m Information Management Software

DB2 UDB/WebSphere

Performance Tuning Guide

Overview of DB2 UDB and WebSphere
Application Server architectures

Best practices in tuning a DB2
UDB / WebSphere environment

“ Problem determination
scenarios

Nagraj Alur
Amy Falos
Ada Lau
Svante Lindquist
Monzy Varghese

ibm.com/redbooks REd h OOkS

International Technical Support Organization

DB2 UDB/WebSphere Performance Tuning Guide
March 2003

SG24-6417-01

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Notices” on page xv.

Second Edition (March 2003)

This edition applies to IBM WebSphere Application Server V4.0.5, and IBM DB2 Universal
Database V8.1, for use with IBM AIX 4.3.3 and Windows 2000 operating systems.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2

650 Harry Road

San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002, 2003. All rights reserved.
Note to U.S Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures vii
Tables Xi
Examples. e Xiii
Notices XV
Trademarks XVi
Preface Xvii
The team that wrote thisredbook. XVii
NOtICE . . o XXi
Comments welcome. XXi
Summaryofchanges. XXiii
March 2003, Second Edition XXxiii
Chapter 1. Introduction. 1
1.1 e-business imperatives 2
1.2 e-business applications and their workload profiles 4

1.2.1 Publishand subscribe. 6

1.2.2 Online shoppingttt 6

1.2.3 Customerself-service i 7

1.24 Onlinetrading 7

1.2.5 Business-to-business 7
1.3 e-business infrastructure. L 8
1.4 IBM Application Framework for e-business. 9
1.5 Topology selection criteria. i 11
Chapter 2. Overview of WebSphere Application Server V4.0 13
2.1 Introduction e 14
2.2 J2EE OVEIVIEW. . . .ot 14
2.3 WebSphere Application Server architecture overview 16

231 Clients . ..o e 18

2.3.2 Web Server(s)o v 18

2.3.3 WebSphere Application Server. o i, 18
2.4 WebSphere applicationmodel 28
2.5 Sessionmanagement 29

2.5.1 Choosing a session tracking mechanism 30

© Copyright IBM Corp. 2003 iii

252 Serveraffinity 32

2.5.3 WebSphere Session Manager 33
2.6 Typical applicationflow 34
2.7 WebSphere Queuing Network. i 36
2.8 Tuning WebSphere Application Server. 43
2.9 Application tuning considerations 44

2.9.1 Do not store large object graphs in HitpSession. 44

2.9.2 Release HttpSessions when finished 46

2983 JSPconsiderations 47

2.9.4 Do notuse SingleThreadModel. 47

2.9.5 Minimize synchronizationinservlets. 48

2.9.6 Use the HttpServlet Init method judiciously. 50

2.9.7 Avoid String concatenation “+=" L 50

2.9.8 Minimize uses of System.out.printin, 52

2.9.9 Access EJB entity beans from EJB sessionbeans.............. 53

2910 Reuse EJBhomes 54

2.9.11 Use JDBC connection poolingooiiiinen... 55

2.9.12 Reuse datasources for JDBC connections 56

2.9.13 Release JDBC resources whendone....................... 58

2.9.14 Use Read-Only methods where appropriate. 59

2.9.15 Choose the minimal isolation level that is appropriate 59

2.9.16 EJBs and servlets — same JVM — “No Local Copies” 59

2.9.17 Remove stateful session beans when finished 61

2.9.18 Avoid using Beans.instantiate() to create new bean instances. . .. 62

2.9.19 Ensure that session objects are serializable. 63
2.10 System tuningconsiderations i 64

2.10.1 WebSphere Application Server queues considerations 64

2.10.2 WebSphere Application Server JVM memory considerations. 74

2.10.3 Otherconsiderations. i 78
2.11 Monitoring and tuningtools. i 86

2110 PMI 86

2.11.2 Resource Analyzer 87

2.11.3 Performance monitoringservlet, 91

2104 LOgS - ettt 91

2115 TracCes . . .ot 92

2.11.6 Log Analyzer. e 93

2117 VML 94

2.11.8 Performance tunerwizard. 95
Chapter 3. Overviewof DB2UDB8........... 97
3.1 Introduction 98
3.2 DB2 architecture overview 99

3.21 DB2agents 99

iv DB2 UDB/WebSphere Application Tuning Guide

3.2.2 Bufferpools. 103

3.2.3 Block based bufferpools. i 103
3.24 Prefetchers 103
3.25 Pagecleaners. 104
3.2.6 LOGS ..ot e 105
3.2.7 Deadlock detector. 105
B.2.8 DisSKS 106
3.2.9 Threading of Java UDFs and stored procedures 106
3.3 Tuning DB2 e 107
3.4 Application tuning considerationso ... 108
3.4.1 Databasedesign......... 108
3.4.2 Efficient SQL 113
3.4.3 CONCUITENCY . . v v ittt et e e e e e 115
3.4.4 Runstats 123
3.5 System tuning considerations 124
3.5.1 DB2 memory utilization. 124
3.52 DB264-bit. 129
3.5.3 Configuration parameters 130
3.6 Monitoringand tuningtools............ i 140
3.7 Problem diagnosis introduction. L. 144

Chapter 4. WebSphere Application Server and DB2 UDB performance 147

4.1 Introduction e 148
4.2 Connection POlt 148
4.21 Detailed description. 149
422 Bestpractices 161
4.3 Prepared statementcache 169
4.3.1 Detailed description. 172
4.3.2 Bestpractices 178
4.4 Sessiondatabase 180
4.41 Detailed description. 184
442 BestpractiCest e 195
4.5 EnterpriseJavaBeans 209
451 EJBOVEIVIEW 209
4.5.2 EJB performance considerations 216
Chapter 5. Problem determination scenarios. 217
5.1 Introduction e 218
5.2 Exception events SCENArios.t 219
5.2.1 Connection pool size. 222
5.2.2 CONCUITENCY ISSUBS. ottt it e e e e e s 251
5.2.3 Non-serializable objects 301
5.3 Routine monitoring scenarios i 312

Contents VvV

5.3.1 Determining average session objectsize 314

5.3.2 100K session object size with persistence 315
5.3.3 100K session object size with local caching.................. 320
5.3.4 30K sessionobjectsize. i 325
Appendix A. Sample applications 331
A1 Trade 2 application 332
A.2 PiggyBank application. 333
A.3 WebSphere Performance Tools (WPT), 334
Appendix B. Sample scripts. 335
B.1 Connectioncloseservlet. 336
B.2 Large sessionobjectservlet........... i 337
B.3 SessioninspectServietjsp. 339
Abbreviations and acronyms 345
Related publications 347
IBM RedboOoksS 347
Other resourCest 347
Referenced Web sites. 348
HowtogetIBM Redbooks 349
IBM Redbooks collections. 349
INdeX 351

vi DB2 UDB/WebSphere Application Tuning Guide

Figures

1-1 Key business proCesses 3
1-2 e-businessinfrastructure 8
1-3 IBM Application Framework for e-business 10
2-1 J2EE COmponentst e 15
2-2 WebSphere Application Server 4.0 in a typical e-business application . 17
2-3 Servergroupsandclones 22
2-4 Verticalclones 23
2-5 Horizontal clones 23
2-6 Types of requests that can be workload managed 24
2-7 WebSphere administrative model 26
2-8 WebSphere administrative interfaces 28
2-9 Atypical applicationflow 35
2-10 WebSphere Queuing Network 37
2-11 Web container queue settings o 39
2-12 ORB thread poolsize setting. 40
2-13 Resource Analyzer ORBmonitoring, 41
2-14 Bounding ORB pool by setting system property 42
2-15 Datasource connection pooling settings 43
2-16 JDBC sessiondataalternative............. 45
2-17 Explicit HttpSession invalidation 46
2-18 Servlet using single threaded model 48
2-19 Servlet code using synchronization 49
2-20 Servlet code avoiding synchronization. 49
2-21 Judicious use of init() method, 50
2-22 Poor String concatenation technique. oL 51
2-23 Correct String concatenation technique. 51
2-24 Application leveltracing. 52
2-25 Deactivating System.out and System.err. 53
2-26 Accessing entity beans from sessionbeans 54
2-27 Wrong way to obtain JDBC connections 55
2-28 Correct way to obtain JDBC connections 56
2-29 Wrong way to acquire a datasource, 57
2-30 Correct way to acquire adatasource 57
2-31 Pass by reference side effects of “No Local Copies”. 60
2-32 Remove stateful session beans when finished 61
2-33 Wrong way to create a new beaninstance 62
2-34 Correct way to create anew beaninstance. 62
2-35 Minimizing queuing downstream, through upstream queuing 66

© Copyright IBM Corp. 2003 vii

viii

2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48

3-10

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
5-1

Resource Analyzer summary report with varying number of clients . . . 68

Resource Analyzer Web container monitoring. 69
EJB QUEBUING. . . . oo e 70
Shortlived EJBcalls 71
Resource Analyzer EJB methods average response time. 72
Resource Analyzer datasource monitoring 73
Resource Analyzer JVM memory monitoring. 75
Setting isolation level attributes in the Application Assembly Tool 82
Performance monitoring infrastructure. 87
Performance monitoring settings oL 89
Application Server Properties window 92
Trace WindOW. 93
Log Analyzer e 94
DB2 architecture overview. 99
Connection concentratorconcept 102
Lock type compatibility. 121
lllustration of a deadlock scenario 122
DB2 memory model. 125
Database Manager shared memory overview 127
Database agent/application private/shared memory overview 128
DB2 Control Center 132
Design Advisor Wizard. 141
Configure Performance Wizardo 142
A connection poolexample 150
General configuration for TRADEDB datasource 151
Configuring the connection pool for a datasource 152
Connection objectlifecycle 155
Connection pool statistics with monitoring level at Maximum 166
The three options for JDBC statements. 170
Prepared Statement Cache: anexample. 173
Setting and changing PCKCACHESZ value 178
Session Manager Service — Advanced properties 180
In-memory cache overflow algorithm. 181
Session manager service — persistence properties 185
Configure persistencetuning............ 186
Session manager service — database properties 193
Useofinvalidate() 199
J2EE containers and components. L 210
Types Of EUBS o 211
Setting the isolation level in the deployment descriptor. 213
Setting access intent of an EJB Method in Application Assembly Tool 215
A typical problem determination methodology 220
Configuration parameter mismatch scenario environment 223

DB2 UDB/WebSphere Application Tuning Guide

5-3
5-4

5-6

5-7

5-8

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45

Changing DB2 DIAGLEVEL parameter........................ 224
Setting performance monitoring level on database connection pools . 225

TRADEDB datasource connection pool configuration 226
Error 500 trying to login to the Trade application. 227
Output from ps command looking for Java process Trade 229
Issuing a ping on application serverTrade 230
Ping confirmation that Trade isrunning. 230
Invoking welcome.jsp to confirm Trade isrunning. 231
Ping from Application Server (persian) to Database Server (mansel) . 232
Error report from the Application Server (persian). 232
Errors: Tradestdout.txt file trying to connect to TRADEDB data source233
List applications currently running on database manager 234
Error SQL1040 indb2diag.log 235
SQL1040N explanation 235
Error SQL1040 trying to connectto TRADEDB 236
MAXAPPLS value in TRADEDB configuration 236
Changing MAXAPPLS value for TRADEDB 237
Monitoring connections and waiting time on data source TRADEDB . 239
Monitoring connection pool after changing max pool size to 50 241
Poor coding techniques — connection pooling scenario environment . 242
Changing the maximum pool size for TRADEDB datasource 243
Error message about a timeout exception. 243
Pinging mansel frompersian o . 244
db2 list applications command. 245
WebSphere Administrative Console Event Messages. 246
WebSphere Administrative Console Event Details 247
Resource Analyzer monitoroutput. 248
WebSphere stdoutlog 249
Resource Analyzer monitor output with connections closed in program250
Theuserlogs in e e 252
Main menu with theoptions.. 253
The user displays hisaccounts 254
Transfer money between the users different accounts 255
EJB isolation mismatch scenario environment 256
Error message in Web Browser. 258
Looking for WebSphere restarting the Application Server.......... 259
SQL0911: Reason code 2 in WebSphere’s Admin Console 260
SQL0911: Reason code 68 in WebSphere’s Admin Console 260
Corba Transaction_Rolledback error in WebSphere’s Admin Console 261
Snapshot from database focusingonlocks. 263
Listapplications 264
DB2 Control Center, list applications 265
Current connected applications withstatus 266

Figures iXx

X

5-46
5-47
5-48
5-49
5-50
5-51
5-52
5-53
5-54
5-55
5-56
5-57
5-58
5-59
5-60
5-61
5-62
5-63
5-64
5-65
5-66
5-67
5-68
5-69
5-70
5-71
5-72
5-73
5-74
5-75
5-76
5-77
5-78
5-79
5-80
5-81
5-82
5-83
5-84
5-85
5-86
5-87

Application Assembly Tool. 267
Get snapshot fordynamic SQL 268
DB2 Configuration concerninglocks 269
Explain SQL in DB2 Control Center. 271
Explain the SQL statement 272
Result of the visual explain i 273
DB2 Control Center, alteringatable 274
No unique index on table ACCOUNT 275
Application Assembly Tool. 276
Runstats in DB2 Control Center. 279
Visual Explain with the SQL explained again. 280
Getting stock quotesin Trade 282
EJB Access Intent scenario environment 283
Turning on the snapshot monitorinDB2 286
db2 get snapshot for database I grep-ilock 287
Resource Analyzer. 288
Creating the event monitor and turningiton 289
Flushing the event monitor and format it to a report using db2evmon. 289
Application Assembly Tool — method extensions. 294
Application Assembly Tool, browsing individual EJB methods 295
Setting the findByPrimaryKey methodtoreadonly 296
Tab of Generate code for the deployment. 297
Generate code fordeployment o, 298
DB2 snapshot for locks on the database 300
Initial screen of the shopping cart application 302
Saved shopping cartinformation. L 303
Non-serializable object scenario environment. 304
Verifying Session Manager Service persistence setting 307
Invalidation timeoutvalue 308
Number of sessionscreated 309
Stdout log contents showing non-serializable object. 310
SessionlnspectServietoutput 312
100K session object configuration. 316
100K session object with persistence 317
100K session object — no persistence —nooverflow. 319
100K session object — no persistence — memory exceptions 319
100K session object — local caching with overflow 322
100K session object with persistence 324
30K session object with persistence — 4KDB2 row size 326
30K session object; persistence — 32K DB2 row size 329
Trade 2 application 332
PiggyBank high-level application architecture 333

DB2 UDB/WebSphere Application Tuning Guide

Tables

© Copyright IBM Corp. 2003

Web site classification and workload patterns 5
Topology selection criteria 11
EJB and DB2 Isolation levels. 82
Lock modes shown in order of increasing control over resources. ... 116
Summary of differentisolationlevels. 120
Translation between Java and DB2 Isolation Levels.............. 120
Database Manager configuration parameter examples. 131
Database configuration parameter examples 133
Write contents vs. write frequency o L 190
Choosing persistence options i i 199
Simplified multi-row session representation. 204
Single versus multi-row schemas 205
Configuration parameter mismatch scenario monitor level settings. . . 223
EJB isolation mismatch scenario monitor settings. 257
EJB Access Intent scenario monitor settings. 284
Non-serializable objects scenario monitor level settings 304

Xi

xii DB2 UDB/WebSphere Application Tuning Guide

Examples

2-1
2-2

2-4
2-5
3-1
4-1

4-3
4-4
5-1
5-2

5-4
5-5
5-6
5-7

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27

© Copyright IBM Corp. 2003

Releasing JDBC resourcest 58
java.io.Serializable for persistent sessions —wrongway 63
java.io.Serializable for persistent sessions — rightway 63
Storing session references in an attribute —wrongway............ 63
Storing session references in an attribute —rightway 64
Snapshot for bufferpools. 138
Testsample e 176
Query IBMSEeSSIoN.t 182
Directive to stop a JSP updating the session last accessed time 203
Number and average size of persistent session objects 208
The startstress.batscript 226
Error message SQL0911N, Reasoncode “2” 261
Explanation of the SQLO911N errormessage 261
Using db2diag.log —lock escalation. 270
Using db2diag.log —deadlock 270
Using upd-monswitch.db2 - script to turn on snapshot monitoring . . . 286
Createeventmonitor 289
First statementevententry L. 290
Second statementevent 291
Third statementevent 292
Transactionevent 293
First statementevent 299
The transactionevent 300
Number and average size of persistent session objects 314
Results of 100K session object with persistence. 317
100K session object with no persistence. 318
100K session object — local caching with overflow 321
100K session object — local caching with overflow — response times . 321
100K session object — with persistence.. 323
100K session object — with persistence — response times. 324
30K session object with persistence — 4KDB2 row size 326
30K session object; persistence — 4K DB2 row size — buffer pool stats327
30K session object; persistence — 32K DB2 row size 329
30K session object; persistence — 32 DB2 row size — buffer pool stats330
TestServlet — connection close problem 336
SessionTestServlet.java — for creating large session objects 337
SessionlnspectServiet.jsp 340

xiii

xiv DB2 UDB/WebSphere Application Tuning Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2003 XV

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,

other countries, or both:

AFP™ Hummingbird® Redbooks(logo)™ @
AFS® IBM® RS/6000®
AIX® IBM eServer™ S/390®
AlphaWorks® IMS™ SecureWay®
CICS® Informix™ Sp™
Database 2™ iSeries™ TXSeries™
DB2® Lotus® VisualAge®
DB2 Universal Database™ MQSeries® WebSphere®
Domino™ 0OS/390® Word Pro®
EtherJet™ 0OS/400® z/OS™
Everyplace™ PC 300® zSeries™
Home Director™ Redbooks™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure

Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

Xvi DB2 UDB/WebSphere Application Tuning Guide

Preface

This IBM Redbook will help you develop, monitor, and tune DB2 UDB/
WebSphere Application Server (WAS) based applications in the UNIX and
Windows environments.

This book is organized as follows:

» Chapter 1 describes the architecture of the e-business environment, the IBM
e-business framework and its components, the topologies involved, and the
workload profile of different types of e-business applications. It discusses a
taxonomy for e-business applications, and provides guidelines for the
selection of a particular topology.

» Chapter 2 describes the key components of WAS, their key performance
indicators, tuning parameters, monitoring tools, and suggests best practices
for optimal performance. Both application and system considerations are
discussed.

» Chapter 3 describes the key components of DB2 UDB, their key performance
indicators, tuning parameters, and monitoring tools, and suggests best
practices for optimal performance. Both application and system
considerations are discussed.

» Chapter 4 describes the key components that will impact the performance of
WAS/DB2 UDB applications such as connection pooling, session
management, and locking. As before, both application and system
considerations are discussed.

» Chapter 5 discusses some commonly encountered performance problems in
a WAS/DB2 UDB environment, and describes scenarios for identifying and
resolving such problems.

» Appendix A describes the applications used in the problem scenarios.

» Appendix B includes scripts and sample code used in the various problem
determination scenarios.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

© Copyright IBM Corp. 2003 xvii

xviii

From left to right: Nagraj Alur, Svante Lindquist, Ada Lau, Monzy Varghese

Nagraj Alur is a Project Leader with the IBM International Technical Support
Organization, San Jose Center. He has more than 28 years of experience in
DBMSs, and has been a programmer, systems analyst, project leader,
consultant, and researcher. His areas of expertise include DBMSs, data
warehousing, distributed systems management, and database performance, as
well as client/server and Internet computing. He has written extensively on these
subjects and has taught classes and presented at conferences all around the
world. Before joining the ITSO in November 2001, he was on a 2-year
assignment from the Software Group to the IBM Almaden Research Center,
where he worked on Data Links solutions and an eSourcing prototype.

Amy Falos is a Senior Software Engineer for Solutions Development in IBM US.
She has more than 10 years experience in RDBMS and has been a programmer,
systems analyst, technical project leader, consultant and software engineer.
Her areas of expertise include RDBMS, database performance, AIX/UNIX
performance, and application performance benchmarking in multi-tier
environments and WebSphere.

DB2 UDB/WebSphere Application Tuning Guide

Ada Lau is a Systems Software Specialist for ITS in IBM Peru. She has 6 years
of experience in DB2 family products, and has been working on WebSphere and
DB2 projects in the field for the past 2 years. She holds a degree in Industrial
Engineering from Universidad de Lima. Her areas of expertise include DBMSs,
data warehousing, database performance, and WebSphere implementation and
tuning. She has participated in the implementation of a number of WebSphere
and DB2 sites at customer locations in Peru.

Svante Lindquist is an Advisory Software Specialist, working for the Data
Management division of IBM Software Sweden as a technical sales specialist.
He has been working with DB2 for 4 years. His areas of expertise include DB2
performance on the UNIX platform, and WebSphere.

Monzy Varghese is an e-business Analyst with Ontrack Solutions Pvt Ltd,
Mumbai, India. He has 8 years of experience in Information Technology, and has
worked as a programmer, analyst, and ERP consultant. He holds a Bachelor of
Commerce degree from Bombay University, and an Advanced Diploma in
Systems Management. He is a Sun Certified Java Programmer, and an IBM
Certified Specialist for WebSphere Application Server. His areas of expertise
include Java, WebSphere application development, and client/server applications
using DB2. He has been working on WebSphere and DB2 for the past 2 years.
His major focus is on DB2/WebSphere integration.

We would like to thank the following people for their significant contributions to
this project:

Christof Bornhoevd

C. Mohan

Ramani Ranjan Routray

IBM Almaden Research Center

Harold Hall
IBM Silicon Valley Laboratory

Yongli An

Adrian Chan

George Baklarz

Peter He

Grant Hutchison

Tsz Kin Tony Lau

IBM Toronto Laboratory

Preface XiX

XX

Tom Alcott
Gennaro Cuomo
Harvey Gunther
Srinivas Hasti
Albert Lee
Melissa Modjeski
Matthew Weaver

Kenichiroh Ueno
IBM WebSphere development and support

Richard Nesbitt
IBM Raleigh

Torsten Steinbacht
IBM Germany

Tetsuya Shirai
IBM Japan

Emma Jacobs

Yvonne Lyon

Deanna Polm

Ueli Wahli

IBM International Technical Support Center, San Jose

We borrowed heavily for the material in this redbook from a number of redbooks,
whitepapers, and presentations on DB2 UDB and WebSphere. Most of these
sources are identified in “Related publications” on page 347, and we
acknowledge the authors of these documents for their contribution.

In particular, we would like to acknowledge the very significant
contributions of the following:

» Harvey W. Gunther, for his white paper WebSphere Application Server
Development Best Practices for Performance and Scalability that can be
found at http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

» Gennaro Cuomo, for his white paper IBM WebSphere Application Server 4.0
Performance Tuning Methodology that can be found at
http://www.ibm.com/software/webservers/appserv/doc/v40/ws_40 tuning.pdf

» Deb Ericson, Shawn Lauzon, and Melissa Modjeski, for their white paper on
WebSphere Connection Pooling that can be found at
http://www.ibm.com/software/webservers/appserv/whitepapers/connection pool.pdf

DB2 UDB/WebSphere Application Tuning Guide

» Authors of the IBM WebSphere V4.0 Advanced Edition Handbook,
SG24-6176, and WebSphere Version 4 Application Development Handbook,
SG24-6134.

Notice

This publication is intended to help DB2 UDB application developers and
database administrators (DBA) responsible for applications involving WebSphere
Application Server and DB2 UDB.

» Application developers will be advised on best practices for achieving optimal
performance in such environments.

» DBAs will be advised on best practices for configuring such environments for
optimal performance, and will be guided on monitoring and problem
determination considerations involving commonly occurring problems.

The information in this publication is not intended as the specification of any
programming interfaces that are provided by DB2 UDB Version 8, and
WebSphere Application Server Version 4. See the PUBLICATIONS section of the
IBM Programming Announcement for DB2 UDB Version 8, and WebSphere
Application Server Version 4 for more information about what publications are
considered to be product documentation.

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments

about this or other Redbooks in one of the following ways:

» Use the online Contact us review redbook form found at:
ibm.com/redbooks

» Send your comments in an Internet note to:
redbook@us. ibm.com

» Mail your comments to the address on page ii.

Preface XXi

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xxii DB2 UDB/WebSphere Application Tuning Guide

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes

for SG24-6417-00

for DB2 UDB/WebSphere Performance Tuning Guide
as created or updated on August 2000.

March 2003, Second Edition

This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information

» One new problem determination scenario has been added to reflect a
java.io.Serializable problem. This scenario was generated in a WebSphere
Application Serve 4.0.5 and DB2 UDB Version 8.1 environment.

Note: We reran the earlier scenarios described in the book under DB2
UDB Version 8 and WebSphere Application Server 4.0.5, but found no
discernible differences in the results. Therefore, we left the write-up of the
earlier scenarios untouched.

» Appendix B, “Sample scripts” on page 335 includes a section describing the
SessioninspectServiet used in one of the new scenarios.

Changed information
» Updated Chapter 3, “Overview of DB2 UDB 8” on page 97 to reflect DB2 UDB
Version 8 features.

» Clarified and rectified descriptions of connection pooling and session
database in Chapter 4, “WebSphere Application Server and DB2 UDB
performance” on page 147.

© Copyright IBM Corp. 2003 xxiii

XXiv DB2 UDB/WebSphere Application Tuning Guide

Introduction

In this chapter, we describe e-business imperatives that are driving demand for
an architecture and framework that can deliver advanced scalability and
performance. We briefly describe IBM’s Application Framework for e-business,
and identify IBM WebSphere Application Server (WAS) and IBM DB2 UDB as
key products for laying a solid foundation for e-business solutions. We also
discuss selection criteria for choosing a particular topology based on workload
profiles of different e-business applications.

The topics covered include:

» e-business imperatives

e-business applications and their workload profiles
e-business infrastructure

IBM Application Framework for e-business
Topology selection criteria

vVvyyy

© Copyright IBM Corp. 2003

1.1 e-business imperatives

2

We are all aware of the rapidly changing business environment in which we work
and live, and the impact it has on business and information technology (IT). We

recognize that an organization can no longer dictate systems or clients, that the

Internet cannot be controlled, and that downtime will impact more than employee
productivity.

To survive and thrive in such an environment, organizations must adapt and
innovate — business as usual could be a recipe for disaster. The cycle of product
conception to market and return on investment (ROI) time frames are getting
shorter and shorter. More so than ever before, the following issues are
imperative for businesses. They must:

» Become more responsive to customers needs, since abundant, loyal and
profitable customers form the core of successful businesses.

» Reduce costs by streamlining and transforming business processes, and
improving the productivity and efficiency of its employees, business partners,
and customers. While reducing costs is a perennial favorite that is generally
characterized by stops and starts — it now takes on a new urgency.

» Pursue every possible channel (such as the Internet), to exploit emerging
opportunities. This is critical in a world of stiff competition, and very short
product cycles from conception to implementation to ROL.

Businesses have to transform key processes to address the business imperative,
and IT organizations must play a key role in assisting and leading the effort in
every way possible, while coping with the impact of the changing business
environment including:

» Added heterogeneity of hardware/software/skills

» Added geographic distribution of resources and site autonomy
» Severe skills shortages

» A diverse and growing user community

Key business processes that can be transformed are shown in Figure 1-1, and
include these areas:

» Customer Relationship Management: This has to do with identifying,
understanding, anticipating, and satisfying customer needs — building loyalty
through improved customer satisfaction.

» e-commerce: This is a new channel for an organization's goods and services
to a whole wider global market.

» Supply chain: This has to do with inter-company business processes —
improving the efficiency (and reducing costs) of interactions with suppliers,
partners, distributors, customers, etc.

DB2 UDB/WebSphere Application Tuning Guide

» Enterprise Resource Planning (ERP): This involves managing the
bread-and-butter processes of an organization including planning,
manufacturing, inventory, shipping/distribution, accounting and human
resources.

» Workgroup collaboration: This relates to the sharing of resources and
information amongst an organization’s employees — such as E-mail,
meetings, document sharing, etc. Field Force Automation improves the
productivity of employees in the field (salesman, technical
support/maintenance persons, and delivery personnel) and improves
customer satisfaction and responsiveness.

» Business Intelligence: This has to do with gaining a competitive advantage
through the collection and analysis of business information from a multitude of
internal and external sources.

» Knowledge management: This implies combining and matching information
and personnel skills to great effect.

Employees

e-commerce

Supply
Chain

Management

Customer
Relationship
Managem ent

HAEAM=r oD
mAMEoOANSO

Employees

Figure 1-1 Key business processes

Chapter 1. Introduction 3

When an organization connects its business critical systems directly to key
constituencies such as customers, employees, and supplier/distributors, it
transforms the organization, and becomes an e-business.

Important: The infrastructure required to support these requirements must
address the mission critical requirements of business applications, such as
scalability, availability, performance and security.

1.2 e-business applications and their workload profiles

4

The foundation of a high performance e-business solution is knowledge of the
application workload, since it has a significant impact on the choice of the
technical infrastructure for availability, scalability, and performance. This includes
knowledge of user behavior against the Web site — whether they are performing
online shopping, banking, trading or just browsing.

You can find the investigations of IBM’s High Volume Web Site Team at:

http://ibm.com/websphere/developer/zones/hvws

This team has identified sites with similar patterns, and classified them into five
site types, each with distinct workload patterns and corresponding Web site
classifications as follows:

» Publish and subscribe
» Customer self-service

» Online trading

» Online shopping

» Business-to-business

Table 1-1 summarizes the characteristics of these categories, and supplies a
brief description of each category.

DB2 UDB/WebSphere Application Tuning Guide

http://ibm.com/websphere/developer/zones/hvws

Table 1-1 Web site classification and workload patterns

Categories/ Publish & Online Shopping Customer Online Trading B2B
Examples Subscribe Self-Service
Search engines Exact inventory Home banking Online stock eProcurement
trading
Media Inexact inventory Package tracking
Events Auctions
Travel
arrangements
Content Dynamic change of Catalog either flat Data is in legacy Extremely time Data is in legacy
the layout of a (parts catalog) or applications sensitive applications
page, based on dynamic (items
changes in change frequently Multiple data High volatility Multiple data
content, or need. near real time). sources, sources,
requirement for Multiple suppliers, requirement for
Many page authors Few page authors consistency multiple consistency
and page layout and page layout consumers
changes changes less Transactions are
frequently. frequently. Transactions are complex
complex and
High volume, User specific interact with back
non-user specific information: user end
access. profiles with data
mining.
Fairly static
information
sources
Security Low Privacy, Privacy, Privacy, Privacy,
non-repudiation, non-repudiation, non-repudiation, non-repudiation,
integrity, integrity, integrity, integrity,
authentication, authentication, authentication, authentication,
regulations regulations regulations regulations
(Banking); Low for
others
Percent secure Low Medium Medium High Medium
pages
Cross-section Info No High Yes Yes Yes

Searches Structured by Structured by Structured by Structured by Structured by
category category category category category
Totally dynamic Totally dynamic Low volume Low volume Low to moderate
volume
Low volume High volume
Unique ltems High Low to medium Low Low to Medium Moderate
Data Volatility Low Low Low High Moderate
Volume of Low Moderate to High Moderate and High to very High Moderate to Low
transactions growing (Very large swings
in volume)
Legacy / Low Medium High High High
Integration/
Complexity
Page Views High to Very High Moderate to High Moderate to Low Moderate to High Moderate

Chapter 1. Introduction

1.2.1 Publish and subscribe

Such sites provide users with information. Sample publish/subscribe Web sites
include search engines, media sites (such as weather.com and numerous
newspapers and magazines), as well as event sites such as those for the
Olympics and the Wimbledon championships.

Characteristics of such applications are that site content changes frequently,
driving changes to page layouts. While search traffic is low in volume, the number
of unique items sought is high, resulting in the largest number of page views of all
site types.

As an example, using IBM’s WebSphere Edge Server, the Sydney Olympics site
successfully handled a peak volume of 1.2 million hits per minute, while the
Wimbledon 2000 site successfully handled a peak volume of 430,000 hits per
minute. The Wimbledon 2001 site handled 208.5 million page views, three times
the number of the 2001 site, as well as almost twice the number of unique users.

Security considerations are minor compared to other site types. Data volatility is
low. This type of Web site processes the fewest transactions, and has little or no
connection to legacy systems.

1.2.2 Online shopping

6

Such sites let users browse and buy. Sample Web sites include typical retail
sites where users buy books, clothes, and even cars.

Characteristics of such applications are that site content can be relatively static,
such as a parts catalog, or dynamic where items are frequently added and
deleted (for example, promotions and special discounts that come and go).
Search traffic is heavier than the publish/subscribe site, though the number of
unique items sought is not as large. Data volatility is low. Transaction traffic is
moderate to high, and almost always grows.

The typical daily volumes for many large retail customers running on IBM’s
WebSphere Commerce Suite range from less than one million hits per day to
over 50 million hits per day. Transactions range from 100,000 transactions per
day to three million transactions per day for the higher-volume sites. Typically, 1%
and 5% are buy transactions.

Security concerns are significant and include privacy, non-repudiation, integrity,
authentication, and regulations. Shopping sites have more connections to legacy
systems (such as fulfillment systems), than the publish/subscribe sites, but
generally less than the other site types.

DB2 UDB/WebSphere Application Tuning Guide

1.2.3 Customer self-service

Such sites let users help themselves. Sample sites include banking from home,
tracking packages, and making travel arrangements. Home banking customers
typically review their balances, transfer funds, and pay bills. Data comes largely
from legacy applications, and often comes from multiple sources, thereby
exposing data consistency.

Security considerations are significant for home banking and purchasing travel
services, less so for other uses. Search traffic is low volume; transaction traffic is
moderate, but growing rapidly.

1.2.4 Online trading

Such sites let users buy and sell. Of all site types, trading sites have the most
volatile content, the highest transaction volumes (with significant swing), the
most complex transactions, and are extremely time sensitive. Auction sites are
characterized by highly dynamic bidding against items with predictable life times.
Products like IBM’s WebSphere Application Server have the performance
features that enable these sites to meet customer demand. Trading sites are
tightly connected to the legacy systems. Nearly all transactions interact with the
back end servers.

Security considerations are high, equivalent to online shopping, with an even
larger number of secure pages. Search traffic is low volume.

1.2.5 Business-to-business

Such sites let businesses buy from and sell to each other. These sites include
dynamic programmatic links between arms-length businesses, where a trading
partner agreement might be appropriate. One business is able to discover
another business with which it may want to initiate transactions such as supply
chain management (SCM).

Data comes largely from legacy applications and often comes from multiple
sources, thereby exposing data consistency. Security requirements are
equivalent to online shopping. Transaction volume is moderate, but growing;
transactions are typically complex, connecting multiple suppliers and distributors.
Such e-business solutions tend to be high volume and growing, serving dynamic
data, and processing transactions.

Other considerations in the business-to-business area include transaction
complexity, data volatility, and security.

Chapter 1. Introduction 7

1.3 e-business infrastructure

8

Figure 1-2 shows a typical e-business infrastructure that includes billions of
pervasive devices connecting to content or data or transactions through potential
intermediate layers of edge servers, Web servers, application servers,
messaging servers, directory and security servers, and database servers.

Partners

& Directory Transaction
Supplies & Security Servers

Services

Web
Application
Servers

Data
Servers

Connected
Brokers

e-Markets

Services

Customers Data

& synchronous
Pervasive :’Iessging Serve rs

Devices

Figure 1-2 e-business infrastructure

Several requirements can be considered critical to supporting such an
e-business infrastructure. They include:

» Standards-base: To ensure portability of e-business applications across
multiple client and server platforms and to improve flexibility and time to
market.

» Server-centric: To allow e-business applications to be developed and
deployed quickly, to expand access to a broad range of client types, and to
offer improved management and deployment capabilities that are
characteristic of modern e-business applications.

» Scalable: To allow e-business applications to handle highly variable and
unpredictable loads in today's Web environment.

DB2 UDB/WebSphere Application Tuning Guide

» Available: To address the global nature of the Web, which requires
e-business applications to run 24-hours a day, seven-days a week, with
guaranteed quality of service.

» Secure: To address customers', suppliers', and other constituents' demands
for secure Web interactions, in recognition of the potential risks of doing
business on the Web.

» Easy to develop and deploy: To achieve lower costs and faster time to
market.

» Manageable: To achieve lower maintenance costs and contribute to higher
availability.

» Able to leverage and extend existing assets: To improve time to market
and reduce cost of development and deployment, while improving security,
reliability, and scalability.

1.4 IBM Application Framework for e-business

IBM Framework for e-business is at the core of the IBM e-business software
strategy, and is designed to help customers build, run, and manage successful
e-business applications. It is a set of recommendations and products to develop
an e-business application.

The IBM Application Framework for e-business consists of:

» A standards-based foundation that enables multi-platform and multi-vendor
solutions. The IBM deliverable here is commitment to embrace and advance
industry standards.

» An easy-to-understand approach in developing applications that are specially
tuned to run in this environment. IBM offers a design, development, and
deployment model based on industry-specific patterns that guide you through
the process.

» State-of-the-art software and scalable servers that allow you to build and run
e-business applications.

Chapter 1. Introduction 9

The IBM Application Framework products are divided into three pillars, as shown
in Figure 1-3.

Application Framework

™ for e-business
e-business

Secure Network

and Management
Software

Figure 1-3 IBM Application Framework for e-business

The Development Tools and Components pillar includes products such as:

WebSphere Studio family

The Visual Age family

Lotus Domino Designer
WebSphere Business Components

vVvyyy

The Application Servers and Integration Software pillar includes products such
as:

DB2 Universal Database (DB2 UDB)
WebSphere Application Server (WAS)
WebSphere MQ-Series

Lotus Domino

vVvyyy

The Secure Network and Management Software pillar includes products such as:

» Tivoli Security products
» Tivoli Systems Management portfolio

Attention: This redbook will only focus on WebSphere Application Server and
DB2 UDB.

10 DB2 UDB/WebSphere Application Tuning Guide

1.5 Topology selection criteria

A topology for an e-business infrastructure is the layout of its main components
such as Web servers, application servers, and database servers over one or
more machines, spread over one or more geographically distributed locations.
The choice of a particular topology is driven by many e-business application

considerations, the most important of which are security, performance,

throughout, availability, maintainability, and session state.

Table 1-2 summarizes the considerations for WebSphere Application Server and
the database servers.

Note: For a detailed discussion of topologies, refer to the redbook /1BM
WebSphere Advanced Edition Scalability and Availability, SG24-6192.

Table 1-2 Topology selection criteria

Security Performance Throughput Maintainability Availability Session
Single Little isolation Competition for Limited to Ease of installation Machine is
Machine between machine machine and maintenance single point of
components resources. resources failure
Remote Allows for Separation of Independent Independent Introduces
Web Server firewall/DMZ loads. tuning configuration and single point of
Performance component failure
usually better than replacement. More
local administrative
overhead. Need copy
of Plug-in config file.
Separate Firewall can Separation of loads Independent Use already Introduces
database provide tuning. Must established DBA single point of
server isolation consider procedures. failure. Use
network Independent already
bottleneck. configuration. More established HA
administrative servers.
overhead
Separate Firewall can Local JVM More administrative Introduces
Web/EJB provide optimizations not overhead. single point of
container isolation used failure.
Vertical Improved Limited to Easiest to maintain Process May use
clones throughput on large resources on a isolation session
SMP servers single machine Process affinity.
redundancy Persistent
session
database
required
for session
fail-over.

Chapter 1. Introduction 11

Security Performance Throughput Maintainability Availability Session
Horizontal Distribution of load Distribution of More to install / Process and May use
clones connections maintain. Code hardware session
migrations to multiple redundancy affinity.
nodes. Persistent
session
database
required
for session
fail-over.
Add Web Distribution of load Distribution of More to install / Best in general Use load
server connections maintain. Need balancers
replication of configs / SSL
pages session id
affinity
when
using SSL.
One domain Ease of maintenance
Multiple Less lookups and Harder to maintain Process
domains interprocess than single domain hardware &
communication software
redundancy

12 DB2 UDB/WebSphere Application Tuning Guide

Overview of WebSphere
Application Server V4.0

In this chapter, we provide an overview of the architecture of WebSphere
Application Server (WAS) and its main components, and introduce some of its
key application tuning, and system tuning parameters. We also describe some of
the monitoring tools available. Readers are strongly urged to consult other
documentation identified in “Related publications” on page 347 for specific
details on tuning a WebSphere Application Server environment.

The topics covered include:

VYVYYVYYVYVYVYVYYY

© Copyright IBM Corp

Introduction

J2EE overview

WebSphere Application Server architecture overview
WebSphere Application Server application model
Session management

Typical application flow

WebSphere Application Server Queueing Network
Tuning WebSphere Application Server

Application tuning considerations

System tuning considerations

Monitoring and tuning tools

. 2003 13

2.1 Introduction

WebSphere Application Server is a fully compatible implementation of the Java 2
Platform Enterprise Edition (J2EE) platform described in the J2EE overview.

WebSphere Application Server is leading the way in its support of industry open
standards. Besides its full J2EE compliance with a rich set of enterprise Java
open standards implementations, it also provides built in support for key Web
services open standards, making it production ready for the deployment of
enterprise Web services solutions.

Attention: This chapter is aimed at database professionals who are either
totally unfamiliar, or only mildly familiar, with WebSphere Application Server
architecture. The objective here is to provide a level set for the WebSphere
Application Server/DB2 UDB tuning and problem determination scenarios that
are discussed in Chapter 4, “WebSphere Application Server and DB2 UDB
performance” on page 147, and Chapter 5, “Problem determination scenarios”
on page 217.

2.2 J2EE overview

J2EE defines the standard for architecting, developing, and deploying multi-tier,
server-based applications. The J2EE architecture comprises the following
elements:

» Standard application model is used for developing multi-tier applications.
» Standard platform is used for hosting applications.

» Compatibility test suite is used for verifying that J2EE platform products
comply with the J2EE platform standard.

» Reference Implementation software is a J2EE software development kit
(SDK) that is a non-commercial operational definition of the J2EE platform
and specification that is made freely available by Sun Microsystems for
demonstrations, prototyping, and educational use. It comes with the J2EE
application server, Web server, relational database, J2EE APIs, and a
complete set of development and deployment tools.

14 DB2 UDB/WebSphere Application Tuning Guide

The J2EE platform specification describes the runtime environment for a J2EE
application. This environment includes application components, containers, and
resource manager drivers. The components communicate via a set of standard
services such as JNDI, JDBC, and JMS. Figure 2-1 shows the J2EE components
distributed over multiple tiers. The Java 2 Platform Standard Edition (J2SE) SDK
is required to run the J2EE SDK, and provides core APIs for writing J2EE
components, core development tools, and the Java virtual machine (JVM).

@pﬁse

Bean

o

Database

dOIl-1Nd
dOIl-IWY

(pglli;ltion
ienu

RMI-IIOP

Figure 2-1 J2EE components

The following URL provides Sun Microsystems’ list of J2EE-compatible
configurations:
http://java.sun.com/j2ee/1.2_compatibility.html
Note: WebSphere V4.0 provides a number of functions that exceed the J2EE

1.2 specification. These functions include Web services support, Connector
Architecture, and the JMS/XA interface to IBM MQSeries.

Chapter 2. Overview of WebSphere Application Server V4.0 15

http://java.sun.com/j2ee/1.2_compatibility.html

2.3 WebSphere Application Server architecture overview

16

As mentioned, WebSphere Application Server is a comprehensive, Java
technology based Web application server that provides integrated support for key
Web services open standards, and full J2EE compatibility.

WebSphere Application Server provides the core software to deploy, integrate,
and manage e-business applications. WebSphere Application Server supports
custom-built applications based on integrated WebSphere platform products1, or
on other third party products. Such applications can range from dynamic Web
content presentation to sophisticated transaction processing systems.

WebSphere Application Server V4.0 represents a move to a single code base
that is supported on virtually all major platforms. The flexible and scalable
configurations available with this version allow you to respond to the changing
marketplace, without migrating to a different technology base.

With WebSphere Application Server V4.0, Advanced Edition (AE), three different
configurations are available:

» The full configuration (AE) provides application server functionality with
strong integration to databases, message-oriented middleware, and legacy
systems and applications, along with clustering support. This configuration
appeals to businesses that need to build highly transactional, manageabile,
available, and scalable applications that offer distributed security and remote
administration.

» The Single Server configuration (AEs) provides application server
functionality within a single runtime process. This configuration appeals to
businesses that need to build stand-alone, or departmental applications that
are transaction or message-oriented, and that don't require failure bypass,
workload management, or remote administration.

» The Developer license (AEd) provides application server functionality to
developers who need an easy-to-use environment for building and testing
e-business applications. It appeals to developers who are looking for a
friendly and powerful unit testing environment, especially one that is
seamlessly integrated with IBM's tooling.

WebSphere Application Server V4.0, Enterprise Extensions (EE) extends
WebSphere Application Server V4.0, Advanced Edition. It includes IBM TXSeries
technology to meet the most sophisticated needs of rapidly evolving, highly
distributed e-business infrastructures. WebSphere Application Server V4.0 EE
extends the Java programming model and provides additional qualities of
service.

' You can visit http://www. ibm.com/websphere for information about these products and solutions.

DB2 UDB/WebSphere Application Tuning Guide

http://www.ibm.com/websphere

Attention: Our focus here is on the WebSphere Application Server runtime
environment only. Readers interested in WebSphere Application Server
application development may want to look at WebSphere Version 4
Application Development Handbook, SG24-6134.

Figure 2-2 positions WebSphere Application Server in a typical e-business
application environment that includes the following components:

Clients

Web server(s)

WebSphere Application Server
Application databases

v

vYyy

WebSphere Application Server
Application Server (JVM)

Web HTTP(S) Web Container
Embedded
client plug-lr\I
S 5P
/| peamtem
Web Server
Serviet
Application
- database
. EJB Container
Java client IOP
application Enterpri
ey Bean
mAdmin H
. ' x'Mgcopﬁg \
Java Admin 1oR{ | . \ Admin Server -
Console Cosn't)::re (VM) Admlnls.tratlve
B Program / repository
(WSCP)

Figure 2-2 WebSphere Application Server 4.0 in a typical e-business application
Attention: Visit the following Web site for the latest information on
WebSphere Application Server:

http://www.ibm.com/software/webservers/appserv/

Chapter 2. Overview of WebSphere Application Server V4.0 17

A brief description of these components follows.

2.3.1 Clients

There are two broad categories of clients:

» Browser-based clients: Clients of applications that run on the WebSphere
V4.0 generally run in Java-enabled browsers. They send and receive
information from a Web server by using HTTP. Browser-based clients or Web
clients, can include applets and JavaServer Pages (JSP). Such clients
constitute the majority of WebSphere users today.

» Java clients: These are stand-alone Java programs (GUI-based or not), that
use Java RMI/IIOP facilities to make direct method invocations on various
EJB objects within an application server, without going through an intervening
Web server and servlet.

2.3.2 Web Server(s)

Except for stand-alone Java applets, which are restricted by built-in Java security,
browser-based client applications require that a Web server be installed on at
least one machine in the WebSphere Application Server environment. The Web
server provides the communications link between browser-based applications
and the other components of WebSphere Application Server.

WebSphere Application Server supports many of the most widely used Web
servers such as Apache Server, Microsoft Internet Information Server, iPlanet
Web Server and Lotus Domino Enterprise Server. The IBM HTTP Server, which
is a modified version of the Apache server, comes with the WebSphere
Application Server V4.0, Advanced Edition.

2.3.3 WebSphere Application Server

WebSphere Application Server consists of a number of components, as follows:

» Web server plug-in

» Embedded HTTP server

» Application server(s)

» WebSphere administrative model

A brief description of these components follows.

18 DB2 UDB/WebSphere Application Tuning Guide

Web server plug-in

The Web server or HTTP server plug-in is the component that enables
communication between the HTTP server and application server. The plug-in
uses an easy-to-read XML configuration file plugin-cfg.xml to determine
whether a request should be handled by the Web server or the application
server. It communicates with the application server via HTTP transport protocol
for non-secure transports, and it can be configured to use HTTPS for secure
transports.

The WebSphere plug-in can be configured via the administrative console. The
WebSphere plug-in can also be configured in three additional ways:

» Automatically during the WebSphere installation process
» Set up as a custom service each time the application server is started
» Using the GenPluginCfg command

Important: The transport protocols used in previous versions of WebSphere,
Servlet Redirector and OSE Remote, have been removed in WebSphere
Application Server V4.0.

Embedded HTTP server

There is now an embedded HTTP server within WebSphere Application Server.
This Web server is very useful for testing purposes, but should not be used in
production environments.

Note: For performance and security reasons, use a Web server and Web
server plug-in for a production environment.

Application servers

Application servers extend a Web server's capability to handle Web application
requests. The application server makes it possible for a server to generate a
dynamic, customized response to a client request.

Application code such as servlets, JSPs, EJBs and their supporting classes run
in an application server. In keeping with the J2EE component architecture,
servlets and JSPs run in a Web container, and EJBs run in an EJB container.

In WebSphere Application Server Advanced Edition, you can define multiple
application servers, each running in its own Java Virtual Machine (JVM2). The
administrative server runs in its own JVM.

2 A JVM is an interpretive computing engine responsible for executing the byte codes in a compiled
Java program. The JVM translates the Java byte codes into the native instructions of the host
machine. The application server, being a Java process, requires a JVM in order to run, and to support
the Java applications running on it.

Chapter 2. Overview of WebSphere Application Server V4.0 19

20

A default application server named “Default Server” is automatically configured
during the default WebSphere Application Server installation.

Note: This application server provides servlets that enable you to check
whether all the components of a WebSphere Application Server environment
(application servers, datasources, servlets, EJBs, and so on) are working
correctly. After verifying that your environment is working correctly, you can
choose to keep the Default Server application server, or remove it to create a
new one.

The “Default Server”, like any other application server, contains a Web
container and an EJB container.

» Web containers:

A Web container handles requests for servlets and JSP files. It creates servlet
instances, loads and unloads servlets, creates and manages request and
response objects, and performs other tasks for managing servlets effectively.

The Web server plug-in provided by the WebSphere Application Server
product helps supported Web servers pass servlet requests to Web
containers.

Note: Serviet engine is an older (Version 3.x) name for a Web container,
and represents the same functionality

A Web module represents a Web application. It is used to assemble servlets
and JSP files, as well as static content such as HTML pages, into a single
deployable unit. Web modules are stored in Web archive (WAR) files (.war)
which are standard Java archive files.

A Web module contains one or more servlets, JSP files and other files. It also
contains a deployment descriptor that declares the content of the module,
stored in an XML file named web.xml. The deployment descriptor contains
information about the structure and external dependencies of Web
components in the module, and describes how the components are to be
used at runtime.

A Web module can be used as a standalone application, or it can be
combined with other modules (other Web modules, EJB modules, or both) to
create a J2EE application. A Web module is installed and run in a Web
container.

DB2 UDB/WebSphere Application Tuning Guide

» EJB containers:

WebSphere Application Server provides full support for enterprise beans®. An
EJB container provides an interface between the enterprise beans and the
server. Together, the EJB container and the application server provide the
bean runtime environment. The EJB container provides many low-level
services, including threading and transaction support. Perhaps most
important from an administrative point of view is that the EJB container
manages data storage and retrieval for the beans within it.

An EJB module is used to package one or more enterprise beans into a
single deployable unit. An EJB module is represented by a JAR file that
contains the enterprise bean classes/interfaces and the bean deployment
descriptors. An EJB module can be used as a stand-alone application, or it
can be combined with other EJB modules, or with Web modules, to create a
J2EE application. An EJB module is installed and run in an enterprise bean
container.

Important: Multiple application servers can be configured to achieve higher
degrees of availability and scalability. WebSphere Application Server supports
such configurations and provides workload management (WLM) capabilities to
achieve load balancing among the various application servers.

WebSphere Application Server implements multiple application servers through
the concept of server groups and clones, and uses workload management to
spread requests over these application servers. These concepts are explained in
the following sections.

Server groups and clones

A server group is a template for creating additional, nearly identical copies of an
application server and its contents. It is a logical representation of the application
server, and it has the same structure and attributes as the real application server.

The server group lets you view and modify any property associated with these
logical objects. But the server group is not associated with any particular physical
node, nor does a server group correspond to any real server process running on
any node.

Once you have created a server group, you can then create clones of that server.
Server groups also help in the management of clones.

A clone is a copy of the application server that has been created from a server
group. The act of creating the clones is called cloning.

3 An enterprise bean is a Java component that can be combined with other enterprise beans and
other Java components to create a distributed, three-tiered application.

Chapter 2. Overview of WebSphere Application Server V4.0 21

22

Clones are identical in every way to the server group from which they were
created. Unlike server groups, the clones created from a server group represent
real application server processes running on real physical nodes. Clones can be
used for workload management, since a request for a server resource can be
handled by any of the server clones.

Starting or stopping the server group will automatically start or stop all the
clones. Changes to a server group are propagated to its clones when the server
group is restarted.

Clones can be distributed across different machines.

Figure 2-3 shows an example of a possible configuration that includes clones:
» Server group 1 has two clones on node A, and three clones on node B.

» Server group 2 which is completely independent of server group 1 has two
clones on node B only.

» Node A also contains a free-standing application server that is not a clone of
any server group.

Node A Node B

Clones

in Server

Application server B ‘gl‘oup 2

1

Server group 2 .. App server clone

Clones
in Server
1-.._group 1

e Appserver done [

I App server clone ... - [~ -

Server group 1

Administrative Administrative
Server Server

Figure 2-3 Server groups and clones

There are two types of clones, as shown here in Figure 2-3:

» \ertical clones
» Horizontal clones

DB2 UDB/WebSphere Application Tuning Guide

» Vertical clones:

These correspond to clones created from a single server group on the same
node. Also called vertical scaling, such scaling provides a straightforward
mechanism for creating multiple instances of an application server on the
same node, and hence multiple JVM processes, as shown in Figure 2-4. This
may improve throughput on large SMP machines.

Note: If all the CPUs can be fully utilized using a single JVM, there is no
need to add vertical clones.

In the simplest case, you can configure many application server clones on a
single machine, and this single machine also runs the HTTP server process.

Node 1

Web EJB
Container| |Container

App Server 1, Clone 1

Web EJB
Container| |Container

App Server 1, Clone 2

Figure 2-4 Vertical clones

» Horizontal clones:

These correspond to clones created from a single server group on different
nodes. Also called horizontal scaling, clones of an application server are
created on multiple physical machines, as shown in Figure 2-5. This enables
a single WebSphere application to span several machines yet still presenting
a single system image.

Horizontal scaling can provide both increased throughput and failover support
when compared to vertical scaling topologies.

Node 1 Node 2
Web EJB Web EJB
Container| (Container Container| Container
App Server 1, Clone 1 App Server 1, Clone 2

Figure 2-5 Horizontal clones

Chapter 2. Overview of WebSphere Application Server V4.0 23

24

Note: Server groups and clones can only be created for application servers.
Therefore, cloning a server group automatically enables WLM for the servlets
and EJBs that it contains.

Workload management

As mentioned earlier, WLM is the process of spreading multiple requests for work
over the resources that can do the work. It optimizes the distribution of
processing tasks in the WebSphere Application Server environment. Incoming
work requests are distributed to the application servers and other objects that
can most effectively process the requests.

WLM is also a procedure for improving performance, scalability and reliability of
an application. It provides failover when servers are not available.

Figure 2-6 shows the two types of requests that can be workload managed in
WebSphere Application Server V4.0, Advanced Edition:

Servlet requests Can be distributed across multiple Web containers.
EJB requests Can be distributed across multiple EJB containers.
Web
¥ Container
App Server
HTTP |
Servlet Server Servlet
Request Plugin Requests
Web
Container

S App Server

EJB
¥ Container ¥
App Server
EJB Web EJB EJB Java
Container Requests Requests Client
Request
App Server
EJB

y

>
* Container”

App Server

Figure 2-6 Types of requests that can be workload managed

DB2 UDB/WebSphere Application Tuning Guide

Note: All resources that participate in WLM must be running under the same
version of WebSphere Application Server.

More details on WLM and scalability are presented in IBM WebSphere V4.0
Advanced Edition Scalability, SG24-6192.

Virtual hosts

A virtual host is a configuration enabling a single host machine to resemble
multiple host machines. It allows a single physical machine to support several
independently configured and administered applications. It is not associated
with a particular node (machine). It is a configuration, rather than a “live
object”, which is why it can only be created, but not started or stopped.

Each virtual host has a logical name and a list of one or more DNS aliases by
which it is known. A DNS alias is the TCP/IP host name and port number used to
request the servlet, for example yourHostName:80. These are the default ports
and aliases:

v

The default alias is *:80, using an external HTTP port that is not secure
Aliases of the form *:9080 use the embedded HTTP port that is not secure
Aliases of the form *:443 use the secure external HTTPS port

Aliases of the form *:9443 use the secure embedded HTTPS port

vYyy

When a servlet request is made, the server name and port number entered into
the browser are compared to a list of all known aliases in an effort to locate the
correct virtual host and serve the servlet. If no match is found, an error (404) is
returned to the browser.

WebSphere Application Server provides a default virtual host, aptly named
“default_host”, with some common aliases, such as the machine's IP address,
short host name, and fully qualified host name. The alias comprises the first part
of the path for accessing a resource such as a servlet. For example, it is
localhost:80 in the request http://1ocalhost:80/serviet/snoop.

Virtual hosts allow the administrator to isolate, and independently manage,
multiple sets of resources on the same physical machine.

Chapter 2. Overview of WebSphere Application Server V4.0 25

26

WebSphere administrative model
The WebSphere administrative model is shown in Figure 2-7.

administrative domain

administrative
console

administrative
server

application

administrative
database

administrative
server

application -l -
server administrative
server
application
server
Web admin — -
administrative
console
console

Figure 2-7 WebSphere administrative model

An administrative domain is a set of one or more nodes* sharing an
administrative repository in the form of a relational database. An administrative
domain is the logical space containing the configurations for various objects in
your WebSphere environment.

Administrative user interfaces, outside the administrative domain, communicate
with the administrative servers using IIOP or HTTP. WebSphere Application
Server Advanced Edition uses the Java administrative console and IIOP.
WebSphere Application Server Advanced Edition Single Server uses the HTTP
Web administrative console.

WebSphere resources on a node are represented as administrative resources in
the WebSphere administrative domain.

4 Anodeisa physical machine running an application server and an administrative server. Each
administrative server in the domain stores its administrative data in a shared repository, known as the
administrative database.

DB2 UDB/WebSphere Application Tuning Guide

These are the three main elements of the WebSphere administrative model:
1. Administrative server:

The administrative server is the systems management runtime component of
WebSphere. The administrative server is responsible for runtime
management, security, transaction coordination, and workload management.
In most cases, the administrative server runs on all nodes in a WebSphere
administrative domain and controls the interaction between each node and
application server process in the domain.

The WebSphere administrative server provides administrators with a single
system view of applications and resources, such as JSPs, servlets, and EJBs,
that could be deployed across multiple platforms in a distributed environment.
Administering resources on a remote machine is just as easy as
administering them on the local machine.

2. Administrative repository:

WebSphere stores all runtime configuration information for a domain in a
single persistent repository. That database by default is named WAS40.
All administration takes place through the manipulation of objects in the
administrative repository.

Note: In the single server edition, this repository is stored in an XML
configuration file.

A single node running all processes is common in small production
environments, but it is entirely reasonable to configure the database on a
remote server for production environments.

3. Administrative interfaces:

The WebSphere administrative server provides the services that are used to
control resources and perform tasks on the administrative database.
Monitoring and configuring of administrative resources as well as stopping
and starting of servers are facilitated by four interfaces, as shown in

Figure 2-8.

The two graphical interfaces and two command-line interfaces nicely
complement each other. You can use the graphical interfaces to interactively
administer your WebSphere environment, and the command-line tools to
automate configuration tasks.

Chapter 2. Overview of WebSphere Application Server V4.0 27

Graphical interfaces Command line interfaces
N N
~ TN TN

Web Java . WebSphere
Administrative Administrative X_II_IL I;Ic(:rg;g Control
Console (AEs) Console (AE) Program (AE)

WebSphere Administrative Services

5
Database
WebSphere
AppServer
WebSphere
AppServer

Figure 2-8 WebSphere administrative interfaces

2.4 WebSphere application model

28

WebSphere applications consist of object-oriented business logic that use
relational database systems for data storage. While applications are usually
integrated with thick or thin Web clients, they can also be integrated with existing
procedural applications running in application servers.

An application consists of the following components, each performing a different
function:

» HTML and JSP pages provide the user interface and program flow.

» Enterprise beans contain the application’s business logic and handle
transactional operations and access to databases.

» Servlets coordinate work between the other components of the application.
They also can dynamically generate Web page contents.

» JavaBeans components enable the other types of components to work
together.

DB2 UDB/WebSphere Application Tuning Guide

» Relational databases implement persistence and query functions for
enterprise beans. Either new or existing databases can be used in an
application.

2.5 Session management

In many usage scenarios, a client makes a request, waits for the result, then
makes one or more subsequent requests that depend upon the results received
from the earlier requests.

Such a sequence of operations on behalf of one client falls into two categories:

» Stateless: In this case, the server that processes each request does so
based solely on information provided with that request itself, and not based on
information that it “remembers” from earlier requests. In other words, the
server does not need to maintain state information between requests.

» Stateful: In this case, the server that processes a request needs to access
and maintain state information generated during the processing of an earlier
request. For example, when the user keeps adding to a shopping cart over
multiple interactions, this information must be stored, and when the user
clicks the checkout button, the contents of the shopping cart must be
displayed along with appropriate charge information.

A number of techniques are available to maintain state between multiple HTTP
client requests. The following techniques are not mutually exclusive:

» Cookies
» URL encoding/rewriting
» SSL° session identifiers

Attention: When multiple application servers are involved, server affinity
becomes an additional consideration.

Important: A key concept associated with session management is that of a
session identifier. A session identifier (session ID) correlates an incoming user
request with a session object maintained on the server. These session
identifiers are passed with each client request using cookies, URL rewriting or
SSL ID techniques.

5 SSL stands for Secure Sockets Layer and it is a public-key network security protocol that can
perform message encryption, client authentication, and server authentication.

Chapter 2. Overview of WebSphere Application Server V4.0 29

We discuss the following topics in this section:

» Session tracking mechanisms
» Server affinity
» WebSphere session manager

2.5.1 Choosing a session tracking mechanism

30

WebSphere Application Server supports all three of the aforementioned session
tracking techniques.

It is possible to select all three options for a Web application. If you do this, then:

» SSL session identifiers are used in preference to cookie and URL rewriting.
» Cookies are used in preference to URL rewriting.

Cookies

Many sites choose cookie support to pass the user’s identifier between
WebSphere Application Server and the user. WebSphere Application Server
session support generates a unique session ID for each user, and returns this
session ID to the user’s browser via a cookie.

A cookie consists of information embedded as part of the headers in the HTML
stream passed between the server and the browser. The browser holds the
cookie, and returns it to the server whenever the user makes a subsequent
request. By default, WebSphere Application Server defines its cookies to be
destroyed when the browser is closed.

The main disadvantage of cookies is that some users, either by choice or
mandate, disable them from within their browser.

URL encoding/rewriting

While session management using SSL IDs or cookies is transparent to the Web
application, URL encoding requires the developer to use special encoding APlIs,
and to set up the site page flow to avoid losing the encoded information.

URL encoding works by actually storing the session identifier in the page
returned to the user. WebSphere Application Server encodes the session
identifier as a parameter on URLs that have been encoded programmatically by
the Web application developer.

The disadvantages of this technique include these limitations:

» The Servlet or JSP developer has to write extra code as compared to cookies
or SSL session identifiers.

DB2 UDB/WebSphere Application Tuning Guide

» The flow of site pages is limited exclusively to dynamically generated pages
such as pages generated by servlets or JSSPs. WebSphere Application Server
inserts the session ID into dynamic pages, but can not insert the user’s
session ID into static pages (.htm or .html pages).

Therefore, after the application creates the user’s session data, the user must
visit dynamically generated pages exclusively until they finish with the portion of
the site requiring sessions. URL encoding forces the site designer to plan the
user’s flow in the same site to avoid losing their session id.

SSL session identifiers

When SSL ID tracking is enabled for requests over SSL, then SSL session
information is used to track the HTTP session ID.

Attention: Because the SSL session ID is negotiated between the Web
browser and HTTP server, it cannot survive an HTTP server failure. However,
the failure of an application server does not affect the SSL session ID.

SSL tracking is supported only for the IBM HTTP Server and iPlanet Web
servers. The lifetime of an SSL session ID can be controlled by configuration
options in the Web server. For example, in the IBM HTTP Server, the
configuration variable SSLV3TIMEOUT must be set, to allow for an adequate lifetime
for the SSL session ID. Too short an interval could result in premature
termination of a session.

The main disadvantage of using this technique is the performance hit of using
SSL. If you have a business requirement to use SSL, then this would be a good
choice, otherwise, consider using cookies instead.

Important: When the SSL session ID is used as the session tracking
mechanism in a cloned environment, either cookies or URL rewriting must be
used to maintain session affinity (see next section for a discussion of this
topic). The cookie or rewritten URL contains session affinity information that
enables the Web server to properly route requests back to the same server,
once the HTTP session has been created on a server. The SSL ID is not sent
in the cookie or rewritten URL, but is derived from the SSL information.

Chapter 2. Overview of WebSphere Application Server V4.0 31

2.5.2 Server affinity

32

In a load balancing environment, the choice of a target server for directing a
request is dependent on many factors, including server load and capacity.

Important: In the case of stateful session beans or entity beans within the
context of a transaction, there is only one valid server.

WebSphere Application Server WLM will always directs a client's access to a
stateful session bean to the single server instance containing the bean (no
possibility of choosing the wrong server here). If the request is directed to the
wrong server, it will either fail, or that server itself will be forced to forward the
request to the correct server at great performance cost.

In the case of HTTP sessions or entity beans in-between transactions, in a
clustered environment, the underlying shared database ensures that any server
can correctly process each request. However, accesses to that underlying
database may be expensive, and it may be possible to improve performance by
caching the database data at the server level. In such a case, if multiple
consecutive requests are directed to the same server, they may find the required
data still in the cache, and thereby reduce the overhead of access to the
underlying database.

Server affinity refers to the capability of a load distribution facility to take such
constraints into account. In effect, the load-distribution facility not only recognizes
that multiple servers may be acceptable targets for a given request, but also that
each request may have a particular affinity for being directed to a particular
server, on which it will be handled better or faster.

Session clustering

Session clustering requires an affinity mechanism so that all requests for a
particular session are directed to the same JVM in the cluster. One such solution
provided by WebSphere Application Server is Session Affinity in a server group,
and is the default. This solution is available as part of the WebSphere plug-ins for
Web servers. While session affinity can be turned off, it is not recommended.

DB2 UDB/WebSphere Application Tuning Guide

Attention: The Servlet 2.2 specification requires that an HTTP session be:

» Accessible only to the Web application that created the session. The
session ID can be shared across Web applications, but not the session
data. For example, data created by Web module A is not accessible to
Web module B, and vice versa. In the upcoming PTF 4 for WebSphere
Application Server (V4.04) as well as V5, WebSphere Application Server
will provide for optional sharing of the session object between Web
applications inside a single Enterprise Application (EAR). This option
should be used with great care since the capability to share a session
object can lead to increased session size as each application tends to add
attributes to the session object, which may lead to degraded performance
as described in 1 on page 201.

» Handled by a single JVM for that application at any one time.

This means that in a cloned environment, any HTTP requests that are
associated with an HTTP session must be routed to the same Web application
in the same JVM. This ensures that all of the HTTP requests are processed
with a consistent view of the user's HTTP session. The exception to this rule is
when the clone fails or has been shut down.

In WebSphere Application Server, each WebSphere Application Server ID is
appended to the session ID. When an HTTP session is created, its session ID is
passed back to the browser as part of a cookie or URL encoding. When the
browser makes further requests, the cookie or URL encoding will be sent back to
the Web server. The WebSphere plug-in examines the HTTP session ID, in the
cookie or URL encoding, extracts the unique ID of the WebSphere Application
Server clone handling the session, and forwards the request.

Important: In WebSphere Application Server the recommended method for
sharing of sessions between multiple application server processes is to persist
the session in a database.

2.5.3 WebSphere Session Manager

The session manager is part of each Web container, and is responsible for
managing HTTP sessions, providing storage for session data, allocating session
IDs, and tracking the session ID associated with each client request through the
use cookies, URL rewriting, or SSL session identifier techniques. The session
manager allows the WebSphere Application Server administrator to dynamically
configure and tune the behavior of all HTTP sessions created by servlets within
its application server.

Chapter 2. Overview of WebSphere Application Server V4.0 33

From an application development perspective, servlet and JSP code do not
interact directly with the session manager object. Rather, the session manager
supports the HTTPSession interface, which developers use for session
functionality.

All the servlet or JSP developer has to do is create the session and put and get
data. This allows the application developer to focus on business logic, and
ensures consistent behavior across all of the servlets called by its servlet engine.

HttpSession interface

The Java servlet specification contains the interface
javax.servlet.http.HttpSession that the WebSphere Application Server
servlet engine (Web container) supports. HttpSession provides Application
Program Interfaces (APIs) that handle many of the details of session access and
management.

An HttpSession gets created by calling the
javax.servlet.http.HttpServletRequest.getSession() method on the servlet’s
request object. If a session does not yet exist, this call creates one.

Some of these APIs have been deprecated with the Java Servlet Specification
2.2. The putValue() and getValue() methods, for example, have been replaced
by putAttribute() and getAttribute() respectively, although the Java Servlet
Specification 2.1 methods are still supported.

2.6 Typical application flow

34

Figure 2-9 shows the typical application flow for Web browser clients using either
JDBC (from a servlet) or EJB to access application databases.

DB2 UDB/WebSphere Application Tuning Guide

Browser WebSphere Application Server

Client
. Data
input |foutput Application Server EJB Container Sources
page ||page Web Container I

E [

Embedded

[2] Enterprise 0

JSP ||| = @ Bean | 8 O

k] OO
Web Server 12 _ 9 K

‘CD_
(0]
2
o

(@]

i
i
>«

\I@

\\@/
[3] ’ JNDI

application
database

Figure 2-9 A typical application flow

1.

A Web client requests a URL in the browser (input page).

2. The request is routed to the Web server over the Internet.

3. The Web server immediately passes the request to the WebSphere plug-in.

All requests go to the WebSphere plug-in first.

WebSphere plug-in examines the URL, verifies the list of hostname aliases
from which it will accept traffic based on the virtual host information, and
chooses a server to handle the request.

A stream is created. A stream is a connection to the Web container. It is
possible to maintain a connection (stream) over a number of requests. The
Web container receives the request and based on the URL, dispatches it to
the proper servlet.

If the servlet class is not loaded, the dynamic class loader loads the servlet.
Servlet init(), then doGet() or doPost().

. JNDI is now used for lookup of either datasources or EJBs required by the

servlet.

Chapter 2. Overview of WebSphere Application Server V4.0 35

8. Depending upon whether a datasource is specified or an EJB is requested,
the JNDI will direct the servlet:

a. To the corresponding database, and get a connection from its connection
pool in the case of a datasource

b. To the corresponding EJB container, which then instantiates the EJB,
when an EJB is requested

9. If the EJB requested involves an SQL transaction, it will go back to the JNDI
to lookup the datasource.

10.The SQL statement will be executed and the data retrieved will be sent back:

a. To the servlet
b. To the EJB

11.Data beans are created and handed off to JSPs in the case of EJBs.
12.Servlet sends data to JSPs.

