
ibm.com/redbooks

Performance and Tuning
Considerations for the
p690 in a Cluster 1600

Dino Quintero
Marc Genty

Soon-Kwon Ha
Tony Pirraglia
Gabriel Radu

Marcelo Ramos

Look under the hood of the pSeries 690
and the SP Switch2 interconnect

Marvel at the new features that
are relevant to performance

Watch as the authors
play “what if” games

Front cover

Performance and Tuning Considerations for the
p690 in a Cluster 1600

August 2002

International Technical Support Organization

SG24-6841-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (August 2002)

This edition applies to Version 3, Release 4, of IBM Parallel System Support Program, for use
with the IBM AIX Operating System Version 5 Release 1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Figures . vii

Tables . ix

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Become a published author . xv
Comments welcome. xv

Chapter 1. Introduction . 1

Chapter 2. Hardware overview . 5
2.1 What is a Cluster 1600 . 7
2.2 The pSeries 690 POWER4 building blocks. 9

2.2.1 The processor subsystem . 12
2.2.2 The memory subsystem . 17
2.2.3 The input/output (I/O) subsystem . 20

2.3 The interconnect fabric . 27
2.3.1 The SP Switch2. 27
2.3.2 The SP Switch2 PCI Attachment Adapter . 29
2.3.3 Internet Protocol (IP) and User Space (US) windows 32

2.4 Summary . 33

Chapter 3. Features relevant to performance . 35
3.1 Logical partitions (LPARs). 36

3.1.1 The Hypervisor . 36
3.1.2 LPAR memory overhead . 38
3.1.3 LPAR mode versus Full System Partition mode 40
3.1.4 LPAR memory and processor allocation . 42

3.2 Affinity logical partitions (ALPARs) . 42
3.3 Technical large page support . 44

3.3.1 Technical large pages and the Virtual Memory Manager (VMM) . . . 45
3.3.2 Technical large page usage . 47

3.4 Memory affinity . 52
3.4.1 Memory configuration of pSeries 690 . 52
3.4.2 Enabling memory affinity . 54
© Copyright IBM Corp. 2002. All rights reserved. iii

3.4.3 Performance considerations for memory affinity 55
3.4.4 Memory affinity with technical large page support 56

3.5 The 32-bit kernel versus the 64-bit kernel . 56
3.5.1 Selecting the 64-bit kernel. 58
3.5.2 The 64-bit application environment . 58

3.6 Application performance tuning. 59
3.6.1 Application tuning guidelines and resources. 59
3.6.2 Compiler considerations . 60
3.6.3 Engineering and Scientific Subroutine Libraries 63
3.6.4 The Mathematical Acceleration Subsystem (MASS) library 63
3.6.5 Hostfile considerations for MPI performance 64
3.6.6 Some final recommendations . 68

3.7 Network connectivity . 69
3.7.1 SP Switch2 PCI Attachment Adapter . 69
3.7.2 EtherChannel configurations. 73
3.7.3 Internet Protocol (IP) and User Space (US) switch windows 74

3.8 What is next. 76

Chapter 4. Investigations . 77
4.1 Technical large page investigation . 78

4.1.1 Setting up the environment for technical large page. 78
4.1.2 Creating the Melville MD10 dataset for technical large page 81
4.1.3 Running the tests for technical large page . 82
4.1.4 Conclusions from the first attempt at technical large page 87
4.1.5 The second attempt at technical large page 89
4.1.6 Running both tests again within an affinity LPAR (ALPAR) 93
4.1.7 Three steps forward, one step back . 94
4.1.8 Memory affinity . 98
4.1.9 Technical large page investigation conclusions 100

4.2 Tivoli Storage Manager (TSM) investigations . 102
4.2.1 TSM environment without large page . 103
4.2.2 TSM environment with technical large page 104
4.2.3 TSM and technical large page conclusions. 108
4.2.4 TSM and SP Switch2 communication . 109
4.2.5 TSM and SP Switch2 conclusions . 112

4.3 IP vs. US investigation . 113
4.3.1 Setting up the environment for IP vs. US testing 114
4.3.2 Running the tests for IP vs. US . 122
4.3.3 IP vs. US on larger LPARs . 123
4.3.4 IP vs. US with different hostfile . 124
4.3.5 IP vs. US with MP_SHARED_MEMORY=yes. 126
4.3.6 IP vs. US with single LPAR using shared memory 127
4.3.7 IP vs. US investigation conclusions . 128
iv Performance and Tuning Considerations for the p690 in a Cluster 1600

4.4 CHARMm IP vs. US investigation . 129
4.4.1 Setting up the environment for IP vs. US testing 130
4.4.2 Running the tests for IP vs. US . 139
4.4.3 CHARMm IP vs. US investigation conclusions 141

Chapter 5. Summary . 143

Appendix A. Scripts . 147
The pmrinfo tool . 148
The mkllqwcoll tool . 151
The fix_nlspath tool . 154
The mk_temp_dir . 155
The rm_temp_dir . 156

Appendix B. MPI sample programs . 159
The inverse_parallel_enabled.c MPI program . 160
The inverse_parallel.c MPI program . 164
The series_parallel.c MPI program . 170

Appendix C. Parallel tools . 173
PE Benchmarker . 174
MPI Trace. 176

Appendix D. Integrating p690 in an IBM eServer Cluster 1600 183
IBM eServer pSeries 690 . 184

What is an LPAR. 184
What is an HMC . 185

IBM eServer p690 in a Cluster . 185
CWS, HMC, and p690 functions . 186

The role of the CWS for an attached p690 server. 186
The role of the HMC in a Cluster 1600 . 187
Connectivity between CWS, HMC, and p690 . 187
Mapping LPAR numbers and node numbers . 190

Planning considerations . 193
Control workstation . 193
Hardware Management Console . 195
IBM eServer p690 . 195

Prepare the Hardware Management Console . 197
Software levels . 197
Serial connection. 197
System configuration. 198
Security settings . 199
Domain name of p690 systems. 199

Prepare the p690 . 200
 Contents v

Required p690 firmware . 200
Adapter placement for p690 . 202

Prepare the control workstation . 206
AIX and PSSP software requirements . 206
Software coexistence . 208
Accessing the Hardware Management Console . 208
Set hardmon authentication . 211
Define switch node numbers. 212

PSSP changes . 213
Hardware monitoring . 213
SPLAN adapter . 217
Additional SDR information . 219
Perspectives . 221
New commands and new command flags . 223

Configuring p690 . 229
Adding p690 to a Cluster. 229
Adding p690 LPARs to a Cluster . 230
Deleting LPARs in a Cluster . 231
Adding an Ethernet adapter to an LPAR node . 232

Reconfiguring LPARs . 233
Node numbering . 233
Move or replace the SPLAN adapter . 234
Using multiple LPAR definitions or profiles . 235
Switching between LPAR and Full System Partition mode 236

Helpful feature codes . 238
Limitations . 239
Example scenarios . 239

CWS with two HMCs and four p690s . 239
One CWS, one HMC, and one p690. 240
CWS, two HMCs, two 9076s, with one p690 and SP Switch2 241
CWS, HMC, 9076 frame, and p690 with SP Switch 242

Related publications . 245
IBM Redbooks . 245

Other resources . 245
Referenced Web sites . 247
How to get IBM Redbooks . 248

IBM Redbooks collections. 248

Abbreviations and acronyms . 249

Index . 253
vi Performance and Tuning Considerations for the p690 in a Cluster 1600

Figures

2-1 The pSeries 690 architecture . 11
2-2 The pSeries 690 Multi-Chip Module (MCM). 13
2-3 pSeries 690 fully-populated CEC. 14
2-4 Inside the POWER4 chip . 15
2-5 Logical view of POWER4 memory . 19
2-6 The many stages of the RIO subsystem . 24
2-7 SP Switch2 PCI Attachment Adapter location for a single plane switch 31
2-8 SP Switch2 PCI Attachment Adapter location for dual plane switch . . . 32
3-1 The POWER4 Hypervisor . 37
3-2 Reserved memory in an LPAR environment . 39
3-3 Logical view of MCM and memory . 53
3-4 Four-link EtherChannel schema . 73
D-1 p690 attachment in a Cluster . 186
D-2 The RMC LAN uses the SPLAN and the trusted network 189
D-3 Cluster with only one physical network . 189
D-4 Cluster with two physical networks . 190
D-5 Each function has its own physical network. 190
D-6 Screen shot of the HMC where you find the LPAR names 192
D-7 Example node numbering in frames (9076 and p690) 193
D-8 Object Manager Security settings on the HMC 199
D-9 HMC WebSM interface with configured p690 domain names 200
D-10 The opened vterm session to the p690 service processor 202
D-11 Logical view (rear view) of an I/O adapter drawer of a p690 203
D-12 I/O adapter drawer with two SP Switch adapters. 204
D-13 Single-plane SP Switch2 with four SPLAN adapters 205
D-14 Dual-plane SP Switch2 with two SPLAN adapters 206
D-15 Add host to WebSM interface . 210
D-16 Setting HMC user name and password . 212
D-17 Dataflow of the hardmon subsystem . 215
D-18 ps command output of a running hmcd daemon 216
D-19 hardmon and hmcd dataflow between CWS, HMC, and p690 216
D-20 Physical location codes and logical AIX device names 218
D-21 Hardware location codes on the HMC . 219
D-22 The spled window with two attached p690 servers 223
D-23 SMIT hmc_frame_dialog screen shot . 224
D-24 SMIT sp_eth_dialog screen shot . 227
D-25 Node numbers when reconfiguring LPARs . 234
D-26 Four p690s with two redundant HMCs and one CWS 240
© Copyright IBM Corp. 2002. All rights reserved. vii

D-27 Cluster 1600 with one HMC, one p690, and CWS. 241
D-28 SP Frames with one p690 and two LPARs on an SP Switch2 242
D-29 SP Frame and p690 with SP-Switched LPARs 243
viii Performance and Tuning Considerations for the p690 in a Cluster 1600

Tables

1-1 Other related IBM publications. 2
2-1 Cluster 1600 node building blocks . 7
2-2 Interconnect hardware latency and peak bandwidth 8
2-3 Mapping of POWER4 architecture component names 12
2-4 POWER4 memory and cache organization and per-chip capacity 17
2-5 Commonly used adapters, bandwidths, and limits per RIO drawer 26
2-6 Bandwidth capabilities by I/O stage . 26
3-1 LPAR memory overhead . 40
3-2 Comparison of LPARs to ALPARs . 44
3-3 The 32-bit VMM (user) process image. 46
3-4 Selected application performance and tuning publications 60
3-5 Important compiler options. 61
3-6 16 MB message single-plane bandwidths . 75
3-7 16 MB message dual-plane bandwidths . 75
4-1 Technical large page AIX sort results . 86
4-2 Technical large page gabiqsort results . 92
4-3 Technical large page (with ALPAR) AIX sort results 93
4-4 Technical large page (with ALPAR) gabiqsort results 94
4-5 Technical large page (with 16 GB) AIX sort results 95
4-6 Technical large page (with 16 GB) gabiqsort results 96
4-7 Technical large page (with 4 GB) AIX sort results 96
4-8 Technical large page (with 4 GB) gabiqsort results 97
4-9 Technical large page (with memory affinity) AIX sort results 99
4-10 Technical large page (with memory affinity) gabiqsort results 100
4-11 TSM backup with vmtune -L 0 . 103
4-12 Test results with 32 technical large pages . 106
4-13 Test results with 64 technical large pages . 107
4-14 Backup performance for 1 GB with default settings 109
4-15 Backup performance for 1 GB with TCPNodelay Yes 110
4-16 Backup performance for 1 GB with larger tcpbuffsize 110
4-17 Backup performance for 1 GB with ramdisks. 111
4-18 Backup performance for 1 GB with tcpwindowsize at 1024. 112
4-19 IP vs. US test codes. 119
4-20 Results from the parallel (MPI) IP test runs: 4-way/8 GB 122
4-21 Results from the parallel (MPI) US test runs: 4-way/8 GB. 123
4-22 Results from the pcm_04 IP and US test runs: 4-way/8 GB 123
4-23 Results from the parallel (MPI) IP test runs: 8-way/16 GB 124
4-24 Results from the parallel (MPI) US test runs: 8-way/16 GB. 124
© Copyright IBM Corp. 2002. All rights reserved. ix

4-25 Results from the parallel (MPI) IP test runs new hostfile 125
4-26 Results from the parallel (MPI) US test runs new hostfile 125
4-27 The parallel (MPI) IP test runs with shared memory on 126
4-28 The parallel (MPI) US test runs with shared memory on 126
4-29 Shared memory runs with the IP wrapper script 127
4-30 Shared memory runs with the US wrapper script 128
4-31 Comparison of IP vs. US for CHARMm across two 8-way LPARs . . . 140
D-1 Important software requirements for p690 Clustering 207
D-2 Coexistence of AIX and PSSP levels. 208
D-3 WebSM filesets on the control workstation . 209
D-4 List with new and enhanced attributes in the frame class 220
D-5 List with new and enhanced attributes in the Node Class 221
D-6 List with new and enhanced attributes in the Adapter Class 221
D-7 Possible node states in SMP mode . 222
D-8 Node states in LPAR mode . 222
D-9 Adding a frame. 229
D-10 Adding nodes . 231
D-11 Deleting a node . 232
D-12 Adding an Ethernet adapter . 232
D-13 List of p690-related feature codes . 238
D-14 List of useful HMC-related feature codes. 238
x Performance and Tuning Considerations for the p690 in a Cluster 1600

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
AIX 5L™
e (logo)®
ESCON®
IBM®
LoadLeveler®

Perform™
PowerPC®
pSeries™
Redbooks™
Redbooks(logo)™
RS/6000®

SP™
Tivoli®
VisualAge®
Wave®
zSeries™

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus® Notes® Word Pro®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xii Performance and Tuning Considerations for the p690 in a Cluster 1600

Preface

This redbook is based on the firm belief that all good tuning begins and ends with
a fundamental understanding of how your system operates within your own
environment. There are three main parts to the book. The first two are
conceptual. The coverage in the first part includes pSeries 690 internals, such as
POWER4, MCMs, memory subsystem, I/O subsystem, and network connectivity
(including SP Switch2, SP Switch2 PCI Attachment Adapter, and EtherChannel).
Coverage in the second part includes details about performance relevant
features, such as affinity logical partitions (ALPARs), scheduling (processor) and
memory affinity, technical large page support, and IP vs. US protocol over the
new interconnect fabric. The third part details a series of investigations used to
see how the new features work and interact. The coverage there includes
technical large page, scheduling (processor) and memory affinity, LPAR and
ALPAR, Tivoli Storage Manager (TSM), AIX mkramdisk, and IP vs. US. In
addition, we have included Configuring p690 in an IBM ^ Cluster 1600,
REDP0187 as an additional appendix, which will tell you how to configure a
pSeries 690 in a Cluster 1600.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Dino Quintero is a Project Leader at the ITSO Poughkeepsie Center. He
currently concentrates on pSeries clustering technologies by writing Redbooks
and teaching workshops.

Marc Genty is a Software Engineer in the Supercompute Systems Group at the
National Center for Atmospheric Research (NCAR) in Boulder, Colorado, where
he supports (among other things) a 318 node Cluster 1600 complex and an
early-release pSeries 690 system. He has worked in IT for over 22 years and in
the UNIX environments for the last 12 of those years. He is an RS/6000 Certified
Advanced Technical Expert (CATE), and he holds a BS degree in Manufacturing
from Colorado State University. Marc has also been a contributing author on two
other IBM Redbooks, Exploiting RS/6000 SP Security: Keeping It Safe,
SG24-5521 and Additional AIX Security Tools on IBM ^ pSeries, IBM
RS/6000, and SP/Cluster, SG24-5971.
© Copyright IBM Corp. 2002. All rights reserved. xiii

Soon-Kwon Ha is a senior IT specialist in IBM Korea. He has worked at IBM for
six years as a RS/6000 and pSeries post-sales support engineer. His areas of
expertise include AIX, HACMP, PSSP, system performance tuning, and storage
area network (SAN). Currently, Soon-Kwon is working technical support for
pSeries and AIX. He has been a contributing author on the IBM Redbook
Configuring the IBM VSS for Performance and Availability, SG24-5279.

Tony Pirraglia is a senior Engineer in the ISV Technical Support group in
Poughkeepsie, NY. While currently supporting ISVs in the Life Sciences area,
Tony has been involved with Scientific and Technical computing on IBM platforms
in one form or another since 1988, when he first joined IBM. He received his
Doctorate in Chemical Engineering from Columbia University.

Gabriel Radu is a senior IT specialist in IBM Romania. He is an IBM Certified
Specialist in AIX, HACMP, and Problem Determination. He has nine years of
experience in UNIX systems. His areas of expertise include AIX, HACMP, PSSP,
system performance tuning, and Linux. He graduated from the Electronics and
Telecommunications Faculty in Bucharest. Currently, Gabriel Radu provides
technical support for the RS/6000 and IBM pSeries and AIX.

Marcelo Ramos is an Advisory I/T Specialist in IBM Brazil. He is an AIX Certified
Specialist and has been working for almost five years in the IBM Integrated
Technology Services team, with customer support and services delivery for AIX,
HACMP, and PSSP. His areas of expertise include AIX, HACMP, PSSP, ESS, and
SAN. He also has some knowledge of Tivoli Storage Manager implementation
and support.

Thanks to the following people for their contributions to this project:

International Technical Support Organization, Poughkeepsie Center
Al Schwab, Margarita Hunt, David Bennin, Peter Bertolozzi, Michael Schwartz

IBM Boulder
Tom Farwell and Ishmael Weingarten

IBM Germany
Stefan Andersson, Christoph Pospiech

IBM Austin
Raj Panda, Chris Strauss, Steve White, Bruce Hurley

IBM Dallas
Hari Reddy

IBM Poughkeepsie
Joan McComb, Jan Ranck-Gustafson, Bernard King-Smith, Frank Johnston,
xiv Performance and Tuning Considerations for the p690 in a Cluster 1600

James Dykman, Hok Chau, Al Dimisko, Xinghong He, Swamy Kandadai, Farid
Parpia, Barry Spielberg, Clarisse Taaffe-Hedglin, Jim Wang

IBM Watson
Bob Walkup and Marge Momberger

NCAR, Boulder
George Fuentes, Gene Harano, Bernie O’Lear, Pete Peterson, Al Kellie, Dan
Anderson, Pam Gillman, Tom Bettge, Bill Anderson, John Ellis

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xvi Performance and Tuning Considerations for the p690 in a Cluster 1600

Chapter 1. Introduction

We begin with a story.

Not long ago, several close friends from the U.S. were vacationing together in
Europe. The day was drawing to a close, so they decided to take a room in a
small town in the south of France. The cost of the room for the night was $30.00
U.S. They paid the fee and went up to their room to get settled. Shortly
afterwards, the owner of the hotel realized that he had charged them for the
single-occupancy rate rather than the lower, multiple-occupancy rate. He owed
them a $5.00 refund. He knew that they were planning to leave early the next
morning, so he summoned his son to the front desk and asked him to take the
$5.00 up to the room and explain what had happened. On the way up to the
room, the son realized that splitting $5.00 three ways was far beyond his math
skills. So, instead, when he got to the room, he explained the overcharge and
gave them each back $1.00. Now, that means that each of them paid $9.00 for
the room. Three times $9.00 is $27.00, plus the $2.00 that the son pocketed is
$29.00. What happened to the other $1.00?

Performance and tuning on computers in general and on clusters in particular is
much like trying to find the missing $1.00. You know the answer is right in front of
you, and, as soon as you see the problem, you wonder why you were not able to
see it all along. The intent of this redbook is to arm you with the additional tools,
techniques, information, and references that will help you more quickly find the
missing $1.00.

1

© Copyright IBM Corp. 2002. All rights reserved. 1

This redbook is meant to complement rather than replace existing Redbooks and
manuals on the subject of performance and tuning. It focuses specifically on how
to tune the pSeries 690 in a Cluster 1600. To help you more easily understand
where this book fits in the grand scheme of things, Table 1-1 provides an
abbreviated list of this and other related IBM books on the subject.

Table 1-1 Other related IBM publications

The what, where, when, why, and how of performance tuning in a clustered
environment are well documented in the RS/6000 SP System Performance
Tuning Update, SG24-5340. What follows is a very brief summary of what we feel
are the key points to performance tuning in a clustered environment:

� Know your system, and know your workload.

� Document before and after you make a change.

� Change one thing at a time, and have a backout plan.

� Know how to measure what you are changing.

� When possible, measure with more than one tool.

� Distinguish between systemic versus isolated performance issues.

� For isolated (node) problems, look for bottlenecks in the following order: CPU,
memory, disk I/O, and network. For systemic (cluster) problems, look for
bottlenecks in the opposite order.

Description Redpaper, redbook, whitepaper, or
manual

How to tune the p690 in a Cluster 1600. Performance and Tuning Considerations for
the p690 in a Cluster 1600, SG24-6841
(redbook).

How to configure the p690 in a Cluster
1600.

Configuring p690 in an IBM ̂ Cluster
1600, REDP0187 (Redpaper). We have also
included this redpaper as Appendix D,
“Integrating p690 in an IBM eServer Cluster
1600” on page 183 in this redbook.

How to tune an RS/6000 SP system. RS/6000 SP System Performance Tuning
Update, SG24-5340 (redbook).

How to tune an AIX system. AIX Performance Monitoring and Tuning
Guide, SC23-2365 (manual).

How to tune applications for the
POWER4 processor.

The POWER4 Processor Introduction and
Tuning Guide, SG24-7041 (redbook).

How to monitor and measure the
systems in the cluster.

AIX 5L Performance Tools Handbook,
SG24-6039 (redbook).
2 Performance and Tuning Considerations for the p690 in a Cluster 1600

In the chapters that follow, we give you an overview of the hardware components
that you can use to build a Cluster 1600 from one or more POWER4 pSeries 690
frames. We cover two types of interconnects: the SP Switch2 with the SP
Switch2 PCI Attachment Adapter, and the 10/100/1000 Ethernet. Following the
hardware overview, we move on to cover new features that are important to
performance, such as logical partitions (LPARs) and affinity logical partitions
(ALPARs), scheduling and memory affinity, technical large page support, 32-bit
versus 64-bit kernel, aggregate IP over the SP Switch2 with the SP Switch2 PCI
Attachment Adapter, and the use of Internet Protocol (IP) versus User Space
(US) protocol across the SP Switch2. Finally, we end with a description of and
findings from a number of “what if” scenarios that we tested in our laboratory. In
the appendices, you will find a summary of the tools that we found useful for
measuring, monitoring, poking, and prodding these clustered systems. This is
also where we have collected the scripts that were used during our experiments
in the laboratory, as well as those that we brought with us from our home sites
and thought might be of use to others.
 Chapter 1. Introduction 3

4 Performance and Tuning Considerations for the p690 in a Cluster 1600

Chapter 2. Hardware overview

This chapter provides the conceptual framework for the remainder of the book.
We discuss some of the key components that comprise a Cluster 1600 complex.
This is by no means a complete list of every possible configuration, nor is it an
in-depth treatise on hardware internals. There are already a number of good IBM
manuals, Redbooks, whitepapers, and Redpapers on these subjects. Instead,
this chapter focuses on the new components that you can use to construct or
integrate into your Cluster 1600 complex. The topics covered are:

� What is a Cluster 1600?

� The pSeries 690 POWER4 building blocks.

� The interconnect fabric.

You may have noticed that there is no mention of external storage systems.
There is already a wealth of information available on this subject, so there is no
need to duplicate it here. Here are a few references to get you started:

� Logical Volume Manager (LVM): AIX Logical Volume Manager, From A to Z:
Introduction and Concepts, SG24-5432

� Virtual Shared Disk (VSD) and General Parallel File System (GPFS):
RS/6000 SP System Performance Tuning Update, SG24-5340

� Journaled File System 2 (JFS2): AIX 5L Differences Guide, SG24-5765

In Chapter 3, “Features relevant to performance” on page 35, we build on the
foundation laid by this one. We go into more detail about the performance

2

© Copyright IBM Corp. 2002. All rights reserved. 5

implications and trade-offs that you need to consider when architecting and
configuring these components into your cluster. The information presented in this
chapter is a prerequisite for all that follows.
6 Performance and Tuning Considerations for the p690 in a Cluster 1600

2.1 What is a Cluster 1600
So, what is a Cluster 1600 anyway? According to one definition it is:

Cluster 1600 (klus´ter siks´teen´ hun´drid) noun. 1. A Cluster 1600 is a
new cluster name and ID that unifies pSeries cluster offerings, broadens the
range of building blocks, increases configuration flexibility, and extends the
cluster management domain.

In other words, a Cluster 1600 complex is what used to be called an RS/6000 SP
complex, but the name has been changed to emphasize the fact that it now
encompasses much more than frames with SP nodes and an occasional
SP-attached server. In fact, it is possible to have a Cluster 1600 complex
comprised entirely of pSeries nodes. Table 2-1 lists the currently supported node
building blocks for the Cluster 1600.

Table 2-1 Cluster 1600 node building blocks

Model type Description Switch adapters

7040-681 pSeries 690 Model 681 SP System
Attachment
Adapter/SP Switch2
PCI Attachment
Adapter

7017-S85 pSeries 680 Model S85 SP System
Attachment
Adapter/SP Switch2
PCI Attachment
Adapter

7040-671 pSeries 670 Model 671 SP System
Attachment
Adapter/SP Switch2
PCI Adapter

7026-6M1 pSeries 660 Model 6M1 SP System
Attachment
Adapter/SP Switch2
PCI Attachment
Adapter

7026-6H0 pSeries 660 Model 6H0 SP System
Attachment
Adapter/SP Switch2
PCI Attachment
Adapter
 Chapter 2. Hardware overview 7

This redbook focuses exclusively on the performance of pSeries 690 node types.
For information on the performance of other node types, see the RS/6000 SP
System Performance Tuning Update, SG24-5340.

There are now new switch interconnect options available with the Cluster 1600.
In addition to the supported SP Switch, there is the SP Switch2, which brings
with it the SP Switch2 PCI Attachment Adapter for the pSeries 690 nodes.
Table 2-2 lists the raw peak performance numbers for both latency and
bandwidth on the two SP switch types.

Table 2-2 Interconnect hardware latency and peak bandwidth

7026-6H1 pSeries 660 Model 6H1 SP System
Attachment
Adapter/SP Switch2
PCI Attachment
Adapter

9076-2058 375MHz SMP High Node SP Switch MX2
Adapter/SP Switch2
Adapter

9076-2057 375/450MHz SMP Wide Node SP Switch MX
Adapter/SP Switch2
MX2 Adapter

9076-2056 375/450MHz SMP Thin Node SP Switch MX
Adapter/SP Switch2
MX2 Adapter

9076-2055 N/A

Nodes in
the cluster

Interconnect
type

Latency
(usec)

Bandwidth
(MB/sec)
[unidirectional]

Bandwidth
(MB/sec)
[bidirectional]

Up to 16 1.0

17 to 80 SP Switch2 1.5 500 1000

81 to 512 2.5

Up to 16 1.3

17 to 80 SP Switch 1.9 150 300

81 to 512 3.3

Model type Description Switch adapters
8 Performance and Tuning Considerations for the p690 in a Cluster 1600

For more information on the SP Switch versus SP Switch2 performance
numbers, see the RS/6000 SP: SP Switch and SP Switch2 Performance
whitepaper at:

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/sp_switch_perf.
html

The pSeries 690 nodes and the new interconnect fabric are covered in the
sections that follow.

2.2 The pSeries 690 POWER4 building blocks
The latest addition to the list of Cluster 1600 node building blocks is the new
pSeries 690 POWER4 system. The pSeries 690 is an enterprise class server
incorporating the following features:

� POWER4 processors (1.1 GHz or 1.3 GHz)

� From one to four Multi-Chip Modules (MCMs), each with:

– Either four 2-way or four 1-way (HPC option) POWER4 chips.

– Individual L1 data and instruction caches.

– Shared L2 cache running at processor speed. (Note that the L2 is not
shared on models configured with the HPC option.)

– The L3 directory and cache controller.

– The fabric bus controller, providing inter-chip and intra-chip
interconnection.

– The GX bus controller, providing connection to external I/O devices.

� Scalable SMP, from 8-way up to 32-way

� Scalable memory, from 8 GB up to 256 GB

� On-chip L1 and L2 cache and off-chip L3 cache

� Support for logical partitioning (LPARs)

� Scalable I/O, from one to eight drawers. Each drawer contains 20 PCI slots
and up to 16 disk drives

There are three types of configurations for the pSeries 690:

� The turbo configuration, with eight 1.3 GHz POWER4 processors per MCM
and shared L2 cache. It is available as an 8-way (one MCM), a 16-way (two
MCMs), a 24-way (three MCMs), or a 32-way (four MCMs) system.
 Chapter 2. Hardware overview 9

http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/sp_switch_perf.html

� The standard configuration with eight 1.1 GHz POWER4 processors per
MCM and shared L2 cache. It is available as an 8-way (one MCM), a 16-way
(two MCMs), a 24-way (three MCMs), or a 32-way (four MCMs) system.

� The High Performance Computing (HPC) configuration with four 1.3 GHz
POWER4 processors per Multi-Chip Module (MCM) and dedicated L2 cache.
It is available as either an 8-way (two MCMs) or a 16-way (four MCMs)
system. This configuration has only four processors per MCM, which
effectively doubles the amount of per processor L2 and L3 cache and
increases the effective memory bandwidth. This is because the memory
subsystem is the same as with the turbo and standard configurations, but the
number of processors per chip is half.

Unless otherwise noted, the turbo configuration will be used to illustrate the
concepts in this chapter and the next.

In a Cluster 1600 configuration, each pSeries 690 appears as a frame and each
LPAR appears as a thin node. There can be from one to 16 LPARs per pSeries
690, but, as we will explain later, there are certain constraints that can put a
practical limit on this number to something below 16.

In the discussion that follows, we break the hardware down into:

� The processor subsystem

� The memory subsystem

� The input/output subsystem

Once these have been described, we move on to cover the subject of logical
partitions (LPARs). An LPAR is a strange form of ethereal spirit that dwells in the
realm between the world of hardware and the world of software. To hardware,
LPARs look like software, but to software, LPARs look like hardware. This is a bit
of an oversimplification, but as you begin to try to explain this stuff to your
coworkers and others, you will perfectly understand the dilemma.

Before we dig into the guts of the pSeries 690, we thought it might be fun to give
you the big picture. The heart of the pSeries 690 is contained in a Central
Electronics Complex (CEC). This is where the MCMs, memory cards, and
connections to the I/O drawers are located. Much of what is shown in Figure 2-1
on page 11 will not be covered in this redbook. Consider this the Rosetta stone
for the pSeries 690.
10 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure 2-1 The pSeries 690 architecture

Spinnaker
core

L2

core

Spinnaker Spinnaker

Spinnaker

Spinnaker
core

L2

core

Spinnaker Spinnaker

Spinnaker

Spinnaker
core

L2

core

Spinnaker Spinnaker

Spinnaker

2 (Mem Clk):1
Data rate 1:1

Four 1W Buses
Bi-dir

Elastic Interface

Port 0

SMISMISMISMI

Port 1

OutriggerOutrigger
Memory bus
6 (Proc Clk):1
Data rate 3:1

Elastic Interface
(2 W's per MLD 4 W's each dir

Cmd/Resp

L3 Bus
3 (Proc Clk):1

Elastic Interface
4 W's dir (2 W's per MLD)

Cmd/Resp

GX

Sunfish
(primary)

Spinnaker
core

L2

core

Spinnaker Spinnaker

Spinnaker

SpeedSpeed
WagonWagon

RIO

RIO

62.5 Mhz
OSC

-100 Mhz

External Fabric Bus

Fair
wind

Fair
wind

TB Sync

10 Mhz
OSC

50 Mhz
OSC

EADS

EADS

EADS

TitanTitan

403403

SPCNSPCN

VPD/JTAG

2 (Proc Clk):1
Elastic Interface
2 W each dir

RIO
RIOGX

62.5 Mhz
OSC

RIO Clock

Sunfish

Sunfish

62.5 Mhz
OSC

62.5 Mhz
OSC

RIO Clock

GX
Node Clock
-32Khz

RIO Clock

Sunfish

500 MB/sec

Internal Fabric Bus
2 (Proc Clk):1

Elastic Interface
4 W each-dir

RIO Clock

GX Bus
3 (Proc Clk):1
Elastic Interface
1 W each-dir

Additional memory

Int Bus Clk

Merged Logic Dram (MLD)
32 MB (total both Chips)

Multiplied x 8 by
PLL in Outrigger

Memory Card
Clock

Interrupts
TBE's

Interrupt Bus

8 GB Card
16 PSIMMS/Card
8 PSIMMS/Outrigger
2 PSIMMS/SMI
512 MB PSIMMS

256 Mbit Chips
64 Mbit x 4
Un-Stacked

SMI Bus
4 (mem Clk):1
2W to Each Dimm
Bi -dir
Synchronous Interface

depopulated for 8 GB Card

RIO
RIO

RIO
RIO

Additional memory Additional memory

16 Mhz
OSC

8.59x Mil
& Spread Spectrun

Diff
Driver

Processor Clock
Clock

16 Pairs: 1 for each Spinnaker
137.5 Mhz
Multiplied x8 (=1.1 GHz) by PLL in each Spinnaker

SMISMISMISMI

SMI

Memory Cards

32 GB Card
32 PSIMMS/Card
16 PSIMMS/Outrigger
2 PSIMMS/SMI
1 MB PSIMMS

256 Mbit Chips
64 Mbit x 4
Stacked

Outrigger Modes
2 Ports implemented
Extent is 8 PSIMMS wide
 Chapter 2. Hardware overview 11

Table 2-3 provides the translation between the diagram component code names
and their common external names. Both names are included here because you
are likely to run across either name in other publications about the POWER4
architecture.

Table 2-3 Mapping of POWER4 architecture component names

If you would like to read more about the low-level internals of the pSeries 690
nodes, we recommend the following two whitepapers:

� The IBM ^ pSeries 690 Reliability, Availability, Serviceability (RAS),
found at:

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/p690_ras.ht
ml

� IBM ^ POWER4 System Microarchitecture, found at:

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html

(The pSeries 690 architecture figure is from the first whitepaper listed here.)

2.2.1 The processor subsystem
The pSeries 690 Central Electronics Complex (CEC) houses from one to four
Multi-Chip Modules (MCMs). Each MCM houses either four 2-way or four 1-way
POWER4 chips, the shared L2 cache, the Fabric Controller for intra-chip and
inter-chip communications, and four GX bus links for connections to external I/O
devices. Also associated with, but not located on each MCM, is an L3 cache,
comprised of two 16 MB eDRAM chips and a memory controller chip that
connects to the L3 cache on one side and the Synchronous Memory Interface
(SMI) chips on the other. Figure 2-2 on page 13 provides a simplified logical view
of an MCM.

Diagram component name Common external name

Spinnaker POWER4 chip

Sunfish RIO hub

Fairwind L3 cache chip

Outrigger Memory controller

Speed Wagon RIO to PCI bridge chip

EADS PCI Host Bridge (PHB) chip
12 Performance and Tuning Considerations for the p690 in a Cluster 1600

http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/p690_ras.html
http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html

Figure 2-2 The pSeries 690 Multi-Chip Module (MCM)

It is interesting to note that each POWER4 chip contains more than one mile of
connections in the seven layers of metal on the chip and is made up of more than
174 million transistors. The two processors and cache on an MCM are able to
transfer data at speeds approaching 125 GB per second. This is the equivalent of
downloading 25 full-length DVD movies in a single second.

There can be from one to four MCMs in a CEC. The MCMs are connected to
each other through the Fabric Controller, which runs at half of the processor
speed and provides a bandwidth of less than 40 GB/sec. The inter-MCM
connection topology is that of a unidirectional ring. Figure 2-3 on page 14 shows
a fully-populated CEC with four 8-way MCMs.

Fo u r P O W E R 4 ch ip s (e igh t p ro ces sors) on a n M C M

M u lti-ch ip M od ule B o un d ary

1.x
G h z
C ore

Chip-chip communication

M e m
C trl

S h ared L 2

S ha re d L2

S hared L 2

S hared L2

G X B us

G X B u s G X B us

G X B us

N o tes :
T h e fo u r G X B u s lin k s p ro vid e c o n n e ctio n s to e xtern a l I/O d evice s .
If m em o ry is b alan c e d , L 3 c a c h e is s h ared ac ro ss a ll p ro c e ss o rs .

L 3
M e m
C trl

M e m
C trl

M e m
C trl

M
E
M
O
R
Y

M
E
M
O
R
Y

p S eries 690 M u lti-C h ip M od u le (L o g ica l V iew)

1 .x
G hz
C o re

L 3 L 3

L 3

Chip-chip communication

Chip-chip communication

Chip-chip communication

1 .x
G h z
C or e

1 .x
G hz
C o re

1 .x
G h z
C o re

1 .x
G h z
C o re

1 .x
G h z
C o re

1 .x
G hz
C o re

L
3

L
3

L
3

L
3

 Chapter 2. Hardware overview 13

Figure 2-3 pSeries 690 fully-populated CEC

Now let us take a deeper look into the internals of the POWER4 chip to see how
it connects to the other chips within the local MCM as well as to the other MCMs
within the CEC. Figure 2-4 on page 15 provides a logical view of the POWER4
chip.

GXGX

P

L2

PP

L2

P

P

L2

P P

L2

P

GXGX

P

L2

PP

L2

P

P

L2

P P

L2

P

GX

GX

P

L2

PP

L2

P

P

L2

P P

L2

P

GX

GX

GX

GX

GX

P

L2

PP

L2

P

P

L2

P P

L2

P

GX

GX

GX

GX

GX

Mem
Slot

GX
 Slot

L3 L3 L3 L3L3 L3L3 L3

L3 L3

L3 L3

L3 L3L3 L3 L3 L3

L3 L3

L3 L3

L3 L3

L3 L3

L3 L3

L3 L3

L3 L3

MCM 1

MCM 3MCM 2

MCM 0

GX
 Slot

Mem
Slot

Mem
Slot

Mem
Slot

Mem
Slot

Mem
Slot

Mem
Slot

Mem
Slot

GX
 Slot

GX
 Slot

pSeries 690 CEC (Logical View)
14 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure 2-4 Inside the POWER4 chip

Each POWER4 chip has a maximum of two 64-bit PowerPC microprocessors,
which are based on a speculative superscalar out-of-order execution design.
Each microprocessor has its own dedicated data and instruction L1 caches. Also
on the chip is a unified L2 cache shared by both microprocessors through the
Core Interface Unit (CIU) switch. The L2 cache is physically divided into three,
equal-sized parts, each with its own L2 cache controller. The CIU switch
connects each of the three L2 cache controllers to each processor through
separate 32-byte wide data reload and instruction reload ports. Also connected
to the CIU switch from each microprocessor is an 8-byte wide store port that is
used to store data through the appropriate L2 cache controller. Each
microprocessor also has an associated non-cacheable unit (NCU) that is
logically considered part of the L2 cache.

The directory for the L3 cache and the L3 cache controller are also located on
the POWER4 chip. (The L3 cache itself is located off the chip.) Having the L3
cache directory and controller on the chip improves performance by reducing the
latency to memory.

Trace &
Debug

BIST
Engines

Pert
Monitor

SP
Controller

POR
Sequencer

Error Detect
And Logging

Processor Core 1

IFetch Store Loads

Processor Core 2

IFetch Store Loads

32B
8B

32B 32B
8B

CIU SwitchCIU Switch

Core 1
NC
Unit

Core 2
NC
Unit

CacheCache
L2L2

CacheCache
L2L2

CacheCache
L2L2

8B

8B 8B
32B 32B

8B
32B

8B

32B
32B

32B

32B
32B

32B

Fabric ControllerFabric Controller

8B 8B 8B
8B

8B

16B

16B

16B

8B

16B

16B

16B

GX Controller
L3

Directory
L3 Controller

Mem Controller
4B

4B

16B

16B

JTAG

Chip-Chip
Fabric
(2:1)

MCM-MCM
(2:1)

GX Bus
(n:1)

Chip-Chip
Fabric
(2:1)

MCM-MCM
(2:1)

Bus
L3/Mem

(3:1)

8B
 Chapter 2. Hardware overview 15

The Fabric Controller acts as a crossbar switch to provide master control of the
network of buses on the POWER4 chip. These buses provide the
communications pathways between:

� Components within a single chip (local traffic)

� Chips within a single MCM (intra-chip traffic)

� MCMs within a single CEC (inter-chip traffic)

The Fabric Controller also handles the snooping and cache-coherency duties for
these buses. Some of the communications pathways for which the Fabric
Controller provides control are:

� The 16-byte wide buses running at half of the processor speed, which
implement a point-to-point, unidirectional network between each of the four
chips on an MCM (intra-chip).

� The 8-byte wide buses running at half of the processor speed, which connect
each chip to a corresponding chip in a neighboring MCM (inter-chip).

� The 16-byte wide buses running at a third of the processor speed, which
implement an unidirectional connection between the POWER4 chip and the
off-chip, L3 cache.

� The connection to the GX controller. The GX controller then handles the
communications across the two 4-byte wide buses, which connect the
POWER4 chip to the external I/O devices.

The interconnection topology appears like a bus-based system from the
perspective of a single chip, but from the perspective of the MCM, it appears like
a switch. All of the buses that interconnect the POWER4 chips, whether or not
they are on or off the module, operate at half the processor speed. As future
technology is exploited, allowing chip sizes to decrease and operating
frequencies to increase, system balance is maintained, as bus speeds are no
longer fixed but instead tied to the processor frequency.

Finally, there are areas on the chip that fall under the category of pervasive
functions. For our purposes, the most notable of these is the Performance
Monitoring Unit (PMU). The PMU implements low-level performance monitoring
features at the hardware level that can be exploited through software. For more
information about the POWER4 Performance Monitor, see The POWER4
Processor Introduction and Tuning Guide, SG24-7041.
16 Performance and Tuning Considerations for the p690 in a Cluster 1600

2.2.2 The memory subsystem
The dividing line for where the memory subsystem begins is not black and white.
For the purposes of this book, we define the memory storage hierarchy as
follows:

1. L1 data and instruction caches

2. L2 shared caches

3. L3 directories and controllers

4. L3 off-chip caches

5. Memory controllers and cards (packaged within memory books)

Table 2-4 lists the organization and per-chip capacity for each of the components
in the memory storage hierarchy.

Table 2-4 POWER4 memory and cache organization and per-chip capacity

The following brief descriptions of the caches are excerpted from The POWER4
Processor Introduction and Tuning Guide, SG24-7041.

L1 instruction cache
Each POWER4 microprocessor (which is one of the components on the
POWER4 chip) contains an L1 instruction cache that is 64 KB in size, direct
mapped, and indexed by the effective address of the instruction cache line. It is
capable of either one 32-byte read or write each cycle.

Component Organization Capacity (per chip)

L1 Instruction Direct map
128-byte line
(4 x 32-byte sectors)

128 KB/chip
(64 KB/processor)

L1 Data Two-way
128-byte line

64 KB/chip
(32 KB/processor)

L2 Eight-way
128-byte line

1440 KB/chip

L3 Eight-way
512-byte line
(4 x 128-byte sectors)

32 MB/chip
(128 MB/MCM)

Memory N/A 0 - 16 GB
 Chapter 2. Hardware overview 17

L1 data cache
Each POWER4 microprocessor (which is one of the components on the
POWER4 chip) contains an L1 data cache that is 32 KB in size, two-way set
associative, and has a replacement policy of first-in-first-out (FIFO). It is capable
of two eight-byte reads and one eight-byte write per cycle.

L2 cache
Each POWER4 chip contains an L2 cache that is supervised by three L2
controllers, each of which manages 480 KB, for a total L2 cache size of 1440 KB.
Cache lines are hashed across the three controllers. Cache line replacement is
implemented as a binary-tree, pseudo-least-recently-used (LRU) algorithm. The
L2 cache is a unified cache, caching data, instructions, and page table entries. If
there are two POWER4 microprocessors on the chip, they share the single L2
cache. Memory coherency in the system is enforced primarily at the L2 cache
level by the L2 cache controllers.

L3 cache
The L3 cache is an eight-way, set-associative organized in 512-byte blocks, but
with coherence still maintained in the system cache line size of 128 bytes.
POWER4 chips are connected to memory through an L3 cache. The L3 cache is
designed to be combined with other L3 caches on the same MCM in pairs or
quadruplets to create a larger, address-interleaved L3 cache of 64 MB or 128
MB. Combining L3 caches into groups not only increases the L3 cache size, but it
also increases the L3 bandwidth available to any processor. When combined into
groups, L3 caches (and the memory behind them) are interleaved with a
512-byte granularity.

Memory
Each POWER4 chip can have an optional memory controller attached behind the
L3 cache. Memory controllers are packaged two to a memory card and support
two of the four POWER4 chips on an MCM. Each MCM can attach to zero, one,
or two memory cards, for a total of eight memory cards in a fully-populated CEC.
The memory controllers have either one (single-port) or two (dual-port) ports to
memory, depending on the capacity of the memory card. (The 4 GB and 8 GB
memory cards are single-port, and the 16 GB and 32 GB memory cards are
dual-port. The dual-port cards provide higher performance through greater
bandwidth.) The minimum amount of memory a pSeries 690 can have is 8 GB,
and the maximum is 256 GB. A logical view of memory is shown in Table 2-5 on
page 19.
18 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure 2-5 Logical view of POWER4 memory

Memory balancing
In general, a balanced memory configuration is critical for achieving optimum and
consistent performance in both commercial and technical computing
environments. To maximize memory performance on the pSeries 690, memory
interleaving is employed. If an MCM has two memory cards of the same size

8
Memory
Controller

16 MB16 MB
L3 CacheL3 Cache
(eDRAM)(eDRAM)

16 MB16 MB
L3 CacheL3 Cache
(eDRAM)(eDRAM)

Command Interface Data Interface

8 8 8

Cmd/Addrs Decode

Load
Qs

Store
Qs

Load
Qs

Store
Qs

16 16

Load & Store
Buffers

16 16

4444 4444

200 Mhz DDR DIMM Quads

SMI Chips
(4/port)
 Chapter 2. Hardware overview 19

installed, memory is interleaved in a round-robin manner across the four memory
controllers with a 512-byte granularity. If an MCM has two memory cards of
different sizes attached, the two cards are treated independently with each card
being two-way interleaved. If an MCM has only one memory card attached, the
single card will be interleaved by two of the four L3 caches, leaving the other two
unused.

For best memory performance, we recommend the following:

� All available memory slots should be populated with memory cards. In other
words, it is better to have eight 4 GB cards than four 8 GB cards for a CEC
fully-populated with four MCMs.

� Memory sizes should be balanced as closely as possible across all populated
MCM locations.

� Given the choice between fully populating all memory slots with single-port
cards or leaving some slots empty and using dual-port cards, go with the
single-port cards. If you can populate all slots with dual-port cards, so much
the better.

� Note that maximum sustainable bandwidth for an MCM is achieved when
memory is equal to or greater than 32 GB per MCM (two 16 GB cards).

� The 32-bit kernel can address a maximum of 96 GB. If the system is
configured with more than 96 GB, the only way to reach the additional
memory is by configuring the system into multiple logical partitions (LPARs).

2.2.3 The input/output (I/O) subsystem
The I/O subsystem on a pSeries 690 is comprised of from one to eight remote
I/O (RIO) drawers. Each drawer provides 20 hot-pluggable PCI slots and four
drive bays, each capable of holding four disk drives. A maximum of two RIO
drawers can be attached per MCM, which means that a 16-way (non-HPC)
pSeries 690 can have a maximum of four RIO drawers, rather than eight. Each
RIO drawer is four Electronics Industries Association (EIA) units high, and is
identified to the pSeries 690 by the EIA position within the pSeries 690 frame. For
example, the one required RIO drawer is U1.9, with the additional RIO drawers in

Important:

� Each MCM has two memory slots available. Therefore, one MCM is limited
to two memory books.

� If you only have one memory book, then you are cutting your L3 cache in
half on the MCM.

� It is important to populate the two memory slots available when adding an
MCM to a pSeries 690.
20 Performance and Tuning Considerations for the p690 in a Cluster 1600

the same frame being U1.5, U1.1, and U1.13. U1.9, U1.5, U1.1, and U1.13 are
the EIA positions in the frame.

Each RIO drawer is divided into two halves, with each being controlled by a
RIO-to-PCI bridge chip. These bridge chips connect to the RIO hub via the RIO
bus, which provides dual-path failover to the hub. The RIO hub is directly
connected to the GX bus. The two halves of the RIO drawer are referred to as
Bonnie and Clyde.

Bonnie and Clyde
There are two halves to each RIO drawer. One half is referred to as Bonnie, and
the other half is referred to as Clyde. The RIO subsystem (Bonnie plus Clyde)
consists of two planar I/O boards (20 PCI slots total), two riser cards, up to 16
disk drives (capacity for more than 500 GB of disk storage), four DASD
backplanes (two each per Bonnie or Clyde, refer to Figure 2-6 on page 24), a
midplane card, four blower fans, and two DC power supplies (DCAs). Each
planar I/O board (Bonnie or Clyde) can hold up to ten PCI cards and a riser card.

Up to eight RIO drawers can be attached to a pSeries 690 CEC. Each RIO
drawer connects to the system through two RIO ports, with 1.1 GB/sec of total
sustained bandwidth per drawer.

Each RIO drawer can be shared by several active partitions, but PCI slots cannot
be shared by multiple, active partitions. PCI slots that share PCI bridges or
drawer connections can be allocated to different partitions, but all child devices,
such as DASD, under an adapter must be assigned to a single partition.

The pSeries 690 internal I/O subsystem scalability and expandability supports:

� Up to eight RIO drawers, each containing up to 20 PCI hot-swappable (via
advance blind swap books for easy replacement) adapters

� Up to eight RIO loops, with support for one RIO drawer per loop

� Up to 873.6 GB of internal disk storage

The RIO subsystem provides an industry-standard PCI subsystem that supports
64-bit adapters. Improved application throughput is achieved with two
independent RIO ports per drawer. These RIO ports provide up to 1.1 GB per
second of aggregate bandwidth per drawer. (RIO drawers are connected to a
single pSeries 690 system through RIO cables.)

There are four disk storage bays connected to the four integrated Ultra3 SCSI
adapters, with each bay connected to a SCSI controller. Each DASD cage can
contain four disk drives for a total of 16 internal disk drives per RIO drawer. Each
individual or group of I/O slots can be assigned to a logical partition (LPAR), and
the integrated SCSI adapters can also be individually assigned to an LPAR.
 Chapter 2. Hardware overview 21

However, all disks in a disk 4-pack must be assigned to a single LPAR because
they share the same SCSI bus connection to the adapter. Supported disk drives
are as follows:

� FC 3157 - 10K RPM, 18.2 GB capacity
� FC 3158 - 10K RPM, 36.4 GB capacity
� FC 3159 - 10K RPM, 73.4 GB capacity
� FC 3260 - 15K RPM, 18.2 GB capacity
� FC 3261 - 15K RPM, 36.4 GB capacity

There are two front and two rear media bays. The first front bay can contain
either a CD-ROM or a DVD-RAM. The second front bay can contain either a
CD-ROM, a DVD-RAM, or a 4 mm tape drive. Use of the rear media bays is
optional. They can only contain a CD-ROM. The front and the rear media bays
each require a power cable, a SCSI cable, and a SCSI adapter.

The RIO power connections provide redundant communication connections to
redundant (logical) System Power Control Network (SPCN) processors in the
RIO drawers.

I/O adapters
The following I/O adapters are supported on pSeries 690:

� Communication adapters
– FC 2732 - Serial Short-Wave HiPPI PCI adapter
– FC 2733 - Serial Long-Wave HiPPI adapter
– FC 2741 - SysKonnect FDDI-LP SAS adapter
– FC 2742 - SysKonnect FDDI-LP DAS adapter
– FC 2946 - Turboways 622 ATM adapter
– FC 2969 - Gigabit Ethernet SX adapter
– FC 2975 - 10/100/1000 Base-T Ethernet adapter
– FC 4953 - ATM UTP adapter
– FC 4957 - ATM MMF adapter
– FC 4959 - Token-Ring PCI adapter
– FC 4962 - 10/100 Ethernet adapter
– FC 4961 - 10/100 4-port Ethernet adapter

� SP switch attachment adapters
– FC 8396 - SP System Attachment Adapter
– FC 8397 - SP Switch2 PCI Attachment Adapter

� Disk and tape attachment adapters
– FC 2751 - S390 ESCON Channel PCI adapter
– FC 6203 - Ultra3 SCSI adapter
– FC 6204 - Universal Differential SCSI adapter
– FC 6206 - PCI Single-Ended Ultra-SCSI adapter
– FC 6228 - Gigabit Fibre Channel adapter
– FC 6230 - Advance Serial RAID Plus adapter
22 Performance and Tuning Considerations for the p690 in a Cluster 1600

– FC 6231 - 128 MB Option Card adapter
– FC 6235 - 32 MB Fast-Write Cache Option Card adapter

� Cryptographic adapters
– FC 4960 - e-business Cryptographic Accelerator adapter
– FC 4963 - Cryptographic Coprocessor adapter

� Asynchronous port adapters
– FC 2737 - 4-Port USB adapter
– FC 2943 - 8-Port Asynchronous EIA-232E/RS-422A adapter
– FC 2944 - 128-Port Asynchronous Controller adapter
– FC 2962 - 2-Port Multi-protocol adapter
– FC 2947 - 4-Port RVX adapter

� Graphics adapters
– FC 2848 - GXT 135P Graphics adapter

For information on the correct placement for each type of adapter, see the PCI
Adapter Placement Reference Guide, SA38-0538, and consult with your local
IBM Customer Engineer (IBM CE).

