
SG24-5746-00

International Technical Support Organization

www.redbooks.ibm.com

A DB2 Enterprise Query Environment —
Build It with QMF for Windows !

Joerg Reinschmidt, Catalin Comsia, Andre Roberto Santos

http://www.redbooks.ibm.com/

A DB2 Enterprise Query Environment —
Build It with QMF for Windows !

December 1999

SG24-5746-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 1999)

This edition applies to Version 6, Release 1 Refresh of QMF for Windows, Program Number 5655-DB2
for use with the Windows NT Operating System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix E, “Special notices” on page 393.

Take Note!

Contents

Figures .xi

Tables. xv

Preface .xix
The team that wrote this redbook. xx
Comments welcome. xxii

Chapter 1. Introduction to query management . 1
1.1 Basics about queries and data . 1
1.2 Enterprise query and reporting environment . 3
1.3 A short history of the QMF family . 6

Chapter 2. Wouldn’t it be nice? . 9
2.1 Typical IS Needs . 10
2.2 The Enterprise Query Environment . 11

2.2.1 IT issues. 11
2.2.2 User issues . 13

2.3 QMF for Windows: the solution. 13
2.3.1 Product Positioning . 14

2.4 Enterprise Benefits . 17
2.5 Implementation examples. 20

2.5.1 Financial industry . 20
2.5.2 Public services institution . 21

Chapter 3. Getting started . 25
3.1 The networking environment . 25
3.2 TCP/IP basics . 26

3.2.1 TCP/IP architecture . 28
3.2.2 IP addressing . 29
3.2.3 Subnets . 30
3.2.4 IP datagram . 32
3.2.5 IP routing . 33

3.3 Configuring your TCP/IP. 36
3.3.1 OS/390 OpenEdition. 37
3.3.2 AS/400 . 42
3.3.3 AIX . 44
3.3.4 Windows. 46

3.4 SNA basics . 48
3.4.1 SNA layers . 49
3.4.2 APPC basics and terminology . 50
© Copyright IBM Corp. 1999 iii

3.5 Configuring your SNA (LU 6.2, APPC, and CPI-C) 55
3.5.1 Windows NT . 56

3.6 Data exchange protocols . 62
3.6.1 DRDA remote unit of work (RUW). 62
3.6.2 DRDA distributed unit of work (DUW) . 63
3.6.3 Distributed request (DR) . 63
3.6.4 Private protocols. 63
3.6.5 Nonrelational access . 64

3.7 Connecting via Call Level Interface (CLI) . 64
3.8 Installing QMF for Windows . 65

3.8.1 Advanced installation . 65
3.8.2 Unattended installation . 67

Chapter 4. DBA’s guide . 69
4.1 Working with QMF for Windows Administrator 69

4.1.1 Configure database connections. 72
4.1.2 Test the server connection . 78
4.1.3 Create QMF for Windows objects . 81
4.1.4 Bind QMF for Windows packages . 88
4.1.5 Granting Permissions . 89
4.1.6 Creating sample tables . 90
4.1.7 Delete a database server . 92

4.2 Governing and administration . 92
4.2.1 Creating resource limits groups . 92
4.2.2 Creating schedules. 94
4.2.3 Assigning users to the resource group 110

4.3 Security . 111
4.3.1 Change password capability . 112
4.3.2 Lists . 112

4.4 Other DBA Tasks . 115
4.4.1 Convert dynamic SQL to static SQL . 115
4.4.2 DB2 UDB for OS/390 predictive governor support 118
4.4.3 Large Object (LOB) . 119
4.4.4 QMF linear procedures . 120
4.4.5 Command line mode. 120
4.4.6 Scheduling with Windows NT . 122

Chapter 5. Developer’s guide . 125
5.1 Application development concepts using QMF for Windows 125

5.1.1 Application Program Interface (API) . 126
5.1.2 QMF for Windows APIs or ODBC Applications? 126
5.1.3 Synchronization Aspects . 128
5.1.4 Database Connectivity . 129
iv A DB2 Enterprise Query Environment — Build It with QMF for Windows !

5.1.5 Web Development . 130
5.2 Main QMF for Windows APIs . 131

5.2.1 GetServerList() . 131
5.2.2 InitializeServer() . 131
5.2.3 GetQMFObjectList() . 132
5.2.4 InitializeQuery() . 132
5.2.5 GetQueryText() . 132
5.2.6 GetQueryVerb() . 133
5.2.7 SaveQMFQuery() . 133
5.2.8 Open() . 133
5.2.9 GetColumnCount() . 134
5.2.10 GetColumnHeadings() . 134
5.2.11 FetchNextRow() . 134
5.2.12 Close() . 134

5.3 Using Visual Basic with QMF for Windows . 135
5.3.1 Getting Started . 135
5.3.2 Application examples . 136
5.3.3 Example 1 — Execute a query stored on the server 138
5.3.4 Example 2 — Execute a query stored in a file. 142
5.3.5 Example 3 — Execute an SQL statement 147

5.4 Using Delphi with QMF for Windows. 154
5.4.1 Getting Started . 154
5.4.2 Delphi application example . 156

5.5 Using C++ with QMF for Windows . 172
5.5.1 Getting started . 173
5.5.2 C++ specifics . 173

5.6 General programming considerations . 173
5.6.1 Two phase commit . 173
5.6.2 Editing prompted queries . 175
5.6.3 Other QMF APIs . 175

Chapter 6. User’s guide . 177
6.1 Product Installation and configuration. 177
6.2 Basic concepts . 181
6.3 Accessing existing objects . 183

6.3.1 Objects stored at a server. 183
6.3.2 Objects stored in a file . 186

6.4 Working with objects . 187
6.4.1 Tables . 188
6.4.2 Queries . 188
6.4.3 Forms and Reports . 193
6.4.4 Procedures . 196

6.5 Create new objects. 197
v

6.5.1 Create new tables . 198
6.5.2 Create new queries . 199
6.5.3 Create new form and report . 211
6.5.4 Create new procedures . 227

6.6 Using Data Snap-Ins for QMF for Windows 231
6.6.1 Lotus 123 . 232
6.6.2 Microsoft Excel . 235
6.6.3 Microsoft Access . 238

6.7 Converting dynamic SQL to static SQL. 242
6.7.1 Dynamic versus static SQL. 243

6.8 Checking your resource limits . 243
6.9 Security . 246

6.9.1 Change password capability . 246
6.9.2 Lists . 247

6.10 Customizing the interface . 249
6.11 Migrating from OS/2 Query Manager . 251

Chapter 7. Web considerations . 253
7.1 Web presence basics . 254

7.1.1 How does it work? . 254
7.2 Static reports . 255

7.2.1 Convert a standard QMF Form to HTML. 256
7.2.2 Report preview feature . 259
7.2.3 Scheduling . 260

7.3 Dynamic reports . 262
7.3.1 CGI. 263

Chapter 8. Summary . 271
8.1 Future directions . 272
8.2 QMF Personal Portal . 273

Appendix A. Working with variables . 277
A.1 Substitution variables . 279
A.2 Global variables . 281

A.2.1 User defined global variables . 281
A.2.2 Pre-loaded global variables . 283

A.3 Form variables . 290

Appendix B. QMF for Windows APIs. 293
B.1 AddDecimalHostVariable . 293
B.2 AddHostVariable(). 294
B.3 BindDecimalHostVariable(). 295
B.4 BindHostVariable() . 296
B.5 BindSection() . 297
vi A DB2 Enterprise Query Environment — Build It with QMF for Windows !

B.6 CancelBind() . 298
B.7 ChangePassword() . 298
B.8 ClearList() . 299
B.9 Close() . 299
B.10 Commit() . 300
B.11 CompleteQuery() . 301
B.12 CopyToClipboard() . 301
B.13 DeleteQMFObject() . 303
B.14 EndBind() . 303
B.15 Execute(). 304
B.16 ExecuteEx() . 304
B.17 ExecuteStoredProcedure() . 305
B.18 ExecuteStoredProcedureEx() . 307

B.18.1 Export() . 308
B.19 ExportForm() . 311
B.20 ExportReport() . 311
B.21 FastSaveData() . 313
B.22 FetchNextRow() . 314
B.23 FetchNextRowEx() . 316
B.24 FetchNextRows() . 316
B.25 FetchNextRowsEx() . 318
B.26 FlushQMFCache() . 318
B.27 GetColumnCount() . 319
B.28 GetColumnDataValue(). 319
B.29 GetColumnHeader() . 320
B.30 GetColumnHeaderEx() . 320
B.31 GetColumnHeadings() . 321
B.32 GetColumnValue() . 322
B.33 GetColumnValueEx() . 323
B.34 GetDefaultServerName() . 324
B.35 GetGlobalVariable() . 324
B.36 GetHostVariableNames() . 325
B.37 GetHostVariableTypeNames() . 325
B.38 GetHostVariableTypes() . 326
B.39 GetLastErrorString() . 326
B.40 GetLastErrorType() . 327
B.41 GetLastSQLCode() . 328
B.42 GetLastSQLError() . 329
B.43 GetLastSQLState() . 330
B.44 GetOption() . 331
B.45 GetOptionEx() . 332
B.46 GetProcText() . 333
B.47 GetProcVariables() . 333
vii

B.48 GetQMFObjectInfo() . 334
B.49 GetQMFObjectInfoEx() . 336
B.50 GetQMFObjectList() . 338
B.51 GetQMFObjectListEx() . 339
B.52 GetQMFProcText() . 340
B.53 GetQMFQueryText() . 341
B.54 GetQueryText() . 341
B.55 GetQueryVerb() . 342
B.56 GetResourceLimit() . 343
B.57 GetResourceLimitEx(). 348
B.58 GetRowCount() . 348
B.59 GetServerList() . 349
B.60 GetServerListEx() . 350
B.61 GetStoredProcedureResultSets() . 351
B.62 GetVariables() . 352
B.63 GetVariablesEx(). 353
B.64 InitializeProc() . 353
B.65 InitializeQuery() . 354
B.66 InitializeServer() . 355
B.67 InitializeStaticQuery() . 356
B.68 IsStatic() . 357
B.69 Open() . 358
B.70 Prepare(). 359
B.71 PrintReport() . 359
B.72 ReinitializeServer() . 360
B.73 Rollback() . 360
B.74 RunProc() . 361
B.75 SaveData() . 361
B.76 SaveQMFProc() . 363
B.77 SaveQMFQuery() . 364
B.78 SetBindOption() . 365
B.79 SetBindOwner() . 367
B.80 SetBusyWindowButton() . 368
B.81 SetBusyWindowMessage() . 369
B.82 SetBusyWindowMode() . 369
B.83 SetBusyWindowTitle(). 370
B.84 SetGlobalVariable(). 371
B.85 SetHostVariable() . 371
B.86 SetOption() . 372
B.87 SetParent() . 373
B.88 SetProcVariable() . 374
B.89 SetVariable() . 375
B.90 ShowBusyWindow() . 375
viii A DB2 Enterprise Query Environment — Build It with QMF for Windows !

B.91 StartBind() . 376

Appendix C. QMF for Windows tables and views 379
C.1 Tables . 379

C.1.1 Q.OBJ_ACTIVITY_DTL . 379
C.1.2 Q.OBJ_ACTIVITY_SUM. 380
C.1.3 Q.OBJECT_DATA . 381
C.1.4 Q.OBJECT_DIRECTORY . 381
C.1.5 Q.OBJECT_REMARKS . 382
C.1.6 Q.RAA_SUBTYPE . 382
C.1.7 RDBI.AUTHID_TABLE . 382
C.1.8 RDBI.PROFILE_TABLE . 383
C.1.9 RDBI.RESERVED . 383
C.1.10 RDBI.RESOURCE_TABLE . 384

C.2 Views . 384
C.2.1 Q.RAA_OBJECT_VIEW . 384
C.2.2 RDBI.ADMIN_VIEW . 385
C.2.3 RDBI.AUTHID_VIEW . 385
C.2.4 RDBI.PROFILE_VIEW . 386
C.2.5 RDBI.RESOURCE_VIEW . 386
C.2.6 RDBI.TABLE_VIEW . 387
C.2.7 RDBI.USER_ADMIN_VIEW . 388
C.2.8 RDBI.USER_AUTHID_VIEW . 388

C.3 Table and view relationships . 388

Appendix D. Using the additional material . 391
D.1 Using the CD-ROM or diskette . 391

D.1.1 System requirements for using the CD-ROM or diskette 391
D.1.2 How to use the CD-ROM or diskette . 391

D.2 Locating the additional material on the Internet 391

Appendix E. Special notices . 393

Appendix F. Related publications . 397
F.1 International Technical Support Organization publications 397
F.2 Redbooks on CD-ROMs . 397

How to get ITSO redbooks . 399
IBM Redbook fax order form . 400
ix

Glossary . 401

List of abbreviations . 403

Index . 405

ITSO redbook evaluation . 413
x A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figures

1. Evolution from queries to knowledge discovery. 2
2. A business intelligence environment . 3
3. A query and reporting environment . 4
4. QMF and DB2 development history. 6
5. Decision making process . 9
6. The IT infrastructure. 12
7. The Enterprise Query Environment . 14
8. Decision support evolution. 15
9. QMF family of products . 17
10. TCP/IP architecture model: layers and protocols. 28
11. Class A address without subnets. 30
12. Class A address with subnet mask and subnet address 31
13. Format of an IP datagram header . 33
14. Direct and indirect routing . 34
15. Routing table scenario . 35
16. IP routing table entries example . 35
17. IP routing algorithm (with subnets) . 36
18. AIX TCP/IP SMIT panel . 44
19. Defined network interface on AIX . 45
20. AIX minimum configuration . 45
21. AIX hosts file . 46
22. Windows NT TCP/IP properties . 47
23. Personal communication - configuration window. 57
24. Configure node . 58
25. Configure connection . 59
26. Adjacent node definition. 60
27. Partner LU 6.2 . 61
28. CPI-C side information. 62
29. Server definition file . 70
30. TCP/IP Connection definition. 74
31. Provider DLL . 75
32. CPI-C connection definition . 76
33. DB2 datajoiner using cli: server parameters . 77
34. Test the server connection. 78
35. Communication error . 79
36. Tracing the server connection . 80
37. Create objects . 83
38. Granting permissions . 90
39. Create the sample QMF tables . 91
40. Create resource limit group . 94
© Copyright IBM Corp. 1999 xi

41. Main: parameters . 95
42. Timeouts: parameters . 97
43. Limits: parameters . 99
44. SQL Verbs: parameters . 101
45. Options: parameters . 102
46. Save data: parameters. 105
47. Binding tab parameters . 106
48. Object tracking: parameters. 108
49. Assign users to resource group . 111
50. Change password . 112
51. Lists . 114
52. Create static SQL. 116
53. Input variables . 117
54. Bind complete . 118
55. Procedure to be scheduled . 121
56. Windows NT scheduler . 124
57. Application architecture when using ODBC. 127
58. QMF database access . 129
59. Visual basic configuration . 135
60. Visual basic — execute query stored on the server. 142
61. Visual basic — execute query stored on a file . 147
62. Visual basic — execute SQL statement. 154
63. Delphi configuration . 155
64. Delphi example, query list . 157
65. Delphi example, new query . 158
66. Delphi example, executing query. 159
67. Installation options . 177
68. Custom installation. 178
69. Connection window . 179
70. Setting up the server definition file. 180
71. Database management systems . 181
72. Tables in a database . 182
73. Object links . 183
74. Open object from server . 184
75. List of objects . 185
76. Open object from file . 187
77. Query result . 189
78. Find . 191
79. Export data. 193
80. Convert form to HTML . 194
81. HTML form . 195
82. HTML form result . 196
83. Set server window . 198
xii A DB2 Enterprise Query Environment — Build It with QMF for Windows !

84. Save data into new table . 199
85. New SQL query menu . 200
86. New query window. 201
87. Save new SQL query at server . 202
88. Substitution variable. 203
89. New prompted query window. 204
90. Select tables to a new prompted query,. 205
91. Adding join condition to a new prompted query . 206
92. Adding columns to a new prompted query. 207
93. Add sort condition to a new prompted query . 208
94. Add row condition to a new prompted query . 209
95. Displaying result of the new prompted query. 210
96. Saving new prompted query . 211
97. New blank form . 213
98. New blank form main window . 214
99. Adding columns to a new blank form . 215
100.Saving new blank form . 219
101.Ways of creating new form . 220
102.Using the sum function . 224
103.Result of group and sum functions . 225
104.Modify column order in a form. 226
105.Final result of the modified form . 227
106.New procedure . 228
107.Saving new procedure. 231
108.Lotus 123 Snap-In . 233
109.Formatting data using Lotus 123 Snap-In . 234
110.Result of Lotus 123 Snap-In . 235
111.Excel Snap-In . 236
112.Formatting data using Excel Snap-In . 237
113.Result of Excel Snap-In. 238
114.Access Snap-In . 239
115.Selecting a table to place the data . 240
116.Select and report list . 241
117.Result of access Snap-In . 242
118.Retrieve the most current resource limits . 245
119.Resource limits . 246
120.Change password . 247
121.Lists . 248
122.Customize toolbar . 249
123.Move the toolbar . 250
124.Web environment . 255
125.Convert form to HTML. 256
126.Form main . 257
xiii

127.Form main window . 258
128.Form detail . 259
129.HTML form preview . 260
130.Publishing procedure. 261
131.Dynamic reports . 262
132.CGI example -— first screen . 264
133.CGI example -— second screen . 265
134.An Enterprise Query Environment. 272
135.Rocket personal portal . 274
136.Properties screen . 275
137.Copy to favorites . 276
138.Windows registry . 278
139.Variable structure . 279
140.Substitution variable . 280
141.Global variables. 281
142.Adding global variables . 282
143.New global variable created . 283
144.Object activity detail table . 379
145.Object activity summarization table. 380
146.Object data table . 381
147.Object directory table . 381
148.Object remarks table . 382
149.RAA subtype table. 382
150.AuthID table. 382
151.Profile table . 383
152.Reserved table . 383
153.Resource table . 384
154.RAA object view . 385
155.Admin view . 385
156.AuthID View. 385
157.Profile view . 386
158.Resource view. 387
159.Table view . 387
160.User admin view . 388
161.User AuthID view. 388
162.Q.RAA_OBJECT_VIEW relations . 389
163.RDBI.TABLE_VIEW relations . 390
xiv A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Tables

1. SNA configuration parameters. 56
2. Installation parameters. 67
3. Required privileges . 89
4. Sample QMF tables . 90
5. Columns on query PROMPTED_QUERY . 212
6. Edit Codes . 216
7. Usage codes . 221
8. Procedure commands . 229
9. Global variables naming convention . 284
10. DSQAO global variables . 284
11. DSQCP global variables . 285
12. DSQCP global variables . 286
13. DSQEC global variables . 286
14. DSQQW global variables . 287
15. Form variables . 291
16. AddDecimalHostVariable parameters . 293
17. AddHostVariable parameters. 294
18. Valid values for the parameter type . 294
19. BindDecimalHostVariable parameters . 295
20. BindHostVariable parameters . 296
21. Valid values for the parameter DataType . 296
22. BindSection Parameters . 297
23. CancelBind Parameters . 298
24. ChangePassword parameters . 299
25. ClearList parameters . 299
26. Close parameters. 300
27. Completequery parameters . 301
28. CopyToClipboard parameters . 302
29. DeleteQMFObject parameters . 303
30. EndBind parameters . 303
31. Execute parametes . 304
32. ExecuteEx parameters. 305
33. ExecuteStoredProcedure parameters . 306
34. ExecuteStoredProcedureEx parameteres . 307
35. Export parameters . 309
36. Valid values for the parameter format . 310
37. Valid values for the parameter StringDelimiter . 310
38. Valid values for the parameter ColumnDelimiter 310
39. ExportForm parameters . 311
40. ExportReport parameters. 312
© Copyright IBM Corp. 1999 xv

41. Valid values for the parameter SourceType. 313
42. FastSaveData parameters . 314
43. FetchNextRow parameters . 315
44. FetchNextRowEx parameters . 316
45. FetchNextRows parameters . 316
46. FetchNextRowsEx parameters . 318
47. GetColumnCount parameters . 319
48. GetColumnDataValue parameters. 319
49. GetColumnHeader parameters . 320
50. GetColumnHeaderEx parameters . 321
51. GetColumnHeadings parameters . 321
52. GetColumnValue parameters . 323
53. GetColumnValueEx parameters . 323
54. GetGlobalVariable parameters . 324
55. GetHostVariableNames parameters . 325
56. GetHostVariableTypeNames parameters . 325
57. GetHostVariableTypes parameters . 326
58. GetLastErrorType - error types . 327
59. Format of the array returned by the GetLastSQLError API 329
60. GetOption parameters . 331
61. Valid values for the parameter option. 331
62. GetOptionEx parameters . 332
63. GetProcText parameters . 333
64. GetProcVariables parameters . 334
65. GetQMFObjectInfo parameters . 335
66. Valid values for the parameter type . 335
67. Valid values for the parameter Time . 336
68. GetQMFObjectInfoEx parameters . 337
69. Valid values for the parameter Type . 337
70. Valid values for the parameter Time . 338
71. GetQMFObjectList parameters . 338
72. Valid values for the parameter Type . 339
73. GetQMFObjectListEx parameters . 340
74. Valid values for the parameter Type . 340
75. GetQMFProcText parameters . 341
76. GetQMFQueryText parameters . 341
77. GetQueryText parameters . 342
78. GetQueryVerb parameters. 342
79. GetResourceLimit parameters . 343
80. Valid values for the parameter Resource. 343
81. GetResourceLimitEx parameters. 348
82. GetRowCount parameters . 349
83. GetServerList parameters. 350
xvi A DB2 Enterprise Query Environment — Build It with QMF for Windows !

84. GetServerListEx parameters . 351
85. GetStoredProceduresResultSets parameters . 351
86. GetVariables parameters . 352
87. GetVariablesEx parameters. 353
88. InitializeProc parameters . 354
89. Valid values for the parameter SourceType. 354
90. InitializeQuery parameters . 354
91. Valid values for the parameter sourcetype . 355
92. InitializeServer parameters . 355
93. InitializeStaticQuery parameters . 357
94. IsStatic parameters . 357
95. Open parameters . 358
96. Prepare parameters . 359
97. RunProc parameters . 361
98. SaveData parameters . 362
99. SaveQMFProc parameters . 364
100.SaveQMFQuery parameters . 364
101.SetBindOption parameters . 365
102.Meanings and Values for the options . 366
103.SetBindOwner parameters . 368
104.SetBusyWindowButton parameters. 368
105.SetBusyWindowMessage parameters . 369
106.SetBusyWindowMode parameters . 369
107.Valid values for the parameter mode . 370
108.SetBusyWindowTitle parameters . 370
109.SetGlobalVariable parameters . 371
110.SetHostVariable parameters . 372
111.SetOption parameters . 372
112.Valid values for the parameter Option . 372
113.SetParent parameters . 374
114.SetProcVariable parameters . 374
115.SetVariable parameters. 375
116.ShowBusyWindow parameters . 376
117.StartBind parameters . 376
xvii

xviii A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Preface

Database management system implementations within a single company are
no longer restricted to a single data source that is easy to administer and
easy to access from a single front end application. Today, the typical
database infrastructure has become very diverse, with relational database
management systems from various vendors, and may also be installed on
different operating systems. In addition, these RDBMSs are not the only data
sources; a considerable amount of data can also be stored in hierarchical
databases such as Information Management System (IMS) and Virtual
Storage Access Method (VSAM).

Administering and accessing these diverse data sources can easily become
a nightmare for people who need to work with them. Each database
management system may provide a different user interface, and this fact
alone makes end users and companies unhappy, because they must either
learn different user interfaces or must invest extensively in education.

In this redbook we describe how to set up an Enterprise Query Environment,
where users can access different database management systems using the
same front end application. Also, they can share the queries they created with
other users, by either storing the queries at the appropriate database server
or in a LAN accessible file. The database administrator will have the
opportunity to restrict the resources available to each user, or user groups,
thereby balancing the expected workload.

This redbook will help you design and implement a solution to build an
Enterprise Query Environment using QMF for Windows. We discuss specifics
for three typical users of this product: database administrators, application
developers, and end-users. We describe the WWW functionality and other
specifics of the product, such as its capabilities for Business-to-Business and
Customer-to-Business applications. The information provided particularly
applies to Version 6, Release 1 Refresh of QMF for Windows, Program
Number 5655-DB2, for use with the Windows NT Operating System.

First, we introduce Query Management in general and give a short history of
the QMF product family. We then discuss typical problems and possible
solutions when dealing with a distributed database and query environment.
We also describe the idea of the Enterprise Query Environment to be outlined
in the rest of the book, and explain how to get started with setting up the
Enterprise Query Environment. Included are the basics of the networking
protocol used in our scenario (TCP/IP and SNA), configuration of these
protocols, and installation of the QMF for Windows product.
© Copyright IBM Corp. 1999 xix

After discussing QMF for Windows from the perspective of a database
administrator (DBA), we present the necessary information for a software
developer who wants to use the QMF for Windows application programming
interfaces (APIs), with examples of Microsoft Visual Basic, Delphi, and C++
application development. For the end user of QMF for Windows, we cover the
main tasks that the user of this product will typically need to perform. We
conclude with a summary of topics not previously covered, and offer some
hints on future directions for this versatile product.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Joerg Reinschmidt is an Information Mining and Knowledge Management
Specialist at the International Technical Support Organization, San Jose
Center. He writes extensively and teaches IBM classes worldwide on
Information Mining, Knowledge Management, DB2 Universal Database, and
Internet access to legacy data. Before joining the ITSO in 1998, Joerg worked
in the IBM Solution Partnership Center (SPC) in Germany as a DB2
Specialist, supporting independent software vendors (ISVs) to port their
applications to use IBM data management products.

Catalin Comsia is a Senior Database Administrator with Bank of America in
Seattle. He has 15 years of experience in Relational Database Management
Systems, especially DB2. His areas of expertise include data analysis,
systems architecture, database administration, and data warehouse. Catalin
has worked extensively with relational database technology building
Information Services projects for companies in the US, Canada, Italy, and
Romania.

Andre Roberto Santos is a System Specialist working for IBM Global
Service in Brazil. He has 5 years of experience in application development
and has worked with IBM for 2 years. His areas of expertise includes
programming languages such as Visual Basic and Delphi, and application
development methods such as Object Modeling Technique (OMT), Unified
Modeling Language (UML), and Structured Analysis. He holds a Master’s
degree in Database Human Computer Interfaces from the University of Sao
Paolo, Sao Paolo, Brazil.
xx A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Thanks to the following people for their invaluable contributions to this project:

Michael Biere
IBM Cincinnati

Mark Flores
IBM Santa Teresa Lab

Tom Iglehart
Rocket Software

Vasilis Karras
IBM ITSO, Poughkeepsie Center

Matthew G. Kelley
Rocket Software

Andrea Reid
IBM Santa Teresa Lab

Mark Romano
IBM Santa Teresa Lab

Jon A. Scheer
Life Cycle Consulting Inc., Torrance, CA

Shawn Sullivan
Rocket Software

Dave Ward
Washington Mutual, Seattle, WA

Shirley Worthington
Multnomah County, Portland, OR

Andy Youniss
Rocket Software
xxi

Comments welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO redbook evaluation” on page 413
to the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xxii A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Chapter 1. Introduction to query management

In the current global economy, organizations must respond quickly to market
opportunities and competitive pressures. In order to achieve this, they must
empower managers and other knowledge workers to make rapid front-line
decisions. This requires fast and easy access to information about the key
factors driving the business — capabilities provided by business intelligence
tools in general and data analysis tools in specific. A fundamental group of
business intelligence products is comprised of query and reporting tools.

This redbook is about implementing a DB2 query and reporting tool, the
Query Management Facility (QMF), specifically using QMF for Windows, into
an existing enterprise environment. The audience of the redbook is intended
to be database administrators, application developers, end-users, and other
IT professionals with a need for an enterprise query and reporting
environment.

In this chapter we investigate the basic requests of query and reporting
management in an enterprise environment, and how these requests are
answered by the QMF family of integrated tools available on OS/390, VM,
VSE, and Windows.

1.1 Basics about queries and data

Most companies store large amounts of data about their day-to-day business
processes. This data is a rich source of information about their business, its
processes, and its customers. Increasing competitive pressures may be one
of the most important drivers for seriously trying to use the information
contained in all that data and using it to gain the knowledge needed to stay in
business. If the economic situation is favorable, they probably do not have to
worry about this potential. But once the competition moves ahead, or the
environment deteriorates, it may be too late to change.

Today’s Relational Database Management Systems (RDBMSs) capture,
manipulate, and analyze much of the data that run the world. The majority of
the world enterprises store their data in relational databases. To retrieve,
analyze, and manipulate this data from the database, the first step is the
query. A query is a statement that indicates only what subset of the data in
the database should be retrieved and how this data is to be manipulated; the
RDBMS controls and directs where the data is.
© Copyright IBM Corp. 1999 1

The fundamental difference between a navigational database system like
Information Management System (IMS) and a relational database system like
Database 2 (DB2) is that the RDBMS has the power to store and retrieve the
access path to the data, making access to the data easier and quicker. The
result of that query is a set of data that, formatted in a report, provides value
and gives useful information for the company. Figure 1 shows the evolution of
query and reporting over the last years.

Figure 1. Evolution from queries to knowledge discovery

Queries can be made using Structured Query Language (SQL), a standard
language to query relational database systems, but each RDBMS vendor
provides its own specific variation. Almost every RDBMS is provided also with
an ad-hoc query interface where the user can enter the SQL statement and
receive the result. These interfaces require knowledge of SQL and are
intended to be used mainly by power users. An alternative is provided by
query and reporting tools that provide an easy means of generating SQL
without knowledge of the SQL language itself.

Data Mining

Analysis

Queries

Data

Information

Knowledge

Observe

Predict (Discovery)

Analyze (Drill Down)

Single-Dimensional
Result Set

Multi-Dimensional
Result Set
2 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

1.2 Enterprise query and reporting environment

Until recently, query and reporting tools were typically software installed on
mainframe systems and workstations, and it was only cost-effective to install
and maintain them for dedicated analysts and other power users — typically
about 20 percent of knowledge workers in an organization. Sharing and
dissemination of results could be awkward and tedious as well.

Now, with the emergence of World Wide Web technologies and the
acceptance of the Internet as a primary vehicle for distributing information,
there is an opportunity to maximize the return on investment in corporate
information. It is now possible to cost-effectively deliver reporting capabilities
to every user, from senior executives and production line workers, to sales
forces and branch offices across an entire organization and beyond, to
customers, suppliers, and other business partners. Query and reporting tools
should have some typical characteristics, such as being able to:

• Provide a common user interface.

• Centralize the administration.

• Give control over the resources used by the users.

• Prevent users from unwanted data access.

Today we are in the era of democratization of information, in which
accessibility to data can make cost-effective enterprise query and reporting a
reality. Figure 2 shows an overview of the components of a typical business
intelligence environment.

Figure 2. A business intelligence environment

Business
Data

Warehouse
CUST.NR
AGE
NAT.
CITY
INCOME
BEHAVIOUR
HISTORY

?

Segment 1

Segment n

Operational
Data

Extraction / Replication
Data Cleaning

Meta Data Management

Data Mining

Query / OLAP

Customer Segmentation
Basket Analysis
Fraud Detection
Target Marketing

Business
Information

Warehouse

Business Queries
Multi Dimensional
Analysis
Chapter 1. Introduction to query management 3

Until recently, the primary focus of Information Technology (IT) query and
reporting solutions was to address departmental needs, which meant
deploying tools to power users within the client/server environment. With the
emergence of enterprise data warehousing and a global economy, today's
enterprise reporting requirements are more complex and diverse than ever
before, and present IT professionals with a new set of challenges:

• Meeting enterprise reporting needs without creating an IT reporting
backlog.

• Delivering reports to the organization in a cost-effective way that is easy to
manage on a global basis.

• Delivering a solution that will grow with evolving user needs and that won't
lock the organization into a particular vendor's infrastructure as technology
changes.

The optimal approach to enterprise query and reporting is to provide
organizations with a complete solution (one that addresses reporting
requirements for both running and improving the business) that meets the
needs of power users, casual users, and everyone in between. An example of
this environment is shown in Figure 3.

Figure 3. A query and reporting environment
4 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Enterprise Query Environment solutions should also be built to address the
new challenges facing IT as reporting emerges from departmental coverage
to full-enterprise coverage. This can be achieved through:

• Common Interface. Providing a common user interface, independent of
the platform a product is installed on, will reduce the cost of training the
users as well as improve the end user acceptance of a tool.

• Distributed reporting. Organizations need to move as much reporting as
possible to the end user community across many functional areas in the
company.

• Centralized report management and distribution. To be cost-effective
and timely, IT needs a central place to store, update, manage, and
distribute reports in order to insure the integrity of the data.

• Open and scalable Web architecture. As we move into the next
millennium, enterprise query and reporting architectures are increasingly
moving to support the World Wide Web based architecture. This enables
them to be open to support existing enterprise infrastructures, and to be
scalable to accommodate all users both within the enterprise and outside
the enterprise.

A significant portion of the cost of implementing software solutions is in
deployment, training, and maintenance. Enterprise query and reporting
solutions that are completely server based and have a browser interface
ensure maximum deployability and the lowest possible deployment and
maintenance burden for IT. At the time of this writing, QMF does not yet fully
support this Web based approach, but it has already added the first steps in
this direction by allowing reports to be published through a Web server
automatically.

The typical enterprise database environment is heterogeneous, where the
data sources usually are both relational and non-relational. Therefore, one
big requirement from the users is to have a common access tool to allow this
kind of distributed access. The QMF family of tools provides querying,
analyzing, and reporting specifically designed for accessing data stored in
DB2, but through DB2 DataJoiner is also capable to concurrently access
non-relational data like IMS and Virtual Storage Access Method (VSAM), and
multi-vendor relational databases.
Chapter 1. Introduction to query management 5

1.3 A short history of the QMF family

QMF’s history follows closely the evolution of DB2. Since Version 1.1 in 1984,
QMF is architected specifically for — and developed in close parallel with —
DB2 on the OS/390 platform (MVS, VM, and VSE), as shown in Figure 4.

Figure 4. QMF and DB2 development history

The QMF family is an integrated toolset for querying, reporting, and updating
data stored in the entire DB2 family as well as, when combined with DB2
DataJoiner, in nonrelational IBM data sources and other vendor relational
data sources. QMF is available in 15 national languages.

The QMF Family has moved from being an independent product for use with
DB2 for OS/390 and DB2 for VM and VSE to become a priced feature of the
DB2 product. QMF for Windows can also be ordered as a separate product to
access workstation DB2s only (AIX, OS/2, Windows NT, and so on).

V1.2

V2.1
V2.2
V2.3
V2.4

V3.1
V3.2
V3.3

V1.1

V6.1

1984 - 1985 1986 - 1989 1990 - 1997 1998 - 1999

Interface to Relational
Database Products.
SQL/QBE language
suport.
Report and command
enhancements
DBCS support

Application Suport
Product integration
Governor
Data interchange (IXF)
Prompted query, SAA query
interface
Report enhancements
Table editor
Query enhancements
SAA callable interface
Remote DB support
Repository manager suport

QMF/CICS conversation support
Forms and report enhancements
REXX logic in procedures
DRDA Remote Unit of Work support
VSE support

VM enviroment enhancement
High Performance Option (HPO)
QMF HPO/Shuttle : Query & Reporting

in 16, 32 bits Windows
DB2 Query I/O parallelism support
DB2 Common Server V2 support
Y2K support

DB2 PE & Data Joiner support
Release of QMF for Windows

QMF Family reseased as
feature of DB2
Web plublishing support
6 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

The products featured in the QMF toolset are:

• QMF for MVS, VM, and VSE (QMF host) enables multiple types of users,
novice, analyst, expert, application developers and DBAs, to access
enterprise-wide data and produce reports (including HTML), charts or
customized applications (via QMF API), as well as prototyping. QMF host
allows for access to large amount of data, run batch processing, execute
QMF procedures (including REXX conditional logic), and sharing central
repositories of queries and reports across the enterprise.

• QMF High Performance Option (HPO) for OS/390 is a set of integrated
tools that helps manage a DB2 query environment and protects resources
with extensive permissions and restrictions based on user resource
groups and schedules. It includes QMF for Windows, the Windows based
version of the query, reporting, and updating tool, as well as a
management component to allow the administration of a QMF-only
environment with such features as the ability to restrict user access based
on different time schedules. Another component allows you to compile
queries and reports into standard COBOL programs.

Three separate features have been consolidated into one QMF V6 feature
called QMF HPO that includes:

- QMF HPO/Manager streamlines the administration and maintenance
of QMF for OS/390 and QMF for MVS reporting environments with
object tracking, query analysis, governing, and job canceling
capabilities, that monitor and cancel currently executing QMF queries
at will, plus many more capabilities not addressed in this book.

- QMF HPO/Compiler converts QMF for OS/390 and QMF for MVS
queries, forms, and procedures into COBOL applications by
automatically generating (and customizing as needed) COBOL code
that executes static SQL and runs compiled reports from lists within
TSO/ISPF and CICS (allowing it to be run in pseudo-conversational
mode), or port them to other environments.

- QMF for Windows complements DB2 and the QMF Family by offering
query, updating, and reporting from the Windows environment,
providing access to existing QMF objects (queries, forms, procedures)
without any migration necessary, execution of QMF commands, and
governing control over user actions and DB2 resource consumption via
its administrative component. QMF for Windows V6 can be ordered as
a feature of DB2 for OS/390 V6, DB2 for VSE and VM V6, as a feature
of QMF V6 on each of the aforementioned S/390 platforms, or as a
stand-alone product licensed to access DB2 workstation databases
only.
Chapter 1. Introduction to query management 7

The development and support of QMF HPO Manager and Compiler and QMF
for Windows is the responsibility of Rocket Software, an IBM business
partner since 1991.

Any QMF for Windows host licensed version (OS/390, VM, VSE, and
AS/400) can access all members of the DB2 family from mainframe to
workstation.

The workstation-only license cannot access mainframe databases.

Note:
8 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

This chapter summarize the typical IS department’s list of needs for query &
reporting tools, how QMF addresses these needs, and product positioning
and platform functionalities of the QMF family with an accent on QMF for
Windows.

2.1 Typical IS Needs

Today’s enterprises are taking innovative approaches to information processing
and delivery. Their approaches meld delivery technologies with the world of
business intelligence technologies, providing the personalization we all desire in
our working environments. The Information Services (IS) department in each of
these companies is faced everyday with more demands for information
processing and with the increasing need to offer creative solutions to deliver that
information.

Let’s take a look at the notes of an IS specialist at the end of a typical
brainstorming meeting on query and reporting needs with the business
partners/departments of their enterprise:

• "We can’t afford to spend months setting up our warehouse front end."

• "We need a tool that gets us up and running quickly."

• "I want to look at my business data as soon as I install the product."

• "We need one tool that can access all our DB2 database platforms."

• "We use our spreadsheet applications all day long; that is where we need
to work with our data."

• "We currently produce nightly, printed reports; we need to publish these
reports on our intranet."

• "Who is using what queries?"

• "Which queries are not being used and can be removed from our reporting
warehouse?"

• "Which queries are being run most frequently?"

• "We have to make use of stored procedures and static SQL to optimize
performance."

• "Idle cursors and idle connections impact our database performance."

• "I need to connect to multiple database servers at the same time and run
multiple queries at the same time."

• "We need to process big queries that return hundreds of thousands of
rows of data."
10 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

In the rest of this book we will explore in detail how all these typical IS
demands are answered by the QMF Family of Tools, specifically by QMF for
Windows.

2.2 The Enterprise Query Environment

To address most of the questions mentioned above, there are certain
requirements that need to be covered when thinking about a query and
reporting environment. The requirements do not end with the list of concerns
the IT specialist will arise, but also need to take into consideration the
requirements of the user who will finally be the person to work with the
installed tools. In general, we can talk about these aspects when thinking
about an Enterprise Query Environment:

• IT issues

• User issues

2.2.1 IT issues
As mentioned previously, most of the typical business environments today
deal with a wide variety of databases, tools, and even operating systems.
One of the main challenges will be to get all these different products and
environments to work together in a way that is transparent to the user, who is
doing a day’s work.

A fundamental requirement to accomplish this will be to implement a common
data access infrastructure to all the various data sources. This requirement
starts with an evaluation of the supported networking protocols, and covers
all aspect, up to the point of implementing a common query and reporting tool
to access the different database systems.

Today, much of this is easy to implement; for example, TCP/IP has evolved to
become the standard for connectivity to different computer systems. In terms
of database access, there are some standards available that allow access to
different data sources, for example, Distributed Relational Database
Architecture (DRDA) or Open Database Connectivity (ODBC).

Figure 6 shows an overview of different database systems and networking
protocols used in a typical IT infrastructure in today’s businesses.
Chapter 2. Wouldn’t it be nice? 11

Figure 6. The IT infrastructure

This picture illustrates some concerns with this situation. For example:

• Not all of the data sources allow access using the same networking
protocol.

• Administering and tracking the application installation will get very
complex.

• The “Power User” needs access to all of the data sources available.
Therefore, he needs to know how to handle all of the proprietary front
ends. Once new queries or reports have been created, they should be
made available to a broad number of employees, requiring them to use the
same front end the query has been created with.

• The “End User” may only need access to predefined queries and reports,
but most of the tools are too complex to handle, as they also allow the
creation of new queries. Very often this kind of user even wants to use
their standard spreadsheet application or personal database to access all
the company data sources.

DB2 for AS/400
Query Manager/400

DB2 for VM
QMF

DB2 for AIX
Application 1

DB2 for VSE
QMF

DB2 for OS/2
Application 3

DB2 for Windows
Application 2

Non-IBM RDBMS
Application 6 .. n

IMS
Application 4
APPC

VSAM
Application 5
APPC

Local Area
Network

Dial-Up
Connection

Traveling
Employee

'Power User'
3270 Emulation
5250 Emulation
Application 1

'End-User'
Application 1
Application 2

...

DB2 for OS/390
QMF

TCP/IP

TCP/IP

APPC TCP/IP
APPC

TCP/IP TCP/IP
APPC

TCP/IP
APPC

TCP/IP
APPC
12 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

• The “Travelling User” does not want to have a full-function database client
on his computer, but rather, would prefer to have a ”thin client” installed.

To solve some of these problems, businesses develop in-house applications
to support their employees. However, these applications need to be
maintained, and are also very costly to be kept up-to-date for new
technologies.

2.2.2 User issues
As mentioned above, in an environment like that shown in Figure 6 on page
12, the user must be able to use different applications to perform his work.
Many of these applications are too complex, or they allow more options than
most of the users require.

The majority of users may run the same query again and again. Once a query
has been redefined due to new requirements, the user needs to find a way (or
is told a way) to transfer this new query to his own system. Normally, the end
user would be happier if someone else who is better skilled in these matters
could perform this task. Providing a central shared query repository would
allow the queries to be edited at a single source and be available to the users
without any further action required.

Finally, the database administrator is increasingly confronted with resource
and performance problems resulting from many more users accessing the
databases. For example, imagine that a highly tuned database suddenly gets
requests from many users, all using their favorite applications, executing new
queries that cause enormous amounts of data to be sent across the network.

2.3 QMF for Windows: the solution

QMF for Windows complements the QMF family by offering query and reporting
from the Windows environment, access to existing QMF host objects (queries,
forms, procedures), execution of QMF commands, and governing control over
user actions and DB2 resource consumption.

Figure 7 shows a way to solve most, if not all, of the concerns raised
previously. It shows the addition of another product, DB2 DataJoiner, to the
existing environment to access non-DB2 data sources.
Chapter 2. Wouldn’t it be nice? 13

While DB2 DataJoiner acts like any other DB2 database management
system, it allows you to map a non-IBM relational database such as Oracle,
Sybase, Informix, MS SQL Server, to be accessed from the application, just
as if it were another DB2 database. DB2 DataJoiner, in connection with
Classic Connect, also allows non-relational data sources, such as IMS and
VSAM, to be accessed as if they were a DB2 relational database.

Figure 7. The Enterprise Query Environment

2.3.1 Product Positioning
The best way to describe query and reporting tools is to simply say that
"business intelligence starts with query and reporting tools". Figure 8 shows
the evolution of decision support and its fundamental place in business
intelligence.

DB2 for AS/400
QMF for WIndows

DB2 for VM
QMF

DB2 for AIX
QMF for Windows

DB2 for VSE
QMF

DB2 for OS/2
QMF for Windows

DB2 for Windows
QMF for Windows

IMS VSAM

Local Area Network

Dial-Up
Connection

Traveling
Employee

'Power User'
QMF for
Windows

'End-User'
QMF for
Windows

DB2 for OS/390
QMF

Non-IBM RDBMS

DB2 DataJoiner
QMF for Windows
14 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 8. Decision support evolution

QMF for Windows delivers the most essential business reporting
requirements for corporate situations where the broadest range of needs
must be met with the minimum number of tools.

QMF for Windows Version 6 is a multi-purpose Enterprise Query Environment
for large scale business reporting, data sharing, server resource protection,
rapid application development (RAD), and native connectivity to all of the
DB2 host (OS/390, MVS, VM, and VSE) and DB2 workstation platforms. It
provides native support for TCP/IP connectivity to DB2 Version 5 and above,
and is coupled with DB2 across platforms by the enterprise data sharing
standard Distributed Relational Database Architecture (DRDA). Support for
multi-vendor database environments through DB2 DataJoiner enables users
to access data outside DB2.

Version 6 includes support for QMF linear procedures, DB2 stored
procedures, a command line interface for enhanced automation, and new
levels of governing available to administrators. QMF Form calculations
(requiring IBM Object REXX and 32-bit) and specialized form variables for
Web publishing enable you to build advanced features into QMF reports.

Data InquiryData Inquiry
QMF: Query and ReportingQMF: Query and Reporting

Data InterpretationData Interpretation
Spreadsheets, StatisticsSpreadsheets, Statistics

Multi-DimensionalMulti-Dimensional
OLAP ToolsOLAP Tools

Information DiscoveryInformation Discovery
Data MiningData Mining

S
tr

at
eg

ic
O

pe
ra

tio
na

l

Chapter 2. Wouldn’t it be nice? 15

End users can work from the QMF for Windows "quick start" interface to build
queries and business reports, share them with other QMF users, and publish
them on the Web. QMF for Windows can also be used as the data
manipulation engine behind the most important commercial or custom
Windows applications — including spreadsheets, charting and analysis tools,
executive information systems, and desktop databases.

DBAs will appreciate QMF for Windows as a single product with the
capabilities to open all of the DB2 host and DB2 workstation database
platforms to Windows users (3.x, 9x, NT, and WIN-OS/2), without having
database gateways, middleware, or ODBC drivers to manage. QMF for
Windows provides resource management functions to block waste or abuse
through detailed permissions organized on each server by group, by
schedule, or by combinations of group and schedule.

Developers obtain a robust Windows application programming interface (API)
with QMF for Windows that lets them rapidly build DB2 applications. QMF for
Windows allows them to fully exploit DB2 performance, SQL syntax, and
advanced database performance techniques such as static SQL,
uncommitted read, and DB2 stored procedures.

QMF for Windows V6 can be ordered as a feature of DB2 for OS/390 V6, DB2 for
VSE and VM V6, as a feature of QMF V6 on each of the aforementioned S/390
platforms, or as a stand-alone product licensed to access DB2 workstation
databases only, as shown in Figure 9.

QMF for Windows has a “server based licensing”, which means that no
matter how many users use the product, the licensing is based on the DB2
servers (or subsystems) accessed. So, for each DB2 accessed, no matter
by how many users, only one QMF for Windows license is needed.

Note:
16 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 9. QMF family of products

2.4 Enterprise Benefits

QMF for Windows provides the following benefits for the user, the developer,
the database administrator, and the enterprise.

For the user
QMF provides these benefits:

• Build new queries easily with the standard prompted query builder.

• Use existing QMF objects stored on any server.

• Automate DB2 query from Windows applications.

• Integrate with Lotus 1-2-3, Excel, Lotus Approach, Access, Delphi, or
many other OLE 2.0 applications.

• Create and share QMF forms.

• Edit DB2 data directly in the Table Editor.

• Use the QMF for Windows GUI or a favorite application interface.

• Edit table rows from a query result, or a row at a time.

• Query multiple servers simultaneously.

QMF for Windows QMF for Windows

QMF for OS/390
QMF for VM & VSE

QMF for OS/390

QMF HPO
QMF HPO Manager
QMF HPO Compiler
QMF for Windows

Standalone Product
Workstation DB2 Access

QMF for Windows
Chapter 2. Wouldn’t it be nice? 17

• Get outstanding DB2 performance and reliability.

For the developer
QMF provides these benefits:

• Bring industrial strength DB2 applications to desktop tools.

• Integrate DB2, QMF objects, and commands with Windows 3.x, Windows
9x, or Windows NT OLE 2.0 automation controller application.

• Easily build Windows applications that:

• Retrieve QMF queries from servers.
• Launch QMF commands.
• Integrate existing QMF forms.

• Create new or select existing QMF forms from the Windows desktop.

• Use the table editor to create test data.

• Convert heavily used queries to static SQL for better performance.

• Shield users from the complexity of connecting to databases.

• Control QMF for Windows in the background with its own API.

For the database administrator
QMF provides these benefits:

• Execute static SQL from Windows.

• Centralized install/elimination of database gateways, middleware, and
ODBC driver.

• Protect DB2 from runaway queries and novice users.

• Build governing into Windows applications.

• Use existing DB2 security.

• Centralize control over server resources.

• Adjust governing limits by the following:

• Time of day
• Day of week
• User groups
• Server

• Set governing thresholds to do the following:

• Warn users
• Cancel queries and threads
18 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

• Limit by:

• Rows fetched
• Idle query time-outs
• Server response time-outs
• Idle connection time-outs

• Allow or disallow 14 different SQL verbs.

• Turn on/off table editor and other features by group.

For the enterprise
QMF provides these benefits:

• TCP/IP support for DB2 V5, including DB2 Universal Database.

• Large scale retrieval with outstanding performance--from Windows.

• Full 16-bit and 32-bit support.

• Query local or remote databases.

• Maintain full DB2 security and authorizations.

• Fully exploit DB2 system integrity.

• Maximize return on server investment, minimize waste.

• Eliminate TSO, CMS, and CICS HOST logon.

• Make enterprise database resources available, yet more protected.

• Gain from the ease of use of desktop languages and availability of skills.

• Develop business solutions rapidly and flexibly.

• Minimize complexity.

Existing host QMF users
QMF provides these benefits:

• Extends QMF capabilities to the desktop.

• Extends QMF capabilities to Windows applications.

• No learning curve.

• Extends QMF reports to the Web.

• Converts existing QMF reports to Web reports.
Chapter 2. Wouldn’t it be nice? 19

2.5 Implementation examples

In the following sections we give two examples of QMF for Windows
implementations that have been performed for IBM customers.

2.5.1 Financial industry
The first example concerns the implementation of QMF for Windows in a
company working in the financial market segment.

2.5.1.1 Platforms
QMF for Windows is used to access two DB2 subsystems: a production
system and a test system, which both run MVS on an IBM ES9000-982.

2.5.1.2 Background
The bank is a large financial institution and has the task of providing accurate
and timely information to different areas of the company. After the decision
had been made to eliminate VM, a solution was needed to provide the users
with the same level of support they were receiving before. All of the
databases and associated tables and queries on VM were migrated to a
decision support DB2 subsystem.

2.5.1.3 The problem and the solution
QMF for Windows is now used to provide access to the DB2 tables, and only
a minimum of modification has been necessary to help the users adapt to the
new environment. Users who were familiar with using QMF on VM before
have had no problems getting used to the new implementation, and users
who had never used QMF before did not need to learn anything about TSO.
The QMF for Windows Graphical User Interface (GUI) has provided the users
with an easy-to-use solution to access the data in the format they needed. It
has also allowed printing the reports locally and in a timely manner. The data
can be downloaded from the host system and loaded directly into the user’s
Windows based database or into a spreadsheet application. This overall
approach has eliminated many of the steps previously required to get the
data from the host to the PC application.

2.5.1.4 Product functionality
The QMF for Windows front end provides the users with easy access to the
company’s data by providing them with lists of queries and forms available to
them, and allowing them to run those queries and forms with a simple click of
the mouse. New queries can be created and stored on the mainframe system
or in a file stored on a PC. Downloading data is now as simple as executing a
query and saving the data to the end user’s PC based application.
20 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

2.5.1.5 Strengths and weaknesses
The main strength of the new environment is that the end users no longer
have to log on to TSO in order to gain access to the required data, which has
been an important issue when eliminating VM.

One of the few weaknesses has been that the error messages, which appear
with communication problems using SNA as the protocol between the end
users workstation and the host, have been hard to interpret.

2.5.1.6 Selection criteria
There have been three main reasons that the customer chose QMF for
Windows:

1. Most of the users were already familiar with QMF on VM, so the transition
to the new environment was very easy.

2. Using a Windows based product eliminated the requirement of many users
having TSO authority.

3. The ability to interact with standard Windows based applications was
helpful.

2.5.1.7 Deliverables
The new environment allows the end users to create new queries, and to
download data for report processing or for import into Windows applications.

2.5.1.8 Required support
The only support required during the implementation of the new environment
was the need for assistance to configure the SAN Network Gateway.

2.5.2 Public services institution
The second example concerns the implementation of QMF for Windows in a
public services institution.

2.5.2.1 Platforms
DB2 V 4.1 for MVS runs on an IBM 9672-R32 under OS/390. QMF runs on
this 9672 under both TSO and CICS, and is available to any user who has
security on the CICS region under which QMF runs. QMF for Windows is
installed on a Windows NT Server and is connected via LU 6.2 through an
SNA server.

2.5.2.2 Background
This institution supports local government’s information processing,
networking, software, and telecommunications needs.
Chapter 2. Wouldn’t it be nice? 21

2.5.2.3 The problem and the solution
The institution needed a more efficient way to analyze information that could
help them solve certain problems. There was a tremendous amount of
information stored in an operational system and VSAM files. In the past, in
order for the data to be analyzed, on-line CICS queries were used, or a
request would be sent to the application development department to create or
run a COBOL report with various parameters. Therefore, a new report
request could take days, weeks, or even months to be completed, due to an
ever-increasing backlog of requests. A few years ago, the IS department set
up a data warehouse to allow ad-hoc queries to be executed. Many users had
been trained to use the prompted feature of QMF on CICS. Today the users
can easily look at trends and find similarities in events by using QMF for
Windows.