13.The JSP generates the HTML that is sent back through the WebSphere
plug-in to the Web server.

14.The Web server sends the output page (output html) to the browser.

2.7 WebSphere Queuing Network

In a typical J2EE application, a client request flows through a Web server,
application server and a database. With WebSphere Application Server, the
request flows through a network of queuesS.

These queues represent WebSphere Application Server system resources and
should be tuned to achieve optimal performance. These queues include the
network, Web server, Web container, EJB container (ORB), datasource, and
possibly a connection manager to a custom backend system, as shown in
Figure 2-10.

6 We call them queues from a queueing theory perspective, but in reality, they are thread pools.

36 DB2 UDB/WebSphere Application Tuning Guide

UpStream Queuing Network

Clients
L)

=L
Network

Servlet
Engine

Figure 2-10 WebSphere Queuing Network

Each of these WebSphere Application Server resources represents a queue of
requests waiting to use that resource. WebSphere Application Server queues are
load-dependent resources, and therefore the average service time of a request
depends on the number of concurrent clients.

Queues may either be closed or open:

» A closed queue allows the administrator to limit the maximum number of
requests active in that queue.

A closed queue allows system resources to be tightly managed. For example,
the Web container's Max Connections setting controls the size of the Web
container thread pool. If the average servlet running in the Web container
creates 10 MB of objects during each request, then setting Max Connections
to 100 would limit the memory consumed by the Web container to
approximately 1 GB. Hence, closed queues typically allow the system
administrators to manage their applications more effectively and robustly.

In a closed queue, a request can be in one of the two following states:

a. Active: In this state, a request is doing work, or is waiting for a response
from a downstream queue. For example, an active request in the Web
server is either doing work such as retrieving static HTML, or waiting for a
request to complete in the Web container.

b. Waiting: In this state, the request is waiting to become active. The request
will remain in waiting state until one of the active requests finishes
processing and vacates the queue.

» An open queue does not allow the administrator to restrict the maximum
number of requests active in that queue.

Chapter 2. Overview of WebSphere Application Server V4.0 37

38

Note: Most of the WebSphere Application Server queues are closed queues.

All the closed queues provide settings to limit the maximum number of requests
flowing through them. These are as follows:

» Web Server:

All Web servers supported by WebSphere Application Server maintain a
thread pool to process the incoming HTTP request. Their size can be
controlled by the following parameters in conf/httpd.conf.

— IBM HTTP Server

e MaxClients for UNIX
o ThreadsPerChild for Windows NT/2000

— Microsoft lIS

e MaxPoolThreads
e PoolThreadLimit

Web container:

This is a pool of threads to process servlet/JSP requests and Web services.
and can be set in the WebSphere Application Server Admin Console for 4.0
Advanced Edition, as shown in Figure 2-11.

DB2 UDB/WebSphere Application Tuning Guide

% WebSphere Advanc]
Consale Yiew Toals Help
el @w|xe| ¢
= %% webSphere Administrative Domain B Name
B2 virtual Hosts 22 Installed EJE Modules
(2 Server Groups
=|0O] x
=l B2 Nodes 5 =I0lxd
= @ mansel [‘General [Transport [Serviet Caching |
= E2 Application Servers —
=] Node: rmansel _
2 Installed EJB Modules P
Applicat 1 Default 5 =
£ Installed wWeb Modules pplication Server: STau Server |
£ Generic Servers Minimum thread size: W25 | | threads
(2 Enterprise Applications . o J
B Resources Maximum thread size: 750 / | threads
[v] Allow thread allocation beyond maximum
Thread inactivity timeaut: 1T|10 | seconds
Type | Time [Event j
G 5/31/02 1. WSVROOZ3[| Server __admin —
E 5731702 1.0 ADMSQQOSI Starting server: J
E 5431702 1. ADMSQO32I Started server: J
E 5731702 2.... Console Ready. Cancel | | Help |

Figure 2-11 Web container queue settings

» EJB container:

The EJB container inherits its queueing behavior from its built-in Object
Request Broker (ORB), which manages the interaction between clients and
servers, using the Internet Inter ORB Protocol (IIOP). It enables clients to
make requests and receive responses from servers in a network-distributed
environment.

The ORB thread pool acts as a queue for incoming requests. However, if a
remote method request is issued and there are no more available threads in
the thread pool, a new thread is created. After the method request completes
the thread is destroyed. Hence, the EJB component container, like the ORB,
is an open queue. Given this fact, it is important for the application calling
enterprise beans to place limits on the number of concurrent callers into the
EJB container.

Chapter 2. Overview of WebSphere Application Server V4.0 39

If EJBs are being called by servlets, the Web container will limit the number of
total concurrent requests into an EJB container, by virtue of the limits in the
Web container itself. However, this applies only to EJBs being called from the
servlet thread of execution. It would be possible for a servlet to create its own
threads and bombard the EJB container with requests. This is one of the
reasons why it is not a good idea for servlets to create their own work threads.

The ORB Thread pool size can be configured using the WebSphere Admin
Console, as shown in Figure 2-12. As explained above, this pool can grow
beyond the specified size depending on the incoming traffic.

¢ WebSphere Advanced Admir) |
Caonsole Yiew Tools Help
e lo ®@w | x®| @
= %% webSphere Administrative Damain ‘ | Narme
£ virtual Hasts AR Insrallad FIR Marlile<
2 Server Groups - i =] 3]
=l E2 Nodes
= § mansel General [Advanced |
£ Application Se -
H = &?p fcatian Servers Listener part: o | =
2 Installed EJE Modult pequest timeout: [150 | secands o
2 Installed Web Modu
B Generic Servers Lacate request timeout: [180 | secands
[Enterprise Applications . .) .
£ Resources Caonnection cache maximum: [z240 | connections
Caonnection cache minimum: [100 | connections
Thread poal size: 20 > threads
|_] Enable ORE tracing
Type | Tirre | E -
E 5/31702 1. WSWROO23| Server __a =
E 3/31/0Z2 1., ADMSI0O0O0S]: Starting se r
E 5/31/02 1., ADMSQO3ZI: Started se i
B 5/31/02 2. Console Ready. Tt it B

Figure 2-12 ORB thread pool size setting

40

DB2 UDB/WebSphere Application Tuning Guide

Resource Analyzer shows a metric called Percent Maxed to determine how
much of the time all of the configured ORB threads are in use a shown in
Figure 2-13. If this value is consistently in the double-digits, then the ORB
could be a bottleneck and the number of threads should be increased. The
degree to which the ORB thread pool value needs to be increased, is a
function of the number of simultaneous servlets (that is, clients) calling
enterprise beans, and the duration of each method call.

%< Resource Analyzer =olx|
File Actions Logging Reports Options Help
a8 s D@B.E EZT]
1 38 webSphere Administrative Danf : f\-‘iew Data |/\-‘iew Chart|
S E%r?;:pault Server Tirre [Thread Creates [Thread Destroys [Active Threads
Ent i B “|llun 20, 2002 4:18:01 P... o] o] 1.0 (Average: 0.0007)
Database Commection| |Jun 20, 2002 4:17551p... 0 0] 1.0 (Average: 0.00075)
o 1vM Ramtime et Hliun 20, 2002 4:17:41P... 0 0] 1.0 (Average: 0.00083)
B o Manad |17 20, 2002 4:17:31P... 0 0| 1.0 (Average: 0.00092)
5 Threed poote % Hhun 20, 2002 4:17:21F.. 0 0| 1.0 (Average: 0.00104)
in Y — |lunz0, 2002 4:17:11 p... 0 0] 1.0 (Average: 0.00123)
- Web Contai “llun 20, 2002 4:17:01 P... o] 0 1.0 (Average: 0.00154)
Transaction Manager | |14 20, 2002 4:16:51P... 0 0] 1.0 (Average: 0.00203)
wieb Aroientione | [lun 20, 2002 4:16:41P... 0 0] 1.0 (Average: 0.00379)
— Web Applications | i un 20, 2002 4:16:31 F... 0 0| 1.0 (Average: 0.04482)
@ Piggy :
1 @l Trade
i i Marne [Description [valug | select
' AThread Creates otal number of thread create %
| Thread C Total number of thread d 0 v
AThread Destroys Total number of threads destroyed o] [vl
“JActive Threads The number of concurrently active threads 1.0 iAverage: 0. [vi
“|Pool Size Average number of threads in Pool 2.0 (Average: 2)]
“|Percent Maxed Average percent of the time that all threads are... | 0.0 (Average:) [}
1] [»]
1 groups(s) |5 counter(s) |Refresh rate: 10 sec Tahble size: 40 Wiew Darta As: Raw Value Logging: OFF

Figure 2-13 Resource Analyzer ORB monitoring

Important: In WebSphere Application Server 4.0.2, the ORB thread pool

can be bounded (made to behave like a closed queue), by setting the Java

system property -Dcom.ibm.ws.OrbThreadPoolGrowable=false in the

WebSphere Application Server Admin Console JVM Settings, as shown in

Figure 2-14.

Chapter 2. Overview of WebSphere Application Server V4.0

41

“WebSphere Advanced Administrative Console

Console Yiew Tools Help

o @v|x & ¥

= %9 webSphere Administrative Domain
A virual Hosts
2 Server Groups
= &2 Nodes
= 3 mansel
= B2 Application Servers
=5
2 Installed EJB Moadules
2 Installed web Modules
1 Generic Servers
£ Enterprise Applications
3 Resources

[+

Marme

[Installed EJBE Modules
|22 Installed Web Madules

: FTransa.ction (MM Setings | Services [[Custom |

General I Advanced T |
L |

System Properties

Name [value | Add
-Dicam.ibm.ws. OrbThread PoolCrowable (false

Advanced JvM Settings... |

&
G 5/31j02 2. Console Ready.
&
B

5031702 2:... Command "Default Server. ModifyArtributes” running ...
5,/31j02 2.... Command "Default Server. Modifyattributes" completed. .

Time | Event Message [Source | .
L=} LS I ALTNGUCIE T, SIErTTY =ETYET, DErdit SeTverT LOMLTOTT B 2. 2 TTLJLIVE ALLIVES. | Omlons---

5031702 1:... ADMSD032(|: Started server: Default Server (pid 245 12) com.ibm.ejs. sm. active Actives. .

Figure 2-14 Bounding ORB pool by setting system property

» Database resources are not queued, but two parameters that should be
considered when dealing with WebSphere queuing are:

— Data source connection pool size
— Prepared statement cache size

They can be viewed and set via the WebSphere Application Server Admin
Console, as shown in Figure 2-15.

42 DB2 UDB/WebSphere Application Tuning Guide

Console Miew Tools Help

e

e 8 v

X & %

= webSphere Administrative Dorn

=72 virtual Hosts

{2 Server Groups

83 Modes

--1"_"1 Enterprise Applications
=3 Resources

=83 JDBC Providers

. =@ Sample DB Driver

Mame |

Description

| JDBC Provider |

||l Session
B, TradeDB

session db for trade

Sarmple DB Driver -]
Sample DB Driver -

General Connection Pooling |

Connection Pooling

| »

------ = Minimum pool size: |1 connections
2 JavaMail Sessions : i :
£ URL Providers Maximurm pool size: |4D cannections
0 J2C Resource Adapters Connection timeout. [120 secands
B3 JMS Providers
|dle timeaut; |18|:|0 seconds
Crphan timeout; |18|:|0 seconds
Statement cache size: |1D|:| statements
[Disahle AutoConnection cleanup —
| Help |
Kl | 2l
Typel Time | Event Message Source | Options...
E 402112 Console Ready. ;l

Details...

Clear

i

]

Figure 2-15 Datasource connection pooling settings

Both these parameters are explained in detail in “Connection pool” on
page 148, and “Prepared statement cache” on page 169.

2.8 Tuning WebSphere Application Server

In this section we provide a high level view of WebSphere Application Server

application and system tuning considerations.

The performance of a WebSphere Application Server enterprise application
depends on various factors, including network, database, memory, application
design, and application server configuration. Since these factors vary from
installation to installation, each recommendation should be evaluated for
applicability in one’s own unique situation.

Chapter 2. Overview of WebSphere Application Server V4.0 43

2.9 Application tuning considerations

In this section we recommend the following best practices when writing a
WebSphere Application Server application that includes servlets, JSPs, JDBC
connections, and EJBs.

Important: It should be noted that in many cases, the effects of bad
application design and development cannot be easily overcome with system
tuning, or by making additional computing resources available to the
application. Therefore, adopting application related best practices from the
start will go a long way towards a superior performance system.

2.9.1 Do not store large object graphs in HttpSession

Applications sometimes require the use of persistent HttpSessions. There is a
cost associated with this, since an HttpSession must be read by the servlet
whenever it is used, and rewritten whenever it is updated. This involves
serializing the data, and reading it from and writing it to a database.

In most applications, each servlet requires only a fraction of the total session
data. Therefore, by storing the data in the HttpSession as one large object graph,
an application forces WebSphere Application Server to process the entire
HttpSession object each time. The added cost involves not only serialization, but
also memory consumption in the session cache.

WebSphere Application Server provides a number of options to optimize session
management costs. These are described in IBM WebSphere V4.0 Advanced
Edition Handbook, SG24-6176.

Also, consider alternatives to storing the entire servlet state data object graph in
the HitpSession. For example, maintain the state data needed by each servlet as
a separate row in an application maintained JDBC datasource, as shown in
Figure 2-16. The primary keys for each row (the data for each servlet) can then
be stored as separate attributes in the HitpSession. This limits the HttpSession to
just a few strings that are used to locate the actual session data.

44 DB2 UDB/WebSphere Application Tuning Guide

s Get the session data value
tey {
conn = getPooledConnection(); - Hses fatalources to Gel JOFC Connection See FBest Practice

conn.setlutoCommit(falsed;
sessionKey = (String? session.getValue(TOP_KEY>;

< Fegsion Kew foes Not Exist — Fhis is a mew Fession Fuild the fata
if(zessionkKey == null>{

seszionKey = UniguelUalue.getUniquelalued?;
session.putValue(TOP_KEY.sessionKeyd;

sessionData = new SessionLargelbjectCollection(MUM_REPS);

psi = conn.prepareStatementCINSERTSTHI > ;

psi.setftring{l sessionKeyl;

psi.setBytes(2 . convertToBytes(sessionDatal); - Serialize and #rite Out
psi.executellpdate();

seszionKey = Uniguelalue.getliiniquelalued?;
session.putValuetInteger toString(i+l) seszsionKeyd;

>

else { -~ Fhe Session Poes Exist FRetrieve the Pata to Generate Load
sessionKey = (Stringlsession.getValue(TOP_KEY>;

pss = conn.prepareStatement(SELECTSTHI > ;

pss.setftring{l sessionKeyl;

rs = pss.executeQueryl);

if(rs . next(){ o Pe—rerialize and Read In
sessionlata = convertBytesToSessionObjectCollections{rs . getBytes("SAUESERIALIZEDDATA > ;

H

< pdate the fata to Generate foad

psu = conn.prepareStatement(UPDATESTHMI>;

psu.setString(2.sessionKey);

psu.setBytes(l .convertToBytes(sessionDatad); . Serialize and #ite COut
psu.executellpdate();

conn.commit();

¥
catch (Exception e}{~ Handle Frrors?c
>

finally
§ < Cloge Connections and Statements — ¥ee Best Practice

Figure 2-16 JDBC session data alternative

Note that this session data will eventually need to be cleaned up from the
datasource when the session had ended. Two potential alternatives are:

» Using a periodic offline non-WebSphere Application Server process such as
CRON in UNIX that would delete these rows at intervals depending on the
application. In this example, the database is keyed on servlet data time of
creation.

» HitpSessionBindingListener. When the HttpSession is about to be destroyed,
the javax.serviet.http. HttpSessionBindingEvent for valueUnbound could
direct a delete of the servlet state data.

If the lifetime of servlet state data is longer than that of the HttpSession, use the
first alternative.

Chapter 2. Overview of WebSphere Application Server V4.0 45

2.9.2 Release HttpSessions when finished

HttpSession objects live inside WebSphere Application Server until one of the
following occurs:

» The application explicitly and programmatically releases it using the API,
Javax.serviet.http.HttpSession.invalidate(). Quite often, programmatic
invalidation is part of an application logout function.

» WebSphere Application Server destroys the allocated HttpSession when it
expires based on session management configuration parameters — the
default is 30 minutes.

WebSphere Application Server maintains a certain number of HttpSessions in
memory based on configuration parameters.

Therefore, release each HitpSession programmatically, or with lower
HttpSession expiry thresholds, depending upon the application.

Figure 2-17 shows an example of explicit HttpSession invalidation.

import java.io.¥;

import java.util.®;

import javax.serulet.®;
import javax.servlet.http.#;

public class ApplicationLogQutServlet extends HttpServlet
{

public void doGet{HttpServletRequest request, HttpServletResponse response)
throws ServletException, [0Exception

HttpSezzion mySession = request.getSession(false);

if(mySession t= null>

}
e
e
“ Zome other Spplication fogeff FProcessing and Cutput Reply Sack
“ te frouser

i

}

Figure 2-17 Explicit HtipSession invalidation

46 DB2 UDB/WebSphere Application Tuning Guide

2.9.3 JSP considerations

Two considerations apply here:
» Do not create HttpSessions by default:

JSPs create HttpSessions by default per J2EE, to facilitate the use of JSP
implicit objects, which can be referenced in JSP source and tags without
explicit declaration. HttpSession is one of those objects.

If you do not use HttpSession in your JSPs, then performance can be
enhanced by avoiding this default HttpSession creation by involving the
following JSP page directive:

<% @ page session="false”%>
» Minimize the use of jsp:include:

These are used to build composite JSPs dynamically, but they can result in
poor performance since each include JSP is a separate servlet.

2.9.4 Do not use SingleThreadModel

SingleThreadModel is a tag interface that a servlet can implement to

transfer its re-entrancy problem to the servlet engine. As such,
Jjavax.serviet.SingleThreadModel is part of the J2EE specification. WebSphere
Application Server’s servlet engine handles a servlet’s re-entrancy problem by
creating separate servlet instances for each user. Because this causes a great
amount of system overhead, SingleThreadModel should be avoided.

Developers typically use javax.servlet.SingleThreadModel to protect updatable
servlet instances in a multi threaded environment. The better approach is to
avoid using servlet instance variables that are updated from the servlet’s service.
Figure 2-18 shows an example of using the SingleThreadModel.

Chapter 2. Overview of WebSphere Application Server V4.0 47

public class BpAllBad ThingsServletsV1¢ extends HitpServiet implements SingleThreadModel
{
private int numberOfRows = 0;
private javax.sql.DataSource ds = null;

public veid doGet(HttpServietRequest request, HttpServietResponse response)
throws ServietException, IOExceaption
{

Connection conn = null;

ResultSet rs = null;
PreparedStatement pStmt = null;

int startingRows = numberOfRows;

try
{
String empleyeelnformation = null;
conn = ds.getConnection(*'db2admin","db2admin'’;
pStmt = conn.prepareStatement(select * from db2admin.employee™);
rs = pStmt.executeQueny():

Figure 2-18 Servlet using single threaded model

2.9.5 Minimize synchronization in serviets

Synchronization has to do with serializing the execution of code, that is, locking
of the code.

Servlets are multi-threaded, and applications have to recognize and handle this.
However, if large sections of code are synchronized, an application effectively
becomes single threaded, and throughput decreases.

The code in Figure 2-19 synchronizes the major code path of the servlet’'s
processing to protect a servlet instance variable numberOfRows. The code in
Figure 2-20 moves the lock to a servlet instance variable, and out of the critical
code path. Using javax.serviet.SingleThreadModel, is yet another way to protect
updatable servlet instance variables, but should be avoided.

48 DB2 UDB/WebSphere Application Tuning Guide

?uhli[: class EpAllBadThingsServletslla extemds HttpServlet

private int numbeprF Hows = @]
private jovax.sgl.DataSource dsz = mull;

throws ServlctBException, 10Exception
L
Connection conn = mull;
ResultSet »z = mull;
PreparedStatenent pitmt = null;
int stortingRows;

Ltry
£
ﬁlmt:lu-nnized(this) S Lpe ks gul Mort of the Seivlelr Processing

startingRows = numberOf Rous

String enployesInformation = mull;

conn = dz.getConnectiond"db2?adnin'."db2admin™);

pStmt = conn.preparesStatements select * fron dbZadmin.emplovee™2;
rs = pitnt.cxccutcOueryd’;

public void deGetcHttpServletRequest reguest,. HttpfServletHResponse PeEsponse?

Figure 2-19 Servlet code using synchronization

public ¢class BpAllBad ThingsServletsVb extends HitpServliet
K
private int numberOfRows = 0;
private javax.s¢l.DataSource ds = null;

private Object lockObject = new Object();

public void deGet{HttpServletReguest request, HttpServletResponse response)
threws ServletException, IOException
{
Connection conn = null;
ResultSet rs = null;
PreparedStatement pStmt = null;
int startingReows =0,

f! Lack Here if we Must - Much Less Impact
synchronize(lockOhject)
{

H
try
{

startingRows = numberOfRows;

String employeelnformation = null;
conn = ds.getConnection("dbZadmin","dbZadmin");
pStmt= conn.prapareStatement{'salact * from db2admin.employaa'];

rs = pStmt.executeQuery();

Figure 2-20 Servlet code avoiding synchronization

Chapter 2. Overview of WebSphere Application Server V4.0

49

2.9.6 Use the HttpServiet Init method judiciously

The serviet init() method is invoked only when servlet instance is loaded, and is
therefore the ideal location to carry out expensive operations that need only be
performed during initialization. By definition, the init() method is thread-safe. The
results of operations in the HttpServiet.init() method can be cached safely in
servlet instance variables, which become read-only in the servlet service()
method. Figure 2-21 shows a good example of using irit () method to acquire the
JDBC DataSource in the HttpServiet.init() method.

1

public class BpAlIBadThingsServlietsVs extends HitpServiet

Il Taching the DataSource - It is cktained in the Servietinit{) method
private javax.sgl.DataSource ds = null;

I This Happens Once and is Reused
public void inig{ServietConfig configh throws ServietException
{

super.initfconfig);
Context ctx = null;

java.util.Hashtable env = new java.util. Hashtabled);
anv_put{ContextINITIAL_CONTEXT_FACTORY, “com.ibm.ejs.ns jndi CHInitialContextFactor ")
et stewr InitialContext{eny);

ds = (javax sql.DataSeurce)ete leokup(jdbe/SAMPLE)Y

ctr.close();

catch(Exce ption es)

as.printStackTracel);

Figure 2-21 Judicious use of init() method

2.9.7 Avoid String concatenation “+="

50

Poor String concatenation techniques lead to adverse performance since it can
lead to the creation of large numbers of temporary Java objects, and consume
valuable memory. Because Strings are immutable objects, String concatenation
results in temporary object creation, and this leads to increased Java garbage
collection and consequently CPU utilization as well.

DB2 UDB/WebSphere Application Tuning Guide

Recommendation is to use java.lang.StringBuffer instead of String
concatenation. Figure 2-22 and Figure 2-23 show the wrong and correct way to
concatenate Strings.

import Jaua io. *;
import Jauax SEI‘UlEt 3
import javax.cerulet. http >

public class BpWorstCaseltringServlet extends HttpServlet
£

final static private String TYPICAL_STRING = "AAAAARAAAR"';
final =static int HUMBER_OF_REPS = 1MA;

public void deGet{HttpfervletRequeszt request, HttpfervletHesponse response?
throws ServletException, I0Exception

i
long staptTime = Sjysten.currentlimefillisc);
Strding wvorkftring = new Stringdd:
For<{imt 1 - @; 1 { 10885 i++> {
vorkitring += TYPICAL_STRIHNG;
H
N lang endlTime = Susten.currentTimeMilli=z() - stavrtTime:

>

Figure 2-22 Poor String concatenation technique

import java.io.»;

import java.util.=

import Javax.cerulet . x;

import joavax.servlet. http.=

Eu]:li.u: class BpBestCaseStringServlet extemds Hitplervlet

final static private Strdng TYFICAL_STRING = “AAAAAAAAAA"S
final static int NUMBER_OF_REPE = 180;

public woid doGet{HttpServletReguest request, HttpServletRezponze wesponsel
c throws ServletException, I0Exception

Inng startTime = Sustem.currmentTimeMilliz(};

StringHuffer vorkBuffer = new StringBuaffer{AAA);
String workString;

for<{int i - B; i < HUMBER_OF_REFE; i++>
<

wvorkBuffer _append<{TYPICAL_STRING;
¥
workString = workBuffer toStwing();

long endlTime = System_currentTimeMilli=(} - xtap}:’[ime;
¥

Figure 2-23 Correct String concatenation technique

Chapter 2. Overview of WebSphere Application Server V4.0 51

2.9.8 Minimize uses of System.out.printin

Avoid indiscriminate used of System.out.println statements and similar
constructs, since they synchronize processing for the duration of disk 1/0, and
can significantly slow throughput.

Developers should use state of the art enterprise application development
facilities, such as WebSphere Studio Application Developer for debugging during
unit testing. WebSphere Application Server Distributed Debugger can be used to
diagnose code on a running system.

However, even with these tools, there remains a legitimate need for application
tracing both in test and production environments for error and debugging
situations. Such application level tracing like most system level traces should be
configurable to be activated in error and debugging situations only. One good
design implementation is to tie tracing to a “final boolean” value, which when
configured to false will optimize out both the check and execution of the tracing at
compile time. Figure 2-24 shows an example.

import java.io.®;
import javax.serulet.x;
import javax_zserulet _http.*;

public class SoveilreeServliet extends HttpServlet {
et Falee Furns OFF Cheek and Trace. Frue Turos Jotkh Oo
private Fimal static oalean TRACTHG_OH = False;

public woid :uruinu(HtthauulatRaquﬂst N?l.laﬂt, HttpSewru letHecponse Pecponoe
wz Larvlet Q

¥

thro Exception, Exception £
g.rammm_om it I False Both Cheekh and Svsten.out.println are sptinized awvew

Syztem.out . printInd AN ERROE HAS OCCURRED FLEASE FIX AND RE-RUW*®tE#75;

Figure 2-24 Application level tracing

52

Also since WebSphere Application Server allows the complete deactivation of
System.out and System.err at runtime, consider doing so on the classpath for
stdout and stderr, as shown in Figure 2-25.

DB2 UDB/WebSphere Application Tuning Guide

% WebSphere Advanced Administrative Console gl =l

elo @ |x®| @
= %3 webSphere Administrative Dom : Name
£ virtual Hosts |20 Installed EJE Modules
(2 Server Groups 2 Installed Web Modules
= B2 Nodes i
[l @ persian

[

im]
im]

= B2 Application Servers
=]

£ Installed EJB M{ & fGeneraI rAdvanced File | Transaction rj\fM Settings rServices rCustom

£ Installed Web M ¢

&7 Trade | Standard input: | |
ol Piggy | standard output: [|
(2 Generic Servers i
Enterprise Applications | standard error | |
Resources :

File permissions

Specify what permissions Web Sphere Application Server should use when creating the files
above.

Owner [Read [V Write [Execute =

—
b,
=

m

EEEEE

Time
O SOOI .
620002 7123 ..
620002 7123 ..
6/21j02 432 ..
6/21j02 432 ..

Event Message Source -
|l_.U[I OIE RE0Y. g | Options...
Command "E|SSphere. refresh” running ... Details..
Command "E|SSphere.refresh” completed successfully.

Clear

Command "Default Server. ModifyAttributes" running ...
Command "Default Server. ModifyAttributes" completed succ...

Figure 2-25 Deactivating System.out and System.err

2.9.9 Access EJB entity beans from EJB session beans

Avoid accessing EJB entity beans from client or servlet code. Instead, wrap and
access EJB entity beans in EJB session beans. This recommendation addresses
two performance concerns:

» Reduces the number of remote method calls:

When the client application accesses the entity bean directly, each getter()
method is a remote call. A wrapping session bean can access the entity bean
locally, and collect the data in a structure, which it returns by value.

» Provides an outer transaction context for the EJB entity bean:

An entity bean synchronizes its state with its underlying data store at the
completion of each transaction. When the client application accesses the
entity bean directly, each getter() method becomes a complete transaction. A
store and a load follows each method. When the session bean wraps the
entity bean to provide an outer transaction context, the entity bean
synchronizes its state when outer session bean reaches a transaction
boundary.

Chapter 2. Overview of WebSphere Application Server V4.0

Figure 2-26 shows an example of doing so.

import jawva.pni.RemoteException;

import jawva.security.ldentity;

import java.util.Properties;:

import jovax.cjb.®;

import con.ibn.uxo.bestpractices . datanodels . *;

public clacz= EmploygeeRocterBean implements SecesionBean
private EnployeeHons enployesHons;
private javax.ejb.fessionContext nyfessionCtx - nu
final static leng seriallerzionlID = 3256@934‘_5‘?DHE45153L,

public wpid ejbCeeated) theowsz javax_ejh.CreateFxception, java_.emi_RemoteBException {
emplo yeeHome = EmpleyesEjbHoneCacheHe lper . getEmployeaHome (2 ;
¥

%thljﬁ Emplo veeltruct getEmploveeInfoFor{String empno?

Emplowee theEmployes = null;

Employeeitructure peturnlalue = new Employeeftructure();
try

£

theEmployee = emploweeHome . FindByPrimaryBey{new FaplovecKeyCenpno 32

returnlalue _zetiewitheEnployee . getSex(l 2]
returnUalue .zsetSalary theEmplo yee . getialamey(d)]
returnlalue .zetPhonenotthe Emploves . getPhoneno{)) ;
returnlalue .setMidinit<theEmplovee . getMidinit{>};
returnlalue . sethastmome {theEnployee . getLasbmome {3 ;
returnlalue _zetJohtheEnployee getdolld > ;
returnlalue .zetHiredate{theEnp loyee .qetHiredate (2} ;
returnValue ..setFiretnme {theEnp loyee . getFirstnme {2} ;
returnlalue ..set elempno ¥ 5

returnlalue .setBllewe 1{the Emplovee . getEdleve1{}};
returnllalue setComm{CheEnp Lo see getConm) ;
returnlalue _zetBonuzdtheEnployee getBonums (27 ;
returnUalue .zsetBirthdate{theEmployee . getBinthdate 2> ;
returnValue .. zetborkDept {theEnp loyee . getbdorkdept {2 ;

]

catch{Exception eXe.printitackIrace(l ;>
) retuwrm Feturnlalue;
public void ejbfictivatel} throws java.rni.RemoteException 43
public wvoid ejhfaszivate(} throws java.rni.RemoteException {3
:'I;I.I.hlil: void cjbRecmove!} throws jovo.rni.RemotcException {3

Figure 2-26 Accessing entity beans from session beans

2.9.10 Reuse EJB homes
EJB homes are obtained from WebSphere Application Server through a JNDI

naming lookup. This is an expensive operation that can be minimized by caching

and reusing EJB Home objects.

For simple applications, it might be enough to acquire the EJB home in the
servlet init() method.

More complicated applications might require cached EJB homes in many
servlets and EJBs. One possibility for these applications is to create an EJB
Home Locator and Caching class.

54 DB2 UDB/WebSphere Application Tuning Guide

Attention: One problem with caching and reusing EJB homes is the issue of
handling stale cached homes. If a client caches an EJB home, and then the
container shuts down and then returns, the client’s cached value is stale and
will not work. Accessing a cached stale home will result in an exception being
thrown.

2.9.11 Use JDBC connection pooling

For applications that require access from a database, the overhead of connecting
and disconnecting to it can be significant. To avoid the overhead of acquiring and
closing JDBC connections, WebSphere Application Server provides JDBC
connection pooling based on JDBC 2.0. Servlets should use WebSphere
Application Server JDBC connection pooling instead of acquiring these
connections directly from the JDBC driver. WebSphere Application Server JDBC
connection pooling involves the use of javax.sql. DataSources.

Figure 2-27 shows the wrong way to invoke a JDBC connection, while
Figure 2-28 shows the correct way to do so.

plihlic class BpAllBadThingsServlets\la extends HitpServiet
d
public veid deGet{HttpServietRequest request, HitpServletRespense response)
throws ServietException, IDException
{
Connection conn = null;
ResultSat rs = null;
PreparedStatement pStmt = null;

try
{
if THIS IS THE WRONG WAY TO DO THISIMM
conh = DriverManagear.getConnaction(jdbedh2: SAMPLE", "db2admin',"dbZadmin'};

String employeelnfermation = null;

pStmt = conn.praparaStatement{“select ™ from dbZadmin.employee™);
rs = pStmt.executeGuery();

Figure 2-27 Worong way to obtain JDBC connections

Chapter 2. Overview of WebSphere Application Server V4.0 55

publiz ¢class BpAllBadThingsServletsVs extends HitpServiet

if Caching the DataSource - It is abtainad in the Servlat.init{) method
private javax sql.DataSource ds = null;

public veoid doGet{HttpSearviletRequest request, HitpServletRasponse responsea)
throws ServletException, IDException
{

Connection conn = null;
ResultSet rs = null;
PreparedStatement pStmt = null;

try
{
String employeeinfermation = null;
conh = ds.getConnection("dbZadmin”,"dbZadmin™);

pStmt = conn.prepareStatement('select * from dbZadmin.employee');
rs = pStmt.exesuteCuery();

Figure 2-28 Correct way to obtain JDBC connections

2.9.12 Reuse datasources for JDBC connections

Servlets acquire JDBC connections from a javax.sql.DataSource defined for the
database. A javax.sql.DataSource is obtained from WebSphere Application
Server through a JNDI naming lookup. The overhead of acquiring a
Jjavax.sql.DataSource for each SQL access should be avoided, since this is an

expensive operation that can severely impact the performance and scalability of
the application.

To avoid this overhead, servlets should acquire the javax.sql.DataSource in the
Servlet.init() method (or some other thread-safe method) and maintain it in a
common location for reuse.

Figure 2-29 shows the wrong way of reusing datasources, while Figure 2-30
shows the correct way to do so.

56 DB2 UDB/WebSphere Application Tuning Guide

%.mluli.u: clazs BpAllBadThingsSerwleteVla extends HttpSerwlet

public void deGettHttpEervletRegquest regquest. HttpSerwvletRezponse responsel
. theaus SevulstEwceprian. TOEwceptian

Connection conn = mall;
Ezsultﬂﬁg rE = ““I|;I||'E'§€

B Praie tatemant tnt = null;
Javax.sgl.Datalource dz = null;

try
Java.util _Hazhtahle enuv = new java.util.HashtahleC) s
ctx =mew InitialComtextienud;
dz = {(Datafourcelctx. lookupd " idhc SAMPLE?;
ctx.clasa?;
conn = ds . getConnection("db2adnin® . "dbZadmin ">}

pitnt = conn.prepareStatement{"select ¥ Fron hgunther.enployse'3;
re = plimt.execubegueryl;

Erlu._—t{ﬂnntzxt.]HITI“L_EDHTE{#_PHCTGH'I‘, “con.ibm_oegs onz . gndi CHInitialContext Factory >3

Figure 2-29 Wrong way to acquire a datasource

public class BpAllBadThingsServietsvd extends HitpServiet

M Zaching the DataSource - It is ebtained inthe Servietinit) method
private javax.sql.DataSource ds = null;

i This Happens COnce and is Reused
public veid inigfServietConfig config) throws ServietEx ception
{
super.init]config);
Context ctx = null;
iy
{
JavautilLHashtable env = new java.utilL.Hashtable(),
env.put{Context INITIAL_CONTEXT _FACTORY, “comlibm.ejs.ns jndi. CHinitialContextFactony™);

ctx snew InitialContextieny);
ds = (javax.sql.DataSeurce)ety leokup(jdbe/SAMPLE");
ctx.close [);

catch(Exeeption es)

es.printSeack Trace():
1

} |

Figure 2-30 Correct way to acquire a datasource

Chapter 2. Overview of WebSphere Application Server V4.0

57

2.9.13 Release JDBC resources when done

Failing to close and release JDBC connections can cause other users to
experience long waits for connections. Although a JDBC connection that is left
unclosed will be released and returned by WebSphere Application Server after a
timeout period, others may have to wait for this to occur.

We recommend that you close JDBC statements when you are through with
them. JDBC ResultSets can be explicitly closed as well. If not explicitly closed,
ResultsSets are released when their associated statements are closed.

Ensure that your code is structured to close and release JDBC resources in all
cases, even in exception and error conditions.

Example 2-1 shows an example of the correct way to release JDBC resources.

Example 2-1 Releasing JDBC resources

Connection conn = null;
ResultSet rs = null;
PreparedStatement pss = null;
try
{
conn = dataSource.getConnection(USERID,PASSWORD) ;
pss = conn.prepareStatement ("SELECT SAVESERIALIZED DATA FROM SESSION.PINGSESSIONDATA
WHERE SESSIONKEY = ?2");
pss.setString(1,sessionKey);
rs = pss.executeQuery();
}
//
catch (Throwable t) {//Insert Appropriate Error Handling Here }
finally
{
//The finally clause is always executed
//even in error conditions PreparedStatements and Connections will always be closed
try
{
if (rs != null)
rs.close();
}
catch(Exception e){}
try
{
if (pss != null)
pss.close();
}
catch(Exception e){}
try
{

58 DB2 UDB/WebSphere Application Tuning Guide

if (conn != null)
conn.close();

}
catch(Exception e){}

2.9.14 Use Read-Only methods where appropriate

When setting the deployment descriptor for an EJB entity bean, you can mark
Access Intent as Read-Only. If a transaction unit of work includes no methods
other than “Read-Only” designated methods, then the Entity Bean state
synchronization will not invoke store.

2.9.15 Choose the minimal isolation level that is appropriate

By default, most developers deploy EJBs with the transaction isolation level set to
TRANSACTION_SERIALIZABLE. This is the default in IBM VisualAge Java
Enterprise Edition, and other EJB deployment tools. It is also the most restrictive
and protected transaction isolation level, and incurs significant overhead.

Many workloads do not require this level of isolation protection. A given
application might never update the underlying data, or be run with other
concurrent updaters. In that case, the application would not have to be
concerned with dirty, non-repeatable, or phantom reads problems (Refer to the
DB2 product documentation for details).
TRANSACTION_READ_UNCOMMITTED would probably suffice in such cases.
Because the EJB’s transaction isolation level is set in its deployment descriptor,
the same EJB could be reused in different applications with different transaction
isolation levels.

Review your isolation level requirements and adjust them appropriately to

increase performance.

2.9.16 EJBs and serviets — same JVM — “No Local Copies”

Because EJBs are inherently location independent, they use a remote
programming model. Method parameters and return values are serialized over
RMI-IIOP and returned by value. This is the intrinsic RMI Call By Value model.

Chapter 2. Overview of WebSphere Application Server V4.0 59

WebSphere provides the No Local Copies performance optimization for running
EJBs and clients (typically servlets) in the same application server JVM. The No
Local Copies option uses Call By Reference, and does not create local proxies
for called objects when both the client and the remote object are in the same
process. Depending upon the workload, this can significantly reduce overhead.

No Local Copies can be configured in WebSphere Application Server by adding
the following two command line parameters to the application server JVM:
» Djavax.rmi.CORBA.UtilClass=com.ibm.CORBA.iiop. Util

» Dcom.ibm.CORBA.iiop.noLocalCopies=true

Attention: The No Local Copies configuration option improves performance
by changing Call By Value to Call By Reference for clients and EJBs in the
same JVM.

One side effect of this is that the Java object derived (non-primitive) method
parameters can actually be changed by the called enterprise bean, as shown
in Figure 2-31.

class SomeClass{

RemoteObjectHome myRemoteHome;

RemoteObject nyRemoteOhject;

ParameterObject myArgument ;

void someMethod> {
myRemoteOhject = myRemoteHome .create();
myArgument . setProperty"Befored;
String newProperty = myRemoteObject.zomeRemoteMethod(nyArgument?;

~ Both Striag pewfroperty and Parameterbhject mudrgument
= Have Heen Changed — "Call Bu Beference™

*>
class RemoteObjectBean implements SessionBean <
public String someRemoteMethod{FarameterObject aFarameter)> {

if{aParameter . getProperty() _equals{" 'Before" 3> {
aParanmeter.setProperty(""After">;

¥
return aParamter . getPropertyl);
>

Figure 2-31 Pass by reference side effects of “No Local Copies”

60 DB2 UDB/WebSphere Application Tuning Guide

2.9.17 Remove stateful session beans when finished

Instances of stateful session beans have an affinity to specific clients. They will
remain in the container until they are explicitly removed by the client, or removed
by the container when they timeout.

The container may require writing out inactive stateful session beans to disk. This
involves container overhead, and may also adversely impact application
performance if the session needs to be read back from disk.

By explicitly removing stateful session beans when they have finished with it,
applications will decrease the need for the container to write the session out to
disk and thereby minimize container overhead.

Figure 2-32 shows an example of how to do so.

€

¥
¥

public
{

BestPracticesHone szeHome = mull;
puhlic vnid doGet{HttpServletRequest request. HttpSeruletResponse responsel

BestPractices szmgr - mulls;

try €

ssngr = sselome.created])
eongp. comeBunchifMethodcs () ;
2Ingr.removey) ; et EpXiot X Remeve Mhern Bone FFFP

¥
catch (Exception e?> <
e.printitackIraced?;

¥

>
public void init{ServletConfig config?

super. init{conf ig>;

try £

szcHome = EJBhomeCache .getInzstance{’ .gctHhhilomc?};

¥
catch(Exception e>» {
throw mew ServietException(IN]lT Error: “'+e.getMessaged).e);

¥

Java_in _*;
Java.util.=;
Jovax.zervlet o3
Javax.servlet . http.=;
Javax.naming . ®;

com. ibm.uxo.ejhs. *;

clazs BestPracticesfServlet extendz HttpServlet

theows SeruletException, I0Exception

throws ServletException <

Figure 2-32 Remove stateful session beans when finished

Chapter 2. Overview of WebSphere Application Server V4.0 61

2.9.18 Avoid using Beans.instantiate() to create new bean instances

The method java.beans.Beans.instantiate() creates a new bean instance by
either retrieving a serialized version of the bean from disk, or creating a new

bean if a serialized form does not exist. From a performance perspective, there is

a cost associated with checking the file system to see whether a serialized
version of the bean exists.

This overhead can be avoided by using new to create the instance.

Figure 2-33 shows the incorrect and worse performing way to create an instance

of a class, while Figure 2-34 shows the correct and better performing way to
create an instance of a class.

public class BadNewsSenrlet exiends HipSendet
d
public void doGetHttpServletRequest request, HipS ervletResponse response)
throws SenvletException, |IDException
{

A using Beans.instantiate) Don't do it this way
PingBean ab = (PingBean) Beans. instantiate(this.getClassi.getClassLoader(, "web_prmte.PingBean™;
ah.getMegi"Hit Count: ~ + hitCount++);
reg.setitiribute("ah”, ah);
getServietConte<t). getRequestDispatcher('servletPing Send et? 5o rvletHov). forward (e, res);
}
1

Figure 2-33 Wrong way to create a new bean instance

public class WayToGoSenvlet extends HitpSendet

public void doGetiHttpSeryletRequest reguest, Http ServlietResponse response)
throws ServleiException, I0Exception

{

int hitCount = 0;

i using new to create the instance

FingBean ab = new PingBean();

ah. setMsg{“Hit Count: * + hitCount++j;

req.setittribute("ab", ab);

getSendetContext).geRequestDispatcher("/servlet/Ping S ervlet? ServletRovy™) forwardireq, res);
}

}

Figure 2-34 Correct way to create a new bean instance

62 DB2 UDB/WebSphere Application Tuning Guide

2.9.19 Ensure that session objects are serializable

In order to exploit WebSphere Application Server’ persistence management
capabilities, applications should ensure that session objects are
Jjava.io.Serializable. Any instance variables of that object must also be java.io.
Serializable, or defined as transient based on application design. Example 2-2
shows code that will not work with persistent sessions, while Example 2-3 shows
the right way to enable persistent sessions.

Example 2-2 java.io.Serializable for persistent sessions — wrong way

Class MyAttribute implements java.io.Serializable

{
TypeA type;

Example 2-3 java.io.Serializable for persistent sessions — right way

option 1:
Class TypeA implements java.io.Serializable

//
option 2:
Class MyAttribute implements java.io.Serializable

{
transient TypeA type;

Another recommendation is to avoid storing a reference to a session in the
attribute that is being put into session, or make it as transient’ and initialize on a
request basis. Example 2-4 shows the wrong way to store session references,
while Example 2-5 shows the right way.

Example 2-4 Storing session references in an attribute — wrong way

7 When an instance variable is defined as transient, then its value need not persist when an object is
stored. Therefore, when the object is stored, the transient variable is not stored.

Chapter 2. Overview of WebSphere Application Server V4.0 63

Class MyAttribute implements java.io.Serializable

{
HttpSession sess;

Example 2-5 Storing session references in an attribute — right way

option 1:

Remove session variable definition from the class
//

option 2:

Class MyAttribute implements java.io.Serializable

{

transient HttpSession sess;

Another option is to consider using the Externalizable interface. With
Jjava.io.Serializable, the work of serialization and de-serialization is handled
automatically for you when you store and restore an object. The Externalizable
interface reduces serialization overhead, but the user is responsible for methods
readExternal() and writeExternal() with “..implements java.io.Externalizable”

2.10 System tuning considerations

System related parameters can be considered WebSphere Application Server
parameters that need to be adjusted on a general basis to support certain types
of workloads, almost independently of the methods used during application
development. In reality, application and system tuning tend to be synergistic in
achieving optimal performance.

System tuning activity in WebSphere Application Server is divided into the
following 3 broad categories:

» WebSphere Application Server queues considerations
» WebSphere Application Server JVM memory considerations
» Other considerations

These topics are covered briefly in the following sections.
2.10.1 WebSphere Application Server queues considerations

An important rule of WebSphere Application Server tuning is to minimize the
number of requests in WebSphere Application Server queues.

64 DB2 UDB/WebSphere Application Tuning Guide

In general, it is better for requests to wait in the network (in front of the Web
server), than it is for them to wait in WebSphere Application Server. Such an
approach results in only allowing requests into the WebSphere Application
Server queuing network when they are ready to be processed. To ensure such a
strategy, the WebSphere Application Server queues furthest upstream (closest to
the client) should have settings slightly larger than the settings of queues
downstream which should be progressively smaller.

Another consideration is that in many cases, only a fraction of the requests
passing through one queue will enter the next queue downstream. For example,
in a site with many static pages, many requests will be turned around at the Web
server and will not pass to the Web container. The Web server queue can then
be significantly larger than Web container queue.

Again, consider an application that spends 90 percent of its time in a complex
servlet, and only 10 percent making a short JDBC query. This means that on
average, only 10 percent of the servlets will be using database connections at
any given time; the database connection queue can thus be made significantly
smaller than the Web container queue. Conversely, if much of a servlet's
execution time is spent making a complex query to a database, then consider
increasing the thread pool size at both the Web container and the datasource. As
always, monitor the CPU and memory utilization for both the WebSphere
Application Server and database servers to ensure that CPU or memory is not
being saturated.

Figure 2-35 shows a sample configuration setting with this strategy, where the

settings for queues in this WebSphere Application Server Queuing Network are
progressively smaller as work flows downstream.

Chapter 2. Overview of WebSphere Application Server V4.0 65

UpStream Queuing

Clients

=
=
[S

(===
(===

Arriving Arriving Arriving
Requests Requests Requests

Arriving
Requests

Network

Data Source
(N =25)

Web Server

125 25
Waiting Waiting Waiting
Requests Requests Requests

Figure 2-35 Minimizing queuing downstream, through upstream queuing

66

The example shows 200 clients arriving at the Web server. Because the Web
server is set to handle 75 concurrent clients, 125 requests will remain queued in
the network. As the 75 requests pass from the Web server to the Web container,
25 remain queued in the Web server, and the remaining 50 are handled by the
Web container. This process progresses through the data source, until finally 25
users arrive at the final destination which is the database server. No component
in this system will have to wait for work to arrive because, at each point
upstream, there is some work waiting to enter that component. The bulk of the
requests will be waiting outside WebSphere Application Server — in the network.

This adds to WebSphere Application Server stability since no component is
overloaded. Waiting users can also be routed to other servers in a WebSphere
Application Server cluster using routing software like the IBM Network
Dispatcher.

Attention: Like any other tuning methodology, the settings of the values for
these queues is determined through an iterative process that involves
monitoring, analyzing and modifying the environment to meet previously
defined performance objectives. The initial queue settings for a given and
anticipated application workload may be derived using rules of thumb, generic
benchmark results, or a regression test system that is a fairly close
approximation of the anticipated production environment.

DB2 UDB/WebSphere Application Tuning Guide

WebSphere Application Server provides a Resource Analyzer tool to monitor the
performance of the Web container, EJB container and the data source. It
provides detailed performance data about the runtime and application resources,
in tabular and graphical format.

Web container queuing

Figure 2-11 on page 39 shows that Web container thread pool has three key
settings of minimum size, maximum size and “Allow thread allocation beyond
maximum” (Growable) flag. These three values determine the pool capacity. As
mentioned earlier, the maximum thread size parameter specifies the maximum
number of threads that can be pooled to handle requests sent to the Web
container. Requests are sent to the Web container through any of the HTTP
transports.

WebSphere Application Server creates this pool with the minimum size during
start-up. Then based on the load, the pool grows till the specified maximum size.
The Growable flag specifies whether the pool can grow beyond the maximum
size. As the load falls, the excess threads beyond the minimum size are
destroyed.

Resource Analyzer provides Web container thread pool performance data under
the Thread Pool module. The Active Threads counter indicates the number of
concurrent requests that are being processed by the Web Container. Web
container pool usage and throughput graphs are available under each application
server. The pool usage graph provides the number of active threads and pool
size over time. The throughput graph provides Average Response Time and
Throughput of the Web Container.

Figure 2-36 shows Resource Analyzer Web container pool usage and throughput
graph when WebSphere Application Server was stressed with a particular
application with 10, 20, 40, 80 and 160 concurrent clients. The Web container
pool was configured with a minimum size of 10, maximum size of 50, and
Growable flag set to false. The graph (pool size and active threads) shows how
the pool grows to accommodate the increasing traffic, and the corresponding
increase in average response time. The bottom graph (throughput and average
response time) shows the Response time is increasing while the system
maintains a steady throughput.

Chapter 2. Overview of WebSphere Application Server V4.0 67

% Resource Analyzer

Fle Actions Logging Repors Opfions Help

& 42| D1 6B Do

% WiebSphere Aministrative Domain Summary Feports
= % peace Seriets| EJ8s | EJB Wethods Web Container Poct | 0RE Pool | Connetion Poai |
Degfanlt Sarer
El % e 100
- Enferprise Beans [
- Database Cannectan Pools & a0
YT Rurdirne ol

ot Bendel Session Manager I et
[=}-L7 Thread Paols sk —o—o—A—o—/’_
==Lt Oject Requesi Brokar 1 _J(
LWl Container 0t il
Transaclion Manager e

=12 weh Applications IETE] BEE 3 11 1
L2 radesener fhema Web Appli ALl 45 . L 1] il
Activa Threads |[Scales 1.

1o tradesenmerirada Wb Applics

- 1T1516PM 11 -l'l Pl
ol Size [Scale: 1.0

[El it Sendets
o DiracionBrowsingSer 100
SWEPL Processor a0t
= SimpleFileSendat 5 L
ool TradefppSendat B0+
¢ TradeConfigSe et

. | TradeScenarioSenlel .ll;l
2 PinpSerndelZBessions
itl /
Bl

11646 P 1ITAGFM 11?4EF"H
B (ma) [Scale: 1.0]

Thrl:-upput{rewsac} [Scale: 0.1] Averags Respanse

1 | s

Figure 2-36 Resource Analyzer summary report with varying number of clients

Resource Analyzer also displays a metric Percent Maxed that determines the
amount of time that the configured threads are in use, as shown in Figure 2-37. If
this value is consistently in the double-digits, then the Web container could be a
bottleneck, and the number of threads should be increased.

68 DB2 UDB/WebSphere Application Tuning Guide

3¢ Resource Analyzer =]]
File Actions Logging Reports Options Help
@@ 00 sl BB .E E4I]
% webSphere Administrative Do f\u‘iew Data |/\-‘iew Chart|
= % persian | Tirne [Thread Creates [Thread Destroys [Active Threads
= %) Default se :
s Entarciiee B llun 20,2002 6:54:44 ... 0 0 0.0 (Average: 0)
Databace Commoction| 1N 20, 2002 6:54:34 . 0 0 0.0 (Average: 0)
- \f:‘aR se Connection 4, 20, 2002 6:54:24 ... 0 0 0.0 (Average: 0)
e 1 Manad |40 20, 2002 65414 .. o 0 0.0 (Average: 0)
5 Threaed Poate % flun 20, 2002 6:54:04 .. 0 0 0.0 (Average: 0)
o Obiect Rex prd [1un 20,2002 6:53:54 .. 0 0 0.0 (Average: 0)
R Reduest B lun 20, 2002 6:53:44 ... g g 0.0 (Average: 0)
- - Allun 20, 2002 6:53:34 .. o] o] 0.0 (Average: 0)
Transaction Manager | =
Web Applications :
@1 Piggy
@l Trade
; Name [Description [Value | Select
AThread Creates Total number of thread created o] v
:|Thread Destroys Total number of threads destroyed o] vi
‘|Active Threads The number of concurrently active threads 0.0 (Average: 0 [vi
“|Pool Size Average number of threads in Pool 25.0 (Average: ...]
Percent Maxed Average percent of the time that all threads are .| 0.0 (Average: Q) [l
BB E Z Dk
1 groupsis) |5 counter(s) |Refresh rate: 10 sec Table size; 40 View Data As: Raw value Logaing: OFF

Figure 2-37 Resource Analyzer Web container monitoring

EJB container queuing

Method invocations to EJBs are queued only if the client making the method call
is remote, that is, if the EJB component client is running in a separate JVM from
the enterprise bean. However, if the EJB component client (either a servlet or
another enterprise bean) is installed in the same JVM, the EJB component
method will run on the same thread of execution as the EJB client, and there will
be no queuing.

Remote EJBs communicate uses the Remote Method Invocation/Internet
Inter-ORB (RMI/IIOP) protocol. Method invocations initiated over RMI/IIOP will
be processed by a server side ORB. The EJB container's thread pool will act as a
queue for incoming requests. However, in the default case, if a remote method
request is issued and there are no more available threads in the thread pool, then
a new thread is created. After the method request completes the thread is
destroyed. Therefore, when the ORB is used to process remote method
requests, the EJB container is an open queue, because its use of threads is
unbounded. Figure 2-38 depicts the two queuing options of EJB components.

Chapter 2. Overview of WebSphere Application Server V4.0 69

WebSphere Application Server

Local requests queued

. in the Web container
Web Container threads

\J
=J8 Contzainar
4
ORB Thread Pool

REMOTE WebSphere
Application Server }1

/
W Remote requests queued
in the ORB Thread Pool

EJB Client

Figure 2-38 EJB queuing

When configuring the thread pool, it is important to understand the calling
patterns of the EJB client. For example, if a servlet makes a small number of
calls to remote enterprise beans and each method call is relatively quick,
consider setting the number of threads in the ORB thread pool to a smaller value
than the Web container's Max Concurrency settings.

The degree to which one should increase the ORB thread pool value is a function
of the number of simultaneous servlets (clients) calling EJBs, and the duration of
each method call. Hence, if the method calls are longer, one might consider
making the ORB thread pool size equal to the Web container's Max Concurrency
size because there will be little interleaving of remote methods calls.

Figure 2-39 illustrates two servlet-to-EJB component calling patterns that might
occur in a WebSphere Application Server.

» Short-lived EJB calls: In this case, the servlet makes a few short-lived
(quick) calls. In this model there will be interleaving of requests to the ORB.
Servlets can potentially be reusing the same ORB thread. In this case, the
ORB Thread pool can be small, perhaps even one half of the Max
Concurrency setting of the Web container.

» Longer-lived EJB calls: In this case, the longer-lived EJB calls hold a
connection to the remote ORB longer, and therefore, tie-up threads to the
remote ORB. Therefore, one would need to configure more of a one-to-one
relationship between the Web container and the remote ORB thread pools.

70 DB2 UDB/WebSphere Application Tuning Guide

Short-lived
EJB calls

R Call R Call

Servlet service()

Servlet service() p , .
ram eV execution timeline eno

Longer-lived
EJB calls
Remote Call Remote Call
|

‘ . Servlet service()

Servlet
Servet service(execut/on timeline enpo

Figure 2-39 Short lived EJB calls

Resource Analyzer can be used in finding the EJB methods that are most called
and their average response time. Figure 2-40 shows all the EJB methods in the
application sorted by their average response time.

Chapter 2. Overview of WebSphere Application Server V4.0 71

*% Resource Analyzer , =100.%]

Frle Acfions Logging Reporns Oplions Help

@ 220 6 DBE £4[uT]
W WebSphere Acministaative Dome =) Surnmary Reports
=l ¥ vean
£ % peare serdets | EJHE | EJ8 Methads | Wen container Poal | 0RB Pool] connection Poal |
! 1 Defawlt EE!I‘_H"':T —
= % brade senel EJB MWieihod Wiethod Cal.. [{ = i) Rspon se_ﬁ? : | — |-
1-| Eriergrise Beans TradeHome login 32000 38 1405
i3] Dratabas e Conmectar TradeRe g isiryHo me SndSPrirang... F2000 18 51..[96..
! Juhd Rurirne TradeRegistry-oma.login | F000 0 094
=ty JmiPl Profile TradeHorne.cresle | 2000 0 nas.
} GG
I} Monitar
Doject
Thresi
! Serdel Session Mana
[ty Threat Pools =

[ogroupsiey [0counterisl [Pefazhrale: 10 2ec Table size 40 View Dala As RawValie Logging O FF

Figure 2-40 Resource Analyzer EJB methods average response time

Attention: As mentioned earlier, the ORB thread pool is an open queue and
the pool can grow unbounded. This can become a potential problem when too
many remote calls are made to the EJB Container.

Again, as mentioned earlier, in WebSphere Application Server 4.0.2, ORB
thread pool size can be limited by using the command-line parameter
"-Dcom.ibm.ws.OrbThreadPoolGrowable=false" in the application server
JVM.

In a future release, this parameter will become available as a configurable
option via the WebSphere Application Server Admin Console.

Datasource queuing

During WebSphere Application Server startup, the database connection pool is
created with a zero size, and it grows until it reaches the maximum size,
depending on the demand. The pool is cleaned up based on the Idle and Orphan
timeout values.

Resource Analyzer provides detailed performance data about each datasource
pool, as shown in Figure 2-41.

72 DB2 UDB/WebSphere Application Tuning Guide

3¢ Resource Analyzer
File Actions Logging

a2 9 e &

=0l

Reports Options Help

5 webSphere Administrative Do

| 2 @B /00
{|(View Data [[View/Chart|

S E%r?;:pault Server Tirre [Murn Creates [Murn Destroys [Murn Allocates
Enterprise Beans A|Jun 20,2002 7:13:42 P 1 o] 1
. Alun 20, 2002 7:13:32 P 1 o] 1
=l -1 Database Connection, ||\, 56" 5007 7:13:22 P.. 1 0 1
. : Allun 20, 2002 7:13:12 P... 1 o] 1
- bdbefsessiandb |\) 50 5002 7:13:02 ... 1 0 1
J¥M Runtime “llun 20, zooz 712:52 P 1 0 1
+ Servlet Sessian Manaq |\ 55”5007 7:12:42 ... 1 0 1
= Thmac.l Paals “llun 20, 2002 7:12:32 P... 1 o] 1
<2 Object Request BY | 55" 5502 7:12.23 b... 1 0 1
<2 Web Container |l 55" 552 6:53.34 B... 1 0 1
E:E;a;;ﬁclz':::ge’ |bun 20,2002 4:16:31 ... 1 0 1
- Allun 20, 2002 4:16:05 P 1 o] 1
@/ Piggy (S
@l Trade
A Narme N | Description | valug | select
ANurn Creates Total number of connections created 1 v
“INum Destroys T otal number of connections destroyed o] [vl
“INurm Allocates otal number of connections allocated 1 [vl
AINurm Returns Total number of connections returned to pool 1 [l
2 Avg Wait Time (ms) Anerage waiting time in milliseconds until a con. . o] [l
“|Faults Niymber of connection timeouts in the pool o] [l
“|PrepStmt Cache Disca... [Nymber of prepare statements discarded beca... o] [l
“|Pool Size Aferage Pool Size 1.0 {Average: 1)]
“|Concurrent Waiters erage number of threads concurrently waiting...| 0.0 (Average: 0)]
“Percent Used verage percent of the pool that is in use 10.0 (Average: ...]
(|Percent Maxed Average percent of the time that all connections... | 0.0 (Average:) [}
1]) N »
[1 groupsis) [11 counter(s) |RWC Table size: 40 wiew Data As: Raw value Logging: OFF

Figure 2-41 Resource Analyzer datasource monitoring

The data includes the number of connections allocated, returned, and average
wait time before a connection is granted. The summary report for the database
connection pool provides information about the pool in use and the pool size over
time.

Database connection pool size and prepared statement cache tuning is covered
in detail in “Connection pool” on page 148 and “Prepared statement cache” on
page 169.

Note: The capabilities for cloning application servers can be a valuable asset
in configuring highly scalable production environments. This is especially true
when the application is experiencing bottlenecks that are preventing full CPU
utilization of Symmetric Multiprocessing (SMP) servers.

When adjusting the WebSphere Application Server queues in clustered
configurations, remember that when a server is added to a cluster, the server
downstream receives twice the load.

Chapter 2. Overview of WebSphere Application Server V4.0 73

2.10.2 WebSphere Application Server JVM memory considerations

74

Enterprise applications written in the Java programming language often involve
complex object relationships, and utilize large numbers of objects. Although Java
automatically manages memory associated with an object’s life cycle, it is
important to understand the object usage patterns of the application.

In particular, ensure that:

» The application is not over utilizing objects.
» The application is not leaking objects, that is, memory.
» Java heap parameters are set to handle object utilization.

Before discussing these topics, it is important to briefly understand the
importance of Java garbage collection, and how to use it to as a way to gauge
the health of the WebSphere Application Server application.

Garbage collection

Java garbage collection (GC) is one of the strengths of Java. By taking the
burden of memory management away from the application writer, Java
applications tend to be much more robust than applications written in
non-garbage collected languages. This robustness applies as long as the
application does not abuse objects.

Examining GC gives insights into how the application is utilizing memory. It is
normal for GC to consume anywhere from 5% to 20% of the total execution time
of a well-behaved WebSphere Application Server application. However, if GC is
not kept under control, it can become the application's biggest bottleneck — this
is especially true when running on SMP server machines.

Attention: The potential problem with GC is that during the heap compaction
phase of GC, all application work stops, because modern JVMs support a
single-threaded compaction algorithm. During GC, not only are freed objects
collected, but memory is also compacted to avoid fragmentation. Compaction
activity is what forces Java technology to stop all other activity in the JVM.

By default, the JVM is configured to run GC asynchronously. Instead, GC can be
run by an explicit request, or when JVM runs out of memory by using the
-noasyncgc command-line option. An extremely time-sensitive application can
deactivate asynchronous GC, and schedule its own cleanup periods. Note that
this then becomes an implementation issue, as GC implementations are
platform-dependent.

DB2 UDB/WebSphere Application Tuning Guide

Use -verbosegc to analyze JVM memory usage

The -verbosegc parameter allows administrators to determine memory usage in
order to improve reliability of the WebSphere Application Server. The frequency
of GC and the time spent performing GC impacts the reliability of the JVM (the
Java process).

Resource Analyzer provides GC and heap statistics to help evaluate application
performance health. By monitoring GC, memory leaks and over utilization of
objects can be detected. Figure 2-42 shows the GC related information collected
by Resource Analyzer.

©R RESOURE Analyzer =l
CFile Aclidrid Loggine Repois Oplians Hilp
®&|a Dok DE.E £}
T ek Spheare Adrministrative Dormgin Vigwr Data Wiew Chark
=¥ peace
Defsul Serveer 100
=] % HEl LT
+- 1 Enferprise Beans
H Dl b se Conng clien Pools ol
S Fruntime
Serdat Session Manager
4] L Thread Poalz
Transaclion Manager B+ s
-2 Wan Applications #* Heam G5 Calls
—— WWP1PmTila .:f"’ £y Time Betwaen GG Calls (ms
12 & a0 ;
oo e k 2 55 Duration o s)
12 b (,_r’”
T aid -
-
-""
........ oA .
'%:I]'Q:G"I FM EOGA9PH BIRITPM EI125PM BN XZ1IPM
e Mame | Diescription | walue | Salsct| 5
Hum &0 Galls hurpber ofgarkage colleclion calls a6
(#ym Time Debiaan GO Callz dme) | Averame time (n milizs<onds; betvaan beo garka.. | 3480080 0l
w!:m (sl Sirerape curabion gin millis econchs) of 2 garoage co. 2625 W

Figure 2-42 Resource Analyzer JVM memory monitoring

Detecting over utilization of objects

To see if the application is overusing objects, look in Resource Analyzer at the
counters for the JVMPI profiler.

The average time between GC calls should be 5 to 6 times the average duration
of a single garbage collection. If not, the application is spending more than 15%
of its time in garbage collection. Also, look at the numbers of freed, allocated and
moved objects.

Chapter 2. Overview of WebSphere Application Server V4.0 75

76

If these numbers lead you to believe that over utilizing objects is leading to a GC
bottleneck, there are two possible actions:

» The most cost effective remedy is to optimize your application by
implementing object caches and pools. Use a Java profiler to determine
which objects to target.

» If for some reason you can’t optimize your application, a potential solution is
to add memory, processors and clones. Additional memory allows each clone
to maintain a reasonable heap size. Additional processors allow the clones to
run in parallel.

Detecting memory leaks

Memory leaks in Java are a dangerous contributor to GC bottlenecks. They are
worse than memory over utilization, because a memory leak will ultimately lead
to system instability. Over time, GC will occur more and more frequently, until
finally the heap gets exhausted, and Java fails with a fatal Out of Memory
Exception.

Memory leaks occur when an object that is no longer needed continues to have
references which are never deleted. This most commonly occurs in collection
classes, such as Hashtable, because the table itself will always have a reference
to the object, even when all “real” references have been deleted

Memory leaks must be fixed. The best way to fix a memory leak is to use a Java
profiler that allows you to count the number of object instances. Object counts
that exhibit unbounded growth over time indicate a memory leak.

The following considerations apply to memory leaks:

» Long-running test: Memory leak problems manifest only after a period of
time; therefore, recognizing memory leaks is related to long-running tests.

» System test: Some memory leak problems occur only when different
components of a big project are combined and executed.

» Repetitive test: In many cases, memory leak problems occur by successive
repetitions of the same test case. Repetitive tests can be used at the system
level or module level.

» Concurrency test: Some memory leak problems can occur only when there
are several threads running in the application.

DB2 UDB/WebSphere Application Tuning Guide

Heap fragmentation

If heap consumption indicates a possible leak during a heavy workload (the
application server is consistently near 100% CPU utilization), yet the heap
appears to recover during a subsequent lighter or near-idle workload, this is an
indication of heap fragmentation.

Heap fragmentation can occur when the JVM is able to free sufficient objects to
satisfy memory allocation requests during garbage collection cycles, but does
not have the time to compact small free memory areas in the heap into larger
contiguous spaces. Another form of heap fragmentation occurs when small
objects (less than 512 bytes) are freed. The objects are freed, but the storage is
not recovered, resulting in memory fragmentation.

Heap fragmentation can be avoided by turning on the -Xcompactgc flag in the
JVM advanced settings command line arguments. The -Xcompactgc ensures that
each garbage collection cycle eliminates fragmentation, but with a small
performance penalty.

Java Heap parameters

In general, increasing the size of the Java heap improves throughput until the
heap no longer resides in physical memory. After the heap begins swapping to
disk, Java performance deteriorates drastically. Therefore, the maximum heap
size needs to be low enough to contain the heap within physical memory.

Physical memory usage must be shared between the JVM, and the other
applications such as the database.

» Use a smaller heap (for example 64MB) on machines with less memory.

» Try a maximum heap of 128MB on a smaller machine (that is, less than 1GB
of physical memory), 256MB for systems with 2GB memory, and 512MB for
larger systems. The starting point depends on the application.

For production systems where the working set size of the Java applications is not
well understood, an initial setting of one-fourth the maximum setting is a good
starting value. The JVM will then try to adapt the size of the heap to the working
set of the Java application.

There are two Java heap parameter settings:
» Initial Java heap size

» Maximum Java heap size

Increasing these parameters creates more space for objects to be created.
Because this space takes longer for your application to fill, the application will run
longer before a GC occurs. However, a larger heap will also take longer to sweep
for freed objects and compact. Hence garbage collection will also take longer.

Chapter 2. Overview of WebSphere Application Server V4.0 77

2.10.3 Other considerations

78

A number of other system related factors can impact performance. These are
briefly described here.

Using Internal HTTP transport

WebSphere Application Server 4.0 has an internal HTTP transport available at
port 8080 that can be configured via the WebSphere Application Server Admin
Console. By using the internal HTTP transport, Servlet/JSP requests can directly
go to the Web container, and by-pass the WebSphere plug-in and IBM HTTP
Server. However, the static content needs to be served by the Web Server.

Note: The internal HTTP Transport does not have the full power of the IBM
HTTP Server, and its performance will not be as good as that of the IBM HTTP
Server.

The advantages of using an external HTTP server include:

» WLM supportin the HTTP server plug-in which provides failover support, load
distribution, and better scalability, as well as server affinity when HTTP
sessions are used in the application.

» Security via the HTTP server plug-in, and the ability to add a physical layer
machine as well as a firewall between the HTTP server machine and the
machines running the application server.

Note: It would be possible for an application going directly to the Web
container internal HTTP server to perform better than an application going
through an external HTTP server and plug-in, with the caveats mentioned
above.

Relax auto reloads

An important rule of WebSphere Application Server tuning is to turn off, or greatly
relax, all dynamic reload parameters. When an application's resources such as
servlets and enterprise beans are fully deployed, it is not necessary to
aggressively reload these resources as one would during application
development.

For a production system, it is common to reload resources only a few times a day.
In WebSphere Application Server, there are two types of auto reloading:

DB2 UDB/WebSphere Application Tuning Guide

» Web application module:

Each Web application has the ability to dynamically reload servlets and JSPs.
This is useful when upgrading to a new version of a given servlet or JSP. The
reload interval of a Web application module is specified in the application
EAR file. It can be configured easily using WebSphere Application Assembly
Tool (AAT). The reload setting are available under the IBM Extensions tab of
the Web module.

Either set the Reload Interval to a very large value or set the Reloading
Enabled field to False.

» Web server configuration:

WebSphere Application Server administration tracks a variety of configuration
information about WebSphere Application Server resources. Some of this
information needs to be understood by the Web server as well, such as
uniform resource identifiers (URIs) pointing to WebSphere Application Server
resources. This configuration data is pushed to the Web server via the
WebSphere plug-in. This allows new servlet definitions to be added without
having to restart any of the WebSphere Application Server servers. But this
dynamic regeneration of this configuration information is an expensive
operation.

A refresh interval setting in websphere_root/config/plugin-cfg.xml defines the
interval between these updates.

Entity EJB — bean cache

WebSphere Application Server provides significant flexibility in the management
of database data with Entity EJBs. The Entity EJBs Activate At and Load At
configuration settings specify how and when to load and cache row data from the
corresponding database of an enterprise bean.

These configuration settings provide the capability to specify enterprise bean
commit options A, B or C, as specified in the EJB 1.1 specification.