The pSeries 690 RIO is illustrated in Figure 2-6 on page 24. This figure includes
the bandwidths and bus sizes for the PCI slots. Planar 1 is Bonnie, and Planar 2
is Clyde.
 Chapter 2. Hardware overview 23

Figure 2-6 The many stages of the RIO subsystem

RIO HUB

RIO to PCI
Bridge

RIO to PCI
Bridge

EADS
PCI-PCI
Bridge

EADS
PCI-PCI
Bridge

EADS
PCI-PCI
Bridge

Ultra3
SCSI

Ultra3
SCSI

Active Active

Passive/failover

7040-61D I/O drawer

GX bus

RIO bus RIO bus

2 Planars per
RIO HUB

Burst
1700MB/s Simplex
3400MB/s Duplex
Sustained
1250MB/s Simplex
2500MB/s Duplex

EADS
PCI-PCI
Bridge

EADS
PCI-PCI
Bridge

EADS
PCI-PCI
Bridge

Ultra3
SCSI

Ultra3
SCSI

64 64 32

Planar 1 Planar 2

64 bit PHB
500MB/s Burst
300MB/s Sustained

32 bit PHB
250MB/s Burst

150MB/s Sustained

64 64 32

Per Planar:
Burst
500MB/s Simplex
1000MB/s Duplex
Sustained
40MB/s Simplex
550MB/s Duplex

Notes for Figure 2-6:

� The PCI-PCI Bridge chips are also known as EADS PCI-PCI Bridge chips
or PHB (PCI Host Bus).

� If one of the I/O planar fails, the adapters can be accessed via the second
active planar using the passive/failover path.

� For more information on adapter placement, refer to “Adapter placement
for p690” on page 202, “SPLAN adapter” on page 217, Section 2.3.2, “The
SP Switch2 PCI Attachment Adapter” on page 29, or consult the PCI
Adapter Placement Reference Guide, SA38-0538.
24 Performance and Tuning Considerations for the p690 in a Cluster 1600

I/O sizing
In order to determine the I/O sizing of the system, you need to know what kind of
application will be running on the system.

In general, there are two main categories of workload: technical and commercial.

Technical workloads
Technical workloads typically place high bandwidth requirements on the I/O
subsystem because they read and write large amounts of sequential data for
short periods during execution. Many technical workloads have been optimized
for execution to enable staging of time-sensitive data from the I/O devices, which
in turn reduces the peak I/O demand.

Commercial workloads
Commercial workloads (with the exception of business intelligence, which
behaves more like a technical application) tend to require low I/O bandwidth.
These workloads, such as transaction processing and Web server applications,
normally have large numbers of reads and writes spread randomly over the I/O
devices. While the volume of disk accesses for this category are large, the
amount of data transferred for each access is relatively small (4 KB to 16 KB).
Database systems often cache table indexes in memory for use during
processing to minimize table reads, and this also tends to keep I/O bandwidth
requirements low. The large volume of random disk accesses leads to the need
for large numbers of disk arms. It is common for systems supporting database
systems to require so many disk arms that there is unused space on the disks
containing the database. In this case, it is usually advisable to purchase the
smallest capacity, high-speed disk drives available to provide for the large
numbers of disks.

Once each workload has been characterized, the next step is to identify the
numbers and types of I/O devices that will be required to support each workload,
and the amount of I/O bandwidth that will be handled by each device. Note that
device peak bandwidth may be much higher than sustained bandwidth, and that
peak loads rarely occur on all devices simultaneously. To minimize I/O latencies
to the pSeries 690 processors and optimize the overall performance of the
pSeries 690, the adapters and I/O subsystems should be planned, both in
numbers and through placement, to operate at 60 percent to 80 percent of their
hardware capabilities.

Table 2-5 on page 26 lists some commonly used I/O adapters and typical
bandwidths that can be expected from each, along with the maximum numbers of
each type that can be plugged into a RIO drawer.
 Chapter 2. Hardware overview 25

Table 2-5 Commonly used adapters, bandwidths, and limits per RIO drawer

Table 2-6 lists the stages of the I/O subsystem, along with the bandwidths
supported by each. The RIO hub stage, with its sustained duplex and simplex
bandwidth rates of 1100 MB/sec and 800 MB/sec, respectively, provides the
effective limit to the numbers of adapters that can be plugged into each RIO
drawer. The pSeries 690 I/O architecture enables the bandwidth supported by
the system to scale with the number of drawers attached.

Table 2-6 Bandwidth capabilities by I/O stage

Bandwidth 64-bit EADS (4) 32-bit EADS (2)

SP Switch2 PCI
Attachment Adapter
FC 8397

179 MB/sec 4/drawer 0

SP System Attachment
Adapter FC 8396

N/A 0 2/drawer

2 Gb Fibre Channel
FC 6228

150 MB/sec 8/drawer 2/drawer

1 Gb Ethernet
FC 2969 & FC 2975

150 MB/sec 8/drawer 2/drawer

Dual Ultra-3 SCSI
FC 6203

175 MB/sec 8/drawer 2/drawer

622 ATM
FC 2946

100 MB/sec 8/drawer 2/drawer

SSA 40
FC 6230

90 MB/sec 10/drawer 2/drawer

Stage Burst duplex Burst simplex Sustained
duplex

Sustained
simplex

64-bit PHB
(each)

500 MB/sec 300 MB/sec

32-bit PHB
(each)

250 MB/sec 150 MB/sec

PHB Total
(6 PHBs)

2500 MB/sec 1500 MB/sec

RIO Hub 2000 MB/sec 1000 MB/sec 1100 MB/sec 800 MB/sec

GX Bus 3400 MB/sec 1700 MB/sec 2500 MB/sec 1250 MB/sec
26 Performance and Tuning Considerations for the p690 in a Cluster 1600

2.3 The interconnect fabric
Cluster applications, many times, require fast communication between the nodes
in the cluster. In some cases, the performance of the application depends on the
performance of this communication.

Here we will show the next step in the evolution of the SP interconnect fabric: the
SP Switch2 and the SP Switch2 PCI Attachment Adapter.

2.3.1 The SP Switch2
Because the SP Switch2 is an evolution of the SP Switch and High Performance
Switch (HPS), it is fully compatible with applications written to the older switches.
This switch supports Message Passing Interface (MPI), Low-level Application
Programming Interface (LAPI), and Internet Protocol (IP).

This new switch is used to interconnect the new Cluster 1600 nodes:

� The pSeries 660 models 6M1, 6H1, and 6H0
� The pSeries 680 Model S85
� The RS/6000 7026 models H80 and M80
� The RS/6000 7017 models S80 and S7A
� The pSeries 690 and pSeries 670

SP Switch2 features
Like the other SP switches, the SP Switch2 uses eight (8x8) crossbar switch
chips to route data through the system.

The SP Switch2 uses asynchronous clocking rather than the previous
synchronous clocking. The switch chips now also maintain the Time of Day
(TOD) control logic and the performance monitoring logic that handle hardware
synchronization.

TOD clocking
Each switch planar has two redundant internal clocks. Each switch chip has its
own internal clock operating at a unique frequency. The system software selects
one of the chips to act as a primary TOD chip, which then propagates a TOD
signal to all switch boards and adapters. To handle differences in phase and

Note: For more information on the SP Switch and the SP Switch adapters,
refer to Chapter 9 of the RS/6000 SP: Planning, Volume 1, Hardware and
Physical Environment, GA22-7280. For information on the performance
characteristics of the SP Switch and the SP Switch adapters, see the RS/6000
SP System Performance Tuning Update, SG24-5340.
 Chapter 2. Hardware overview 27

frequency of the transmitted TOD, each switch chip sends a ping character and
counts the cycles until the return character comes back; the hardware then
calculates the delay, determines the cable length, and adjusts the TOD for delays
due to cable length and intermediary switches. Every 872 microseconds, the
primary TOD chip sends a TOD signal to maintain synchronization.

The eight switch chips of the switch board can be connected to 32 interposer
chips that provide the interface to external components. The SP Switch2 planar
has 32 interposer slots that require one switch interposer card for each switch
connection. If a port is not in use, the interposer card is not required, but a null
card is required to maintain cooling air flow. The wrap plug is now used only for
diagnostic purposes.

Each SP Switch2 interposer card has one component called the Self-Timed
Interface (STI) interposer chip, which is capable of transmitting and receiving
data at a full duplex rate of 1000 MB/sec (500 MB/sec per direction). The STI
chip uses a proprietary STI link protocol and hardware for unidirectional,
differential STI I/O. It has two interfaces, one for local communication and one for
long distance communication (over the switch cable to the STI chip on the SP
Switch2 adapter).

SP Switch2 reliability, availability, serviceability (RAS)
The new SP Switch2 subsystem incorporates design improvements for better
reliability, availability, and serviceability (RAS). These improvements include:

� Switch management simplification

– Power supply redundancy.

– Hot-pluggable power supplies, supervisor card, interposer cards, and
switch cables.

– Code patches for the supervisor card and switch cards that can be
installed online.

– Each switch chip has its own oscillator, which is synchronized to all other
oscillators. This eliminates the need for an external clock and the Eclock
command.

� Switch subsystem fault tolerance

– Error Correction Circuitry (ECC) has been incorporated into the design of
the RAMBUS memory on the SP Switch2 adapter card.

– Parity checking.

– Cyclic Redundancy Checks (CRC) are used to detect link errors.

– Nodes can be unfenced even during correctable transient errors.
28 Performance and Tuning Considerations for the p690 in a Cluster 1600

� System diagnostic improvements

A fault service daemon monitors failures in the SP Switch2. Administrative
intervention in case of permanent adapter errors is no longer required,
because the adapter automatically resets itself. Also, a new level of
recoverable errors (that do not require adapter resets) have been defined.
The SP Switch2 also employs bit-tunable thresholds on recoverable errors
that allow for better recovery of non-critical, transient errors and fault isolation
in case of critical, but transient, adapter errors.

The SP Switch2 also has improved definitions for error classification types,
error sources, and bit descriptions for system error logging. In addition, label
improvements were added to recoverable errors like hardware, microcode,
threshold, bad packet, transient, and service queue full.

� System problem determination

Miswire detection has improved. The system calls out miswired links and
cables, and gives visual aids to the field engineer solving these problems.
Additional features were added to help resolve subsystem software problems:

– A supervisor location register is used to alert the software of a miswire
condition and helps to determine the miswire location(s).

– The “Return on Same Route Option” provides a response even on
miswire.

– The “Port Received on Register” function specifies the switch port that
received a particular service.

– Sender hang detect logic determines when a sender is unable to make
progress and re-times the link.

It is also possible to test switch interposers, interposer connectors, and switch
cables using the SP Switch2 hot-plug feature.

For more information on the SP Switch2, see the RS/6000 SP: SP Switch2
Technology and Architecture whitepaper, found at:

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/sp_switch2.pdf

2.3.2 The SP Switch2 PCI Attachment Adapter
The SP Switch2 PCI Attachment Adapter is a full-length PCI card that has a
64-bit interface with a 66 MHz maximum clock speed. This adapter has 16 MB of
RAMBUS memory to buffer large blocks of data between the fabric and the
system. The main components in the adapter are:

� A TBIC3 switch fabric controller.

� A 740 PowerPC microprocessor.
 Chapter 2. Hardware overview 29

http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/sp_switch2.pdf

� Two STI chips (like in the interposer card of the switch). However, only one is
available for general use. The other STI chip and associated port are
reserved.

The raw peak performance for this adapter is 500 MB/sec unidirectional and
1000 MB/sec bidirectional. This represents the maximum rate at which data can
be given to or taken from the switch by the node.

There are many factors that can affect the overall performance of the
communication through the adapter and switch, so that peak performance is
rarely achieved by an application.

One of the factors that can affect the adapter and switch performance is the local
bus bandwidth where the adapter is located. In the pSeries 690, you have to take
the PCI Host Bus (PHB) and the Remote I/O (RIO) bus bandwidths into account.
For this reason, here are some recommendations about SP Switch2 PCI
Attachment Adapter placements in the pSeries 690:

� The SP Switch2 PCI Attachment Adapter in the pSeries 690 takes up two
slots because of its large heat-sink.

� This adapter can only go in slots 3 and 5 on the left side and/or slots 3 and 5
on the right side of the RIO drawer.

� There can be a maximum of eight SP Switch2 LPARs per pSeries 690.

� There can be up to two adapters per LPAR.

� There can be up to four adapters per I/O drawer. This means up to four
switched LPARs per I/O drawer.

� The SP LAN adapter can share the same PCI-PCI bridge with the SP Switch2
PCI Attachment Adapter.

Figure 2-7 on page 31 shows an example using four SP Switch2 PCI Attachment
Adapters and four SP LAN adapters in a four LPAR configuration with a
single-plane SP Switch2.
30 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure 2-7 SP Switch2 PCI Attachment Adapter location for a single plane switch

Figure 2-8 on page 32 shows an example using four SP Switch2 PCI Attachment
Adapters and two SP LAN adapters in a two LPAR configuration with a
dual-plane SP Switch2.

RIO to PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

RIO to PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

1 2 3 4 5 6 7 8 9 10

SP Switch2 PCI adapter - takes
up 2 slots

Ethernet adapter for SP LAN

LPAR 1 LPAR 2 LPAR 3 LPAR 4

Left side I/O drawer Right side I/O drawer
 Chapter 2. Hardware overview 31

Figure 2-8 SP Switch2 PCI Attachment Adapter location for dual plane switch

For more information about the SP Switch2, see the RS/6000 SP: SP Switch and
SP Switch2 Performance whitepaper at:

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/sp_switch_perf.
html

2.3.3 Internet Protocol (IP) and User Space (US) windows
The IP family of protocols provide the underpinnings for the majority of networks
around the world. IP is a robust protocol that supports multiple users and the
reliable transfer of data. However, it requires a higher processor overhead
compared with other protocols. This overhead also occurs on the PCI bus. For
example, transmitting 64 KB messages with IP can incur a 60 KB overhead on
the PCI bus.

In the Cluster 1600, Message Passing Interface (MPI) applications can use either
Internet Protocol (IP) protocol or User Space (US) protocol to exchange
messages across the switch. US is considered a lightweight protocol, because it
requires fewer processor cycles than IP to transmit a given amount of data. This
also applies to the PCI bus. For example, transmitting the same 64 KB messages
from above with US only incurs a 1 KB overhead on the PCI bus.

RIO to PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

RIO to PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

1 2 3 4 5 6 7 8 9 10

SP Switch2 PCI adapter - takes
up 2 slots

Ethernet adapter for SP LAN

LPAR 1 LPAR 1 LPAR 2 LPAR 2

Left Side I/O drawer Right Side I/O drawer
32 Performance and Tuning Considerations for the p690 in a Cluster 1600

http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/sp_switch_perf.html

User space communication is most commonly used in the scientific and technical
arena, and IP (TCP/IP) socket communication is more commonly used in the
commercial arena.

The advantage to using multiple threads in MPI tasks has been augmented with
the SP Switch2. With the previous SP Switch, there was no bandwidth increase
when changing an MPI task from one to two threads. With the SP Switch2, there
is a bandwidth increase for up to four threads (at which point, the adapter
bandwidth is reached); after that, there is no gain in bandwidth with additional
threads.

With IP, higher bandwidth is achieved by using more than one CPU. However,
multiple IP connections must be coupled with these multiple CPUs to achieve this
higher bandwidth. If only one IP connection is available, the throughput will be
similar to the single CPU throughput, due to the single-threaded nature of the
memory-to-memory access in the IP stack.

2.4 Summary
This has been a very brief, conceptual overview of the new components that you
can use in your Cluster 1600. If you would like more in-depth, low-level technical
detail on the pSeries 690, see the IBM ^ pSeries 690 System Handbook,
SG24-7040.

Chapter 3, “Features relevant to performance” on page 35 is also largely
conceptual in nature. It continues where this one left off and describes the
features of these new Cluster 1600 components that are important to
performance. The primary purpose of this chapter has been to build the
foundation for the information contained in the next chapter.
 Chapter 2. Hardware overview 33

34 Performance and Tuning Considerations for the p690 in a Cluster 1600

Chapter 3. Features relevant to
performance

This chapter picks up where Chapter 2, “Hardware overview” on page 5 left off.
We assume that you are familiar with the concepts covered there. If you are not,
please go back and read that chapter before beginning on this one.

The focus of this chapter is on those features of the pSeries 690 and the new
interconnect fabric that are relevant to performance. As with the previous
chapter, this one is also primarily conceptual in nature. The topics covered are:

� Logical partitions (LPARs)

� Affinity logical partitions (ALPARs)

� Technical large page support

� Memory and scheduling affinity

� The 32-bit kernel versus the 64-bit kernel

� Compiler options

� Network connectivity (for example, SP Switch2, SP Switch2 PCI Attachment
Adapter, and GigE)

3

© Copyright IBM Corp. 2002. All rights reserved. 35

3.1 Logical partitions (LPARs)
The pSeries 690 supports carving the system up into logical partitions (LPARs).
Simply put, an LPAR is a way to divide the hardware resources of the system into
one or more logical systems. Each LPAR is comprised of:

� Processors

� Memory

� I/O slots

The minimum configuration for an LPAR is one processor, 1 GB of memory, a
boot device (I/O slot), and a network interface (I/O slot). Although not required,
we recommend that you allocate a minimum of one half of an I/O drawer (either
Bonnie or Clyde) to each LPAR. This provides one 10-slot PCI planar, two
integrated SCSI controllers, and two 4-pack SCSI disk backplanes to each LPAR,
and it helps to ensure balanced I/O bandwidth across all of the LPARs.

In a Cluster 1600 environment, the pSeries 690 appears as a frame, and each
LPAR appears as a thin node (with a maximum of 16 allowed). Logical partitions
are defined and managed from the Hardware Management Console (HMC).

3.1.1 The Hypervisor
The magic behind the LPARs on the pSeries 690 is provided by a piece of
firmware known as the Hypervisor. The POWER4 microprocessor supports an
enhanced form of system call known as hypervisor mode. This mode allows
privileged program access to certain hardware facilities. The support also
includes the protection of those facilities within the processor. Hypervisor mode
allows the processor to access information about the system that is located
outside of the boundaries of the LPAR in which the processor is located.

Another capability of the POWER4 microprocessor is the ability to include an
address offset when using real-mode (non-virtual) memory addressing. This
means that the operating system can use real-mode addresses to access low
address locations, and the hardware can transparently relocate that access to
any location in real memory. A bounding register is used to limit the range of
real-mode addressing. The address offset support is required because the
operating system expects real-mode memory to start at address zero, and there
is only one physical address zero in the server. Therefore, the Hypervisor offsets
the base address for each LPAR and translates what the LPAR sees as
real-mode addresses to their physical counterparts in real memory.

Note: LPARs do not provide for dynamic load balancing. Once defined, they
remain static entities.
36 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure 3-1 is a logical view of where the Hypervisor sits in relation to the system
software within an LPAR.

Figure 3-1 The POWER4 Hypervisor

The Hypervisor is a passive object that is loaded into the first 256 MB memory
block of physical memory. It is only loaded into the environment; it does not
reserve a processor resource for itself. The Hypervisor only runs when an LPAR
needs a service executed on its behalf, such as creating a page table entry. The
Hypervisor can be thought of as a call-back library for the LPAR. Care has been
taken to minimize the number of instructions required to implement the
call-backs, so that, in most cases, AIX performance is identical between a
non-partitioned environment (where call-backs are not made) and a partitioned
environment (where call-backs are required).

The Hypervisor implements the following three major categories of service calls:

� Virtual memory management

� Debug register and memory access

� Virtual tty support
 Chapter 3. Features relevant to performance 37

From a performance and tuning point of view, there is nothing that you need to do
(or, for that matter, can do) with the Hypervisor. However, it is important to
understand it from a conceptual point of view. You will likely see it mentioned in
other publications, and you may run across software (for example, debuggers,
profilers, and so on) that are unable to work because of it. Prior to purchasing
any software for the pSeries 690, you should verify with the vendor that the
software has been certified to run on the POWER4 platform. This typically only
applies to software that is operating at a very low level within the machine.
Normal applications (as well as AIX itself) run inside an LPAR in the same way
that they run on a stand-alone server or cluster node, and to the end users and
system administrators, it all looks the same as well.

For more information on the Hypervisor (as well as the other firmware
components), see the IBM ^ pSeries 690 System Handbook,
SG24-7040.

3.1.2 LPAR memory overhead
There is memory overhead associated with LPARs on a pSeries 690. It is
important to understand how memory allocation is handled and how the memory
overhead requirements are determined, because this ultimately determines the
number and size of the LPARs that you can create for any given memory
configuration.

Starting at the bottom of real memory, at address zero, the first 256 MB is
occupied by the Hypervisor firmware. Starting at the top of real memory and
extending downward, real memory is set aside for I/O and direct memory access
(DMA) translation, with the amount determined by the number of I/O drawers:

� For one to four I/O drawers (80 I/O slots), 256 MB are used.

� For five or more I/O drawers (100 plus I/O slots), 512 MB are used.

A page table is created for every LPAR. The page table is the amount of
contiguous memory equal to 1/64th of the memory in the partition, rounded up to
the nearest power of two. For example, a 1.5 GB partition requires a page table
of 24 MB, but rounding up to the next power of two takes it to 32 MB. Additionally,
the page table must be aligned on a boundary that is an integer multiple of the
rounded page table size. For example, a 32 MB page table must be aligned on a
32 MB, 64 MB, 96 MB, 128 MB, and so on, boundary.

The memory used by the LPAR requires some amount of real-mode memory.
The hardware can allocate contiguous real-mode memory in quantities of 1 GB
to 16 GB. These real-mode memory chunks must also be aligned on a boundary
that is an integer multiple of the chunk itself (for example, 1 GB, 2 GB, 3 GB, and
38 Performance and Tuning Considerations for the p690 in a Cluster 1600

so on, or 16 GB, 32 GB, 48 GB, and so on). Allocation of memory to LPARs is as
follows:

� For LPARs less than or equal to 16 GB, one 1 GB real-mode memory chunk is
allocated, and the remaining balance is given in 256 MB logical memory
blocks (LMBs).

� For LPARs greater than 16 GB, one 16 GB real-mode memory chunk is
allocated, and the remaining balance is given in 256 LMBs.

Figure 3-2 illustrates the allocation of physical memory to these various
components.

Figure 3-2 Reserved memory in an LPAR environment

For more information about the distinction between real-mode and logical-mode
memory, see the Logical Partitions chapter in the IBM ^ pSeries 690
System Handbook, SG24-7040.
 Chapter 3. Features relevant to performance 39

Table 3-1 provides a summary of the memory overhead and LPAR sizing
constraints for the pSeries 690.

Table 3-1 LPAR memory overhead

3.1.3 LPAR mode versus Full System Partition mode
The pSeries 690 can operate in two different modes: LPAR mode or Full System
Partition mode. In Full System Partition mode, the pSeries 690 looks and
behaves as a traditional stand-alone SMP server. In other words, there are no
LPARs. Full System Partition mode is also referred to as symmetric
multiprocessing (SMP) mode. From a theoretical performance standpoint, Full
System Partition mode is better than LPAR mode, but from a practical
performance standpoint, the difference between the two is insignificant. Here are
the trade-offs:

� Memory overhead

There is additional memory overhead associated with running a pSeries 690
in LPAR mode. This has already been covered.

� Paging performance

An operating system running in an LPAR has slightly less page table
management performance, as it must use the Hypervisor services for page
table management. An operating system running in a Full System Partition

Total memory Memory overhead
(approximate)

Partitionable memory
(approximate)

Maximum
number of
partitions (less
than 16 GB /
equal to 16 GB)

8 GB 0.75 GB to 1.00 GB 7.00 GB to 7.25 GB 6 / 0

16 GB 0.75 GB to 1.00 GB 15.00 GB to 15.25 GB 14 / 0

24 GB 1.00 GB to 1.25 GB 22.75 GB to 23.00 GB 16 / 0

32 GB 1.00 GB to 1.25 GB 30.75 GB to 31.00 GB 16 / 0

48 GB 1.25 GB to 1.75 GB 46.25 GB to 46.75 GB 16 / 1

64 GB 1.50 GB to 2.00 GB 62.00 GB to 62.50 GB 16 / 2

96 GB 2.00 GB to 2.50 GB 93.50 GB to 94.00 GB 16 / 4

128 GB 2.50 GB to 3.50 GB 124.50 GB to 125.5 GB 16 / 6

192 GB 3.50 GB to 4.50 GB 187.50 GB to 188.50 GB 16 / 10

256 GB 5.00 GB to 6.00 GB 250.00 GB to 251.00 GB 16 / 14
40 Performance and Tuning Considerations for the p690 in a Cluster 1600

has full use of all of the system memory and native virtual memory
management performance. In a high-volume paging environment, system
performance is slightly less with LPAR mode than it is with Full System
Partition mode. (Of course, if the system has a high-volume of paging activity,
paging performance is probably the least of your problems.) In normal paging
environments, there is no observable difference in performance.

� 32-bit kernel limitation

The 32-bit kernel is only able to address 96 GB of memory. If your pSeries
690 has more than 96 GB of memory, then LPAR mode is the only way for you
to use the additional memory.

� Fast reboot

Rebooting an operating system instance in an LPAR is much faster than
rebooting that same instance in a Full System Partition. An LPAR reboot is
merely a re-establishment of the pSeries Open Firmware OS boot loader
environment. A Full System Partition reboot repeats all of the hardware
initialization phases of the processors, caches, memory, I/O drawers, and I/O
adapters. Because Full System Partition reboots go through all of the normal
system initialization phases, they take roughly the same amount of time to
reboot as other large SMP pSeries servers do.

� Additional SP Switch2 PCI Attachment Adapters

Each LPAR can have two SP Switch2 PCI Attachment Adapters (on a
dual-plane SP Switch2 system). So you can effectively increase the
interconnect bandwidth off a pSeries 690 by configuring it with multiple LPARs
as compared with leaving it in Full System Partition mode. (Note that there is
a limit of 16 SP Switch2 PCI Attachment Adapters per pSeries 690.)

� Memory affinity

Memory affinity is a feature that is only available in Full System Partition
mode. With memory affinity turned on, AIX attempts to allocate memory from
the memory books connected to the MCM where the process is running. This
improves locality of reference for the running process, and is something that is
especially important in the scientific and technical arena. Memory affinity is
covered in detail in Section 3.4, “Memory affinity” on page 52.

Clearly, there are trade-offs between single LPAR mode and Full System
Partition mode. With single LPAR mode, you gain administrative flexibility. With
Full System Partition mode, you gain some performance. You also gain the ability
to turn on memory affinity. So, given that you are not going to be configuring a
pSeries 690 with multiple LPARs, which should you use, a single-LPAR or a Full
System Partition? If you are in a scientific and technical environment where
locality of reference is important, we recommend that you go with Full System
Partition mode. For all others, we recommend that you go with single-LPAR mode
over Full System Partition mode.
 Chapter 3. Features relevant to performance 41

3.1.4 LPAR memory and processor allocation
When you allocate processors to an LPAR, you have no control over which
processors get allocated. For example, if you allocate four processors to an
LPAR, it is possible for each of those processors to be on a different MCM. The
same holds true with memory. You have no control over how it is allocated or
from where it is allocated. Access to memory not located on the same MCM as
the processor exhibits some non-uniform memory access (NUMA)
characteristics and can introduce variability into run times. For example, suppose
you have two identically configured LPARs, each with four processors and 4 GB
of memory. If the first LPAR has all of the processors and memory local to one
MCM, and the second LPAR does not, then running the same code with the
same input on the two LPARs will most likely result in slightly different run times.
(The multi-MCM configuration provides a worst case memory access latency of
slightly over 10 percent more than the best case memory access latency.) This is
generally only an issue for high performance computing (HPC) codes in the
technical and scientific arena. If this is an issue in your environment, then
consider using Affinity LPARs (ALPARs) instead of traditional LPARs.

3.2 Affinity logical partitions (ALPARs)
An affinity logical partition (ALPAR) is a special type of logical partition (LPAR)
with physical affinity to the MCM. ALPARs use system-defined resource divisions
for memory and processors. These divisions are defined such that the memory
and processors within an ALPAR remain in close proximity to each other, and this
helps to maximize the performance of the ALPAR. Like traditional LPARs,
ALPARs are created from the pSeries 690 Hardware Management Console
(HMC).

There are only two supported types of ALPARs:

� Four processor (1/2 MCM)

� Eight processor (1 MCM)

This means that for a fully-loaded, 32-way pSeries 690, you have a choice of
either four 8-way ALPARs or eight 4-way ALPARs.

Once you have picked one of these two, the system creates as many ALPARs of
the selected type as possible, sets up the default profiles for each, and creates
one system profile containing them all. You still have to select which I/O slots you
want included with each, and the constraints for that are the same as with
traditional LPARs.
42 Performance and Tuning Considerations for the p690 in a Cluster 1600

There are also some new constraints with ALPARs that you need to consider:

� For any single pSeries 690, prior to configuring the system, you need to
decide which way you are planning to go, either LPARs or ALPARs. Running
LPARs and ALPARs together on the same pSeries 690 is not supported.

� To switch between 8-way ALPARs and 4-way ALPARs or vice versa requires
deletion of the existing ALPARs and the addition of the new ALPARs. The
8-way ALPARs and the 4-way ALPARs cannot coexist on the same pSeries
690.

� For fully-loaded pSeries 690s, there is a 16 partition limit imposed by the
HMC. (For partially loaded pSeries 690s, the limit may be lower.) It makes no
difference how many partitions you plan to have active at a time; the HMC will
not allow you to define more than 16. The defined partitions can be a mix of
ALPARs (8-way or 4-way) and LPARs (even though only one or the other can
be active at any given time). We recommend that you define the ALPARs
before defining the LPARs.

� Each partition definition (LPAR or ALPAR) is assigned a Partition ID ranging
from 001 to 016. In a stand-alone pSeries 690 environment, the Partition ID
does not much matter. What does matter in that environment is the hard limit
of 16 partition definitions. However, when you place a pSeries 690 into a
Cluster 1600, the Partition ID becomes very important. It is what PSSP uses
to identify the logical node contained within that LPAR or ALPAR. The
implications of this are that you cannot have dual partition definitions for each
partition. For example, suppose you were planning on having four partitions
for a pSeries 690 in your Cluster 1600, and you wanted to set it up so that you
could test the difference between LPARs and ALPARs. Suppose further that
you create definitions for four ALPARs and definitions for four LPARs. In each
ALPAR/LPAR pair, you include the exact same hardware so that the only
difference is that one definition is for an ALPAR, and the other is for an LPAR.
Now, you should be able to bring the system up either as all ALPARs or all
LPARs, right? Wrong. The problem is the Partition ID. The ALPARs will have
Partition IDs of 001-004, and the LPARs will have Partition IDs of 005-008.
Therefore, the LPARs will fail to boot (LED E1F7) because PSSP does not
recognize them. The moral of the story is that if you want to experiment
between ALPARs and LPARs, you need to first delete the current set of
definitions, then add the second. In other words, to switch between ALPARs
and LPARs, delete the ALPAR definitions, then add the LPAR definitions using
the same hardware information for each LPAR that you used for the
corresponding ALPAR. This will bring the new set of partitions in with the
same Partition IDs as the old ones, and PSSP will not be the wiser for it.

� Not all pSeries 690 configurations are equipped to use ALPARs. If you are
thinking about using them, be sure to work with your IBM Sales
Representative to make sure that the configuration that you order supports
them.
 Chapter 3. Features relevant to performance 43

ALPARs are targeted at applications that have very stringent performance
requirements. These applications typically fall in the realm of technical, scientific,
or business intelligence (BI). In certain environments (for example, a system with
unbalanced memory books), using ALPARs rather than LPARs may actually
result in a decrease in performance, rather than the other way around.
Remember that you are trading configuration flexibility for potential performance
gains. Be sure that what you are gaining more than makes up for what you are
giving up.

Table 3-2 provides a summary comparison between LPARs and ALPARs. The
numbers are based on a fully-loaded, 32-way pSeries 690.

Table 3-2 Comparison of LPARs to ALPARs

3.3 Technical large page support
The pSeries 690 supports two virtual memory page sizes:

� The 4 KB traditional page

� The 16 MB technical large page

Description LPAR ALPAR

Number of partitions 0-16. 4-processor: 0-8.
8-processor: 0-4.

Memory Defined by the user. Configured by the system.
Cannot be modified by the user.

I/O slots (devices) Defined by the user. Defined by the user.

Partition profile Defined by the user. Configured by the system.
Some modification allowed by
the user.

System profile Defined by the user. Configured by the system.
Some modification allowed by
the user.

Partition addition User can add individual
partitions.

It is all or nothing. User cannot
add individual ones.

Partition deletion User can delete individual
partitions.

It is all or nothing. User cannot
delete individual ones.

Partition activation If no ALPARs are active,
then the user can activate
these, individually or in
groups.

If no LPARs are active, then user
can activate them, individually or
in groups.
44 Performance and Tuning Considerations for the p690 in a Cluster 1600

The technical large page support is aimed primarily at the high performance
computing (HPC) environments. (That is why it is called “technical large page”
rather than just “large page”.) However, it may also be of value in commercial
environments running things such as business intelligence (BI) applications.

Memory intensive applications that use large amounts of virtual memory may
gain improvements in performance by switching to technical large page. The
technical large page improvements are attributable to:

� Reduced translation lookaside buffer (TLB) misses due to the TLB being able
to map a larger virtual memory range

� Improved memory prefetching by eliminating the need to restart the prefetch
operations on 4 KB boundaries

More information about the details of how technical large pages effect TLB and
hardware data prefetching behavior can be found in the IBM ^ POWER4
System Microarchitecture whitepaper, available at:

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html

Technical large page support is available for both 32-bit and 64-bit applications,
and both the 32-bit version and the 64-bit version of the AIX kernel support it.
The 32-bit kernel and virtual memory management (VMM) architecture are used
to illustrate the concepts covered here.

3.3.1 Technical large pages and the Virtual Memory Manager (VMM)
AIX processes access memory through segment-based addresses. A
segment-based address is calculated using a segment register and a segment
offset. In the 32-bit VMM environment, there are 16 segment registers. Each
segment register can reference a 256 MB segment (for a total process address
space of 4 GB). Some of the registers are used to address kernel memory while
others can be used for multiple purposes. By default, Segment 2 holds the
process private data, which contains, among other things, the stack and the
heap. The stack starts at the top of the segment and grows downwards, and the
heap starts at the bottom of the segment and grows upwards.

Each segment can be further classified by its storage type. There are two:
working and persistent. The storage type indicates which medium is used to back
the segments when they are moved from physical memory. Working segments
are backed by paging space, and persistent segments are backed by disk files.

The 32-bit VMM environment is illustrated in Table 3-3 on page 46.
 Chapter 3. Features relevant to performance 45

http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html

Table 3-3 The 32-bit VMM (user) process image

For additional details on the inner workings of the VMM, see The POWER4
Processor Introduction and Tuning Guide, SG24-7041.

The POWER4 technical large page architecture requires that all virtual pages in
a 256 MB segment be the same size. AIX uses this architecture to support a
mixed-mode process model where some segments are comprised of 4 KB pages
and others are comprised of 16 MB pages. Applications can request technical
large pages for two types of segments:

� Heap segment(s)

� Shared memory segment(s)

All other segments in the process are comprised of 4 KB pages.

The memory pools for 4 KB pages and 16 MB pages are separate. The 16 MB
pool is specified through the vmtune command, and the physical memory for
these pages is allocated at system boot time. Further changes to the allocation
require a reboot. It is important to note that the memory allocated to the 16 MB
technical large page pool is pinned, and there is no paging support for it. You can
configure the technical large page pool to use up to 85 percent of the total usable
memory of the system or LPAR, and the remaining memory is then allocated to
the 4 KB page pool.

Process data contained in technical large pages remains in physical memory
until the process completes. It is never paged out. Authorization to use technical
large pages is granted at the user-level and controlled by a new security access
control mechanism. This prevents unauthorized processes from using technical
large pages and starving out the legitimate ones.

Segment
number

Description Storage type

0 (0x0) Kernel Working

01 (0x1) Text (program code) Persistent

02 (0x2) Private data Working

03 (0x3)
through
12 (0xC)

Shared memory / memory mapped files
- or -
Additional data space

Persistent
- or -
Working

13 (0xD) Shared library text Working

14 (0xE) shmat / mmap Persistent or working

15 (0xF) Shared library data Working
46 Performance and Tuning Considerations for the p690 in a Cluster 1600

It is also important to understand that the 32-bit process model changes when
you use technical large pages. The new 32-bit process model for technical large
pages is very similar to the existing 32-bit large memory model. The existing
large memory model is the one that is used when the executable was built with
the -bmaxdata:0x########/dsa flag or modified with the /usr/bin/echo
’\0200\0\0\0’ | /bin/dd of=<executable_filename> bs=4 count=1 seek=19
conv=notrunc command sequence. The difference between the existing large
memory model and the new technical large page model involves the location of
the privately loaded library text. In the existing large memory model, privately
loaded library text and data are placed in the heap. In the new technical large
page model, privately loaded library text and data are placed in the low
addresses of Segment 2. The 64-bit process model with large technical pages is
the same as the 64-bit process model without large technical pages.

3.3.2 Technical large page usage
An authorized process can use technical large page in two ways:

� To back its data and heap segments

� To back its shared memory segments

The first can be accomplished without any code changes or recompilations. The
second requires both a code change and a recompilation.

Technical large pages for data and heap segments
A process can request that its initialized program data, uninitialized program data
(BSS - Block Started by Symbol), and heap segments be backed with technical
large pages. There are two ways to accomplish this:

� The program executable file can be marked to request technical large pages.

� An environment variable can be set to control technical large page usage.

Technical large page use is established when the process is created by the exec
system call, and technical large page use is inherited by child processes across
a fork system call.

Marking the executable
The XCOFF (and XCOFF64) header in the executable file contains a new flag to
indicate that the process wants to use technical large pages to back its data and
heap segments. This flag can be set at link time by specifying the -blpdata option
on the ldedit command. The flag can also be set and cleared after the
executable has already been built. The commands to do this are:

� To set the flag:

ldedit -blpdata <executable_filename>
 Chapter 3. Features relevant to performance 47

� To clear the flag:

ldedit -bnolpdata <executable_filename>

Note also that the ldedit command can be used to set the maxdata value on an
executable file.

Setting the environment variable
Authorized users can set a new environment variable to indicate that they want to
use technical large pages for an application’s data and heap segments. Note that
the environment variable takes precedence over the technical large page flag
setting in the executable file. In other words, the environment variable setting can
control whether or not the marked executable actually executes with technical
large pages.

Technical large page usage is provided as an option within the LDR_CNTRL
environment variable, and there are three settings of interest:

� Use technical large pages (advisory mode):

LDR_CNTRL=LARGE_PAGE_DATA=Y

� Use technical large pages (mandatory mode):

LDR_CNTRL=LARGE_PAGE_DATA=M

� Do not use technical large pages:

LDR_CNTRL=LARGE_PAGE_DATA=N

Note also that the LDR_CNTRL environment variable can be used to set the
maxdata value:

� To request technical large pages as well as maxdata of 2 GB:

LDR_CNTRL=MAXDATA=0x80000000@LARGE_PAGE_DATA=Y

Advisory versus mandatory modes
A process can indicate that it wants to use technical large pages to back its data
and heap segments in either advisory mode or mandatory mode.

Important: Set these environment variables in scripts that are used to invoke
the applications, rather than in your local dot startup files. In other words, set
them at the application level and not at the login level.

Setting these environment variables at the global level turns technical large
pages on globally. Any executable that is marked for technical large page
usage will attempt to execute with them. This can produce undesirable effects
leading to a significant loss in performance for the overall system. It is better to
set and unset the environment variables on a case-by-case basis.
48 Performance and Tuning Considerations for the p690 in a Cluster 1600

In advisory mode, the process will be given technical large pages, if possible.
The conditions for this to happen are:

� The user ID that owns the executable is authorized to use technical large
pages.

� The POWER4 system has been configured with a technical large page pool.

� There are enough free pages in the technical large page pool to back the
entire data or heap segment with technical large pages.

If all of these conditions are met, the data and heap segments of the process will
be backed with technical large pages. Otherwise, the data and heap segments
will be backed with normal 4 KB pages. Depending on free memory in the
technical large page pool, it is possible for a process to have some of its data or
heap segments backed by technical large pages and others backed by normal 4
KB pages. Remember that it is only a segment that has to be backed by
homogeneous pages, not the entire memory footprint of the process.

In mandatory mode, it is all or nothing. If there are not enough free technical
large pages in the technical large page pool to back all of the data and heap
segments for the process, it is terminated. In mandatory mode, you must put
special attention on monitoring the technical large page pool to ensure that it is
sized appropriately for your workload. In mandatory mode, if it is not sized
appropriately, applications will fail. In advisory mode, these same applications
may at least be able still run, however slowly.

The primary disadvantage to using advisory mode is that it can introduce
variability into the run times of the process. One run of the code may be fully
backed by technical large pages while a subsequent run may have none. For this
reason, we recommend that, if you are running in an environment where
minimizing variability in run times is important, you use mandatory mode.
Scientific and technical environments typically fall into this category.

Technical large pages for shared memory segments
In general, an application source code change is required in order to use
technical large pages to back shared memory segments. Specifically, the
SHM_LGPAGE and SHM_PIN flags have to be set on the shmget system call.

The exception to this is with shared memory MPI. If your application is using
shared memory MPI and the LPAR and account are set up for technical large

Note: Executable files that have been marked to use technical large page
support will do so in advisory mode. You must use the
LDR_CNTRL=LARGE_PAGE_DATA=M environment variable setting to turn
on mandatory mode.
 Chapter 3. Features relevant to performance 49

page, then the shared memory segments used by MPI will be backed by
technical large pages.

The request to back shared memory segments with technical large pages is
advisory. There is no way to make it mandatory. Technical large pages back
shared memory segments under the same conditions that data and heap
segments are backed in advisory mode. If the technical large pages are
available, they will be used. If not, the normal 4 KB pages will be used. For this
reason, we recommend that technical large pages not be used to back shared
memory segments in environments (such as scientific and technical) where
minimizing variability in run times is important.

Authorizing technical large page use
The technical large page pool is a fixed size, pinned memory resource. For this
reason, it is important to control who has access to it. You grant this access to
non-root users through the chuser command as follows:

chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE <userid>

Note that this grants technical large page usage for data and heap segments as
well as for shared memory segments. There is no way to separate them with the
chuser command. However, you can enable or disable the shared memory
portion at the system or LPAR level via the vmtune command.

Configuring a pSeries 690 to use technical large pages
By default, a pSeries 690 has no memory configured for technical large page. To
configure the technical large page pool, you use the vmtune command, and a
system or LPAR reboot is required.

The vmtune executable is located in the /usr/samples/kernel directory. It is part of
the bos.adt.samples fileset. There is also a 64-bit version called vmtune64 that
goes with the 64-bit kernel.

To allocate physical memory to the technical large page pool, run:

/usr/samples/kernel/vmtune -g <page_size> -L <page_count>

The vmtune command supports two values for page_size. They are 16777216
(16 MB) and 268435456 (256 MB). Note that even though the vmtune command
supports the 256 MB page size, the POWER4 does not. The page_count is the
number of page_size pages to allocate to the technical large page pool. You can
allocate up to 85% of the available system memory to the technical large page
pool.

For example, to set the technical large page pool size at 4 GB, run:

/usr/samples/kernel/vmtune -g 16777216 -L 256
50 Performance and Tuning Considerations for the p690 in a Cluster 1600

Once you have issued the vmtune command, you then need to run the bosboot
command and reboot the system or LPAR.

To enable technical large page support for shared memory segments, you must
use the vmtune -S 1 command to enable the SHM_PIN flag in the shmget
system call. The SHM_PIN flag must be re-enabled after every system or LPAR
reboot, so it is a good idea to add it to one of your system startup files, such as
/etc/rc.local or /etc/inittab.

Technical large page command support
In addition to the vmtune command, several other system commands, such as
svmon, have been extended to report on technical large page usage. In
Chapter 4, “Investigations” on page 77, we illustrate the use of both vmtune and
svmon in a technical large page environment.

Technical large page support considerations
If you are thinking about using technical large pages, here are some things to
consider:

� Technical large page support is a special purpose performance improvement
feature. It is not recommended for general use. The types of applications that
can likely benefit from it are long running, memory intensive applications that
use large amounts of virtual memory.

� Consider the overall system performance when deciding to use or not use
technical large pages. While some specific applications may benefit from
technical large page use, the overall performance of your system may suffer.
Memory is pre-allocated to the technical large page pool and, therefore, is no
longer available for normal applications. A system that never used to page
may begin doing so because of the lack of available memory in the normal 4
KB page pool.

� Oversizing the technical large page pool may cause the system to crash.
During system boot, AIX reserves enough physical memory for 4 KB pages to
ensure that the system will boot, but system failures may occur after booting if
there are not enough 4 KB pages available in the pool.

� There is no such thing as reverse advisory mode. In advisory mode, a process
requesting technical large pages can use normal 4 KB pages if there are not
enough technical large pages to back an entire segment. However, the
opposite is not true. A normal application, user or system, cannot use
technical large pages if there are not enough 4 KB pages available.

� Each change to the technical large page pool size requires a reboot of the
system or LPAR.

� The mprotect system call cannot be used with technical large pages. Some of
the debug tools that are used to find problems with memory leaking
 Chapter 3. Features relevant to performance 51

applications (that is, applications that are having problems with the malloc
system call) use mprotect to attempt to diagnose the problem. These tools will
not work properly with technical large pages, which means that the problem
application will need to be debugged running in a normal 4 KB page
environment.

� Because technical large pages use pinned memory, they are treated as
unmanaged resources by the Workload Manager (WLM).

3.4 Memory affinity
The POWER4-based IBM ^ pSeries server has CPUs that are organized
into multiple MCMs. Each MCM may or may not have memory associated with it.
The memory attached to a single MCM has the same access characteristics for
any location within it and is said to fall within a single affinity domain. A processor
can access memory attached to its local MCM faster (that is, lower latency) than
it can access memory attached to other MCMs.

AIX 5L has optional support for organizing its memory management strategies
around these affinity domains.

With memory affinity support enabled, AIX attempts to satisfy page faults from
the memory closest to the processor that generated the page fault. This is of
benefit to the application because it is now accessing memory that is local to the
MCM rather than memory scattered among different affinity domains.

Memory affinity is enabled at the operating system level. Changes are not
required at the application level to take advantage of it.

3.4.1 Memory configuration of pSeries 690
IBM ^ pSeries 690 systems support four memory controllers per MCM.
The memory subsystem is implemented using memory cards where each card
contains two memory controllers, synchronous memory interfaces (SMIs), and
DIMMs. Each controller can support up to 16 DIMMs.

To maximize memory performance on pSeries 690 systems, memory
interleaving is employed. Memory is interleaved across controllers. Interleaving
addresses is a function of the L3 cache controllers and the L3 cache to which the
memory controllers are attached. It is implemented by the L3 cache controller on
the POWER4 chip.

Figure 3-3 on page 53 illustrates the relationship between MCMs and memory
subsystems from a logical point of view.
52 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure 3-3 Logical view of MCM and memory

Memory configurations with performance consideration
� If an MCM has two memory cards of the same size installed, memory is

interleaved in a round-robin fashion across the four memory controllers with
512-byte granularity. Referring to Figure 3-3, memory is interleaved in the
following way:

– The first 512-byte block of memory is in the memory card on the left of the
MCM and is accessed by the L3 in the lower left corner of the MCM.

– The second 512-byte block is accessed by the L3 in the upper left corner.

– The third 512-byte block is accessed from the memory card on the right
side of the MCM by the L3 in the upper right corner.

– The fourth 512-byte block is accessed by the L3 in the lower right corner.

4 POWER4 chips (8 processors) on an MCM

Multichip Module Boundary

>1 Ghz
Core

>1 Ghz
Core

Chip-chip communication

 L3

Mem
Ctrl L3

 L3

Shared L2

Shared L2

Shared L2

Shared L2

GX Bus

GX Bus GX Bus

GX Bus

L3 cache shared across all processors

4 GX links for
external
connections

 L3
Mem
Ctrl

Mem
Ctrl

Mem
Ctrl

M
E
M
O
R
Y

M
E
M
O
R
Y

Multichip Module
 Chapter 3. Features relevant to performance 53

This continues throughout the memory range afforded by the two cards, and
each L3 handles only one-fourth of the memory addresses for that MCM.

� If an MCM has one memory card attached (for example, in Figure 3-3 on
page 53, if the memory card on the left is the only one present), then the
memory is interleaved only on the single memory card by the two L3s on the
left side of the MCM. The command queues associated with these two L3s
must then process twice the traffic they would in the first case for the same
application, and this reduces the available bandwidth for the MCM.

� If an MCM has two memory cards of different sizes attached, then the two
cards are treated independently, with each card being two-way interleaved.
For example, if an 8 GB and a 32 GB card has been installed in the memory
slots of the MCMs, eighty percent of the data for an application will be
handled by two of the L3s and twenty percent of it will be handled by the other
two L3s. This reduces the effective bandwidth, as a result of uneven use of
the L3 command queues.

� Memory size can also impact system performance. The 4 GB and 8 GB
memory cards have one port between each memory controller and memory,
whereas 16 GB and 32 GB cards have two ports between each memory
controller and memory. Hence, the latter support a greater bandwidth.

For more detailed information about the memory subsystem of the pSeries 690,
refer to the IBM ^ pSeries 690 System Handbook, SG24-7040 and The
POWER4 Processor Introduction and Tuning Guide, SG24-7041.

3.4.2 Enabling memory affinity
Memory affinity is a special purpose option for improving performance on
multiple chip module (MCM) systems. It is intended to offer performance
improvements to selected high performance computing applications. Therefore, it
is neither recommended nor beneficial for general use.

Memory affinity is enabled through the -y flag of the vmtune command. The
syntax for the flag is -y 0|1. A value of 1 turns on memory affinity, and a value of 0
turns it off. The default value of memory affinity is off. The bosboot and shutdown
-Fr commands are required for the change to take effect.

If memory affinity is enabled, a memory pool is constructed for each affinity
domain reported by the firmware at system boot time. The system will attempt to
satisfy page faults from the memory pool closest to the processor that faulted.
54 Performance and Tuning Considerations for the p690 in a Cluster 1600

3.4.3 Performance considerations for memory affinity
Enabling memory affinity may not always result in a performance benefit. This is
because there is nothing preventing the AIX dispatcher from dispatching a thread
to a different MCM for each time slice.

When memory affinity is enabled, the memory local to the MCM is allocated. So,
the memory that the thread has allocated will have the lowest latency available at
the time the thread requested it.

A problem arises if the thread is moved between MCMs. When a thread is moved
from the MCM, the allocated memory will no longer be the lowest latency, and, in
fact, will have higher latency. In other words, all of the previously allocated
memory will now be remote to the MCM and will therefore have higher latency.

When memory affinity is turned off, memory will be allocated randomly.
Therefore, some memory will be local to the MCM and other memory will be
remote to the MCM. So, as the thread moves between MCMs, its memory
latency remains a mixture of high and low with the result tending toward the
average.

Thus, to obtain beneficial performance results that are consistent across multiple
runs of an application, it is advisable to bind all the threads of an application to a
single MCM. This can be done using the following methods:

� Through the bindprocessor command

� Through the bindprocessor application program interface (API)

� Through the AIX Workload Manager (WLM) by creating a class with resource
sets and assigning the application to this class

� Through affinity logical partitions (ALPARs)

It is also possible to obtain a benefit with threads bound to different MCMs, but
the application should be carefully written to avoid remote references. In

Notes: Memory affinity is a performance tuning option only applicable to
pSeries 690 and 670 systems. On platforms that do not support memory
affinity, turning it on will have no effect.

Memory affinity is only available in Full System Partition (that is, SMP) mode.
Turning it on in LPAR mode has no effect.