2.5.2.4 Product functionality
The QMF for Windows front end provides the users with easier access to the
data. Printing and downloading capabilities have been improved as well. It is
easy to use, plus it allows for the utilization of existing work already generated
with QMF under CICS. The download add-ins of QMF for Windows ability to
directly import data into the Windows based application also enhances its
functionality. Now it is possible, with a click of a button, to execute a query on
QMF that joins several tables, each having between 300,000 to over 2 million
rows of data, and transfer the small result set into a Windows spreadsheet
application automatically.

2.5.2.5 Strengths and weaknesses
The QMF for Windows strengths have been the ease of installation and use,
as well as giving people access to existing QMF for OS/390 queries from a
Windows based workstation.

No weaknesses have been reported.

2.5.2.6 Selection criteria
As the customer had already used QMF on the OS/390 system, the ability of
QMF for Windows to utilize all of the efforts invested on the host platform
without any modifications was the justification for its implementation.

2.5.2.7 Deliverables
The new environment allows the end users to create new queries easily by
using the prompted query feature of QMF for Windows, and to download and
utilize the data from the host easily.
22 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

2.5.2.8 Required Support
The only support required during the implementation of the new environment
was the need for assistance to configure the SAN Server on the Windows NT
server.
Chapter 2. Wouldn’t it be nice? 23

24 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Chapter 3. Getting started

This chapter explains the basic architecture behind the operation of QMF for
Windows and describes the prerequisite software and configuration that it
requires. It provides a step-by-step guide to install QMF for Windows and the
QMF for Windows Administrator. The intended audience is the person
(system programmer, or database administrator) responsible for installing
QMF for Windows.

3.1 The networking environment

The primary function of QMF for Windows is to access data stored in any
database in the DB2 family of databases, including DB2 DataJoiner. There
are two ways in which QMF for Windows can connect to DB2: via the Open
Group’s Distributed Relational Database Architecture (DRDA), and via the
DB2 UDB for Windows, OS/2 or AIX Call Level Interface (CLI).

In data communication, several layers of communication are used in a very
complex environment connecting different operating systems and data
sources of completely different architectures.

From the application point of view, the base for all communication and data
transfer consists of communication protocols. Several protocols are available
for inter-system communication. Especially in the workstation area, you have
several options:

• The connectivity between the workstation environment and the host
systems is based, for example, on Ethernet or on Token Ring.

• The communication protocols mostly used in the workstation environment
are NetBIOS and TCP/IP. The protocol TCP/IP is used for communication
to host systems as well.

• The most common protocol in the host environment is still APPC
(Advanced Program to Program Communication) based on Shared
Network Architecture (SNA). The use of Advanced Peer-to-Peer
Networking (APPN) simplifies the configuration.

The next layer is the protocol or architecture supplying the base for the
data exchange between the data sources and targets.
© Copyright IBM Corp. 1999 25

• For the data transfer between the DB2 family products and other relational
database software in different operating environments (host and
workstation), this is Distributed Relational Database Architecture (DRDA).
This architecture is a detailed blueprint that specifies all of the layers and
functions required in a client/server distributed database application.

• Between like platforms (workstations or VM and VSE) there are private
protocols available as well. For example, between the Universal
Databases (UDBs) on the workstations, there is a private data exchange
protocol available, which has the same functionality as DRDA.

• For the nonrelational data sources, there are special “private” solutions
(like CrossAccess or Classic Connect) used to provide these sources in a
relational view.

QMF for Windows and DB2 are both distributed relational database
applications that operate together in a client/server relationship. Both QMF
for Windows and DB2 implement and adhere to DRDA. Each component
plays a separate and distinct role in this relationship:

• QMF for Windows is the DRDA application requester.

• DB2 acts as the DRDA application server.

One layer of DRDA describes the communication protocol that must be used
by the participants in the architecture. Specifically, it defines that requesters
and servers must communicate via the TCP/IP or the SNA LU 6.2 protocol.

Before installing, configuring, or using QMF for Windows you must verify that
the required network infrastructure is properly configured.

CLI is an application programming interface for relational database access,
included as a part of the DB2 UDB for Windows, OS/2, or AIX client. Using
CLI, client applications (like QMF for Windows) can connect to DB2 UDB
servers and execute SQL statements. In addition to DB2 Connect, CLI
applications can also connect to the mainframe databases (OS/390, VM, and
VSE).

3.2 TCP/IP basics

The need to interconnect networks that use different protocols was
recognized early in the 1970s during a period when both the use and
development of networking technology were increasing. Even though the
rapid growth in networking over the past three decades has allowed users
much greater access to resources and information, it has caused significant
problems with merging, or interconnecting, different types of networks.
26 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Open protocols and common applications were required, leading to the
development of a protocol suite known as Transmission Control
Protocol/Internet Protocol (TCP/IP), which originated with the U.S.
Department of Defense (DoD) in the mid-1960s, and took its current form
around 1978.

An interesting article about the history of the Internet can be found at:

http://www.isoc.org/internet-history/

In the early 1980s, TCP/IP became the backbone protocol in multivendor in
networks such as ARPANET, NFSNET, and regional networks. The protocol
suite was integrated into the University of California at Berkeley's UNIX
operating system and became available to the public for a nominal fee. From
that point TCP/IP became widely used. Its spread to other operating systems
resulted in increasing use in both local area network (LAN) and wide area
network (WAN) environments.

Today, TCP/IP enables corporations to merge differing physical networks
while giving users a common suite of functions. It allows interoperability
between equipment supplied by multiple vendors on multiple platforms, and it
provides access to the Internet. In fact, the Internet, which has become the
largest computer network in the world, is based on TCP/IP.

So why has the use of TCP/IP grown at such a rate? The reasons include the
availability of common application functions across differing platforms and the
ability to access the Internet, but the primary reason is that of interoperability.
The open standards of TCP/IP allow corporations to interconnect or merge
different platforms. An example is the simple case of allowing file transfer
capability between an MVS/ESA host and, perhaps, a Hewlett Packard
workstation.

TCP/IP also provides for the routing of multiple protocols to and from diverse
networks. For example, a requirement to connect isolated networks using
IPX, AppleTalk, and TCP/IP protocols using a single physical connection can
be accomplished with routers using TCP/IP protocols.

One further reason for the growth of TCP/IP is the popularity of the socket
programming interface between the TCP/IP transport protocol layer and
TCP/IP applications. A large number of applications today have been written
for the TCP/IP socket interface.
Chapter 3. Getting started 27

3.2.1 TCP/IP architecture
TCP/IP, as a set of communications protocols, is based on layers. Unlike
System Network Architecture (SNA) or Open Systems Interconnection (OSI),
which distinguish seven layers of communication, TCP/IP has only four
layers. See Figure 10. The layers enable heterogeneous systems to
communicate by performing network-related processing such as message
routing, network control, and error detection and correction.

• Application layer

The application layer is provided by the program that uses TCP/IP for
communication. Examples of applications are Telnet, File Transfer
Protocol (FTP), e-mail, Gopher and SMTP. The interface between the
application and transport layers is defined by port numbers and sockets.

• Transport layer

The transport layer provides communication between application
programs. The applications may be on the same host or on different hosts.
Multiple applications can be supported simultaneously. The transport layer
is responsible for providing a reliable exchange of information. The main
transport layer protocol is TCP. Another is User Datagram Protocol (UDP),
which provides a connectionless service in comparison to TCP, which
provides a connection-oriented service. That means that applications
using UDP as the transport protocol have to provide their own end-to-end
flow control. Usually, UDP is used by applications that need a fast
transport mechanism.

Figure 10. TCP/IP architecture model: layers and protocols
28 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

• Internet layer

The Internet layer provides communication between computers. Part of
communicating messages between computers is a routing function that
ensures that messages will be correctly delivered to their destination. The
Internet Protocol (IP) provides this routing function. Examples of Internet
layer protocols are IP, ICMP, IGMP, ARP, and RARP.

• Network interface layer

The network interface layer, sometimes also referred to as link layer, data
link layer or network layer, is implemented by the physical network that
connects the computers. Examples are LAN (IEEE 802.x standards),
Ethernet, X.25, ISDN, ATM, Frame Relay, or async.

Note that the request for changes (RFCs) actually do not describe or
standardize any network layer protocols by themselves, they only
standardize ways of accessing those protocols from the Internet layer.

3.2.2 IP addressing
IP uses IP addresses to specify source and target hosts on the Internet.
(For example, we can contrast an IP address in TCP/IP with a fully qualified
NETID.LUNAME in SNA). An IP address consists of 32 bits and is usually
represented in the form of four decimal numbers, one decimal number for
each byte (or octet). For example:

00001001 01000011 00100110 00000001 a 32-bit address
9 67 38 1 decimal notation

An IP address consists of two logical parts: a network address and a host
address. An IP address belongs to one of four classes.

Some values for these host IDs and network IDs are preassigned and cannot
be used for actual network or host addressing:

• All bits 0

Stands for this: this host (IP address with <host address>=0) or this
network (IP address with <network address>=0). When a host wants to
communicate over a network, but does not know the network IP address, it
may send packets with <network address>=0. Other hosts on the network
interpret the address as meaning this network. Their reply contains the
fully qualified network address, which the sender records for future use.
Chapter 3. Getting started 29

• All bits 1

Stands for all: all networks or all hosts. For example:

128.2.255.255

Means all hosts on network 128.2 (class B address).

This is called a directed broadcast address because it contains both a
valid <network address> and a broadcast <host address>.

• Loopback

Class A network 127.0.0.0 is defined as the loopback network. Addresses
from that network are assigned to interfaces that process data inside the
local system and never access a physical network (loopback interfaces).

3.2.3 Subnets
Because of the explosive growth of the Internet, the principle of assigned IP
addresses became too inflexible to facilitate changes to local network
configurations. Such changes might occur when:

• A new type of physical network is installed at a location.

• Growth of the number of hosts requires splitting the local network into two
or more separate networks.

• Growing distances require splitting a network into smaller networks, with
gateways between them.

To avoid having to request additional IP network addresses in these cases,
the concept of subnets was introduced. The assignment of subnets can be
done locally, as the whole network still appears to be one IP network to the
outside world.

Recall that an IP address consists of a pair <network address> and <host
address>. For example, let us take a class A network; the address format is
shown in Figure 11.

Figure 11. Class A address without subnets
30 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Let us use the following IP address:

00001001 01000011 00100110 00000001 a 32-bit address
9 67 38 1 decimal notation (9.67.38.1)

9.67.38.1 is an IP address (class A) having:

9 as the <network address>

67.38.1 as the <host address>

Subnets are an extension to this concept, by considering a part of the <host
address> to be a subnetwork address. IP addresses are then interpreted as
<network address><subnetwork address><host address>.

We may, for example, want to choose the bits from 8 to 25 of a class A IP
address to indicate the subnet addresses, and the bits from 26 to 31 to
indicate the actual host addresses. Figure 12 shows the subnetted address
that has thus been derived from the original class A address.

Figure 12. Class A address with subnet mask and subnet address

We usually use a bit mask, known as the subnet mask, to identify which bits
of the original host address field to indicate the subnet number. In the above
example, the subnet mask is 255.255.255.192 in decimal notation (or
11111111 11111111 11111111 11000000 in bit notation). Note that, by
convention, the <network address> is masked as well.

For each of these subnet values, only (2**18)-2 addresses (from 1 to 262143)
are valid because of the all bits 0 and all bits 1 number restrictions. This split
will therefore give 262142 subnets, each with a maximum of (2**6)-2 or 62
hosts.

The value applied to the subnet number takes the value of the full byte, with
nonsignificant bits set to zero. For example, the hexadecimal value 01 in this
subnet mask assumes an 8-bit value, 01000000, and gives a subnet value of
64 (and not 1, as it might seem).
Chapter 3. Getting started 31

Applying this mask to our sample class A address 9.67.38.1 would break the
address down as follows:

00001001 01000011 00100110 00000001 = 9.67.38.1 (class A address)
11111111 11111111 11111111 11------ 255.255.255.192 (subnet mask)
===================================== logical_AND
00001001 01000011 00100110 00------ = 9.67.38 (subnet base address)

and leaves a host address of:

-------- -------- -------- --000001 = 1 (host address)

IP recognizes all host addresses as being on the local network for which the
logical_AND operation described above produces the same result. This is
important for routing IP datagrams in subnet environments (see “IP routing”
on page 33).

The actual number would be:

-------- 01000011 00100110 00------ = 68760 (subnet number)

The subnet number shown above is a relative number, that is, it is the
68760th subnet of network 9 with the given subnet mask. This number bears
no resemblance to the actual IP address that this host has been assigned
(9.67.38.1) and has no meaning in terms of IP routing.

The division of the original <host address> part into <subnet> and <host>
parts can be chosen freely by the local administrator; except that the values
of all zeros and all ones in the <subnet> field are reserved for special
addresses.

3.2.4 IP datagram
The unit of transfer of a data packet in TCP/IP is called an IP datagram.
It is made up of a header containing information for IP and data that is only
relevant to the higher-level protocols. IP can handle fragmentation and
reassembly of IP datagrams. The maximum length of an IP datagram is
65,535 bytes (or octets). There is also a requirement for all TCP/IP hosts to
support IP datagrams of up to 576 bytes without fragmentation.

The IP datagram header is a minimum of 20 bytes long (see Figure 13).
32 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 13. Format of an IP datagram header

3.2.5 IP routing
There are two types of IP routing: direct and indirect. For example, Figure 14
shows that the host C has a direct route to hosts B and D, and an indirect
route to host A through gateway B.

3.2.5.1 Direct routing
If the destination host is attached to a physical network to which the source
host is also attached, an IP datagram can be sent directly, simply by
encapsulating the IP datagram in the physical network frame. This is called
direct delivery and is referred to as direct routing.

3.2.5.2 Indirect routing
Indirect routing occurs when the destination host is not on a network directly
attached to the source host. The only way to reach the destination is through
one or more IP gateways. In TCP/IP terminology, the terms gateway and
router are used interchangeably for a system that actually performs the duties
of a router. The address of the first of these gateways (the first hop) is called
Chapter 3. Getting started 33

an indirect route in the context of the IP routing algorithm. The address of the
first gateway is the only information needed by the source host.

Figure 14. Direct and indirect routing

3.2.5.3 IP routing table
The determination of available direct routes is derived from the list of local
interfaces available to IP and is composed by IP automatically at initialization.
A list of networks and associated gateways (indirect routes) must be
configured to be used with IP routing if required.

Each host keeps the set of mappings between the:

• Destination IP network addresses

• Routes to next gateways

The mappings are stored in the IP routing table (see Figure 15). Three types
of mappings can be found in this table:

• Direct routes, for locally attached networks

• Indirect routes, for networks reachable through one or more gateways

• Default route, which contains the (direct or indirect) route to be used if the
destination IP network is not found in the mappings of type 1 and 2 above
34 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 15. Routing table scenario

The routing table of host F might contain the symbolic entries shown in Figure
16.

Figure 16. IP routing table entries example

3.2.5.4 IP routing algorithm
IP uses a unique algorithm to route an IP datagram. Figure 17 shows an IP
routing algorithm with subnets.

destination router interface
129.7.0.0 F lan0
128.15.0.0 E lan0
128.10.0.0 E lan0
default B lan0
127.0.0.1 loopback lo
Chapter 3. Getting started 35

Figure 17. IP routing algorithm (with subnets)

3.3 Configuring your TCP/IP

To access a DB2 server using TCP/IP, QMF for Windows must be able to
establish a TCP/IP connection from the local host (the system on which QMF
for Windows is running) to the remote host (the system on which DB2 is
running) and remote port (the port on which DB2 is listening).

• IP routing is an iterative process. It is applied by every host handling a
datagram, except for the host to which the datagram is finally delivered.

• Routing tables and the routing algorithm are local to any host in an IP
network. To forward IP datagrams on behalf of other hosts, routers must
exchange their routing table information with other routers in the
network, using special routing protocols.

Note:
36 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

The process of implementing TCP/IP connectivity between Microsoft
Windows and DB2 is generally a much easier task than the corresponding
SNA connectivity. You still must rely on your in-house TCP/IP networking staff
and your TCP/IP software vendor’s technical support services to implement
and support your network configuration.

QMF for Windows requires a WinSock 1.1 interface to the installed TCP
protocol stack.

3.3.1 OS/390 OpenEdition
If OpenEdition MVS and TCP/IP are used for the first time, it is highly
recommended that a local OS/390 specialist with skills in OpenEdition MVS
and TCP/IP be enlisted to assist. The redbook Accessing OS/390
OpenEdition MVS from the Internet, SG24-4721, provides guidance to
configure TCP/IP with emphasis on accessing OpenEdition.

If TCP/IP V3R1 for MVS is already installed on your system, it will in many
cases be useful to set up a separate TCP/IP started task for OpenEdition
MVS services.

You can run one or more TCP/IP address space copies on a single MVS
system. To concurrently connect more than one TCP/IP instance to
OpenEdition MVS, you need to configure the OpenEdition MVS to use
Common I-Net (C-INET) AF_INET PFS, instead of integrated sockets
AF_INET PFS, which does not support multiple TCP/IP instances
connected to OpenEdition MVS.

When you have DB2 using TCP/IP, however, you can have only one
TCP/IP instance connect to OpenEdition MVS on the same MVS system,
because DB2 uses asynchronous I/O services, and C-INET AF_INET
PFS does not support asynchronous I/O. Therefore, the integrated
sockets AF_INET PFS must be used. In other words, you must configure
OpenEdition MVS to use the integrated sockets AF_INET PFS when
using DB2 with TCP/IP. Refer to the TCP/IP V3R1 for MVS:
Customization and Administration Guide, SC31-7134, for further
consideration of multiple copies of TCP/IP.

Note
Chapter 3. Getting started 37

3.3.1.1 Verifying the TCP/IP on OS/390
Normally, the name of the transport providers implemented as started tasks
are TCPIPMVS (the default transport provider for traditional MVS process)
and TCPIPOE (the default transport provider for OpenEdition MVS process).
Contact your system administrator to know the implemented transport
provided on your system. For example, you can see the started tasks for the
TCP/IP on the System Display and Search Facility (SDSF).

Type DA on the COMMAND INPUT line as shown below.

The following screen lists all the currently active jobs on the system.

Display Filter View Print Options Help

HQX1900------------------ SDSF PRIMARY OPTION MENU -- INVALID COMMAND
COMMAND INPUT ===> DA SCROLL ===> CSR

LOG - Display the system log
DA - Display active users in the sysplex
I - Display jobs in the JES2 input queue
O - Display jobs in the JES2 output queue
H - Display jobs in the JES2 held output queue
ST - Display status of jobs in the JES2 queues
PR - Display JES2 printers on this system
INIT - Display JES2 initiators on this system
MAS - Display JES2 members in the MAS
LINE - Display JES2 lines on this system
NODE - Display JES2 nodes on this system
SO - Display JES2 spool offload for this system

Licensed Materials - Property of IBM

5647-A01 (C) Copyright IBM Corp. 1981, 1997. All rights reserved.
US Government Users Restricted Rights - Use, duplication or

F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE
38 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

You can see the multiple transport driver support TCPIP environment
(TCPIPOE, TCPIPMVS) on the sample screen above.

After completing the steps above, you should verify your system’s host name
and address configuration for TCP/IP OpenEdition (TCPIPOE) as follows:

The status of a TCP/IP transport provider is monitored with the TSO
NETSTAT command. You can specify the name of the transport providers
started task to be monitored if you have multiple transport providers installed.
You can check your home IP address from the TSO command panel by typing
NETSTAT HOME TCP TCPIPOE, which is for TCP/IP OpenEdition.

Display Filter View Print Options Help

SDSF DA SC53 SC53 PAG 0 SIO 0 CPU 12/ 6 LINE 69-79 (79)
COMMAND INPUT ===> SCROLL ===> CSR
NP JOBNAME STEPNAME PROCSTEP JOBID OWNER C POS DP REAL PAGING SIO

DBC2SPAS DBC2SPAS IEFPROC STC23276 STC NS FE 730 0.00 0.00
DB2RES4 IKJACCNT SCGPVM14 TSU24491 DB2RES4 IN F9 845 0.00 0.00
TCPIPOE TCPIPOE TCPIP STC24509 TCPIPOE NS FE 1793 0.00 0.00
KARRAS IKJACCNT SCGSA065 TSU24503 KARRAS LO FF 775 0.00 0.00
KMT2 IKJACCNT TCP66006 TSU24500 KMT2 LO FF 702 0.00 0.00
DB2IMSTR DB2IMSTR IEFPROC STC24517 STC NS FE 807 0.00 0.00
MVSNFSC5 MVSNFSC5 MVSCLNT STC22804 STC NS FE 5398 0.00 0.00
DB2IDIST DB2IDIST IEFPROC STC24521 STC NS FE 1878 0.00 0.00
DB2IDBM1 DB2IDBM1 IEFPROC STC24520 STC NS FE 4721 0.00 0.00
IRLIPROC IRLIPROC STC24518 STC NS FE 216 0.00 0.00
TCPIPMVS TCPIPMVS TCPIP STC24508 TCPIPOE NS FE 2287 0.00 0.00

F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE
Chapter 3. Getting started 39

The following screen shows the result of NETSTAT HOME TCP TCPIPOE command.

Alternatively you can check for the host name and IP address on the
OpenMVS ISPF Shell panel.

Menu List Mode Functions Utilities Help

ISPF Command Shell
Enter TSO or Workstation commands below:

===> NETSTAT HOME TCP TCPIPOE

Place cursor on choice and press enter to Retrieve command

=>
=>
=>
=>
=>
=>
=>
=>
=>
=>

F1=Help F3=Exit F10=Actions F12=Cancel

MVS TCP/IP NETSTAT CS/390 V2R5 TCPIP NAME: TCPIPOE 19:32:24
Home address list:
Address Link Flg
------- ---- ---
9.9.9.18 OSAL2160 P
127.0.0.1 LOOPBACK

40 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Type a shell command sh cat /etc/hosts or ex cat /etc/hosts to view the
hosts list. The following screen shows the result of the sh cat /etc/hosts

command.

File Directory Special_file Tools File_systems Options Setup Help
--

OpenMVS ISPF Shell

Enter a pathname and do one of these:

- Press Enter.
- Select an action bar choice.
- Specify an action code or command on the command line.

Return to this panel to work with a different pathname.
More: +

__
__
__

Command ===> sh cat /etc/hosts__
F1=Help F3=Exit F5=Retrieve F6=Keyshelp F7=Backward F8=Forward
F10=Actions F11=Command F12=Cancel

BROWSE -- /tmp/DB2RES4.15:00:01.121320.ishell ------ Line 00000000 Col 001 080
Command ===> Scroll ===> PAGE
********************************* Top of Data **********************************
--
Set up environment variables for Java and Servlets for OS/390 -
--
PATH reset to /usr/lpp/java/J1.1/bin:/bin:.

CLASSPATH reset to .:/usr/lpp/java/J1.1/lib/classes.zip:/usr/lpp/internet/server

--> Path set for JAVA Servlet support
--> LD PATH set for JDBC support
9.9.9.18 wtsc53oe wtsc53oe.itso.ibm.com
******************************** Bottom of Data ********************************

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE
Chapter 3. Getting started 41

3.3.2 AS/400
Before trying to connect to your AS/400 DB2 database, check your server
configuration by typing CHGTCPDMN and pressing F4.

If there is no configuration information, contact your system administrator.
Check your TCP/IP setup by trying to ping your server from one of the
supported clients. In the case shown above, you would try ping

as400.ibm.com.

The RPC server is also needed for client/server communication. To start it
you need *IOSYSCFG authority. You can check for this authorization by using
the WRKUSRPRF command. Select your own username, choose option 5 and
check the second page of the profile settings under special authority. Also,
check if your username is listed in the system distribution directory with
WRKDIRE. You can add your profile to this directory with ADDDIRE if you are not
listed. Start the RPC server with STRNFSSVR *RPC.

In addition to the TCP/IP protocol itself, you should check your system
configuration with DSPNETA to see if the database has been configured
properly. The entries listed as current system name, local control point name,

and default local location must be the same. In the example below, this
name is AS400.

Change TCP/IP Domain (CHGTCPDMN)

Type choices, press Enter.

Host name 'AS400'

Domain name 'ibm.com'

Host name search priority . . . *REMOTE *REMOTE, *LOCAL, *SAME
Domain name server:
Internet address '127.0.0.1'

'9.9.9.9'

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
42 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

To check if local databases are configured for access as relational databases,
use the WRKRDBDIRE command.

Display Network Attributes
System: AS01

Current system name : AS400
Pending system name :

Local network ID : ITSCNET
Local control point name : AS400
Default local location : AS400
Default mode : BLANK
APPN node type : *NETNODE
Data compression : *NONE
Intermediate data compression : *NONE
Maximum number of intermediate sessions : 200
Route addition resistance : 128
Server network ID/control point name : *LCLNETID *ANY

More...
Press Enter to continue.

F3=Exit F12=Cancel

Work with Relational Database Directory Entries

Position to

Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display details 6=Print details

Relational Remote
Option Database Location Text

AS400 *LOCAL

Bottom
F3=Exit F5=Refresh F6=Print list F12=Cancel
(C) COPYRIGHT IBM CORP. 1980, 1998.
Chapter 3. Getting started 43

There must be an entry with the same name as the current system name from
the previous screen with *LOCAL listed as remote location.

3.3.3 AIX
Before you can access a DB2 UDB database at the AIX system, TCP/IP must
be configured to allow the QMF client to connect to the AIX system. To check
the configuration:

Enter smit on the AIX command line. Following the selections shown below
leads to a screen like the one shown in Figure 18.

System Management -> Communication Applications and Services ->
TCP/IP

Figure 18. AIX TCP/IP SMIT panel

Select the defined network interface (Figure 19). If you don’t know the
network interface to be used, you need to ask your network administrator.
44 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 19. Defined network interface on AIX

Check for the host name, domain name, and so on, as shown in Figure 20.
You will need to know the hostname or IP address in order to configure the
connectivity on the IM client.

Figure 20. AIX minimum configuration

Once this is done, you may want to check the TCP/IP status on the IM server
system.
Chapter 3. Getting started 45

You can check all TCP/IP related subsystems with the lssrc -g tcpip

command on the AIX command line. Be sure that the inetd daemon is active.
You can also check for inetd only with lssrc -s inetd command.

Add the dotted decimal address and host name into the /etc/hosts file of the
IM client system (see Figure 21).

Figure 21. AIX hosts file

Verify the TCP/IP connection from the client.

You can check the connection from the client to the server by typing PING

HOSTNAME on the command line.

3.3.4 Windows
We describe all actions in this section using Windows NT as a sample
system. Using Windows 95 as the operating system for the IM client might
have different screen names, but is basically the same procedure as shown
here for Windows NT.
46 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

To check if TCP/IP is configured on your system, double-click the Network
icon in the NT Control Panel. Select the Protocol tab, click TCP/IP and then
Properties, as shown in Figure 22. The window must show an adapter and
either have DHCP selected or an IP address specified.

Figure 22. Windows NT TCP/IP properties

Try to find out if you can reach the server machine through the TCP/IP
protocol from the machine you intend to use as the client. To test this, open
an NT Command Prompt window and type ping hostname for the desired
hostname.

If this fails, try to find out the IP address of the host. Unless your system is
configured using DHCP, you may find an entry in your local hosts file. Try to
ping the address instead of the hostname. If this also fails, your network
setup is incorrect and you should contact your network administrator.
Chapter 3. Getting started 47

Otherwise, you need to edit the file that is used to translate hostnames into IP
addresses. This file, called HOSTS, is located in the directory
WINNT\SYETEM32\DRIVERS\ETC (normally found on drive C:). Add a line
to that file with any text editor as shown below for examplehost with address
9.9.9.9.

Never change the entry or address for localhost. Test your new setup by
saving your hosts file and then ping examplehost. This should now work.

You can use DHCP on your clients without any problems. If you need to use
DHCP on your IM server, the server’s hostname must be registered with a
DNS server, because you cannot specify a fixed IP address in the client’s
hosts file.

3.4 SNA basics

SNA is a communications architecture that was originally designed to
address the increasing complexity of data processing and communications
needs as technology advanced. SNA is not a product, it is an architecture that
provides a blueprint or specification of how diverse products can connect and
communicate with each other. It defines a set of rules that describe the
transport of data and specify, for example, what the data looks like, how it is
to be packaged, and who the sender and receiver are.

#
This is a sample HOSTS file used by Microsoft TCP/IP for Windows NT.
#
This file contains the mappings of IP addresses to host names. Each
entry should be kept on an individual line. The IP address should
be placed in the first column followed by the corresponding host name.
The IP address and the host name should be separated by at least one
space.
#
Additionally, comments (such as these) may be inserted on individual
lines or following the machine name denoted by a '#' symbol.
#
For example:
#
102.54.94.97 rhino.acme.com # source server
38.25.63.10 x.acme.com # x client host

127.0.0.1 localhost
9.9.9.9 examplehost
48 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

3.4.1 SNA layers
SNA is a structured architecture that consists of seven well-defined layers,
each of which performs a specific network function. As a result of this
structure, SNA products have compatible interfaces that facilitate
interconnection and communication. Their new functions and technologies
can be added to the network with no disruption to the flow of data. The layers
defined in SNA are:

• Transaction services

Provides application services, such as distributed database access or
distributed file management.

• Presentation services

In general, formats the data for different media and sharing of devices.

• Data flow control

Synchronizes the flow of data within a network, correlates data
exchanges, and groups related data into units.

• Transmission control

Regulates the rate at which data is exchanged to fit within the processing
capacity of the participants to avoid congestion in the transport network.
This layer is also responsible for encryption, if required.

• Path control

Routes data between source and destination and controls data traffic
within the network.

• Data link control

Transmits data between adjacent network nodes.

• Physical control

Connects adjacent nodes physically and electrically and is the hardware
part of the connection.

SNA provides function subsetting at a logical unit (LU) level. Thus, the
architecture provides standard option sets, in the form of profiles, which are
defined in the transmission control, data flow control, and presentation
services levels. A specific LU supports a subset of architected profiles that
reduces the number of options specific network products have to implement.
End users (for example, terminal users, applications) access the network
through the LU component of a network product. The LU manages the
exchange of data and acts as the intermediary between the end user and the
network.
Chapter 3. Getting started 49

Network products only need to implement the rules or protocols that support
the type of communication appropriate to the product. Therefore, printers
implement printer protocols, (for example, LU1), and display devices
implement LU2.

With the advent of personal computers, programmable workstations, and
LANs, SNA has led the move toward peer-to-peer networking. Within SNA,
the LU 6.2 protocol is the defined standard for communications between
functionally equivalent LUs. It provides a standard set of formats and
communication rules that allow programs to directly communicate across
multiple hardware and software environments.

3.4.2 APPC basics and terminology
LU 6.2 describes the standard functions that programs can use to
communicate with each other. The implementation of this protocol is called
APPC. Sometimes, LU 6.2 and APPC are used synonymously.

3.4.2.1 The LU 6.2 protocol
The LU 6.2 protocol provides a consistent method for programs to:

• Identify and negotiate the communications options to be used by each
partner program

• Provide the name of the partner destination and program

• Supply end-user security parameters to be associated with the request on
the remote platform

• Control the transmission of messages

• Synchronize the processing between the partner programs

• Perform coordinated commit processing

The actual functions that can be used may vary from one APPC
implementation to another. Programs communicate using options that are
supported and agreed to by the APPC support on either side.

3.4.2.2 Logical units
The APPC LU implements the LU 6.2 protocol and provides the means by
which transaction programs (TPs) access the network. The SNA software
accepts requests from the TPs, executes them, and routes the data packet
while hiding the physical details of the underlying network. The term local LU
refers to the LU to which a TP issues its APPC calls. The Local LU then
communicates with a partner LU on either the same or a different node.
50 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

3.4.2.3 Transaction programs
When an APPC application establishes a connection with another LU in the
network, the application must identify the name of the TP it wants to execute.
The TP name is the logical network name that is used by a program to
communicate over the network, and can be up to 64 bytes long.

There are two basic types of TPs:

• Application TPs, which perform tasks for end users

• Service TPs, which perform tasks related to system services, such as
changing passwords

3.4.2.4 Sessions
The logical connection between LUs is called a session. Sessions are
established when one LU sends another LU the request to BIND. During this
BIND process, both partners exchange information about the characteristics
of the connection to be established. The LU that starts the session, the
initiator, is known as the primary LU, and the recipient of the session is known
as the secondary LU.

LUs have either single-session capability, that is, they allow only one active
LU-to-LU session with a partner LU at a time; or they have parallel-session
capability. With parallel-session support it is possible to have more than one
session with the same partner LU at the same time. Most LUs have
parallel-session capability.

3.4.2.5 Conversations
To avoid the overhead of session setup every time two LUs want to
communicate, another concept, that of a conversation, has been defined. A
conversation is the logical connection between TPs and is carried out over a
session. Conversations serially reuse a session to exchange end user
information. When a conversation ends, another conversation can be
allocated and use the same session. Sessions are typically long-lived links,
whereas conversations exist for the duration of the exchange of information,
for example, the time it takes to process a transaction.

The basic elements of a conversation are:

• Starting a conversation. When a program wants to start an LU 6.2
conversation with another program, it issues an allocate request. The
ALLOCATE identifies the partner and requests a connection. The APPC
LU makes the connection, if possible, and attempts to reuse a session that
was previously established. If none exists, it creates a session. The
partner can accept or reject the conversation request. If the request is
Chapter 3. Getting started 51

accepted and the conversation established, the caller is put into send
state, the partner is put into receive state, and information can now be
exchanged between the two.

• Exchange of information. The program that is in send state sends
information to its partner, using the SEND_DATA verb. This action causes
the data to be put into the LU's buffer (the LU that is local to the program).
The LU does not actually send the data until either the buffer is full (max
RU for the session on which the conversation is allocated) or the program
explicitly issues a verb (that is, FLUSH, CONFIRM, or one that changes
state) that explicitly causes the LU to transmit the buffered data. The
partner LU accepts the data and buffers it. The TP gets the data and/or
status indicators as a result of issuing a verb such as
RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE.

• Requesting confirmation. TPs can optionally request synchronization of
communications by requesting and granting confirmations, so that they
can determine whether their partners have successfully received data that
they have sent. Requesting confirmation allows programs to agree that
processing completed without error. The level of synchronization (in this
case, CONFIRM) is specified during allocation with the SYNC_LEVEL
parameter. When a TP issues the CONFIRM verb after a SEND_DATA,
the TP actually waits (is suspended) until it receives the response from the
partner. The partner responds that it has either received the data
(CONFIRMED) or that an error has occurred.

• Sending an error notification. When an error occurs, either partner may
inform the other of the condition by issuing a SEND_ERROR or
DEALLOCATE_ABEND.

• Ending conversations. A conversation is ended by issuing a
DEALLOCATE verb. The partner receives both a deallocate indicator and
any remaining data and then may be asked to confirm the deallocation or
just terminate. The partner is put into reset state and completes its own
processing. When a conversation is ended, the session is then available
for use by another conversation.

When TPs communicate over an LU 6.2 conversation, there are a few areas
that they both agree on for compatibility.

Synchronization level provides a means by which two TPs (if they choose to
do so) reach a consistent state of processing with respect to the data
exchanged. The programs on either end synchronize their actions by
requesting and granting confirmations. Confirmation could be used, for
example, when one program wants to ensure that its partner received the
52 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

data it sent before deleting the source of the transmitted data. There are
three possible SYNC_LEVELs.

• NONE — Specifies no synchronization.

• CONFIRM — Allows a TP to request specific acknowledgment from a
partner that it has received a message. This SYNC_LEVEL enforces
confirmation exchanges and error reporting. There are two flavors of
confirmation. The first is one wherein a TP issues a CONFIRM verb, to
which the partner replies either positively with CONFIRMED, or reports an
error condition with SEND_ERROR. The second one is where a TP
requests confirmation from its partner by issuing a verb such as
DEALLOCATE with type=SYNC_LEVEL.

• SYNCPOINT — Allows all transaction programs in a distributed
environment to commit or back out changes to protected resources (that
is, databases). The LU takes responsibility for syncpoint processing.

A synchronous conversation is characterized by a transaction program
issuing an ALLOCATE of a conversation, a SEND of data, and a RECEIVE for
the reply. When the partner detects that the input message is complete, that
is, the partner program enters the RECEIVE state, the conversation is
considered to be synchronous. Replies are sent back on the same
conversation.

An asynchronous conversation is characterized by a transaction program
issuing an ALLOCATE of a conversation, a SEND of data, and a
DEALLOCATE. This conversation allows the originating TP to do other work
while the partner processes the request. The conversation is in RESET state.
If an output reply is to be sent back, a new conversation to send the reply is
allocated.

The choice of a MAPPED or BASIC conversation type affects the format of
data transmission. An APPC logical record is a sequence of length "LL"
(2 bytes) and "data" fields. A typical pattern is "LLdataLLdata..." where the LL
fields define how much data follows before the next length field. The choices
for preparing the data for transmission in this manner are:

• MAPPED — Lets APPC format the data into and out of this pattern for
each transmission. The handling of the details of the underlying data
stream is the responsibility of the APPC LU and not the application. Thus,
applications are easier to code because they only need to prepare the
data in the format that the partner expects.

• BASIC — Requires the TPs to be responsible for formatting the data and
including the LL field. This puts the burden on the TP rather than the
APPC LU.
Chapter 3. Getting started 53

3.4.2.6 Common Programming Interface for Communications
Because the LU 6.2 architecture provides freedom of syntax, products such
as APPC/MVS, OS/400, and OS/2 have the option of creating unique
implementations of the APPC API as long as they adhere to the semantics
(services) as defined by the architecture. As a result of this freedom, the
different products have in fact done so. This makes it very complicated for
APPC programmers who have to program in different environments, because
they are faced with having to learn the unique API appropriate to an
implementation. For example, to issue an allocate verb in the APPC/MVS
environment, a programmer codes ATBALLC; in an OS/2 environment, a
programmer would use the MC_ALLOCATE verb, and in an OS/400
environment, a programmer would use the ACQUIRE and EVOKE verbs.

To alleviate this problem, a standard and consistent API has been defined for
applications that need to communicate in the APPC arena. The Common
Programming Interface for Communications (CPI-C) is common across
multiple environments and differs from the product-specific APIs in that it
provides an exact common syntax to specify the function calls and
parameters. CPI-C is designed to eliminate the mismatch of the verb
specifications in the different environments. This capability allows an
application programmer to learn the syntax on one platform and port the
knowledge or even part of the program to another supporting platform.
Application programs can use CPIC calls in the major languages such as
COBOL, C, FORTRAN, and PL/I. Pseudonym files are provided in the
different operating environments (in MVS, check SYS1.SAMPLIB). The files
can be "included" or "copied" into programs that call CPI-C.

It is up to an application programmer to decide whether to use CPI-C or the
native interface unique to the specific APPC implementation.

Advanced Program to Program Communication (APPC) is the System
Network Architecture (SNA) protocol, on which Distributed Relational Data
Architecture (DRDA) is based. APPC is used for the communication between
the host system and the workstation servers. The necessary definitions for
the APPC protocol are much easier to handle using VTAM/Advanced Peer to
Peer Networking (APPN) on the host side. That means some of the
definitions are made automatically during startup of communication.

For the time being, TCP/IP is not supported by DB2 for VSE V5, one of the
host data servers for this project, which just has support for APPC protocol.

To set up DRDA in VM, we need APPC/VM VTAM Support (AVS), which
handles the communications between VM and non-VM systems in the
network. DB2 communicates by using Inter User Communication Vehicle
54 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

(IUCV) with the AVS virtual machine. Coordinated Resource Recovery (CRR)
provides the synchronization services for two-phase commit processing. A
VM CMS application can act as a DRDA client to access any DRDA server.

On VSE, CICS handles the DRDA connectivity and also supports the
two-phase commit processing. VSE itself uses Cross Partition
Communication (XPCC) to talk to CICS.

APPC communication can be used for communication with CrossAccess
Servers as well. CrossAccess is able to work as a VTAM application, not
requiring use of the CICS. This allows the possibility of using native TCP/IP
for VSE with this products. Details about this configuration will be described
later in this book.

3.5 Configuring your SNA (LU 6.2, APPC, and CPI-C)

LU 6.2 is an SNA communications architecture. APPC (Advanced
Program-to-Program Communication) is a language based on the LU 6.2
architecture. A developer of SNA transaction programs has to choose from
many different implementations of APPC. This could potentially lead to
product incompatibility. Even though each implementation of APPC adheres
to the LU 6.2 architecture, two implementations of APPC might not be exactly
the same. Therefore, programs that rely on one vendor’s APPC
implementation might not work with another vendor’s implementation.

This problem is solved by a standard, common programming interface, CPI-C,
which implements the APPC verb set. Therefore, applications that require the
use of the APPC verb set can instead be written using CPI-C in order to
achieve SNA vendor independence. QMF for windows is an application that is
written using CPI-C.

In an SNA network, QMF for Windows’ basic requirement is that it must be
able to establish an LU 6.2 session with DB2, using the CPI-C interface. This
connectivity is not provided with QMF for Windows; you must have a third
party tool that implements it. Whatever product you use to provide SNA
connectivity, it must be installed and configured before you proceed with
installing or using QMF for Windows.

The process of implementing LU 6.2 connectivity between Microsoft Windows
and DB2 can be a complex task, depending on your SNA environment. The
Windows-based SNA products that can be used, and the different ways to
use them, are far too numerous and complex to be described in detail in this
redbook. You must rely on your in-house SNA networking staff and your SNA
Chapter 3. Getting started 55

software vendor’s technical support services to implement and support your
network configuration.

The first step is to identify the appropriate values for the following definitions
in Table 1.

Table 1. SNA configuration parameters

3.5.1 Windows NT
The following section guides you through the configuration of the CPI-C for a
Windows client using IBM Personal Communications Version 4.3.

1. To start the configuration, select the Windows NT Start Menu. Click on
Programs, then on IBM Personal Communication, and finally on SNA
Node Configuration.

2. Pull down the File menu and select New.

If you already have a valid Personal Communication configuration file and
you want to modify this, simply select your configuration file from the File
menu instead.

The window as shown in Figure 23 will open, showing the possible APPC
definitions required to define the CPI-C communication. In order to
configure Personal Communications for CPI-C, the following parameters
need to be configured:

- Configure Node
- Configure Devices
- Configure Connections
- Configure Partner LU 6.2

Definition Sample value Your value

Network ID USIBMSC

Local node name SC02242

Local node ID 05D 02242

Local LU SC02242I

Destination address 400022160011

Adjacent CP name SCG20

Partner node name SCPDB2X

Partner network ID USIBMSC

Mode name IBMRDB
56 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

- Configure Modes
- Configure CPI-C Side Information

Figure 23. Personal communication - configuration window

3.5.1.1 Configure Node
In the main configuration window, select the Configure Node entry and click
New. Enter the data in the window shown in Figure 24 and click OK. Leave
the entries in the Advanced and DLU Requester with their default values.
Chapter 3. Getting started 57

Figure 24. Configure node

3.5.1.2 Configure Devices
Select the Configure Devices and the Data Link Control (DLC) required and
click New. All of the entries should be done automatically. Click OK to confirm
the entries.

3.5.1.3 Configure Connections
In the main configuration window select the Configure Connections as well
as the DLC defined in the previous step and again click New. The window
shown in Figure 25 will appear.
58 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 25. Configure connection

After all the entries are made, select the Advanced tab and make sure the
following parameters are set to on (checked):

• Activate Link at Start
• Solicit SSCP Sessions

The entry for the PU name can be left with its default value, DIRPU000. Make
sure that your local node’s Physical Unit ID is entered correctly.

Go on to the Adjacent Node tab and enter the values as shown in Figure 26,
then click OK to return to the main configuration window.
Chapter 3. Getting started 59

Figure 26. Adjacent node definition

3.5.1.4 Configure Partner LU 6.2
To configure the Partner LU 6.2, select the corresponding line in the
configuration windows and click New. Enter all your data into the screen, as
shown in Figure 27 and click OK to confirm the entries.
60 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 27. Partner LU 6.2

3.5.1.5 Configure Modes
To create a new Mode to be used with the CPII-C communication, select
Configure Mode, click New and type the mode name into the entry field. All
other entries might be kept with their defaults, if you create the mode named
IBMRDB that is typically used when connecting to the DB2 system on the
host. Click OK to return to the main configuration window.

3.5.1.6 Configure CPI-C Side Information
The last step is to finally create the definitions for the CPI-C Side
Information. Figure 28 shows the entries to be made. The Symbolic
Destination Name is the value that QMF for Windows requires when defining
a server to be accessed using CPI-C.
Chapter 3. Getting started 61

Figure 28. CPI-C side information

Clicking OK will confirm the parameters and the configuration file needs to be
saved by selecting Save As from the File menu.

3.6 Data exchange protocols

This section discusses the different options and capabilities for accessing
and transferring data between different systems. More detailed information
about this topic can be found in From Multiplatform Operational Data to Data
Warehousing and Business Intelligence, SG24-5174.

3.6.1 DRDA remote unit of work (RUW)
The remote unit of work, also referred to as DRDA level 1, offers remote data
access from an Application Requester (AR) to an Application Server (AS).

RUW means that one Database Management Subsystem (DBMS) is
accessed with one logical unit of work. After changed data has been
committed, the application might switch to another DBMS, even on another
platform.
62 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

The AR functionality is not only available on the workstation side; an
application running on OS/390 or VM might access a workstation DBMS as
well. The way to define the remote access is different on the different
platforms. On OS/390 all definitions are held in DB2 tables, whereas the VM
side requires some definitions on the operating system side as well. The PC
systems (Windows and OS/2) offer a GUI for all required definitions.

3.6.2 DRDA distributed unit of work (DUW)
The distributed unit of work represents the DRDA level 2, giving access to
more than one DBMS within one logical unit of work. That is, the application
might switch to another DBMS before committing the data on all sites in
parallel. A funds transfer from one DBMS to another is the best sample for
such an application. If the update on one side fails, the changes on the other
side are rolled back as well. So there is no risk of an inconsistency in
between. The DUW requires a Two Phase Commit functionality on all
participating DBMSs.

3.6.3 Distributed request (DR)
The two phase commit function is the base for the distributed request as well.
DR means access to several DBMS within one select statement. With this
functionality, a join of data from multiple systems is possible. The IBM
DataJoiner (DJ) offers this function when providing several (remote) data
sources as one single database image. The SELECT SQL statement (join of
two or more tables) is issued against the DJ database, and the middleware
splits it up to several DUW requests or transfers the data and performs the
join locally.

3.6.4 Private protocols
Private protocols are used within the DB2 family for communication between
the Universal Database (UDB) products on the workstation side. This private
protocol provides same functionality as DRDA.

The SQLDS private protocol is used for communication between DB2 Server
for VM and DB2 Server for VSE through Guest Sharing only. It provides no
DRDA functionality. With the setting of the DB2 for VSE or VM start-up
parameter PROTOCOL to either AUTO or SQLDS, you may decided whether
the database server accepts a DRDA request or private protocol only.
Chapter 3. Getting started 63

3.6.5 Nonrelational access
For the access to nonrelational data from a "relational" requester, there are
no specific protocols to be named; only products.

OS/390
A feature of DB2 DataJoiner called Classic Connect provides access to IMS
and VSAM data on OS/390 in a relational view. A server application running
on the host, maps the nonrelational data to the specified table image using
meta data. This meta data is generated from the COBOL copybooks or the
database descriptor block (DBD for IMS), which describe the format of the
data records.

VSE/ESA
A similar function is provided for access to VSAM, DL/I, and sequential files
on VSE by CrossAccess from CROSS ACCESS Corporation. The Server is
running permanently on the host to be accessed either through TCP/IP or
APPC. For every request, a Database Management System Interface (DMSI)
is started in another (dynamic) partition. The DMSI accesses the
nonrelational data, while the server maps it to the relational table image by
using the meta data, as described for Classic Connect.

So far, the access to the nonrelational data is read-only. Joining of tables is
possible for "like" data; that means, for example, two VSAM tables.

3.7 Connecting via Call Level Interface (CLI)

In order for QMF for Windows to connect to DB2 via CLI, you first use the
DB2 UDB facilities to define your database servers and how to connect to
them; this configuration is outside the control of QMF for Windows. The
network configuration is performed as part of the DB2 UDB client
configuration, rather than as a part of QMF for Windows configuration.

To access a DB2 UDB server using CLI, the 32-bit version of QMF for
Windows must be able to establish a CLI connection from the local host (the
system on which QMF for Windows is running) to the remote host (the system
on which DB2 UDB is running) via the DB2 UDB client.

QMF for Windows requires the DB2 UDB client Version 5.2 or later to access
the database via CLI and supports CLI connections only to the DB2 UDB
database servers on the workstation environment, including DB2 DataJoiner.
64 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

3.8 Installing QMF for Windows

QMF for Windows is made up of three components:

1. Client (PC code that users use to connect to the DB2 server.)

2. Administrator tool (PC code that administrators use to configure QMF for
Windows).

3. Host enabler (code that administrators upload to the database server via
the administrator’s tool, enabling the client to connect to DB2). This is
more a post-installation task that needs to be performed by the database
administrator or systems programmer. In this step the QMF objects
(Tables and Views) are created on each server and the QMF packages are
bound to the database.

When you insert the product CD-ROM you have the option of installing QMF
for Windows only, or also install the QMF for Windows Administrator. The
main installation process is very straight forward as long as the database
administrator installs the product using the distribution media. But this
requires the installation CD-ROM to be passed among the potential users and
each user has to perform the installation by himself and in addition will install
the full version, rather than the thin client. The following section describes this
installation process and its options in more detail.

3.8.1 Advanced installation
In order to simplify the installation process, QMF for Windows allows the
installation files to be placed on a central system and the users can start the
installation process from there. This type of installation will also allow the
administrator to set certain variables for the users in advance, thus
simplifying the post installation process for the end users.

Preparing for the advanced installation will require a couple of steps to be
performed and these steps are described in the following.

3.8.1.1 Copying disk images
Before you can perform an advanced installation, you must copy the disk
images from the QMF for Windows CD. For information on locating the
correct language and version (16- or 32-bit) of QMF for Windows, refer to
the readme.txt file in the QMF for Windows CD root directory.

Using Windows Explorer or File Manager, copy each disk image directory
to a centrally accessible computer.
Chapter 3. Getting started 65

3.8.1.2 Predefining user options
These are two common options that you can predefine for your users by
editing the rdbi.ini or qmfwin4.reg file.

- Server definition file

The server definition file specifies the database servers that QMF for
Windows uses. You must enter the name and the path of the server
definition file to be used QMF for Windows.

- CPI-C provider DLL

The CPI-C provider DLL defines which SNA product you are using. If
you are using a CLI or TCP/IP connection only, you do not need to
declare this setting.

• Edit predefinition file for 16-bit installations:

User options are stored in the file named rdbi.ini. This file is on
Disk1 of the QMF for Windows installation diskettes. The user
options, found in the [Options] section of this file, are
ServerDefinitionsFile and CPICDLL.

Example

[Options]
ServerDefinitionsFile=f:\windows\sdf.ini
CPICDLL=c:\windows\system\wincpic.dll

• Edit predefinition file for 32-bit installations

User options are stored in the registry. The registry is updated
during QMF for Windows installation based on the settings in the file
named qmfwin4.reg.

This file is on Disk1 of the QMF for Windows installation diskettes.
The user options, in the following section of this file:
[HKEY_CURRENT_USER\Software\IBM\RDBI\Options], are
ServerDefinitionsFile and CPICDLL. When you specify values for
these options in this file, make sure that all backslashes (\) are
doubled. For example, specify c:\\dir (not c:\dir). Also, make sure
that both the option name and value are enclosed in double quotes.

Example

"ServerDefinitionsFile"="f:\\windows\\sdf.ini"
"CPICDLL"="c:\\windows\\system\\wincpic.dll"
66 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

3.8.1.3 Save options file on Disk1
After you edit and save the appropriate predefinition file, copy it to Disk1
of the QMF for Windows installation diskettes.

3.8.2 Unattended installation
An unattended installation allows you to select the installation options for your
QMF for Windows users before beginning the installation process. The
advantage of this method is that you can designate all the options of an
installation rather than having to select the same options repeatedly for each
installation. The options are defined when you edit setup.ini.

Using a simple text editor, edit the setup.ini file. This file, on Disk1 of the
installation diskettes, controls the installation process and determines the
settings used for the installation. The variables you can set are shown in
Table 2.

Table 2. Installation parameters

Option Settings Explanation

AutoInstall = 0, 1 To enable unattended installation set to 1.

FileServerInstall = 0, 1 0 means all QMF files will be installed to the
path specified in InstallPath. This results in a
full installation.

1 means QMF is already installed on the
fileserver in the path specified by InstallPath.
This will create only the program group entries
on the user desktop, resulting in a thin client
installation. No code is transferred to the user
system.

SetupType = 0, 1, 2 0=Typical, 1=Compact, 2=Custom (requires
Components to be specified)

InstallPath = <directory> Directory where QMF will be installed (if
FileServerInstall=1)

OverwiteINI = 0, 1 Valid only for 16-bit installations:
Existing rdbi.ini will be overwritten if set to 1

ProgramGroup = <name> Name of the Program Group that will be
created.
Chapter 3. Getting started 67

If the installation type Custom (SetupType=2) is specified, the following
components have to specified whether they have to be installed or not:

• Base= will install QMF for Windows

• Admin= will install QMF for Windows Administrator

• Excel= will install MS Excel Add-In

• 1-2-3= will install Lotus 1-2-3 Add-In

For each of those components, 1 means it will be installed, 0 means it will not
be installed.

