security features and the threats they address
	1.5 Types of security
	1.6 Purpose of security: establishing trust
	1.7 Overview of security enhancements to AIX V6 for establishing trust
	1.8 Trusting the configuration of the OS with AIX Security Expert
	1.8.1 AIX Security Expert enhancements for AIX V6
	1.8.2 AIX Security Expert hardening groupings
	1.8.3 AIX Security Expert “undo” option
	1.8.4 Consistency check in AIX Security Expert
	1.8.5 Centralized AIX Security Expert policy distribution with LDAP

	1.9 Trusting the installation of filesets with Secure by Default
	1.10 Trusting system access with File Permission Manager
	1.11 Trusting executables with Trusted Execution
	1.12 Delegating trust for users and the processes with Role Based Access Control
	1.12.1 AIX V6 Enhanced RBAC compared to AIX RBAC prior to AIX V6
	1.12.2 Advantages of AIX V6 Role Based Access Control
	1.12.3 Relationship of authorizations, roles, and privileges
	1.12.4 Privileges versus authorizations

	1.13 Trusting file access and providing privacy of files with AIX Encrypted File Systems
	1.13.1 Symmetric versus asymmetric encryption
	1.13.2 Advanced Encryption Standard (AES)
	1.13.3 Block versus streaming ciphers
	1.13.4 CBC mode versus ECB mode
	1.13.5 Selecting key length and modes
	1.13.6 RSA algorithm
	1.13.7 Creating the EFS keystore: installation of CLiC library
	1.13.8 EFS key protection modes: Root Admin or Root Guard mode

	1.14 Trusting the entire system: Trusted AIX
	1.14.1 Components of Trusted AIX

	1.15 In summary: total AIX security capabilities
	1.15.1 LDAP Active Directory enhancements
	1.15.2 TCP wrappers
	1.15.3 IP Security with AES
	1.15.4 ipfilter support
	1.15.5 Open SSH with Kerberos authentication
	1.15.6 Stack Execution Disable
	1.15.7 4764 Cryptographic Accelerator with CCA and PKCS11 support

	1.16 AIX certifications: independent assurance of security functions
	1.16.1 Background on security standards
	1.16.2 Security profiles for AIX V6.1: CAPP, LSPP, and RBACPP
	1.16.3 The Controlled Access Protection Profile (CAPP)
	1.16.4 Labeled Security Protection Profile (LSPP)
	1.16.5 Role Based Access Control Protection Profile (RBACPP)
	1.16.6 Current AIX certifications: CAPP and LSPP
	1.16.7 Evaluation and assurance levels for Common Criteria
	1.16.8 What does EAL4+ mean
	1.16.9 Definition of EAL4
	1.16.10 Running a system in CAPP or LSPP mode

	Chapter 2. Encrypted File System
	2.1 EFS
	2.2 EFS prerequisites
	2.2.1 CLiC installation
	2.2.2 Enabling EFS for file systems
	2.2.3 The efsenable command
	2.2.4 Usage of lock files

	2.3 Managing encrypted file systems and encrypted files
	2.3.1 Creating an EFS
	2.3.2 Operations with EFS-enabled file systems
	2.3.3 Encryption inheritance

	2.4 Encryption at file level
	2.4.1 Creating encrypted files and the umask command
	2.4.2 Listing file encryption information
	2.4.3 Implication of encryption on file size and location of disk blocks
	2.4.4 Looking at disk blocks of an encrypted file
	2.4.5 Decrypting a file
	2.4.6 Encrypting a file
	2.4.7 Changing file encryption key parameters
	2.4.8 File access permissions
	2.4.9 Changing file ownership
	2.4.10 Granting a user or a group access to a file
	2.4.11 Revoking a user or group access to a file
	2.4.12 Granting/revoking access in root admin mode

	2.5 Users management
	2.5.1 Defining users
	2.5.2 User keystore
	2.5.3 Keystore content
	2.5.4 Keystore operations
	2.5.5 Keystore operations
	2.5.6 Changing the user keystore password
	2.5.7 Granting access to the user keystore
	2.5.8 Revoking access to user keystore
	2.5.9 Accepting access keys
	2.5.10 Granting security credentials to a process
	2.5.11 Exporting the content of keystore
	2.5.12 User private keys
	2.5.13 User public key
	2.5.14 Importance of deprecated keys

	2.6 Group management
	2.6.1 Defining groups
	2.6.2 Group keystore design and operations
	2.6.3 Defining a group and creating a group keystore
	2.6.4 Sending the group keystore access key to a user
	2.6.5 Removing the group keystore access key from a user keystore
	2.6.6 Adding/remove group access keys in root guard mode
	2.6.7 Managing a group keystore private key
	2.6.8 Sending/removing the group keystore access key to/from another group keystore

	2.7 Back up and restore
	2.7.1 Backing up encrypted files
	2.7.2 Restoring encrypted files
	2.7.3 User private keys impact on file backup/restore

	Chapter 3. Role Based Access Control
	3.1 AIX V6 and Role Based Access Control (RBAC)
	3.2 The traditional approach to AIX administration
	3.2.1 The superuser administrative account
	3.2.2 Discretionary Access Control (DAC)
	3.2.3 Authorization with User ID (UID) and Group ID (GID)
	3.2.4 Privileged escalation with Set User Identification (setuid)