Memory affinity support is provided with AIX 5L Version 5.1, Recommended
Maintenance Package 5100-02 or higher. You can use the oslevel -r
command to determine your current AIX maintenance level.
 Chapter 3. Features relevant to performance 55

particular, the memory accessed by individual threads should not overlap, and
each thread should first reference its data area only after it has been bound to an
MCM.

Some practical examples of when memory affinity will prove disadvantageous
are the following. (They basically come down to not having all cooperating
elements of an application running on the same MCM.)

� The application has one thread initializing its data area and other threads
bound to other MCMs processing it. The data area will be faulted in on the
MCM of the initial thread. The other threads will have remote references.

� The application uses technical large page segments and has threads bound
to different MCMs accessing them. Technical large page segments are
backed when the segment is created rather than when the virtual memory is
referenced, so all the memory will come from the MCM on which the technical
large page segments were created.

� The application uses shared memory and all the cooperating processes do
not run on the same MCM. Unless the processes only references areas of
shared memory that are non-overlapping, they will get remote references for
some of their memory accesses.

3.4.4 Memory affinity with technical large page support
Memory affinity is supported on both 4 KB pages and 16 MB technical large
pages. An application using technical large pages will get them preferentially
allocated from the MCM where the application is running, if memory affinity is
enabled. (Assuming of course, that there are technical large pages available in
the memory pool associated with the MCM.)

One difference between 4 KB normal pages and 16 MB technical large pages
has to do with when physical memory is allocated to back virtual memory. With 4
KB pages, physical memory is allocated when the segment containing the virtual
memory is referenced. With 16 MB pages, physical memory is allocated when
the segment containing the virtual memory is created. This can affect the
performance gain or loss seen by an application when using memory affinity.

3.5 The 32-bit kernel versus the 64-bit kernel
The pSeries 690 running AIX 5L supports two different kernels: 32-bit and 64-bit.
Features of the 64-bit kernel include:

� The 64-bit kernel supports both 32-bit applications and 64-bit applications, as
does the 32-bit kernel.
56 Performance and Tuning Considerations for the p690 in a Cluster 1600

� The 64-bit kernel maintains binary compatibility for 32-bit applications running
on earlier versions of AIX on POWER-based systems. However, the 64-bit
kernel maintains only source compatibility for 64-bit applications from earlier
systems. These applications will have to be recompiled on the pSeries 690.
This is due to the fact that the 64-bit application binary interface (ABI) was
changed to make it more scalable, and, as a result, it is no longer compatible
with the earlier 64-bit ABI. Additionally, existing 32-bit kernel extensions and
device drivers used by 64-bit applications may have to be modified to support
the new 64-bit ABI.

� The 64-bit kernel supports the increased size of virtual memory manager
(VMM) data structures needed for larger memory configurations. The 32-bit
kernel can address a maximum of 96 GB of physical memory. The 64-bit
kernel has no such limitation.

� The 64-bit kernel provides the facility to scale kernel data types to more easily
support greater than 32-bit addressability in the areas of 64-bit user address
space, large files, number of inodes, device numbering, thread IDs, and so
on.

� The 64-bit kernel supports the increased size and number of data structures
in the global kernel address space that are required to support the possibility
of thousands of physical and logical devices and their device drivers.

It is also very important to understand the difference between 64-bit kernel and
64-bit architecture. They are not synonymous. The 64-bit architecture is
supported by the 32-bit kernel as well as the 64-bit kernel. A somewhat dated but
still excellent whitepaper titled The RS/6000 64-bit Solution, which explains the
64-bit architecture, can be found at:

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/64bit6.html

Your application mix will likely determine your choice of kernel. All of your
applications and system software must support the 64-bit kernel prior to that
becoming a viable option for you. However, even if the 64-bit kernel is not now a
valid choice for your environment, it will likely be over time and, when it is, how
will you decide which kernel to use?

Suppose you have a mix of 32-bit and 64-bit applications, but all are supported
with either kernel. In general, if the main application or applications are 64-bit,
then it is slightly better to use the 64-bit kernel. The same holds for 32-bit
applications with the 32-bit kernel. However, the overhead of running 64-bit
applications on the 32-bit kernel is handled by the kernel, and it is small. (The
kernel has to remap the system calls to 32-bit calls and reshape the data
structures for these calls.) The same holds true for 32-bit applications on the
64-bit kernel. So, given that your application mix will work on either kernel, our
recommendation is to go with the 64-bit kernel.
 Chapter 3. Features relevant to performance 57

http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/64bit6.html

3.5.1 Selecting the 64-bit kernel
If your system has 64-bit processors, the 64-bit kernel is automatically installed,
but not necessarily activated, with the base operating system. Activation of the
64-bit kernel during system installation is enabled by setting the Enable 64-bit
Kernel and JFS2 option to yes at the start of the install process. Again, we
recommend that you do not do this.

Enabling the 64-bit kernel
To switch from the 32-bit kernel to the 64-bit kernel after the system has been
installed, do the following as root:

1. Run ln -fs /usr/lib/boot/unix_64 /unix.

2. Run ln -fs /usr/lib/boot/unix_64 /usr/lib/boot/unix.

3. Run bosboot -ad/dev/ipldevice.

4. Run shutdown -Fr.

Enabling the 32-bit kernel
To switch back to the 32-bit kernel, do the following as root:

1. Run ln -fs /usr/lib/boot/unix_mp /unix.

2. Run ln -fs /usr/lib/boot/unix_mp /usr/lib/boot/unix.

3. Run bosboot -ad/dev/ipldevice.

4. Run shutdown -Fr.

3.5.2 The 64-bit application environment
Enabling the 64-bit kernel is not the same thing as enabling the 64-bit application
environment. The 64-bit application environment is what allows you to run 64-bit
applications with the 32-bit kernel. It is enabled by running smitty and selecting
System Environments -> Enable 64-bit Application Environment.

Note: We recommend that you install your system with the 32-bit kernel, then
switch to the 64-bit kernel. The reason for this recommendation is that if you
install your system with the 64-bit kernel, you will also have to create rootvg as
a JFS2 file system. If you install with the 32-bit kernel, then convert to the
64-bit kernel, rootvg can stay as JFS.
58 Performance and Tuning Considerations for the p690 in a Cluster 1600

To determine if the 64-bit application environment has been enabled on your
system, run:

[bd0101en][/]> grep load /etc/inittab
load64bit:2:wait:/etc/methods/cfg64 >/dev/console 2>&1 # Enable 64-bit execs
[bd0101en][/]>

If you see the load64bit line, then the 64-bit environment has been enabled.

By default, the 64-bit application environment is enabled on the pSeries 690.

3.6 Application performance tuning
While the focus of this book is tuning at the cluster level, the ultimate goal is to
help you achieve better application performance. Consequently, some words
concerning tuning at the application level are appropriate. This section is simply
a reminder to consider application tuning as a means to improve performance. It
gives you a brief overview of selected areas that you may wish to investigate.

The areas are:

� Application tuning guidelines and resources

� Compiler considerations

� Engineering and Scientific Subroutine Libraries

� The Mathematical Acceleration Subsystem (MASS) library

� Hostfile considerations for MPI performance

� Some final recommendations

3.6.1 Application tuning guidelines and resources
A detailed discussion of application coding practices for best performance on the
pSeries 690 POWER4 architecture is beyond the scope of this book. Thankfully,
this topic is covered in detail in guides, manuals, Redbooks, whitepapers, and
Redpapers that are available on the Web. Some of these are listed below in
Table 3-4 on page 60. Older references targeted at POWER3-based systems are
also included, as these references still contain much relevant information on
application tuning, including a wealth of examples and case studies.

Important: To enable the 64-bit application environment, use smitty. Do not
manually add the load64bit line to /etc/inittab. It will not work.
 Chapter 3. Features relevant to performance 59

Table 3-4 Selected application performance and tuning publications

3.6.2 Compiler considerations
Where source code is available, significant performance gains can be realized by
choosing the correct compiler options so that more optimal code is generated by
the compiler. However, determining the correct combination of compiler options
and their values can be a time consuming task.

Description Redpaper, redbook, whitepaper, or
manual

How to tune applications for the
POWER4 processor.

The POWER4 Processor Introduction and
Tuning Guide, SG24-7041 (redbook).

An older book, but an excellent source
of tuning methodology.

AIX Version 4, Optimization and Tuning
Guide for Fortran, C, and C++, SC09-1705
(guide)

Application tuning for the SP. Includes
distributed memory, shared memory,
and hybrid environments.

Scientific Applications in RS/6000 SP
Environments, SG24-5611 (redbook)

Initial guide for application tuning on
the POWER3 architecture.

RS/6000 Scientific and Technical Computing:
POWER3 Introduction and Tuning Guide,
SG24-5155 (redbook)

The XL Fortran User’s Guide gives
complete descriptions of XL Fortran
compiler options.

XL Fortran for AIX User’s Guide Version 7.1,
SC09-2866

Introductory manual to VisualAge C++ VisualAge C++, Version 5.0 Getting Started

Contains both an overview of pSeries
690 hardware as it compares to
previous POWER architectures and
pSeries 690 performance
measurements using the Gaussian
computational chemistry code.

Some Practical Suggestions for Performing
Gaussian Benchmarks on a pSeries 690
System, REDP0424 (Redpaper)

NCBI BLAST is one of the most widely
used sequence alignment and
database search applications in the
area of BioInformatics. BLAST
performance on the pSeries 690 is
investigated.

Some Practical Suggestions for Performing
NCBI BLAST Benchmarks on a pSeries 690
System, REDP0437 (Redpaper)

Detailed information on many tools
useful in measuring system and
application performance.

AIX 5L Performance Tools Handbook,
SG24-6039 (redbook).
60 Performance and Tuning Considerations for the p690 in a Cluster 1600

Here is a short list of the more important compiler options to consider in trying to
improve application performance. The list is by no means exhaustive; we
encourage you to refer to the product manuals for XL Fortran and VisualAge
C/C++ (see Table 3-4 on page 60). The options listed in Table 3-5 apply to both
Fortran and VisualAge C/C++ unless noted otherwise.

Table 3-5 Important compiler options

Important: We strongly encourage you to follow these guidelines:

1. Be patient and willing to experiment.

2. Always check for correctness of results. Fast does not count for much if the
results are wrong.

3. Read the compiler manuals to understand compiler option usage and
resulting actions. Also refer to the Redbooks on POWER3 and POWER4
performance (noted in Table 3-4 on page 60) to gain a greater
understanding of tuning for these platforms and view specific examples
that may help your efforts.

4. This may seem obvious, but it is often overlooked: Talk with your
colleagues. They may already have figured it out.

5. Iterate on Guideline 1.

Compiler option Description

-O[level] Specifies the level of optimization (if any) to be used during
compilation. Levels range from 2 to 5 with higher values
providing more aggressive optimization or automatic choices
for other performance related compiler options. Currently,
specifying -O is equivalent to specifying -O2. If optimization is
not specified via -O, the default is to do no optimization.

-qarch This option controls the instructions the compiler generates.
Performance on a given architecture can be improved by
targeting that architecture (For example: -qarch=pwr3 or
-qarch=pwr4), but the resulting executable might only be able
to run on specific machines. Note that executables created
with -qarch=pwr3 may run on the POWER4 architecture of the
pSeries 690. Choosing -qarch=auto causes the compiler to
generate instructions specific to the machine on which the
compilation is performed. So, specifying -qarch=auto on a
pSeries 690 is equivalent to specifying -qarch=pwr4.
 Chapter 3. Features relevant to performance 61

Additional information about the XL Fortran compiler can be found at:

http://www.ibm.com/software/ad/fortran/xlfortran/

-qtune Tunes instruction selection, scheduling, and other
implementation-dependent performance enhancements for a
specific implementation of a hardware architecture. Note that
while -qtune may affect the performance of a resulting
executable on a given architecture implementation, it does not
require the executable to be run only on the target architecture
implementation. This is different from the results of some
choices for -qarch.

-qstrict
-qstrict_induction

By default, optimizations done by -O3, -qhot, and -qipa may
rearrange code so that results or exceptions are different from
those of unoptimized programs. The -qstrict flag ensures that
-O3, -qhot, and -qipa do not alter the semantics of a program.
The -qstrict_induction flag takes similar action, preventing the
compiler from performing induction (loop counter) variable
optimizations.

Note that -qstrict and -qstrict_induction can cause reduced
performance.

-qalign Specifies the alignment of data objects in storage, which
avoids performance problems due to misaligned data. Only
aligns on 4 KB boundaries. Does not work with Fortran
common blocks. It is more of an I/O optimization, but it can, in
certain cases, be used for CPU optimization.

-Q Controls whether procedures are to be inlined. Options allow a
list of procedures to be named for inlining and identifying
procedures that are not to be inlined. For VAC/C++, the
-qinline option is used instead of -Q.

-qhot Determines whether to perform high-order transformations on
loops and array language during optimization.

-qipa Enhances -O optimization by doing detailed analysis across
procedures: interprocedural analysis or IPA. This option needs
to be specified on the linker step as well.

-qmaxmem Determines the amount of memory that the compiler can use
while performing certain optimization. Setting -qmaxmem=-1
allows the compiler to use all the memory it needs without
checking for limits. The default choices for -qmaxmem change
with optimization levels, at -O3 the default setting for
-qmaxmem is -1.

Compiler option Description
62 Performance and Tuning Considerations for the p690 in a Cluster 1600

http://www-3.ibm.com/software/ad/fortran/xlfortran/

Additional information about the VisualAge C/C++ compilers can be found at:

http://www.ibm.com/software/ad/vacpp/

3.6.3 Engineering and Scientific Subroutine Libraries
The Engineering and Scientific Subroutine Libraries (ESSL) family of products is
a state-of-the-art collection of mathematical subroutines. (Parallel ESSL is the
parallel version of ESSL.) Running on pSeries servers, RS/6000 workstations,
RS/6000 servers, and SP systems, the ESSL family provides a wide range of
high-performance mathematical functions for a variety of scientific and
engineering applications.

The ESSL family includes:

� ESSL for AIX, which contains over 400 high-performance mathematical
subroutines tuned for IBM UNIX hardware

� Parallel ESSL for AIX, which contains over 100 high-performance
mathematical subroutines specifically designed to exploit the full power of
RS/6000 SP and Cluster 1600 hardware with scalability of up to 512 nodes

ESSL provides a variety of mathematical functions, such as:

� Basic Linear Algebra Subprograms (BLAS)

� Linear Algebraic Equations

� Eigensystem Analysis

� Fourier Transforms

Both ESSL and Parallel ESSL have SMP-parallel capabilities. (The term Parallel
in the Parallel ESSL product name refers specifically to the use of MPI message
passing, usually across the Cluster 1600 interconnect). For SMP-parallel use
within a stand-alone pSeries 690, Parallel ESSL is not required.

ESSL products are compatible with public domain subroutine libraries, such as
Basic Linear Algebra Subprograms (BLAS), Scalable Linear Algebra Package
(ScaLAPACK), and Parallel Basic Linear Algebra Subprograms (PBLAS). Thus,
migrating applications to ESSL or Parallel ESSL is straightforward.

Additional information about ESSL and Parallel ESSL can be found at:

http://www.ibm.com/servers/eserver/pseries/library/sp_books/essl.html

3.6.4 The Mathematical Acceleration Subsystem (MASS) library
The Mathematical Acceleration Subsystem (MASS) library provides
high-performance versions of a selected subset of Fortran intrinsic functions.
 Chapter 3. Features relevant to performance 63

http://www-3.ibm.com/software/ad/vacpp/
http://www-1.ibm.com/servers/eserver/pseries/library/sp_books/essl.html

These versions sacrifice a small amount of accuracy to allow for faster execution.
Compared to the standard mathematical library, libm.a, the MASS library differs,
at most, only in the last bit. Thus, MASS results are sufficiently accurate in all but
the most stringent conditions.

There are two basic types of function available for each operation:

� A single instance function

� A vector function

The single instance function simply replaces the libm.a call with a MASS library
call. The vector function is used to produce a vector of results given a vector
operand. The vector MASS functions may require coding changes, while the
single instance functions do not.

Additional information about MASS, including performance measurements on
POWER4 and POWER3 processors, can be found at:

http://techsupport.services.ibm.com/server/mass?fetch=home.html

The MASS software is also available for download from this site.

3.6.5 Hostfile considerations for MPI performance
Right about now you are probably thinking, “How can hostfiles affect
performance?” Well, you will see that, in some cases, a beforehand knowledge of
the communication patterns of your application combined with a careful
reordering of the hosts in the hostfile can lead to improved performance.

For MPI parallel jobs, an application uses the hostfile to determine which hosts
and processors the application uses to run its MPI tasks. The hostfile maps MPI
tasks onto processors.

For example, assume an application is to be run on a 32-way pSeries 690 that
has been partitioned into four, switch-attached, 8-way LPARs, lpar01 through
lpar04. A four-way MPI parallel job to be run using one processor per LPAR
would have this hostfile (mapped tasks are shown in parentheses and are not
part of the hostfile):

lpar01 (task0)
lpar02 (task1)
lpar03 (task3)
lpar04 (task4)

By contrast, if the four-way job were to be run within a single LPAR (usually the
best choice for performance), this would be the hostfile:

lpar01 (task0)
64 Performance and Tuning Considerations for the p690 in a Cluster 1600

http://techsupport.services.ibm.com/server/mass?fetch=home.html

lpar01 (task1)
lpar01 (task2)
lpar01 (task3)

Four processors on the same LPAR would be used, and the application would
run the job in shared-memory MPI mode.

In order to use processors both within and across LPARs for an eight-way job,
this would be the hostfile:

lpar01 (task0)
lpar01 (task1)
lpar02 (task2)
lpar02 (task3)
lpar03 (task4)
lpar03 (task5)
lpar04 (task6)
lpar04 (task7)

Now consider a larger problem, an 8x8 process mesh to be run across two
32-way pSeries 690s. Each pSeries 690 has been partitioned into four,
switch-attached, 8-way LPARs. Each element of the mesh will be assigned to a
processor, meaning that a 64-way MPI parallel run will be made.

Example 3-1 shows the 64-element grid, assuming that communication between
tasks is nearest neighbor. That is, communication follows the numerical order of
the tasks: 0, 1, 2, 3, and so on. Thus, the bulk of the communication occurs
across rows, as indicated by the horizontal lines in the example.

Example 3-1 8x8 process grid with nearest neighbor communication

 56 --- 57 --- 58 --- 59 --- 60 --- 61 --- 62 --- 63 lpar08

 48 --- 49 --- 50 --- 51 --- 52 --- 53 --- 54 --- 55 lpar07

 40 --- 41 --- 42 --- 43 --- 44 --- 45 --- 46 --- 47 lpar06

 32 --- 33 --- 34 --- 35 --- 36 --- 37 --- 38 --- 39 lpar05

 24 --- 25 --- 26 --- 27 --- 28 --- 29 --- 20 --- 31 lpar04

 16 --- 17 --- 18 --- 19 --- 20 --- 21 --- 22 --- 23 lpar03

 8 --- 9 --- 10 --- 11 --- 12 --- 13 --- 14 --- 15 lpar02

 0 --- 1 --- 2 --- 3 --- 4 --- 5 --- 6 --- 7 lpar01

Note: Communication does occur between tasks 7 & 8, 15 & 16, and so on.
 Chapter 3. Features relevant to performance 65

Best performance is usually obtained by communicating within an LPAR as
opposed to communicating across LPARs (that is, within a shared memory
partition rather than across partitions via the interconnect). Consequently, it
would be best to map MPI tasks 0 through 7 on one LPAR, 8 through 15 on a
second, and so on. The numbering of the MPI tasks follows the numbering of
processors: each row is contained in a single LPAR. This is shown in
Example 3-1 on page 65 with the LPARs listed at the right side of the rows. The
hostfile for this job assigns processors in numeric order and looks much like what
you would expect:

lpar01 (task0)
 | {6 entries of lpar01, (task1 through task6)}
lpar01 (task7)
lpar02 (task8)
 | {6 entries of lpar02, (task9 through task14)}
 |
lpar02 (task15)
{8 entries each for lpar03 through lpar08, (task16 through task63)}

Next, consider the same grid assuming a different communication pattern.
Example 3-2 shows the case where communication occurs along columns of
tasks rather than rows.

Example 3-2 8x8 process grid with columnar communication pattern

 56 57 58 59 60 61 62 63 lpar08
 | | | | | | | |
 48 49 50 51 52 53 54 55 lpar07
 | | | | | | | |
 40 41 42 43 44 45 46 47 lpar06
 | | | | | | | |
 32 33 34 35 36 37 38 39 lpar05
 | | | | | | | |
 24 25 26 27 28 29 20 31 lpar04
 | | | | | | | |
 16 17 18 19 20 21 22 23 lpar03
 | | | | | | | |
 8 9 10 11 12 13 14 15 lpar02
 | | | | | | | |
 0 1 2 3 4 5 6 7 lpar01

If the hostfile from Example 3-1 on page 65 was used in this case, all
communication between tasks would occur across LPARs over the switch rather
than within a given LPAR. This ordering of processors in the hostfile would not

Note: Communication does occur between tasks 56 & 1, 57 & 2, and so on.
66 Performance and Tuning Considerations for the p690 in a Cluster 1600

take advantage of shared-memory MPI communication within an LPAR and
performance would probably be less than optimal.

For this example, a reordering of the processor list in the hostfile would help to
map tasks that communicate on the same LPAR. Since communication follows
along tasks 0, 8, 16, 24, 32, 40, 48, and 56, it would be best to place these tasks
on the same LPAR. Applying the same logic for the rest of the tasks results in this
preferred ordering of the hostfile:

lpar01 (task 0)
lpar02 (task 1)
lpar03 (task 2)
lpar04 (task 3)
lpar05 (task 4)
lpar06 (task 5)
lpar07 (task 6)
lpar08 (task 7)
lpar01 (task 9)
 (repeat sequence as necessary)
lpar01 (task 56)
lpar02 (task 57)
lpar03 (task 58)
lpar04 (task 59)
lpar05 (task 60)
lpar06 (task 61)
lpar07 (task 62)
lpar08 (task 63)

The effect of the reordered hostfile on communication within and across LPARs is
shown in Example 3-3. The situation is the reverse of Example 3-2 on page 66.
Now, most communication occurs within an LPAR, taking full advantage of the
hybrid, distributed, SMP architecture that the creation of LPARs allows.

Example 3-3 8x8 process grid with remapping of tasks

 7 --- 15 --- 23 --- 31 --- 39 --- 47 --- 55 --- 63 lpar08

 6 --- 14 --- 22 --- 30 --- 38 --- 46 --- 54 --- 62 lpar07

 5 --- 13 --- 21 --- 29 --- 37 --- 45 --- 53 --- 61 lpar06

 4 --- 12 --- 20 --- 28 --- 36 --- 44 --- 52 --- 60 lpar05

 3 --- 11 --- 19 --- 27 --- 35 --- 43 --- 51 --- 59 lpar04

 2 --- 10 --- 18 --- 26 --- 34 --- 42 --- 50 --- 58 lpar03

 1 --- 9 --- 17 --- 25 --- 33 --- 41 --- 49 --- 57 lpar02
 Chapter 3. Features relevant to performance 67

 0 --- 8 --- 16 --- 24 --- 32 --- 40 --- 48 --- 56 lpar01

3.6.6 Some final recommendations
Here are some final thoughts on the subject of application tuning.

Note: Communication does occur between tasks 56 & 1, 57 & 2, and so on.

Tip: Assuming the communication pattern of an application is well understood
and conducive to this approach, reordering the hostfile has the potential to
improve performance without recoding the application.

Note: Under LoadLeveler, task to processor mapping is controlled with the
task_geometry keyword.

Tip: Still confused? Start with these steps:

� Compile with these options:

-O -qmaxmem=-1 -qarch=auto -qtune=auto

� Use ESSL and MASS wherever possible, as these are highly tuned for IBM
AIX platforms.

Still want more? Try these next steps:

� Use more aggressive optimization, always checking for correctness.

� Profile the application in order to identify hotspots and bottlenecks in the
code. It does no good to optimize a section of code in which little time is
spent. Consult these references for profiling procedures and tuning
examples:

– The POWER4 Processor Introduction and Tuning Guide, SG24-7041

– AIX Version 4, Optimization and Tuning Guide for Fortran, C, and C++,
SC09-1705

– RS/6000 Scientific and Technical Computing: POWER3 Introduction
and Tuning Guide, SG24-5155
68 Performance and Tuning Considerations for the p690 in a Cluster 1600

3.7 Network connectivity
High performance inter-node communication is a very important component of
many cluster applications. The most basic measurements of the performance of
the communication subsystems are latency and bandwidth. Latency is the
overhead associated with sending data between two processors. Bandwidth is
the rate at which data can be transmitted between two processors.

In this section, we provide some suggestions to help you get better performance
out of your Cluster 1600 interconnect.

3.7.1 SP Switch2 PCI Attachment Adapter
The following functionality comes with the SP Switch2 PCI Attachement Adapter.

Aggregate IP
PSSP has a new function called Aggregate IP. The multilink, aggregate IP
pseudo-device enables Cluster 1600 nodes to use one IP address to
communicate over two SP Switch2 planes. The benefits are:

� Higher data throughput. The data is striped across the two SP Switch2 PCI
Attachment Adapters.

� Higher availability. If one path has a problem, the other path is automatically
used without interrupting the communication.

A dual-plane SP Switch2 is required to use the aggregate IP function.
Additionally, each node that will use the aggregate IP function must have two SP
Switch2 PCI Attachment Adapters, one for each plane. The aggregate IP
function provides a virtual-device interface (that is, a third IP address configured
as ml0), to enable IP messages to be transmitted in a more economical manner
called striping. The striping technique provides the capability to transmit
consecutive IP data across two fully operational adapters. It takes advantage of
the combined bandwidth of both adapters. For example, when an IP message is
sent between nodes and both nodes have access to both available switch
networks, consecutive datagrams are sent in a pattern similar to css0, css1,
css0, css1, and so on.

Once you have configured both css0 and css1 on a node, you can use the
spaggip command or smitty to configure ml0.

Example 3-4 shows how to configure aggregate IP using the smitty
sp_agg_dialog fast path.

Example 3-4 Aggregate IP configuration through smitty

[c37f1rp05][\]> smitty sp_agg_dialog
 Chapter 3. Features relevant to performance 69

Aggregate IP Information

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 Start Frame []
 Start Slot []
 Node Count []

 OR

 Node Group []

 OR

 Node List [1]

* Starting Node's Aggregate IP Address [192.168.5.1]
* Netmask [255.255.255.0]
* Adapter List [css0,css1]
 Update Interval []
 Update Threshold []
 Skip IP Addresses for Unused Slots? no

Esc+1=Help Esc+2=Refresh Esc+3=Cancel Esc+4=List
Esc+5=Reset Esc+6=Command Esc+7=Edit Esc+8=Image
Esc+9=Shell Esc+0=Exit Enter=Do

The Update Interval specifies the time interval in seconds between the aggregate
network route table refreshes. The value must be between 3 and 10 inclusive.
The default is 3.

The Update Threshold specifies the number of missed refresh updates before
the network connection is dropped. The value must be between 10 and 400
inclusive. The default is 10.

Figure 3-5 shows how to configure aggregate IP using the spaggip command.

Example 3-5 Aggregate IP configuration with the spaggip command

/usr/lpp/ssp/bin/spaggip -l 1 -i css0,css1 192.168.5.1 255.255.255.0
70 Performance and Tuning Considerations for the p690 in a Cluster 1600

Tunables
For the SP Switch2 adapters, the following parameters can affect the
performance of the communication:

win_poolsize
Also referred to as device memory, win_poolsize is the total, maximum amount of
pinned system memory (in bytes) that can be used as interface network FIFO
buffers for SP Switch2 adapter windows.

win_minsize
The guaranteed minimum amount of device memory (in bytes) per SP Switch2
adapter window; win_minsize ensures that all tasks in a job have the minimum
required device memory to run.

win_maxsize
The maximum amount of device memory (in bytes) per SP Switch2 adapter
window, win_maxsize internally limits device memory usage for each window;
win_maxsize is further bounded by available device memory and by any
job-scheduler specified limit.

rpoolsize
Size of the IP receive buffer pool (in bytes).

spoolsize
Size of the IP send buffer pool (in bytes).

These parameters can be changed with the chgcss command. For more
information, see the chgcss man page.

Note: The SP Switch adapters are also affected by the same tunable
parameters. For more information, see RS/6000 SP System Performance
Tuning Update, SG24-5340.
 Chapter 3. Features relevant to performance 71

Example 3-6 shows what the output from the lsattr -El css0 looks like when
run against a SP Switch2 PCI Attachment Adapter.

Example 3-6 Output of lsattr command on SP Switch2 PCI Attachment Adapter

[c37f1rp08][/]> lsattr -El css0

adapter_memory 0xf1000000 Adapter memory address False
adapter_size 0x00800000 Adapter memory size False
sdram_start 0xf0000000 SDRAM memory address False
sdram_size 0x01000000 SDRAM memory size False
TOD_address 0xf1800000 TOD address False
win_poolsize 1107296256 Total window memory pool size True
win_maxsize 16777216 Maximum window memory size True
win_minsize 524288 Minimum window memory size True
int_priority 3 Interrupt priority False
int_level 2853 Bus interrupt level False
spoolsize 2097152 Size of IP send buffer True
rpoolsize 2097152 Size of IP receive buffer True
khal_spoolsize 524288 Size of KHAL send buffer True
khal_rpoolsize 524288 Size of KHAL receive buffer True
adapter_status css_ready Configuration status False
diags_prog Diagnostic program True
ucode_version 1 Micro code version True
ucode_name /etc/microcode/cor_ucode Micro code name True
window0-15 VSD AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL
 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL window owners True
window16-31 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL
 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL window owners True
window32-47 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL
 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL window owners True
window48-63 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL
 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL window owners True
window64-65 AVAIL AVAIL window owners True
driver_debug 0 Device Driver Debug True

Notes: The maximum values for rpoolsize and spoolsize in the SP Switch2
PCI Attachment Adapter are 32 MB (33554432) each. This doubles the
maximum values for the previous switch adapters, and the values can be
changed on the fly without a reboot.

The available number of switch adapter windows in the SP Switch2 PCI
Attachment Adapter is 68 (64 US + 1 VSD + 1 GPFS + 1 IP + 1 SVC)

The number of US adapter windows has a direct effect over the MPI threads.
You can now increase the number of MPI threads (up to 64 per adapter) in a
pSeries 690 node (LPAR).
72 Performance and Tuning Considerations for the p690 in a Cluster 1600

ip_chksum off if_cl checksum True
ip_debug 0 if_cl debug level True
proto_debug off proto debug True

3.7.2 EtherChannel configurations
EtherChannel configurations can improve performance, but all of the normal
things that impact traditional Ethernet performance (adapter placement, speed,
system resources, disk read speed, application efficiency, tuning options, and so
forth) also impact throughput on the EtherChannel. The EtherChannel imposes
very little overhead so throughput is generally in line with running the adapters
individually. An example of a four-link EtherChannel is shown in Figure 3-4.

Figure 3-4 Four-link EtherChannel schema

In EtherChannel environments, however, traffic distribution can also impact
throughput. Ideally, traffic should be spread evenly across the adapters in the
EtherChannel so as not to saturate one adapter while leaving another one idle.
Incoming packets are distributed as configured by the EtherChannel switch
administrator, so the AIX system administrator cannot control this. You can have
an idea of traffic distribution on the channel using netstat -v ent#, where ent# is
the EtherChannel device. Statistics for incoming packets show the distribution
determined by the switch. The outgoing statistics reflects the AIX control over the
packet distribution between the member adapters of the EtherChannel.

In Gigabit Ethernet environments, there are more variables (CPU speed,
capacity, I/O bus limits, and so on) that can cause bottlenecks compared with fast
Ethernet. In optimized lab tests, a two-link GigaChannel can provide 1.7 times
the throughput of a single Gigabit link and a four-link GigaChannel can provide
2.5 to 3 times the throughput of a single Gigabit link.

AIX has two user-configurable options (modes) for distribution of outgoing
packets. In standard mode, the distribution is based upon the last byte of the

Server
 Chapter 3. Features relevant to performance 73

destination IP address (for TCP/IP packets) or MAC (for non-IP traffic) address
divided by the number of adapters in the EtherChannel. The remainder of the
calculation determines the adapter selected. A remainder of zero indicates the
first adapter in the channel, one indicates the second, and so forth. The more
clients, the more chances that the random nature of the addresses will result in
fairly even traffic distribution. In environments of one or two clients, the
distribution will likely be skewed because all traffic between a host pair goes out
over the same adapter. In this situation, round-robin distribution mode is a better
choice. Round-robin mode distributes the outgoing traffic evenly across all of the
adapters in the EtherChannel, but there may be a performance penalty due to
the potential for out-of-order packets.

3.7.3 Internet Protocol (IP) and User Space (US) switch windows
MPI tasks can communicate across the switch with either Internet Protocol (IP)
protocol or User Space (US) protocol. Typically, US is the protocol of choice, but
there are certain situations where IP may be the better choice.

IP uses a single window and avoids the polling. However, use of this single
window requires that IP multiplex its traffic through the kernel. So IP is trading
context switching for polling. Additionally, IP can also use much larger packets
than US. These packets, known as Jumbo Packets, can be almost 60 times larger
than the largest US packet. For a given amount of data being sent by either IP or
US, these IP packets require fewer writes to the adapter and fewer handshake
messages on the receive side than their US counterparts.

In contrast, US works by opening and reserving a switch adapter window (which
is a special location on the adapter) to provide an independent communication
path through the adapter for each MPI task running on the node. This provides a
direct path from the user process to the switch adapter and bypasses the need
for a kernel context switch. A polling algorithm in the switch adapter microcode
determines if messages are present in these windows and need to be serviced.
As the number of MPI tasks increase, so do the number of windows that need to
be polled.

As you can already guess, there is a break-even point between polling and
context switching. On one side of the point, US performs better than IP, and on
the other side, IP performs better than US.

Here are the characteristics from each side of the point:

� US performs better than IP for applications:

– That use small messages

– That have a small number of MPI tasks per adapter
74 Performance and Tuning Considerations for the p690 in a Cluster 1600

– That tend to be CPU constrained

� IP performs better than US for applications:

– That use very large messages

– That have a large number of MPI tasks per adapter

– That tend to be adapter bus constrained (rather than CPU or memory
constrained)

The determining factor is the amount of overhead spent on packet management.
As the number of tasks increases, the overhead required to manage multiple
adapter windows becomes the limiting factor for US performance.

The IP and US bandwidths for 16 MB message size in a single-plane SP Switch2
with an SP Switch2 PCI Attachment Adapter are shown in Table 3-6. These test
results are from a fully-loaded, 32-way pSeries 690 running in Full System
Partition (SMP) mode. Note that for a single task, US performs better than IP,
even at the very large (16 MB) message size. However, when the number of
tasks is increased to 32, IP performs better than US.

Table 3-6 16 MB message single-plane bandwidths

The IP and US bandwidths for 16 MB message size in a dual-plane SP Switch2
with two SP Switch2 PCI Attachment Adapters are shown in Table 3-7. Again,
these test results are from a fully-loaded, 32-way pSeries 690 running in Full
System Partition (SMP) mode. As you can see, the bandwidth for either protocol
can be improved by adding an additional SP Switch2 plane with an SP Switch2
PCI Attachment Adapter to the system, but even in this environment, the same
performance pattern can be observed.

Table 3-7 16 MB message dual-plane bandwidths

Even though the bandwidth significantly improves with the addition of another
adapter in this configuration, the PCI bus is still the limiting factor, not the CPUs.
IP maintains a 5 percent bandwidth edge for the 32 task case, even when the
second adapter is added.

Number of tasks IP (bytes/sec) US (bytes/sec)

1 205 217

32 218 207

Number of Tasks IP (bytes/sec) US (bytes/sec)

1 221 375

32 382 364
 Chapter 3. Features relevant to performance 75

Additional adapters can effectively be added by increasing the number of LPARs.
This enables the system to make better use of the overall bandwidth of the
interconnect, but at the potential cost of increasing the amount of
communications required between MPI tasks. Smaller LPARs reduce the
differences in performance between US and IP because of the inherent decrease
in tasks per adapter. Also, with fewer CPUs to drive the adapters, the IP path
soon becomes CPU limited, and US becomes the clear performance winner for
all message sizes.

The SP Switch2 PCI Attachment Adapter does not introduce any different
choices than other generations of adapters have had. The big difference is that
with the pSeries 690, server applications that were previously CPU bound may
now become adapter bound, and IP may now be an appropriate choice for these
applications.

The IBM Parallel Environment MPI Library provides three transport protocols:

� Shared memory
� User Space (US)
� Internet Protocol (IP)

These transports are selected at run time by the user, and the appropriate
libraries are loaded. The applications have no awareness of which transport is
being used, providing maximum flexibility. Shared memory has lower latency and
higher bandwidth than the adapter. It can be used in combination with either US
or IP for inter-node transports. (Shared memory MPI use is turned on via the
MP_SHARED_MEMORY environment variable.) For inter-node transport, US
provides better performance for applications that use short messages, or for
which the additional CPU required to implement IP protocol is not available. IP is
a better choice for applications that are dominated by very long messages, and
there are many CPUs and tasks all sharing a single adapter.

3.8 What is next
This completes the conceptual portion of the book. In Chapter 4, “Investigations”
on page 77, we take you through our experiments with the features and concepts
that you have just finished reading about here. As you will see, we give you the
blow-by-blow details of what we did, what we found, and where we went wrong.
The idea is not to give you a cookbook, but rather to show you how we
approached testing these new things out. Some of the tests worked, while others
did not. However, either way, we came away the wiser for it. We hope you will too.
76 Performance and Tuning Considerations for the p690 in a Cluster 1600

Chapter 4. Investigations

For us, this chapter was where the real work occurred. This chapter contains our
findings from the experiments we performed in an attempt to better understand
the concepts presented in the first set of chapters. As you will see, some of our
experiments were successful, while others were not so successful. The point,
however, is that we learned something in each of them, and we hope that you will
as well. If we can help you avoid some dead ends, then our mission has been
accomplished. We hope that you have fun reading it. We certainly had fun doing
it.

4

© Copyright IBM Corp. 2002. All rights reserved. 77

4.1 Technical large page investigation
For this investigation, we wanted to see if we could see any differences between
running the AIX sort program in normal mode, in large memory mode, and in
technical large page mode. The AIX sort program seemed like a good choice for
readily available code that is fairly memory intensive. These series of
investigations was run on a 4-way, 4 GB normal LPAR with the software levels
shown in Example 4-1.

Example 4-1 Software levels for technical large page investigation

Software Levels As Of: Sat Jun 8 10:22:43 EDT 2002

AIX: bos.mp 5.1.0.27
PSSP: ssp.basic 3.4.0.7
LoadLeveler:
GPFS:
RVSD:
VSD:
RSCT: rsct.basic.rte 2.2.1.0
POE:
PESSL:
ESSL:
FORTRAN:
PERL: perl.rte 5.6.0.0
C: xlC.rte 5.0.2.1

4.1.1 Setting up the environment for technical large page
First, we had to prepare the test environment. This involved:

� Preparing the environment for technical large page usage

� Creating a non-root user with technical large page capabilities

� Creating modified AIX sort executables

� Preparing the input dataset

Preparing the environment for technical large page usage
The steps required to prepare the environment were as follows:

1. Run vmtune to set aside memory for technical large pages.

2. Run bosboot to update the boot logical volume.

3. Run shutdown to reboot.
78 Performance and Tuning Considerations for the p690 in a Cluster 1600

Since our LPAR had 4 GB of total memory, we used 1 GB of that for technical
large page. Remember, this is pinned memory. The steps to enable technical
large page are illustrated in Example 4-2.

Example 4-2 Preparing the environment for technical large page

[c37f1rp05][/]> /usr/samples/kernel/vmtune -g 16777216 -L 64

vmtune: current values:

...
 -s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm lgpg_regions lgpg_size strict_maxperm
 0 0 0 0 16777216 0
...

number of valid memory pages = 1048573 maxperm=79.9% of real memory
maximum pinable=80.0% of real memory minperm=20.0% of real memory
number of file memory pages = 269042 numperm=26.4% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 0 numclient=0.0% of real memory
of remote pgs sched-pageout = 0 maxclient=79.9% of real memory

vmtune: new values:

...
 -s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm lgpg_regions lgpg_size strict_maxperm
 0 0 0 64 16777216 0
...

number of valid memory pages = 1048573 maxperm=79.9% of real memory
maximum pinable=80.0% of real memory minperm=20.0% of real memory
number of file memory pages = 538084 numperm=52.8% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 0 numclient=0.0% of real memory
of remote pgs sched-pageout = 0 maxclient=79.9% of real memory

[c37f1rp05][/]> bosboot -ad /dev/ipldevice

bosboot: Boot image is 13276 512 byte blocks.

[c37f1rp05][/]> shutdown -Fr

Creating a non-root user with technical large page capabilities
Next, we created a non-root test user (tlp) for technical large page. We set this
user’s limits to unlimited and enabled the account for technical large page usage.
These steps are illustrated in Example 4-3 on page 80.
 Chapter 4. Investigations 79

Example 4-3 Enabling a non-root user account for technical large page

[c37f1rp05][/]> grep -p tlp /etc/security/limits

tlp:
 fsize = 2097151
 core = 2097151
 cpu = -1
 data = -1
 rss = -1
 stack = -1
 nofiles = 2000

[c37f1rp05][/]> chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE tlp

[c37f1rp05][/]>

Creating modified AIX sort executables
We then created three versions of the AIX sort program:

� Normal version: sort.normal

� Large memory enabled version: sort.lmem

� Large page enable version: sort.lpage

The steps for modifying each of the executables is shown in Example 4-4.

Example 4-4 Modifying the executables for large memory and large page

[c37f1rp05][/]> cd ~tlp
Create sort.small
[c37f1rp05][/home/tlp]> cp /usr/bin/sort ./sort.normal
Create sort.lmem
[c37f1rp05][/home/tlp]> cp /usr/bin/sort ./sort.lmem
[c37f1rp05][/home/tlp]> echo ’\0200\0\0\0’ | \
> dd of=./sort.lmem bs=4 count=1 seek=19 conv=notrunc
1+0 records in.
1+0 records out.
Create sort.lpage
[c37f1rp05][/home/tlp]> cp /usr/bin/sort ./sort.lpage
[c37f1rp05][/home/tlp]> /usr/ccs/bin/ldedit -blpdata ./sort.lpage
/usr/ccs/bin/ldedit: File ./sort.lpage has been updated.
Give them to tlp
[c37f1rp05][/home/tlp]> chown tlp.staff sort*
80 Performance and Tuning Considerations for the p690 in a Cluster 1600

Preparing the input dataset
The final step in the preparation was to create an input dataset. We needed
something large enough to cause the sort program to run for a long enough
period of time so that we could examine the system while it was running. On the
other hand, it could not be so large as to cause the sort program to crash due to
lack of system resources. So, we turned to the Melville MD10 dataset as the
perfect choice.

4.1.2 Creating the Melville MD10 dataset for technical large page
The Melville MD10 dataset is but one of a whole family of datasets in the Melville
MD series. The advantage to the MD10 dataset is that it is just about the perfect
size for the sort tests, coming in at 19924620 bytes and 9962310 lines.

Credit for the initial research into the Melville MD datasets belongs to Richard E.
Weingarten, IBM Boulder, who used early versions in his investigations of
Distributed Computing Environment (DCE) Cross-Cell Propagation Issues. We
are indebted to him for this pioneering work.

Example 4-5 is a listing of a script that we used to generate the MD10 dataset for
our technical large page investigation.

Example 4-5 Creation of the Melville MD10 dataset

[c37f1rp05][/install/marc]> cat mkmd10.ksh
#!/usr/bin/ksh
#desc creates the melville md10 dataset
#
Purpose: This script creates the Melville MD10 dataset
for use in the redbook investigations.
Inputs: mobydick.txt
#
Modification History
06/07/02 Marc Genty (NCAR) created
#
IFILE=/install/marc/mobydick.txt
OFILE=/install/marc/md10

cp ${IFILE} ${OFILE}

/usr/bin/perl -i.bak -pe "s/\s//g" ${OFILE}
/usr/bin/perl -i.bak -pe "s/(.)/\1\n/g" ${OFILE}

for i in 1
do
 for j in 1 2 3 4 5 6 7 8 9 10
 do
 Chapter 4. Investigations 81

 cat ${OFILE} >> ${OFILE}.lpage
 done
done

/usr/bin/rm ${OFILE}.bak

For input, the script requires the mobydick.txt file. This file is the ASCII version of
Herman Melville’s classic novel, Moby Dick. It is available for download at:

ftp://ibiblio.org/pub/docs/books/gutenberg/etext01/moby10b.txt

The mkmd10.ksh script takes this file, strips out all whitespace and newline
characters, separates each of the remaining characters onto their own lines, and
concatenates this output ten times into the final md10.lpage dataset.

4.1.3 Running the tests for technical large page
We first did an initial test run to verify that the sort executables were modified
correctly. Prior to running any of the tests, we also set the LD_CNTRL
environment variable in the tlp account to force mandatory use of technical large
pages. Remember that modifying the executable for technical large page only
sets it for advisory mode. If you want mandatory mode, you have to use the
LD_CNTRL environment variable.

Example 4-6 shows the test run for the sort.normal program.

Example 4-6 Test run of sort.normal

[c37f1rp05][/]> su - tlp
$ export LD_CNTRL=LARGE_PAGE_DATA=M
$ timex ./sort.normal -o /dev/null /install/marc/md10.lpage

In a second root window...

[c37f1rp05][/]> ps -ef|grep sort|grep -v grep
 tlp 12354 14598 0 12:40:00 pts/0 0:00 timex ./sort.normal -o /dev/null
/install/marc/md10.lpage
 tlp 14980 12354 89 12:40:00 pts/0 0:03 ./sort.normal -o /dev/null
/install/marc/md10.lpage
[c37f1rp05][/]> svmon -P 14980 -r | more

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 14980 sort.normal 13217 2068 792 8343 N N N

 PageSize Inuse Pin Pgsp Virtual
 4 KB 13217 2068 792 8343
 16 MB 0 0 0 0
82 Performance and Tuning Considerations for the p690 in a Cluster 1600

ftp://ibiblio.org/pub/docs/books/gutenberg/etext01/moby10b.txt

 Vsid Esid Type Description LPage Inuse Pin Pgsp Vrtual
 0 0 work kernel seg - 4951 2066 792 4951
 Addr Range: 0..25279
 64e19 - pers large file /dev/lvinstall:16 - 4865 0 - -
 Addr Range: 0..4864
 7401d d work shared library text - 2245 0 0 2245
 Addr Range: 0..60123
 5ce97 2 work process private - 1125 2 0 1125
 Addr Range: 0..1167 : 65310..65535
 405d0 f work shared library data - 22 0 0 22
 Addr Range: 0..1817
 545f5 1 pers code,/dev/hd1:2061 - 9 0 - -
 Addr Range: 0..8
 68e5a - pers /dev/hd9var:6541 - 0 0 - -

Notice that the LPage column is set to N, that the Pagesize section reports only 4
KB pages in use, and that Segment 2 has both heap (0..1167) and stack
(65310..65535). This is what we were expecting to see.

We repeated the same test with the sort.lmem program. Example 4-7 shows that
test run.

Example 4-7 Test run of sort.lmem

[c37f1rp05][/]> su - tlp
$ export LD_CNTRL=LARGE_PAGE_DATA=M
$ timex ./sort.leme -o /dev/null /install/marc/md10.lpage

In a second root window...

[c37f1rp05][/]> ps -ef|grep sort|grep -v grep
 tlp 12374 14598 0 12:52:11 pts/0 0:00 timex ./sort.lmem -o /dev/null
/install/marc/md10.lpage
 tlp 15004 12374 102 12:52:11 pts/0 0:04 ./sort.lmem -o /dev/null
/install/marc/md10.lpage
[c37f1rp05][/]> svmon -P 15004 -r|more

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 15004 sort.lmem 13356 2069 792 8343 N N N

 PageSize Inuse Pin Pgsp Virtual
 4 KB 13356 2069 792 8343
 16 MB 0 0 0 0

 Vsid Esid Type Description LPage Inuse Pin Pgsp Vrtual
 0 0 work kernel seg - 4951 2067 792 4951
 Addr Range: 0..25279
 64e19 - pers large file /dev/lvinstall:16 - 4865 0 - -
 Chapter 4. Investigations 83

 Addr Range: 0..4864
 7401d d work shared library text - 2245 0 0 2245
 Addr Range: 0..60123
 44e11 3 work shmat/mmap - 1110 0 0 1110
 Addr Range: 0..1167
 60eb8 - pers /dev/hd9var:6512 - 139 0 - -
 Addr Range: 0..138
 405d0 f work shared library data - 22 0 0 22
 Addr Range: 0..1817
 40e10 2 work process private - 15 2 0 15
 Addr Range: 65310..65535
 5c5f7 1 pers code,/dev/hd1:2063 - 9 0 - -
 Addr Range: 0..8
 4ceb3 5 work shmat/mmap - 0 0 0 0
 28eaa 9 work shmat/mmap - 0 0 0 0
 5ce97 7 work shmat/mmap - 0 0 0 0
 40e70 6 work shmat/mmap - 0 0 0 0
 3ceaf a work shmat/mmap - 0 0 0 0
 24ea9 4 work shmat/mmap - 0 0 0 0
 48eb2 8 work shmat/mmap - 0 0 0 0

Notice that the LPage column is still set to N, that the Pagesize section still
reports only 4 KB pages in use, but that Segment 2 has only stack
(65310..65535), and Segment 3 now has the heap (0..1167). This is also what
we were expecting to see.

Finally, we repeated the same test with the sort.lpage program. Example 4-8
shows that test run.

Example 4-8 Test run of sort.lpage

[c37f1rp05][/]> su - tlp
$ export LD_CNTRL=LARGE_PAGE_DATA=M
$ timex ./sort.leme -o /dev/null /install/marc/md10.lpage

In a second root window...

[c37f1rp05][/]> ps -ef|grep sort|grep -v grep
 tlp 12388 15020 120 13:00:45 pts/0 0:05 ./sort.lpage -o /dev/null
/install/marc/md10.lpage
 tlp 15020 14598 0 13:00:45 pts/0 0:00 timex ./sort.lpage -o /dev/null
/install/marc/md10.lpage
[c37f1rp05][/]> svmon -P 12388 -r | more

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 12388 sort.lpage 77737 67604 792 72779 N N Y

 PageSize Inuse Pin Pgsp Virtual
84 Performance and Tuning Considerations for the p690 in a Cluster 1600

 4 KB 12201 2068 792 7243
 16 MB 16 16 0 16

 Vsid Esid Type Description LPage Inuse Pin Pgsp Vrtual
 40e10 3 work shmat/mmap Y 65536 65536 0 65536
 0 0 work kernel seg - 4951 2066 792 4951
 Addr Range: 0..25279
 64e19 - pers large file /dev/lvinstall:16 - 4865 0 - -
 Addr Range: 0..4864
 7401d d work shared library text - 2245 0 0 2245
 Addr Range: 0..60123
 48eb2 - pers /dev/hd9var:6530 - 84 0 - -
 Addr Range: 0..83
 405d0 2 work process private - 25 2 0 25
 Addr Range: 0..13 : 65310..65535
 28eaa f work shared library data - 22 0 0 22
 Addr Range: 0..1817
 585f6 1 pers code,/dev/hd1:2062 - 9 0 - -
 Addr Range: 0..8

Now notice that the LPage column is set to Y, the Pagesize section now reports
both 4 KB and 16 MB pages in use, and that Segment 2 has primarily stack
(0..13 : 65310..65535), and all of Segment 3 has been allocated to LPage for
heap (65536). The big surprise for us was that the svmon listing looks more like
the normal listing than the large memory one. We tried modifying the sort.lpage
executable to also use large memory (via the echo dd command), but it had no
effect. The output from that test run was identical to the sort.lpage one.

We should also mention that we ran the ps, vmstat, and topas commands during
these test runs and found no new information in any of them.

Having validated the three executables, we were then ready to perform the
experiment. As with the test runs, we used timex as the measurement tool. The
test runs consisted of 40 individual runs of each program back-to-back with the
LPAR quiesced and dedicated for the runs. Example 4-9 is a listing of the script
that we used to do the runs.

Example 4-9 Test run script for sort executable variants

[c37f1rp05][/home/tlp]> cat sortem.ksh
#!/usr/bin/ksh

echo " "
echo "Normal Sort"
echo " "
for j in 1 2 3 4
do
 for i in 1 2 3 4 5 6 7 8 9 10
 Chapter 4. Investigations 85

 do
 timex sort.normal -o /dev/null /install/marc/md10.lpage
 done
done

echo " "
echo "Large Memory Sort"
echo " "
for j in 1 2 3 4
do
 for i in 1 2 3 4 5 6 7 8 9 10
 do
 timex sort.lmem -o /dev/null /install/marc/md10.lpage
 done
done

echo " "
echo "Large Page Sort"
echo " "
for j in 1 2 3 4
do
 for i in 1 2 3 4 5 6 7 8 9 10
 do
 timex sort.lpage -o /dev/null /install/marc/md10.lpage
 done
done

To trap the output, we ran sortem.ksh from within the script command. Table 4-1
summarizes the results.