Example 1: Setup.ini

[Options]
AutoInstall=1
FileServerInstall=0
SetupType=2
InstallPath=C:\Programs\QMFWin
ProgramGroup=QMFWin
Base=1
Admin=0
Excel=0
1-2-3=1

This setup.ini file specifies an unattended installation. A custom installation is
performed, installing the QMF for Windows product and the Lotus 1-2-3 Add
In. The files will be copied to the C:\Programs\QMFWin directory, and a
program group or program folder named QMFWin will be created.

Example 2: Setup.ini

[Options]
AutoInstall=1
FileServerInstall=1
SetupType=0
InstallPath=H:\QMFWin
ProgramGroup=QMFWin

This setup.ini file specifies an unattended installation. A typical installation is
performed, but no files will be physically transferred to the client workstation,
as QMF for Windows already is installed on a network drive H in the QMFWin
directory. Only a program group or program folder named QMFWin will be
created, resulting in a thin client installation.
68 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Chapter 4. DBA’s guide

This chapter provides a step-by-step guide to effectively configure and
administer QMF for Windows, starting with the Administrator module. It also
provides detailed examples regarding the execution of the DBA functions.
The intended audience is the database administrator responsible for
configuring and maintaining QMF for Windows.

4.1 Working with QMF for Windows Administrator

QMF for Windows Administrator is the administrative component of QMF for
Windows and using this module is strictly an administrator task. There are
four basic tasks that you perform with QMF for Windows Administrator:

• Defining and configuring the database servers that QMF for Windows will
access.

• Creating QMF for Windows database objects, binding packages and
granting permissions in each database server that QMF for Windows will
access.

• Creating QMF for Windows sample tables in each database server that
QMF will access.

• Administer QMF users, governing, and object tracking.

When you are using QMF for Windows Administrator, you are always editing
a particular server definition file (SDF). The SDF contains all of the
technical information needed by QMF for Windows to access any number of
database servers. There are two ways (shown in Figure 29) to use server
definition files:

1. You can allow each user to have his or her own SDF.

2. You can create a single SDF that is shared by multiple users over a
file-sharing network. This approach has the advantage that it centralizes
administration of the SDF; you only need to create and maintain a single
file, and your users need only point to that file when they run QMF for
Windows.
© Copyright IBM Corp. 1999 69

Figure 29. Server definition file

You can create a new SDF for a user or group of users by selecting the
New... command or the Save As... command from the File menu. To open
and work with a different SDF, select the Open... command from the File
menu.

Example of SDF:

[Server Parameters]
Server1=QMF Demo
Server2=DB2NT
Server3=DB2AIX
[QMF Demo]
RDBName=SAMPLE
HostName=qmfdemo.rocketsoftware.com
Port=40000
SymDestName=*TCP/IP*
DecimalDelimiter=Period
StringDelimiter=Apostrophe
RDBI-CollectionID-0000000000000012=QMFW611
QMFWin-CollectionID-0000000000000011=QMFW611
DefaultSchedule1=Y00000078000003840009601710000012C00000000000000000
00A0000000007FDFFFE00002710XX
[DB2NT]
Timestamp=19990830205032
RDBName=SAMPLE
HostName=78-axfxb

File Server with
central SDF

Clients with QMF, no local SDF

Client with QMF
and local SDF

Database
Server 1

Database
Server 2

SDF

Server 1
Server 2
Server X

SD F

Server 1
Server 2
Server X
70 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Port=50000
SymDestName=*TCP/IP*
DriverName=
DefaultSchedule1=Y00000078000003840009601710000012C00000000000000000
00A0000000007FDFFFE00002710XX
DefaultSchedule2=@
0000000000000000
DefaultSchedule3=2
DefaultSchedule4=1
QueryBlockSize=32500
DecimalDelimiter=Period
StringDelimiter=Apostrophe
IsolationLevel=CursorStability
BindReplace=1
BindKeep=1
BindOwner=IMRES2
EnterpriseType=
DatabaseType=DB2
xSingleCCSID=1252
xMixedCCSID=0
xDoubleCCSID=0
xQMFCCSID=37
QMFWin-CollectionID-0000000000000011=NULLID
QMFWin-CollectionID-0000000000000014=NULLID
[DB2AIX]
Timestamp=19990831165455
RDBName=SAMPLE
HostName=AZOV
Port=60000
SymDestName=*TCP/IP*
DriverName=
DefaultSchedule1=Y00000078000003840009601710000012C00000000000000000
00A0000000007FDFFFE00002710XX
DefaultSchedule2=@
0000000000000000
DefaultSchedule3=2
DefaultSchedule4=1
QueryBlockSize=32500
DecimalDelimiter=Period
StringDelimiter=Apostrophe
IsolationLevel=CursorStability
BindReplace=1
BindKeep=1
BindOwner=db2inst1
EnterpriseType=
DatabaseType=DB2
xSingleCCSID=819
Chapter 4. DBA’s guide 71

xMixedCCSID=0
xDoubleCCSID=0
xQMFCCSID=37
QMFWin-CollectionID-0000000000000011=NULLID
QMFWin-CollectionID-0000000000000014=NULLID

4.1.1 Configure database connections
The primary function of QMF for Windows is to access data stored in any
database in the DB2 family of databases. There are three ways in which QMF
for Windows can connect to DB2:

• Using DRDA via TCP/IP

• Using DRDA via CPI-C

• Using CLI

Because QMF for Windows implements the DRDA requester specification, it
is capable of connecting to any database that adheres to and implements the
DRDA server component. The IBM database products that contain a DRDA
server component and are capable of communicating directly with QMF for
Windows are:

• DB2 UDB for OS/390, DB2 for OS/390, and DB2 for MVS

• DB2 Server for VSE&VM, and SQL/DS

• DB2 UDB for AS/400

• DB2 Universal Database and DB2 Common Server

• DB2 Parallel Edition

• DB2 DataJoiner

You use QMF for Windows Administrator to define each server, giving it a
name and also specifying the technical information that QMF for Windows
needs to access it. This process is analogous to defining a data source in
ODBC. In order to define a new database server to QMF for Windows, from
the Administrator main window you must click New... and enter all of the
following required values on the Server Parameters dialog box:

The server definition file is created and edited using the QMF for Windows
Administrator application. Editing this file using any other method is not
recommended, as it may corrupt the file.

Note:
72 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

• Specify a server name

• Specify an RDB name (not necessary for CLI connections)

• Specify the network connection

The following describes these steps in detail:

4.1.1.1 Server name
You must define each licensed database server that you or your users access
with QMF for Windows. When you do so, you give each database server a
server name. There are no restrictions on what this name can be; it is
intended to be a descriptive, user-friendly label for the server, used only by
the users in QMF for Windows and by the DBA in QMF for Windows
Administrator. This name is all that the user of QMF for Windows needs to
know in order to access that server; all of the technical details about how to
access the server are hidden behind the server name in the SDF.

4.1.1.2 RDB name
The next step is to define the RDB name, also known as the location name in
DB2 for OS/390 or MVS terminology, or simply the database name in DB2
Universal Database or DB2 Common Server technology.

4.1.1.3 Network connection
As mentioned previously, there are three different ways for QMF for Windows
to connect to a database:

• DRDA via TCP/IP

• DRDA via CPI-C

• CLI

After selecting the radio button for the required connection, you need to enter
the following values, depending on the selection made:

For DB2 OS/390 DBAs: If you are not sure of the value to enter here,
there is an easy way to determine the correct value; with a tool other
than QMF for Windows, run the following query at the server:

SELECT DISTINCT CURRENT SERVER FROM SYSIBM.SYSTABLES

The resulting value is the RDB name for the server.

Hint:
Chapter 4. DBA’s guide 73

TCP/IP
Not all the DB2 host servers (DB2 UDB for OS/390, DB2 for OS/390, and
DB2 for MVS) support TCP/IP connections. If you don’t know if your DB2
OS/390 subsystem is configured to use TCP/IP, see the Sync Port and host
name in DB2xMSTR. If DB2x is not configured to support TCP/IP, see the
DB2 Installation Guide provided with your DB2 license for instructions on how
to configure your subsystem.

Host name: If you enter a TCP domain name for the host name, QMF for
Windows Administrator resolves that name to an address using the
GetHostByName socket call. Alternatively, you can directly specify the host
address in dotted decimal notation (for example, "1.2.3.4")

Port number: This is the TCP/IP port the database server is configured for
with its listener port in the services file.

Figure 30 shows a sample Server Parameters screen for the connection
definition to a DB2 for AS/400 database using DRDA via TCP/IP as the
network connection.

Figure 30. TCP/IP Connection definition
74 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

CPI-C
Before configuring this connection, you must specify the SNA software that
you are using to implement CPI-C in your Windows environment. This
software has to be configured, and the CPI-C symbolic destination name
for the database server has to be defined before the QMF for Windows
installation. The CPI-C symbolic destination name is defined in your SNA
software as described in detail in 3.5, “Configuring your SNA (LU 6.2, APPC,
and CPI-C)” on page 55.

From the main window in QMF for Windows Administrator, select the
Options... command from the Edit menu. In the Options dialog box in the
CPI-C Options group, specify the name of the DLL that your SNA software
provides for CPI-C applications as shown in Figure 31 on page 75. The name
of the provider DLL typically is wcpic32.dll.

Figure 31. Provider DLL

Once the SNA software is configured, you can proceed with the QMF for
Windows Administrator.

You can connect to the current version of DB2 DataJoiner via DRDA
using only the SNA protocol at this time. The DRDA connection using the
TCP/IP protocol is not supported by the current version of the DB2
DataJoiner.

Note:
Chapter 4. DBA’s guide 75

Using DRDA via CPI-C requires only one single entry in the QMF for the
Windows Administrator screen, the symbolic destination name, as shown in
Figure 32.

Figure 32. CPI-C connection definition

CLI
In order for QMF for Windows to connect to DB2 via CLI, you first use the
DB2 UDB facilities to define your database servers and how to connect to
them; this configuration is outside the control of QMF for Windows. One this
configuration is completed at the DB2 UDB client, in order to create the
connection inside QMF for Windows Administrator you need only to specify
the alias defined for a particular database.

The primary advantage of using CLI is simplified configuration: if a database
is already defined in the DB2 UDB client, its alias is the only information
needed in QMF for Windows. The network configuration is performed as part
of the DB2 UDB client configuration, rather than as a part of QMF for
Windows configuration.
76 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

The disadvantages of using CLI are:

• QMF for Windows performance using CLI and DB2 Connect is generally
slower than using DRDA connection to connect to OS/390 servers directly.

• QMF for Windows only supports connecting to workstation databases with
CLI: you must use DRDA connections to access any host DB2 database.

• Restrictions on using QMF for Windows via CLI to execute DB2 Stored
Procedures that return multiple result sets.

• Restrictions on using QMF for Windows via CLI to bind static SQL.

Figure 33 shows a connection to an Oracle database using DB2 DataJoiner
via CLI.

Figure 33. DB2 datajoiner using cli: server parameters

To access a DB2 UDB server using CLI, the 32-bit version of QMF for
Windows must be able to establish a CLI connection from the local host (the
system on which QMF for Windows is running) to the remote host (the system
on which DB2 UDB is running) via the DB2 UDB client.
Chapter 4. DBA’s guide 77

QMF for Windows requires the DB2 UDB client Version 5.2 or later to access
the database via CLI and supports CLI connections to the following database
servers: DB2 UDB, DB2 Parallel Edition, and DB2 DataJoiner.

To connect to DB2 for MVS, DB2 for OS/390 and DB2 UDB for OS/390 using
CLI, you must have DB2 Connect installed locally or as a gateway. Although
this connectivity is possible, for performance reasons we recommend to
connect to those platforms using a DRDA connection to avoid a possible
performance bottleneck at the DB2 Connect gateway. However, if DB2
Connect is already installed in the existing environment and its performance
is sufficient for the amount of users using this gateway, this will allow for a
very easy setup for QMF for Windows.

4.1.2 Test the server connection
To ensure that QMF for Windows can establish a connection to the database
server, select the server in the QMF for Windows Administrator main window
and click Edit....The Server Parameters box opens; click Test Connection
to test the connection to the selected database server as shown in Figure 34.

Figure 34. Test the server connection

If there are any problems with your network configuration, QMF for Windows
Administrator displays an error message as shown in Figure 35.
78 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 35. Communication error

The Copy button allows you to copy the error message on the clipboard to be
then saved for further investigation.

4.1.2.1 Troubleshooting the server connection
If an error occurs, the displayed return code should be used to diagnose the
problem with your network technical support services. If you need to further
investigate the problem, you can turn on tracing in QMF for Windows
Administrator as follows:

1. In the main window, select Options... from the Edit menu.

2. In the Options dialog box, click Traces...

3. In the Traces dialog box, review the listed trace file names; the defaults
are probably acceptable.

4. If the problem occurs when connecting using TCP/IP or CPI-C, in the
appropriate combo box, select Calls with parameters and buffers to
record all the communication information.

Important: Be aware that the user id, password, and other sensitive data
will be written in clear text in the trace files.

5. Click OK in the Trace dialog box and then in the Options dialog box.

6. Test the connection that caused the error again.
Chapter 4. DBA’s guide 79

A detailed trace of the calls that QMF for Windows Administrator made to the
SNA or TCP/IP software is written to the specified trace files. See Figure 36.

Figure 36. Tracing the server connection

If you are connecting to DB2 via an SNA network:
The SNA link and the LU 6.2 session between the QMF for Windows LU and
the DB2 LU must be active in order to establish the connection.

There are very few errors that can occur in QMF for Windows Administrator
when trying to establish a connection to the server. The problem at this point
almost certainly indicates a problem with the network configuration rather
than with the QMF for Windows Administrator. These few errors are:

• Failure to activate the SNA software or to start the SNA node.

• Failure to activate the SNA link.

• Failure to properly configure an LU 6.2 session between the QMF for
Windows LU and the DB2 LU.

Turn tracing off when the problem is resolved; tracing can have a
significant adverse impact on the performance of QMF for Windows.

Note:
80 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

4.1.3 Create QMF for Windows objects
You must create the QMF for Windows objects at each database server you
want to connect. Some of these objects might already exist at the server from
a previous QMF installation (such as OS/390). The Administrator module can
automatically determine which objects need to be created, and it will allow
you to automatically create them. Before proceeding, verify if you have the
necessary DB2 privileges to create objects at the target server.

To create the QMF installation objects, use the following steps:

1. In the QMF for Windows Administrator main window, select the server and
click Edit...

2. On the Server Parameters dialog box, click Packages....

3. Enter all of the required values on the resulting Packages dialog box.

4. Click the Create objects button.

The required values or selections are:

1. Collection Name

This is the user defined name that will group the packages that are
created for use by QMF for Windows and QMF for Windows Administrator.
The collection name is limited to eight characters.

In this collection, the following five packages will be bound: RAARDBI1,
RAARDBI2, RAARDBIA, RAASHUT2, RAASHUT3.

2. Owner ID

To bind those packages, you must have authority at the database server to
run the SQL that they contain. If your primary authorization ID has the
required privileges, you can leave this field blank. If you have a secondary
authorization ID that you usually use for administrative tasks, enter it in
this field.

When you define multiple server entries within the SDF, accessing the
same database but using different network connection options, be sure
to use different Collection Names for each network option. If you do
NOT do so, only those users accessing the server using the last bound
packages will be able to access the server.

Note
Chapter 4. DBA’s guide 81

3. Replace existing packages (if any)

In most cases, you should make sure this box is checked. When installing
a new version or service release of QMF for Windows, this will replace all
of the existing packages, thus all the clients with a full QMF for Windows
installation need to upgrade to the new version as well. All QMF for
Windows installations with older versions will no longer be able to connect
to the server.

4.1.3.1 Keep existing authorizations on packages
In most cases, you should make sure this box is checked.

4.1.3.2 Decimal delimiter
Select the decimal delimiter that you and your users enter when writing SQL.

4.1.3.3 String delimiter
Select the string delimiter that you and your users enter when writing SQL.

Figure 37 shows the screen to create the QMF for Windows objects.

When defining a connection to DB2 UDB for OS/390, DB2 for OS/390, or
DB2 for MVS, use upper-case for the Owner ID. QMF for Windows does
not translate lower-case to upper-case.

Note:
82 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 37. Create objects

When you click Create objects..., QMF for Windows Administrator opens a
connection to the database server to bind the installation package
RAARDBI1. Your authorization ID must have the BINDADD privilege at the
database server in order to bind package RAARDBI1. After the installation
package is bound, QMF for Windows Administrator asks you whether you
want to automatically check which objects need to be created (and which
ones already exist). Click YES at this prompt.

In order to check for the existence of the required objects, the SELECT
authority is required on the following tables, depending on the type of
database server.

DB2 UDB for OS/390, DB2 for OS/390, DB2 for MVS:

SYSIBM.SYSDATABASE
SYSIBM.SYSTABLESPACE
SYSIBM.SYSTABLES
Chapter 4. DBA’s guide 83

SYSIBM.SYSINDEXES
SYSIBM.SYSCOLUMNS

DB2 for VM & VSE, SQL/DS:

SYSTEM.SYSDBSPACES
SYSTEM.SYSCATALOG
SYSTEM.SYSINDEXES
SYSTEM.SYSCOLUMNS

DB2 UDB for AS/400

QSYS2.SYSTABLES
QSYS2.SYSINDEXES
QSYS2.SYSCOLUMNS

DB2 UDB, DB2 Common Server, DB2 Parallel Edition, DB2 DataJoiner

SYSCAT.TABLESPACES (except DB2 Parallel Edition and DB2 DataJoiner
Version 1)
SYSCAT.TABLES
SYSCAT.INDEXES
SYSCAT.COLUMNS

For the complete list of the QMF tables and views that are created in this
step, see Appendix C, “QMF for Windows tables and views” on page 379.

If all of the objects already exist, a message to this effect will be displayed
and you do not need to do anything further.

If one or more objects need to be created, the Create Objects dialog box
opens, displaying a series of SQL statements (separated by semicolons).
These are the SQL statements that QMF for Windows Administrator needs to
execute to create the required tables. Review this statements carefully for
correct syntax and naming conventions. If you are satisfied with the
statements, click OK to run them at the selected database server.

A return SQL code of -551 or -552 indicates that the authorization ID on the
bind (either your primary user ID or the specified owner ID) does not have all
the privileges required to create database objects at the selected database
server.

Save the SQL statements by copying the text to the clipboard and save it
to a file for future references.

Hint:
84 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Existing QMF installations
If you already have QMF on an S/390 platform (OS/390, VM, or VSE) or any
QMF for Windows versions prior to V.6.1 installed: QMF for Windows creates
some of its own tables and views in the already present databases. The
naming convention adopted by QMF for Windows uses RDBI as the creator
of the majority of the QMF objects.

Version 6.1 and later of QMF for Windows stores user profile, resource limits,
and authorization ID information in different tables, and uses different views
than previous versions and host QMF.

The new tables and views used to access these tables are created when you
click the Create Objects button on the Packages dialog in QMF for Windows
Administrator. If you look at the SQL that is generated to create these tables
and views you'll notice that:

1. If any of the previous host QMF tables are detected to exist, INSERT
statements will be created to copy all of the data stored in the old tables to
the new tables.

INSERT INTO RDBI.PROFILE_TABLE
SELECT * FROM Q.PROFILES;

Encoding Schemas
If you have different encoding schemas, QMF for Windows produces an SQL
code = -873 SQL state = 53090 error. If you are using Host QMF, before
running the Create Objects step within the QMF for Windows Administrator,
check your database encoding schema. The DB2 system tables must have
the same encoding schema as the Host QMF control tables. The encoding
schema is either EBCDIC or ASCII. The encoding schema must be the same
in both applications to run the Create Objects step from within the QMF for
Windows Administrator. The change of the DB2 encoding schema (installation
parameter DEF ENCODING SCHEME in panel DSNTIPF) is not
recommended.

Special consideration should be used for DB2 OS/390 servers defined as
CCSID ASCII, since you have to modify the DDL provided by the QMF for
Windows Administrator’s automatic detection. QMF for Windows does not
check for the CCSID and you could run into a -873 error when the product
tries to create a QMF view from one table defined as ASCII and one as
EBCDIC. We suggest you modify the DDL as follows:

CREATE DATABASECCSID EBCDIC

Important for DB2 for OS/390
Chapter 4. DBA’s guide 85

INSERT INTO RDBI.RESOURCE_TABLE
SELECT * FROM Q.RESOURCE_VIEW;

2. In the CREATE VIEW statements for each of RDBI.PROFILE_VIEW and
RDBI.RESOURCE_VIEW views, there are two versions of the FROM
clause, one referring to a table owned by RDBI, and one referring to a
table owned by Q (which is commented out by default). To continue
sharing information between host QMF and QMF for Windows, comment
out the line referring to RDBI, and uncomment the line referring to Q. If
you make no changes, the information in the tables owned by Q will be
unaffected, but also will not be used by QMF for Windows.

So, if you want to use your existing QMF objects, only the above-mentioned
modification during installation has to be done. Once this is set up correctly,
no changes need to be made to the existing objects to make them available
through QMF for Windows.

User profiles
By default, QMF for Windows V6.1 stores and accesses user profile
information in the table named RDBI.PROFILE_TABLE. QMF for Windows
V6.1 always accesses this table through the view named
RDBI.PROFILE_VIEW. If you want to continue using your existing
Q.PROFILES table (host QMF), modify the DDL used to create
RDBI.PROFILE_VIEW and point it to Q.PROFILES as follows:

CREATE VIEW RDBI.PROFILE_VIEW
(

CREATOR,
"CASE",
DECOPT,
CONFIRM,
WIDTH,
LENGTH,
LANGUAGE,
SPACE,
TRACE,
PRINTER,
TRANSLATION,
PFKEYS,
SYNONYMS,
RESOURCE_GROUP,
MODEL,
ENVIRONMENT

) AS SELECT CREATOR, "CASE", DECOPT, CONFIRM,
WIDTH, LENGTH, LANGUAGE, SPACE,
TRACE, PRINTER, TRANSLATION,
86 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

PFKEYS, SYNONYMS, RESOURCE_GROUP,
MODEL, ENVIRONMENT
FROM Q.PROFILES;

-- FROM RDBI.PROFILE_TABLE;

Resource groups
By default, QMF for Windows V6.1 stores and accesses resource group
(governing) information in the table named RDBI.RESOURCE_TABLE.
QMF for Windows V6.1 always accesses this table through the view named
RDBI.RESOURCE_VIEW. If you want to continue using your existing
Q.RESOURCE_TABLE table (host QMF), modify the DDL used to create
RDBI.RESOURCE_VIEW and point it to Q.RESOURCE_VIEW (the view
already created on Q.RESOURCE_TABLE) as follows:

CREATE VIEW RDBI.RESOURCE_VIEW
(

RESOURCE_GROUP,
RESOURCE_OPTION,
INTVAL,
FLOATVAL,
CHARVAL

) AS SELECT RESOURCE_GROUP, RESOURCE_OPTION,
INTVAL, FLOATVAL, CHARVAL

FROM Q.RESOURCE_VIEW;
-- FROM RDBI.RESOURCE_TABLE;

Primary/secondary IDs
By default, QMF for Windows V6.1 stores and accesses primary/secondary
authid relationship information in the table named RDBI.AUTHID_TABLE.
QMF for Windows V6.1 always accesses this table through the view named
RDBI.AUTHID_VIEW. If you want to continue using your existing table
Q.RAA_AUTHID_TABLE (older version of the QMF for Windows product),
modify the DDL used to create RDBI.AUTHID_VIEW and point it to
Q.RAA_AUTHID_TABLE as follows:

CREATE VIEW RDBI.AUTHID_VIEW
(

PRIMARY_ID,
SECONDARY_ID

)
AS
SELECT PRIMARY_ID, SECONDARY_ID
FROM Q.RAA_AUTHID_TABLE;

-- FROM RDBI.AUTHID_TABLE;
Chapter 4. DBA’s guide 87

4.1.4 Bind QMF for Windows packages
To run distributed SQL at any database server, you must bind the QMF for
Windows packages at that database server. The QMF for Windows packages
refer to the set of objects that the product uses. These packages might
already exist at the server; in this case, they will be replaced.

You use QMF for Windows Administrator to choose the collection name and
bind options (owner id, etc.....) for the packages that it requires and to
automatically bind the packages at the server. In this collection, the following
five packages will be bound: RAARDBI1, RAARDBI2, RAARDBIA,
RAASHUT2, RAASHUT3.

- RAARDBI1 is used only in the server configuration phase to create the
database objects required by QMF for Windows in each connected
database server.

- RAARDBIA is used only by the Administrator module and contains the
SQL required for administrative functions.

- The other three packages: RAARDBI2, RAASHUT2, and RAASHUT3,
are used by the QMF for Windows module.

To create the packages at the target server, follow this procedure:

1. In the QMF for Windows Administrator main window, select the server and
click Edit...

2. On the Server Parameters dialog box, click Packages....

3. Enter all of the required values on the resulting Packages dialog box.

4. On the Packages dialog box, you bind the user and administrator
packages by clicking Bind. The status line will indicate the progress of the
bind operation. If any errors occur, you must correct them and repeat the
bind. The most common errors include:

- SQL code of -204 that indicates that a required table does not exist. To
create it, click Create Objects....

- SQL codes of -551 or -552 indicate that the authorization ID on the bind
(either your primary user ID or the specified owner ID) does not have
all of the following privileges required to bind the packages as shown in
Table 3.
88 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Table 3. Required privileges

4.1.5 Granting Permissions
Finally, after you bind the QMF for Windows packages, you must grant
permissions to your users to execute the user packages and work with the
product. This grant is automatically done by the Administrator module; you
only have to specify the users’ IDs and the product will construct and execute
the grant SQL at the server:

1. Click Permissions... on the Packages dialog box to display the
Package Permissions dialog box.

2. In the Package Permissions dialog box enter the user IDs to which you
want to grant the authority. (See Figure 38 on page 90).

3. Click Grant to make this change at the selected database server.

Table/View Name Privileges

RDBI.RESERVED SELECT

RDBI.PROFILE_VIEW SELECT, INSERT, UPDATE

RDBI.TABLE_VIEW SELECT

RDBI.USER_AUTHID_VIEW SELECT

RDBI.USER_ADMIN_VIEW SELECT

RDBI.RESOURCE_VIEW SELECT, INSERT, UPDATE, DELETE

Q.RAA_SUBTYPE SELECT, INSERT, UPDATE, DELETE

Q.RAA_OBJECT_VIEW SELECT

Q.OBJECT_DATA SELECT, INSERT, DELETE

Q.OBJ_ACTIVITY_SUMM SELECT, INSERT, UPDATE, DELETE

Q.OBJECT_DIRECTORY SELECT, INSERT, UPDATE, DELETE

Q.OBJECT_REMARKS SELECT, INSERT, UPDATE, DELETE

Q.OBJ_ACTIVITY_DTL SELECT, INSERT, UPDATE, DELETE
Chapter 4. DBA’s guide 89

Figure 38. Granting permissions

4.1.6 Creating sample tables
QMF for Windows provides nine sample tables that you can use while
learning the product, before you begin working with your own tables. The
sample tables are used throughout Chapter 6, “User’s guide” on page 177
and the online help as examples. They contain information about an
imaginary electrical parts company. See Table 4.

Table 4. Sample QMF tables

To create the sample tables, use the following procedure:

Sample table name Contains information about

Q.APPLICANT The prospective employees of the company.

Q.INTERVIEW The interview schedule for prospective employees.

Q.ORG Organization of the company by department (within division).

Q.PARTS Materials supplied to company.

Q.PRODUCTS Products produced by the company.

Q.PROJECT Company projects.

Q.STAFF The employees of the company.

Q.SALES Sales information for the company.

Q.SUPPLIER Other companies who supply materials to the company.
90 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

1. Select the server at which you want to create the samples tables and click
the Edit... button. The Server Parameter dialog box opens.

2. Click the Sample Tables... button. A dialog box opens, warning you that
the sample tables will overwrite any previous versions of the sample
tables that exist on the server. Figure 39 shows the screen that appears
when the sample tables are going to be created.

Figure 39. Create the sample QMF tables

3. Click Yes to create the sample tables.

Special considerations for existing QMF installations:

The sample tables supplied with each of the QMF family of products are
identical. If they exist already at the specified server, QMF for Windows will
delete and recreate them.

Note:
Chapter 4. DBA’s guide 91

4.1.7 Delete a database server
If you decide to delete a server connection, from the main window in QMF for
Windows Administrator, select the database server you want to delete and
click the Delete... button. If you answer Yes, the selected server entry will be
deleted from the list of available servers.

The QMF for Windows installation objects created at that database server are
not deleted by this action; if you want to clean-up the QMF for Windows
objects, you have to explicitly delete them at the server. For a list of the QMF
for Windows installation objects, use Appendix C, “QMF for Windows tables
and views” on page 379.

4.2 Governing and administration

QMF for Windows incorporates a resource governor, restricting what actions
a user can perform in QMF for Windows and placing limits on the resources a
user can consume. This governing feature allows the DBA to provide the
users with distributed access to DB2, with confidence that doing so does not
have an adverse impact on the overall database or network performance.

The governing function of QMF for Windows is always active. If you do not
explicitly set up resource limits, governing based on default limits still happens.
We strongly recommend you define your own sets of limits before you
enable the users to access QMF for Windows.

Using the Administrator module, the DBA can define sets of limits and
restrictions, which are called resource limits groups. The DBA can then
assign users to resource limits groups, according to the governing level that
you want performed for those users.

4.2.1 Creating resource limits groups
A resource limits group is a collection of limits and controls on the resources
that are governed by QMF for Windows. You can control resource
consumption by user, by day of week, and by time of day. For example, a
resource limits group can contain one set of limits that is in effect weekdays
between 8 AM and 6 PM, and another that is in effect on weekends and
off-hours. QMF for Windows Administrator is used to maintain resource limits
groups.

To prevent users from circumventing limits that you establish, resource limits
groups are securely stored in a database table at the database server.
Specifically, resource limits groups are stored in the table named
RDBI.RESOURCE_TABLE. A view named RDBI.RESOURCE_VIEW is
92 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

defined on this table because QMF for Windows users access the resource
limits information through that view.

To use QMF for Windows Administrator to maintain resource limits groups,
you must have the authorization to execute the QMF for Windows
Administrator package. This prevents unauthorized users from changing the
limits that are established by the DBA.

Users who are not explicitly assigned to a resource limits group are governed
by the limits defined in the default resource limits group. The DBA is
responsible for creating and maintaining the default resource limits group,
which is named <Default>.

In order to create a new resource limits group, use the following procedure:

1. Select the server you are currently working with in the QMF for Windows
Administrator window and click the Edit... button. The Server Parameters
dialog box opens.

2. Click the Resource Limits... button. The Resource limits groups list
dialog box opens, showing a list of all the resource groups defined at the
server.

3. Select the resource limits group from which you want to model the new
group and click the New... button. The New Resource Limits Group
dialog box opens.

4. Type a name for the group in the Group name field. There are no
restrictions on the name you enter.

5. Type any comments, up to 80 characters in length, that describe the new
resource limits group. Optionally, you can leave this field blank.

6. If the Create this group using schedules from... check box is enabled
(see Figure 40), the group you selected as a model has schedules that
you can copy into the new group. Check this box if you want to create the
new group with copies of all of the schedules contained in the model
group. Otherwise, the new group contains no schedules.

If you want to prevent the access to users not explicitly registered in any
resource limit group, we strongly suggest that you update the <Default>
resource limit group and uncheck all the boxes in the SQL Verbs,
Options, Save Data, Binding, and Object Tracking folders in the Edit
Resource Limits Group Schedule window.

Note:
Chapter 4. DBA’s guide 93

Figure 40. Create resource limit group

7. Click OK to create the resource limits group.

4.2.2 Creating schedules
After the resource limits group is determined, QMF for Windows determines
which schedule in the group is in effect. This schedule is in effect at the
designated database server and checks for the server Time Zone; if the
database server is accessed by users located in different Time Zones
than the server, the resource limit schedule to which they are assigned
will determine their access rights in function of the server time.

A schedule is uniquely identified by a schedule number. In addition to
specifying a unique number, you must also specify an effective day of week
and time of day range. That is, the From and To Time and the From and To
Day values for the schedule define when the limits and controls are in effect.
All ranges are inclusive.

In order to create a new schedule in the resource limits group, use the
following procedure:

1. Select the resource limits group for which you want to create schedules in
the Resource Limits Group List dialog box and click the Edit... button. The
Edit Resource Limits Group dialog box opens.

2. Select a schedule in the Schedule List if you want it to be used as a model
for the new schedule.

3. Click the New... button. The New Resource Limits Group Schedule
dialog box (Main Tab) opens so you can create a new schedule. If you
have selected a schedule in the Schedule List, the selected schedule is
used as a model for the new schedule.
94 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

4. Enter the required values on each of the following eight tabs and click OK
to create the new schedule.

• Main tab: In the main tab you need to specify the times and days this
schedule will be in effect. Figure 41 shows the Main tab to create a new
schedule.

Figure 41. Main: parameters

- Number — Indicates the priority of the schedule. For example, if two
schedules in the resource limits group cover the same time period
(or overlap), the one with the lower number is used. Specify a number
greater than zero for this field.
Chapter 4. DBA’s guide 95

- Day Range — The schedule is active between the From Day and the
To Day, inclusive. You can specify a range that wraps around the end of
the week. For example, if you select Friday as the From Day and
Monday as the To Day, the schedule is active on Friday, Saturday,
Sunday, and Monday (subject to time of day scheduling).

- Time Range — The schedule is active between the From Time and the
To Time, inclusive. You can specify a range that wraps around
midnight. For example, if you select 20:00 as the From Time and 8:00
as the To Time, the schedule is active from 8:00 p.m. to 12:00 midnight
and from 12:00 midnight to 8:00 am (subject to day of week
scheduling).

- Status — Select Active to enable the schedule, subject to day of week
and time of day scheduling. The status of the schedule is also subject
to the Active or Inactive status of the resource limits group as a whole.
Select Inactive to disable the schedule, regardless of day of week or
time of day scheduling.

• Timeouts tab: This is used to specify the limits for this schedule in order
to gain control over the resource consumption for this group. Entries with a
value of “0” mean that no limit will be defined. Figure 42 shows the
Timeout tab of the schedule definition.

If more than one schedule is defined to be in effect at the same time,
the QMF for Windows governor will use the one with the lowest
schedule number.

Hint:
96 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 42. Timeouts: parameters

- Idle Query Timeouts — Limits the amount of time a query can remain
idle You may set two different timeouts:

• Warning Limit — When this timeout expires, QMF for Windows
reminds the user that the query is idle and prompts the user whether
or not to cancel the query.

• Cancel Limit — When this timeout expires, QMF for Windows
automatically cancels the query.

A query might be idle when the first buffer of data has been returned to
the user, and QMF for Windows is waiting for that user to go to the
bottom of the data before it fetches the next set of data.
Chapter 4. DBA’s guide 97

- Server Response Timeouts — Limits the amount of time QMF for
Windows waits for a response from the database server before
cancelling a request. QMF for Windows waits asynchronously for a
response each time it sends a request to the database server. For
example, when you run a query, QMF for Windows sends the request
to the database server and waits asynchronously for the query results
to return from the database server.

• Warning Limit — When this timeout expires, QMF for Windows
prompts the user whether or not to cancel the request.

• Cancel Limit — When this timeout expires, QMF for Windows
automatically cancels the request.

- Idle Connection Timeout Cancel Limit — Limits the amount of time
QMF for Windows retains an idle connection to a database server. This
limit balances the trade-off between connection establishment
overhead and idle connection resource consumption.

When this timeout expires, QMF for Windows automatically closes the
idle connection to the database server.

• Limits tab: In this window (shown in Figure 43), you specify other
resource limits, like maximum rows allowed to fetch by this resource limit
group.

It is important to keep in mind the way that QMF for Windows retrieves the
data. For example, if a resource limit group has a defined fetch limit of
10,000 rows, QMF for Windows fetches the first buffer full of data, let’s say
8,000. It then checks and sees that the maximum of 10,000 has not yet
been reached and fetches the next buffer of data. As this second buffer full
of data might again return 8,000 rows, the user will see 16,000 rows, even
if the limit has been defined to be 10,000.

A lower timeout limit prevents long-running (runaway) queries. A
higher limit allows database requests to complete when the database
server is slow due to resource contention or other reasons.

Hint:

A lower timeout limit helps minimize the resources consumed at
servers by idle connections. A higher timeout limit helps minimize the
overhead of establishing connections.

Hint:
98 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 43. Limits: parameters

- Maximum Rows To Fetch — Limits the number of rows of data QMF for
Windows retrieves from a database server when running a query.

1. Warning Limit — When this limit is reached, QMF for Windows
prompts the user whether or not it should continue to fetch more
data.

2. Cancel Limit — When this limit is reached, QMF for Windows
automatically cancels the query.
Chapter 4. DBA’s guide 99

- Maximum Bytes To Fetch — Limits the number of bytes of data QMF
for Windows retrieves from a database server when running a query.
See Row Limits, Byte Limits, and Query Buffers for more information.

• Warning Limit — When this limit is reached, QMF for Windows
prompts the user whether or not it should continue to fetch more
data.

• Cancel Limit — When this limit is reached, QMF for Windows
automatically cancels the query.

- Maximum Connections Cancel Limit — Limits the number of
simultaneous connections that QMF for Windows establishes to the
database server. In general, connections are reused, so that if you run
one query at a server and then run another query at the same server,
only one connection is required. However, if you run those two queries
simultaneously, then two connections are required. If QMF for Windows
requires another connection to a server and the Maximum Connections
limit is reached, an error is returned and the operation is not performed.

• SQL Verbs Tab: QMF for Windows delivers the most essential business
reporting requirements for corporate situations where the broadest range
of needs must be met with the minimum number of tools. You can allow or
disallow the use of certain SQL verbs when a user is accessing a
database server from QMF for Windows. If a user attempts to run a query
that contains a disallowed verb, QMF for Windows cancels the query
without sending it to the database server. If a user attempts to run a query
that contains an allowed verb, QMF for Windows sends the query to the
database server, and the database server's security authorization
validation takes place. Figure 44 shows the screen where the permission
for the use of certain SQL verbs are defined.

Turning off the permissions for update, delete, and insert does not affect
the ability to perform these actions using the table editor.

Note:
100 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 44. SQL Verbs: parameters

You can allow/disallow the use of the following verbs from QMF for
Windows: ACQUIRE, ALTER, CALL, COMMENT, CREATE, DELETE,
DROP, EXPLAIN, GRANT, INSERT, LABEL, LOCK, REVOKE, SET,
SELECT, SIGNAL, UPDATE.

• Options tab: Using the Options tab allows to control the access to the
database objects for the resource limit group (see Figure 45).
Chapter 4. DBA’s guide 101

Figure 45. Options: parameters

- Allow access to server from user interface — Permits user access to
the server from the QMF for Windows user interface.

- Allow access to server from programming interface — Permits user
access to the server from the QMF for Windows programming
interface.

- Fetch all rows automatically — Determines how the database server
sends query results to QMF for Windows. QMF for Windows typically
requests data from the database server only as required to display
query results. For example, if 20 rows fill up the query window, QMF for
Windows requests only 20 rows. When the user scrolls down to make
102 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

the 21st row visible, QMF for Windows requests more data. However, if
the user runs the query and then waits a long time before scrolling
down, the query remains active for that entire period of time. This is
undesirable because it consumes resources at the database server the
entire time the query is active.

- Confirm database updates — Determines whether QMF for Windows
prompts the user to confirm database changes resulting from the
queries they run or actions they perform when editing tables. Enable
this option if you want QMF for Windows to prompt users to confirm
database changes. Disable this option if you want database changes to
happen without confirmation.

- Allow exporting of data — Permits use of the Export data command on
the File menu or in procedures.

- Allow table editing — Permits use of the table editor with QMF for
Windows.

- Allow running of saved queries only — When checked, limits the user
to running only queries that have been previously saved at the
database server. In addition, the user is prohibited from saving new
queries at the database server.

- Isolation level for queries — Sets the isolation level for queries run by
users. This option only has an effect at the following types of servers:
DB2 for MVS Version 4, DB2 for OS/390 Version 5, DB2 UDB for
OS/390 Version 6, and DB2 Server for VM & VSE Version 5 or higher.

- Account — Sets the default string specifying accounting information
that is sent to the database server when users in the resource limits
group connect to it.

- Account can be overridden — When selected, allows the user to
override the default account by entering a new one on the Set User
Information dialog box. If access to database objects other than those
owned by members of the resource limit group should be prevented,
the checkbox will not be selected.

If you enable this parameter, QMF for Windows repeatedly requests
data until it receives all of the data, independent of the user's
scrolling requests.

Hint:
Chapter 4. DBA’s guide 103

• Save Data tab: Figure 46 shows the screen where the parameters for the
permission to save data is defined for the resource limit group. The
parameters are:

- Allow Save Data command — Enables the user to save data at the
database server. Saving data can be an extremely resource-intensive
action, and can have a significant impact on your database server and
network performance.

- Default table space — This option is available only if you select the
Allow Save Data command option. It specifies a table space as the
default target for tables created by the save data process. The syntax
of the table space name you enter must conform to the database
server's rules for table space names. Any value you specify is used as
part of a CREATE TABLE SQL statement executed when the user
saves data to a new table.

- Default table space can be overridden — This option is available only if
you select the Allow Save Data command option. It specifies whether
the user is forced to use the table space specified in Default table
space or can specify any table space (subject to database security
authorizations). Select this check box to allow the user to specify any
table space.

If you select this option but do not specify a default table space, the
user cannot specify a table space, and the database server uses a
default.

Note:
104 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 46. Save data: parameters

• Bindings tab: In this screen parameters for the bind process are defined.
(See Figure 47 on page 106).

- Allow binding of packages — Enables users to bind static packages for
their queries.

- Allow dropping of packages — Enables users to drop static packages
from the database server.

- Default collection name — Specifies the default collection ID for static
packages bound by users.
Chapter 4. DBA’s guide 105

- Default collection name can be overridden — Specifies whether a user
is forced to use the Default collection name or can specify any
collection ID (subject to database security authorizations).

Figure 47. Binding tab parameters

- Default Isolation Level For Packages — Specifies the default isolation
level for static packages bound by users:

• Repeatable Read (RR) — Specifies that the execution of SQL
statements in the package is isolated (protected) from the actions of
concurrent users for rows the requester reads and changes, as well
as phantom rows.
106 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

• All (RS) — Specifies that the execution of SQL statements in the
package is isolated (protected) from the actions of concurrent users
for rows the requester reads and changes.

• Cursor Stability (CS) — Specifies that the execution of SQL
statements in the package and the current row to which the
database cursor is positioned are isolated (protected) from the
actions of concurrent users for changes the requester makes.

• Change — Specifies that the execution of SQL statements in the
package is isolated (protected) from the actions of concurrent users
for changes the requester makes.

• No Commit (UR) — Specifies that the execution of SQL statements
in the package is not isolated (protected) from the actions of
concurrent users for changes the requester makes.

- Default isolation level can be overridden — Specifies whether a user is
forced to use the Default isolation level or can specify any isolation
level.

• Object Tracking tab: QMF for Windows 6.1 contains detailed object
tracking abilities that are managed through the QMF for Windows
Administrator. During the installation QMF for Windows creates two tables
for Object Tracking:

- Q.OBJ_ACTIVITY_DTL (the detail table) holds all of the detailed
tracking options determined by the Object Tracking Tab within the
Resource Limits for your particular Resource Group.

- Q.OBJ_ACTIVITY_SUMM (the summary table) holds the summary
information for the objects.

Using this Object Tracking capability allows the database administrator to
perform such tasks as:

- Running detailed history report for all QMF objects.

- Locating unused objects

- Locating frequently accessed data sources (table/columns)

- Spotting potential problem areas.

Figure 48 shows the Object Tracking screen where this function will be
enabled and defined.
Chapter 4. DBA’s guide 107

Figure 48. Object tracking: parameters

- Enable summary object tracking — Determines whether or not object
use is tracked. Enable this option if you want to track the number of
times an object has been run, and the most recent times it was run and
modified.

- Enable detailed object tracking — Determines whether or not a detailed
record of each action taken using the object is kept. Enable this option
if you want to keep a record of each time the object was run, who ran it,
108 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

and the results. This option must be enabled if you want to use ad-hoc
object tracking or SQL text tracking.

- Enable ad-hoc object tracking — Determines whether or not a record of
each ad-hoc query is kept. Enable this option if you want to keep a
record of each ad-hoc query that is run, and the SQL text of that query.
Ad-hoc object tracking requires detailed object tracking.

- Enable SQL text tracking — Determines whether or not a record of the
SQL text of each query is kept. Enable this option if you want to keep a
record of the text of the SQL each query that is run. SQL text tracking
requires detailed object tracking.

Object tracking: maintenance

Once you have enabled the tracking above you must perform
maintenance on the Q.OBJ_ACTIVITY_DTL table that QMF for Windows
creates during the installation process. You can create a scheduled task to
run a DELETE statement which will do most of your cleanup for this table.

With these tracking features enabled you can maintain a record of all
queries and their SQL text. You can track how long queries take, how
often they run, and who runs them.

Object tracking data is added to the Q.OBJ_ACTIVITY_DTL table.
Periodically, you must perform maintenance on the table and its
associated table space (RAADB.RAATS2) and index (Q.RAAIX2). The
following recommendations will assist you in maintaining efficient
performance:

- To maintain performance of table Q.OBJ_ACTIVITY_DTL:

- Make sure RUNSTATS is run for the appropriate table space and index.

- As the data volume increases, rebind the QMF for Windows packages
to ensure the use of the index.

- Delete old data periodically. For example, you can use this query to
delete all rows older than 30 days:

If you enable this option, a large amount of data can be inserted into
the Q.OBJ_ACTIVITY_DTL table. See “Object tracking: maintenance”
on page 109 for more information.

Note:
Chapter 4. DBA’s guide 109

DELETE FROM Q.OBJ_ACTIVITY_DTL WHERE "DATE" < (CURRENT DATE - 30
DAYS)

4.2.3 Assigning users to the resource group
The relationship between a QMF for Windows user and a resource limits
group is stored in a table at the database server, specifically, the table named
RDBI.PROFILE_TABLE, accessed via the view named
RDBI.PROFILE_VIEW. QMF for Windows Administrator maintains user and
resource limits group relationships in this table.

When QMF for Windows connects to a database server, the user must provide
user information (user ID and password), which is validated by the database
server. If the user information is valid, QMF for Windows determines which
resource limits group to use by first locating the correct profile for the user; this is
done by searching the CREATOR, ENVIRONMENT, and TRANSLATION
columns in the RDBI.PROFILE_VIEW table.

To assign a user to a certain resource limit group, follow these steps:

1. Click the Assign... button on the Resource Limits Group List dialog box.
The Assign User Profiles dialog box opens.

2. Type the first user ID you want to assign in the Show user profiles with
"creator" matching field or a matching pattern if you want to work with
multiple user IDs, and click the Refresh List button. QMF for Windows
Administrator retrieves all the user profiles stored in the
RDBI.PROFILE_VIEW table that match the value you entered and
displays them in the Not Assigned or Assigned lists.

3. Select the appropriate user IDs and use the Assign and Unassign buttons
to move them to either list.

4. Click OK.

The first-used, last-used, and last-modified summary statistics stored in
the Q.OBJ_ACTIVITY_SUMM table are not affected when you delete
detailed data.

NOTE

If the user ID you want to assign does not have an entry in the
RDBI.PROFILE_VIEW table, click the Create New... button to create the
new user profile.

Note:
110 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 49 shows the QMF for Windows screen used to make these
definitions.

Figure 49. Assign users to resource group

4.3 Security

QMF for Windows Administrator is the administrative component of QMF for
Windows. Using the Administrator module is strictly an administrator task.
There should not be any need for an end user to run QMF for Windows
Administrator. However, there is no security risk if an end user does run QMF
for Windows Administrator; the existing database and file-sharing security
mechanisms still apply and restrict what a user can or cannot do.

To prevent users from circumventing limits that you establish, resource limits
groups are securely stored in a database table at the database server.
Specifically, resource limits groups are stored in the table named
RDBI.RESOURCE_TABLE. A view named RDBI.RESOURCE_VIEW must
Chapter 4. DBA’s guide 111

be defined on this table because QMF for Windows accesses that view, not
the table.

QMF for Windows Administrator is used to maintain resource limits groups. To
use QMF for Windows Administrator to maintain resource limits groups, you
must have the authorization to execute the QMF for Windows Administrator
package. This prevents unauthorized users from changing the limits that are
established by the administrator.

4.3.1 Change password capability
Users can change their host and workstation passwords from within QMF for
Windows. See Figure 50.

Figure 50. Change password

4.3.2 Lists
As mentioned previously, QMF for Windows knows four different types of
objects:

• Queries
• Forms
• Procedures
• Tables

The database administrator might want to restrict the visibility of these
objects to a certain number of users. To do this QMF for Windows allows the
creation of predefined lists that the users will see by default when working
with the product. Lists are also useful to simplify the days work of the users
by providing them with a tailored set of QMF for Windows objects by default.
112 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

If a user starts working with predefined queries and so on, they would
typically use the File -> Open from Server menu. This would open a window
that would then need to be modified if this user does not need to see all
objects from all users. Creating a predefined list provides an alternative way
to simplify the work, by using the File -> Open menu to see a list of tailored
objects.

The following steps need to be performed to create and save a predefined
list.

1. On the File menu of QMF for Windows, click New -> List to open the
windows shown in Figure 51. Make sure to select the correct server to
create the list from. If the window does not show the required server (like
the DB2AIX in the example shown), go to the List -> Set Server menu to set
the active server accordingly.

2. You may now specify the owner of the objects that need to be in the list,
the object directly by name, and the type of objects to be included in the
list.

3. Click the Refresh List button to create the list. This list may then be
modified by removing certain objects individually from this list.

4. Save the newly created list using the File -> Save As menu. This will
create a file in the default installation directory that can then be opened
using the File -> Open menu.

Using this method does not prevent the user from being able to see all
objects by clicking the Refresh List button in the list window.

For true restriction, the Create View permission for Object View or Table
View should be edited at the creation of a collection. Different collections
can then be used by different user groups using different server definition
files.

Note:
Chapter 4. DBA’s guide 113

Figure 51. Lists

Within the List window, several options are available using the icons in the
Toolbar or the right mouse button. These options are:

• Display object to view the selected object. This function is available for
Queries, Forms, Procedures, and Tables.

• Run object to execute the selected object. This is only available for
Queries and Procedures.

• Draw object will create a query based on a selected table. The type of
query may be either a SELECT query, an SQL UPDATE query, an SQL
INSERT query, or a prompted query. This options only works for tables.

• Edit object is available only for tables and will open the Table Editor for
this table.

• Properties again is available for all four types of objects and displays the
properties of the selected object, including comments, attributes, and
historical usage information.
114 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

QMF for Windows, as of this writing, has one problem when working with
Lists:

When logging on to a DB2 on OS/390 with a user with SYSADM
authorization, using Lists will not show the system catalog table and
views. The issue is that all tables with at least one row in
SYSIBM.SYSTABAUTH will show up in lists. If there are no rows in
SYSIBM.SYSTABAUTH (which can be the case for some of the system
tables), it will not show up. The work around is to grant at least one
permission to at least one user on each of the system tables.

4.4 Other DBA Tasks

In addition to the functionality of the QMF for Windows Administrator already
mentioned, there are more activities that the database administrator can
perform. The following section covers some of these activities.

4.4.1 Convert dynamic SQL to static SQL
Static queries are SQL queries that have previously been passed through the
database servers preprocessor and the access plan to the data has been
stored within a package. When this static query is executed later, the
database server no longer uses the query text and its preprocessor to
determine the optimal access path, but it can use the access path stored
within the package directly. This reduces resource consumption at the server
and improves the execution of the query.

All queries created through QMF for Windows use dynamic SQL. If the
database administrator, by using the object tracking capabilities of the
product, identifies certain queries that are executed very frequently, they
might be candidates for a conversion to static SQL. QMF for Windows allows
this conversion to be performed for SQL queries only. If you have any
prompted query that is supposed to be converted to a static query, the
following steps have to be performed first:

1. Open the prompted query.

2. Select Convert to SQL from the Query menu.

3. Save the new SQL query.

Once this is done, select the query and convert it to a static query using the
following steps:

1. Open the SQL query.

2. Select Bind Static Package in the File menu of QMF for Windows.
Chapter 4. DBA’s guide 115

3. Select the Package tab, enter the collection ID and a package name, and
change any of the available options as shown in Figure 52.

Clicking the Advanced button will allow for a more detailed bind option
definition than using the main screen itself. Parameters related to the Date
and Time Format, Blocking and Degree of Parallelism, using Snapshot
and Explain, and Dynamic rules as well as rules related to character
subtypes such as FOR BIT DATA all can be set there.

Figure 52. Create static SQL

4. If the original query makes use of substitution variables, select the Input
Variable tab. Here all the substitution variables used have to be translated
to host variables for the static query. Not all of the substitution variables
are easy to map to host variables, as they provide direct text substitution
within the query text before being send to the database server, whereas
host variables are sent to the database server as part of the query.
116 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

5. Valid data types for host variables are:

- CHAR(n)
- VARCHAR(n)
- INTEGER
- SMALLINT
- FLOAT
- DECIMAL(p,s)
- DATE
- TIME
- TIMESTAMP

Figure 53 shows the Input Variable screen.

Figure 53. Input variables
Chapter 4. DBA’s guide 117

6. Click OK to convert the query to a static query. A window such as the one
shown in Figure 54 will appear.

Figure 54. Bind complete

Note the comment at the bottom of the screen. If you do not save the
query that just has been translated into a static SQL query, it will not be
able to be executed as static SQL later.

4.4.2 DB2 UDB for OS/390 predictive governor support
In DB2 UDB for OS/390, the Resource Limit Facility (or RLF), also known as
the DB2 Governor since DB2 V.2, limits the amount of CPU time an SQL
statement can take, which prevents SQL statements from making excessive
requests. Up until V.5, the function of RLF was mainly to prevent dynamic
SQL statements from consuming too much CPU by specifying a maximum
number of service units a query could use before it is stopped. This function
is known as reactive governing. However, the resources used to get to the
point where the query is stopped by RLF, are wasted. In addition, DB2 may
use additional resources to back out the changes done so far.