Commit option A This provides maximum enterprise bean performance by
caching database data outside of the transaction scope.
Generally, commit option A is only applicable where the
EJB container has exclusive access to the given database.
Otherwise, data integrity is compromised.

Commit option B This provides more aggressive caching of Entity EJB
object instances, which can result in improved
performance over commit option C, but also results in
greater memory usage.

Commit option C This is the most common real-world configuration for
Entity EJBs.

Chapter 2. Overview of WebSphere Application Server V4.0 79

80

The Bean cache - Activate At setting specifies the point at which an enterprise
bean is activated, and placed in the cache. Removal from the cache and
passivation is also governed by this setting. Valid values are Once and
Transaction. The default value is Transaction.

» Once indicates that the bean is activated when it is first accessed in the server
process, and passivated (removed from the cache) at the discretion of the
container, for example, when the cache becomes full.

» Transaction indicates that the bean is activated at the start of a transaction
and passivated (removed from the cache) at the end of the transaction.

The Bean cache - Load At setting specifies when the bean loads its state from
the database. The value of this property implies whether the container has
exclusive or shared access to the database. Valid values are Activation and
Transaction. The default is Transaction.

» Activation indicates the bean is loaded when it is activated (Once or
Transaction) and implies that the container has exclusive access to the
database.

» Transaction indicates that the bean is loaded at the start of a transaction and
implies that the container has shared access to the database. The settings of
the Activate At and Load At properties govern which commit options are used.

The following recommendations apply for the various commit options:
» Commit option A (implies exclusive database access):
Use Activate At = Once and Load At = Activation.

This option reduces database input/output (avoids calls to the ejbLoad
function) but serializes all transactions accessing the bean instance. Option A
can increase memory usage by maintaining more objects in the cache, but
can provide better response time if bean instances are not generally
accessed concurrently by multiple transactions.

» Commit option B (implies shared database access):
Use Activate At = Once and Load At = Transaction.

Option B can increase memory usage by maintaining more objects in the
cache. However, because each transaction creates its own copy of an object,
there can be multiple copies of an instance in memory at any given time (one
per transaction), requiring the database be accessed at each transaction. If
an enterprise bean contains a significant number of calls to the ejbActivate
function, using option B can be beneficial because the required object is
already in the cache. Otherwise, this option does not provide significant
benefit over option A.

DB2 UDB/WebSphere Application Tuning Guide

» Commit option C (implies shared database access):
Use Activate At = Transaction and Load At = Transaction.

This option can reduce memory usage by maintaining fewer objects in the
cache, however, there can be multiple copies of an instance in memory at any
given time (one per transaction). This option can reduce transaction
contention for enterprise bean instances that are accessed concurrently but
not updated.

EJB isolation levels
Isolation level settings specify various degrees of runtime data integrity provided
by the corresponding database.

Isolation level plays an important role in performance. Higher isolation levels
reduce performance by increasing row locking and database overhead resulting
in reduced concurrency. Different vendor databases provide different behavior
with respect to the isolation settings.

Isolation level can be specified at the bean or method level. Therefore, it is
possible to configure different isolation settings for various methods. This is an
advantage when some methods require higher isolation than others, and can be
used to achieve maximum performance while maintaining integrity requirements.

Restriction: Isolation cannot change between method calls within a single
enterprise bean transaction. A runtime exception will be thrown in this case.

Figure 2-43 shows how the isolation level and access intent attributes may be set
in the Application Assembly Tool.

Chapter 2. Overview of WebSphere Application Server V4.0 81

. Application Assembly Tool =] E3
File Edit “iew Window Help

T E|4BE XE| e d %
=X Application Assembler - EACODEapps \piggybank

=1 PiggyBank Application Marne | Pararneters Type |
E-g3* BEJB Modules + findByFrimarykey itso.wasdad.ejb.ac... Home methods ;|
E---Q“S FiggyBank EJBs + getAccountData Femote methods
-3 Session Beans + getEJBHome Remaote methods ||
= £ Entity Beans + getEJBMetaData Home methods
-4, Custormer + getHandle Remote methods =]
B4, Account 1
‘[Enviranment Entried | SENEral | Advanced |
0 EJB References Type: Remote methods]
O Resource Referenc | e gettccountData
A Security Role Refere :
& GMP Fields Pararmeters:
O Method Extensions | | [T |solation level attributes
- Becurity Roles :
- Method Permissions ol atian evel: IRepeatame read _vI
-~ Container Transactions
3 Files ¥ Access intent
g5 Web Modules
+-5t Application Clients InteniType: [Read B
3 Secunty Roes e
T Files [” Finder descriptofUpdate
tv [spr
C e claiee. | :I
= s Apnly Reset Heln |

Figure 2-43 Setting isolation level attributes in the Application Assembly Tool
Table 2-1 shows the correspondence between EJB and DB2 isolation levels:

Table 2-1 EJB and DB2 Isolation levels

EJB isolation level DB2 isolation level Description

Serializable Repeatable Read Prohibits dirty reads,
nonrepeatable reads and
phantom reads.

Repeatable read Read Stability Prohibits dirty reads and
nonrepeatable reads, but it
allows phantom reads.

Read committed Cursor Stability Prohibits dirty reads, but
allows nonrepeatable
reads and phantom reads.

82 DB2 UDB/WebSphere Application Tuning Guide

EJB isolation level DB2 isolation level Description

Read uncommitted Uncommitted Read Allows dirty reads,
nonrepeatable reads, and
phantom reads.

Dirty reads: A transaction reads a database row containing uncommitted changes from
a second transaction.

Nonrepeatable reads: One transaction reads a row, a second transaction changes the
same row and commits, and the first transaction rereads the row and gets a different
value.

Phantom reads: One transaction reads all rows that satisfy an SQL WHERE condition,
a second transaction inserts a row that also satisfies the WHERE condition and
commits, and the first transaction applies the same WHERE condition and gets the row
inserted by the second transaction

In general, Repeatable Read or Read Committed is an appropriate setting for DB2
databases.

The container uses the transaction isolation level attribute as follows:

» Session beans and entity beans with BMP: For each database connection
used by the bean, the container sets the transaction isolation level at the start
of each transaction, unless the bean explicitly sets the isolation level on the
connection.

» Entity beans with CMP: The container generates database access code that
implements the specified isolation level.

Note: Choosing a high isolation level (like SERIALIZABLE) can lead to
deadlocks.

EJB access intent

When deploying CMP beans it is possible to specify the access intent for every
remote method in the bean. This field may have a value of read or update. This
access intent setting is used to denote whether the method can update entity
attribute data (or invoke other methods that can update data in the same
transaction). The EJBStore operation will only be performed for methods that are
marked as update. Figure 2-43 shows how this value may be set in the
Application Assembly Tool. The default value for this setting is update.

Letting the access intent default to update for EJB methods that are read only
can result in unnecessary locking, as well as negatively impact concurrency and
throughput of the application. It is therefore important to let the EJB Server know
which EJB methods are read only, and which ones are update.

Chapter 2. Overview of WebSphere Application Server V4.0 83

84

Attention: IBM developed a utility, CmpOPT, that analyzes the Java bytecode
for remote methods defined for CMP beans. CmpOPT loads CMP beans and
any classes they reference and detects object mutability of all fields defined as
container-managed for the entity. Then it updates the deployment descriptor
with the appropriate access intent. CmpOPT is available as part of WebSphere
Application Server 4.0.3.

A more detailed discussion about the impact of access intent settings on
database concurrency is provided in “Enterprise Java Beans” on page 209.

Remote method call-by-value vs call-by-reference

The EJB specification states that method calls are to be call-by-value. That is, in
the process of making a remote method call, a copy of the parameters in
question are made before a remote method call is made. This copying action in
the call-by-value semantic can be expensive.

In WebSphere Application Server, it is possible to specify call-by-reference,
which passes the original object reference without making a copy of the object.
This can be particularly beneficial in cases where the EJB client and EJB server
are installed in the same WebSphere Application Server instance. Specifying
call-by-reference can improve performance up to 50 percent or higher depending
on the complexity of the objects.

Note: Call-by-reference only helps performance in the case where
non-primitive object types are being passed as parameters.

Call-by-reference can be dangerous and sometimes lead to unexpected
results if not handled properly. A case in point is when an object reference is
modified by the remote method resulting in unexpected side effects

The ORB call by reference settings can be found under Services Tab-Object
Request Broker for each application server in WebSphere Application Server
Advanced Edition 4.0 Admin Client.

DB2 UDB/WebSphere Application Tuning Guide

Dynamic fragment caching

Dynamic fragment caching is the ability to cache the output of dynamic servlets
and JSP files, a technology that can significantly improve application
performance. This cache, working within the JVM of an application server,
intercepts calls to a servlet service() method, checking whether it can serve the
invocation from the cache rather than re-execute the servlet.

Because J2EE applications have high read-write ratios and can tolerate a small
degree of latency in the freshness of their data, fragment caching can help
achieve significant gains in server response time, throughput and scalability.

Once a servlet has been executed (generating the output that will be cached), a
cache entry is generated containing that output. Also generated are side effects
of the execution (that is, invoking other servlets or JSP files), as well as metadata
about the entry, including time out and entry priority information.

Unique entries are distinguished by an ID string generated from the
HttpServletRequest object for each invocation of the servlet. This results in a
servlet being cached depending on request parameters that the URI used to
invoke the servlet or session information.

Because JSP files are compiled by WebSphere Application Server into servlets,
JSPs and servlets are used interchangeably (except when declaring elements
within an XML file).

Note: The default for dynamic fragment caching is “disabled”.

Hardware considerations
Hardware configurations used by WebSphere Application Server will obviously
have significant impact on performance.

» Processor speed: Ideally, other bottlenecks have been removed where the
processor is waiting on events like input/output and application concurrency.
In this case, increasing the processor speed often helps throughput and
response times.

» System memory: In general, increasing memory to prevent the system from
paging memory to disk is likely to improve performance. Allow at least 512MB
memory for each processor. Try adjusting the parameter when the system is
paging (and processor utilization is low because of the paging).

Network considerations

Run network cards and network switches at full duplex. Running at half duplex
decreases performance. Verify the network speed can accommodate the
required throughput. Make sure that 100MB is in use on 10/100 Ethernet
networks.

Chapter 2. Overview of WebSphere Application Server V4.0 85

2.11 Monitoring and tuning tools

2.11.1 PMI

WebSphere Application Server provides an infrastructure, tools, logs and traces
to help monitor and tune its environment. These are briefly described here as
follows:

Performance Monitoring Infrastructure (PMI)
Resource Analyzer

Performance monitoring servlet

Logs

Traces

Log Analyzer

JVM Profiling Interface (JVMPI)
Performance wizard

vVVyVYyVYVYVYYVYYy

PMl is a set of packages and libraries designed to assist with gathering,
delivering, processing and displaying performance data in WebSphere
Application Server domains.

PMI uses a client/server architecture. In PMI terms, a server is any application
that uses the PMI API to collect performance data. Servers can include
application servers, Web servers, and Java applications. WebSphere Application
Server provides a service named PmiService that is responsible for retrieving
performance data from other servers in the domain and making the data
available to interested clients.

A client is an application that receives performance data from a server or servers
and processes the data. Clients can include graphical user interfaces (GUIs) that
display performance data in real time, applications that monitor performance data
and trigger different events according to the current values of the data, or any
other application that needs to receive and process performance data. The role
of PmiService in collecting and distributing performance data is shown in

Figure 2-44.

86 DB2 UDB/WebSphere Application Tuning Guide

servlet
Provider
Web (Application
Client server)
Perf data
4
Java Admin server
Client ;
RMI/_ || PMI session bean |[”
Collector L M.
(AE) IIOP | |
list node list server)
entity bean| entity beal
Resource Java classes §
Analyzer
ay=e Perf data
Provider
(Application
server)

Figure 2-44 Performance monitoring infrastructure

Each piece of performance data has two components, a static component and a
dynamic component. The static component consists of a name and an ID to
identify the data, as well as other descriptive attributes that assist the client in
processing and displaying the data. The dynamic component consists of
information that changes over time, such as the current value of a counter and
the time stamp associated with that value.

2.11.2 Resource Analyzer

Resource Analyzer is a stand-alone runtime performance monitor for WebSphere
Application Server. It provides a Graphical User Interface (GUI) console that is
available on Windows and UNIX platforms. Resource Analyzer can also be used
remotely and across platforms. Another ability of this tool is to record the
collected information and replay it without connecting to WebSphere Application
Server.

Resource Analyzer retrieves performance data by periodically polling the
PmiService inside the WebSphere Application Server. The performance data
requested by Resource Analyzer is provided by the PmiService (session bean
inside administrative server). PmiService fetches the performance data directly
from the application servers without storing it.

Chapter 2. Overview of WebSphere Application Server V4.0 87

88

You can regulate the impact incurred from data collection by using the Resource
Analyzer or the WebSphere Administrative Console. The resources in a
WebSphere administrative domain are instrumented so that statistical data can
be collected. Instrumentation refers to the mechanism by which some aspect of
the running system is measured (analogous to a meter attached to a resource).

Each resource category has an instrumentation level. The instrumentation level
determines which counters/information is available to be collected for that
category. For example:

» If a resource category has an instrumentation level setting of Jow, only
counters/information having a low impact rating are available for selection.

» If the instrumentation level is set to medium, then counters having low impact
and medium impact ratings are available for selection.

» If the instrumentation level is set to high, all counters with low, medium, and
high impact ratings are available for selection.

» An instrumentation level also can be set to maximum, which enables the
availability of all counters and, in addition, increases the level of granularity
when reporting on enterprise methods. This setting has a higher impact on a
system's performance.

» The instrumentation level can be set to none, which disables performance
reporting and eliminates any impact of monitoring on system performance.

Attention: Initially, the instrumentation levels are set to none.

Figure 2-45 shows an example of setting the performance monitoring levels for
the JVM runtime.

DB2 UDB/WebSphere Application Tuning Guide

Performance Monitoring Settings : 1[

Counter Settings

A% itsohost.Default Server Monitoring Level:
ranh :
_r_bn Enterprise Beans _ 2y © Maxirmum
[+l Database Connection Pools
""" g |/ Funtime = " High
oAt Berlet Session Manager N » i
: = Medium
Bt ThreadPools B
----- A% Transaction Manager e o Low
A2 Web Applications
H PR A8 Mane
Counters:

Used Memory (byvtes)
Free Memory (bytes)
Total Memory (hytes)

[+ Start modified counters (]t I Cancel

Figure 2-45 Performance monitoring settings

The Resource Analyzer's GUI provides controls that enable you to choose the
particular resources and counters to include in the view. There are table and
chart views available. You can also store retrieved data in a log file while viewing
the data. This log file can later be used for replaying the scenario.

The Resource Analyzer provides access to a wide range of performance data for
two kinds of resources:

» Application resources (for example, enterprise beans and servlets).

» WebSphere runtime resources (for example, Java Virtual Machine (JVM)
memory, application server thread pools, and database connection pools).

Performance data includes simple counters, statistical data (such as the
response time for each method invocation of an enterprise bean), and load data
(such as the average size of a database connection pool during a specified time
interval). This data is reported for individual resources and aggregated for
multiple resources.

Chapter 2. Overview of WebSphere Application Server V4.0 89

90

Each resource category (module) has his own set of performance data counters.
Those counters have particular properties, for example the rating impact and
data type. A complete list of all performance data counters for each resource
category is included in the InfoCenter article, “Performance data reported with
the Resource Analyzer”.

Attention: Collecting data from WebSphere Application Server and runtime
resources always affects the performance in some way and the impact itself
varies depending on the counter. Resource Analyzer represents the overhead
cost associated with each counter as a rating of low, medium, or high:

» If a counter has a low cost rating, its performance cost is minor and usually
involves a single addition or subtraction.

» A counter with a high cost rating has a higher performance impact.

» A high cost rating usually indicates that several calculations, including
multiplication, division, or both, are involved in gathering the data for the
counter.

Depending on which aspects of performance are being measured, you can use
the Resource Analyzer to accomplish the following tasks:

» View data in real time or view historical data from log files.

» View data in chart form, allowing comparisons of one or more statistical
values for a given resource on the same chart. In addition, different units of
measurement can be scaled to enable meaningful graphic displays.

» Record current performance data in a log and replay performance data from
previous sessions.

» Compare data for a single resource to an aggregate (group) of resources on a
single node.

Given all this data, the Resource Analyzer can be used to do the following types

of analysis:

» Monitor real-time performance, such as response times for servlet requests or
enterprise bean methods.

» Detect trends by analyzing logs of data over time.

» Determine the efficiency of a configuration of resources (such as the amount
of allocated memory, the size of database connection pools, and the size of a
cache for enterprise bean objects).

» Gauge the load on application servers and the average wait time for clients.

DB2 UDB/WebSphere Application Tuning Guide

2.11.3 Performance monitoring serviet

The performance servlet provides a way to use an HTTP request to query the
performance metrics for an entire WebSphere Application Server administrative
domain.

The performance servlet is used for simple end-to-end retrieval of performance
data that can be consumed by any tool, provided by either IBM or a third-party
vendor. Because the servlet provides the performance data via HTTP, it can be
used with firewalls.

The performance servlet uses the PMI infrastructure to retrieve the performance
information from WebSphere Application Server. PMI is used by the Resource
Analyzer as well. Therefore, it is subject to the same restrictions on the
availability of data as the Resource Analyzer.

The performance monitoring servlet is bundled as an EAR file that can be found
at <WAS_HOME>/installableApps/perfServietApp.ear.

In order to use the performance monitoring servlet, install that EAR file into an
existing application server. After starting the enterprise application containing the
performance monitoring servlet, you can retrieve performance data from the
entire domain.

2.11.4 Logs

WebSphere logs provide information about WebSphere Application Server
components, including the administrative server and clients, application servers
and other processes in the environment, as they initialize and run. They cause
low-to-medium performance impact and can be reviewed after an error or
problem condition occurs. Logs are always enabled.

The following lists some of the logs available:

» Administrative server logs: These are included in the <WAS_HOME>/logs
directory by default:

— tracefile
— nanny.trace
— adminserver_stderr.log

» Application server logs: WebSphere Application Server creates standard
output and standard error logs for each application server. They contain
application server communication. The location and name of the standard
output and standard error files are defined by the WebSphere Application
Server administrator.

Chapter 2. Overview of WebSphere Application Server V4.0 91

» Activity log: This captures events that show a history of WebSphere
Application Server’ activities. When you encounter WebSphere Application
Server runtime errors, it is useful to use Log Analyzer to read the activity log
and try to diagnose the problem,.

» WebSphere plug-in trace log: It is created by the WebSphere plug-in
running in the Web server process, and it contains error and informational
messages such as Web server startup and server status change requests.
The default WebSphere plug-in log file is <WAS_HOME>/logs/native.log.

2.11.5 Traces

Traces provide more detailed information about WebSphere components to
determine what is wrong with your environment but may impact performance
rather severely. It is useful when the log files do not provide sufficient information
to diagnose the problem.

Tracing can be invoked from the WebSphere Application Server Admin Console
for a particular application server, as shown in Figure 2-46 and Figure 2-47.

;."l Application Server Properties _ |E||i|

General Advancedl Filel Trangaction | J¥M Settings 58WiCES| Custnml

Semvice EdltPeremes%I
EJB Container Service
Weh Container Service
Session Manager Service
Trace Semice
Object Level Trace Service
Ferformance Monitaring Settings
Object Request Broker

Cancel Help

Figure 2-46 Application Server Properties window

92 DB2 UDB/WebSphere Application Tuning Guide

" Trace = ﬂ

Ring buffer size: |1 thousand entries

Durmp file name: I Durmp |

=l Companents

----- CanfigError
----- CORBRas
----- SysternCut
=M com
= b
=M ejs
-0 client
CER
[+ container
00 s
.. jts
#1 ns
#-1 oa
" I Maone
- ras Entry/Exit
-1 security
-- SEeSsian Event
.. S Dehug
O util Entry/Exit & Event
" servlet EntryiExit & Debug
=+ websphere
1 ws Al
H- 00 jdbe
[+ Groups

(]9 I Cancel | Reset | Help |

Figure 2-47 Trace window

2.11.6 Log Analyzer

The Log Analyzer is a GUI tool that permits the user to view any logs generated
with loganalyzer TraceFormat, such as the activity.log file and other traces using
this format. It can take one or more activity or trace logs, merge all the data, and
display the entries in sequence.

Chapter 2. Overview of WebSphere Application Server V4.0 93

More importantly, this tool is shipped with an XML database, the symptom
database, which contains strings for some common problems, reasons for the
errors, and recovery steps. The Log Analyzer compares every error record in the
log file to the internal set of known problems in the symptom database and
displays all the matches. This allows the user to get error message explanations
and information such as why the error occurred and how to recover from it, as
shown in Figure 2-48.

IBM
Support
AN
» Symptom
A Log
f_t(;VIty S Analyzer <+— Database
g XML File
AN
Problem
Diagnosis

Figure 2-48 Log Analyzer

2.11.7 JVMPI

94

All the performance monitoring tools that use PMI, such as Resource Analyzer
and performance monitoring servlet, are able to use the Java Virtual Machine
Profiler Interface (JVMPI) to enable a more comprehensive performance
analysis. This profiling tool enables the collection of information, such as garbage
collection data, about the JVM that runs the application server.

DB2 UDB/WebSphere Application Tuning Guide

JVMPI is a two-way function call interface between the JVM and an in-process
profiler agent. The JVM notifies the profiler agent of various events, such as heap
allocations and thread starts. The profiler agent can activate or inactivate specific
event notifications, based on the needs of the profiler.

The JVM Profiler Interface provides internal runtime performance data about the
following resources:
» Garbage collector:

— Number of garbage collection calls
— Average time in milliseconds between garbage collection calls
— Average duration in milliseconds of a garbage collection call

» Monitor:

— Number of times that a thread waits for a lock
— Average time that a thread waits for a lock

» Object:

— Number of objects allocated
— Number of objects freed from heap
— Number of objects moved in heap

» Thread:
— Number of threads started
— Number of threads died

JVMPI reporting can be enabled for each individual application server from the
WebSphere Application Server Admin Console via the Properties —> JVM
Settings —>Advanced JVM Settings.

2.11.8 Performance tuner wizard

The Performance tuner wizard is a tool included in WebSphere Application
Server Advanced Edition that includes the most common performance related
settings associated with the application server.

Use Performance Tuner Wizard to optimize the settings for applications, servlets,
enterprise beans, data sources and expected load.

Parameters that can be set include:

» Web container: Maximum thread size

» ORB properties: Pass-by-reference, ORB thread pool size

» Data source: Connection pool size, statement cache size

Chapter 2. Overview of WebSphere Application Server V4.0 95

» Database (DB2 only): This calls the DB2SmartGuide, which, in turn, tunes
the DB2 database associated with the data source

» Java Virtual Machine (JVM): Initial and maximum heap size

Performance wizard can be invoked from the WebSphere Application Server
Admin Console as Console —> Wizards —> Performance Tuner.

96 DB2 UDB/WebSphere Application Tuning Guide

Overview of DB2 UDB 8

In this chapter, we provide an overview of the architecture of DB2 UDB, and
introduce some of DB2’s key application tuning, and system tuning related
parameters. We also describe some of the monitoring tools available. However,
readers are strongly urged to consult other documentation identified in 3.4,
“Application tuning considerations” on page 108, and 3.5, “System tuning
considerations” on page 124 for specific details on tuning a DB2 UDB
environment.

The topics covered include:

Introduction

DB2 architecture overview
Tuning DB2

Application tuning considerations
System tuning considerations
Monitoring and tuning tools
Problem diagnosis introduction

vVVvyYVYyVvYYVYYyvYyYy

© Copyright IBM Corp. 2003 97

3.1 Introduction

98

DB2 is IBM’s flagship multimedia Web ready relational database management
system (RDBMS), that is available on a range of platforms including the zSeries
(formerly S/390), pSeries (UNIX), xSeries (Intel) and iSeries (AS/400). With a
96% share of the mainframe market, and rapid growth on distributed platforms,
DB2 UDB is the market leader. Approximately 400 Web integrators work with
DB2 UDB and a full 70% of the world’s corporate data resides on DB2. DB2
powers 7.7 billion transactions daily for 40 million users in more than 300,000
companies world wide — a testament to its outstanding performance.

Besides platform independence and performance, DB2 has considerable
strengths in support of Internet architecture, scalability and availability.

» Internet architecture:

DB2 UDB was the first relational database to ship built-in support for Java (for
writing user-defined functions and stored procedures), and for JDBC. DB2
was also the first RDBMS to have built-in support for SQLJ for static SQL via
Java programs.

DB2’s integration with WebSphere and its enterprise Java support extends
this capability even further. Enterprise JavaBeans (EJB) and Java servlets are
supported in this integrated environment, as are distributed Java-based
transactions via JDBC Version 2, and the Java Transaction APls. XML
support is provided via a no-charge XML Extender to DB2, that includes an
XML-aware text search, an XML datatype, and complete integrated XML
management capabilities. The DB2 Text Extender has been enhanced to
perform XML-aware searches as well.

» Scalability/availability:

DB2 has vastly different approaches to high-end scalability. DB2 favors a
shared nothing approach on UNIX, OS/2 and Windows, and a shared
memory (with integrated hardware assistance). A shared memory or shared
cache architecture creates the need to solve complex high-volume
transaction traffic management problems,

For high availability, IBM’s zSeries is widely recognized as the ultimate in
reliability. On UNIX and Windows platforms, DB2 integrates with IBM AIX
HACMP to provide failover support.

In addition to the above capabilities, DB2 is easy to manage, and its product
quality helps lower maintenance and total cost of ownership.

DB2 is therefore very well positioned to support the most demanding
requirements of mission critical e-business applications of large and small
companies alike.

DB2 UDB/WebSphere Application Tuning Guide

3.2 DB2 architecture overview

Figure 3-1 provides an overview of the architecture and processes of DB2 UDB.
Each client application is linked with the DB2 client library, and communicates
with the DB2 Server using shared memory, or a communication protocol such as
TCP/IP (remote clients). The key components are briefly described here.

G |mtS @ @Client Application
? DB2 UDB Client Library
Shared Memory+ Semaphore, TCP/ IP, APPC, IPX/ SPX
Named Pipe, NetBIOS 3
DEC UDBSarver * Loy
Q\)es\‘i‘ Coordinator Coordinator ... "efetep, R
\’og?\e . Agent Aget) e, -~ equesl‘s
Wke ’ Common prefetch

Log Buffer

notifications Prefetchers
Buffer Pool(s) K

@ *f sgastter/Gather‘ f * f -----
-
= = & F3-——. @

Deadlock -
Detector Parallel,Big-Block,
- read requests

Disks Parallel, Page Cleaners

write requests

Figure 3-1 DB2 architecture overview

3.2.1 DB2 agents

DB2 agents include coordinator agents and subagents, and are the most
common type of DB2 processes which carry out the bulk of SQL processing on
behalf of applications. DB2 assigns a coordinator agent with an application, and
this agent coordinates the communication and processing for this application.

Chapter 3. Overview of DB2 UDB8 99

If intra-partition parallelism is disabled (this is the default), then the coordinator
agent performs all the application’s requests. If intra-partition parallelism is
enabled, then DB2 assigns a set of subagents to the application to work on
processing the application requests.

Note: For DSS types of workloads, we recommend enabling intra-partition
parallelism for multi-processor DB2 servers, since parallel processing of
multiple subagents has the potential to significantly improve the performance
of complex queries.

However, we strongly suggest disabling intra-partition parallelism for OLTP
type workloads, since it has the potential to negatively impact performance.

The following database manager configuration parameters determine how many
database agents are created and how they are managed.

The MAXAGENTS parameter is the maximum number of database manager
agents that can be working at any one time, including coordinator agents,
subagents, inactive agents, and idle agents.

The MAXCAGENTS parameter is the maximum number of database manager
agents that can be concurrently executing a database manager transaction.
This parameter is used to control the load on the system during periods of
high simultaneous application activity. This can be useful in an environment
where you have a large number of connections but with a limited amount of
memory to serve those connections. Adjusting this parameter can limit the
number of database manager agents that can be processed concurrently at
any one time, thereby limiting the usage of system resources during times of
peak processing.

The MAXAPPLS parameter is the maximum number of applications that may
simultaneously connect to a single database. It affects the amount of memory
that might be allocated for agent private memory and application global
memory for that database. It can be set to AUTOMATIC in DB2 Version 8,
which allows you to create any number of databases, and memory usage will
grow accordingly.

Note: The default setting for MAXAPPLS in DB2 Version 8 is AUTOMATIC.

The MAX_CONNECTIONS (MAX_LOGICAGENTS in previous versions of DB2) is the
maximum number of client connections to a database. When the connection
concentrator is enabled, this parameter works a little differently. See
“Connection concentrator” on page 101.

100 DB2 UDB/WebSphere Application Tuning Guide

Note: The value of MAXCAGENTS should be at least the sum of the values for
MAXAPPLS in each database allowed to be accessed concurrently.

Remember, each additional agent requires some resource overhead that is
allocated at the time the database manager is started.

The MAX_COORDAGENTS parameter is the maximum number of database
manager coordinator agents or application requests that can be processed at
any one time. One coordinating agent is acquired for each local or remote
application that connects to a database or attaches to an instance.

Note: On UNIX, the ps command identifies coordinator agent processes as
db2agent, while subagent processes are identified as db2agnip.

The NUM_POOLAGENTS parameter is the total number of agents, including active
agents and agents in the agent pool, that are kept available in the system.
The default value for this parameter is half the number specified for
MAXAGENTS.

The NUM_INITAGENTS parameter is the total number of worker agents that are
created when the database manager is started. This speeds up performance
for initial queries. The worker agents all begin as idle agents.

Tip: For DSS type of workloads, we recommend that you set NUM_POOLAGENTS
to a small value to avoid having an agent pool that is full of idle agents.

However, if you run an OLTP environment in which many applications are
concurrently connected, increase the value of NUM_POOLAGENTS to avoid the
costs associated with the frequent creation and termination of agents.

Connection concentrator

For internet applications with many simultaneous user connections, the
connection concentrator may improve performance by allowing many more client
connections to be processed efficiently. It also reduces memory use for each
connection, and decreases the number of context switches.

Note: The connection concentrator feature is new in DB2 Version 8 and is
OFF by default. In order to use this feature, you must be using a partitioned
database, or have enabled the INTRA_PARALLEL database manager
parameter.

Chapter 3. Overview of DB2UDB8 101

102

The MAX_CONNECTIONS parameter determines the maximum size of the idle agent
pool. If more agents are created than is indicated by the value of this parameter,
they will be terminated when they finish executing their current requests, rather
than be returned to the pool.

Connection concentrator is enabled when MAX_CONNECTIONS is greater than
MAX_COORDAGENTS. In this case, there may be more connections than coordinator
agents to service them. An application is in an active state only if there is a
coordinator agent servicing it. Otherwise, the application is in an inactive state.
Requests from an inactive application will be queued until a database coordinator
agent is assigned to service the application.

With connection concentrator enabled, the MAX_CONNECTIONS parameter will be
used as a guideline for how large the agent pool will be when the system work
load is low. A database agent will always be returned to the pool, no matter what
the value of MAX_CONNECTIONS parameter is. Based on the system load and the
time agents remain idle in the pool, the logical agent scheduler may terminate as
many of them as necessary to reduce the size of the idle pool to this parameter
value. As a result, both of these parameters can be used to control the load on
the system. Figure 3-2 describes the connection concentrator concept.

N Client Connections N Client Connections

N Coordinator
Agents

K Coordinator
Agents

f(K) Subagents

Buf ferpodi(s)
o7 age Cleaners
N d Prefetchers

Enable by setting MAX_CONNECTIONS > MAX_COORDAGENTS, e.g.:

(UPDATE DBM CFG USING MAX CONNECTIONS 5000 MAX COORDAGENTS 500)

' f(N) Subagents

Figure 3-2 Connection concentrator concept

For usage examples, see Chapter 8 of the IBM DB2 UDB Administration Guide:
Performance, SC09-4821.

DB2 UDB/WebSphere Application Tuning Guide

3.2.2 Buffer pools

A buffer pool is an area of memory into which database pages of user table data,
index data and catalog data are temporarily moved from disk storage. DB2
agents read and modify data pages in the buffer pool. The buffer pool is a key
influencer of overall database performance, because data can be accessed
much faster from memory than from a disk. If more of the data needed by
applications is present in the buffer pool, then less time would be needed to
access this data, thereby improving performance.

Buffer pools can be defined with varying page sizes including 4k, 8K, 16K and
32K.

3.2.3 Block based buffer pools

In Version 8, prefetching can be improved by creating block based buffer pools.

By default, the buffer pools are page-based, which means that contiguous pages
on disk are prefetched into non-contiguous pages in memory. Sequential
prefetching can be enhanced if contiguous pages can be read from disk into
contiguous pages within a buffer pool.

When a block based buffer pool is available, the prefetching code recognizes this
and will use block 1/0Os to read multiple pages into the buffer pool in a single 1/0,
significantly improving the performance of prefetching. A block based buffer pool
consists of both a page area and a block area. The page area is required for
non-sequential prefetching workloads. The block area consists of blocks where
each block contains a specified number of contiguous pages, which is referred to
as the block size.

3.2.4 Prefetchers

Prefetchers are present to retrieve data from disk and move it into the buffer pool
before applications need the data. For example, applications needing to scan
through large volumes of data would have to wait for data to be moved from disk
into the buffer pool if there were no data prefetchers.

With prefetch, DB2 agents of the application send asynchronous read-ahead
requests to a common prefetch queue. As prefetchers become available, they
implement those requests by using big-block or scatter read input operations to
bring the requested pages from disk to the buffer pool.

Note: On UNIX, the ps command identifies prefetcher processes as db2pfchr.

Chapter 3. Overview of DB2UDB8 103

Having multiple disks for storage of the database data means that the data can
be striped across the disks. This striping of data enables the prefetchers to use
multiple disks at the same time to retrieve data.

Prefetchers are designed to improve the read performance of applications as well
as utilities such as backup and restore, since they prefetch index and move data
pages into the buffer pool, thereby reducing the time spent waiting for 1/0 to
complete.

The number of prefetchers may be controlled by the database configuration
parameter NUM_IOSERVERS.

3.2.5 Page cleaners

104

Page cleaners are present to make room in the buffer pool, before agents and
prefetchers read pages from disk storage and move them into the buffer pool. For
example, if an application has updated a large amount of data in a table, many of
the updated data pages in the buffer pool may be not yet have been written on to
disk storage — such pages are called dirty pages. Since prefetchers cannot
place fetched data pages on to the dirty pages in the buffer pool, these dirty
pages must first be flushed to disk storage and become “clean” pages, so that
prefetchers can find room to place fetched data pages from disk storage.

Note: When a page cleaner flushes a dirty page to disk storage, the page
cleaner removes the dirty flag but leaves the page in the buffer pool. This
page will remain in the buffer pool until a prefetcher or a DB2 agent steals it.

Page cleaners are independent of the application agents that read and write to
pages in the buffer pool.

Note: On UNIX, the ps command identifies page cleaner processes as
db2pcinr..

Without the availability of independent prefetchers and page cleaners, DB2
agents would have to do all of the reading and writing of data between the buffer
pool and disk storage.

The configuration of the buffer pool, along with prefetchers and page cleaners,
control the availability of the data needed by the applications.

Page cleaners will write changed pages from the buffer pool (or the buffer pools)
to disk before a database agent requires the space in the buffer pool. This
process eliminates the need for the database agent to write modified pages to
disk, thereby improving performance.

DB2 UDB/WebSphere Application Tuning Guide

3.2.6 Logs

The number of page cleaners may be controlled by the database configuration
parameter NUM_IOCLEANERS.

Note: Version 8 exploits asynchronous I/O facilities to improve I/O
performance. On AlX, asynchronous I/O is not always enabled; it must be
enabled before DB2 Version 8 can be successfully installed.

To enable asynchronous I/O, use smitty -> Devices -> Asynchronous I/0.

Changes to data pages in the buffer pool are logged. Agent processes updating
a data record in the database also update the associated page in the buffer pool,
and write a log record into a log buffer.

Note: On UNIX, the ps command identifies a logger process as db2loggr.

To optimize performance, neither the updated data pages in the buffer pool, nor
the log records in the log buffer are written to disk immediately. They are
asynchronously written to disk by page cleaners, and the logger respectively. The
logger and the buffer pool manager cooperate and ensure that an updated data
page is not written to disk storage before its associated log record is written to
the log. This ensures database recovery to a consistent state from the log in the
event of a crash such as a power failure.

Log buffers are flushed to disk under the following conditions:

» Before the corresponding data pages are written to disk. This is called
write-ahead logging.

» On a COMMIT, or after the value of the number of COMMITS to group
MINCOMMIT database configuration parameter is reached.

» When the log buffer is full. Double buffering is used to prevent I/O waits.

3.2.7 Deadlock detector

A deadlock occurs when one or more applications require access to a resource
that is currently locked by the other application(s). This can result in interminable
waits by all the applications involved in the deadlock.

In order to avoid such a situation, DB2 uses a background process called the
deadlock detector to identify and resolve these deadlocks. The deadlock detector
becomes active periodically as determined by the DLCHKTIME configuration
parameter. When the deadlock detector encounters a deadlock situation, one of

Chapter 3. Overview of DB2 UDB8 105

the deadlocked applications will receive an error code and the current unit of
work for that application will be rolled back automatically by DB2. When the
rollback is complete, the locks held by this chosen application are released,
thereby allowing other applications to continue.

Selecting the proper interval for the deadlock detector ensures good
performance. Too short an interval causes unnecessary overhead, and too long
an interval allows a deadlock to delay processes unnecessarily.

Enhancements to the Version 8 deadlock event monitor now help system and
database administrators determine the cause of deadlocks. The deadlock event
monitor now provides more information than it did in previous releases. For
example, the monitor now identifies the specific statements involved in a
deadlock, and pinpoints the specific locks held by each application involved in the
deadlock.

3.2.8 Disks

Data placement, and the types of disks, can play a significant role in the
performance and availability of a database application. The overall objective is to
spread the database effectively across as many disks as possible to try and
minimize 10 wait. DB2 supports a variety of data placement strategies including
mirroring, striping, and RAID devices, and the administrator needs to understand
the advantages and disadvantages of disk capabilities to arrive at the most
appropriate strategy for his environment.

Consider the following recommendations to improve performance:

» Balance the workload across disk resources by spreading the work for DB2
partitions and containers across as many disk arrays as possible.

» Match the physical capabilities and attributes of the disk with DB2 block sizes.

» Exploit DB2’s inherent striping capability by placing containers for a
tablespace on separate logical disks which reside on separate RAID arrays or
disk controllers. This will eliminate the need for operating system or logical
volume manager striping.

3.2.9 Threading of Java UDFs and stored procedures

106

Routines (stored procedures, UDFs, and methods) in DB2 Version 8 are
implemented using a thread-based model that can significantly improve the
performance of database servers. Routines that are defined as thread-safe will
run in a single fenced-mode process. There is one process for Java routines, and

DB2 UDB/WebSphere Application Tuning Guide

another process for non-Java routines — this will reduce the amount of context
switching for users that run large numbers of fenced code routines. Java routines
from previous releases will be migrated, assuming that they are thread-safe,
which will also allow resource sharing of the JVM.

It is assumed that existing non-Java routines that are migrated to DB2 Version 8
are not thread-safe.

Note: Users who want to modify preexisting routines need to drop and
re-create them, or use the appropriate ALTER SQL command. New routines
are created with the aforementioned defaults if no thread-safe or
non-thread-safe value is specified at creation.

3.3 Tuning DB2

DB2 UDB environments range from stand-alone systems to complex
combinations of database servers and clients running on multiple platforms.
Critical to all these environments is the achievement of adequate performance to
meet business requirements. Performance is typically measured in terms of
response time, throughput, and availability.

The performance of any system is dependent upon many factors including
system hardware and software configuration, number of concurrent users, and
the application workload. and type of users, and the application workload.

Performance management is a complex issue, and can be defined as modifying
the system and application environment in order to satisfy previously defined
performance objectives. These objectives must be quantitative, measurable and
realistic. Units of measurement include response time for a given workload,
transactions per second, 1/O operations, CPU use, or a combination of the
above. Without well defined performance objectives, performance is a hit or miss
exercise, with no way of delivering on any service level agreements that may be
negotiated with users.

Performance management is an iterative process, that involves constant
monitoring to determine whether performance objectives are being met even as
environments and workloads change over time. When performance objectives
are not being met, then appropriate changes must be made to the hardware
and/or software environment, as well as the performance objectives themselves,
in order to ensure that they will be met.

From a database perspective, performance problems can arise out of a
combination of poor application and system design, inadequate CPU, memory
disk, and network resources, and suboptimal tuning of these resources.

Chapter 3. Overview of DB2UDB8 107

In the following sections, we will introduce some of the key database application
and system performance considerations for achieving optimal performance.

3.4 Application tuning considerations

The main considerations here are the design of the database, the writing of
efficient SQL statements, concurrency, and ensuring that statistics about the DB2
objects are up-to-date.

Important: This section does not cover all the application tuning options at the
disposal of the application designer, nor are the ones mentioned here covered
in the detail they deserve.

Please consult the following documents for detailed information about DB2
application tuning:

DB2 UDB Administration Guide: Planning, SC09-4822

DB2 UDB Administration Guide: Implementation, SC09-4820

DB2 UDB Administration Guide: Performance, SC09-4821

DB2 UDB Call Level Interface Guide and Reference Volume 1, SC09-4849
DB2 UDB Call Level Interface Guide and Reference Volume 2, SC09-4850
DB2 UDB SQL Reference Volume 1, SC09-4844

DB2 UDB SQL Reference Volume 2, SC09-4845

DB2 UDB V7.1 Performance Tuning Guide, SG24-6012

VVYyVYVYVYVYYVYY

3.4.1 Database design

108

Database design involves designing tables and indexes.

Table design
Factors that affect the performance of tables are normalization, data type of
columns, type of tablespace, and locking considerations.

Normalization

The objective of normalization is to minimize redundancies in the data stored in
different tables. Normalization improves the efficiency of SQL update statements
since they would affect only one table, while potentially deteriorating the
performance of SQL read statements that might require a join to access data
stored in different tables.

The recommendation for online transaction processing (OLTP) applications is to
use the Third Normal Form.

DB2 UDB/WebSphere Application Tuning Guide

For data warehousing types of applications, where the predominant access is
read only, the recommendation is to denormalize the tables. Denormalization is
the process of duplicating data in one or more tables, so that retrieval
performance is improved through the minimization or elimination of joins between
tables. However, this can negatively impact SQL update statements, and lead to
data integrity problems if the duplicate data is not consistently updated.

Column data types
DB2 supports a wide range of data types for the columns in a table. Data types
can be categorized as:

» DB2-Supplied Data Types — these can be Numeric, String (Binary, Single
Byte, Double Byte), or Date and Time

» User Defined Data Types — these can be User Defined distinct Types
(UDTs), User Defined Structured Types, or User Defined Reference Types

Attention: From a performance perspective, the use of User Defined Data
Types will not impact response times. For example, User Defined distinct
Types share the same code that is used by built-in data types to access
built-in functions, indexes and other database objects.

Data types should be defined to minimize disk storage consumption, and any
unnecessary processing such as data type transformations. The following are
some of the main recommendations as they apply to the choice of data types
within the domain constraints required by the application:

» Use SMALLINT rather than INTEGER where appropriate
» Use the DATE and TIME data types rather than CHAR

» Use NOT NULL for columns wherever possible

» Choose data types that can be processed most efficiently

» Use CHAR rather than VARCHAR for any narrow columns (for example, those
that are less than 50 characters wide)

» Choose VARCHAR instead of LONG VARCHAR when the row size is less
than 32K

» Use FLOAT rather than DECIMAL for columns if exact precision is not
required

» Use IDENTITY columns where appropriate
Tablespaces
Two main performance considerations apply to the choice of tablespaces — one

is size and the other is access. Table spaces in DB2 can be defined as being
System Managed Space (SMS) or Database Managed Space (DMS).

Chapter 3. Overview of DB2 UDB8 109

110

» SMS table spaces: In an SMS table space, the operating system's file
system manager allocates and manages the space where the table is stored.
The storage model typically consists of many files, representing table objects,
stored in the file system space. The user decides on the location of the files,
while DB2 controls their names, and the file system manages them. By
controlling the amount of data written to each file, the database manager
distributes the data evenly across the table space containers.

An SMS table space is the default table space.

Two key factors must be considered when designing SMS tablespaces:

Containers for the table space: When specifying the number of containers
for the tablespace, it is very important to identify a// the containers
required up front, since containers can not be added or deleted after the
SMS tablespace has been created. Each container used for an SMS table
space identifies an absolute or relative directory name. Each of these
directories can be located on a different file system (or physical disk).

Extent size for the table space: The extent size can only be specified when
the table space is created. Because it can not be changed later, it is
important to select an appropriate value for the extent size.

» DMS table spaces: In DMS tablespaces, containers are either operating
system files or raw devices. We recommend that you associate where
possible, each container with a different disk or set of disks, to enable parallel
I/O, and permit larger tablespace capacity.

DMS tablespace permit increasing capacity using:

ALTER TABLESPACE ADD CONTAINER

Or by the use of RESIZE and EXTEND clauses.
DMS advantages include these:

Containers can be added (without invoking the rebalancer), extended,
reduced and dropped.

Large tables can be split up by data type (LOBs, indexes, data) across
multiple table spaces.

DMS device placements on disk can be controlled using the logical
volume manager (outer edge, middle)

DMS, in most situations, will give better performance than SMS.

Attention: We strongly recommend that, where possible, you use DMS table
spaces with device (raw logical volume) containers if performance is your
main priority. The database can do a much better job than the file system
when it comes to managing its own disk blocks.

DB2 UDB/WebSphere Application Tuning Guide

While DMS tablespaces offer better performance, they are more difficult to
manage, and SMS tablespaces may be appropriate in most application
environments excepting the most stringent ones.

Note: We recommend use of SMS tablespaces for temp tablespaces, unless
your workload always creates large temps that are flushed to disk, and
prefetched back in such a way as to benefit from DMS’s ‘no cache’/'no-OS’
attribute. This may still not be of significant benefit in very large machines with
more memory than DB2 can effectively use as in the case of 64 bit
implementations.

Table locks
Tables are one of the database objects that can be explicitly locked, others being
a database or table space. All other objects are implicitly locked, like rows.

LOCKSIZE is a table parameter that specifies the granularity of locking which can
be either row level (default) locking or table level locking. This value can be
changed by using the following statement:

ALTER TABLE db2instl.tablel LOCKSIZE TABLE

Table level locking can cause significant contention and thereby performance
problems, if concurrent readers and updaters try to access the content of the
table.

Table level locks should be considered for reducing locking costs, when read only
access is expected against the table as in the case of data warehousing
applications.

In most cases, the default value of row level locking is appropriate.

Index design

Indexes are used to enforce uniqueness in the values of a column, and to
improve retrieval performance. The following are some of the main
recommendations as they apply to the creation of indexes:

» Define primary keys and unique indexes wherever they apply.

» Create an index on any column that the query uses to join tables (join
predicates).

Note: A predicate is an element of a search condition that expresses or
implies a comparison operation. Predicates are included in clauses
beginning with WHERE or HAVING.

Chapter 3. Overview of DB2UDB8 111

112

» Create an index on any column from which you search for particular values on
a regular basis.

» Create an index on columns that are commonly used in ORDER BY clauses.

» When creating a multi-column index, the first columns of the index should be
the ones that are used most often by the predicates in your query.

» Consider creating a clustering index to optimize queries that retrieve multiple
rows in index order. Note that only one index on a table can be defined as
clustering via the CLUSTER option.

» In DB2 Version 8, multidimensional clustering (MDC) has been added which
enables a table to be physically clustered on more than one key (or
dimension) simultaneously.

» Consider separating the indexes from the data by placing them in a separate
tablespace. This enables them to be placed on fast devices, as well as
allocate them to their own buffer pool for better performance.

While indexes improve retrieval performance, they consume disk storage and
degrade update activity due to the maintenance required on them.

Attention: DB2 provides a Design Advisor Wizard to help the user determine
the best set of indexes for a given workload. A workload contains a set of
weighted SQL statements that can include queries and updates. The wizard
will recommend which new indexes to create, which ones to keep, and which
existing indexes to drop.

Type-2 indexes
DB2 Version 8 adds support for type-2 indexes. Here are the main advantages of
type-2 indexes:

» They improve concurrency because the use of next_key locking is reduced to
a minimum. Most next-key locking is eliminated because a key is marked as
having been deleted, instead of being physically removed from the index

page.
» Anindex can be created on columns that have a length greater than 255
bytes.

» Online table reorg and online table load can be used against a table that has
only type-2 indexes defined on it.

» They are required for the new multidimensional clustering facility (MDC).

DB2 UDB/WebSphere Application Tuning Guide

Attention: All new indexes are created as type-2 indexes, except when you
add an index on a table that already has type-1 indexes. In this case the new
index will also be a type-1 index, because you cannot mix type-1 and type-2
indexes on the same table.

All indexes created before DB2 Version 8 are type-1 indexes. Use the REORG
INDEXES command to convert type-1 indexes to type-2 indexes. Use the INSPECT
command to ascertain the type of index defined on a table. After this conversion,
runstats should be performed.

3.4.2 Efficient SQL

SQL is a high-level language that provides considerable flexibility in writing
queries to deliver the same answer set. However, not all forms of the SQL
statement deliver the same performance for a given query. It is therefore vital to
ensure that the SQL statement is written in a fashion to provide optimal
performance.

DB2 UDB provides the SQL compiler which creates the compiled form of SQL
statements. When the SQL compiler compiles SQL statements, it rewrites them
into a form that can be optimized more easily. This is known as query rewrite.
The SQL compiler then generates many alternative execution plans for satisfying
the user’s request. It estimates the execution cost of each alternative plan using
the statistics for tables, indexes, columns, and functions, and chooses the plan
with the smallest execution cost. This is known as query optimization.

It is important to note that the SQL compiler must choose an access plan that will
produce the result set for a given query. We recommend the following guidelines
to ensure that the SQL compiler chooses the optimal access plan for a given
query:

Write Stage 11 predicates as far as possible.

Specify only needed columns.

Limit the number of rows.

Specify the FOR UPDATE clause if applicable.

Specify the OPTIMIZED FOR n ROWS clause if applicable.

Specify the FETCH FIRST n ROWS ONLY clause if applicable.

Specify the FOR FETCH ONLY clause if applicable.

Avoid numeric data type conversion.

Avoid LOCK TABLE statement with EXCLUSIVE mode if applicable.

VVYyVYVYVYVYVYYVYY

1 A Stage 1 predicate enables the DB2 optimizer to consider the use of an index on the columns used
in a query’s predicates. Refer to the DB2 product documentation for details on Stage 1 predicates.

Chapter 3. Overview of DB2UDB8 113

114

When SQL statements are embedded in a program, they are called embedded
SQL programs. SQL can be embedded in C/C++, COBOL, FORTRAN, Java
(SQLJ), and REXX programming languages.

There are two types of embedded SQL statements:
» Static SQL:

Static SQL statements are ones where the SQL statement type and the
database objects accessed by the statement, such as column names, are
known prior to running the application. The only unknowns are the data
values the statement is searching for or modifying.

You must pre-compile and bind such applications to the database, so that the
database manager analyzes all of static SQL statements in a program,
determines its access plan to the data, and stores the ready-to-execute
application package before executing the program. Because all logic required
to execute SQL statements is determined before executing the program,
static SQL programs have the least run-time overhead of all the DB2
programming methods, and execute faster.

» Dynamic SQL:

Dynamic SQL statements are ones where the application builds and executes
the SQL at run time. An interactive application that prompts the end user for

key parts of an SQL statement, such as the names of the tables and columns
to be searched, is a common example of dynamic SQL. The application builds
the SQL statement at runtime, and then submits the statement for processing.

Dynamic SQL statements are generally well-suited for applications that run
against a rapidly changing database, where transactions need to be specified
at run time. An embedded dynamic SQL programming module will have its
data access method determined during the statement preparation, and will
utilize database statistics available at query execution time.

Choosing an access plan at program execution time offers greater flexibility
than static SQL statements, and has the following advantages:

— Current database statistics are used for each SQL statement.
— Database objects do not have to exist before run time.

One drawback is that dynamic SQL statements can take more time to
execute, since queries are optimized at runtime. Performance of dynamic
SQL statement can be improved by minimizing preparation time through
dynamic statement caching and tuning the query optimization level.

DB2 UDB/WebSphere Application Tuning Guide

Note: Keeping table and index statistics up-to-date helps the DB2 optimizer
choose the best access plan. Unlike the case with static SQL, packages with
dynamic SQL do not require to be rebound after new indexes have been
added and/or new statistics have been gathered.

3.4.3 Concurrency

In any shared data access environment involving queries and updates, a
rigorous locking mechanism is required to guarantee the integrity of data as well
as some form of locking is required to ensure the integrity of data.

Lack of a locking protocol can result in the following undesirable effects:

» Lost updates: Two applications, A and B, might both read the same row from
the database and both calculate new values for one of its columns based on
the data these applications read. If A updates the row with its new value and
B then also updates the row, the update performed by A is lost.

» Access to uncommitted data: Application A might update a value in the
database, and application B might read that value before it was committed.
Then, if the value of A is not later committed, but backed out, the calculations
performed by B are based on uncommitted (and presumably invalid) data.

» Non-repeatable reads: Some applications involve the following sequence of
events:

a. Application A reads a row from the database, then goes on to process
other SQL requests.

b. In the meantime, application B either modifies or deletes the row and
commits the change.

c. Later, when application A attempts to read the original row again, it
receives the modified row or discovers that the original row has been
deleted.

» Phantom reads: The phantom read phenomenon occurs when:

a. Your application executes a query that reads a set of rows based on some
search criterion.

b. Another application inserts new data or updates existing data that would
satisfy your application's query.

c. Your application repeats the query from the first step (within the same unit
of work).

When the query is repeated in the third step, some additional (“phantom”)
rows are returned as part of the result set that were not returned when the
query was initially executed in the first step.

Chapter 3. Overview of DB2UDB8 115

116

DB2 provides concurrency control and prevents uncontrolled access by means of
locks. A lock is a means of associating a database manager resource with an
application to control how other applications can access the same resource. The
application with which the resource is associated is said to hold or own the lock.
DB2 can either hold a lock on a row, a table or a table space.

While locking provides data integrity, poor application choices can have a
significant negative impact on response times and application throughput.

Important: A detailed discussion of DB2 locking is beyond the scope of this
document, and the reader should consult the DB2 UDB Administration Guide:
Performance, SC09-4821 for a complete understanding of this subject.

We will provide a very high level overview of the various kinds of locks taken by
DB2, and propose broad guidelines for achieving optimal performance.

DB2 locks have the following basic attributes:

» Mode: The type of access allowed for the lock owner as well as the type of
access permitted for concurrent users of the locked object. Table 3-1 lists the
various modes supported by DB2. The mode of the lock is sometimes
referred to as the state of the lock.

» Object: The resource being locked, which can be a tablespace, table, page,
or row.

» Duration: The length of time a lock is held. Lock durations are affected by
isolation levels, which are discussed later in this section.

Table 3-1 Lock modes shown in order of increasing control over resources

Lock mode Applicable object type Description

IN (Intent None) Table spaces, tables The lock owner can read
any data in the table,
including uncommitted
data, but cannot update
any of it. No row locks are
acquired by the lock owner.
Other concurrent
applications can read or
update the table.

DB2 UDB/WebSphere Application Tuning Guide

Lock mode Applicable object type Description

IS (Intent Share) Table spaces, tables The lock owner can read
data in the locked table, but
not update this data. When
an application holds the IS
table lock, the application
acquires an S or NS lock
on each row read. In either
case, other applications
can read or update the
table.

NS (Next Key Share) Rows The lock owner and all
concurrent applications
can read, but not update,
the locked row. This lock is
acquired on rows of a
table, instead of an S lock,
where the isolation level is
either RS or CS on data
that is read.

S (Share) Rows, tables The lock owner and all
concurrent applications
can read, but not update,
the locked data. Individual
rows of a table can be S
locked. If a table is S
locked, no row locks are
necessary.

IX (Intent Exclusive) Table spaces, tables The lock owner and
concurrent applications
can read and update data
in the table. When the lock
owner reads data, an S,
NS, X, or U lock is acquired
on each row read. An X
lock is also acquired on
each row that the lock
owner updates. Other
concurrent applications
can both read and update
the table.

Chapter 3. Overview of DB2UDB8 117

118

Lock mode

Applicable object type

Description

SIX (Share with Intent
Exclusive)

Tables

The lock owner can read
and update data in the
table. The lock owner
acquires X locks on the
rows it updates, but
acquires no locks on rows
that it reads. Other
concurrent applications
can read the table.

U (Update)

Rows, Tables

The lock owner can update
data in the locked row or
table. The lock owner
acquires X locks on the
rows before it updates the
rows. Other units of work
can read the data in the
locked row or table; but
cannot attempt to update it.

NX (Next Key Exclusive)

Rows

The lock owner can read
but not update the locked
row. This mode is similar to
an X lock except that it is
compatible with the NS
lock.

NW (Next Key Weak
Exclusive)

Rows

This lock is acquired on the
next row when a row is
inserted into the index of a
non-catalog table. The lock
owner can read but not
update the locked row. This
mode is similar to X and
NX locks except that it is
compatible with the W and
NS locks.

DB2 UDB/WebSphere Application Tuning Guide

Lock mode

Applicable object type

Description

X (Exclusive)

Rows, tables

The lock owner can both
read and update data in
the locked row or table.
Tables can be Exclusive
locked, meaning that no
row locks are acquired on
rows in those tables. Only
uncommitted read
applications can access
the locked table.

W (Weak Exclusive)

Rows

This lock is acquired on
the row when a row is
inserted into a non-catalog
table. The lock owner can
change the locked row.
This lock is similar to an X
lock except that it is
compatible with the NW
lock. Only uncommitted
read applications can
access the locked row.

Z (Superxclusive)

Table space, tables

This lock is acquired on a
table in certain conditions,
such as when the table is
altered or dropped, an
index on the table is
created or dropped, or a
table is reorganized. No
other concurrent
application can read or
update the table.

Note: Only tables and table spaces will obtain the “intent” lock modes. That is,
intent locks are not obtained for rows.

Isolation levels

An isolation level determines how data is locked or isolated from other
processes, while the data is being accessed. The isolation level chosen is
effective for the duration of the unit of work.

DB2 supports the following isolation levels:

» Repeatable Read (RR)

Chapter 3. Overview of DB2UDB8 119

» Read Stability (RS)
» Cursor Stability (CS)
» Uncommitted Read (UR)

RR is the most restrictive, while UR is the least restrictive. Table 3-2 summarizes
the different isolation levels in terms of the undesirable effects mentioned earlier.

Table 3-2 Summary of different isolation levels

Isolation Level Access to Un- Nonrepeatable Phantom Read
committed data reads Phenomenon
Repeatable Read Not Possible Not Possible Not Possible
Read Stability Not Possible Not Possible Possible
Cursor Stability Not Possible Possible Possible
Uncommitted Read | Possible Possible Possible

Important: The isolation levels specified in Java match the capabilities
supported by DB2. However, the nomenclature used is different as highlighted
in Table 3-3.

Table 3-3 Translation between Java and DB2 Isolation Levels

Java Isolation level DB2 Isolation level
SERIALIZABLE Repeatable Read
REPEATABLE_READ Read Stability
READ_COMMITTED Cursor Stability
READ_UNCOMMITTED Uncommitted Read

Lock type compatibility

Figure 3-3 describes the compatibility matrix of the various lock modes. A no
indicates that the requestor must wait until all incompatible locks are released by
other processes. Note that a timeout can occur when waiting for a lock. A yes
indicates that the lock is granted, unless someone else is waiting for the
resource.

120 DB2 UDB/WebSphere Application Tuning Guide

State Being
Requested none IN I8 NS § IX SIX U NX X Z NW W

none ¥e: Ves VeF VEF VEF VEE Yes Ves Veg yes Ves yes ves
N ¥es Yes Yes YeR VeI VeSS YeS VeI Ves Yes fo yes yes
I8 ¥e: Ve: Ve Ve VEE VES Yes ¥es fno o fio fno fo
NS W¥es ¥es Ve Ve VEF N0 KO YES VES HO o YEE fo
8 ¥e: Ye: Ve VeE VEE no Ho ¥eE no Ho fio ho fo
IX ¥es ¥es ¥EF 00 o ¥ES HO no no Ho o Ao fo
SIX ¥e: Ye: ¥e: o flo fo Ho ho e Ho fio fo fo

¥es yes Yes ¥es VEF no Ho no no Ho o no Ho

o
NX Wes Yes 1o ves kel o 1o no no 1o kel o 1o
X WEeE YES no o ake] no no no no no ake] no no
Z

WEs o jule] jule] kel o jule] no jile] jule] kel o jule]

NW YEE VES o VES o no o no o o o no YES
W

WEeS Wes o o jule) no o o no o e yes o

Figure 3-3 Lock type compatibility

Lock conversion

Lock conversion occurs when a process accesses a data object on which it
already holds a lock, and the mode of access requires a more restrictive lock
than the one already held. A process can hold only one lock on a data object at
any time, although it can (indirectly through a query) request a lock many times
on the same data object. The operation of changing the mode of the lock already
held is called a lock conversion.

Lock escalation

Lock escalation is an internal mechanism that is invoked by the DB2 lock
manager to reduce the number of locks held. Escalation occurs from row locks to
a table lock when the number of locks held exceed the threshold defined by the
database configuration parameter MAXLOCKS.

Lock escalation can significantly impact concurrency and degrade response
times of concurrent applications.

Chapter 3. Overview of DB2UDB8 121

Deadlocks

Deadlocks occur when more than two or more applications wait on one another
for resources that are held by the other. None of the applications can proceed
until at least one of the waiting applications is forced to relinquish its lock. A
process is required to break these deadlock situations. Figure 3-4 describes the
deadlock concept.

Deadlock concept
Table 1
Application A L Application B
T, update row 1 of table 1 { — T, update row 2 of table 2
T, update row 2 of table 2 o Rowr 1 ¥ T update row 1 of table 1
Ti: deadock F Ti: deadock
Row 2
Table 2
Row 1
L x Row 2 -

Figure 3-4 lllustration of a deadlock scenario

Important: Locks are usually taken implicitly on behalf of an application
during the execution of a query. Understanding the kinds of locks obtained
DB2 objects is critical to effective tuning for maximum concurrency.

The objective from an application point of view is to maximize concurrency, while
minimizing locking costs, timeouts, and deadlocks.

Attention: Concurrency is maximized by taking the smallest possible lock on
a DB2 object, and holding it for the shortest possible duration.

122 DB2 UDB/WebSphere Application Tuning Guide

Following these guidelines will minimize lock contention:

» Issue COMMIT statements at the appropriate frequency. This tends to reduce
the number of locks held at a given point in time.

» Specify the FOR FETCH ONLY clause in the SELECT statement.

» Perform SQL INSERT, UPDATE and DELETE at the end of a unit of work if
possible.

» For read only tables, choose a LOCKSIZE of table. A possible example is with
data warehouses where data is read only, and only updated during “batch”
windows.

» Choose the minimally restrictive isolation level required.

» Release read locks using the WITH RELEASE option of the CLOSE
CURSOR statement if acceptable.

» Avoid lock escalations by tuning the database configuration parameters
LOCKLIST and MAXLOCKS — more on this in the next section.

3.4.4 Runstats

Critical to the performance of SQL statements is the optimal selection of the
access path by the DB2 optimizer. It is therefore essential to provide the DB2
optimizer with accurate information about the size and characteristics of the DB2
objects referenced in the query. The runstats utility gathers information about
DB2 objects and records them in the DB2 catalog for the DB2 optimizer to avail
of in its optimal access path selection process.

Note: We strongly recommend that you keep the statistics about DB2 objects
current by running runstats whenever significant changes have occurred in
the DB2 object size or composition. Static SQL programs should be rebound
after running runstats in order for the DB2 optimizer to compute more optimal
access paths.

Chapter 3. Overview of DB2UDB8 123

3.5 System tuning considerations

The main considerations we cover here include DB2 memory utilization, and
some of the key DB2 configuration parameters that can impact performance.

Important: This section does not cover all the application tuning options at the
disposal of the application designer, nor are the ones mentioned here covered
in the detail they deserve.

Please consult the following documents for detailed information about DB2
application tuning:

» DB2 UDB Administration Guide: Implementation, SC09-4820
DB2 UDB Administration Guide: Performance, SC09-4821
DB2 UDB SQL Reference Volume 1, SC09-4844

DB2 UDB SQL Reference Volume 2, SC09-4845

DB2 UDB V7.1 Performance Tuning Guide, SG24-6012

vVvyyy

3.5.1 DB2 memory utilization

124

Before discussing the various DB2 configuration parameters, we introduce the
memory model of DB2, since many of the DB2 configuration parameters affect
memory utilization on the system.

Different applications running in the DB2 environment use available memory in
different ways. For example, some applications may use the file system cache,
while DB2 uses its own buffer pool for data caching.

Figure 3-5 shows the different types of memory used by DB2.

DB2 UDB/WebSphere Application Tuning Guide

Database Manager

Shared Memory

|

[

|

Database (1) (numdb) Database
Global Memory Global Memory
I
[]
Application (1) (maxappls Application Application
Global Global Global
Memory Memory Memory
Agent Agent Agent Agent Agent
Private Private Private Private Private
Memory Memory Memory Memory Memory
(1) (maxagents)

Figure 3-5 DB2 memory model

Memory is allocated for each instance of the Database Manager at the following

times:

» When the Database Manager is started via the db2start command, Database

Manager Shared Memory is allocated, and it remains allocated until the
Database Manager is stopped via the db2stop command. This memory

allocation contains information needed by the Database Manager to manage
activity across all database connections. From this memory, all other memory
is allocated/attached.

» When a database is activated via the ACTIVATE DATABASE command, or

connected to for the first time, Database Global Memory (also called

Database Shared Memory) is allocated. This memory is used across all

applications that might connect to the database, and contains memory areas
such as the buffer pools, lock list, database heap and utility heap. The

database manager configuration parameter NUMDB defines the maximum

number of concurrent active databases. If the value of this parameter

increases, the number of Database Global Memory segments may grow

depending upon the number of active databases.

Chapter 3. Overview of DB2 UDB 8

125

» The Application Global Memory is allocated for each connection when the
connection is established to a database, and remains allocated until the
connection is terminated. This memory is used by DB2 agents, including
coordinator agents, and subagents working on behalf of the application, to
share data and coordinate activities among themselves. The database
configuration parameter MAXAPPLS defines the maximum number of
applications that can simultaneously connect to the database.

Note: Application Global Memory is allocated if you enable
intra-partition parallelism, or if the database manager is in a partitioned
database environment using DB2 UDB Enterprise-Extended Edition.

» The Agent Private Memory is allocated for each DB2 agent, when the DB2
agent is assigned to work for an application. The Agent Private Memory
contains memory areas which will be used only by this specific agent, such as
sort heaps and application heaps. The Agent Private Memory remains
allocated even after the DB2 agent completes tasks for the application, and
gets into idle state.

However, if you set the DB2 registry variable DB2ZMEMDISCLAIM to YES, then DB2
disclaims some or all memory, depending on the value given with the DB2
registry variable DB2MEMMAXFREE, which defines the amount of the memory to
be retained by each DB2 agent. The database manager configuration
parameter MAXAGENTS defines the maximum number of DB2 agents, including
coordinator agents, and subagents in the instance. If the value of this
parameter increases, the number of the Application Global Memory
segments, and the Agent Private Memory segments may grow, depending on
the number of connected applications and DB2 agents, respectively.

126 DB2 UDB/WebSphere Application Tuning Guide

Figure 3-6 and Figure 3-7 show the various parameters used to control memory
used to support applications.

Monitor heap
(mon_heap_sz)

Database Manager
Shared Memory (including FCM)

Audit buffer
(audit_buf_sz)

Utility Heap
(util_heap_sz)

Database Global Memory

Backup Buffer
(backbufsz)

Buffer Pools
(buffpage)

Restore Buffer
(restbufsz)

Extended Memory Cache

Lock List(locklist)

Database Heap
(dbheap)

Log Buffer
(logbufsz)

Catalog Cache
(catalogcache_sz

Package Cache
(pckcachesz)

Sort Heap for Shared Sort
(sortheap

Application Global Memory

(app_ctl_heap_sz)

Figure 3-6 Database Manager shared memory overview

The size of the Database Manager Shared Memory is affected by the following

configuration parameters:

Database System Monitor Heap size (MON_HEAP_SZ7)
Audit Buffer Size (AUDIT_BUF_SZ)

FCM Buffers (FCM_NUM_BUFFERS)

FCM Message Anchors (FCM_NUM_ANCHORS)

FCM Connection Entries (FCM_NUM_CONNECT)

FCM Request Blocks (FCM_NUM_RQB)

vVvyvyvyYYyy

The Database Manager uses the fast communication manager (FCM)
component to transfer data between DB2 agents when intra-partition parallelism
is enabled. Therefore, disabling intra-partition parallelism, causes memory areas

required for FCM buffers, message anchors, connection entries and request
blocks not to be allocated.

Chapter 3. Overview of DB2 UDB 8

127

The maximum size of the Database Global Memory segment is determined by
the following configuration parameters:

» Buffer Pool Size that were explicitly specified when the buffer pools were
created or altered (the value of BUFFPAGE database configuration parameter is
taken if -1 is specified)

» Maximum Storage for Lock List (LOCKLIST)

» Database Heap (DBHEAP)

» Utility Heap Size (UTIL_HEAP_SZ7)

» Extended Storage Memory Segment Size (ESTORE_SEG_SZ)

» Number of Extended Storage Memory Segments (NUM_ESTORE_SEGS)

» Package Cache Size (PCKCACHESZ)

Application Global Memory size is determined by the following configuration
parameter:

» Application Control Heap Size (APP_CTL_HEAP_SZ)

Agent Private Memory

Statement Heap
(stmtheap)

DRDA Heap
(drda_heap_sz)

UDF Memory
(udf_mem_sz)

Application Heap Agent Stack Statistics Heap Sort Heap
(applheapsz) (agent_stack_sz) (stat_heap_sz) for Private Sort
(sortheap)

Query Heap (query_heap_sz)

Client 1/O Block (rqrioblk)

For Remote
Clients

[

Agent/Application Shared Memory

Application Support Layer Heap(aslheapsz)

Client I/O Block (rqrioblk)

For Local
Clients

[

(Local Client)

User or Application Process

User or Application Process
(Remote Client)

Figure 3-7 Database agent/application private/shared memory overview

128

DB2 UDB/WebSphere Application Tuning Guide

The maximum size of Agent Private Memory segments is determined by the
following parameters:

Application Heap Size (APPLHEAPSZ)

Sort Heap Size (SORTHEAP)

Statement Heap Size (STMTHEAP)

Statistics Heap Size (STAT_HEAP_SZ)

Query Heap Size (QUERY_HEAP_S7)

DRDA Heap Size (DRDA_HEAP_SZ7)

UDF Shared Memory Set Size (UDF_MEM_SZ)

Agent Stack Size (AGENT_STACK_SZ)

Client I/0O Block Size (RQRIOBLK) (for remote clients)

VVYyYVYyVYVYVYVYYVYY

The size of Agent/Application Shared Memory is affected by the following:

» Application Support Layer Heap Size (ASLHEAPSZ)
» Client I/0 Block Size (RQRIOBLK) (for local clients)

3.5.2 DB2 64-bit

The increased addressable memory of 64-bit computing can be leveraged to
improve the performance for database operations that benefit from memory in
excess of 4 GB, such as hash join, sort, and larger buffer pools. With ample
memory, this enables one to make key tables or even entire databases entirely
buffer pool resident — this can be very beneficial for large databases.