Table 4-1 Technical large page AIX sort results

Program: AIX sort

sort.normal

Time Mean Max Min Std. Dev.

Real 115.63 116.18 115.43 0.17

User 114.70 115.03 114.48 0.14

Sys 0.39 0.65 0.27 0.09

sort.lmem

Real 115.58 115.95 115.44 0.11

User 114.66 114.99 114.43 0.13

Sys 0.37 0.56 0.24 0.07
86 Performance and Tuning Considerations for the p690 in a Cluster 1600

Notice that the overall run times for all three show no significant differences.
However, also notice that for this test, it appears that using technical large page
with this executable trades system time for user time as can be seen in the
second two rows of each run.

4.1.4 Conclusions from the first attempt at technical large page
So, why did we not see any significant differences in the overall times between
the runs of the three modified sort executables? Well, it is kind of like the missing
$1.00 in Chapter 1, “Introduction” on page 1. The answer was right in front of us,
and, once we saw it, we could not understand why we did not see it all along. Let
us go back to the initial test run output from the sort.small program.
Example 4-10 is a repeat of that listing.

Example 4-10 Test run of sort.normal (repeated)

[c37f1rp05][/]> su - tlp
$ export LD_CNTRL=LARGE_PAGE_DATA=M
$ timex ./sort.normal -o /dev/null /install/marc/md10.lpage

In a second root window...

[c37f1rp05][/]> ps -ef|grep sort|grep -v grep
 tlp 12354 14598 0 12:40:00 pts/0 0:00 timex ./sort.normal -o /dev/null
/install/marc/md10.lpage
 tlp 14980 12354 89 12:40:00 pts/0 0:03 ./sort.normal -o /dev/null
/install/marc/md10.lpage
[c37f1rp05][/]> svmon -P 14980 -r | more

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 14980 sort.normal 13217 2068 792 8343 N N N

 PageSize Inuse Pin Pgsp Virtual
 4 KB 13217 2068 792 8343
 16 MB 0 0 0 0

 Vsid Esid Type Description LPage Inuse Pin Pgsp Vrtual
 0 0 work kernel seg - 4951 2066 792 4951

sort.lpage

Real 115.70 115.96 115.52 0.13

User 113.85 114.01 113.69 0.07

Sys 1.18 1.39 1.05 0.08

Program: AIX sort
 Chapter 4. Investigations 87

 Addr Range: 0..25279
 64e19 - pers large file /dev/lvinstall:16 - 4865 0 - -
 Addr Range: 0..4864
 7401d d work shared library text - 2245 0 0 2245
 Addr Range: 0..60123
 5ce97 2 work process private - 1125 2 0 1125
 Addr Range: 0..1167 : 65310..65535
 405d0 f work shared library data - 22 0 0 22
 Addr Range: 0..1817
 545f5 1 pers code,/dev/hd1:2061 - 9 0 - -
 Addr Range: 0..8
 68e5a - pers /dev/hd9var:6541 - 0 0 - -

Notice the very last line of the svmon output, the one with the /dev/hd9var in it.
Therein lies the reason we did not see any significant differences in the runs of
the three sort executables. If you run sort and watch /var/tmp, you will see
something much like what is illustrated in Example 4-11.

Example 4-11 Directory listing from /var/tmp while sort is running

[c37f1rp05][/var/tmp]> ls -l
total 20983
-rw-r--r-- 1 root system 7205 Jun 06 15:00 dpid2.log
p---rw---- 1 root system 0 Jun 06 15:01 em_trap.9.114.189.61
p---rw---- 1 root system 0 Jun 06 15:01 errlog_entry
-rw-r--r-- 1 root system 45061 Jun 06 15:00 hostmibd.log
-rw-r--r-- 1 root system 38996 Jun 06 15:02 snmpd.log
-rw------- 1 tlp staff 1198370 Jun 08 13:31 stm15076aaaaa
-rw------- 1 tlp staff 1198370 Jun 08 13:32 stm15076aaaab
-rw------- 1 tlp staff 1198370 Jun 08 13:32 stm15076aaaac
-rw------- 1 tlp staff 1198370 Jun 08 13:32 stm15076aaaad
-rw------- 1 tlp staff 1198370 Jun 08 13:32 stm15076aaaae
-rw------- 1 tlp staff 1198370 Jun 08 13:32 stm15076aaaaf
-rw------- 1 tlp staff 1198370 Jun 08 13:32 stm15076aaaag
-rw------- 1 tlp staff 1198370 Jun 08 13:32 stm15076aaaah
-rw------- 1 tlp staff 1044480 Jun 08 13:32 stm15076aaaai

The AIX sort program does not do in-core sorting. Instead, it uses temporary files
in /var/tmp. Because it is not doing the sort in memory (via something like the
malloc system call), it is not using the heap area for sorting. Therefore, enabling
technical large page for sort has no effect, because this only enables those kinds
of pages for the heap/data area of the program, and not for the persistent
segments through which file data passes.
88 Performance and Tuning Considerations for the p690 in a Cluster 1600

4.1.5 The second attempt at technical large page
For our next test of technical large page, we continued with the sort idea, but this
time with our own program that did in-core sorting of a large set of
randomly-generated numbers. The source code for the program is shown in
Example 4-12.

Example 4-12 The gabisort program

[c37f1rp05][/home/tlp]> cat gabisort.c
/*
**
** Program: gabisort.c
**
** Author: Gabriel Radu (IBM Romania)
**
** Notes: Quick and dirty implementation of bubblesort and
** quicksort for use in the redbook investigations.
**
*/

#include <stdio.h>

#define RND random()

int main(void)
{
 int COUNTER=246841000;

 int *ptr,i,*BASE;
 int *ptra,*ptrb,*ptrc;
 void sort_bubble(int *sir, int LONG);
 void afiseaza_sir(int *sir, int LONG);
 void quick_sort(int *p,int *s, int *d);
 void int_swap(int *,int *);
 int * set_sir(int LONG);

 printf("\n");
 printf("Generating %d numbers\n",COUNTER);
 ptr=set_sir(COUNTER);
 BASE=ptr;
 printf("Sorting -> %d numbers\n",COUNTER);

 /*
 afiseaza_sir(ptr,COUNTER);
 */

 printf("\n");
 printf("Starting Sort\n");
 Chapter 4. Investigations 89

 /*
 sort_bubble(ptr,COUNTER);
 */
 ptra=BASE;
 ptrb=BASE;
 ptrc=BASE+COUNTER;
 quick_sort(ptra,ptrb,ptrc);
 ptr=BASE;
 /*
 afiseaza_sir(ptr,COUNTER);
 */
 printf("Finished Sort\n");
 printf("\n");

 free(BASE);
 exit(0);
}
/* End Main */

void int_swap(int *pax,int *pbx)
{
 int temp;
 temp=*pbx;
 *pbx=*pax;
 *pax=temp;
}

void sort_bubble(int *sir, int LONG)
{
 int j=LONG,test_sort=1,i,temp;
 int h=0;
 while(test_sort==1) {
 test_sort=0;
 for(i=0;i<j;i++) {
 if(sir[i] > sir[i+1]) {
 int_swap((sir+i),(sir+i+1));
 test_sort=1;
 }
 }
 j--;
 }
}

void afiseaza_sir(int *sir, int LONG)
{
 int i;
 for (i=0; i<=LONG;i++) {
 printf("%d \t %d \n",i,*(sir+i));
 }
90 Performance and Tuning Considerations for the p690 in a Cluster 1600

}

int * set_sir(int LONG)
{
 int *aa,i,*bbb;
 srandom(100);
 aa=(int *)malloc(LONG*sizeof(int));
 bbb=aa;
 if (aa == NULL) {
 printf("Allocation Error\n");
 exit(1);
 }
 for (i=0;i<=LONG;i++) {
 *aa=RND;
 aa=aa+1;
 /*
 printf("%d\n",i);
 */
 }
 return bbb;
}

void quick_sort(int *p, int *s, int *d)
{
 int *sant;
 int *pi;
 pi=p;
 if(s>=d) {
 return;
 }
 sant=s;
 for(pi=s+1;pi<=d;pi++) {
 if(*pi<*s) {
 int_swap(++sant,pi);
 }
 }
 int_swap(s,sant);
 quick_sort(p,s,sant-1);
 quick_sort(p,sant+1,d);
}

We used the quicksort version of the code. The gabiqsort executable was
compiled with cc -g gabisort.c -o gabiqsort on a system with software levels
illustrated in Example 4-13.

Example 4-13 Software levels of the system used to compile gabisort

[bd0101en][/]> ~mgenty/pmrinfo
 Chapter 4. Investigations 91

Software Levels As Of: Sat Jun 8 11:54:47 MDT 2002

AIX: bos.mp 5.1.0.25
PSSP:
LoadLeveler: LoadL.full 3.1.0.2
GPFS:
RVSD:
VSD:
RSCT: rsct.basic.rte 2.2.1.0
POE: ppe.poe 3.2.0.2
PESSL: pessl.rte.smp43 2.3.0.1
ESSL: essl.rte.smp43 3.3.0.0
FORTRAN: xlfrte 7.1.1.2
PERL: perl.rte 5.6.0.0
C: xlC.rte 5.0.2.1

Following the same model that we had used with the AIX sort executable, we
made modified copies of the gabiqsort executable. In this case, we only made the
gabiqsort.lmem and gabiqsort.lpage versions, because the input set was too
large for the gabiqsort.normal to handle.

We performed the initial test runs of each executable to verify that the svmon
output was as we were expecting, and it was.

Finally, we modified the sortem.ksh script to perform the 40 test runs of each of
the two gabiqsort executables. The results of those runs are summarized in
Table 4-2.

Table 4-2 Technical large page gabiqsort results

Program: gabiqsort

gabiqsort.lmem

Time Mean Max Min Std. Dev.

Real 671.37 672.70 670.90 0.56

User 667.76 668.39 667.32 0.27

Sys 2.54 3.55 2.12 0.38

gabiqsort.lpage

Real 668.68 670.22 668.07 0.61

User 664.63 665.43 664.22 0.26

Sys 3.52 4.47 3.26 0.40
92 Performance and Tuning Considerations for the p690 in a Cluster 1600

For these sets of tests, it appears that technical large page does produce a
statistically significant difference in run times. The mean run time for
gabiqsort.lmem is over four (4.41) standard deviations (0.61) away from the
mean run time for gabiqsort.lpage. However the change in magnitude in the
mean run time is only approximately four tenths of one percent. As with the AIX
sort tests, we see that system time is higher, but user time is lower for the
technical large page code.

4.1.6 Running both tests again within an affinity LPAR (ALPAR)
The AIX sort and gabiqsort tests were run in a normal LPAR. Would the numbers
have been any different if the tests had been run in an affinity LPAR (ALPAR)?
We decided to find out. We reconfigured the 4-way LPAR as a 4-way ALPAR, and
allocated 1 GB of the memory to technical large pages. Unfortunately, we were
not able to hold the physical memory constant at 4 GB because of the memory
book configuration in the p690. It had two 16 GB memory books, so we had to go
with 16 GB in the ALPAR. We then repeated the same sequence of 40 tests with
both the AIX sort program and the gabiqsort program.

The results of the AIX sort test runs are summarized in Table 4-3.

Table 4-3 Technical large page (with ALPAR) AIX sort results

Program: AIX sort

sort.normal

Time Mean Max Min Std. Dev.

Real 117.99 118.75 117.44 0.40

User 117.03 117.72 116.45 0.36

Sys 0.42 0.58 0.28 0.08

sort.lmem

Real 118.02 118.84 117.49 0.46

User 117.08 117.84 116.56 0.40

Sys 0.40 0.61 0.24 0.11

sort.lpage

Real 117.94 118.47 117.64 0.30

User 116.14 116.68 115.80 0.31

Sys 1.13 1.24 1.04 0.05
 Chapter 4. Investigations 93

These results look very similar to those from the runs done in the normal LPAR
(see Table 4-1 on page 86). Again, we see that the overall run times for all three
runs show no significant differences. We also see the same pattern of increased
system time and decreased user time for the technical large page runs.

So, running in an ALPAR did not change the relative performance between the
three different executables. However, the run times for all three are higher than
they were for their counterparts running in an LPAR. Does this mean that
performance is worse when using ALPARs? Not necessarily. Remember that the
ALPAR had 16 GB of memory, while the LPAR had only 4 GB. So, the difference
in run times may be due to the change in memory size rather than the change in
partition type. Let us see what happened with the next set of runs.

The results of the gabiqsort test runs are summarized in Table 4-4.

Table 4-4 Technical large page (with ALPAR) gabiqsort results

What we see here is that these numbers are almost identical to those of the
corresponding runs done in the normal LPAR (see Table 4-2 on page 92). This
would seem to indicate that for this particular code, affinity LPARs provide no
benefit over normal LPARs. It is also interesting that the additional memory in the
ALPAR did not make a difference either.

4.1.7 Three steps forward, one step back
What still remains is the nagging question of why the run times changed for the
AIX sort when running in an affinity LPAR as opposed to a normal LPAR. We
eliminated the additional memory as a factor in the equation by reconfiguring the

Program: gabiqsort

gabiqsort.lmem

Time Mean Max Min Std. Dev.

Real 671.61 672.75 670.59 0.71

User 667.83 668.44 667.13 0.31

Sys 2.71 3.68 2.00 0.49

gabiqsort.lpage

Real 668.93 670.36 668.14 0.82

User 664.80 665.70 664.34 0.39

Sys 3.62 4.44 3.21 0.49
94 Performance and Tuning Considerations for the p690 in a Cluster 1600

normal LPAR to match the affinity LPAR (that is, 4-way and 16 GB) and rerunning
the tests.

The results of the AIX sort test runs are summarized in Table 4-5.

Table 4-5 Technical large page (with 16 GB) AIX sort results

These results look very similar to those from the runs done in the ALPAR (see
Table 4-3 on page 93). Again, we see that the overall run times for all three show
no significant differences. We also see the same pattern of increased system
time and decreased user time for the technical large page runs.

From these results, it appears that the observed differences in the run times
between the first runs in the normal LPAR and the second runs in the affinity
LPAR were due to the increase in memory from 4 GB to 16 GB rather than the
change of partition type form LPAR to ALPAR. Let us see what happened with
the next set of runs.

The results of the gabiqsort test runs are summarized in Table 4-6 on page 96.

Program: AIX sort

sort.normal

Time Mean Max Min Std. Dev.

Real 117.71 118.80 117.30 0.46

User 116.77 117.77 116.33 0.43

Sys 0.39 0.60 0.27 0.08

sort.lmem

Real 118.00 118.73 117.31 0.46

User 117.08 117.78 116.33 0.46

Sys 0.38 0.56 0.20 0.08

sort.lpage

Real 118.14 118.82 117.57 0.47

User 116.27 117.00 115.64 0.43

Sys 1.20 1.45 1.00 0.12
 Chapter 4. Investigations 95

Table 4-6 Technical large page (with 16 GB) gabiqsort results

What we see here is that these numbers are almost identical to those of the
corresponding runs done in the other two test scenarios (see Table 4-2 on
page 92 and Table 4-4 on page 94). So, again, it appears that for this particular
code, there is no benefit to running it in an ALPAR.

However, the nagging question still remains about why the numbers from the first
run of the AIX sort are so different from those from the subsequent runs. We tried
one more test. This time we set the LPAR back to the original 4 GB to see if we
could reproduce the first numbers.

The results of the AIX sort test runs are summarized in Table 4-7.

Table 4-7 Technical large page (with 4 GB) AIX sort results

Program: gabiqsort

gabiqsort.lmem

Time Mean Max Min Std. Dev.

Real 671.64 672.54 670.75 0.58

User 667.91 668.43 667.27 0.27

Sys 2.68 3.51 2.06 0.45

gabiqsort.lpage

Real 668.42 670.24 668.00 0.40

User 664.60 665.46 664.25 0.22

Sys 3.30 4.28 3.22 0.23

Program: AIX sort

sort.normal

Time Mean Max Min Std. Dev.

Real 117.75 118.50 117.37 0.34

User 116.80 117.44 116.39 0.31

Sys 0.40 0.62 0.23 0.11

sort.lmem

Real 117.78 118.54 117.41 0.36

User 116.84 117.58 116.43 0.31
96 Performance and Tuning Considerations for the p690 in a Cluster 1600

The results from these runs did not reproduce the results from the first ones (see
Table 4-1 on page 86). In fact, they look very much like the results from the latter
runs. So, what is going on here?

Before discussing the AIX sort results further, let us take a quick look at the
gabiqsort results. They are summarized in Table 4-8.

Table 4-8 Technical large page (with 4 GB) gabiqsort results

No surprises here. The numbers are as we expected.

So why were we not able to reproduce the numbers from the first run of the AIX
sort tests, and why were the numbers different between that first run and
subsequent ones? The quick answer is that we do not know, but here are some
possible explanations. Remember that the AIX sort does most of its work with
temporary files in /var/tmp. So there is a whole disk I/O piece that could be
confounding things. The second possibility is that the first LPAR had very good
locality of reference between the processors and memory that were allocated to
the LPAR. However, we would have expected to see these same results (if not

Sys 0.40 0.64 0.28 0.09

sort.lpage

Real 117.99 118.49 117.59 0.24

User 116.12 116.42 115.76 0.20

Sys 1.19 1.36 1.06 0.07

Program: gabiqsort

gabiqsort.lmem

Time Mean Max Min Std. Dev.

Real 671.24 672.52 670.89 0.36

User 667.80 668.37 667.37 0.22

Sys 2.37 3.35 2.02 0.29

gabiqsort.lpage

Real 668.70 670.06 668.05 0.62

User 664.69 665.35 664.27 0.28

Sys 3.50 4.33 3.22 0.39

Program: AIX sort
 Chapter 4. Investigations 97

better results) with the ALPAR. In our opinion, the first possibility seems far more
reasonable than the second, but, without further testing, it is nothing more than a
somewhat educated guess.

4.1.8 Memory affinity
For the final set of test runs, we wanted to see if turning memory affinity on in an
LPAR had any effect on the performance of either of the two sort codes. Memory
affinity is enabled through the vmtune command, and, like technical large page, it
requires the bosboot and shutdown commands afterwards (reboot). These steps
are illustrated in Example 4-14.

Example 4-14 Preparing the environment for memory affinity

[c37f1rp05][/]> /usr/samples/kernel/vmtune -y 1

vmtune: current values:

...
 -s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm lgpg_regions lgpg_size strict_maxperm
 0 0 0 64 16777216 0
...
 -Z -q -Q -y
j2_nBufferPer j2_minPageReadAhead j2_maxPageReadAhead memory_affinity
 512 2 8 0
...
number of valid memory pages = 1048573 maxperm=79.9% of real memory
maximum pinable=80.0% of real memory minperm=20.0% of real memory
number of file memory pages = 16630 numperm=2.2% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 0 numclient=0.0% of real memory
of remote pgs sched-pageout = 0 maxclient=79.9% of real memory

vmtune: new values:

...
 -s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm lgpg_regions lgpg_size strict_maxperm
 0 0 0 64 16777216 0
...
 -Z -q -Q -y
j2_nBufferPer j2_minPageReadAhead j2_maxPageReadAhead memory_affinity
 512 2 8 1
...
number of valid memory pages = 1048573 maxperm=79.9% of real memory
maximum pinable=80.0% of real memory minperm=20.0% of real memory
number of file memory pages = 33260 numperm=4.4% of real memory
98 Performance and Tuning Considerations for the p690 in a Cluster 1600

number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 0 numclient=0.0% of real memory
of remote pgs sched-pageout = 0 maxclient=79.9% of real memory

[c37f1rp05][/]> bosboot -ad /dev/ipldevice

bosboot: Boot image is 13276 512 byte blocks.

[c37f1rp05][/]> shutdown -Fr

After the reboot, we verified (with the vmtune command) that both memory affinity
and technical large page were still turned on, then launched our test suite for one
final time.

The results of the AIX sort test runs are summarized in Table 4-9.

Table 4-9 Technical large page (with memory affinity) AIX sort results

These results look very similar to the ones that were generated from running in
the same LPAR without memory affinity (see Table 4-7 on page 96). Let us see
what happened with the gabiqsort runs. They are summarized in Table 4-10 on
page 100.

Program: AIX sort

sort.normal

Time Mean Max Min Std. Dev.

Real 117.72 118.01 117.25 0.15

User 116.79 117.11 116.35 0.17

Sys 0.39 0.73 0.29 0.10

sort.lmem

Real 117.71 117.96 117.28 0.16

User 116.78 117.06 116.42 0.17

Sys 0.38 0.57 0.28 0.07

sort.lpage

Real 117.84 118.02 117.52 0.14

User 115.95 116.21 115.69 0.14

Sys 1.22 1.44 1.05 0.11
 Chapter 4. Investigations 99

Table 4-10 Technical large page (with memory affinity) gabiqsort results

Again, no significant changes here compared with the previous run in the same
LPAR without memory affinity turned on (see Table 4-8 on page 97).

Like ALPARs, memory affinity does not appear to affect the performance of these
codes either positively or negatively. No big surprises here.

The reason that the results were no big surprise is that it was really a trick
question. Even though you can use vmtune -y 1 to enable memory affinity in an
LPAR, it has no effect. In other words, it does nothing. Here is why.

AIX requires processor and memory topology data from the hardware to support
memory affinity. The hardware topology data is not available on all machines or in
all environments. On a pSeries 690, topology data is available when the system
is configured in Full System Partition (SMP) mode, but it is not available when the
system is configured in LPAR mode. That is why we saw no differences in the
results of these test runs compared to those run in an LPAR without memory
affinity turned on.

4.1.9 Technical large page investigation conclusions
Our conclusions from this investigation are as follows:

� For codes that make heavy use of the heap and data segments, technical
large page seems to provide some improvement in performance.

� None of the tests showed any advantage to using ALPARs over LPARs.

� None of the tests showed any advantage to having memory affinity turned on
in LPAR mode. Note that memory affinity is not supported in LPAR mode.

Program: gabiqsort

gabiqsort.lmem

Time Mean Max Min Std. Dev.

Real 671.87 672.75 670.89 0.59

User 667.96 668.33 667.46 0.22

Sys 2.85 3.66 2.13 0.50

gabiqsort.lpage

Real 668.43 669.89 668.05 0.38

User 664.56 665.21 664.26 0.19

Sys 3.35 4.19 3.25 0.22
100 Performance and Tuning Considerations for the p690 in a Cluster 1600

� For a mixed workload with applications that tax different components of the
system (for example, memory, CPU, disk, and network), it probably does not
make sense to use either ALPARs or technical large page.

� Our technical large page recommendation is that you really need to have a
compelling reason (and data to back it) for using it. It is not a panacea for
performance problems. Rather, it is a very specialized feature targeted for
specific applications in limited application domains.

� Our ALPAR recommendation is that if you are planning to configure your
pSeries 690 with either 4-way or 8-way homogeneous LPARs, then go ahead
and use ALPARs. At the very least, they will save you some administrative
time during configuration.

We believe the primary value of this investigation comes not from the final
conclusions but more from the process itself. To that end, here are our final
thoughts on the process itself:

� Performance and tuning is an iterative process, and designing valid
performance tests is non-trivial. We began with a simple plan. It seemed so
easy and so straightforward on paper. Unfortunately, as you have seen, in
practice there were an amazing amount of blind alleys and missteps, each
requiring a revision to the plan and yet another iteration of the tests.

� Setting up and executing performance tests is very time consuming. This
investigation took one person a full week of dedicated work to set up and
execute. Each set of runs alone took over 19 hours to complete, and this was
with very trivial codes.

� Each iteration provided 40 data points for each class of time (real, user, and
sys). Is this a large enough sample from which to draw valid conclusions?
Well, it is better than using one or two data points, but we would have been
more comfortable with something like 100 data points per class per iteration.

� Even when you try to change just one variable at a time, it is terribly easy for
confounding variables to sneak into your well-planned tests. Once there, they
wreak havoc on the validity of your results.

So, finally, begin by trusting the performance experts until you can prove
otherwise, and start with the recommendations for tuning and feature settings
from IBM and the software vendors first. Use these as your baseline for further
investigations.
 Chapter 4. Investigations 101

4.2 Tivoli Storage Manager (TSM) investigations

We wanted to see if the TSM (server and client) could take advantage of
technical large page through the shared memory communication protocol during
backup operations. The use of shared memory protocol required that the server
and client were on the same LPAR.

The test environment consisted of a single 1-way LPAR with 1.7 GB of memory,
one 18 GB hard disk, and the software levels shown in Example 4-15. The TSM
server was configured to use only disk storage pools.

Example 4-15 Installed software on TSM environment

Software Levels As Of: Tue Jun 18 10:11:24 EDT 2002

AIX: bos.mp 5.1.0.27
PSSP: ssp.basic 3.4.0.7
LoadLeveler:
GPFS:
RVSD:
VSD:
RSCT: rsct.basic.rte 2.2.1.0
POE:
PESSL:
ESSL:
FORTRAN:
PERL: perl.rte 5.6.0.0
C: xlC.rte 5.0.2.1

lslpp -l tivoli.tsm.server.com
Fileset Level State Description
 --
Path: /usr/lib/objrepos
 tivoli.tsm.server.com 5.1.1.0 COMMITTED Tivoli Storage Manager Server
 common services
Path: /etc/objrepos
 tivoli.tsm.server.com 5.1.1.0 COMMITTED Tivoli Storage Manager Server
 common services
lslpp -l tivoli.tsm.client.ba.aix51.64bit.common
Fileset Level State Description
 --
Path: /usr/lib/objrepos

Note: This is not a book about the performance of the Tivoli Storage Manager
(TSM). Rather, TSM was chosen for these investigations because it is a
commonly-used commercial application.
102 Performance and Tuning Considerations for the p690 in a Cluster 1600

 tivoli.tsm.client.ba.aix51.64bit.common
 5.1.1.0 COMMITTED TSM Client - Backup/Archive
 Common Files

We performed the following set of tests:

� With technical large page disabled:

– Backed up one big file (total 1 GB)

– Backed up 2048 files (total 1 GB)

� With technical large page enabled (with 32 and 64 pages):

– Backed up one big file (total 1 GB)

– Backed up 2048 files (total 1 GB)

The two metrics of interest from these tests were:

� The aggregate data transfer rate (KB/sec) from the dsmc command. (The dsmc
command is the command line backup/archive client interface.)

� The real, user, and sys times from the timex command.

4.2.1 TSM environment without large page
The data from the first series of tests is shown in Table 4-11.

Table 4-11 TSM backup with vmtune -L 0

Test results without technical large page (vmtune -L 0)

Aggregate data transfer rate
(KB/sec)

timex

real user sys

Backup of one big file (1 GB)

8,508.13 123.71 1.06 4.07

20,964.62 50.44 0.98 1.23

19,778.15 53.54 1.03 1.41

21,392.93 49.54 0.81 1.15

20,158.5 53.57 0.84 1.54

Backup of many small files (1023 * 1 MB + 1024 * 1 KB)

8,571.30 123.41 1.50 5.08

11,252.91 94.75 1.52 3.12
 Chapter 4. Investigations 103

In both cases the first part of the backup took more time. This was due to the fact
that these initial file pages had to be loaded from disk. After that, they were in the
cache memory used by the JFS. Example 4-16 shows a portion of the vmtune
output taken after the backup had completed. Notice the high value for the
numperm parameter.

Example 4-16 The vmtune listing from after the backups

...
number of valid memory pages = 458749 maxperm=79.8% of real memory
maximum pinable=80.0% of real memory minperm=20.0% of real memory
number of file memory pages = 284065 numperm=64.1% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 0 numclient=0.0% of real memory
of remote pgs sched-pageout = 0 maxclient=79.8% of real memory

4.2.2 TSM environment with technical large page
The TSM server process uses the root account by default. Rather than change
TSM, we opted instead to change the root account to use technical large page.
The steps used to change the account are shown in Example 4-17.

Example 4-17 Enabling root to use technical large page

chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE root

grep -p root /etc/security/limits

root:
 fsize = 2097151
 core = 2097151
 cpu = -1
 data = -1
 rss = -1
 stack = -1
 nofiles = 2000

For the first test, we set up the LPAR with 32 technical large pages (using vmtune
-L 32). The procedure we used is shown in Example 4-18 on page 105.

12,781.43 82.46 1.32 1.58

12,047.29 88.61 1.33 1.46

13,974.16 76.47 1.29 1.62

Test results without technical large page (vmtune -L 0)
104 Performance and Tuning Considerations for the p690 in a Cluster 1600

Example 4-18 Enabling LPAR with 32 technical large pages

/usr/samples/kernel/vmtune -g 16777216 -L 32
...
 -s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm lgpg_regions lgpg_size strict_maxperm
 0 0 0 32 16777216 0
...
bosboot -ad /dev/ipldevice
shutdown -Fr

After the reboot, we created a modified TSM server binary (dsmserv) to use
technical large page, set the LDR_CNTRL environment variable to mandatory
mode, and fired up the server, as shown in Example 4-19.

Example 4-19 Enabling TSM to use technical large page

cd /usr/tivoli/tsm/server/bin
cp dsmserv dsmserv.lp
usr/ccs/bin/ldedit -blpdata dsmserv.lp
export LDR_CNTRL=LARGE_PAGE_DATA=M
./dsmserv.lp

With the modified TSM server running, we used svmon to verify that the modified
TSM server was really using technical large pages. This is shown in
Example 4-20.

Example 4-20 Modified TSM server verification with svmon

ps -ef | grep dsm
 root 11996 9934 0 14:33:32 pts/0 0:01 ./dsmserv.lp
svmon -P 11996 -r

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 11996 dsmserv.lp 75860 67597 791 73141 N Y Y

 PageSize Inuse Pin Pgsp Virtual
 4 KB 10324 2061 791 7605
 16 MB 16 16 0 16

 Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 345da 3 work shmat/mmap Y 65536 65536 0 65536
 0 0 work kernel seg - 4862 2018 791 4862
 Addr Range: 0..25224
 2c016 d work shared library text - 2204 0 0 2204
 Addr Range: 0..60123
 343fa - pers /dev/tivolilv:17 - 1298 0 - -
 Addr Range: 0..24832
 Chapter 4. Investigations 105

 2a5d5 1 pers code,/dev/hd2:163919 - 1155 0 - -
 Addr Range: 0..2284
 205d0 2 work process private - 310 2 0 310
 Addr Range: 0..293 : 65304..65535
 263f3 - pers /dev/tivolilv:18 - 265 0 - -
 Addr Range: 0..25600
 2c5d6 - work - 140 41 0 140
 Addr Range: 0..49377
 325d9 f work shared library data - 89 0 0 89
 Addr Range: 0..1955
 305d8 - pers /dev/hd2:163993 - 1 0 - -
 Addr Range: 0..0
 265d3 4 work shmat/mmap - 0 0 0 0
 1844c - pers /dev/hd2:163960 - 0 0 - -
 26453 - pers /dev/tivolilv:21 - 0 0 - -
 22451 - pers /dev/hd2:163961 - 0 0 - -
 24452 - pers /dev/tivolilv:20 - 0 0 - -

Table 4-12 shows the results from the 32 technical large page tests.

Table 4-12 Test results with 32 technical large pages

Tests results with technical large page (vmtune -g 16777216 -L 32)

Aggregate data transfer rate
(KB/sec)

timex

real user sys

Backup of one big file (1 GB)

8,437.54 125.94 0.77 5.03

17,179.08 62.67 0.58 2.51

19,411.73 56.58 0.79 2.40

21,392.23 51.55 0.73 2.24

19,777.96 54.52 0.78 2.28

Backup of many small files (1023 * 1 MB + 1024 * 1 KB)

8,587.28 123.82 1.04 6.20

13,790.12 77.49 1.21 2.64

12,627.75 85.52 1.10 2.54

12,330.53 86.58 1.08 2.57

13,789.84 78.49 1.25 2.54
106 Performance and Tuning Considerations for the p690 in a Cluster 1600

Before discussing the results from the tests with 32 technical large pages, let us
take a look at the tests with 64 technical large pages. Example 4-21 shows the
procedure that was used to reconfigure the LPAR with 64 technical large pages.

Example 4-21 Enabling LPAR for 64 technical large pages

/usr/samples/kernel/vmtune -g 16777216 -L 64
...
 -s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm lgpg_regions lgpg_size strict_maxperm
 0 0 0 64 16777216 0
...
bosboot -ad /dev/ipldevice
shutdown -Fr

The results of the backup tests in the 64 technical large page environment are
shown in Table 4-13.

Table 4-13 Test results with 64 technical large pages

Test results with technical large page (vmtune -g 16777216 -L 64)

Aggregate data transfer rate
(KB/sec)

timex

real user sys

Backup of one big file (1 GB)

9,613.37 110.67 0.84 5.05

8,379.64 127.03 0.82 5.01

8,718.95 122.27 0.65 5.52

8,437.70 126.12 0.73 5.15

9,156.07 116.58 0.77 5.00

Backup of many small files (1023 * 1 MB + 1024 * 1 KB)

8,734.29 121.88 1.03 5.90

8,116.88 131.31 1.15 5.50

7,762.78 137.15 1.35 5.78

8,733.32 121.91 1.00 5.95

7,993.72 133.26 1.21 5.81
 Chapter 4. Investigations 107

4.2.3 TSM and technical large page conclusions
Example 4-20 on page 105 showed that the TSM server was using technical
large pages for a portion of its process space, and Example 4-22 shows that the
TSM client was also using technical large pages for a portion of its process
space.

Example 4-22 Modified TSM client verification with svmon

svmon -P 5476 -r

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 5476 cli 220046 67568 791 72041 Y Y Y

 PageSize Inuse Pin Pgsp Virtual
 4 KB 154510 2032 791 6505
 16 MB 16 16 0 16

 Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 20670 - pers /dev/lvtest:19 - 147560 0 - -
 Addr Range: 0..147559
 28634 11 work text data BSS heap Y 65536 65536 0 65536
 0 0 work kernel seg - 4862 2019 791 4862
 Addr Range: 0..25224
...

Neither the TSM server nor the TSM client performed better with technical large
pages. Remember that the LPAR only had 1.7 GB of memory, so 64 technical
large pages took up approximately 60 percent of the available memory. Also,
remember that technical large pages use pinned memory, which means that this
memory is not available for anything else. TSM performance is dominated by I/O,
not by computation, and a large amount of memory is needed for file pages, as
we saw in the numperm output in Example 4-16 on page 104. By configuring
such a large pool for technical large pages, we were effectively starving the
system of file pages, and the VMM performance suffered because it had to
continually search for free pages to be used to cache file pages. This can be
seen in the vmstat output shown in Example 4-23.

Example 4-23 The vmstat output during backup

vmstat 5
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 1 1 314412 779 0 0 0 767 2018 0 378 1496 435 2 9 54 35
 1 0 314905 128 0 0 0 28 41 0 261 586 128 0 19 78 3
 0 1 315198 120 0 0 0 2372 28508 0 692 1873 1266 4 18 0 78
108 Performance and Tuning Considerations for the p690 in a Cluster 1600

 0 1 315198 120 0 0 0 2134 11373 0 653 1756 1215 3 16 0 81
 1 1 315198 128 0 0 0 2175 3416 0 664 1769 1271 3 13 0 84
 2 1 315198 120 0 0 0 2428 3038 0 691 1886 1376 3 13 0 83
 0 1 315198 128 0 0 0 1724 2153 0 586 1542 1046 1 7 0 92
...

So, for these tests, enabling technical large pages not only did not help TSM
performance, it actually hurt it. Our recommendation is that you do not use
technical large pages with TSM (server or client).

4.2.4 TSM and SP Switch2 communication
TSM environments typically use the network to communicate between the server
and the client. For the next set of tests, we created two LPARs, one for the TSM
server and the other for the TSM client, and we configured them to use the SP
Switch2 for their communication path. Both LPARs were 2-way with 4 GB of
memory, and the software levels were the same as what was shown in
Example 4-15 on page 102.

For the first 1 GB backup test, we used the default settings for the dsm.sys
configuration file as well as the css0 tunables. As you can see in Table 4-14, the
performance was terrible. (The data shown is an average from a series of dsmc
command outputs.)

Table 4-14 Backup performance for 1 GB with default settings

The SP Switch2 is a high speed network with a large Maximum Transmission
Unit (MTU) size. (The default for css0 is 65504). Because of this, systems
(LPARs) that use the SP Switch2 as an interconnect can spend a lot of time
buffering data prior to sending it. That is what happened here.

So, for our next test, we wanted to change this buffering behavior. We could do
this by changing the tcp_nagle_limit to 0 with the no command, but this is a global
setting that applies to all networks. Instead, we choose to use the TCPNodelay
parameter in the dsm.sys file so that we could limit the scope. The modified
dsm.sys file is shown in Example 4-24.

Example 4-24 The dsm.sys configuration file

SErvername server_a
 NODEName c37f2rp06

Size of data Network transfer
rate (KB/sec)

Aggregate
transfer rate
(KB/sec)

Elapsed time
(minutes)

1 GB 320 315 54:00
 Chapter 4. Investigations 109

 COMMmethod TCPip
 TCPPort 1500
 TCPServeraddress 9.114.189.85
 PASSWORDAccess GENERATE

 TCPNodelay Yes

Setting TCPNodelay to Yes forces the client to send all transactions to the server
without buffering them first. In other words, the client does not have to wait until
the TCP send buffer is full before transmitting the data.

The dsmc average transfer rates for this test are shown in Table 4-15.

Table 4-15 Backup performance for 1 GB with TCPNodelay Yes

In an environment like ours with ample memory and a fast interconnect, you can
use higher values for the tcpbuffsize and tcpwindowsize. We tried this, as shown
in Example 4-25.

Example 4-25 The dsm.sys file with modified TCP buffer size

SErvername server_a
 NODEName c37f2rp06
 * COMMmethod Sharedmem
 COMMmethod TCPip
 TCPPort 1500
 TCPServeraddress 9.114.189.85
 PASSWORDAccess GENERATE

 TCPNodelay Yes
 tcpbuffsize 512
 tcpwindowsize 2048

The dsmc average transfer rates for this test are shown in Table 4-16.

Table 4-16 Backup performance for 1 GB with larger tcpbuffsize

Size of data Network transfer
rate (KB/sec)

Aggregate
transfer rate
(KB/sec)

Elapsed time
(minutes)

1 GB 20900 20100 00:52

Size of data Network transfer
rate (KB/sec)

Aggregate
transfer rate
(KB/sec)

Elapsed time
(minutes)

1 GB 21300 22300 00:49
110 Performance and Tuning Considerations for the p690 in a Cluster 1600

Further analysis of these test results showed that the bottleneck was now the
storage pool used by TSM. As you will remember, the TSM storage pool was
configured on the internal 18 GB disk in the TSM server.

This is not a book about TSM performance. It is a book about the performance of
the pSeries 690 in a Cluster 1600. With that in mind, we set out to eliminate the
storage pool bottleneck, and relief came from a somewhat unusual avenue.

AIX supports the creation and use of ramdisks. A ramdisk is a portion of memory
that is made to look and act like a physical disk. These virtual disks can be very
useful for applications (like sort routines and compilers) that are I/O intensive to
short-lived, temporary files. Production TSM does not fit in this category, but this
is not production TSM. The point here is to eliminate the storage pool as the
bottleneck, and use of a ramdisk seems like a logical way to do that.

So, for our next test, we created a ramdisk, put a file system on it, and modified
the TSM server to use it as the storage pool. The procedure we used can be
found in Appendix A, “Scripts” on page 147. We also created a ramdisk and a file
system on the TSM client and used it to house the data that was to be backed up.
The css0 parameters and dsm.sys file remained the same as they were in the
previous test.

The dsmc average transfer rates for this test (using memory-to-memory across
the interconnect) are shown in Table 4-17.

Table 4-17 Backup performance for 1 GB with ramdisks

Remember, this is by no means a production TSM configuration. We simply
wanted to figure out the maximum performance that we could expect across the
SP Switch2 with the SP Switch2 PCI Attachment Adapter. In a real TSM
production environment with many tape drives, many paths or multiple storage
pools on separate disks, and many clients doing backups at the same time, you
can expect your performance bottleneck to be I/O and not communications.

For our next test, we changed the css0 spoolsize and rpoolsize tunable
parameters with the chgcss command to their maximums, which are now 32 MB
(33554432) each. The test results did not show any significant improvement and
will not be shown here. We suspect that these parameter changes would have
helped performance if many clients were trying to back up large amounts of data
at the same time.

Size of data Network transfer
rate (KB/sec)

Aggregate
transfer rate
(KB/sec)

Elapsed time
(minutes)

1 GB 143000 115000 00:09
 Chapter 4. Investigations 111

Finally, we tried reducing the tcpwindowsize in the dsm.sys file. If you remember,
we had set it and the tcpbuffsize to their maximum values (that is,
tcpbuffsize=512 and tcpwindowsize=2048) for a previous test run. (See
Table 4-16 on page 110.) We wanted to see if setting the tcpwindowsize to 1024
would make a difference.

The dsmc average transfer rates for this test are shown in Table 4-18.

Table 4-18 Backup performance for 1 GB with tcpwindowsize at 1024

This dsm.sys change had no significant impact on the performance from the
previous test. We also did additional tests with different dsm.sys values (which
will not be shown here), and none of them produced any significant performance
improvements. In other words, it appears that we have found the maximum
throughput performance numbers for this investigation.

4.2.5 TSM and SP Switch2 conclusions
The performance of the TSM backup across the SP Switch2 interconnect is
limited by the I/O to the storage device on the TSM server. In our lab
environment, we had an 18 GB internal disk on which we were able to achieve a
maximum transfer rate of 20 MB/sec with the following parameter settings:

� Set the tcpbuffsize to 512 in the dsm.sys file.

� Set the tcpwindowsize to 1024 in the dsm.sys file.

� Set css0 spoolsize to 33554432 (32 MB) with the chgcss command.

� Set css0 rpoolsize to 33554432 (32 MB) with the chgcss command.

Size of data Network transfer
rate (KB/sec)

Aggregate
transfer rate
(KB/sec)

Elapsed time
(minutes)

1 GB 180000 131000 00:08

Important: Even though it may be tempting to use a ramdisk in a production
TSM environment, do not do it. We used one in our investigations for the sole
purpose of trying to find the maximum throughput rate across the
interconnect. We would never think to use one in a production TSM
environment. If and when the system goes down, all data on the ramdisk is
lost. This is but one of a number of RAS problems associated with their use.
112 Performance and Tuning Considerations for the p690 in a Cluster 1600

4.3 IP vs. US investigation

For this investigation, we wanted to see if we could see any differences between
running MPI codes with US communication over the SP Switch2 compared to
these same codes running with IP communication over the SP Switch2. The MPI
codes that we used were the three parallel sample programs from the Parallel
Environment for AIX: Hitchhiker's Guide, SA22-7424. This guide and a tar file
with the sample programs can be downloaded from:

http://www.ibm.com/servers/eserver/pseries/library/sp_books/pe.html

We picked these codes for our tests because they are readily available for
anyone to use, are well documented, and are large enough to be useful on a
small system.

The test system consisted of two 4-way, 8 GB normal LPARs on two separate
pSeries 690s in a Cluster 1600. The interconnect fabric was a single-plane SP
Switch2, and each of the LPARs had a single SP Switch2 PCI Attachment
Adapter. Each of the MPI codes used nine MPI tasks with five on one LPAR and
four on the other LPAR. The software levels for the two LPARs are shown in
Example 4-26.

Example 4-26 Software levels for IP vs. US investigation

Software Levels As Of: Thu Jun 20 08:41:42 EDT 2002

AIX: bos.mp 5.1.0.27
PSSP: ssp.basic 3.4.0.8
LoadLeveler: LoadL.full 3.1.0.6
GPFS:
RVSD:
VSD:
RSCT: rsct.basic.rte 2.2.1.1
POE: ppe.poe 3.2.0.6
PESSL:
ESSL:
FORTRAN: xlfrte 7.1.1.2
PERL: perl.rte 5.6.0.0
C: xlC.rte 5.0.2.1

Note: This investigation is primarily of interest for folks from the scientific and
technical community. Few if any business applications use US protocol across
the interconnect, so folks from the commercial community may want to skip
this section.
 Chapter 4. Investigations 113

http://www-1.ibm.com/servers/eserver/pseries/library/sp_books/pe.html

4.3.1 Setting up the environment for IP vs. US testing
First, we had to prepare the test environment. This involved:

� Increasing the switch send pool and receive pool sizes

� Checking the other network options for unusual settings

� Preparing the POE and LoadLeveler environments

� Creating the MPI test code executables

� Creating the wrapper and driver scripts for the tests

Increasing the switch send pool and receive pool sizes
The send pool (spool) and the receive pool (rpool) on the SP Switch2 with the SP
Switch2 PCI Attachment Adapter can now each be 32 MB in size. This is double
the size of what was available on the previous SP Switch fabric. Additionally,
these size changes can now be made on the fly. To change them, use the chgcss
command, as shown in Example 4-27.

Example 4-27 Changing the spoolsize and the rpoolsize

/usr/lpp/ssp/css/chgcss -l css0 -a spoolsize=33554432 -a rpoolsize=33554432

You can then verify the changes with the lsattr -El css0 command, as shown
in Example 4-28.

Example 4-28 Verifying the spoolsize and the rpoolsize

[c37f1rp08][/]> lsattr -El css0
adapter_memory 0xf1000000 Adapter memory address False
adapter_size 0x00800000 Adapter memory size False
sdram_start 0xf0000000 SDRAM memory address False
sdram_size 0x01000000 SDRAM memory size False
TOD_address 0xf1800000 TOD address False
win_poolsize 1107296256 Total window memory pool size True
win_maxsize 16777216 Maximum window memory size True
win_minsize 524288 Minimum window memory size True
int_priority 3 Interrupt priority False
int_level 2853 Bus interrupt level False
spoolsize 33554432 Size of IP send buffer True
rpoolsize 33554432 Size of IP receive buffer True
khal_spoolsize 524288 Size of KHAL send buffer True
khal_rpoolsize 524288 Size of KHAL receive buffer True
adapter_status css_ready Configuration status False
diags_prog Diagnostic program True
ucode_version 1 Micro code version True
ucode_name /etc/microcode/cor_ucode Micro code name True
window0-15 VSD AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL
114 Performance and Tuning Considerations for the p690 in a Cluster 1600

 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL window owners True
window16-31 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL
 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL window owners True
window32-47 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL
 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL window owners True
window48-63 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL
 AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL window owners True
window64-65 AVAIL AVAIL window owners True
driver_debug 0 Device Driver Debug True
ip_chksum off if_cl checksum True
ip_debug 0 if_cl debug level True
proto_debug off proto debug True

Checking the other network options for unusual settings
The other network settings were left at default and are shown in Example 4-29.

Example 4-29 Network settings for IP vs. US investigation

[c37f1rp08][/]> no -a
 extendednetstats = 0
 thewall = 1048576
 sockthresh = 85
 sb_max = 1310720
 somaxconn = 1024
 clean_partial_conns = 0
 net_malloc_police = 0
 rto_low = 1
 rto_high = 64
 rto_limit = 7
 rto_length = 13
 inet_stack_size = 16
 arptab_bsiz = 7
 arptab_nb = 25
 tcp_ndebug = 100
 ifsize = 8
 arpqsize = 12
 ndpqsize = 50
 route_expire = 1
 send_file_duration = 300
 fasttimo = 200
 routerevalidate = 0
 dgd_packets_lost = 3
 dgd_retry_time = 5
 dgd_ping_time = 5
 passive_dgd = 0
 sodebug = 0
 nbc_limit = 786432
 nbc_max_cache = 131072
 Chapter 4. Investigations 115

 nbc_min_cache = 1
 nbc_pseg = 0
 nbc_pseg_limit = 4194296
 strmsgsz = 0
 strctlsz = 1024
 nstrpush = 8
 strthresh = 85
 psetimers = 20
 psebufcalls = 20
 strturncnt = 15
 pseintrstack = 12288
 lowthresh = 90
 medthresh = 95
 psecache = 1
 subnetsarelocal = 1
 maxttl = 255
 ipfragttl = 60
 ipsendredirects = 1
 ipforwarding = 1
 udp_ttl = 30
 tcp_ttl = 60
 arpt_killc = 20
 tcp_sendspace = 65536
 tcp_recvspace = 65536
 udp_sendspace = 32768
 udp_recvspace = 65536
 tcp_bad_port_limit = 0
 udp_bad_port_limit = 0
 rfc1122addrchk = 0
 nonlocsrcroute = 1
 tcp_keepintvl = 150
 tcp_keepidle = 14400
 bcastping = 0
 udpcksum = 1
 tcp_mssdflt = 1448
 icmpaddressmask = 0
 tcp_keepinit = 150
ie5_old_multicast_mapping = 0
 rfc1323 = 1
 pmtu_default_age = 10
 pmtu_rediscover_interval = 30
 udp_pmtu_discover = 0
 tcp_pmtu_discover = 0
 ipqmaxlen = 100
 directed_broadcast = 0
 ipignoreredirects = 0
 ipsrcroutesend = 1
 ipsrcrouterecv = 1
 ipsrcrouteforward = 1
116 Performance and Tuning Considerations for the p690 in a Cluster 1600

 ip6srcrouteforward = 1
 ip6_defttl = 64
 ndpt_keep = 120
 ndpt_reachable = 30
 ndpt_retrans = 1
 ndpt_probe = 5
 ndpt_down = 3
 ndp_umaxtries = 3
 ndp_mmaxtries = 3
 ip6_prune = 2
 ip6forwarding = 0
 multi_homed = 1
 main_if6 = 0
 main_site6 = 0
 site6_index = 0
 maxnip6q = 20
 llsleep_timeout = 3
 tcp_timewait = 1
 tcp_ephemeral_low = 32768
 tcp_ephemeral_high = 65535
 udp_ephemeral_low = 32768
 udp_ephemeral_high = 65535
 delayack = 0
 delayackports = {}
 sack = 0
 use_isno = 1
 tcp_newreno = 1
 tcp_nagle_limit = 65535
 rfc2414 = 0
 tcp_init_window = 0
 tcp_ecn = 0
 tcp_limited_transmit = 1
 icmp6_errmsg_rate = 10
 tcp_maxburst = 0

Preparing the POE and LoadLeveler environments
Even though we were not using LoadLeveler to submit these test runs in batch
mode, it is still necessary when running parallel codes through POE interactively.
The LoadLeveler setup that we used was basically the default one, the setup for
which is well documented in the LoadLeveler for AIX: Installation Memo,
GI11-2819. The only point that we want to emphasize here is the importance of
running the llextSDR command to create the machine and adapter stanzas for
the LoadL_admin file. Do not just take a LoadL_admin file from another system
and change the names. The switch type (css_type) changes with the SP Switch2
PCI Attachment Adapter, and, if it is not correct in your LoadL_admin file, you
end up with these very strange 0028-601 error messages when you try to run the
 Chapter 4. Investigations 117

codes. Example 4-30 shows the LoadL_admin machine and adapter stanzas for
one of our test LPARs.

Example 4-30 LoadL_admin machine and adapter stanzas

c37f1rp08.ppd.pok.ibm.com: type = machine
 central_manager = true
 schedd_host = true
machine_mode = batch
resources = ConsumableCpus(8)
 adapter_stanzas = c37sn08.ppd.pok.ibm.com c37f1rp08.ppd.pok.ibm.com
 spacct_excluse_enable = false
 alias = c37sn08.ppd.pok.ibm.com

c37sn08.ppd.pok.ibm.com: type = adapter
 adapter_name = css0
 network_type = switch
 interface_address = 9.114.189.72
 interface_name = c37sn08.ppd.pok.ibm.com
 switch_node_number = 7
 css_type = SP_Switch2_PCI_Attachment_Adapter

c37f1rp08.ppd.pok.ibm.com: type = adapter
 adapter_name = en0
 network_type = ethernet
 interface_address = 9.114.189.8
 interface_name = c37f1rp08.ppd.pok.ibm.com

For the POE setup, we created an initial hostfile (shown in Example 4-31).

Example 4-31 POE hostfile for IP vs. US investigations

[c37f1rp08][/ptmp/mgenty]> cat hostfile
c37f1rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com

We also made sure there were no /etc/poe.limits files in either of the LPARs.

Finally, we created a shared file system between the two LPARs. The lab system
was not set up for GPFS, so we went with NFS instead. We created the local file
118 Performance and Tuning Considerations for the p690 in a Cluster 1600

system on a third LPAR and NFS-mounted it to the other two. This was done in
an attempt to keep the relative performance of the two “compute” LPARs as
similar as possible.

Creating the MPI test code executables
We used three programs for this investigation, as shown in Table 4-19.