With V.6 of DB2 UDB for OS/390, the predictive governing function of the RLF
provides an estimate of the processing cost of SQL statements before they
run. The cost estimate is expressed as a number of CPU milliseconds and
service units (SUs).
118 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

4.4.2.1 Cost estimation
To predict the cost of an SQL statement, you execute EXPLAIN to put
information about the statement cost in DSN_STATEMNT_TABLE.

The governor controls only the dynamic SQL manipulative statements
SELECT, UPDATE, DELETE, and INSERT. Each dynamic SQL statement
used in a program is subject to the same limits. The limit can be a reactive
governing limit or a predictive governing limit. If the statement exceeds a
reactive governing limit, the statement receives an error SQL code. If the
statement exceeds a predictive governing limit, it receives a warning or error
SQL code.

Creating, populating, and interpreting the contents of
DSN_STATEMNT_TABLE is done by the DBA or system administrator; you
can establish the limits for individual plans or packages, for individual users,
or for all users who do not have personal limits.

Each company has its own procedures defined by your installation for adding,
dropping, or modifying entries in the Resource Limit Specification table.

4.4.2.2 How QMF for Windows handles predictive governing
If your installation uses predictive governing, QMF for Windows will check for
the +495 and -495 SQLCODEs that predictive governing can generate after a
PREPARE statement executes.

• Warning prompt (+495 SQL Error)
• Error message - Exceeded Limit (-495 SQL Warning)

4.4.3 Large Object (LOB)
DB2 UDB has a data type called Large Object (LOB), able to store
“non-traditional” data such as images, video, and sound inside a database
table. QMF for Windows Version 6.1 does not support this data type.

If the database that will be accessed using QMF for WIndows contains tables
that have LOB fields defined, the database administrator might decide either
to prevent access to these tables in general, or to create a view of these
tables, omitting the LOB column.

Statement cost estimation is supported for both dynamic and static
SELECT, INSERT, UPDATE or DELETE, but predictive governing is only
for dynamic statements.

Note
Chapter 4. DBA’s guide 119

4.4.4 QMF linear procedures
With QMF for Windows, you can create only one type of procedure to run
QMF commands: a linear procedure to run a series of QMF commands with a
single RUN command.

A QMF linear procedure is a QMF for Windows object that, instead of
containing SQL commands, contains procedure commands. Where SQL
manipulates data, procedure commands manipulate QMF objects (tables,
queries, forms and even other procedures). One way to define procedures is
that the user is automating actions that would normally be done by clicking
buttons and menu selections.

Procedures are sets of commands that enable the DBA or other users to run
queries, print reports, import and export data, as well as perform other
functions. Like any other QMF object, procedures can be stored at the
database server, or saved in a file locally or on a file server. All commands
issued through procedures are governed by the resource limits you already
configured.

For more information on QMF for Windows Procedures, please see 6.4.4,
“Procedures” on page 196.

4.4.5 Command line mode
Settings and actions can be defined to take effect when QMF for Windows is
started. These parameters are defined on the QMF for Windows command
line. They can be used to preset settings, or to run unattended sessions. The
possible parameters and their function are:

• /IServer:servername: The /IServer parameter defines the server where
the startup procedure specified on the /IProcName parameter is stored.

• /IProcName:procedurename: The /IProcName parameter defines the
name of a procedure stored at a database server to run after starting QMF
for Windows. To use the /IProcName parameter, you must also specify the
/IServer parameter, if the server is different than the server the procedure
has been created on.

In QMF for Windows you cannot create a procedure with logic to run a
series of QMF commands like in the host QMF where the commands are
run based on REXX logic you add to the procedure. QMF for Windows
does not support REXX procedures, but only forms calculations using IBM
Object REXX.

NOTE
120 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

• /IProcFile:procedurefile: The /IProcFile parameter defines the location
and name of a locally stored procedure file to run after starting QMF for
Windows.

• /IUserID:userID: The /IUserID parameter defines the user ID to use when
running a procedure specified with the /IProcName or /IProcFile
parameters. It is used in conjunction with the /IPassword parameter.

• /IPassword:password: The /IPassword parameter defines the password
of the user specified with the /IUserID parameter.

Note: The /IPassword parameter includes the user's password in plain
text.

• /Batch: The /Batch parameter ends the current session of QMF for
Windows and closes the application, after running any procedure specified
on the command line.

• &variablename=variablevalue: The &variablename= parameter defines
or updates global variable values for use in any procedure or query being
run. Any number of variables can be defined.

Following is a simple example to show the command line functionality of QMF
for Windows:

1. Create a procedure such as the one shown in Figure 55.

Figure 55. Procedure to be scheduled
Chapter 4. DBA’s guide 121

2. Save the procedure at the server, or as a local file on your system (for
example, C:\procedure1.prc). The sample shown above will execute a
query called ObjectTracking using the Form called ObjectTrackingForm for
report generation. It will then export the report to a file called qmftrack.rep
at the local system in the c:\ directory. The last statement, windows notepad

c:\qmftrack.rep, will open the saved report file using the Windows
Notepad application.

3. You may now either execute the procedure saved at the server, or the one
saved in a local file.

- To execute the procedure saved at the server, issue the following
statement from the system command prompt:

"C:\Program Files\IBM\QMF for Windows\qmfwin.exe" /IServer:DB2AIX
/IProcname:DB2INST1.Procedure1 /IUserID:db2inst1 /IPassword:db2inst1

Make sure to include the double quotes around the path specification
within the statement. They are only required if some of the statements
within the path specification have spaces in their names.

- To execute the procedure saved in a local file issue the following
statement from the system command prompt:

"C:\Program Files\IBM\QMF for Windows\qmfwin.exe" /IServer:DB2AIX
/IProcfile:"c:\Procedure1.prc" /IUserID:db2inst1 /IPassword:db2inst1

Make sure to include the double quotes around the path specification
within the statement if necessary. They are required if some of the
names within the path specification contain spaces.

4.4.6 Scheduling with Windows NT
As QMF for Windows is a very good administrative tool, the database
administrator might find it useful to automate certain queries and procedures
to be performed automatically every night. In order to do this, a procedure
needs to be created and then be scheduled to execute at a predefined point
in time. QMF for Windows does not have its own schedule, but it does
support the Windows NT native scheduler. The following shows how to
schedule certain queries and procedures to be executed using the
Windows NT scheduler.

1. Create the procedure to be executed: The first step will be to either
create a new procedure containing all the tasks that are planned to be
scheduled to run automatically, or select an existing one. A sample
procedure is shown in Figure 55.
122 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

2. Schedule with the Windows NT AT command: The Windows NT
operating system has its own scheduling mechanism that is usually
started with the AT command. The AT command schedules commands
and programs to run on a computer at a specified time and date. The
Schedule service must be running to use the AT command. The following
shows the AT command syntax:

AT [\\computername] [[id] [/DELETE] | /DELETE [/YES]]
AT [\\computername] time [/INTERACTIVE]

[/EVERY:date[,...] | /NEXT:date[,...]] "command"

- \\computername: Specifies a remote computer. Commands are
scheduled on the local computer if this parameter is omitted.

- id: Is an identification number assigned to a scheduled command.
- /delete: Cancels a scheduled command. If id is omitted, all the

scheduled commands on the computer are canceled.
- /yes: Used with cancel all jobs command when no further confirmation

is desired.
- time: Specifies the time when command is to run.
- /interactive: Allows the job to interact with the desktop of the user who

is logged on at the time the job runs.
- /every:date[,...]: Runs the command on each specified day(s) of the

week or month. If date is omitted, the current day of the month is
assumed.

- /next:date[,...]: Runs the specified command on the next occurrence of
the day (for example, next Thursday). If date is omitted, the current day
of the month is assumed.

- "command": Is the Windows NT command, or batch program to be
run.

To run the previous mentioned procedure, save the command in a file
called C:\Procedure1.BAT and the syntax for the scheduler to run the
procedure every Monday at 9 PM would be:

AT 9:00PM /EVERY:Monday "C:\Procedure1"

3. Using the Windows NT scheduler: Windows NT also has a graphical
interface to perform the scheduling tasks. Figure 56 shows an example
screen to schedule a procedure using the Windows NT graphical
scheduling application.
Chapter 4. DBA’s guide 123

Figure 56. Windows NT scheduler
124 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Chapter 5. Developer’s guide

As seen in the prior chapters, QMF for Windows is a tool for building
Enterprise Query Environments. We saw that in an Enterprise Query
Environment, all queries are stored in a query repository, so that the vehicle
for accessing the data and reports is centralized. This results in better
organization, control, and reliability of the data.

But one problem is that most companies have their own applications for
solving special needs such as calculations, marketing, human resources, and
many others. Many of these applications submit queries to the database
server to retrieve some data. Now, using QMF for Windows and storing all
queries in a central repository, the applications no longer need to have their
own SQL statements inside the code. Keeping the SQL text inside the
application would not allow the query execution to be controlled by QMF for
Windows. A better way to do this is to have the application use the queries
stored in the query repository. That way, when the QMF administrator
changes a query, the application is automatically changed and starts to
retrieve the data using the new query.

This chapter shows how an application can access the QMF queries stored at
a central repository and manipulate them. QMF for Windows has a set of
Application Program Interfaces (APIs) that enable the application to execute
the functions necessary to use the Enterprise Query Environment. For a
complete understanding of how application development is done using the
QMF for Windows API, this chapter shows some concepts of application
development using QMF for Windows, and provides examples of programs
using the APIs listed. For a complete API reference, see Appendix B, “QMF
for Windows APIs” on page 293.

It is important to keep in mind that the examples presented in this chapter
have no performance or interface considerations. These examples are for
demonstration proposes only.

5.1 Application development concepts using QMF for Windows

Using the QMF for Windows APIs, we demonstrate some basic concepts that
will help programmers of different programming languages to implement their
applications.
© Copyright IBM Corp. 1999 125

5.1.1 Application Program Interface (API)
An API is a function with a pre-defined functionality that allows an application
to execute that function without any knowledge of how it is performed. APIs
can be seen as black boxes, that is, with well-defined inputs and outputs, but
no vision of the process itself. APIs are very useful when dealing with device
drivers for hardware and software packages.

Most of the programming languages designed for Windows can access the
APIs very easily. The way this is done differs a lot from one programming
language to another, but all of them have a way of calling the APIs. Once
these APIs are included in the programming language environment, using
them is like using a regular function in the program.

Any programming language that access the Windows API can also access
the QMF APIs. Some examples of programming languages that can access
the Windows APIs are Microsoft Visual Basic, Microsoft Visual C++, Borland
C++, Borland Delphi, IBM Visual Age for Java, and many others.

In order to develop an application using QMF APIs, no extra middleware is
necessary besides the one required for the end user. That means that there
are no special prerequisites for developers. The basic middleware is, briefly,
the middleware necessary for the network environment, the installation of
QMF for Windows on the computer, and the programming language of your
preference. For more details on installation and configuration of QMF for
Windows, see Chapter 3, “Getting started” on page 25.

The same thing happens with the final application that you will distribute to
your users. The only middleware necessary for the application to run is the
middleware for the network and QMF installed within the environment.

5.1.2 QMF for Windows APIs or ODBC Applications?
Open Database Connectivity (ODBC) is a standard or open API for accessing
databases. When using ODBC statements in a program, you can access data
in a number of different databases, including Access, dBase, DB2, Excel, and
text files. In addition to the ODBC software, a separate module or driver is
needed for each database to be accessed. These drivers are provided by
each database. The overall architecture when using ODBC is shown in Figure
57.
126 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 57. Application architecture when using ODBC

ODBC is based on and closely aligned with the Open Group standard SQL
Call Level Interface. It allows programs to use SQL requests that will access
databases without having to know the proprietary interfaces to the databases.
ODBC handles the SQL request and converts it into a request that the
individual database system understands.

In the newer distributed object architecture called Common Object Request
Broker Architecture (CORBA), the Persistent Object Service (POS) is a
superset of both the Call Level Interface and ODBC. When writing programs
in the Java language and using the Java Database Connectivity (JDBC)
application program interface, you can use a product that includes a
JDBC-ODBC "bridge" program to reach ODBC-accessible databases.

As with many other standards, ODBC solves some problems and creates
others. Some problems you may find when using ODBC include performance
issues and error handling. Rather than using ODBC, you might want to
connect directly to the database — QMF for Windows does that. It provides a
direct access from the client desktop to the database server, meaning that
there is no need to install the database client (CLI) or ODBC in order to
access the database.

ORACLE SYBASE MS-SQLDB2

Application

INFORMIX

ODBC Driver Manager

DB2
Driver

ORACLE
Driver

Informix
Driver

Sybase
Driver

MS-SQL
Driver
Chapter 5. Developer’s guide 127

Resulting from that native access, the performance of the application is
considerably better than ODBC applications. Other problems like obtaining
the error code from the database are also solved so the application becomes
more powerful and organized.

5.1.3 Synchronization Aspects
When you develop an application, one aspect that has to be very clear is
synchronization. An application can be synchronous or asynchronous, which
means the same as saying that an application is single-threaded or
multi-threaded.

A thread is a single stream of execution within a program. Multi-tasking refers
to the computer' ability to perform multiple jobs concurrently. For example,
operating systems can run two or more programs at the same time.
Multi-threading, on the other hand, is an extension of multi-tasking. But rather
than multiple programs, multi-threading involves multiple threads of control
running within a single program.

The advantages of multi-threading are that, without threads, an entire
program can be held up by one CPU-intensive task. With threads the other
tasks can continue processing without waiting for the CPU-intensive task to
finish. For example, using a database administrative application, the user
might be able to export tables (which can take several minutes or even hours)
within one thread, but still be able to carry out other tasks such as creating
new tables or retrieving information from other tables within another thread.
The user does not need to wait for the first thread to finish. Note, however,
that there might be a problem of controlling this threads — because the
thread that was exporting the tables does not know that another thread may
be just in the process of creating a new table, or, even worse, the second
thread may try to drop a table while it is been exported from the first thread.

All of the QMF for Windows API functions are synchronous. This means that
when a API is called in your application, it blocks, or does not return until the
requested action completes. In other words, the code line just below the line
calling the API will not be executed until the API completes its function.
This implementation is desirable because it simplifies programming the
application. However, if your application is single-threaded, it will not be able
to respond to user input or perform screen refreshes while it is waiting for a
QMF for Windows API function to return.
128 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

If it is necessary for the application to be asynchronous, the programmer has
to create a new thread within the application and call the API from the new
thread. This new thread will then be blocked, but all other threads will
continue to execute normally. The programmer has to manage the timing and
execution of the threads. When developing multi-threaded applications, keep
in mind that the QMF for Windows API responds to one function call at a time
from a client. That means you must wait for one function call to complete
before making another, or create multiple instances of the QMF for Windows
API (one for each thread using the API).

5.1.4 Database Connectivity
The QMF for Windows family is a set of tools that can connect directly only to
the DB2 database family. In order to connect to other databases such as
Oracle, Sybase, and MS-SQL, DB2 DataJoiner needs to be used as
represented in Figure 58. It is even possible to access VSAM files or IMS files
on the OS/390 environment using QMF for Windows and DB2 DataJoiner, but
these data sources can only be opened for reading.

Figure 58. QMF database access

ORACLE ...

DB2
Data Joiner

DB2 Family

QMF for Windows

DB2 OS/390
DB2 NT
DB2 AIX
DB2 AS/400
...

IMS SYBASE MS-SQLVSAM

Classic
Connect TCP/IP TCP/IPTCP/IP

TCP/IP CLI

Classic
Connect
Chapter 5. Developer’s guide 129

Each instance of the QMF for Windows API object represents a single unit of
work and can only connect to a single database server at a time. This unit of
work creates and uses the same connection to the database server for all
database activities that are subject to a subsequent rollback or commit,
including opening a query, fetching data, and executing other SQL
statements.

To connect to multiple database servers simultaneously, you have to create
multiple instances of the QMF for Windows API object, one for each database
server.

To connect to multiple database servers serially (one after the other) using
the same QMF for Windows API object, call Commit() or Rollback() and then
InitializeServer(). The Commit() and Rollback() functions close the current
connection to the database server while the InitializeServer() function opens
a new connection. Calling these functions ends the current unit of work, and
subsequent calls start a new unit of work.

Due to the fact that all database activities occur within the same connection,
creating more than one query in a given instance of the QMF for Windows
API object by calling InitializeQuery() two or more times, they will share the
same single connection.

QMF for Windows creates and uses a second connection to the database in
order to handle administrative database activities, for example, retrieving
QMF information. This second connection is necessary to support a
consistent rollback and commit mechanism for client applications. The QMF
for Windows API object automatically handles these connections to the
database. However, if your system administrator has established a limit for
the number of connections allowed, remember that each instance of the QMF
for Windows API object may use two connections.

5.1.5 Web Development
When building an Enterprise Query Environment, it is very likely that some of
the queries have to be executed throughout the company, and using the Web
architecture (Internet or intranet) is a nice way of doing that. QMF for
Windows provides various ways of doing this (see Chapter 7, “Web
considerations” on page 253 for more information on this subject).
130 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

One way of allowing the queries to be accessed through the Web is by
developing a Web application, using for example CGI, ASP, Servlet, or one of
many other technologies. To develop such an application, the programmer
can still use the QMF APIs, so that the interface between the application and
QMF is the same as when developing a regular application.

5.2 Main QMF for Windows APIs

QMF for Windows provides a total of 91 APIs. This section describes the most
important ones. For a complete API reference, see Appendix B, “QMF for
Windows APIs” on page 293.

5.2.1 GetServerList()
The first important API is GetServerList(). This API goes to the QMF for
Windows server definition file (SDF) and lists the database servers that QMF
is configured to access. If there is only one database server in the
environment, or if the database server name is already known, it is possible
to directly call the InitializeServer() API.

5.2.2 InitializeServer()
Once you have your database server name, it is necessary to initialize the
connection to that server. That is what the InitializeServer() API does. To
execute this API, it is necessary to pass the following parameters:

• ServerName — This name has to match the same name in the QMF for
Windows SDF.

• UserID — This is the user ID for accessing the database.

• Password — This is the password of that user ID.

• ForceDialog — If the value of this parameter is not zero, then a dialog
prompting the user ID and password will be shown. Otherwise, the dialog
will only be shown if necessary, that is, if there are no values in the UserID
and Password parameters.

• SuppressDialog — If the value of this parameter is not zero, then the
dialog box prompting for the user information will never be shown. This is
especially useful when developing applications for the Web, where the
user ID and password are to be prompted for in a different way.
Chapter 5. Developer’s guide 131

5.2.3 GetQMFObjectList()
Another important API is GetQMFObjectList(). After connecting to the server,
it might be very important to know what queries, procedures, forms and tables
are available. This API allows the objects to be listed. The parameters of this
API are:

• Owner — The name of the owner of the objects. To include all objects
regardless of the owner, this parameter must be left blank or contain the "%"
character.

• Name — Name of the object. To include all objects regardless of the name,
this parameter must be left blank or contain the "%" character.

• Type — Select the type of objects to be listed. There are four types of
objects: Queries (2048), Forms (1024), QMF Procedures (512)and Tables
(256). To list more than one type at the same time, it is necessary to sum
the values of the desired types.

• List — That is the pointer in which the result will be stored. There are
various ways of passing a pointer as a parameter, depending on the
programming language.

5.2.4 InitializeQuery()
This API initializes a query for execution. It has two parameters:

• SourceType — There are three types of queries: the ones passed directly
to the API (0), the ones stored on the server (1), and the ones stored into
text files (2).

• Source — If the SourceType is 0, then the Source parameter must have
the SQL statement; if the SourceType is 1, then the Source parameter
must have the owner and the name (Owner.Name) of the query stored in
the server; and if the SourceType is 2, then the Source parameter must
have the file name.

The result of this API is the QueryID, a number that will identify the Query
exclusively. Many other APIs require the QueryID as input parameter.

5.2.5 GetQueryText()
This API returns the SQL statement from a QMF query passed in the input
parameter QueryID. It is very important for applications which have to
manipulate or show the SQL statement. In an Enterprise Query Environment,
all the queries will be stored together and all applications should be able to
retrieve any query at any time.
132 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

5.2.6 GetQueryVerb()
This API returns the verb of the query passed in the input parameter QueryID.
The verb of a query might be SELECT, INSERT, UPDATE, DELETE, CALL,
and others. In some cases it is extremely important that the application knows
what kind of action the query is taking, because queries that return values
may have to be manipulated, and those that only execute a certain action may
not return any value at all.

5.2.7 SaveQMFQuery()
This API allows the application to create new queries or to modify existing
queries on the server.

It has five input parameters:

• OwnerAndName — A string containing the owner and name, separated by
a period, of the query you want to save; for example, "John.Query2".

• Text — The SQL statement.

• Comment — A string with any comment necessary.

• Replace — If there already exists a query with the same owner and name
as on the OwnerAndName parameter, the query might be replaced or not.
If this parameter is zero the existing query will not be replaced, and an
error will occur. Otherwise, if this parameter is not zero, the existing query
will be replaced.

• Share — Indicates if the query is to be shared with other users. Zero
indicates that this query is not to be shared. If not zero, the query can be
shared.

5.2.8 Open()
This API will execute the query initialized by the InitializeQuery() API. Note
that this API will only execute queries with the SELECT verb. Queries that
use the UPDATE, INSERT, DELETE, CALL and others verbs have to be
executed using the Execute() API.

This API has three input parameters:

• QueryID — The QueryID as returned from InitializeQuery().

• RowLimit — Maximum number of rows allowed to be retrieved. Zero
indicates that no limit is enforced. This number will not overwrite the row
limit established by the QMF Administrator.
Chapter 5. Developer’s guide 133

• FetchAllRows — If TRUE, indicates that all rows will be fetched at once,
the result will be stored in the client, and the database will be free for other
users. If FALSE, the cursor stays open until the Close() API is executed.

5.2.9 GetColumnCount()
This API returns the number of columns that the query passed in the input
parameter QueryID has. This value is very useful for handling the return
value of the FetchNextRow() API within loops.

5.2.10 GetColumnHeadings()
This API returns the column names in the Headings parameter as a pointer
for the query specified in the input parameter QueryID. The pointer has to be
handled after the API is executed. The way that pointers are handled
depends a lot depending on the programming language used. This function is
especially useful to display the columns names for the end user or for
manipulating columns values within the application.

5.2.11 FetchNextRow()
This API has to be used after the Open() API. It fetches the next result row of
a query specified in the QueryID input parameter. The result data in the row is
returned in the pointer specified in the second input parameter Row. This
pointer has to be handled after the API executes. The way that pointers are
handled differs a lot, depending on the programming language. If the API
executes successfully, the result value is zero.

When the end of the result set has been reached (there are no more rows to
fetch) the result is empty and the return value of the API is -1.

One important aspect of this API is the data types supported. This types
include string, float, double, short, long, and binary.

5.2.12 Close()
This API closes a query passed in the input parameter QueryID. If there is a
cursor open for the query, the cursor is closed, freeing the database for other
users. This function does not terminate the connection to the database
server. Since the connection remains open, no rollback or commit is
performed.
134 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

5.3 Using Visual Basic with QMF for Windows

Visual Basic is a visual programming language developed by Microsoft that
allows you to easily create Windows applications. This chapter shows the
steps that need to be taken before using QMF for Windows APIs with Visual
Basic, and also shows some examples of programs.

5.3.1 Getting Started
Before you start using the QMF for Windows APIs, there are a few steps
required for Visual Basic to be able to access the QMF for Windows APIs.
These steps, which must be taken when creating a new project, are as
follows:

1. Within Visual Basic, go to the Project menu and then to the References
item. The screen shown in Figure 59 will appear.

2. Add a reference to the QMF for Windows file qmfwin.tlb if the QMF for
Windows 6.1 Type Library is not found on the list.

Figure 59. Visual basic configuration
Chapter 5. Developer’s guide 135

3. Click OK.

4. On the source code of your program, use the Dim statement as shown
below to create a QMF object:

Dim QMFWin As New QMFWin

or use the CreateObject statement:

Dim QMFWin As Object
Set QMFWin = CreateObject("QMFWin.Interface")

All the APIs are property and methods of the QMFWin object.

5.3.2 Application examples
For a complete understanding and illustration of how Visual Basic
programmers use the QMF for Windows APIs, this chapter provides some
examples with very basic functionality, like listing the servers, listing the
queries, executing a query, and saving a query. Although these examples are
very simple, they show how the interface between a Visual Basic application
and QMF for Windows works.

Three examples will be used to illustrate the QMF for Windows APIs:

1. Execute a query stored on the server

2. Execute a query stored in a file

3. Execute an SQL statement

All examples shown use these two common procedures:

• Clear Grid — Clear all cells of the grid passed on the input parameter
Grid. The source code of that procedure is listed below:

Public Sub ClearGrid(ByRef Grid As MSFlexGrid)

Grid.Clear
Grid.Cols = 2
Grid.Rows = 2

End Sub

• DataIntoGrid — Fetches the data from a specified query and displays the
data into a grid. The query has to be open before calling this procedure.
This is done using the FetchNextRow() API. The following example shows
the source code for this procedure.
136 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Public Sub DataIntoGrid(ByRef Grid As MSFlexGrid, QueryNumber As
Integer)
'This procedure fetches all the data in the QMF Query passed
'on the parameter QueryNumber and display the data on the
'grid passed on the parameter Grid

Dim ColumnHeadings As Variant
Dim i As Integer
Dim myColumnCount As Integer
Dim myRow As Variant
Dim FetchResult As Integer

'Clears the Grid
Call ClearGrid(Grid)

'try to get the number of columns
'of the selected query
myColumnCount = QMFWin.GetColumnCount(QueryNumber)
If myColumnCount <= 0 Then

MsgBox ("Could not count numbers for columns. " +
QMFWin.GetLastErrorString())
Else

'if successful set the grdResult with the
'appropriate numbers of columns
GrdResult.Cols = myColumnCount
'try to get the column headers
If QMFWin.GetColumnHeadings(QueryNumber, ColumnHeadings) <> 0 Then

MsgBox ("Could not get columns headings. " +
QMFWin.GetLastErrorString())

Else
'if successful display the column headings on the grdResult
Grid.Row = 0
For i = 0 To (Grid.Cols - 1)

Grid.Col = i
Grid.Text = ColumnHeadings(i)

Next

Grid.Row = 1

'try to fetch all the rows from the query
FetchResult = QMFWin.FetchNextRow(QueryNumber, myRow)
While FetchResult = 0

For i = 0 To Grid.Cols - 1
Grid.Col = i
Grid.Text = myRow(i)

Next
Grid.Rows = Grid.Rows + 1
Chapter 5. Developer’s guide 137

Grid.Row = Grid.Rows - 1
FetchResult = QMFWin.FetchNextRow(QueryNumber, myRow)

Wend

If FetchResult <> -1 Then
'if the result of the FetchNextRow API
'is different than -1, that means that
'an error occurred
MsgBox ("Could not fetch next row. " +

QMFWin.GetLastErrorString())
Else

'otherwise, the loop end normally

'clear the last row
Grid.Rows = Grid.Rows - 1

End If
End If

End If
End Sub

5.3.3 Example 1 — Execute a query stored on the server
The objective of this program example is to show how to execute a query that
is stored at a database server using the QMF for Windows APIs.

In this example, the following objects were added to a form:

• lstServers — ListBox

• lstQueries — ListBox

• txtSQLStatement — TextBox

• grdResult — MSFlexGrid

• lblState — Label

The first thing that this example does is to list all the servers that are
configured in the QMF for Windows SDF and show the servers found in a list
named lstServers. This is done on the event Form_Load as listed below:

Private Sub Form_Load()
Dim myServerList As Variant
Dim myServer As Variant

'try to get the server list and place it on the ServerList variable
lblState = "Getting Server List..."
If QMFWin.GetServerList(myServerList) <> 0 Then

'if not successful, display error message
138 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

lblState = "Could not find server list. " + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
'if successful, display the list of server into the lstServers
lblState = "Displaying Server List"
lblState.Refresh
If Not IsEmpty(myServerList) Then

For Each myServer In myServerList
lstServers.AddItem (myServer)

Next
Else

lblState = "No server found."
lblState.Refresh
MsgBox (lblState.Caption)

End If
End If
End Sub

After that, the user has to select the desired server by double-clicking on the
server name. When this happens, it is necessary to initialize the server using
the InitializeServer() API. The API will then prompt the user for a userID and
password. Once the server is initialized, all existing queries are listed using
the GetObjectList() API and displayed in the lstQueries object on the top right
of the screen. The source code of that functionality is listed below:

Private Sub lstServers_DblClick()
Dim myQueryList As Variant
Dim myQuery As Variant

'try to initialize the server selected on the lstServer
lblState = "Initializing Server..."
lblState.Refresh

If QMFWin.InitializeServer(lstServers.List(lstServers.ListIndex), "", "",
True) <> 0 Then

'if not successful display error message
lblState = "Could not initialize server "
lblState = lblState + lstServers.List(lstServers.ListIndex)
lblState = lblState + ". "
lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
'if successful try to list all queries (2048 parameter) in that server
lblState = "Getting Existing Queries..."
lblState.Refresh
Chapter 5. Developer’s guide 139

If QMFWin.GetQMFObjectList("%", "%", 2048, myQueryList) <> 0 Then
'if not successful display error message
lblState = "Could not list queries. " + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
'if successful, display all the queries into lstQueries
lblState = "Displaying Query List"
lblState.Refresh
If Not IsEmpty(myQueryList) Then

For Each myQuery In myQueryList
lstQueries.AddItem (myQuery)

Next
Else

lblState = "No Queries found."
lblState.Refresh
MsgBox (lblState.Caption)

End If
End If

End If
End Sub

The user now has to select one from the query list by double-clicking on the
desired query. It is then necessary to initialize the query using the
InitializeQuery() API, execute the query using the Open() API, list all rows in
that query on the grid using the procedure DataIntoGrid listed in the
beginning of 5.3, “Using Visual Basic with QMF for Windows” on page 135,
and close the query using the Close() API. Following is the code to do this:

Private Sub lstQueries_DblClick()

'try to initialize the query selected by the user
lblState = "Initializing Query..."
lblState.Refresh
QueryNumber = QMFWin.InitializeQuery(1,
lstQueries.List(lstQueries.ListIndex))
If QueryNumber < 0 Then

'if not successful display error message
lblState = "Could not initialize query "
lblState = lblState + lstQueries.List(lstQueries.ListIndex)
lblState = lblState + ". "
lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
'if successful
140 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

'Shows the SQL statement
txtSQLText.Text = QMFWin.GetQueryText(QueryNumber)

'try to open the selected query
lblState = "Executing Query..."
lblState.Refresh
If QMFWin.Open(QueryNumber, 0, False) <> 0 Then

'if not successful display error message
lblState = "Could not open the query "
lblState = lblState + lstQueries.List(lstQueries.ListIndex)
lblState = lblState + ". "
lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
lblState = "Displaying Result..."
lblState.Refresh

'clear the grdResult
Call ClearGrid(GrdResult)

'Display the data in the grid
Call DataIntoGrid(GrdResult, QueryNumber)

'try to close the query
lblState = "Closing the Query..."
lblState.Refresh
If QMFWin.Close(QueryNumber) <> 0 Then

lblState = "Could not close query." + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
lblState = ""
lblState.Refresh

End If
End If

End If
End Sub

The final result of this example is shown in Figure 60.
Chapter 5. Developer’s guide 141

Figure 60. Visual basic — execute query stored on the server

5.3.4 Example 2 — Execute a query stored in a file
When using QMF for Windows, it is possible to save the SQL statement in
text files. The objective of this example is to execute a query that was
previously saved as this kind of file. Other applications might also save SQL
statements as text files, and the following example is able to run these
statements as well, if the statements are written in standard SQL.

This example is not able to execute queries that were saved as Prompted
Queries from QMF for Windows (extension *.pq). That is because this kind of
saved query does not contain the SQL statement in its standard format.
There is no way of executing this kind of query using the QMF APIs. In order
to execute them, it is necessary to convert them to SQL statements and save
them as Query Files (*.qry).

Note:
142 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

In this example, the following objects were added to a form:

• lstServers — ListBox

• lstDrives — DriveListBox

• lstDir — DirListBox

• lstFiles — FileListBox

• grdResult — MSFlexGrid

• lblState — Label

The first thing that this example does is to list all the servers that are
configured in the QMF for Windows SDF and show them in the list named
lstServers. This is done on the event Form_Load, as listed below:

Private Sub Form_Load()
Dim myServerList As Variant
Dim myServer As Variant

'try to get the server list and place it
'on the ServerList variable
lblState = "Getting Server List..."
If QMFWin.GetServerList(myServerList) <> 0 Then

'if not successful, display error message
lblState = "Could not find server list. "
lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
'if successful, display the list of server
'into the lstServers
lblState = "Displaying Server List"
lblState.Refresh
For Each myServer In myServerList

lstServers.AddItem (myServer)
Next
lblState = ""
lblState.Refresh

End If
End Sub

After that, the user has to select the desired server by double-clicking on the
server name. It then is necessary to initialize the server using the
InitializeServer() API. This API will prompt the user for his userID and
password. Once the server is initialized, the driver, directory, and file lists will
be enabled for the user to select the file. The source code of that functionality
is listed below:
Chapter 5. Developer’s guide 143

Private Sub lstServers_DblClick()
Dim myQueryList As Variant
Dim myQuery As Variant

'Clear the grid
Call ClearGrid(GrdResult)

'try to initialize the server selected on the lstServer
lblState = "Initializing Server..."
lblState.Refresh

If QMFWin.InitializeServer(lstServers.List(lstServers.ListIndex) _
, "", "", True) <> 0 Then

'if not successful display error message
lblState = "Could not initialize server "
lblState = lblState + lstServers.List(lstServers.ListIndex)
lblState = lblState + ". "
lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
'Enables the selection of files after the server is selected
lstDrives.Enabled = True
lstDrives.BackColor = -2147483643
lstDir.Enabled = True
lstDir.BackColor = -2147483643
lstFiles.Enabled = True
lstFiles.BackColor = -2147483643
lblState = ""
lblState.Refresh

End If
End Sub

The user now has to select the text file that contains the SQL statement. In
this example, the user will only be able to see files with the extension *.qry,
which is the extension under which QMF for Windows saves its SQL queries.
The following code must be implemented to link the drive, directory and file
lists, as shown below:

Private Sub lstDrives_Change()
'Changes the path property on the directory list object
lstDir.Path = lstDrives.Drive

End Sub

Private Sub lstDir_Change()
'Changes the path of the File List Objects
144 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

lstFiles.Path = lstDir.Path

End Sub

After the user has found the correct directory, he must double-click on the file
name in the list. It is then necessary to initialize the query using the
InitializeQuery() API, execute the query using the Open() API, display the
result on the grid using the procedure DataIntoGrid listed in the beginning of
5.3, “Using Visual Basic with QMF for Windows” on page 135, and close the
query using the Close() API. The code to do that is listed below:

Private Sub lstFiles_DblClick()

'try to initialize the query selected by the user
lblState = "Initializing Query..."
lblState.Refresh

'checks if the current directory is the root directory.
'That is because the lstDir.Path will not return the "\"
'character if the current directory is not the root
If Len(lstDir.Path) <> 3 Then

QueryNumber = QMFWin.InitializeQuery(2, lstDir.Path + "\" _
+ lstFiles.List(lstFiles.ListIndex))

Else
QueryNumber = QMFWin.InitializeQuery(2, lstDir.Path + _

lstFiles.List(lstFiles.ListIndex))
End If

If QueryNumber < 0 Then
'if not successful display error message
lblState = "Could not initialize query "
lblState = lblState + lstFiles.List(lstFiles.ListIndex)
lblState = lblState + ". "
lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
'if successful try to open the selected query
'without any limits of number of rows
lblState = "Executing Query..."
lblState.Refresh
If QMFWin.Open(QueryNumber, 0, False) <> 0 Then

'if not successful display error message
lblState = "Could not open the query "
lblState = lblState + lstFiles.List(lstFiles.ListIndex)
lblState = lblState + ". "
lblState = lblState + QMFWin.GetLastErrorString()
Chapter 5. Developer’s guide 145

lblState.Refresh
MsgBox (lblState.Caption)

Else
lblState = "Displaying Result..."
lblState.Refresh

'clear the grdResult
Call ClearGrid(GrdResult)

'Display the data in the grid
Call DataIntoGrid(GrdResult, QueryNumber)

'try to close the query
lblState = "Closing the Query..."
lblState.Refresh
If QMFWin.Close(QueryNumber) <> 0 Then

lblState = "Could not close query."
lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
lblState = ""
lblState.Refresh

End If
End If

End If
End Sub

The final result of this example is shown in Figure 61.
146 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 61. Visual basic — execute query stored on a file

5.3.5 Example 3 — Execute an SQL statement
The objective of this example is to execute SQL directly, which means that an
SQL application has either created itself or prompted the user to input it.
Always remember that, in an Enterprise Query Environment, all queries are
stored in a query repository. It is rare to allow end users to input their own
query. This kind of API is more often used in applications for administrative
purposes.

In this example, the following objects were added to a form:

• lstServers — ListBox

• txtSQLStatement — RichTextBox

• btClear — CommandButton

• btExecute — CommandButton

• grdResult — MSFlexGrid

• lblState — Label
Chapter 5. Developer’s guide 147

The first thing that this example does is to list all the servers that are
configured in the QMF for Windows SDF and show these servers in a list
named lstServers. This is done on the event Form_Load, as listed below:

Private Sub Form_Load()
Dim myServerList As Variant
Dim myServer As Variant

'try to get the server list and place it
'on the ServerList variable
lblState = "Getting Server List..."
If QMFWin.GetServerList(myServerList) <> 0 Then

'if not successful, display error message
lblState = "Could not find server list. "
lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
'if successful, display the list of server
'into the lstServers
lblState = "Displaying Server List"
lblState.Refresh
If Not IsEmpty(myServerList) Then

For Each myServer In myServerList
lstServers.AddItem (myServer)

Next
Else

lblState = "No servers found."
lblState.Refresh
MsgBox ("No servers found.")

End If
End If
End Sub

After that, the user has to select the desired server by double-clicking on the
server name. It then is necessary to initialize the server using the
InitializeServer() API. The API will then prompt the user for his userID and
password. Once the server is correctly initialized, the SQL text box will be
enabled for the user to enter the SQL statement. The source code of that
functionality is listed below:

Private Sub lstServers_DblClick()
Dim myQueryList As Variant
Dim myQuery As Variant
148 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

'try to initialize the server selected on the lstServer
lblState = "Initializing Server..."
lblState.Refresh

If QMFWin.InitializeServer(lstServers.List(lstServers.ListIndex) _
, "", "", True) <> 0 Then

'if not successful display error message
lblState = "Could not initialize server "
lblState = lblState + lstServers.List(lstServers.ListIndex)
lblState = lblState + ". "
lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
btClear.Enabled = True
btExecute.Enabled = True
btSave.Enabled = True
txtSQLStatement.Enabled = True
txtSQLStatement.BackColor = -2147483643
txtSQLStatement.SetFocus
lblState = "Server"
lblState.Refresh

End If
End Sub

Now, the user has to type the SQL statement. In this example, the statement
will be "SELECT * FROM EMPLOYEE" where Employee is an example of a
table that QMF creates when it is installed. After that the user can execute the
SQL by clicking on the Execute button, or clear the entry by clicking on the
Clear button. In case the user clicks on the Clear button, the following code
must be implemented.

Private Sub btClear_Click()

'clear the txtSQLStatement
txtSQLStatement.Text = ""
txtSQLStatement.Refresh

'clear the grdResult
Call ClearGrid(GrdResult)

txtSQLStatement.SetFocus

End Sub
Chapter 5. Developer’s guide 149

Otherwise, if the user clicks on the Execute button, it is necessary to Initialize
the query using the InitializeQuery() API, execute the query using the Open()
API, display the result on the grid using the procedure DataIntoGrid listed in
the beginning of 5.3, “Using Visual Basic with QMF for Windows” on page
135, and close the query using the Close() API. If the statement typed is not a
valid statement the Open() API will fail and the application has to handle the
error. This is shown in the code below:

Private Sub btExecute_Click()
'Execute the SQL Statement written on the txtSQLStatement

If txtSQLStatement.Text <> "" Then
'if there is some SQL statement the
QueryNumber = QMFWin.InitializeQuery(0, txtSQLStatement.Text)
If QueryNumber < 0 Then

'if not successful display error message
lblState = "Could not initialize the query "
lblState = lblState + txtSQLStatement.Text
lblState = lblState + ". "
lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)
txtSQLStatement.SetFocus

Else
'if successful try to open the selected query without
'any limits of number of rows
lblState = "Executing Query..."
lblState.Refresh
If QMFWin.Open(QueryNumber, 0, False) <> 0 Then

'if not successful display error message
lblState = "Could not open the query "
lblState = lblState + txtSQLStatement.Text
lblState = lblState + ". "
lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
lblState = "Displaing Result..."
lblState.Refresh

'clear the grdResult
Call ClearGrid(GrdResult)

'Display the data in the grid
Call DataIntoGrid(GrdResult, QueryNumber)

'try to close the query
150 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

lblState = "Closing the Query..."
lblState.Refresh
If QMFWin.Close(QueryNumber) <> 0 Then

lblState = "Could not close query." _
+ QMFWin.GetLastErrorString()

lblState.Refresh
MsgBox (lblState.Caption)

Else
lblState = ""
lblState.Refresh

End If
End If

End If
End If
End Sub

Another important functionality of this example is the option to save the query
on the server. That is done using the SaveQMFQuery() API. When the user
clicks on the Save button, the application will be prompted for the query
owner, name, and comments of the query (if any). If the query is saved
successfully, a message will be displayed; otherwise, the error message will
appear. The code that does this is listed below:

Private Sub btSave_Click()
Dim Owner As String
Dim Name As String
Dim Comment As String

'if there is any text to save
If txtSQLStatement.Text <> "" Then

lblState = "Saving Query..."
lblState.Refresh

'prompt the user for Owner of the query
Owner = InputBox("Please enter the Owner of the Query" _

, "Owner")
'prompt the user for Name of the query
Name = InputBox("Please enter the Name of the Query" _

, "Name")
'prompt the user for Comments on the query
Comment = InputBox("Please enter the Comment of the Query" _

, "Comment")

'try to save query on server
If QMFWin.SaveQMFQuery(Owner + "." + Name, txtSQLStatement.Text _

, Comment, True, True) <> 0 Then
Chapter 5. Developer’s guide 151

'if not successful show error message
lblState = "Could not save query." _

+ QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
'if successful say it to user
lblState = ""
lblState.Refresh
MsgBox ("Query Saved.")

End If
End If
End Sub

There is also a possibility to export the data retrieved from the query into
files. This can be done using the API Export(). This API can export the data to
text files, HTML files and IXS files. In this example, when the user clicks on
the export button, the user is prompted to enter the file name and all the data
retrieved from the typed query is saved into that file using the HTML format.
The function that does this is listed below:

Private Sub btExport_Click()

If txtSQLStatement.Text <> "" Then
'if there is some SQL statement the
QueryNumber = QMFWin.InitializeQuery(0, txtSQLStatement.Text)
If QueryNumber < 0 Then

'if not successful display error message
lblState = "Could not initialize the query "
lblState = lblState + txtSQLStatement.Text
lblState = lblState + ". "
lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)
txtSQLStatement.SetFocus

Else
'if successful try to open the selected query without
'any limits of number of rows
lblState = "Executing Query..."
lblState.Refresh

'open the query fetching all rows
If QMFWin.Open(QueryNumber, 0, True) <> 0 Then

'if not successful display error message
lblState = "Could not open the query "
lblState = lblState + txtSQLStatement.Text
lblState = lblState + ". "
152 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

lblState = lblState + QMFWin.GetLastErrorString()
lblState.Refresh
MsgBox (lblState.Caption)

Else
lblState = "Displaing Result..."
lblState.Refresh

'export the data to a HTML file
If QMFWin.Export(QueryNumber, 0, 0, -1, -1, 1, 0, 0, True, _

InputBox("Enter the file path and name"), 0) = 0 Then
MsgBox ("Data exported.")

Else
MsgBox ("Could not export data. " + QMFWin.GetLastErrorString())

End If

'try to close the query
lblState = "Closing the Query..."
lblState.Refresh
If QMFWin.Close(QueryNumber) <> 0 Then

lblState = "Could not close query." _
+ QMFWin.GetLastErrorString()

lblState.Refresh
MsgBox (lblState.Caption)

Else
lblState = ""
lblState.Refresh

End If
End If

End If
End If
End Sub

The final result of this example is shown in Figure 62.
Chapter 5. Developer’s guide 153

Figure 62. Visual basic — execute SQL statement

5.4 Using Delphi with QMF for Windows

Delphi is a visual programming language developed by Borland/Inprise that
allows the easy creation of Windows applications. In this chapter we show the
firsts steps that need to be taken before using QMF for Windows APIs using
Delphi. We also show a Delphi program example.

5.4.1 Getting Started
When using Delphi 4.0, the following steps must be done:

1. Go to the Project menu and click on Import Type Library. The screen
shown in Figure 63 will appear.
154 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 63. Delphi configuration

2. Add a reference to the QMF for Windows file qmfwin.tlb if the QMF for
Windows 6.1 Type Library is not found on the list.

3. A new Unit named QMFWinLibrary_TLB will be added to the project. Add
this unit in the "uses" statement in the desired form. A file called
QMFWinLibrary_TLB.pas will be created on the default Imports Delphi
directory (ex. C:\Program Files\Borland\Delphi4\Imports). There is no
need to create this file every time; this file can be added directly to your
project.

4. On the form, go to the private or public declaration and add an object of
the QMFWin type, as shown in the example below:

uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, QMFWinLibrary_TLB;
Chapter 5. Developer’s guide 155

type
TForm1 = class(TForm)

procedure FormCreate(Sender: TObject);
private

public
QMF: QMFWin;

end;

5. Before using the QMF for Windows object it is necessary to initialize it,
which can be done in any appropriate event of the application. In the
example below, the initialization is in the Form.Create event.

procedure TForm1.FormCreate(Sender: TObject);
begin

QMF:= CoQMFWin.Create;
end;

After that, the QMF for Windows APIs are ready to be used. All the APIs are
property and methods of that object.

5.4.2 Delphi application example
For a complete understanding and illustration of how Delphi programmers use
QMF for Windows APIs, this chapter provides an example of an application
with some basic functionalities such as listing the servers, listing the queries,
executing a query, and saving a query. Although this example is very simple,
it shows how the interface between a Delphi application and QMF for
Windows works.

The functionality of this example allows the user to create, edit, delete, and
execute queries either on the server or in the file. To do that, the user first has
to select a server by double-clicking on it. A window prompting the user for a
userID and password will appear. After that, the list of queries stored on that
server will be displayed, as shown in Figure 64.
156 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 64. Delphi example, query list

Once the connection to the server has been established, the user can
perform several actions with the listed queries.

The first thing the user can do is to open an existing query that is stored in a
file. That can be done by clicking on the Open from File button. The user will
be prompted to select a file and, once the file is selected, the query is
executed automatically.

The next thing the user can do is to create a new query. When the New
button is clicked, the window shown in Figure 65 will appear. The user has to
type in the owner of the query, its name, and the SQL statement. After that,
there are two possibilities: save the query on the server, or save the query as
a file. When saving it on the server, if the owner and name already exist, the
new version will try to overwrite the old one, but this will not work if the older
version is a prompted query. It will only work if the older query is of the SQL
statement type.
Chapter 5. Developer’s guide 157

Figure 65. Delphi example, new query

The user can also edit on existing query. In order to do that, the user has to
select an existing query by clicking one time over the query name on the list
and clicking on the Edit button. The same window (shown in Figure 65) will
appear, but with the information of the selected query. The user can now
modify the SQL statement and save it on the server to overwrite the existing
query, or he can modify the owner and name and save it as a new query.

There is also the possibility to delete existing queries. That can be done by
selecting a query on the list and clicking on the Delete button. Be aware that
no confirmation will be prompted before deleting the query.

The last thing the user can do is to execute a query. The user has to select a
query from the list and click on the Execute button. The same thing happens
if the user double-clicks the desired query within the list. Figure 66 shows the
final result after a query is executed.
158 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 66. Delphi example, executing query

As you can see, this simple application has only two forms. The first one is
called frmMain (Unit1), and the other is called frmQuery (Unit2). Below is the
source code of the form frmMain (Unit1), including the uses clauses and the
class definition. Pay close attention to the QMFWinLabrary_TLB on the uses
clauses. Without that, the Unit will not be able to use the QMF APIs.

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, QMFWinLibrary_TLB, Grids, ExtCtrls, ComCtrls;

The class definition of the frmMain is listed below:

type
TfrmMain = class(TForm)

Panel1: TPanel;
grdResult: TStringGrid;
lstServers: TListBox;
lstQueries: TListBox;
Chapter 5. Developer’s guide 159

StatusBar: TStatusBar;
txtLog: TMemo;
btOpenFromFile: TButton;
btNewQuery: TButton;
OpenDialog: TOpenDialog;
btEditQuery: TButton;
btDeleteQuery: TButton;
btExecuteQuery: TButton;
procedure FormCreate(Sender: TObject);
procedure lstServersDblClick(Sender: TObject);
procedure btOpenFromFileClick(Sender: TObject);
procedure btNewQueryClick(Sender: TObject);
procedure btEditQueryClick(Sender: TObject);
procedure btDeleteQueryClick(Sender: TObject);
procedure btExecuteQueryClick(Sender: TObject);

private
public

QMF: QMFWin;
QueryNumber: Integer;
procedure ClearGrid(Grid: TStringGrid);
procedure DataIntoGrid(Grid: TStringGrid; QueryNumber: Integer);
procedure RefreshQueryList;

end;

The uses clauses here identify that this form will be using the frmQuery.

uses Unit2;

The procedure ClearGrid is used all over the application. It only clears the
StringGrid passed in the input parameter Grid and resets its number of
columns and rows.

procedure TfrmMain.ClearGrid(Grid: TStringGrid);
//Clear everything on the grid and
//sets rowcount and colcount to 2
var

Col, Row: Integer;
begin

for Col:= 0 to (Grid.ColCount - 1) do
for Row:= 1 to (Grid.RowCount - 1) do

Grid.Cells[Col,Row]:= '';
Grid.RowCount:= 2;
Grid.ColCount:= 2;
Grid.FixedRows:= 1;

end;
160 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

This procedure is a generic procedure that receives a string identifying a
query (that has to be already open) as input parameter, and places all the
data retrieved by that query into the StringGrid passed on the parameter Grid.
This function was separated from the rest of the code because it may be
useful in other applications that use the QMF for Windows APIs.

procedure TfrmMain.DataIntoGrid(Grid: TStringGrid; QueryNumber: Integer);
//This procedure fetches all the data in the QMF Query passed
//on the parameter QueryNumber and display the data on the
//grid passed on the parameter Grid
var

ColumnHeadings: OleVariant;
Col, Row: Integer;
myColumnCount: Integer;
myRow: OleVariant;
FetchResult: Integer;

begin
//Clears the Grid
ClearGrid(Grid);
//try to get the number of columns of the selected query
myColumnCount:= QMF.GetColumnCount(QueryNumber);
if myColumnCount <= 0 then

ShowMessage ('Could not count numbers for columns. '
+ QMF.GetLastErrorString())

else
//if successful set the grdResult with the
//appropriate numbers of columns
begin
Grid.ColCount:= myColumnCount;
//try to get the column headers
if QMF.GetColumnHeadings(QueryNumber, ColumnHeadings) <> 0 then

ShowMessage ('Could not get columns headings. '
+ QMF.GetLastErrorString())

else
//if successful display the column headings on the grdResult
begin
for Col:= 0 to (Grid.ColCount - 1) do

Grid.Cells[Col,0]:= ColumnHeadings[Col];
//try to fetch all the rows from the query
//and place the data in the grid
Row:= 0;
FetchResult:= QMF.FetchNextRow(QueryNumber, myRow);
while FetchResult = 0 do

begin
Row:= Row + 1;
for Col:= 0 to (Grid.ColCount - 1) do

Grid.Cells[Col,Row]:= myRow[Col];
Chapter 5. Developer’s guide 161

Grid.RowCount:= Grid.RowCount + 1;
FetchResult:= QMF.FetchNextRow(QueryNumber, myRow);
end;

Grid.FixedRows:= 1;
if FetchResult <> -1 then

//if the result of the FetchNextRow API
//is different than -1, that means that
//an error occurred
ShowMessage ('Could not fetch next row. '

+ QMF.GetLastErrorString())
else

//otherwise, the loop end normally
//clear the last row
Grid.RowCount:= Grid.RowCount - 1;

end;
end;

end;

The procedure RefreshQueryList lists all the queries that are on the current
server (the server in which the QMF object is currently connected to) and
displays these queries in the lstQueries object. This is done using the
GetQMFObjectList() API. The procedure was separated from the rest of the
code because it is called several times from different parts of the program.

procedure TfrmMain.RefreshQueryList;
//List all available query in the connected server
var

myQueryList: OleVariant;
i: Integer;

begin
//try to list all queries
//(2048 parameter) in that server
StatusBar.SimpleText:= 'Getting Existing Queries...';
StatusBar.Refresh;
if QMF.GetQMFObjectList('%', '%', 2048, myQueryList) <> 0 then

//if not successful display error message
begin
StatusBar.SimpleText:= 'Could not list queries. '

+ QMF.GetLastErrorString();
StatusBar.Refresh;
ShowMessage (StatusBar.SimpleText);
end

else
//if successful, display all the queries into lstQueries
begin
StatusBar.SimpleText:= 'Displaying Query List...';
StatusBar.Refresh;
162 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

lstQueries.Clear;
//in case there is no query to be listed
//an exception occurs
try

for i:= VarArrayLowBound(myQueryList,1)
to VarArrayHighBound(myQueryList,1) do
lstQueries.Items.Add(myQueryList[i]);

StatusBar.SimpleText:=);
StatusBar.Refresh;

except
end;
ClearGrid(grdResult);
end;

end;

This procedure is executed once the OnCreate event of the frmMain form is
triggered. It list all servers available in the QMF SDF and displays the servers
in the lstServers object. The API used to do that is GetServerList().

procedure TfrmMain.FormCreate(Sender: TObject);
var
ServerList: OleVariant;
i: integer;

begin
//Clear Grid
ClearGrid(grdResult);
//create the QMF Object
QMF:= CoQMFWin.Create;
StatusBar.SimpleText:= 'Listing Servers....';
StatusBar.Refresh;
//try to list all servers that are configured on
//QMF for Windows
if QMF.GetServerList(ServerList) <> 0 then

//if fails show error message
begin
StatusBar.SimpleText:= 'Could not list servers.';
StatusBar.Refresh;
ShowMessage(StatusBar.SimpleText);
end

else
//if successful then display all servers in the
//lstServers object
try

for i:= VarArrayLowBound(ServerList,1) to
VarArrayHighBound(ServerList,1) do

lstServers.Items.Add(ServerList[i]);
StatusBar.SimpleText:= '';
Chapter 5. Developer’s guide 163

StatusBar.Refresh;
except
end;

end;

This procedure is executed when the DblClick event of the lstServers object
is triggered. When the user double-clicks on a specific server name, the
application connects to the selected server. That is done using the
InitializeServer() API. After that the procedure lists all available queries on
the server and then displays them in the lstQueries object by calling the
RefreshQueryList procedure listed in the beginning of this chapter.

procedure TfrmMain.lstServersDblClick(Sender: TObject);
begin

lstQueries.Clear;
ClearGrid(grdResult);
//if there is any server selected
if lstServers.ItemIndex <> -1 then

begin
StatusBar.SimpleText:= 'Initializing Server....';
StatusBar.Refresh;
//try to initialize the server
if

QMF.InitializeServer(lstServers.Items.Strings[lstServers.ItemIndex]
,'','', True,'',null) <> 0 then

//if not successful show error message
begin
StatusBar.SimpleText:= 'Could not initialize server '

+
lstServers.Items.Strings[lstServers.ItemIndex]

+ '. '
+ QMF.GetLastErrorString();

StatusBar.Refresh;
ShowMessage (StatusBar.SimpleText);
btOpenFromFile.Enabled:= False;
btNewQuery.Enabled:= False;
btEditQuery.Enabled:= False;
btDeleteQuery.Enabled:= False;
btExecuteQuery.Enabled:= False;
end

else
//if successful, refresh the query list
//and enable buttons
begin
RefreshQueryList;
btOpenFromFile.Enabled:= True;
btNewQuery.Enabled:= True;
164 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

btEditQuery.Enabled:= True;
btDeleteQuery.Enabled:= True;
btExecuteQuery.Enabled:= True;
end;

end;
end;

This procedure is executed when the OnClik event of the button
btOpenFromFile is triggered. When that happens, a dialog is prompted for the
user to select a file containing a query. After the user selects the file, that
query is executed. This is done using the InitializeQuery() and Open() APIs.
The procedure also calls the DataIntoGrid procedure listed in the beginning of
this chapter.

procedure TfrmMain.btOpenFromFileClick(Sender: TObject);
//Open an existing query from a file
//and execute the query
begin

//prompt the user for the file name
OpenDialog.Execute;
if OpenDialog.FileName <> '' then

//if the user chose a file
begin
ClearGrid(grdResult);
//try to initialize the query selected by the user
StatusBar.SimpleText:= 'Initializing Query...';
StatusBar.Refresh;
QueryNumber:= QMF.InitializeQuery(2, OpenDialog.FileName);
If QueryNumber < 0 then

//if not successful display error message
begin
StatusBar.SimpleText:= 'Could not initialize query. '

+ QMF.GetLastErrorString();
StatusBar.Refresh;
ShowMessage (StatusBar.SimpleText);
end

else
//if successful try to open the selected query
//without any limits of number of rows
begin
StatusBar.SimpleText:= 'Executing Query...';
StatusBar.Refresh;
if QMF.Open(QueryNumber, 0, False) <> 0 then

//if not successful display error message
begin
StatusBar.SimpleText:= 'Could not open the query. '

+ QMF.GetLastErrorString();
Chapter 5. Developer’s guide 165

StatusBar.Refresh;
ShowMessage (StatusBar.SimpleText);
end

else
begin
//if successful
StatusBar.SimpleText:= 'Displaying Result...';
StatusBar.Refresh;
//Show to user what is being displayed
txtLog.Lines.Clear;
txtLog.Lines.Add('FILE NAME: ' + OpenDialog.FileName);
txtLog.Lines.Add('SQL STATEMENT: '

+ QMF.GetQueryText(QueryNumber));
txtLog.Lines.Add('QUERY TYPE: Stored on File.');
//clear the grdResult
ClearGrid(GrdResult);
//Display the data in the grid
DataIntoGrid(GrdResult, QueryNumber);
//try to close the query
StatusBar.SimpleText:= 'Closing the Query...';
StatusBar.Refresh;
if QMF.Close(QueryNumber) <> 0 then

begin
StatusBar.SimpleText:= 'Could not close query.'