While DB2 V7.2 provided 64-bit addressing, it had certain restrictions that
prevented it from being fully exploited in a production environment, for example,
restricted connectivity, no management tools, and restricted subsystems on AlX,
Solaris, and HP-UX.

DB2 Version 8 builds upon DB2 V7.2's 64-bit support with a fully exploitable
64-bit engine with full support for clients, management tools, and associated
subsystems like the Spatial Extender.

For UNIX platforms (excluding Linux), the installation is the same for both 32-bit
and 64-bit environments. When DB2 Version 8 is installed on a UNIX box, both
the 32-bit and 64-bit files are laid down. Once can choose either the 32-bit or
64-bit option at instance creation time, at which point instance links will be set up
to point to the appropriate libraries and executables.

For Windows and Linux, there is a separate install image for 32-bit and 64-bit
environments, since coexistence is not supported for these platforms.

Chapter 3. Overview of DB2UDB8 129

In a DB2 64-bit environment, there are no changes to data on disk — existing
data's cardinality characteristics are the same whether it is used by a 32-bit or
64-bit instance. Databases in the UNIX versions of DB2 (not including Linux) that
are created and operate in 64-bit mode can be moved back to a 32-bit instance
by dropping the 64-bit instance, creating a new 32-bit instance, and then
re-cataloging the database in the new instance.

Attention: This is not supported in a Windows or Linux environment, since
they require different hardware architectures.

3.5.3 Configuration parameters

130

DB2 has more than one hundred configurable parameters, and while we do not
need to tune all of them, we intend to focus on a few key parameters that can
have a significant impact on the performance of the database.

Attention: Use the DB2 Configuration Advisor Wizard initially to obtain
recommended values for performance related configuration parameters. The
wizard should also be used to obtain new recommendations when the
database environment has changed significantly.

This section focuses on considerations in adjusting the recommendations made
by the Configuration Advisor Wizard.

DB2’s tuning and configuration parameters fall into two general categories:

» Database manager configuration parameters
» Database configuration parameters

Database manager configuration parameters

Database manager parameters are stored in a file named db2system. This file is
created when an instance of the Database Manager is created. Table 3-4 lists
some of the parameters in the database manager configuration file for database
servers.

DB2 UDB/WebSphere Application Tuning Guide

Table 3-4 Database Manager configuration parameter examples

Parameter Information

java_heap_sz This parameter determines the maximum size of the heap
that is used by the Java interpreter.

maxagents This parameter indicates the maximum number of database
manager agents, whether coordinating agents or
subagents, available at any given time to accept application
requests

numdb This parameter specifies the number of local databases that
can be concurrently active (that is, have applications
connected to them)

query_heap_sz This parameter specifies the maximum amount of memory
that can be allocated for the query heap

indexrec This parameter indicates when the database manager will
attempt to rebuild invalid indexes

Each instance of the Database Manager has a set of the database manager
configuration parameters (also called database manager parameters). These
parameters affect the amount of system resources that will be allocated to a
single instance of the Database Manager. All of these parameters affect the
instance level, and have global applicability independent of any single database
stored under that instance of the Database Manager.

To view, set, and reset the database manager configuration parameters, you can
use either the DB2 Control Center as shown in Figure 3-8, or use a DB2
command line processor interface.

Chapter 3. Overview of DB2UDB8 131

. Configure Databas

Figure 3-8 DB2 Control Center

132 DB2 UDB/WebSphere Application Tuning Guide

Database configuration parameters

Each database has a set of the database configuration parameters (also called
database parameters). These affect the amount of system resources that will be
allocated to that database. In addition, there are some database configuration
parameters that provide descriptive information only, and cannot be changed;
others are flags that indicate the status of the database. Table 3-5 lists some of
the parameters in the database configuration file

Table 3-5 Database configuration parameter examples

Parameter Information

buffpage The memory is allocated for the database buffer pool on the
machine where the database is located

dbheap There is one database heap per database, and the
database manager uses it on behalf of all applications
connected to the database

dft_queryopt The query optimization class is used to direct the optimizer
to use different degrees of optimization when compiling SQL
queries

logbufsz This parameter allows you to specify the amount of the

database heap use as a buffer for log records before writing
these records to disk

pckcachesz This parameter is allocated out of the database global
memory, and is used for caching static and dynamic SQL
statements on a database

Here again, these database configuration parameters can be viewed or set via
the DB2 Control Center, or the command line processor interface.

The following sections discuss some of these parameters as they impact CPU,
memory, disk 1/0 and network resources.

CPU related

DB2 has many processes, and each of them consumes CPU. Among the
processes, the major consumers of CPU time are DB2 agents, including
coordinator agents and subagents. They are crucial processes, and facilitate the
operations of applications with databases.

» If the database server has multiple CPUs, then it can be exploited by DB2
subagents to process a complex query, by enabling intra-partition via the
INTRA_PARALLEL database manager configuration parameter. Note our earlier
caution about enabling intra-partition parallelism for DSS type workloads, and
disabling it for OLTP type workloads.

Chapter 3. Overview of DB2 UDB8 133

134

» Having a huge number of DB2 agent processes may cause CPU constraints
due to context switching, as well as memory constraints. The number of DB2
agents can be controlled via the following configuration parameters:

— The database manager configuration parameter MAXAGENTS defines the
maximum number of database manager agents, whether it is coordinator
agents or subagents, available at any given time to accept application
requests.

— The database manager configuration parameter MAX_COORDAGENTS defines
the maximum number of coordinator agents.

Memory related

While many of the configuration parameters available affect memory usage on
the system, we will focus on some of them which have a significant impact on
database performance.

» Lock escalation:

Each database allocates a memory area called a lock list, which contains all
locks held by all applications concurrently connected to the database. As
discussed earlier, lock escalation occurs from row level to a table level, when
the number of locks held by an application exceeds a given threshold.

Two database configuration parameters have a direct effect on lock escalation
as follows:

— LOCKIST — defines the amount of memory allocated for the locks.

— MAXLOCKS — defines the percentage of the total lock list permitted to be
allocated to a single application.

Lock escalations occur under either of the following circumstances:

— One application exceeds the percentage of the lock list as defined by the
MAXLOCKS configuration parameter. The database manager will attempt to
free memory by obtaining a table lock and releasing row locks for this
application.

— Many applications connected to the database fill the lock list by acquiring a
large number of locks. DB2 will attempt to free memory by obtaining a
table lock and releasing row locks.

The isolation level used by an application also has an effect on lock
escalation, since it controls the duration a lock is held within a unit-of-work.

If a lock escalation is performed, from row to table, the escalation process
itself does not take much time; however, locking entire tables decreases
concurrency, and overall database performance may decrease for
subsequent accesses against the affected tables.

DB2 UDB/WebSphere Application Tuning Guide

Once the lock list is full, performance can degrade, since lock escalation will
generate more table locks and fewer row locks, thus reducing concurrency on
shared objects in the database. Your application will receive an SQLCODE of
-912 when the maximum number of lock requests has been reached for the
database.

To avoid decreasing concurrency due to lock escalations or errors due to a
lock list full condition, you should set appropriate values for both the LOCKLIST
and MAXLOCKS database configuration parameters. The default values of these
parameters may not be big enough (LOCKLIST: 10 pages, MAXLOCKS: 10%) and
cause excessive lock escalations.

Sorting methods:

When an SQL query requires the data to be returned in a defined sequence
or order, the result may or may not require sorting. DB2 will attempt to
perform the ordering through index usage. If an index cannot be used, the
sort will occur. If the information being sorted cannot fit entirely into the sort
heap (SORTHEAP — a block of memory that is allocated each time a sort is
performed), it overflows into temporary database tables. Sorts that do not
overflow (non-overflowed) always perform better than those that do.

Agent pool size:

The database manager configuration parameter NUM_POOLAGENTS defines the
size of the agent pool which contains idle DB2 agents. When DB2 agents
finish executing their current request, they will be in idle state unless the
number of idle agents exceed the value of NUM_POOLAGENTS; otherwise, they
will be terminated.Setting the appropriate value for this parameter can reduce
the cost to create and terminate DB2 agent processes. Too high a value for
this parameter may waste the memory due to many idle agents.

Disclaim memory areas for DB2 agents:

When DB2 agents finish executing their current request, and are returned to
the agent pool, they do not release their agent private memory which includes
the allocated sort heap. This behavior usually results in good performance, as
the memory is kept for fast re-use. However, if you want to increase the agent
pool size on a memory constrained system, this behavior may cause
excessive activity to the paging space because many idle agents may keep
large amounts of memory. To avoid this condition, set the DB2 registry
variable DB2MEMEDISCLAIM to YES by executing the following command:

db2set DB2MEMDISCLAIM = yes

Chapter 3. Overview of DB2 UDB8 135

136

» Package cache size:

The PCKCACHESZ database configuration parameter defines the package cache
size. The database manager uses this memory to cache packages, which
have been loaded from the system catalog, for static SQL or (dynamically
generated) for dynamic SQL. If applications connecting to a database execute
the same query multiple times, the database manager can reduce its internal
overhead by eliminating the need to reload sections of package for static
SQL, and also can reduce overhead to generate the package for dynamic
SQL.

Note: For dynamic SQL, even though your application does not execute
exactly the same queries, it may benefit by the package cache using
parameter markers.

Disk I/O related
Data placement and buffer pool caching are a couple of the main considerations
relating to database performance.

» Data placement:

Optimal placement of DB2 data on disk can have a significant impact on the
performance of high 1/0 applications. Identifying the nature of the workload is
an important consideration in making data placement decisions. In general,
high I/O data must be separated on to different disks to avoid disk contention,
and disk striping must be considered to speed up I/Os.

» Buffer pools:

A buffer pool is an area of storage in memory into which database pages are
temporarily read and changed. The purpose of the buffer pool is to improve
database system performance by buffering the data in memory. Here data
can be accessed from memory rather than from disk, so the database
manager needs to read or write less to the disk. Not all data in DB2 is
buffered; LONG VARCHAR and LOBs are only accessed through direct I/O
and are never stored in the buffer pool.

Buffer pools can be created with page sizes of 4K, 8K, 16K or 32K. All buffer
pools are allocated when the first application connects to the database, or
when the database is explicitly activated using the ACTIVATE DATABASE
command. Use this ACTIVATE DATABASE command to keep buffer pool primed
even if all the connections terminate. This will be very useful when connection
load is highly dynamic (for example, Web servers).

DB2 UDB/WebSphere Application Tuning Guide

The BUFFPAGE database configuration parameter controls the size of a buffer
pool when the CREATE BUFFERPOOL or ALTER BUFFERPOOL statement is executed
with NPAGES -1; otherwise, the BUFFPAGE parameter is ignored, and the buffer
pool will be created with the number of pages specified by the NPAGES
parameter. Thus, each buffer pool that has a NPAGES value of -1 uses
BUFFPAGE.

Buffer pools consume valuable memory that can potentially be utilized more
effectively by other DB2 components. It is therefore vital to have an adequate
number of buffers specified in each buffer pool.

The key measure of the efficacy of a buffer pool is the buffer pool hit ratio. The
buffer pool hit ratio indicates the percentage of time that the database
manager did not need to load a page from disk in order to service a page
request. That is, the page was already in the buffer pool. The greater the
buffer pool hit ratio, the lower the frequency of disk I/O.

The overall buffer pool hit ratio can be calculated as the difference between
the number of all (data + index) logical reads and number of all (data + index)
physical reads divided by the total number of read requests.

YLogicalReads—-XPhysicalReads y

BufferPoolHitRatio= TLogicalReads

100

Similarly, an index pool hit ratio is calculated as the difference between the
number of the index logical reads and the number of index physical reads
divided by the total number of index read requests.

XIndexLogicalReads - XIndexPhysicalReads %

/ PoolHitRatio= -
ndexPoolHitRatio YIndexLogicalReads

100

Increasing buffer pool size will generally improve the hit ratio, but you will
reach a point of diminishing returns. Ideally, if you could allocate a buffer pool
large enough to store your entire database, then once the system is up and
running, you would get a hit ratio of 100%. However, this is unrealistic in most
cases. The significance of the hit ratio depends on the size of your data, and
the way it is accessed.

The DB2 Snapshot Monitor for buffer pools can be used to capture
information on the number of reads and writes and the amount of time taken.

GET SNAPSHOT FOR ALL BUFFERPOOLS

Chapter 3. Overview of DB2UDB8 137

138

Example 3-1 shows a snapshot for buffer pools.

Example 3-1 Snapshot for buffer pools

Bufferpool Snapshot

Bufferpool name

Database name

Database path
/database/db2inst1/NODE0000/SQLO000
1/

Input database alias

Buffer pool data logical reads
Buffer pool data physical reads
Buffer pool data writes

Buffer pool index
Buffer pool index
Total buffer pool
Total buffer pool
Asynchronous pool
Asynchronous pool
Buffer pool index
Asynchronous pool
Asynchronous pool

logical reads
physical reads
read time (ms)
write time (ms)
data page reads
data page writes
writes

index page reads
index page writes

Total elapsed asynchronous read time
Total elapsed asynchronous write time
Asynchronous read requests

Direct reads

Direct writes

Direct read requests

Direct write requests

Direct reads elapsed time (ms)

Direct write elapsed time (ms)
Database files closed

Data pages copied to extended storage
Index pages copied to extended storage

Data pages copied from extended storage
Index pages copied from extended storage

TPCDDATABP
TPC

4473
207
20
218

200

O, OO OMN
w o
—_

[=N=NeNeleNeNeNeNeNeNe

For a large database, increasing the buffer pool size may have minimal effect
on the buffer pool hit ratio. Its number of data pages may be so large, that the
statistical chances of a hit are not improved increasing its size. But you might
find that tuning the index buffer hit ratio achieves the desired result. This can

be achieved using two methods:

a. Split data and indexes into two different buffer pools and tune separately.

b. Use one buffer pool, but increase its size until the index hit ratio stops

increasing.

DB2 UDB/WebSphere Application Tuning Guide

The first method is often more effective, but because it requires indexes and
data to reside in different table spaces, it may not be an option for existing
databases. It also requires you to tune two buffer pools instead of one, which
can be a more difficult task, particularly when memory is constrained.

The index pool hit ratio and the buffer pool hit ratio are influenced by data
reorganization. It is always advisable to perform a REORGCHK command on the
database before checking these hit ratios.

The issue of single or multiple buffer pools is dependent upon many factors.
— Single buffer pool:

In most situations, having one large buffer pool is the recommendation.
Apart from its size, a single buffer pool needs no tuning. A single large
buffer pool will also allow DB2 to efficiently utilize memory that has been
allocated for buffer pool use.

If you decide to opt for table spaces using multiple page sizes, then you
should create only one buffer pool for each page size. If you want to create
table spaces using a page size other than the default 4 KB, then you will
need a buffer pool which uses the same page size.

— Multiple buffer pools:

Multiple buffer pools, if badly configured, can have a huge negative impact
on performance. When created for the right reasons, multiple buffer pools
can improve performance; however, not all workloads will benefit.

You should consider defining multiple buffer pools when:

* You want to create tables which reside in table spaces using a page
size other than the 4 KB default. This is required.

* You have tables which are accessed frequently and quickly by many
short update transaction applications. Dedicated buffer pool(s) for
these tables may improve response times.

* You have tables larger than main memory which are always fully
scanned. These could have their own dedicated buffer pool. However, it
needs to be large enough for prefetching requirements of such a large
table (256 KB up to # MB). If these tables are scanned frequently then
you could swamp the other buffer pools. (Tables this large will most
likely always generate disk I/O irrespective of buffer pool size.)

Important: Other disk I/O considerations such as log placement, prefetching,
page cleaners, extended storage, and logging also need to be tuned for
optimal performance.

Chapter 3. Overview of DB2 UDB8 139

3.6 Monitoring and tuning tools

140

DB2 UDB provides several tools that can be used for monitoring or analyzing
database performance. This section describes them briefly, and provides
guidelines for their use.

» Snapshot Monitor: Captures performance information at periodic points of
time.

» Event Monitor: Provides a summary of activity at the completion of events
such as statement execution, transaction completion, or when an application
disconnects. In DB2 Version 8, event monitors can write data to DB2 tables
instead of files or pipes, thus enabling the information to be processed more
easily using SQL.

» Explain Facility: Provides information about how DB2 will access the data in
order to resolve the SQL statements.

» db2batch tool: Provides performance information (benchmarking tool).

» CLI/ODBC/JDBC Trace Facility: Traces all the function calls of DB2 CLI
Driver, for problem determination and tuning applications using CLI, ODBC, or
SQLJ, or just to better understand what a third-party application is doing.

» db2diag.log: Prior to DB2 Version 8, this log had various degrees of
diagnostic information recorded, depending upon the DIAGLEVEL database
manager configuration parameter. There are five valid values for this
parameter, ranging from zero to four. The default value is three, which
captures all errors and warnings. A value of four captures informational
messages as well. This file can be found in the SQLLIB/db2instance
directory.

In DB2 Version 8, this log has been split into two — db2 diag.log and
db2admin.log.

The db2admin.log will be used on all platforms for administration notification
messages, while the db2diag.log will be targeted for use by troubleshooting
personnel. The db2admin.log will contain user-friendly messages that should
enable the DBA to resolve minor issues. An APl is available
(db2AdminMsgWrite) that can be invoked to write messages to the
db2admin.log file — messages written by the API are distinguished from
messages written by DB2. A new NOTIFYLEVEL dbm cfg parameter has
been introduced that behaves like the DIAGLEVEL parameter, and provides
granularity with respect to the severity of messages that are written to the
db2admin.log.

DB2 UDB/WebSphere Application Tuning Guide

» Design Advisor Wizard: Helps the administrator determine the best set of
indexes for a given workload. A workload contains a set of weighted SQL
statements that can include queries as well as updates. The wizard
recommends which new indexes should be created, which existing indexes to
keep, and which existing indexes to drop. The Design Advisor Wizard can be
invoked from the DB2 Control Center, or using the db2advis utility. Figure 3-9
shows the recommendation screen.

Figure 3-9 Design Advisor Wizard

» Configuration Advisor Wizard: Helps he administrator tune the
performance of the database, by updating configuration parameters to match
business requirements. The administrator specifies available memory, and
workload details and the wizard recommends appropriate values for the
database configuration parameters. The Configuration Advisor Wizard can be
invoked from the DB2 Control Center. Figure 3-10 shows the
recommendation screen.

Chapter 3. Overview of DB2 UDB8 141

. Configure Instance - dbZinst1

ot heap threshold sheapthres

Figure 3-10 Configure Performance Wizard

» The Health Monitor and the Health Center

DB2 Version 8 introduces two new features to help you monitor the health of
DB2 systems — the Health Monitor and the Health Center. These tools add a
management by exception capability to DB2 UDB by alerting the DBA to
potential system health issues. This enables the DBA to address health
issues before they become real problems that affect your system’s
performance.

142 DB2 UDB/WebSphere Application Tuning Guide

The Health Monitor is a server-side tool that constantly monitors the health of
the instance, even without user interaction. If the Health Monitor finds that a
defined threshold has been exceeded (for example, the available log space is
not sufficient), or if it detects an abnormal state for an object (for example, an
instance is down), the Health Monitor will raise an alert. When an alert is
raised, two things can occur:

— Alert notifications can be sent by e-mail or to a pager address, allowing
you to contact whoever is responsible for a system.

— Preconfigured actions can be taken. For example, a script or a task can be
run.

The Health Center provides the graphical interface to the Health Monitor. The
DBA can use it to configure the Health Monitor, and to view the rolled up alert
state of DB2 instances and database objects. The DBA can use the Health
Monitor’s drill-down capability to access details about current alerts, and
obtain a list of recommended actions on resolving the alert.

The following guidelines apply to the use of some of these tools:

>

Choose the Snapshot Monitor or Event Monitor to gather data about DB2’s
operation, performance, and the applications using it. This data is maintained
as DB2 runs, and can provide important performance and troubleshooting
information.

Choose the Explain Facility to analyze the access plan of an SQL statement,
or a group of SQL statements.

Choose the db2batch tool to measure and analyze the performance of a set

of SQL statements. Performance times can be returned along with Snapshot
Monitor data for analysis. Explain information can be gathered for use by the
Explain Facility.

Choose the CLI/ODBC/JDBC Trace Facility to track activity between a CLI
client and DB2. This facility can help pinpoint long running statements, and
analyze the time spent in the client application, DB2, or the network.

The Design Advisor Wizard and the Configuration Advisor Wizard should be
run after significant changes to the workload have occurred, or are
anticipated. Given the potential for significant resource consumption by these
wizards, these executions should be relegated to offpeak hours.

Use the Health Monitor and Health Center to take a proactive approach to
manage the DB2 environment by exploiting its management by exception
capabilities.

Some of the monitoring tools include information collected by one or more of the
other monitoring tools. For example, db2batch and the Event Monitor also
display information collected by the Snapshot Monitor.

Chapter 3. Overview of DB2UDB8 143

Attention: MON_HEAP_SZ indicates the amount of memory (in 4K pages)
which is allocated for database monitor data (at db2start). The amount of
memory needed will depend on the number of snapshot switches which
are turned on and active Event Monitors. If the memory heap is insufficient,
an error will be returned when trying to activate a monitor and it will be
logged to the db2diag.1log file.

3.7 Problem diagnosis introduction

144

Problem diagnosis is triggered by user complaints as well as routine monitoring
to identify problem situations that may lead to performance problems in future.

This section briefly discusses various conditions that may cause performance
problems, and discuss how they may be resolved.

As with any other problem-determination technique, the first step is to try and
reproduce or identify the problem. Some symptoms may be sporadic while others
are recurring.

While routine monitoring of the system may assist the administrator in identifying
the problem, it is more likely that exception monitoring may be required to hone in
on the problem. Exception monitoring requires detailed monitoring traces to be
activated during the problem window to obtained further information for proper
diagnosis. Since such exception monitoring traces can add significant processing
overhead, it needs to be focused and targeted. Sometimes, the administrator
may need to try and reproduce the problem on a regression test system in order
to avoid impacting the production environment.

Routine monitoring involves gathering information for capacity planning
purposes, with both low overhead monitoring throughout, and detailed
monitoring in shorts bursts at peak periods.

After the problem is reproduced or identified, it will fall into one of two groups:
» Problems affecting one application or a group of applications:

Problems that affect a single application or a group of applications can be
further subdivided into two categories:

— Applications that have had a good performance history in a development
or testing environment, but do not perform as expected when working
against production databases. Working against low volumes of data may
hide problems. Some of the non-detected problems may be those
associated with casting, lack of indexes, joins, sorts, access plans,
isolation levels, or size of the answer set.

DB2 UDB/WebSphere Application Tuning Guide

Applications whose behavior is erratic. These applications may usually
have good response times, but under certain conditions, their response
times are very degraded. These applications may have
concurrence-related problems: deadlocks, waits, and so on.

Problems affecting all applications:

Problems that affect all applications usually appear when changes are made
to data loads, the number of users, the operating system, or the database
configuration parameters. The cause of these types of problems is usually
found in the following areas:

Configuration parameters (sorts, buffer pool, logs, lock list). Sometimes,
this is not caused by a modification in the parameter, but by the
environment itself. Bigger tables that require a larger sort heap or the
updating of more rows in a table may require a larger log buffer. Also, more
users exhausting the lock list and provoking concurrence problems can
cause problems that affect all database applications.

Operating system problems, such as I/O contention or excessive paging.
Network problems, if the clients or applications are remote.

Data access problems, where access plans may be dated, statistics may
not have been updated, or packages may not be rebound.

Attention: Details on how to gather, analyze, pinpoint and resolve DB2
problems are beyond the scope of this document. Please refer to the
documents listed earlier for such information.

Chapter 3. Overview of DB2UDB8 145

146 DB2 UDB/WebSphere Application Tuning Guide

WebSphere Application
Server and DB2 UDB
performance

In this chapter, we provide a detailed description of the key components that
impact performance in a WebSphere Application Server and DB2 UDB
environment, and offer some best-practices guidelines for their usage.

The topics covered include:

v

Connection pool

Prepared statement cache
Session database
Enterprise Java Beans

vYyy

© Copyright IBM Corp. 2003 147

4.1 Introduction

In Chapter 2, “Overview of WebSphere Application Server V4.0” on page 13 and
Chapter 3, “Overview of DB2 UDB 8” on page 97 we provided an overview of
WebSphere Application Server and DB2 UDB, and described their key
performance components, indicators, best practices, and tools for achieving
optimal performance. In this chapter, we focus on those key components specific
to the interface between WebSphere Application Server and DB2 that can impact
the performance of WebSphere Application Server and DB2 UDB environment.

In 2.6, “Typical application flow” on page 34 we describe a typical flow of a Web
browser application using WebSphere Application Server and DB2, and provided
a high level overview of the key components that impact the performance of a
WebSphere Application Server and DB2 UDB environment such as the
connection pool, prepared statement cache, session database, and EJBs. We
shall now describe each of these components in greater detail, using the
following format for each component:

» Detailed description
» Best practices

4.2 Connection pool

148

Each time an application attempts to access a database, it must first connect to
that database, before it can issue queries against it. A database connection
incurs overhead as it requires resources to create the connection, maintain it,
and then release it when it is no longer required.

Database connection overhead can be particularly high for Web based
applications for the following reasons:

» Web users connect and disconnect more frequently.

» User interactions are typically shorter, with more effort often spent connecting
to the database, and disconnecting from it, than performing the actual user
requests.

» Web requests tend to be unpredictable both in terms of volume and
frequency, which can place severe demands on database connections.

To address this problem, WebSphere has implemented a connection pooling
feature based on the JDBC 2.0 Optional Package API specification. For a basic
understanding of the JDBC 2.0 Core API and the JDBC 2.0 Optional Package
API, refer to http://java.sun.com/products/jdbc/download.html.

DB2 UDB/WebSphere Application Tuning Guide

Connection pooling is a mechanism whereby a system administrator can define a
pool of connections for a single datasource that may be reused by multiple users,
without each one of them incurring the overhead of connecting and
disconnecting from the database. Connection pooling can improve the response
time of any application that requires connections, especially Web-based
applications.

When a user makes a request over the Web to a resource, the resource
accesses a datasource. Most user requests do not incur the overhead of creating
a new connection, because the datasource might locate and use an existing
connection from the pool of connections. When the request is satisfied and the
response is returned to the user, the resource returns the connection to the
connection pool for reuse.

Here again, the overhead of a disconnect is avoided. Each user request incurs a
fraction of the cost of connection or disconnection. After the initial resources are
used to produce the connections in the pool, additional overhead is insignificant
because the existing connections are reused. Such reuse can have significant
performance benefits since the cost of database connect and disconnect is
amortized over multiple users.

4.2.1 Detailed description

Connection pooling is the maintenance of a group of database connections for
potential reuse by applications on an application server. Figure 4-1 shows
represents the state of a connection pool for a given datasource. It describes a
connection pool of five connections, two of which are currently in use by users
USER_A and USER_C, while three connections that had previously been used
by users USER_A, USER_C and USER_D are free and available for reuse.

Chapter 4. WebSphere Application Server and DB2 UDB performance 149

150

Connection Pool
Connection 5 Stmt Cache
Connection 2 Stmt Cache User: USER_C
User: USER A | (O Password: 2772777 |
Password: XXXXX O+
in use pool
free pool T
Connection 1 Stmt Cache
default user USER_A User: USER A | (™
Password: XXXXX) Application
minimum pool size 2 Data
maximum pool size ° Connection 4 Stmt Cache
T User: USER_C
connection timeout 180 Password: 777777 88
idle timeout: 1800
; Connection 3 Stmt Cache
han t t 1 et s
orphan timeou 800 User: USER_B —
statement cache size 20 Password: YYYYY CJ

Figure 4-1 A connection pool example

WebSphere Application Server establishes and maintains pools of connections
as specified by the administrator. After the connections are set up, WebSphere
Application Server manages them by distributing connections in response to user
requests and then performing housekeeping operations to maintain a balance
between available connections and a demand for them. This ensures that an
existing connection is available when it is requested.

The pool does not start out with a minimum number of connections. As
applications request connections, the pool grows up to the minimum number.
After the pool has reached this minimum, it does not shrink below this minimum
unless an exception, such as an StaleConnectionException occurs. This results
in all the free connections, and the stale one being destroyed. Note that the
InUse connections will not be destroyed, but will be marked to be destroyed
when they are closed. Most likely, when a StaleConnectionException occurs, all
InUse connections will become unusable. Refer to “StaleConnectionException”
on page 160 for more details.

Note: We discuss the various kinds of exceptions returned later in this
section.

DB2 UDB/WebSphere Application Tuning Guide

Figure 4-2 shows how the association between the datasource and the database
is defined. The General tab from the Datasource configuration panel in the
WebSphere Advanced Administrative Console shows the database name, and
the default user and password to be used by all connections in the pool. If a
different user and password is specified in the getConnection() method, it will
override this default, and obtain a new connection for this user in the pool.

General | Connection F'ou:ulingl

FIEdSE TEEU e TIEIE T ITHURTTIEUUTT UrE CUriiigurinyg Qdid sudrees.

Mame: *TradeDB

JMDI name: lidbcTradeSample

Diescription:

JOBC provider, *Sample DB Criver

—Zustom Propedies

Marme Walue

gt |

i RADEDH

I8}

user dbZinstt

password [

logWriter

description

paoftumber

Eemaye |

Test Connection

=]

Apply

Reseat

Help

Figure 4-2 General configuration for TRADEDB datasource

Figure 4-3 shows the Connection Pooling tab from the Datasource configuration
panel in the WebSphere Advanced Administrative Console, and explains the
semantics of the various connection pool parameters that can be set.

Chapter 4. WebSphere Application Server and DB2 UDB performance 151

Once allocated, the number of
existing database connections never

'"""E'H'r'i'é'Eﬁ5'ﬁ"ﬁ'ﬁ'5'|'i'r'i"""|

-Connection Poaling—————— | goes below this number.
Minimurn pool size: i cannections | The number of existing database
Maimum pool sizet [10 connections | connections never exceeds this
Connection timeout: |1gu SECONGS - maximum value.

Idle timeout: j1800 seconds If a request for a connection cannot
Orphan timenut E e be fulfilled because the maximum is

| reached, it will wait for a connection
to become free at most this amount
of time.

statements

Staterment cache size: |1|:|D

[Disable AutaConnection clejnup
/ If there are more existing
connections than the defined

minimum, the surplus connections are

If not checked (default), closed if they are idle this amount of

connections are automatically time.

returned to the pool at the end

of a transaction.

If the application has not returned a
connection to the pool and there was

cached in total for all connections. this amount of time, it will be "taken
However each connection maintains away" from the application and
its own cache. returned to the connection pool.

Figure 4-3 Configuring the connection pool for a datasource

Note: Various exceptions covered in the following explanations will be
discussed later.

Minimum pool size: The minimum number of connections that the connection
pool may hold. By default, this value is 1. Any non-negative integer is a valid
value. If the property is set to 0, the pool can shrink to zero connections, which is
a valid configuration. The minimum pool size can affect the performance of an
application. Smaller pools require less overhead when the demand is low
because fewer connections are being held open to the database. On the other
hand, when the demand is high, the first applications experience a slow
response, because new connections have to be created if all others in the pool
are in use. After the pool has reached the minimum number of connections, it
does not shrink beyond this minimum unless an exception occurs that requires
the pool to be destroyed.

152 DB2 UDB/WebSphere Application Tuning Guide

Maximum pool size: The maximum number of connections that the connection
pool can hold. By default, this value is 10. Any positive integer is a valid value. If
this value is set to 0 or less, a connection cannot be obtained from the database
and the application is thrown a ConnectionWaitTimeoutException. The maximum
pool size can affect the performance of an application. Larger pools require more
overhead when demand is high, because more connections are open to the
database at peak demand. These connections persist until they are idled out of
the pool (see Idle timeout for more information). On the other hand, if the
maximum is smaller, there might be longer wait times or possible connection
timeout errors during peak times. The database must be able to support the
maximum number of connections used by WebSphere Application Server in
addition to any load it may have from other sources.

Connection timeout: Maximum number of seconds an application waits for a
connection from the pool before timing out and throwing

com.ibm.ejs.cm.pool. Connection WaitTimeoutException to the application. The
default value is 180 seconds. Any non-negative integer is a valid value. Setting
this value to 0 disables the connection timeout. This value can also be changed
by calling setLoginTimeout() on the datasource.
(ConnectionWaitTimeoutException is discussed in later in this paper.) If
setLoginTimeout() is called on the datasource, this sets the timeout for all
applications that are using that datasource. For this reason, it is recommended
that setLoginTimeout not be used. Instead, the connection timeout property
should be set on the datasource during configuration.

Idle timeout: The number of seconds that a connection can remain free in the
pool before the connection is removed from the pool and closed. The default
value is 1800 seconds. Any non-negative integer is a valid value. Connections
need to be idled out of the pool, because keeping connections open to the
database can cause memory problems with the database in some cases. Not all
connections are idled out of the pool, even if they are older than the idle timeout
number of seconds. A connection is not idled, if removing this connection would
cause the pool to shrink below its minimum value. Setting this value to 0 disables
the idle timeout.

Orphan timeout: The number of seconds that an application is allowed to hold
an inactive connection. The default is 1800 seconds (30 minutes). Any
non-negative integer is a valid value. If there is no activity on an allocated
connection for longer than the orphan timeout number of seconds, the
connection is marked for orphaning. After another orphan timeout number of
seconds, if the connection still has no activity, the connection is returned to the
pool. If the application tries to use the connection again, it is thrown a
StaleConnectionException. Connections that are enlisted in a transaction are not
orphaned. Setting this value to 0 disables orphan timeout.

Chapter 4. WebSphere Application Server and DB2 UDB performance 153

154

Statement cache size: The number of cached prepared statements to keep for
the entire connection pool, and not per connection. The default value is 100. Any
non-negative integer is a valid value. Statement cache size is covered in further
detail in“Prepared statement cache” on page 169.

Disable AutoConnection cleanup: Specifies whether or not the connection is
closed at the end of a transaction. The default is false, which indicates that when
a transaction is completed, WebSphere Application Server connection pooling
closes the connection, and all associated resources and returns the connection
to the pool. This means that any attempt to use of the connection after the
transaction has ended, results in a StaleConnectionException, because the
connection has been closed and returned to the pool. This mechanism ensures
that connections are not held indefinitely by the application. If the value is set to
true, the connection is not returned to the pool at the end of a transaction.

In this case, the application must return the connection to the pool by explicitly
calling close(). If the application does not close the connection, the pool will run
out of connections for other applications to use. This is different from orphaning
connections, because connections in a transaction cannot be orphaned.
However, if the application needs to hold a connection outside of the scope of the
transaction, the administrator can configure a datasource to not automatically
clean up connections obtained from that datasource by setting this value to true.
This option should be set only if the application always closes its own
connection. When this property is set to true, the pool quickly runs out of
connections, if the application does not close all connections as soon as they are
finished using it.

A connection object exists in one of three states:

» DoesNotExist
» InFreePool
» InUse

Every connection begins its lifecycle in the DoesNotEXxist state. When an
application server starts up, the connection pool does not exist, and therefore
there are no connections. The first connection is not created until an application
requests its first connection. Additional connections are created as needed,
according to the guarding condition. After a connection has been created, it can
be either in the InUse state, or the InFreePool state, depending on whether it has
been allocated to an application or not.

DB2 UDB/WebSphere Application Tuning Guide

Figure 4-4 shows the three valid states of a connection object, and the conditions
under which state change occurs.

Condition:
(caughtStateConnection)
OR (connectionidled AND
poolSizeGTMin)

Does
Not Exist

Connection Lifecycle

Condition:

getConnection AND
NOT(freeConnectionAvailable) AND
poolSizeLTMax AND
NOT(ConnectioninUseWithSameProperties)

Condition:
getConnection AND
connectioninUseWithSameProperties

In Use

Condition: Condition: Properties
getConnectu:'m ND) close() AND e Username
freeConnectionAvailable AND markedState

NOT * Password
(connectioninUserWithSameProperties) o Transaction id

Condition:

(close()AND noOtherReferences) OR
(connectionOrphanedANDnoTX) OR
(txEnds)

Figure 4-4 Connection object life cycle

When the application requests a connection from the WebSphere Application
Server connection pool, one of the following events occurs:

'S

>

>

>

A new connection is created to the database.

An existing connection might be retrieved from the connection pool, or shared
with another request for a connection.

A connection time-out exception is returned.

A stale connection exception is returned.

These various events are covered in the following sections.

Chapter 4. WebSphere Application Server and DB2 UDB performance 155

156

New connection
A connection object is created when the all following conditions are satisfied:

» The application calls getConnection() on the datasource (getConnection).

» No connections are available for use in the free pool
(NOT(freeConnectionAvailable)).

» The pool size is less than the maximum pool size (poolSizeLTMax).

» There are no free connections currently in the pool that have the same user
name, password, and transaction ID as a connection that is currently in use
(NOT(connectionlnUseWithSameProperties)).

The transition from DoesNotExist to InUse is as follows:

DoesNotExist -> InUse:

getConnection AND

NOT (freeConnectionAvailable) AND
poo1SizelLTMax AND

NOT (conectionInUseWithSameProperties)

This transition implies the following about how connection pooling works:

» All connections being in the DoesNotExist state and are only created when
the application requests a connection. This means that the pool is grown from
zero to the minimum number of connections as the application requests new
connections. The pool is not created with the minimum number of
connections when the server starts up.

» If a connection is already in use by the application with the same user name,
password and transaction id (that is, it is in the same transaction), the
connection is shared by two or more requests for a connection. In this case a
new connection is not created.

Existing connection reused

The concept of connection sharing is seen in the transition on the InUse state as
follows:

InUse -> InUse:
getConnection AND
connectionInUseWithSameProperties

This transition states that if an application requests a connection (getConnection)
with the same user name, password, and transaction ID as a connection that is
already in use (connectionlnUse WithSameProperties), the existing connection is
shared.

DB2 UDB/WebSphere Application Tuning Guide

Connections can be shared by the same user (user name and password), but
only within the same transaction. Because a transaction is normally associated
with a single thread, connections should never be shared across threads. It is
possible to see the same connection on multiple threads at the same time, but
this is an error state caused by application programming error.

The transition from the InFreePool state to the InUse state is the most common
transition when the application requests a connection from the pool. This
transition is stated as follows:

InFreePool -> InUse:

getConnection AND
freeConnectionAvailable AND

NOT (connectionInUseWithSameProperties)

This transition states that a connection will be placed in use from the free pool, if
all the following conditions are satisfied:

» Application has issued a getConnection() call on the datasource
(getConnection)

» A connection is available for use in the connection pool
(freeConnectionAvailable)

» No connection is already in use in the transaction with the same user name
and password (NOT(connectionlnUseWithSameProperties))

Any request for a connection that can be fulfilled by a connection from the free
pool does not result in the creation of a new connection to the database.
Therefore, if there is never more than one connection being used at a time from
the pool by any number of applications, the pool never grows beyond a size of
one. This assumes that all the getConnection() requests have the same username
and password specified.

If the username and password on a getConnection() request is different than
what's available in the pool, and there is room to create new connections, a new
connection will be created with a different username and password. This means
that even if there is only one connection in use at any given time, but the
requests to a connection pool are for connections with different usernames and
passwords, it is possible that the pool will have more than one connection in it.
This may be less than the minimum number of connections specified for the pool.

All of the transitions so far have covered the scenarios of getting a connection for
use by the application. At this point, the second set of transitions that result in a
connection being closed, and either returned to the free pool or destroyed will be
covered.

Chapter 4. WebSphere Application Server and DB2 UDB performance 157

158

Connections should be explicitly closed by the application by calling close() on
the connection object. In most scenarios, this results in the following transition:

InUse -> InFreePool:

(close AND NOT(otherReferences)) OR
(connectionOrphaned AND noTx) OR
(txEnds)

The transition from the InUse state to the InFreePool state can be caused by
three different conditions as follows:

» If the application calls (close), and there are no references
(NOT(otherReferences)) to it, either by an application (application sharing) or
by the transaction manager (who holds a reference when the connection is
enlisted in a transaction), the connection object is returned to the free pool.

» If the connection has not been used by the application for the orphan timeout
amount of time (connectionOrphaned), and there is no transactional context
(noTx), the connection is marked for return to the pool, and returned to the
free pool during the next orphan timeout.

» If the connection was enlisted in a transaction, but the transaction manager
has ended the transaction (txEnds), the connection is closed by default and
returned to the pool.

This transition implies the following facts about connection pooling:

» When the application calls close() on a connection, it is returning the
connection to the pool of free connections; it is not closing the connection to
the database.

» When the application calls close() on a connection, if the connection is
currently being shared, it is not returned to the free pool. Instead, after the last
reference to the connection is dropped by the application, the connection is
returned to the pool.

» When the application calls close() on a connection enlisted in a transaction,
the connection is not returned to the free pool. Because the transaction
manager must also hold a reference to the connection object, it cannot be
returned to the free pool until the transaction has ended. This is because
once a connection is enlisted in a transaction, it cannot be used in any other
transaction by any other application, until after the transaction has been
completed.

There is a case in which the application’s calling close() can result in the
connection to the database being closed, bypassing the return of the connection
to the pool. This happens if one of the connections in the pool has been
determined to be stale. A connection is considered stale, if it can no longer be
used to contact the database. One potential reason for a connection being
marked as stale is if the database server has been shut down.

DB2 UDB/WebSphere Application Tuning Guide

When a connection is marked as stale, the entire pool is cleansed, because it is
very likely that all of the connections would have become stale for the same
reason. This cleansing operation includes marking all of the currently /nUse
connections as stale, so they can be destroyed upon closing.

The following transition states the behavior on a call to close(), when the
connection is marked as stale:

InUse -> DoesNotExist:
close AND
markedStale

This transition states that if the application has called close() on the connection,
and it has been marked as stale during the pooling cleansing step (markedStale),
then the connection object is closed to the database, and not returned to the
pool.

Lastly, connections can be closed to the database, and removed from the pool
as described by the following transition:

InFreePool -> DoesNotExist:
caughtStaleConnection OR
(connectionIdled AND
poo1SizeGTMin)

This transition states that there are two cases in which a connection is removed
from the free pool and destroyed.

» If a StaleConnectionException is caught (caughtStaleConnection), all
connections currently in the free pool are destroyed. This is because most
likely all connections in the pool are stale. “StaleConnectionException” on
page 160 describes actions on StaleConnectionException occurrences in
more detail.

» If the connection has been in the free pool for longer than the idle timeout
amount (connectionldled), and the pool size is greater than the minimum
number of connections (poolSizeGTMin), the connection is removed from the
free pool and destroyed. This mechanism enables the pool to shrink back to
its minimum size when the demand for connections is reduced.

WebSphere exceptions

WebSphere connection pooling monitors specific SOQLExceptions thrown by the
database. A set of these exceptions are mapped to WebSphere Application
Server specific exceptions. WebSphere Application Server connection pooling
provides these exceptions to ease development by not requiring the developer to
know all of the database-specific SOLExceptions that could be thrown for very
common occurrences.

Chapter 4. WebSphere Application Server and DB2 UDB performance 159

160

In addition, monitoring the SQL Exception enables WebSphere Application
Server connection pooling, and therefore, the application to recover from
common occurrences such as intermittent network or database outages.

Two commonly encountered exceptions are:

» ConnectionWaitTimeoutException
» StaleConnectionException

ConnectionWaitTimeoutException

This exception (com.ibm.ejs.cm.pool. ConnectionWaitTimeoutException)
indicates that the application has waited for the connection timeout number of
seconds, and has not been returned a connection. This can occur when the pool
is at its maximum, and all of the connections are in use by other applications for
the duration of the wait. In addition, there are no connections currently in use that
the application can share, because either the user name and password are
different, or it is in a different transaction.

In all cases in which ConnectionWaitTimeoutException is caught, there is very
little to do in terms of recovery. It usually doesn't make sense to retry the
getConnection() method, because if a longer wait time is required, the
connection timeout should be set higher. Therefore, if this exception is caught by
the application, the administrator should review the expected usage of the
application, and tune the connection pool and the database accordingly.
Catching this exception is optional, because ConnectionWaitTimeoutException is
a subclass of SOQLException; any application that catches SOQLException
automatically catches this exception as well.

StaleConnectionException

This exception (com.ibm.websphere.ce.cm.Stale ConnectionException) indicates
that the connection currently being held is no longer valid. This can occur for a
number of reasons, including these:

1. The application tries to get a connection and fails, as when the database is
not started.

2. A connection is no longer usable due to a database failure. When an
application tries to use a connection it has previously obtained, the
connection is no longer valid. In this case, all connections currently in use by
an application could get this error when they try to use the connection.

3. The application tries to use a JDBC resource, such as a statement, obtained
on a now-stale connection.

4. The application using the connection has already called close() and then tries
to use the connection again.

DB2 UDB/WebSphere Application Tuning Guide

5. The connection has been orphaned because the application had not used it
within a time interval of twice the orphan timeout value, and then the
application attempted to use the orphaned connection.

Important: The first three items in the foregoing list cause the connection pool
to be destroyed and rebuilt automatically. On the other hand, the last two
items do not cause the connection pool to be destroyed, since the problem is
not related to database or network connection errors that affect all the
connections in the pool.

Applications are not required to explicitly catch a StaleConnectionException. A
StaleConnectionException is a subclass of java.sql.SQLException, which
applications are already required to catch. However, catching a
StaleConnectionException makes it possible for applications to recover from bad
connections in many instances.

The most common time for StaleConnectionException to be thrown is the first
time that a connection is used, just after it is retrieved. Because connections are
pooled, a database failure is not detected until the operation immediately
following its retrieval from the pool, which is the first time communication to the
database is attempted. And it is only when a failure is detected that the
connection is marked stale. StaleConnectionException occurs less often if each
method that accesses the database gets a new connection from the pool.

Examining the sequence of events that occur when a database fails to service a
JDBC request shows that this occurs because all connections currently handed
out to an application are marked stale; the more connections the application has,
the more connections can be stale.

Generally when Stale ConnectionException is caught, the transaction in which the
connection was involved needs to be rolled back, and a new transaction begun
with a new connection. Details on how to do this can be found in the “WebSphere
Connection Pooling” document by Deb Ericson, Shawn Lauzon, Melissa
Modjeski, which is located at:

http://www.ibm.com/software/webservers/appserv/whitepapers/connection _pool.pdf

4.2.2 Best practices

From an application programming perspective, WebSphere Application Server
provides two options for establishing database connections:

1. Programming directly to the connection pooling model through the JDBC 2.0
Optional Package API.

Chapter 4. WebSphere Application Server and DB2 UDB performance 161

2. Use of the IBM data access beans, which also use connection pooling, but
give you additional ability to manipulate result sets.

The following considerations apply to both these approaches.

WebSphere Application Server connection pooling should be used in
applications that meet any of the following criteria:

» It cannot tolerate the overhead of obtaining and releasing connections
whenever a connection is used.

» It requires JTA' transactions within WebSphere Application Server.
» It does not manage the pooling of its own connections.

» It does not manage the specifics of creating a connection, such as the
database name, user name, or password.

Note: The memory footprint for a connection is between one and two
megabytes, and its consumption should therefore be optimized in WebSphere
Application Server.

Connection pooling best practices are categorized as being application related,
and system related.

Application related best practices

The following application programming techniques are considered to be best
practices for achieving optimal performance.

» Cache JNDI lookups:

From a performance perspective, JNDI lookups are an expensive operation.
Therefore, an application should perform these operations as infrequently as
possible. This applies not only to datasource lookups, but also to the lookup
of the javax.transaction.UserTransaction object in client-managed
transactions.

Create a separate method that performs these lookup operations. Call this
method from the servlet’s init() method, or from the enterprise bean’s
ejbActivate() method as described in 2.9.6, “Use the HttpServlet Init method
judiciously” on page 50.

1 Java Transaction API (JTA) specifies standard Java interfaces between a transaction manager and
the parties involved in a distributed transaction system: the resource manager, the application server,
and the transactional applications.

162 DB2 UDB/WebSphere Application Tuning Guide

» Use connection sharing:

Connections can be shared by the same user (user name and password), but
only within the same transaction. This is known as connection sharing, and
should be used only on a single thread. For example, when a servlet starts a
user transaction and gets a connection, it does some database operations
and then calls a CMP EJB, which also needs a connection. The connection is
then shared between the servlet, and the EJB on a single thread.

Connections should never be shared across threads. It is possible to see the
same connection on multiple threads at the same time, but this is an error
state, and is caused by poor programming practices. For example, when a
servlet init()> method performs the JNDI lookup for a connection, and also
gets its own connection. Each time the service() method is called, the same
connection gets used, but these calls come in on different threads within the
JVM. This can cause problems like time-outs and StaleConnectionException
errors.

» Avoid using different user names and passwords:

Applications often run into problems when more than one connection is
obtained, and each has a different user name. When the second connection
with a different user name is obtained from the pool, a different connection to
the database is returned to the application.

This results in two physical connections to the database being held by the
application, with no connection sharing. If the datasource used to create the
connection is not JTA-enabled (a one-phase commit datasource), then there
is a global transaction in force resulting in an error condition, since there are
two one-phase resources enlisted in the same global transaction.

» Do not declare connections as static objects:

If connection objects is declared as static, then it is possible for the same
connection to be shared by different threads at the same time resulting in
problems with connection pooling, and database access.

A connection should always be obtained and released within the method that
requires it.

» Do not declare connection objects as instance variables:

In a servlet, all variables declared as instance variables act as if they are
class variables. For example, suppose a servlet is defined with an instance
variable:

Connection conn = null;

2 This is a static method, which is what enables multiple threads to use the same connection.

Chapter 4. WebSphere Application Server and DB2 UDB performance 163

164

This variable acts as if it is static. This implies that all instances of the servlet
would use the same connection object. This is because a single servlet
instance can be used to serve multiple Web requests in different threads.

Do not manage data access in CMP beans:

If a CMP bean is written so that it manages its own data access, this data
access might be part of a global transaction. Generally, it is best to have data
access occur in a BMP session bean.

Open one connection at a time:

In general, an application should open only one connection to the database at
a time. If two getConnection() calls with the same parameters are issued in
the same global transaction, only a single connection is allocated. You are
allowed to open only one single-phase-commit connection within a global
transaction.

However, if the application is not running in a global transaction (as is the
case with most servlets), two getConnection() calls result in two separate
connections. This utilizes more resources than necessary, and causes your
connection pool to fill twice as fast, often resulting in ConnectionWaitTimeout
exceptions.

If the application requires multiple simultaneous connections, close each
connection as soon as it is no longer required, to free that connection up for
another user.

Always close objects:

It is very important that ResultSet, Statement, PreparedStatement, and
Connection objects get closed properly in the application.

If connections are not closed properly, users may experience long waits for

connections to time-out, and delay return of the connection to the free pool.
Unclosed ResultSet, Statement, or PreparedStatement objects unnecessarily
hold resources at the database as well.

To ensure that these objects are closed in both correct execution and
exception or error states, always close ResultSet, Statement,
PreparedStatement, and Connection object in the finally section of a try/catch
block.

WebSphere Application Server will try to clean up JDBC resources on a
connection after it has been closed. However, this behavior should not be
relied upon, especially if the application might be migrated to another platform
in the future, thus requiring code rewrite.

DB2 UDB/WebSphere Application Tuning Guide

» Obtain and close the connection in the same method:

This keeps the application from holding resources that are not being used,
and leaves more available connections in the pool for other applications.

There may be times when it is not feasible to close a connection in the same
method in which the connection was obtained. For example, if the isolation
level is Read Committed and locks are obtained, closing the connection or
result set causes these locks to be dropped. If it is not desirable to have the
locks dropped until a later time, the connection should not be closed until after
it is safe to drop the locks.

» Do not close connections in a finalize method:

If an application waits to close a connection or other JDBC resource until the
finalize() method, the connection is not closed until the object that obtained it
is garbage-collected, because that is when the finalize() method is called.

Databases can quickly run out of the memory required to store the
information about all of the JDBC resources currently open. In addition, the
pool can quickly run out of connections to service other requests.

System related best practices

Routine monitoring of the connection pool is critical to adjusting the various
parameters for achieving optimal performance. The Resource Analyzer is the
primary tool for monitoring connection pool usage. Appropriate monitoring levels
have to be set in order to view desired information.

While the default monitoring level is none, we recommend that you choose an
appropriate monitoring level based on you organization’s needs, and the
overheads associated with it for your particular environment. The administrator
should also occasionally perform exception monitoring with a monitoring level of
Maximum during bursts of peak activity to obtain adequate information about the
system under stress, in order to effectively tune connection pool parameters.

Figure 4-5 shows an example of connection pool statistics captured by the
Resource Analyzer with a monitoring level setting of Maximum.

Chapter 4. WebSphere Application Server and DB2 UDB performance 165

166

Performance Monitoring Settings |

Counter Settings

A% persian Trade Maonitoring Level:
- Enterprise Beans i
s [atabase Connection Pools
St WM Runtime s
oAt Gervlet Session Manager A ~ ;
; 4% Medium
[Thread Pools
----- A% Trangaction Manager B = Low
A% Weh Applications
= he = " Mone
Counters:
FPercent Used &
Faults

A Wait Time (ms)
Concurrent Waiters
Fool Size

Mum Returns

Murm Allocates
Mum Destroys
Mum Creates

-

[+ Start modified counters (]t I Cancel

Figure 4-5 Connection pool statistics with monitoring level at Maximum

The following considerations apply to tuning the various connection pool
parameters.

» Minimum pool size: A correct minimum value for the pool can be determined
by examining the applications that are using the pool. If it is determined, for
example, that at least four connections are needed at any point in time, the
minimum number of connections should be set to 4 to ensure that all requests
can be fulfilled without connection wait timeout exceptions.

At off-peak times, the pool shrinks back to this minimum number of
connections. A good rule of thumb is to keep this number as small as possible
to avoid holding connections unnecessarily open.

Note: Do not confuse the minimum pool size with the initial pool size. The
latter has a value of zero and is not configurable, while the minimum pool
size can be configured. The minimum pool size defines the smallest that a
pool will shrink to once the pool grows beyond that value.

DB2 UDB/WebSphere Application Tuning Guide

The Pool Size field in Figure 4-5 on page 166 provides the average pool size
during the monitoring interval, and can be used to set the minimum pool size
value.

Maximum pool size: The maximum number of connections that the
connection pool can hold open to the database. The pool holds this maximum
number of connections open to the database at peak times. At off-peak times,
the pool shrinks back to the minimum number of connections.

The best practice is to ensure that only one connection is required on a thread
at any time. This avoids possible deadlocks when the pool is at maximum
capacity and no connections are left to fulfill a connection request. Therefore,
with one connection per thread, the maximum pool size can be set to the
maximum number of threads. When using servlets, this can be determined by
looking at the MaxConnections property in the Servlet Engine.

If multiple connections are required on a thread, the maximum pool size value
can be determined using the following formula:

T *(C -1)+1
In this formula:
T is the maximum number of threads
C is the number of concurrent database connections necessary per thread

For example, if the application uses two threads, each of which requires three
connections, and a maximum of 10 applications could be using the pool at
peak times, the resulting value would be (2 *10) * (3-1) + 1, or 41.

The database must be also tuned to be able to handle the maximum number
of connections in the pool, plus any additional connections required by
programs other than from the application server. For example, if the
maximum pool size is set to 25, indicating that the application server may
hold 25 connections through this datasource at peak times, and if there is a
second application (or even a second WebSphere datasource) that requires
an additional 30 connections, ensure that the database can serve 55
connections concurrently.

The Avg Wait Times (ms), Faults, Percent Used and Percent Maxed fields in
Figure 4-5, can help you decide whether the maximum pool size ought to be
increased or decreased.

Connection timeout: If applications are often catching
ConnectionWaitTimeoutException, this usually means one of two things.
Either the connection timeout property is set too low, or the connection pool is
always at maximum capacity, and cannot find a free connection for the
application to use:

— If the exception is being caused by the connection timeout value being set
too low, the solution is to set it to a higher value.

Chapter 4. WebSphere Application Server and DB2 UDB performance 167

168

— If the exception is caused by too few connections in the pool, the
maximum pool size setting needs to be investigated.

The Faults field in Figure 4-5 when analyzed in conjunction with the Percent
Used, and Percent Maxed fields can provide guidance on the setting of this
parameter.

Idle timeout: Setting the idle timeout too low can cause performance
problems, because the overhead of closing a connection to the database is
incurred unnecessarily. In addition, because the connections have been
closed, when peak times hit, not enough connections are in the pool, and new
connections need to be created. On the other hand, holding connections in
the pool for great amounts of time can result in memory problems in some
databases. The database may hold information on all of the transactions that
have occurred on the connection. When the connection is held open for a
long time, this information builds up on the database server, which then runs
out of memory.

The Idle Timeout property is application-dependent and often requires trial
and error to find an optimal value.

A high value in the Num Creates and Num Destroys fields in Figure 4-5 may
indicate a problem with the setting of this parameter value, and require raising
this value.

Orphan timeout: This timeout ensures that a rogue application does not
unnecessarily hold connections in the /nUse pool. If this value is set too low, it
is possible that while an application is processing data, the unused
connection can be orphaned, and returned to the pool. This results in a
StaleConnectionException being thrown to the application after the
application tries to use the orphaned connection, or one of its associated
resources. If an application is experiencing large volumes of these
exceptions, and it is determined that they are not due to a database or
network failure, the orphan timeout should be investigated.

Applications that are written to obtain a connection, use it, and close it
immediately after use, do not tend not to have problems with orphaning of
connections. A connection that is actively processing at the database is not
orphaned, even if the processing takes longer than the orphan timeout
number of seconds.

A connection is marked for orphaning after it has been unused by the owning
application for the orphan timeout number of seconds. Then, after a second
cycle of orphan timeout number of seconds has elapsed, the connection is
freed to the pool if the connection is still marked for orphaning. The only way
that a connection can move from the orphaned state to the InUse state is if
the owing application uses the connection again before it is freed to the pool.
Connections participating in a transaction are never orphaned.

DB2 UDB/WebSphere Application Tuning Guide

The orphan timeout property is application-dependent. If an application is
continuously receiving StaleConnectionException, the root cause of the
exception throwing needs to be determined. This can be done by viewing the
message of the exception. If the message states that the class is already
closed, it is most likely that the connection is orphaned. If an SQLException is
part of the StaleConnectionException message, the exception was caused by
the database. If the message indicates that a connection was orphaned, a
workaround is to set the orphan timeout to a larger value, while the
application is reviewed to ensure that connections are closed as required.

» Statement cache size: This is covered in detail in 4.3, “Prepared statement
cache” on page 169.

» Disable AutoConnection Cleanup: Use the default value of false. However,
if the application needs to hold a connection outside of the scope of the
transaction, the administrator must set this value to true. This option should
be set to true only if the application always closes its own connection.

A large number of StaleConnectionException message occurrences, as well
as a high value for Faults, Percent Used and Percent Maxed in Figure 4-5
may indicate a problem with this setting, poor application programming
practices, or a combination thereof.

When this property is set to true, if the application does not close the
connection, the pool will quickly run out of connections, thus depriving other
applications from obtaining connections. This is different from orphaning
connections, because connections in a transaction cannot be orphaned.

Attention: For further information on connection pooling refer to the

WebSphere Connection Pooling white paper available at:

http://www.ibm.com/software/webservers/appserv/whitepapers/connection_pool.pdf

4.3 Prepared statement cache

Applications may access a database using JDBC via any of three options shown
in Figure 4-6.

Chapter 4. WebSphere Application Server and DB2 UDB performance 169

Issue SQL select, DML or DDL statements to the
Statement ——) database.

Statement stm = con.createStatement();
ResultSet rs = stm.executeQuery (“SELECT * from TABLl”);

Allows repeatable invocation of the same SQL
statement with parameters.

PreparedStatement stm =
Prepared — con.prepareStatement (“UPDATE t1 SET cl = ? WHERE c2 = 2”);
Statement for (int i=1; i<10; i++)
{
stm.setInt(1l, arrayl[il [0]);
stm.setInt (2, arrayl[il[1]);
stm.execute () ;
}
Calls a stored procedure (a prepared sequence of
Callable statements which resides on the database).
Statement :> CallableStatement stm = con.prepareCall (”CALL stpl(?, ?)”);
stm.setInt (1,17);

stm.setString (2, "seventeen");
stm.execute() ;

Figure 4-6 The three options for JDBC statements

In Figure 4-6:
» A Statement is a class that can execute an arbitrary SQL String passed into it.

» A PreparedStatement® refines a Statement by adding substitution parameters,
and by separating the SQL compilation process from the execution of the
Statement.

This allows applications to prepare the statement once (which is an
expensive operation), and then reuse it multiple times with different distinct
values in the parameter markers (shown as question marks).

Prior to the availability of the global statement cache in DB2 UDB V5,
application programmers could use dynamic caching to cache prepared
statements in the DB2 server using statement handles. In DB2 CLI terms this
means that for a given statement handle, once a statement has been
prepared, it does not need to be prepared again (even after commits or
rollbacks), so long as the statement handle is not freed.

Applications that repeatedly execute the same SQL statement across multiple
transactions, can save a significant amount of processing time and network
traffic by:

— Associating each such statement with its own statement handle
— Preparing these statements once at the beginning of the application

3 A prepared statement is a pre-compiled SQL statement that is stored in a prepared statement
object.

170 DB2 UDB/WebSphere Application Tuning Guide

— Then executing the statements as many times as is needed throughout
the application.

By holding onto the statement handle, application programmers can reuse
prepared statements across units-of-work (UOW).

Important: DB2 manuals specify that dynamic caching is not needed in
DB2 Universal Database Version 5 and later because of the global
dynamic statement cache that is stored on the server. This cache is used
to store the most popular access plans for prepared SQL statements.
Before each statement is prepared, the server automatically searches this
cache to see if the access plan has already been created for the exact SQL
statement (by this application or any other application or client). If so, the
server does not need to generate a new access plan, but will use the one
in the cache instead. There is now no need for the application to cache
connections at the client unless connecting to a server that does not have
a global dynamic statement cache. A brief overview of how prepared
statements are handled in DB2 is provided in “Prepared statements in
DB2” on page 177.

However, if an application may connect to multiple relational DBMSs that
may or may not support a global dynamic statement cache, it would be
appropriate for the application to use DB2 Call Level Interface’s (CLI)
dynamic caching mechanism for achieving better performance.

Since WebSphere Application Server supports multiple relational
DBMSs that may or may not have a global statement cache, it has
been written using dynamic caching and statement handles.

Refer to the Call Level Interface Guide and Reference, SC09-2950 for more
information on this subject.

Note: For remote client access, DB2 CLI provides an option,
DEFERREDPREPARE, which defers the sending of the PREPARE request
until the corresponding execute request is issued. The two requests are
then combined into one command/reply flow (instead of two) to minimize
network flow and to improve performance.

Deferred prepare is the default and must be explicitly turned off, if
required.

Chapter 4. WebSphere Application Server and DB2 UDB performance 171

» A CallableStatement takes away the SQL compilation process entirely by
executing a SQL stored procedure®.

WebSphere Application Server provides the administrator with an option of
specifying a prepared statement cache as shown in Figure 4-1 on page 150.
Similar to a prepared statement in the database, this cache stores the
PreparedStatement object of previously prepared statements on a connection
basis.

Note: The size of this PreparedStatement object will vary from statement to
statement, and consequently the memory footprint for the statement cache in
WebSphere Application Server.

When a new prepared statement is requested on a connection, the cached
prepared statement is returned, if available. Under certain workload conditions,
this look aside capability can result in improved response times for Web
applications.

4.3.1 Detailed description

The statement cache contains PreparedStatement objects of most recently
executed statements on a per connection basis as shown in Figure 4-7. It
describes a datasource configured with a statement cache size of 10 statements,
and a maximum of 3 concurrent connections.

4 A stored procedure is a prepared sequence of statements which resides on the DBMS.

172 DB2 UDB/WebSphere Application Tuning Guide

o aackon §

#0oERecEor £

a - ’um-.-recﬁ'm 3

o S0L Statementsuse by Application

1 SELECT B from Table where Bid =1

Tatatement 3 |
stetement 2. |88
statement 1 | 2 | DELETE from Table where Wid = and B =1

TAEITETT 3| |
simemeid L | 4 | IMSERTintoTable (AB) valies (31

2 SELELT A frome Table where U = 1

statement 2 1 5 | UPDATE Table set A =7 where Uid =1
staterment 4. FE

statement 2
statement 1. 4
statement 5 [

Figure 4-7 Prepared Statement Cache: an example

In Figure 4-7, the application runs five SQL statements (two selects, one delete,
one insert and one update). The connections have already been created, and
many SQL statements have been executed. There are three prepared
statements cached for Connection 1 and 2. Connection 3 has four statements
cached. Because statements are compiled into prepared statements as they are
used, the prepared statement cache reflects the database usage patterns of the
application.

A PreparedStatement object, representing a given SQL statement, can appear
multiple times in the prepared statement cache. In particular, it can appear once
for every connection in the connection pool. In Figure 4-7, statements 1 and 2
appear three times — once for each connection. Statement 3 doesn't appear for
connection 3 and Statement 4 and 5 only appear for connection 3. Hence, it
might take a little longer to execute Statements 4 and 5 if they occur on
Connections 1 and 2 because of the need to recompile them for those
connections. A better alternative for this example would be to set the prepared
statement cache of size to 15 statements, to allow for each of the 3 connections
to cache their 5 prepared statements.

Chapter 4. WebSphere Application Server and DB2 UDB performance 173

The value of the statement cache can be set in the Connection Pooling tab from
a datasource configuration panel in the WebSphere Advanced Administrative
Console, as shown in Figure 4-3 on page 152. To disable the statement cache,
set the Statement Cache Size valueto 0.

The actions performed by WebSphere Application Server when the statement
cache is defined with non-zero and zero values is described here.

Non-zero statement cache size

The following actions are performed by WebSphere Application Server when an
application issues a prepare statement against a connection:

1. It does a look aside in the statement cache for this connection to see if a
PreparedStatement object already exists for this statement.

— If such an object exists, it returns this object to the application

— If such an object does not exist, WebSphere Application Server requests a
prepare against the database for this statement, and returns the
PreparedStatement object to the application5

Note: A WebSphere Application Server request to prepare a statement
does not necessarily cause the database to execute the prepare
statement. DB2 UDB will first perform a look aside in its own global
dynamic statement cache for this statement, before deciding to execute the
prepare statement and return the PreparedStatement object to WebSphere
Application Server.

Important: DB2 UDB will prepare a statement if it is not found in its global
dynamic statement cache, even if the PreparedStatement object for this
statement is still available in WebSphere Application Server’s statement
cache.

This operation is repeated for each prepare statement.

2. When the application performs a statement close() or commits, it puts this
PreparedStatement object in the statement cache. If this action would cause
the cache size limit to be exceeded, then it discards an existing
PreparedStatement object in the cache using a first-in-first-out (FIFO) basis, to
make room for this one. The PrepStmt Cache Discards field in Figure 4-5 on
page 166 which counts the number of discards from the statement cache, is
incremented after a discard.

5 With Deferred Prepare (which is the default), this prepare request is only sent to the database with
the next execute request for this PreparedStatement object.

174 DB2 UDB/WebSphere Application Tuning Guide

Important: The statement cache holds a pool of PreparedStatement objects,
each of which is associated with a statement handle that is tied to a particular
connection.

WebSphere Application Server allocates a separate statement handle for
each open cursor in the application, and moves the information related to this
statement handle to the statement cache at commit time. Thinking of the
statement cache as a pool of open statement handles for reuse by subsequent
application units-of-work (UOWSs) that use this same connection, helps to
understand the mechanisms involved in this process.

Zero statement cache size

When there is no statement cache, WebSphere Application Server will execute a
request for a prepare against the database for every application prepare
statement. Here again, a separate statement handle is allocated by WebSphere
Application Server for each open cursor. However, at commit, the statement
handles are destroyed, since there is no statement cache. Subsequent
applications that reuse this connection will require WebSphere Application
Server to set up the appropriate structures to issue the prepare request against
the database.

Important: The elimination of the creation of a prepare request, and the
creation and destruction of statement handle structures on the WebSphere
Application Server and DB2 side, may contribute to measurable performance
degradation depending upon the proportion of this activity to the overall
processing of the application.

Given our understanding of the default deferred prepare statement option, and
DB2’s algorithm for the global dynamic statement cache, performance
benefits of the statement cache is unlikely to stem from a reduction in network
flows, or an elimination of an SQL prepare by DB2.

Our observations were based on a based on a simple test we conducted, with a
zero statement cache, and a statement cache of 10. We turned on CLITRACE,
so that we could monitor traffic from WebSphere Application Server to DB2. We
ran the test using the example shown in Example 4-1 with the default autocommit
ON, which meant that a commit was implied after each SQL statement execution.

Chapter 4. WebSphere Application Server and DB2 UDB performance 175

Example 4-1 Test sample

Prepare statementl (SELECT * FROM TRADEACCOUNTBEAN WHERE USERID
Execute statementl

Close statementl

Prepare statement2 (SELECT * FROM TRADEACCOUNTBEAN WHERE USERID
Execute statement2

Close statement?2

?)

?)

We ran this simple program twice consecutively, and reviewed the CLITRACE
trace output. Excluding SQL requests such as SQLAllocStmt, SQLNumParms,
SQLBindParameter, SQLExecute, SQLNumResultCols, SQLFetch,
SQLGetData, and SQLTransact, we found the following:

» For statement cache of zero

— 4 SQLPrepareW statements
— 4 SQLFreeStmt with fOption=SQL_DROP

» For statement cache of 10

— 2 SQLPrepareW statements
— 4 SQLFreeStmt with fOption=SQL_CLOSE

We ran the same test with autocommit=false with identical results.

Given the above observations, we can conclude that applications that issue SQL
randomly issue a large number of prepare statements, and have database
access constitute a major portion of their processing are likely to benefit from
statement caching.

The following documents provide some performance numbers relating to many
of the configuration parameters discussed here.

» RP Baartman, “IBM WebSphere Application Server 4.0: Tuning WebSphere,
Out-of-the-box to Best Throughput” has a number of measurements related to
Web container threads, pass-by-reference, ORB thread pool, connection
pool, prepared statement cache, and JVM heap size. It documents
performance improvements of up to 15% through tuning of the prepared
statement cache.

» Harvey W. Gunther, WebSphere Application Server Development Best
Practices for Performance and Scalability, IBM 2000
http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf. It
has specific best practices guidelines, and documents the benefits of
implementing them in a controlled test environment.

Important: Your mileage will vary!

176 DB2 UDB/WebSphere Application Tuning Guide

Note: A true indication of the efficacy of any cache is to be able to determine
the buffer hit ratio. Unfortunately, such a statistic is not currently available from
WebSphere Application Server. The PrepStmt Cache Discards field in
Resource Analyzer statistics as shown in Figure 4-5 on page 166, is not
appropriate for ascertaining the efficacy of the statement cache.

You are therefore advised to adopt a trial and error approach to tuning this
parameter, that is, starting with a value of zero and then progressively
increasing its value until no benefits are measured.

The following section provides an overview of DB2’s handling of prepared
statements.