Table 4-19 IP vs. US test codes

The MPI codes were compiled with separate make files. The source code and
make files are listed in Appendix B, “MPI sample programs” on page 159.

Creating the wrapper scripts for the tests
Next, we prepared the scripts for running the tests. We began by creating a
series of three wrapper scripts for the test codes:

� One for all of the parallel (MPI) codes using IP to communicate across the
switch

� One for all of the parallel (MPI) codes using US to communicate across the
switch

Parallel IP wrapper
The wrapper script for the parallel (MPI) codes using IP is shown in
Example 4-32.

Example 4-32 Parallel code (IP) wrapper script

[c37f1rp08][/ptmp/mgenty]> cat hgip.sh
#!/usr/bin/ksh
#
Hitchhiker's Guide - IP.
#
export LOADL_INTERACTIVE_CLASS=parallel
export MP_INFOLEVEL=1
export MP_HOSTFILE=hostfile
export MP_CPU_USE=multiple
export MP_PGMMODEL=SPMD
export MP_ADAPTER_USE=shared
export MP_EUIDEVICE=css0
export MP_EUILIB=ip

Type Name

MPI inverse_parallel_enabled.c

MPI inverse_parallel.c

MPI series_parallel.c
 Chapter 4. Investigations 119

export MP_PROCS=9
export MP_NODES=2
export MP_RESD=yes
#
echo " "
echo "Inverse_Parallel_Enabled"
echo " "
timex poe inverse_parallel_enabled
echo " "
echo "Inverse_Parallel"
echo " "
timex poe inverse_parallel
echo " "
echo "Series_Parallel"
echo " "
timex poe series_parallel

Parallel US wrapper
The wrapper script for the parallel (MPI) codes using US is shown in
Example 4-33.

Example 4-33 Parallel code (US) wrapper script

[c37f1rp08][/ptmp/mgenty]> cat hgus.sh
#!/usr/bin/ksh
#
Hitchhiker's Guide - US.
#
export LOADL_INTERACTIVE_CLASS=parallel
export MP_INFOLEVEL=3
export MP_HOSTFILE=hostfile
export MP_CPU_USE=multiple
export MP_PGMMODEL=SPMD
export MP_ADAPTER_USE=shared
export MP_EUIDEVICE=css0
export MP_EUILIB=us
export MP_PROCS=9
export MP_NODES=2
export MP_RESD=yes
#
echo " "
echo "Inverse_Parallel_Enabled"
echo " "
timex poe inverse_parallel_enabled
echo " "
echo "Inverse_Parallel"
echo " "
timex poe inverse_parallel
120 Performance and Tuning Considerations for the p690 in a Cluster 1600

echo " "
echo "Series_Parallel"
echo " "
timex poe series_parallel

Notice that the only difference between the two parallel (MPI) code wrapper
scripts is that the environment variable MP_EUILIB has been changed from ip to
us. That is literally all that is needed to switch these codes from using IP protocol
to using US protocol. In other words, the codes do not know nor do they care
about how the communication is being handled across the interconnect.

Creating the driver scripts for the tests
Following the same model used in Section 4.1, “Technical large page
investigation” on page 78, we went with a sample size of 40 runs of each code,
and, as was also the case with that investigation, we were only interested in run
times and not the actual output from the codes. To gather run times and discard
code outputs, we created one driver script to run the tests.

Parallel driver
The driver script for the parallel (MPI) tests is shown in Example 4-34.

Example 4-34 Parallel (MPI) code driver script

[c37f1rp08][/ptmp/mgenty]> cat usip.sh
#!/usr/bin/ksh
#
US vs IP Test Runs.
#

#
US.
#
echo " "
echo "US Test Runs"
echo " "
for i in 1 2 3 4
do
 for j in 1 2 3 4 5 6 7 8 9 10
 do
 /ptmp/mgenty/hgus.sh | grep -E "Parallel|real|user|sys"
 done
done
#
IP.
#
echo " "
echo "IP Test Runs"
 Chapter 4. Investigations 121

echo " "
for i in 1 2 3 4
do
 for j in 1 2 3 4 5 6 7 8 9 10
 do
 /ptmp/mgenty/hgip.sh | grep -E "Parallel|real|user|sys"
 done
done

4.3.2 Running the tests for IP vs. US
Prior to running the runs, we made sure that there was nothing else running on
the LPARs and that the Cluster 1600 itself was not being heavily used.

We also did a couple of single-iteration test runs of each code and each wrapper
script to make sure that things were set up correctly. To check that the proper
communications protocol was really being used, we changed the
MP_INFOLEVEL environment variable to 3 in the parallel (MPI) wrapper scripts
and examined the output. (That output was very verbose and will not be included
here.)

One other thing we discovered during these initial test runs was that, unlike the
technical large page investigation results, the only value of interest from the
timex command for these runs was the real time. (This is where the
communications happened.) The user and sys times provided no interesting
data.

The results of the parallel (MPI) code test runs using IP protocol are shown in
Table 4-20.

Table 4-20 Results from the parallel (MPI) IP test runs: 4-way/8 GB

The results of the parallel (MPI) code test runs using US protocol are shown in
Table 4-21 on page 123.

Important: The run-time results shown in all of the tables in this investigation
represent the real time component of the timex command output for the runs.

Code Mean Max Min Std. Dev.

inverse_parallel_enabled 13.34 13.59 13.18 0.10

inverse_parallel 12.55 13.20 12.39 0.17

series_parallel 12.25 12.40 12.19 0.09
122 Performance and Tuning Considerations for the p690 in a Cluster 1600

Table 4-21 Results from the parallel (MPI) US test runs: 4-way/8 GB

First, notice that there is a statistically significant difference between the run
times of the parallel (MPI) codes going from IP to US. The IP run times are better,
which is likely due to the new Jumbo Packet feature of IP over the switch that was
covered in Chapter 3, “Features relevant to performance” on page 35. The other
thing to notice is that the variation in the run times is much less with IP than it is
with US. At this point, we do not know if this is significant or just random.

So IP is the better choice, right? Not always. Here is a complication. For our next
test in this 4-way, 8 GB environment, we took a parallel code that is used by the
Supercomputer Systems Group at the National Center for Atmospheric Research
(NCAR) in Boulder, Colorado to identify and isolate CPUs that are exhibiting
numerical instability. The code is a legitimate (but old) climate code known as the
Parallel Climate Model (PCM), Version 1. The version that we used is the four
MPI task version. The executable was built on a POWER3 system on May 15,
2000. So, needless to say, there were no optimizations in it for POWER4 or the
Cluster 1600. We set it up to run 40 times with two tasks on each LPAR. The
results are shown in Table 4-22.

Table 4-22 Results from the pcm_04 IP and US test runs: 4-way/8 GB

Notice that US outperformed IP by a significant margin on these test runs. Also
notice that the variation in run times switched, again in favor of US. So, which
should you use, IP or US? The answer really depends on the nature of your
code. This may sound like bad news at first, but remember that the switch from IP
to US is simply an environment variable setting change. Try both, measure the
results (from multiple iterations), and then decide.

4.3.3 IP vs. US on larger LPARs
Next, we increased both LPARs from 4-way with 8 GB of memory to 8-way with
16 GB of memory. In the previous tests, one of the LPARs was running five MPI
tasks, but that LPAR only had four CPUs. We wanted to see if there would be any

Code Mean Max Min Std. Dev.

inverse_parallel_enabled 15.68 16.39 13.59 0.56

inverse_parallel 14.88 15.40 12.60 0.45

series_parallel 14.36 15.20 12.20 0.65

Code Mean Max Min Std. Dev.

pcm_04 (IP) 218.93 234.45 185.27 19.11

pcm_04 (US) 178.74 182.40 172.56 1.99
 Chapter 4. Investigations 123

improvement in run times if we used larger LPARs and did not oversubscribe the
CPUs.

The results from the parallel (MPI) code runs using IP protocol are shown in
Table 4-23.

Table 4-23 Results from the parallel (MPI) IP test runs: 8-way/16 GB

The results from the parallel (MPI) code runs using US protocol are shown in
Table 4-24.

Table 4-24 Results from the parallel (MPI) US test runs: 8-way/16 GB

From these results, it appears that increasing the size of the LPARs did not
significantly improve the run times over those from the smaller LPARs. However,
a new oddity showed up. Take a look at the Max column in both tables. On most
of the runs, there was at least one very large output. We do not have a good
explanation for this. It may be due to the increase in size of the LPARs, or it may
be due to other work that was occurring at the same time on the Cluster 1600.
Additional data is needed to further isolate the cause or causes.

4.3.4 IP vs. US with different hostfile
Next, we wanted to see if rearranging the hostfile would have any effect on the
run times. This was discussed in Chapter 3, “Features relevant to performance”
on page 35. We did not change the LPAR definitions from the previous runs.
They were both left as 8-way, 16 GB LPARs. The original and reorganized
hostfiles are shown in Example 4-35.

Example 4-35 IP vs. US hostfiles

#
Original hostfile

Code Mean Max Min Std. Dev.

inverse_parallel_enabled 13.24 19.20 12.79 1.09

inverse_parallel 12.74 23.80 12.19 1.83

series_parallel 12.42 18.40 11.99 1.04

Code Mean Max Min Std. Dev.

inverse_parallel_enabled 15.25 30.80 14.20 2.80

inverse_parallel 14.35 15.60 14.00 0.59

series_parallel 14.58 25.21 13.80 2.07
124 Performance and Tuning Considerations for the p690 in a Cluster 1600

#
c37f1rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com

#
Reorganized hostfile
#
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com
c37f2rp08.ppd.pok.ibm.com

The results from the parallel (MPI) code runs using IP protocol are shown in
Table 4-25.

Table 4-25 Results from the parallel (MPI) IP test runs new hostfile

The results from the parallel (MPI) code runs using US protocol are shown in
Table 4-26.

Table 4-26 Results from the parallel (MPI) US test runs new hostfile

Code Mean Max Min Std. Dev.

inverse_parallel_enabled 12.89 13.19 12.79 0.11

inverse_parallel 12.44 12.80 12.39 0.10

series_parallel 12.22 12.40 12.19 0.07

Code Mean Max Min Std. Dev.

inverse_parallel_enabled 13.60 14.60 12.79 0.83

inverse_parallel 13.26 14.40 12.40 0.81
 Chapter 4. Investigations 125

It appears that reorganizing the hostfile did make an improvement, especially in
the US runs. Additionally, the differences between the run times for IP and US
have narrowed quite a bit. Notice also that the large variation within the run times
has once again disappeared. This lends credibility to the supposition that the
anomalies were due to other things occurring on the Cluster 1600 rather than to
the change in LPAR definitions.

4.3.5 IP vs. US with MP_SHARED_MEMORY=yes
Next, we wanted to find out if turning shared memory on would have any effect
on the run times. By default, shared memory is turned off for POE jobs. To enable
it, you simply have to set the MP_SHARED_MEMORY environment variable to
yes. We did this in the IP and US wrapper scripts.

With shared memory turned on, the intra-LPAR MPI tasks use shared memory
for communication. However, the inter-LPAR MPI tasks still use the interconnect
(either IP or US) for communication.

The results from the parallel (MPI) code runs using IP protocol are shown in
Table 4-27.

Table 4-27 The parallel (MPI) IP test runs with shared memory on

The results from the parallel (MPI) code runs using US protocol are shown in
Table 4-28.

Table 4-28 The parallel (MPI) US test runs with shared memory on

series_parallel 13.12 14.00 12.19 0.79

Code Mean Max Min Std. Dev.

Code Mean Max Min Std. Dev.

inverse_parallel_enabled 12.89 13.07 12.79 0.10

inverse_parallel 12.45 12.80 12.39 0.10

series_parallel 12.26 12.40 12.20 0.09

Code Mean Max Min Std. Dev.

inverse_parallel_enabled 14.55 14.99 12.79 0.42

inverse_parallel 14.07 14.40 12.40 0.41

series_parallel 13.69 14.00 12.20 0.50
126 Performance and Tuning Considerations for the p690 in a Cluster 1600

Oddly enough, turning on shared memory does not appear to have helped, and,
in the case of US, it may even have hurt. (However, load on the Cluster 1600 may
again have been a factor with the US anomaly.) Perhaps affinity logical partitions
(ALPARs) would have been a better choice in this situation.

4.3.6 IP vs. US with single LPAR using shared memory
For our final set of test runs, we ran the codes on a single LPAR with shared
memory for all of the MPI communications. We changed the definition of one of
our LPARs from 8-way to 10-way, but left the memory at 16 GB. (This also
required that we change our NFS server LPAR from 4-way to 2-way to free up the
needed CPUs, but we left the memory at 4 GB.) We also had to modify the
hostfile, as shown in Example 4-36.

Example 4-36 The hostfile for the shared memory runs

[c37f1rp08][/ptmp/mgenty]> cat hostfile
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com
c37f1rp08.ppd.pok.ibm.com

For this series of tests, we ran both the IP and the US wrapper scripts. This was
for validation purposes. Given that shared memory was being used for the MPI
communications, we expected to see no significant differences between the run
times of the two different versions.

The results from the IP wrapper script parallel (MPI) code runs are shown in
Table 4-29.

Table 4-29 Shared memory runs with the IP wrapper script

The results from the US wrapper script parallel (MPI) code runs are shown in
Table 4-30 on page 128.

Code Mean Max Min Std. Dev.

inverse_parallel_enabled 12.84 13.39 12.79 0.11

inverse_parallel 12.31 12.40 12.19 0.10

series_parallel 12.01 12.20 11.99 0.04
 Chapter 4. Investigations 127

Table 4-30 Shared memory runs with the US wrapper script

These results are a bit surprising for a number of reasons:

� The second set of runs all have consistently higher average run times than
the first. This very well could just be random variation, and additional runs are
needed to prove or disprove this.

� Several of the runs had single, large outputs. For example, the
inverse_parallel US run had one with a value of 17.60 seconds. This is
roughly five seconds longer than any of the other test runs, and this data point
occurred in the middle of the series of runs, rather than at the beginning or
end. This is another case where additional runs are needed. We have no
good explanation for this anomaly, especially considering that (by chance) we
had dedicated use of the Cluster 1600 for these runs.

� Notice that the run times for both sets of runs are fairly close to the run times
for the IP runs with the reorganized hostfile (Table 4-25 on page 125) and also
the IP runs with shared memory and the reorganized hostfile (Table 4-27 on
page 126). This is even more evidence that these codes perform better with
IP communications than with US communications.

� We were expecting the shared memory numbers to be significantly better
than any of the previous runs, and they were not. The next logical step here
would be to run the codes through a profiler (such as xprofiler) to see where
the codes are spending the bulk of their time. Is the majority of the time being
spent in computation or communication? We suspect the former, and a run
through a profiler would enable us to prove it.

� These shared memory tests were run in a normal LPAR. Would their run
times improve in an ALPAR? We suspect so, and, at the very least, it certainly
seems like a logical place to use ALPARs.

4.3.7 IP vs. US investigation conclusions
Our conclusions from this investigation are as follows:

� The choice between IP or US is not clearly delineated. Some codes do better
with IP, some with US, and some do not seem to care either way. Because it is
so easy to switch between the two on a code-by-code basis, we recommend
that you try both, and pick whichever works best for the given code. If it is a

Code Mean Max Min Std. Dev.

inverse_parallel_enabled 12.99 13.59 12.79 0.17

inverse_parallel 12.67 17.60 12.39 0.81

series_parallel 12.35 12.60 12.20 0.13
128 Performance and Tuning Considerations for the p690 in a Cluster 1600

tie, we recommend that you use US, since the IP window is a shared
resource.

� We also recommend that, if possible, you use ALPARs to help improve the
locality of reference for the memory subsystem. In the best case, it will help.
In the worst case, it will do nothing.

� If your codes are at all complex, use tools like xprofiler and PE Benchmarker
(Appendix C, “Parallel tools” on page 173) to better understand their
performance both on the pSeries 690 and within the Cluster 1600. These
tools can help you make better performance and tuning configuration choices
based upon your specific application types and mixes.

As much as we would have liked to have had nice, tidy results from these
experiments with clear cut answers that option X is better than option Y, the real
world rarely, if ever, works that way. As you have seen, one set of experiments
typically leads to another, and each brings with it a whole new set of questions.
This is yet another place where the 80/20 rule seems to apply. Absolute answers
are hard to come by in the area of performance and tuning, but you can usually
get eighty percent of what you need with about twenty percent of the effort it
would take to reach certainty. Going with what the eighty percent suggests is, at
the very least, a good starting point, and, in many cases, is a good ending point
as well. However, you always need to keep in mind that performance and tuning
is an iterative process. Nothing remains static, and this applies to performance
and tuning settings as much as it applies to applications and application mixes.

4.4 CHARMm IP vs. US investigation

For this investigation, we used CHARMm, which is a popular molecular dynamics
code used in the Life Sciences discipline. A series of parallel MPI runs (2-way,
4-way, 8-way, and 16-way) were made to see if the relative performance of the IP
and US protocols changed as the number of tasks handled by the adapter
increased. We were particularly interested in seeing if we could observe the
effects discussed in Section 3.7.3, “Internet Protocol (IP) and User Space (US)
switch windows” on page 74. We were expecting CHARMm to be more
dependent on message passing bandwidth than on latency because it sends
large messages with low frequency rather than small messages with high
frequency. This behavior should favor IP over US.

Note: This investigation is primarily of interest for folks from the scientific and
technical community. Few, if any, business applications use US protocol
across the interconnect, so folks from the commercial community may want to
skip this section.
 Chapter 4. Investigations 129

The test system consisted of two normal LPARs in a single pSeries 690. Each
LPAR was 8-way with 16 GB of memory. Each LPAR was connected to the
single-plane SP Switch2 switch with a single SP Switch2 PCI Attachment
Adapter. All of the parallel runs in this investigation were set up to communicate
across the interconnect, and the MPI tasks were distributed equally among the
two LPARs. (The environment is more fully described in Section 4.4.1, “Setting
up the environment for IP vs. US testing” on page 130.) The software levels for
the two LPARs were the same as for Section 4.3, “IP vs. US investigation” on
page 113.

4.4.1 Setting up the environment for IP vs. US testing
Preparing the test environment involved these steps:

� Increasing the switch send pool and receive pool sizes

� Checking the other network options for unusual settings

� Preparing the POE and LoadLeveler environments

� Setting up the executables and hostfiles

� Creating the scripts for the tests

The first three steps were performed as in Section 4.3.1, “Setting up the
environment for IP vs. US testing” on page 114.

Example 4-37 Output from the st_status command during a 16-way US run

$ st_status c37f1rp08
**
Node c37f1rp08 adapter /dev/css0 window 0 returned ST_SWITCH_NOT_LOADED.
**
Status from node: c37f1rp08 User: tarkus
Load request from: c37f1rp08 Pid: 15594 Uid: 12112

Tip:

To view US switch adapter window, use:

/usr/bin/st_status <hostname>

The output shows the status of the switch table as well as the activity for each
of the US adapter windows. Example 4-37 on page 130 shows a sample
output.

Note that the st_status command does not provide information about IP
switch adapter window use. This is because there is a single IP switch adapter
window that is shared by all IP traffic across the interconnect.
130 Performance and Tuning Considerations for the p690 in a Cluster 1600

Job Description: 1812735943
Time of request: Thu_Jun_27_10:57:11_EDT_2002
Adapter: /dev/css0 Memory Requested: 1048576
Window id: 1
**
Status from node: c37f1rp08 User: tarkus
Load request from: c37f1rp08 Pid: 15594 Uid: 12112
Job Description: 1812735943
Time of request: Thu_Jun_27_10:57:11_EDT_2002
Adapter: /dev/css0 Memory Requested: 1048576
Window id: 2
**
Status from node: c37f1rp08 User: tarkus
Load request from: c37f1rp08 Pid: 15594 Uid: 12112
Job Description: 1812735943
Time of request: Thu_Jun_27_10:57:11_EDT_2002
Adapter: /dev/css0 Memory Requested: 1048576
Window id: 3
**
Status from node: c37f1rp08 User: tarkus
Load request from: c37f1rp08 Pid: 15594 Uid: 12112
Job Description: 1812735943
Time of request: Thu_Jun_27_10:57:11_EDT_2002
Adapter: /dev/css0 Memory Requested: 1048576
Window id: 4
**
Status from node: c37f1rp08 User: tarkus
Load request from: c37f1rp08 Pid: 15594 Uid: 12112
Job Description: 1812735943
Time of request: Thu_Jun_27_10:57:11_EDT_2002
Adapter: /dev/css0 Memory Requested: 1048576
Window id: 5
**
Status from node: c37f1rp08 User: tarkus
Load request from: c37f1rp08 Pid: 15594 Uid: 12112
Job Description: 1812735943
Time of request: Thu_Jun_27_10:57:11_EDT_2002
Adapter: /dev/css0 Memory Requested: 1048576
Window id: 6
**
Status from node: c37f1rp08 User: tarkus
Load request from: c37f1rp08 Pid: 15594 Uid: 12112
Job Description: 1812735943
Time of request: Thu_Jun_27_10:57:11_EDT_2002
Adapter: /dev/css0 Memory Requested: 1048576
Window id: 7
**
Status from node: c37f1rp08 User: tarkus
Load request from: c37f1rp08 Pid: 15594 Uid: 12112
 Chapter 4. Investigations 131

Job Description: 1812735943
Time of request: Thu_Jun_27_10:57:11_EDT_2002
Adapter: /dev/css0 Memory Requested: 1048576
Window id: 8
**
Node c37f1rp08 adapter /dev/css0 window 9 returned ST_SWITCH_NOT_LOADED.
**
Node c37f1rp08 adapter /dev/css0 window 10 returned ST_SWITCH_NOT_LOADED.
**

|
Windows 11-64 were also not loaded, output not shown.

|
**
Node c37f1rp08 adapter /dev/css0 window 65 returned ST_SWITCH_NOT_LOADED.

Setting up the executables and hostfiles
For this investigation, we used CHARMm Version 27b3. Some of the more
pertinent points with respect to the build are:

� The CHARMm executables were created on a pSeries 690 running AIX 5L
Version 5.1 Recommended Maintainence Package 5100-02 using XL Fortran
Version 7.1.1.2 and VAC/VAC++ Version 5.0.2. (The bulk of the code is
Fortran, but there is also some C.) The -qarch and -qtune options were
specified as auto. Optimization levels varied from routine to routine. The bulk
of the code was compiled with -O and -qmaxmem=-1, but certain routines
were compiled with -O3.

� The MASS Version 3.0 library was used.

� There were separate 32-bit executables for the parallel and serial versions.

The test system did not have a high-performance, shared file system, such as
GPFS. Rather than use NFS, we opted instead to install the CHARMm
executables and input files in duplicate directory structures on each LPAR.
(Remember, our goal was to measure communications performance not file
system performance.) The output files for each job submission were written to
the local file system on the LPAR from which the job was originally submitted.

As discussed in Section 3.6.5, “Hostfile considerations for MPI performance” on
page 64, the distribution of tasks for an MPI parallel job can be controlled through
the hostfile mechanism. For this investigation, we created hostfiles to distribute
tasks evenly between the two LPARs.

Two examples of hostfiles for an 8-way parallel job are shown in Example 4-38 on
page 133.
132 Performance and Tuning Considerations for the p690 in a Cluster 1600

Example 4-38 Sample hostfiles for IP vs. US investigation

$ cat host.08_f1f2
c37f1rp08
c37f1rp08
c37f1rp08
c37f1rp08
c37f2rp08
c37f2rp08
c37f2rp08
c37f2rp08
$
$ cat host.08_f1f2_sw
c37sn08
c37sn08
c37sn08
c37sn08
c37sn24
c37sn24
c37sn24
c37sn24
$

Unless otherwise noted, the hostfiles used for the runs favored nearest neighbor
communications (see Section 3.6.5, “Hostfile considerations for MPI
performance” on page 64). However, for comparison purposes, we also created
hostfiles to force sequential tasks to alternate between the two LPARs (that is,
c37f1rp08, c37f2rp08, c37f1rp08, c37f2rp08, and so on).
 Chapter 4. Investigations 133

Creating the run scripts
We created three very basic CHARMm run scripts to do the following:

� Set the necessary environment variables

� Select the correct hostfiles

� Submit the runs in the proper sequence

Important:

You may be wondering why we created two different hostfiles for the 8-way job
across the two LPARs.

The two hostfiles differ as follows:

� The first, host.08_f1f2, uses the en0 names (such as c37f1rp08 and
cc3f2rp08).

� The second, host.08_f1f2_sw, uses the css0 names (such as c37sn08 and
c37sn24).

The output of netstat -i shows the distinction:

$ netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
en0 1500 link#2 0.2.55.6a.ae.5e 36423029 0 35746140 0 0
en0 1500 9.114.189 c37f1rp08 36423029 0 35746140 0 0
css0 65504 link#3 30961280 0 31038412 0 0
css0 65504 9.114.189.6 c37sn08 30961280 0 31038412 0 0
lo0 16896 link#1 839718 0 840340 0 0
lo0 16896 27 localhost 839718 0 840340 0 0
lo0 16896 ::1 839718 0 840340 0 0
$

The reason for having two is:

� Runs that use US over the switch are best made with hostfiles that use en0
(host) names. Use of the switch is predetermined by the MP_EUILIB=us
environment variable setting.

� Runs that use IP over the switch are best made with hostfiles that use css0
names. This ensures that the switch will be used and eliminates the need
for setting the MP_EUIDEVICE environment variable.

The approach outlined here is merely a recommendation. How you set things
up will be determined partly by how your system is configured and partly by
personal preference. We will have more to say about this subject later in this
section.
134 Performance and Tuning Considerations for the p690 in a Cluster 1600

The scripts we created are by no means production CHARMm run scripts. They
do no checking for path settings, proper arguments, return codes, and so on.
They are meant specifically for these investigations and nothing more.

The three CHARMm run scripts are:

run_this The master wrapper script. It calls the run_charmm script
to submit the various CHARMm jobs.

run_charmm The script to submit a given CHARMm job. It takes three
arguments: number of processors, communication
protocol to be used, and input file.

run_solo The single-run CHARMm test script. It takes the same
arguments as the run_charmm script.

Example 4-39 is a listing of all three run scripts.

Example 4-39 Run scripts for CHARMm IP vs. US investigation

$ cat run_this

#!/bin/ksh
#
This script serves as the master for job submission.
Environment variables which must be set for all job submissions
are done at the beginning of the script. Environment variables which
must be set for specific jobs (that is, IP vs. US) are set just before the
invocation of those jobs.
#

#
Set "general" environment variables
#

export LOADL_INTERACTIVE_CLASS=parallel

#
Ensure IP uses same mode as US.
#
export MP_WAIT_MODE=poll
#
Ensures use of shared mem within node/LPAR when running across nodes/LPARs.
#
export MP_SHARED_MEMORY=yes
#
Generate additional messages. US will give host info.
#
export MP_INFOLEVEL=2
 Chapter 4. Investigations 135

export AIXTHREAD_SCOPE=S
export AIXTHREAD_MUTEX_DEBUG=OFF
export AIXTHREAD_COND_DEBUG=OFF
export AIXTHREAD_RWLOCK_DEBUG=OFF

#
Make CHARMm runs.
#
cd /user/tarkus/rundir/charmm

export MP_HOSTFILE=/user/tarkus/rundir/hostfiles/host.16_f1f2_sw
/user/tarkus/rundir/charmm/run_charmm 16 ip 5cb_A.inp ; wait
/user/tarkus/rundir/charmm/run_charmm 16 ip 5cb_B.inp ; wait

export MP_HOSTFILE=/user/tarkus/rundir/hostfiles/host.16_f1f2
/user/tarkus/rundir/charmm/run_charmm 16 us 5cb_A.inp ; wait
/user/tarkus/rundir/charmm/run_charmm 16 us 5cb_B.inp ; wait

export MP_HOSTFILE=/user/tarkus/rundir/hostfiles/host.08_f1f2_sw
/user/tarkus/rundir/charmm/run_charmm 8 ip 5cb_A.inp ; wait
/user/tarkus/rundir/charmm/run_charmm 8 ip 5cb_B.inp ; wait

export MP_HOSTFILE=/user/tarkus/rundir/hostfiles/host.08_f1f2
/user/tarkus/rundir/charmm/run_charmm 8 us 5cb_A.inp ; wait
/user/tarkus/rundir/charmm/run_charmm 8 us 5cb_B.inp ; wait

export MP_HOSTFILE=/user/tarkus/rundir/hostfiles/host.04_f1f2_sw
/user/tarkus/rundir/charmm/run_charmm 4 ip 5cb_A.inp ; wait
/user/tarkus/rundir/charmm/run_charmm 4 ip 5cb_B.inp ; wait

export MP_HOSTFILE=/user/tarkus/rundir/hostfiles/host.04_f1f2
/user/tarkus/rundir/charmm/run_charmm 4 us 5cb_A.inp ; wait
/user/tarkus/rundir/charmm/run_charmm 4 us 5cb_B.inp ; wait

#
Try different hostfile for fun
#

export MP_HOSTFILE=/user/tarkus/rundir/hostfiles/host.16_alt_sw
/user/tarkus/rundir/charmm/run_charmm 16 ip 5cb_AA.inp ; wait
/user/tarkus/rundir/charmm/run_charmm 16 ip 5cb_BB.inp ; wait

export MP_HOSTFILE=/user/tarkus/rundir/hostfiles/host.16_alt
/user/tarkus/rundir/charmm/run_charmm 16 us 5cb_AA.inp ; wait
/user/tarkus/rundir/charmm/run_charmm 16 us 5cb_BB.inp ; wait

$ cat run_charmm

#!/bin/ksh
136 Performance and Tuning Considerations for the p690 in a Cluster 1600

#
The three arguments are:
The number of processors,
The euilib choice,
The input file.
#

NUM_PROCS=$1
LIB_CHOICE=$2
INPUT=$3

echo "CHARMM run to be submitted. `date` "
echo " "
export MP_PROCS=$NUM_PROCS
echo "The number of processors is MP_PROCS =" $MP_PROCS

export MP_EUILIB=$LIB_CHOICE
echo "The choice of communication protocol is MP_EUILIB =" $MP_EUILIB

export chmstdin=$INPUT

timex /user/tarkus/hold/c27b3/exec/ibmsp/charmm >
${INPUT}_${MP_PROCS}_${MP_EUILIB}.out 2>&1
wait
echo "CHARMm run complete. `date` "
echo " "
echo " "

$ cat run_solo

#!/bin/ksh
#
The three arguments are:
The number of processors,
The euilib choice,
The input file.
#

#
Note that the executable chosen here is the parallel version.
#
NUM_PROCS=$1
LIB_CHOICE=$2
INPUT=$3

echo " "
export MP_PROCS=$NUM_PROCS
echo "The number of processors is MP_PROCS =" $MP_PROCS
 Chapter 4. Investigations 137

export MP_EUILIB=$LIB_CHOICE
echo "The choice of communication protocol is MP_EUILIB =" $MP_EUILIB

#
Set "general" environment variables
#

export LOADL_INTERACTIVE_CLASS=parallel

#
Ensure IP uses same mode as US.
#
export MP_WAIT_MODE=poll
#
Ensures use of shared mem within node/LPAR when running across nodes/LPARs.
#
export MP_SHARED_MEMORY=yes
#
Generate additional messages. US will give host info.
#
export MP_INFOLEVEL=2

export AIXTHREAD_SCOPE=S
export AIXTHREAD_MUTEX_DEBUG=OFF
export AIXTHREAD_COND_DEBUG=OFF
export AIXTHREAD_RWLOCK_DEBUG=OFF

export MP_HOSTFILE=/user/tarkus/rundir/hostfiles/host.16_f1f2_sw

echo "The input is " $INPUT
echo " "
#
CHARMm Ver C27B3 requires this.
#
export chmstdin=$INPUT
echo "CHARMM run to be submitted. `date` "
echo " "

timex /user/tarkus/hold/c27b3/exec/ibmsp/charmm >
${INPUT}_${MP_PROCS}_${MP_EUILIB}.out 2>&1
wait

echo "CHARMm run complete. `date` "
echo " "

Before proceeding, let us discuss some of the environment variables used in the
scripts. For illustration purposes, we will use the run_solo script, because it has
138 Performance and Tuning Considerations for the p690 in a Cluster 1600

no dependencies on the other scripts, and it contains all of the environment
variables that we will be discussing here.

The MP_EUILIB environment variable controls which communications protocol
will be used: US or IP.

When MP_EUILIB is set to us, communications will always occur over the switch
adapters present in the LPARs. Settings for the MP_EUDEVICE will be ignored
because the US protocol is only supported over the switch.

When MP_EUILIB is set to ip, communications can occur over either the switch
adapters or Ethernet adapters present in the LPARs. There are a number of ways
in which to specify the choices and various interactions can occur with each. The
controlling factors are:

� The settings for MP_EUIDEVICE, MP_RESD, and MP_RMPOOL

� Whether or not a hostfile is used

� Personal preference

The interaction of these factors is described in Table 1 on page 14 in the Parallel
Environment for AIX: Operations and Use, Volume 1, SA22-7425. For the IP
runs, we found it most convenient to use a hostfile comprised of the switch
names.

All runs were made with MP_SHARED_MEMORY set to yes and
MP_WAIT_MODE set to poll. The latter ensured that the behavior of a blocked
task was the same for both US and IP. (The default for US is poll, and the default
for IP is sleep.)

4.4.2 Running the tests for IP vs. US
The following conditions were observed for the test runs:

� All tests were run on the same two LPARs, and no other work was running at
the time.

� The switch was used for all but the serial runs.

� The same input was used for all runs, but was copied and renamed for
convenience.

� To help check consistency of results, two runs for each case (that is, a given
number of processors and a given choice of IP or US) were performed. (In
one case, an outlying data point caused us to perform another run as a
check.)

The results for all of the runs are shown in Table 4-31 on page 140.
 Chapter 4. Investigations 139

Table 4-31 Comparison of IP vs. US for CHARMm across two 8-way LPARs

Important: The run-time results shown in all of the tables in this investigation
represent the real time component of the timex command output for the runs.
The real time component is expressed in seconds.

Run Processors Protocol Real (sec)

A 1 (serial version) not applicable 1420.20

B 1 (serial version) not applicable 1420.20

A 2 ip 1358.46

B 2 ip 1362.02

A 2 us 1359.60

B 2 us 1359.28

A 4 ip 738.16

B 4 ip 736.82

A 4 us 737.27

B 4 us 740.69

A 8 ip 448.88

B 8 ip 608.78

C 8 ip 449.33

A 8 us 438.53

B 8 us 439.36

A 16 ip 347.41

B 16 ip 347.25

A 16 us 320.29

B 16 us 320.97

A 16 (alt) ip 369.15

B 16 (alt) ip 372.58

A 16 (alt) us 349.68

B 16 (alt) us 351.39
140 Performance and Tuning Considerations for the p690 in a Cluster 1600

The results from the runs are:

� IP and US performance was roughly the same for the 2-way and 4-way jobs.
US provided just slightly better performance for the 8-way runs. The
improvement was about two percent, which may be too close to the noise
level to be considered a real improvement. For the 16-way runs, the margin
between IP and US jobs grew. The US jobs were about ten percent faster.

� Reordering the hostfile from nearest neighbor to alternating between LPARs
decreased performance by about six percent.

These results were somewhat surprising because, as we mentioned at the
beginning of this investigation, we were expecting CHARMm to do better with IP
than with US. Our initial assumption was that CHARMm communication is more
bandwidth driven than latency driven. This was not the case, and, in fact, US
performed better than IP even on the 16-way runs.

The observation that US performs better than IP for the 16-way runs might be
explained by a change in the communication pattern as the number of tasks is
increased. For the same input, the message sizes for a 16-way job will be smaller
than those for a 2-way job or a 4-way job. Also, communication between tasks will
be more frequent as more tasks are being run. These trends favor US
communication over IP communication, and this was observed in the relative
performance of IP vs. US over the series of 2-way, 4-way, 8-way, and 16-way
runs.

Unfortunately, time did not allow additional runs and measurements to be made.
The next step would have been to use tools like PE Benchmarker and MPI Trace
(Appendix C, “Parallel tools” on page 173) to actually measure message
frequencies and sizes for the different runs. Only then could we begin to really
understand which factors were affecting the performance of the application.

4.4.3 CHARMm IP vs. US investigation conclusions
Perhaps it is no surprise that the general conclusions here are the same as those
in Section 4.3.7, “IP vs. US investigation conclusions” on page 128. However, it is
important to add that the choice of IP or US for a given application could
conceivably change as the problem type, size, and number of tasks change. We
encourage you to experiment with both and to not assume that because one
worked better than the other this time for this application that this will not
necessarily always be the case. Also, do not forget that there are tools available

Note: This is strictly speculation on our part. Yes, it is reasonable. Yes, it
makes sense. However, it has not been proven by measurement.
 Chapter 4. Investigations 141

to help you further understand the communications patterns within the
application.
142 Performance and Tuning Considerations for the p690 in a Cluster 1600

Chapter 5. Summary

Good performance and tuning begins with understanding. You would not think to
try to tune the performance of your automobile engine without first understanding
what a timing belt is or how a spark plug works. The same holds true for the
pSeries 690 in a Cluster 1600. You first need to understand things like what an
MCM is, what an LPAR is, how the memory subsystem works, and so on. That is
why we spent the first three chapters covering concepts. Our fundamental belief
is that if you do not know how it works, you cannot do a good job of tuning it.
Time spent in learning the internals is repaid many times over when it comes
time to solving a performance and tuning problem.

The pSeries 690 in a Cluster 1600 presents some very unique challenges in the
area of performance and tuning. If you think about it, what you are really dealing
with is a cluster within a cluster within a cluster:

� The Cluster 1600 is made up of multiple nodes, some or all of which can be
pSeries 690 LPARs.

� The pSeries 690 LPAR is made up of one or more MCMs, and multiple MCMs
can be viewed as a cluster from a performance and tuning standpoint.

� The pSeries 690 MCM is made up of a number of POWER4 chips, caches,
and interconnects.

In this environment, it is absolutely imperative that you first identify the
performance and tuning problem as either isolated or systemic. If you attack an
isolated case as though it is systemic or vice versa, you will create more

5

© Copyright IBM Corp. 2002. All rights reserved. 143

problems than you solve. For isolated problems, start at the lowest level and work
outwards. For systemic problems, start at the highest level and work inwards.
Here once again are the recommendations that we provided at the beginning of
this book:

� Know your system, and know your workload.

� Document before and after you make a change.

� Change one thing at a time, and have a backout plan.

� Know how to measure what you are changing.

� When possible, measure with more than one tool.

� Distinguish between systemic versus isolated performance issues.

� For isolated (node) problems, look for bottlenecks in the following order: CPU,
memory, disk I/O, and network. For systemic (cluster) problems, look for
bottlenecks in the opposite order.

We have tried to accomplish three things with this book:

1. We have tried to give you a better understanding of the pSeries 690
architecture as well as that of the new SP Switch2 with the SP Switch2 PCI
Attachment Adapter interconnect fabric.

2. We have tried to give you a better understanding of the performance-relevant
features of both of these items.

3. We have tried to give you some ideas about how to test and measure these
features in your own environment.

Along the way, we have seen some things (for example, ALPARs) that look useful
for many environments and others things (for example, memory affinity) that look
useful only in very specific cases. We also hope that we have shown how messy
and time consuming this kind of work can be, and, to that end, we go back to a
comment we made earlier. Begin by trusting the experts. Do not try to reinvent
the wheel. Many very smart people have spent many hours looking at this stuff.
Build on what they have done. Use it as your baseline, and move forward from
there.

Finally, we would like to suggest that in your quest for performance and tuning
knowledge, you be open to sources outside of the I/T world. The field of queueing
theory is another tangential area that has a wealth of relevant information for
performance and tuning of the pSeries 690 in a Cluster 1600. There are also a
number of writings in the field of manufacturing that are surprisingly germane to
this work as well. For example, the novel The Goal by Eliyahu Goldratt provides
some very good insights into how to find and work with bottlenecks in a system,
be it manufacturing (which is the subject of the book) or Cluster 1600s.
144 Performance and Tuning Considerations for the p690 in a Cluster 1600

Oh yeah, what about that missing $1.00? The friends initially paid $30.00 for the
room. The proprietor kept $25.00 and gave $5.00 to his son. The son kept $2.00
and returned $3.00 to the friends. So, each friend paid $9.00 for the room, and
three times $9.00 is $27.00, minus the $2.00 the son kept leaves the proprietor
with the $25.00 that he kept. Once you see it, you wonder why you did not see it
all along. The same holds true when tracking down and fixing performance and
tuning problems with the pSeries 690 in a Cluster 1600. Happy hunting.
 Chapter 5. Summary 145

146 Performance and Tuning Considerations for the p690 in a Cluster 1600

Appendix A. Scripts

Contained within this appendix are the scripts that we developed during the
course of our residency or ones that we brought with us and thought might be of
use to others.

A

© Copyright IBM Corp. 2002. All rights reserved. 147

The pmrinfo tool
The pmrinfo tool is a script that was developed at the National Center for
Atmospheric Research (NCAR) to quickly gather the software version
information that is needed when opening a problem management record (PMR)
with IBM.

Sample output
Example A-1 shows an example of the output from a pmrinfo run. The first
column is the software component, the second column is the fileset that was
used to derive the release level, and the third column is the release level.

Example: A-1 Output from a pmrinfo run

[bf0915en][/]> pmrinfo

NCAR SOFTWARE LEVELS: Thu Jun 6 09:34:47 MDT 2002.

AIX: bos.mp 4.3.3.79
PSSP: ssp.basic 3.2.0.16
LoadLeveler: LoadL.full 2.2.0.15
GPFS: mmfs.gpfs.rte 1.3.0.12
RVSD: vsd.rvsd.rvsdd 3.2.0.8
VSD: vsd.vsdd 3.2.0.13
RSCT: rsct.basic.rte 1.2.1.9
POE: ppe.poe 3.1.0.15
PESSL: pessl.rte.smp43 2.2.0.0
ESSL: essl.rte.smp43 3.2.0.0
FORTRAN: xlfrte 7.1.1.2
PERL: perl.rte 5.5.3.75
C: xlC.rte 5.0.2.1

[bf0915en][/]>

Script listing
Example A-2 is a listing of the pmrinfo script.

Example: A-2 The pmrinfo tool

#!/bin/ksh
#desc reports software levels for use in pmrs.
#
Purpose: This script reports most if not all of
148 Performance and Tuning Considerations for the p690 in a Cluster 1600

the software levels needed when opening
a PMR with IBM
#
Modification History
09/28/01 Marc Genty (NCAR) created

print "\n"
print "***"
print "Software Levels As Of: $(date)"
print "***"
print "\n"
#
AIX
#
_f="bos.mp"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "AIX: $_v"
#
PSSP
#
_f="ssp.basic"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "PSSP: $_v"
#
LoadLeveler
#
_f="LoadL.full"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "LoadLeveler: $_v"
#
GPFS
#
_f="mmfs.gpfs.rte"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "GPFS: $_v"
#
RVSD
#
_f="vsd.rvsd.rvsdd"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "RVSD: $_v"
#
VSD
#
_f="vsd.vsdd"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "VSD: $_v"
#
RSCT
 Appendix A. Scripts 149

#
_f="rsct.basic.rte"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "RSCT: $_v"
#
POE
#
_f="ppe.poe"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "POE: $_v"
#
PESSL
#
_f="pessl.rte.smp43"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "PESSL: $_v"
#
ESSL
#
_f="essl.rte.smp43"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "ESSL: $_v"
#
FORTRAN
#
_f="xlfrte"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "FORTRAN: $_v"
#
PERL
#
_f="perl.rte"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "PERL: $_v"
#
C
#
_f="xlC.rte"
_v=$(lslpp -l|grep $_f|grep $_f|head -1|awk '{print $1" "$2}')
print "C: $_v"

print "\n"
150 Performance and Tuning Considerations for the p690 in a Cluster 1600

The mkllqwcoll tool
The mkllqwcoll tool is also a script that was developed at the National Center for
Atmospheric Research (NCAR). It is used in conjunction with LoadLeveler. The
purpose of the tool is to build a temporary working collective (WCOLL) that
consists of the nodes on which a parallel job is currently executing. This WCOLL
file can then be used to further isolate and troubleshoot performance problems
on the nodes on which the job is running.

Sample output
Example A-3 shows an example of how mkllqwcoll can be used.

Example: A-3 An example mkllqwcoll session

[bf0915en][/]> llq|more
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
bf0913en.106214.0 dennis 6/6 09:21 R 1 all_spec bf2212en
bf0915en.113473.0 shields 6/6 06:23 R 50 csl_spec bf1207en
bf0913en.106215.0 mindeje 6/6 09:21 R 50 csl_pr bf0108en
bf0911en.106603.0 ecco 6/4 14:07 R 50 com_reg bf1215en
bf0909en.106495.0 olson 6/6 05:57 R 50 csl_reg bf1914en
bf0909en.106502.0 olson 6/6 06:35 R 50 csl_reg bf2015en
bf0915en.113476.0 olson 6/6 06:41 R 50 csl_reg bf2213en
bf0909en.106506.0 kutz2 6/6 06:59 R 50 csl_reg bf1512en
bf0911en.107054.0 shields 6/6 07:02 R 50 com_reg bf2105en
...

[bf0915en][/]> mkllqwcoll bf0915en.113473.0
bf1207en
bf0811en
bf0810en
bf0809en
bf0807en
bf0806en
bf0805en
bf0804en
bf0802en
bf0801en
bf0607en
bf0602en
bf0601en
bf0416en
bf0401en
bf0314en
bf0301en

Working Collective File Is: /tmp/llqwcoll.root
 Appendix A. Scripts 151

[bf0915en][/]> export WCOLL=/tmp/llqwcoll.root

[bf0915en][/]> dsh 'vmstat 1 2|tail -n 1'
bf1207en: 1 1 99681 388613 0 0 0 0 0 0 445 15279 1305 66 4 30 0
bf0811en: 1 2 93764 384373 0 0 0 0 0 0 591 17021 806 64 6 25 6
bf0810en: 4 1 94138 384944 0 0 0 0 0 0 422 10013 1306 56 2 42 0
bf0809en: 4 1 94436 370292 0 0 0 0 0 0 420 7560 1318 53 2 46 0
bf0807en: 1 1 94756 388558 0 0 0 0 0 0 420 7728 1095 52 0 47 0
bf0806en: 4 1 94735 371050 0 0 0 0 0 0 452 17559 1097 57 3 37 2
bf0805en: 4 1 94285 384634 0 0 0 0 0 0 428 9034 885 63 2 36 0
bf0804en: 4 1 94267 410088 0 0 0 0 0 0 419 6850 968 51 0 48 0
bf0802en: 2 1 94202 371507 0 0 0 0 0 0 426 9375 1170 54 1 45 0
bf0801en: 1 2 96331 367737 0 0 0 0 0 0 432 12538 1381 52 3 44 0
bf0607en: 3 1 94570 369968 0 0 0 0 0 0 419 9505 807 54 1 45 0
bf0602en: 1 1 95166 401388 0 0 0 0 0 0 427 7360 1180 54 1 45 0
bf0601en: 4 2 119925 361201 0 0 0 0 0 0 450 1574 137 99 0 0 0
bf0416en: 4 1 100554 401178 0 0 0 0 0 0 426 269 72 99 0 0 0
bf0401en: 4 2 93256 364999 0 0 0 0 0 0 437 383 91 99 0 0 0
bf0314en: 4 1 121628 354610 0 0 0 0 0 0 426 4287 76 99 0 0 0
bf0301en: 1 2 113328 354935 0 0 0 0 0 0 422 3635 246 29 1 70 0
[bf0915en][/]>

Script listing
Example A-4 is a listing of the mkllqwcoll script.

Example: A-4 The mkllqwcoll tool

#!/usr/local/bin/perl
#desc creates a working collective from an llq -l listing
#
Purpose: This script takes a job name as input and
produces a working collective file of the
nodes on which the job is running.
#
Modification History
12/20/01 Marc Genty (NCAR) created
#
$username = `/usr/bin/whoami`; chomp $username;
$nodename = `/usr/bin/hostname`; chomp $nodename;
($system_prefix) = ($nodename =~ /(^..).*/);
$wcollfile = "/tmp/llqwcoll.${username}";
$llq = "/usr/lpp/LoadL/full/bin/llq -l ";
#
Check For Command Line Options.
#
$args_supplied = 0;
$jobid_supplied = 0;
152 Performance and Tuning Considerations for the p690 in a Cluster 1600

while (@ARGV) {
 $arg = shift @ARGV;
 #
 # Get First Letter Of Command Line Option.
 #
 ($arg_check) = ($arg =~ /^(..).*/);
 #
 # Check If Verbose Output Is Being Requested.
 #
 if ($args_supplied lt 1) {
 $args_supplied++;
 if ($arg_check eq $system_prefix) {
 $jobid_supplied = 1;
 $jobid = $arg;
 } else {
 print "\nUsage: mkllqwcoll \<jobid\>\n\n";
 exit(1);
 }
 } else {
 print "\nUsage: mkllqwcoll \<jobid\>\n\n";
 exit(1);
 }
}
if (!$jobid_supplied) {
 print "\nUsage: mkllqwcoll \<jobid\>\n\n";
 exit(1);
}
#
Get The llq -l Output And Pull Out The Node Names.
#
open(PIPE, "$llq $jobid |") || die "Llq Pipe Open Failed: $!.\n";
@llqlong = <PIPE>; close(PIPE);

@output = ();

foreach $llq_line (@llqlong)
{
 if ($llq_line =~ m/.*bf.*en::.*/) {
 $llq_line =~ s/.*(bf.*en)::.*/$1/;
 push @output, sprintf("$llq_line");
 print "$llq_line";
 }
}
#
Create The WCOLL File.
#
$outref = \@output;
@tosub = ($wcollfile,$outref);
make_wcoll(@tosub);
 Appendix A. Scripts 153

#
That's All.
#
exit(0);

##
subroutine definitions.
##

--
void make_wcoll(@tosub)
--
sub make_wcoll {
 return unless @_;
 my ($wcollfile,$outerf) = @_;
 my (@output) = @$outref;
 my $out_line;
 unless (-e $wcollfile) {
 system "touch $wcollfile";
 }
 open(WCOLL ,">$wcollfile") || die "Could Not Open ${wcollfile}: $!.\n";
 foreach $out_line (@output) {
 print WCOLL $out_line;
 }
 close(WCOLL);
 print "\nWorking Collective File Is: ${wcollfile}\n\n";
}

The fix_nlspath tool
If you go to run parallel code through POE or LoadLeveler and receive a bunch of
error message about the NLSPATH not being correctly set, try running this script
as root. It may fix the problem. If it does, you will need to rerun it after each
system reboot.

Script listing
Example A-5 is a listing of the fix_nlspath script.

Example: A-5 The fix_nlspath tool

#!/usr/bin/ksh
#
Descrption: Workaround Script To Fix The NLSPATH.

Note: You will need to change the llq_line parsing to map to your node naming
convention.
154 Performance and Tuning Considerations for the p690 in a Cluster 1600

#
Location: /ssg/bin/fix_nlspath
#
Modification History

02/20/02 mgenty Created.
#
chnlspath
/usr/lib/nls/msg/en_US/%N:/usr/lib/nls/msg/en_US/%N.cat:/usr/dt/lib/nls/msg/en_
US/%N:/usr/dt/lib/nls/msg/en_US/%N.cat
#
NOTE: The "chnlspath /usr/lib/nls/..." above is all one continuous line!
#

The mk_temp_dir
This script (Example A-6) creates a temporary directory mounted on a ramdisk.
For input, the script needs the size of the ramdisk and the mount directory. It then
creates a ramdisk, formats it, creates a file system mount point, and mounts it.

Example: A-6 mk_temp_dir listing

#!/bin/ksh
echo "Please input the size of ramdisk"
echo "Default size is 4194304"
read NEW_SIZE
T="txt"
if ["NEW_SIZET" = "$T"]
then
RAMDISK_SIZE=4194304
else
RAMDISK_SIZE=$NEW_SIZE
fi
echo "Please input the mount directory"
echo "Default is /tmp/mnt"
read NEW_MOUNTDIR
if ["$NEW_MOUNTDIR$T" = "$T"]
then
MOUNT_DIR=/tmp/mnt
else
MOUNT_DIR=$NEW_MOUNTDIR
fi
echo "Creating ramdisk ..."