+ QMF.GetLastErrorString();
StatusBar.Refresh;
ShowMessage (StatusBar.SimpleText);
end

else
begin
StatusBar.SimpleText:= '';
StatusBar.Refresh;
end;

end;
end;

end;
end;

The following procedure is executed when the OnClik event of the button
btNewQuery is triggered. It clears all fields and opens the frmQuery form.

procedure TfrmMain.btNewQueryClick(Sender: TObject);
//Shows the form frmQuery and clear
//all it's fields
begin

frmQuery.txtOwner.Text:= '';
frmQuery.txtName.Text:= '';
166 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

frmQuery.txtSQLStatement.Lines.Clear;
frmQuery.Show;

end;

The next procedure is executed when the OnClik event of the button
btEditQuery is triggered. It first checks the type of the query to be edited. If
the query is of the prompted query type, it cannot be edited. This type of
query can only be edited using the QMF interface. If the query is of the type
plain SQL, the frmQuery form will be displayed showing the query’s
informations. To retrieve the query type the GetQMFObjectInfo() API is used.
To get the SQL statement from a query the GetQueryText() API is used.

procedure TfrmMain.btEditQueryClick(Sender: TObject);
//Open the form frmQuery with and display
//the selected query information on it
var

DotPossition: integer;
QueryName: String;
QueryInfo: OleVariant;

begin
//if there is any query selected
if lstQueries.ItemIndex <> -1 then

begin
//copy the name of the selected query
//using the format owner.name
QueryName:= lstQueries.Items.Strings[lstQueries.ItemIndex];
StatusBar.SimpleText:= 'Getting query type...';
StatusBar.Refresh;
//get the query type, PROMPTED or SQL
if QMF.GetQMFObjectInfo(QueryName,3,2,QueryInfo) <> 0 then

//if not successful show error message
begin
StatusBar.SimpleText:= 'Could not get query type. '

+ QMF.GetLastErrorString();
StatusBar.Refresh;
ShowMessage (StatusBar.SimpleText);
end

else
//if successful verify the query type
begin
if QueryInfo = 'PROMPTED' then

//if the query is a prompted query it can not be edit
begin
StatusBar.SimpleText:= 'This query is a prompted query and '

+ 'can not be edit here.';
StatusBar.Refresh;
ShowMessage (StatusBar.SimpleText);
Chapter 5. Developer’s guide 167

end
else

begin
//if the query is a SQL query then
//find the '.' character in the string
DotPossition:= pos('.',QueryName);
//copy the owner part
frmQuery.txtOwner.Text:= copy(QueryName,0,DotPossition-1);
//copy the name part
frmQuery.txtName.Text:= copy(QueryName,DotPossition+1,500);
//list the SQL statement of the query
frmQuery.txtSQLStatement.Lines.Clear;
frmQuery.txtSQLStatement.Lines.Add

(QMF.GetQMFQueryText(QueryName));
//Shows the form
frmQuery.Show;
end;

end;
end;

end;

The following procedure will be executed when the OnClik event of the button
btDeleteQuery is triggered. It simply deletes the selected query, which is
done using the DeleteQMFObject() API.

procedure TfrmMain.btDeleteQueryClick(Sender: TObject);
//delete the selected query from the server
var

QueryName: String;
begin

//if there is any query selected
if lstQueries.ItemIndex <> -1 then

begin
//copy the owner.name of the selected query
QueryName:= lstQueries.Items.Strings[lstQueries.ItemIndex];
//try to delete the query
if QMF.DeleteQMFObject(QueryName) <> 0 then

//if not successful show error message
begin
StatusBar.SimpleText:= 'Could not delete query ' + QueryName;
StatusBar.Refresh;
ShowMessage (StatusBar.SimpleText);
end

else
//if successful refresh the query list
begin
ShowMessage('Query Deleted.');
168 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

RefreshQueryList;
end;

end;
end;

The next procedure is executed when the OnClik event of the button
btExecuteQuery is triggered. It executes the selected query using the Open()
API and displays the result on the grid using the DataIntoGrid procedure that
is listed in the beginning of this chapter.

procedure TfrmMain.btExecuteQueryClick(Sender: TObject);
//execute the selected query and display
//the retrieved data in the grid
begin

//if there is any query selected
if lstQueries.ItemIndex <> -1 then

begin
ClearGrid(grdResult);
StatusBar.SimpleText:= 'Initializing Query...';
StatusBar.Refresh;
//try to initialize the query selected by the user
QueryNumber:= QMF.InitializeQuery(1,

lstQueries.Items.Strings[lstQueries.ItemIndex]);
if QueryNumber < 0 then

//if not successful display error message
begin
StatusBar.SimpleText:= 'Could not initialize query '

+
lstQueries.Items.Strings[lstQueries.ItemIndex]

+ '. '
+ QMF.GetLastErrorString();

StatusBar.Refresh;
ShowMessage (StatusBar.SimpleText);
end

else
//if successful try to open the selected query
//without any limits of number of rows
begin
StatusBar.SimpleText:= 'Executing Query...';
StatusBar.Refresh;
if QMF.Open(QueryNumber, 0, False) <> 0 then

//if not successful display error message
begin
StatusBar.SimpleText:= 'Could not open the query '

+ lstQueries.Items.Strings
[lstQueries.ItemIndex]

+ '. '
Chapter 5. Developer’s guide 169

+ QMF.GetLastErrorString();
StatusBar.Refresh;
ShowMessage (StatusBar.SimpleText);
end

else
begin
StatusBar.SimpleText:= 'Displaying Result...';
StatusBar.Refresh;
//clear the grdResult
ClearGrid(GrdResult);
//Display the data in the grid
DataIntoGrid(GrdResult, QueryNumber);
//Show to user what is being displayed
txtLog.Clear;
txtLog.Lines.Add('QUERY NAME: '

+ lstQueries.Items.Strings
[lstQueries.ItemIndex]);

txtLog.Lines.Add('SQL STATEMENT: '
+ QMF.GetQueryText(QueryNumber));

txtLog.Lines.Add('QUERY TYPE: Stored on Server.');
//try to close the query
StatusBar.SimpleText:= 'Closing the Query...';
StatusBar.Refresh;
if QMF.Close(QueryNumber) <> 0 then

begin
StatusBar.SimpleText:= 'Could not close query.'

+ QMF.GetLastErrorString();
StatusBar.Refresh;
ShowMessage (StatusBar.SimpleText);
end

else
begin
StatusBar.SimpleText:= '';
StatusBar.Refresh;
end;

end;
end;

end;
end;

The source code from the frmQuery is listed below, including the uses clause,
and the class definition. This unit does not need the include of the
QMFWinLibrary_TLB because no QMF object is created in this unit. The APIs
are used accessing the QMF object created on the frmMain form.

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
170 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

StdCtrls;

The code listed below shows the class definition for the form frmQuery.

type
TfrmQuery = class(TForm)

SaveDialog: TSaveDialog;
txtSQLStatement: TMemo;
btSaveOnServer: TButton;
btSaveOnFile: TButton;
lblOwner: TLabel;
lblName: TLabel;
txtOwner: TEdit;
txtName: TEdit;
procedure btSaveOnServerClick(Sender: TObject);
procedure btSaveOnFileClick(Sender: TObject);

private
{Private declarations}

public
{Public declarations}

end;

Note that this form uses some resources from the form frmMain. That
requires the uses of the Unit1.

uses Unit1;

The next procedure is executed when the OnClik event of the button
btSaveOnServer is triggered. When that occurs, the procedure will save the
query on the server. A problem may rise when the owner and name already
exist. QMF has different types of queries, a prompted query and an SQL
query. If the owner and name of the query being saved exists and the existing
query is a prompted query, an error will occur. Otherwise, if the existing object
is of the type SQL query, then the existing query will be replaced. This is done
using the SaveQMFQuery() API.

If the owner and name already exists, the query will be replaced.

procedure TfrmQuery.btSaveOnServerClick(Sender: TObject);
//save the query on the server
begin

//if there is a owner and a name
if (txtOwner.Text <> '') and (txtName.Text <> '') then

begin
//try to save the query on the server with replace option
if frmMain.QMF.SaveQMFQuery(txtOwner.Text + '.' + txtName.Text

,txtSQLStatement.Text
,'',True,True) <> 0 then
Chapter 5. Developer’s guide 171

//if not successful show error message
ShowMessage('Could not save query. '

+ frmMain.QMF.GetLastErrorString())
else

begin
//if successful display message and
//refresh the list of queries
frmMain.RefreshQueryList;
Hide;
ShowMessage('Query Saved.');
end;

end;
end;

This procedure is executed when the OnClik event of the button
btSaveOnFile is triggered. When executed, the user will be prompted to
select a file name from to save the query to. This procedure does not use any
of the QMF for Windows APIs, but uses the SaveToFile method of the TMemo
class instead to save the text to a file.

procedure TfrmQuery.btSaveOnFileClick(Sender: TObject);
//save query on file
begin

//prompt the user for a file name
SaveDialog.FileName:= '';
SaveDialog.Execute;
//if some file was selected
if SaveDialog.FileName <> '' then

begin
//save the query into the file
txtSQLStatement.Lines.SaveToFile(SaveDialog.FileName);
Hide;
ShowMessage('Query saved on file ' + SaveDialog.FileName);
end;

end;

5.5 Using C++ with QMF for Windows

The following sections provide some short hints on using C++ for application
development with QMF for Windows.
172 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

5.5.1 Getting started
If you are using Microsoft Visual C++ and MFC, create a wrapper class for the
QMF for Windows API object from the QMF for Windows type library,
qmfwin.tlb. Then use the CreateDispatch() function:

COleException e;
IQMFWin QMFWin;
QMFWin.CreateDispatch("QMFWin.Interface", &e);

5.5.2 C++ specifics
When using C++ to access the QMF for Windows API, the programmer has to
keep some basic considerations in mind. C++ is a language that does not
allocate memory automatically. That means that all the memory allocation
has to be done by the application. This is especially important when using the
QMF APIs because most of these API return values in the form of Variant. So
the C++ application has to handle and manipulate these Variant results.

You must properly initialize the Variant variable before calling functions that
return data into this variable. Visual Basic and Delphi do this automatically,
but Visual C++ programmers must call VariantInit().

5.6 General programming considerations

Following are some general considerations to be aware of when creating
applications using the QMF for Windows API.

5.6.1 Two phase commit
A two phase commit takes place when a single transaction has to occur on
different databases. A well known example for a two phase commit
application is the money transfer from one bank to another. When the money
is deducted from the originating account, it needs to be guaranteed that the
target account will credited. This requires the application to have two
database connections open at the same time in order to have both
transactions under a single control. Two phase commit is in charge of data
consistency between the database servers involved within this unit of work.

Many DBMSs have a two phase commit protocol that makes this process
independent from the application, meaning that the application sees the two
phase commit as a regular commit and the DBMS makes sure that the
transaction is done correctly. However, to use that protocol, it is necessary to
have a connection to all databases involved on the transaction opened at the
same time.
Chapter 5. Developer’s guide 173

Since each QMF for Windows instance within an application can only be
connected to one server at a time, it is not possible to use the two phase
commit protocol provided by the database directly. There are some other
ways of implementing to phase commit in your application.

The first would be to use the DB2 DataJoiner and link all DBMSs on this
process to it. The application would then connect to the a single database
and the DB2 DataJoiner would communicate to the several DBMS using the
two phase commit protocol and the transaction would be completed.

The second option for implementing two phase commit would be controlling
the two phase commit inside your application. It is possible to create two
different QMF instances in your application and connect each instance to a
different DBMS. However, these two instances are not able to communicate
to each other without implementing some additional code in the application.
For example, it is possible to have an application that copies a query from
one server to another. The following code listed below shows how it can be
done.

var
QMF1: QMFWin;
QMF2: QMFWin;
QueryNumber: Integer;
Comment: OleVariant;
begin
QMF1:= CoQMFWin.Create;
QMF2:= CoQMFWin.Create;
if (QMF1.InitializeServer('DB2NT','XXXX','XXXX',False,'',false) = 0)
and (if QMF2.InitializeServer('DB2AIX','YYYY','YYYY',False,'',false) = 0)
then

if QMF1.GetQMFObjectInfo('IMRES2.TEST2',0,2,Comment) = 0 then
QMF2.SaveQMFQuery('db2inst1.test2'

,QMF1.GetQMFQueryText('IMRES2.TEST2')
,Comment
,True
,True);

end;

To implement the two phase commit inside your application a very good
knowledge of the two phase commit process as well as the DBMSs involved
is necessary.
174 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

5.6.2 Editing prompted queries
There are two ways of storing a query: the first way is to store the query on
the server, while the second way is to store the query in a file.

QMF for Windows allows users to work with prompted queries. This type of
query is very different from the SQL queries, and they are stored using a
different structure. Hence, the way to manipulate this type of query in your
application is also different.

If the prompted query is stored on the server, the QMF APIs will manage the
difference between the prompted query and the SQL query, so that for the
application they look exactly the same. That means that your application can
execute, delete, and view all properties from a prompted query just as from
an SQL query. However, it is not possible to edit or change a prompted query.
That can only be done using the QMF for Windows user interface. Using the
QMF for Windows environment, the prompted query can be converted to an
SQL query, and the application can then modify this query.

When prompted queries are stored in files, the QMF API will not be able to
work with them. In order for the application to access these queries, they
have to be converted to SQL queries from within the QMF for Windows
environment.

5.6.3 Other QMF APIs
Many QMF APIs use the Variant variables as output parameters. Be aware
that due to problems in Microsoft Excel 7.0 and Microsoft Access 7.0 (and
possibly other 32-bit products that use Visual Basic for Applications), string
data in Variant variables received from this APIs may not be translated from
Unicode (used by OLE) to ANSI (used by VBA). When this occurs, only the
first character of the string is displayed. To remedy this problem, set the
variable equal to an empty string before you call the QMF for Windows
function that uses the variable.
Chapter 5. Developer’s guide 175

176 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Chapter 6. User’s guide

This chapter is dedicated to the end user who needs to become familiar with
the QMF for Windows product. It explains how to install, configure, and use
most of the QMF for Windows functions.

6.1 Product Installation and configuration

To install QMF for Windows you have to execute the product installation file.
The following describes the product installation assuming that you either have
the product distribution media available or can access the installation files
copied on a network drive. For more information on the advanced installation,
including having the pre-configured option set by the database administrator,
see 3.8.1, “Advanced installation” on page 65.

If using the product CD-ROM for installation, inserting it into the systems
drive will automatically start the installation process. Using a network drive
will require you to start the installation by double-clicking the SETUP.EXE file.
The installation itself is done just as with any other Windows product. In the
beginning you will be able to choose the kind of installation you want, as
shown in Figure 67.

Figure 67. Installation options
© Copyright IBM Corp. 1999 177

The Typical installation will install the most common components, the
Compact installation will install only the necessary components, and the
Custom installation allows the components installed to be chosen. If this last
option is selected, the window shown in Figure 68 will appear.

Figure 68. Custom installation

In case the Custom Installation is selected, the available components to be
chosen are:

• The Program Files, which are the necessary files for the QMF for Windows
environment

• The Administrator Program Files, which are the files for the administrator
environment

• The Microsoft Excel Add-In; this will create a shortcut button on your Excel
to execute QMF for Windows.

In the same window it is also possible to change the default directory for the
installation by clicking on the Browse... button, and the next window will give
you the opportunity to change the installation directory.
178 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

After successful installation, it is necessary to configure QMF for Windows to
be able to access the database servers. The server definition file (SDF)
contains all of the technical information needed by QMF for Windows to
access the database servers.

For QMF for Windows, the term database server is used differently than the
term used by database administrators. If one DBMS controls multiple
databases (or subsystems), each of these is called a database server when
using QMF for Windows.

There are many functions in QMF that must have an active connection to a
database server. Every time a connection to a server is required, a dialog as
shown in Figure 69 will appear. It is important to remember which server you
are currently connected to.

Figure 69. Connection window

QMF does not restrict the number of database servers you can have access
to. Please refer to Chapter 3, “Getting started” on page 25 for more
information on how to configure a connection to a database server, as this
typically is not an end user task, but should be provided by the database
administrator.

There are two ways you can use server definition files:

• Each user can be allowed to have his or her own SDF

• A single SDF can be shared by multiple users over a file-sharing network.

Having a local SDF on the end user system requires the user to either create
the file himself, which is not recommended, or has to download the
pre-configured file from a shared network drive and copy it to the appropriate
directory in the local system.
Chapter 6. User’s guide 179

This second approach has the advantage that it centralizes the administration
of the SDF; the DBA or System Programmer, using the QMF for Windows
Administrator, edits a particular server definition file, that only needs to be
created and maintained centrally as a single file, and the users need only to
point to that file when they run QMF for Windows.

If you are using your own local file, you have to use the QMF for Windows
Administrator to configure the SDF file (for more information on how to
configure the access to the servers, see 3.8, “Installing QMF for Windows” on
page 65). If the server definition file is already defined, you only have to
configure the local QMF to use that file. From the main window in QMF for
Windows, specify the SDF using the Options... item from the View menu to
open the window shown in Figure 70.

Figure 70. Setting up the server definition file

To change the path to the SDF, type the file path and name in the entry field
or click on the button on the right of the field to select it. No other
modifications have to be done in that window.
180 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

6.2 Basic concepts

QMF has four types of objects:

• Queries

• Forms

• Procedures

• Tables

Each of these objects has a different functionality and characteristics, but
they are all linked together in some way — a query needs a table, a query
plus a form is required to generate a report, and so on.

All these objects usually reside within a Database Management System
(DBMS). In short, DBMSs are systems that control everything that happens in
the databases — from user permissions to data consistency. Some examples
of DBMSs are DB2, Oracle, Sybase, Informix, MS SQL, and many others.

A single DBMS can control one or more databases, meaning that you can
have one DBMS installed in a computer and have several databases in it.
Figure 71 shows the structure of it. For example, a company may have
different databases for each department using the same DBMS. For QMF for
Windows, each database is called a database server.

Figure 71. Database management systems

Inside each database you have data, and that data is organized inside tables.
Each group of data is in a separate table, as shown in Figure 72. For
example, customer data will be in one table, while product data will be in
another table.

Database Management System

Marketing Sales Production
Line

Human
Resources

Engineering
Data

Warehouse
Chapter 6. User’s guide 181

Each group of data has its own characteristics. In other words, the data that
will be stored for customers is different from the data that will be stored for
products. For example some data for customers might include name,
address, and telephone; while products typically have data such as product
number, weight, price, and description. Each of these characteristics will be a
different column in the table.

One table stores the data of all members of the group, or, to stay with the
example, all customer data has to be in the same table. Each customer data
entry will be a row in this table.

Figure 72. Tables in a database

Once the table in created, it may be necessary to retrieve or manipulate the
data in it. To do this, a Query is used. Queries are objects that contain the
information necessary to retrieve or modify a specific set of data from a
database. This information is in a format called Structured Query Language
(SQL), which is a standardized language used to tell the DBMS what data
should be retrieved or modified. When a query is executed, the SQL
statement is sent to the DBMS, which processes it and returns the data
resulting from that SQL or modifies the defined data. A query is created to
retrieve data from one or more tables. A query can retrieve all data in the
table or just a subset of that data. You can think of the result of a query as a
different view of data in the table (or tables).

After you create a query and receive the result, you may want to modify the
result format. In QMF, forms provide a way of specifying different views to the
data retrieved by a query. Formatting, such as where each column will be
displayed, the width of each column, breaks, groups, and summaries, may be
specified. The result of a query, combined with a form, is a report.

Employee
Table

Order
Table

Customer
Table

Product
Table

Supplier
Table

Sales Database
182 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

The most important concept to keep in mind is that these objects are linked
together. A query is always linked to a table, and a form is always linked to a
query, as shown in Figure 73.

Figure 73. Object links

6.3 Accessing existing objects

As mentioned before, QMF for Windows allows its objects (Tables, Queries,
Forms, and Procedures) to be stored either within a database server’s QMF
tables, or within files that are located on LAN accessible network drives. The
following shows the access to existing QMF objects using both of these
methods.

6.3.1 Objects stored at a server
To access objects stored at a database server, use the process listed below:

1. Click on the Open From Server button or use the File and Open From
Server... menu. A window as the one shown in Figure 74 will be displayed.
There you have two options:

- Select the object directly, if you know the owner and name

- Select the object from a list

Table

Result
Q uery

Report
Form
Chapter 6. User’s guide 183

Figure 74. Open object from server

2. To select the object directly, select a database server, type in the owner,
and the name of the object, and click on the OK button.

3. To select the object from a list click on the List Objects... button. The list
of objects looks like the on in Figure 75.
184 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 75. List of objects

4. In that list, you may wish to adjust the filter of the objects you want to see.
The first filter is the owner. Type the owner, and only objects from that
owner will appear. The second one is the object name. In both cases it is
possible to use the character ’%’ as a wildcard. The last filter is the object
type. Select the object type you want to see displayed in the list by clicking
on the type name.

5. After any modification in the filters you have to click on the Refresh List
button or the List and the Refresh List menus for the filter to take effect.

6. Find the object you want to access in the list and just double-click in it or
use the List and Display menus and the object will be displayed.
Chapter 6. User’s guide 185

An alternative way to reduce the contents of the list shown in Figure 75 is to
select the unwanted object and remove it from the list by clicking the right
mouse button and selecting Remove from List. After doing that, the object
will not be displayed until the Refresh Button is clicked again. But be careful
not to select the Delete option, as this would delete the object entry in the
database.

Opening a form shows some specifics:

• As a form is always linked to a query, opening a form will directly display
the result data if the associated query has been opened before. If not, the
form will be displayed without any data.

• However, the best way of accessing forms is to access a query and then
use the Display Report button or use the Query and Display Report...
menus. Then choose the existing form either from the server or from a file
and it will be opened.

• Yet another option would be to open the form and then select the query
you want it to be linked by using the menu Form and Select Query for
Data... menus.

In order to customize the list presented, it can be saved to a file by clicking
the Save button on the toolbar or using the File and Save As... menus.

6.3.2 Objects stored in a file
QMF objects can also be stored within files. To access these objects, follow
the process below:

1. Use the menus File and Open. A window as shown in Figure 76 will be
displayed.

2. You can select the file type you want to open, and only the files that
correspond to that type will be displayed.

3. Then select the directory in which the file is stored.

There is no way of seeing if a query is an SQL query or a prompted query
in the list directly. However, when you access a query, QMF will
automatically identify the sub-type of the query and display the correct
window for you. To see the sub-type of the query, click on the query with
the right mouse button and go to Properties, or use the List and
Property menus.

Note:
186 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 76. Open object from file

4. Select the file from the list

5. Click on the Open button

QMF will automatically open the file and display the object.

6.4 Working with objects

Different objects have different functionality. Therefore, after having opened
an object, different operations may be performed. In this chapter, only the
most important functions will be discussed.
Chapter 6. User’s guide 187

6.4.1 Tables
When accessing an existing table, QMF for Windows creates a new SQL
query that retrieves all the data in the table and executes it. After that, you
can see the name of the server accessed and a sequential number for the
executed query in the title of the window. From that moment on, it is possible
to use this new query as any other query. You can see the SQL statement by
clicking on the View SQL button, or use the View and SQL menus and modify
it if you want to. This is an easy way of creating a new SQL query.

Like every new SQL query you create, when you try to close the window,
QMF will prompt if you want to save the query or not.

6.4.2 Queries
As said before, there are two types of queries, the SQL query and the
prompted query. Depending on the type, the window that will be displayed
when you open the query will be different. However, the functionality and the
possible actions for the query may be the same.

6.4.2.1 Run a Query
The most important function of a query is to retrieve the data from the
database. That is done by executing the query. To do this, you have to click on
the Run Query button, use the Query and Run menu, or use the shortcut
Ctrl + R. The result of the query will be displayed in a grid, as shown in Figure
77.
188 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 77. Query result

6.4.2.2 Cancel Query
Some queries may take a while to execute, due to a large amount of data in
the tables, network traffic, or the number of simultaneous requests to the
DBMS. If you want to cancel the request, click on the Cancel Query button or
use the Query and Cancel menu.

6.4.2.3 View SQL, View Prompted Query, and View Result
After the query is executed, the SQL statement or the Prompted Query
window will no longer be visible. To switch from one window to the other you
have to use the View SQL, View Prompted, and the View Results button or
their related menus. Only one view will be available at a time.

View SQL allows you to view the SQL statement that was issued to the
DBMS. If you are working with prompted queries, you can see the SQL
generated, but you cannot change it.
Chapter 6. User’s guide 189

View Prompted will only work for prompted queries. When working with SQL
queries, you will not be able to see it in a prompted query window. Therefore
the View Prompted button and menu will always be disabled when an SQL
query is the active window. The View Prompted allows you to see the
prompted query window and change it if necessary.

Finally the View Results brings back the grid with the result of the query. This
option will only be available after the query has been executed at least once.
There is a great difference between run a query and view the result. When
you run a query, QMF will send the SQL statement to the DBMS, it will
process the SQL statement and send back the data. Depending on the query,
that process can take several minutes and consume a lot of resources at the
database server as well as generating traffic on the network. When you run a
query for the first time, QMF submits the SQL statement to the DBMS and
stores the result locally. If you use View Results, QMF will display the last
retrieved data that is stored locally in your computer without using the
network or the DBMS. Hence it is faster and the resources are free for others
users.

6.4.2.4 Find
On the result grid window, it is possible to find a particular value in the grid. To
do this, select to result window and click on the Find button or use the Edit
and Find menu. A window as shown in Figure 78 will appear. Type in the text
you want to find and click on the Find Next button.
190 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 78. Find

6.4.2.5 Sort (order by)
In the result window it is possible to sort the grid by one (or more) columns.
To do this, select the columns you want to sort by clicking on the header of
the column. Then either click on the Sort Ascending or Sort Descending
button, or else use the Edit and Sort Ascending or Sort Descending menu.
The result will then be sorted by the column you selected.

Be aware that this sort is not permanent. If you run the query again, the result
may not be sorted by the column you selected. To sort the result permanently
by one column, change the SQL statement using the ORDER BY clause in
the SQL query or the Sort Condition in the prompted query.
Chapter 6. User’s guide 191

6.4.2.6 Modify data
Depending on the query, it is possible to modify the data in the database
directory in the grid. Only queries that access data from not more than one
table (those that do not use joins or sub-queries), and that do not use the
group function, can edit the data directly from within the grid. You also need to
have the proper privilege being set in the resource limit group (see 6.8,
“Checking your resource limits” on page 243).

If you have the required permission and the query allows you to edit data, on
the result grid, double-click on the cell you want to change, type in the new
value and press the Enter key. A warning message will be displayed to ensure
that you really want to change that data. To continue with the change click on
the OK button or, to cancel, click on the Cancel button. If you decide to
change the data, a message will be displayed regarding the successful
operation.

6.4.2.7 Print
At any time you can print the query or its result by clicking on the Print button
or using the File and Print menus.

6.4.2.8 Export
After you have executed a query, it is possible to export the data to files using
different formats. To do so, go to the File and Export Data... menu. The
window shown in Figure 79 will appear. Be aware that this option is only
enabled when the query has already been run successfully at least once.

In this window you have to type in the file name and select the file type.
Available file types are:

• Text/DEL File (*.txt), which is a delimited ASCII file

• HTML File (*.html)

• IXF FIle (*.ixf), which is the Independent Exchange Format used by
DB2 UDB

• CSV File (*.csv)

You can also define some other options by clicking on the Option... button
where you can specify if all of the data or just the selected data is to be
exported, and also define if the column headers are to be exported together
with the data. After everything is defined, click on the Save button and the
data will be exported.
192 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 79. Export data

6.4.3 Forms and Reports
This section discusses the most important actions that can be performed
using a QMF Form or Report. For instructions on creating or modifying an
existing form, please refer to 6.5.3, “Create new form and report” on page
211.

6.4.3.1 Check for errors
After you create or modify a form, you can check for possible errors in your
modifications. Refer to 6.5.3, “Create new form and report” on page 211 for
more information on how to create or modify forms.

6.4.3.2 Print reports
To print a report, you have to click on the Print Report button or use the File
and Print Report... menus. The form will be printed.
Chapter 6. User’s guide 193

Be aware that the form is going to be printed the way you see it on the
window. That means, if the report is displaying no data, it will be printed with
no data. Also take care regarding the width of the form. If it does not fit on one
page, another page will be used.

6.4.3.3 Convert forms to HTML
When using forms, you can convert them to HTML. This is done by
clicking on the Convert to HTML button or using the Form and Convert to
HTML menus. This will open a window as shown in Figure 80.

Figure 80. Convert form to HTML

In this window you can specify the HTML tags you want before and after each
part of the form. If you do not know the HTML tags, you can use the default
tags by clicking on the button Reset... and select the Products Default. For a
better formatting, complete the default by typing the <PRE> tag in the end of
the Page Heading Suffix and type the </PRE> tag in the Page Footing Prefix.
That way the form is going to be displayed in the browser exactly like in QMF.
Do not forget to select the Save as user default before clicking on the OK
button. That will save the changes you made on the HTML tags.
194 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

After that, a new form will be created with some HTML tags in it, as shown in
Figure 81. At this point, it still possible to use all the functions for a normal
form, such as saving it at a server or checking for errors.

Figure 81. HTML form

However, a new function is available for this new form, which is to preview the
result in the default Web browser configured for the local system. To do this,
you have to click on the Web Browser button or use the Form and View in
Web Browser menus. Your default Web browser will be automatically
launched, and the form will be displayed in it, as shown in Figure 82.
Chapter 6. User’s guide 195

Figure 82. HTML form result

6.4.3.4 Export report
It is also possible to export the form to a text file. To do this, go to the File and
Export Report menu. A window appears prompting for the file path and
name. Select it and click on the Save button to export the form.

6.4.4 Procedures
Procedures allow you to do the following operations.

6.4.4.1 Run
To run a procedure, simply click on the Run Procedure button, use the
Procedure and Run menus or use the shortcut Ctrl + R. The execution of the
procedure will begin immediately.
196 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

6.4.4.2 Find
You can find any text string inside the procedure by using the Find button or
the Edit and Find menus. A window will appear for you to enter the text string
to be found. Then click on the Find Next button.

6.4.4.3 Print
It is always possible to print the procedure by clicking on the Print button or
using the File and Print menus.

6.5 Create new objects

QMF for Windows allows you to create your own objects: Query, Form,
Procedure, and Table. Each type of object has a different function, and is
created in a different way. This will be explained in the following sections.

Although each type of object has its specific characteristics, all have some
things in common. They can all be stored either on a server or in a file, and
they are all visible in the Object List. However, the most important aspect they
have in common is a database server. Whenever you create a new object, a
database server is associated with that object.

When an object is created, it is automatically associated with the last used
database server, but it can be changed using the menu of the active object
(such as Query or Procedure) and then clicking on the item Set Server...
A window similar to the one in Figure 83 showing the available servers will
appear. You can then select the desired server and click on the OK button,
and the object will be linked to the database server selected. Note that the
title of the object window shows the server the object is related to. If you
change the server, the title will be changed too.
Chapter 6. User’s guide 197

Figure 83. Set server window

6.5.1 Create new tables
Most of the time there will be no need to create your own tables. That is
because in the majority of the cases, the tables will have already been
created by a DBA, and the data in those tables will be ready for use. However,
if you have the need and the appropriate privilege in the database, you can
create your own tables.

There are two ways of creating tables using QMF:

1. The first way is to create an SQL query containing the data definition
language (DDL) statements to create a table and execute it. This action is
not recommend for beginners. Use it only if you have a very good
knowledge of SQL statements and database management systems.

2. The second way is to create a new table out of the result of a query. After
the data was retrieved when executing a query, save the result into a new
table. To do this, follow the steps below:

a. Open and execute the query that will retrieve the data you want to
save. For more information on how to execute a query, refer to 6.3,
“Accessing existing objects” on page 183.
198 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

b. After the query has been executed, go to the File and Save Data...
menus. A window as shown in Figure 84 will be displayed. Type the
name and the comments for the new table. In case the table already
exists, it will not be replaced. If the data you are trying to save does not
have the same layout as the existing table, an error will occur.
Otherwise, two actions can be taken: The first possibility is to replace
the existing table with the new table, and the second possibility is to
replace the existing data with the new data. That option can be
selected in the bottom of the windows shown in Figure 84.

Figure 84. Save data into new table

6.5.2 Create new queries
QMF for Windows has two types of queries, SQL query and prompted query.
An SQL query is a query where you have to type the SQL statement which
means that you have to know how to write SQL statements. The other option
is the prompted query. In that case, QMF for Windows will display a window
where you can, by pointing and clicking, create your query without knowing
SQL. These two types of queries have the same result; the only difference is
the way they are built.
Chapter 6. User’s guide 199

6.5.2.1 SQL queries
SQL queries are queries where the user has to type the SQL statement.
Therefore, it is necessary to have a good working knowledge of SQL. (If you
do not know SQL, then it is probably better to create prompted queries. Refer
to 6.5.2.2, “Prompted queries” on page 203 for instructions on how to create
prompted queries.) To create a new SQL query, follow the steps below:

1. Go to the File menu, then to the New menu, and finally to the SQL Query
menu as shown in Figure 85, or click on the New SQL Query button on the
toolbar.

Figure 85. New SQL query menu

2. A window similar to the one in Figure 86 will be displayed. Pay close
attention to the title of that window, because it shows the server name and
the query name in the format SERVER: QUERY.
200 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 86. New query window

3. If the server shown is not the server you want to access, click on the
Query menu and select the Set Server... menu to switch to the desired
server.

4. In the SQL Query window, type the SQL statement.

5. Before saving the query you can execute it to test your SQL statement and
to check if it the result is exactly what you want. You can run the query
using the Run Query button, using the Query and Run menus, or using
the short cut Ctrl + R. To go back and change the SQL statement, you
have to click on the View SQL button. Repeat this process until the query
returns the desired result.

6. As a last step, when the query is correct, you may wish to save it if it will
be used repetitively. There are two possibilities for saving the query. You
can save it on a server or in a file. To save it on a server you can use the
File and Save at Server... menus or just click on the Save at Server
button and the window shown in Figure 87 will be displayed. In that
window, you have to enter the owner, query name, comment, select the
appropriate checkbox if the query is to be shared with other users and
click on the OK button. To save the query in a file, it is necessary to click
on the Save button, or use the File and Save or Save As... menus.
Chapter 6. User’s guide 201

Figure 87. Save new SQL query at server

There is also another way of creating SQL queries. In the list of objects,
select a table. Some additional options in the toolbar and menu will become
available. The options are Draw Select, Draw Insert and Draw Update.
When using one of these options a new SQL query will be created with an
SQL statement predefined to use the selected table. Some modifications in
these SQL statements may be necessary.

One powerful feature of QMF is that it allows you to create queries using
variables. That means that whenever you execute a query QMF will prompt
you to input the values for these variables and execute the query with the
values you entered. To do this, use the ’&’ character as a prefix to a string in
the query and it will become a variable. For example:

SELECT *
FROM OWNER.TABLE
WHERE COLUMN = &VAR

In this case, the &VAR is called a substitution variable. Whenever this query
is executed, a window such as shown in Figure 88 will prompt for the value of
that variable. Be aware that whatever text you type in that window will be
copied into the query. So, if you are comparing the value with a column of the
string data type, you also have to include quotations marks.
202 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

For more information on variables, please refer to Appendix A, “Working with
variables” on page 277.

Figure 88. Substitution variable

6.5.2.2 Prompted queries
A prompted query is an easy way of creating your queries. Using prompted
queries, the user does not have to know how to write SQL statements. Still, it
is important to have some knowledge of SQL, and also some knowledge of
your database design. To create a prompted query, follow the steps below:

1. Go to the File menu, select New and Prompted Query. After this, a
window similar to the one on Figure 89 will be displayed.
Chapter 6. User’s guide 203

Figure 89. New prompted query window

2. Pay attention to the title of this window as it indicates the database server
accessed by that query and the query name. If the server is not the one
you wish, go to Query menu and select Set Server... to change it.

3. This window is divided into several sections. The first one you have to fill
out is the table section, which is in the top left corner. Within this section
you need to select the tables being using in the new query. To do this,
click on the Add Table button. A dialog will be displayed to either enter the
table owner and name or click on the Add From List... button to select it
from a list, as shown in Figure 90. To add a table from the list, double-click
on the table name, or select the table and click the Add button.
204 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 90. Select tables to a new prompted query,

4. If you select more than one table, another window will be displayed for you
to enter the join condition to select those columns used to link the tables to
each other. This window is shown in Figure 91. This join condition is
displayed in the second section on the top right of the window. There is
always the possibility to change, add, or delete join conditions at any time
by using the button at the top of this section. QMF for Windows
remembers the most recently used join condition for any set of tables to
save time in the creation of future join conditions using the same set of
tables. The selection of the join conditions is extremely important for the
result of the query. Therefore, you have to know the structure of the tables
inside your database. Be aware that the join condition must be accurate;
otherwise, the result of the query may not be what you expected.
Chapter 6. User’s guide 205

Figure 91. Adding join condition to a new prompted query

5. After the tables are selected and the join condition is set, the next section
to fill out is the Column section. There, you have to select which columns
will be retrieved and in which order. There is also the possibility to do
some calculations on the columns. To do this, it is necessary to click on
the Add Column button, and a window similar to the one in Figure 92 will
be displayed. You can select the column by double-clicking on the column
name, or selecting it and then clicking on the Add button. In this window, it
is also possible to add an SQL expression for a new column, like adding
two columns (as shown in Figure 92), dividing a column by 100 to get the
percentage, and more complex formulas such as concatenating strings, or
any other formulas that may be necessary. In case your expression is
written incorrectly, QMF for Windows will not add the column, and will
display an error message.
206 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 92. Adding columns to a new prompted query

6. The next section is the Sort section. In this section you can select the
column by which the query result will be sorted. You can also select if the
sort is to be ascending or descending. To add a sort condition, click on the
Add Sort Condition button, and a window similar to the one in Figure 93
will appear. Then select the column for the sort condition, select the
direction of the sort (ascending or descending), and click on the Add
button.
Chapter 6. User’s guide 207

Figure 93. Add sort condition to a new prompted query

7. The last section is the Row Conditions section. It allows you to select a
subset of the data in the selected tables. In other words, you can use a
condition to retrieve only the rows that correspond to it. For example, if you
selected a sales table and want only the sales numbers from a certain
date, you can enter this condition here. To add the Row Conditions, click
on the Add Row Conditions button and a window similar to the one in
Figure 94 will appear. In this window, it is possible to select a column, an
operator, and a value (as shown) where the column is the HIREDATE, the
operator is “Less than or equal to” and the value is “01/01/1980”. This
condition means that the data shown in the result will only apply to
employees that have been hired before or at the first of January, 1980.
Click on the Add button to add the condition to the query. This process can
be repeated several times until all conditions are added.
208 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

When adding more than one condition, pay close attention to the option at
the top left corner of that window that says “Connector”. This will link the
different conditions to one another by the AND clause or the OR clause.
For example, if a second condition is added to the prior example saying
that only employees who are male are to be selected, and the two
conditions are linked by the AND clause, it would mean that only
employees who correspond to both conditions will be in the result. If these
conditions are linked by the OR clause, it would mean that employees who
correspond to either of the conditions would be shown in the result.

Figure 94. Add row condition to a new prompted query

8. The prompted query is now ready and can be run by clicking the Run
Query button on the toolbar, using the Query and Run menu, or using the
shortcut CTRL +R. Doing this, the result of the query will be displayed as
shown in Figure 95, and you can verify if your query is exactly the way you
wanted it to be. If you want to change the query later, click on the View
Prompted button on the toolbar and the Prompted Query window will be
displayed again. Then go to the section you want to modify and click on
the Change button for the selected section.
Chapter 6. User’s guide 209

Figure 95. Displaying result of the new prompted query

9. If you want to see the SQL statement that the prompted query is going to
submit to the server, you can do that by clicking on the View SQL button.
Notice that the SQL is read-only, meaning you cannot change the SQL
statement directly. To do this, it is necessary to convert your prompted
query to an SQL query using the Query and Convert to SQL menus.
Doing this will create a new SQL query, and the original prompted query
will be maintained, but they are not linked to each other.

So, if you change the prompted query the SQL query will not be changed
automatically and vice versa. Sometimes it is necessary to convert
prompted queries to SQL queries for other reasons.

This is different than the way QMF works on the host platform.

Note:
210 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

10.The final step is to save the query. This can be done in two ways: save the
query at a server, or save it in a file. To save the query at a server, you can
either click on the Save At Server button or use the File and the Save At
Server... menu. A window as shown in Figure 96 will appear. You then
have to type the owner, name, and comments of that query as well as
selecting if that query can be shared with others users. Click on the OK
button and the query will be saved. To save a query in a file, you have to
use the Save button or the File and Save As... menu.

Figure 96. Saving new prompted query

6.5.3 Create new form and report
Forms provide the possibility to specify the way the data retrieved from a
Query will be organized. You can define where each column will be displayed,
the width of each column, breaks, groups, summaries, and many other things.
After the data is formatted the way you want it to be, it can be printed or
exported to HTML or to a text file.
Chapter 6. User’s guide 211

The most important concept that should be kept in mind is that a form is
always linked to a query, and that those two objects together define the
report. There is no QMF object called report, as the report is the result of a
query displayed according to a linked form. The columns in the form must
correspond precisely to the columns of the query. You can have two queries
that use the same layout and use the same form to display the data, but
queries with different layouts cannot use the same form.

There are two main ways of creating a form. You can create an empty form
and create all fields from the beginning, or you can use the default form using
a query from the starting point.

6.5.3.1 Empty form
The first thing you have to know when creating an empty form is the structure
of your query — this means the name and data type of all columns from the
query and the order in which they are selected. In the following example, we
will create a form for the query called PROMPTED_QUERY that was created
in 6.5.2.2, “Prompted queries” on page 203. The columns of that query are
specified in the Table 5.

Table 5. Columns on query PROMPTED_QUERY

To create a new form, follow the steps below:

1. Go to the File, New and Form menu. A window similar to the one in Figure
97 will appear.

Column Data Type

FIRSTNME STRING(12)

LASTNAME STRING(15)

DEPTNAME STRING(29)

SALARY NUMERIC (9,2)

BONUS NUMERIC (9,2)

COMM NUMERIC (9,2)

TOTAL_INCOME NUMERIC (9,2)
212 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 97. New blank form

2. To create new columns for the form, click on the Main button or use the
Form and Main... menu. The window shown in Figure 98 will be displayed.
Chapter 6. User’s guide 213

Figure 98. New blank form main window

3. In that window, click on the existing column called Column 1 and change
its name to the one you would like to appear as the column header.

4. Now it is necessary to add the other columns. To add a column, click on
the Add Column button and a window as shown in Figure 99 will be
displayed. In that window, type a name for the column and click on the
Add button. The column will be added and the window will be cleared for
you to enter the next column. Repeat this process until all required
columns are added. On the last column, instead of clicking on the Add
button, click on the OK button and the window will be closed.

5. After all columns are added, it is necessary to modify the width of these
columns. That can be done by simply clicking on the width column on the
Main window for each column, and modifying its value. Remember that the
width also should match the width of the columns in the query.

6. The space between the columns is 2, by default. But you can change it by
changing the Indent value for each column.
214 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 99. Adding columns to a new blank form

7. Another adjustment that can be made to the columns is the Edit Code.
This code indicates the data type of the column in the form. Again, this
data type has to match the data type in the query. There are several Edit
Codes for several data types. Table 6 shows the available Edit Codes.
There are some data types in this table that will be rarely used. To modify
the Edit Code, just click on the Edit column and choose the Edit Code
from the list. Click on the OK button and the changes will be applied to
your form.
Chapter 6. User’s guide 215

Table 6. Edit Codes

Data Type Edit
Code

Format Notes

Character C Display character data. No special formatting

CW Display character data with
wrapping based on column
width.

No special formatting unless the value cannot fit
within the width of the column. In that case, text
will be wrapped within the column width to
subsequent lines.

CT Display character data with
wrapping based on column
value.

No special formatting unless the value cannot fit
within the width of the column. In that case, text
will be wrapped based on the column value to
subsequent lines. That is, text will be wrapped at
the end of a line when a blank is found. If the
wrapped text is too long to fit in the column and
does not contain a blank, the text is wrapped
within the column width.

CDx Display character data with
wrapping based on the
specified delimiter.

The column is always wrapped based on the
delimiter specified. The delimiter can be any
single character, including a blank. The delimiter
character does not appear in the report.

X Format data as a series of
hexadecimal characters.

XW Format data as a series of
hexadecimal characters.

Columns are wrapped according to the rules
specified for the CW edit code.

B Format data as a series of
0's and 1's.

BW Format data as a series of
0's and 1's.

Columns are wrapped according to the rules
specified for the CW edit code.

Date TDYx YYYY/MM/DD Year first.

TDMx MM/DD/YYYY Month first.

TDDx DD/MM/YYYY Day first.

TDYAx YY/MM/DD Two-digit year first.

TDMAx MM/DD/YY Month first and two-digit year.

TDDAx DD/MM/YY Day first and two-digit year.

TDL Formats date data
according to the format on
the Windows Control Panel.
216 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Graphic G Display graphic data. No special formatting

GW Display graphic data with
wrapping based on column
width.

No special formatting unless the value cannot fit
within the width of the column. In that case, text
will be wrapped within the column width to
subsequent lines.

Numeric E Displays numbers in
scientific notation.

Up to 17 significant digits are shown, even if the
width of the column can accommodate more.

Dnn Displays numbers in
decimal notation.

Display leading zeros? NO
Display negative sign? YES
Display thousands separators? YES
Display currency symbol? YES
Display percent sign? NO

Inn Displays numbers in
decimal notation.

Display leading zeros? YES
Display negative sign? YES
Display thousands separators? NO
Display currency symbol? NO
Display percent sign? NO

Jnn Displays numbers in
decimal notation.

Display leading zeros? YES
Display negative sign? NO
Display thousands separators? NO
Display currency symbol? NO
Display percent sign? NO

Knn Displays numbers in
decimal notation.

Display leading zeros? NO
Display negative sign? YES
Display thousands separators? YES
Display currency symbol? NO
Display percent sign? NO

Lnn Displays numbers in
decimal notation.

Display leading zeros? NO
Display negative sign? YES
Display thousands separators? NO
Display currency symbol? NO
Display percent sign? NO

Pnn Displays numbers in
decimal notation.

Display leading zeros? NO
Display negative sign? YES
Display thousands separators? YES
Display currency symbol? NO
Display percent sign? YES

Data Type Edit
Code

Format Notes
Chapter 6. User’s guide 217

8. If you want to display a title on top of the report, type the text in the
Heading Text field. It is also possible to display some text at the bottom of
the page by entering it in the Footing Text field. For beginning users, we
do not recommend changing any other parameter on this window.

9. The form is now ready to be used if every column in the form matches the
columns in the query. However, to use the form in the future, it is
necessary to save it. You can save the form on the server or in a file.
To save the form on the server, click on the Save At Server button or use
the File and Save At Server... menu. The window shown in Figure 100 will
appear. Fill out the owner, name and comment fields as well as selecting if
the form is to be shared with other users, and click on the OK button.
To save the form in a file, click on the Save button or use the File and
Save As... menu.

Time TTSx HHxMMxSS 24-hour clock, including seconds.

TTCx HHxMMxSS 12-hour clock, including seconds.

TTAx HHxMM Abbreviated 24-hour clock (no seconds).

TTAN HHMM Abbreviated 24-hour clock (no seconds) without
any delimiter between time values.

TTUx HHxMM PMHHxMM AM USA format.

TTL Formats time data
according to the format on
the Windows Control Panel.

Timestamp TSI yyyy-mm-dd-hh.mm.ss.nnn
nnn

yyyy is the four-digit year
mm is the two-digit month
dd is the two-digit day
hh is the two-digit hour
mm is the two-digit minute
ss is the two-digit second
nnnnnn is the six-digit microsecond

User
Defined

VSSN xxx-xx-xxxx Social security number format.

VTEL xxx) xxx-xxxx Telephone number format.

VZIP xxxxx-xxxx Zip code format.

Data Type Edit
Code

Format Notes
218 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 100. Saving new blank form

10.To use the form, you first have to open run the query. For more information
on how to access existing objects, refer to 6.3, “Accessing existing
objects” on page 183.

11.After the query has been executed, go to the Query and Display Report...
menu. A window as the one shown in Figure 101 will be displayed,
prompting you to select a form. To use the form you just saved, either
select the option From Database or From File, depending on how the
form was saved. In case it was saved on the server, select the database,
owner, and name of the form (or select it from the list by clicking on the
List Form... button). If the form was saved in a file, select the file name
and click on the OK button. The form will be displayed with the result data
of the query in it.
Chapter 6. User’s guide 219

6.5.3.2 Default form
There is also a way of creating a form directly from a query, which is the most
common use of creating a form. This means that QMF will create the form
using the query columns, data types, width, names, and so on. This way, it is
not necessary to go through all the steps as when creating a new empty form.
To create a default form, follow the steps below:

1. Open the query you wish to create the form for and run it.

2. Go to the Query and Display Report... menu, and a window such as the
one in Figure 101 will appear.

Figure 101. Ways of creating new form

3. Select the Default Form option and click the OK button. A new form will
be automatically created with the same structure as the query result. Also,
the query data will be shown in this form.
220 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

4. You can now save the form on the server or on a file. To save the form on
the server, click on the Save At Server button or use the File and Save At
Server... menu. The window shown in Figure 100 will appear. Fill out the
owner, name, and comment fields, as well as selecting if the form is to be
shared with others users. To save the form in a file, Click on the Save
button or use the File and Save As... menu. Then click the OK button.