Prepared statements in DB2

In DB2, each SQL statement is cached at a database level, and can be shared
among different applications unlike WebSphere Application Server’s prepared
statement cache. Static SQL statements are shared among applications using
the same package, while dynamic SQL statements are shared among
applications using the same compilation environment, and the exact same
statement text.

Once a dynamic SQL statement has been created and cached, it can be reused
over multiple units of work without the need to prepare the statement again.

Note: DB2 will automatically recompile the statement as required, if
environment or data object changes occur, such as an object being created or
dropped, running runstats, etc.

The size of the DB2 global statement cache is defined via the PCKCACHESZ
database configuration parameter. This cache is allocated in DB2 out of the
Database Global Memory when the database is initialized, and freed when the
database is shutdown. It is used for caching both static and dynamic SQL
statements.

Caching of packages allows the database manager to reduce its internal
overhead by eliminating the need to access the system catalogs when reloading
a package; or, in the case of dynamic SQL, eliminating the need for compilation.
Sections are kept in the package cache until one of the following occurs:

» The database is shut down.
» The package or dynamic SQL statement is invalidated.
» The cache runs out of space.

Chapter 4. WebSphere Application Server and DB2 UDB performance 177

This caching of the section for a static or dynamic SQL statement can improve
performance, when the same statement is used multiple times by applications
connected to a database, including WebSphere Application Server applications.
This is particularly beneficial in a transaction processing application.

Figure 4-8 describes the command for viewing the modifying this parameter.

o CWINNT\System32\telnet.exe [O]

H
$ db2 get db cfg for TRADEDE ! grep PCKCACHESZ
5Package cache size C(4KB> C(PCKCACHESZY = (MAXAPPLS =8>

$ db2 update db cfg for TRADEDB using PCKCACHESZ 3208

DEZBBBAT The UPDATE DATABASE CONFIGURATION command completed successfully.
DE218261 For most configuration parameters, all applications must disconnect
from this database before the changes become effective.

¢ db2 get db cfg for TRADEDB ! grep PCHKCACHESZ
Package cache size <(4KB> {PCKCACHESZ> = 328

Figure 4-8 Setting and changing PCKCACHESZ value

Attention: The package cache is a working cache, so you cannot set this
parameter to zero.

There must be sufficient memory allocated in the cache to hold all sections of the
SQL statements currently being executed. If there is more space allocated than
currently needed, then sections are cached. These sections can simply be
executed the next time they are needed without having to load or compile them.

Note: The limit specified by the PCKCACHESZ parameter is a soft limit. This limit
may be exceeded, if required, provided memory is still available in the
database shared set.

Use the pkg_cache_size_top monitor element to determine the largest that the
package cache has grown, and the pkg_cache_num_overflows monitor element
to determine how many times the limit specified by the pckcachesz parameter
has been exceeded. Refer to DB2 product documentation for more details.

4.3.2 Best practices

Here again, statement cache best practices are categorized as being application
related and system related.

178 DB2 UDB/WebSphere Application Tuning Guide

Application related best practices

The key recommendation here is to use a prepared statement with parameter
markers, followed by an execute statement in the application program as shown
in Figure 4-6 on page 170. This approach is beneficial even if the statement is
executed only once in a particular iteration of the program, since other execution
iterations of the same application, or other applications can potentially exploit
reuse of this PreparedStatement object in the statement cache.

Note: While unrelated to statement caching, we recommend that you use
stored procedures in DB2 for greater efficiencies when multiple SQL
statements are executed in batch mode.

System related best practices

If the WebSphere Application Server statement cache is not large enough, useful
entries will be discarded to make room for new entries. In general, the more
prepared statements your application has, the larger the cache should be.

Tip: Size of prepared statement cache = number of unique SQL statements *
maximum size of connection pool

For example, if the application has 5 SQL statements, and the data source
maximum connection is 10, set the prepared statement cache size to 50.

As indicated earlier, determining the efficacy of the statement cache in
WebSphere Application Server has to be a trial and error exercise, since metrics
such as a buffer hit ratio is not available, and the PrepStmt Cache Discards field
in the Resource Analyzer can not be used in isolation for effective tuning.

WebSphere Application Server caching versus DB2 caching

While the DB2 manuals recommend that applications should no longer use
dynamic caching since the global cache is available, WebSphere Application
Server continues to offer the WebSphere Application Server administrator the
choice of using it or not through the WebSphere Application Server statement
cache option.

Attention: The reader is advised to validate the efficacy of using WebSphere
Application Server statement caching in their particular environment through
trial and error.

Chapter 4. WebSphere Application Server and DB2 UDB performance 179

4.4 Session database

Many Web applications find the use of in-memory local session cache adequate
for their purpose. The local session cache keeps session information in memory,
and local to the machine and WebSphere Application Server where the session
information was first created.

Other Web applications may find the following disadvantages of local session
management unacceptable:

» Local sessions do not share session information with other clustered
machines. Users can only obtain their session information, if they return to the
machine and WebSphere Application Server that is holding their session
information on subsequent accesses to the Web site.

» A server failure takes down not only the WebSphere Application Server
instances running on the server, but also destroys any sessions managed by
those instances, since local sessions are not made persistent.

» WebSphere Application Server allows the administrator to define a limit on
the number of sessions held in the in-memory cache via the administrative
console settings on the session manager, shown in Figure 4-9. This prevents
the sessions from acquiring too much memory in the Java Virtual Machine
associated with the application server.

'.‘i Session Manager Service . = |EI|5|

General Advanced | Cookies | Persistence | Database |
Maximum in-memory session count: *W SESSIONS
[Allow overflow
[Integrate with WebSphere security
[| Enahle protocol switch resriting

Irvalidation timeout; " Mo timeout

{* Settimeout

|3|:| minutes

Figure 4-9 Session Manager Service — Advanced properties

180 DB2 UDB/WebSphere Application Tuning Guide

» However, the session manager also allows the administrator to permit an
unlimited number of sessions in memory. If the administrator enables the
Allow overflow? setting on the session manager via the administrative
console, shown in Figure 4-9, the session manager permits two in-memory
caches for session objects.

— The first cache contains only enough entries to accommodate the session
limit defined to the session manager (default is 1000).

— The second cache, known as the overflow cache, holds any sessions the
first cache cannot accommodate, and is limited in size only by available
memory.

The session manager builds the first cache for optimized retrieval, while a
regular, un-optimized hash table contains the overflow cache.

When overflow is enabled, the session manager permits an unlimited number
of sessions in memory. The algorithm for overflow of local sessions in the
in-memory cache is shown in Figure 4-10.

Add
Cache Overflow Yes Until
Exceeded Configured - Heap
1000 Default (Default) Is
Exceeded

No|

Invalid
session
! returned

-

Cache!

Figure 4-10 In-memory cache overflow algorithm

Using a cache lets the session manager maintain a cache of most recently
used sessions in memory. The session manager uses a “least recently used”
scheme for removing objects from the cache. When there is no more space
available for a new session in either the in-memory cache or the overflow, the
IBMSession object7 can be queried by the application to determine whether
session creation failed, as shown in Example 4-2.

6 This only applies to non-persistent sessions.
7 The session manager always returns an /BMSession object.

Chapter 4. WebSphere Application Server and DB2 UDB performance 181

182

Example 4-2 Query IBMSession

IBMSession sess = (IBMSession)request.getSession();
if(sess.isOverFlow())
{//redirect to error page telling the user that login failed at this time
and that the user should try again in a little while
}
else
{
//do the regular stuff
}

Note: When overflow is disabled for local sessions, and the maximum number
of in-memory sessions limit is reached, IBMSession.isOverFlow() returns true
— in all other cases, it returns false.

» Without limits on the number of sessions, the session caches may consume
all available memory in the WebSphere Application Server instance’s heap,
leaving no room to execute Web applications. Two potential scenarios for
such an occurrence are:

— The site receives greater traffic than anticipated, generating a large
number of sessions held in memory.

— A malicious attack occurs against the site where a user deliberately
manipulates their browser, so that the application creates a new session
repeatedly for the same user.

These disadvantages can be overcome by enabling persistent session
management. When the administrator enables this option, WebSphere
Application Server places session objects in a database.

Administrators should enable persistent session management when:

» The user’s session data must be recovered by another clone, after a clone in
a server groups fails or is shut down.

» The user’s session data is too valuable to lose through unexpected failure at
the WebSphere Application Server node.

» The administrator desires better control of the session cache memory
footprint. By sending cache overflow to a persistent session database, the
administrator controls the number of sessions allowed in memory at any
given time.

DB2 UDB/WebSphere Application Tuning Guide

All information stored in a persistent session database must be serialized. As a
result all of the objects held by a session must implement java.io.Serializable if
the session needs to be stored in a persistent session database. Refer to 2.9.19,
“Ensure that session objects are serializable” on page 63 for guidelines on
making session objects java.io.Serializable.

Attention: WebSphere Application Server only serializes attributes that are
marked as Serializable. WebSphere Application Server traps non-serializable
exceptions and writes them to the standard output log. The application is not
aware of the NotSerializableException, and the problem is not detected until
you attempt to use the missing data.

Persistent session management does not impact the session API, and Web
applications require no API changes to support persistent session management.
However, applications storing non-serializable objects in their sessions require
modification before switching to persistent session management.

Attention: Session data is stored to the persistent store based on the Write
frequency and Write contents option selected, and is not related to the cache
overflow algorithm. The details of storing sessions in persistent store are
discussed in 4.4.1, “Detailed description” on page 184.

Figure 4-9 on page 180 shows how the administrator can configure an
Invalidation timeout parameter. If a timeout value is set, it specifies the number
of minutes since the session object was last accessed, after which the session
can be removed from the in-memory cache and the database if persistent
sessions are used.

If the user no longer needs the session object because they went through the
logoff process for the site, the session becomes an excellent candidate for
invalidation. Invalidating a session removes it from the session cache, as well as
from the session database.

WebSphere Application Server offers three methods for invalidation session
objects:

» Programmatically, by calling the invalidate() method on the session object.
If the session object is accessed by multiple threads in a Web application,
ensure that none of the threads still have references to the session object.

» An invalidator thread scans for timed out sessions every n seconds, where n
is a function of the Invalidation timeout value. This sleep interval can be
explicitly set for the invalidation thread using the system property
SessionReaperlnterval. This property is specified as
-DSessionReaperinterval=interval(in seconds).

Chapter 4. WebSphere Application Server and DB2 UDB performance 183

» For persistent sessions only, the administrator can specify times when the
scan will be run. The session database cleanup schedule for invalidated
sessions is set in the Configure Persistence Tuning window, as seen in
Figure 4-12 on page 186.

Notes:

1. HttpSession timeouts are not enforced. Instead, all invalidation processing
is handled at the configured invalidation times.

2. HttpSessionBindingListener processing is potentially delayed by this
configuration. It is not recommended if listeners are used.

4.4.1 Detailed description

A datasource must first be created for the database that will contain the session
data.

Persistent session management is enabled by clicking the Persistence tab in
the Session Manager Service window, and choosing one of various policies
available as shown in Figure 4-11. The default policy is Medium.

After choosing the options on this window, you need to click the Database tab in
order to set session database parameters. This is covered in “Session Manager
Service — Database” on page 193.

184 DB2 UDB/WebSphere Application Tuning Guide

'.‘i Session Manager Service . = |EI|5|

eneral | Advanced ies Persistence | Database
j CEEDIE:

= Wary high (optimize for performance)
Wirite Frequency = Time Based OMrite Interval = 300 secands)
Wirite Cantents = Only Updated Attributes
Wirite Frequency = Time Based OMrite Interval = 300 secands)

Session datahase cleanup scheduled for invalidated sessions at
time = 00

= High
Wirite Contents = All Session Aftributes

& wedium

Wirite Frequency = End of Service Method
Wirite Cantents = Only Updated Attributes

Lo {optimize far database failover)

Wirite Frequency = End of Service Method
Wirite Caontents = All Session Attributes

 Canfigure manually

Ol Cancel Help |

Figure 4-11 Session manager service — persistence properties

Session Manager Service — Persistence

You can choose to configure manually by clicking the appropriate button, which
displays the Configure Persistence Tuning window shown in Figure 4-12. This
panel allows the administrator to manually tune:

» How often the session data is written to the database
» How much data is written
» When the invalid sessions are cleaned up in the database

Chapter 4. WebSphere Application Server and DB2 UDB performance 185

186

¥ Configure Persistence Tuning) [

Wirite rRQUENCY.S End of servet service

i~ Manual update

= Time based: |0

Wirite contents: & cinly updated attributes

" Al session aftributes

[| Specify session database cleanup schedule for invalidated sessions:

First tirme of day (0-23): *|

Second tirme of day (0-23): |

Cancel Help

Figure 4-12 Configure persistence tuning

The three properties associated with tuning persistence are write frequency,
write contents, and cleanup of invalidated sessions in the database.

» Write frequency:

This group of options defines how often the HTTP session data is written to

the persistent session database.

— End of servlet service:

With this option, WebSphere Application Server writes the session data to
the session database at the completion of the HttpServiet.service()
method call. Exactly what is written depends on the Write contents setting.

Note: The last access time attribute is always updated each time the
session is accessed by the servlet or JSP. This done to make sure the
session does not time out.

If you choose the End of serviet service option, each servlet or JSP
access will result in a corresponding database update of the last access
time. If you select the Manual update option, the update of the last
access time in database occurs on sync() call or at later time.

DB2 UDB/WebSphere Application Tuning Guide

— Manual update:

This option allows the application to decide when a session should be
stored in the session database. In manual mode, the session manager
only sends changes to the persistent data store if the application explicitly
requests a save of the session information. Session data will be written to
the database when the sync() method is called on the IBMSession object.

Note: Manual updates use an IBM extension to HttpSession that is not
part of the Servlet 2.2 API

Manual mode requires that an application developer use the IBMSession
class for managing sessions. When the application invokes the sync()
method, the session manager writes the modified session data and last
access time to the persistent session database. The session data that is
written out to the database is controlled by the Write contents option
selected.

If the servlet or JSP terminates without invoking the sync() method, the
session manager saves the contents of the session object into the session
cache (if caching is enabled), but does not update the modified session
data in the session database. The session manager will asynchronously
update the database with only the last access time, during the invalidator
thread scan. Web developers may use this interface to reduce
unnecessary writes to the session database, and thereby to improve
overall application performance.

All servlets in the Web application server must perform their own session
management in manual mode.

— Time based:

Session data will be written to the database based on the specified write
interval value.

The rationale for implementing time based write were the changes
introduced with the Servlet 2.2 API. The Servlet 2.2 specification
introduced two key concepts:

e It limits the scope of a session to a single Web application.

* It explicitly prohibits concurrent access to an HttpSession from
separate Web applications, but permits concurrent access within a
given JVM.

Chapter 4. WebSphere Application Server and DB2 UDB performance 187

188

Because of these changes, WebSphere Application Server provided the
session affinity mechanism for ensuring that an HTTP request is routed to
the Web application handling its HttpSession. This assurance still holds in
a work load management (WLM) environment when using persistent
HttpSessions. This means that the necessity to immediately write the
session data to the database can now be relaxed somewhat in these
environments (as well as non-clustered environments), since the database
is now really only used for “failover” and “session cache full” scenarios.

Given these circumstances, it is now possible to gain potential
performance improvements by reducing the frequency of database writes.

With this option, WebSphere Application Server can significantly reduce
the 1/0O to the session database caused by the last access time updates.
The last access time attribute of the HTTP session is updated every time
the servlet or JSP accesses the session. The servlet or JSP does not have
to update the session, just access it. When persistent session
management is enabled, the changed last access time will be written to
the database. If write at End of serviet service mode is enabled, then
WebSphere Application Server could be writing to the session database
every time it process an HTTP request. This can be a significant
overhead. By using the time based mode, these updates to the database
would be deferred, and done in a single transaction. Only the latest
change to the last access time of the session will be written.

Note: Time based writes requires session affinity for session data
integrity.

» Write contents:

These options control what is written to the session database.
— Only updated attributes:

It writes only the HttpSession properties that have been updated via
setAttribute() and removeAttribute().

— All session attributes:
It writes all the HttpSession properties to the database.

When a new session is initially created (with either of the above two options),
the entire session is written to the database including any Java objects bound
to the session. The behavior for subsequent servlet or JSP requests for this
session, varies depending on whether the single-row or multi-row database
mode is in use. See , “Session Manager Service — Database” on page 193
for details on using single and multi-row sessions.

DB2 UDB/WebSphere Application Tuning Guide

— In single-row mode:
» Only updated attributes:

If any session attribute has been updated (via setAttribute() or
removeAttribute()), then all of the objects bound to the session will be
written to the database.

o All session attributes:
All bound session attributes will be written to the database.
— In multi-row mode:
o Only updated attributes:

Only the session attributes that were specified via setAttribute() or
removeAttribute() will be written to the database.

e All session attributes:

All of the session attributes that reside in the cache will be written to the
database. If the session has never left the cache, then this should
contain all of the session attributes.

By using the All session attributes mode, the servlet and JSP can change
Java objects that are attributes of the HttpSession without having to call
setAttribute() on the HttpSession for that Java object in order for the changes
to be reflected in the database.

Adding the All session attributes mode provides some flexibility to the
application programmer, and protects against possible side effects of moving
from local sessions to persistent sessions.

However, using All session attributes mode can potentially increase database
activity and be a performance drain. Individual customers will have to
evaluate the pros and cons for their installation. It should be noted that the
combination of A/l session attributes mode with Time based write could greatly
reduce the performance penalty, and essentially give you the best of both
worlds.

Table 4-1 summarizes the action of the HttpSession setAttribute() and
removeAttribute() methods for various combinations of the row type, Write
contents, and Write frequency session persistence options.

Chapter 4. WebSphere Application Server and DB2 UDB performance 189

Table 4-1 Write contents vs. write frequency

Row type Write Write Action for Action for
contents frequency setAttribute remove-
Attribute
Single-row Only updated End of servlet | If any of the If any of the
attributes service / session data session data
sync() callwith | has changed has changed
Manual update | thenwriteallof | then write all of
this session's this session's
data from data from
cache' cache'
Single-row Only updated Time based If any of the If any of the
attributes session data session data
has changed has changed
thenwrite allof | then write all of
this session's this session's
data from data from
cache' cache'
Single-row All session End of servlet | Always write Always write
attributes service / all of this all of this
sync() callwith | session's data | session's data
Manual update | from cache? from cache®
Single-row All session Time based Always write Always write
attributes all of this all of this
session's data | session's data
from cache from cache
Multi-row Only updated End of servlet | Write only Delete only
attributes service / thread specific | thread specific
sync() callwith | data that has data that has
Manual update | changed been removed
Multi-row Only updated Time based Write thread Delete thread
attributes specific data specific data
that has that has been
changed for removed for
all threads all threads
using this using this
session session

190 DB2 UDB/WebSphere Application Tuning Guide

Row type Write Write Action for Action for
contents frequency setAttribute remove-
Attribute
Multi-row All session End of servlet Write all Delete thread
attributes service / session data specific data
sync() callwith | from cache that has been
Manual update removed for
all threads
using this
session
Multi-row All session Time based Write all Delete thread
attributes session data specific data
from cache that has been
removed for
all threads
using this
session
Notes:

1. When a session is written to the database while using single-row mode, a!//
of the session data is written. Therefore, no database deletes are
necessary for properties that were removed via removeAttribute(), since
the write of the entire session will not include removed properties.

2. Multi-row mode has the notion of thread-specific data. Thread-specific data
is defined as session data that was added or removed while executing
under this thread. If End of servlet service or Manual update modes are
used and Only updated attributes is enabled, then only the thread-specific
data is written to the database.

» Specify session database cleanup schedule for invalidated sessions:

The administrator can choose to defer the clearing of invalidated sessions
(sessions that are no longer in use and timed out) from the database to
offpeak hours. This can be done either once or twice a day as follows:

— First time of day (0-23):

The first hour during which the invalidated persistent sessions will be
cleared from the database. This value must be a positive integer between

0 and 23.

Chapter 4. WebSphere Application Server and DB2 UDB performance 191

192

Second time of day (0-23):

The second hour during which the invalidated persistent sessions will be
cleared from the database. This value must be a positive integer between
0 and 23.

The following considerations apply to time based write:

The expiration of the write interval does not necessitate a write to the
database unless the session has been touched (that is,
getAttributelsetAttribute/removeAttribute was called) since the last write.

If a session write interval has expired and the session has only been
retrieved (that is, request.getSession() was called since the last write) then
the last access time will be written to the database regardless of the Write
contents setting.

If a session write interval has expired and the session properties have
been either accessed or modified since the last write then the session
properties will be written out in addition to the last access time. Which
session properties get written out is dependent on the Write contents

settings.

Time based write allows the servlet or JSP to issue /BMSession.sync() to
force the write of session data to the database.

If the time between session servlet requests (for a particular session) is
greater than the write interval then the session effectively gets written out
after each service method invocation.

The session cache should be large enough to hold all of the active
sessions. Failure to do this will result in extra database writes since the
receipt of a new session request may result in writing out the oldest
cached session to the database. Or to put it another way, if the session
manager has to remove the least recently used HitpSession from the
cache during a “full cache” scenario, the session manager will write out
that HitpSession (per the Write contents settings) upon removal from the
cache.

The session invalidation time must be at least twice the write interval to
ensure that a session does not inadvertently get invalidated prior to getting
written to the database.

A newly created session will always get written to the database at the end
of the service method.

Also consider using schedule invalidation for intranet style applications that
have a somewhat fixed number of users wanting the same HTTP session for
the whole business day.

DB2 UDB/WebSphere Application Tuning Guide

Session Manager Service — Database
Selecting the Database tab in the Session Manager Service window takes you to
the session database properties window shown in Figure 4-13.

¥4l Session Manager Service = |EI|5|

General| Advanced | Cookies | Persistence Database

Ed

Data source:

Llzername:

Fassword:

Canfirm passwaord:

DB2 row size: |4 |

Tahle space narme: |

[Use multirow sessions

Ol Cancel Help

Figure 4-13 Session manager service — database properties

The datasource for the session database must be a non-JTA enabled
datasource. The user name and password should be set if required.

A brief discussion of the DB2 row size, and the Use multi-row sessions settings is
provided in the following sections.

Chapter 4. WebSphere Application Server and DB2 UDB performance 193

194

DB2 row size
The session database includes a SESSIONS table that has three columns
defined as follows:

» Small: Defined as VARCHAR with a length based on the DB2 row size
» Medium: Defined as LONG VARCHAR
» Large: Defined as a BLOB of size 2 megabytes

Session data is stored in one of these columns depending upon its size, and is
moved between these columns, as the session grows or contracts in size.

Storing of session data in the “small” column tends to deliver greater DB2 buffer
pool efficiencies than if it is stored in the “medium” or “large” columns. Therefore,
a proper choice of DB2 row size based on an understanding of session data
sizes can deliver improved performance.

Changing the DB2 row size is not a complex task, and involves the following
steps:

1. If the SESSIONS table already exists, drop it from the DB2 database:

DB2 connect to session
DB2 drop table sessions

2. Create a new DB2 buffer pool and tablespace, specifying the same page size
(8 KB, 16 KB or 32 KB) for both, and assign the new buffer pool to this
tablespace. Following are simple steps for creating an 8 KB page:

DB2 connect to session

DB2 CREATE BUFFERPOOL sessionBP SIZE 1000 PAGESIZE 8K

DB2 connect reset

DB2 connect to session

DB2 CREATE TABLESPACE sessionTS PAGESIZE 8K MANAGED BY SYSTEM USING
('D:\DB2\NODE0000\SQL00005\sessionTS.0"') BUFFERPOOL sessionBP

DB2 connect reset

Refer to DB2 product documentation for details.

3. Configure the correct tablespace name and page size in the Session
Manager Service window, Database tab. As seen in Figure 4-13 on page 193,
page size is referred to as “DB2 row size” in the session manager database
properties.

4. Restart WebSphere. On startup, the session manager creates a new
SESSIONS table based on the page size and table space name specified.

DB2 UDB/WebSphere Application Tuning Guide

Use multi-row sessions

WebSphere Application Server’s default configuration for persistent session
management is the use of a single-row schema, in which each user session
maps to a single database row. With this setup, there are hard limits to the
amount of user-defined, application-specific data that WebSphere Application
Server can access.

With a multi-row schema, each user session maps to multiple database rows. In
a multi-row schema, each session attribute maps to a database row.

In addition to allowing larger session records, using a multi-row schema can yield
performance benefits as discussed earlier.

Attention: It should be stressed that switching between multi-row and
single-row is not a trivial proposition.

To switch from single-row to multi-row schema for sessions, perform the

following steps:

1. Modify the session manager properties to switch from single to multi-row
schema.

2. Manually drop the SESSIONS table or delete all the rows in the it. To drop
this table:

a. Determine which data source the session manager is using.
b. In the data source properties, look up the database name.
c. Use the database facilities to connect to the database.

d. Drop the SESSIONS table.

3. Restart the application server or server group.

4.4.2 Best practices

Large numbers of sessions that are held for extended durations, and contain
huge amounts of information can pose several problems for a Web application.

1. If a site uses session caching, large sessions reduce the memory available in
the WebSphere Application Server instance for other tasks, such as
application execution.

Chapter 4. WebSphere Application Server and DB2 UDB performance 195

196

For example, assume a given application stores 1 MB of information per user
session object. If 100 users arrive over the course of 30 minutes, and assume
the session timeout remains at 30 minutes, the application server instance
must allocate 100 MB just to accommodate the newly arrived users in the
session cache. Note this number does not include previously allocated
sessions that have not timed out yet. The actual memory required by the
session cache could be considerably higher than 100 MB.

1 MB per user session * 100 users = 100 MB

2. If persistent sessions are used, then frequent I/O to the session database can
degrade performance, and will also require tuning the session database for
optimal performance.

The following best practices are recommended for improving session
management, and are categorized as being application related and system
related.

Application related best practices

Key recommendations here are to ensure application code allow persistent
sessions to be enabled or disabled by the administrator without impacting
application code, reduce the session object size, reduce the session duration by
releasing HttpSessions when finished, choose persistence options, and avoid
creating HitpSessions in the JSPs by default.

1. Enable session persistence:

In order for the WebSphere session manager to persist a session to the
database, all of the Java objects in an HitpSession must be serializable (that
is, implement the java.io.Serializable interface). The HttpSession can also
contain the J2EE objects which are not serializable:

— javax.ejb.EJBObject

— javax.ejb.EJBHome

— Jjavax.naming.Context

— Jjavax.transaction.UserTransaction

The WebSphere session manager works around the problem of serializing
these objects in the following manner:

— EJBObject and EJBHome each have Handle and HomeHandle object
attributes that are serializable, and can be used to reconstruct the
EJBObject and EJBHome.

— Context is constructed with a hash table based environment, which is
serializable. WebSphere Application Server will retrieve the environment,
then wrapper it with an internal, serializable object, so that on re-entry it
can check the object type and reconstruct the Context.

DB2 UDB/WebSphere Application Tuning Guide

— UserTransaction has no serializable attributes. WebSphere provides two
options:

e The Web developer can place the object in the HitpSession but
WebSphere Application Server will not persist it outside the JVM.

* WebSphere Application Server has a new public wrapper object,
com.ibm.websphere.serviet.session.UserTransactionWrapper, which is
serializable and requires the InitialContext used to construct the
UserTransaction. This will be persisted outside the JVM and be used to
reconstruct the UserTransaction.

Note: As per J2EE, a Web component may only start a transaction in a
service method. A transaction that is started by a servlet or JSP must be
completed before the service method returns. That is, transactions may not
span Web requests from a client. If there is an active transaction after
returning from the service method, WebSphere Application Server will
detect it and will abort the transaction.

Tip: In general, Web developers should consider making all other Java
objects held by HttpSession serializable, even if immediate plans do not
call for the use of persistent session management. If the Web site grows,
and persistent session management becomes necessary, the transition
between local and persistent management occurs transparently to the
application if the sessions hold only serializable objects. If not, a switch to
persistent session management requires coding changes to make the
session contents serializable.

2. Reduce session object size:

Web developers must carefully consider the information kept by the session
object, and apply some or all of the following techniques to reduce session
object size:

— Remove from the session object information easily obtained or easily
derived

— Rigorously remove unnecessary, unneeded, or obsolete data from the
session

— Consider whether it would be better to keep a certain piece of data in an
application database rather than in the HTTP session. This gives the
developer full control over when the data is fetched or stored, and how it is
combined with other application data. Web developers can leverage the
power of SQL if the data is in an application database.

Chapter 4. WebSphere Application Server and DB2 UDB performance 197

198

This becomes particularly important when persistent sessions are used.
There is a significant performance overhead when WebSphere Application
Server has to serialize a large amount of data and write it to the database.
Even if the Write contents option is enabled, if the session object contains
large Java objects or collections of objects that are updated regularly, there is
a significant performance penalty in persisting these objects. This penalty can
be reduced by using Time based writes as described — on page 187.

For suggestions related to JSPs and servlets, please also refer to item 4.,
“Reduce persistent sessions database 1/0” on page 203.

Notes: In general, best performance will be realized with session objects
that are less than 2 KB in size. Once the session object starts to exceed
4-5 KB in size, a significant decrease in performance can be expected.

Even if session persistence is not an issue, minimizing the session object
size will help to protect your Web application from scale-up disasters as
user numbers increase. Large session objects will require more and more
JVM memory, leaving no room to run servlets.

. Release HttpSessions when finished:

HttpSession objects live inside the WebSphere servlet engine until:

— The application explicitly and programmatically releases it using the API
Javax.serviet.http.HttpSession.invalidate(). Quite often, programmatic
invalidation is part of an application logout function.

— WebSphere Application Server destroys the allocated HitpSession when it
expires (by default, after 1800 seconds or 30 minutes). WebSphere
Application Server can only maintain a certain number of HitpSessions in
memory. When this limit is reached, WebSphere Application Server:

* Removes the least recently used session in the case of persistent
sessions.

* Denies session creation or moves it into the overflow table if the
overflow flag is set in the case of in-memory sessions.

In a high volume system, it is desirable to avoid consuming memory for
abandoned HttpSessions.

DB2 UDB/WebSphere Application Tuning Guide

import java.io.®;

import java.util.»;

import javax.serwvlet.=;
import Jjavax.servlet.http.#*;

Elu.hll.: class ApplicationLogOutfervlet extends HttpSeruvlet

pmhlir void deCGet{HttplervletRequest request, HttpRervletRezponse responzel
throws ServletException. 10Exception

Httplession mySession - regquest.geticszion{fal=e>;
if{myfezaion *= null>
{

ot Srvalidate the Secofon Here YPX38

nyiession. invalldace(?;

ot Srvalidate the Sooofon Nere FrrY
»
ot
S Kome atker Bopfication LegofF Procescing and (hedput Seploe Back
et e PArowses
s

H

Figure 4-14 Use of invalidate()

4. Choose persistence options:

Figure 4-11 on page 185 and Figure 4-12 on page 186 show the various
options that can be configured with the persistence enablement. Four default
options, or one custom option, are available to the application designer.
Table 4-2 describes the pros and cons of the various options.

Table 4-2 Choosing persistence options

Persistence option Application scenario

Reasons to use Very » For very active, session intensive Web applications

High persistence option |, \jaximizes the use of the in-memory cache, and tries to

minimize database access
» Optimized for high performance applications

Reasons noft to use » Since it uses in-memory caches extensively, and only
Very High persistence persists data every 5 minutes, if the JVM crashes before
option persisting, then all session data that was changed since

the last 5 minute interval cycle would be lost.

» If alot of new sessions are created throughout the day,
the SESSIONS table may become quite large since it is
cleaned up only once a day at midnight. This can result
in slower response times for sessions that need to be
retrieved from the SESSIONS table.

Reasonstousethe High | » The problem of very large SESSIONS table is resolved
persistence option with this option, since it is cleaned up at intervals based
on the Invalidation Timeout setting.

Chapter 4. WebSphere Application Server and DB2 UDB performance 199

200

Persistence option

Application scenario

Reasons not to use the
High persistence option

» Since this setting uses the in-memory cache
extensively, and only persists data every 5 minutes, if
the JVM crashes before persisting, then all session data
that was changed since the last 5 minute interval cycle
would be lost.

» If the application has large objects that do not change
very often, then the Write Contents setting of this option
may cause unneeded object persistence by writing back
all session objects each time a session is persisted.

Reasons to use the
Medium (default)
persistence option

» This option is appropriate when failover is more
important than performance. This is because objects in
the session that have changed are persisted after each
servlet request.

» If a failure occurs, only the session data that was
changed during the service method execution is lost.

Reasons not to use the
Medium (default)
persistence option

» Not appropriate if performance is more important than
failover.

» If a lot of attributes are updated often, this option may
add significant overhead when multi-row sessions is
enabled.

Reasons to use the Low
persistence option

» When failover is the top priority, this option is
appropriate since all attributes are written out at the end
of the service method regardless of whether that have
changed or not.

Reasons not to use the
Low persistence option

» When performance is more important than failover.

Manual Update option is entirely dependent upon the application developer since
they have to use the com.ibm.websphere.serviet.session.IBMSession object
instead of the HttpSession object. The sync() method can then be used to persist
the session data to the SESSIONS table.

Reasons to use the
Manual Update option

» Application servlets typically reads session data, but
does not write it back often.

» Developer wants direct control over when the session
information must be persisted.

DB2 UDB/WebSphere Application Tuning Guide

Persistence option Application scenario

Reasons not touse the | » Developer does not want explicit control over
Manual Update option persistence to the session database.

» Application servlets update session information
frequently.

» Developer needs to be completely compliant with the
Servlet 2.2 specifications. Using the sync() method of
the IBMSession object results in the servlet not being
portable to other systems, since session persistence is
not part of the Servlet 2.2 specification, but an IBM
extension to it.

5. Avoid creating HttpSessions in the JSP by default:

JSPs create HttpSessions by default per J2EE, to facilitate the use of JSP
implicit objects, which can be referenced in JSP source and tags without
explicit declaration. HttpSession is one of those objects.

If you do not use HttpSession in your JSPs, then performance can be
enhanced by avoiding this default HttpSession creation by involving the
following JSP page directive:

<%0 page session=“false”%>

System related best practices

Key recommendations here are to tune the session cache size, add additional
WebSphere Application Server instances, increase available memory, reduce
persistent sessions database 1/0, tune multi-row persistent session
management, tune the session timeout interval, tune the session database
connection pool, and tune the session database.

1. Tune session cache size

The default session cache holds 1000 session objects. By lowering the
number of session objects in the cache, the administrator can reduce the
memory required by the cache.

However, if the user’s session is not in the cache, WebSphere Application
Server must retrieve it from either the overflow cache (for local caching) or the
session database (for persistent sessions). If the session manager must
retrieve persistent sessions frequently, the retrievals may impact overall
application performance.

Chapter 4. WebSphere Application Server and DB2 UDB performance 201

202

WebSphere Application Server maintains overflowed local sessions in
memory as well. Local session management with cache overflow enabled
allows an “unlimited” number of sessions in memory. As discussed earlier,
the session manager builds the first cache for optimized retrieval, while a
regular un-optimized hash table contains the overflow cache.

Tip: For best performance, define a primary cache of sufficient size to hold
the normal working set of sessions for a given WebSphere Application
Server.

In order to limit the cache footprint to the number of entries specified in
session manager, the administrator should use persistent session
management, or disable overflow.

Note: When using local session management without specifying the Allow
overflow property, a full cache will result in the loss of user session objects.

. Add additional application server clones

WebSphere Application Server gives the administrator the option of creating
additional application server instances, or clones. Creating additional clones
spreads the demand for memory across more JVMs, thus reducing the
memory burden on any particular instance. Depending on the memory and
CPU capacity of the machines involved, the administrator may add additional
instances within the same machine. Alternatively, the administrator may add
additional machines to form a hardware cluster, and spread the instances
across this cluster.

Note: When configuring a session cluster, session affinity routing provides
the most efficient strategy for user distribution within the cluster, even with
session persistence enabled. With clones, the WebSphere HTTP plug-in
provides affinity routing among clone instances.

. Increase available memory

WebSphere Application Server allows the administrator to increase an
application server’s heap size. Increasing this value allows the instance to
obtain more memory from the system, and thus hold a larger session cache.

A practical limit exists, however, for an instance’s heap size. The machine
memory containing the instance needs to support the heap size requested.
Also, if the heap size grows too large, the length of the garbage collection
cycle with the JVM may impact overall application performance. This impact
has been reduced with the introduction of multi-threaded garbage collection.

DB2 UDB/WebSphere Application Tuning Guide

4. Reduce persistent sessions database I/O

Every time that a servlet or JSP accesses an HTTP session, the last access
time is updated on the session object. This is done to make sure that the
session does not time out. The last access time is updated even if the servlet
does not call getAttribute() or setAttribute(). It only has to call getSession().

When persistent session management is enabled, the change to the last
access time is written to the database. The Write contents option specifies
what data is written to the database. When the End of serviet service Write
frequency mode is enabled, the session is written at the end of the call to the
service() method for the servlet or JSP. This can easily lead to a situation
where WebSphere Application Server is writing the session to the database
every time an HTTP request is processed. This is true even if the servlet or
JSP only reads from the session.

For JSPs this is a particular concern. In compliance with the J2EE
specification, by default, JSPs access the session object each time they are
executed. This means that the last access time is changed and written to the
database each time WebSphere Application Server executes the JSP.

From a performance point of view, the Web developer should consider the
following:

— Optimize the use of the HttpSession within a servlet. Only store the
minimum amount of data required in HttpSession. Data that does not have
to be recovered after a clone fails, or is shut down may be best kept
elsewhere, such as in a hash table. Recall that HTTP session is intended
to be used as a temporary store for state information between browser
invocations.

— JSPs that do not need to access the session object should use the JSP
directive in Example 4-3. This tells the JSP container that you will not be
accessing the session. This stops the last accessed time being updated
during JSP execution.

Example 4-3 Directive to stop a JSP updating the session last accessed time

<%@ page session=“false”%>

Note: By default this directive is set to true. This causes the last access
time to be updated and written to the database every time WebSphere
executes the JSP.

— Use “Time based” Write frequency mode. This greatly reduces the amount
of 1/0, as the database updates are deferred up to a configurable number
of seconds. Using this mode, all of the outstanding updates for a Web
application are written out periodically based on configured write interval.

Chapter 4. WebSphere Application Server and DB2 UDB performance 203

— Use the Specify session database cleanup schedule for invalidated
sessions option. When using the End of serviet service Write frequency
mode, WebSphere Application Server does not have to write out the last
access time with every HTTP request. This is because WebSphere
Application Server does not have to synchronize the invalidator thread's
deletion with the HTTP request’s access.

5. Tune multi-row persistent session management

When a session contains multiple objects accessed by different servlets or
JSPs in the same Web application, multi-row session support provides a
mechanism for improving performance. Multi-row session support stores
session data in the persistent session database by Web application and
value. Table 4-3 shows a simplified representation of a multi-row database
table.

Table 4-3 Simplified multi-row session representation

Session ID Web Property Small Large
application value value

DA32242SSGE2 ShoeStore ShoeStore.First. Name “Alice”

DA32242SSGE2 ShoeStore ShoeStore.Last.Name “Smith”

DA32242SSGE2 ShoeStore ShoeStore.Big.String “A big
string....”

In this example, if the user visits the ShoeStore application, and the servlet
involved needs the user’s first name, the servlet retrieves this information
through the session API. The session manager brings into the session cache
only the value requested. The ShoeStore.Big.String item remains in the
persistent session database until the servlet requests it. This saves time by
reducing both the data retrieved and the serialization overhead for data the
application does not use.

After the session manager retrieves the items from the persistent session
database, these items remain in the in-memory session cache. The cache
accumulates the values from the persistent session database over time as
the various servlets within the Web application request them. With
WebSphere Application Server’'s session affinity routing, the user returns to
this same cached session instance repeatedly. This reduces the number of
reads against the persistent session database, and gives the Web application
better performance.

Even with multi-row session support, Web applications perform best if the
overall contents of the session objects remain small. Large values in session
objects require more time to retrieve from the persistent session database,
generate more network traffic in transit, and occupy more space in the
session cache after retrieval.

204 DB2 UDB/WebSphere Application Tuning Guide

Multi-row session support provides a good compromise for Web applications
requiring larger sessions. However, single-row persistent session
management remains the best choice for Web applications with small session
objects. Single-row persistent session management requires less storage in
the database, and requires fewer database interactions to retrieve a session’s
contents (all of the values in the session are written or read in one operation).
This keeps the session object's memory footprint small, as well as reducing
the network traffic between WebSphere and the persistent session database.
Table 4-4 describes the pros and cons of single versus multi-row schemas.

Table 4-4 Single versus multi-row schemas

Programming issue

Application scenario

Reasons to use single-row

» You can read/write all values with just one
record read/write.

» This takes up less space in a database,
because you are guaranteed that each
session is only one record long.

Reasons not to use single-row

2 MB limit of stored data per session. That is,
the sum of sizes of all session attributes is
limited to 2 MB.

Reasons to use multi-row

» The application can store an unlimited
amount of data; that is, you are limited
only by the size of the database and a 2
MB-per-record limit (so the size of each
session attribute can be 2 MB).

» The application can read individual fields
instead of the whole record. When large
amounts of data are stored in the session
but only small amounts are specifically
accessed during a given servlet's
processing of an HTTP request, multi-row
sessions can improve performance by
avoiding unneeded Java object
serialization.

Reasons not to use multi-row

If data is small in size, you probably do not
want the extra overhead of multiple row reads
when everything could be stored in one row.

Consider configuring direct single-row usage to one database, and multi-row
usage to another database while you verify which option suits your
application's specific needs. You can do this by switching the data source
used, then monitoring performance.

Chapter 4. WebSphere Application Server and DB2 UDB performance 205

206

In the case of multi-row usage, design your application’s data objects so that
they do not to have references to each other. This is to prevent circular
references. For example, suppose you are storing two objects A and B in the
session using HttpSession.put(..), and A contains a reference to B. In the
multi-row case, because objects are stored in different rows of the database,
when objects A and B are retrieved later, the object graph between A and B is
different from what was stored. A and B behave as independent objects.

Restriction: Avoid circular references within sessions if using multi-row
session support. The multi-row session support does not preserve circular
references in retrieved sessions.

. Tune the session timeout interval:

By default, each user receives a 30-minute interval between requests before
the session manager invalidates the user’s session. Not every site requires a
session timeout interval this generous. By reducing this interval to match the
requirements of the average site user, the session manager purges the
session from the cache (and the persistent store, if enabled) more quickly.

Avoid setting this parameter too low and frustrating users. The administrator
must take into account a reasonable time for an average user to interact with
the site (read returned data, fill out forms, and so on) when setting the
interval. Also, the interval must represent any increased response time during
peak times on the site (such as heavy trading days on a brokerage site, for
example).

Finally, in some cases where the persistent session database table contains
a large number of entries, frequent execution of the invalidation timeout
scanner reduces overall performance. In cases where the database contains
many session entries, avoid setting the session timeout so low it triggers
frequent, expensive scans of the persistent session database for timed-out
sessions.

Note: The Invalidation timeout scanner interval is a function of the
Invalidation timeout value.

As indicated earlier, in WebSphere Application Server 4.03, a new system
property SessionReaperinterval has been defined to allow the sleep
interval to be set for the invalidation thread. The system property should be
specified as -DSessionReaperinterval=interval(in seconds). Refer to the
WebSphere Application Server Version 4.0.3 Release Notes at the
following URL for further details.
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter
/was/403RN.html

DB2 UDB/WebSphere Application Tuning Guide

Alternatively, the administrator should consider Time based invalidation,
where scans for invalid object can be deferred to a time that normally has low
demand.

. Tune the session database connection pool:

When using persistent session management, the session manager interacts
with the defined database through a WebSphere Application Server data
source. Each data source controls a set of database connections known as a
connection pool. By default, the data source opens a pool of no more than 10
connections. The maximum pool size represents the number of simultaneous
accesses to the persistent session database available to the session
manager.

For high-volume Web sites, the default settings for the persistent session data
source may not be sufficient. If the number of concurrent session database
accesses exceeds the connection pool size, the data source queues the
excess requests until a connection becomes available. Data source queueing
can impact the overall performance of the Web application (sometimes
dramatically).

The same tuning considerations as described in 4.2, “Connection pool” on
page 148, and 4.3, “Prepared statement cache” on page 169 apply to session
database connection pool, and prepared statement cache respectively.

As discussed earlier, session affinity routing combined with session caching
reduces database read activity for session persistence. Likewise, Manual
update Write frequency, Time based Write frequency, and multi-row persistent
session management reduce unnecessary writes to the persistent database.
Incorporating these techniques may also reduce the size of the connection
pool required to support session persistence for a given Web application.

. Tune the session database:

While the session manager implementation in WebSphere Application Server
provides for a number of parameters that can be tuned to improve
performance of applications that utilize HTTP sessions, maximizing
performance will require tuning the underlying session persistence table
SESSIONS.

We discuss tuning considerations as being either DB2 row size related, or
traditional tuning.

Chapter 4. WebSphere Application Server and DB2 UDB performance 207

208

a. DB2 row size:

“DB2 row size” on page 194 provides an overview of this issue. In order to
determine what the DB2 row size ought to be, one needs to determine the
average (or median) session object size being created by the application.
This information is not readily available in WebSphere Application Server.

However, if persistent sessions are enabled, one may query the
SESSIONS table at frequent intervals to obtain the number and average
size of the session object stored in each column of the SESSIONS table,
using the SQL statement shown in Example 4-4.

Example 4-4 Number and average size of persistent session objects

SELECT COUNT(*), AVG(LENGTH(small)) FROM sessions WHERE small IS NOT NULL
UNION

SELECT COUNT(*), AVG(LENGTH(mediunm)) FROM sessions WHERE medium IS NOT NULL
UNION

SELECT COUNT(*), AVG(LENGTH(Targe)) FROM sessions WHERE large IS NOT NULL

This provides a snapshot at a given point in time, and repeated monitoring
should help get a better idea of the number and average size of the
session objects.

Attention: This is not an accurate method of determining session
object sizes, since session objects that have been removed due to
session invalidations may not have been factored into the results.

b. Traditional tuning:

This issue covers ground such as index creation, isolating the database
instance, data placement, disk striping, locking, buffer pool sizes, etc.
Chapter 3, “Overview of DB2 UDB 8” on page 97 provides an overview of
DB2 tuning considerations.

WebSphere Application Server provides a “first step” in this regard by
creating an index for the SESSIONS table when creating the table. The
index is comprised of the session ID, the property ID (for multi-row
sessions) and the Web application name.

Tip: The persistent session database performs best if it is not shared
with other databases, such as the WebSphere Application Server
administrative database. This eliminates contention for resources, such
as connections, which impacts performance. In addition, a separate
session database allows greater latitude for tuning via disk striping for
the database/tablespace, physical disk to disk controller isolation, etc.

DB2 UDB/WebSphere Application Tuning Guide

4.5 Enterprise Java Beans

In this section, we provide a brief overview of EJBs, and then discuss
performance considerations as they apply to accessing a DB2 database.

4.5.1 EJB overview

EJB is a specification for a Java server-side services framework from which
vendors can create EJB server implementations. The benefit to application
developers is that they can focus on writing the business logic necessary to
support their application, without having to worry about implementing the
surrounding framework.

The specification details certain minimal yet crucial services such as
transactions, security and naming. The specification does not state how vendors
should go about implementing these services, thus giving them the freedom to
provide enhancements without sacrificing portability regarding core services.

EJBs is just one a number of technologies that compose the J2EE platform.
Others include:

» Servlets

» JavaServer Pages (JSP) — a template technology for embedding dynamic
server-side Java code in HTML or XML pages

» Java Message Service — a standard API for communicating with Message
Oriented Middleware systems

» J2EE Connectors a standard API and specification for communicating with
Enterprise Information Systems

One of the key organizing principles of J2EE is that it is composed of two
fundamental types of objects: containers and components. Figure 4-15 has been
adapted from the J2EE specification, and shows the kinds of containers present
in a J2EE application environment, and the components that are deployed in
those containers.

Chapter 4. WebSphere Application Server and DB2 UDB performance 209

210

Applet Web EIB

Container \ Container > Container
Applet

Application
Client
Container

Database

Application
Client

Figure 4-15 J2EE containers and components

The EJB container intercepts a client request, and determines how to handle that
request by looking at the runtime characteristics of the EJB specified during
deployment. All access to the EJB by the client is strictly through the EJB
container. The container resolves object references to actual bean instances.

.jar, .war, and .ear files

In J2EE, the various components shown in Figure 4-15 are linked together into
logical units through a nested set of special .jar files and deployment descriptors.
The EJB JAR file contains all the interfaces and deployed code that make up
entity, session EJBs, and a deployment descriptor .xml.

Web archive .war files consist of a set of .class files that may be Java servlets or
or classes that the servlet needs to carry out its functions, JavaServer Pages
(.jsp) files, and other Web resources such as .html and .gif files. Web archive
files must also contain an XML deployment descriptor (always named web.xml)
that describes these structures.

Application client .jarfiles consist of a set of .class files that make up a Java
application, including one class whose main method starts the application and
any resources files (e.g property files) it needs. An application client .jar file will
also contain an XML deployment descriptor that describes the application.

DB2 UDB/WebSphere Application Tuning Guide

EJB jarfiles, Web archive .warfiles, and application client .jar files can be
combined to form a final top level of application structure called an enterprise
archive .earfile. An .earfile consists of any combination of any number of files of
the above three .jar types, plus an additional deployment for the combination.

EJB types
The different types of EJBs are shown in Figure 4-16.

| EJB

Session EJB Entity EJB

T T

Stalele;;ﬂiessiun Slatefliljéession CMP Entity EJB BP Entity EJB

Figure 4-16 Types of EJBs

There are two basic types of EJBs — session EJBs and entity EJBs
1. Session EJBs:

Session EJBs are function-oriented components. They represent a set of
behaviors that reside on a server that can be invoked by clients.

There are two sub-types of session EJBs — stateless session EJBs, and
stateful session EJBs as follows:

— Stateless session EJB:

These represent a set of related behaviors (methods) that do not retain
client-specific states between invocations. Contrary to popular belief,
stateless session beans can in fact, possess instance variables, but those
variables must be shared among multiple potential clients (e.g., they
should be read-only). This often overlooked fact can be key to
understanding some potential uses of stateless session EJBs.

Chapter 4. WebSphere Application Server and DB2 UDB performance 211

212

For readers familiar with traditional transaction-processing systems like
CICS or Encina, you can think of each method call to a stateless session
EJB as an individual non-conversational transaction.

— Stateful Session EJB:

Each stateful session EJB is “owned” by a single client, and is uniquely
connected to that client. As a result of this, stateful session EJBs may
retain client state across method invocations. That is to say, a client may
call a method that sets a variable value in one method, and then be
assured that another, later, method invocation to retrieve that value will
retrieve the same value.

2. Entity EJBs:

Entity EJBs model data entities, and provide shared distributed transactional
access to persistent data. As such, entity EJBs provide concurrent shared
access to multiple users. An individual entity EJB represents a single
persistent entity, for instance a row in a relational database. In contrast,
session EJBs model businesses processes, and provide exclusive access to
a single client either for a length of a method (in the stateless case), or for the
life of the bean (in the stateful case).

There are two basic subtypes of Entity EJBs — container managed
persistence (CMP) entity EJBs, and bean managed persistence (BMP) entity
EJBs.

- CMP:

CMP means that the EJB container handles all database access required
by the entity bean. The bean's code contains no database access (SQL)
calls. As a result, the bean's code is not tied to a specific persistent
storage mechanism (database). This provides independence from the
underlying database implementations, and the same entity EJB can be
deployed on different J2EE servers that use different databases, without
modifying or recompiling the entity EJB code. In other words, entity EJBs
your entity beans are more portable.

- BMP:

BMP EJBs leave the management of such details as what SQL is
executed to the developer of the EJB. Each BMP EJB is responsible for
storing and retrieving its own state from a persistent store, in response to
specific “hook” messages like ejbLoad() and ejbStore(), that are sent to it
at appropriate times during its lifecycle.

DB2 UDB/WebSphere Application Tuning Guide

When using CMP EJBs, the SQL and the interface to the database is usually
transparent to the programmer. However, there is a way of controlling the
database lock isolation level of the CMP auto generated SQL. The database lock
isolation level is indirectly selected based on the isolation level defined for the
transaction attributes in the EJB deployment descriptor. This can be set at the
method level by the development tool when you building the .ear file. This
isolation level can also be changed using the WebSphere Application Server
Application Assembly Tool as shown in Figure 4-17.

Note: With BMP EJBs, isolation levels can be set using the
SetTransactionlsolation method in JDBC instead.

% Application Assembly Tool
Eile Edit View Window Help

= E3

- B-HE

B PiggyBank Application
=-g§* EJB Modules

=g PiggyBank EJBs
FH- Session Beans
= Entity Beans
&, Customer
=&, Account

A Environment Entries
1 EJB References

3 Resource Referenc
£ Security Role Referg
3 CMP Fields

3 Method Extensions
------ A Security Roles

------ £ Method Permissions

gy Weh Modules

xdleaa %
= Application Assembler - EACODEappsipigiyhankipi

gybank.ear

Mame | Farameters | Type |
it All methods i’
* ¥ Home methods
* ¥ Remote methods
+ create intint boolean Home methods
+ credit int Remote methods ;I

General | Advanced

Type: All methods
Marne: %
Parameters:

v Izolation level attributes

Isolation level:

atable read

[Access intent

£5¢ Application Clients IMErAtTyRE: [Read =l
-8 Security Roles
2P Files [~ Finder descriptar
= [spr
1 iihere olanse: |
Ll | _’l SRRl BEESED Help
Figure 4-17 Setting the isolation level in the deployment descriptor
Chapter 4. WebSphere Application Server and DB2 UDB performance 213

214

Isolation levels are used to specify the degree to which an EJB transaction
accessing a resource may be affected by other concurrent transactions
accessing the same resource. For entity EJBs mapped to a relational database,
the isolation level determines the locking policy used when accessing a
database. Isolation levels are discussed in detail in the WebSphere Application
Server InfoCenter documentation.

The most restrictive isolation level is Serializable. An EJB that specifies this
isolation is guaranteed to get consistent results from the database for the
duration of the transaction. To achieve this behavior, every row that is touched
by an SQL SELECT issued by the EJB, or the underlying persistence layer is
locked for the duration of the transaction. This locking scheme can cause
significant bottlenecks with multiple concurrent user access.

The mapping of WebSphere Application Server isolation levels to DB2’s isolation
levels in shown in Table 2-1 on page 82. The default EJB Isolation level
attributes setting is Repeatable Read, which maps to the DB2 isolation level of
Read Stability as shown in Table 2-1 on page 82. The semantics of Read
Stability may be unnecessary for many applications, and result in needless locks
being taken thus potentially impacting application concurrency. For most
applications, the semantics of EJB Read Committed (DB2 isolation of Cursor
Stability) is probably adequate. The reader should evaluate the most appropriate
semantic requirements of their application before choosing the isolation level.
Refer to DB2 product documentation for details about DB2’s isolation levels.

Another setting that has a potential performance impact on database access is
the Access Intent setting that can be specified at the individual method level as
shown in Figure 4-17. The default value for this setting is Update.

» With this setting at Read, the container accesses the database with a read
only intent. This results in an ‘S’ lock on the data, and allows other concurrent
read only users to share access to the data. If read only methods are the only
methods invoked on an entity EJB instance during the course of a
transaction, then WebSphere Application Server optimizes out the ejbStore
operation that stores the bean’s persistent fields back to the database. This
read only optimization is a WebSphere Application Server extension to the
EJB specification.

» With this setting at Update, the container accesses the database with an
intent to update (‘U’ lock), and then writes the contents back to the database
regardless of whether the retrieved data was changed or not. The ‘U’ lock is
incompatible with other concurrent users who have an intent to update, which
can lead to poor response times due to potential waits and timeouts. The
write back to the database causes an ‘X’ lock to be taken on the data, which is
released when the transaction commits.

DB2 UDB/WebSphere Application Tuning Guide

Letting the Access Intent to default to Update for EJB methods that are read only
can result in unnecessary locking and issuance of an SQL UPDATE statement.
This can negatively impact concurrency and throughput of the application.

It is therefore important to let the EJB Server know which EJB methods are read
only, and which ones are update.

Figure 4-18 shows the setting of the access intent of an EJB Method in the
Application Assembly Tool.

k. Application Azsembly Tool

Fils

Edit Wiew Window Help

= "'—'f‘ 5 Ey

“E aaa %
~%_Application Assembler - EACODEapps piggybank \pigmgy2.ear

=T PiggyBank Application Mame | Parameters | Type |
E|---g*'~ E.JB Modules + findByPrimankey itso.wasdad. ejb.ac... Home methods -
I'EI---Q“rz PigayBank EJBs + getAccountData Femaote methods
""Eﬂ Session Beans + getEJBHome Remote methods |
[=F Entity Beans + getE/BMetalata Home methods
&, Customer + getHandle Femate methods ;I
=&, Account '
£ Enviranment Entries | Z2NEral | Advanced
£ EJB References Type: Remuote methods 1)
3 Resource Referenct | pgme: getaccountData
£ Security Role Refers ;
& CHP Fields Parameters:
8 Method Exdensions | | [|solation level attributes
- Security Roles :
(1 Methad Permissions Izolation level: |Repeatable read =l
-~ Container Transactions
-9 Files ¥ Access intent
B-p= Web Modules
£5¢ Application Clients InteniType: |Read =l
0 Securiy Roles e
< LP Files [Finder descripto] pdate
o [zer
€ here clause | TR
J |
= gzl ABnly Reset Help |
Figure 4-18 Setting access intent of an EJB Method in Application Assembly Tool
Chapter 4. WebSphere Application Server and DB2 UDB performance 215

4.5.2 EJB performance considerations

From a database perspective, the following two considerations apply:

» Ensure that the Isolation level attributes setting selection is based on the
minimal semantic requirements of the application. In most cases, this
corresponds to Read Committed on the Java side, which translates to Cursor
Stability on the DB2 side.

» Ensure that the Access Intent is set to Read for all EJB read only methods.

216 DB2 UDB/WebSphere Application Tuning Guide

Problem determination
scenarios

In this chapter, we discuss some commonly encountered problems in a DB2
UDB WebSphere environment, and describe scenarios for identifying and
resolving such problems.

The topics covered include:

» Introduction
» Exception events scenarios
» Routine monitoring scenarios

© Copyright IBM Corp. 2003 217

5.1 Introduction

218

One of the main objectives of an IT organization is to ensure that its
infrastructure delivers the required performance to ensure that business
objectives are continuously met in a constantly evolving and changing business
environment. This requires the IT professional to adopt a strategy that is both
proactive and reactive to conditions and events that would tend to adversely
impact IT systems performance, and thereby the business.

The proactive effort involves a number of tasks, including these:
» Capacity planning of IT resources

» Choosing the most effective IT architecture for the current and anticipated
workload

» Adopting best practices in application design, development and deployment

» Performing rigorous regression testing prior to deployment in a production
environment

» Performing routine monitoring of key performance indicators to forestall
potential performance problems, as well as gather information for capacity
planning

The reactive effort involves having a well-defined methodology for identifying the
root cause of a problem, and resolving the problem by applying best practices.

Attention: In this book, we focus on problem determination and best practices
relating to the DB2 UDB WebSphere software environment, and assume that
there are no bottlenecks involving hardware, operating system and network
resources. In the real world however, potential shortfalls in these resources
must be identified and addressed as well.

In the following sections, we describe commonly encountered problems that
have been identified through routine monitoring, as well as from exception
events such as user complaints about poor response times or aborted
transactions.

We have determined that the commonly encountered problems in a DB2 UDB
WebSphere environment have to do with:
» Connection pool size

» Concurrency issues with EJB isolation mismatches and EJB access intent
specifications

» Session database tuning when large session objects are involved

DB2 UDB/WebSphere Application Tuning Guide

» Prepared statement cache size
» DB2 UDB and WebSphere configuration parameter mismatches

» Routine DB2 UDB tuning of the WebSphere administration repository and the
session database

In our scenarios, we have not included problems linked with either the prepared
statement cache, or the WebSphere Application Server administrative database.

Note: We used the Trade 2 (aka WebSphere eBusiness Benchmark) and
PiggyBank applications in our scenarios — these applications are described in
detail later.

Important: Users run with routine monitoring levels during normal operations,
and only perform exception monitoring involving more detailed traces for short
bursts of time to assist with problem diagnosis. This is due to the negative
performance impact on applications during detailed tracing.

In our controlled problem determination scenarios, we chose to run with high
levels of diagnostic tracing to perform our problem determination. We
recognize that this adversely impacts system and application performance,
and may color conclusions about relative merits or benefits of the absolute
metrics measured, however, our focus was primarily on problem determination
and not on performance measurements.

5.2 Exception events scenarios

We focus here on a methodology to respond to exception events such as user
complaints about poor performance, and identify the steps that should be
followed to identify the root cause of the problem, so that it can be resolved
satisfactorily.

Figure 5-1 provides an overview of a typical sequence of steps to be followed
when resolving performance problems.

Chapter 5. Problem determination scenarios 219

220

— Identify the symptoms i

Document for

future reference

Needs Immediate
Attention?

Formulate one or more hypotheses

Verify the validity of each
hypothesis in turn by reviewing
key indicators

May require exception (more

detailed) monitoring to obtain the
information necessary to validate or
reject a hypothesis

Identify the root cause of the
problem through hypothesis
validation

Apply recommended best
practices

yes

System
Performing Document for
ne OK? future reference

Figure 5-1 A typical problem determination methodology

The entire sequence of steps is triggered by an exception event such as a user
complaining about poor response times, or error messages appearing on their

screens.

These symptoms must be evaluated for criticality as shown by the decision box

(“Needs immediate attention”) in Figure 5-1.

» Symptoms that are sporadic and non-disruptive need no immediate action,
other than to potentially trigger routine monitoring for possible corrective
action. Routine monitoring is covered in this book.

DB2 UDB/WebSphere Application Tuning Guide

» Symptoms that recur frequently and disrupt business processes require
prompt attention to avoid adverse business impact. We cover some of these
scenarios in this book.

» Catastrophic events such as a failure of the system, or the application server
or database server also need immediate attention such as an immediate
restart. These events are not discussed in this book.

Based on the symptoms and a knowledge base of prior experiences (both
external and internal), one should formulate one or more hypotheses as the
potential root cause of the problem.

Each hypothesis should then be tested in turn using all available metrics
associated with the application under consideration — this includes system
resources, network resources, application server resources, and database
server resources. Sometimes, the metrics available from routine monitoring and
resource manager message events may be inadequate to validate or reject a
particular hypothesis. In such cases, one may have to request additional
diagnostic information through more detailed monitoring levels either on the
production system, or an available comparable regression system. Such
monitoring is often referred to as exception monitoring.

Once a hypothesis is validated and the root cause problem has been identified,
best practices specific to the root cause problem can be applied to attempt to
resolve the problem.

Important: Best practices guidelines are based on user experiences for a
given workload and environment, and may or may not provide beneficial
results in your particular environment. Therefore, a thorough understanding of
the fundamentals of the technical architecture and design is required to
explore other alternatives, when the documented best practices fail to provide
relief. Problem resolution in such cases tends to be an iterative process,
where the application of a best practice may result in the manifestation of new
symptoms, and a formulation of a fresh set of hypotheses.

Once the root cause problem has been resolved, the steps executed and the
knowledge gained should become part of the knowledge base to assist in
resolving future problem situations.

The following subsections cover the following problem determination scenarios:

» Connection pool size
» Concurrency issues
» Non-serializable objects

Chapter 5. Problem determination scenarios 221

We have organized the description of each scenario as follows:

Description of the application
Environment configuration
Monitor level settings

Workload used

Triggering event

Hypotheses and their validation
Root cause of the problem
Apply best practices

vVVyVYyVYVYVYYVYYy

5.2.1 Connection pool size

The primary question is whether the connection pool is too big or too small.
Problems with connection pool size generally manifest themselves in resource
constrained situations such as during peak periods involving large number of
users and/or high volume of transactions.

We cover three problem scenarios associated with connection pools:

» Case 1: Configuration parameter mismatch
» Case 2: Small connection pool size
» Case 3: Poor coding techniques with connection pooling

Case 1: Configuration parameter mismatch

The root cause problem demonstrated here is one where the connection pool
has been defined with a number of permissible connections (Maximum pool size)
to a datasource, that exceeds the maximum number of connections supported by
DB2 UDB (as specified by the MAXAPPLS parameter in the database config file).
Such a mismatch manifests itself with a message that appears to indicate an
undersized connection pool.

Description of the application
The Trade 2 application was used in this scenario. It models an online brokerage
firm providing Web based services such as getting stock quotes, and buying and
selling stock. A detailed description of this application is provided in Appendix A,
“Sample applications” on page 331.

Environment configuration
Figure 5-2 shows the environment used for the Trade application for the
configuration parameter mismatch scenario.

Note: Given the online trading nature of the application, we decided to disable
session persistence in the WebSphere Application Server Session Manager
service.

222 DB2 UDB/WebSphere Application Tuning Guide

Web Browsers

Application Server

Database Server

Windows 2000 RS/6000 44P RS/6000 44P
AIX 4.3.3 ML08 AIX 4.3.3 ML08
=
—— i
web clierr\\ =
(1 user) - MMM
IExplorer 5.00.3315 / ; - .
r / persian mansel
= _ i / (Trade App Server)
T ——
akstress
(50 users)
IExplorer 5.00.3315
Netscape Comm 4.72 WAS AE 4.0.2 FP2
Mozila 0.9.9 IHS1.3.19
Opera 6.0 DB2 Client 7.2 FP6 DB2 Server 7.2 FP6

Figure 5-2 Configuration parameter mismatch scenario environment

Our WebSphere Application Server and DB2 UDB servers were installed on
separate AIX machines persian and mansel respectively. We used the
WebSphere Performance Tool (formerly AKTOOLS) to drive the workload.

Monitor level settings

Both WebSphere Application Server and DB2 UDB were installed using default
configurations, and default settings were used. The relevant settings are
summarized in Table 5-1.

Table 5-1 Configuration parameter mismatch scenario monitor level settings

Hardware configuration Software configuration

Database Server (mansel) AIX 4.3.3 MLO8

RS/6000 44P DB2 UDB EE v7.2 FP6
1 GB Memory Instance name: db2inst1
32 GB disk DIAGLEVEL: 4

Log name: dbZ2diag.log and jdbcerr.log
Log path: /home/db2inst1/sqllib/db2dump
Databases: WAS40 and TRADEDB

Application Server (persian) | AIX 4.3.3 ML08

Chapter 5. Problem determination scenarios 223

Hardware configuration Software configuration

RS/6000 44P WAS AE v4.0.2 FP2
1 GB Memory Log name: tracefile and activity.log
32 GB disk Log path: /usr/WebSphere/AppServer/logs

Application name: Trade
Log name: Tradestdout.txt and Tradestderr.txt
Log path: /tmp

HTTP Server v1.3.19
Log name: error.log and access.log
Log path: /usr/HTTPServer/logs

DB2 UDB Runtime Client v7.2 FP6

Attention: The diagnostic error capture level parameter DIAGLEVEL default
value of 3 is appropriate for routine monitoring.

We chose to change this value to 4 which is the highest level of
information in all our problem determination scenarios, using the
commands shown in Figure 5-3. This is because the routine monitoring
level does not provide us with the information required to perform
proper problem diagnosis.

This is equivalent to performing exception monitoring for problem diagnosis.

o CWINNT\System32\telnet.exe [O]

H
& db2 get dbm cfg ! grep DIAGLEUEL
Diagnostic error capture level (DIAGLEVEL> = 3

¢ db2 update dbm cfg using DIAGLEUEL 4

DE2AAAAI The UPDATE DATABASE MANAGER CONFIGURATION command completed
successfully.

DE218251 Client changes will not be effective until the next time the
application is started or the TERMINATE command has bheen issued. Server
changes will not be effective until the next DBZSTART command.

% db2 get dbm cfg ! grep DIAGLEVEL
$Diagnustic error capture level (DIAGLEUEL> = 4

Figure 5-3 Changing DB2 DIAGLEVEL parameter

224 DB2 UDB/WebSphere Application Tuning Guide

Attention: We also changed the default monitoring levels on the database
connection pools for TRADEDB from None to Maximum from the Resource
Analyzer menu bar and selected Actions —> Monitoring Settings and set
the Maximum monitoring level, as shown in Figure 5-4.

This action corresponds to performing exception monitoring as well.

Performance Monitoring Settings B

Counter Settings

A% persian Trade Monitaring Level:
H-ott Enterprise Beans ey
r_t,', Database Connection Pools
bt JYM Runtime e
oAt Servlet Session Manager i I A
; - Medium
ot Thread Pools
----- A% Transaction Manager Eb Lo
-t Wigh Applications
& o £ " Mone
Counters:
Fercent Used -
Faults

Ay Wit Time {ms)
Concurrent YWaiters
Fool Size

Mum Returns

Mum Allocates
Mum Destroys
Mum Creates

-

[+ Start modified counters (0]t I Cancel

Figure 5-4 Setting performance monitoring level on database connection pools

The connection pool configuration for the TRADEDDB datasource is shown in
Figure 5-5. Note the maximum pool size value of 40.

Chapter 5. Problem determination scenarios 225

Console Miew Tools Help

& @

e 2

X & %

=72 virtual Hosts

{2 Server Groups

83 Modes

--f'_'l Enterprise Applications
=3 Resources

= webSphere Administrative Dorn

Mame

Description

JDBC Provider |

||l Session
B, TradeDB

session db for trade

Sample DB Driver

Sample DB Driver -

General Connection Pooling |

=+ JDBC Providers Connection Poaoling =
. =@ Sample DB Driver
=] Minimum pool size: |1 connections
2 JavaMail Sessions : i :
£ URL Providers Maximurm pool size: 40 cannections
0 J2C Resource Adapters Connection timeout. [120 secands
B3 JMS Providers
|dle timeaut; |18|:|0 seconds
Crphan timeout; |18|:|0 seconds
Statement cache size: |1D|:| statements
[Disahle AutoConnection cleanup —
| Help |
Kl | 2l
Typel Time | Event Message Source | Options...
E 402112 Console Ready. ;l

Details...

Clear

i

Figure 5-5 TRADEDB datasource connection pool configuration

Workload used

The scenario test consisted of a load recorded in akstress that simulates 50
users that login to the Trade 2 application. The startstress.bat script shown in
Example 5-1 was run 12 times to get 48 users, and interactions from 2 browsers
to get a total sum of 50 users.

Example 5-1 The startstress.bat script

start akstress
start akstress
start akstress
start akstress

-config explorer.acf
-config netscape.acf
-config mozilla.acf
-config opera.acf

226 DB2 UDB/WebSphere Application Tuning Guide

Each user accesses his or her portfolio, buys and sells two stocks, and then logs
out. This load is run for about 30 minutes, while a regular Web browser user is
performing the same action.

Triggering event

Often the reason to start the analysis of a Web site is a customer complaint
about application response time, or an error message returned. Our triggering
event in this case was a number of user complaints about random login failures
that appeared to occur during periods in the day when the workload was known
to be at peak levels. The error users received is shown in Figure 5-6.

Trade Login - Netscape
File Edit Yiew Go Communicator Help
4 wtvElookmarks J‘ Location: | i

| @& wnet's Related

|Type a Web Address or Keyword and press Enter|

An Error has occured during Trade processing,
Jsp Error Page

Using attribagte of type comn fbew vebephere servlet error. Servlet BrorFeport to get dommation.