Important: You will need to rerun this script each time the system or LPAR is
rebooted. You may want to add it to one of your system startup files, like
/etc/rc.local.
 Appendix A. Scripts 155

NAME_RAMDISK=`mkramdisk $RAMDISK_SIZE`
if [$? -ne 0]
then
echo "RAM_DISK_ADD failed: Not enough space"
exit 1
fi
NUMBER_RAMDISK=`echo $NAME_RAMDISK|cut -c14-`
echo "Creating file system ..."
mkfs -V jfs /dev/ramdisk$NUMBER_RAMDISK
if [$? -ne 0]
then
echo "Some Error occurred ..."
exit 2
fi
echo "Creating directory $MOUNT_DIR ..."
mkdir -p $MOUNT_DIR
if [$? -ne 0]
then
echo "Some Error occurred ..."
exit 3
fi
echo "Mounting /dev/ramdisk$NUMBER_RAMDISK in $MOUNT_DIR"
mount -V jfs -o nointegrity /dev/ramdisk$NUMBER_RAMDISK $MOUNT_DIR
if [$? -ne 0]
then
echo "Some Error occurred ..."
exit 4
fi

The rm_temp_dir
This script (Example A-7) removes the temporary directory mounted on a
ramdisk and destroys the ramdisk. The script first shows the mounted file
systems and the ramdisks, then requests the number of the ramdisk to be
deleted.

Example: A-7 rm_temp_dir listing

#!/bin/ksh
K="txt"
NR=`df -k|grep -c ramdisk`
if [$NR -eq 0]
then
echo "There is no ramdisk file system mounted"
exit 1
fi
df -k |grep ramdisk
156 Performance and Tuning Considerations for the p690 in a Cluster 1600

echo "Which file system mounted on a ramdisk do you want to remove? "
echo "ex:0, 1, 2,..."
read NAME_RAMDISK
if [$NAME_RAMDISK$K = $K]
then
echo "ok BYE ..."
exit 0
fi
MOUNT_POINT=`df -k |grep -w ^/dev/ramdisk$NAME_RAMDISK | awk '{ print $7 }'`
echo "Unmounting $MOUNT_POINT"
umount -f $MOUNT_POINT
if [$? -ne 0]
then
echo "Some Error occurred ..."
exit 2
fi
echo "Removing /dev/ramdisk$NAME_RAMDISK ..."
rmramdisk /dev/ramdisk$NAME_RAMDISK
if [$? -ne 0]
then
echo "Some Error occurred ..."
exit 2
fi
 Appendix A. Scripts 157

158 Performance and Tuning Considerations for the p690 in a Cluster 1600

Appendix B. MPI sample programs

The following programs are taken from Chapter 2 of the Parallel Environment for
AIX: Hitchhiker's Guide, SA22-7424. They were used for the IP vs. US
investigation in Chapter 4, “Investigations” on page 77. These programs and
associated documentation are available for download at:

http://www.ibm.com/servers/eserver/pseries/library/sp_books/pe.html

There were three programs used for the investigation. They are:

� The inverse_parallel_enabled.c MPI program

� The inverse_parallel.c MPI program

� The series_parallel.c MPI program

The MPI codes were compiled with separate make files, which are also shown
here.

B

© Copyright IBM Corp. 2002. All rights reserved. 159

http://www-1.ibm.com/servers/eserver/pseries/library/sp_books/pe.html

The inverse_parallel_enabled.c MPI program
The inverse_parallel_enabled.c source code is listed in Example B-1.

Example: B-1 The inverse_parallel_enabled.c source code

/***
 *
 * Hitchhiker's Guide to the IBM PE
 * Matrix Inversion Program - serial version enabled for parallel environment
 * Chapter 2 - The Answer is 42
 *
 * To compile:
 * mpcc -g -o inverse_parallel_enabled inverse_parallel_enabled.c
 *
 ***/

#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include<errno.h>
#include<mpi.h>

float determinant
 (float **matrix,int size, int * used_rows, int * used_cols, int depth);
float coefficient(float **matrix,int size, int row, int col);
void print_matrix(FILE * fptr,float ** mat,int rows, int cols);
float test_data[8][8] = {
 {4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0},
 {4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 },
 {3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0},
 {3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 },
 {2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 },
 {2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 },
 {1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 } ,
 {1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } ,
};
#define ROWS 8

int me, tasks, tag=0;

int main(int argc, char **argv)
{

 float **matrix;
 float **inverse;
 int rows,i,j;
 float determ;
 int * used_rows, * used_cols;
160 Performance and Tuning Considerations for the p690 in a Cluster 1600

 MPI_Status status[ROWS]; /* Status of messages */
 MPI_Request req[ROWS]; /* Message IDs */

 MPI_Init(&argc,&argv); /* Initialize MPI */
 MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/
 MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */

 rows = ROWS;

 /* Allocate markers to record rows and columns to be skipped */
 /* during determinant calculation */
 used_rows = (int *) malloc(rows*sizeof(*used_rows));
 used_cols = (int *) malloc(rows*sizeof(*used_cols));

 /* Allocate working copy of matrix and initialize it from static copy */
 matrix = (float **) malloc(rows*sizeof(*matrix));
 inverse = (float **) malloc(rows*sizeof(*inverse));
 for(i=0;i<rows;i++)
 {
 matrix[i] = (float *) malloc(rows*sizeof(**matrix));
 inverse[i] = (float *) malloc(rows*sizeof(**inverse));
 for(j=0;j<rows;j++)
 matrix[i][j] = test_data[i][j];
 }

 /* Compute and print determinant */
 printf("The determinant of\n\n");
 print_matrix(stdout,matrix,rows,rows);
 determ=determinant(matrix,rows,used_rows,used_cols,0);
 printf("\nis %f\n",determ);
 fflush(stdout);

 for(i=0;i<rows;i++)
 {
 for(j=0;j<rows;j++)
 {
 inverse[j][i] = coefficient(matrix,rows,i,j)/determ;
 }
 }

 printf("The inverse is\n\n");
 print_matrix(stdout,inverse,rows,rows);

 /* Wait for all parallel tasks to get here, then quit */
 MPI_Barrier(MPI_COMM_WORLD);
 MPI_Finalize();

 return 0;
 Appendix B. MPI sample programs 161

}

float determinant
 (float **matrix,int size, int * used_rows, int * used_cols, int depth)
 {
 int col1, col2, row1, row2;
 int j,k;
 float total=0;
 int sign = 1;

 /* Find the first unused row */
 for(row1=0;row1<size;row1++)
 {
 for(k=0;k<depth;k++)
 {
 if(row1==used_rows[k]) break;
 }
 if(k>=depth) /* this row is not used */
 break;
 }
 assert(row1<size);

 if(depth==(size-2))
 {
 /* There are only 2 unused rows/columns left */

 /* Find the second unused row */
 for(row2=row1+1;row2<size;row2++)
 {
 for(k=0;k<depth;k++)
 {
 if(row2==used_rows[k]) break;
 }
 if(k>=depth) /* this row is not used */
 break;
 }
 assert(row2<size);

 /* Find the first unused column */
 for(col1=0;col1<size;col1++)
 {
 for(k=0;k<depth;k++)
 {
 if(col1==used_cols[k]) break;
 }
 if(k>=depth) /* this column is not used */
 break;
 }
 assert(col1<size);
162 Performance and Tuning Considerations for the p690 in a Cluster 1600

 /* Find the second unused column */
 for(col2=col1+1;col2<size;col2++)
 {
 for(k=0;k<depth;k++)
 {
 if(col2==used_cols[k]) break;
 }
 if(k>=depth) /* this column is not used */
 break;
 }
 assert(col2<size);

 /* Determinant = m11*m22-m12*m21 */
 return matrix[row1][col1] * matrix[row2][col2] - matrix[row2][col1] *
 matrix[row1][col2];
 }

 /* There are more than 2 rows/columns in the matrix being processed */
 /* Compute the determinant as the sum of the product of each element */
 /* in the first row and the determinant of the matrix with its row */
 /* and column removed */
 total = 0;

 used_rows[depth] = row1;
 for(col1=0;col1<size;col1++)
 {
 for(k=0;k<depth;k++)
 {
 if(col1==used_cols[k]) break;
 }
 if(k<depth) /* This column is used */
 continue;
 used_cols[depth] = col1;
 total += sign * matrix[row1][col1] *
 determinant(matrix,size,used_rows,used_cols,depth+1);
 sign=(sign==1)?-1:1;
 }
 return total;
 }

void print_matrix(FILE * fptr,float ** mat,int rows, int cols)
{
 int i,j;
 for(i=0;i<rows;i++)
 {
 for(j=0;j<cols;j++)
 {
 fprintf(fptr,"%10.4f ",mat[i][j]);
 Appendix B. MPI sample programs 163

 }
 fprintf(fptr,"\n");
 }
 fflush(fptr);
}

float coefficient(float **matrix,int size, int row, int col)
{
 float coef;
 int * ur, *uc;

 ur = malloc(size*sizeof(matrix));
 uc = malloc(size*sizeof(matrix));
 ur[0]=row;
 uc[0]=col;
 coef = (((row+col)%2)?-1:1)*determinant(matrix,size,ur,uc,1);
 return coef;
}

The make file for the inverse_parallel_enabled program is shown in Example B-2.

Example: B-2 The inverse_parallel_enabled make file

CC = mpcc
CFLAGS = -g
LIBDIR = -L/usr/lpp/ppe.poe/lib
LIBS = -lmpi
INCLUDE = -I/usr/lpp/ppe.poe/include

inverse_parallel_enabled: inverse_parallel_enabled.c
 $(CC) -o inverse_parallel_enabled $(INCLUDE) $(CFLAGS) $(LIBDIR) $(LIBS)
inverse_parallel_enabled.c

The inverse_parallel.c MPI program
The inverse_parallel.c source code is listed in Example B-3.

Example: B-3 The inverse_parallel.c source code

/***
 *
 * Hitchhiker's Guide to the IBM PE
 * Matrix Inversion Program - First parallel implementation
 * Chapter 2 - The Answer is 42
 *
 * To compile:
 * mpcc -g -o inverse_parallel inverse_parallel.c
 *
164 Performance and Tuning Considerations for the p690 in a Cluster 1600

 ***/

#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include<errno.h>
#include<mpi.h>

float determinant
 (float **matrix,int size, int * used_rows, int * used_cols, int depth);
float coefficient(float **matrix,int size, int row, int col);
void print_matrix(FILE * fptr,float ** mat,int rows, int cols);

float test_data[8][8] = {
 {4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0},
 {4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 },
 {3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0},
 {3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 },
 {2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 },
 {2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 },
 {1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 } ,
 {1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } ,
};
#define ROWS 8
int me, tasks, tag=0;

int main(int argc, char **argv)
{
 float **matrix;
 float **inverse;
 int rows,i,j;
 float determ;
 int * used_rows, * used_cols;

 MPI_Status status[ROWS]; /* Status of messages */
 MPI_Request req[ROWS]; /* Message IDs */

 MPI_Init(&argc,&argv); /* Initialize MPI */
 MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/
 MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */

 rows = ROWS;

 /* We need exactly one task for each row of the matrix plus one task */
 /* to act as coordinator. If we don't have this, the last task */
 /* reports the error (so everybody doesn't put out the same message */
 if(tasks!=rows+1)
 {
 if(me==tasks-1)
 Appendix B. MPI sample programs 165

 fprintf(stderr,"%d tasks required (matrix rows plus one\n",rows+1);
 exit(-1);
 }

 /* Allocate markers to record rows and columns to be skipped */
 /* during determinant calculation */
 used_rows = (int *) malloc(rows*sizeof(*used_rows));
 used_cols = (int *) malloc(rows*sizeof(*used_cols));

 /* Allocate working copy of matrix and initialize it from static copy */
 matrix = (float **) malloc(rows*sizeof(*matrix));
 for(i=0;i<rows;i++)
 {
 matrix[i] = (float *) malloc(rows*sizeof(**matrix));
 for(j=0;j<rows;j++)
 matrix[i][j] = test_data[i][j];
 }

 /* Everyone computes the determinant (to avoid message transmission */
 determ=determinant(matrix,rows,used_rows,used_cols,0);

 if(me==tasks-1)
 { /* The last task acts as coordinator */
 inverse = (float **) malloc(rows*sizeof(*inverse));
 for(i=0;i<rows;i++)
 {
 inverse[i] = (float *) malloc(rows*sizeof(**inverse));
 }
 /* Print the determinant */
 printf("The determinant of\n\n");
 print_matrix(stdout,matrix,rows,rows);
 printf("\nis %f\n",determ);
 /* Collect the rows of the inverse matrix from the other tasks */
 /* First, post a receive from each task into the appropriate row */
 for(i=0;i<rows;i++)
 {
 MPI_Irecv(inverse[i],rows,MPI_REAL,i,tag,MPI_COMM_WORLD,&(req[i]));
 }
 /* Then wait for all the receives to complete */
 MPI_Waitall(rows,req,status);
 printf("The inverse is\n\n");
 print_matrix(stdout,inverse,rows,rows);
 }
 else
 { /* All the other tasks compute a row of the inverse matrix */
 int dest = tasks-1;
 float *one_row;
 int size = rows*sizeof(*one_row);
166 Performance and Tuning Considerations for the p690 in a Cluster 1600

 one_row = (float *) malloc(size);
 for(j=0;j<rows;j++)
 {
 one_row[j] = coefficient(matrix,rows,j,me)/determ;
 }
 /* Send the row back to the coordinator */
 MPI_Send(one_row,rows,MPI_REAL,dest,tag,MPI_COMM_WORLD);
 }

 /* Wait for all parallel tasks to get here, then quit */
 MPI_Barrier(MPI_COMM_WORLD);
 MPI_Finalize();

}

float determinant
 (float **matrix,int size, int * used_rows, int * used_cols, int depth)
 {
 int col1, col2, row1, row2;
 int j,k;
 float total=0;
 int sign = 1;

 /* Find the first unused row */
 for(row1=0;row1<size;row1++)
 {
 for(k=0;k<depth;k++)
 {
 if(row1==used_rows[k]) break;
 }
 if(k>=depth) /* this row is not used */
 break;
 }
 assert(row1<size);

 if(depth==(size-2))
 {
 /* There are only 2 unused rows/columns left */

 /* Find the second unused row */
 for(row2=row1+1;row2<size;row2++)
 {
 for(k=0;k<depth;k++)
 {
 if(row2==used_rows[k]) break;
 }
 if(k>=depth) /* this row is not used */
 break;
 }
 Appendix B. MPI sample programs 167

 assert(row2<size);

 /* Find the first unused column */
 for(col1=0;col1<size;col1++)
 {
 for(k=0;k<depth;k++)
 {
 if(col1==used_cols[k]) break;
 }
 if(k>=depth) /* this column is not used */
 break;
 }
 assert(col1<size);

 /* Find the second unused column */
 for(col2=col1+1;col2<size;col2++)
 {
 for(k=0;k<depth;k++)
 {
 if(col2==used_cols[k]) break;
 }
 if(k>=depth) /* this column is not used */
 break;
 }
 assert(col2<size);

 /* Determinant = m11*m22-m12*m21 */
 return matrix[row1][col1] * matrix[row2][col2] - matrix[row1][col2] *
 matrix[row2][col1];
 }

 /* There are more than 2 rows/columns in the matrix being processed */
 /* Compute the determinant as the sum of the product of each element */
 /* in the first row and the determinant of the matrix with its row */
 /* and column removed */
 total = 0;

 used_rows[depth] = row1;
 for(col1=0;col1<size;col1++)
 {
 for(k=0;k<depth;k++)
 {
 if(col1==used_cols[k]) break;
 }
 if(k<depth) /* This column is used -- skip it*/
 continue;
 used_cols[depth] = col1;
 total += sign * matrix[row1][col1] *
 determinant(matrix,size,used_rows,used_cols,depth+1);
168 Performance and Tuning Considerations for the p690 in a Cluster 1600

 sign=(sign==1)?-1:1;
 }
 return total;

 }

void print_matrix(FILE * fptr,float ** mat,int rows, int cols)
{
 int i,j;
 for(i=0;i<rows;i++)
 {
 for(j=0;j<cols;j++)
 {
 fprintf(fptr,"%10.4f ",mat[i][j]);
 }
 fprintf(fptr,"\n");
 }
}

float coefficient(float **matrix,int size, int row, int col)
{
 float coef;
 int * ur, *uc;

 ur = malloc(size*sizeof(matrix));
 uc = malloc(size*sizeof(matrix));
 ur[0]=row;
 uc[0]=col;
 coef = (((row+col)%2)?-1:1)*determinant(matrix,size,ur,uc,1);
 return coef;
}

The make file for the inverse_parallel program is shown in Example B-4.

Example: B-4 The inverse_parallel make file

CC = mpcc
CFLAGS = -g
LIBDIR = -L/usr/lpp/ppe.poe/lib
LIBS = -lmpi
INCLUDE = -I/usr/lpp/ppe.poe/include

inverse_parallel: inverse_parallel.c
 $(CC) -o inverse_parallel $(INCLUDE) $(CFLAGS) $(LIBDIR) $(LIBS)
inverse_parallel.c
 Appendix B. MPI sample programs 169

The series_parallel.c MPI program
The series_parallel.c source code is listed in Example B-5.

Example: B-5 The series_parallel.c source code

/***
 *
 * Hitchhiker's Guide to the IBM PE
 * Series Evaluation - parallel version
 * Chapter 2 - The Answer is 42
 *
 * To compile:
 * mpcc -g -o series_parallel series_parallel.c -lm
 *
 ***/

#include<stdlib.h>
#include<stdio.h>
#include<math.h>
#include<mpi.h>

double angle[] = { 0.0, 0.1*M_PI, 0.2*M_PI, 0.3*M_PI, 0.4*M_PI,
 0.5*M_PI, 0.6*M_PI, 0.7*M_PI, 0.8*M_PI, 0.9*M_PI, M_PI };

int main(int argc, char **argv)
{
 double data, divisor, partial, sine;
 int a, t, angles = sizeof(angle)/sizeof(angle[0]);
 int me, tasks, term;

 MPI_Init(&argc,&argv); /* Initialize MPI */
 MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/
 MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */

 term = 2*me+1; /* Each task computes a term */
 /* Scan the factorial terms through the group members */
 /* Each member will effectively multiply the product of */
 /* the result of all previous members by its factorial */
 /* term, resulting in the factorial up to that point */
 if(me==0)
 data = 1.0;
 else
 data = -(term-1)*term;
 MPI_Scan(&data,&divisor,1,MPI_DOUBLE,MPI_PROD,MPI_COMM_WORLD);

 /* Compute sine of each angle */
 for(a=0;a<angles;a++)
 {
170 Performance and Tuning Considerations for the p690 in a Cluster 1600

 partial = pow(angle[a],term)/divisor;
 /* Pass all the partials back to task 0 and */
 /* accumulate them with the MPI_SUM operation */
 /* the result of all previous members by its factorial */
 /* term, resulting in the factorial up to that point */
 if(me==0)
 data = 1.0;
 else
 data = -(term-1)*term;
 MPI_Scan(&data,&divisor,1,MPI_DOUBLE,MPI_PROD,MPI_COMM_WORLD);

 /* Compute sine of each angle */
 for(a=0;a<angles;a++)
 {
 partial = pow(angle[a],term)/divisor;
 /* Pass all the partials back to task 0 and */
 /* accumulate them with the MPI_SUM operation */
 MPI_Reduce(&partial,&sine,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);
 /* The first task has the total value */
 if(me==0)
 {
 printf("sin(%lf) + %lf\n",angle[a],sine);
 }
 }
 MPI_Finalize();
}

The make file for the series_parallel program is shown in Example B-6.

Example: B-6 The series_parallel make file

CC = mpcc
CFLAGS = -g -lm
LIBDIR = -L/usr/lpp/ppe.poe/lib
LIBS = -lmpi
INCLUDE = -I/usr/lpp/ppe.poe/include

series_parallel: series_parallel.c
 $(CC) -o series_parallel $(INCLUDE) $(CFLAGS) $(LIBDIR) $(LIBS)
series_parallel.c
 Appendix B. MPI sample programs 171

172 Performance and Tuning Considerations for the p690 in a Cluster 1600

Appendix C. Parallel tools

This appendix provides introductory information on two tools that are useful for
understanding performance and tuning issues associated with parallel codes.
These codes are typically found in the scientific and technical arena. The tools
covered here are:

� PE Benchmarker

� MPI Trace

C

© Copyright IBM Corp. 2002. All rights reserved. 173

PE Benchmarker
The PE Benchmarker is a suite of applications and utilities that you can use to
analyze the performance of programs run within the IBM Parallel Environment for
AIX. The PE Benchmarker suite consists of:

� The Performance Collection Tool (PCT)

� A set of Unified Trace Environment (UTE) utilities

� The Profile Visualization Tool (PVT)

The PE Benchmarker suite is described in more detail in the next paragraphs.

� The Performance Collection Tool (PCT)

This tool enables you to collect either MPI and user event data or hardware
and operating system profiles for one or more application processes (or
tasks). This tool is built on dynamic instrumentation technology, the Dynamic
Probe Class Library (DPCL). Unlike more traditional tools for collecting
message-passing and other performance information, the PCT, because it is
built on DPCL, enables you to insert and remove instrumentation probes into
the target application while the target application is running. More traditional
tools require the application to be instrumented through compilation or linking.
This often results in more instrumentation being inserted into the application
than is actually needed, and so such tools are more likely to create situations
in which the instrumented version of the application is no longer
representative of the actual, uninstrumented, version of the application. Since
the PCT enables you to make the decision of what data is collected at run
time, this typically results in a more acceptable intrusion cost of the
instrumentation. What’s more, the files output by the PCT are output on each
machine running instrumented processes rather than on a single, centralized,
machine. This means that your analysis can be efficiently scaled to collect
information on a large number of processes running on a large number of
nodes.

� A set of Unified Trace Environment (UTE) utilities

When you collect MPI and user event traces using the PCT, the collected
information is saved, on each machine running instrumented processes, as a
standard AIX event trace file. The UTE utilities enable you to convert one or
more of these AIX trace files into UTE interval files. While an AIX event trace
file has a time stamp indicating the point in time when an event occurred, UTE
interval files take this information to also determine how long an event lasts
before encountering the next event. Because they include this duration
information, UTE interval files are easier to visualize than traditional AIX event
trace files. The UTE utilities are:
174 Performance and Tuning Considerations for the p690 in a Cluster 1600

– The uteconvert utility, which converts AIX event trace records into UTE
interval trace files

– The utemerge utility, which merges multiple UTE interval files into a single
UTE interval file

– The utestats utility, which generates statistics tables from UTE interval files

– The slogmerge utility, which converts and merges UTE interval files into a
single SLOG file for analysis within Argonne National Laboratory’s
Jumpshot tool

� The Profile Visualization Tool (PVT)

When you collect hardware and operating system profiles using the PCT, the
collected profile information is saved on each machine running instrumented
processes as netCDF (network Common Data Form) files. The PVT can read
netCDF files and summarize the profile information in reports.

There are various tools in the PE Benchmarker toolset that work together to
enable you to analyze the performance of programs run within the IBM AIX
Parallel Environment. Please note that Jumpshot is not part of the PE
Benchmarker toolset, but is instead a public domain tool developed at Argonne
National Laboratory. It is mentioned here because PE Benchmarker provides the
slogmerge utility for converting UTE files into the SLOG format required by
Jumpshot.

There is a procedure for collecting and analyzing data using the PE
Benchmarker toolset. This procedure starts with the PCT. When using the PCT,
you must select the type of data you are collecting — either MPI and user event
trace data or hardware and operating system performance data. You use the
PCT to connect to existing processes, or start processes running (which also
connects to the processes). By connect to processes, we mean that the PCT
establishes a communication connection that enables it to control the process’
execution (suspend, resume, and terminate the process), and also instrument
the process with data collection probes. Data files containing the collected
information will be generated on each machine running at least one instrumented
process. The format of the files generated depends on the type of data you are
collecting:

� If you are collecting MPI and user event trace data, standard AIX trace files
will be generated. You will first need to take the AIX trace files output by the
PCT and convert them, using the uteconvert utility, into UTE interval files. If
you want to view statistical tables of the information contained in the UTE
interval files, you can use the utestats utility. You can optionally merge
multiple UTE files into a single UTE file using the utemerge utility before using
the utestats utility to generate the statistical tables. If you instead want to view
the information contained in the UTE interval files graphically, you can convert
them into SLOG files which are readable by Argonne National Laboratory’s
 Appendix C. Parallel tools 175

Jumpshot tool. To convert UTE interval files into SLOG files, you use the
slogmerge utility. The slogmerge utility can convert a single UTE interval file
into a single SLOG file, or it can convert multiple UTE interval files into a
single, merged, SLOG file.

� If you are collecting hardware performance data, netCDF files will be
generated. You can use the PVT to generate graphs and reports of the
information contained in the netCDF files.

For more information about the PE Benchmarker Toolset, see Parallel
Environment for AIX: Operations and Use, Volume 1, SA22-7425, and Parallel
Environment for AIX: Operation and Use, Volume 2, SA22-7426. Both can be
downloaded from:

http://www.ibm.com/servers/eserver/pseries/library/sp_books/pe.html

MPI Trace
The MPI Trace tool enables you to see how much time your codes are spending
doing message passing calls. If you recall from the IP vs. US Investigation in
Chapter 4, “Investigations” on page 77, the best we could do with the timex
command was to show the real time component. The MPI Trace tool provides
much finer granularity and is very useful for finding load imbalances within the
code.

Example C-1 shows a sample of output from the tool. The output consists of
three sections:

� The top section shows the accumulated message passing time in each MPI
routine, then a summary of total elapsed time, total communication time, and
so on.

� The middle section shows the message-size distribution.

� The bottom section shows the hardware counter output (obtained from the
pmapi interface).

Example: C-1 Sample MPI Trace output

--
MPI Routine #calls avg. bytes time(sec)
--
MPI_Comm_size 2 0.0 0.000
MPI_Comm_rank 2 0.0 0.000
MPI_Isend 117688 78153.9 4.546
MPI_Recv 1 1901592.0 0.901
MPI_Irecv 117688 78153.9 3.132
MPI_Waitall 58844 0.0 459.150
MPI_Bcast 107 29903.4 7.827
176 Performance and Tuning Considerations for the p690 in a Cluster 1600

http://www-1.ibm.com/servers/eserver/pseries/library/sp_books/pe.html

MPI_Barrier 4801 0.0 35.685
MPI_Gather 2 4.0 0.000
MPI_Gatherv 28 2328480.0 71.437
MPI_Allgatherv 4800 2449440.0 303.591
MPI_Allreduce 311 12.0 9.512
MPI_Alltoallv 15600 244332.8 592.384
--
total communication time = 1488.165 seconds.
total elapsed time = 9972.984 seconds.
user cpu time = 9953.430 seconds.
system time = 11.430 seconds.
maximum memory size = 650752 KBytes.

--
Message size distributions:

MPI_Isend #calls avg. bytes time(sec)
 16824 0.0 0.530
 6012 4.0 0.212
 1804 1368.0 0.014
 1804 2152.0 0.061
 9600 63368.0 0.376
 81644 105128.0 3.354

MPI_Recv #calls avg. bytes time(sec)
 1 1901592.0 0.901

MPI_Irecv #calls avg. bytes time(sec)
 16824 0.0 0.076
 6012 4.0 0.032
 1804 1368.0 0.006
 1804 2152.0 0.020
 9600 63368.0 0.215
 81644 105128.0 2.783

MPI_Bcast #calls avg. bytes time(sec)
 6 4.0 7.624
 17 15.5 0.000
 36 24.1 0.102
 12 44.0 0.000
 8 85.0 0.000
 5 221.6 0.000
 4 292.0 0.000
 1 524.0 0.000
 3 1268.0 0.000
 2 3036.0 0.000
 3 4881.3 0.000
 4 9548.0 0.001
 2 26208.0 0.002
 Appendix C. Parallel tools 177

 2 40872.0 0.010
 1 128144.0 0.003
 1 2869488.0 0.082

MPI_Gather #calls avg. bytes time(sec)
 2 4.0 0.000

MPI_Gatherv #calls avg. bytes time(sec)
 28 2328480.0 71.437

MPI_Allgatherv #calls avg. bytes time(sec)
 4800 2449440.0 303.591

MPI_Allreduce #calls avg. bytes time(sec)
 310 4.0 9.510
 1 2496.0 0.001

MPI_Alltoallv #calls avg. bytes time(sec)
 7800 189728.0 520.050
 7800 298937.7 72.334

--
Power-4 counter report for group 60.
 pm_hpmcount2, Hpmcount group for computation intensity analysis
--
 36926785537 FPU executed FDIV instruction (PM_FPU_FDIV)
 5877311570772 FPU executed multiply-add instruction (PM_FPU_FMA)
 3711681267059 FPU0 produced a result (PM_FPU0_FIN)
 3588092240172 FPU1 produced a result (PM_FPU1_FIN)
 12880187645642 Processor cycles (PM_CYC)
 570900890071 FPU executed store instruction (PM_FPU_STF)
 15182533250822 Instructions completed (PM_INST_CMPL)
 3813369774432 LSU executed Floating Point load instruction (PM_LSU_LDF)

The MPI Trace tool was developed and is supported by Bob Walkup of the IBM
Watson Research Center. It is provided as-is, meaning that there is no formal
support. However, Bob does provide support for it as his time permits. The MPI
Trace package consists of a set of wrapper libraries and a couple of README
files. It is available from Bob directly. You can reach him via e-mail at:

walkup@us.ibm.com

The hardware counter portion of the MPI Trace tool has dependencies on the
bos.pmapi.* filesets, which are part of the standard AIX distribution.

Example C-2 on page 179 is a listing of both of the README files that come in
the mpi_trace.tar file.
178 Performance and Tuning Considerations for the p690 in a Cluster 1600

Example: C-2 MPI Trace README files

cat README

There are three main files:

libmpitrace.a : wrappers for low-overhead MPI elapsed-time measurements
libmpihpm.a : the trace wrappers above plus power-4 hpm counter data
libmpiprof.a : provides elapsed-time call-graph data for MPI routines

To build these files, just type "make".

For 64-bit MPI, you have to build the trace-wrappers using the same
AIX version that you will use to run the code. The libraries above
should contain both 32-bit and 64-bit code; it is only necessary to
add -q32 or -q64 when linking. If you don't have AIX 5 and power-4,
just comment-out the hpm stuff in the makefile.

To use the trace wrappers, just link with libmpitrace.a, and then run the
application. By default each MPI task will create files in the working
directory with names: mpi_profile.0, mpi_profile.1, ... If you want to
reduce the number of output files, you can set the environment variable
TRACE_SOME to "yes" or "1" (or anything else), then you will get output
from only some of the tasks. The output is written when the application
calls MPI_Finalize().

To use libmpihpm.a, link with libmpihpm.a -lpmapi. Choose a power-4
performance counter group (for example group 5):

 export HPM_GROUP=5

then run the code. The pmapi library (bos.pmapi.lib) must be installed.
A list of counter groups is in the file power4.ref. By default, you will
only get counter group 60. The counters are started in MPI_Init(), and
stopped in MPI_Finalize(). You get an output file for each task:
mpi_profile_group5.0, mpi_profile_group5.1, ...
where the group number is identified, and the MPI task id is appended onto
the file name. In general you will have to run with several different values
for HPM_GROUP. Good choices are groups 5, 53, 56, 58, and 60.

To use libmpiprof.a, the code must be compiled with "-qtbtable=full" or
"-g" as an additional compiler option. The wrappers in libmpiprof.a use a
trace-back method to find the name of the routine that called the MPI
function, and this only works if there is a full trace-back table. Just
link the application with libmpiprof.a and run the code. Each MPI task
writes an output file, mpi_profile.0, ..., in the working directory when
the application calls MPI_Finalize().

For all of the versions you can choose to bind MPI tasks to processors if
 Appendix C. Parallel tools 179

you set an environment variable BIND_TASKS to anything. When BIND_TASKS is
set, the wrapper for MPI_Init will attempt to bind the MPI tasks to
processors in a way that spreads the tasks out over the available cpus
as much as possible.

The main objective for libmpitrace.a was to provide a very low overhead
elapsed-time measurement of MPI routines for applications written in
any mixture of Fortran, C, and C++. The overhead for the current
version is about 1 microsecond per call. The read_real_time() routine
is used to measure elapsed-time, with a direct method to convert
timebase structures into seconds. This is much faster than using rtc()
or the time_base_to_time() conversion routine.

The main objective for libmpiprof.a was to provide an elapsed-time profile
of MPI routines including some call-graph information so that one can
identify communication time on a per-subroutine basis. For example, if an
application has MPI calls in routines "main", "exchange", and "transpose",
the profile would show how much communication time was spent in each of
these routines, including a detailed breakdown by MPI function. This
provides a more detailed picture of message-passing time at the expense
of a bit more overhead: ~5 microseconds per call. In some applications
there are message-passing wrappers, and one would like the profile to
indicate the name of the routine that called the wrapper, not the name
of the routine that called the MPI function. In this case, one can set an
environment variable TRACEBACK_LEVEL=2, and then run the application
(which must be compiled with either -g or -qtbtable=full, and linked with
libmpiprof.a). It may also be useful to try higher levels such as
TRACEBACK_LEVEL=3, which associates the message-passing time with the
great-grandparent in the call chain.

Note: The Fortran trace wrappers are in lower case (mpi_send). If the
Fortran compiler option -qextname is used, all external names will have
an underscore added. To get the names in the wrappers to match, you will
have to re-compile mpi_trace.c with -DEXTNAME. Similarly, if Fortran source
is compiled with the -qmixed option, then the names of MPI routines are not
mapped to lower case, and you have to make sure that the wrappers have names
that match the case used in the application. Check the makefile for the
-DEXTNAME option.

Note: The current version is not thread-safe, so it should only be used
in single-threaded applications, or when only one thread makes MPI calls.
The wrappers could be made thread-safe by adding mutex locks around updates
of static data - which would add some additional overhead.

Recent fixes/features (March 2002):

 (1) Fixed the filename for output files. Older versions could fail in
 applications that use multiple communicators and task reordering.
180 Performance and Tuning Considerations for the p690 in a Cluster 1600

 (2) All Fortran wrappers now have the Fortran profiling interface,
 so codes that use MPI_BOTTOM should run correctly.

 (3) Both 32-bit and 64-bit objects are packaged into the trace libraries.
 Must build the 64-bit library for the target AIX level.

 (4) Output from power-4 counters has been added (for AIX 5 and power-4
 only) with libmpihpm.a

 (May 2002)

 (5) The option to bind tasks to processors was added.

Please send corrections/suggestions to walkup@us.ibm.com.

cat README.timing_wrappers

The purpose of timing_wrappers.o is just to get a summary of the aggregate
user and system time, and the aggregate memory used in a parallel
application, as requested in many benchmarks. To get timing and memory
info, link your app with timing_wrappers.o and run it.

The source file "timing_wrappers.c" has simple wrappers for MPI_Init and
MPI_Finalize (both the Fortran and C/C++ interfaces). All they do is to start
a wall-clock timer in MPI_Init(), and stop the timer in MPI_Finalize(). Also,
there are calls to getrusage() so that the memory utilization, user-time, and
system-time is measured for each MPI task. The wrapper for MPI_Finalize()
gathers all of the info to task 0, which prints the output to standard out.

You can use these wrappers to get timing information without any
source-code modification; just link with timing_wrappers.o. This
object file only has wrappers for MPI_Init() and MPI_Finalize(), so
it will not affect message-passing performance at all. You can either
add the timing_wrappers.o file to your makefile, or just re-link your
binary:

mv your.x old.x
mpxlf timing_wrappers.o old.x -o your.x #(use mpxlf or mpcc)

If you have any linker options, like -bmaxdata, you need to use them when
you re-link. Also, if you have additional shared-libraries such as -qsmp,
they need to be included as well. There may be duplicate symbol warnings,
but the re-link should work, and you will get a useful summary in standard
out when MPI_Finalize() is called. If the re-link above is too complicated,
just add timing_wrappers.o to your makefile, and re-build the binary.
 Appendix C. Parallel tools 181

182 Performance and Tuning Considerations for the p690 in a Cluster 1600

Appendix D. Integrating p690 in an IBM
eServer Cluster 1600

IBM ^ Cluster 1600 unifies the existing offerings of RS/6000 SP and
Cluster Enterprise Servers (CES), and is managed by IBM cluster management
software, the Parallel System Support Programs (PSSP). A collection from the
following systems can be part of this Cluster, including:

� Legacy RS/6000 SP
� Stand-alone servers, such as RS/6000 S70/S7A and pSeries p680
� Rack-mounted servers, such as pSeries 660 model 6H1/6M1/6H0
� New LPAR-supported servers, such as pSeries 690 and pSeries 670

IBM ^ Cluster 1600 builds on the success of RS/6000 SP technology,
extends the benefits to more hardware building blocks, and provides flexibility for
creating a new Cluster configuration.

D

Note: This appendix was originally published as Configuring p690 in an IBM
^ Cluster 1600, REDP0187 by Carsten Hoffmann, Rene Akeret, Dino
Quintero, and Subramanian Kannan.
© Copyright IBM Corp. 2002. All rights reserved. 183

IBM eServer pSeries 690
The pSeries 690 and p670 family of servers incorporates the advanced
technologies available on the IBM ^ line, as well as technology
enhancements from IBM research divisions. The results are high-performance,
high-availability servers that offer enhanced features and benefits.

The pSeries 690 and 670 are based on a modular design. It features a Central
Electronics Complex (CEC) where memory and processors, power subsystem,
and I/O drawers are installed. Optional battery backups can provide energy for an
emergency shutdown in case of a power failure. The POWER4 chip offers
advanced microprocessors, with an SMP design, in a single silicon substrate.

Building on the IBM ^ zSeries heritage, the pSeries 690 supports logical
partitioning. Each server can be divided into as many as 16 partitions, each with
its own set of system resources, such as processors, memory, and I/O.

To use the new LPAR feature, the Hardware Management Console (HMC) is
required. If the p690 runs in SMP mode only, you do not need an HMC. However,
to integrate the p690 into the Cluster 1600, you must use an HMC.

For more details about the pSeries 690, see the IBM ^ pSeries 690
System Handbook, SG24-7040.

What is an LPAR
Logical partitions (also called LPARs) are the most outstanding feature of the
pSeries 690 because they enable the system to run several operating system
instances concurrently. In a logical partition, an operating system instance runs
with dedicated resources:

� Processors

� Memory

� I/O slots

These resources are assigned to the logical partition. The total amount of
assignable resources is limited by the physically installed resources in the
system. In an SP-attached p690 environment, an LPAR is seen from the CWS as
a thin node.
184 Performance and Tuning Considerations for the p690 in a Cluster 1600

What is an HMC
The IBM Hardware Management Console for pSeries (HMC) provides a standard
user interface for configuring and operating partitioned and SMP systems. The
HMC supports the system with features that allow a system administrator to
manage configuration and operation of partitions in a system, as well as to
monitor the system for hardware problems. It consists of a 32-bit Intel-based
desktop PC with a DVD-RAM drive. In an SP-attached p690 environment, you
must use at least one HMC for up to four p690 servers.

The HMC’s main functions include:

� Providing a console for system administrators and service representatives to
manage system hardware

� Creating and maintaining a multiple partition (LPAR) environment on a
managed system

� Detecting, reporting, and storing changes in hardware conditions
� Acting as a service focal point for service representatives to determine an

appropriate service strategy (Ethernet connection required)
� Displaying a virtual operating system session terminal (VTERM) for each

partition

For further information about the HMC and its functions, consult the HMC
Operations Guide, SA38-0590.

IBM eServer p690 in a Cluster
As shown in Figure D-1 on page 186, you can attach the p690 to the IBM
^ Cluster 1600 either in Full System Partition mode (also known as SMP
mode), or LPAR mode. Therefore, the configuration is different for each mode.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 185

Figure D-1 p690 attachment in a Cluster

For detailed explanations about the network connections see “Connectivity
between CWS, HMC, and p690” on page 187.

CWS, HMC, and p690 functions
In this section, we describe the functions of CWS, HMC and p690, and explain
how they work together in an IBM ^ Cluster 1600 environment.

The role of the CWS for an attached p690 server
The role of the CWS for an attached p690 configuration continues to be the same
as it would be in a classic SP configuration or in an SP-attached server
configuration. The difference is that the CWS is not directly connected via an
RS232 serial line interface to the p690 server. The CWS is connected to the
p690 via the HMC on an Ethernet LAN.

p690/p670
LPAR Mode

p690/p670
SMP Mode

SP
Frame

CWS

HMC

RS232 TTY

SPLAN Ethernet

RS232 TTY

Trusted
Ethernet

RS232 TTYFrame
Supervisor
186 Performance and Tuning Considerations for the p690 in a Cluster 1600

The role of the HMC in a Cluster 1600
In a Cluster 1600 the HMC has some additional tasks, as described in “What is
an HMC” on page 185. The p690 server has no frame supervisor card like the SP
frame or SP node supervisor cards. The HMC provides the CWS with all
information needed for managing hardware control of the p690 server like an
normal SP frame. The HMC provides the following functions:

� Shows the LPAR definitions to the CWS

� Provides the CWS with the hardware status of the p690 server (for example,
power information)

� Manages the LPAR definitions of the p690 server

The HMC is connected via an RS232 line to the p690 server, and via an Ethernet
connection to the CWS.

Connectivity between CWS, HMC, and p690
In this section, we explain the connectivity between CWS, HMC, and p690 in an
IBM ^ Cluster 1600 environment.

The RS232 connection
In classic SP environments, the CWS has a direct connection to each SP frame
and to each SP-attached server to perform the following tasks:

� Controlling the hardware (for example, power on power off)
� Transferring the Kerberos tickets and password files
� Communicating with the firmware (for example, node conditioning)

The SPLAN
The SPLAN can be described as the management LAN for the SP system. The
SPLAN is essential for the Cluster 1600 and for the following PSSP software
management tasks:

� RSCT communications (for example, hosts responds)
� NIM operations
� Systems management communications

Note: In an p690-attached configuration, there is no direct RS232 connection
between the CWS and p690. The CWS is connected to the HMC via Ethernet,
and the HMC is connected to the p690 server using an RS232 serial line.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 187

The RMC LAN
The Resource Monitoring and Control (RMC) LAN is an Ethernet connection
between the HMC and the p690 server in an LPAR or SMP mode. Using this
connection, the HMC gathers data from active LPARs or SMP servers about the
health of the system, and acts as a service focal point for service representatives
to determine an appropriate service strategy. It is possible to have the RMC
traffic over the SPLAN. For more information about the RMC LAN, read the HMC
Operations Guide, SA38-0590.

The trusted LAN
Since there is no direct RS232 connectivity between the HMC and the CWS, it is
mandatory to have a trusted network connection between the HMC and the CWS
to transfer Kerberos tickets and password files. A separate trusted LAN is
recommended, but not necessary. If your SPLAN is secure, you do not need to
set up an additional trusted LAN connection. You can send your secure sensitive
data over the existing SPLAN.

What is a trusted network
A trusted network is one where all hosts on the same network (LAN) are
regarded as trusted, according to site security policies and procedures governing
the hosts. Data on a trusted network can be “seen” by all trusted hosts (and
users on trusted hosts), but the implied trust among and between the hosts
assumes the data will not be intercepted or modified. Therefore, by way of
implied mutual trust, traffic flowing across the trusted network is regarded as safe
from unwanted or unintended interception or tampering. However, it does not
imply that the data on the trusted network is itself private or encrypted.

Configuration examples
In this section, we show different possible network connections. In this appendix,
however, all other definitions are focused on the example shown in Figure D-2 on
page 189.

Note: The I/O drawer of the p690 server does not support the BNC type
network adapters. If you want to integrate the p690 server into an existing IBM
^ Cluster 1600 with a BNC SPLAN, you will need a HUB for the
SPLAN to provide BNC and twisted pair (TP) cabling in one network.

Important: The RMC LAN is not mandatory! It is possible to use the function
of the RMC LAN over the SPLAN.
188 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure D-2 The RMC LAN uses the SPLAN and the trusted network

Figure D-3 shows a Cluster with one physical network for RMC, SPLAN, and
trusted LAN.

Figure D-3 Cluster with only one physical network

Figure D-4 on page 190 shows two physical networks, one for SPLAN and one
for trusted network. RMC LAN uses the SPLAN.

CW SHM C

p690/p670
LPAR M ode

RS232 TTY

SPLAN Ethernet

trusted LAN

CWS

SPLAN Ethernet / RMC LAN / trusted LAN

HMC

p690/p670
LPAR Mode

RS232 TTY
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 189

Figure D-4 Cluster with two physical networks

Figure D-5 shows three separate physical networks for SPLAN, RMC LAN, and
trusted network.

Figure D-5 Each function has its own physical network

Mapping LPAR numbers and node numbers
Depending on the operating mode of the p690 server, the CWS will see the
system as either:

� An SP Frame with one thin node in the Full System Partition mode
� An SP Frame with several thin nodes in LPAR mode

CWSHMC

p690/p670
LPAR Mode

RS232 TTY

SPLAN Ethernet / RMC LAN

trusted LAN

CWSHMC

p690/p670
LPAR Mode

RS232 TTY

SPLAN Ethernet

trusted LAN

RMC LAN
190 Performance and Tuning Considerations for the p690 in a Cluster 1600

Before you add the p690 server to the Cluster as an SP frame, you should first
configure all the needed LPARs using the HMC. When the HMC is connected,
and the CWS and the HMC are up, the hardmon daemon defines all LPARs as
logical nodes when you add the Frame Information into the SDR from the CWS.
Refer to “Limitations” on page 239 for more information about the rules.

If the p690 is used in LPAR mode, an LPAR is mapped as a thin node in the
system configuration. In the SDR, the node is defined as a thin node and the
p690 server is defined as an SP frame. Example D-1 shows the partial output
from the spmon -d command on the CWS. In this example, the p690 is configured
as frame 4 and each LPAR is configured as one thin node.

Example: D-1 spmon -d command output (partial)

------------------------------- Frame 4 -----------------------------
 Host Key Env Front Panel LCD/LED
Slot Node Type Power Responds Switch Error LCD/LED Flashes
---- ---- ----- ----- -------- ------- ----- ---------------- -------
 1 49 thin on yes N/A N/A LCDs are blank N/A
 2 50 thin on yes N/A N/A LCDs are blank N/A
 3 51 thin on yes N/A N/A LCDs are blank N/A
 4 52 thin on yes N/A N/A LCDs are blank N/A
 5 53 thin on yes N/A N/A LCDs are blank N/A
 6 54 thin on yes N/A N/A LCDs are blank N/A

To identify which LPAR on the HMC is related to which node number on the
CWS, compare the partial printout of the splstdata -n command, as shown in
Example D-2, and the partition definitions of the HMC in Figure D-6 on page 192.
As you see, the LPAR_name in the splstdata output is the same as the name of
the partition list on the HMC screen shot.

Example: D-2 Matching LPAR name and node numbers

[c119s][/]> splstdata -n
 List Node Configuration Information

node#frame#slot#slotsinitial_hostnamereliable_hostnamedce_hostname
default_routeprocessor_typeprocessors_installeddescriptionon_switch LPAR_name
--- ------------
49 4 1 1 c119f4rp01.ppd.poc119f4rp01.ppd.po"" 9.114.76.126MP
4 7040-6811 c119f4rp01
50 4 2 1 c119f4rp02.ppd.poc119f4rp02.ppd.po"" 9.114.76.126MP
4 7040-6811 c119f4rp02
51 4 3 1 c119f4rp03.ppd.poc119f4rp03.ppd.po"" 9.114.76.126MP
2 7040-6811 c119f4rp03
52 4 4 1 c119f4rp04.ppd.poc119f4rp04.ppd.po"" 9.114.76.126MP
2 7040-6811 c119f4rp04
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 191

53 4 5 1 c119f4rp05.ppd.poc119f4rp05.ppd.po"" 9.114.76.126MP
2 7040-6811 c119f4rp05
54 4 6 1 c119f4rp06.ppd.poc119f4rp06.ppd.po"" 9.114.76.126MP
2 7040-6811 c119f4rp06

Figure D-6 Screen shot of the HMC where you find the LPAR names

For more Information about node numbering when an LPAR is reconfigured, refer
to “Node numbering” on page 233.

Figure D-7 on page 193 shows the node numbering pattern that is valid for 9076
frames when using thin nodes. This node numbering pattern is also valid for
p690 frames where each LPAR definition is a thin node. The LPAR numbers
correspond to the slot numbers from thin nodes.
192 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure D-7 Example node numbering in frames (9076 and p690)

Planning considerations
To attach a p690 to an IBM ^ Cluster 1600, you need to do some
additional planning. The planning considerations should include new hardware
and software, as well as the existing configuration.

Control workstation
Since the IBM ^ Cluster 1600 still needs a CWS, make sure the existing
(or new) CWS meets the requirements. The software requirements are
discussed in “AIX and PSSP software requirements” on page 206.

Supported hardware
The following hardware is currently supported for use as a control workstation:

� RS/6000 7024 Models E20 and E30
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 193

� RS/6000 7025 Model F30
� RS/6000 7025 Model F40
� RS/6000 7025 Model F50 and F80
� IBM ^ pSeries 620 Model 6F1 – 7025-6F1
� RS/6000 7026 Models H10 and H50
� RS/6000 7026 Model H80
� IBM ^ pSeries 660 Model 6H1 – 7026-6H1
� RS/6000 7043 Models 140, and 240
� RS/6000 7044 Model 170 – 44P-170
� IBM ^ pSeries 660 Model 6C1/6E1

For a complete list with all features and limitations, see RS/6000 SP: Planning
Volume 2, Control Workstation and Software Environment, GA22-7281.

Control workstation failure
In an IBM ^ Cluster 1600 environment with attached servers, the High
Availability CWS (HACWS) is not supported. So to get around that, you might
consider the following alternatives:

� Use LVM mirroring to avoid data lost by disk failure.

� Always have an up-to-date backup of the rootvg as well as /spdata.

� Put the /spdata in a separate volume group on a shared disk configuration.

� Use a different file system for PTFs and non-BOS lppsources to reduce the
restore time of /spdata.

Network connections
As discussed in Chapter 8, “Control workstations”, in RS/6000 SP: Planning,
Volume 1, Hardware and Physical Environment, GA22-7280, the CWS needs a
connection to the SPLAN. In an IBM ^ p690 environment, the control
workstation also needs a trusted network connection to the HMC.

The trusted network connection can be one of the following:

� A separate physical LAN
� The SPLAN network

Therefore, if your trusted network is a separate LAN, you need an additional
Ethernet adapter on your control workstation. For further details refer to
“Connectivity between CWS, HMC, and p690” on page 187.
194 Performance and Tuning Considerations for the p690 in a Cluster 1600

Hardware Management Console
Since the Hardware Management Console (HMC) is also part of the Cluster, you
need to consider the following.

Failure of the HMC
To avoid having the HMC become, potentially, a single point of failure, we
recommend that you connect each p690 to two different HMCs. That way, in the
event of an HMC failure, you are still capable of reaching the p690 through the
second HMC connection. For further details, see “CWS with two HMCs and four
p690s” on page 239. Depending on how many p690 servers you have, additional
8-Port async adapters may be required.

Network connections
As discussed in “Connectivity between CWS, HMC, and p690” on page 187, the
HMC needs a trusted network connection to the control workstation. The trusted
network connection can be either one of the following:

� A separate network
� An existing SPLAN connection

The RMC service can use the SPLAN. Therefore, if you want to use the RMC
services, the HMC can use the trusted network connection between the control
workstation and the HMC. In fact, the HMC does not need a connection directly
to the SPLAN. However, if you choose to have this connection, some additional
IP settings need to be made on the control workstation.

IBM eServer p690
There are several ways to attach the p690 servers to the IBM ^ Cluster
1600:

� In Full System Partition mode (also called SMP mode)
� In LPAR mode
� In an SP Switch or SP Switch2-attached or switchless configuration

We discuss each method more fully in the following sections.

Full System Partition mode
If the p690 is running in Full System Partition mode, it is just like any other
attached server. You will have one single AIX image using all the system
resources.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 195

LPAR mode
If LPARs are configured and used on the p690, the planning considerations are
quite different from those of other attached servers, especially in regard to the
following cases:

� Adapters in general

You cannot share device adapters between active LPARs. So each adapter
can only be assigned to one active LPAR at a time. Hence, you probably need
more adapters in LPAR mode than running the p690 in SMP mode only. For
more information about all supported adapters and their limitations and
placements, refer to RS/6000 & pSeries PCI Adapter Placement Reference,
SA38-0538.

� AIX system disks

Each LPAR needs at least one disk for the AIX Operating System. You cannot
share the SCSI adapter connected to that disk between active LPARs, so all
disks connected to that adapter belong to the same LPAR. One I/O drawer
provides four internal SCSI adapters. Up to four disks can be connected to a
single SCSI adapter.

� SPLAN adapters

You must connect each LPAR to the SPLAN. For further information, see
“SPLAN” on page 197.

Switch-attached
The IBM ^ p690 can be Switch- and SP Switch2-attached. We discuss
the differences in this section.

� SP Switch

All LPARs must be Switch-attached. Therefore, you cannot have some LPARs
Switch-attached and some not. For SP Switch limitations, refer to
“Limitations” on page 239.

� SP Switch2

The SP Switch2 gives you more flexibility. All LPARs can be Switch-attached,
but it is not necessary. In fact, with SP Switch2, you can have some LPARs
not Switch-attached at all.