If the form is saved, instead of creating another default form every time you
access the query, you can use this form by selecting the option From
Database or From File.

6.5.3.3 Changing the Form
Many reports require additional formatting, totals, grouping, and so on. Until
now, only a minimal number of forms options have been shown, but there are
more options possible when using forms. In this chapter, only the most
common things will be shown.

A very important feature of the forms are the Usage Codes. These are
functions that can be applied to each column to provide more information
within the form. To access this, it is necessary to click on the Main button or
use the Form and Main... menu. A complete reference on these usage codes
is available in Table 7. We will only discuss the most common functions.

Table 7. Usage codes

Usage Code Description Notes

ACROSS Enables you to
produce a report
with horizontal
control breaks.

In an ACROSS report:

1) The number and titles of the columns in the report are
dependent on the values in the ACROSS column. There is one set
of report columns for each value in the ACROSS column and the
heading for each is the value of the column. The set of report
columns includes a column for each one that uses an aggregation
usage code (for example, SUM, AVERAGE, COUNT).
NOTE: You can only have one ACROSS column in a report.

2) The number of rows and the title of each row in the report are
dependent on the values in the GROUP column(s). There is one
row for each value in the GROUP column(s) and the title of each
row is the value of the column(s).
NOTE: The CSUM, PCT, CPCT, TPCT, and TCPCT usage codes
are only partially supported when generating reports that also use
the ACROSS usage code.
Chapter 6. User’s guide 221

AVERAGE Average of the
values in the
column.

This usage code is only valid for numeric data. This calculated
value appears as a total in the report. The calculated value is
formatted with the edit code of the column.

BREAKn Provide a control
break level (where n
represents a number
between 1 and 6).

For example, BREAK1 specifies a control column for a level-1
break and BREAK2 specifies a control column for a level-2 break.
Any change in the value of the column causes a section break in
the report. Subtotals are displayed for columns whose usage is
one of the aggregation usages. Also, the text specified in the
appropriate Form Break component is displayed. Your query
should use an ORDER BY clause that matches your BREAK
columns.

BREAKnX Same as BREAKn,
except the control
column is omitted
from the report.

Same as BREAKn.

CALCid The evaluation of the
calculation
expression in the
Form Calculations
component whose
ID equals "id".

This calculated value appears as a total in the report and applies
only to the last row of data. The calculated value is formatted with
the edit code of the column. If the column value is used in the
calculation, only the last row of data is evaluated.

COUNT Count of the non-null
values in the
column.

This calculated value appears as a total in the report. The
calculated value is formatted with the edit code K.

CPCT Cumulative
percentage each
value of the column
is of the current total.

This calculated value replaces each detail line value and also
appears as a total in the report. The calculated value is formatted
with the edit code of the column.NOTE: The CPCT usage code is
only partially supported when generating reports that also use the
ACROSS usage code.

CSUM Cumulative sum of
the values in the
column.

This calculated value replaces each detail line value and also
appears as a total in the report. The calculated value is formatted
with the edit code of the column.
NOTE: The CSUM usage code is only partially supported when
generating reports that also use the ACROSS usage code.

FIRST First value in the
column.

This calculated value appears as a total in the report. The
calculated value is formatted with the edit code of the column.

Usage Code Description Notes
222 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

GROUP Displays only one
line of summary
data for each set of
values in the
column.

More than one column can have usage GROUP. If so, a change in
value in any column starts a new group. All other columns with no
usage code are omitted from the report.

LAST Last value in the
column

This calculated value appears as a total in the report. The
calculated value is formatted with the edit code of the column.

MAXIMUM Maximum value in
the column.

This calculated value appears as a total in the report. The
calculated value is formatted with the edit code of the column.

MINIMUM Minimum value in
the column.

This calculated value appears as a total in the report. The
calculated value is formatted with the edit code of the column.

OMIT Excludes the
column from the
report

The column and its values are not included in the tabular report.
The values in the column can still appear in the report (for
example, in a break footing) by use of form variables (such as &n,
where n represents the column number).

PCT Percentage each
value of the column
is of the current total.

This calculated value replaces each detail line value and also
appears as a total in the report. The calculated value is formatted
with the edit code of the column.
NOTE: The PCT usage code is only partially supported when
generating reports that also use the ACROSS usage code.

STDEV Standard deviation
of the values in the
column.

This usage code is only valid for numeric data. This calculated
value appears as a total in the report. The calculated value is
formatted with the edit code of the column.

SUM Sum of the values in
the column.

This usage code is only valid for numeric data. This calculated
value appears as a total in the report. The calculated value is
formatted with the edit code of the column.

TPCT Percentage each
value of the column
is of the final total.

This calculated value replaces each detail line value and also
appears as a total in the report. The calculated value is formatted
with the edit code of the column.
NOTE: The TPCT usage code is only partially supported when
generating reports that also use the ACROSS usage code.

TCPCT Cumulative
percentage each
value of the column
is of the final total.

This calculated value replaces each detail line value and also
appears as a total in the report. The calculated value is formatted
with the edit code of the column.
NOTE: The TCPCT usage code is only partially supported when
generating reports that also use the ACROSS usage code.

Usage Code Description Notes
Chapter 6. User’s guide 223

The first important function is the SUM. This function allows you to view the
total of a specific column. It is clear that this function only works for columns
that are numeric. In our example, using the form created in 6.5.3.1, “Empty
form” on page 212, we can use this function on the Salary, Bonus,
Commission, and Total Income columns by simply clicking on the Usage
column and selecting the SUM function from the list as shown in Figure 102.
After this, a new row will be displayed at the end of the form showing the
resulting sum of the columns.

Figure 102. Using the sum function

In the same way we used the SUM function, we could have used many other
functions such as AVERAGE, COUNT, MAXIMUM, and so on. The resulting
value would be different, but the layout of the form would be the same.

Another important usage code is called BREAK. This function creates a new
break every time the value of a specific column changes. Therefore, if you
want to see a break by a specific column, the query must be ordered by
that column. In our example, we will create a break by Department, so the
query must be ordered by Department. To do this, click on the Usage and
224 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

select the BREAK function on the column Department. The result is shown in
Figure 103.

Figure 103. Result of group and sum functions

As you can see, every time the value in the column Department changes, a
break is generated. Also the sum of the Salary, Bonus, Commission, and
Total Income are displayed per Department as well as a total sum at the end
of the form. There are other functions, such as the GROUP function, that do
similar things.

There is still one more thing that could improve our example report. That is to
move the Department column to the first position. This can be done in the
Main window using the Seq column as shown in Figure 104. This number
represents the sequence in which the column will appear in the form. To
change it, click on the number and either type the number you want or use the
scroll buttons to increase or decrease the number. You have to reorder the
number yourself; otherwise, you will have two columns with the sequence
number, and QMF will use the column with lower number in the column Num
to appear first.
Chapter 6. User’s guide 225

Figure 104. Modify column order in a form

There is a great difference between the Num column and the Seq column.
The Seq column represents the order in which the columns will appear in the
form, while the Num column identifies the order in which the data is mapped
from the query. If you change the Num by clicking in the arrows on the top
right corner of the Main screen, you will be changing the position of the
columns. This means that the order of the columns on the form will no longer
be corresponding to the order of the columns in the query, and that may
create major problems such as not displaying the data or displaying the data
incorrectly. Only use the arrows to change the position of the columns if you
are sure that the columns in the query have also changed.

Note:
226 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

The result of this change is shown in Figure 105 below. The Department
Column is now shown in the first position of the form.

Figure 105. Final result of the modified form

To make sure that there is no problem with your form, you can click on the
Check button or use the Form and Check menu and QMF will check the
entire form and show a message with the result.

6.5.4 Create new procedures
Procedures are a set of commands that will be executed one after the other.
For example, it is possible to create a procedure that runs a specific query,
opens a form using that query, exports that form to an HTML file, and copies
it to a specified directory. A procedure contains all the commands to perform
the desired actions, and when the procedure is executed, the commands will
be executed in the sequence specified within the procedure.
Chapter 6. User’s guide 227

Procedures are useful for many things; for example, scheduling a procedure
to do its work overnight, especially for jobs that take a long time to be
completed. It is possible create a procedure that, overnight, executes several
queries and forms, export them to text files, and imports them into your
favorite spreadsheet application, such as Excel or Lotus 123. When you
arrive the next morning, this work (which could take several hours) has
already been done for you.

To create a procedure, follow the steps below:

1. Go to the File, New and Procedure menu. A window similar to the one in
Figure 106 will appear.

Figure 106. New procedure
228 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

2. In this window, you must now type your procedure. To do this, you need to
know the commands available for procedures. A list of these commands
can be found in Table 8. For a complete reference on their possible syntax,
refer to the on-line help. Type the commands you want with the
appropriate syntax in the window. The commands must be one per line,
and they will be executed one after the other. The second command will
not start until the first command has completed, and so on.

Table 8. Procedure commands

Command Description

BOTTOM BOTTOM scrolls to the last row of a query result set. This command
is equivalent to FORWARD MAX

CONNECT CONNECT will establish a connection to a database server.
Subsequent procedure commands will run at the specified server. The
running procedure's server will also be changed to the specified
server. No immediate action is taken upon any other current objects
within the procedure. However, subsequent commands which affect
those objects may result in additional processing.

CONVERT CONVERT will convert a prompted query to a new SQL query. The
original query (whether a named object in the database or a temporary
object) is unaffected by this operation.

DISPLAY DISPLAY will display an object in temporary storage or an existing
object that was saved in the database. DISPLAY for an object in
temporary storage will act only upon the current object; there is no
way to DISPLAY an object from temporary storage that is not the
current object.

DRAW DRAW creates a basic query for a table based on the description of
the table in the database.

ERASE ERASE removes a query, form, procedure, or table from the
database.

EXPORT EXPORT copies objects from the database or temporary storage to a
file.

FORWARD FORWARD scrolls forward in a query result set. The only acceptable
parameter for this command is MAX, making it equivalent to
BOTTOM.

IMPORT IMPORT copies data from a file into temporary storage or the
database.

PRINT PRINT prints a copy of an object in temporary storage or from the
database.
Chapter 6. User’s guide 229

3. Before saving the procedure, you should test it. To run a procedure, click
on the Run Procedure button from the toolbar (shown in Figure 107) or
use the Procedure and Run menu. The execution should start
immediately after that. In case there is any error in the syntax of any
command in the procedure, an error message will be displayed. If no error
occurs, the commands will be executed. If necessary, change the
procedure until it performs its intended operation without errors.

4. After testing the procedure, you may wish to save it. It is possible to save
a procedure at a server or in a file. To save a procedure at the server, click
on the Save At Server button or use the File and Save At Server... menu.
A window similar to the one in Figure 107 will appear. Then type the
owner, name, and comments of the procedure, select if the procedure is to
be shared with other users, and click on the OK button. To save the
procedure in a file, use the Save button or use the File and Save As...
menu.

RUN RUN executes procedures or queries from temporary storage or the
database.

SAVE SAVE stores the contents of an object in temporary storage into the
database.

SEND TO SEND TO exports reports and data from the database or temporary
storage and sends them to the specified target or application in your
Send To folder.

SET
GLOBAL

SET GLOBAL sets the values of existing global variables or creates
new variables and values. Any new global variables created exist for
the entire QMF for Windows session (unless manually deleted).

SHOW SHOW displays objects from temporary storage and is similar to
DISPLAY. SHOW QUERY, SHOW FORM, and SHOW PROC activate
the window containing the current query, form, or procedure,
respectively. SHOW REPORT is a synonym for SHOW FORM.
SHOW GLOBALS opens the Global Variables dialog box.

WINDOWS The WINDOWS command activates the target Windows application,
document, or URL.

Command Description
230 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 107. Saving new procedure

Procedures can vary tremendously from one to another. The one shown
above is only a very simple example of what a procedure can do.

6.6 Using Data Snap-Ins for QMF for Windows

The QMF for Windows Snap-Ins are small packages that, when installed, link
data from another software application to QMF for Windows. In other words, it
is possible to use the software interface together with QMF for Windows. For
example, it is possible to use the Microsoft Excel spreadsheet application,
and from that software, execute some of the functions of QMF for Windows.
Chapter 6. User’s guide 231

These Snap-Ins do not come with the product installation. You have to install
them separately, and they are available from the Rocket Software Web page.
The versions of the Snap-Ins, as of the writing of this book, are also available
on the CD-ROM that comes with the book, but we strongly recommend
checking the Rocket Software Web page to look for the latest available
versions. The URL to do so is:

http://www.rocketsoftware.com/QMF/

Go to the “Companion Products” section to access the downloadable code.
There is one Snap-In for each different product.

6.6.1 Lotus 123
After you have installed the Snap-In for Lotus 123, it is possible to run a QMF
query, and the data that is retrieved will be placed inside the spreadsheet. To
do thi,s follow the process below:

1. Open Lotus 123 and create a spreadsheet.

2. Go to the Edit and Data Snap-In for QMF menu.

3. A window will appear, prompting you to choose the database server from
the list and requiring the user ID and password to be typed in. Fill in this
information and click on the OK button. Note that the database servers in
the list are the same database servers defined in the QMF server
definition file.

4. After the login is done, a window as shown in Figure 108 will appear. In
that window, you can select the owner and the name of the query directly if
you know it, or you can use the wildcard ’%’ to view a list of available
queries. After you do that, click on the OK button.
232 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 108. Lotus 123 Snap-In

5. A window as shown in Figure 109 will appear. In that window you can
select several ways of importing the data. The most common one is the
Import Data option that places the result of the data in the spreadsheet,
but there are other options, like the Group option and the Cross Tab
Report. Whenever you change this option, the window will also change,
prompting for specific information for the selected way of importing the
data.

6. After the configuration of the options on how the data is going to be
imported, it is necessary to select the starting cell on the spreadsheet in
which the data will be imported. Click on the cell you want and then click
on the field Place Result At. The cell identification will appear
automatically.
Chapter 6. User’s guide 233

Figure 109. Formatting data using Lotus 123 Snap-In

7. The last step is to click on the Execute button, and the data will be
imported into your spreadsheet as shown in Figure 110.
234 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 110. Result of Lotus 123 Snap-In

At this point, you can use this data, as it is a regular spreadsheet. Keep in
mind that any modification in the data in the spreadsheet will not affect the
data in the database server and vice versa.

6.6.2 Microsoft Excel
After you have installed the Snap-In for Microsof Excel, it is possible to run a
QMF query, and the data that it retrieves will be placed inside the
spreadsheet. To do this, follow the process below:

1. Open Microsoft Excel and create a new spreadsheet.

2. There will be a button on the toolbar called Data Snap-In for QMF. If this
button is not visible, go to the Tools and Add-Ins... menus and select the
Data Snap-In for QMF.

3. Click on that button and a window prompting to select the database server
from the list will appear, followed by a window to type in userID and
password. Fill in this information and click the OK button. Note that the
database servers in the list are the same database servers defined in the
QMF server definition file.
Chapter 6. User’s guide 235

4. After the login is done, a window as shown in Figure 111 will appear. In
that window, you can select the owner and the name of the query directly if
you know it, or you can use the wildcard ’%’ to view a list of available
queries. Then click the OK button.

Figure 111. Excel Snap-In

5. A window as shown in Figure 112 will appear, where you can select
several ways of importing the data. The most common one is the Import
Data option where it simply place the result of the data in the spreadsheet
but there are other options like the Group option, and also graphics.
Whenever you change this option, this window will also change, prompting
for specific information for the selected way to importing the data.
236 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 112. Formatting data using Excel Snap-In

6. Finally, click the Run Query button and the data will be imported to the
spreadsheet, as shown in Figure 113. The windows will not be closed
automatically, so you have to click on the Close button yourself.
Chapter 6. User’s guide 237

Figure 113. Result of Excel Snap-In

At this point, you can use this data, as it is a regular spreadsheet. Keep in
mind that any modification in the data in the spreadsheet will not affect the
data in the database server, and vice versa.

6.6.3 Microsoft Access
After you have installed the Snap-In for Microsoft Access, it is possible to run
a QMF query, and the data that is retrieved will be placed inside the tables in
a Microsoft Access database. To do this, follow these steps:

1. Open Microsoft Access and create a new database, or open an existing
one.

2. There will be a new button in the toolbar called Data Snap-In for QMF. If
this button is not visible, go to the Tools, Add-Ins and Add-In Manager
menu and select the Data Snap-In for QMF.

3. Click on that button. A window will appear prompting you to choose a
server from the list, followed by a window to type in the userID and
password. Fill in the information and click on the QMF button. Note that
the servers in the list are the same servers defined in the QMF server
definition file.
238 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

4. After the login, a window as shown in Figure 114 will appear. In that
window, you can select the owner and the name of the query directly if you
know it, or you can use the wildcard ’%’ to view a list of available queries
and then click the OK button. In this window, there is also an opportunity
to save the query itself to MS Access. This means that a new query will be
created inside MS Access with the same SQL statement as the one in
QMF. That can be done by clicking on the Save button instead.

Figure 114. Access Snap-In

5. A window as shown in Figure 115 will appear. In that window, you can
either select an existing table where you want to place the data, or, if you
do not specify the table, a new table will be created. If selecting an existing
table and the result of the QMF query and the selected table do not match,
an error will occur.
Chapter 6. User’s guide 239

Figure 115. Selecting a table to place the data

6. The next step is to select a Microsoft Access Report List as shown in
Figure 116.
240 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 116. Select and report list

7. The last step necessary is to click the OK button, and the data will be
imported. In the case of the example shown, a new table is created and
the data is imported into it as shown in Figure 117.
Chapter 6. User’s guide 241

Figure 117. Result of access Snap-In

At this point, you can use this data, as it is a regular Access table. Keep in
mind that any modification in the data in that table will not affect the data in
the database server and vice versa.

6.7 Converting dynamic SQL to static SQL

Before you decide to use static SQL, you should consider whether using
static SQL or dynamic SQL is the best technique for your application. The
DBA group in your enterprise is usually responsible for this decision.

If the DBA authorizes you to convert dynamic SQL to static SQL, follow the
procedure described in 4.4.1, “Convert dynamic SQL to static SQL” on page
115.

For most DB2 users, static SQL — embedded in a host language program
and bound before the program runs — provides a straightforward, efficient
path to DB2 data. You can use static SQL when you know the exact SQL
statement before your application needs to execute it.
242 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Dynamic SQL prepares and executes the SQL statements within a program
while the program is running. It is used when the user creates the SQL
statements dynamically, for example, using the QMF for Windows interface.
DB2 prepares and executes those statements as dynamic SQL statements.

6.7.1 Dynamic versus static SQL
To access DB2 data, an SQL statement requires an access path. Two big
factors in the performance of an SQL statement are the amount of time that
DB2 uses to determine the access path at run time, and whether the access
path is efficient. DB2 determines the access path for a statement at either of
these times:

• When you bind the plan or package that contains the SQL statement

• When the SQL statement is executed.

The time at which DB2 determines the access path depends on these factors:

• Whether the statement is executed statically or dynamically

• Whether the statement contains input host variables

For dynamic SQL statements, DB2 determines the access path at run time when
the statement is prepared. This can make the performance worse than that of
static SQL statements. However, if you execute the same SQL statement very
often, you can use the dynamic statement cache to decrease the number of
times that those dynamic statements must be prepared. Ask your DBA about the
dynamic cache option in DB2.

6.8 Checking your resource limits

One major function of QMF for Windows is governing. This means that QMF
for Windows can limit certain groups of users to access just a subset of QMF
functions, or it can limit the access by time to prevent incorrect use of the data
or for balancing the resource consumption at the database server.

It is important to keep in mind that QMF for Windows limits will not overwrite
the database server limits. In other words, you may have permission to
update a table on the QMF for Windows level, but you may not have the
permission to do this on the database level. In this case, you will not be
allowed to update that table. You must have permission both in QMF and the
database in other to execute a command. Therefore, you may see specific
permission available to you in the QMF for Windows resource limits, but still
may not be able to execute the command, due to the database limits.
Chapter 6. User’s guide 243

These limits are defined for each database server. Thus, you may have the
right to execute one function on one server, but you do not have it on another
server. These restrictions are usually defined by a the DBA, and there are
some environments where there are different DBAs for different databases.
Also, the databases may contain different types of data, and the restrictions
applied may also differ.

Although you cannot change the resource limits, you can check them at any
time. To do this, first you have to be connected to the database server by
accessing one object in that database, such as the list of objects or a query.
Then go to the View and Resource Limits... menu.

A window as shown in Figure 118 will appear, asking for you to choose if you
want the most current resource limits. The reason for this is that the moment
QMF connects to a database server, it retrieves the resource limits and stores
them on your local computer. While you are working, the DBA may have
changed these limits, and you will not see them until the next connection.
Therefore, when you try to see your resource limits, QMF will ask you if you
want to see the most current version of these limits stored on the server, or if
you want to see the ones stored on your local computer.
244 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 118. Retrieve the most current resource limits

After that, a window as shown in Figure 119 will be displayed showing the
resource limits. In this window you can see (but not change) the limits that are
applied to you. As you can see, these limits set the timeout of the connection,
the maximum number of connections, the maximum number of rows to fetch,
the SQL verbs you can use in your SQL statements, and many other limits. To
check what each of these resource limits mean, refer to 4.2.2, “Creating
schedules” on page 94. In case you need to change these limits for any
reason, talk to the DBA responsible for setting your resource limits.
Chapter 6. User’s guide 245

Figure 119. Resource limits

6.9 Security

QMF for Windows Administrator is the administrative component of QMF for
Windows, and using this module should be strictly an administrator task.
There should not be any need for an end user to run QMF for Windows
Administrator. QMF for Windows Administrator is used to maintain resource
limits groups. To use QMF for Windows Administrator to maintain resource
limits groups, you must have the authorization to execute the QMF for
Windows Administrator package. This prevents unauthorized users from
changing the limits that are established by the administrator.

6.9.1 Change password capability
Users can change their host and workstation passwords from within QMF for
Windows as shown in Figure 119.
246 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 120. Change password

6.9.2 Lists
The database administrator might want to restrict the visibility of these
objects to a certain number of users. To do this, QMF for Windows allows the
creation of predefined lists that the users will see by default when working
with the product. Lists are also useful to simplify the day’s work of the users
by providing them with a tailored set of QMF for Windows objects by default.

If a user starts working with predefined queries, and so on, the usual way
would be to use the File -> Open from Server menu. This would open a
window that then needs to be modified if the user does not need to see all
objects from all users. Creating a predefined list provides an alternative to
simplify the work by using the File -> Open menu to see a list of tailored
objects.

The following steps need to be performed to create and save a predefined
list.

1. On the File menu of QMF for Windows, click New -> List to open the
windows shown in Figure 121. Make sure to select the correct server to
create the list from. If the window does not show the required server (like
the ’DB2AIX’ in the sample shown), go to the List -> Set Server menu to
set the active server accordingly.

2. You may now specify the owner of the objects that need to be in the list,
the object directly by name, and the type of objects to be included in the
list.
Chapter 6. User’s guide 247

3. Click the Refresh List button to create the list. This list can then be
modified by removing certain objects individually from this list.

4. Save the newly created list using the File -> Save As menu. This will
create a file in the default installation directory that can then be opened
using the File -> Open menu.

Figure 121. Lists

Within the List window, several options are available using the icons in the
Toolbar or the right mouse button. These options are:

• Display object to view the selected object. This function is available for
Queries, Forms, Procedures, and Tables.

• Run object to execute the selected object. This is only available for
Queries and Procedures.

• Draw object to create a query based on a selected table. The type of
query may be either a SELECT query, an SQL UPDATE query, an SQL
INSERT query, or a prompted query. This options only works for tables.

• Edit object is available only for tables and will open the Table Editor for
this table.
248 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

• Properties is available for all four types of objects, and displays the
properties of the selected object, including comments, attributes, and
historical usage information.

6.10 Customizing the interface

QMF for Windows allow you to customize the interface to adapt it to the way it
suits you best. That is possible by selecting the toolbar in the window you
want to modify.

QMF for Windows automatically detects what type of window is currently
active and switches the toolbar for you. So, if for example, the Query window
is the active window, the Query toolbar will be visible, while if a Procedure is
the active window, the Procedure toolbar will be visible. However, if you do
not want a specific toolbar to appear, click on the toolbar with the right mouse
button and deselect the toolbar you do not want to appear.

It is also possible to customize a toolbar by modifying the buttons that appear
in it. That can be done by clicking on the toolbar you wish to change with the
right button of the mouse and select the Customize... option. A window as
show in Figure 122 will appear. On the right side of that window you can see
the current buttons that are displayed in the toolbar, while on the left side the
available buttons are shown. To add a new button to the toolbar, select the
button you want to include on the left list and click on the Add button. To
remove a button, select the button you want to remove in the list at the right
and click the Remove button.

Figure 122. Customize toolbar
Chapter 6. User’s guide 249

The QMF toolbars are dockable, which means it is possible to move the
toolbars around and place them at the different sides of the window, as shown
in Figure 123. It is also possible, instead of docking the toolbar on one side of
the window, to leave it floating as a separate window. To do this, you have to
drag the toolbar with the right hand mouse button and drop it at the desired
place.

Figure 123. Move the toolbar
250 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

6.11 Migrating from OS/2 Query Manager

Longtime users of Query Manager/2 have relied upon its native connectivity
to DB2 and its robust performance in demanding environments. Many have
used it to accumulate valuable assets in the form of libraries of Query
Manager/2 reports. But at the same time, in addition to not being Year 2000
compliant, OS/2 Query Manager does not allow the use of all the new
functions introduced into DB2 UDB, and therefore leaves users unable to
extend the use of their reports to more applications across the enterprise.

Rocket Software provides a service offering to migrate Query Manager/2
objects to QMF for Windows. Once the conversions are finished, Query
Manager/2 objects become native to the QMF for Windows environment,
allowing you take full advantage of all the features and benefits of QMF for
Windows, including:

• Across-the-board support for all DB2 database platforms, from DB2
Personal Edition to the multi-node OS/390 sysplex — without database
gateways, middleware, or ODBC drivers.

• Native DRDA and DB2 support, including all DB2-specific SQL, static
SQL, and stored procedures.

• Rapid integration with Windows "suite" applications, such as spreadsheets
and analysis tools.

• A robust API that power users and Windows developers can use to quickly
build completely customized applications.

• Converts Query Manager/2 objects into corresponding QMF for Windows
objects, including:

- Queries

- Prompted queries

- Forms

- Procedures

• Rapid processing

• Converted objects are saved to DB2 database of choice.

Converted objects may be used in evaluation or fully licensed versions of
QMF for Windows.
Chapter 6. User’s guide 251

The Rocket Migration Utility for Query Manager/2 will not convert Query
Manager/2 menus or panels. Once the Query Manager/2 objects are
converted to QMF for Windows objects, they are stored on any DB2 database
and accessed from the database by QMF for Windows. Alternatively,
individual users may elect to store copies of their own QMF for Windows
objects on their PCs.

The QMF for Windows procedure environment is not identical to the Query
Manager/2 environment. Therefore, Query Manager/2 customers are likely to
find that some of their Query Manager/2 procedures — especially those
containing REXX code — do not work after conversion in the QMF for
Windows environment. Some objects may require editing by hand, and others
will need to be completely rewritten or even discarded, for example because
of the fact that QMF for Windows does not support REXX procedures.
252 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Chapter 7. Web considerations

The Web is changing every aspect of our lives, but no area is undergoing as
rapid and significant a change as the way businesses operate. As businesses
incorporate Internet technology into their core business processes, they start
to dynamically alter the way to do business. Today, companies large and
small are using the Web to communicate with their partners, to connect with
their back-end data-systems, and to transact commerce.

This new Web + IT paradigm merges the standards, simplicity and
connectivity of the Internet with the core processes that are the foundation of
business. The new killer applications are interactive and transaction
intensive; they let people do business in more meaningful ways from
anywhere at anytime. This forces many customers to change operations to
support a 24-hour day, 7-day work week.

An e-business company is a company that has changed their way to do
business to support it to be done using the Web infrastructure. To manage
transitions smoothly, you need to remember two important ideas:

• Start simple, but plan to grow fast.

• Build on what you have.

In short, e-business isn't about re-inventing your business. It's about altering
your current business processes to improve operating efficiencies which in
turn will strengthen the value you provide to your customers — value that
cannot be generated by any other means, and value that will give you a
serious advantage over your competition.

So how does your company become an e-business? How can becoming an
e-business help you maximize the value of your information technology
investment? How can it help you reduce your costs and grow your revenue?
There are four important areas or stages in this process. We think of these
four stages collectively as the e-business cycle. They are:

• Transforming core business processes

• Building flexible, expandable e-business applications

• Running a scalable, available, safe environment

• Leveraging knowledge and information you've gained through e-business
systems
© Copyright IBM Corp. 1999 253

There isn't a set order or hierarchy to this cycle. Successful e-businesses
start at different points, and you can too. But first you must identify which of
your core business processes are most suitable for, or most in need of,
conversion to e-business.

One way to get started would be to use as many existing technology and
products available within a company, and start with using the Web as a
transport or access layer for the result presentation.

7.1 Web presence basics

The following section gives a short introduction on how QMF for Windows
allows you to expand the accessibility of queries and reports generated to be
accessible through the Internet or intranet.

7.1.1 How does it work?
While QMF for Windows already allows broad access to queries and reports
by making QMF objects already residing in a DB2 host system available for
end users with Windows based systems, this accessibility is expanded even
more by making the results visible using Web Browser software. Using a Web
browser allows the data to be visible from any computer running any
operating system, as long as a Web browser for this environment is available.

The term intranet will be used for talking about Web technology that has been
implemented to be used from within a company’s network, whereas the term
Internet will indicate accessibility to this information from outside the
company. QMF for Windows provides an easy way to get started delivering
data through the Web.

A typical environment might look like the one shown in Figure 124.

Be aware that any kind of web implementation has to be planned carefully as
the resource requirements are different to a standard environment. Therefore,
the final web based application might end with a lower limit of concurrent
users allowed in order to achieve acceptable performance.
254 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 124. Web environment

7.2 Static reports

The easy way to use Web Technology to make query results and information
more broadly accessible is to simply publish query results to a Web server.
Using scheduling mechanisms, these reports can be updated on a frequent
basis.

But, compared to dynamic reports (discussed in 7.3, “Dynamic reports” on
page 262), static reports will not provide “up-to-the-minute” information.

Generating static reports is best done using a procedure like the following:

1. Execute the query.

2. Generate the report using a QMF form.

3. Export the report to an HTML file with a predefined name in the Web
server’s HTTP directory.

Using this approach, the Web server does not need to have QMF for Windows
installed at this server. QMF may be installed anywhere within the network,
because only the resulting HTML document needs to be transferred to the
Web server.

The following sections cover some specifics for the use of QMF for Windows
HTML based reports and the way to schedule this entire process.

Web
Browsers

World Wide Web

Web
Server

Database
Server
Chapter 7. Web considerations 255

7.2.1 Convert a standard QMF Form to HTML
Let’s consider the following example scenario:

1. The user will go to an HTML document that lists all available departments
within a company.

2. From that screen, he can select a specific department to get detailed
information on this department.

The first action to take is to create the query that lists the departments
and shows them as an HTML document, including links to the specific
reports. Figure 125 shows a query example.

Figure 125. Convert form to HTML

The next step is to create the form to display the result in HTML format. This
can be done by using the Convert to HTML button. This example has been
created without specifying any parameters in the screen that shows up after
clicking this button. Clicking on the HTML button allows you to further specify
the HTML form by selecting Edit Form... .First select the Main.. selection to
specify the report header, as shown in Figure 126.
256 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 126. Form main

At this point, it still possible to use all the functions for a normal form, such as
saving it at a server, checking for errors, and so on. See Figure 127.
Chapter 7. Web considerations 257

Figure 127. Form main window

After defining the main header, go to the HTML -> Edit Form.. -> Details
menu to specify the appearance of the body of the document. The example
shown will list the query result in table format and define an HTML anchor for
each department. Clicking this anchor will link the user to the detailed report
for each department.

In the example shown in Figure 128, the Detailed Heading Text section
specifies a horizontal line as a separator between the heading and the body,
and also specifies the body to be formatted as a table. In the Detailed Block
Text part of the screen, the definitions are made to create the links and
descriptions for the final document.
258 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 128. Form detail

Click the OK button to apply the modifications.

Other queries have been defined to select the detailed information for each
department, and the HTML form has been created, as explained in 6.4.3.3,
“Convert forms to HTML” on page 194.

7.2.2 Report preview feature
A new function available for this form is to preview the result in the default
Web browser configured for the local system. To do this, you have to click on
the Web Browser button or use the Form and View in Web Browser menus.
Your default Web browser will be launched automatically, and the form will be
displayed in it, as shown in Figure 129.
Chapter 7. Web considerations 259

Figure 129. HTML form preview

7.2.3 Scheduling
The last step necessary in the small example is to automate the process of
executing the queries and saving the HTML reports to the Web server’s
HTML directory. Figure 130 shows the procedure to do this.
260 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 130. Publishing procedure

In the example shown, the Web server default HTML directory is located on
the D drive under \WWW\HTML, but if the Web server is not the same system
that QMF for Windows runs on, this path as well points to a shared LAN drive
of the Web server system.

Using the Windows NT scheduler, this procedure can be scheduled to be
executed once a day to update the information within the report on a daily
basis.

For additional possibilities on how to implement a Web presence without
having to code a new application (such as the one described in 7.3, “Dynamic
reports” on page 262), you can look at Rocket Software’s Web page for the
’Web Warehouse". This can be found at the URL:

http://www.rocketsoftware.com/QMF/html/qmf_web_warehouse.asp

The Web warehouse shown there builds a complete application without
writing a single line of code in a programming language, using only the basic
functionality of QMF for Windows.
Chapter 7. Web considerations 261

7.3 Dynamic reports

This section on dynamic reports explains another method of running QMF for
Windows queries and forms directly from the Web Browser’s interface. Using
this method, the query will be initiated at the time the user clicks on a certain
link within a Web page, rather than accessing a previously prepared Web
page.

The benefit here is due to the fact that the result displayed is the result of the
query executed at this time, and therefore guarantees up-to-date results. The
trade-off using this approach as a general (or single) implementation is that it
uses more resources — on the database server as well as on the Web server
— and therefore may be performance-sensitive. Using this access method is
shown in Figure 131.

Figure 131. Dynamic reports

The sequence for this type of approach is as follows:

1. The end user clicks on a link in an HTML document shown on the Web
browser. This document may also first prompt for some variables that will
then be passed to the application.

2. The Web server receives the request for a document and starts the
application that has been linked with this document.

3. The application retrieves the variables for the SQL query and issues the
query to a database server.

SQL query

SQL query
results

Web
Browser

CGI, ...

Web
Server
(HTTP)

HTML report

HTTP/HTML CGI or API DYNAMIC
SQL

Application

Start Application

HTML report

Database

HTML input

Document
Request
262 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

4. The application receives the result from the query and has to present the
result in an HTML format and send it back to the Web server.

5. The Web server sends the HTML document, containing the query result,
back to the end user.

Today, there are many ways available to write applications that are “Web
enabled”. Starting with the Common Gateway Interface (CGI), this list is
expanded through the use of Web Server APIs that improve performance
compared to CGI, Java applets, Active Server Pages (ASPs), and so on. The
following section will describe an application example written using CGI, but
all other application development approaches will work as well.

7.3.1 CGI
A generic method of generating dynamic reports is to write an application that
uses CGI.The CGI applications are a way of using a programming or scripting
language on a server, to respond to requests from a Web client by executing a
file that returns HTML built “on-the-fly”. In other words, a CGI script is called from
a Web client, the script is executed by the Web server, and the script returns
HTML to the Web client as the output of its execution.

This HTML can be anything that the CGI application generates. To create
dynamic reports, this CGI could generate a report for a given input query,
meaning that the user would select a query on his Web browser, and the
result would also displayed on his Web browser.

One of the great advantages of creating CGI applications, as well as other
Web technologies, is that there is no need to install any application, system,
or middleware on the client. Only the Web browser and the network
middleware are required. This can be very helpful in large corporations once
it reduces the work of installing and administrating each computer.

To make your CGI application access QMF for Windows, it is necessary to
use the QMF APIs. See Chapter 5, “Developer’s guide” on page 125 for more
details on how to use the APIs, or see Appendix B, “QMF for Windows APIs”
on page 293 for the complete API reference. In this chapter we provide a
small CGI application example to illustrate how these applications work.

Using the Web browser, the user has to indicate the Internet address of the
CGI application. In our case, the address was:

http://balboa.almaden.ibm.com/cgi-bin/cgisample.exe

where cgisample.exe is the CGI executable file. Once it is done, the screen
shown in Figure 132 will appear.
Chapter 7. Web considerations 263

Figure 132. CGI example -— first screen

The user then has to input some information. The first input required is the
server name, which must match exactly with the name defined on QMF for
Windows. These names are defined on the server definition file by the QMF
administrator. The next inputs required are the user ID and password.
Remember that in some systems such as AIX or OS/390, it may be
case-sensitive. The last input is the SQL statement of the query. Only queries
using the SELECT verb are allowed in this example. If the SQL statement is
not properly written, an error will occur.

After all the input parameters have been correctly filled in, the user must click
on the OK button. All the input parameters will be sent through the Web to the
CGI application. The CGI application will then use the QMF APIs to connect
to the server, execute the query, and return the result, as shown in Figure
133.
264 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 133. CGI example -— second screen

The user can repeat the operation again by clicking on the Back button of the
browser, inputting the parameters, and submitting again.

The source code below shows how this CGI application was implemented.
Note that the QMFWinLibrary_TLB is included on the uses clause of the unit.
Without it, the CGI application will not be able to access the QMF APIs.

uses
Windows, Messages, SysUtils, Classes, HTTPApp,
ExtCtrls, QMFWinLibrary_TLB, ComObj, ole2;

The class definition is listed below. Two procedures were used in this
example:

type
TWebMod = class(TWebModule)

procedure WebModactConnectAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

procedure WebModactResultAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

private
public
end;
Chapter 7. Web considerations 265

var
WebMod: TWebMod;

The first procedure simply creates an HTML answer for the first request of the
user, showing the screen as shown in Figure 132. The source code of this
procedure is listed below:

procedure TWebMod.WebModactConnectAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);
begin

//simply respond to the user an HTML with input boxes for
//the server name, user ID, password and SQL statement
Response.Content:= '<HTML>'

+ '<BODY>'
+ '<H1>'
+ '<H1>QMF CGI Sample</H1>'
+ '<FORM METHOD="POST" ACTION="http://'
+ Request.Host
+ Request.ScriptName +'/Result">'
+ '<CENTER><TABLE BORDER=3 CELLSPACING=0 COLS=1'
+ 'WIDTH="36%" BGCOLOR="#FFFFCC" >'
+ '<TR>'
+ ' <TD ALIGN=RIGHT WIDTH="25%">'
+ ' Server Name'
+ ' </TD>'
+ ' <TD ALIGN=LEFT>'
+ ' <INPUT TYPE="TEXT" NAME="edServerName" SIZE="40">'
+ ' Has match the Server Definition File serves'
+ ' </TD>'
+ '</TR>'
+ '<TR>'
+ ' <TD ALIGN=RIGHT WIDTH="25%">'
+ ' User ID'
+ ' </TD>'
+ ' <TD ALIGN=LEFT>'
+ ' <INPUT TYPE="TEXT" NAME="edUserID" SIZE="8">'
+ ' </TD>'
+ '</TR>'
+ '<TR>'
+ ' <TD ALIGN=RIGHT>'
+ ' Password'
+ ' </TD>'
+ ' <TD ALIGN=LEFT>'
+ ' <INPUT TYPE="PASSWORD" NAME="edPassword" SIZE="8">'
+ ' </TD>'
+ '</TR>'
266 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

+ '<TR>'
+ ' <TD ALIGN=RIGHT>'
+ ' SQL Statement'
+ ' </TD>'
+ ' <TD ALIGN=LEFT>'
+ ' <TEXTAREA NAME="edSQL" COLS=60 ROWS="8" WRAP="SOFT">'
+ ' </TEXTAREA>'
+ ' </TD>'
+ '</TR>'
+ '</TABLE></CENTER>'
+ '<CENTER>'
+ '
<INPUT TYPE="SUBMIT" VALUE=" Ok "></TD>'
+ '</CENTER>'
+ '</FORM>'
+ '</BODY>'
+ '</HTML>';

end;

The second procedure receives the input parameters and connects to the
server, executes the query, and creates an HTML response with the result of
the query. The source code of this procedure is listed below:

procedure TWebMod.WebModactResultAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);
var

QMF: QMFWin;
Col: Integer;
myColumnCount: Integer;
FetchResult: Integer;
QueryNumber: Integer;
ColumnHeadings: OleVariant;
myRow: OleVariant;
UserID: String;
Password: String;
ServerName: String;
SQLStatement: String;

begin
//Receives the ServerName, UserID, Password and SQLStatement
//and copy them to a local variable
UserID:= Trim(Request.ContentFields.Values['edUserID']);
Password:= Trim(Request.ContentFields.Values['edPassword']);
ServerName:= Trim(Request.ContentFields.Values['edServerName']);
SQLStatement:= Trim(Request.ContentFields.Values['edSQL']);
if (UserID = '')
or (Password = '')
or (ServerName = '')
or (SQLStatement = '') then
Chapter 7. Web considerations 267

//if one of the fields are empty then display error message
Response.Content:= 'Field empty.'

else
begin
//Initialize the Ole - Required when creating CGIs
OleInitialize(nil);
//Initialize QMF Object
QMF:= CoQMFWin.Create;
//try to initialize server
if QMF.InitializeServer(ServerName,UserID,

PassWord, False,'',True) <> 0 then
//if not successful then display error message
Response.Content:= 'Could not initialize server. '

+ QMF.GetLastErrorString()
else

begin
//try to initialize the query selected by the user
QueryNumber:= QMF.InitializeQuery(0,SQLStatement);
if QueryNumber < 0 then

//if not successful display error message
Response.Content:= 'Could not initialize query '

+ QMF.GetLastErrorString()
else

//if successful try to open the selected query
//without any limits of number of rows
begin
if QMF.Open(QueryNumber, 0, False) <> 0 then

//if not successful display error message
Response.Content:= 'Could not open the query '

+ QMF.GetLastErrorString()
else

begin
//try to get the number of columns of the selected query
myColumnCount:= QMF.GetColumnCount(QueryNumber);
if myColumnCount <= 0 then
Response.Content:= 'Could not count numbers for columns. '

+ QMF.GetLastErrorString()
else

//if successful set the HTML with the
//appropriate numbers of columns
begin
//try to get the column headers
if QMF.GetColumnHeadings(QueryNumber,

ColumnHeadings) <> 0 then
Response.Content:= 'Could not get columns headings. '

+ QMF.GetLastErrorString()
else
268 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

//if successful display the column headings
//creating the HTML for the response
begin
Response.Content:= '<HTML>'

+ '<BODY>'
+ '<h1>QMF CGI Sample</h1>'
+ '
SERVER: ' + ServerName
+ '
SQL Statement: ' + SQLStatement
+ '
<center><table BORDER COLS='
+ IntToStr(myColumnCount)
+ ' WIDTH="100%" >'
+ '
'
+ '<tr BGCOLOR="#FFFFCC">';

//fill the HTML with the column name
for Col:= 0 to (myColumnCount - 1) do

Response.Content:= Response.Content
+ '<td>'
+ ColumnHeadings[Col]
+ '</td>';

Response.Content:= Response.Content + '</tr>';
//try to fetch all the rows from the query
//and place the data on the HTML
FetchResult:= QMF.FetchNextRow(QueryNumber, myRow);
while FetchResult = 0 do

begin
for Col:= 0 to (myColumnCount - 1) do

Response.Content:= Response.Content
+ '<td>'
+ VarToStr(myRow[Col])
+ '</td>';

Response.Content:= Response.Content + '</tr>';
FetchResult:= QMF.FetchNextRow(QueryNumber, myRow);
end;

//close HTML
Response.Content:= Response.Content

+ ' </table></center>'
+ '</BODY>'
+ '</HTML>';

if FetchResult <> -1 then
//if the result of the FetchNextRow API
//is different than -1, that means that
//an error occurred
Response.Content:= 'Could not fetch next row. '

+ QMF.GetLastErrorString();
Chapter 7. Web considerations 269

end;
end;

//try to close the query
if QMF.Close(QueryNumber) <> 0 then

begin
Response.Content:= 'Could not close query.'

+ QMF.GetLastErrorString();
end;

end;
end;

end;
OleUninitialize;
end;

end;

When using CGI examples that create OLE objects (in this case, the
QMF object), the procedure OleInitialize(nil) has to be called before
creating the object. At the end of the program, the procedure
OleUnInitialize() has to be called also. These procedures are available in
the windows DLL OLE32.DLL.

Also, some QMF APIs such as InitializeServer() and GetServerList()
must access the Windows Registry in order to know where the server
definition file is located. When creating CGI applications that use these
APIs, the Web server in which the CGI application is located must have
permission to access the Windows Registry. Otherwise, the API will not
be able to run properly.

Note:
270 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Chapter 8. Summary

Throughout this book, we have described the benefits of using the QMF
family of integrated tools to build an Enterprise Query Environment. This
environment will answer the main needs of an enterprise when having
widely distributed database systems installed. QMF for Windows, which
has been used mainly to demonstrate QMF, is representative of all other
QMF tools available on different platforms. The entire environment not
only helps the database administrator with the daily work of performance
monitoring and checking for resource consumption, but it also simplifies
the end users work.

For the information system employees, the main benefits are:

• Easy to install database front end across platforms

• Allows for object tracking

• Allows for resource planning

• Ability to cancel long running queries

• Central object repository

• Allows for Web publishing

• Batch mode

• Can create new queries using a Windows GUI and share these with
existing host users

• No porting necessary to execute existing host QMF queries from Windows

For the end user, the main benefits are:

• Ready-to-run applications

• One tool for all databases

• Can share new queries and formats with other users

• Tightly integrated with standard applications

Figure 134 illustrates the benefits of the Enterprise Query Environment.
© Copyright IBM Corp. 1999 271

Figure 134. An Enterprise Query Environment

The Enterprise Query Environment allows for easy coexistence of Queries,
Forms, Reports, and Procedures on all DB2 platforms. Wherever a new
object is created, storing it at the appropriate database server makes this
object accessible from all other platforms where QMF is installed.

8.1 Future directions

The main development issues of QMF for Windows up to now have been to
make the functionality of the QMF host product available for users with
Windows based systems.

There are, however, some functions not fully exploited with the current
version of the product. For example, some of the DB2 database features, like
the capability to store large objects (LOBS) inside the database tables, are
not yet supported. Also, as the QMF for Windows product reaches a new type
of end user, its interface will change in future releases. The ”grid” — that is,
the way the query result is presented to the user after executing a query
without specifying a form to be used — will allow for better direct formatting.
This will give the end user an easy way to reformat the result presentation
without having to define a separate form to do this.

DB2

QMF for Windows:
Create and Store
New Query

QMF for MVS:
Create and Store

New Query

QMF for Windows:
Execute Query

QMF for Windows:
Track Object Usage

QMF for VM&VSE:
Execute Query
272 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Another enhancement will also be seen, with the support of REXX logic to be
available within the QMF procedures. This will allow procedures to be more
flexible, and will enhance the functionality of procedures to incorporate logic,
rather than being “linear” only.

To furthermore expand the platforms that QMF is available on, the product
will be written in Java, thus allowing the product to be installed and executed
on any operating system that provides a Java Virtual Machine (JVM). This
way, QMF will also be available to be used from AIX based operating
systems, thus allowing both Windows and AIX users to access DB2 on any
platform using the same GUI.

8.2 QMF Personal Portal

The QMF for Windows product GUI may actually offer too many sophisticated
possibilities for the end user who only needs to run existing queries using
predefined formats. To make life easier for this type of user, Rocket Software
provides a free download of an alternative front end called Rocket Personal
Portal. This product will run on any workstation where QMF for Windows is
installed. It provides a simple user interface for launching centrally shared
QMF queries and reports, and sending the results to spreadsheets, desktop
databases and browsers. The biggest advantage for the user is the way
Personal Portal visualizes the information. It uses a tree-structure to do this,
so the user can expand the objects for each server, while at the same time
being able to see all other available servers, as shown in Figure 135.
Chapter 8. Summary 273

Figure 135. Rocket personal portal

Once the user has selected a specific query it, can be executed in by either
double-clicking on its name or selecting the Report -> Run menu. The query
result will then be displayed in the way specified in the Report -> Properties
menu, by default pointing to the Notepad application. Within these properties,
the user is also able to select the form used to format the query result. Other
available applications predefined by Personal Portal are:

• Web Browser (.HTML format)

• Lotus 123 (.123 format)

• MS Excel (.XLS format)

• Lotus Wordpro (.LWP format)

• MS Word (.DOC format)

• MS Access (.MDB format)
274 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

In addition, the user can specify if the report is to be written in a temporary
file or written permanently to the disk drive. Another option is to select a
certain QMF Procedure to be executed before running the query. Figure 136
shows the Properties screen where all these definitions can be made, either
temporarily or permanently, by selecting the Save as Favorite button.

Figure 136. Properties screen

The end user can even select favorite queries and report settings for the
Favorites folder, to allow easy access to the most frequently used objects.
Personal Portal allows all the objects shown in the main window to be copied
to the Favorites folder, as shown in Figure 137.
Chapter 8. Summary 275

Figure 137. Copy to favorites

As the Rocket Personal Portal is downloadable for free from the Rocket
Software Web site, please check for the latest version of this application.
276 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Appendix A. Working with variables

Variables, as their name implies, are a part of a computer program code that
can be modified while that program is running. In this way, the same program
can be used for several actions. Let’s take, for example, a very simple
program that only sums two numbers. The program might look like this:

2 + 2 = X

In that case, the program result will always be 4, and that program will only be
useful if we want to sum 2 and 2. If we want to have a generic program that
sums any two numbers, we have to use variables. A program using variables
might look like this:

A is an Integer
B is an Integer
A + B = X

In this case, A and B are variables; they can be any integer numbers, and so
can the result, X. Now the same program can be used to sum any two
numbers.

QMF for Windows has two kind of variables, Substitution Variables and
Global Variables. The substitution variables are used in QMF objects for
substituting variables to strings at run time. In this way, you can substitute a
part of a SQL statement and make it more generic. Substitution variables are
only active while the object (Query, Procedure, Form) is running. Hence, just
one object can access it, and after the execution, the variable no longer
exists. On the other hand, global variables are active while QMF is active,
which means that variables will have the same value until the instance of
QMF is finished, and can be accessed by all QMF objects. Different instances
of QMF will not be able to see each other’s global variables.

There is a way of keeping global variables from one instance to another. To
do this, you need to modify an option in your Windows registry, and QMF will
automatically save all global variables created in the Windows registry. You
do this by going to the Windows registry editor in the directory
HKEY_CURRENT_USER\SOFTWARE\IBM\RDBI\Options, creating a new
entry called SaveGlobal as a DWORD value, and setting this value to 1, as
shown in Figure 138.
© Copyright IBM Corp. 1999 277

Figure 138. Windows registry

From that moment on, all the global variables that you create will be stored in
HKEY_CURRENT_USER\SOFTWARE\IBM\RDBI\Global Variables in the
Windows registry, and will be kept from instance to instance.

The structure of variables, then, are as shown in Figure 139. Substitution
variables stay active only during the execution of the object. Global variables
stay active while the QMF instance is active and, after the proper settings, the
global variables can be permanent in the Windows registry.
278 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 139. Variable structure

A.1 Substitution variables

Substitution variables are very useful for creating generic objects. Imagine
that you need a query which lists all the information from a customer who is in
debt. If you have to create one query for each customer who is in debt, you
will probably need to create many queries, and they will not be flexible. When
you use variables, you can create one single query that, before running,
prompts you for the name or identification of the customer you want to see.
Such a query may look like this:

SELECT *
FROM CUSTOMER
WHERE DEBIT = ’YES’
AND CUSTOMER_NUMBER = &CUSTOMER_NUMBER

The ’&’ character indicates that the string following is a substitution variable.
When you run that query, a prompt will appear for you to input the customer
number, as shown in Figure 140. After typing in the value, click on the OK
button and the query will be executed with the value that you typed. So, while
using the same query, you can retrieve all information from all customers that
are in debt without the need to create several different queries, one for each
customer. In QMF for Windows, you can have as many variables as you want
in one query, or use the same variable in different places of the query.

Operating System

QMF for Windows

QMF Objects

Global Variable

Substitution Variable

Registry Entry
Appendix A. Working with variables 279

Figure 140. Substitution variable

When using the substitution variables, you need to remember that they will be
substituted as typed; that means, if you are using the variable to substitute a
value to compare with a string column, it has to be delimited by quotation
marks, just as in the SQL statement.

Substitution variables can also be used in procedures with the same result.
However, if your procedure has to run overnight, you cannot use substitution
variables because the process will be stopped each time a variable is found
and it will prompt the user to enter the value, thus interrupting the procedure.
The solution to this problem is user defined global variables.

QMF for OS/390, VM, and VSE have a total limit of 10 variables.

Note:
280 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

A.2 Global variables

Global variables are variables that stay active as long as the QMF instance is
active. Also, it is possible to configure QMF to save your global variables from
one instance to another as explained earlier. There are two types of global
variables, the user defined global variables and the pre-loaded global
variables.

A.2.1 User defined global variables

User defined global variables are global variables that the user defines for the
execution of queries or procedures. In that case, if in the query or procedure,
a variable that the user already defined in the global variable is used, no
window will be displayed for the user to enter the value. The value defined for
that global variable will be used instead.

To create your own global variables, follow the process below:

1. Go to the View and Global Variables... menus. A window as shown in
Figure 141 will appear.

Figure 141. Global variables

2. Click on the Add button, and a window as shown in Figure 142 will appear.
Appendix A. Working with variables 281

Figure 142. Adding global variables

3. In that window, type the global variable name and value. The name of the
variable may be a maximum of 17 characters long, and the value cannot
be longer than 55 characters. Also, variables may not begin with ’DSQ’.