Processi hittppers Wb Sp amplessTrade Samp] Aets Trad
Status Code: 500

A T Hemt Servrlet Sitior. doLogi.. .)Semer Emor logging o wid: 1 hwith ooanessage: TradeBean fmdRegistny for ueer 0id:11-- TradeBean fmdRegistry for nser
uid:11-- TradeBean dRegistry for user wid: 11-- TradeBea MdRegistny for user id: 11--

Exception:coon fhem servlet engive webspp Web AppEmorFeport: trade_client. Trade Servlet Action, doLoging..)Server Eror logging naid:11with sooomessaze:

TradeBean fndRegictny for user 1id:11-- TradeBe s fmdRegictry for 1nser 1id:11-- TradeBean fmd Regictry for ueer 1id:11-- TradeBean findRegictry for neer 1id: 11-- at

corn. dhn cervlet erngine saebapp . Weh App DispatcherResponee cend Bmon & eb Spp Dispatcher Besponee javal Comtpiled Code)) ot

trade_client. Trade Servlet fction. doLoging Trade Servlet Aetion java Comnpiled Code)) 4t trade_client. Trade App Servlet perfonm Task{ Trade App Servlet jacaCompiled Code)) at
trade_cliert. TradeApp Servlst doPosty Trade App Servlet javaCompiled Codel) st jauac servlet bitp Fip Serclet sercrice (Fitp Servlet javraCompiled Codel) it

Jameast serwrlet Ttp FRp Serviet service(ERp Servlet javalCoorpiled Code) at coen. dbam, servlet. engiie vamebapp Strict Servlethwstance . do Servicel Servlethanager javaCompiled Code) at
conty fhan servrlet evzive webapp . StrictLife cycle Servlet. servicel StrictLifecyrcle Servlet javralCotrpiled Code))at

corn dhin servlet ergine saebapp . Serviciig Servlet State cervice] Srict T ifecyrcle Servlet javal Cornpiled Code)) at

con. dhrn servlet ergine saehapp . SrictLife gycle Servlet cervice] StrictLifecyc1e Servlet javal Comnpiled Code))at

conn. ghim serylet engine ebapp . Servlethistance service! Servlet Bl ager janeal Compiled Code)) st

cotn. fhim servrlet engine aebapp . Walid Serclet Fafarance State dispatchy Servlet hlanager jaraCompiled Code)) o

conty b servlet angine webapp Serviethetace Refirence dispatchy Servlethlipager jawa Comtpiled Codel) oL

com fhum. servlet engine wwebapp. Web AppRequest Diispat cher hudle Web App D ispatchyWeb App e quest Dispatcher javalCompiled Codel) at

corn. dhn servlet ergine saebapp . Weh App Fequest Dispatcher dispatch(Web AppFRequest Dicpatcher javal Compiled Code)) ot

oot dhn servlet ergine saebapp . Weh App Fequest Dispatcher forarsrd 8 eb App Fequest Dicpatcher jawea’ Comppiled Code)) st

cont. i servlet engime srt. Web App bwrokier doForaard W eb AppRomoler java Cornpiled Codel) at

conty b servrlet evzive oot Web AppRaroker handleRrocation ook (Reb AppRamober. jaraCotrpiled Codel) at

conty b servlet engine karocation. CachedBrrocation hupdle Breocatioo CachedBrrocation jamra Coappiled Code)) ot

conty fhan servrlet evzive ap . ServletRequest Processor dispatch By TR Servlet Frequest Processor. java Corrpiled Code)) at

corn dhin servlet engine ap . ServletRequest Proceseor . dispatch By TR Servlet Frequest Processor. javal Compiled Code)) at

corn. dhn cervlet engine oselistener. 0 SEL isterer Dispatcher cervice] 0 SEListerer javal Cortipiled Code)) st

cont. Thim servlet engime hitp 11 Hip Correction handle Pequest(Hp Corme ction javal Compiled Code)) ot

cont. b v hitp Hitp Corsection Tead SndHandleFe quest(Fitp Cormection. jaraComrpiled Code) st coen. doewn sms hitp Hip Covrection nmiEp Corme chion. javal Comtpiled Code)) 4t
oans, fhen s antil, Cached Thread nov ThreadPool javalCompiled Code))

Pleace Chedk the spplication server log files for details. ..

[== |Document: Done e = |

Figure 5-6 Error 500 trying to login to the Trade application

Chapter 5. Problem determination scenarios 227

228

We concluded that the repeated occurrence of this problem had a negative
impact on the business, and needed to be resolved promptly. We therefore had
to diagnose the problem with minimal exception monitoring, and resolve it
quickly.

Hypotheses and their validation

We postulated the following hypotheses as the potential cause of the problem.
Given our controlled environment, we ignored real world root cause possibilities
such as network bandwidth concerns, Web server problems, system utilization,
and process priorities.

» Hypothesis 1: Application is not running

» Hypothesis 2: Communication problem between the WebSphere Application
Server and the DB2 server

» Hypothesis 3: Application unable to connect to the database — WebSphere
Application Server or DB2 problem

Each of these hypotheses was validated in turn as follows, using information
available from the WebSphere Application Server and DB2 logs. The first two
hypotheses involve a simple procedure to determine problems with the
application or the network. The final hypothesis involved a detailed analysis of
the error shown in Figure 5-6.

Hypothesis 1: Application is not running
There are three ways to check whether the application is still running:

» Verify that the Java process for Trade is running, using the following AlX
command

ps -ef | grep | grep Trade

The output of this command is shown in Figure 5-7, with the arrow
highlighting the Trade application Java process.

DB2 UDB/WebSphere Application Tuning Guide

K CWINNT System32\telnet.exe M=l
i B

#t ps —ef | grep java | grep Irade I

root 38488 22254 L 12:37:41 ptss1l B:29 suspsllebSpheresAppServersjavasjre
shin/java —classpath susrsWehSphere AppServersproperties: usr/WehSphere AppServe
r»libshootstrap.jar —-Djava.library.path=-usr/WebSphere AppServersjavajresbhin: u
zrsUehSpheresAppServer/javarsjreshinsclassic: usr-slebSphere AppServer~~libsodbc-1
ib:/homesdb2instl /sgllib/javal? i shomesdbZ2insti//sqllibslibh:/usr lehSphere AppSe
ruer/<hin: usr-UehSphere -AppServer-slib: homesdbZ2instl/sqgllibslibh: usr/1ih:home
sdbZ2instlssgllib/javal?: —Djava.ext.dirs=rusrsWebSphere AppServersjavasjreslib- e
xt —Dus.ext.dirs=shomne-db2instl sqllib-javalZ dbZjava.zip: usrsUWebSphere -AppSer
versjavaslib: usrsWebSphere AppServersclasses: usr-WehSphere AppServer/lih: /usr/
WebSphere AppServerslibrsext:homesdb2instl//sqllib/javal2-db2java.zip —Dserver.r
oot=susr-sUebSpheresAppServer —Xmsl128m —Bnx128m —Dcom.ibm.GCORBA.ConfigURL=Ffile:~~
susrslebSpheresAppServer/propertiess/sas.server.props com.ibm.ws _hootstrap.WSLaun
cher com.ibm.ejs.sm.server . ManagedServer —name sActiveMNode:persian:-1817194476308
:3/ActiveEJBServerProcess i Tradedl@17266417329:25/ —gualif yHomeNHame —primaryMode
persian —pmiZpec pmi=H:bean=K:cofMi=X:juvmR=R:serv=K:thre=H:tran=¥:webA=¥:hean>Def
ault EJB Container.tradesAccountHomesX :bean*Default EJB Container.tradesHoldingH
ome =% :hean>Default EJB Container.tradéxKeySequenceHome=K:hean>Default EJB Contai
ner.trade-KeyzsEntityHome=¥ :hean>Default B Container.tradeProfileHome=K:hean>D
efault EJB Container.trade-QuoteHome=¥:beam:Default EJBE Container.tradesTradeHom
e=H-bhean>Default EJB Container.trade-TradeRegistryHome=H:conn>jdhc/TradeSample=%
tconn>jdbcs/sessiondb=¥:thre>0RB.thread.pool=K:threServlet . Engine.Transports=H:w
ebA>»Trade.Apache—S0AF=H :uwebA>Trade.trade Webh Application=K:bean>Default EJB Cont
ainer.trade~AccountHome *heanModule .methods=X:bean>Default EJB Container.trade-Ho
ldingHome *bheanModule .methods =¥ :hean>Default EJB Container.tradesKeySequenceHome >
beanModule .methods=¥:bean>Default EJB Container.tradesKeyzEntityHome *beanModule.
Eethnds=H:hean>Default EJB Container.trade-Pro

Figure 5-7 Oulput from ps command looking for Java process Trade

» Verify the status of the application from the WebSphere Application Server
Advanced Administrative Console. We issued a ping on the Trade application
server as shown in Figure 5-8.

Chapter 5. Problem determination scenarios 229

Console Wiew Tools Help
o @ x&| ¥
=33 wehSphere Administrative Doms: =) || hame |
-3 Wirtual Hosts |||=_-| ==
-1 Server Groups
=82 Modes Tranzaction | M Settngs | Services Custam
=09 persian Beneral Advanced File
=HE2 Application Serers =
% Default Server Application Server name: *[Trade ot
: E LR Find... persian L
& ment: Environment...
¢ @l Pior Stop ; .
0 Geneft Eores Stop y dirgctory. | =]
F-E3 Enterprise App
- | i
Al
Typel Time | Transactions... | Source | Options...
E 4100212 SRVYE _ gonport90.. u:cum.ibm.sewlet.engine.htlp...;I
@ 4100212, weyr_ Froperies b-business comibmows. runtirme. Serer
B 4100211 Command "Trade.ping” running ... Clear
E 4100211 Command "Trade.ping” completed successiully. .. j
I

Figure 5-8 Issuing a ping on application server Trade

in Figure 5-9.

Trade is running.

Caommand "Trade. ping" completed successiully,

The result of this ping confirms that the Trade application was running as shown

Figure 5-9 Ping confirmation that Trade is running

230 DB2 UDB/WebSphere Application Tuning Guide

» Verify the application is running by invoking the welcome. jsp, which presents
the login page. The welcome.jsp is invoked as shown in Figure 5-10.

JFiIe Edit Wiew Faworites Tools Help

| «Back - = - @ 7% | ‘@ Search (iFavorites {#History | 55 S 2

JAddFESS I@ http://persian/WehSphereSamples/TradeSample/welcome.jsp j ©Go
Current Market Conditions
Do Jomes ubustrial 10,000 (+25)
Masdag Corrposite 4 400 (+23)
Login
Uzername Pazsword

uid:1 e Log in |

First time user? Please Register

Fegster With Trade

Trade

Created with IEM WebZSphere Application Server and Web3phere Studio Application Developer
CopyTight 2000, BRI Corporaticn

£

Figure 5-10 Invoking welcome.jsp to confirm Trade is running

’_ ’_ Local intranet

CIEL

Note: We therefore discarded this hypothesis as being the cause of our
problem.

Chapter 5. Problem determination scenarios 231

Hypothesis 2: Communication problem between both servers

To verify whether there was a communication problem between the WebSphere
Application Server (on persian) and the DB server (on mansel), we issued a
ping from persian to mansel, as shown in Figure 5-11.

[B C:WINNT System32itelnet.exe [_ O]
i B
ping mansel |

PING manszel.almaden.ibm.com: ¢9_.1_38.176>: 56 data bytes
64 hytes from 2.1.38.176: icmp_seq=0 tt1=255 time=0 ms
641 hytes from ?2.1.38.176: icmp_seqg=1 tt1=255 time=0B ms
64 bytes from ?.1.38.176: icmp_seqg=2 ttl1=255 time=0 ms=
E4 bytes from ?2.1.38_176: icmp_seq=3 tt1=255 time=8 ms

————mansel.almaden.ibm.com PING Statistics———
4 packets transmitted, 4 packets received, Bx packet loss
round—trip minsavgsmax = B/8/80 ms

Figure 5-11 Ping from Application Server (persian) to Database Server (mansel)

Response times were deemed acceptable. We also found no network errors in
the WebSphere Application Server error report when requested with the
following AIX command

errpt

The result of this command is shown in Figure 5-12.

o COWINNT \System32'telnet.exe

i

errpt

IDENTIFIER TIHESTAMEF T C RESOURCE_HAME DESCRIPTION

ChBBB5 A5 a485148682 P § SYSPROC SOFTUARE PROGRAM ABNORMALLY TERMINATED
ChBBB5 A5 8485135882 P § SYSPROC SOFTUARE PROGRAM ABNORMALLY TERMINATED
ChBBB5A5% 8485134882 P § SYSPROC SOFTUARE PROGRAM ABNORMALLY TERMINATED
36908498 8484193782 I 0 SYSPFS UNMABLE T0O ALLOCATE SPACE IN FILE SY¥STEM
36900498 B483112582 I O SYSPFS UNABLE TO ALLOCATE SPACE IN FILE SY¥STEH
ChBBB5 @5 B482162482 P § SYSPROC SOFTWARE PROGRAM ABNORMALLY TERMINATED
36900498 a482162482 I 0 SYSPFS UNABLE TO ALLOCATE SPACE IN FILE SY¥STEH
SDFEDGF1 a3z817/8282 I O SYSPFS UNABLE TO ALLOCATE SPACE IN FILE SY¥STEH
369DH47H A326162682 1 O SYSPFS UNABLE TO ALLOCATE SPACE IN FILE SYSTEM
2BFA76F6 A326i61882 T § SYSPROC SYSTEM SHUTDOWM BY USER

?DBCFDEE A326161382 T 0 errdemon ERROR LOGGING TURNED ON

1920871 A326i68782 T 0 errdemon ERROR LOGGING TURWNED OFF

2BFA76F6 A326141982 T § SYSPROC SYSTEM SHUTDOWM BY USER

?DBCFDEE 8326144182 T 0 errdemon ERROR LOGGING TURNED ON

i92HCE71 8326141882 T 0 errdemon ERROR LOGGING TURNED OFF

Figure 5-12 Error report from the Application Server (persian)

Note: We concluded that a communication problem between the WebSphere
Application Server and the database server was not the cause of our problem.

232 DB2 UDB/WebSphere Application Tuning Guide

Hypothesis 3: Application unable to connect to the database
After loading welcome. jsp, and a login attempt failed with the error message
shown in Figure 5-6 on page 227, we reviewed the application logs.

We looked at the application Tradestdout.txt file where some errors related to the
connection pool were reported. A portion of this file is shown in Figure 5-13 with

the messages of interest being circled.

o8 CWINNT \System32itelnet.exe

=] E3

ection to the database from datasource (jdbcsTradeSamplel.
[4-1-82 19:25:30:863 PET]1 2cd3?bd5 ConnectionPoo W Failed to

ool: waiting for a free connection instead

[4-1-82 19:25:30:846 PST]1 2cd3?bd5 ConnectionPoo ¥ COMMGBAZE:

Failed to get conn§

expand connection |

ection to the database from datasource (jdbcsTradeSamplel.
[4-1-82 19:25:32:661 PS5T1 267c5bhd? ConnectionPoo W Failed to
Bnl: waiting for a free connection instead

ﬁq}1/82 19:25:32:641 PST] 267c5hd? ConnectionPoo ¥ COMMGHAZE:

Failed to gel conn

expand connectjion |

ection to the database from datasource (jdbcsTradeSamplel.
[4-1-82 19:25:34:51%2 PST]1 26415bhd? ConnectionPoo W Failed to
ool; waiting for a free connection instead

ection to the database from datasource (jdbc/TradeSample).
[4-1-82 19:25:35:847 PS5T]1 7haBShe8 ConnectionPoo W Failed to
ool; waiting for a free connection instead

ection to the database from datasource (jdbc/TradeSample).
[4-1-82 19:25:36:154 PST]1 ?h281bed ConnectionPoo W Failed to
ool; waiting for a free connection instead

ection to the database from datasource ¢(jdbc/TradeSamplel.

| radestdout—2_txt (Bx>

[4-1-82 19:25:34:466 PST]1 26415bd? ConnectionPoo ¥ COMMGBAZE:

[4-1-82 19:25:35:833 PST1 YhaBShel ConnectionPoo X CONMEBRAZE:

[4-1-82 19:25:36:135 PST]1 7h281bed4 ConnectionPoo X CONMGBRAZE:

[4-1-82 19:25:37:283 PST] 668c?hbd? ConnectionPoo ¥ CONMGBRAZE:

Failed to get conn
expand connection p|
Failed to get conn
expand connection p
Failed to get conn
expand connection p|

Failed to get conn

Figure 5-13 Errors: Tradestdout.txt file trying to connect to TRADEDB data source

Two error messages caught our attention:

» The following error can be raised for multiple reasons, such as the database

not running, or a communication problem with the database server.

2cd39bd5 Connection Poo X CONM6009E: Failed to get connection to the
database from data source (jdbc/TradeSample).

This did not appear to be a WebSphere Application Server problem.

The following error is more specific and describes a problem when the
connection pool is trying to expand, that is, when it is trying to get a new
connection to the database.

2cd39bd5 Connection Poo W Failed to expand connection pool; waiting for a
free connection instead.

This is a warning message and the application will continue to run in such
cases.

Chapter 5. Problem determination scenarios 233

Note: We therefore concluded that this did not appear at first glance to be a
WebSphere Application Server problem, and that we had to look to DB2 as
being a potential cause of the problem.

Since both messages complained about being unable to get a connection to the
database, we routinely checked to ensure that DB2 was up and running, using
the command shown in Figure 5-14.

o8 CAWINNT System32'telnet.exe _ O]
S db2 list applications B
Auth Id Application Appl. Application Id DB #f of

Hame Handle Hame Agents
DB2ZINET1 java 25 A70126AE . FF6P.B2A410183834 TRADEDE 1
DB2ZINET1 java 26 A90126AE.FF?E.0820410184383 TRADEDE 1
DB2ZINET1 java 27 A708126AE . FF?D.08204101 84384 TRADEDE 1
DB2ZINET1 java 28 A70126AE . FF?C.0204101 84385 TRADEDE 1
DB2ZINET1 java 29 A70126AE.FFB2 .820410184340 TRADEDE 1
DB2ZINET1 java 38 A90126AE.FFB3.0820410184341 TRADEDE 1
DB2ZINET1 java 31 A70126AE . FFBE .A204101 84350 TRADEDE 1
DB2ZINET1 java 32 A70126AE . FFB? .8204101 84351 TRADEDE 1
DB2ZINET1 java 33 A90126AE . FFCS . 820410184415 TRADEDE 1
DB2ZINET1 java 34 A90126AE.FFC?.8204101 84418 TRADEDE 1
DB2ZINET1 java 35 @98126AE.FFDE.BA2A4101 84510 TRADEDE 1
DB2ZINET1 java 36 A908126AE.FFDD.A2A4101 84511 TRADEDE 1
DB2ZINET1 java 37 A90126AE . FFDE.A2A4101 84512 TRADEDE 1
DB2ZINET1 java 38 A90126AE . FFDC.A204101 84513 TRADEDE 1
DB2ZINET1 java 39 A70126AE . FFES .A2041081 84514 TRADEDE 1
DB2ZINET1 java 48 A90126AE.FFE?.A204101 84515 TRADEDE 1
DB2ZINET1 java 41 A70126AE . FFER . 820410184516 TRADEDE 1
DB2ZINET1 java 42 A70126AE . FFE? .B204101 84517 TRADEDE 1
DB2ZINET1 java 43 A90126AE . FFEG .A204101 84518 TRADEDE 1
DB2ZINET1 java 44 A90126AE.FFF3.82041018451% TRADEDE 1
DB2ZINET1 java 45 A70126AE . FFFS . 820410184520 TRADEDE 1
DB2ZINET1 java 46 A70126AE . FFF6 .A204101 84521 TRADEDE 1
DB2ZINET1 java 47 A90126AE.FFF4.8204101 84522 TRADEDE 1
DB2IMNST1 java 48 A70126AE.FFF?.A20410184523 TRADEDB 1
DB2IMST1 java 49 A70126AE.8A35.A20410184619 TRADEDB 1
DB2IMST1 java 58 A70126AE.8A37.A2A410184620 TRADEDB 1
DB2IMST1 java 51 A70126AE.8A36 .A20410184621 TRADEDB 1
DB2IMST1 java 57 A70126AE.8A43.820410184627 TRADEDB 1
DB2IMST1 java 58 A70126AE.8BA4E. 20410184629 TRADEDB 1
DB2IMST1 java 59 A70126AE.8A4F .A2A410184630 TRADEDB 1
DB2IMST1 java 19 A70126AE . FEES .A204108183016 WASPERS 1
DB2IMST1 java 28 A70126AE . FEEB.A204101830826 WASPERS 1
DB2IMST1 java 21 A70126AE . FEF2 .A20410183849 WASPERS 1
DB2IMST1 java 22 A70126AE . FEFB.A2A410818313@ WASPERS 1
DB2IMST1 java 23 A70126AE.FF4A .A20418183735 WASPERS 1
DB2IMST1 java 24 A70126AE.FF5A.820418183883 WASPERS 1
-

Figure 5-14 List applications currently running on database manager

The result of this command directed us to look elsewhere for the problem. We
turned our attention to the db2diag.log where we found a number of messages
like the one shown in Figure 5-15.

234 DB2 UDB/WebSphere Application Tuning Guide

Ik C:\WINNT System32\telnet.exe Hi=]

Data Title:SQLCA PID:23780@ Node:880 Il
sglcaid : SQLCA sglcabc: 136 sglcode: —1048 sglerrml: @
sqlerrnc:

sglerrp : SQLESRESU

Data Title:DB2RA PID:23788 Hode :880
5351 4c44 4232 5241 AAAA 8164 81685 AAO1
AR APic AAPA AABE APOAA BPAY? 3488 cSd4
e APEA APAPA ARAPRA APOA PPAR APAE BEAB
AR ARAA ARRA ARDA AROA ARBd AEAE AEA4
3d88 hahd AAAA AAAE AROA ARG1 3491 AA88
AR ARA7 AARA BAA1 3498 f42: AEAE OEAA
Bl BPEE BREDE BRDR BEOA BEBR BBRE QBAE
Al APEA BRRA BRDA AROA PPAR APAR BB
ABAe BPA4 8008 BAA2 3d88 haac BPOR BBAG6
0aAAe BRE1 3491 BRa7 BPOA APA4 APAE QA4
3d88 baal BGABA BAAT AEOA BEA1L 3fhd 74e8
e APEE BAPEA BAA1 3d88 hadd APOE BBAAB
Al BPEA APPA ARPA ARAA BPa8 4000 BBACc
Jd88 bhBc BAEA AAAA S8PAA APA1L APAE BEAB
AR ARAA ARRA ARDA AROA ARBR ARAE AEAE
A AR AR ARDA ARDA AP64 4000 AEA2

Figure 5-15 Error SQL1040 in db2diag.log

From DB2 online help, we obtained an explanation for the SQL1040 message as
shown in Figure 5-16.

o COWINNT \System32'telnet.exe

5
% dbh2 ? 5Q11P4@

SQL1P40N The maximum number of applications is already connected
to the database.

Explanation: The number of applications connected to the
database is equal to the maximum value defined in the
configuration file for the database.

The command cannot he processed.

User Response: Wait for other applications to disconnect from
the database. If more applications are reqguired to run
concurrently. increase the value for maxappls. After all

applications disconnect from the database and the database is
restarted. the new value takes effect.

zglcode: —1648
sglstate: 57038

£

Figure 5-16 SQL1040N explanation

In our controlled environment, we were able to confirm this problem by trying to
connect to the TRADEDB database as shown in Figure 5-17. Repeated attempts
to connect eventually succeeded.

Chapter 5. Problem determination scenarios 235

o CWINNT\System32\telnet.exe [O]

5

¢ db2 connect to TRADEDB

SQL1PA4AN The maximum number of applications is already connected to the
databaze. SQLSTATE=5783A

Figure 5-17 Error SQL1040 trying to connect to TRADEDB

From this SQLCODE explanation it was clear that the number of connections
(MAXAPPLS) available for TRADEDB database was reached. The command used
to review the configuration for MAXAPPLS in TRADEDB database is shown in

Figure 5-18.
o CWINNT System32itelnet.exe [O]
5
S db2 get db cfg for TRADEDE ! grep MAXAPPLS
Package cache size (4KB> (PCKCACHESZ)> = (MAXAPPLE =8>
MHax number of active applications (MAXAFPFLS> = 38

Figure 5-18 MAXAPPLS value in TRADEDB configuration

The value of MAXAPPLS was set to 30, and this was the limit reached that
prevented WebSphere Application Server connection pool from getting a new
connection to service application requests.

Root cause of the problem

Our connection pool size maximum was defined to be 40 as seen in Figure 5-5.
When the number of simultaneous users accessing Trade caused WebSphere
Application Server to request more than 30 connections to DB2, the MAXAPPLS
threshold of 30 was exceeded and DB2 denied the connection.

Apply best practices
A number of possible actions can be taken to resolve this problem. One or more
of the following actions may be taken to address the problem.

» Increase the MAXAPPLS value to at least match the connection pool size
maximum if this database is only being accessed from WebSphere
Application Server. If other applications are running against the same
database, then those applications will have to be accounted for in arriving at a
suitable value for MAXAPPLS. Another consideration in choosing this value is
determining the number and duration of peak workloads during a day, and
choosing an appropriate MAXAPPLS value to handle it.

236 DB2 UDB/WebSphere Application Tuning Guide

Important: Increasing the MAXAPPLS value can cause a greater load to be
placed on DB2 in terms of processor, memory and locking contention. If
adequate resources are not available on the database server to handle the
increased workload, significant performance bottlenecks may surface
elsewhere.

» Reduce the duration of how long an application keeps a connection open to
the database. Ensure that applications are closing and releasing connections,
and handling transaction durations as per best practices described in 4.2.2,
“Best practices” on page 161. This scenario is covered later.

» Reduce the connection pool size maximum to below the MAXAPPLS value. This
in effect will not solve the problem, but will queue requests inside WebSphere
Application Server which is recommended, and will avoid failing requests to
be made to DB2. This decision would have to be made based on the
frequency of occurrence of these problems, the priority of the application, and
the negative business impact of upsetting users.

In our case, we assumed the peak workload of 40 simultaneous connections to
DB2 as being the basis for setting the MAXAPPLS value, and set it to 40 as shown
in Figure 5-19. We also assumed that there were no resource limitations on the
database server that negatively affect performance by the increase in this value.

& CWINNT\System32\telnet.exe M=

H

$ db2 update db cfg for TRADEDE using MAXAPPLS 4@

DEZ2BBAAT The UPDATE DATABASE COMFIGURATIONM command completed successfully.
DB218261 For most configuration parameters, all applications must disconnect
from this database before the changes bhecome effective.

% db2 get db cfg for TRADEDB ! grep MAXAPPLS
Package cache size <(4KB> (PCHKCACHESZ>
Max number of active applications (MAXAPPLS >

CMARAPPLS »8 >
48

Figure 5-19 Changing MAXAPPLS value for TRADEDB
We experienced no re-occurrence of our previous problem after a rerun of our

test scenario. However, a new error message appeared, as discussed in the
following case.

Chapter 5. Problem determination scenarios 237

238

Case 2: Small connection pool size

The root cause problem demonstrated here is one where the connection pool
size is undersized for the given workload. This scenario is a follow on of the
configuration parameter mismatch described in “Case 1: Configuration
parameter mismatch” on page 222. The hardware and software configuration
used was identical to the one shown in Table 5-1 on page 223. The workload
used was also the same one used in the previous case.

Triggering event
Our triggering event in this case was a large number of user complaints about
poor response times, after successful login and some operations.

Hypotheses and their validation

We postulated the following hypotheses as the potential cause of the problem.
Here too, given our controlled environment, we ignored real world root cause
possibilities such as network bandwidth concerns, Web server problems, system
utilization, and process priorities:

» There is a communication problem between the WebSphere Application
Server and the DB2 server.

» WebSphere Application Server has a problem.

Note: Network and Web server problems can cause poor response times in a
real world environment, however, this did not apply to our controlled
environment.

Hypothesis 1 was eliminated as the possible cause of the problem using the
same procedure used in “Case 1: Configuration parameter mismatch” on
page 222.

Hypothesis 2: WebSphere Application Server has a problem
We looked at the application Tradestdout.txt file but found no error or warning
messages that could be the cause of response time problems.

We then used the Resource Analyzer tool to monitor the behavior of database
connections. We noticed that when the maximum of 40 connections was
reached, the average wait time started to increase as shown in Figure 5-20.

Note: This corresponds to exception monitoring, since a monitoring level of
Maximum for database connections is required to obtain this information in the
Resource Analyzer tool. The default is none.

DB2 UDB/WebSphere Application Tuning Guide

lyzer (connpoolm

a

i

File Actions Beports Options Help
M| D ®| D4
9 wehSphere Administrative Dormain| | vigw Data View Chart
=H4¥ persian o ; :
Default Server 100 A erage wait time Increasing
Pigay
=133 Trade
(17 Enterprise Beans B0
EI Ii Database Connection P
B Legend
Juh Runtime B Pool Size
Servlet Session Manage FPercent Used
Thread Pools 40 2k A Wait Time (mg
Transaction Manager Caoncurrent Waiter
Weh Applications
20

Mame Description Value ,E,(elect
MU Creates Total nurmber of connections created 39 [
Mum Destrays Total numhber of connections destroyed o [
Murm Allocates Total number of connections allocated Fhs0]
Murm Returns Total number of connections returned to pool faE14] [
Fool Size Average Pool Size 400 (Averag#l A19n| M
ConcurrentWaiters |Average number of threads concurrently weaitin...| 0.0 (A\rer,age."ﬁfﬁﬂh\ﬁ
Aw Wiait Time (ms) |Average waiting time in millisecaonds until a co.. (691277)7
Faults Mumber of connection timeouts inthe pool —1 [
Percent Used Average percent ofthe poal thatis inuse 90.0 (Average: 2,382 [
FPercent Maxed Average percent ofthe time that all connection...| 0.0 (Average: 0.043..| [
PrepStmt Cache . (Mumber of prepare staternents discarded bec.. 5788 [

|1 araupsts)

| 11 counter(s)

| Refresh rate: 10 sec

Table size: 40 Wiew Data As: Raw Walue

Logging: OFF

Figure 5-20 Monitoring connections and waiting time on data source TRADEDB

Our connection pool configuration for the TRADEDB datasource is shown in
Figure 5-5 on page 226, where a maximum of 40 connections have been
defined. Note that the average pool size is 40. This confirmed the warning that
reaching and working at the maximum pool size will lead to longer wait times for
a connection, thereby resulting in poorer response times for the user.

Root cause of the problem
When the number of simultaneous users accessing Trade requiring access to
the database exceeded 40, WebSphere Application Server had to queue the
requests until a connection became available. This led to longer wait times and
poorer response times.

Chapter 5. Problem determination scenarios

239

240

Apply best practices
A number of possible actions can be taken to resolve this problem. Here too, one
or more of the following actions may be taken to address the problem.

» Increase the maximum connection pool size after ensuring that the
WebSphere Application Server has enough resources to handle the
increased workload. MAXAPPLs in the DB2 will also have to be increased
correspondingly after taking into account the ramifications of doing so on the
database server side.

If there are no resource constraints in the WebSphere Application Server and
DB2 server, then the maximum pool size can be increased. Begin with small
increases in the pool size, and continue monitoring in order to identify the
high watermark beyond which there is no improvement in wait times. Ensure
that system behavior is not adversely impacted with these increases.

» Reduce the duration of how long an application keeps a connection open to
the database. Ensure that applications are closing and releasing connections,
and handling transaction durations as per best practices described in 2.9.13,
“Release JDBC resources when done” on page 58. This scenario is covered
later.

» Reduce the maximum thread size in the Web Container queue as shown in
Figure 2-11 on page 39. This in effect will not solve the problem, but will
queue requests inside the Web Server which is recommended, and will avoid
waits to occur in WebSphere Application Server. This decision would have to
be made based on the frequency of occurrence of these problems, the priority
of the application, and the negative business impact of upsetting users.

In our scenario, we concluded that a maximum of 50 concurrent users were
expected, and decided to change both the maximum pool size and MAXAPPLS on
TRADEDB to 50. We reran our workload for 30 minutes, and found the response
times acceptable. No significant average waiting time increases were found for
this workload as shown in Figure 5-21. Note the average pool size number of 48
which is below the maximum.

DB2 UDB/WebSphere Application Tuning Guide

#¥ Resource Analyzer =] B3

File Actions Logoing Reports Options Help

@|4|D 08| R MH.HE [EZ]
B webSphere Administrative Domain| | view Data Wiew cnanl
=39 persian

g7l Default Server 100

Figoy

E} Trade
1" Enterprise Beans el
EI Database Connection Pq Legend

60 ®Paool Size
Poal Size {fwd)
=& Avg Wait Time (ms)
Percent Used
“HPercent Used (Avg)

Jyh Runtime

Serviet Session Manage
Thread Fools 40
Transaction Manager
Weh Applications

20
3:34:22 PM 3:35:03 PM 3:35:47 PM 3:36:28 PM 33712 PM

| Mame Description Value Select| Scale
[Mum Creates Tatal number of connections created o [1.0
||Num Destroys Tatal number of connections destrayed o [1.0
[Mum Allocates Total number of connections allocated 265 [1.0
||Num Returns Tatal number of cannections returned to pool ; 272 [1.0
Fool Size Awverage Foal Size 48.0(Average: 48)) @ 1.0
Cohcurrent Waiters [Average number of threads concurrently waiti... 0.0 (AwerageB—L_ 1.0
Avr Wiait Time (ms) |Average waiting time in milliseconds untila ... 0 M 1.0
Faults Mumber of connection timeouts in the pool —a 1.0
IPercent Used Average percent of the pool thatis in use G4.0 tAverage: 71..| [V 1.0
||F'ercent Maxed Average percent of the time that all cannection... 0.0 Average: 0 [1.0
Ll | _,l !!Prepstmt Cache . |Number of prepare statements discarded bec.. 4358 [1.0

[1ogroups(s) |11 counter(s) |Refresh rate: 6 sec Table size: 40 View Data As: Raw Value Logging: OM (maxpool50.Ira)

Figure 5-21 Monitoring connection pool after changing max pool size to 50

Case 3: Poor coding techniques with connection pooling

The root cause problem demonstrated here is one involving poor coding
techniques that manifests itself as an undersized connection pool. This results in
poorer response times or other errors such as the login error described earlier.
Our test servlet did not close connections, which led to perceived problems with
connection pool size.

Description of the application

We created a simple test servlet that lists accounts from the TRADEDB database
of the Trade application. The servlet code is available in Appendix B.1,
“Connection close servlet” on page 336.

Environment configuration
For this scenario, we have a 3-tier application running as shown in Figure 5-22.

Chapter 5. Problem determination scenarios 241

242

Web Browser Application Server Database Server

RS/6000 44P RS/6000 44P
AIX 4.3.3 ML08 AIX 4.3.3 ML08
B -
—
akstress ersian
(10 users) P mansel

Netscape Comm 4.72 (Trade App Server)

WAS AE 4.0.2 FP2
IHS 1.3.19
DB2 Client 7.2 FP6 DB2 Server 7.2 FP6

Figure 5-22 Poor coding techniques — connection pooling scenario environment

Our WebSphere Application Server and DB2 UDB servers were installed on
separate AIX machines persian and mansel respectively. We used the
WebSphere Performance Tool (formerly AKTOOLS) to drive the workload.

Monitor level settings

Both WebSphere Application Server and DB2 UDB were installed using default
configurations, and default settings were used. The relevant settings are the
same as those summarized in Table 5-1 on page 223.

Attention: We also changed the default monitoring levels on the database
connection pools for TRADEDB from None to Maximum from the Resource
Analyzer menu bar and selected Actions —> Monitoring Settings and set
the Maximum monitoring level, as shown in Figure 5-4.

This action corresponds to performing exception monitoring as well.

We also changed the WebSphere Application Server maximum pool size for the
TRADEDB datasource to 25, as shown in Figure 5-23.

DB2 UDB/WebSphere Application Tuning Guide

|/General |TCunnectiun Poaling |
—Cannection Poaling :
Minimum paal size: |1 & | connections
Maximum poal size: |25 \ | cannections
Cannectian timeaut: |130 | secands
Idle timeout: |1300 | seconds
Orphan timeoaut: |1300 | seconds
Statement cache size: |100ch | statements i
[_] Disable AutaConnection cleanup —
Help

Figure 5-23 Changing the maximum pool size for TRADEDB datasource

Workload used

The scenario test consisted of a load recorded in akstress that simulates 10
users invoking a combination of two test servlets repeatedly for a total duration of
100 seconds. This test servlets lists account information from the TRADEDB
database.

The servlets used are simple examples that request a session and then generate
a response. Sample code of the servlets and the object classes is available in
Appendix B.1, “Connection close servlet” on page 336.

The key measurement metric used here is the number of requests per second.

Triggering event

Our triggering event was a rash of complaints from users about repeated timeout
errors and being unable to conduct their business activities. The error received is
shown in Figure 5-24.

List of accounts

cotr b g5 o pool ConnectienWatt TimeoutEzception: Timeout watting for free conmection

Figure 5-24 Error message about a timeout exception

Chapter 5. Problem determination scenarios 243

This is an error message generated by our test servlets complaining about their
failure to get a connection within the timeout interval configured in the
WebSphere Application Server. Figure 5-23 shows this timeout interval to be 180
seconds.

Hypotheses and their validation

We postulated the following hypotheses as the potential cause of the problem.
Given our controlled environment, we ignored real world root cause possibilities
such as network bandwidth concerns, Web server problems, system utilization
and process priorities.

» Hypothesis 1: Communication problem between WebSphere Application
Server and DB2 server

» Hypothesis 2: DB2 problem
» Hypothesis 3: Connection pool is too small
» Hypothesis 4: Application code problems

Hypothesis 1: Communication problem between both servers

We chose to ping the DB2 server (mansel) from WebSphere Application Server
(persian) as shown in Figure 5-25, to determine if any communication problems
existed that may be the root cause.

CAWINNT System32.cmd.exe M=l

Microsoft Windows 28688 [UVersion 5.80.21951
(C> Copyright 1985-20088 Microsoft Corp.

C:~>ping mansel
Pinging mansel.almaden.ibm.com [?.1.38.1761 with 32 bytes of data:

Reply from 9.1.38.176: hytes=32 time<l@ms TTL=255
Reply from 9.1.38.176: byte=s=32 time<1@ms TTL=255
Reply from 9.1.38.176: byte=s=32 time<{i@ms TTL=255
Reply from 9.1.38.176: hytes=32 time<l@mz TTL=255

Ping statistics for 9.1.38.176:

Packetz: Sent = 4, Received = 4, Lost = 8 (A% loss),
Approximate round trip times in milli-seconds:

Minimum = Bms,. Maximum = Bmns, Average = Hms

LN

Figure 5-25 Pinging mansel from persian

244 DB2 UDB/WebSphere Application Tuning Guide

Note: We therefore decided that a communication problem between the

WebSphere Application Server and the database server was not the cause of

the problem.

Hypothesis 2: DB2 problem
We considered that the problem may be that DB2 is not up and running, or the

limit of MAXAPPLS was reached as was the case in an earlier scenario.

Note: We chose to look at DB2 first because we simulated a scenario where

the WebSphere Application Server administrator believed that WebSphere

Application Server had been over-configured for far more database
connections than the anticipated workload coming through the Web container.
This over-configuring had been done in the light of anticipated EJB modules

that had not yet been installed on WebSphere Application Server.

We first verified that DB2 was up and running using the following command in the
command window of the DB2 server.

db2 1ist applications

The results of this command is shown in Figure 5-26 indicating that DB2 is up

and running.

M CAWINNT S ystem32\telnet exe

[YOU HAVE MEW HMAIL]
& db2 list applications

Auth Id Application Appl. Application Id DB #f of
MName Handle MName Agents

DBZINST1 java 9 A98126AE.CA3B.A20613223342 TRADEDB 1
DBZINST1 java 12 A98126AE.CAGD . B20613223642 TRADEDB 1
DBZINST1 java 11 A9P126AE.CAGC.B20613223643 TRADEDB 1
DBZINST1 java i6 A98126AE.CA71 .B820613223645 TRADEDB 1
DBZINST1 java 15 A9P126AE.CAYA. 020613223647 TRADEDB 1
DBZINST1 java i@ A98126AE.CAGB.A20613223641 TRADEDB 1
DBZINST1 java 17 A9P126AE.CAY2 . 0820613223648 TRADEDB 1
DBZINST1 java 13 A98126AE.CAGE . B20613223644 TRADEDB 1
DBZINST1 java i8 A9P126AE.CA73 .820613223647 TRADEDB 1
DBZINST1 java 14 A98126AE.CAGF . 820613223646 TRADEDB 1
DBZINST1 java 3 A98126B8.9B33 .8208613220845 WASH i
DBZINST1 java 4 A98126B8.9B34.0820613220846 WASH i
DBZINST1 java i A90126AE.CBE?.B206132208397 WASPERS 1
DBZINST1 java 2 A9P126AE.CBES .B20061 322088408 WASPERS 1
DBZINST1 java 5 A98126AE.CBEB. 206132208847 WASPERS 1
DBZINST1 java] #9081 26AE.CBED.B20613220853 WASPERS 1
DBZINST1 java ? #98126AE.C8F6 .82006132208718 WASPERS 1

&

Figure 5-26 db2 list applications command

Chapter 5. Problem determination scenarios

245

The first eight characters of application id is the IP address of the machine which
has executed the application. Note that the first eight characters of all 25
applications accessing TRADEDB is the same, that is, 0901273B which is the IP
address of the WebSphere Application Server machine persian.

The fact that 25 connections were supported from WebSphere Application
Server, which also happens to be the maximum connection pool size, indicates
that reaching the limit of MAXAPPLS (our default was 50) is not a problem.

Note: We therefore discarded the limit of MAXAPPLS being reached as being
the cause of the problem.

Hypothesis 3: Connection pool is too small
We had to revisit this possibility, given that the first two hypotheses had to be
discarded.

We reviewed the contents of WebSphere Administrative Console for possible
event messages. A portion of these events is shown in Figure 5-27.

Clear

i

Type| Time | Evert Message | Source | ’Cm"T
E 6f13/02 3. WSVRO0023I: Server Trade open for e-business com.ibmowe runtime. Server il
& 813702 3:. CONMEOOSW: Timed out waiting for a connection fro... com.ibm.ejs.cm.poal. Connect. .. Details...
& 613702 3. CONMEOOSW: Timed out waiting for a connection fro... com.ibm.ejs.cm.poal. Connect. ..
& 613702 3. CONMSOO8W: Timed out waiting for a connection fro... com.ibm.ejs.cm.pool. Connect. ..
& 613702 3. CONMEQOSW: Timed out waiting for a connection fro... com.ibm.ejs.cm.poal. Connect. ..
& 613702 3. CONMEOOSW: Tirmed out waiting for a connection fro... com.ibm.ejs. cm.poal Connect. ..
& 813702 3:. CONMEOOSW: Timed out waiting for a connection fro... com.ibm.ejs.cm.poal. Connect.
& 6813702 3. CONMEOOSW: Timed out waiting for a connection fro... com.ibm.ejs.cm. poal. Connect.
& 613702 3. CONMEOOSW: Timed out waiting for a connection fro... com.ibm.ejs.cm. pool Connect.
& 613702 3. CONMEAOSW: Timed out waiting for a connection fro... com.ibm.ejs.cm. poal. Connect.
& 613702 3. CONMEOOSW: Tirmed out waiting for a connection fro... com.ibm.ejs. cm.poal Connect. ..
[

Figure 5-27 WebSphere Administrative Console Event Messages

246

DB2 UDB/WebSphere Application Tuning Guide

Clicking on the Details button provides a full description of the event, identifying
the datasource generating the event as shown in Figure 5-28.

. =10| %]
1D: 46833
Time: 6f13/02 3158 PM
Type: WaRMNING
Maocle: persian
Server Trade
Thread ID: 247d5acc
Source: corm.ibm. ejs. om. pool. ConnectionP ool

COMME0O8W Timed out waiting for a connection from data source
fdbc/TradeSample).

Figure 5-28 WebSphere Administrative Console Event Details

We then invoked the Resource Analyzer tool to review information about the
database connection pool as shown in Figure 5-29.

The figure shows the Pool Size to be 25 (which is the maximum), and that the
Percent Used and Percent Maxed was 100. This indicates that all the
connections were being used, and new requests for connections will timeout
after the connection timeout interval (180 seconds) unless an application
releases a connection. The Num Returns field shows 100 connections being
returned to the pool even though there were 125 allocations in total from the 10
concurrent users. This seemed unusual for the two very simple servlets we
wrote.

Chapter 5. Problem determination scenarios 247

¢ Resource Analyzer [raD61302co.lra) - |EI|1|
| File Actions Reports Options Help
e

5 webSphere Administrative Do :
= %) persian

View Data [View Chart |

% Default Server 100
Piggy
= = Trade
Enterprise Beans 80
B 2
12 jdbe/ TradeSample
& WM Runtime 60 Legend
L1 Servlet Session Manag # Num Creates
1! Thread Poals Num Destroys
Transaction Manager 40 & Num Allacates
wWeh Applications
20

0._ —
30706 PM 3:07:46 PM 30826 PM 30907 PM 3:0%46 PM

: Marne [Description | walue /| Seleg”| Scale
Nurn Creates Total number of connections created 24 1.0
Num Destroys Total number of connections destroyed ¥ v 1.0
Nurn Allocates Total number of connections allocated 12 vi 0.1
Num Returns Total number of connections returned to poaol 100] 1.0
Pool Size Average Pool Size 25.0 (Avera...] 1.0
Concurrent Waiters [Average number of threads concurrently waiting... | 10.0 (Avera. ..] 1.0
Avg Wait Time (ms) Average waiting time in milliseconds until a conn.. 131.92] 1.0
Faults Number of connection timeouts in the pool [l 1.0
Percent Used Average percent of the pool that is in use 1.0
Percent Maxed Average percent of the time that all connedctions ... 1.0

2|PrepStmt Cache Di... [Number of prepare statements discarded beca. . 1.0

Iv]:

1 groups(s) | 11 counteris) Refresh rate: 10 sec Tahble size: 40 Wiew Data As: Raw Value Logging: OFF

Figure 5-29 Resource Analyzer monitor output

We checked in WebSphere logs if there are any additional information about
these messages. The default path of these logs on NT is
x:\websphere\appserver\logs\Default Server stdout.log.

A portion of this log is shown in Figure 5-30.

248 DB2 UDB/WebSphere Application Tuning Guide

A K £ WINNT', System32' telnet.exe

[6-/13-A82 15:@5:48:311 PDT1 ShdcBifa Server
for e-husiness

A WSURBB23I: Server Trade open]

[6-13,82 15:87:15:471 PDT1 2e2481let UWebGroup I SRUEAA?11: [Servlet LOGI:
ztServletConClose: init
[6-13,82 15:87:17:975 PDT]1 2e3eBlet UWebGroup I SRUEBA?11: [Servlet LOG]:

stServletno: init g

[6/13-,82 15:18:21:9259 PDT1 3337cle8 ConnectionFoo W CONMGWABYW: Timed out waiting
for a connection from data source (jdbc/TradeSample).
[6/13-,82 15:18:21:9259 PDT]1 Zeldclet ConnectionFoo W CONMGBABYW: Timed out waiting
for a connection from data source {jdbc/TradeSamplel.
[6-/13/82 15:108:21:974 PDT1 Ze3bclebt ConnectionPoo W COMM6BBABW: Timed out waiting
for a connection from data source {jdbcsTradeSample.
[6-13-82 15:10:21:928% PDT1 Z2e2dBle6 ConnectionPoo W COMM6BBABW: Timed out waiting
for a connection from data source (jdbc-/TradeSample).
[6/13,82 15:18:22:654 PDT]1 334e4le8 ConnectionPoo W COMMGBABY: Timed out waiting
for a connection from data source (jdbc-/TradeSamplel.
[6/13,82 15:18:22:654 PDT]1 ZeZ2bBlebt ConnectionPoo W COMMGBABY: Timed out waiting
for a connection from data source (jdbc/TradeSample).
[6/13-82 15:18:22:669 PDT]1 ZeZeclet ConnectionFoo W CONMGBABYW: Timed out waiting
for a connection from data source (jdbc/TradeSample).
[6/13-82 15:18:22:697 PDT]1 2e3deBlet ConnectionFPoo H CONHEBBBH' Timed out waiting
for a connection from data source < jdbhc-TradeSampl
[6-/13-82 15:10:22:724 PDT1 Z2e24PBle6 ConnectionPoo H CONHEEBSH- Timed out waiting
for a connection from data source {jdbcsTradeSample.
[6/13,82 15:18:22:739 PDT1 334481ie8 ConnectionPoo W COMMGHABY: Timed out waiting
for a connection from data source (jdbc/TradeSamplel.
[6/13,82 15:13:22:874 PDT1 56888led ConnectionPoo W COMMGBABY: Timed out waiting
for a connection from data source (jdbc/TradeSample).
[6/13,82 15:13:22:874 PDT1 56f541ed ConnectionPoo W COMMGBABY: Timed out waiting
for a connection from data source (jdbc/TradeSample).
[6/13,82 15:13:22:879 PDT1]1 56f181led ConnectionFoo W CONMGWABYW: Timed out waiting
for a connection from data source (jdbc/TradeSample).
[6/13-,82 15:13:22:694 PDT1 568fcled ConnectionFoo W CONM6WABYW: Timed out waiting
for a connection from data source {jdbcsTradeSample.
[6-13/82 15:13:22:724 PDT1 568281ed ConnectionPoo W COMM6BBABW: Timed out waiting
for a connection from data source {jdbcsTradeSample.
[6/13,82 15:13:22:-759 PDT1 Ze3bclet ConnectionPoo W COMMGBABYW: Timed out waiting
for a connection from data source (jdbc-/TradeSamplel.

Figure 5-30 WebSphere stdout log

The error messages in the Default_Server_stdout.log shows that the error was
from the TestServlet.java file.

We then checked the TestServiet.java program and determined that the
connection was not being closed in the application.

Chapter 5. Problem determination scenarios 249

Root cause of the problem

Since the program was not closing connections, all connections were in use after
the errant servlet had executed 25 times — with each request creating a new
connection. Subsequent connection requests from any servlet had to wait for a
connection to become available, and then timed out when the connection timeout
interval threshold was exceeded.

Apply best practices
We closed the connection in the program and reran the workload.

Figure 5-31 shows the results after rerunning the workload. With the connection
being closed, it is returned to the pool for reuse by other requesters. Figure
shows a very large number in the Num Returns counter, and that only 10
connections were required to process the workload corresponding to our 10
concurrent users.

\\ Resource Analyzer [ral

File Actions

D e | B6D

Reports Options Help

=T

9§ webSphere Administrative Don] © |/\fiew Data r\fiew Chart |
= ¥ persian i
% Default Server 100
Pigay
= % Trade
Enterprise Beans 80
=) 2
! jelbe f TradeSample|
&l J¥M Runtime : 60 Legend
! Servlet Session Manag © # Num Creates
Thread Poals : Num Destroys
Transaction Manager | : 40 & Num Allacates
web Applications ;
20
43430 PM 43526 PM 4£36:16 PM 437:00 PM 4:37:56 PM
: Name [Drescription | walue | Select | Scale
i|Num Creates Total number of connections created 10 [¥] 1.0
:|Num Destroys Total nurmber of connections destroyed o] v 1.0
|Nurn Allocates Total nurber of connections allocated [v] 0.01
|Nurn Returns Total number of connections returned to pool [1.0
‘|Pool size Average Pool Size 10.0 Aveta— [} 1.0
‘| Concurrent Waiters |Average number of threads concurrently waiting. .. | 0.0 (Averag...] 1.0
§§ Avg Wait Time (ms) |Average waiting time in milliseconds until a conn. . o] [l 1.0
“|Faults Nurnb er of connection timeouts in the pool o [1.0
‘|Percent Used Average percent of the pool that is in use 0.0 (Averag. .. [} 1.0
i|Percent Maxed Average percent of the time that all connections ... | 0.0 [Averag... [} 1.0
“|PrepStmt Cache Di... [Nurnber of prepare statements discarded beca.. o [1.0
] Z D E
1 groupsis) | 11 counteris) Refresh rate: 10 sec Tahle size; 40 Wiew Data As: Raw Value Logging: OFF

Figure 5-31 Resource Analyzer monitor output with connections closed in program

250

DB2 UDB/WebSphere Application Tuning Guide

5.2.2 Concurrency issues

We cover the following two problem scenarios:

» Case 1: EJB isolation mismatch, DB configuration parameters, etc.
» Case 2: EJB access intent

Case 1: EJB isolation mismatch, DB config parameters, etc.
The root cause problem demonstrated here is one where an unnecessary high
level isolation definition at the EJB level causes significant locking contention on
the DB2 server, resulting in poor response times and rollbacks. Other
concurrency related factors such as undersized database configuration
parameters, and sub-optimal access path selection for SQL statements are also
covered in this scenario.

Description of the application

We used the PiggyBank application that was developed for the WebSphere
Version 4 Application Development Handbook, SG24-6134, where it is fully
described. It is a very simple banking application based on EJBs, servlets and
JSPs. It stores its data in two database tables, CUSTOMER and ACCOUNT.

All of the application business logic is implemented as EJBs, which store
persistent application data, such as account and customer information, in the
database. Rather than make direct JDBC calls to persist the data to the
database, the application uses container-managed persistence (CMP) entity
EJBs, which delegates this task to the WebSphere EJB container.

The flow of the application is shown in Figure 5-32 through Figure 5-35.

Chapter 5. Problem determination scenarios 251

iggyBank - Netscape

File Edit “iew Go Communicator Help
£« 2 3 B/ a & & B8
Back FEarsvard s Reload Home Search Metscape Pririt Security Shop St

wt'ElookmarkS Jg Lacation: | gfs sian:d dex hHtml j ﬁ'v\lhai's Related
['_|" 1B Wil Radio 4| People ellowe Pages Dovwenload Calendar ['_|" Channelz

PiggyBank

Please enter your personal user id below to access your accounts online:

Customner ID |6543 2

Password I”*”

Login | Reset
[[=D=| |Document: Dione S A e = Vo

Figure 5-32 The user logs in

252

DB2 UDB/WebSphere Application Tuning Guide

iggyBank - Netscape
File Edit “iew Go Communicator Help

< 2 3 B 2 W =S &£ O3 #

Back FEarsvards Reload Home: Search Metscape Pririt Security Shop Sto
wt'ElookmarkS Jg Location:l Fittp: Mper sian: 9082 Aooin plc j ﬁ'v\lhai's Related
['_|" 1B Wil Radio People ellowe Pages Dovwenload Calendar ['_|" Channelz

=4 PiggyBank

DMsplay accounts Transfer money Logout

Hi , and welcome to PiggyBank. To begin working with your accounts, select one of the options from the top
main menu.

[[=D=| |Document: Dione S A e = Vo

Figure 5-33 Main menu with the options

Chapter 5. Problem determination scenarios 253

PiggyBank - Netscape

File Edit “iew Go Communicator Help

14 2 3 X 2 @ 3 £ B &

Back FEarsvard s Reload Home: Search Metscape Pririt Security Shop St

J'Elookmarks Jg Location:l hittp: lpersian: 9052 idisplayAccounts pho

| &1 vhat's Relsted

['_|" {[=11] Wikl Radio People Yellowy Pages Doveenloscd Calendar ['_|" Channels

=4 PigogyBank

Display accounts Transfer money Logout

Hete are yvour account details:

|Number |Balance |Type
65432 |[$65432.00 |Checking
290747 ||$65432.00 |Checking

= 0=

|Document: Dione

=

w2

Figure 5-34 The user displays his accounts

254 DB2 UDB/WebSphere Application Tuning Guide

PiggyBank - Netscape
File Edit “iew Go Communicator Help

14 & 3 3 a 6 = ¢ O & N

Back Forsvard

: Reload Home: Search Metscape Pririt Security Shop St
I J'Elookmarks .7 Location:l bittp: et sian: 9082 Aranster phe j 517 vhat's Related

' ['_|" {[=11] Wikl Radio People Yellowy Pages Doveenloscd Calendar ['_|" Channels

=4 PigogyBank

Display accounts Transfer money Logout

Transter § IlDDD

From [B5432 (Balance: $55432.00 Type: Checking) x|

To |290747 (Balance: $65432.00 Type: Checking) x|

Transfer Funds |

S e o

[== |Document: Done

2

Figure 5-35 Transfer money between the users different accounts

Chapter 5. Problem determination scenarios

255

Environment configuration
Figure 5-36 shows the environment used for the PiggyBank application for the

EJB isolation mismatch scenario.

Application Server Database Server

Web Browsers
RS/6000 44P

Windows 2000 RS/6000 44P

]
T
web clierﬁ'\\
(2 users)
akstress

100,000 seconds
/ persian

/ (Trade App Server)

Batch Update
program

AIX 4.3.3 ML08 AIX 4.3.3 MLO8

WAS AE 4.0.2 FP2

IHS 1.3.19
DB2 Client 7.2 FP6 DB2 Server 7.2 FP6

Figure 5-36 EJB isolation mismatch scenario environment

Note: Given the online banking nature of the application, we chose to disable
session persistence in the WebSphere Application Server Session Manager

service.

Our WebSphere Application Server and DB2 UDB servers were installed on
separate AIX machines persian and mansel respectively. We used the
WebSphere Performance Tool to drive the workload.

Monitor level settings
Both WebSphere Application Server and DB2 were installed using default

configurations, and default settings were used. The relevant settings are
summarized in Table 5-2.

256 DB2 UDB/WebSphere Application Tuning Guide

Table 5-2 EJB isolation mismatch scenario monitor settings

Hardware configuration Software configuration
Database Server (mansel) AlIX 4.3.3 ML08
RS/6000 44P DB2 UDB EE v7.2 FP6
1 GB Memory Instance name: db2inst1
32 GB disk DIAGLEVEL: 4

Log name: dbZ2diag.log and jdbcerr.log
Log path: /home/dbZ2inst1/sqllib/db2dump
Databases: WAS40 and PIGGY

Application Server (persian) AlX 4.3.3 ML08

RS/6000 44P WAS AE v4.0.2 FP2

1 GB Memory Log name: tracefile and activity.log
32 GB disk Log path:

/usr/WebSphere/AppServer/logs

Application name: Piggy

Log name: Piggystdout.txt and
Piggystderr.txt

Log path:
/usr/WebSphere/AppServer/logs

HTTP Server v1.3.19
Log name: error.log and access.log
Log path: /ust/HTTPServer/logs

DB2 UDB Runtime Client v7.2 FP6

Attention: The diagnostic error capture level parameter DIAGLEVEL default
value of 3 is appropriate for routine monitoring.

We chose to change this value to 4 which is the highest level of
information in all our problem determination scenarios, using the
commands shown in Figure 5-3. This is because the routine monitoring
level does not provide us with the information required to perform
proper problem diagnosis.

This is equivalent to performing exception monitoring for problem diagnosis.

Attention: We configured DB2 with a LOCKTIMEOUT value of 20 seconds in
order to decrease the amount of time an application can wait for a lock in our
controlled environment. The default value is 300 seconds.

Chapter 5. Problem determination scenarios 257

File Edit “iew Go Communicator Help

Besides the above parameters values, we stayed with the defaults.

Workload used

The scenario consisted of a load recorded in akstress that simulates 2 users that
login, alter their account, and then login again. We ran this load for 100,000
seconds. It simulates a high volume 24x7 application involving multiple
concurrent users.

In addition to the above application, we had a batch update going against the
PIGGY database. The batch program runs frequently and updates a majority of
the customer account records.

Triggering event

Our triggering event was a number of user complaints about transactions not
completing with messages like the one shown in Figure 5-37, and erratic
response times.

PigagyBank - Hetscape

=

4 2 3 D e s &£ B B
Back Forwvard - Relosd Home Search Netzcape Prirt Security Shop Stop
5 w‘ T Bookmarks \& Location: | hittp: ioer sian: 905 24ranster pho j @'What's Relsted

|"_|" 16 ezl Radio FPeople Yellow Pages Dowenlosd Calendar D" Channels

& [=B= |Document: Dione Sl P

=-% PiggyBank

Display accounts Transfer money Logout

Sorry, we were unable to process your request

We encountered an errorwhile processing your request. The errorinformation is included below. Please
contact the helpdesk on 800 PIG BANK if this problem persists.

Error Source Transfer

Caught unexpected exception java rmi ServerException: RemoteException oceurred in server thread,
Error Message nested exception 13: com thm ejs. contamer. UncheckedEzception: ; nested exception 1s:
javaz. ejb ETEExzception

Figure 5-37 Error message in Web Browser

258 DB2 UDB/WebSphere Application Tuning Guide

Given the critical nature of the application, and the unpredictability of when the
problems occurred. We therefore had to diagnose the problem with minimal
exception monitoring, and resolve it quickly.

Hypotheses and their validation

We postulated the following hypotheses as the potential cause of our problem.
Given our controlled environment, we ignored real world root cause possibilities
such as network bandwidth concerns, Web server problems, system utilization,
and process priorities.

Attention: We also assume that we have satisfied ourselves that the problem
is not with the connection pool as was resolved in the earlier scenarios.

» Hypothesis 1: WebSphere Application Server restarts
» Hypothesis w: DB2 locking contention

Hypothesis 1: WebSphere Application Server restarts

We decided to verify whether the response time problem was due to WebSphere
Application Server restarts triggered either automatically by the system, or by
administrator action.

The tracefile in the /usr/WebServer/AppServer/logs directory records all such
events. We therefore issued a grep command against the tracefile looking for the
string “Restart”. We requested the name of the Web application and a count of
the number of times using the parameter wc for word count as shown in

Figure 5-38. The resulting value of 1 indicates that WebSphere Application
Server was only restarted once.

MANSEL:23 - Kevlem HEE

Connection Edit Options Help

[persian] fusrifWebSphere/dppServer/logs fzrep Restart tracefile | grep -1 Pigzy | wo -| n
1
[rersian] fusr/WebSphereffppServer/logs §_

Ln3 Cold2 005508

Figure 5-38 Looking for WebSphere restarting the Application Server

Chapter 5. Problem determination scenarios 259

Note: We therefore concluded that the fact that WebSphere Application
Server restarts was not the root cause, and we discarded this hypothesis.

Hypothesis 2: DB2 locking contention

We reviewed the Event Messages area of the WebSphere Application Server
Administrative Console looking for possible clues. We found some DB2 related
messages as shown in Figure 5-39 and Figure 5-40.

"4 Event Details M=l E
10 10537
Tirne: 44102 8:38 PM
Type: ERRCR
Mode: persian
Server. Figgy
Thread |D: h&fd605
Source: cafm.ibm.ejs.container.util. Exceptionltil
CHTROO1S9E: Mon-application exception occurred while processing method findByPrimand<ey. com.ibm.wehsphere.cpi. CPIException: i‘

COM.ibm.db2 jdbe. DBZException: [IBM][CLI Driver][DB2/6000] SAL0S11M The currenttransaction has been rolled back because ofa
deadlock ortimeout. Reason code "2, SQLETATE=40001
s hested exception is:
COM.ibm.db2.jdhe. DB2Exception: [IBM]ICLI Driver][DB2/6000] S2L0911MN The currenttransaction has heen rolled hack
hecause of a deadlock ortimeout. Reason code "2, SQLSTATE=40001 j

Figure 5-39 SQL0911: Reason code 2 in WebSphere’s Admin Console

'."l Event Details [_ (O]]
(In§ 11226
Tirme: 415021017 AM
Type: ERROR
Mode: persian
Server; Pigoy

Thread ID: 34bd34fc
Source: com.ibim gjs.container util Exception Uil

CHTRO018E: Maon-application exception occurred while processing methaod findByPrimarykey: com.ibm.websphere.cpi.CPIException:ﬁl
COM.ibm.db2 jdhe.DB2Exception: IBMI[CLI Driver] [DB2/E000] SALOS11M The currenttransaction has been ralled back hecause of a
deadlock ortimeout. Reason code "68". SQLSTATE=40001
v nested exception is:

COM.ibm.db2 jdbe.DB2Exception: [IBMI[CLI Driver][DB206000] SALO911M The current transaction has heen rolled
hack because of a deadlock ortimeout. Reason code "68". SQLSTATE=40001 j

Figure 5-40 SQL0911: Reason code 68 in WebSphere’s Admin Console

260 DB2 UDB/WebSphere Application Tuning Guide

Other infrequent messages such as the one shown in Figure 5-41 were
discovered. This is a remote exception, and mentions Corba
Transaction_Rolledback, but does not point to any database related problem,
other than the fact that it mentions transactions.

'|’| Event Details [_ (O] x|
10 1597
Time: 43702 1:41 PM
Type: ERROR Q
Mode: a23wpms2
Setver: Default Server

Thread ID: 231432e5

Source: com.ibm.ejs.container. util Exce ptionl Uil

CHTROO0Z0E: Mon-application exception accurred while processing method handleEvent on hean :AI
Beanldi{petstore#petstoreEjh jar#TheShoppingClientCaontroller, ecfd8h17173:
cam.sun.j2ee blueprints petstore control exceptions. GeneralF ailureException: Irrecoverable errorwhile createing order :
javax transaction. TransactionRolledbackException: CORBA TRANSACTION_ROLLEDBACK 0 Mo; nested exception is:

org.omg. CORBATRAMSACTION_ROLLEDBACK: com.ibmawehsphere csi.CBITransactionRolledbackException: null; nested
exception is:

javax.ejh EJBException

il mr

Figure 5-41 Corba Transaction_Rolledback error in WebSphere’s Admin Console

We chose to focus on the SQL error messages, and particularly on the one
shown in Figure 5-39 — this is highlighted in Example 5-2.

Example 5-2 Error message SQL0911N, Reason code “2”

[1BM] [CLI Driver] [DB2/6000] SQLO91IN The current transaction has been rolled
back because of a deadlock or timeout. Reason code "2". SQLSTATE=40001

We issued the following command on a DB2 command line in order to get a fuller
explanation of the error message.

db2 ? SQLO911IN
Example 5-3 lists the results of this command.

Example 5-3 Explanation of the SQL0911N error message

SQLO911IN The current transaction has been rolled back because of
a deadlock or timeout. Reason code "<reason-code>".

Explanation: The current unit of work was involved in an
unresolved contention for use of an object and had to be rolled
back.

The reason codes are as follows:

Chapter 5. Problem determination scenarios 261

262

2 transaction rolled back due to deadlock.
68 transaction rolled back due to lock timeout.

72 transaction rolled back due to an error concerning a DB2 Data
Links Manager involved in the transaction.

Note: The changes associated with the unit of work must be
entered again.

The application is rolled back to the previous COMMIT.

User Response: To help avoid deadlock or Tock timeout, issue
frequent COMMIT operations, if possible, for a Tong-running
application, or for an application 1ikely to encounter a
deadlock.

Federated system users: the deadlock can occur at the federated
server or at the data source. There is no mechanism to detect

deadlocks that span data sources and potentially the federated

system. It is possible to identify the data source failing the
request (refer to the problem determination guide to determine

which data source is failing to process the SQL statement).

Deadlocks are often normal or expected while processing certain
combinations of SQL statements. It is recommended that you
design applications to avoid deadlocks to the extent possible.

sqlcode: -911
sqlstate: 40001

Reason code 2 points to a deadlock, while reason code 68 indicates a timeout.

Such events can cause the problems encountered by users, if it can be
determined that they occur frequently in the system. We used the DB2 snapshot
monitor to provide us with this information.

Attention: The DB2 Snapshot Monitor enables one to get “snapshots” of the
state of the database environment since restart or activation. Some pieces of
information are cumulative counters, while others represent a state at a
point-in-time.

We executed the following command on the DB2 command line to get a
snapshot of the PIGGY database relating to concurrency information such as
locks.

db2 get snapshot for database on piggy | grep -i lock

DB2 UDB/WebSphere Application Tuning Guide

Figure 5-42 lists the results of this command.

Important: We assume here that this information is being captured in “real
time”, that is, during or immediately after the user problems have occurred.
This is equivalent to performing exception monitoring.

MAMSEL:23 - KevTerm

Connection Edit Optione Help

$ db? zet snapshot for database on pigzy | zrep -i lock
Locks held current |w =3

Lock waits = 144
Time database waited on locks (ms) = 342404
Lock list memory in use [Bytes) = 2198
Deadlocks detected =10
Lock eszcalations = 38
Exclusive lock escalations = 32
fzents currently waiting on locks =10

Loclk Timeouts =2
Internal rollbacks due to deadlock =10

Figure 5-42 Snapshot from database focusing on locks.

The snapshot clearly indicates the occurrence of DB2 lock contention as follows:

» 144 lock waits — This corresponds to an application having to wait for
another user to release a lock on a required resource before it can continue to
execute.

» 10 deadlocks — Indicates where DB2 had to choose victims among two or
more users waiting on resources held by each other.

» 2 lock timeouts — Indicates where an application wait for a locked resource
has exceeded the threshold specified in LOCKTIMEOUT in order to get a lock,
and had to be rolled back.

» 36 Lock Escalations — Indicates where the total number of locks taken by
has exceeded the LOCKLIST specified value, and DB2 has therefore escalated
the granularity of the lock taken from row level locks to a table level lock.
Such an escalation has the potential to significantly impact concurrency
among users requesting incompatible locks on shared resources. Exclusive
lock escalations are the most restrictive of such locks, essentially single
threading execution of applications contending for the same resource. There
are 32 such escalations.

Again assuming exception monitoring, the following DB2 command lists the
current status of all connected applications.

list application show detail | grep PIGGY

Chapter 5. Problem determination scenarios 263

Figure 5-43 lists the results of this command.

MANSEL:23 - KevTerm HEE

Connection Edit Optionz Help

$ db? list application show detail | zrep PIGGY

DE2ZINETI Jawa 37 D9012ZEAE.D32B. 020405031208
oot o1 I 22282 oW Waiting D4-04-2002 20:

00:0E.604367 PIGGY Ffhome/db? inst1/db2 inst 1/NODEDOODSSOLOONOTT,

DBZINETI Jjava 40 030126AE.DABE. 0204050323313
nont o I 20710 oW Waiting 04-04-2002 20:

00:06.606027 PIGGRY Fhonefdb2 inst1/db2 inst 1 /NODEDOOO/SOLOOOT 1S

DE2ZINETI Jawa 11 D9012EAE.D3BF. 020405032340
oot o1 I 41712 oW Waiting D4-04-2002 20:

00:0E.E06330 PIGGY Ffhome/db? inst1/db2 inst 1/NODEDOODSSOLOONOTT,

DBZINETI Jjava 42 030126AE.DACO. 020406032341
nont o I 13748 Lock-wait 04-04-2002 20:

00:06.605435 PIGGRY Fhonesdb2 inst1/db2 inst 1 /NODEDOOO/SOLOOOT 1S

DE2ZINETI Jawa 43 D9012EAE. D3BD. 020405032342
oot o1 I 16hE4 oW Waiting D4-04-2002 20:

00:04.533600 PIGGY Ffhome/db? inst1/db2 inst 1/NODEDOODSSOLOONOTT,

DBZINETI dbZbp 48 #LOCAL.db2 inst1.020405033200
nont o I 26752 oW Waiting 04-04-2002 14:

G7:00.462450 PIGGY Fhone/db2 inst1/db2 inst1/NODEDODOO/SOLOOOTTS

Ready Lrn 20, Col 3 02:44:03 SCRL

Figure 5-43 List applications

This shows currently connected applications and those waiting for a resource.