For HPC environments, you might also consider using the SP Switch2 in a
dual plane configuration for more performance. For SP Switch2 limitations,
refer to “Limitations” on page 239.

Note: LPAR resources defined to PSSP need to be uniquely tied to a single
LPAR. Therefore, the rootvg, SPLAN adapter, and any other adapter defined
to PSSP must be defined to only a single LPAR.
196 Performance and Tuning Considerations for the p690 in a Cluster 1600

Profiles
A profile allocates the system resources for a single LPAR. While creating a
profile, you need to know exactly which resources—and how many—you want to
allocate. Since an LPAR can have more than one profile, only one can be the
default profile. PSSP uses only the default profile.

SPLAN
Like any other SP node or attached server, each AIX image needs a SPLAN
connection. If the p690 is running in Full System Partition mode, it needs only
one Ethernet adapter for the SPLAN. When LPARs are configured and active,
each LPAR needs a separate SPLAN connection.

Some earlier SP installations still use BNC cabling. Since the Ethernet adapters
on the p690 support twisted pair cabling only, you may have to purchase a
network HUB for connectivity.

Prepare the Hardware Management Console
The IBM Hardware Management Console for pSeries (HMC) is a dedicated
system that provides a graphical user interface for configuring and operating
single or multiple pSeries 690 systems. It consists of a PC system with a set of
hardware management tools for configuration and partitioning. For more details
about the HMC, refer to the HMC Operations Guide, SA38-0590.

Software levels
Before you start with any configuration, make sure the correct level of HMC
software is installed. On the HMC WebSM interface, open the Help menu and
click the About Web-based System Manager entry. The displayed build level
must be equal or higher to the level described in Parallel System Support
Program for AIX: Read This First for New Users, GI10-0641.

The latest HMC code can be obtained from IBM at:

http://techsupport.services.ibm.com/server/hmc

Serial connection
Each p690 needs a connection to at least one HMC.

Note: For each LPAR, the profile marked as default is used by PSSP. All other
profiles are ignored. If you want to change the profile used, make the new
profile default and make appropriate configuration changes to PSSP.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 197

http://techsupport.services.ibm.com/server/hmc

HMC
If only one p690 is connected to the HMC, the first native serial port is used for
the RS232 TTY connection. If more than one p690 is connected to one single
HMC, an 8-Port or 128-Port Async PCI card is needed. The second native serial
port is reserved for modem connection.

p690
On the p690, you can use the native serial Ports S1 and S2 for RS232 TTY
connection. Since a single p690 can be connected to two HMCs, S1 is used for
the first HMC connection and S2 for the second one.

System configuration
The System Configuration menu, located in the HMC Maintenance folder of the
WebSM interface, offers an easy way to configure the HMC. The following tasks
can be done through this menu:

� Customize console date and time
� Display console events
� Customize network settings
� Test the network connectivity
� Schedule operations, like a backup of all HMC settings
� Enable or disable remote command execution
� Enable or disable remote virtual terminal

Customize network settings
In the Network Configuration dialog, you must enter the settings of the trusted
network connection. Since you can use the trusted network for the RMC
communication, you do not need an additional network connection. However, you
can configure a second Ethernet adapter for a dedicated SPLAN/RMC
connection.

Enable or disable remote virtual terminal
In order to allow PSSP to open a virtual terminal (vterm), this option needs to be
enabled. This function is used by PSSP to run commands such as s1term,
sphrdwrad, spadaptr_loc, and nodecond. The remote vterm function used is also
used by PSSP administrative processes to transfer sensitive data files.
198 Performance and Tuning Considerations for the p690 in a Cluster 1600

Security settings
In an IBM ^ Cluster 1600, the Object Manager Security Mode on the
HMC needs to be set to plain socket. This is necessary for the PSSP hardware
control and monitor functions. If the mode is set to secure socket layer (SSL),
PSSP will not be able to perform the hardware monitor and control functions. The
Object Manager Security menu is located in the System Manager Security folder
of the WebSM interface. Figure D-8 shows how the settings should look.

Figure D-8 Object Manager Security settings on the HMC

Domain name of p690 systems
Each p690 system is represented by a unique name, called a domain name. The
domain name belongs to the Central Electronics Complex (CEC) and must not
be confused with the LPAR names.

The HMC interface uses the domain name to display the physical system. The
SDR contains the domain name to represent the p690 system. Figure D-9 on
page 200 shows two attached p690 servers and their domain names. The
domain name is also used in conjunction with the -d flag of the spframe
command.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 199

Figure D-9 HMC WebSM interface with configured p690 domain names

Prepare the p690
Before you can start with the integration of the p690 server into your Cluster, you
have to check the firmware release of the p690 server. The next step would be to
set up the SPLAN adapters and the Switch adapters as you planned in “The
SPLAN” on page 187 and “Switch-attached” on page 196. There are rules for the
Switch adapters, which we discuss in the following sections.

Required p690 firmware
There are three different firmwares installed on the p690 server.

Note: The p690 domain name has nothing in common with the domain name
used for DNS. The p690 domain name is not an IP-resolvable name. It is just a
name for the IBM ^ p690 CEC.

Important: For the latest platform firmware version for the p690 server, refer
to Parallel System Support Program for AIX: Read This First for New Users,
GI10-0641.
200 Performance and Tuning Considerations for the p690 in a Cluster 1600

To determine which firmware levels are installed on your p690 server, do the
following:

If AIX is installed on your p690 system
1. Open a telnet or a vterm session to one of your LPARs or SMP server.
2. Next, log in as user root.
3. Enter the command shown in Example D-3.

Example: D-3 Determine which firmware is installed on the p690 server

[c119f4rp05][/]> lscfg -vp|grep -p -e "Firmware"
 System Firmware:
 ROM Level.(alterable).......RH011204_srv1
 Version.....................RS6K
 System Info Specific.(YL)...U1.18-P1-H2/Y2
 Physical Location: U1.18-P1-H2/Y2

 Platform Firmware:
 ROM Level.(alterable).......RH011210
 Version.....................RS6K
 System Info Specific.(YL)...U1.18-P1-H2/Y1
 Physical Location: U1.18-P1-H2/Y1

 SPCN Firmware:
 ROM Level.(alterable).......0000RHE11081
 Version.....................RS6K
 System Info Specific.(YL)...U1.18-P1-H2/Y3
 Physical Location: U1.18-P1-H2/Y3

In the case where there is no operating system installed on your p690 system:

1. Shut down the p690.

2. From WebSM, click the right mouse button once on the CEC (for example,
Rather)

3. Open a vterm session; after the vterm session is established, press Enter.
You will see the service processor menu from the p690; refer to Figure D-10
on page 202 for more information.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 201

Figure D-10 The opened vterm session to the p690 service processor

Adapter placement for p690
There are different rules for the SP Switch and the SP Switch2 adapter.

For further information about adapter placements, refer to the RS/6000 & pSeries
PCI Adapter Placement Reference, SA38-0538.

The I/O drawer of the p690 consists of two parts, and each one has 10 PCI slots.
Figure D-11 on page 203 shows the rear view of one p690 I/O drawer.

Attention: Firmware updates for the p690 system can only be done by IBM
Customer Engineers.

VTerm - 000*7040-681 *02053EA Session:1 Partition:Rather

Service Processor Firmware
 Version: RH011210
Copyright 2001, IBM Corporation
 Rather

 MAIN MENU

1. Service Processor Setup Menu
2. System Power Control Menu
3. System Information Menu
4. Language Selection Menu
5. Call-In/Call-Out Setup Menu
6. Set System Name
99. Exit from Menus

Attention: There is no specific plug-in rule for the SPLAN Ethernet adapter
placement. However, you should refer to RS/6000 SP: Planning, Volume 1,
Hardware and Physical Environment, GA22-7280, to see which Ethernet
adapters are supported as SPLAN adapters.
202 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure D-11 Logical view (rear view) of an I/O adapter drawer of a p690

SP Switch (TB3PCI adapter) placement rules
The following are the placement rules for the SP Switch adapter:

� One per LPAR

� For the maximum number of LPARs supported per p690 server, refer to
Parallel System Support Program for AIX: Read This First for New Users,
GI10-0641

� No non-switched LPARs

� Plug-in slot 8 - EADS 3

� Two per I/O adapter drawer (one per I/O planar, slot 8 only)

� Takes up to two slots due to large heatsink

� Not to be mixed with the SP Switch2 PCI Attachment Adapter

For best performance, we recommend that no other adapters be plugged in slots
supported by this EADS chip, since it already has an integrated SCSI (they are
connected to the SCSI 4-packs on the front side of the I/O drawer). The SPLAN
adapter for this LPAR does not need to be in the same drawer. Figure D-12 on
page 204 shows the SP Switch adapter configuration for two LPARs.

Restriction: The TB3PCI adapter is a 5-volt adapter and can only be placed
in slot 8 in the left side I/O drawer and slot 8 in the right side I/O drawer.

PCI Slot - 64 bit 66/33mhz 3.3V PCI Slot - 64 bit 33mhz 5.0V Integrated Ultra-3 SCSI

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

EADS
PCI- PCI

Bridge

EADS
PCI- PCI

Bridge

EADS
PCI- PCI

Bridge

RIO Cable to CEC

EADS
PCI- PCI

Bridge

EADS
PCI- PCI

Bridge

EADS
PCI- PCI

Bridge

RIO Cable to CEC

Left Side I/O drawer Right Side I/O drawer
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 203

Figure D-12 I/O adapter drawer with two SP Switch adapters

SP Switch2 PCI Attachment Adapter placement rules
The following are the placement rules for the SP Switch2 adapter:

� For the maximum number of LPARs supported per p690 server, refer to
Parallel System Support Program for AIX: Read This First for New Users,
GI10-0641

� Plug-in slot 3 or 5, or both if on separate LPARs

� Up to two SP Switch2 adapters per LPAR

� One I/O adapter drawer supports four switched LPARs

� The SPLAN Ethernet adapter may be plugged in the same EADS

� Takes up two slots due to large heatsink

For best performance, we recommend that no other adapters be plugged into
slots supported by this EADS chip, except for the SPLAN Ethernet adapter. In
Figure D-13 on page 205, we show the maximum usage of one I/O adapter
drawer. If you want to use more than the shown I/O adapters (for example, Fibre
Channel (FC) or LAN adapter), you need to use additional I/O drawers.

Restriction: The SP Switch2 adapter can only be used in slots 3 and 5 in the
left side I/O drawer and in slots 3 and 5 in the right side I/O drawer.

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

1 2 3 4 5 6 7 8 9 10

TB3PCI adapter - takes up 2 slots

Left Side I/O drawer Right Side I/O drawer
204 Performance and Tuning Considerations for the p690 in a Cluster 1600

Single Switch plane
Figure D-13 shows an SP Switch2 adapter using a single switch plane
configuration for four LPARs.

Figure D-13 Single-plane SP Switch2 with four SPLAN adapters

Dual Switch plane
It is possible to have two Switch adapters per LPAR. Figure D-14 on page 206
shows two SP Switch2 adapters configured for two LPARs.

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

EADS
PCI- PCI
Bridge

1 2 3 4 5 6 7 8 9 10

Adapter - takes up 2 slots Ethernet adapter for SPLAN

LPAR 1 LPAR 2 LPAR 3 LPAR 4

Left Side I/O drawer Right Side I/O drawer
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 205

Figure D-14 Dual-plane SP Switch2 with two SPLAN adapters

Prepare the control workstation
In order to attach p690 servers to the IBM ^ Cluster 1600, you must
prepare the control workstation (CWS) and the Boot Install Servers (BIS). The
preparation might also include some planning considerations as discussed in
“Planning considerations” on page 193.

For further details on how to prepare the control workstation, see Chapter 1,
“Overview of the installation and migration process”, in the PSSP for AIX:
Installation and Migration Guide, GA22-7347.

AIX and PSSP software requirements
The p690 Clustering requires a certain level of AIX and PSSP software. On the
control workstation and the Boot Install Servers, AIX 5L Version 5.1 and PSSP
3.4 is required. Table D-1 on page 207 shows the required AIX and PSSP
software.

EADS
PCI- PCI

Bridge

EADS
PCI- PCI

Bridge

EADS
PCI- PCI

Bridge

EADS
PCI- PCI

Bridge

EADS
PCI- PCI

Bridge

EADS
PCI- PCI

Bridge

1 2 3 4 5 6 7 8 9 10

Adapter - takes up 2 slots Ethernet adapter for SPLAN

LPAR 1 LPAR 1 LPAR 2 LPAR 2

Left Side I/O drawer Right Side I/O drawer
206 Performance and Tuning Considerations for the p690 in a Cluster 1600

Table D-1 Important software requirements for p690 Clustering

The list of required software on the control workstation is covered by Chapter 1
“Overview of the installation and migration process, Step 18: Install PSSP
prerequisites and Step 19: Install PSSP on the control workstation” in the PSSP
for AIX: Installation and Migration Guide, GA22-7347.

Create or update the lppsource
The p690 Clustering requires AIX 5L Version 5.1, so you probably have to create
a new lppsource or update the existing one. Since AIX 5L Version 5.1 also
provides support for Red Hat Package Manager (RPM) files, the directory tree of
the lppsource looks different than on earlier AIX versions. The find output in
Example D-4 shows the enhanced directory structure.

Example: D-4 lppsource directory structure on AIX 5L V5.1

[c119s][/] find /spdata/sys1/install/aix51/lppsource -type d
/spdata/sys1/install/aix51/lppsource
/spdata/sys1/install/aix51/lppsource/installp
/spdata/sys1/install/aix51/lppsource/installp/ppc
/spdata/sys1/install/aix51/lppsource/rpm
/spdata/sys1/install/aix51/lppsource/rpm/ppc

The installp/ppc directory holds all regular AIX LPP filesets. The rpm/ppc
subdirectory contains all rpm files that are currently provided by the AIX toolbox
for Linux applications CD.

Product Software level and filesets

AIX 5L V5.1 � Java130.rte
� Java130.xml4j
� csm.clinet
� openCIMOM-.61.aix5.1.noarch.rpm

(Located on the AIX toolbox for Linux applications CD)
� For the correct APAR level, refer to Parallel System Support

Program for AIX: Read This First for New Users, GI10-0641

PSSP 3.4 � For the correct APAR level, refer to Parallel System Support
Program for AIX: Read This First for New Users, GI10-0641

Note: For the latest supported software levels, check the Read This First
document. You can also visit the IBM Web page:

http://www.ibm.com/servers/eserver/pseries/library/sp_books/pssp.html
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 207

http://www.ibm.com/servers/eserver/pseries/library/sp_books/pssp.html

A description of how to create or update an lppsource is provided in "Step 14:
Copy the AIX LP images and other required AIX LPPs and PTFs” in Chapter 1,
“Overview of the installation and migration process, of the PSSP for AIX:
Installation and Migration Guide, GA22-7347.

Create or update the SPOT
In order to install the p690 servers, the SPOT needs to be at the same level as
the lppsource. Maintaining and updating SPOT is covered in "Task E: Update the
SPOT when installing AIX BOS service updates” in Chapter 7, “Performing
software maintenance", of the PSSP for AIX: Installation and Migration Guide,
GA22-7347.

Software coexistence
In an existing SP environment, at least the control workstation has to be updated
to AIX 5L Version 5.1, PSSP 3.4, and the APAR level mentioned in Parallel
System Support Program for AIX: Read This First for New Users, GI10-0641.
Table D-2 shows which AIX and PSSP levels can coexist in the same
environment.

Table D-2 Coexistence of AIX and PSSP levels

Accessing the Hardware Management Console
From the control workstation, you can access the HMC in two different ways:

� Using Perspectives
� Using a WebSM client

Note: Since the p690 may require some additional device filesets, make sure
that they all are installed in the lppsource. Also be aware that some device
drivers might not be provided on the base AIX 5L Version 5.1 media.

CWS Nodes

AIX 5L Version 5.1 (32-bit
kernel)
PSSP 3.4

AIX 5L Version 5.1 (32-bit
kernel)

PSSP 3.4

AIX 4.3.3 PSSP 3.4

PSSP 3.2

PSSP 3.1.1
208 Performance and Tuning Considerations for the p690 in a Cluster 1600

Using Perspectives
Perspectives allows you to launch WebSM through its own interface as follows:

1. Double-click the Hardware: SP-attached Servers icon.
2. Scroll to the Frames and Switches pane.
3. Select the p690 frame icon.
4. Open the Action menu.
5. Click the Open HMC interface menu entry.
6. On the HMC login window that appears, enter the user name and password.

Using WebSM
Since the HMC is managed through WebSM interfaces, all tasks can also be
done on the control workstation or any other machine running a WebSM client.
However, the Service Agent UI registration/customization task from the Service
Agent menu can only be launched from the HMC console itself.

For the correct level of WebSM to connect to the HMC, refer to Parallel System
Support Program for AIX: Read This First for New Users, GI10-0641.

Install WebSM on the control workstation
In order to access the HMC WebSM interface from the control workstation, you
have to install WebSM on the CWS. Table D-3 lists the filesets required for
WebSM.

Table D-3 WebSM filesets on the control workstation

After installing the WebSM filesets to launch WebSM, issue the wsm command to
get the WebSM interface.

AIX fileset Description

sysmgt.websm.accessibility WebSM Accessibility Support Web-based System
Manager

sysmgt.websm.apps Web-based System Manager Applications

sysmgt.websm.diag Web-based System Manager Diagnostic Applications

sysmgt.websm.framework Web-based System Manager Client/Server Support

sysmgt.websm.icons Web-based System Manager Icons

sysmgt.websm.rte Web-based System Manager Run-time Environment

sysmgt.websm.webaccess WebSM Web Access Enablement.
Also includes the WebSM client for Windows-based
PCs
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 209

Add the HMC host object
To access the HMC from your WebSM client, you have to add the HMC host to
your WebSM interface. For that, select Console -> Add -> Hosts and enter the
host name or the IP address of the HMC as shown in Figure D-15.

Figure D-15 Add host to WebSM interface

To access the HMC, double-click the newly created host object. In the dialog
window that appears, enter the user name and the password. In general, the
hscroot user is used.

Using WebSM on a Windows-based PC system
The fileset sysmgt.websm.webaccess provides a client for Windows-based PCs.
If the fileset is installed on the control workstation, the PC client code can be
found as /usr/websm/pc_client/setup.exe.

Install via Web browser
If the Web server is running on the control workstation and configured for
WebSM, you can download the client code with a Web browser as follows:

1. Start a Web broker and enter the URL:

 http://<CWS_hostname>/pc_client/pc_client.html

2. Download the client code to your PC.

3. Install the client code.
210 Performance and Tuning Considerations for the p690 in a Cluster 1600

Install via ftp connection
If no Web server is running on the control workstation, the PC client code can
obtained via ftp:

1. Open a ftp session to the control workstation.
2. Change to the directory /usr/websm/pc_client.
3. Transfer the setup.exe file to your PC.
4. Start the installation by double-clicking the program icon.

For a description of how to add the HMC host object to the WebSM client
interface, see “Add the HMC host object” on page 210.

Set hardmon authentication
In a p690 cluster environment, hardmon does not directly talk with the p690
hardware. To manage the p690 hardware, hardmon communicates over the
trusted network connection with the HMC (refer to “Hardware monitoring” on
page 213 for further information).

Therefore, hardmon needs an user name and password when establishing a
remote client session with an HMC. You can set the HMC user name and
password in two different ways: by using either the SMIT smitty enter_hmc fast
path, or by using the sphmcid command. Figure D-16 on page 212 shows the
SMIT panel for setting the HMC user name and password.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 211

Figure D-16 Setting HMC user name and password

The sphmcid command stores the settings in the
/spdata/sys1/spmon/hmc_passwd file. For each HMC connected to the CWS,
one line with the encrypted password and HMC IP address appears in this file.

Query HMC user name
You can use the sphmcid command to query the user name used by hardmon, as
shown in Example D-5.

Example: D-5 Use sphmcid command to query the stored HMC user name

sphmcid 9.114.76.124
9.114.76.124 hscroot

Define switch node numbers
In an SP Switch or a switchless environment, you must define a switch node
number for each LPAR in the IBM ^ p690 server. You can do that by
manually editing the /etc/switch.info file. The file must include one line entry for
each attached LPAR.
212 Performance and Tuning Considerations for the p690 in a Cluster 1600

The format of the /etc/switch.info file is:

node_number switch_node_number

or

frame_number,slot_number switch_node_number

Example D-6 shows a three-frame configuration:

� Frame 1 is an attached S70. The first available node number is 1. The
corresponding switch number is also 1.

� Frame 2 is an attached S80. The first free node number in frame 2 is 17. The
used switch node number is set to 5.

� Frame 3 is an LPAR p690 with four LPARs. All four LPARs need a switch node
number.

Example: D-6 Example of the /etc/switch.info file

cat /etc/switch.info
1 1
17 5
33 25
34 19
35 21
36 23

For further details about the /etc/switch.info file, refer to PSSP for AIX: Command
and Technical Reference, SA22-7351.

You can skip this configuration step if you are using SP Switch2 only, or you have
a switchless Clustered Enterprise Server system (CES).

PSSP changes
Integrating the IBM ^ p690 introduces some changes to the PSSP
software. Since the p690 represents a new generation of hardware, PSSP has
been enhanced to manage this new server.

Hardware monitoring
Since the p690 does not have an SP node supervisor card, SP hardware
monitoring is enhanced to manage the new hardware as well as the existing SP
hardware. The p690 Clustering also introduces a new hardware protocol, named
the HMC protocol. Table D-7 on page 214 shows the different hardware protocols
used in an IBM ^ Cluster 1600 environment.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 213

Example: D-7 Different hardware protocols used by hardware monitoring

Hardmon subsystem
In earlier systems, the hardmon daemon running on the CWS talked directly to
the frame or node supervisor card. In a p690 environment, the hardmon daemon
sends and gets all hardware relevant information from HMC through the hmc
daemon (hmcd). The hardmon daemon polls every five seconds to query the
node status.

Dataflow
The hardmon uses different protocols to communicate with the hardware.
Figure D-17 on page 215 shows the dataflow of the hardmon communication and
all available protocols.

Protocol name Servers

SP SP nodes

SAMI RS/6000 S70, S7A, and S80 or IBM ̂pSeries 680 servers

CSP RS/6000 H80, M80, and IBM ^ pSeries 660 servers (6H0,
6H1, and 6M1)

HMC IBM ^ pSeries 670 and 690 servers
214 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure D-17 Dataflow of the hardmon subsystem

HMC daemon
The hmc daemon (hmcd) is the program that indirectly interfaces to the p690
hardware through the HMC Common Information Model (CIM) Server. In fact, the
hmcd acts as a frame and node supervisor and accepts all control commands
from hardmon.

Once the hardmon recognizes the existence of p690 servers in its configuration,
it starts the hmc daemon. Hardmon does it for each unique control_ipaddrs
attribute in the SDR where the hardware_protocol is also set to HMC. For more
information about the new SDR attributes control_ipaddrs and
hardware_protocol, refer to “Frame Class” on page 220.

Each hmcd daemon belongs to a specific HMC connection. So, one hmcd
daemon is responsible for multiple p690 systems connected to this HMC.
Figure D-18 on page 216 shows the ps command output of an hmcd daemon
running on the CWS.

s70d

Node
Supervisor Cards

S7X/S80/pSeries680

SAMI
RS-232RS-232

s1_tty

hardmon

perspectives hmmon hmcmdsspmon

Frame Supervisor Cable
RS-232

s1term nodecond

SDR

/spdata/sys1/spmon/hmacls

/spdata/sys1/spmon/hmthresholds
splogd

/var/adm/SPlogs/SPdaemon.log

setup_logd

/spdata/sys1/spmon/hwevents

Frame
Supervisor Card

SP

errdemon

hmadm

state handlers

M80/H80/pseries660

pSeries 690/670

hcmd

HMCCIM Server

HMC
RS-232

Trusted Ethernet CSP
RS-232
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 215

Figure D-18 ps command output of a running hmcd daemon

Log files
The hmcd daemon logs its debug and error information in separate log files. The
log files are located in /var/adm/SPlogs/spmon/hmcd. The naming convention of
the log files are as following:

Log file hmcd.<IP address>.log.<ddd>

IP address: IP address of the HMC

ddd: Julian date of the date the log file was opened by the
hmcd daemon

Dataflow
Figure D-19 shows the dataflow between hardmon and hmcd.

Figure D-19 hardmon and hmcd dataflow between CWS, HMC, and p690

[c119s][/]> ps -elf | grep hmcd
 240001 A root 17814 39972 2 60 20 d78d 19124 * Mar 22 - 1290:43
/usr/lpp/ssp/install/bin/hmcd -d 0 9.114.76.124 2 Rather 3 5 Jennings 4 7

HMCs IP address

Number of p690 following

p690 domain name

Frame number and hardmon socket file descriptor

p690 domain name

Frame number and hardmon socket file descriptor

Debug level (same as hardmon)

h a rd m o n

Ja va In te rfa c e
C IM C lien t

h m cd

C o n tro l W ork s ta tio n

H M C

T rus ted E the rne t

C IM S e rve r

p 69 0 /p 67 0

R S 2 3 2 T T Y
216 Performance and Tuning Considerations for the p690 in a Cluster 1600

As you can see, hardmon talks directly to hmcd. The hmcd gets the information
from the CIM server running on the HMC. The connection between the control
workstation and the HMC is made via a trusted Ethernet network.

SPLAN adapter
The IBM ^ p690 introduces a new way to configure the SPLAN adapter. It
is now recommended to configure the SPLAN adapter through its unique
hardware location code.

You can use SMIT or the spadaptr_loc command to get the hardware physical
location codes. For further details about the spadaptr_loc command, refer to
“New commands and new command flags” on page 223.

To get the hardware location codes through SMIT, use the following menu path:
RS/6000 SP System Management -> RS/6000 SP Configuration Database
Management -> Enter Database Information -> Node Database Information
-> Get Adapter Physical Location Information (pSeries 690 Only).

Example D-8 shows the hardware location codes in the splstdata output.

Example: D-8 splstdata output for hardware location codes

[c119s][/]> splstdata -a
 List LAN Database Information
node# adaptnetaddrnetmaskhostnametypet/r_rateenet_rateduplex
other_addrsadapt_cfg_statusphysical_locationSPLAN
----- ---

33 en09.114.76.33255.255.255.128c119f3rp01.ppd.poktpNA100full
"" "" U1.9-P1-I1/E11
34 en09.114.76.34255.255.255.128c119f3rp01.ppd.poktpNA100full
"" "" U2.9-P2-I1/E11
35 en09.114.76.35255.255.255.128c119f3rp05.ppd.poktpNA100full
"" "" U1.5-P1-I1/E11
36 en09.114.76.36255.255.255.128c119f3rp09.ppd.poktpNA100full
"" "" U1.5-P2-I1/E11

Note: In an IBM ^ p690, it is no longer required to have the first
Ethernet adapter (en0) configured as the SPLAN adapter. To uniquely define
the Ethernet adapter, PSSP uses the hardware physical location codes.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 217

Since the order of all adapters is given by the firmware, the adapter logical name
can change while reconfiguring the LPARs. To avoid the renaming of the
Ethernet adapter logical names while allocating or deallocating adapters in
LPARs, PSSP automatically assigns the adapter logical names using hardware
physical location codes. This process is explained in the following scenario:

� In Figure D-20, (A) shows one LPAR with three configured Ethernet adapters.
You can see the AIX device name (enX) and its corresponding hardware
location (U1.X-PX-IX/E1).

� (B) shows the scenario after adding a new adapter. The device name gets the
next free logical name, which is en3.

� (C) shows the AIX device names after reinstalling the LPAR. As you can see,
the ordering of the device names is changed. Now PSSP automatically
reassigns the logical names, as shown in (B), using hardware physical
location codes defined in the System Data Repository (SDR).

Figure D-20 Physical location codes and logical AIX device names

Note: The hardware physical location codes shown on the HMC interface are
slightly different from the ones you see in the System Data Repository (SDR).

U1.9-P1-I2/E1 U1.9-P1-I5/E1 U1.9-P1-I8/E1

en0 en1 en2

U1.9-P1-I2/E1 U1.9-P1-I5/E1 U1.9-P1-I8/E1

en0 en1 en2

U1.9-P1-I6/E1

en3

en0 en1 en3

U1.9-P1-I2/E1 U1.9-P1-I5/E1 U1.9-P1-I8/E1U1.9-P1-I6/E1

en2

Add a new Ethernet
adapter to an existing
configuration

Reinstalling the LPAR,
changes the device
names again

A

B

C

218 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure D-21 shows how to get the Ethernet adapter hardware location codes
from the HMC. Use the following procedure to get the hardware location codes
on the HMC:

� Click the I/O drawer icon and select the slot where the Ethernet adapter is
plugged in.

� The I/O drawer icon gives you the hardware location code of the drawer (for
example, U1.9).

� The selected slot number shows the physical location code of the adapter
(P1-I2). The adapter description is shown at the bottom of the window.

� Since this Ethernet adapter has only one port, it gives you the extension /E1.
A 4-port Ethernet adapter would give the extensions E1 through E4.

Merging all the information together gives you the complete hardware adapter
location code of the Ethernet adapter, which is U1.9-P1-I1/E1.

Figure D-21 Hardware location codes on the HMC

Additional SDR information
The p690 Clustering requires some new SDR attributes, as well as
enhancements to existing ones. This section covers the SDR changes.

Adapter description

Slot number and
hardware location code

Assigned adapter, with drawer and
slot hardware location codes

I/O drawer hardware location code
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 219

Frame Class
Each p690 is managed as a single SP frame. In order for hardmon to be able to
contact the CIM server on the HMC, the right hardware protocol needs to be
defined in the SDR. The definition of the HMC’s IP address and the domain name
gives a clear relationship between those two. The SDR Frame Class information
is described in Table D-4.

Table D-4 List with new and enhanced attributes in the frame class

Example D-9 shows the splstdata output with the domain name of the attached
p690 servers.

Example: D-9 splstdata output for domain name information

[c119s][/]> splstdata -f
 List Frame Database Information
frame# tty s1_tty frame_type hardware_protocol control_ipaddrs domain_name
------ ------------ ----------- -------------- ------------------ --------------- -----------

1 /dev/tty0 "" switch SP "" ""
2 /dev/tty1 "" switch SP "" ""
3 "" "" "" HMC 9.114.76.124 Rather
4 "" "" "" HMC 9.114.76.124 Jennings

Node Class
Since PSSP represents each LPAR as a node, the LPAR name is stored in the
Node Class of the SDR. The Node Class is described in Table D-5 on page 221.

Attribute name Description p690 values

hardware_protocol Hardware protocol used by
hardmon.

HMC

control_ipaddrs HMC IP addresses, used by
hardmon and hmcd.

Comma-delimited list of
HMC IP addresses. List
order specifies in which
priority the connection will
be attempted.

domain_name Identifies the p690 system. The
domain name must be unique per
HMC. However, there can be
several domain names that are the
same in the same cluster, as long
as they are on different HMCs.

The p690 system name,
as shown on the HMC.
The name is entered from
the spframe command.

Tip: To avoid problems later on, we recommend that you use unique domain
names not only per HMC, but also in the IBM ^ Cluster 1600
environment.
220 Performance and Tuning Considerations for the p690 in a Cluster 1600

Table D-5 List with new and enhanced attributes in the Node Class

Adapter Class
The new feature to define an SPLAN adapter through its hardware location code
requires the new physical_location attribute in the SDR Adapter Class. Since the
SPLAN adapter can be different than en0, it needs to define explicitly which
adapter belongs to the SPLAN. The Adapter Class is described in Table D-6.

Table D-6 List with new and enhanced attributes in the Adapter Class

Perspectives
The Perspectives functions and GUI have been enhanced to fully integrate the
new attached servers.

Node status
As on the existing SP hardware, Perspectives can display different types of node
states on the p690 servers, depending upon whether the p690 is in SMP or LPAR
mode.

In SMP mode
If the p690 is in SMP mode, Perspectives can monitor four different modes. Each
mode is displayed in a different color, as shown in Table D-7 on page 222.

Attribute name Description p690 values

LPAR_name Logical partition identifier Retrieved by hardmon. It is the same
name as shown on the HMC in the
Partition Management menu.

Attribute name Description p690 values

physical_location Physical location code for
the adapter.

The value as shown by the
spadaptr_loc or lscfg -vl
command.

SPLAN Indicates whether or not
this adapter is connected
to the SP admin network
(SPLAN).

A value of 1 indicates that this is an
SPLAN adapter.

A value of 0 means that this adapter
belongs to a different network.

Only one adapter per node can have
this value set to 1.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 221

Table D-7 Possible node states in SMP mode

In LPAR mode
If the p690 is in LPAR mode, Perspectives can monitor six different node states
as shown in Table D-8.

Table D-8 Node states in LPAR mode

Power on/off
In LPAR mode, Perspectives can power on or power off LPARs or the frame. In
Full System Partition mode, the p690 is managed like any other attached node.
Therefore, Perspectives only powers on or off the single SMP node. This also
affects the frame’s power status.

The spled window
Like the Perspectives GUI, the spled window has also been enhanced to support
p690 Clustering, as shown in Figure D-22 on page 223.

Mode Color Description

No power Red No power to the node.

Initializing Yellow Power has been applied and it is initializing.

Operational Green Node has initialized and is operational.

Error Red Hardware is in an error state.

Status Color Description

Not ready Red The LPAR should not be booted or reset.

Defined Yellow The LPAR is defined and can be activated.

Initializing Yellow The LPAR has been activated and is booting.

Operational Green The LPAR is up and running.

Open Firmware Yellow The LPAR is running in SMS or Open Firmware.

Error Red LPAR, operating system, or hardware is in error.
222 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure D-22 The spled window with two attached p690 servers

The spled window shows two SP frames with high nodes and two p690 frames.
The first p690 (Frame 3) is running in Full System Partition mode and is
represented as a single thin node. The second p690 (Frame 4) is running in
LPAR mode. Each configured LPAR is displayed as a thin node.

New commands and new command flags
In this section, we describe some relevant new commands and command flags.
However, covering all new commands and command flags is beyond the scope of
this paper. For more complete and detailed information on these subjects, refer
to the following PSSP documentation:

� PSSP for AIX: Command and Technical Reference, SA22-7351

� Parallel System Support Program for AIX: Read This First for New Users,
GI10-0641

spframe
This command has new flags to add a p690 server as a frame, as shown in
Example D-10 on page 224 and in Figure D-23 on page 224:

usage: spframe -p HMC -d {domain_name} -i {list_of_HMC_IPaddresses} [-n
{starting_switch_port}] [-r {yes|no}] [-o] frame_number

p690 in Full System Partition mode p690 in LPAR mode

Attention: We recommend that you run the SDRArchive command before you
change the SDR information.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 223

Example: D-10 spframe command with 2 HMCs are connected to the p690 server

[c119s][/]>spframe -p HMC -d Jennings -i 9.114.76.124,9.114.76.125 -r yes -o 4

The SMIT fast path is smitty hmc_frame_dialog.

Figure D-23 SMIT hmc_frame_dialog screen shot

splstdata
The flag -a now shows the hardware location code from the network card (see
Example D-11).

Example: D-11 Partial output of the splstdata -a command

[c119s][/]> splstdata -a
 List LAN Database Information
node# adapt netaddr netmask hostname type
t/r_rate enet_rate duplex other_addrs adapt_cfg_status physical_location
SPLAN
----- ------ --------------- --------------- ----------------- ------------
-------- ---------- ------ --------------- ----------------- -----------------

33 css0 9.114.76.135 255.255.255.128 c119sn07.ppd.pok. SP_Switch2_P NA
"" "" "" css_ready U1.9-P1-I3/Q1 0
224 Performance and Tuning Considerations for the p690 in a Cluster 1600

 34 css0 9.114.76.136 255.255.255.128 c119sn08.ppd.pok. SP_Switch2_P NA
"" "" "" css_ready U1.9-P2-I3/Q1 0

sphmcid
This command obtains the HMC user ID and password for the hardmon daemon
to establish a secure connection to the HMC, or shows the provided HMC IP
address and the HMC user.

After you enter a valid HMC IP address and user ID, the command prompts you
for the password, as shown in Example D-12.

sphmcid: Usage: sphmcid [-h]|[host_name|ip_address [user_id]]

Example: D-12 sphmcid command

[c119s][/]> sphmcid 9.114.76.124 hscroot

The SMIT fast path is smit enter_hmc.

spadaptr_loc
This command returns the physical location codes for all adapters installed on an
LPAR/node. This command powers down the LPAR to retrieve the needed
information. The information gathered is only shown on your screen and will not
be saved in the SDR. The usage of this command is shown in Example D-13.

Usage: spadaptr_loc [-h]
spadaptr_loc {start_frame start_slot {node_count | rest} |
 -l <node_list> | -N node_group}

Example: D-13 spadapt_loc command

[c119s][/]> spadaptr_loc 4 1 4

The SMIT fast path is smit adaptr_loc_dialog.

spadaptrs
This command was changed for the p690 server to allow the physical location
code (-P flag) of the adapter, and the definition of the SPLAN's default route to
the CWS (-e flag). If the -P flag is used to give the physical location code of the
adapter, the command accepts the adapter type rather than the adapter name
(that is, en instead of en0). The -e flag defines this adapter as the SPLAN
adapter. If this flag is given, you must do one of the following:

� Provide the adapter physical location code (-P) and adapter type of en

� Provide the adapter name of en0

The usage of this command is shown in Figure D-24 on page 227.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 225

Usage: spadaptrs [-s {yes | no}]
 [-t {bnc | dix | NA | tp | fiber }]
 [-r {4 | 16 | autosense}]
 [-d {full | half | auto}]
 [-f {10 | 100 | auto}]
 [-a {yes | no}] [-n {yes | no}]
 [-o {ip address[,ip address ...]}]
 [-P <physical_location>]
 [-e <default_route>]
 {start_frame start_slot {node_count | rest} |
 -l <node_list> | -N node_group}
 adapter_name starting_ip_address netmask

The SMIT fast path is smit sp_eth_dialog.
226 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure D-24 SMIT sp_eth_dialog screen shot

sphostnam
This command now has a new flag, -P, to provide the physical location code
information, as shown in Example D-14 on page 228.

Tip: We recommend using the SMIT panel for this command.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 227

[c119s][/]> sphostnam
Usage: sphostnam [-a adapter_name | -P physical_location_code] [-f {long |
short}]
 {start_frame start_slot {node_count | rest} |
 -l <node_list> | -N node_group}

Example: D-14 sphostnam command

[c119s][/]> sphostnam -P U1.9-P1-I1/E1 -f long 4 1 1

The SMIT fast path is smit hostname_dialog.

spdeladap
The new -P flag allows you to enter the physical location code for the adapter, as
shown in Example D-15.

[c119s][/]> spdeladap
Usage:
 spdeladap -h
 spdeladap {start_frame start_slot node_count | -l <node_list> | -N
node_group} adapter_name
 spdeladap -P physical_location_code {start_frame start_slot node_count | -l
<node_list> | -N node_group}

Example: D-15 The spdeladap command

[c119s][/]> spdeladap -P U1.9-P1-I1/E1 4 2 1

The SMIT fast path is smit delete_adapter_dialog.

spmon
The spmon command has no new command flags, but there is a different output
for the switch responds, as shown in the partial output of the spmon -d command
displayed in Example D-16. You can see that the column Switch Responds is
now a table on its own. Earlier, this column was located between the Host
responds and the Key Switch column. The change is required to show
single/dual plane switch configuration.

Example: D-16 Output of the spmon -d command

------------------------------- Frame 3 -----------------------------
 Host Key Env Front Panel LCD/LED
Slot Node Type Power Responds Switch Error LCD/LED Flashes
---- ---- ----- ----- -------- ------- ----- ---------------- -------
 1 33 thin on yes N/A N/A LCDs are blank N/A
 2 34 thin on yes N/A N/A LCDs are blank N/A
 3 35 thin on yes N/A N/A LCDs are blank N/A
 4 36 thin on yes N/A N/A LCDs are blank N/A
228 Performance and Tuning Considerations for the p690 in a Cluster 1600

 Switch Responds (per plane)
Slot Node 0 1
---- ---- ------ ------
 1 33 yes yes
 2 34 yes yes
 3 35 yes yes
 4 36 yes yes

Configuring p690
In this section, we provide an overview on how to add, delete, and reconfigure
the p690 server in a Cluster as a frame and nodes. Each p690 is defined as one
frame, and each LPAR is defined as a node.

The comparison tables given in the following sections show you the differences
between classic nodes in 9076 frames and the SP-attached p690 server. It is
important to understand that all work performed on the HMC is similar to the
work the IBM CE performs in a SP environment.

If you want to add a new LPARed node to your Cluster, you have to first assign
resources from your p690 server to the LPAR on the HMC, and then do all the
steps on your CWS to install a new node. If you want to delete a node, first delete
the LPAR definitions using the HMC, then delete the node definitions from the
CWS. For more detailed information, see “Reconfiguring the RS/6000 SP
System” in the PSSP for AIX: Installation and Migration Guide, GA22-7347.

Adding p690 to a Cluster
We explain this task by comparing the steps involved in adding a classic SP
frame. Table D-9 lists the steps required to add a classic 9076 SP frame and a
p690 as a frame.

Table D-9 Adding a frame

Tasks 9076
Frame

p690 Notes

Connect the frame to the
CWS via the RS232 line.

X

Connect p690 via the
RS232 to the HMC.

X See “Serial connection” on
page 197

Check the software release
installed on the HMC.

X See “Software levels” on page 197
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 229

Adding p690 LPARs to a Cluster
In an IBM ^ Cluster 1600, an LPAR is configured as a thin node. Defining
an LPAR as a node is somewhat similar to adding a new node in an RS/6000 SP
environment. In Table D-10 on page 231, we compare the steps you have to do if
you want to add an LPAR as a node versus adding a node in a classic SP frame.

Check the firmware level on
p690 server.

X See “Required p690 firmware” on
page 200

Connect HMC to CWS via
the trusted LAN/SPLAN.

X See “Network connections” on
page 195 for the CWS side

See this “Network connections” on
page 195 for the HMC side

Connect all the
nodes/LPARs to the
SPLAN

X X See “Network connections” on
page 195 for the CWS side

See “Network connections” on
page 195 for the HMC side

Run smit enter_hmc to
enter the HMC user ID and
password.

X See Figure D-16 on page 212

Run smit
sp_frame_dialog.

X

Run smit
hmc_frame_dialog.

X See “spframe” on page 223 and
Figure D-23 on page 224

Check and update the
firmware of the supervisor
card.

X

Check the software release
installed on the HMC.

X See “Software levels” on page 197

Check the firmware level on
the p690 server.

X See “Required p690 firmware” on
page 200

Tasks 9076
Frame

p690 Notes
230 Performance and Tuning Considerations for the p690 in a Cluster 1600

Table D-10 Adding nodes

Deleting LPARs in a Cluster
Deleting a node in a classic SP frame involves deleting the node configuration
information in the SDR and physically removing the node from the SP frame. In
Table D-11 on page 232, we compare these steps with an LPARed node.

Tasks 9076
node

p690
node

Notes

Add adapter cards to the
p690 (Ethernet/Switch/FC
and so on).

X See “Adapter placement for p690”
on page 202.

LPAR definition on HMC. X Refer to the HMC Operations
Guide, SA38-0590.

Physically place a node in
the frame.

X

Power connections. X

SPLAN connection. X X See “Connectivity between CWS,
HMC, and p690” on page 187.

Switch connection. X X See “Adapter placement for p690”
on page 202.

Connect to all other
adapters you will use.

X X

Run the spadaptr_loc
command to obtain the
hardware location code.

X See “spadaptr_loc” on page 225
and Figure D-20 on page 218 to
create a /etc/bootptab.info file for
the MAC address of the SPLAN
adapter.

Enter the SPLAN
information to the SDR.

X X See “spadaptrs” on page 225 and
Figure D-24 on page 227.

Run sphrdwradr to obtain
the MAC address of the
SPLAN adapter and put
into the SDR.

X X This command reboots the nodes if
there is no entry in the
/etc/bootptab.info file.

Enter all node data to the
SDR in the CWS.

X X

Power on/Activate the
node/LPAR.

X X Refer to the HMC Operations
Guide, SA38-0590.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 231

Table D-11 Deleting a node

Adding an Ethernet adapter to an LPAR node
We now compare the steps of adding an Ethernet adapter to a node or to an
LPAR. In Table D-12, we compare the tasks for adding an Ethernet adapter
between an LPAR node and an SP node.

Table D-12 Adding an Ethernet adapter

Tasks 9076
node

p690
node

Notes

Shut down and power off
the node/LPAR.

X X

Remove the node from the
SP frame.

X

Delete the LPAR definition
from the HMC.

X Refer to the HMC Operations
Guide, SA38-0590.

Delete all SDR information
from the CWS.

X X Use the spdelnode command.

Tasks 9076
node

p690
node

Notes

Shut down and power off
the node.

X

Add the adapter to the I/O
drawer.

X X See “Adapter placement for p690”
on page 202.

Assign the I/O slot to the
related LPAR.

X Refer to the HMC Operations
Guide, SA38-0590.

Enter the SDR information
for the adapter.

X X See “spadaptrs” on page 225.

Set the customize flag for
the node/LPAR.

X X Use the spbootins command.

Shut down the LPAR/node. X

Power on/Activate the
node/LPAR.

X X
232 Performance and Tuning Considerations for the p690 in a Cluster 1600

Reconfiguring LPARs
In a p690 server, you can reconfigure the LPARs during normal system
operations by adding or deleting the resources to an LPAR. Since each LPAR is
defined as a node in the SDR, any changes in the LPAR configuration require a
change in the SDR. In this section, we discuss a few sample scenarios.

Node numbering
In this scenario, we describe what happens to the node numbers if you delete
and add nodes in a p690. The nodes are numbered from 1 to 16, one per LPAR
for each p690 system. If there are four LPARs, then the frame will have four thin
nodes defined in the SDR.

In Figure D-25 on page 234, you see the same frame in three different
configurations.

� Configuration 1 shows the SP-attached p690 server with frame number 1.
Here we have six LPARs, related to the thin nodes numbered 1, 2, 3, 4, 5, and
6.

� In Configuration 2, we deleted nodes 4 and 5 on the HMC and in the SDR.
Node numbers 4 and 5 are not used. At this point the nodes defined in the
SDR are 1, 2, 3, and 6.

� In Configuration 3, we added a new LPAR definition on the HMC. The hmcd
daemon automatically finds the new LPAR as an node and generates a new
entry in the SDR. The lowest unused node number is used for this LPAR
node, and node number 4 is assigned to the new thin node.

Rule: The lowest unused node number of a p690 frame will be used if you add
an LPAR.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 233

Figure D-25 Node numbers when reconfiguring LPARs

Move or replace the SPLAN adapter
In an LPAR node, you may choose to move the SPLAN adapter to a new location
or replace the SPLAN adapter. We discuss these scenarios in the following
sections.

Replace the SPLAN adapter
If the SPLAN Ethernet adapter fails and you have to replace it, it is like replacing
it on any other SP nodes or attached servers.

1. Use the Hot-Plug feature to replace the adapter on the node.

2. Get the new hardware address (MAC) with the lscfg -vl ent0 | grep
"Network Address" command.

3. Store the MAC address in the /etc/bootptab.info file.

4. Run the sphrdwrad command to store the MAC address into the SDR.
234 Performance and Tuning Considerations for the p690 in a Cluster 1600

5. Remove the existing NIM object using the delnimclient command. The next
time setup_server is run, the NIM object will be created for this node.

Move the SPLAN adapter to a different PCI I/O slot
If you move the SPLAN adapter to a different I/O slot, you have to reinstall the
node. After replacing and moving the adapter, the SDR has no valid information
about that SPLAN adapter. On the node, the new Ethernet device has no IP
configuration. Booting the node in customize mode does not work, since the
node has no IP connection to the control workstation.

Using multiple LPAR definitions or profiles
It is possible to use multiple profiles for one LPAR definition. You have to
remember that PSSP uses only the default profile. If you reboot or shut down an
LPAR node via the command line or the graphical user interface using
Perspectives, all operations occur only on the default profile.

To change the default profile, do the following:

1. Shut down the node (for example, with the shutdown command from the
command line on the node).

2. Change the default profile on the HMC.

3. Change the SDR if you changed any PSSP-defined resources and customize
the node.

4. Activate the LPAR via the spmon command, Perspectives, or from the HMC.

The following LPAR resources in a Cluster defined to PSSP need to be uniquely
assigned to a single LPAR or profile definition:

� SPLAN adapter (Ethernet adapter)

� rootvg devices (hard disks)

� All other devices controlled by the CWS (for example, Token Ring Adapter,
other Ethernet Adapter, and so on)

� SP Switch/SP Switch2 adapters

If you want to use multiple LPAR definitions for the same p690 resources that are
assigned to more than one LPAR definition (for example, FC, SSA, and so on),
make sure that your SDR information is up to date.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 235

Switching between LPAR and Full System Partition mode
IBM ^ pSeries p690 supports two operation modes: Full System Partition
mode and LPAR mode. If you plan to switch back and forth between these
modes, Chapter 6, "Reconfiguring the RS/6000 SP system”, in the PSSP for AIX:
Installation and Migration Guide, GA22-7347 discusses one method for
accomplishing this. This method involves deleting and recreating the Node and
Frame objects in the SDR.

If you switch between LPAR and Full System Partition mode frequently, you may
find this process a bit difficult. For example, let us say you use your IBM ^
p690 during the day in LPAR mode with four LPARs defined (let us call them
LPARs A, B, C, and D), and you use your p690 at night in Full System Partition
mode. Using the procedure highlighted above, you then need to redefine your
frame and nodes in the SDR twice each day (once each time you switch modes)!

You can avoid this by instead simulating Full System Partition mode while still in
LPAR mode. We describe two methods for doing this:

� Create a separate LPAR definition
� Create a separate LPAR profile

Create a separate LPAR definition
You can create a new LPAR definition that simulates the server running in Full
System Partition mode. Let us explore this using the preceding example.

During the day, the server runs with LPARs A, B, C, and D active. Now, create a
new LPAR that will only be active at night, and call it LPAR E. In this case, you do
not have to switch modes when going from day to night and vice versa, but can
run your machine as follows:

� During the day, LPARs A, B, C, and D are active. LPAR E is not active.
� During the night, LPAR E is active. LPARs A, B, C, and D are not active.

Since all five LPARs will appear in the SDR at all times (PSSP sees all LPARs
defined on the HMC), LPAR E can have all of the resources in the server
allocated to it, other than those resources defined in PSSP to LPARs A, B, C, and
D. (All of the LPARs defined in PSSP need to have unique SPLAN adapters,
rootvg volume groups, and so on, and these resources cannot be shared. All

Restriction: IBM does not support having PSSP-controlled devices (css, en,
tr, or rootvg devices (hdisks), and so on) deferred to more than one LPAR
definition.
236 Performance and Tuning Considerations for the p690 in a Cluster 1600

other resources not defined to PSSP, such as memory and processors, can be
assigned to LPAR E.) Therefore, LPAR E can be allocated all of the memory and
processors in the server, but not all of the hard drives and communications
adapters.

The procedure for creating a new LPAR definition to simulate running the server
in Full System Partition mode is as follows:

1. Create an additional LPAR and allocate resources to it:

a. Allocate a new disk for the AIX image (the disk cannot be allocated to any
other LPAR).

b. Allocate an Ethernet adapter for the SPLAN connection (the adapter
cannot used by any other LPAR).

c. Allocate other resources (memory, processors, and so on), which may or
may not be allocated by other LPARs.

2. Add SDR information for the new node:

a. Use a new IP address for the SPLAN adapter.

b. Use new IP settings for any other adapters defined through PSSP.

3. Power off all the other LPARs that belong to that frame.

4. Install the new node.

The limitation to this method is that you are forced to have more node definitions
in the SDR than are currently active.

Create a separate LPAR profile
To avoid losing the use of one of the LPARs, you can instead create an additional
profile of an existing LPAR. In the new profile, allocate the same resources used
in the other profile, along with the rest of the resources in the server not defined
in PSSP to LPARs A, B, C, and D. This procedure is described in the following:

1. Select an LPAR and create a new profile. We suggested selecting the LPAR
that corresponds to the first node number in that frame.

2. Allocate resources to that LPAR:

a. Allocate the same boot disk as on the default profile.

b. Allocate the same Ethernet and switch adapter as on the default profile.

c. Via the HMC, allocate all other resources not already defined to other
nodes in the SDR.

Note: In this type of configuration, the maximum number of active nodes at
one time is limited to 15, since one node number is used by this LPAR.
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 237

3. Save the new profile.

4. Set this profile as the default profile.

Helpful feature codes
This section lists feature codes you may find useful. For a complete list of
supported adapters, check:

http://www.ibm.com/servers/eserver/pseries

p690 system
Table D-13 lists the feature codes that are probably the most used when adding a
p690 to an IBM ^ Cluster 1600.