4. After that, click on the Add button and the variable will be created as
shown in Figure 143.
282 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 143. New global variable created

To edit the value or change the name of a global variable use the Edit button
and to delete a variable use the Delete button.

A.2.2 Pre-loaded global variables

QMF for windows has a set of global variables that are pre-loaded with the
product. You cannot change or delete any of these variables, or change the
values in most of these variables.

QMF for Windows provides many variables for use in your queries, forms,
and procedures. All of the global variables defined for host QMF are
recognized by QMF for Windows, however, many are not applicable to the
Windows environment. Only those listed in the following tables are used and
accessible by QMF for Windows. Any references in queries, forms, or
procedures to QMF host global variables that are not supported by QMF for
Windows are ignored. See the host QMF reference for a complete listing of all
host QMF global variables. Global variables prefixed by DSQQW are QMF for
Windows global variables only; all other DSQ-prefixed global variables are
supported in both environments.
Appendix A. Working with variables 283

The naming convention for global variables is DSQcc_xxxxxxxxx, where
DSQcc can be one of the following category identifiers, as shown in Table 9.

Table 9. Global variables naming convention

A.2.2.1 State information variables — DSQAO
Global variables whose names begin with DSQAO provide state information
about QMF for Windows. None of these variables can be modified by the SET
GLOBAL command. Table 10 shows these variables.

Table 10. DSQAO global variables

Identifier Description

DSQAO State information

DSQCP Information about the Table Editor

DSQDC Control of how QMF for Windows displays information

DSQEC Control of how QMF for Windows executes commands and procedures

DSQQW Controls specific to the QMF for Windows environment

Name Length Description

DSQAO_BATCH 1 Batch or interactive mode. Value can be '1'
for an interactive session or '2' for a batch
session. See the /Batch command line
parameter.

DSQAO_CURSOR_OPEN 1 The status of the current query object's
database cursor. Value can be '1' if the
cursor is open or '2' if the cursor is closed.

DSQAO_DBCS 1 DBCS support status. Value can be '1' if
DBCS support is present or '2' if DBCS
support is not present.

DSQAO_NLF_LANG 1 National language of session. Value is 'E'
for the English language.

DSQAO_NUM_FETCHED 10 The number of rows fetched by the current
query object.

DSQAO_OBJ_NAME 18 The name of the current query, form, or
procedure object. If there is no current
object, the value is blank.

DSQAO_OBJ_OWNER 8 The owner of the current query, form, or
procedure object. If there is no current
object, the value is blank.
284 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

A.2.2.2 Table editor variables — DSQCP
Global variables whose names begin with DSQCP control the operation of the
Table Editor. All of these variables can be modified by the SET GLOBAL
command. Table 11 shows these variables.

Table 11. DSQCP global variables

DSQAO_QMF_RELEASE 2 Numeric release number of QMF for
Windows. For QMF for Windows Version
6.1, this is '11'

DSQAO_QMF_VER_RLS 10 Version and release of QMF for Windows.
For QMF for Windows Version 6.1, this is
'QMF V6R1'

DSQAO_QUERY_MODEL 1 Model of the current query object. Value
can be '1' for relational.

DSQAO_QRY_SUBTYPE 1 Subtype of the current query object. Value
can be '1' for SQL queries or '3' for
prompted queries.

DSQAO_SYSTEM_ID 1 Current operating system. Values can be:
'6' for Windows 3.x, '7' for Windows 95 or
Windows 98, or '8' for Windows NT.

Name Length Description

DSQCP_TEDFLT 1 Defines the reserved character used in the Table
Editor to indicate a default value for a column. The
default value is '+'. This variable can also be set on
the Options dialog box.

DSQCP_TENULL 1 Defines the reserved character used in the Table
Editor to indicate a null value for a column. The
default value is '-'. This variable can also be set on
the Options dialog box.

Name Length Description
Appendix A. Working with variables 285

A.2.2.3 Display information variables — DSQCP
Global variables whose names begin with DSQDC control how QMF for
Windows displays information. All of these variables can be modified by the
SET GLOBAL command. Table 12 shows these variables.

Table 12. DSQCP global variables

A.2.2.4 Command and procedures variables — DSQEC
Global variables whose names begin with DSQEC control how QMF for
Windows executes commands and procedures. All of these variables can be
modified by the SET GLOBAL command. Figure 13 shows these variables.

Table 13. DSQEC global variables

Name Length Description

DSQDC_CURRENCY 18 Defines the custom currency symbol to use
when the DC edit code is specified.

DSQDC_DISPLAY_RPT 1 Whether or not to display a report after a
RUN QUERY command in a procedure.
Value can be '0' to not display a report or '1'
to automatically display a report with the
default form. The default value is '0'.

DSQDC_LIST_ORDER 2 Sets the default sort order for objects in a List
window. Value for the first character can be
'1' (default order), '2' (sorted by object
owner), '3' (sorted by object name), or '4'
(sorted by object type). Value for the second
character can be 'A' (sorted in ascending
order) or 'D' (sorted in descending order).
The default value is '1A'.

Name Length Description

DSQEC_FORM_LANG 1 Defines the default NLF language, in
which a form will be saved or exported.
Value can be '0' for the presiding NLF
language or '1' for English. The default
value is '1'.

DSQEC_NLFCMD_LANG 1 Defines the expected NLF language for
commands in procedures. Value can be '0'
for the presiding NLF language or '1' for
English. The default value is '0'.
286 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

A.2.2.5 Windows environment variables — DSQQW
Global variables whose names begin with DSQQW are specific to the QMF
for Windows environment. All of these variables can be modified by the SET
GLOBAL command. Table 14 shows these variables.

Table 14. DSQQW global variables

DSQEC_RESET_RPT 1 Determines whether or not to prompt the
user when an incomplete data object will
affect performance. Value can be '0'
(complete the data object without
prompting), '1' (prompt the user whether or
not to complete the data object), '2' (reset
the data object without prompting)

DSQEC_SHARE 1 Specifies the default value for whether or
not to share a saved object with other
users. Value can be '0' (do not share the
object) or '1' (share the object).

Name Length Description

DSQQW_CONNECTIONS 1 Controls the use of database server
connections while running a procedure.
Value can be '0' to minimize the number of
connections or '1' to allow a new
connection for each RUN QUERY
command. Specifying a value of '0' can
force QMF for Windows to reset or
complete a data object before continuing
execution of a procedure. The default
value is '0'.

DSQQW_EXP_DT_FRMT 1 The format to use when exporting data
with the EXPORT DATA command in a
procedure. Value can be '0' for text, '2' for
HTML, '3' for CSV, or '4' for IXF. The
default value is '0'.

DSQQW_EXP_OUT_MDE 1 The IXF variation to use when exporting
data to an IXF file. Value can be '0' for
System/370 character-mode IXF or '1' for
PC/IXF. The default value is '1'.

Name Length Description
Appendix A. Working with variables 287

DSQQW_FST_SV_DATA 1 Controls the use of "fast mode" when
saving data with the SAVE DATA
command in a procedure. Value can be '0'
to not use fast mode or '1' to use fast
mode. The default value is '0'.

DSQQW_HTML_REFTEXT 55 The text that appears in a report when the
&REF variable is used. The default value
is 'Back To'.

DSQQW_QUERY_LANG 1 Specifies the subtype of query created
when a DISPLAY QUERY command is
executed but no query object exists.
Value can be '0' for SQL or '1' for
prompted. The default value is '0'.

DSQQW_RPT_COPIES 10 Specifies the number of copies to print
when printing a report with the PRINT
REPORT command in a procedure. The
default value is '1'.

DSQQW_RPT_FONT 55 Specifies the font face name to use when
printing a report with the PRINT REPORT
command in a procedure. The default
value is 'Courier New'.

DSQQW_RPT_FONT_BD 1 Specifies the font bold attribute to use
when printing a report with the PRINT
REPORT command in a procedure. The
default value is '0'.

DSQQW_RPT_FONT_IT 1 Specifies the font italic attribute to use
when printing a report with the PRINT
REPORT command in a procedure. The
default value is '0'.

DSQQW_RPT_FONT_SZ 2 Specifies the font point size to use when
printing a report with the PRINT REPORT
command in a procedure. The default
value is '10'.

Name Length Description
288 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

DSQQW_RPT_LEN_TYP 1 Specifies the type of page length when
printing a report with the PRINT REPORT
command in a procedure. Value can be '0'
to fit the length to the printed page, '1' to
specify an explicit number of lines, or '2' to
specify a continuous report with no page
breaks. The default value is '0'.

DSQQW_RPT_NUM_CHR 10 Specifies the number of characters to fit
across a printed page when printing a
report with the PRINT REPORT
command in a procedure. This has an
effect only when
DSQQW_RPT_WID_TYP is '1'. The
default value is '80'

DSQQW_RPT_NUM_LNS 10 Specifies the number of lines to fit down a
printed page when printing a report with
the PRINT REPORT command in a
procedure. This has an effect only when
DSQQW_RPT_LEN_TYP is '1'. The
default value is '60'.

DSQQW_RPT_ORIENT 1 The page orientation to use when printing
a report with the PRINT REPORT
command in a procedure. Value can be '0'
for portrait or '1' for landscape. The
default value is '0'.

DSQQW_RPT_USE_PS 1 Specifies what page formatting options
(page length, page width, and so on) to
use when printing a report with the PRINT
REPORT command in a procedure. Value
can be '0' to use the values specified on
the PRINT REPORT command or in
global variables, or '1' to use the values
specified in the form document's page
setup. The default value is '1'.

DSQQW_RPT_WID_TYP 1 Specifies the type of page width when
printing a report with the PRINT REPORT
command in a procedure. Value can be '0'
to fit the width to the printed page, or '1' to
specify an explicit number of characters.
The default value is '0'.

Name Length Description
Appendix A. Working with variables 289

A.3 Form variables

In addition to the previously mentioned substitution variables and global
variables, QMF for Windows provides another form of variables, called form
variables.

Form variables are codes you can insert into text fields to produce
information on the report itself. For example, you can insert a date variable to
produce the current date whenever the report is printed. Different form
variables are available, depending on the part of the form you are editing.

The following form variables are available:

• &ROW - Displays the number of the current row of data.

• &DATE - Displays the current date.

• &TIME - Displays the current time.

• &PAGE - Displays the current page number.

DSQQW_SHOW_QUERY 1 Specifies which view of a query to display
when a SHOW QUERY command is
issued from a procedure. Value can be '0'
for SQL or prompted view or '1' for results
view. The default value is '0'.

DSQQW_STRIP_SPACE 1 Specifies whether or not to remove trailing
spaces from the lines of queries and
procedures retrieved from a database
server. Value can be '0' to retain trailing
spaces or '1' to remove trailing spaces.
The default value is '1'.

DSQQW_SV_DATA_C_S 10 The number of rows to insert before
committing the unit of work when saving
data with a SAVE DATA command in a
procedure. Value can be '0' for all of the
rows or an explicit number of rows. The
default value is '0'.

DSQQW_UEDIT_DLL 55 The name of the DLL implementing the
user edit routines to make available when
working with forms. The default value is
'rsuedit.dll'.

Name Length Description
290 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

• &COUNT - Displays the number of rows retrieved or printed since the last
break at the same level.

• &CALCid - Identifies a Form Calculation expression to use, where "id" is
the ID number of the expression

• &n - Displays the value of a column, where "n" is the column number.

• &an - Displays the aggregation of a column, where "n" is the column
number, and "a" is one the following aggregation variables: AVG, COUNT,
CPCT, CSUM, FIRST, LAST, MAX, MIN, PCT, STDEV, SUM, TCPCT, or
TPCT. The aggregation is based on the rows retrieved or printed since the
last break at the same level.

• Global Variables – Displays the value of the global variable.

• HTML Variables – Displays the value of the HTML variable.

Table 15 shows the types of variables that can be used in each part of a form:

Table 15. Form variables

Global variables and HTML variables can be used throughout the form.

&ROW &DATE &TIME &PAGE &COUNT CALCid &n &an

Page
Heading

X X X X X

Page Footing X X X X X

Break
Heading

X X X X X

Break
Footing

X X X X X X X X

Calc
Expression

X X X X X X X

Column
Definition

X X X X

Condition X X X X

Detail
Heading

X X X X X

Detail Block X X X X X X X X

Final Text X X X X X X X X
Appendix A. Working with variables 291

292 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Appendix B. QMF for Windows APIs

This appendix lists all of the QMF for Windows Application Programming
Interfaces (APIs) that the developer has available to create new applications.

B.1 AddDecimalHostVariable

short AddDecimalHostVariable(long QueryID, short Type, short Precision,
short Scale, const VARIANT& Value)

Description
This function applies the data in Value to a variable in the static SQL
statement initialized with QueryID. You call this function for each variable in
the statement. QMF for Windows makes no attempt to match values to
variables, so you must call this function in the same order as the variables in
the SQL statement.

Parameters
Table 16 shows the parameters for this API.

Table 16. AddDecimalHostVariable parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

Name Description

QueryID The ID of the query as returned from InitializeStaticQuery().

Type The SQL data type of the value to be passed to the database server.
This value influences the conversion of Value from a VARIANT data
type to the value actually passed. The only valid value for
AddDecimalHostVariable() is 484 (RSDT_DECIMAL).

Precision The precision of the decimal value.

Scale The scale of the decimal value.

Value The data value to substitute in the statement. To specify a null value,
the type of the variant should be set to VT_EMPTY.
© Copyright IBM Corp. 1999 293

B.2 AddHostVariable()

short AddHostVariable(long QueryID, short Type, const VARIANT& Value)

Description
This function applies the data in Value to a variable in the static SQL
statement initialized with QueryID. You must call this function for each
variable in the statement. QMF for Windows makes no attempt to match
values to variables, so you must call this function in the same order as the
variables in the SQL statement.

Parameters
Table 17 shows the parameters for this API.

Table 17. AddHostVariable parameters

Table 18 shows the valid values for parameter Type.

Table 18. Valid values for the parameter type

Name Description

QueryID The ID of the query as returned from InitializeStaticQuery().

Type The SQL data type of the value to be passed to the database server.
This value influences the conversion of Value from a VARIANT data
type to the value actually passed.

Value The data value to substitute in the statement. To specify a null value, the
type of the variant should be set to VT_EMPTY.

Value Meaning

384 (RSDT_DATE) Date

388 (RSDT_TIME)Time

392 (RSDT_TIMESTAMP)Time stamp

448 (RSDT_VARCHAR)Variable length character string

452 (RSDT_CHAR)Character string

464 (RSDT_VARGRAPHIC)Variable length graphic

468 (RSDT_GRAPHIC)Graphic

480 (RSDT_FLOAT)Floating point number

496 (RSDT_INTEGER)4-byte integer

500 (RSDT_SMALLINT)2-byte integer
294 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.3 BindDecimalHostVariable()

short BindDecimalHostVariable(BSTR CollectionName, BSTR
PackageName, short SectionNumber, short Number, BSTR Name, short
DataType, short Precision, short Scale)

Description
This function binds a variable in the specified section. Include the text :H in
the SQL text as a placeholder for a host variable. For each decimal host
variable in the SQL text, you must call BindDecimalHostVariable() to specify
information about the variable.

Parameters
Table 19 shows the parameters for this API.

Table 19. BindDecimalHostVariable parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Name Description

CollectionName The collection ID of the package you want to bind.

PackageName The name of the package you want to bind.

SectionNumber The section number of the statement within the collection and
package you want to bind.

Number The identifier for the variable you want to bind. The first variable in
the SQL statement is variable 0, etc.

Name Used by the database server for diagnostic purposes. This value
is not validated nor required by QMF for Windows.

DataType The SQL data type of the variable. The only valid value for
BindDecimalHostVariable() is 484 (RSDT_DECIMAL).

Precision The precision of the decimal variable.

Scale The scale of the decimal variable.
Appendix B. QMF for Windows APIs 295

B.4 BindHostVariable()

short BindHostVariable(BSTR CollectionName, BSTR PackageName, short
SectionNumber, short Number, BSTR Name, short DataType, short Length)

Description
This function binds a variable in the specified section. Include the text :H in
the SQL text as a placeholder for a host variable. For each host variable in
the SQL text, you must call BindHostVariable() to specify information about
the variable.

Parameters
Table 20 shows the parameters for this API.

Table 20. BindHostVariable parameters

Table 21 shows the valid values for parameter DataType.

Table 21. Valid values for the parameter DataType

Name Description

CollectionName The collection ID of the package you want to bind.

PackageName The name of the package you want to bind.

SectionNumber The section number of the statement within the collection and
package you want to bind.

Number The identifier for the variable you want to bind. The first variable
in the SQL statement is variable 0, etc.

Name Used by the database server for diagnostic purposes. This value
is not validated nor required by QMF for Windows.

DataType The SQL data type of the variable.

Length The length of the variable.

Value Meaning

384 (RSDT_DATE)Date

388 (RSDT_TIME)Time

392 (RSDT_TIMESTAMP)Time stamp

448 (RSDT_VARCHAR)Variable length character string

452 (RSDT_CHAR)Character string

464 (RSDT_VARGRAPHIC)Variable length graphic
296 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.5 BindSection()

short BindSection(BSTR CollectionName, BSTR PackageName, short
SectionNumber, BSTR SQLText)

Description
This function sets the SQL text to be used in the specified section number of
the collection and package during binding.

Parameters
Table 22 shows the parameters for this API.

Table 22. BindSection Parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

468 (RSDT_GRAPHIC)Graphic

480 (RSDT_FLOAT)Floating point number

484 (RSDT_DECIMAL)Decimal

496 (RSDT_INTEGER)4-byte integer

500 (RSDT_SMALLINT)2-byte integer

Name Description

CollectionName The collection ID of the package you want to bind.

PackageName The name of the package you want to bind.

SectionNumber The section number of the statement within the collection and
package you want to bind.

SQLText The SQL text for the statement you want to bind.

Value Meaning
Appendix B. QMF for Windows APIs 297

B.6 CancelBind()

short CancelBind(BSTR CollectionName, BSTR PackageName)

Description
This function cancels a previously initialized bind operation. All information
regarding the named package is released.

Parameters
Table 23 shows the parameters for this API.

Table 23. CancelBind Parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.7 ChangePassword()

short ChangePassword(BSTR NewPassword)

Description
This function changes the password for the user ID previously specified on
the InitializeServer() call.

Name Description

CollectionName The collection name used in the previous call to StartBind().

PackageName The package name used in the previous call to StartBind().

Not all types of database servers support changing passwords. If the
server specified on the InitializeServer() call does not support changing
passwords, an error is returned, and the password is not changed.

Note
298 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Parameters
Table 24 shows the parameters for this API.

Table 24. ChangePassword parameters

Return value
Zero if successful, non-zero if unsuccessful. If the return value is nonzero,
you can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.8 ClearList()

short ClearList(short Type)

Description
This function re-initializes the internal list specified by the Type parameter.

Parameters
Table 25 shows the parameters for this API.

Table 25. ClearList parameters

Return value
Zero if successful, RS_ERROR_OUTOFRANGE if unsuccessful.

Related topics
Open()

B.9 Close()

short Close(long QueryID)

Description
This function closes a query and invalidates QueryID. If there is a cursor
open for the query, the cursor is closed, freeing the database for other users.
This function does not terminate the connection to the database server. Since
the connection remains open, no rollback or commit is performed.

Name Description

NewPassword The new password.

Name Description

Type Either the value RSL_SERVER or RSL_QUERY
Appendix B. QMF for Windows APIs 299

Parameters
Table 26 shows the parameters for this API.

Table 26. Close parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Related topics
Execute(), Open()

B.10 Commit()

short Commit()

Description
This function commits any changes you made in the current unit of work,
ends the current unit of work, closes any open cursors, and invalidates all
outstanding query IDs.

Name Description

QueryID The ID of the query as returned from InitializeQuery().

The name of this function conflicts with the Microsoft Access 2.0
keyword Execute. If you are using MS Access 2.0, place square brackets
[] around the function name.

Note

The name of this function conflicts with the Microsoft Access 2.0
keyword Execute. If you are using MS Access 2.0, place square brackets
[] around the function name.

Note
300 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Related topics
Rollback()

B.11 CompleteQuery()

short CompleteQuery(long QueryID)

Description
This function fetches all rows of a result set and stores them internally in QMF
for Windows. If there is a cursor open for the query, the cursor is closed,
freeing the database for other users. You use FetchNextRow() or
FetchNextRows() to retrieve the rows. Call Close() when you are done with
this query.

Parameters
Table 27 shows the parameters for this API.

Table 27. Completequery parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.12 CopyToClipboard()

short CopyToClipboard(long QueryID, long FirstRow, long FirstCol, long
LastRow, long LastCol, BOOL IncludeColHeadings, [VARIANT
DateTimeFormat])

Description
This function copies the specified range of rows and columns to the
Clipboard. If you have not retrieved row data for all of the rows that you want
to copy to the Clipboard, you call CompleteQuery() prior to calling this

Name Description

QueryID The ID of the query as returned from InitializeQuery().
Appendix B. QMF for Windows APIs 301

function. An error message will be returned if you attempt to copy rows that
have not been retrieved from the database.

Parameters
Table 28 shows the parameters for this API.

Table 28. CopyToClipboard parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information. If the result set is empty or no rows have been retrieved from the
database, nonzero is returned unless FirstRow = 0 and LastRow = -1. In this
case, zero is returned and an empty string is copied to the Clipboard.

Related topics
Export()

Name Description

QueryID The ID of the query as returned from InitializeQuery().

FirstRow The first row you want to include in the copy.

FirstCol The first column you want to include in the copy.

LastRow The last row you want to include in the copy, or -1 if all rows
are included.

LastCol The last column that you want to include in the copy, or -1 if
all columns are included.

IncludeColHeadings Use nonzero to include the column headings in the first row
and zero to not include them

DateTimeFormat Optionally, the format to use for date and time values. Valid
values are 0 (ISO format), 1 (USA format), 2 (EUR format), 3
(JIS format), or 4 (Windows Control Panel format). The
default value is 4.

The value of a first row in a result set is 0, and the value of the last row
is one less than the total number of rows. The value of the first column
in a result set is 0, and the value of the last column is one less than the
total number of columns.

Note
302 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

B.13 DeleteQMFObject()

short DeleteQMFObject(BSTR OwnerAndName)

Description
This function deletes a QMF object (query, form, procedure, or table).

Parameters
Table 29 shows the parameters for this API.

Table 29. DeleteQMFObject parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.14 EndBind()

short EndBind(BSTR CollectionName, BSTR PackageName)

Description
This function completes the bind process for a static SQL package. Calling
this function causes QMF for Windows to send the complete information for
the current package to the database for processing.

Parameters
Table 30 shows the parameters for this API.

Table 30. EndBind parameters

Name Description

OwnerAndName A string containing the owner and name, separated by a
period, of the object that you want to delete. For example,
John.Query2

Name Description

CollectionName The collection name used in the previous call to StartBind().

PackageName The package name used in the previous call to StartBind().
Appendix B. QMF for Windows APIs 303

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.15 Execute()

short Execute(long QueryID)

Description
This function executes an SQL statement that uses an SQL verb other than
SELECT. Use Execute() when the statement does not return any results. For
statements that do return results, use ExecuteEx(). For statements using the
SELECT verb, use Open() instead of Execute() or ExecuteEx(). To determine
the verb used by a query, call GetQueryVerb().

Parameters
Table 31 shows the parameters for this API.

Table 31. Execute parametes

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.16 ExecuteEx()

short ExecuteEx(long QueryID, VARIANT* Result)

Description
This function executes an SQL statement that uses an SQL verb other than
SELECT. Use ExecuteEx() when the statement returns results, for example,

Name Description

QueryID The ID of the query as returned from InitializeQuery().

The name of this function conflicts with the Microsoft Access 2.0
keyword Execute. If you are using MS Access 2.0, place square brackets
[] around the function name.

Note
304 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

with a SELECT INTO statement. For statements that do not return any
results, use Execute(). For statements using the SELECT verb, use Open()
instead of Execute() or ExecuteEx(). To determine the verb used by a query,
call GetQueryVerb().

Parameters
Table 32 shows the parameters for this API.

Table 32. ExecuteEx parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.17 ExecuteStoredProcedure()

short ExecuteStoredProcedureEx(long QueryID, [VARIANT vaCommitOK],
[VARIANT vaMaxResultSets], [VARIANT vaColumnNames], [VARIANT
vaColumnLabels], [VARIANT vaColumnComments])

Description
This function executes an SQL statement that uses the SQL verb CALL, to
run a stored procedure at the database server. Use
ExecuteStoredProcedure() when the stored procedure does not return any
results (instead of or in addition to result sets). For stored procedures that do
return results, use ExecuteStoredProcedureEx().

To initialize a stored procedure for execution with ExecuteStoredProcedure(),
first call InitializeQuery() specifying an SQL statement that uses the CALL

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Result A pointer to a VARIANT in which the result will be stored. The result is
an array (variant type VT_ARRAY | VT_VARIANT) containing one
value for each column in the result.
Each value is specified in either its native data type or the closest
variant data type. The supported return types are: string (variant type
VT_BSTR), float (variant type VT_R4), double (variant type VT_R8),
short (variant type VT_I2), long (variant type VT_I4), and binary
(variant type VT_UI1 | VT_ARRAY).
You must properly initialize the VARIANT before calling this function.
Visual Basic does this automatically. Visual C++ programmers must
call VariantInit().
Appendix B. QMF for Windows APIs 305

statement. The stored procedure name must be specified as a literal in the
CALL statement. Any parameters specified in the CALL statement (constant
or otherwise) are ignored. Instead, use AddHostVariable() to specify the input
and output host variables.

If the stored procedure returns result sets, call
GetStoredProcedureResultSets() to retrieve the query IDs for the result sets.

Parameters
Table 33 shows the parameters for this API.

Table 33. ExecuteStoredProcedure parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Name Description

QueryID The ID of the query as returned from InitializeQuery(). The
SQL text for the query should specify a CALL statement.

vaCommitOK An optional boolean value specifying whether the stored
procedure can commit the unit of work or if this operation
should be restricted. The default value is True.

vaMaxResultSets An optional numeric value specifying the maximum number
of result sets that the stored procedure should be allowed to
return. Specify zero if you do not want the stored procedure
to return any result sets or if the database server does not
support returning result sets from stored procedures over
DRDA.

vaColumnNames An optional boolean value specifying whether or not the
database should return column names for the columns in
each returned result set.

vaColumnLabels An optional boolean value specifying whether or not the
database should return column labels for the columns in
each returned result set.

vaColumnComments An optional boolean value specifying whether or not the
database should return column comments for the columns in
each returned result set.
306 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

B.18 ExecuteStoredProcedureEx()

short ExecuteStoredProcedure(long QueryID, VARIANT* Result, [VARIANT
vaCommitOK], [VARIANT vaMaxResultSets], [VARIANT vaColumnNames],
[VARIANT vaColumnLabels], [VARIANT vaColumnComments])

Description
This function executes an SQL statement that uses the SQL verb CALL, to
run a stored procedure at the database server. Use
ExecuteStoredProcedureEx() when the stored procedure returns results
(instead of or in addition to result sets). For stored procedures that do not
return results, use ExecuteStoredProcedureEx().

To initialize a stored procedure for execution with ExecuteStoredProcedure(),
first call InitializeQuery() specifying an SQL statement that uses the CALL
statement. The stored procedure name must be specified as a literal in the
CALL statement. Any parameters specified in the CALL statement (constant
or otherwise) are ignored. Instead, use AddHostVariable() to specify the input
and output host variables.

If the stored procedure returns result sets, call
GetStoredProcedureResultSets() to retrieve the query IDs for the result sets.

Parameters
Table 34 shows the parameters for this API.

Table 34. ExecuteStoredProcedureEx parameteres

Name Description

QueryID The ID of the query as returned from InitializeQuery(). The
SQL text for the query should specify a CALL statement.

Result A pointer to a VARIANT in which the result will be stored. The
result is an array (variant type VT_ARRAY | VT_VARIANT)
containing one value for each column in the result.Each value
is specified in either its native data type or the closest variant
data type. The supported return types are: string (variant type
VT_BSTR), float (variant type VT_R4), double (variant type
VT_R8), short (variant type VT_I2), long (variant type VT_I4),
and binary (variant type VT_UI1 | VT_ARRAY).You must
properly initialize the VARIANT before calling this function.
Visual Basic does this automatically. Visual C++
programmers must call VariantInit().
Appendix B. QMF for Windows APIs 307

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.18.1 Export()

short Export(long QueryID, long FirstRow, long FirstCol, long LastRow, long
LastCol, short Format, short StringDelimiter, short ColumnDelimiter, BOOL
IncludeColHeadings, BSTR FileName, [VARIANT DateTimeFormat])

Description
This function exports the specified range of rows and columns using the
specified options to the specified file. You call CompleteQuery() prior to
calling this function if you have not retrieved row data for all of the rows you
want to export. An error message is returned if you attempt to export rows
that have not been retrieved from the database.

vaCommitOK An optional boolean value specifying whether the stored
procedure can commit the unit of work or if this operation
should be restricted. The default value is True.

vaMaxResultSets An optional numeric value specifying the maximum number of
result sets that the stored procedure should be allowed to
return. Specify zero if you do not want the stored procedure to
return any result sets or if the database server does not
support returning result sets from stored procedures over
DRDA.

vaColumnNames An optional boolean value specifying whether or not the
database should return column names for the columns in
each returned result set.

vaColumnLabels An optional boolean value specifying whether or not the
database should return column labels for the columns in each
returned result set.

vaColumnComments An optional boolean value specifying whether or not the
database should return column comments for the columns in
each returned result set.

Name Description
308 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Parameters
Table 35 shows the parameters for this API.

Table 35. Export parameters

Name Description

QueryID The ID of the query as returned from InitializeQuery().

FirstRow The first row you want to include in the export.

FirstCol The first column you want to include in the export.

LastRow The last row you want to include in the export, or -1 if all rows
are included.

LastCol The last column that you want to include in the export, or -1
if all columns are included.

Format Specifies the output format.

StringDelimiter Specifies the string delimiter. This parameter is ignored if
Format is RSEF_HTML

ColumnDelimiter Specifies the column delimiter. This parameter is ignored if
Format is RSEF_HTML

IncludeColHeadings Use nonzero to include the column headings in the first row
and zero to not include them.

FileName A string containing the name of the file to which you want to
write the export.

DateTimeFormat Optionally, the format to use for date and time values. Valid
values are 0 (ISO format), 1 (USA format), 2 (EUR format), 3
(JIS format), or 4 (Windows Control Panel format). The
default value is 4.

The name of this function conflicts with the Microsoft Access 2.0
keyword Execute. If you are using MS Access 2.0, place square brackets
[] around the function name.

Note
Appendix B. QMF for Windows APIs 309

Table 36 shows the valid values for parameter Format.

Table 36. Valid values for the parameter format

Table 37 shows the valid values for parameter StringDelimiter.

Table 37. Valid values for the parameter StringDelimiter

Table 38 shows the valid values for parameter ColumnDelimiter.

Table 38. Valid values for the parameter ColumnDelimiter

Value Meaning

0 (RSEF_TEXT) The output file will be written in plain text format.

1 (RSEF_HTML) The output file will be written in HTML (Hyper Text Markup
Language) format, and the data will be organized in an
HTML table.

2 (RSEF_CSV) The output file will be written in CSV (comma separated
values) format.

3 (RSEF_PCIXF) The output file will be written in PC/IXF format.

4 (RSEF_S370IXF) The output file will be written in System/370 IXF format.

Value Meaning

0 (RSSD_NONE) No string delimiter is used.

1 (RSSD_SINGLEQUOTE) Strings are delimited by a single quote character (').

2 (RSSD_DOUBLEQUOTE) Strings are delimited by a double quote character (").

Value Meaning

0 (RSCD_SPACE) Columns are delimited by a space character ().

1 (RSCD_TAB) Columns are delimited by a tab character (\t).

2 (RSCD_COMMA) Columns are delimited by a comma character (,).

The value of a first row in a result set is 0, and the value of the last row is
one less than the total number of rows. The value of the first column in a
result set is 0, and the value of the last column is one less than the total
number of columns.

Note
310 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information. If the result set is empty or no rows have been retrieved from the
database, nonzero is returned unless FirstRow = 0, and LastRow = -1. In this
case, zero is returned and an empty file is written.

Related topics
CopyToClipboard()

B.19 ExportForm()

short ExportForm(BSTR OwnerAndName, BSTR FileName)

Description
This function exports the specified QMF form to the specified file.

Parameters
Table 39 shows the parameters for this API.

Table 39. ExportForm parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Related topics
PrintReport()

B.20 ExportReport()

short ExportReport(long QueryID, short SourceType, BSTR Source, BSTR
OutputFileName, short PageLength, short PageWidth, BOOL

Name Description

OwnerAndName A string containing the owner and name, separated by a
period, of the form that you want to export. For example,
John.Query2

FileName A string containing the name of the file to which you want to
write the exported form.
Appendix B. QMF for Windows APIs 311

IncludeDateTime, BOOL IncludePageNumbers, [VARIANT Format],
[VARIANT UseFormPageSetup])

Description
This function creates a report for the specified query and writes it to a file.
You specify the formatting and layout for the report in a QMF form. The output
file is an ASCII text file with each line separated by a pair of carriage return
and line feed characters, and each page separated by a form feed character.
It is best to view the output file using a fixed-pitch font.

Parameters
Table 40 shows the parameters for this API.

Table 40. ExportReport parameters

Name Description

QueryID The ID of the query as returned from InitializeQuery().

SourceType specifies the source of the form.

Source The name (either a filename or Owner.Name) of the form you
want to use.

OutputFileName The name of the file to which you want to write the report.

PageLength The number of lines on each page of the report. A
PageLength of -1 specifies continuous output (no page
breaks unless the report is wider than PageWidth).

PageWidth The number of characters on each line of the report. A
PageWidth of -1 specifies continuous output (lines are made
just long enough to contain the full width of the report.

IncludeDateTime Nonzero specifies that the date and time is included at the
bottom of each page. Zero specifies that the date and time is
not included.

IncludePageNumbers Nonzero specifies that page numbers are included at the
bottom of each page. Zero specifies that page numbers are
not included.

Format Optionally, specifies the format of the exported report. If zero,
the format is plain text, specifying that the output should be
exactly that produced by the form (text or HTML, depending
on the type of form). If nonzero, the format is HTML,
specifying that the output should be HTML. With non-HTML
forms, the output is converted to HTML by adding HTML tags
at the beginning and end of the output. The default value is
zero.
312 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Table 41 shows the valid values for parameter SourceType.

Table 41. Valid values for the parameter SourceType

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Related topics
ExportForm()

B.21 FastSaveData()

short FastSaveData(long QueryID, BOOL Replace, BSTR TableName, BSTR
TableSpaceName, [VARIANT Comment])

Description
This function runs the query specified by QueryID and saves the results of
that query in the specified table in the specified table space. The query is run
and the data is saved directly into the specified table at the database server.
You can use this function to save rows that have not been retrieved from the
database. If the specified table already exists, the new data must have the
same number and types of columns as the existing table.

UseFormPageSetup Optionally, if nonzero specifies that the PageLength,
PageWidth, IncludeDateTime, and IncludePageNumbers
parameters should be ignored, and values for them should
instead be taken from the values saved with the specified
form. The default value is zero.

Value Meaning

0 (RSF_DEFAULT) Use the default form. FormName should be an empty string.

1 (RSF_DATABASE) Use a form from the database. Specify the form owner and
name (Owner.Name) in the FormName parameter. To use a
form located on a different database server, first use
ExportForm() to export the form to a file and then specify a
SourceType of RSF_FILE.

2 (RSF_FILE) Use the form contained in a file. Specify the filename in the
FormName parameter.

Name Description
Appendix B. QMF for Windows APIs 313

This function operates in a separate unit of work than other API functions,
and its results are automatically committed. Calling Commit() or Rollback()
will have no effect on changes made by this function.

Parameters
Table 42 shows the parameters for this API.

Table 42. FastSaveData parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.22 FetchNextRow()

short FetchNextRow(long QueryID, VARIANT* Row)

Name Description

QueryID The ID of the query as returned from InitializeQuery()

Replace Use nonzero if you want the specified data to replace any
existing data in the table. Use zero if you want the specified
data to be appended to any existing data in the table.

TableName The name of the table in which you want to store the data. If
the table does not exist, QMF for Windows will create it.

TableSpaceName The name of the table space in which the table exists or will
be created. If TableSpaceName is NULL or an empty string,
QMF for Windows will use the default table space. If you
have configured QMF for Windows to always use the default
table space, this parameter is ignored. See
RSR_SDDIFFERENTTS in the description for
GetResourceLimit().

Comment Optionally, a string that specifies a comment for the table in
which the data is saved.

Not all database servers are able to handle this type of process, so
check with your system administrator if you receive errors when saving
data with this method.

Note
314 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Description
This function fetches the next row of data from the database.

Parameters
Table 43 shows the parameters for this API.

Table 43. FetchNextRow parameters

Return value
Zero if successful, nonzero if unsuccessful. When the end of the result set is
reached, the return value is -1. If the return value is nonzero, you can call
GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Related topics
FetchNextRows()

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Row A pointer to a VARIANT in which the result will be stored. The result is
an array (variant type VT_ARRAY | VT_VARIANT) containing one value
for each column in the row. Call GetColumnCount() to determine the
number of values in the array. Each value is specified in either its native
data type or the closest variant data type. The supported return types
are: string (variant type VT_BSTR), float (variant type VT_R4), double
(variant type VT_R8), short (variant type VT_I2), long (variant type
VT_I4), and binary (variant type VT_UI1 | VT_ARRAY).When the end of
the result set has been reached (there are no more rows to fetch) or if
the result set is empty, the result is empty (variant type VT_EMPTY)
instead of an array.You must properly initialize the VARIANT before
calling this function. Visual Basic does this automatically. Visual C++
programmers must call VariantInit().

Due to a bug in Microsoft Excel 7.0 and Microsoft Access 7.0 (and possibly
other 32-bit Microsoft products that use Visual Basic for Applications),
string data in Variant variables received from QMF for Windows may not be
translated from Unicode (used by OLE) to ANSI (used by VBA). When this
occurs, only the first character of the string is displayed. To remedy this
problem, set the variable equal to an empty string before you call the QMF
for Windows function that uses the variable.

Note
Appendix B. QMF for Windows APIs 315

B.23 FetchNextRowEx()

short FetchNextRowEx(long QueryID)

Description
This function fetches the next row of data from the database. You can use this
function in environments that do not support VARIANT arrays, such as
Microsoft Access 2.0. Use this function in conjunction with GetColumnValue()
to retrieve the data in each column for the current row.

Parameters
Table 44 shows the parameters for this API.

Table 44. FetchNextRowEx parameters

Return value
Zero if successful, nonzero if unsuccessful. When the end of the result set is
reached, the return value is -1. If the return value is nonzero, you can call
GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Related topics
FetchNextRowsEx()

B.24 FetchNextRows()

short FetchNextRows(long QueryID, VARIANT* Rows, long* NumRows)

Description
This function fetches the next NumRows rows of data from the database.

Parameters
Table 45 shows the parameters for this API.

Table 45. FetchNextRows parameters

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Name Description

QueryID The ID of the query as returned from InitializeQuery().
316 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero if unsuccessful. When the end of the result set is
reached, the return value is -1. If the return value is nonzero, you can call
GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Related topics
FetchNextRow()

Rows A pointer to a VARIANT in which the result will be stored. The result is
a two dimensional array (variant type VT_ARRAY | VT_VARIANT)
containing one value for each column in each row. Call
GetColumnCount() to determine the number of columns in the array.
The dimensions of the array are [NumRows][ColumnCount], even if
the number of unfetched rows in the result set is less than NumRows
(in this case, the array will contain extra, unused entries).
Each value is specified in either its native data type or the closest
variant data type. The supported return types are: string (variant type
VT_BSTR), float (variant type VT_R4), double (variant type VT_R8),
short (variant type VT_I2), long (variant type VT_I4), and binary
(variant type VT_UI1 | VT_ARRAY).
When the end of the result set has been reached (there are no more
rows to fetch) or if the result set is empty, the result is empty (variant
type VT_EMPTY) instead of an array.
You must properly initialize the VARIANT before calling this function.
Visual Basic does this automatically. Visual C++ programmers must
call VariantInit().

NumRows A pointer to a long containing the number of rows to fetch. If the
number of unfetched rows in the result set is less than NumRows,
NumRows is reset to the actual number of rows contained in the result.

Name Description

Due to a bug in Microsoft Excel 7.0 and Microsoft Access 7.0 (and
possibly other 32-bit Microsoft products that use Visual Basic for
Applications), string data in Variant variables received from QMF for
Windows may not be translated from Unicode (used by OLE) to ANSI
(used by VBA). When this occurs, only the first character of the string is
displayed. To remedy this problem, set the variable equal to an empty
string before you call the QMF for Windows function that uses the
variable.

Note
Appendix B. QMF for Windows APIs 317

B.25 FetchNextRowsEx()

short FetchNextRowsEx(long QueryID, long* NumRows)

Description
This function fetches the next NumRows rows of data from the database. You
can use this function in environments that do not support VARIANT arrays,
such as Microsoft Access 2.0. Use this function in conjunction with
GetColumnValueEx() to retrieve the data in each column for a given row.

Parameters
Table 46 shows the parameters for this API.

Table 46. FetchNextRowsEx parameters

Return value
Zero if successful, nonzero if unsuccessful. When the end of the result set is
reached, the return value is -1. If the return value is nonzero, you can call
GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Related topics
FetchNextRowEx()

B.26 FlushQMFCache()

void FlushQMFCache()

Description
This function tells QMF for Windows to flush its cache of QMF information,
discarding its contents. The next time QMF for Windows needs QMF
information it obtains it from the database. Normally, QMF Windows caches
QMF information obtained from the database to reduce database traffic and
improve performance. You call this function prior to calling
GetQMFObjectInfo(), GetQMFQueryText(), or GetQMFObjectList() to ensure
that the information returned by these functions is up to date.

Name Description

QueryID The ID of the query as returned from InitializeQuery().

NumRows A pointer to a long containing the number of rows to fetch. If the
number of unfetched rows in the result set is less than NumRows,
NumRows is reset to the actual number of rows contained in the result.
318 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
None.

B.27 GetColumnCount()

long GetColumnCount(long QueryID)

Description
This function returns the number of columns in the result set.

Parameters
Table 47 shows the parameters for this API.

Table 47. GetColumnCount parameters

Return value
The number of columns in each row if successful. If unsuccessful, 0 or -1. If
the return value is 0 or -1, you can call GetLastErrorString(),
GetLastErrorType(), GetLastSQLCode(), GetLastSQLError(), or
GetLastSQLState() to get additional error information.

B.28 GetColumnDataValue()

short GetColumnDataValue(long QueryID, long Index)

Description
This function returns the data value for the column specified in Index for the
current row of data. After calling this function, the Value property can be
interrogated for the returned value. You use this function with
FetchNextRowEx() to access the data in a single row of data.

Parameters
Table 48 shows the parameters for this API.

Table 48. GetColumnDataValue parameters

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Index The zero based index of the row of data to be retrieved.
Appendix B. QMF for Windows APIs 319

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.29 GetColumnHeader()

BSTR GetColumnHeader(long QueryID, long Index, short* Result)

Description
This function returns the column header (column name) associated with the
index Index.

Parameters
Table 49 shows the parameters for this API.

Table 49. GetColumnHeader parameters

Return value
The string returned represents the column name as specified in the Index
parameter.

B.30 GetColumnHeaderEx()

short GetColumnHeaderEx(long QueryID, long Index)

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Index The zero based index of the column header to be retrieved.

Result Zero if successful, nonzero if unsuccessful. If Result is nonzero, you can
call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error
information.

Column headings are not available for static SQL statements. For query
IDs returned from InitializeStaticQuery(), GetColumnHeader() returns a
string of the form Coln where n is the column number.

Note
320 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Description
This function retrieves the column header (column name) associated with the
index Index. After calling this function, the Value property can be interrogated
for the returned value.

Parameters
Table 50 shows the parameters for this API.

Table 50. GetColumnHeaderEx parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is zero, query
the Value property for the string representing the column name. If the return
value is nonzero, you can call GetLastErrorString(), GetLastErrorType(),
GetLastSQLCode(), GetLastSQLError(), or GetLastSQLState() to get
additional error information.

B.31 GetColumnHeadings()

short GetColumnHeadings(long QueryID, VARIANT* Headings)

Description
This function returns the column headings (also referred to as column
names).

Parameters
Table 51 shows the parameters for this API.

Table 51. GetColumnHeadings parameters

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Index The zero based index of the column header to be retrieved.

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Column headings are not available for static SQL statements. For query
IDs returned from InitializeStaticQuery(), GetColumnHeaderEx() will
return a string of the form Coln where n is the column number.

Note
Appendix B. QMF for Windows APIs 321

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.32 GetColumnValue()

short GetColumnValue(long QueryID, long Index, VARIANT* Value)

Description
This function returns the data value for the column specified in Index for the
current row of data. You use this function with FetchNextRowEx() to access
the data in a single row of data.

Headings A pointer to a VARIANT in which the result is stored. The result is an
array of strings (variant type VT_ARRAY | VT_BSTR) containing one
string for each column heading.You must properly initialize the
VARIANT before calling this function. Visual Basic does this
automatically. Visual C++ programmers must call VariantInit().

Name Description

Due to a bug in Microsoft Excel 7.0 and Microsoft Access 7.0 (and possibly
other 32-bit Microsoft products that use Visual Basic for Applications),
string data in Variant variables received from QMF for Windows may not be
translated from Unicode (used by OLE) to ANSI (used by VBA). When this
occurs, only the first character of the string is displayed. To remedy this
problem, set the variable equal to an empty string before you call the QMF
for Windows function that uses the variable.

Note

Column headings are not available for static SQL statements. For query
IDs returned from InitializeStaticQuery(), GetColumnHeadings() will
return the strings Col1, Col2, etc.

Note
322 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Parameters
Table 52 shows the parameters for this API.

Table 52. GetColumnValue parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.33 GetColumnValueEx()

short GetColumnValueEx(long QueryID, long RowIndex, long ColIndex,
VARIANT* Value)

Description
This function returns the data value for the column specified in ColIndex for
the row of data specified in RowIndex. You use this function with
FetchNextRowsEx() to access the data in a single row of data

Parameters
Table 53 shows the parameters for this API.

Table 53. GetColumnValueEx parameters

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Index The zero based index of the row of data to be retrieved.

Value A pointer to a VARIANT in which you want to store the results. The result
is a data value based on the variant type.You must properly initialize the
VARIANT before calling this function. Visual Basic does this
automatically. Visual C++ programmers must call VariantInit().

Name Description

QueryID The ID of the query as returned from InitializeQuery().

RowInde
x

The zero based index of the row to be retrieved.

ColIndex The zero based index of the column to be retrieved.
Appendix B. QMF for Windows APIs 323

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.34 GetDefaultServerName()

BSTR GetDefaultServerName()

Description
This function returns a string containing the default server name.

Return value
A string that specifies the default server name.

B.35 GetGlobalVariable()

BSTR GetGlobalVariable(BSTR Name)

Description
This function retrieves the value of the specified global variable.

Parameters
Table 54 shows the parameters for this API.

Table 54. GetGlobalVariable parameters

Return value
A string containing the global variable value, or NULL if the variable has no
value or an error occurs.

Value A pointer to a VARIANT in which you want to store the result. You can
query the resulting variant to find out the data type for further
processing.You must properly initialize the VARIANT before calling this
function. Visual Basic does this automatically. Visual C++ programmers
must call VariantInit().

Name Description

Name A string that contains the name of the variable you want to set.

Name Description
324 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

B.36 GetHostVariableNames()

short GetHostVariableNames(long QueryID, VARIANT* Names)

Description
This function returns an array of the names of all host variables referenced in
the specified query. The query must be a static query referencing host
variables (either stored with the QMF query or created by AddHostVariable()).

Parameters
Table 55 shows the parameters for this API.

Table 55. GetHostVariableNames parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() to get additional error information.

B.37 GetHostVariableTypeNames()

short GetHostVariableTypeNames(long QueryID, VARIANT* TypeNames)

Description
This function returns an array of the strings describing the data types of all
host variables referenced in the specified query. The query must be a static
query referencing host variables (either stored with the QMF query or created
by AddHostVariable()).

Parameters
Table 56 shows the parameters for this API.

Table 56. GetHostVariableTypeNames parameters

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Names A pointer to a VARIANT in which you want to store the result array.

Name Description

QueryID The ID of the query as returned from InitializeQuery().

TypeNames A pointer to a VARIANT in which you want to store the result
array.
Appendix B. QMF for Windows APIs 325

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() to get additional error information.

B.38 GetHostVariableTypes()

short GetHostVariableTypes(long QueryID, VARIANT* Types)

Description
This function returns an array of the data types of all host variables
referenced in the specified query. The query must be a static query
referencing host variables (either stored with the QMF query or created by
AddHostVariable()). See AddHostVariable() for a list of the data types that
can be returned.

Parameters
Table 57 shows the parameters for this API.

Table 57. GetHostVariableTypes parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() to get additional error information.

B.39 GetLastErrorString()

BSTR GetLastErrorString()

Description
This function returns a string containing information about the most recent
error. If you call this function after a function that executed successfully (with
no errors), then this function returns information about the last error that
occurred during a prior function call. To avoid confusion, always call this
function immediately after calling a function that returned an error.

Return value
A string containing error information. If no errors occurred since you created
the QMF for Windows API object, NULL is returned.

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Types A pointer to a VARIANT in which you want to store the result array.
326 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Related topics
GetLastErrorType(), GetLastSQLCode(), GetLastSQLError(),
GetLastSQLState()

B.40 GetLastErrorType()

short GetLastErrorType()

Description
This function returns the type of the most recent error. If you call this function
after a function that executed successfully (with no errors), then this function
returns information about the last error that occurred during a prior function
call. To avoid confusion, always call this function immediately after calling a
function that returned an error.

Return value
The number returned indicates the type of error. Table 58 shows the error
types number and their meaning.

Table 58. GetLastErrorType - error types

Value Meaning

0 (RS_ERROR_NONE) No errors have occurred since the QMF for
Windows API object was created.

1 (RS_ERROR_SQL) A SQL error occurred. If the error occurred
during a call to a function that takes QueryID as
an argument, call Close() to close that query.
No rollback is performed. You can continue to
use the QMF for Windows API object, although
you may encounter additional errors.

2 (RS_ERROR_USER_CANCEL) A user cancelled the operation, usually by
clicking Cancel on the busy window. This
causes QMF for Windows to perform an
implicit rollback (invalidating all outstanding
query IDs) and destroy the connection to the
database. You must call InitializeServer() or
ReinitializeServer() if you wish to continue.
Appendix B. QMF for Windows APIs 327

Related topics
GetLastErrorString(), GetLastSQLCode(), GetLastSQLError(),
GetLastSQLState()

B.41 GetLastSQLCode()

long GetLastSQLCode()

Description
This function returns the SQL code for the most recent error. If you call this
function after a function that executed successfully (with no errors), then this
function returns information about the last error that occurred during a prior
function call. To avoid confusion, always call this function immediately after
calling a function that returned an error.

Return value
The SQL code for the most recent error. If no errors occurred since you
created the QMF for Windows API object, or the most recent error was not an
SQL error, zero is returned.

3 (RS_ERROR_FATAL_GOV) A fatal governor error occurred. One possibility
is that the QMF for Windows API timed out
because the maximum allowable idle time was
exceeded. This causes QMF for Windows to
perform an implicit rollback (invalidating all
outstanding query IDs) and destroy the
connection to the database. You must call
InitializeServer() or ReinitializeServer() if you
wish to continue.

4 (RS_ERROR_NONFATAL_GOV) A non-fatal governor error occurred. Either the
maximum allowable number of rows to fetch
was exceeded, or the SQL verb is not allowed.
If the error occurred during a call to a function
that takes QueryID as an argument, call
Close() to close that query. No rollback is
performed and the connection to the database
is unaffected, so you may continue to use the
QMF for Windows API object.

5 (RS_ERROR_OTHER) A general error occurred. No rollback is
performed. You can continue to use the QMF
for Windows API object, although you may
encounter additional errors.

Value Meaning
328 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Related topics
GetLastErrorString(), GetLastErrorType(), GetLastSQLError(),
GetLastSQLState()

B.42 GetLastSQLError()

VARIANT GetLastSQLError()

Description
This function returns detailed SQL error information for the most recent error.
If you call this function after a function that executed successfully (with no
errors), then this function returns information about the last error that
occurred during a prior function call. To avoid confusion, always call this
function immediately after calling a function that returned an error.

Return value
An array (variant type VT_ARRAY | VT_VARIANT) containing error
information. If no errors occurred since you created the QMF for Windows
API object, or the most recent error was not an SQL error, empty (variant type
VT_EMPTY) is returned. The array format is shown in Table 59.

Table 59. Format of the array returned by the GetLastSQLError API

Element Type Contents

0 long (VT_I4) Code

1 string (VT_BSTR) State

2 string (VT_BSTR) ErrProc

3 string (VT_BSTR) RDBName

4 long (VT_I4) ErrD1

5 long (VT_I4) ErrD2

6 long (VT_I4) ErrD3

7 long (VT_I4) ErrD4

8 long (VT_I4) ErrD5

9 long (VT_I4) ErrD6

10 string (VT_BSTR) Warn0

11 string (VT_BSTR) Warn1

12 string (VT_BSTR) Warn2
Appendix B. QMF for Windows APIs 329

Related topics
GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLState()

B.43 GetLastSQLState()

BSTR GetLastSQLState()

Description
This function returns the SQL state for the most recent error. If you call this
function after a function that executed successfully (with no errors), then this
function returns information about the last error that occurred during a prior
function call. To avoid confusion, always call this function immediately after
calling a function that returned an error.

Return value
A string containing the SQL code for the most recent error. If no errors
occurred since you created the QMF for Windows API object, or the most
recent error was not an SQL error, NULL is returned.