Note: The origin of each connection can be determined using the first eight
characters in the connection ID. These represent the client IP-number in hex.

264 DB2 UDB/WebSphere Application Tuning Guide

The same information can be obtained from the DB2 Control Center, which
provides a more “user-friendly” interface, as shown in Figure 5-44 and

Figure 5-45.

& Control Center) =] 3

Control Center Selected Edit VWiew Tools Help

B8998 |80 E3

[gystems
- m] AZIWPME2

gﬂ horon
t gﬂ crete.almaden.ibm.com
E|gﬂ mansel
ED Instances
= 'E' Open Mew Control Center
E‘D Da
i g Change...
=-0 Refmove
&-(3) G2
Stop
Attach...
Impart Server Profile...
Configure...

Setup communications...

Ferfarmance Monitoring »
Multisite Update »
Refresh

mansel - db2instl

MName |

D Datahaszes
D Gateway C...

4 % 4+ ¢ N

=

Figure 5-44 DB2 Control Center, list applications

Chapter 5. Problem determination scenarios

265

& Applications Ed
|manse| - dh2inst1

Local Databases | Gatewavl

The output of the Applications tab is shown next in Figure 5-45.

Connectiaon

|Databasename |App|icatinnname |5tatus | Force I

&= 090126AE.D3... PIGGY

{w|080126AE FB22.0204051

java Loy Waiting in the applicatio

)

Lock Waiting

javamy.exe Connected

.

Close Farce All Refresh | Help

Action completed successtully

Figure 5-45 Current connected applications with status

266

The problem is clearly with locking contention, but we need to identify the
culprits.

For this, we analyzed isolation levels used by the applications, database
parameters relating to locking and concurrency, and information about
deadlocks, lock waits, and lock escalations, as follows:

» Isolation levels used by the applications

We reviewed the EAR file containing the application, which includes EJBs.
We used the Application Assembly Tool in WebSphere Application Server to
determine the isolation level as shown in Figure 5-46. This tool can be used to
modify isolation levels as well.

DB2 UDB/WebSphere Application Tuning Guide

% Application Assembly Tool H=l E
File Edit View Window Help

3 BB XE|ea s

=% Application Assembler - EXCODE\apps'piguvbankipigiyhank.ear

E|ﬂ, Pi.gggrEIank Application MName | Farameters | Type |
H-g5* EJB Modules + * All methods i’
E---Q“_‘S FiggyBank EJBs + * Home methods
- Session Beans + * Remote methods
- Entity Beans + create intinthoolean Home methods
. &, Customer + credit int Remote methods ;I
-2, Account l
t-(Enviranment Entries | S=Neral | Advanced
1 EJB References Tvpe: All methaods
3 Resource Referenct | poma *
1 Security Role Refere ;
1 CMP Fields Pararmetars:
-0 Method Extensions | | [|salation level attributes
------ 3 Security Roles]
...... £ Method Permissions Isolation level:
------ 8 Container Transactions
L 9 Files [Access intent
g Weh Modules
H-g5° Application Clients [MENtyHE: [Read =
-0 Security Rales
P Files [Finder descriptar
= [zar
© inereclause: |
Sy BEGEL Hel
4I fv] = = i

Figure 5-46 Application Assembly Tool

We noticed that the application EJB was configured for Java Repeatable
Read which happens to be the default isolation level. This corresponds to a
rather restrictive Read Stability isolation level in DB2 per Table 2-1 on

page 82.

Note: The semantics of this application needs to be reviewed in order to
determine whether or not the Java Repeatable Read isolation can be
diluted to a level that translates to a less restrictive isolation level in DB2.

Chapter 5. Problem determination scenarios 267

Since SQL also allows one to preset applications using the WITH parameter,
we needed to verify whether this was used in the application. We used the
DB2 Snapshot Monitor to provide us this information from the package cache.
which contains all the compiled dynamic SQL that has not been flushed since
the last database restart or activation.

Note: This is not the recommended method for obtaining this information,
since the package cache is not guaranteed to include all SQL statements
executed to date. Users may have to get this information from a combination
of program source access, and creating Event Monitors for SQL statements
which would have an adverse performance impact. Refer to the IBM DB2 UDB
System Monitor Guide and Reference, SC09-2956, for details on creating
Event Monitors.

In our controlled environment, we were confident that the package cache
would provide us the desired information.

We issued the following command, which provides a verbose listing of all
SQL statements as well as the total number of executions per statement to
list all the statements present in the package cache:

db2 get snapshot for dynamic sql on <database>

Figure 5-47 lists a portion of the results of this command.

MANSEL:23 - KevTerm
Edit

Connection

Options Help
Dynamic S0L Snapsholt Result

Database name = PIGGY

Database path fhome/db2 inst1/db2 inst1/NODEQOOD SSQLOODT1S
Wumber of executions

Number of compilations

Worst preparation time (ms)
Best preparation time (ms)
Internal rows deleted

Internal rows inzerted

Rows read

Internal rows updated

Rows written

Statement sorts

Total execution time (sec.ms)
Total user cpu time (sec.ms)
Total swstem cpu time (sec.ms)
Statement text
RE number = ? FOR UPDATE

== e -)

g.ooooon
g.ooooon
g.ooooon
SELECT number, balance, checking, customerID FROM Account WHE

Standard input

Ln 25, Cal15 21:0356 99:25 SCRL

Figure 5-47 Get snapshot for dynamic SQL

268 DB2 UDB/WebSphere Application Tuning Guide

We did not find any SQL statement in the package cache using the WITH
parameter to preset isolation levels.

» Database parameters related to locking and concurrency

We issued the following command to determine the PIGGY database
configuration parameters relating to locking.

db2 get db cfg for PIGGY | grep LOCK

Figure 5-48 lists the results of this command and shows the values for
MAXLOCKS, LOCKLIST and LOCKTIMEOUT parameters.

MAMSEL:23 - KevTerm

Connection Edit Options Help
% db? zet db cfg for PIGGY | zrep LOCK

Max storaze for lock list (4KB) (LOCKLISTY = 100
Percent. of lock lists per application (HAKLOCKSY = 10
Lock timeout {sec) (LOCKTIKMEOUTY = 20
Po_

Figure 5-48 DBZ2 Configuration concerning locks

MAXLOCKS and LOCKLIST have default values, while we had changed
LOCKTIMEQUT to 20 seconds.

Note: These parameters need to be changed given our concurrency
problems.

» Information about dead locks, lock waits and lock escalations

Our DIAGLEVEL setting of 4 will provide details of lock escalations and
deadlocks in the db2diag.log. We reviewed the db2diag.log and discovered
several messages of interest. Figure 5-4 highlights an entry that describes a
lock escalation. The application involved is a local application, as identified by
the value LOCAL in the application id field Appid. The SQL statement causing
the lock escalation is also identified as being the following:

UPDATE ACCOUNT set BALANCE = 1000000 where customerid < 200000

Chapter 5. Problem determination scenarios 269

270

Example 5-4 Using db2diag.log — lock escalation

2002-04-05-14.40.05.862900 Instance:db2instl Node:000
PID:19156(db2agent (PIGGY)) Appid:*LOCAL.db2inst1.020405221859
data_management sqldEscalatelLocks Probe:1 Database:PIGGY

-- Start Table Lock Escalation.
-- Lock Count, Target : 32, 16

7570 6461 7465 2061 6363 6f75 6e74 2073 update account s
6574 2062 616c 6l6e 6365 203d 2031 3030 et balance = 100
3030 3030 2077 6865 7265 2063 7573 746f 0000 where custo
6d65 7269 6420 3c20 3230 3030 3030 merid < 200000

Example 5-5 highlights another message relating to deadlocks.

Example 5-5 Using db2diag.log — deadlock

2002-04-05-14.40.05.485256 Instance:db2instl Node:000
PID:46162(db2agent (PIGGY)) Appid:090126AE.8E3D.020405223629
lock_manager sqlpinfd Probe:80 Database:PIGGY

Request for Tock "REC: (2, 3) RID 00000100" in mode "..U" failed due to
deadlock
Application caused the Tock wait is "*LOCAL.db2inst1.020405221859"

Statement: 5550 4441 5445 2041 6363 6f75 6e74 2020 UPDATE Account
5345 5420 6261 6c61 6e63 6520 3d20 3f2c SET balance = ?,

2063 6865 636b 696e 6720 3d20 3f2c 2063 checking = ?, ¢

7573 746 6d65 7249 4420 3d20 3f20 5748 ustomerID = ? WH

4552 4520 6e75 6d62 6572 203d 203f ERE number = ?

The application involved in the deadlock is a remote application (Appid:
090126AE in hex, IP number 9.1.26.174 in decimal) which has acquired
certain locks, and had been waiting for a lock that is held by a LOCAL
application, when it was chosen as the victim by DB2’s deadlock detector and
had its transaction rolled back. The IP Address of the remote application
indicates that it originated in the WebSphere Application Server machine
persian. The victor application in this deadlock situation is a LOCAL
transaction that was attempting to execute the following SQL statement when
the deadlock occurred.

UPDATE Account SET balance = ?, checking = ? customerID = ? WHERE
number = ?

DB2 UDB/WebSphere Application Tuning Guide

We decided to taker a closer look at the above SQL statement which was
causing deadlocks. We used DB2 Visual Explain for our purpose, which can
be invoked from the DB2 Control Center as shown in Figure 5-49.

& Control Center

Control Center Selected Edit View Tools Help

BS99 E |8 0Es

D Systems mansel - dbZinst! - PIGGY
- o) AZIWPME2 Name [
2 @) mansel [7) Tahles
ED Instances [views
=2 dhinstt £ lizses
=-{) Databases [Triggers

=8 W
[_‘] D Open Mew Caontrol Center

_____ D glter...

rop [
""" D Remaove ns
""" i Restart b
""" i Connect..

""") Disconnect
""" i Autharities...

D Configure... G
Configure Performance Using Wizard...
..... D BaTHn K
""" i Restore »

= Restore ta new...

#{ Rol-forward.

=] Stop roll-forward

w7 Gatew ghow Explained Staternents History

&l horon Explain SGL...
IZII----gﬂ crete.almadenibr Geperate DOL...
Ferfarmance Monitoring »
GQuery Patraller »
4| Refresh ¥ ox

Figure 5-49 Explain SQL in DB2 Control Center

We copied the above SQL statement as shown in Figure 5-50.

Chapter 5. Problem determination scenarios 271

272

Tip: When editing an SQL statement into Visual Explain, you can specify
for each predicate either a distinct value or a question mark (“?” — also
known as a parameter marker), which is acts as a placeholder for a value
to be supplied later.

When a distinct value is specified in a predicate, for example, .. WHERE ID
= 123. DB2 will then create an access plan based on the cardinality for that
value using information available in the system catalog.

When a parameter marker is supplied, for example, .. WHERE ID = ?, DB2
treats this parameter marker as if it were a variable value, and optimizes
the access path accordingly.

Most application programs use parameter markers, and unless the
application uses the same value every time for a predicate, the use of
question marks in the predicate is appropriate, to ensure that the access
plan mirrors what the real access plan DB2 will generate for the SQL
statement.

I8 Explain SOL Statement - PIGGY
rmansel - dbZinstt - PIGGY

SOL text

IUPDATE Account SET balance =7, checking = ?, custamerlD = ? WHERE
number="7 |

Get
Save |

Guery number |1
Guerny tag I

TR #]
Optimization class I l—

1 Populate all calumns in Explain tables

(8] | cancel I Help

Figure 5-50 Explain the SQL statement

DB2 UDB/WebSphere Application Tuning Guide

The result of the visual explain, shown in Figure 5-51, gives a graphical view
of the execution plan for the SQL statement.

: Access Plan Graph - PIGGY

Staternent Mode View Tools Help “\r# j
D Ea00E Bio:alEd

mansel - db2instl - PIGGY

Fackage: MULLID. SQLLFOO0 Section number: 64

Explain date and time: 04/05/2002 25416 FM Parallelism: Mone

Data Joiner; Yes

Total costitimerons): 1016

(RETURN{H E1D.1Ej

(TEIBCF-.N{E]I 50?.31)
F 3

| DB2INSTI ACCOUNT |

Figure 5-51 Result of the visual explain

The results show the SQL statement performing a tablespace scan, which is
usually undesirable from a performance or concurrency perspective. Our
knowledge of the application tells us that the NUMBER column should only
support unique values. Since this column is used as a predicate, we decided

to determine why DB2 had not chosen an index on this column as its access
path.

Chapter 5. Problem determination scenarios 273

We used the DB2 Control Center to determine DB2 object dependencies on
the ACCOUNT table as shown in Figure 5-52 and Figure 5-53.

Control Center Selected Edit View Tools Help i“\ﬁmﬁ
BS99 E |80 Es
[svstems mansel - db2inst1 - PIGGY - Tables 35
) AZIVWPME2
= gﬂ mansel =
E"'{;j nstances BH CUSTOMER
E-<= dbZinst Rename...
£ Databasss B EXPLAININGT o ERSPACET
&0 Fiooy B EXPLAIN_STA | opy ERSPACET
— B SYSATTRIBUT| privijeges.. ECATSPA,
B SYSBUFFERP | garmule Contents SCATSPA. . |
.....) liases BER SYSBUFFERP | mport.. SCATSPA. .
.....) Triggers BH SYSCHECKS | Export. SCATSPA. .
..... () Schemas BB 5YSCOLAUTH Load.. SCATSPA. .
..... £ Indexes BB 5YSCOLCHEC, Quiesce.. SCATSPA. .
----- {7 Tahle Spaces BH svscoLDisT | Rearganize.. BCATSPA..
----- {77 connections B8 syscoLoprc Run Statisties... SCATSPA..
----- 7] Replication Sources R 5vsCOLPROF. SeLIntesrity. SCATSPA,.
..... D Replication Subscriptions BB SvSCOLUMNE Define as Replication Source # L CATSPA.
----- {7 Buffer Pools BB svscONSTDE onowRelated SCATSPA..
() Application Objects B SyopaTaTypp CoUTale SIZE.. SCATSPA, .
IZII---D User and Group Objects B SYSDBAUTH Generate DDL... — SOATSRA
() Federated Database Obiect Il o vepEpEND Erean e e ond P b oreps
ol bmi’"{j Lalewavieonnzaions BR SYSEVENTMOMITORS SvSBM T SYSCATSPA..
- g ceto.simadenom.com BB SYSEVENTS SYSBM T SYSCATSPA..
BB SYSFUNCMAPOPTIONS SYSIBM T SYSCATSPA.. L
| _’l_l
7l B 4 B o+ T ow IF

Figure 5-52 DB2 Control Center, altering a table

274 DB2 UDB/WebSphere Application Tuning Guide

[Z Alter Table - ACCOUNT
mansel - dh2inst! - PIGGY - DEZINST - ACCOUNT

Table| Columns Primary KE!"l Fareign Keys | Check Constraints |

Available columns Primary key columns
HLUMBER =

BALAMCE -

CHECKING s X

CUSTOMERID

Constraint name

oK | Cancell Shiw SEL Estimate Size. . Help

Figure 5-53 No unique index on table ACCOUNT

We found that there was no unique index on the NUMBER column. Besides the
integrity concern of not enforcing unique values in this column, performance and
concurrency can be significantly impacted as well.

Root cause of the problem

A number of factors appear to be the cause of the problem, including restrictive
EJB isolation levels, under-configured database configuration parameters, and
sub-optimal access paths for certain SQL statements.

Chapter 5. Problem determination scenarios 275

Apply best practices
We decided to address all these issues to resolve the concurrency problem.

» Change EJB isolation level to be less restrictive

We considered our PiggyBank application and concluded that it did not
require the Java Repeatable Read (DB2 Read Stability) isolation level, since
very rarely if any time does more than customer access the same account
simultaneously.

We therefore decided to change the Isolation Level Attribute of the EJBs from
Repeatable Read to Read Committed. This translates in DB2 to Cursor
Stability which is a far less restrictive locking level. Figure 5-54 shows how we
changed this using the Application Assembly Tool.

=% Application Assembly Tool M=l B3
File Edit Wew Window Help
e XE Qa8

% _Application Assembler - E\CODEapps'piggybankpiggybank.ear
B8 FigoyBank Application Mame

- C Parameters | Tyne |
=-gj° EJB Modules + * Al rethods :.I
-4 PiggyBank EJBs +* Harme methods
[#-0 Session Beans +* Remote methods
=0 Entity Beans + create intint hoolean Home methods
18, Customer + credit int Remote methods U=
=&, Account
3 Enwiranment Entrieg | ®8neral | Advanced
‘0 EJB References Type: All methods
‘0 Resource Referenct | pame: +
‘B3 Security Rale Referg
01 CMP Fields Parameters
0 Methad Extensions | | [# |salation level attributes
----- £ Security Raoles
..... £ Method Permissions Isolation level: |Read committed |
----- O Container Transactions Repeatable read
L9 Files [Access intent Read committed

[#-g§ Web Modules
E5° Application Clients IFEfEE:
£ Security Raoles

Read uncammitiad R
FElserializable

""" T Files ™ Finder descriptor
= User
Clhere clause: |
4 | ﬂ_ Apnly I Reset Help

Figure 5-54 Application Assembly Tool

We saved the new Application EAR file, and deployed it with code
regeneration.

276 DB2 UDB/WebSphere Application Tuning Guide

» Change database config locking parameters

In our controlled environment, we were not constrained on memory
resources, and decided to increase the allocation of memory for LOCKLIST,
and MAXLOCKS.

Important: This may not be an option in resource constrained
environments, and other alternatives may have to be considered such as
reducing the number of concurrent applications, frequent commits in the
application program, less restrictive locking, and optimizing access paths
to reduce the impact of locking.

— An optimal LOCKLIST parameter value can be computed by knowing the
memory requirements of each lock, the maximum number of concurrent
connections and the average number of concurrent locks held by an
application.

Each initial lock on a DB2 object consumes 72 bytes of memory, with each
additional lock on the same object consuming 36 bytes. LOCKLIST
parameter value is specified in 4KB blocks, and may be computed as
follows.

LOCKLIST = Maxconapp x :\O\g%numlocks X 72

In this equation:
Maxconapp is the maximum number of connected applications.

Avgnumlocks is the average number of locks per connected application.

Note: The default LOCKLIST parameter value is 200 KB (50 4-KB blocks)
on Windows, and 400 KB (100 4-KB blocks) on UNIX.

Chapter 5. Problem determination scenarios 277

278

— The MAXLOCKS parameter can be adjusted to reduce lock escalations.
MAXLOCKS is specified as a percentage of LOCKLIST memory that can be
assigned to single application at a given time before lock escalation is
triggered.

We considered increasing MAXLOCKS to prevent lock escalation occurring in
the update batch program. We computed the ACCOUNT table to have
20,000 rows, and we estimated that the update batch program touched
about 70% of the rows. Therefore 14000 rows times 72 bytes per lock
gives us over one megabyte. This value is larger than the default LOCKLIST
value of 400K.

We therefore decided to increase the value of the LOCKLIST parameter to two
megabytes, and the MAXLOCKS parameter to 50%. This would allow a single
application to obtain up to one megabyte before triggering lock escalation.

We also modified the update batch script to issue three separate SQL
statements with commits after each SQL statement, instead of the single SQL
statement it currently had. This additionally limits the lock consumption of the
update batch process, thereby further reducing if not eliminating lock
escalations.

Note: The splitting of the SQL in the batch program into three SQL
statements and three units-of-work has certain ramifications. In the event
of failure in the second or third SQL statements, the effects of the
previously executed statements are not rolled back, and appropriate restart
logic must be implemented in the application program to ensure proper
semantics.

Another little known feature available in DB2 is the ability to inhibit next key
locking by setting the variable DB2_RR_TO_RS parameter to yes via the
db2set command. This is appropriate when SQL INSERTs and DELETEs are
seen to have problems due to next-key-locking. The DB2_RR_TO_RS option
stops all next key locking on user tables, but does not affect system catalog
tables. While this consideration did not apply to our environment, you may
consider its applicability in your environment.

Restriction: When this option is enabled, any packages bound with Cursor
Stability are automatically changes to Read Stability, because DB2 can no
longer guarantee Cursor Stability. Do not use this if you require ANSI and

SQL92 standard Cursor Stability.

This option is no longer necessary in DB2 Version 8 with type-2 indexes.
See Chapter 3 for more information

DB2 UDB/WebSphere Application Tuning Guide

» Optimize access paths for SQL statements

For data integrity as well as performance and concurrency reasons, we
added a unique index on the NUMBER column of the ACCOUNT table. We
then ran runstats as shown in Figure 5-55, to provide the DB2 optimizer with

accurate statistics.

& Control Center

Control Center Selected Edit View Tools Help

2 e ml w2 el e] e

[systemns
=) AZIWPMSE2
= @) mansel
E--D Instances
54 dozinstt
EI--D Databases
=[] Picoy
E Ta
(7] views
7] Aliases
{7 Triggers
~{ 7] Schemas
{7 Indexes

{7 Table Spaces
{7 Connections

{7 Bufier Pools

IZZI--D Gatewsay Connections

E]---gﬂ horon

E]---gﬂ crete.almaden.ibm.cam

4]

{7 Replication Sources
~{7) Replication Subscrigtions

=-{ 7] Application Objects
IZZI--D Userand Group Objects
IZZI--D Federated Database Ohject;

[EE

mansel - dbinst! - PIGGY - Tahles

BH 5YSFUNCMAPOPTIONS SYSIBM
4|

B cusTon er
m eevan
B ExPLAIN il
Copy...
B svsATT Privileges...
A sYSEUF Sample Contents
BB SYSEBUF . jrnpart.,
BH SYSCHE Export..
BH svscoL Load...
B 5vSCOL Quiesce...
B svscoL Rearganize..
BR svscoL
R gvocoL Setintegrity.
Bf svscoL Define as Replication Source ¥
B svscon Show Related
B gvsDaT, Estimate Size...
BH svsDBA Generate DOL...
BH SYSDEP Performance Manitaring
B SYSEVENTMONITORS — SYSIEM
BR SYSEVENTS SYSIEM

Table space

LISER

SWECATSPA

SYSCATSPA..
SYSCATSPA..
SYSCATSPA..
SYGCATSPA..
SYSCATSPA..
SYSCATSPA..
SYSCATSPA..
SYSCATSPA..
SYGCATSPA..
SYSCATSPA..
SYSCATSPA..
SYECATEPA. .

L 1
USERSPACE1
USERSPACET
USERSPACET
SYGCATSPA..
SYSCATSPA..
SYSCATSPA..
SYECATEPA. .

Indextahle space

44 % 4+ $ N I

Figure 5-55 Runstats in DB2 Control Center

Chapter 5. Problem determination scenarios

279

We ran Visual Explain on the previous SQL statement to confirm that the
optimal index access path was now being selected by the DB2 optimizer.
Figure 5-56 shows an index scan being performed instead of a tablespace
scan.

& Access Plan Graph - PIGGY
Staterment mode View Tools Help

D93 B a03% 9820 @0

mangel - dhlinst! - PIGGY

Package: MULLID SQLLFOOD Section number: 65
Explain date and time: 04/05/2002 2:59:24 PM Parallelism: Mone
Data Jainer: vVes

Total costitimerons): 113.88

RETURM(13 113.88

FETCH(3) 88.87

[KSCAN(4) 25.07

DBZINSTT.ACCOUNT

QLOZ20405145511430

& DBZINST1 ACCOUNT
=

Figure 5-56 Visual Explain with the SQL explained again.

We reran the workload after all these changes, and confirmed that the problems
we observed earlier had been resolved.

280 DB2 UDB/WebSphere Application Tuning Guide

Case 2: EJB access intent

The root cause problem demonstrated here is one where the default EJB Access
Intent specification with Entity EJBs with Container Managed Persistence (CMP)
can have a signification adverse performance impact in certain applications.

Generally, when an instance of an entity EJB is spawned, and gets involved in a
transaction, its data is usually read from a database. The EJB spec demands
that this data be written back to the database when the transaction ends. When
the Entity EJB reads the data from the database, it needs to ensure that the data
is not modified while the instance is active. It therefore reads the data with an
intent to update it, and then writes the modified data back to the database when
the transaction commits. This is appropriate for transactions that mostly update
the data they read.

Unfortunately, this read operation with update intent, and the writing back to the
database occurs, even when if the data has not been modified. For entity EJBs
that only perform read access to data, this mode of operation can cause
significant locking contention and performance problems.

EJBs are used in many types of application environments. With their built in
features for transactions and session handling, they are most used in workload
patterns that must involve logins and transactions.

Description of the application

Our scenario involves the stock quote requests transactions of the Trade
application. Stock quote requests tend to outnumber trading transactions by
orders of magnitude, sometimes as high as a 1000 to 1. Many users tend to login
to their brokerage site and request stock quotes on their favorite stocks
throughout the day. Some users tend to login once at the beginning of the day,
and leave their browser open on the site the rest of the day as shown in

Figure 5-57.

Chapter 5. Problem determination scenarios 281

#:- Netscape
File Edit “iew Go Communicator Help

W =3 e s R

Back Forward Reload Home Search Metscape Print Security Shop i)

IBM
WehSphere

Pafomance Application WebSphere Performance Benchmark Sample

Ovwerview Status Quote on Mon Apr 15 17:55:5% PDT 2002

Technical
Docurientation Current Quote for s:13

£ Won mhay by or choose fiomm the swailsble services listed beloar.

Benchmarking
Configuration Symbol Price Details Buy Eefresh Quote

Go Trade!

. B IlDD Q
s:13 175.0 details Buy| g

Web Primitives

e Horne | Account | Partfolio | Cluote/Buy ||s:1 Log Oﬁl

WehSphere
e-husiness R oS
Created with IBI WebBphere Application Server and WebBphere Studio Application Developer
Copyright 2000, IEM Corporstion
= (== |Dacument Done =liEEa)

Figure 5-57 Getting stock quotes in Trade

The frequency of stock quote requests increases substantially on active trading
days, and events of particular relevance to stock symbols that the user is
interested in.

282 DB2 UDB/WebSphere Application Tuning Guide

Environment configuration
Figure 5-58 shows the environment used for this scenario.

Web Browser Application and Database Server
eServer xSeries 330
Windows 2000 with Service Pack 2

akstress
(2 users)

(Trade App Server)

WAS AE 4.0.2 FP2
IHS 1.3.19
DB2 Client 7.2 FP6

DB2 Server 7.2 FP6

Figure 5-58 EJB Access Intent scenario environment

Our WebSphere Application Server and DB2 server were installed on a single
dedicated machine, with adequate CPU, memory and disk resources for our
scenario. We used the WebSphere Performance Tool to drive out workload.

Monitor settings

Both WebSphere Application Server and DB2 were installed with default
configurations, and default settings were used. The relevant settings are
summarized in Table 5-3.

Chapter 5. Problem determination scenarios 283

284

Table 5-3 EJB Access Intent scenario monitor settings

Hardware configuration

Software configuration

Database and Application
Server (boron)

Windows 2000 FixPack2

IBM eServer xSeries 330
Twin CPU 1.1 GHz each
4GB memory

HTTP Server v1.3.19
WAS AE v4.0.2 FP2
Application name: Trade

36 GB disk Log name: tracefile, activity.log, Tradestdout.ixt and
Tradestderr.txt

Log path: c:\usr\WebSphere\AppServerllogs

DB2 UDB EE v7.2 FP6

DIAGLEVEL: 3

Databases: WAS40 and TRADEDB

Log name: db2diag.log!

Log path: c:\home/db2inst1/sqllib/db2dump

Adequate buffer pool size was specified.

Workload used

The scenario consisted of a load recorded in akstress that simulates 2 users that
login, and request stock quotes, and then repeatedly re-requests the same stock
quotes. We ran this load that initiates 1,000,000 page requests. It simulates a
high volume trading application involving multiple customers that predominantly
perform stock quote requests.

Triggering event

Our triggering event was a number of user complaints about very poor response
times, and complaints from the customer service department about account
brokerage account closures due to inadequate online service levels. No error
messages were reported by the customer.

The “dot-com” era launched the online trading frenzy, and while day trading
euphoria has lost its lustre, customer interest in browsing stock quotes is
continuing. Attracting and retaining customers is of particular concern, especially
in the current economic climate.

Hypotheses and their validation

We postulated the following hypotheses as the potential cause of the problem.
Given our controlled environment, we ignored real world root cause possibilities
such as network bandwidth concerns, and Web server problems:

» Hypothesis 1: Lack of CPU resources

» Hypothesis 2: Disk 1/0O contention

» Hypothesis 3: Memory constraints

» Hypothesis 4: Contention in the database

DB2 UDB/WebSphere Application Tuning Guide

Attention: We also assume that we have satisfied ourselves that the problem
is not with the connection pool as resolved in the earlier scenarios.

Hypothesis 1: Lack of CPU resources

We considered whether CPU constraints at peak workloads could be the cause
of the problem since we had a single machine serving both WebSphere
Application Server and DB2.

Note: This notion was quickly discarded after monitoring the system with the
Window System Monitor at peak periods. CPU consumption did not go up to
100% in our observations.

Hypothesis 2: Disk I/O contention

We speculated whether the possible cause of the poor response times at peak
periods, could be due to disk I/O contention in the shared WebSphere
Application Server and DB2 environment.

Stock information is supplied by an external service provider via an MQ Series
queue, and is written to the database. Active stock symbols tend to be buffer pool
resident, and do not cause synchronous read I/O to occur. Using the Windows
Task Manager Statistics, and selecting columns 1/0 Read Bytes, I/O Write Bytes,
etc., we found that disk 1/O contention was within acceptable parameters during
peak periods.

Note: We therefore discarded disk I/O contention as the cause of the poor
response times.

Attention: In a UNIX environment, we would have used vmstat and iostat to
determine swapping and disk activity.

Hypothesis 3: Memory constraints

We considered whether system swapping due to potential memory constraints
as being the cause of the problem. However, the Windows Task Manager
Statistics indicated plenty of free memory available for use.

Note: We therefore discarded memory constraints as the cause of the
problem.

Chapter 5. Problem determination scenarios 285

Hypothesis 4: Contention in the database
Having eliminated previous hypotheses as the potential source of the problem,
we decided to investigate contention in the database as being the root cause.

We invoked the DB2 Snapshot Monitor in exception monitoring mode after
periods of peak activity.

Example 5-6 describes a script to turn on all DB2 Snapshot Monitor switches,
while Figure 5-59 lists the following command to selectively turn on only the
information related to locks.

db2 -tvf upd-monswitch.db2

Example 5-6 Using upd-monswitch.db2 - script to turn on snapshot monitoring

UPDATE MONITOR SWITCHES USING LOCK ON ;
Lock information

UPDATE MONITOR SWITCHES USING BUFFERPOOL ON ;
-- Buffer pool activity information
UPDATE MONITOR SWITCHES USING TABLE ON ;

-- Table activity information
UPDATE MONITOR SWITCHES USING UOW ON ;

- Unit of work information.

UPDATE MONITOR SWITCHES USING STATEMENT ON ;
-- SQL statement information

UPDATE MONITOR SWITCHES USING SORT ON ;

FpB2 CLP HEE

C=xtmp2>db2 —tvf upd-monswitch.dbh2
UPDATE MONITOR SWITCHES USING LOCK ON
DEZOAAAI The UPDATE MONITOR SWITCHES command completed successfully.

UPDATE MONITOR SWITCHES USING BUFFERFOOL ON
DEZAAAAL The UPDATE MONITOR SWITCHES command completed successfully.

UPDATE MONITOR SWITCHES USING TABLE OM
DEZBAAAL The UPDATE MONITOR SWITCHES command completed successfully.

UPDATE MONITOR SWITCHES USING UOW ON
DEZOAAAI The UPDATE MONITOR SWITCHES command completed successfully.

UPDATE MONITOR SWITCHES USING STATEMENT OH
DEZAAAAL The UPDATE MONITOR SWITCHES command completed successfully.

UPDATE MONITOR SWITCHES USING SORT OM
DEZBAAAL The UPDATE MONITOR SWITCHES command completed successfully.

C=stmp2 > _

Figure 5-59 Turning on the snapshot monitor in DB2

286 DB2 UDB/WebSphere Application Tuning Guide

After turning on the monitor switches, we issued the following command to obtain
information about locking:

db2 get snapshot on database for tradedb | grep -i lock

Note: We installed freeware from http://www.gnu.org to enable us to issue
UNIX related commands in the Windows environment.

Figure 5-60 lists the results of this command.

FDB2 CLP

M=

ck

C:=~lebSphere“AppServersbin>dh2 get snapshot for database on tradedbh | grep —i ln.

Locks held currently

Lock waits = 1678
Time database waited on locks <{ms> = 39872
Lock list memory in use (Bytes) = 77684
Deadlocks detected =a
Lock escalations =a
Excluzive lock escalations =a
Agents currently waiting on locks =8a
Lock Timeouts =0
Internal rollbacks due to deadlock =0

GC:~UWehSpheresAppServershinl_

Figure 5-60 db2 get snapshot for database | grep -i lock

We noticed no occurrences of timeouts, deadlocks or lock escalations, but were
and lock escalations, but saw quite a few cases of lock waits. While the average
wait time (Lock Waits [1690] / Time database waited on locks (ms) [39872]) of 24
ms for a lock is not high and therefore not causing lock timeouts, the number of
lock waits seemed high for our environment.

Attention: In our controlled environment, these number are relatively high. In
a real world environment, the administrator will have to determine their own
thresholds for investigation.

We reviewed the contents of the db2diag.log for more information, but found no
error messages that warranted attention.

We decided to analyze the TradeQuoteBean EJB which obtains stock quotes in
the Resource Analyzer. With the monitoring level set at high, we monitored the
Resource Analyzer for a while during the peak period and observed an unusually
high value for the Num Stores field as highlighted in Figure 5-61.

Chapter 5. Problem determination scenarios 287

http://www.gnu.org

Reszource Analyzer [_[O0]

e Actions Logging Reports Oplions Help

|2 | & @ & | & H M

(]

WehSphere Administrative Domain
9 a23wpms?2
gl Default Server
-] EJBPHmMSHY
g Figgy
gl ecpert
-4 trade
[=}-a Enterprise Beans
E}Ja Diefault EJB Container trade/4ccountHol
Methods
[+-d2 Default EJB Caontainer.trade/HaldingHal
2 Default EJB Containertrade/kKeySegue
2 Default EJB Container trade/lKeyvsEntity
2 Default EJB Caontainertrade/ProfileHom
-7 Methods
A2 Default EJB Container.trade/TradeHom
-2 Default EJB Containettrade/TradeR egi
-1 Databage Connection Poals
Jul Runtime
! Senvlet Sescion Manager
Thread Fools

100

a0

G0

40

20

View Data View Chart |

ol Al AL e b e e

11:43:18 A 11:44:35 A 11:45:58 AM 11:47:18 A 11:48:38 AN

Legend

& Concurrant Actives
Concurrent Actives (Avd)

=k Concurrent Lives

@ Concurrent Lives (v
Avg Create Time (ms)

| Avg Remaove Time (ms)
Foal Size

—+Pool Size (fvg)

Transaction Manager Mame Description Walue | Select | Scale
Web Applications Mum Creates Mumber of times beans were created of O 1.0/«
gl vasalopp KNum Removes Murnber oftimes beans were remaved o O 1.0
gl v Mum Activates Mumber of times heans were activated 92015 o 0.0010
@l viclone2 Num Passivates Mumber of times beans were passivated 372915 10
Mum Instantiates Mumber of times beans were instantiated 16 1.0
MHum Destroys Mumber of times beans freed 1] 1.0
Mum Loads Humber of times bean data was loaded from persistent storage 82914 [1.0
Mum Stores Murnber of time i i Qe 47471] 1.0
Concurrent Actives Average numhbe [y 0.0 (Ave. . v 1.0
Concurrent Lives Average numhber of concurrently live beans 6.0 (Av... v 1.0
| ﬂ Total Method Calls Mumber of calls to the bean's remate methods 920151 I 1.DL|
roups(s) §22 counter(s) !Refreshraie 10sec Table size: 40 View Data As: Rawalue Logging: OFF

Figure 5-61 Resource Analyzer

This field represents the number of times bean data was stored in persistent
storage, and corresponds to SQL UPDATES being executed. This number is
about 50% of the value in the Num Loads field, which corresponds to SQL
SELECTS being executed. Given that requesting stock quotes are read only
operations, a high value in the Num Stores field bears further investigation.

Note: In order to fully understand what was happening with this EJB, we
decided set up a test environment on for this EJB on a separate standby
development server with WebSphere Application Server and DB2. In other
words, we wanted to unit test the execution of this EJB with appropriate
tracing. We copied the EAR file of the application to this standby development
server, and restored a copy of the TRADEDB on this server as well.

288

DB2 UDB/WebSphere Application Tuning Guide

We used the DB2 Event Monitor to record appropriate activity in DB2 and
externalize it to a log for later analysis. Example 5-7 describes our event monitor
stmt2 which monitors the DATABASE, STATEMENTS, TABLES, DEADLOCKS,
TRANSACTIONS, CONNECTIONS elements, and writes the output to a
directory c:\tmp2.

Example 5-7 Create event monitor

CREATE EVENT MONITOR stmt2
FOR DATABASE, STATEMENTS, TABLES, DEADLOCKS, TRANSACTIONS, CONNECTIONS
WRITE TO FILE 'C:\tmp2';

Figure 5-62 lists the execution of the stmt2 event.

Flpe2 CLP

Si=1E3

DEZB88a1

DEZ@8ua1

G stmp2 >

C:stmp2>db2 CREATE EUENT MONITOR =tmt2 FOR DATABASE. STATEMENTS, TABLES, DEADLOC
KS. TRANSACTIONS. COMMECTIONS WRITE TO FILE ‘C:istmp2’
The SQL command completed successfully.

C:tmp2>db2 set event monitor stmt?2 state 1
The SQL command completed successfully.

Figure 5-62 Creating the event monitor and turning it on

We then executed a single iteration of a request for a stock quote from our
application.

We then flushed the content of the event monitor to a file, stopped the event
monitor, and used the db2evmon tool, to pipe the output to a file
output-evmon.txt as shown in Figure 5-63.

F]DB2 CLP

C:stmp2>dbZ2 flush event monitor stmt2 huffer
DEZBABAI The SQL command completed successfully.

C:stmp2>dbZ set event monitor stmt? state B
DEZBABAI The SQL command completed successfully.

C:stmp2 >dbZevmon —db tradedb —eum stmtZ > putput—evmon.txt
Reading C::\tmp2-~0080060EA.EUT ...
C:stmp2 >

Figure 5-63 Flushing the event monitor and format it to a report using db2evmon.

Chapter 5. Problem determination scenarios 289

290

Tip: When performing event monitoring, try to exclude as much of the
workload against the database as possible, since the output can grow rapidly,
and may become inconvenient to view.

The report includes detailed information about each DB2 event, and includes the
following:

» Two connection header events:
— One for each application connected to the database

» Three statement events
» One transaction event

» Events for the flush event buffer operation

The monitor report starts out with header information about the event monitor
itself, and includes its start time and stop time.

The connection header events provide information about each application
connected to the database, and includes their Application Handle, App:ID and
their application name. Knowing the application handle enables you to sort out
events and their related connections.

Our focus here is on the 3 statement events shown in Example 5-8, Example 5-9
and Example 5-10.

The first event is the open operation of dynamic SQL. This is the first SQL issued
against DB2 from the entity EJB. The text of the SQL statement is shown here,
and we notice that it includes a SELECT.. FOR UPDATE clause. In other words,
the data is being read with an intent to update it later. The lock that is taken in
such cases is a ‘U’ lock, whose semantics is that only one user may access a
given object with such an intent — we will discuss this later.

Example 5-8 First statement event entry

54) Statement Event ...
Appl Handle: 63
Appl Id: *LOCAL.DB2.020416184154
App1 Seq number: 0001

Record is the result of a flush: FALSE
Type : Dynamic
Operation: Open
Section : 4
Creator : NULLID
Package : SQLLC300

DB2 UDB/WebSphere Application Tuning Guide

Cursor : SQLCUR4

Cursor was blocking: FALSE

Text : SELECT T1.DETAILS, T1.SYMBOL, T1.PRICE FROM TRADEQUOTEBEAN T1
WHERE T1.SYMBOL = ? FOR UPDATE

Start Time: 04-16-2002 14:09:12.685723

Stop Time: 04-16-2002 14:09:12.685866

Exec Time: 0.000143 seconds

Number of Agents created: 1

User CPU: 0.000000 seconds

System CPU: 0.000000 seconds

Fetch Count: 0

Sorts: 0

Total sort time: 0

Sort overflows: 0

Rows read: 0

Rows written: 0

Internal rows deleted: 0

Internal rows updated: 0

Internal rows inserted: 0

SQLCA:

sqlcode: 0

sqlstate: 00000

The second entry contains the close operation of the same SQL statement. We
see here the number of rows read by DB2, and the execution time of the entire
statement.

Example 5-9 Second statement event

55) Statement Event ...
Appl Handle: 63
Appl Id: *LOCAL.DB2.020416184154
App1 Seq number: 0001

Record is the result of a flush: FALSE

Type : Dynamic

Operation: Close

Section : 4

Creator : NULLID

Package : SQLLC300

Cursor : SQLCUR4

Cursor was blocking: FALSE

Text : SELECT T1.DETAILS, T1.SYMBOL, T1.PRICE FROM TRADEQUOTEBEAN T1
WHERE T1.SYMBOL = ? FOR UPDATE

Start Time: 04-16-2002 14:09:12.685723

Stop Time: 04-16-2002 14:09:12.686831

Chapter 5. Problem determination scenarios 291

Exec Time: 0.001108 seconds
Number of Agents created: 1
User CPU: 0.000000 seconds
System CPU: 0.000000 seconds
Fetch Count: 1

Sorts: 0

Total sort time: 0

Sort overflows: 0

Rows read: 1

Rows written: 0

Internal rows deleted: 0
Internal rows updated: 0
Internal rows inserted: 0
SQLCA:

sqlcode: 0

sqlstate: 00000

The third statement event contains an UPDATE statement. This is the EJB
committing back its read data to the database as per the EJB specification.

Example 5-10 Third statement event

56) Statement Event ...
Appl Handle: 63
Appl Id: *LOCAL.DB2.020416184154
App1 Seq number: 0001

Record is the result of a flush: FALSE
Type : Dynamic

Operation: Execute

Section : 5

Creator : NULLID

Package : SQLLC300

Cursor : SQLCUR5

Cursor was blocking: FALSE

Text : UPDATE TRADEQUOTEBEAN SET DETAILS = ?, PRICE = ? WHERE SYMBOL = ?
Start Time: 04-16-2002 14:09:12.687937
Stop Time: 04-16-2002 14:09:12.688251
Exec Time: 0.000314 seconds

Number of Agents created: 1

User CPU: 0.000000 seconds

System CPU: 0.000000 seconds

Fetch Count: 0

Sorts: 0

Total sort time: 0

Sort overflows: 0

Rows read: 2

292 DB2 UDB/WebSphere Application Tuning Guide

Rows written: 0

Internal rows deleted: 0
Internal rows updated: 0
Internal rows inserted: 0
SQLCA:

sqlcode: 0

sqlstate: 00000

After the three Statement Events, the Transaction Event shown in Example 5-11
represents the commit. Included in this event record is the whole time span of the
transaction (3.368 milliseconds), as well as the number of rows read in the whole
transaction, and the maximum numbers of locks held by the application.

Example 5-11 Transaction event

57) Transaction Event ...
Appl Handle: 63

Record is the result of a flush: FALSE
Appl Id: *LOCAL.DB2.020416184154

App1 Seq number: 0001

Completion Status: Committed

Start time: 04-16-2002 14:09:12.685723
Stop time: 04-16-2002 14:09:12.689091
Exec Time: 0.003368 seconds

Previous transaction stop time:

User CPU: 0.000000 seconds

System CPU: 0.000000 seconds

Lock wait time: 0 milliseconds

Maximum number of locks held: 4

Lock escalations: 0

X Tock escalations: 0

Rows Read: 3

Rows Written: 0

Log space used: 0

Root cause of the problem

The above report clearly indicates the EJB stock quote read only operation is
actually executing requests for data with an intent to update followed by an
actual update of the data at commit. The resulting ‘U’ lock on the appropriate
stock symbol thus serializes other applications’ requests for the same stock
quote, thus leading to lock waits. This phenomenon would be exacerbated in
peak workload situations involving multiple user requests for stock quotes for a
particular stock symbol.

To confirm our diagnosis, we needed to review the Access Intent attribute in the
TradeQuoteBean Method Extensions.

Chapter 5. Problem determination scenarios 293

We used the Application Assembly Tool, and loaded the EAR file,
TradeSample.Ear. We selected the EJB TradeQuoteBean, under EJB Modules

-> Trade Sample EJB -> Entity Beans -> TradeQuoteBean -> Method
Extensions.

In the menu of Method Extensions, we noticed that the Access Intent attribute left
to default as shown in Figure 5-64. When no overall Access Intent attribute is set,

the default for all methods is assumed to have an Access Intent attribute of
Update.

% Application Assembly Tool
File Edit View Window Help

CEH|4 BB XS ea a¥

= Application Assembler - C:WehSphered)

= E3

pServeriinstallableApps\TradeSample.ear

E|ﬂ, Trade Sample Marme | Parameters Type |
E-g§ EJB Modules + - &l methods i’
E---a“_fg Trade Sample EIB + * Home methods
H- Session Beans + * Remote methods
=3 Ell Entity Beans + _copyFromEJB Femote methods
&, TradeProfileBean + copvToEJB iava util Hashtalle Remaote methods =
+-- &, TradeHoldingBean '
7 #, TradeQuoteBean Eis | Advanced
& Environment Entries | Type: All methods it
f EJB References Marme: *

£ Resource Referenc
3 Security Raole Refere Parameters:
£ CMP Fields
Sw Wl ethod Ext S

&, TradeAccountBean lenlatmevels Repeatable read =
&, TradeRegistrvBean
&, KevsEntityBaan

------ £ Security Raoles

[Izolation level attributes

[Access intent

------ £ nethod Permissions IntertiyEes JRead I-
------ & Container Transactions
----- 09 Files ; i
Finder descriptor
=-g5 Wieh Modules L :

g5 Application Clients
Security Roles

“- P Files

& [zer

C iihere clause: |

e

Ll | _’l el EEEED Help

Figure 5-64 Application Assembly Tool — method extensions

We then took a look at the separate methods within the EJB TradeQuoteBean as
shown in Figure 5-65. Note that the Access Intent attribute can be set on a per
method basis. The method we use in our code to obtain stock quotes is the
findByPrimaryKey() method. Figure 5-65 shows that findByPrimaryKey()
method does not have an Access Intent attribute set either. Here again, if the
Access Intent attribute is not set, it defaults to an Update operation.

294 DB2 UDB/WebSphere Application Tuning Guide

% Application Assembly Tool
File Edit View Window Help

= E3

-3 B |4 BB X
=% Application Assembler - C:WebSphered,

E-1 Trade Sample

B EJB Modules

E-g® Trade Sample EJB

#--F Session Beans

=1 Entity Beans

@, TradeProfileBean
#, TradeHoldingBean
&, TradeQuoteBean
£ Environment Entries
1 EJB References

A Resaource Referenc
£ Security Rale Refarg
£ CMP Fields

- Method Extensions
&, TradeAccountBean
&, TradeRenistryBean
@, KeysEntityBean

------ A Security Roles

------ £ Method Permissions

- g5 Wieh Modules
#-g5% Application Clients
F-f Security Roles
~-I9 Files

-

FParameters Type |

+ _copyToEJE
+ create

+ getDetails
+ netEJBHome

java util Hashtable Remote methads 4|
trade. Quotekey do... Home methods =

trade. Quotekey

Home methods
Remote methods
Remuote methods

-

General | Agvanced
Type: Horme methads
Mame: findByPrimarykey

Parameters: frade Quotekey

[Isolation level attributes

|»

|smlEtaevels IR epeatakle read

[~ Access intent

|FtertyEes [Read

[Finder descriptar
= [cer

C ihere clause: |

K s

Al

et B

BEEEED Help

Figure 5-65 Application Assembly Tool, browsing individual EJB methods

Apply best practices
The resolution is fairly simple. Since we know that the TradeStockQuote is a
read only operation, we need to make the EJB Server aware of it as follows:

1. We modified the application EAR file so that read only methods in the
deployment descriptor have their Access Intent attribute set to Read. Figure
shows the setting of the findByPrimaryKey method to be a read only method.

Chapter 5. Problem determination scenarios 295

% Application Assembly Tool
File Edit View Window Help

= E3

-3 3|4 B
=% Application Assembler - C:WebSphered,

E-1 Trade Sample
B EJB Modules
E-g® Trade Sample EJB

-1 Session Beans

- Entity Beans

&, TradeProfileBean
+-- &, TradeHoldingBean
-1~ %, TradeuoteBean
£ Environment Entries
1 EJB References
A Resaource Referenc
£ Security Rale Refarg
£ CMP Fields
- Method Extensions
&, TradeAccountBean
&, TradeRegistryBean
&, KeysEntityBean
------ A Security Roles
------ £ Method Permissions

- g5 Wieh Modules
F-g5 Application Clients
- Security Roles

~ P Files

“F| e aa %

pSenverinstallableipps TradeSample.ear

Mame | Farameters

Type |
+ _copyToEJE java.util Hashtable Remote methods
+ create trade. Quotekey do... Home methods
+ findByPrimarnkey trade. Quotekey Home methods .
+ getDetails Remate methads
+ netEJBHome Remuote methods

|

-

General | Agvanced

Tpe: Hame methads
Mame: findByPrimarykey
Parameters: trade Quotekey

[Isolation level attributes

el =t evel IR apeatable read ;l
v Access intent
IntentType: |Read ;l

[FinderdescriptoJUDdaTB

= [cer

C ihere clause: |

|»

Kl |

el BEEEED Help

et B

2]

Figure 5-66 Setting the findByPrimaryKey method to read only

2. After saving the changes to the EAR file, generate the CMP code that
manages the JDBC communication to the database. Figure 5-67 shows the
location of the Files tab for selecting the “Generate Code for Deployment”.

Clicking the “Generate Code for Deployment” tab, takes you to the window
shown in Figure 5-68. We chose DB2 UDB as the database type, clicked the

“Generate code” button to initiate the generation of the EAR file. After the

generation, we exited the Application Assembly Tool.

296

DB2 UDB/WebSphere Application Tuning Guide

% Application Assembly Tool
(AW Edit View Window Help

= E3

-

Mew
Wizards
dpen...
Zlose

Save
Save As..

; n
Veriy.. 3 -
Wiewy Descriptar
Exit Eritries

] O EJB References

9 Resource Refarent
£ Security Role Referg
£ CMP Fields
- Method Extensions
&, TradeAccountBean
#-&, TradeRegistyBean

[+ &, KeysEntityBean
------ A Security Roles
------ £ Method Permissions
''''' 8 Container Transactions

- g5 Wieh Modules
#-g5% Application Clients
-0 Secutity Roles
~-I9 Files

Mame

Parameters

Type |

+ _copyToEJE

+ create

+ findByPrimarnvkey
+ getDetails

+ netEJBHome

java.util Hashtable
trade.Quotekey do...
[

Remote methods 4|
Home method =
Home methods

Remote methods
Remuote methods ;I

General | Agvanced

< B

Type: Horme methods =]
Mame: findByPrimarykey
Parameters: trade.Quotekey
[Isolation level attributes
|SalEaevEl - IR eEe atakle read ;|
¥ Access intent
IntentType: [Read =
[Finder descriptar
= [lzer
C vhere clause: | :I
el EEEED Help |

Figure 5-67 Tab of Generate code for the deployment

Chapter 5. Problem determination scenarios 297

k. Generate code for deployment E3
Deployed module location: “Jc:twebSpheretdppSereninstallablespps\Deplayed_TradeSample ear

Wiorking Directory: A|C\Documents and SettingsiresidentiLacal Settings\Temp
Dependent classpath: |

[Code generation anly

[werify archive

RMIC options: |
Datahase type: |DB2 Universal Database for Windows, varsion 7.2 =
Database name: |
Schema name: |

Generate Mow I Close Help |
Updantng resources on me classpatn 4]
Build dane.

Java build completed
Generating DOL
CBRZ LIDB W7 1
Building: fTradeEJBs jar. Invoking Java Builder on fTradeEJBs jar.
Building: fTradeEJBs.jar. Reading resource change information far ; TradeEJBs jar
Building: fTradeEJBs jar.
Building: TradeEJBs.jar. Updating resources on the classpath
Building: STradeEJB=.jar. Build done.
Building: STradeEJBs jar.
Building: fTradeEJBs jar. Java build completed
Building: fTradeEJBs jar. Invoking Validation on fMradeEJBs jar.
Building: fTradeEJBs jar.
Updating.
Shutting down workbench.
EJBDeploy complete.
0 Errors, 0Warnings, O Informational Messages
Delete undeployed madule file CADocuments and SettingsresidentiLocal SettingstTempiTradeSample_eanTradeEJR
Save the deployed modules as EAR file C:hWWebSphere\dppServeninstallableAppsiDeployed_TradeSample ear T
>|

2 |

Figure 5-68 Generate code for deployment

3. We then removed the old application using the WebSphere Application
Server Admin Console, and deployed the newly generated application EAR
file that included the changes made to the findByPrimaryKey method.

4. We then restarted the Application Server containing the new application, and
reran our single stock quote on the test server with the DB2 Event Monitor to
view the impact of our changes. The Statement and Transaction events
section in the new Event Monitor report were as follows:

— Two statement events
— One transaction event

298 DB2 UDB/WebSphere Application Tuning Guide

The changes have clearly had an impact. The first Statement Event is an Open
Operation of a dynamic SQL as shown in Example 5-12, and shows that the SQL

statement no longer contains the FOR UPDATE clause.

Example 5-12 First statement event

10) Statement Event ...
Appl Handle: 14
Appl Id: *LOCAL.DB2.020415202235
App1 Seq number: 0001

Record is the result of a flush: FALSE
Type : Dynamic

Operation: Open

Section : 4

Creator : NULLID

Package : SQLLC400

Cursor : SQLCUR4

Cursor was blocking: FALSE

Text ¢ SELECT T1.DETAILS, T1.SYMBOL, T1.PRICE FROM TRADEQUOTEBEAN T1

WHERE T1.SYMBOL = ?
Start Time: 04-16-2002 15:23:38.720178
Stop Time: 04-16-2002 15:23:38.720344
Exec Time: 0.000166 seconds
Number of Agents created: 1
User CPU: 0.000000 seconds
System CPU: 0.000000 seconds
Fetch Count: 0
Sorts: 0
Total sort time: 0
Sort overflows: 0
Rows read: 0
Rows written: 0
Internal rows deleted: 0
Internal rows updated: 0
Internal rows inserted: 0
SQLCA:
sqlcode: 0
sqlstate: 00000

The second Statement Event is the close operation counterpart of the open
operation shown in Example 5-12, and is not shown here.

The Transaction Event is shown in Example 5-13. This shows the new execution
time of the transaction to be 2.635 milliseconds, which is faster than the previous

update transaction.

Chapter 5. Problem determination scenarios

299

Example 5-13 The transaction event

12) Transaction Event ...
Appl Handle: 14

Record is the result of a flush: FALSE
Appl Id: *LOCAL.DB2.020415202235

App1 Seq number: 0001

Completion Status: Committed

Start time: 04-16-2002 15:23:38.720178
Stop time: 04-16-2002 15:23:38.722813
Exec Time: 0.002635 seconds

Previous transaction stop time: 04-15-2002 13:23:38.717045
User CPU: 0.000000 seconds

System CPU: 0.000000 seconds

Lock wait time: 0 milliseconds

Maximum number of locks held: 8

Lock escalations: 0

X Tock escalations: 0

Rows Read: 1

Rows Written: 0

Log space used: 0

We then tried a stress test using akstress on the test server with 10 concurrent
users requesting stock quotes without any think time between requests, and
monitored the DB2 database using the DB2 Snapshot Monitor.

Figure 5-69 shows the results of the snapshot.

[EpB2 CLP

|C:\tmp2>dh2 get snapshot for database on tradedb | grep —i lock
Locks held currently =1
Lock waits = A
Time databhase waited on locks <ms> =8a
Lock list memory in use <(Bytes) = 46088
Deadlocks detected = A
Lock escalations = A
Exclusive lock escalations = A
|Aigents currently waiting on locks = A
Lock Timeouts = A
Internal rollbacks due to deadlock = A
|C=stmp2 >

Figure 5-69 DB2 snapshot for locks on the database

300 DB2 UDB/WebSphere Application Tuning Guide

The lock waits are gone, since ‘U’ locks are no longer being taken by DB2.

The changes can now be moved to the main Web site in a batch window when
downtime is acceptable, since the operation involves stopping the WebSphere
Application Server, deploying the new application, and restarting the WebSphere
Application Server.

5.2.3 Non-serializable objects

The root cause problem demonstrated here is that the application creates
non-serializable session objects that cannot be persisted, thereby resulting in
potential loss of data and user dissatisfaction. In our “Shopping Cart” application,
we created multiple session objects, some of which were serializable while
others were not serializable.

When persistent sessions were enabled for this application, the application user
experienced intermittent problems with the information stored in the shopping
cart. This resulted in complaints about “random” information loss in their
shopping cart contents.

Description of the application

For the purposes of our scenario, we created a shopping cart application where a
user could purchase floppies and/or books from an online store. The application
recorded the purchases of the books/floppies in the shopping cart as session
objects. The “book” object was created as a serializable object, while the “floppy”
object was erroneously created as a non-serializable object.

Chapter 5. Problem determination scenarios 301

302

Figure 5-70 and Figure 5-71 show the user interface of this shopping cart
application. In this application, the user can return to the online store many times
— adding and removing purchases in the shopping cart over a period of time,

before committing to a checkout of the purchases.

#1Shopping Cart - Microsoft Internet Explorer =0
File Edit Wiew Favorites Tools Help
@ o> .9 B &) @ GF I B S
Back Farward Stop Refresh Home Search Fawvorites Media Histary Mail Print
Address |:§"| http:ffcolumbia, almaden.ibm. com/shopapp/shop j (\>G0 | Link:
-
Shopping Cart
‘Item Name ‘ Ttem Qty.
BOOE |
FLOPPY |

BUYl Reset

Figure 5-70 Initial screen of the shopping cart application

DB2 UDB/WebSphere Application Tuning Guide

#1Shopping Cart - Microsoft Internet Explorer

P[]

Fil= Edit View Favorites Tools Help ﬁ
3 ="
@ s 9 W Q@ & @ PB4
Back Forward Stop Refresh Home Seatch Favorites Media Histary Mail Print

Address I@ http:f/columbia, almaden,ibm, com/shopapp/shop j Feac | Links ¥

Shopping Cart

|ItemName|
BocE |
FLOPPY |

Ttem Oty.

Current Order

‘Item Name ‘Item Desc. |Item (ty. Price
BOOK RedBock |3 100
FLOPPY IBM 1440 [10

N
BUY AGAIN | Resetl
H
|&] pone [T [wtemet 4
Figure 5-71 Saved shopping cart information

Chapter 5. Problem determination scenarios

303

Environment configuration
Figure 5-72 shows the environment used for this scenario.

Web Browsers Application Server Database Server

Windows 2000 RS/6000 44P RS/6000 44P
AIX 4.3.3 MLO8 AIX 4.3.3 ML08

[
L I i

(15 users)
akstress
360 seconds

persian
(Trade App Server)

mansel

WAS AE 4.05
IHS 1.3.19
DB2 Client 8.1

DB2 Server 8.1

Figure 5-72 Non-serializable object scenario environment

Our WebSphere Application Server and DB2 UDB servers were installed on
separate AIX machines persian and mansel respectively. We used the
WebSphere Performance Tool to drive the workload.

Monitor level settings

Both WebSphere Application Server and DB2 were installed using default
configurations, and default settings were used. The relevant settings are as
shown in Table 5-4.

Table 5-4 Non-serializable objects scenario monitor level settings

Hardware configuration Software configuration

Database Server (mansel) AIX 4.3.3 ML08

RS/6000 44P DB2 UDB ESE v8.1
1 GB Memory Instance name: db2inst1
32 GB disk DIAGLEVEL: 4

Log name: dbZ2diag.log and jdbcerr.log
Log path: /home/db2inst1/sqllib/db2dump
Databases: WAS40 and TRADEDB

Application Server (persian) | AIX 4.3.3 ML08

304 DB2 UDB/WebSphere Application Tuning Guide

Hardware configuration Software configuration

RS/6000 44P WAS AE v4.0.5
1 GB Memory Log name: tracefile and activity.log
32 GB disk Log path: /usr/WebSphere/AppServer/logs

Application name: Onlinestore
Log name: Tradestdout.txt and Tradestderr.txt
Log path: /tmp

HTTP Server v1.3.19
Log name: error.log and access.log
Log path: /usr/HTTPServer/logs

DB2 UDB Runtime Client v8.1

Attention: The diagnostic error capture level parameter DIAGLEVEL default
value of 3 is appropriate for routine monitoring.

We chose to change this value to 4, which is the highest level of
information in all our problem determination scenarios, using the
commands shown in Figure 5-3. This is because the routine monitoring
level does not provide us with the information required to perform
proper problem diagnosis.

This is equivalent to performing exception monitoring for problem diagnosis.

For the Session Manager service, we chose a maximum in-memory session
count of 10, disabled session overflow, and set the invalidation timeout to 2
minutes. The monitoring level we chose for session management was High, the
JVM was Low, and the database connection was Medium. The minimum
connection pool size for the session database was 1, and the maximum was 25.
We had a DB2 row size of 32K for the session database, and defined 125 buffers
for this tablespace.

Attention: We realize that the timeout value of 2 minutes and a maximum
in-memory session count of 10 is probably unrealistic in the real world, but we
needed to set it to these values in our scenario to artificially simulate the
problem.

Chapter 5. Problem determination scenarios 305

306

Workload used

The scenario consisted a load recorded in akstress that simulated 15 users who
execute the add/remove/change purchases from the shopping cart repeatedly.
We assumed a maximum think time of 20 seconds between interactions of a
single user. We ran this load for 6 minutes.

Triggering event

Our triggering event in this case was a number of user complaints about random
loss of data in their shopping carts.

Hypotheses and their validation

We postulated each of the following hypotheses as the potential cause of the
problem. Given our controlled environment, we ignored real world root cause
possibilities such as network bandwidth concerns, system utilization, and
process priorities.

» Hypotheses 1: Persistence not enabled
» Hypotheses 2: Low invalidation timeout value or in-memory cache overflow
» Hypotheses 3: Non-serializable objects

Each of these hypotheses was validated in turn. The first two hypotheses
involved a lookup of the configuration settings of the Session Manager Service.
The third involved an analysis of the WebSphere Application Server logs.

Hypotheses 1: Persistence not enabled

We first wanted to verify that session persistence had indeed been enabled for
this application, but looking up the configuration settings of the Session Manager
Service, as shown in Figure 5-73.

DB2 UDB/WebSphere Application Tuning Guide

X Session Manager Service o] =]

[Ganeral [Advanced [[Cookies | Persistence [Database |
[v] Enable persistent sessions

i Very high (optimize for performance)

Write Frequency = Time Based (Write Interval = 200 seconds)
Write Cantents = Only Updated Attributes

Session database cleanup scheduled for invalidated sessions at
time = Q0

@) High

Write Frequency = Time Based (Write Interval = 300 secands)
Write Contents = All Session Attributes

) Madium

Write Frequency = End af Service Method
Write Cantents = Only Updated Attributes

) Low (aptimize for database failover)

Write Frequency = End af Service Method
write Contents = All Session Attributes

-

P

| OK | | Cancel | | Help |

Figure 5-73 Verifying Session Manager Service persistence setting

Note: We discarded this hypothesis as the potential cause of the problem.

Hypotheses 2: Low Invalidation timeout value or cache overflow

We speculated on whether the shopping cart information was being lost because
of a low value for the Invalidation timeout value (which would cause the session
information to be discarded prematurely), or a small cache for the in-memory
sessions (which would result in session objects overflowing to the overflow
cache).

Note: The writing of session objects to the persistent datastore is driven by
the persistence policies of very high, high, medium (default), low, and manual
configuration, as shown in Figure 4-11 on page 185.

Figure 5-74 indicates a timeout value of 2 minutes, which is adequate for our
scenario, but would probably be too small for a real world environment.

Chapter 5. Problem determination scenarios 307

308

X Session Manager Service (1] x|
[General [Advanced [(Cookies | Persistence | Database |

Maximum in-memary sessian caunt: ¥10 sessions

[[] allow overflow

[] Integrate with WehSphere security
[_] Enahble protacal switch rewriting

Invalidation timeaut:) No timeaut

@ Set timeout:

[z |minutes

| OK || Cancel || Help

Figure 5-74 Invalidation timeout value

Since the think times between user interactions from a single browser window
were less than 60 seconds in our scenario (and typically a few minutes in a real
world environment), the default invalidation timeout value of 30 minutes was not
an issue.

Note: We therefore discarded having a low value for the invalidation timeout
parameter as being the cause of the problem.

If the in-memory cache for sessions is large enough, then the session objects
stay in the cache and will not require retrieval from the persistent data store. If
there is insufficient in-memory cache, then the Session Manager will discard
session in the cache using an LRU algorithm, and retrieve these sessions from
the persistent data store whenever required. Figure 5-74 shows the maximum
in-memory session count of 10 with no overflow. We therefore checked to see if
session objects potentially needed to be retrieved from the persistent data store.

Figure 5-75 shows the Resource Analyzer results for the Servlet Session
Manager, indicating that more than 200 sessions were created.

DB2 UDB/WebSphere Application Tuning Guide

#{ Resource Analyzer (O]
File Actions Logging Reports Options Help

oz Do HRBE EZN
WebSphere Administrative Domail r\u‘iew Data r\u‘iew Chart|
g %Ilg:;.::h Server [Time | Created Sessions [Invalidated Sessions/Session Life Time
3 ADecd, 2002 100 207 1410 1,603,278 45
Enterprise Beans :
Database Connection Pol
WM Runtime i
Thread Poals
Transaction Manager
Web Applications
: Narme [Description | walue [selg
|Created Sessions |Number of sessions that were created 207 [v
§§|In\.ralidated Ses. . Number of sessions that were invalidated 1410, v
“JSession Life Ti... |Average session life tire in milliseconds ... [1,603,27...| [v]
“JActive Sessions | Total number of sessions that are curren...| 0.0 {Aver...| []
[

§§ Live Seszions Total number of valid sessions in the ser... |0

a o
1 groups(s) |5 counter(s) |Refresh rate: 10 sec Table size: 40 Wiew Data As: Raw Value Logging: OFF

Figure 5-75 Number of sessions created

Given our rather small in-memory session cache of 10, we were assured that
sessions would have been flushed out of the cache, thus potentially requiring
subsequent retrieval of sessions from the persistent data store.

Note: This in itself is not the cause of the random information loss problem,
because the session would still be in the persistent data store for retrieval and
use. However, having a small in-memory cache can potentially impact
performance due to the added overhead of retrieving sessions from the
persistent data store.

We therefore turned our attention to sessions in the persistent data store.

Hypotheses 3: Objects not serialized

We decided to view the WebSphere Application Server logs for any potential
messages of interest. In particular, we looked at the contents of the stdout log
located in /WAS_HOME/logs/Default_Server_stdout.log.

Chapter 5. Problem determination scenarios 309

. columbia M=l Ed

[12/2/02 14:53:011047 PST] SBELFG4E Systemlut U written to seszion
[12/2/02 14:53:01;547 PST] 55Ebf548 Systemlut U no null BOOK
[12/2/02 14:53:061490 PST] S5ELFG4E Systemlut U written to seszion
[12/2/02 14:53:061490 PST] 556bf548 Systemlut U no null BOOK
[12/2/02 1R:03:15:828 PST] SBELFG4E Systemlut U written to seszion
[12/2/02 15:09:15;828 PST] 556bf548 Systemlut U no null BOOK
[12/2/02 1R:03:231058 PST] SBELFG4E Systemlut U written to seszion
[12/2/02 15309:23:508 PST] 556bF548 Sgstemﬂut U ho null BOOK
[12/2/02 10209323100 PET SRkt 5 11 P
[12/2/02 45037231560 PST] S5EbFh48 53331ontnntex X SESN0040E° Backerhs:
wrisetup — problem streaming object, Exception caught while trying to serizly

zeszion data for subzequent databaze write, The zession data may be too large
to serialize, Either put less data in the seszion or consider configuring Sessio
Niahager for MultiRow database mode,
[l 10:09:23: 720 PST] BOELFD48 SeszionContex X WTRHOQ4FE: java, io,Hoth
izableExcepiiom: shop,Floppy

at java, io,0bjectlulpucSteam, outpatibjectiib ectOut put Stream, javal Compi
led Codel

at java,io,lbjectOutputStream,writedBlect.0bjectOutputStrean, javaiConpil
ed Codel?

at java,io,ObjectOutputStream, outputClazsFields{0bjectOutputStream, javal
Compiled Codel’
@

"Default_Server_stdout., log" 40827 lines, 3207006 characters

Figure 5-76 Stdout log contents showing non-serializable object

Figure 5-72 shows one of many error messages indicating that the “Floppy”
object is not serialized, thereby resulting in it not being externalized to the
persistent data store.

Attention: This exception is not caught by the application program, but is
written to stdout.

Root cause of the problem

The non-serializable nature of the “Floppy” object causes this information to be
lost since this object can not be serialized to the persistent data store. When a
shopping cart containing any session object is flushed from the in-memory
cache, and is subsequently requested — it needs to be retrieved from the
persistent data store. In the case of the “Floppy” object, this information is not
available due to the non-serializable problem, resulting in information being lost.
The random nature of this problem can manifest itself, in cases where the
“Floppy” object is still in the in-memory cache and is available for access without
having to retrieve it from the persistent data store. Depending upon the size of
the in-memory cache, session activity, and the non-serializable problem, the user
will most likely experience random information loss problems.

A review of the application indicated that it was written with two session objects
“Book” and “Floppy”. The “Book” object was serializable, but the “Floppy” was
not.

310 DB2 UDB/WebSphere Application Tuning Guide

The question then arises as to why this problem was not caught during testing.
The answer could be that it was probably not rigorously tested, but more likely
that the size of the in-memory cache and amount of session activity during
testing was such as to not manifest this problem.

Apply best practices

The correct approach is to fix the application program to make the “Floppy”
object serializable as recommended in 1., “Enable session persistence:” on
page 196.

Until this code correction is implemented, one may consider increasing the
in-memory session count and enabling overflow — assuming adequate memory
is available. This should be considered a stop-gap arrangement only, until the
more permanent code correction is implemented.

Attention: A servlet/jsp is available for use during development to verify that
session objects being created are serializable. The servlet and its use is
described in Appendix B.3, “SessionInspectServlet.jsp” on page 339.

We strongly recommend that application developers run this servlet with the
sessions created to ensure that all of their objects are serialized. In this
scenario, we dealt with objects being created — the application may have far
more objects that are not serializable.

We ran the Sessioninspect servlet against a user session that was ordering
floppies. Figure 5-77 shows the error message generated by this servlet. This
information is also captured in the WebSphere Application Server logs.