Table D-13 List of p690-related feature codes

Hardware Management Console
Since you need an HMC for p690 Clustering, Table D-14 shows a list of
components for the HMC.

Table D-14 List of useful HMC-related feature codes

Note: You can allocate all resources from the current LPAR. In addition, you
can also allocate all other resources, except for PSSP-managed resources
from other LPARs.

FC Name and description

2122 SCSI cable from I/O drawer to media drawer. Needed for additional Ultra
3 SCSI adapter.

4962 Ethernet adapter for SPLAN connections.
AIX LPP: devices.pci.1410ff01.*

6203 Ultra 3 SCSI adapter for additional devices, plugged into the internal
media drawer.
AIX LPP: devices.pci.00102100.*

8396 SP Switch adapter (TB3PCI).
AIX LPP: ssp.css

8397 SP Switch 2 adapter.
AIX LPP: ssp.css

FC Name and description

2943 8-Port Async PCI adapter for connection to the p690.
238 Performance and Tuning Considerations for the p690 in a Cluster 1600

http://www.ibm.com/servers/eserver/pseries

Limitations
For information about current limitations, refer to Parallel System Support
Program for AIX: Read This First for New Users, GI10-0641.

Example scenarios
In this section, we show a few sample scenarios using p690, HMC, and the CWS.

CWS with two HMCs and four p690s
Figure D-26 on page 240 shows four p690 servers in LPAR mode, with all nodes
connected to the SPLAN. To achieve high availability, we use two HMCs. Each
HMC is connected to all p690s via RS232 connections. The connection between
the CWS and the HMC is via a trusted Ethernet connection.

3629 P76/P77 color monitor.

3630 P260/P275 color monitor.

6600 US-English keyboard also includes a three-button mouse.

7316 Hardware Management Console (HMC).
This feature code also includes the Red Hat Linux operating system.

8120 RS-232 attachment cable to p690 (6 m).

8121 RS-232 attachment cable to p690 (15 m).

FC Name and description
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 239

Figure D-26 Four p690s with two redundant HMCs and one CWS

One CWS, one HMC, and one p690
Figure D-27 on page 241 shows the smallest possible Cluster 1600 based on
one p690. A useful upgrade for this scenario could be a trusted Ethernet
between the HMC and the CWS.

Tip for this scenario: For better performance when installing the nodes,
make sure that when defining the p690 frames (see the spframe command),
you change the order of the HMC IP addresses.

CWS
SPLAN Ethernet

RS232 TTY

HMC
Trusted

EthernetHMC

p690/p670
LPAR Mode

p690/p670
LPAR Mode

p690/p670
LPAR Mode

p690/p670
LPAR Mode
240 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure D-27 Cluster 1600 with one HMC, one p690, and CWS

CWS, two HMCs, two 9076s, with one p690 and SP Switch2
Figure D-28 on page 242 shows a Cluster 1600 after integrating a p690 server in
LPAR mode. Not all LPARs have a connection to the SP Switch2. This scenario
shows a redundant HMC with a separate trusted LAN between the HMC and the
CWS.

p 6 9 0 /p 6 7 0
L P A R M o d e

C W S

H M C

S P L A N E th e rn e t / R M C L A N / tru s te d L A N

R S 2 3 2 T T Y
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 241

Figure D-28 SP Frames with one p690 and two LPARs on an SP Switch2

CWS, HMC, 9076 frame, and p690 with SP Switch
Figure D-29 on page 243 shows a p690 in LPAR mode where all LPARs have an
SP Switch connection. The RMC LAN traffic goes over the SPLAN.

SP
Frame

CWS HMC

p690/p670
LPAR Mode

RS232 TTY
SPLAN
Ethernet/RMC
LAN

Trusted
Ethernet

HMC

SP
Frame

RS232 TTY

SP Switch2

Frame
Supervisor

Frame
Supervisor
242 Performance and Tuning Considerations for the p690 in a Cluster 1600

Figure D-29 SP Frame and p690 with SP-Switched LPARs

CWS

RS232 TTY
SPLAN Ethernet/RMC LAN

Trusted
Ethernet

HMC

RS232 TTY

SP switch

p690/p670
LPAR Mode

SP
Frame

Frame
Supervisor
 Appendix D. Integrating p690 in an IBM eServer Cluster 1600 243

244 Performance and Tuning Considerations for the p690 in a Cluster 1600

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 248.

� Additional AIX Security Tools on IBM ^ pSeries, IBM RS/6000, and
SP/Cluster, SG24-5971

� AIX 5L Differences Guide, SG24-5765

� AIX 5L Performance Tools Handbook, SG24-6039

� AIX Logical Volume Manager, From A to Z: Introduction and Concepts,
SG24-5432

� Configuring the IBM VSS for Performance and Availability, SG24-5279

� Exploiting RS/6000 SP Security: Keeping It Safe, SG24-5521

� IBM ^ pSeries 690 System Handbook, SG24-7040

� The POWER4 Processor Introduction and Tuning Guide, SG24-7041

� RS/6000 Scientific and Technical Computing: POWER3 Introduction and
Tuning Guide, SG24-5155

� RS/6000 SP/Cluster: New Enhancements in PSSP 3.4, SG24-6604

� RS/6000 SP System Performance Tuning Update, SG24-5340

� Scientific Applications in RS/6000 SP Environments, SG24-5611

Other resources
These publications are also relevant as further information sources:

� AIX Performance Monitoring and Tuning Guide, SC23-2365

� AIX Version 4, Optimization and Tuning Guide for Fortran, C, and C++,
SC09-1705

� Configuring p690 in an IBM eServer Cluster 1600, REDP0187

� ESSL for AIX Version 3 Release 3: Installation Memo, GI10-0604
© Copyright IBM Corp. 2002. All rights reserved. 245

� ESSL Products General Information, GC23-0529

� ESSL Version 3 Release 3 for AIX Guide and Reference, SA22-7272

� HMC Operations Guide, SA38-0590

� IBM ^ pSeries 690 Installation Guide, SA38-0587

� IBM ^ pSeries 690 User’s Guide, SA38-0588

� IBM Tivoli Storage Manager for AIX Administrator's Guide Version 5.1,
GC32-0768

� IBM Tivoli Storage Manager for AIX Administrator's Reference Version 5.1,
GC32-0769

� LoadLeveler for AIX: Installation Memo, GI11-2819

� Loadleveler for AIX: Diagnosis and Messages Guide, GA22-7882

� LoadLeveler for AIX: Using and Administering, SA22-7881

� Parallel Environment for AIX: Hitchhiker's Guide, SA22-7424

� Parallel Environment for AIX: Installation Guide, GA22-7418

� Parallel Environment for AIX: MPI Programming Guide, SA22-7422

� Parallel Environment for AIX: Operations and Use, Volume 1, SA22-7425

� Parallel Environment for AIX: Operation and Use, Volume 2, SA22-7426

� Parallel ESSL for AIX Version 2 Release 3 Guide and Reference, SA22-7273

� Parallel ESSL Version 2 Release 3 for AIX: Installation Memo, GI10-0607

� Parallel System Support Program for AIX: Read This First for New Users,
GI10-0641

� PSSP for AIX: Command and Technical Reference, SA22-7351

� PSSP for AIX: Installation and Migration Guide, GA22-7347

� RS/6000 SP: Planning, Volume 1, Hardware and Physical Environment,
GA22-7280

� RS/6000 SP: Planning Volume 2, Control Workstation and Software
Environment, GA22-7281

� RS/6000 & pSeries PCI Adapter Placement Reference, SA38-0538

� Some Practical Suggestions for Performing Gaussian Benchmarks on a
pSeries 690 System, REDP0424

� Some Practical Suggestions for Performing NCBI BLAST Benchmarks on a
pSeries 690 System, REDP0437

� VisualAge C++, Version 5.0 Getting Started (only comes with the product)

� XL Fortran for AIX User’s Guide Version 7.1, SC09-2866
246 Performance and Tuning Considerations for the p690 in a Cluster 1600246 Performance and Tuning Considerations for the p690 in a Cluster 1600

The following references are shipped with the AIX 5L product:

� AIX 5L Version 5.1 Commands Reference

� AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs

� AIX 5L Version 5.1 System Management Guide: Communications and
Networks

� AIX 5L Version 5.1 System Management Guide: Operating System and
Device

Referenced Web sites
These Web sites are also relevant as further information sources:

� RS/6000 SP: SP Switch and SP Switch2 Performance whitepaper

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/sp_switch_p
erf.html

� The IBM ^ pSeries 690 Reliability, Availability, Serviceability (RAS)
whitepaper

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/p690_ras.ht
ml

� IBM ^ POWER4 System Microarchitecture whitepaper

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html

� RS/6000 SP: SP Switch2 Technology and Architecture whitepaper

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/sp_switch2.
pdf

� Partitioning for the IBM ^ pSeries 690 System whitepaper

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/lpar.html

� IBM ^ pSeries 690 Configuring for Performance whitepaper

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/p690_config
.html

� Power4 focuses on Memory Bandwidth

http://www.ibm.com/chips/news/1999/microprocessor99.pdf

� The RS/6000 64-bit Solution whitepaper

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/64bit6.html
 Related publications 247

http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/sp_switch_perf.html
http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/p690_ras.html
http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html
http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/sp_switch2.pdf
http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/lpar.html
http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/p690_config.html
http://www-3.ibm.com/chips/news/1999/microprocessor99.pdf
http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/64bit6.html

� Information on XL Fortran

http://www.ibm.com/software/ad/fortran/xlfortran/

� Information on VisualAge C/C++

http://www.ibm.com/software/ad/vacpp/

� PE for AIX 5L Version 3 Release 2 Sample Programs

http://www.ibm.com/servers/eserver/pseries/library/sp_books/aix5pe_examples
.tar

� Melville, Moby Dick

http://www.informika.ru/text/books/gutenb/gutind/TEMP/i-_m8.html#mobydick.h
tml

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
248 Performance and Tuning Considerations for the p690 in a Cluster 1600248 Performance and Tuning Considerations for the p690 in a Cluster 1600

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www-3.ibm.com/software/ad/fortran/xlfortran/
http://www-3.ibm.com/software/ad/vacpp/
http://www-1.ibm.com/servers/eserver/pseries/library/sp_books/aix5pe_examples.tar
http://www.informika.ru/text/books/gutenb/gutind/TEMP/i-_m8.html#mobydick.html

acronyms
ABI Application Binary Interface

ALPAR Affinity Logical Partition

APAR Authorized Program Analysis
Report

API Application Programming
Interface

ATM Asynchronous Transfer Mode

BI Business Intelligence

BLAS Basic Linear Algebra
Subprograms

BNC Bayonet Niell-Concelman

BOS Basic Operating System

CD-ROM Compact Disk - Read Only
Memory

CEC Central Electronics Complex

CIU Core Interface Unit

COFF Common Object File Format

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CWS Control WorkStation

DASD Direct Access Storage Device

DCA DC Power Supply

DCE Distributed Computing
Environment

DIMM Dual Inline Memory Module

DMA Direct Memory Access

DPCL Dynamic Probe Class Library

DRAM Direct Memory Access

DVD Digital Video Disc

DVD-RAM Digital Video Disk - Random
Access Memory

ECC Error Checking and
Correcting

Abbreviations and
© Copyright IBM Corp. 2002. All rights reserved.
EIA Electronics Industries
Association

ESCON Enterprise Systems
Connection

ESSL Engineering and Scientific
Subroutine Library

FC Fibre Channel
Feature Code

FDDI Fiber Distributed Data
Interface

FIFO First in First Out

GB GigaByte

GPFS General Parallel File System

HACMP High Availability Cluster
Multi-Processing

HACWS High Availability Control
WorkStation

HiPPI High Performance Parallel
Interface

HMC Hardware Management
Console

HPC High Performance Computing

HPS High Performance Switch

IBM International Business
Machines Corporation

IP Internet Protocol

ITSO International Technical
Support Organization

JFS Journaled File System

KB KiloByte

LAPI Low level Application
Programming Interface

LED Light Emitting Diode

LMB Logical Memory Block

LPAR Logical Partition
 249

LRU Least Recently Used

LVM Logical Volume Manager

MAC Medium Access Control

MASS Mathematical Acceleration
Subsystem

MB MegaByte

MCM Multiple Chip Module

MMF Multiple Mode Fiber

MPI Message Passing Interface

MTU Maximum Transmission Unit

NCAR National Center for
Atmospheric Research

NCU Non-Cacheable Unit

netCDF Network Common Data Form

NIM Network Installation
Management

NLS National Language Support

NUMA Non-Uniform Memory Access

PBLAS Parallel Basic Linear Algebra
Subprograms

PCI Peripheral Component
Interconnect

PCM Parallel Climate Model

PCT Performance Collection Tool

PE Parallel Environment

PESSL Parallel Engineering and
Scientific Subroutine Library

PHB PCI Host Bus

PMU Performance Monitoring Unit

POE Parallel Operation
Environment

POWER Performance Optimization
With Enhanced RISC

PSSP Parallel System Support
Program

PVT Profile Visualization Tool

RAID Redundant Array of
Independent Disks

RAS Reliability, Availability,
Serviceability

RIO Remote I/O Bus

RISC Reduced Instruction Set
Computer

RMC Resource Monitoring and
Control

RPM Revolutions Per Minute
Red Hat Package Manager

RSCT RISC System Cluster
Technology

ScaLAPACK Scalable Linear Algebra
Package

SCSI Small Computer System
Interface

SDR System Data Repository

SMI Synchronous Memory
Interface

SMIT System Management
Interface Tool

SMP Symmetric Multiprocessing

SP Scalable POWER Parallel

SPCN System Power Control
Network

SPOT Shared Product Object Tree

SSA Serial Storage Architecture

SSL Secure Socket Layer

STI Self-Timed Interface

TB TeraByte

TCP Transmission Control Protocol

TLB Translation Lookaside Buffer

TOD Time Of Date

TSM Tivoli Storage Manager

US User Space

USB Universal Serial Bus

UTE Unified Trace Environment

UTP Unshielded Twisted Pair

VMM Virtual Memory Manager
250 Performance and Tuning Considerations for the p690 in a Cluster 1600

VPD Vital Product Data

VSD Virtual Shared Disk

WebSM Web-based System
Management

XCOFF Extended Common Object
File Format
 Abbreviations and acronyms 251

252 Performance and Tuning Considerations for the p690 in a Cluster 1600

Index

Symbols
/etc/bootptab.info 234
/etc/switch.info 212
/spdata 194
/spdata/sys1/spmon/hmc_passwd 212
/usr/samples/kernel 50
/usr/websm/pc_client/setup.exe 210
/var/adm/SPlogs/spmon/hmcd 216

Numerics
1 GB Ethernet adapter 26
1.1 GHz 9
1.3 GHz 9
1/64th of the memory 38
10/100 4-port Ethernet adapter 22
10/100 Ethernet adapter 22
10/100/1000 Base-T Ethernet adapter 22
10/100/1000 Ethernet 3
100 plus I/O slots equals 512 MB 38
1000 MB/sec bidirectional 30
10-slot PCI planar 36
128 MB Option Card adapter 23
128-Port Asynchronous Controller adapter 23
135P 23
16 GB memory cards 18
16 MB pages 3
16 partition limit 43
16-way 10
174 million transistors 13
2 GB Fibre Channel adapter 26
24-way 10
256 MB memory block 37
2-Port Multi-protocol adapter 23
32 GB memory cards 18
32 interposer chips 28
32 MB Fast-Write Cache Option Card adapter 23
32-bit EADS 26
32-bit kernel 57
32-bit kernel versus 64-bit kernel 35
32-bit kernel, enable 58
32-bit large memory model 47
32-bit process model 47
32-way 10
© Copyright IBM Corp. 2002. All rights reserved.
375/450MHz SMP Thin Node 8
375/450MHz SMP Wide Node 8
375MHz SMP High Node 8
4 mm tape drive 22
4-pack 22
4-pack SCSI disk backplanes 36
4-Port RVX adapter 23
4-Port USB adapter 23
500 MB/sec unidirectional 30
60 percent to 80 percent of capacity 25
622 ATM adapter 26
64-bit application environment 58
64-bit EADS 26
64-bit interface 29
64-bit kernel 57
64-bit kernel versus 32-bit kernel 35
64-bit kernel, active 58
64-bit kernel, enable 58
66 MHz maximum clock speed 29
660 27
670 27
671 7
680 27
681 7
690 27
6H0 7, 27
6H1 8, 27
6M1 7, 27
7017 27
7026 27
740 PowerPC microprocessor 29
80 I/O slots equals 256 MB 38
872 microseconds 28
873.6 GB 21
8-Port Asynchronous EIA-232E/RS-422A adapter
23
8-way 10
8x8 27
96 GB 41
96 GB limitation 20

A
active partitions 21
 253

adapter automatically resets itself 29
Adapter, SP Switch2 PCI 8
adapter, SP Switch2 PCI Attachment Adapter 3
adapters

1 GB Ethernet 26
10/100 4-port Ethernet 22
10/100 Ethernet 22
10/100/1000 Base-T Ethernet 22
128 MB Option Card 23
128-Port Asynchronous Controller 23
2 GB Fibre Channel 26
2-Port Multi-protocol 23
32 MB Fast-Write Cache Option Card 23
4-Port RVX 23
4-Port USB 23
622 ATM 26
8-Port async 195
8-Port Asynchronous EIA-232E/RS-422A 23
8-Port or 128-Port Async PCI card 198
Advance Serial RAID Plus 22
asynchronous port 23
ATM MMF 22
ATM UTP 22
communication 22
cryptographic 23
Cryptographic Coprocessor 23
disk and tape attachment 22
Dual Ultra-3 SCSI 26
e-business Cryptographic Accelerator 23
Ethernet 197
Gigabit Ethernet SX 22
Gigabit Fibre Channel 22
GXT 135P Graphics 23
PCI Single-Ended Ultra-SCSI 22
S390 ESCON Channel PCI 22
SCSI 196
Serial Long-Wave HiPPI 22
Serial Short-Wave HiPPI PCI 22
SP LAN 30
SP Switch 203
SP Switch Attachment 22
SP Switch2 204
SP Switch2 PCI Attachment Adapter 22, 26, 29
SP System Attachment Adapter 22
SP system attachment Adapter 26
SSA 40 26
SysKonnect FDDI-LP DAS 22
SysKonnect FDDI-LP SAS 22
Token-Ring PCI 22

Turboways 622 ATM 22
Ultra-3 SCSI 22
Universal Differential SCSI 22

address offset 36
address, effective 17
administrative intervention 29
Advance Serial RAID Plus adapter 22
advisory mode 48
affinity logical partition 3
affinity logical partition (ALPAR) 35, 42
affinity, memory and scheduling 35
affinity, scheduling and memory 3
aggregate bandwidth 21
aggregate IP 3, 69

striping technique 69
Update Interval 70
Update Threshold 70
virtual-device interface 69

air flow 28
AIX 52

modes
outgoing packets 73
Round-robin 74
standard mode 73

AIX 5L
kernels 56

AIX dispatcher 55
AIX performance 37
AIX sort program 78
AIX Workload Manager (WLM) 55
AIX, mixed-mode process 46
algorithm, binary-tree, pseudo-least-recently-used
18
all memory slots 20
allocation, memory and processor 42
ALPAR 3, 93

constraints 43
explained 42
hardware warning 43
introduction 35
LPAR comparison 44
LPAR definition warning 43
LPAR scenario 43
Partition ID 43
rather than LPAR 42
supported types 42

application performance. 59
associative 18
asynchronous 23
254 Performance and Tuning Considerations for the p690 in a Cluster 1600

asynchronous clocking 27
asynchronous port adapters 23
ATM 22, 26
ATM MMF adapter 22
ATM UTP adapter 22

B
backout plan 2
backplane 21, 36
bad packet 29
balance 16
balanced memory sizes 20
balancing, memory 19
bandwidth 8, 13, 54
bandwidth by I/O stage 26
bandwidth, bidirectional 8
bandwidth, device peak 25
bandwidth, I/O 23
bandwidth, maximum sustainable 20
bandwidth, MCM 20
bandwidth, RIO aggregate 21
bandwidth, RIO sustained 21
bandwidth, scalable 16
bandwidth, sustained 25
bandwidth, unidirectional 8
bandwidths

I/O adapter 25
Basic Linear Algebra Subprograms (BLAS) 63
bay, media 22
BI 25, 44
bidirectional bandwidth 8
binary-tree, pseudo-least-recently-used (LRU) algo-
rithm 18
bit-tunable thresholds on recoverable errors 29
blind swap books 21
blower fans 21
BNC cabling 197
boards, planar I/O 21
Bonnie 36
Bonnie and Clyde 21
Bonnie is Planar 1 23
books, blind swap 21
books, memory 17
books, performance 2
bottom up 2
boundary alignment 38
bounding register 36
bridge chip, RIO-to-PCI 21

buffer large blocks 29
bursts 25
bus network 16
bus, GX 21
business intelligence (BI) 25, 44

C
cable length 28
cables 21
cache

L1 9, 15
L2 9, 15
L3 9, 15

cache controller 15
cache performance 15
cache table indexes 25
cache, unified 18
cache-coherency 16
cage, DASD 21
call-back library 37
call-backs 37
capacity, per-chip 17
card, memory 18
card, midplane 21
card, null 28
CD-ROM 22
Central Electronics Complex (CEC) 10, 12, 184
channel 22
CHARMm 129
checking parity 28
child devices 21
chips, switch 27
choices, kernel 35
chunks 38
CIU 15
clock, internal in switch chip 27
clocking, asynchronous 27
clocking, synchronous 27
clocking, TOD 27
close proximity 42
Cluster 183
Cluster 1600 2, 5, 9, 69, 113
Cluster 1600 nodes 27
Cluster 1600, defined 7
Cluster Enterprise Servers (CES) 183
Clyde 36
Clyde is Planar 2 23
code patches 28
 Index 255

coherence 18
coherency, memory 18
commands

bindprocessor 55
bosboot 51, 54, 78, 98
chgcss 71, 111, 114
chuser 50
delnimclient 235
dsmc 103
echo dd 85
Eclock 27
Eclock, not needed 28
Estart 27
Eunfence 28
ld 47
ldedit 48
llextSDR 117
lsattr -El css0 72, 114
netstat -v ent# 73
no 109
nodecond 198
oslevel -r 55
ps 85, 215
s1term 198
script 86
SDRArchive 223
shutdown 78, 98, 201, 235
shutdown -Fr 54
smitty 58
spadaptr_loc 198, 217
spaggip 69–70
spframe 199, 240
sphmcid 212
sphrdwrad 198
splstdata 217
splstdata -n 191
spmon -d 191, 228
st_status 130
svmon 51, 92, 105
timex 103, 122, 176
topas 85
vmstat 85, 108
vmtune 46, 50, 54, 78, 98, 104
vmtune -L 32 104
vmtune -S 1 51
vmtune -y 1 100
vmtune64 50

commercial workloads 25
Common Information Model (CIM) 215

communication adapters 22
communications pathways 16
compiler options 35, 60
conceptual framework 5
configuration, turbo 10
configuring 2
configuring p690 2
configuring pSeries 690 2
connection topology 13
connectivity 35
considerations for technical large page support 51
consistent performance 19
constraints with ALPARs 43
contiguous memory 38
contiguous real-mode memory 38
control workstation (CWS)

supported 193
controller 15
Controller, Fabric 12–13, 16
controller, GX 16
cooling air flow 28
coprocessor 23
Core Interface Unit (CIU) 15
correctable transient errors 28
CRC 28
creating a page table entry 37
crossbar switch 16, 27
Cross-Cell Propagation 81
cryptographic adapters 23
Cryptographic Coprocessor adapter 23
csss 3
Cyclic Redundancy Checks (CRC) 28

D
daemon, fault service 29
daemon, hardmon 191
DAS 22
DASD 21
DASD cage 21
data reload port 15
database disk recommendation 25
database systems 25
DC power supplies 21
DCA 21
DCE 81
debug register and memory access 37
debuggers 38
default profiles 42
256 Performance and Tuning Considerations for the p690 in a Cluster 1600

definition of Cluster 1600 7
delnimclient, command 235
design 15
detection of miswires 29
device peak bandwidth 25
diagnostic improvements 29
diagnostic purposes 28
Dick, Moby 81
different size memory cards 20
Differential SCSI 22
dilemma 10
direct mapped 17
direct memory access (DMA) translation 38
directories

/spdata 194
/usr/samples/kernel 50
/var/tmp 88

disk 4-pack 22
disk and tape attachment adapters 22
disk arms 25
Distributed Computing Environment (DCE) 81
DMA translation 38
dollar, missing 1
drive bays 20
Dual Ultra-3 SCSI adapter 26
dual-path failover 21
dual-plane 31
dual-plane SP Switch2 41
dual-port 18
dual-port cards 20
duplex 26
DVD 13
DVD-RAM 22
dynamic load balancing 36
Dynamic Probe Class Library (DPCL) 174

E
E1F7 43
EADS 26
EADS chip 203
e-business Cryptographic Accelerator adapter 23
ECC 28
Eclock 27
Eclock not needed 28
eDRAM 12
effective address 17
EIA 20
EIA-232E/RS-422A 23

eight 27
eight (8x8) crossbar switch chips 27
eight SP Switch2 LPARs per pSeries 690 30
eight switch chips 28
Electronics Industries Association (EIA) 20
Engineering and Scientific Subroutine Libraries (ES-
SL) 63
entries, page table 18
environment, non-partitioned 37
environment, partitioned 37
environment, variable, setting 48
Error Correction Circuitry (ECC) 28
errors 29
ESCON 22
EtherChannel 73

traffic distribution 73
ethereal spirit 10
Ethernet, 10/100/1000 3
Ethernet, Fast 3
Ethernet, Gigabit 3
Eunfence 28
evolution 27

F
Fabric Controller 12–13, 16
fabric, interconnect 5, 27, 35
fabric, switch 3
factors that can affect the overall performance 30
failover 21
Fast Ethernet 3
Fast-Write Cache 23
fault isolation 29
fault service daemon 29
fault tolerance of switch subsystem 28
FDDI 22
feature codes

2122 238
2943 238
3629 239
3630 239
4962 238
6203 238
6600 239
7316 239
8120 239
8121 239
8396 238
8397 238
 Index 257

FC 2732 22
FC 2733 22
FC 2737 23
FC 2741 22
FC 2742 22
FC 2751 22
FC 2848 23
FC 2943 23
FC 2944 23
FC 2946 22, 26
FC 2947 23
FC 2962 23
FC 2969 22, 26
FC 2975 22, 26
FC 3157 22
FC 3158 22
FC 3159 22
FC 3260 22
FC 3261 22
FC 4953 22
FC 4957 22
FC 4959 22
FC 4960 23
FC 4961 22
FC 4962 22
FC 4963 23
FC 6203 22, 26
FC 6204 22
FC 6206 22
FC 6228 22, 26
FC 6230 22, 26
FC 6231 23
FC 6235 23
FC 8396 22, 26
FC 8397 22, 26

features, SP Switch2 27
fewer processor cycles 32
Fibre Channel 26
FIFO 18
files

/etc/bootptab.info 234
/etc/inittab 51, 59
/etc/poe.limits 118
/etc/rc.local 51
/etc/switch.info 212
/spdata/sys1/spmon/hmc_passwd 212
/var/adm/SPlogs/spmon/hmcd 216
bos.adt.samples 50
dsm.sys 109

hostfile 64
mobydick.txt 82

firmware, hypervisor 38
first principle 2
first-in-first-out (FIFO) 18
flags

SHM_PIN 51
foundation 33
four adapters per I/O drawer 30
frame 36
frame supervisor card 187
framework 5
framework, conceptual 5
France, hotels in the south of 1
front media bay 22
Full System Partition (SMP) 100, 185
Full System Partition mode 40, 185, 195, 197
Full System Partition mode performance 40
Full System Partition reboot 41
full-length PCI card 29
fully-populated 13, 20
functions, pervasive 16
fuzzy logic 1

G
games 3
General Parallel File System (GPFS) 5
general to specific 2
Gigabit Ethernet 3
Gigabit Ethernet environments 73
Gigabit Ethernet SX adapter 22
Gigabit Fibre Channel adapter 22
GigaChannel 73
GigE 3, 35
GPFS 5
grant access, technical large page support 50
granularity 18
GX bus 21
GX controller 16
GXT 135P Graphics adapter 23

H
H80 27
hardware building blocks 183
hardware internals 5
Hardware Management Console (HMC) 36,
184–185, 195

HMC 42
258 Performance and Tuning Considerations for the p690 in a Cluster 1600

Object Manager Security Mode 199
secure socket layer (SSL) mode 199

hardware synchronization 27
hashed 18
heap 45
heap segments 49
heat-sink 30
Herman Melville 81
hierarchy 17
High Availability CWS (HACWS)

alternatives 194
High Node 8
High Performance Computing (HPC) 10, 45, 196
High Performance Computing (HPC) codes 42
High Performance Switch (HPS) 27
higher processor overhead 32
high-volume paging environment 41
HiPPI 22
HMC 36
hmc daemon (hmcd) 214
HMC failure 195
HMC, 16 partition limit 43
hostfile, reordering 68
hostfiles and performance 64
hot-pluggable interposer card 28
hot-pluggable power supplies 28
hot-pluggable supervisor card 28
hot-pluggable switch cable 28
hot-swappable 21
HPC option 9
hub 21
hypervisor

AIX performance 37
explained 36
firmware 38
first 256 MB memory block 37
mode 36
mode explained 36
no reserved processors 37
offsets address 36
passive object 37
service calls 37

I
I/O adapters 22
I/O bandwidths 23
I/O latencies 25
I/O sizing 25

I/O stages 26
I/O, peak demand 25
I/O, scalable 9
IBM eServer Cluster 1600 183
IBM performance books 2
improved definitions for error classification types 29
indexed by effective address 17
indexes 25
input/output (I/O) subsystem 10, 20
insignificant 40
instruction reload port 15
insurance 2
integrated SCSI controllers 36
inter-chip 12
inter-chip traffic 16
interconnect fabric 3, 5, 27, 35
interconnect performance numbers 8
interconnection topology 16
interleaved 18
interleaving, memory 19
interleaving, round-robin 20
inter-MCM 13
intermediary switches 28
internal clock in switch chip 27
internals 5
internals, low-level 12
Internet Protocol (IP) 3, 27, 74

bandwidth 75
handshake messages 74
Jumbo Packets 74
polling 74

Internet Protocol (IP) windows 32
interposer card, hot-pluggable 28
interposer chip, STI 28
interposer chips 28
intervention 29
intra-chip 12
intra-chip traffic 16
investigations 3
IP 3, 27
IP limitations 33
IP stack 33
IP windows 32
IP, aggregate 3
IP, single-threaded nature of memory-to-memory
access 33
Ishmael 81
 Index 259

J
JFS 104
Journaled File System 2 (JFS2) 5

K
kernel choices 35
kernels 3, 56
key points for performance tuning 2

L
L1 9
L1 cache 15
L1 data and instruction caches 17
L1 data cache 18
L1 instruction cache 17
L2 9
L2 cache 15, 18
L2 shared caches 17
L3 9
L3 cache 15, 18, 52
L3 directories and controllers 17
L3 off-chip caches 17
LAPI 27
large heat-sink 30
large page 3
large page support 35
latency 8, 15
LED E1F7 43
lightweight protocol 32
limitation, 96 GB with 32-bit kernel 20
limitations, IP 33
limits, RIO 21
LMB 39
LoadLeveler 68, 117
local traffic 16
locality of reference 41
logic, fuzzy 1
logical memory block (LMB) 39
logical partition (LPAR) 3, 9, 35, 184
logical partitioning 184
Logical Volume Manager (LVM) 5
Long-Wave 22
looks like bus-based 16
looks like switch 16
loops, RIO 21
Low-level Application Programming Interface (LAPI)
27
low-level internals 12

low-level performance monitoring 16
LPAR 3, 9, 64–65, 85, 93, 108

32-bit kernel limitation 41
additional SP Switch2 PCI Attachment adapters
41
ALPAR comparison 44
ALPAR definition warning 43
ALPAR rather than 42
ALPAR scenario 43
appears as thin node 36
balanced I/O bandwidth 36
communication 66
composition 36
fast reboot 41
Full System Partition performance comparison
40
greater than 16 GB 39
in a Cluster 1600 36
introduction 35
less than or equal to 16 GB 39
memory affinity 41
memory allocation 38
memory and processor allocation 42
memory overhead 38, 40
memory overhead table 40
minimum configuration 36
page table per 38
paging performance 40
Partition ID 43
real-mode memory 38
reserved memory 39

LPAR mode 185, 191
adapters 196
AIX system disks 196
default profile 197
profile 197

LPAR numbers 192
LPARs and RIO 21
LRU 18
LVM 5

M
M80 27
main functions, HMC 185
maintain cooling air flow 28
maintain synchronization 28
mandatory mode 48
Mathematical Acceleration Subsystem (MASS) 59
260 Performance and Tuning Considerations for the p690 in a Cluster 1600

maximum memory 18
maximum RIO drawers 20
maximum sustainable bandwidth 20
Maximum Transmission Unit (MTU) 109
maximums 21
MB87018 202
MCM 9, 12, 42, 52–53, 55
MCM bandwidth 20
MD10 81
media bay 22
Melville MD series 81
Melville MD10 81
Melville MD10 dataset 81
Melville, Herman 81
Memory 18
memory access latency comparison 42
memory affinity 41, 52

performance benefits 55
memory and scheduling affinity 3, 35
memory balancing 19
memory books 17
memory card 18
memory cards, 16 GB 18
memory cards, 32 GB 18
memory coherency 18
memory controller, optional 18
memory controllers and cards 17
memory interleaving 19
memory latency 15
memory performance recommendations 20
memory storage hierarchy 17
memory subsystem 9–10, 17
memory, interleaving 52
memory, local 52
memory, logical view 18
memory, maximum 18
memory, minimum 18
memory, page sizes 44
memory, pool 54
memory, ports 54
memory, prefetching 45
memory, RAMBUS 28–29
memory, random 55
memory, real-mode 36
memory, referenced 56
memory, scalable 9
memory, technical large page 44
memory, traditional page 44
Message Passing Interface (MPI) 27, 32

microcode 29
microprocessors 15
midplane card 21
minimum LPAR configuration 36
minimum memory 18
missing dollar 1
miswire detection 29
miswired cables 29
miswired links 29
ml0 3
MMF 22
Moby Dick 81
MPI 27, 32
MPI scalability on SP Switch2 33
MPI tasks

Internet Protocol (IP) 74
User Space (US) protocol 74

MPI Trace 176
Multi-Chip Module (MCM) 9, 12
multiple threads 33
multi-protocol 23

N
NCU 15
nearest power of two 38
neighboring MCM 16
network connectivity 35
network HUB 197
network of buses 16
network, point-to-point 16
network, unidirectional 16
Node

High 8
Thin 8
Wide 8

node supervisor card 187
node types 7
nodecond, command 198
nodes 7
nodes, Cluster 1600 27
nodes, pSeries 7
non-cacheable unit (NCU) 15
non-partitioned environment 37
non-uniform memory access (NUMA) 42
null card 28
NUMA 42
 Index 261

O
OLTP 25
one mile of connections 13
Open Firmware OS boot loader environment 41
optimum performance 19
option, HPC 9
optional memory controller 18
oscillator 28
outoforder 15
overhead occurs on PCI bus 32
overhead on PCI bus 32

P
p670 184
p690 2, 5, 9, 44, 52, 56, 59, 72, 75, 100, 113

attach 195
domain name 199
EADS chip 203
firmware 200–201
firmware updates 202
I/O drawer 202
native serial port 198
Switch adapters 200

p690, configuring 2
page faults 54
page table 38
page table entries 18, 37
page, large 3
paging performance 40
Parallel System Support Programs (PSSP) 183
parity checking 28
Partition ID 43
partition, logical, affinity 3
partitioned environment 37
patches 28
pathways 16
PCI bus 75
PCI Host Bus (PHB) 30
PCI Single-Ended Ultra-SCSI adapter 22
PCI slots 9, 20
PCI subsystem 21
PCI, SP Switch2 Adapter 8
PCI, SP Switch2 PCI Attachment Adapter 3
PCI-PCI bridge 30
PE Benchmarker 174
peak I/O demand 25
per-chip capacity 17
performance

bandwidth 69
latency 69

performance books 2
Performance Collection Tool (PCT) 174
performance monitoring logic 27
Performance Monitoring Unit (PMU) 16
performance numbers for switch 8
performance tuning key points 2
performance, cache 15
permanent adapter errors 29
Perspectives 222
pervasive functions 16
PHB 30
PHB bandwidth considerations 30
physical counterparts 36
physical memory 56
ping character 28
placement, adapter 25
plan, backout 2
Planar 1 is Bonnie 23
Planar 2 is Clyde 23
planar I/O boards 21
planning considerations 193
PMU 16
point-to-point, unidirectional network 16
Port Received on Register 29
port, data reload 15
port, instruction reload 15
port, store 15
power cable 22
power supplies 21
power supplies, hot-pluggable 28
power supply redundancy 28
POWER4 3, 5, 9, 46, 49–50, 52, 59, 184

technical large page architecture 46
vmtune command 50

PowerPC microprocessors 15
practical 40
primary TOD chip 27
principle, first 2
privately loaded library text 47
problem determination 29
process 46
process, authorized 47
processor cycles 32
processor frequency 16
processor subsystem 10, 12
Profile Visualization Tool (PVT) 174
profilers 38
262 Performance and Tuning Considerations for the p690 in a Cluster 1600

Propagation, Cross-Cell 81
protocols

IP 3
US 3

ps 215
pSeries 660 Model 6H0 7
pSeries 660 Model 6H1 8
pSeries 660 Model 6M1 7
pSeries 660 models 6M1, 6H1, and 6H0 27
pSeries 670 Model 671 7
pSeries 680 Model S85 7, 27
pSeries 690 2, 5, 9, 184

appears as frame 36
pSeries 690 and pSeries 670 27
pSeries 690 in a Cluster 1600 36
pSeries 690 Model 681 7
pSeries 690, configuring 2
pSeries nodes 7
pseudo-least-recently-used (LRU) 18
PSSP 43
purpose, redbook 1

Q
quadruplets 18

R
RAID 22
RAMBUS memory 28–29
ramdisk 112
random spread 25
RAS, SP Switch2 28
raw peak performance 30
real memory 36
real-mode (non-virtual) memory addressing 36
real-mode memory 36
real-mode memory chunks 38
rear media bay 22
recommendations

database disks 25
hypervisor 38
LPAR vs. Full System Partition 41
memory performance 20
performance tuning, general 2
SP Switch2 PCI Attachment Adapter placement
30

recoverable errors 29
redbook purpose 1
Redbooks Web site 248

Contact us xv
Reduced translation lookaside buffer (TLB) 45
redundancy, power supply 28
redundant communication connections 22
Remote I/O (RIO) 30
required RIO drawer 20
Resource Monitoring and Control (RMC) 188
re-times link 29
Return on Same Route Option 29
reverse advisory mode 51
ring topology 13
RIO

aggregate bandwidth 21
and LPARs 21
bus 21
bus bandwidth considerations 30
cables 21
defined 30
eight drawers 20
hub 21
limits 21
loops 21
maximums 20
power connection 22
required drawer 20
stages 26
sustained bandwidth 21

RIO-to-PCI bridge chip 21
riser cards 21
Rosetta stone 10
round-robin 53
round-robin interleaving 20
RPM 22
RS/6000 7017 models S80 and S7A 27
RS/6000 7026 models H80 and M80 27
RS/6000 SP 7, 183
RS232

classic SP environments 187
RS232 serial line 186
RS-422A 23
rules, slot 21
run-time variability 42
RVX 23

S
s1term, command 198
S390 ESCON Channel PCI adapter 22
S7A 27
 Index 263

S80 27
S85 7, 27
sample scripts 3
SAS 22
scalable bandwidth 16
scalable I/O 9
scalable memory 9
scalable SMP 9
scenarios 3
scheduling and memory affinity 3, 35
scripts

mkmd10.ksh 82
pmrinfo 148
run_charmm 135
run_solo 135
run_this 135

SCSI adapter 22
SCSI bus connection 22
SCSI cable 22
SCSI controller 21
SDRArchive 223
Segment 2 45
segment, persistent 45
segment, registers 45
segment, working 45
segment-based addresses 45
Self-Timed Interface (STI) interposer chip 28
sender hang detect logic 29
sequential data 25
Serial Long-Wave HiPPI adapter 22
Serial Short-Wave HiPPI PCI adapter 22
server, SP-attached 7
service calls 37
service queue full 29
set associative 18
set-associative 18
seven layers of metal 13
shared memory segments 49
shared-memory MPI mode 65
short bursts 25
short periods 25
Short-Wave 22
shutdown, command 201, 235
simplex 26
single instance function 64
Single-Ended 22
single-plane 30
single-port 18
single-port cards 20

sizing, I/O 25
slot rules 21
slots 3 and 5 30
slots, PCI 20
SMI 12
SMP mode 40, 185
SMP reboot 41
SMP, scalable 9
snooping 16
SP LAN 30–31
SP LAN adapter 30
SP Switch 7–8, 27, 195–196, 202–203

adapter tunables 71
SP Switch Attachment Adapters 22
SP Switch2 3, 8, 27, 35, 195–196, 202, 204

adapter
rpoolsize 71
spoolsize 71
win_maxsize 71
win_minsize 71
win_poolsize 71

adapter tunables 71
planes 69

SP Switch2 features 27
SP Switch2 PCI Adapter 8, 35
SP Switch2 PCI Adapters 7
SP Switch2 PCI Attachment Adapter 3, 22, 26, 29,
72
SP Switch2 PCI Attachment Adapter placement rec-
ommendations 30
SP Switch2 PCI Attachment Adapters 69
SP Switch2 planar 28
SP Switch2 RAS 28
SP Switch2, MPI scalability 33
SP System Attachment Adapter 22
SP system attachment Adapter 26
SP, RS/6000 7
spadaptr_loc 217
spadaptr_loc, command 198
SP-attached server 7
SPCN 22
specific to general 2
speculative 15
speculative superscalar outoforder execution design
15
spframe 240
spframe, command 199
sphmcid, commands 212
sphrdwrad, command 198
264 Performance and Tuning Considerations for the p690 in a Cluster 1600

spirit, ethereal 10
SPLAN 187

Ethernet adapters 197
spled window 222
splstdata 217
splstdata -n 191
spmon -d 191, 228
spread randomly 25
SSA 40 adapter 26
stack 45
stack, IP 33
stages, I/O 26
staging 25
stand-alone SMP server 40
STI chips 30
STI interposer chip 28
STI link protocol, proprietary 28
stone, Rosetta 10
storage hierarchy 17
store port 15
striped data 69
subsystem, memory 9, 17
superscalar 15
supervisor card, hot-pluggable 28
supervisor location register 29
supported node types 7
sustained bandwidth 25
sustained bandwidth, RIO 21
sustained duplex and simplex bandwidth 26
svmon, technical large page support 51
switch boards 27
switch cable, hot-pluggable 28
switch chip internal clocks 27
switch chips 27
switch fabric 3
switch hardware testing 29
switch management simplification 28
switch raw peak performance numbers 8
switch subsystem fault tolerance 28
switch, CIU 15
switch, crossbar 16
SX 22
synchronization 28
synchronous clocking 27
Synchronous Memory Interface (SMI) 12, 52
SysKonnect FDDI-LP DAS adapter 22
SysKonnect FDDI-LP SAS adapter 22
system balance 16
System Data Repository (SDR) 218

System Power Control Network (SPCN) 22
system profile 42
system-defined resource divisions 42

T
table indexes 25
tape drive 22
task_geometry keyword 68
TBIC3 switch fabric controller 29
tcp_nagle_limit 109
technical large page support 3, 35, 45

advisory mode 48, 82
conclusions 100
considerations 51
environment variable 48
executable file 48
grant access 50
investigation 78
LD_CNTRL environment variable 82
mandatory mode 48, 82
oversizing 51
shared memory segments 49
svmon 51

technical large page support, pool 46, 50
technical workloads 25
Thin Node 8, 36
threads 55
threshold 29
throughput 33
Time of Day (TOD) control logic 27
time-sensitive data 25
Tivoli Storage Manager (TSM) 102
TOD 27
TOD clocking 27
TOD signal propagation 27
Token-Ring PCI adapter 22
tools

MPI Trace 173
PE Benchmarker 173
pmrinfo 148

top down 2
topology, interconnection 16
topology, ring 13
trading configuration flexibility for potential perfor-
mance gains 44
traditional LPAR 42
traffic, inter-chip 16
traffic, intra-chip 16
 Index 265

traffic, local 16
transaction processing 25
transfer rate 13
transient 29
transient errors, correctable 28
transistors 13
trusted network 188, 194
tty 37
turbo configuration 10
Turboways 622 ATM adapter 22
two adapters per LPAR 30
two slots 30
two-way interleaved 20
two-way set associative 18

U
U1.1 21
U1.13 21
U1.5 21
U1.9 20
Ultra-3 SCSI 21, 26
Ultra-3 SCSI adapter 22
Ultra-SCSI 22
unbalanced memory books 44
unfenced 28
unidirectional bandwidth 8
unidirectional network 16
unidirectional ring 13
unidirectional, differential STI I/O 28
unified cache 18
unified L2 cache 15
Unified Trace Environment (UTE) utilities 174
unit, EIA 20
Universal Differential SCSI adapter 22
up to four threads 33
US 3
US windows 32
USB 23
User Space (US) 3
User Space (US) protocol 74

bandwidth 75
switch adapter window 74

User Space (US) windows 32
user space communication 33
UTP 22

V
variability, run time 42

vector function 64
virtual memory management 37, 45
virtual memory manager (VMM) 3
Virtual Shared Disk (VSD) 5
virtual tty support 37
VSD 5

W
Web server 25
Weingarten, Richard E. 81
Wide Node 8
windows, IP 32
windows, US 32
workload characterization 25
workloads, commercial 25
workloads, technical 25
wrap plug 28
266 Performance and Tuning Considerations for the p690 in a Cluster 1600

Perform
ance and Tuning Considerations for the p690 in a Cluster 1600

®

SG24-6841-00 ISBN 0738426393

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Performance and Tuning
Considerations for the
p690 in a Cluster 1600

Look under the hood
of the pSeries 690
and the SP Switch2
interconnect

Marvel at the new
features that are
relevant to
performance

Watch as the authors
play “what if” games

This redbook is based on the firm belief that all good tuning
begins and ends with a fundamental understanding of how
your system operates within your own environment. There are
three main parts to the book. The first two are conceptual. The
coverage in the first part includes pSeries 690 internals, such
as POWER4, MCMs, memory subsystem, I/O subsystem, and
network connectivity (including SP Switch2, SP Switch2 PCI
Attachment Adapter, and EtherChannel). Coverage in the
second part includes details about performance relevant
features, such as affinity logical partitions (ALPARs),
scheduling (processor) and memory affinity, technical large
page support, and IP vs. US protocol over the new
interconnect fabric. The third part details a series of
investigations used to see how the new features work and
interact. The coverage there includes technical large page,
scheduling (processor) and memory affinity, LPAR and ALPAR,
Tivoli Storage Manager (TSM), AIX mkramdisk, and IP vs. US.
In addition, we have included Configuring p690 in an IBM
^ Cluster 1600, REDP0187 as an additional
appendix, which will tell you how to configure a pSeries 690
in a Cluster 1600.

Back cover

	Front cover
	Contents
	Figures
	Tables
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	Chapter 2. Hardware overview
	2.1 What is a Cluster 1600
	2.2 The pSeries 690 POWER4 building blocks
	2.2.1 The processor subsystem
	2.2.2 The memory subsystem
	2.2.3 The input/output (I/O) subsystem

	2.3 The interconnect fabric
	2.3.1 The SP Switch2
	2.3.2 The SP Switch2 PCI Attachment Adapter
	2.3.3 Internet Protocol (IP) and User Space (US) windows

	2.4 Summary

	Chapter 3. Features relevant to performance
	3.1 Logical partitions (LPARs)
	3.1.1 The Hypervisor
	3.1.2 LPAR memory overhead
	3.1.3 LPAR mode versus Full System Partition mode
	3.1.4 LPAR memory and processor allocation

	3.2 Affinity logical partitions (ALPARs)
	3.3 Technical large page support
	3.3.1 Technical large pages and the Virtual Memory Manager (VMM)
	3.3.2 Technical large page usage

	3.4 Memory affinity
	3.4.1 Memory configuration of pSeries 690
	3.4.2 Enabling memory affinity
	3.4.3 Performance considerations for memory affinity
	3.4.4 Memory affinity with technical large page support

	3.5 The 32-bit kernel versus the 64-bit kernel
	3.5.1 Selecting the 64-bit kernel
	3.5.2 The 64-bit application environment

	3.6 Application performance tuning
	3.6.1 Application tuning guidelines and resources
	3.6.2 Compiler considerations
	3.6.3 Engineering and Scientific Subroutine Libraries
	3.6.4 The Mathematical Acceleration Subsystem (MASS) library
	3.6.5 Hostfile considerations for MPI performance
	3.6.6 Some final recommendations

	3.7 Network connectivity
	3.7.1 SP Switch2 PCI Attachment Adapter
	3.7.2 EtherChannel configurations
	3.7.3 Internet Protocol (IP) and User Space (US) switch windows

	3.8 What is next

	Chapter 4. Investigations
	4.1 Technical large page investigation
	4.1.1 Setting up the environment for technical large page
	4.1.2 Creating the Melville MD10 dataset for technical large page
	4.1.3 Running the tests for technical large page
	4.1.4 Conclusions from the first attempt at technical large page
	4.1.5 The second attempt at technical large page
	4.1.6 Running both tests again within an affinity LPAR (ALPAR)
	4.1.7 Three steps forward, one step back
	4.1.8 Memory affinity
	4.1.9 Technical large page investigation conclusions

	4.2 Tivoli Storage Manager (TSM) investigations
	4.2.1 TSM environment without large page
	4.2.2 TSM environment with technical large page
	4.2.3 TSM and technical large page conclusions
	4.2.4 TSM and SP Switch2 communication
	4.2.5 TSM and SP Switch2 conclusions

	4.3 IP vs. US investigation
	4.3.1 Setting up the environment for IP vs. US testing
	4.3.2 Running the tests for IP vs. US
	4.3.3 IP vs. US on larger LPARs
	4.3.4 IP vs. US with different hostfile
	4.3.5 IP vs. US with MP_SHARED_MEMORY=yes
	4.3.6 IP vs. US with single LPAR using shared memory
	4.3.7 IP vs. US investigation conclusions

	4.4 CHARMm IP vs. US investigation
	4.4.1 Setting up the environment for IP vs. US testing
	4.4.2 Running the tests for IP vs. US
	4.4.3 CHARMm IP vs. US investigation conclusions

	Chapter 5. Summary
	Appendix A. Scripts
	The pmrinfo tool
	The mkllqwcoll tool
	The fix_nlspath tool
	The mk_temp_dir
	The rm_temp_dir

	Appendix B. MPI sample programs
	The inverse_parallel_enabled.c MPI program
	The inverse_parallel.c MPI program
	The series_parallel.c MPI program

	Appendix C. Parallel tools
	PE Benchmarker
	MPI Trace

	Appendix D. Integrating p690 in an IBM eServer Cluster 1600
	IBM eServer pSeries 690
	What is an LPAR
	What is an HMC

	IBM eServer p690 in a Cluster
	CWS, HMC, and p690 functions
	The role of the CWS for an attached p690 server
	The role of the HMC in a Cluster 1600
	Connectivity between CWS, HMC, and p690
	Mapping LPAR numbers and node numbers

	Planning considerations
	Control workstation
	Hardware Management Console
	IBM eServer p690

	Prepare the Hardware Management Console
	Software levels
	Serial connection
	System configuration
	Security settings
	Domain name of p690 systems

	Prepare the p690
	Required p690 firmware
	Adapter placement for p690

	Prepare the control workstation
	AIX and PSSP software requirements
	Software coexistence
	Accessing the Hardware Management Console
	Set hardmon authentication
	Define switch node numbers

	PSSP changes
	Hardware monitoring
	SPLAN adapter
	Additional SDR information
	Perspectives
	New commands and new command flags

	Configuring p690
	Adding p690 to a Cluster
	Adding p690 LPARs to a Cluster
	Deleting LPARs in a Cluster
	Adding an Ethernet adapter to an LPAR node

	Reconfiguring LPARs
	Node numbering
	Move or replace the SPLAN adapter
	Using multiple LPAR definitions or profiles
	Switching between LPAR and Full System Partition mode

	Helpful feature codes
	Limitations
	Example scenarios
	CWS with two HMCs and four p690s
	One CWS, one HMC, and one p690
	CWS, two HMCs, two 9076s, with one p690 and SP Switch2
	CWS, HMC, 9076 frame, and p690 with SP Switch

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Abbreviations and acronyms
	Index
	Back cover