	3.3 Introducing RBAC
	3.3.1 Legacy Mode versus Enhanced Mode RBAC
	3.3.2 Authorizations
	3.3.3 Roles
	3.3.4 Privileges
	3.3.5 Kernel Security Tables
	3.3.6 Remote database support using LDAP
	3.3.7 Legacy and Enhanced RBAC mode comparison

	3.4 Configuring RBAC
	3.4.1 Configuring the RBAC operating mode
	3.4.2 Switching to Legacy RBAC mode
	3.4.3 The root user and Enhanced RBAC

	3.5 Predefined roles in RBAC
	3.5.1 Adding a role to a user
	3.5.2 Activating a role
	3.5.3 Role authentication
	3.5.4 Role activation

	3.6 User defined roles
	3.6.1 Planning for user defined roles
	3.6.2 Creating a user defined role

	3.7 System defined and user defined authorizations
	3.7.1 Planning for user defined authorizations
	3.7.2 Creating a user defined authorizations

	3.8 The Privileged Command Database
	3.8.1 Privileges
	3.8.2 Process Privilege Sets
	3.8.3 Privileged commands

	3.9 The Privileged File Database
	3.9.1 Privileged file management with DAC
	3.9.2 Privileged File Management with RBAC
	3.9.3 Privileged File Database restrictions
	3.9.4 Adding a file to the Privileged File Database

	3.10 The Privileged Device Database
	3.10.1 Privileged device management with RBAC

	3.11 Securing the root user
	3.11.1 Choosing to secure the root user
	3.11.2 Disabling the root user
	3.11.3 Considerations when disabling the root user
	3.11.4 Summary of root disable mode with Enhanced RBAC
	3.11.5 Using the FPM command to reduce SetUID programs

	3.12 Enhanced RBAC and WPAR
	3.13 Migrating to Enhanced RBAC
	3.13.1 Migrating authorizations
	3.13.2 Role migration

	3.14 RBAC remote database support
	3.14.1 Prerequisites to using LDAP as an RBAC database repository
	3.14.2 LDAP client configuration for RBAC
	3.14.3 Name service control file
	3.14.4 RBAC Command Enablement for LDAP

	3.15 RBAC scenarios
	3.15.1 Scenario 1: Division of roles
	3.15.2 Scenario 2: Remote RBAC security database

	Chapter 4. Trusted Execution environment
	4.1 The Trusted Signature Database
	4.2 Auditing the integrity of the Trusted Signature Database (system integrity check)
	4.2.1 Examples of TE’s auditing mode
	4.2.2 Checking the signing authority

	4.3 Configuring security policies (runtime integrity check)
	4.4 Trusted Execution Path, Trusted Library Path, Trusted Shell, and Secure Attention Key
	4.5 Signature creation and deployment
	4.5.1 Adding BFF files to the TSD
	4.5.2 Adding non-BFF files to the TSD

	Chapter 5. Trusted AIX/MLS
	5.1 Overview
	5.1.1 What is Multi Level Security
	5.1.2 What is the need for enhanced security
	5.1.3 What Trusted AIX provides
	5.1.4 Historical aspect

	5.2 Introduction to MLS
	5.2.1 What is new in Trusted AIX
	5.2.2 Mandatory Access Control
	5.2.3 Mandatory Integrity Control
	5.2.4 Other attributes
	5.2.5 Introduction to Trusted Networks
	5.2.6 Audit subsystem
	5.2.7 Partitioned directory

	5.3 Applications on Trusted AIX
	5.4 Installation of Trusted AIX
	5.5 Configuring and managing the Trusted AIX system
	5.5.1 Disabling root
	5.5.2 System configuration
	5.5.3 Label configuration
	5.5.4 User Account configuration
	5.5.5 Terminal configuration
	5.5.6 Trusted Network configuration
	5.5.7 File system configuration
	5.5.8 Printer configuration

	5.6 Trusted AIX scenario
	5.7 Best practices and ideas

	Chapter 6. AIX Security Expert
	6.1 Introducing AIX Security Expert
	6.2 The next generation AIX Security Expert in AIX V6
	6.3 Secure by Default (SbD)
	6.3.1 Installing a Secure by Default system
	6.3.2 Reverting from Secure by Default back to regular AIX

	6.4 Distributed security policy through AIX Security Expert and LDAP
	6.4.1 LDAP server preparation
	6.4.2 LDAP client preparation

	6.5 Customizable security policy through user defined AIX Security Expert XML rules
	6.5.1 Adding rules for your own applications
	6.5.2 The predefined SOX-COBIT security policy

	6.6 File Permission Manager for managing setuid and setgid programs
	6.7 Stringent check for weak passwords
	6.7.1 Adding entries to the dictionary

	6.8 Secure File Transfer Protocol
	6.8.1 Setting up ftpd to use TLS
	6.8.2 Setting up ftp to use TLS

	Part 2 Appendixes
	Appendix A. Crypto Lib in C (CLiC)
	CLiCToken and PKCS #11 Software Token Support

	Appendix B. LDIF file for supporting AIX Security Expert
	AIX Security Expert LDIF file

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