Chapter 5. Problem determination scenarios 311

2 http:/icolumbia.almaden.ibm.com/shopapp/Sessioninspect jsp - Microsoft Internet Explorer

Fle Edt Yiew Favorites Tools Help ‘ﬁ

5 =
@ .4 Q0 A4l9 @@ 3B 4
Back Farward Stop Refresh Home | Search Favortes Meda Hstoy | Mal Print
Addressl@ https feolurnbia, almaden dom, comshopapp| Sessionnspect jsp j @Go |Links &

Session ohject details:
Creation time ‘Thu Dec 03 08:3843 PAT 2002
Maz iactwe time :120

Non Serializable attributes in session (attrihute names):

Serializale attrihutes in session (attribute names and their sizes in bytes):
1) mysession(Error seralimng/desenalinng the object, see below for detals)

Errors serializing/deserializing attributes:
Attribute name= mysession
Ervor serialieing the atiribute:

java.io MotSeriahizableEzception: com shop. Floppy at java 0. ObjectCutput3tream outputObject(ObjectQutput Stream java(Compiled Code)) at

javaio. ObjectOutputSiream write Object{Object Output Siream java(Commpiled Code]) at javaio ObjectOutput Stream outputClassFields(Object OutputStream java
(Compiled Codz)) at java 0. ObjectCutputitream defaultWriteChject{ ObjectOutpubStream java:503) at java 1o ObjectOuiputStream outputObject
(ObgectOutput3tream java(Cornpled Code)) at javaio ObjectQutputStream wite Object(ObyectQutputStream javalCompled Codg)) at

Ressionlnspect jap_ 0 verfySerialization(_Sessiontnspect jsp_0 java(Compled Code)) at _Sessionlnspect jsp_0.dump(_Sessionlnspect jsp_0 java(Cotmpiled
Code)) at _Sesstonlnspect jsp 0. jspService(_Sessionlnspect jsp 0.java246) at org apache jasper runtime HiiplspBase service(HitplepBase java 142) at

Jaa serviet tp HttpServlet service(Hitp Servlet javaB52) at org apache jasper runtime JspServletblspServletWeapper. service(TapServlet java312) at

org apache jasper. runtime. JepServlet sermicelspFile(TspServlet javad87) at org apache. jasper. runtime JspServiet service(Jspervlet java620) at

Figure 5-77 SessioninspectServlet output

5.3 Routine monitoring scenarios

312

As discussed in 2.11, “Monitoring and tuning tools” on page 86, WebSphere
Application Server provides a number of tools for monitoring and tuning the
WebSphere Application Server environment.

The default monitoring situation is as follows:

» All logs are always enabled.
» Monitoring level is none.

DB2 UDB/WebSphere Application Tuning Guide

Important: While the Resource Analyzer has qualitatively identified resource
counter impacts as low, medium and high, the quantitative overhead incurred
for a given resource monitoring level setting will depend upon an installation’s
specific configuration and application workload.

There are no published measurements of quantitative overheads for various
resource monitoring level settings for any given application workload and
configuration.

Therefore, the reader is strongly advised to determine the overheads
associated with each monitoring level within a regression test environment
that closely mirrors their production environment.

We therefore recommend the following routine monitoring activities as it relates
specifically to the DB2 UDB and WebSphere Application Server environment:

1. Start out with the default monitoring level of none for the production
environment.

Note: Eventually, based on regression tests, application requirements and
acceptable monitoring overheads, choose the most appropriate monitoring
levels for your environment.

2. At periods of peak activity, choose high or maximum monitoring levels for
short bursts of time to capture information about the system under stress.

3. Review information in the various logs for unusual messages.

4. Periodically gather information from sources such as the session database,
and the administrative database.

Attention: This information should then be routinely analyzed for unusual
activity, or changes in the workload that may portend problems in the future.
This analysis may also require adjusting the routine monitoring levels based
on a thorough understanding of the overheads associated with activating a
particular level for a given resource.

Routine monitoring should at least be gathering relevant information about:

» Connection pool usage
» Session database activity
» JVM memory utilization

Chapter 5. Problem determination scenarios 313

Attention: Administrators should determine the specific resource categories,
and desirable performance counters applicable for their particular
environment.

In this section, we will be routinely monitoring the average size of a persistent
session object, and then apply best practices considerations to improve its
performance. The three conditions we will be considering are:

» 100K session object size with persistence
» 100K session object size with local caching
» 30K session object size with persistence

Note: While it would be desirable to monitor non-persistent session object
sizes for potential performance tuning, this information is not readily
accessible from the monitoring tools available.

5.3.1 Determining average session object size

314

When persistent sessions are enabled, sessions get written to the SESSIONS
table in the session database, and depending upon the size of the session
object, the data is written to either the small, medium or large columns of the
table. The rows in this table get deleted based on the invalidation timeout
configuration parameters discussed in 4.4, “Session database” on page 180.

Example 5-14 describes an SQL statement that lists the total number of session
objects and their average size as stored in the SESSIONS table. This statement
needs to be executed at different times during the day over a period of many
days or weeks, in order to get a feel for the number and average size of
persistent session objects within your environment.

Example 5-14 Number and average size of persistent session objects

SELECT COUNT(*), AVG(LENGTH(small)) FROM sessions WHERE small IS NOT NULL
UNION

SELECT COUNT(*), AVG(LENGTH(mediunm)) FROM sessions WHERE medium IS NOT NULL
UNION

SELECT COUNT(*), AVG(LENGTH(Targe)) FROM sessions WHERE large IS NOT NULL

Note: This is a snapshot of the contents of the SESSIONS table, and this
information must be collected over different intervals before taking any
performance tuning action such as increasing or decreasing the DB2 row size
configuration parameter discussed in “DB2 row size” on page 194.

DB2 UDB/WebSphere Application Tuning Guide

5.3.2 100K session object size with persistence

The root cause problem demonstrated here is that an application is creating very
large session objects that are being persisted. This is having a negative
performance impact due to over utilization of memory in the WebSphere
Application Server, as well as negatively impacting response times due to I/O
activity on the session database.

Our measurement metric is the number of requests per second completed in the
measured interval.

Description of the application

For the purposes of our mock routine monitoring exercise, we created an
application that consistently created a fixed 100K session object that had
persistence enabled in order for us to be able to determine its average size using
the SQL shown in Example 5-14.

Environment configuration

Figure 5-78 shows the environment used for the 100K session object size
scenario.

Chapter 5. Problem determination scenarios 315

316

Web Browsers
Windows 2000

Application Server

RS/6000 44P
AIX 4.3.3 ML08

Database Server

RS/6000 44P
AIX 4.3.3 ML08

lum
\
|
|

- ‘ ‘

web client

(5 users)

akstress
30 seconds

persian
(Trade App Server) mansel

WAS AE 4.0.2 FP2
IHS 1.3.19
DB2 Client 7.2 FP6

DB2 Server 7.2 FP6

Figure 5-78 100K session object configuration

Our WebSphere Application Server and DB2 UDB servers were installed on
separate AIX machines persian and mansel respectively. We used the
WebSphere Performance Tool to drive the workload.

Monitor level settings

Both WebSphere Application Server and DB2 were installed using default
configurations, and default settings were used. The relevant settings are the
same as used in Figure 5-2 on page 257.

We had chosen the DIAGLEVEL to be 4 in our exception monitoring scenarios, and
chose to stay with it here as well. Note that the default is 3.

For the Session Manager service, we chose the default maximum in-memory
session count of 1000, and the invalidation timeout of 30 minutes. The
monitoring level we chose for session management was high, the JVM was low,
and the database connection was medium. The minimum connection pool size
for the session database was 1, and the maximum was 25. We had a DB2 row
size of 32K for the session database, and defined 125 buffers for this tablespace.
We had the DB2 Database Manager monitor switch DFT_MON_BUFPOOL turned on.

DB2 UDB/WebSphere Application Tuning Guide

Besides the above parameters values, we stayed with the defaults.

Workload used

The scenario consisted a load recorded in akstress that simulates 5 users that
execute our mock servlet repeatedly. We ran this load for 30 seconds. The
servlet used is described in Appendix B.2, “Large session object servlet” on
page 337.

Example 5-15 shows the results from the WPT as delivering a throughput of
75.77 requests per second, while Figure 5-79 shows the results from Resource
Analyzer as creating 131 sessions. There were no memory exceptions.

Example 5-15 Results of 100K session object with persistence

Uptime: 0 hours 0 minutes 31 seconds
Number of Clients: 5
Pages Attempted: 646
Pages To Be Attempted: 0
Pages per second: 20.84
Requests completed: 2349
Requests per second: 75.77

Failed Connections (*): 0

"\ Resource Analyzer [rabigsestestPa.l Jj§ O] x|
File Actions Reparts Options Help
Moo
1§ WebSphere Administrative [© r\-'iew Data |/View Chart|
= % persian i
= % Default Server : 100
Enterprise Beans
[. Database Connecti : 80
jdbefSampleDa;
L WM Runtime : 50 Legend
Thread Pools |- © creaed seceions
Transaction Manag : 40 & "Va,' 2 e’fe §S|ons
Web Applications 5§ Session Life Time {(ms})
Piggy = 20
Trade ///),_/b—o
4:35:41 PM 4:36:01 PM 4:36:21 PM 4:36:41 PM
: Narme | Description | Value |3el...|5c..
:|Created Sessions Nurmnber of sessions that were created 131 ¥ | 0.1
i|Invalidated Sessions Number of sessions that were invalidated ol v |10
:|Session Life Time (ms) Average session life time in milliseconds (time invalidated - time ... o ¥ | 1.0
i |Active Sessions Toral nurmber of sessions that are currently being accessed by re... 0.0 (average 0.93) [| 1.0
i|Live Sessions Total number of valid sessions in the server 131.0 (Average: 45.908) [| 1.0
B [»
1 groupsis) |5 counteris) |Refresh rate: 10 sec Table size: 40 Wiew Dara As: Raw Value Logging: OFF

Figure 5-79 100K session object with persistence

Chapter 5. Problem determination scenarios 317

318

Triggering event

Our triggering event was a mock up that simulated a regular analysis of the
results of routine monitoring of persistent session object sizes over a period of
time (known to be 100K and therefore not shown executing the SQL shown in
Example 5-14 on page 314). Our session object analysis using Example 5-14 on
page 314 showed 131 sessions being created with an object size of 100K.

Attention: We concluded that the number and frequency of 100K persistent
session object sizes would have an adverse performance impact, and could
perhaps be tuned to achieve better performance.

Root cause of the problem

After reviewing the application program, it appeared that the application program
had chosen to store unnecessary data in the session object which was leading to
the creation of large session objects.

Apply best practices
After reviewing the various choices to reduce session object size as described in
2 on page 197, we decided on the following course of action:

1. Initiate the process of modifying the application to reduce the session size, for
implementation at a future date.

2. Disable session persistence since the application was non-critical, and loss of
session data would not be a major concern.

3. Disallow overflow of in memory sessions to avoid swamping of memory due
to in memory caching of these large sessions. This can lead to lost sessions
which is not a major concern for our non-critical application.

We reran the workload with these changes and observed the following results.
Example 5-16 shows the results from the WPT as delivering a throughput of
111.29 requests per second, which is a 48% throughput increase. Figure 5-80
shows the results from Resource Analyzer as creating 192 sessions. However,
we did get 8 out of memory exceptions as shown in Figure 5-81.

Example 5-16 100K session object with no persistence

Uptime: 0 hours 0 minutes 31 seconds

Number of Clients: 5

Pages Attempted: 954

Pages To Be Attempted: 0

Pages per second: 30.77

Requests completed: 3450

Requests per second: 111.29
Failed Connections (*): 0

DB2 UDB/WebSphere Application Tuning Guide

File Act
e 8B 5

ians

Reparts Options Help

=lolx|

El

2

100
Enterprise Beans |
Database Connecti : B0
jdbc/ SampleDal ©
J¥™M Runtime a0 Legend
Thread Pools |- §reaied Sessions
Transaction Manag a0 A fvalica E‘fe ssions
Web Applications | : session Life Time (ms)
Piggy i 20
Trade /
442:48 PM 443:08 PM 4:43:30 PM 4:43:49 PM
| Narne I Description Yalue Sel...[5c..
i|Creared Sessions Number of sessions that were created 192 [v] | 0.1
i|Invalidated Sessions Number of sessions thar were invalidated ol ¥ 10
:|Session Life Time (ms) Average session life tirme in milliseconds (time invalidated - time ... o ¥ | 1.0
lActive Sessions Total number of sessions that are currently being accessed by re... 6.0 (Average: 0.427) [| 1.0
Total number of valid sessions in the server 192 0 {Awerage: 18 2783 [J [1.0

95 webSphere Administrative O
[% persian
) %p Defauht Server

| /view Data | view Chart |

ilLive Sessions

D

|5 counteris)

|1groups(5) |Refresh rate’ 10 sec Table size’ 40 View Data As' Raw Walue Logging: OFF
Figure 5-80 100K session object — no persistence — no overflow
Typel| Time | Event Message | Source |
E 6/14/02 4. SRVEQL69I Loading Web Module: SessionTest. com.ibm.servlet engine. ServletE. . =
E 6/14/0Z 4., SRVEQL&S! Loading Web Module: ses30ktest. comm.ibm. servlet. engine. ServletE. ..
E 6/14/02 4. SRWEO169!: Loading Web Module: SmallSesTest. com.ibm.servlet. engine. ServletE. ..
E 6/14/02 4., SRVEQ1691: Loading Web Module: BigSesTest. comm.ibm. servlet engine. ServletE. ..
E &/14/02 4., SRVEOL7L1l: Transport hitp is listening on port 9,080, com.ibm. servlet.engine. http 11
E 6/14/02 4. WSWROO0Z3I: Server Default Server open for e-business cormn. b ws. runtime. Server
© &6/14/02 4., Servlet Error: : java.lang. OutCfMernoryError O com.ibm. servlet.engine. srt.veb
O 6/14/02 4: Servlet Error: : java lang OutCfMemoryErrorQ corm.ibm. servlet engine. srtwehb
© &/14/02 4. Servlet Error: : java.lang. OutCfiMemoryErrord corm. ibm. servlet. engine. srt.veb
@ a/14/02 4:. Servlet Error: : java lang OutCfMemoryErrorQ corm.ibm. servlet engine. st \Wehb
§ 671402 4. Servlet Error: : javalang OutOfMemoryErrorQd corm. ibm. servlet. engine. srt.veb
@ 6/14/02 4. Servlet Error: : java lang. utCfMernoryErrord com.ibm. servlet. engine. srt.veb
§ 671402 4. Servlet Error: : javalang OutOfMemoryErrorQd com.ibm.servlet.engine.srt.Web... H
@ 6/14/02 4. Servlet Error: : java lang. OutCfMernoryError 0 com.ibm. servlet. engine. st veb _.
[|
Figure 5-81 100K session object — no persistence — memory exceptions
Chapter 5. Problem determination scenarios 319

The occurrence of memory exceptions indicates loss of sessions, which we were
willing to accept to achieve better throughput for out given application
environment.

Clearly, the disabling of session persistence had a significant impact on our
throughput.

5.3.3 100K session object size with local caching

320

The root cause problem demonstrated here is that of another business
application that is creating very large session objects that are not being persisted
because of the non-critical nature of the application. However, an increase in the
workload is causing out of memory exceptions that are negatively impacting the
performance of other applications in the WebSphere Application Server JVM due
to over utilization of memory.

Our measurement metric is the number of requests per second completed in the
measured interval, plus the median response times.

Description of the application

For the purposes of our mock routine monitoring exercise, we created an
application that consistently created a fixed 100K session object that had local
caching with overflow enabled. We used the same servlet as described in
Appendix B.2, “Large session object servlet” on page 337.

Environment configuration

We used the same configuration as shown in Figure 5-78 except for a change in
the workload to 25 concurrent users over a 30 second interval.

Monitor level settings

The same settings were used as in the previous example, except that we allowed
session overflow.

Workload used

The scenario consisted a load recorded in akstress that simulates 25 users that
execute our mock servlet repeatedly. We ran this load for 30 seconds.

Example 5-17 shows the results from the WPT as delivering a throughput of
101.91 requests per second, while Figure 5-82 shows the results from Resource
Analyzer as creating 183 sessions.

DB2 UDB/WebSphere Application Tuning Guide

Example 5-17 100K session object — local caching with overflow

Uptime: 0 hours 0 minutes 32 seconds

Number of Clients: 25

Pages Attempted: 882

Pages To Be Attempted: 0

Pages per second: 27 .56

Requests completed: 3261

Requests per second: 101.91
Failed Connections (*): 0

The median response times for this run for are shown in Example 5-18, which is

obtained from the WebSphere Performance Tools.

Example 5-18 100K session object — local caching with overflow — response times

Page statistics for page page0
Successes: 183
Min time (milliseconds): 60
Max time (milliseconds): 6008
Mean time (milliseconds): 780

Page statistics for page pagel
Successes: 183
Min time (milliseconds): 120
Max time (milliseconds): 10835
Mean time (milliseconds): 1152

Page statistics for page page2
Successes: 177
Min time (milliseconds): 110
Max time (milliseconds): 9423
Mean time (milliseconds): 760

Page statistics for page page3
Successes: 172
Min time (milliseconds): 50
Max time (milliseconds): 10155
Mean time (milliseconds): 734

Page statistics for page page4
Successes: 167
Min time (milliseconds): 40
Max time (milliseconds): 10064
Mean time (milliseconds): 940

Chapter 5. Problem determination scenarios

321

\\ Resource Analyzer [rabigs 0] x|

File Actions Reports Options Help
e e
[webSphere Administrative D | 4iaa Data | View Chart |
E 99 persian]
£ %p Default Server : 100
Enterprise Beans |
El 1. Database Cannecti . 80
Jjdbe/sampleDaj -
JVM Runtime - (ezer]
Thread Pools ® Created Sessions
Transaction Manag 40 (inATE AR el
web Applications | 4 Session Life Time {(ms})
Pigagy : 20
Trade //4—4.
0
510:56 PM 5:11:06 PM 5:11:16 PM 5:11:26 PM 511146 PM
: Narne | Description | Valug |Sel...|5¢c...
: Created Sessions MNumber of sessions that were created 183 v | 0.1
: Invalidated sessions MNumber of sessions that were invalidated ol vl | 1.0
| Session Life Time {ms) Average session life time in milliseconds {time invalidated - time ... ol vl | 1.0
‘|Active Sessions Total number of sessions that are currently being accessed by re... 0.0 {Average: 4.941) [| 1.0
:|Live Sessions Total number of valid sessions in the server 1830 (dwerage 65 9113 [| 1.0
[l IE
1 groupsis) |5 counteris) |Refresh rate: 10 sec Table size: 40 Wiew Dara As: Raw Walue Logging: OFF

Figure 5-82 100K session object — local caching with overflow

Triggering event

Our triggering event was a mock up that simulated a regular analysis of the
results of routine monitoring of persistent session object sizes over a period of
time (known to be 100K and therefore not shown executing the SQL shown in
Example 5-14 on page 314), and the monitoring of memory exceptions. Our
session object analysis using Example 5-14 on page 314 showed 183 sessions
being created with an object size of 100K, and 16 occurrences of memory
exceptions, which we deemed excessive in our mock exercise.

Root cause of the problem

After reviewing the application program, it appeared that the application program
had chosen to store unnecessary data in the session object which was leading to
the creation of large session objects, and the overflow of sessions to secondary
cache was causing memory overutilization.

322 DB2 UDB/WebSphere Application Tuning Guide

Apply best practices

After reviewing the various choices to reduce session object size as described in
2 on page 197, we decided on the following course of action:

1. Initiate the process of modifying the application to reduce the session size, for
implementation at a future date.

2. Enable session persistence in order to overflow sessions to the persistent
store to reduce memory utilization. We checked to make sure that the session
objects were Java serializable in order to enable session persistence. We
chose the default of Medium, and chose the 32K DB2 row size.

We reran the workload with these changes and observed the following results.

Example 5-19 shows the results from the WPT as delivering a throughput of
76.17 requests per second, which is a 25% throughput decrease, but the number
of out of memory exceptions dropped to 5 — a 70% reduction. Figure 5-83
shows the results from Resource Analyzer as creating 149 sessions. The
response times for this run is shown in Example 5-20, and the median response
times are generally higher but acceptable.

Example 5-19 100K session object — with persistence

Uptime: 0 hours 0 minutes 35 seconds

Number of Clients: 25

Pages Attempted: 716

Pages To Be Attempted: 0

Pages per second: 20.46

Requests completed: 2666

Requests per second: 76.17
Failed Connections (*): 0

Chapter 5. Problem determination scenarios 323

}{'Hesuulce Analyzer [rabigsestestPb._lra) O] x|
File Actions Reports Options Help

IR R |
@g :\gghSphem Administrative 0 (\fiew Data r\n'iew Chart |

persian B
[%9 Default Server | 100
Enterprise Beans |
[I Database Cannecti : 8O
Jjdbe/ SampleDal
JVM Runtime .. w ez
Thread Pools | @ Creaed Sessions
Transaction Manag : 40 nvalidated sessions
Waeb Applications | 4k Session Life Time {(ms)
Piggy : 20
Trade /
i .
51632 PM 0 Si1652 PM 0 51712 PM 0 517:32PM 5:17:53 PM
i Narne [Description [Valug Sel...|5c..
i|Creared Sessions Number of sessions that were created 148 [¥] | 0.1
“|Invalidated Sessions Number of sessions thar were invalidated ol ¥ |10
#|Session Life Time (ms) Average session life time in milliseconds (time invalid ated - time ... o ¥ | 1.0
|Active Sessions Total number of sessions that are currently being accessed by re 20.0 (Average 3 9223 [J [10
Live Sessions Total number of valid sessions in the server 149 0 {Average: 28 018) [J [1.0
JE I D
1 groupsis) |5 counter(s) |Refresh rate; 10 sec Table size: 40 View Data As: Raw Value Logging: OFF

Figure 5-83 100K session object with persistence

Example 5-20 100K session object — with persistence — response times

Page statistics for page page0
Successes: 150
Min time (milliseconds): 60
Max time (milliseconds): 5498
Mean time (milliseconds): 603

Page statistics for page pagel
Successes: 150
Min time (milliseconds): 201
Max time (milliseconds): 7140
Mean time (milliseconds): 1617

Page statistics for page page2
Successes: 146
Min time (milliseconds): 230
Max time (milliseconds): 4877
Mean time (milliseconds): 1316

Page statistics for page page3
Successes: 139

324 DB2 UDB/WebSphere Application Tuning Guide

Min time (milliseconds): 250
Max time (milliseconds): 7121
Mean time (milliseconds): 1158

Page statistics for page page4
Successes: 131
Min time (milliseconds): 231
Max time (milliseconds): 4847
Mean time (milliseconds): 994

While session persistence has a negative impact on throughput and response
times, it has a positive impact on memory utilization.

5.3.4 30K session object size

The root cause problem demonstrated here is that of another application creating
large session objects that are persisted for business reasons (loss of sessions
being unacceptable). This is having a negative performance impact due to over
utilization of memory in the WebSphere Application Server, as well as negatively
impacting response times due to I/O activity on the session database. The
servlet used is described in Appendix B.2, “Large session object servlet” on
page 337, except that this time it creates a session object of size 30K.

Our measurement metric was the number of requests per second completed in
the measured interval.

Description of the application

For the purposes of our mock routine monitoring exercise, we created an
application that consistently created a fixed 30K session object that had
persistence enabled in order for us to be able to determine its average size using
the SQL shown in Example 5-14.

Environment configuration

We used the same environment configuration as the one used for the 100K
session object, that is, Figure 5-78. Here again, we used the WebSphere
Performance Tool to drive the workload.

Note: We allocated a separate 4K buffer pool of 1000 buffers for the
SESSIONS tablespace, and used the default DB2 row size of 4K

Monitor level settings
Again, we used the same settings as used with the 100K session object size.

Chapter 5. Problem determination scenarios 325

Workload used

Our scenario again consisted a load recorded in akstress that simulates 3 users
that execute our 30K session object mock servlet repeatedly. We ran this load for
30 seconds.

Example 5-21 shows the results from the WPT as delivering a throughput of
45.97 requests per second, while Figure 5-84 shows the results from Resource
Analyzer as creating 286 sessions. Example 5-22 shows the buffer pool statistics
for the SESSIONS tablespace. There were no out of memory exceptions.

Example 5-21 30K session object with persistence — 4KDB2 row size

Uptime: 0 hours 0 minutes 31 seconds
Number of Clients: 3
Pages Attempted: 1425
Pages To Be Attempted: 0
Pages per second: 45.97
Requests completed: 1425
Requests per second: 45.97

Failed Connections (*): 0

"\ Resource Analyzer [rasmallsestestd i 10| =|
File Actions Reports Opt He
CR IR = R 5)
' webSphere Administrative D ‘| 45au Data View Chart |
[&) persian Eg
= % Default Server i 100
Enterprisa Beans |-
[- Database Cannecti RO
jdbecy sampleDa) :
WM Runtime] & Legend
Thread Poals W Created Sessions
Transaction Manad : 40 Invalidated Sessions
web Applications |: % Sessian Life Time {ms)
Pigay : 20
Trade 2

o .
2:26:51 PM 2:27:11 PM 2:27:31 PM 2:27:51 Pl 2:2811 PM

i Name I Description [Walue [Sel..[5c...
‘| Created Sessions Number of sessions that were created 286| vl | 0.1]
‘| Imvalidated Sessions Number of sessions that were invalidated o vl 1.0
:|Session Life Tirme (rms) Average session life time in milliseconds (time invalidated - time .. a9 ¢l 1.0
5; Active Sessions Total nurmber of sessions that are currently being accessed by re.. 0.0 (Average: 0.631) [] | 1.0
Eg Live Sessions Total number of valid sessions in the server 483.0 (Average: 281.3.. | [] | 1.0

A I

1 groupsis) |5 counteris) |Refresh rate 10 sec Table size: 40 Wiew Data Az Raw Yalue Logging: OFF

Figure 5-84 30K session object with persistence — 4KDB2 row size

326 DB2 UDB/WebSphere Application Tuning Guide

Example 5-22 30K session object; persistence — 4K DB2 row size — buffer pool stats

Bufferpool Snapshot

Bufferpool name = SESSION4K
Database name = SESSION1
Database path =
/home/db2inst1/db2inst1/NODE0000/SQLO0007/

Input database alias =
Buffer pool data logical reads = 47593
Buffer pool data physical reads =0
Buffer pool data writes =13
Buffer pool index logical reads = 633
Buffer pool index physical reads =0
Total buffer pool read time (ms) =0
Total buffer pool write time (ms) = 382
Asynchronous pool data page reads =0
Asynchronous pool data page writes =0
Buffer pool index writes =2
Asynchronous pool index page reads =0
Asynchronous pool index page writes =0
Total elapsed asynchronous read time =0
Total elapsed asynchronous write time =0
Asynchronous read requests =0
Direct reads =0
Direct writes = 71822
Direct read requests =0
Direct write requests = 1229
Direct reads elapsed time (ms) =0
Direct write elapsed time (ms) = 18317
Database files closed =0
Data pages copied to extended storage =0
Index pages copied to extended storage =0
Data pages copied from extended storage =0
Index pages copied from extended storage =0

The buffer pool statistics show that the 30K sessions were being written to the
LOBs as indicated by the direct writes information. The synchronous direct writes
elapsed time is 18317 milliseconds — a significant portion of our measurement
interval.

Triggering event

Our triggering event was a mock up that simulated a regular analysis of the
results of routine monitoring of persistent session object sizes over a period of
time (known to be 30K and therefore not shown executing the SQL shown in
Example 5-14 on page 314), and the DB2 bufferpool statistics showing LOB
activity as shown in Example 5-22.

Chapter 5. Problem determination scenarios 327

328

Attention: We concluded that the number and frequency of 30K persistent
session object sizes, and the LOB activity would have an adverse
performance impact, and could perhaps be tuned to achieve better
performance.

Root cause of the problem

After reviewing the application program, we determined that the application
program had been written reasonably efficiently, but that some savings of
session object size could be achieved using the techniques described in 2 on
page 197. However, these savings would still result in session objects of over
20K.

Apply best practices
After reviewing the various choices to reduce session object size as described in
2 on page 197, we decided on the following course of action:

1. Initiate the process of modifying the application to reduce the session size, for
implementation at a future date.

2. Could not disable session persistence because of the critical nature of the
application, where loss of session data would create significant customer
dissatisfaction and complaints.

3. Increase the DB2 row size from 4K to 32K in order to exploit the greater
efficiencies of storing the session objects in the small column of the
SESSIONS table rather than in the medium column, as described in “DB2 row
size” on page 194.

Note: We created a 32K buffer pool of 125 buffers instead of the 1000 4K
buffer pool in order to measure benefits under similar system
configurations.

We reran the workload with these changes, and observed the following results.

Example 5-23 shows the results from the WPT as delivering a throughput of
55.35 requests per second, while Figure 5-85 shows the results from Resource
Analyzer as creating 266 sessions. Example 5-24 shows the buffer pool statistics
for the SESSIONS tablespace. There were no out-of-memory exceptions.

DB2 UDB/WebSphere Application Tuning Guide

Example 5-23 30K session object; persistence — 32K DB2 row size

Uptime: 0 hours 0 minutes 31 seconds
Number of Clients: 3
Pages Attempted: 1716
Pages To Be Attempted: 0
Pages per second: 55.35
Requests completed: 1716
Requests per second: 55.35

Failed Connections (*): 0

"\ Resource Analyzer [rasmallzestest32k_Ira) O] x|
File Actions Reparts Options Help
e e =
% WebSphere Administrative [| o View Chart
£1 %9 persian ;| Wiew Data. |
= % Default Server : 100
! Enterprise Beans |°
[- Database Cannecti 80
. jdbc/SampleDal ¢
s VM Runtime : @ ez
 Thread Pools § creaed Sessions
! Transaction Manag 40 350 ate_ BT
' Weh applications | + Session Life Time {(ms)
Figgy 20
Trade
11:57:26 AM 11L:57:36 AM 1L57:46 AM 1L57:56 AM
: Name I Description [Value [sel...[5c.
| Created Sessions Number of sessions that were created | 266| vl | 0.1
AInvalidared Sessions Number of sessions that were invalidated | o ¥ |10
|Session Life Tirne (ms) Average session life time in milliseconds (time invalidated - tirme | 0 ¥l |10
|Active Sessions Total number of sessions that are currently being accessed by re. . 3.0 (Average: 1.244) [| 1.0
#|Live Sessions Total number of valid sessions in the server 266.0 (Average: 68.067) [| 1.0
<] [D

1 groups(s) | 5 counter(s)

|Refresh rate. 10 sec Table size: 40 View Data As: Raw Walue Logging: OFF

Figure 5-85 30K session object; persistence — 32K DB2 row size

Chapter 5. Problem determination scenarios 329

330

Example 5-24 30K session object; persistence — 32 DB2 row size — buffer pool stats

Bufferpool name
Database name
Database path

/home/db2inst1/db2inst1/NODE0000/SQLO0007/
Input database alias

Buffer pool data logical reads

Buffer pool data physical reads

Buffer pool data writes

Buffer pool index
Buffer pool index
Total buffer pool
Total buffer pool
Asynchronous pool
Asynchronous pool
Buffer pool index
Asynchronous pool
Asynchronous pool

logical reads
physical reads
read time (ms)
write time (ms)
data page reads
data page writes
writes

index page reads
index page writes

Total elapsed asynchronous read time
Total elapsed asynchronous write time
Asynchronous read requests

Direct reads

Direct writes

Direct read requests

Direct write requests

Direct reads elapsed time (ms)

Direct write elapsed time (ms)

Database files closed

Data pages copied to extended storage
Index pages copied to extended storage
Data pages copied from extended storage
Index pages copied from extended storage

]]
[=NeNelNoNoN-Nel-E=-]

SESSION32K
SESSION1

7694
1936
1122
6529

8486
17958
1589
1122

8044
17958
198

o

The buffer pool statistics show that activity relating to session objects is no longer
related to LOBs since there is no Direct Writes, but associated with the small
column in the SESSIONS table. While there is a slight reduction in the number of
sessions created (7%), the improvement in number of requests per second is

22%.

DB2 UDB/WebSphere Application Tuning Guide

Sample applications

In this appendix we describe the Trade 2 application, the Piggy Bank application,
and the Web Performance Tools used in the problem determination scenarios.

© Copyright IBM Corp. 2003 331

A.1 Trade 2 application

The Trade 2 benchmark, also called the WebSphere Performance Benchmark
Sample, has been developed by IBM and is publicly available. This application
models an online brokerage firm providing Web based services such as login,
buy, sell, get quote and more. Figure 5-86 shows the various application
components and model-view-controller topology.

The Trade 2 application is a collection of Java™ classes, Java Servlets, Java
Server Pages and Enterprise Java Beans (EJBs) that service requests made by
registered users. This application runs as a single java process which is
managed by WebSphere Application Server.

This workload exercises the entire solution stack that consists of the WebSphere
Application Server, JVM, and the Just-In-Time (JIT) compiler, the HTTP server,
the DB2 Database Server and the DB2 client, the AlX operating system, and the
system hardware.

HTTP
Client

< ’\ Trade EJBs
—A

Profile
Trade CMP
servlets
Holding
CMP
] e, 06 @
Qo 5 T g 5 Account
208 @ S oo
w o B F om CMP
< o n
Register
CMP
Persistence
Trade Quote
JSPs cmp

Session Entity

Figure 5-86 Trade 2 application

Further details about this application including sample code can be obtained
from http.//www-3.ibm.com/software/webservers/appserv/wpbs_download. html.

332 DB2 UDB/WebSphere Application Tuning Guide

A.2 PiggyBank application

The PiggyBank application is a very simple banking application that was
designed as a sample application in the development of the WebSphere Version
4 Application Development Handbook, SG24-6134. The source code for the
multiple versions of the application and other supporting files such as Ant build
scripts and Rose models are included in the Web material that supports this
book.

The high-level architecture of the PiggyBank application is illustrated in
Figure 5-87, showing two types of application clients sharing the same back-end
business logic and data.

Web
Servlets &
JSPs
t I
S agl?:n‘tme @ Database

Figure 5-87 PiggyBank high-level application architecture

All of the application business logic is implemented as Enterprise JavaBeans
(EJBs). The EJBs store persistent application data, such as account and
customer information, in the database. Rather than make direct JDBC calls to
persist data, the application uses container-managed persistent (CMP) entity
EJBs, leaving the task to the WebSphere EJB container.

Both client channels communicate with the EJBs using RMI over IOP—the
standalone client communicates with the EJBs directly, whereas the Web client
uses HTTP to connect to servlets that make RMI calls on behalf of the client, and
display the results using Java ServerPages (JSPs).

The only logic implemented locally in the clients is basic validation and
conversation management specific to the channel. The application implements
the model-view-controller (MVC) architecture — each client channel implements
its own view and controller, but shares the same model.

Appendix A. Sample applications 333

A.3 WebSphere Performance Tools (WPT)

334

WPT (formerly AKtools) is a set of applications allowing a user to test a Web
server, a Web site, and/or a Web application.

Attention: This product is currently available as an IBM internal use only tool.

Version 1.9 of WPT consists of two applications:

» akstress is a high-performance, simple, threaded HTTP engine which is
capable of simulating hundreds or even thousands of HTTP clients, using a
highly configurable set of directives in a human readable and easily modified
configuration file.

» akrecord is a simple eavesdropping proxy that will record a user's session
against a Web server for later playback in akstress.

When the two applications are combined, it becomes very easy to quickly build
an akstress configuration, which, with minor tuning, allows a user to evaluate the
usability of a server, site, or Web application.

akstress is built on the code from server other internal IBM stress test tools.
Those tools have been used for the last several years for things like HTTP/1.1
verification testing, large Web site stress analysis, HTTP Server SVT testing, and
Web server unit testing efforts.

The following is a list of some of the available functions in this tool:

» Fully configurable HTTP headers

SSL support

Support for HTTP/1.1 functions, including persistent connections and
chunked-transfer encoding.

Built-in cookie cache (for session testing)

Result verification

Full logging

Overall and request-level statistics

Simple to use, no requirement for third party interpreters, etc.

Socks support for recording and replay

vy

vVvyvyvyYYyy

Attention: It is important to note that WPT is not a replacement for some of
the high-end Web stress tools. It was created to be either a “quick and dirty”
testing tool, or used in environments where the purchase of high-end tools is
prohibitive.

Further details can be obtained from:
http://www.alphaworks.ibm.com/tech/wptools.

DB2 UDB/WebSphere Application Tuning Guide

Sample scripts

In this appendix we list some of the sample code used in the problem
determination scenarios.

© Copyright IBM Corp. 2003 335

B.1 Connection close servlet

This is the servlet used in the problem determination scenario “Case 3: Poor
coding techniques with connection pooling” on page 241 dealing with this topic.

Example 5-25 TestServlet — connection close problem

import javax.servlet.http.*;
import java.io.*;

import java.util.*;

import java.sql.*;

import javax.sql.*;

import javax.naming.*;
import javax.servlet.*;

public class TestServlet extends HttpServilet
{
public void doGet (HttpServletRequest request,HttpServletResponse response)
throws ServletException,IOException {
PrintWriter out=response.getWriter();
Connection con=null;

try
{

con = getConnection();

Statement stmt=con.createStatement();

ResultSet rset=stmt.executeQuery("select * from tradeaccountbean");
while(rset.next())

{
}

out.printin(rset.getString(1));

}

catch(Exception e)

{
out.printin(e);
}

finally {

try {//con.close();
} catch (Exception e) {}

The highlighted line of code “//con.close():” was commented out to create the
problem of a program not closing the connection.

336 DB2 UDB/WebSphere Application Tuning Guide

B.2 Large session object servlet

The following code was used to generate a large session object used in
scenarios “100K session object size with persistence” on page 315, “100K
session object size with local caching” on page 320, and “30K session object
size” on page 325.

Example 5-26 SessionTestServlet.java — for creating large session objects

//package com.sestest;

import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class SessionTestServiet extends HttpServlet implements Serializable{

// private int SESSION_VECTOR_SIZE = 1600; for 100K session object
// private int SESSION_VECTOR_SIZE = 490; for 30K session object

private int SESSION_VECTOR_SIZE = 1600;
private String formContent = "";

public void init(ServletConfig sc){

try{
super.init(sc);
}

catch(Exception e){
e.printStackTrace();

}

}

public void doGet (HttpServletRequest req, HttpServletResponse res){
try{

res.setContentType("text/html");

OutputStream os = res.getOutputStream();

HttpSession hs = reqg.getSession(true);

StringBuffer v = createASessionObject();

String ss = v.toString();

hs.setAttribute("mysession",ss);

formContent = "<HTML><HEAD><TITLE>Small Session</TITLE><BODY>"+

"
Size : "+SESSION_VECTOR_SIZE+"
"+

"SESSION : "+ss+"</BODY></HTML>";
byte[] formBytes = formContent.getBytes();
os.write(formBytes);

Appendix B. Sample scripts 337

338

catch(Exception e){
e.printStackTrace();

}
}//end method doGet

private StringBuffer createASessionObject() {
String str = "International Technical Support Organization San Jose CA
USA";
StringBuffer v = new StringBuffer();
for(int 1=0;1<SESSION_VECTOR_SIZE;i++){
v.append(str);
}
return v;
}//end method createASessionObject

}//end class SessionTestServlet

Choosing the appropriate SESSION_VECTOR_SIZE determines the size of the
session object. A size of 1600 creates a session object of size 100K, while a size
of 490 creates a session object size of 30K.

DB2 UDB/WebSphere Application Tuning Guide

B.3 SessioninspectServlet.jsp

SessioninspectServiet described in Example 5-27 can help application
developers determine if session objects they create are java.io.Serializable or
not, which in turn will affect support for session persistence.
SessioninspectServiet helps to:

>

>

>

>

Determine attributes present in the session.
Find serializable and non-serializable attributes in the session.
Determine the size of each serializable attribute in the session.

Determine whether a session attribute is implemented properly or not; that is,
if the session attribute, and all of its internals, are serializable or not.

SessioninspectServiet serializes and deserializes session attributes in memory
to simulate session persistence, so that application developers need not enable
session persistence to run this servlet.

The following steps describe the process for using SessioninspectServiet:

1.
2.
3.

Create and compile servlet.
Drop the servlet classes into your webapp's web-inf/classes folder.

Define a servlet/uri entry in web.xml for class SessioninspectServlet. If serve
by class is enabled for your webapp, then servlet/uri definition is not needed.

4. Start your Web module.

5. Open a browser and access your Web module from the browser, and

navigate the application in the browser so that session gets populated.

Open a new browser using CTRL+N, and access the SessioninspectServiet
in the new browser window. This will display the current content of the
session. You can access SessioninspectServiet as you navigate your
application, and determine the contents of the session along the way. Any
non-serializable problems will be alerted as shown in Figure 5-77 on

page 312.

Appendix B. Sample scripts 339

Example 5-27 SessionlnspectServiet.jsp

<%@ page import="java.io.*,java.util.*,javax.servlet.*,javax.servlet.http.*"
session="false" %>

<%
response.setHeader("Pragma", "No-cache");
response.setHeader("Cache-Control", "no-cache");
response.setDateHeader ("Expires",0);

HttpSession session = request.getSession(false);
if (session == null) {
out.println("No session");
} else {
dump (request, response);
}
%>
<%! public void dump(HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException {
HttpSession sess = request.getSession();
PrintWriter out = response.getWriter();
out.println("<HTML><BODY>");
out.println("Session object details:");
out.printin("
Creation time :" + new
java.util.Date(sess.getCreationTime()));
out.printin("
Max inactive time :" +
sess.getMaxInactivelnterval());

Enumeration enum = sess.getAttributeNames();
ArrayList nonser = new ArrayList();
ArrayList ser = new ArraylList();
HashMap errors = new HashMap();
HashMap sizes = new HashMap();
if(enum.hasMoreElements()) {
while(enum.hasMoreElements()) {
String key = (String) enum.nextElement();
Object value = sess.getAttribute(key);
if(value instanceof Serializable) {
Object error = verifySerialization(key, value, sizes);
ser.add(key);
if(error != null) {
errors.put(key, error);

}
} else {
nonser.add (key) ;
}
}

displayContent(out, nonser, ser, errors, sizes);

340 DB2 UDB/WebSphere Application Tuning Guide

} else {
out.printin("

Currently there are no attributes present in
session");
}
out.println("</BODY></HTML>");

}

void displayContent(
PrintWriter out,
ArrayList nonser,
ArraylList ser,
HashMap errors, HashMap sizes) {
out.printin("

 Non Serializable attributes in session
(attribute names): ");
Iterator iter = nonser.iterator();
int count = 0;
while(iter.hasNext()) {
count++;
String key = (String) iter.next();
out.printin("
 "+count+") " + key);

}

out.printin("

Serializable attributes in session (attribute
names and their sizes in bytes): ");
count = 0;
iter = ser.iterator();
long totalSize = 0;
while(iter.hasNext()) {
count++;
String key = (String) iter.next();
if(errors.containsKey (key))
out.printin(
Il
 n
+count+") "
+ key
+ "(Error serializing/deserializing the object, see below for
details)");
else {
long currSize = ((Long)sizes.get(key)).longValue();
out.printin("
 "+count+") "+
key+"—mmmm e "+currSize);
totalSize+=currSize;
}
}
if(totalSize != 0)
out.printin("
 Total Size of all serializable attributes =
"+totalSize);

Appendix B. Sample scripts 341

if(errors.size() > 0) {
out.printIn("

Errors serializing/deserializing
attributes:");
iter = errors.keySet().iterator();
while(iter.hasNext()) {
String key = (String) iter.next();
out.printIn("
Attribute name=
"+key+"");
SerializationErrorDesc desc = (SerializationErrorDesc)
errors.get (key);
out.printin("
"+desc.message+"</br>");
desc.th.printStackTrace(out);
}
} else {
out.printIn("

No errors serializing/deserializing
attributes currently present in session");

}

}

public SerializationErrorDesc verifySerialization(String key, Object obj,
HashMap sizes) {
byte[] data = null;
try {
ObjectOutputStream oos = null;
ByteArrayOutputStream baos = null;

// serialize session (app data only) into byte array buffer
baos = new ByteArrayOutputStream();

00s = new ObjectOutputStream(baos);

oos.writeObject(obj);

0os.flush();

data = baos.toByteArray();
sizes.put(key,new Long(data.length));
} catch(Throwable th) {
return new SerializationErrorDesc(
th,
key,
"Error serializing the
attribute:");
}

try {
ByteArrayInputStream bais = new ByteArrayInputStream(data);
BufferedInputStream bis = new BufferedInputStream(bais);

342 DB2 UDB/WebSphere Application Tuning Guide

ObjectInputStream ois = new
MyObjectInputStream(Thread.currentThread().getContextClassLoader(),bis);
Object tmp = ois.readObject();
} catch(Throwable th) {
return new SerializationErrorDesc(
th,
key,
"Error de-serializing the
attribute:");
}

return null;

class MyObjectInputStream extends java.io.ObjectInputStream {
ClassLoader c1 = null;
MyObjectInputStream(ClassLoader c1, java.io.InputStream in) throws
I0Exception{
super(in);
this.cl=cl;

}

protected Class resolveClass(ObjectStreamClass osc) throws IOException,
ClassNotFoundException{
try {
return Class.forName(osc.getName());
} catch(ClassNotFoundException cnfe) {
}

return cl.loadClass(osc.getName());

}

class SerializationErrorDesc {

Throwable th = null;

String attr = null;

String message = null;

SerializationErrorDesc(Throwable th, String attr, String message) {
this.th = th;
this.attr = attr;
this.message = message;

N
\

Appendix B. Sample scripts 343

344 DB2 UDB/WebSphere Application Tuning Guide

Abbreviations and acronyms

AAT
AE
APls

BMP
CMP

DB2 UDB
DD

EJB

EAR
HTML
HTTP
IBM

ITSO

J2c
J2EE

JAR
JCA
JDK
JMS
JDBC
JNDI

JSP
JTA
JTS
LDAP

MIME

Application Assembly Tool
Advanced Edition

Application Programming
Interfaces

Bean Managed Persistence

Container Managed
Persistence

IBM DB2 Universal Database
Deployment Descriptor
Enterprise Java Beans
Enterprise Archive

HyperText Markup Language
HyperText Transfer Protocol

International Business
Machines

International Technical
Support Organization

J2EE Connector

Java 2 Platform Enterprise
Edition

Java Archive

Java Connector Architecture
Java Development Kit

Java Message Service

Java Database Connectivity

Java Naming and Directory
Interface

Java Server Pages
Java Transaction API
Java Transaction Service

Lightweight Directory Access
Protocol

Multi-Purpose Internet Mail
Extensions

© Copyright IBM Corp. 2003

ORB
OSE
PKI
RDBMS

RMI
SSL
URL
WAR
WAS

XML

Object Request Broker
Open Servlet Engine
Public_key Infrastructure

Relational Database
Management System

Remote Method Invocation
Secure Sockets Layer
Uniform Resource Locator
Web Archive

WebSphere Application
Server

Extensible Markup Language

345

346 DB2 UDB/WebSphere Application Tuning Guide

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks

For information on ordering these publications, see “How to get IBM Redbooks”
on page 349.

» IBM WebSphere V4.0 Advanced Edition Handbook, SG24-6176
» WebSphere Version 4 Application Development Handbook, SG24-6134

» WebSphere Scalability: WLM and Clustering using WebSphere Application
Server Advanced, SG24-6153

» DB2 UDB e-business Guide, SG24-6539
» IBM DB2 UDB V7.1 Performance Tuning Guide, SG24-6012

Other resources

These publications are also relevant as further information sources:

» DB2 UDB Administration Guide: Planning, SC09-4822

» DB2 UDB Administration Guide: Implementation, SC09-4820

» DB2 UDB Administration Guide: Performance, SC09-4821

» DB2 UDB Call Level Interface Guide and Reference Volume 1, SC09-4849
» DB2 UDB Call Level Interface Guide and Reference Volume 2, SC09-4850
» DB2 UDB SQL Reference Volume 1, SC09-4844

» DB2 UDB SQL Reference Volume 2, SC09-4845

» Willy Chiu, Design for Scalability - An Update, IBM, 2001
http://www7b.boulder.ibm.com/wsdd/Tibrary/techarticles/hvws/scalability.html

» Gennaro Cuomo, IBM WebSphere Application Server 4.0 Performance
Tuning Methodology, IBM 2002

http://www.ibm.com/software/webservers/appserv/doc/v40/ws_40 tuning.pdf

» Harvey W. Gunther, WebSphere Application Server Development Best
Practices for Performance and Scalability, IBM 2000
http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

© Copyright IBM Corp. 2003 347

Deb Ericson, Shawn Lauzon, Melissa Modjeski, WebSphere Connection
Pooling, IBM 2001

http://www.ibm.com/software/webservers/appserv/whitepapers/connection _pool.pdf

RP Baartman, IBM WebSphere Application Server 4.0: Tuning WebSphere,
Out-of-the-Box to Best Throughput, 1BM 2001

Rahul Kitchlu and Peter He, Session Persistence - Improving Performance
Using WebSphere and DB2 UDB, IBM 2002
http://www7b.software.ibm.com/dmdd/1ibrary/techarticle/0203kitchlu/0203kitchlu.html

Yongli An, Tsz Kin Tony Lau, Peter Shum, A Scalability Study for WebSphere
Application Server and DB2 UDB, IBM 2001
http://www7b.boulder.ibm.com/dmdd/1ibrary/techarticle/0202an/0202an.pdf

Yongli An, Peter Shum, DB2 Tuning tips for OLTP applications, IBM 2001
http://www7b.software.ibm.com/dmdd/1ibrary/techarticle/anshum/0107anshum.html
Grant Hutchison, DB2 WAS Integration, IBM 2002

http://www.websphere-users.ca/presentations/hutchison.PDF

Grant Hutchison, DB2 and WebSphere at Light Speed, IDUG presentation
2002

David Draeger, Best Practices using HTTP Sessions, June 2002

C. M. Saracco, Leveraging DBMS Stored Procedures through Enterprise
JavaBeans, TR 03.723, IBM, August 2000

Referenced Web sites

348

These Web sites are also relevant as further information sources:

>

http://www.ibm.com/software/data/db2/udb
IBM DB2 Universal Database

http://www.ibm.com/software/webservers/appserv
IBM WebSphere Application Server

http://www.ibm.com/software/webservers/appserv/infocenter.html
IBM WebSphere InfoCenter

http://www.ibm.com/websphere
IBM WebSphere Software Platform

http://www.ibm.com/websphere/developer/zones/hvws
IBM High Volume Web Site Team

http://java.sun.com/j2ee
Sun’s Java 2 Platform, Enterprise Edition site

http://java.sun.com/products/
Sun’s Java Technology Products and APIs site

DB2 UDB/WebSphere Application Tuning Guide

http://www.ibm.com/websphere
http://java.sun.com/j2ee
http://www.ibm.com/software/data/db2/udb
http://www.ibm.com/software/webservers/appserv
http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/websphere
http://java.sun.com/products/

How to get IBM Redbooks

Search for additional Redbooks or redpieces, view, download, or order hardcopy
from the Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBM Redbooks collections

Redbooks are also available on CD-ROMs. Click the CD-ROMSs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.

Related publications 349

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/

350 DB2 UDB/WebSphere Application Tuning Guide

Index

Symbols
.ear 210
jar 210
.war 210

Numerics

100K session object size with local caching 320
100K session object size with persistence 315
30K session object size 325

64-bit 129
A
AAT 79

Access Intent 59, 214, 216

access intent 83

ACTIVATE DATABASE command 136
Active 37

administrative domain 26
Administrative interfaces 27
Administrative repository 27
administrative repository 26
Administrative server 27

Advanced Edition 16

Agent Private Memory 126
AGENT_STACK_SZ 129

alias 25

Allow overflow 181

ALTER BUFFERPOOL 137
APP_CTL_HEAP_SZ 128
APPLHEAPSZ 129

application flow 34

Application Global Memory 126
Application related best practices 196
Application servers 19
ASLHEAPSZ 129

AUDIT_BUF_Sz 127

auto reloads 78

Avoid creating HttpSessions in the JSP by default
201

bean instance 62

© Copyright IBM Corp. 2003

Best practices 161, 178, 195
BMP 83, 212

buffer pool 136

buffer pool hit ratio 137
BUFFPAGE 128, 137
Business Intelligence 3
Business to business 7

C

Call By Reference 60
Call-by-Reference 84
Call-by-Value 84

Choose persistence options 199

Clients 18
Browser-based 18
Java 18

cloned environment 33

Clones 22

Horizontal clones 23
Vertical clones 23

clones 21,33

closed 37

CLUSTER 112

clustered environment 32

CMP 83, 212

column data types 109

compaction 74

concurrency 115

Concurrency issues 251

Configuration parameter mismatch 222

Connection close serviet 336

Connection pool 148

connection pool 72-73
Always close objects 164
Application related best practices 162
Avoid using different user names and passwords
163
Best practices 161
Cache JNDI lookups 162
configuring for a datasource 152
Connection Timeout 167
connection timeout 153
ConnectionWaitTimeoutException 160

351

Disable AutoConnection Cleanup 169
Disable AutoConnection cleanup 154

Do not close connections in a finalize method

165

Do not declare connection objects as instance

variables 163

Do not declare connections as static objects

163

Do not manage data access in CMP beans 164

DoesNotExist 156
existing connection reused 156
Idle Timeout 168

idle timeout 153
InFreePool state 157
InUse state 156
lifecycle 154

maximum pool 153
Maximum Pool Size 167
Minimum Pool Size 166
minimum pool size 152
new connection 156

Obtain and close the connection in the same

method 165
Open one connection at atime 164
Orphan Timeout 168
orphan timeout 153
StaleConnectionException 160
state change 155
Statement cache size 169
statement cache size 154
System related best practices 165
Use connection sharing 163
valid states 155
WebSphere exceptions 159
connection pool example 150
connection pool statistics 165
Cookies 29-30
cookies 33
CREATE BUFFERPOOL 137
CRON 45
Customer Relationship Management 2
Customer self-service 7

D

Data placement 136

data placement 106

Data source connection pool 42
Database Configuration Parameter

352 DB2 UDB/WebSphere Application Tuning Guide

AGENT_STACK_SZ 129
APP_CTL_HEAP_SZ 128
APPLHEAPSZ 129
ASLHEAPSZ 129
BUFFPAGE 128, 137
DBHEAP 128
DRDA_HEAP_SZ 129
ESTORE_SEG_SZ 128
LOCKLIST 128
NUM_ESTORE_SEGS 128
PCKCACHESZ 128
QUERY_HEAP_SZ 129
RQRIOBLK 129
SORTHEAP 129
STAT_HEAP_SZ 129
STMTHEAP 129
UDF_MEM_SZ 129
UTIL_HEAP_SZ 128
database configuration parameter

MAXAPPLS 126

DLCHKTIME 105
NUM_IOCLEANERS 105
NUM_IOSERVERS 104
PCKCACHESZ 136

Database Global Memory 125

Database Manager Configuration Parameter
AUDIT_BUF_Sz 127
FCM_NUM_ANCHORS 127
FCM_NUM_BUFFERS 127
FCM_NUM_CONNECT 127
FCM_NUM_RQB 127
MAXAGENTS 126
MON_HEAP_SZ 127

database manager configuration parameter

INTRA_PARALLEL 133
MAX_COORDAGENTS 101-102, 134
MAX_LOGICAGENTS 100
MAXAGENTS 134
MAXAPPLS 101
MAXCAGENTS 100-101
MAXLOCKS 135

Database Manager Shared Memory 125
Database Shared Memory 125
datasource 36, 44, 50, 95

datasource configuration panel 151
Datasource queuing 72

datasources 20, 56

DB configuration 134

DB2 agents 99

DB2 Registry Variable
DB2MEMDISCLAIM 126
DB2MEMMAXFREE 126

DB2 row size 194, 208

DB2 snapshot for locks on the database 300

DB2 Snapshot Monitor 137

db2admin.log 140

db2loggr 105

DB2MEMDISCLAIM 126

DB2MEMMAXFREE 126

db2pcinr 104

db2pfchr 103

DBHEAP 128

deadlock 105

deadlock detector 105

deadlocks 83, 122

Default Server 20

default_host 25

DEFERREDPREPARE 171

deployment descriptor 20, 210

Determining average session object size 314

dirty pages 104

DNS 25

DoesNotExist 156

downstream 65

DRDA_HEAP_SZ 129

dynamic caching 170-171

Dynamic SQL 114

E

EAR 33

e-business 4

e-business application considerations 11
e-business applications 17
e-business imperatives 2
e-business infrastructure 8
e-commerce 2

efficient SQL 113

EJB 36,59, 79

EJB Access Intent 281

EJB and DB2 isolation levels 82
EJB container 21, 24, 36, 39, 69
EJB container queuing 69

EJB entity beans 53

EJB homes 54

EJB module 21

EJB modules 20

EJB overview 209

EJB performance considerations 216
EJB requests 24

EJB types 211

EJBs 19, 59

Embedded HTTP server 19

Enable session persistence 196

End of servlet service 186

enterprise bean 21

enterprise beans 21

Enterprise Java Beans 209
Enterprise Resource Planning (ERP) 3
Entity EJBs 212

ESTORE_SEG_SZ 128

Exception events scenarios 219
external HTTP server 78

F

FCM_NUM_ANCHORS 127
FCM_NUM_BUFFERS 127
FCM_NUM_CONNECT 127
FCM_NUM_RQB 127
firewalls 91

fragment caching 85
fragmentation 74, 77

G

garbage collection 50, 74-75, 94
GenPluginCfg 19

global dynamic statement cache 171
global statement cache 170
Growable flag 67

H
High Volume Web Site 4
Horizontal clones 12
Horizontal scaling 23
HTML 28
HTTP server plug-in 78
HttpSession 44, 46
removeAttribute 188
setAttribute 188
HttpSession interface 34
HttpSession invalidation 46
HttpSession timeouts 184

Index

353

IBM Application Framework for e-business 9

IBM HTTP Server 31

IIOP 26, 39

indexes 111

Init method 50

in-memory cache overflow 306
In-memory cache overflow algorithm 181
instance variable 63

Internal HTTP Transport 78

invalidated sessions 191

Invalidation timeout 183

invalidation timeout 305-307

Isolation level 216

isolation level 59, 81, 119, 134, 213-214

J
J2EE 14, 36, 85, 197
Compatibility test suite 14

Reference Implementation software 14

J2EE application 20

J2EE Connectors 209

J2EE containers and components 210
J2EE SDK 15

J2SE 15

JAR 21

Java administrative console 26
Java applets 18

Java Message Service 209
Java RMI/IIOP 18

Java servlet specification 34
Java Transaction API (JTA) 162
java.io.Serializable 63
Java-enabled browsers 18
JavaServer Pages (JSP) 209
JDBC 15, 45, 65, 161

JDBC connection pooling 55
JDBC connections 56

JDBC resources 58

JMS 15

JNDI 15, 35, 54, 56, 162

JSP 28,85

JSP considerations 47

JSPs 19

JTA 162, 193

JTA- 163

JVM 19, 23, 33, 94, 96

JVM memory considerations 74

354 DB2 UDB/WebSphere Application Tuning Guide

JVM memory usage 75
JVMPI 94
JVMPI profiler 75

K
Key business processes 3
Knowledge management 3

L
large object graphs 44
Large session object servlet 337
load balancing 21, 32
local session cache 180
lock contention 123
lock conversion 121
lock escalation 121, 134
lock type compatibility 120
LOCKLIST 128
LOCKSIZE 111
Log Analyzer 93
Logs 91
Activity 92
Administrative server 91
Application server 91
WebSphere plug-in trace 92
logs 105

M

Manual update 187
Max Connections setting 37
MAXAGENTS 126
MaxClients 38
MAXLOCKS 121, 134
MaxPoolThreads 38
memory leaks 76
memory utilization 124
MON_HEAP_SZ 127
Multiple buffer pools 139
multi-row sessions 195

N

No Local Copies 60

node 26

non-serializable objects 301, 310
normalization 108
NUM_ESTORE_SEGS 128

o

Online shopping 6
Online Trading 7

ORB 36, 39-41, 69, 95
ORB properties 95
OSE Remote 19

over utilizing objects 76

P
page cleaners 104
parameter markers 170, 179
PCKCACHESZ 128,177-178
Performance monitoring servlet 91
Performance tuner wizard 95
persistent sessions 63, 301
PiggyBank
architecture 333
PiggyBank application 219, 333
PiggyBank high-level application architecture 333
pkg_cache_num_overflows 178
pkg_cache_size top 178
plugin-cfg.xml 19
PMI 86
PoolThreadLimit 38
Poor coding techniques with connection pooling
241
port number 25
prefetchers 103
prepared statement 170
Prepared statement cache 42, 169
prepared statement cache 73
Prepared Statement Cache example 173
Prepared statements in DB2 177
PreparedStatement object 172-173
primary key 111
Problem Determination Scenarios 217
100K session object size with local caching 320
100K session object size with persistence 315
30K session object size 325
Concurrency issues 251
Configuration parameter mismatch 222
Connection pool size 222
EJB Access Intent 281
EJB isolation mismatch, DB config parameters,
etc. 251
Poor coding techniques with connection pooling
241
problem determination methodology 220

Small connection pool size 238
Publish and subscribe 6

Q
query optimization 113
query rewrite 113
QUERY_HEAP_SZ 129
queue 36
queues

open 37

R
Read committed 82
Read Stability 82
Redbooks Web site 349
Contact us xxi
Release HttpSessions when finished 198
remote call 53
REORGCHK command 139
Repeatable read 82
Resource Analyzer 87
Percent Maxed 41
RMI/IIOP 69
ROl 2
Routine monitoring scenarios 312
RQRIOBLK 129
runstats 123

S

Sample applications 331
Sample Scripts 335
Serializable 82, 214
serializable 63, 197, 323
Server affinity 30, 32
server affinity 29

Server groups 21

server groups 21

Servlet 49

servlet 48

Servlet 2.2 specification 33, 187
Servlet engine 20

servlet instance variable 48
Servlet Redirector 19
Servlet requests 24
Servlets 28, 209

servlets 20, 56, 85
Session Affinity 32

Index

355

session affinity 188
session cache 188, 192
Session clustering 32
session database cleanup schedule 191
Session EJBs 211
session ID 33
session identifier 29
session invalidation time 192
Session management 29
Invalidating sessions
Cleanup schedule 184
Programmatically 183
Timeout 183
Last access time 186
Overflow cache 181
Full overflow cache 202
Performance considerations
Clones 202
Database /0 203
Database tuning 207
Memory 202
Session cache size 201
Session object size 197
Session timeout 206
Persistent
Enabling persistent sessions 184
Multi-row schemas 195
Multi-row schemas pros/cons 199, 205
Serializable requirements 183, 195
Single-row schemas 195
Single-row schemas pros/cons 199, 205
Single-row to multi-row migration 195
When to use persistent sessions 182
Write contents 188
Write frequency 186
session management 30, 44
Allow overflow 181
Application related best practices 196
Avoid creating HttpSessions in the JSP by de-
fault 201
Best practices 195
Choose persistence options 199
Enable session persistence 196
Release HttpSessions when finished 198
System related best practices 201
Tune multi-row persistent session management
204
session manager
SessionReaperinterval 183

356 DB2 UDB/WebSphere Application Tuning Guide

Session Manager Service - Persistence 185
session object size 314
session objects 63
session overflow 305
session persistence 306
Session tracking mechanisms 30
Sessioninspect 311
SessionReaperinterval 183
SessionTestServlet.java 337
shared memory 99
shopping cart 301
Single buffer pool 139
SingleThreadModel 47
SMP 23
SORTHEAP 129
SSL 29, 31
SSL session identifier 33
SSL session identifiers 29, 31
SSLV3TIMEOUT 31
Stage 1 predicate 113
Stage 1 predicates 113
STAT_HEAP_SZ 129
state information 29
stateful 29, 32, 61
stateful session EJB 212
stateless 29
stateless session EJB 211
statement cache
Application related best practices 179
autocommit ON 175
autocommit=false 176
Best practices 178
buffer hit ratio 177
Deferred Prepare 174
Non-zero statement cache size 174
PrepStmt Cache Discards 174
System related best practices 179
WAS prepared statement cache vis-a-vis DB2
global cache 179
Zero statement cache size 175
Statement Cache Size 174
statement handles 170
Static SQL 114
stderr 52
stdout 52
STMTHEAP 129
stream 35
String concatenation 50
Supply chain 2

synchronization 48, 59 Web module 20

System.err 52 Web modules 21

System.out 52 Web Server 18

System.out.printin 52 Web server plug-in 19-20
Web server queue 65

T Web site classification 5
web.xml 20

table design 108
table locks 111
tablespaces 109

DMS 109

SMS 110
TestServlet 336
thread pool 70
Thread pool size 40
threads 68
ThreadsPerChild 38
Time based 187
Topology selection criteria 11
Traces 92
Trade2 219
Trade 2 application 332
transient 63
transient variable 63
Tuning WAS 43

U X
UDF_MEM_SZ 129 XML 85, 94
unique index 111

upstream 65

URL encoding/rewriting 29-30

URL rewriting 33

User Defined Data Types 109

UTIL_HEAP_SZ 128

WebSphere Admin Console 40
WebSphere administration repository 219
WebSphere administrative model 26
WebSphere application model 28
WebSphere Performance Benchmark Sample 332
WebSphere Performance Tools 334
WebSphere plug-in 32, 35, 78
WebSphere Queuing Network 36-37
WebSphere Session Manager 33
WebSphere session manager 30

WLM 21, 24,32,78

Workgroup collaboration 3

Workload management 24

Write contents 188

Write contents vs. Write frequency 190
Write frequency 186

write-ahead logging 105

\'}

Vertical clones 11
Virtual Hosts 25

w

Waiting 37

WAR 20

WAS Admin Console 38

WAS Queuing Network 65

Web administrative console 26

Web container 19-20, 24, 33, 38-39, 66, 70, 95
web container 35

Web container queuing 67

Index 357

358 DB2 UDB/WebSphere Application Tuning Guide

DB2 UDB/WebSphere Performance Tuning Guide

Redbooks

(0.5” spine)

0.475"<->0.875"
250 <-> 459 pages

DB2 UDB/WebSphere

Performance Tuning Guide

Overview of DB2 UDB

and WebSphere
Application Server
architectures

Best practices in
tuning a DB2 UDB /
WebSphere
environment

Problem
determination
scenarios

This IBM Redbook deals with tuning a DB2 UDB / WebSphere
Application Server environment, and is aimed at a target
audience of DB2 UDB application developers and database
administrators (DBAs).

We provide an overview of WebSphere Application Server
architecture and its main components, and introduce some of
its key application tuning and system tuning parameters.
Then we continue with an overview of DB2 UDB architecture
and components, and introduce its key application and
system tuning parameters.

We describe in detail the key components that impact
performance in a WebSphere and DB2 UDB environment, and
provide best practices guidelines for tuning such an
environment.

Finally, we discuss some of the commonly encountered
problems in a DB2 UDB / WebSphere environment, and
describe scenarios for identifying and resolving such
problems.

SG24-6417-01 ISBN 0738429406

=4G)

Redhooks

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic

scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Notice
	Comments welcome

	Summary of changes
	March 2003, Second Edition

	Chapter 1. Introduction
	1.1 e-business imperatives
	1.2 e-business applications and their workload profiles
	1.2.1 Publish and subscribe
	1.2.2 Online shopping
	1.2.3 Customer self-service
	1.2.4 Online trading
	1.2.5 Business-to-business

	1.3 e-business infrastructure
	1.4 IBM Application Framework for e-business
	1.5 Topology selection criteria

	Chapter 2. Overview of WebSphere Application Server V4.0
	2.1 Introduction
	2.2 J2EE overview
	2.3 WebSphere Application Server architecture overview
	2.3.1 Clients
	2.3.2 Web Server(s)
	2.3.3 WebSphere Application Server

	2.4 WebSphere application model
	2.5 Session management
	2.5.1 Choosing a session tracking mechanism
	2.5.2 Server affinity
	2.5.3 WebSphere Session Manager

	2.6 Typical application flow
	2.7 WebSphere Queuing Network
	2.8 Tuning WebSphere Application Server
	2.9 Application tuning considerations
	2.9.1 Do not store large object graphs in HttpSession
	2.9.2 Release HttpSessions when finished
	2.9.3 JSP considerations
	2.9.4 Do not use SingleThreadModel
	2.9.5 Minimize synchronization in servlets
	2.9.6 Use the HttpServlet Init method judiciously
	2.9.7 Avoid String concatenation “+=”
	2.9.8 Minimize uses of System.out.println
	2.9.9 Access EJB entity beans from EJB session beans
	2.9.10 Reuse EJB homes
	2.9.11 Use JDBC connection pooling
	2.9.12 Reuse datasources for JDBC connections
	2.9.13 Release JDBC resources when done
	2.9.14 Use Read-Only methods where appropriate
	2.9.15 Choose the minimal isolation level that is appropriate
	2.9.16 EJBs and servlets — same JVM — “No Local Copies”
	2.9.17 Remove stateful session beans when finished
	2.9.18 Avoid using Beans.instantiate() to create new bean instances
	2.9.19 Ensure that session objects are serializable

	2.10 System tuning considerations
	2.10.1 WebSphere Application Server queues considerations
	2.10.2 WebSphere Application Server JVM memory considerations
	2.10.3 Other considerations

	2.11 Monitoring and tuning tools
	2.11.1 PMI
	2.11.2 Resource Analyzer
	2.11.3 Performance monitoring servlet
	2.11.4 Logs
	2.11.5 Traces
	2.11.6 Log Analyzer
	2.11.7 JVMPI
	2.11.8 Performance tuner wizard

	Chapter 3. Overview of DB2 UDB 8
	3.1 Introduction
	3.2 DB2 architecture overview
	3.2.1 DB2 agents
	3.2.2 Buffer pools
	3.2.3 Block based buffer pools
	3.2.4 Prefetchers
	3.2.5 Page cleaners
	3.2.6 Logs
	3.2.7 Deadlock detector
	3.2.8 Disks
	3.2.9 Threading of Java UDFs and stored procedures

	3.3 Tuning DB2
	3.4 Application tuning considerations
	3.4.1 Database design
	3.4.2 Efficient SQL
	3.4.3 Concurrency
	3.4.4 Runstats

	3.5 System tuning considerations
	3.5.1 DB2 memory utilization
	3.5.2 DB2 64-bit
	3.5.3 Configuration parameters

	3.6 Monitoring and tuning tools
	3.7 Problem diagnosis introduction

	Chapter 4. WebSphere Application Server and DB2 UDB performance
	4.1 Introduction
	4.2 Connection pool
	4.2.1 Detailed description
	4.2.2 Best practices

	4.3 Prepared statement cache
	4.3.1 Detailed description
	4.3.2 Best practices

	4.4 Session database
	4.4.1 Detailed description
	4.4.2 Best practices

	4.5 Enterprise Java Beans
	4.5.1 EJB overview
	4.5.2 EJB performance considerations

	Chapter 5. Problem determination scenarios
	5.1 Introduction
	5.2 Exception events scenarios
	5.2.1 Connection pool size
	5.2.2 Concurrency issues
	5.2.3 Non-serializable objects

	5.3 Routine monitoring scenarios
	5.3.1 Determining average session object size
	5.3.2 100K session object size with persistence
	5.3.3 100K session object size with local caching
	5.3.4 30K session object size

	Appendix A. Sample applications
	A.1 Trade 2 application
	A.2 PiggyBank application
	A.3 WebSphere Performance Tools (WPT)

	Appendix B. Sample scripts
	B.1 Connection close servlet
	B.2 Large session object servlet
	B.3 SessionInspectServlet.jsp

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources
	Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