Related topics
GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError()

13 string (VT_BSTR) Warn3

14 string (VT_BSTR) Warn4

15 string (VT_BSTR) Warn5

16 string (VT_BSTR) Warn6

17 string (VT_BSTR) Warn7

18 string (VT_BSTR) Warn8

19 string (VT_BSTR) Warn9

20 string (VT_BSTR) WarnA

21 string (VT_BSTR) MessageTokens

Element Type Contents
330 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

B.44 GetOption()

short GetOption(short Option, VARIANT* Value)

Description
Gets the specified option value in QMF for Windows.

Parameters
Table 60 shows the parameters for this API.

Table 60. GetOption parameters

Table 61 shows the valid values for parameter Option.

Table 61. Valid values for the parameter option.

Name Description

Option Specifies which option to retrieve

Value A pointer to a VARIANT in which the result is stored. You must properly
initialize the VARIANT before calling this function. Visual Basic does this
automatically. Visual C++ programmers must call VariantInit().

Value Meaning

0 (RSO_SERVER_DEFINITION_FILE) Server definition file name.

1 (RSO_CPIC_DLL) CPI-C Provider DLL file name.

2 (RSO_CPIC_TIMEOUT_WARNING) CPI-C warning timeout (in seconds).
This limit is not used for the QMF for
Windows API.

3 (RSO_CPIC_TIMEOUT_CANCEL) CPI-C cancel timeout (in seconds).

4 (RSO_TCP_TIMEOUT_WARNING) TCP warning timeout (in seconds). This
limit is not used for the QMF for
Windows API.

5 (RSO_TCP_TIMEOUT_CANCEL) TCP cancel timeout (in seconds).

6 (RSO_DISPLAY_NULLS_STRING) The string to use to display null values.

7 (RSO_ENTER_NULLS_STRING) The string to use to enter null values.

8 (RSO_ENTER_DEFAULTS_STRING) The string to use to enter default values.

9 (RSO_TRACE_FILE_1) Trace file 1 name.

10 (RSO_TRACE_FILE_2) Trace file 2 name.

11 (RSO_TCP_TRACE_LEVEL) TCP trace level.
Appendix B. QMF for Windows APIs 331

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

Related topics
SetOption()

B.45 GetOptionEx()

short GetOptionEx(short Option)

Description
Gets the specified option value in QMF for Windows. When the option value
is returned, you must query the Option property for the data.

Parameters
Table 62 shows the parameters for this API.

Table 62. GetOptionEx parameters

12 (RSO_CPIC_TRACE_LEVEL) CPI-C trace level.

13 (RSO_DDM_TRACE_LEVEL) DDM trace level.

Name Description

Option The option values are the same as those for the GetOption() call.

Value Meaning

Due to a bug in Microsoft Excel 7.0 and Microsoft Access 7.0 (and possibly
other 32-bit Microsoft products that use Visual Basic for Applications),
string data in Variant variables received from QMF for Windows may not be
translated from Unicode (used by OLE) to ANSI (used by VBA). When this
occurs, only the first character of the string is displayed. To remedy this
problem, set the variable equal to an empty string before you call the QMF
for Windows function that uses the variable.

Note
332 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

Related topics
GetOption(), SetOption()

B.46 GetProcText()

BSTR GetProcText(long ProcID)

Description
This function returns the text that is executed for the specified procedure,
after variable substitution. You should use SetProcVariable() to set the value
of any variables used in the procedure before calling this function.

Parameters
Table 63 shows the parameters for this API.

Table 63. GetProcText parameters

Return value
If successful, a string containing the procedure text is returned. If
unsuccessful, NULL is returned. If the return value is NULL, you can call
GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.47 GetProcVariables()

short GetProcVariables(long ProcID, VARIANT* Variables)

Description
This function returns an array of the names of the all of the variables in the
procedure's text. You must assign values to these variables by calling
SetProcVariable() prior to running the procedure using RunProc().

Name Description

ProcID The ID of the procedure as returned from InitializeProc().
Appendix B. QMF for Windows APIs 333

Parameters
Table 64 shows the parameters for this API.

Table 64. GetProcVariables parameters

Return value
Zero if successful, nonzero if unsuccessful. If there are no variables in the
procedure, the return value is RS_ERROR_NO_DATA (-1). If the return value
is nonzero, you can call GetLastErrorString() or GetLastErrorType() to get
additional error information.

B.48 GetQMFObjectInfo()

short GetQMFObjectInfo(BSTR OwnerAndName, short Type, short Time,
VARIANT* Value)

Description
This function returns information about a QMF object (either a form or a
query). The information returned is specified by the Type and Time
parameters.

Name Description

ProcID The ID of the procedure as returned from InitializeProc().

Variables A pointer to a VARIANT in which the result is stored. The result is an
array of strings (variant type VT_ARRAY | VT_BSTR), with each string
containing the name of one variable. If there are no variables in the
procedure, the result is empty (variant type VT_EMPTY). You must
properly initialize the VARIANT before calling this function. Visual Basic
does this automatically. Visual C++ programmers must call VariantInit().

Due to a bug in Microsoft Excel 7.0 and Microsoft Access 7.0 (and possibly
other 32-bit Microsoft products that use Visual Basic for Applications),
string data in Variant variables received from QMF for Windows may not be
translated from Unicode (used by OLE) to ANSI (used by VBA). When this
occurs, only the first character of the string is displayed. To remedy this
problem, set the variable equal to an empty string before you call the QMF
for Windows function that uses the variable.

Note
334 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Parameters
Table 65 shows the parameters for this API.

Table 65. GetQMFObjectInfo parameters

Table 66 shows the valid values for parameter Type.

Table 66. Valid values for the parameter type

Name Description

OwnerAndName A string containing the owner and name, separated by a period, of
the object for which you want to retrieve information. For example,
John.Query2

Type Specifies the type of information to get

Time Specifies first used, last used, or last modified

Value A pointer to a VARIANT in which the result is stored. For
RSI_TIMESUSED, RSI_TIMESRUN, RSI_TIMESCANCELLED,
and RSI_LEVEL, the result is a short (variant type VT_I2). For
RSI_RESTRICTED the result is a boolean (variant type
VT_BOOL). For all others, the result is a string (variant type
VT_BSTR). You must properly initialize the VARIANT before calling
this function. Visual Basic does this automatically. Visual C++
programmers must call VariantInit().

Value Meaning

0 (RSI_COMMENT) Comment

1 (RSI_LEVEL) Level

2 (RSI_TYPE) Type

3 (RSI_SUBTYPE) Sub type

4 (RSI_RESTRICTED) Restricted

5 (RSI_MODEL) Model

Due to a bug in Microsoft Excel 7.0 and Microsoft Access 7.0 (and possibly
other 32-bit Microsoft products that use Visual Basic for Applications),
string data in Variant variables received from QMF for Windows may not be
translated from Unicode (used by OLE) to ANSI (used by VBA). When this
occurs, only the first character of the string is displayed. To remedy this
problem, set the variable equal to an empty string before you call the QMF
for Windows function that uses the variable.

Note
Appendix B. QMF for Windows APIs 335

Table 67 shows the valid values for parameter Time.

Table 67. Valid values for the parameter Time

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.49 GetQMFObjectInfoEx()

short GetQMFObjectInfoEx(BSTR OwnerAndName, short Type, short Time)

Description
This function returns information about a QMF object. The information
returned is specified by the Type and Time parameters. After calling this
function, the QMFObjectInfo property can be interrogated for the returned
value.

6 (RSI_TIMESUSED) Number of times used.

7 (RSI_TIMESRUN) Number of times run.

8 (RSI_TIMESCANCELED) Number of times canceled.

9 (RSI_DATE) Date first used, last used, or last modified.

10 (RSI_TIME) Time first used, last used, or last modified.

11 (RSI_USERID) User ID first used, last used, or last modified.

12 (RSI_SQLID) SQL ID first used, last used, or last modified.

13 (RSI_ENVIRONMENT) Environment first used, last used, or last modified.

14 (RSI_MODE) Mode first used, last used, or last modified.

15 (RSI_COMMAND) Command first used, last used, or last modified.

Value Meaning

0 (RST_FIRSTUSED) First used.

1 (RST_LASTUSED) Last used.

2 (RST_LASTMODIFIED) Last modified.

Value Meaning
336 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Parameters
Table 68 shows the parameters for this API.

Table 68. GetQMFObjectInfoEx parameters

Table 69 shows the valid values for parameter Type.

Table 69. Valid values for the parameter Type

Name Description

OwnerAndName A string containing the owner and name, separated by a period,
of the object for which you want to retrieve information. For
example, John.Query2

Type Specifies the type of information to get

Time Specifies first used, last used, or last modified

Value Meaning

0 (RSI_COMMENT) Comment.

1 (RSI_LEVEL) Level.

2 (RSI_TYPE) Type.

3 (RSI_SUBTYPE) Sub type.

4 (RSI_RESTRICTED) Restricted.

5 (RSI_MODEL) Model

6 (RSI_TIMESUSED) Number of times used.

7 (RSI_TIMESRUN) Number of times run.

8 (RSI_TIMESCANCELED) Number of times canceled.

9 (RSI_DATE) Date first used, last used, or last modified.

10 (RSI_TIME) Time first used, last used, or last modified.

11 (RSI_USERID) User ID first used, last used, or last modified.

12 (RSI_SQLID) SQL ID first used, last used, or last modified.

13 (RSI_ENVIRONMENT) Environment first used, last used, or last modified.

14 (RSI_MODE) Mode first used, last used, or last modified.

15 (RSI_COMMAND) Command first used, last used, or last modified.
Appendix B. QMF for Windows APIs 337

Table 70 shows the valid values for parameter Time.

Table 70. Valid values for the parameter Time

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.50 GetQMFObjectList()

short GetQMFObjectList(BSTR Owner, BSTR Name, short Type, VARIANT*
List)

Description
This function returns an array of the names of all QMF objects matching the
patterns specified in the Owner and Name parameters.

Parameters
Table 71 shows the parameters for this API.

Table 71. GetQMFObjectList parameters

Value Meaning

0 (RST_FIRSTUSED) First used.

1 (RST_LASTUSED) Last used.

2 (RST_LASTMODIFIED) Last modified.

Name Description

Owner A string containing the owner of the objects you want to include in the
returned list. To include all objects regardless of the owner this parameter
was to be left blank or contain the "%" caracter.

Name A string containing the name of the objects you want to include in the
returned list. To include all objects regardless of the name this parameter
was to be left blank or contain the "%" caracter.

Type Specifies the types of QMF objects you want to include in the list. These
values can be added together to specify multiple object types
338 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Table 72 shows the valid values for parameter Type.

Table 72. Valid values for the parameter Type

Return value
Zero if successful, nonzero if unsuccessful. If no matching QMF objects are
found, the return value is zero. If the return value is nonzero, you can call
GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.51 GetQMFObjectListEx()

short GetQMFObjectListEx(BSTR Owner, BSTR Name, short Type, short
Index)

List A pointer to a VARIANT in which the result are stored. The result is an
array of strings (variant type VT_ARRAY | VT_BSTR), each of the format
Owner.Name. If no matching QMF queries are found, the result is empty
(variant type VT_EMPTY). You must properly initialize the VARIANT
before calling this function. Visual Basic does this automatically. Visual
C++ programmers must call VariantInit().

Value Meaning

2048 (RSQ_MASK_QUERIES) Include QMF queries in the list.

1024 (RSQ_MASK_FORMS) Include QMF forms in the list.

512 (RSQ_MASK_PROCS) Include QMF procedures in the list.

256 (RSQ_MASK_TABLES) Include tables in the list.

Name Description

Due to a bug in Microsoft Excel 7.0 and Microsoft Access 7.0 (and possibly
other 32-bit Microsoft products that use Visual Basic for Applications),
string data in Variant variables received from QMF for Windows may not be
translated from Unicode (used by OLE) to ANSI (used by VBA). When this
occurs, only the first character of the string is displayed. To remedy this
problem, set the variable equal to an empty string before you call the QMF
for Windows function that uses the variable.

Note
Appendix B. QMF for Windows APIs 339

Description
This function returns the name of the QMF object matching the patterns
specified in the Owner and Name parameters referenced by the Index
parameter. After calling this function, the Value property can be interrogated
for the returned value.

Parameters
Table 73 shows the parameters for this API.

Table 73. GetQMFObjectListEx parameters

Table 74 shows the valid values for parameter Type.

Table 74. Valid values for the parameter Type

Return value
Zero if successful, nonzero if unsuccessful. If no matching QMF objects are
found, the return value is RS_ERROR_OUTOFRANGE. If the return value is
nonzero, you can call GetLastErrorString(), GetLastErrorType(),
GetLastSQLCode(), GetLastSQLError(), or GetLastSQLState() to get
additional error information.

B.52 GetQMFProcText()

BSTR GetQMFProcText(BSTR OwnerAndName)

Name Description

Owner A string containing the owner of the objects you want to include in the
returned list.

Name A string containing the name of the objects you want to include in the
returned list.

Type Specifies the types of QMF objects you want to include in the list.
These values can be added together to specify multiple object types

Index The index of the list of QMF objects that match the pattern.

Value Meaning

2048 (RSQ_MASK_QUERIES) Include QMF queries in the list.

1024 (RSQ_MASK_FORMS) Include QMF forms in the list.

512 (RSQ_MASK_PROCS) Include QMF procedures in the list.

256 (RSQ_MASK_TABLES) Include tables in the list.
340 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Description
This function retrieves the text stored in the specified procedure.

Parameters
Table 75 shows the parameters for this API.

Table 75. GetQMFProcText parameters

Return value
A string containing the text for the procedure that was retrieved, or NULL if
the procedure could not be retrieved. If the return value is NULL, you can call
GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.53 GetQMFQueryText()

BSTR GetQMFQueryText(BSTR OwnerAndName)

Description
This function retrieves the SQL text stored in the specified query.

Parameters
Table 76 shows the parameters for this API.

Table 76. GetQMFQueryText parameters

Return value
A string containing the text for the query that was retrieved, or NULL if the
query could not be retrieved. If the return value is NULL, you can call
GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.54 GetQueryText()

BSTR GetQueryText(long QueryID)

Name Description

OwnerAndName A string containing the owner and name, separated by a period,
of the procedure you want to retrieve. For example, John.Proc2

Name Description

OwnerAndName A string containing the owner and name, separated by a period,
of the query you want to retrieve. For example, John.Query2
Appendix B. QMF for Windows APIs 341

Description
This function returns the SQL text that is executed for the specified query,
after variable substitution. You should use SetVariable() to set the value of
any variables used in the query before calling this function.

Parameters
Table 77 shows the parameters for this API.

Table 77. GetQueryText parameters

Return value
If successful, a string containing the SQL text is returned. If unsuccessful,
NULL is returned. If the return value is NULL, you can call
GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.55 GetQueryVerb()

BSTR GetQueryVerb(long QueryID)

Description
This function returns a string containing the SQL verb you used in the query.

Parameters
Table 78 shows the parameters for this API.

Table 78. GetQueryVerb parameters

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Name Description

QueryID The ID of the query as returned from InitializeQuery().

The query text is not available for static SQL statements. For query IDs
returned from InitializeStaticQuery(), GetQueryText() returns an empty
string.

Note
342 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
If the query is successful, a string containing the SQL verb is returned. If the
query is unsuccessful, NULL is returned. If the return value is NULL, you can
call GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.56 GetResourceLimit()

short GetResourceLimit(short Resource, long* Value)

Description
This function gets the requested resource limit. You must call
InitializeServer() prior to calling this function, since resource limits are
handled on a per-server basis.

Parameters
Table 79 shows the parameters for this API.

Table 79. GetResourceLimit parameters

Table 80 shows the valid values for parameter Resource.

Table 80. Valid values for the parameter Resource

Name Description

Resource The valid values for this parameter are shown in Table 80

Value A pointer to a long in which the result is stored. The result is the value of
the requested resource limit. For boolean values, the result is non-zero
for true, zero for false. For RSR_SAVE_DATA_TABLE_SPACE_NAME,
RSR_DEF_COLLECTION, and RSR_ACCOUNT_STRING, -1 is
returned and the ResourceLimit property can be interrogated for the
returned string value.

Value Meaning

0 (RSR_IDLE_CONNECTION_TIMEOUT) Idle connection
timeout (in seconds).

The query verb is not available for static SQL statements. For query IDs
returned from InitializeStaticQuery(), GetQueryVerb() returns an empty
string.

Note
Appendix B. QMF for Windows APIs 343

1 (RSR_IDLE_QUERY_TIMEOUT_CANCEL) Idle query timeout (in
seconds).

2 (RSR_IDLE_QUERY_TIMEOUT_WARNING) Idle query timeout (in
seconds). This is the
warning limit; it is not
enforced for the QMF
for Windows API.

3 (RSR_SERVER_RESPONSE_TIMEOUT_CANCEL) Server timeout (in
seconds).

4(RSR_SERVER_RESPONSE_TIMEOUT_WARNING) Server timeout (in
seconds). This is the
warning limit; it is not
enforced for the QMF
for Windows API.

5 (RSR_MAX_ROWS_TO_FETCH_CANCEL) Maximum number of
rows to fetch.

6 (RSR_MAX_ROWS_TO_FETCH_WARNING) Maximum number of
rows to fetch. This is
the warning limit; it is
not enforced for the
QMF for Windows
API.

7 (RSR_MAX_BYTES_TO_FETCH_CANCEL) Maximum number of
bytes to fetch.

8 (RSR_MAX_BYTES_TO_FETCH_WARNING) Maximum number of
bytes to fetch. This is
the warning limit; it is
not enforced for the
QMF for Windows
API.

9 (RSR_MAX_CONNECTIONS) Maximum number of
connections allowed
to the database
server.

10 (RSR_ALLOW_SERVER_ACCESS_UI) Is access allowed to
the database server
from the QMF for
Windows user
interface?

Value Meaning
344 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

11 (RSR_ALLOW_SERVER_ACCESS_API) Is access allowed to
the database server
from the QMF for
Windows API?

12 (RSR_FETCH_ALL_ROWS) Automatically fetch all
rows?

13 (RSR_CONFIRM_UPDATES) Confirm database
server updates? This
option has no effect
on the QMF for
Windows API;
database updates are
not confirmed for the
QMF for Windows
API.

14 (RSR_SUMMARY_TRACKING) Is summary object
tracking enabled?

15 (RSR_DETAILED_TRACKING) Is detailed object
tracking enabled?

16 (RSR_SQL_TRACKING) Is SQL text tracking
enabled?

17 (RSR_ADHOC_TRACKING) Is ad hoc object
tracking enabled?

18 (RSR_ALLOW_ACQUIRE) Is the SQL verb
ACQUIRE allowed?

19 (RSR_ALLOW_ALTER) Is the SQL verb
ALTER allowed?

20 (RSR_ALLOW_COMMENT) Is the SQL verb
COMMENT allowed?

21 (RSR_ALLOW_CREATE) Is the SQL verb
CREATE allowed?

22 (RSR_ALLOW_DELETE) Is the SQL verb
DELETE allowed?

23 (RSR_ALLOW_DROP) Is the SQL verb
DROP allowe?d

24 (RSR_ALLOW_EXPLAIN) Is the SQL verb
EXPLAIN allowed?

Value Meaning
Appendix B. QMF for Windows APIs 345

25 (RSR_ALLOW_GRANT) Is the SQL verb
GRANT allowed?

26 (RSR_ALLOW_INSERT) Is the SQL verb
INSERT allowed?

27 (RSR_ALLOW_LABEL) Is the SQL verb
LABEL allowed?

28 (RSR_ALLOW_LOCK) Is the SQL verb LOCK
allowed?

29 (RSR_ALLOW_REVOKE) Is the SQL verb
REVOKE allowed?

30 (RSR_ALLOW_SELECT) Is the SQL verb
SELECT allowed?

31 (RSR_ALLOW_SET) Is the SQL verb SET
allowed?

32 (RSR_ALLOW_SIGNAL) Is the SQL verb
SIGNAL allowed?

33 (RSR_ALLOW_UPDATE) Is the SQL verb
UPDATE allowed?

34 (RSR_ALLOW_CALL) Is the SQL verb CALL
allowed?

35 (RSR_ALLOW_SAVE_DATA) Is Save Data
command allowed?

36 (RSR_SAVE_DATA_TABLE_SPACE_NAME) The default table
space name for the
Save Data command.

37
(RSR_SAVE_DATA_TABLE_SPACE_NAME_OVERRIDE)

Can the default table
space name for the
Save Data command
be overridden by the
user?

38 (RSR_ALLOW_BIND_PACKAGE) Allow binding of
packages?

39 (RSR_DEF_COLLECTION) The default collection
name for binding
packages.

Value Meaning
346 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

40 (RSR_DEF_COLLECTION_OVERRIDE) Can the default
collection name for
binding packages
be overridden by
the user?

41 (RSR_DEF_ISOLATION_LEVEL) The default isolation
level for binding
packages.

42 (RSR_DEF_ISOLATION_LEVEL_OVERRIDE) Can the default
isolation level for
binding packages be
overridden by the
user?

43 (RSR_ALLOW_TABLE_EDIT) Allow use of the table
editor?

44 (RSR_ALLOW_EXPORT) Is exporting of data
allowed?

45 (RSR_ALLOW_SAVED_QUERIES_ONLY) Is the user allowed to
run only saved
queries?

46 (RSR_ALLOW_DROP_PACKAGE) Allow dropping of
packages?

47 (RSR_QUERY_ISOLATION_LEVEL) The isolation level to
use when running
queries.

48 (RSR_ACCOUNT_STRING) The string specifying
account information to
pass when connecting
to the database
server.

49 (RSR_ACCOUNT_OVERRIDE) Can the string
specifying account
information to pass
when connecting to
the database server
be overridden by the
user?

Value Meaning
Appendix B. QMF for Windows APIs 347

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.57 GetResourceLimitEx()

short GetResourceLimitEx(short Resource)

Description
This function gets the requested resource limit. You must call
InitializeServer() prior to calling this function, since resource limits are
handled on a per-server basis. After a call to this function, query the
ResourceLimit property for the result.

Parameters
Table 81 shows the parameters for this API.

Table 81. GetResourceLimitEx parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.58 GetRowCount()

long GetRowCount(long QueryID)

Description
This function returns the number of rows currently in QMF for Windows's
internal buffer. This may be greater than the number of rows retrieved with

Name Description

Resource The resource values are the same as those for the GetResourceLimit()
call. This values are shown in Table 80

Value A pointer to a long in which the result is stored. The result is the value
of the requested resource limit. For boolean values, the result is
non-zero for true, zero for false. For
RSR_SAVE_DATA_TABLE_SPACE_NAME,
RSR_DEF_COLLECTION, and RSR_ACCOUNT_STRING, -1 is
returned and the ResourceLimit property can be interrogated for the
returned string value.
348 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

FetchNextRow() or FetchNextRows(), since QMF for Windows buffers data
received from the database.

This function returns the number of rows already retrieved from the database.
If you want to retrieve the total number of rows in the result set, you can:

• Call CompleteQuery() and fetch all the rows using FetchNextRow() or
FetchNextRows().

• Specify FetchAllRows = TRUE when you call Open().

Parameters
Table 82 shows the parameters for this API.

Table 82. GetRowCount parameters

Return value
The number of rows if successful (0 if no rows have been retrieved), or -1 if
unsuccessful. If -1, you can call GetLastErrorString() or GetLastErrorType()
to get additional error information.

B.59 GetServerList()

short GetServerList(VARIANT* List)

Description
This function returns an array containing the names of the database servers
defined in QMF for Windows's Server Definition File (SDF). You must define a
database server in the SDF file if you want to access it using the QMF for
Windows API.

Name Description

QueryID The ID of the query as returned from InitializeQuery().
Appendix B. QMF for Windows APIs 349

Parameters
Table 83 shows the parameters for this API.

Table 83. GetServerList parameters

Return value
Zero if successful, nonzero if unsuccessful. If you have not defined any
database servers, the return value is zero. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.60 GetServerListEx()

short GetServerListEx(short Index)

Description
This function retrieves the name of the server referenced by the Index
parameter. After calling this function, the Value property can be interrogated
for the returned value.

Name Description

List A pointer to a VARIANT in which the result is stored. The result is an
array of strings (variant type VT_ARRAY | VT_BSTR), with each string
containing the name of one database server. If you have not defined any
database servers, the result is empty (variant type VT_EMPTY). You
must properly initialize the VARIANT before calling this function. Visual
Basic does this automatically. Visual C++ programmers must call
VariantInit().

Due to a bug in Microsoft Excel 7.0 and Microsoft Access 7.0 (and possibly
other 32-bit Microsoft products that use Visual Basic for Applications),
string data in Variant variables received from QMF for Windows may not be
translated from Unicode (used by OLE) to ANSI (used by VBA). When this
occurs, only the first character of the string is displayed. To remedy this
problem, set the variable equal to an empty string before you call the QMF
for Windows function that uses the variable.

Note
350 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Parameters
Table 84 shows the parameters for this API.

Table 84. GetServerListEx parameters

Return value
Zero if successful, RS_ERROR_OUTOFRANGE when the index is greater
than the number of servers available, nonzero if unsuccessful. If you have not
defined any database servers, the return value is
RS_ERROR_OUTOFRANGE. If the return value is nonzero, you can call
GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.61 GetStoredProcedureResultSets()

short GetStoredProcedureResultSets(long QueryID, VARIANT* ResultSets)

Description
This function retrieves the query IDs for the result sets returned by the stored
procedure executed with the original QueryID. Each query ID returned can be
used with FetchNextRow() or FetchNextRows() to retrieve the result set rows,
and Close() when the end of each result set is reached.

Parameters
Table 85 shows the parameters for this API.

Table 85. GetStoredProceduresResultSets parameters

Name Description

Index An index into the list of servers.

Name Description

QueryID The ID of the original query as returned from InitializeQuery().

ResultSets A pointer to a VARIANT in which the query IDs for the result sets are
stored. The result is an array of long integers (variant type
VT_ARRAY | VT_I4), with each integer being the query ID for the
corresponding result sets. If the stored procedure did not return any
result sets, the result is empty (variant type VT_EMPTY). You must
properly initialize the VARIANT before calling this function. Visual
Basic does this automatically. Visual C++ programmers must call
VariantInit().
Appendix B. QMF for Windows APIs 351

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.62 GetVariables()

short GetVariables(long QueryID, VARIANT* Variables)

Description
This function returns an array of the names of the all of the variables in the
query's SQL text. You must assign values to these variables by calling
SetVariable() prior to running the query using either Open() or Execute().

Parameters
Table 86 shows the parameters for this API.

Table 86. GetVariables parameters

Return value
Zero if successful, nonzero if unsuccessful. If there are no variables in the
SQL statement, the return value is RS_ERROR_NO_DATA (-1). If the return
value is nonzero, you can call GetLastErrorString() or GetLastErrorType() to
get additional error information.

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Variables A pointer to a VARIANT in which the result is stored. The result is an array
of strings (variant type VT_ARRAY | VT_BSTR), with each string
containing the name of one variable. If there are no variables in the SQL
statement, the result is empty (variant type VT_EMPTY). You must
properly initialize the VARIANT before calling this function. Visual Basic
does this automatically. Visual C++ programmers must call VariantInit().

Due to a bug in Microsoft Excel 7.0 and Microsoft Access 7.0 (and possibly
other 32-bit Microsoft products that use Visual Basic for Applications),
string data in Variant variables received from QMF for Windows may not be
translated from Unicode (used by OLE) to ANSI (used by VBA). When this
occurs, only the first character of the string is displayed. To remedy this
problem, set the variable equal to an empty string before you call the QMF
for Windows function that uses the variable.

Note
352 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

B.63 GetVariablesEx()

short GetVariablesEx(long QueryID, short Index)

Description
This function returns the name of the variable in the query's SQL text
referenced by the Index parameter. After calling this function, the Value
property can be interrogated for the returned value. You must assign values
to this variable (and all others in the SQL text) by calling SetVariable() prior to
running the query using either Open() or Execute().

Parameters
Table 87 shows the parameters for this API.

Table 87. GetVariablesEx parameters

Return value
Zero if successful, nonzero if unsuccessful. If there are no variables in the
SQL statement, the return value is RS_ERROR_NO_DATA (-1). If the return
value is nonzero, you can call GetLastErrorString() or GetLastErrorType() to
get additional error information.

B.64 InitializeProc()

long InitializeProc(short SourceType, BSTR Source)

Description
This function sets the text that you want to use in a procedure. You can pass
the text as a parameter to this function, read it from a text file, or obtain it
from an existing procedure.

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Index An index into the internal list of variables. Query the Value property for
the string that corresponds with the index passed in. If there are no
variables in the SQL statement, the function will return
RS_ERROR_NO_DATA.
Appendix B. QMF for Windows APIs 353

Parameters
Table 88 shows the parameters for this API.

Table 88. InitializeProc parameters

Table 89 shows the valid values for parameter SourceType.

Table 89. Valid values for the parameter SourceType

Return value
If successful, the ID of the procedure (ProcID). If unsuccessful, -1. You must
use this value in all interface calls that require the ProcID parameter.

B.65 InitializeQuery()

long InitializeQuery(short SourceType, BSTR Source)

Description
This function sets the SQL text that you want to use in a query. You can pass
the SQL text as a parameter to this function, read it from a text file, or obtain
it from an existing query. Call Close() when you are finished with the query.

Parameters
Table 90 shows the parameters for this API.

Table 90. InitializeQuery parameters

Name Description

SourceType Specifies the source for the procedure text.

Source A string containing the text, the owner and name (Owner.Name) of the
procedure, or the name of a file containing the procedure text.

Value Meaning

0 (RSS_STRING) The text is contained in the Source parameter.

2 (RSS_FILE) The text is contained in the text file whose name is
specified by the Source parameter.

3 (RSS_QMFPROC) The text is contained in the procedure whose owner
and name are specified by the Source parameter

Name Description

SourceType Specifies the source for the SQL statement text
354 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Table 91 shows the valid values for parameter SourceType.

Table 91. Valid values for the parameter sourcetype

Return value
If successful, the ID of the query. If unsuccessful, -1. You must use this value
in all interface calls that require the QueryID parameter.

B.66 InitializeServer()

short InitializeServer(BSTR ServerName, BSTR UserID, BSTR Password,
BOOL ForceDialog, [VARIANT Account], [VARIANT SuppressDialog])

Description
This function initializes a connection to a database server. You must call this
function prior to calling any other function in the QMF for Windows API. You
can call this function multiple times. However, if you call this function and do
not end by calling Commit() or Rollback() an implicit rollback results.

Parameters
Table 92 shows the parameters for this API.

Table 92. InitializeServer parameters

Source A string containing the SQL text, the owner and name
(Owner.Name) of the query, or the name of a file containing SQL
text.

Value Meaning

0 (RSS_STRING) The SQL text is contained in the Source parameter.

1 (RSS_QMFQUERY) The SQL text is contained in the query whose owner and
name are specified by the Source parameter.

2 (RSS_FILE) The SQL text is contained in the text file whose name is
specified by the Source parameter.

Name Description

ServerName A string containing the name of the database server that you want
to use. This name must match one of the names defined in QMF
for Windows's Server Definition File. Call GetServerList() to
retrieve a list of valid servers.

Name Description
Appendix B. QMF for Windows APIs 355

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Related topics
SetParent()

B.67 InitializeStaticQuery()

long InitializeStaticQuery(BSTR CollectionName, BSTR PackageName,
BSTR ConsistencyToken, short SectionNumber)

UserID A string containing the User ID you want to use. If UserID is NULL
or an empty string, QMF for Windows will attempt to use the
UserID from the most recent query, if available. Otherwise, QMF
for Windows will display the User Information Dialog box to obtain
a User ID and password.

Password A string containing the password for the specified user ID. If
Password is NULL or an empty string, QMF for Windows will try to
use a memorized password if available (requires Windows For
Workgroups). If no password is available, QMF for Windows will
display the User Information dialog box to obtain a password.

ForceDialog Nonzero indicates that QMF for Windows will display the User
Information dialog box regardless of whether a UserID and
Password were specified. This gives the user a chance to change
the information before it is used. Zero indicates that QMF for
Windows should display the User Information dialog box only
when necessary.

Account Optionally, a string specifying accounting information to pass to
the server when connecting. The server may use this information
in a job accounting system.

SuppressDialog Nonzero indicates that QMF for Windows will never display the
User Information dialog box, even if a user ID and password have
not been specified. In this case, an error is returned indicating that
no user ID and password were specified. This option is useful
when executing in an environment where no user is present to
respond to the User Information dialog box, for example, on a web
server.

Name Description
356 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Description
This function specifies the section of a package that you want to run as a
static query.

Parameters
Table 93 shows the parameters for this API.

Table 93. InitializeStaticQuery parameters

Return value
If successful, the ID of the query. If unsuccessful, -1. You must use this value
in all interface calls that require the QueryID parameter.

B.68 IsStatic()

BOOL IsStatic(long QueryID)

Description
This function determines whether or not the specified query ID refers to a
static query or a dynamic query.

Parameters
Table 94 shows the parameters for this API.

Table 94. IsStatic parameters

Return value
Returns nonzero if successful and QueryID refers to a static query, zero
otherwise.

Name Description

CollectionName The name of a previously-bound collection.

PackageName The name of a previously-bound package.

ConsistencyToken The token used by the above named collection and package.

SectionNumber The section number of the statement within the collection and
package you want to run.

Name Description

QueryID The ID of the query as returned from InitializeQuery() or
InitializeStaticQuery().
Appendix B. QMF for Windows APIs 357

B.69 Open()

short Open(long QueryID, long RowLimit, BOOL FetchAllRows)

Description
Use this function to run a query that uses the SELECT verb, by opening a
cursor in the database for the query. Use FetchNextRow() or
FetchNextRows() to retrieve the data for the query, and call Close() when you
are done. If QMF for Windows is configured to automatically fetch all rows
(see RSR_AUTOFETCHALLROWS in the description for
GetResourceLimit()) or the FetchAllRows parameter is nonzero, QMF for
Windows fetches all rows of the result set into its internal buffer before
returning from this call.

Parameters
Table 95 shows the parameters for this API.

Table 95. Open parameters

Name Description

QueryID The ID of the query as returned from InitializeQuery().

RowLimit A number indicating the maximum number of rows to retrieve from
the database. Zero indicates that no limit is enforced except for the
row limit established by the QMF for Windows Administrator
program.

FetchAllRows A boolean value that indicates whether or not all rows in the result
set are automatically fetched into QMF for Windows's internal buffer.
If nonzero, all rows are automatically fetched, closing the cursor and
freeing the database for use by other users. This is the same as
calling CompleteQuery().

The name of this function conflicts with the Microsoft Access 2.0 keyword
Execute. If you are using MS Access 2.0, place square brackets [] around
the function name.

Note

Use this function only in statements that contain the SQL verb SELECT.
For statements containing any other verb, for example, SET, call Execute()
instead. To determine the verb used by a query, call GetQueryVerb().

Note
358 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.70 Prepare()

short Prepare(long QueryID)

Description
This function prepares the query specified by QueryID. The statement is
examined by the database server, checking for object existence, required
authorizations, etc. If the query is a SELECT statement, information about the
columns returned by the statement are available after completing Prepare().

Parameters
Table 96 shows the parameters for this API.

Table 96. Prepare parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Related topics
Execute(), Open()

B.71 PrintReport()

short PrintReport(long QueryID, short SourceType, BSTR Source, BSTR
OutputFileName, short PageLength, short PageWidth, BOOL
IncludeDateTime, BOOL IncludePageNumbers, [VARIANT Format],
[VARIANT UseFormPageSetup])

Description
PrintReport() is a synonym for the ExportReport() function.

Name Description

QueryID The ID of the query as returned from InitializeQuery().
Appendix B. QMF for Windows APIs 359

B.72 ReinitializeServer()

short ReinitializeServer()

Description
This function reinitializes the connection to a database server. Normally, you
only need to call this function if one of the other QMF for Windows API
functions returns an error. Calling this function results in an implicit rollback,
which closes any open cursors and invalidates all outstanding query IDs.

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.73 Rollback()

short Rollback()

Description
This function cancels any changes made in the current unit of work, ends the
current unit of work, closes any open cursors, and invalidates all outstanding
query IDs.

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

The name of this function conflicts with the Microsoft Access 2.0 keyword
Execute. If you are using MS Access 2.0, place square brackets [] around
the function name.

Note

The rollback only affects SQL changes that were run by calling Open() or
Execute(). Rollback does not affect changes made by other QMF for
Windows API functions, such as FastSaveData(), SaveData(), or
DeleteQMFObject().

Note
360 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Related topics
Commit()

B.74 RunProc()

short RunProc(long ProcID)

Description
This function runs the specified procedure. The procedure runs to completion
or until an error occurs. You cannot access any of the results of the procedure
(for example, data from a query that was run) through this programming
interface. However, any files exported or data saved by the procedure are
available after the run.

Parameters
Table 97 shows the parameters for this API.

Table 97. RunProc parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.75 SaveData()

short SaveData(long QueryID, long FirstRow, long FirstCol, long LastRow,
long LastCol, BOOL Replace, BSTR TableName, BSTR TableSpaceName,
BSTR ServerName, BSTR UserID, BSTR Password, BOOL ForceDialog,
[VARIANT Account], [VARIANT Comment], [VARIANT CommitScope])

Description
This function saves the specified range of rows and columns into the
specified table in the specified table space. You must call CompleteQuery()
prior to calling this function if you have not retrieved row data for all of the
rows you want to save in the table. If you try to save rows that have not been
retrieved from the database, the save will fail. If the table already exists, the
new data must have the same number and types of columns as the existing
table.

Name Description

ProcID The ID of the procedure as returned from InitializeProc().
Appendix B. QMF for Windows APIs 361

This function operates in a separate unit of work than other API functions and
its results are automatically committed. Calling Commit() or Rollback() will
have no effect on changes you make using this function.

Parameters
Table 98 shows the parameters for this API.

Table 98. SaveData parameters

Name Description

QueryID The ID of the query as returned from InitializeQuery().

FirstRow The first row you want to include in the save. The value of a first
row in a result set is 0.

FirstCol The first column you want to include in the save. The value of
the first column in a result set is 0.

LastRow The last row you want to include in the save, or 1 if all rows are
included. The value of the last row in a result set is one less than
the total number of rows.

LastCol The last column that you want to include in the save, or -1 if all
columns are included. The value of the last column in a result
set is one less than the total number of columns.

Replace Nonzero indicates that the specified data will replace any
existing data in the table. Zero indicates that the specified data
will be appended to any existing data in the table.

TableName The name of the table in which the data will be stored. If the
table doesn't exist, it is created.

TableSpaceName The name of the table space in which the table exists or will be
created. If TableSpaceName is NULL or an empty string, the
default table space is used. If you have configured QMF for
Windows to always use the default table space (see
RSR_SDDIFFERENTTS in the description for
GetResourceLimit()), this parameter is ignored.

ServerName The name of the database server in which the table is stored. If
ServerName is NULL or an empty string, the server you specify
in the call to InitializeServer() is used, and UserID, Password,
ForceDialog, and Account are ignored.

UserID If you specified a different server in ServerName, UserID is the
user ID used for that server. If you do not specify a user ID, QMF
for Windows will use the one last specified for this server if
available, or will display a dialog box if none is available. This
parameter is ignored if ServerName is NULL or an empty string.
362 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.
If the result set is empty or no rows are retrieved from the database, nonzero
is returned unless FirstRow = 0, and LastRow = -1. In this case, zero is
returned and an empty table is created.

B.76 SaveQMFProc()

short SaveQMFProc(BSTR OwnerAndName, BSTR Text, BSTR Comment,
BOOL Replace, BOOL Share)

Description
This function saves a procedure at a database server.

Password If you specified a different server in ServerName, Password is
the password used for that server. If you do not specify a
password, QMF for Windows will use the one last specified for
this server if available, or will display a dialog box if none is
available. This parameter is ignored if ServerName is NULL or
an empty string.

ForceDialog If you specified a different server in ServerName, nonzero
forces QMF for Windows to display a dialog box prompting for
logon information, even if a user ID and password were
specified or are otherwise available. Zero indicates that QMF
for Windows will display this dialog box only if necessary. This
parameter is ignored if ServerName is NULL or an empty string.

Account If you specified a different server in ServerName, optionally, a
string specifying accounting information to pass to that server
when connecting. The server may use this information in a job
accounting system. This parameter is ignored if ServerName is
NULL or an empty string.

Comment Optionally, a string that specifies a comment for the table in
which the data is saved.

CommitScope Optionally, how many rows to insert into the table at a time
before committing the unit of work. Specifying zero indicates
that all of the rows should be inserted before committing.
Specifying 10 (for example), indicates that a commit should be
performed after every ten rows are inserted.

Name Description
Appendix B. QMF for Windows APIs 363

Parameters
Table 99 shows the parameters for this API.

Table 99. SaveQMFProc parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.77 SaveQMFQuery()

short SaveQMFQuery(BSTR OwnerAndName, BSTR Text, BSTR Comment,
BOOL Replace, BOOL Share)

Description
This function saves a query at a database server.

Parameters
Table 100 shows the parameters for this API.

Table 100. SaveQMFQuery parameters

Name Description

OwnerAndName A string containing the owner and name, separated by a period, of
the procedure you want to save. For example, John.Proc2.

Text A string containing the text that you want to save in the procedure.

Comment A string containing any comment you want to save with the
procedure. If there is no comment, pass this parameter as either
an empty string or NULL.

Replace Nonzero replaces an existing procedure with the same name.
Zero aborts the operation if there is an existing procedure with the
same name.

Share Nonzero shares the procedure with other users. Zero does not
share the procedure with other users.

Name Description

OwnerAndName A string containing the owner and name, separated by a
period, of the query you want to save. For example,
John.Query2.

Text A string containing the text that you want to save in the query.
364 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.78 SetBindOption()

short SetBindOption(BSTR CollectionName, BSTR PackageName, short
Option, short Value)

Description
This function sets options for the collection and package prior to calling
EndBind().

Parameters
Table 101 shows the parameters for this API.

Table 101. SetBindOption parameters

Comment A string containing any comment you want to save with the query.
If there is no comment, pass this parameter as either an empty
string or NULL.

Replace Nonzero replaces an existing query with the same name. Zero
aborts the operation if there is an existing query with the same
name.

Share Nonzero shares the query with other users. Zero does not share
the query with other users.

Name Description

CollectionName The collection ID of the package for which you want to set the
option.

PackageName The name of the package for which you want to set the option.

Option One of the options listed below.

Value One of the values listed below for the specified option.

Name Description
Appendix B. QMF for Windows APIs 365

The meanings and values for the various options are shown in Table 102.

Table 102. Meanings and Values for the options

Option Meaning Values

DDM_PKGRPLOPT(0x211C) Flag specifying
whether or not to
replace an
existing package
with the same
collection ID and
name.

DDM_PKGRPLALW (0x241F)
Yes
DDM_PKGRPLNA- (0x2420)
No

DDM_STTDECDEL(0x2121) The delimiter
used for the
decimal point in
SQL statements
in the package.

DDM_DECDELPRD (0x243C)
Period
DDM_DECDELCMA (0x243D)
Comma

DDM_STTSTRDEL(0x2120) The delimiter
used for string
values in SQL
statements in the
package.

DDM_STRDELAP (0x2426)
Apostrophe
DDM_STRDELDQ (0x2427)
Double Quote

DDM_PKGISOLVL(0x2124) The isolation
level for the
package.

DDM_ISOLVLALL (0x2443)
All
DDM_ISOLVLCHG (0x2441)
Change
DDM_ISOLVLCS (0x2442)
Cursor Stability
DDM_ISOLVLNC (0x2445)
No Commit
DDM_ISOLVLRR (0x2444)
Repeatable Read

DDM_PKGATHOPT(0x211E) Flag specifying
whether or not to
keep existing
authorizations on
the package.

DDM_PKGATHKP (0x2425)
Keep
DDM_PKGATHRVK (0x2424)
Revoke

DDM_QRYBLKCTL(0x2132) The method to
use when
fetching rows of
data for queries
in the package.

DDM_FIXROWPRC (0x2418)
Row at a time
DDM_LMTBLKPRC (0x2417)
Block at a time
366 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero is unsuccessful. If the return value is nonzero,
you can call GetLastErrorString() or GetLastErrorType() to get additional
error information.

B.79 SetBindOwner()

short SetBindOwner(BSTR CollectionName, BSTR PackageName, BSTR
OwnerID)

Description
This function enables you to specify an owner different from your user ID for
the package you are binding. This may be necessary if your user ID does not
have the required authorizations to bind the package, but the specified owner
does.

DDM_RDBRLSOPT(0x2129) When to release
database
resources
acquired when
running the
package.

DDM_RDBRLSCMM (0x2438)
Commit
DDM_RDBRLSCNV (0x2439)
Conversation deallocation

DDM_STTDATFMT(0x2122) Format for
retrieved date
values.

DDM_ISODATFMT (0x2429)
ISO
DDM_USADATFMT (0x242A)
US
DDM_EURDATFMT (0x242B)
European
DDM_JISDATFMT(0x242C)
Japanese Industrial Standard

DDM_STTTIMFMT(0x2123) Format for
retrieved time
values.

DDM_ISOTIMFMT (0x242E)
ISO
DDM_USATIMFMT (0x242F)
US
DDM_EURTIMFMT (0x2430)
European
DDM_JISTIMFMT(0x2431)
Japanese Industrial Standard

Option Meaning Values
Appendix B. QMF for Windows APIs 367

Parameters
Table 103 shows the parameters for this API.

Table 103. SetBindOwner parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

B.80 SetBusyWindowButton()

void SetBusyWindowButton(BSTR Text)

Description
This function specifies the text displayed on the busy window's Cancel
button.

Parameters
Table 104 shows the parameters for this API.

Table 104. SetBusyWindowButton parameters

Return value
None.

Related topics
SetBusyWindowMessage(), SetBusyWindowMode(), SetBusyWindowTitle(),
ShowBusyWindow()

Name Description

CollectionName The collection ID of the package for which you want to specify
the owner.

PackageName The name of the package for which you want to specify the
owner.

OwnerID The desired owner ID for the package you are binding.

Name Description

Text A string that specifies the text displayed on the busy window's Cancel
button. The default value is "Cancel". If you specify an empty string the
button is hidden. Regardless of the text you specify, the button always
cancels, or closes the window.
368 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

B.81 SetBusyWindowMessage()

void SetBusyWindowMessage(BSTR Message)

Description
This function specifies the text displayed in the busy window's message area.

Parameters
Table 105 shows the parameters for this API.

Table 105. SetBusyWindowMessage parameters

Return value
None.

Related topics
SetBusyWindowButton(), SetBusyWindowMode(), SetBusyWindowTitle(),
ShowBusyWindow()

B.82 SetBusyWindowMode()

short SetBusyWindowMode(short Mode)

Description
This function determines whether or not QMF for Windows displays the busy
window. The busy window is useful to provide feedback to the user and to
enable the user to cancel a pending database action. Your changes take
effect the next time QMF for Windows performs an operation that causes the
busy window to display or hide.

Parameters
Table 106 shows the parameters for this API.

Table 106. SetBusyWindowMode parameters

Name Description

Message A string that specifies the text displayed in the busy window's message
area.

Name Description

Mode Specifies when QMF for Windows displays the busy window.
Appendix B. QMF for Windows APIs 369

Table 107 shows the valid values for parameter Mode.

Table 107. Valid values for the parameter mode

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

Related topics
SetBusyWindowButton(), SetBusyWindowMessage(), SetBusyWindowTitle(),
SetParent(), ShowBusyWindow()

B.83 SetBusyWindowTitle()

void SetBusyWindowTitle(BSTR Title)

Description
This function specifies the text displayed in the busy window's title bar.

Parameters
Table 108 shows the parameters for this API.

Table 108. SetBusyWindowTitle parameters

Return value
None.

Value Meaning

0 (RSM_NEVER) The window does not display. This is the
default.

1 (RSM_WHENBUSY) The window displays when QMF for Windows is
busy communicating with the database. QMF
for Windows automatically displays this window
as appropriate.

2 (RSM_CLIENTCONTROLLED) The window displays after you call
ShowBusyWindow(TRUE), and until you call
ShowBusyWindow(FALSE). The client
determines when the window displays.

Name Description

Title A string that specifies the text displayed in the busy window's title bar.
370 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Related topics
SetBusyWindowMode(), SetBusyWindowButton(),
SetBusyWindowMessage(), ShowBusyWindow()

B.84 SetGlobalVariable()

short SetGlobalVariable(BSTR Name, BSTR Value)

Description
This function assigns a value to the specified global variable. This value is
available for use in queries, forms, and procedures.

Parameters
Table 109 shows the parameters for this API.

Table 109. SetGlobalVariable parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.85 SetHostVariable()

short SetGlobalVariable(long QueryID, VARIANT Index, VARIANT Value)

Description
This function assigns a value to the specified host variable referenced by the
query. The query must be a static query referencing host variables (either
stored with the QMF query or created by AddHostVariable()). Index can
specify either the numeric index of the host variable, or the name of the host
variable.

Name Description

Name A string that contains the name of the variable you want to set.

Value A string that contains the value you want to assign to the specified
variable.
Appendix B. QMF for Windows APIs 371

Parameters
Table 110 shows the parameters for this API.

Table 110. SetHostVariable parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.86 SetOption()

short SetOption(short Option, VARIANT Value)

Description
This function sets the specified option value in QMF for Windows. For some
options, the changes may not take affect until QMF for Windows restarts.
Under normal conditions, you do not restart QMF for Windows until you have
destroyed all instances of the QMF for Windows API object.

Parameters
Table 111 shows the parameters for this API.

Table 111. SetOption parameters

Table 112 shows the valid values for parameter Option.

Table 112. Valid values for the parameter Option

Name Description

QueryID The ID of the query as returned from InitializeStaticQuery().

Index Either a number (variant type VT_I2) specifying the index of the host
variable in the query, or a string (variant type VT_BSTR) specifying the
name of the host variable.

Value The value for the host variable. To specify a null value, the type of the
variant should be set to VT_EMPTY

Name Description

Option Specifies which option to set.

Value The value to which to set the option.

Value Meaning

0 (RSO_SERVER_DEFINITION_FILE) Server definition file name.
372 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

Related topics
GetOption()

B.87 SetParent()

short SetParent(long ParentWnd)

Description
This function sets the parent window for dialogs. Normally, when QMF for
Windows displays a dialog (in the busy window or the User Information dialog
box), it is centered on and modal to QMF for Windows's main window. This

1 (RSO_CPIC_DLL) CPI-C Provider DLL file name.

2 (RSO_CPIC_TIMEOUT_WARNING) CPI-C warning timeout (in seconds).
This limit is not used for the QMF for
Windows API.

3 (RSO_CPIC_TIMEOUT_CANCEL) CPI-C cancel timeout (in seconds).

4 (RSO_TCP_TIMEOUT_WARNING) TCP warning timeout (in seconds). This
limit is not used for the QMF for
Windows API.

5 (RSO_TCP_TIMEOUT_CANCEL) TCP cancel timeout (in seconds).

6 (RSO_DISPLAY_NULLS_STRING) The string to use to display null values.

7 (RSO_ENTER_NULLS_STRING) The string to use to enter null values.

8 (RSO_ENTER_DEFAULTS_STRING) The string to use to enter default values.

9 (RSO_TRACE_FILE_1) Trace file 1 name.

10 (RSO_TRACE_FILE_2) Trace file 2 name

11 (RSO_TCP_TRACE_LEVEL) TCP trace level.

12 (RSO_CPIC_TRACE_LEVEL) CPI-C trace level

13 (RSO_DDM_TRACE_LEVEL) DDM trace level.

Value Meaning
Appendix B. QMF for Windows APIs 373

function enables you to force QMF for Windows's dialogs to be centered on
and modal to your client application's window.

Parameters
Table 113 shows the parameters for this API.

Table 113. SetParent parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

Related topics
ShowBusyWindow()

B.88 SetProcVariable()

short SetProcVariable(long ProcID, BSTR Name, BSTR Value)

Description
This function assigns a value to the specified variable. This value is
substituted for the variable prior to running the procedure. If your procedure
has one or more variables in it, you must call this function to set the variable
values prior to calling RunProc().

Parameters
Table 114 shows the parameters for this API.

Table 114. SetProcVariable parameters

Name Description

ParentWnd The HWND of the new parent window. Specify NULL to use QMF for
Windows's main window as the parent.

Name Description

ProcID The ID of the procedure as returned from InitializeProc().

Name A string that contains the name of the variable you want to set.

Value A string that contains the value you want to assign to the specified
variable.
374 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.89 SetVariable()

short SetVariable(long QueryID, BSTR Name, BSTR Value)

Description
This function assigns a value to the specified variable. This value is
substituted for the variable prior to running the SQL statement. If your SQL
statement has one or more variables in it, you must call this function to set
the variable values prior to calling either Open() or Execute().

This function has an effect only for dynamic queries. For static queries, you
should use the GetHostVariableNames(), AddHostVariable(), and
SetHostVariable() functions.

Parameters
Table 115 shows the parameters for this API.

Table 115. SetVariable parameters

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString() or GetLastErrorType() to get additional error
information.

B.90 ShowBusyWindow()

void ShowBusyWindow(BOOL Show)

Description
This function tells QMF for Windows to either show or hide the busy window.
The busy window is useful to provide feedback to the user and enables the

Name Description

QueryID The ID of the query as returned from InitializeQuery().

Name A string that contains the name of the variable you want to set.

Value A string that contains the value you want to assign to the specified
variable
Appendix B. QMF for Windows APIs 375

user to cancel a pending database action. This function only works if you
called SetBusyWindowMode() with a mode of RSM_CLIENTCONTROLLED.
If you set a parent window by calling SetParent(), the busy window will be
modal to the specified window.

Parameters
Table 116 shows the parameters for this API.

Table 116. ShowBusyWindow parameters

Return value
None.

B.91 StartBind()

short StartBind(BSTR CollectionName, BSTR PackageName, BSTR
ConsistencyToken)

Description
This function begins the process of binding a package in the database.

Parameters
Table 117 shows the parameters for this API.

Table 117. StartBind parameters

Name Description

Show Nonzero shows the busy window; zero hides the busy window. If
nonzero, the busy window displays until you call ShowBusyWindow()
with Show set to zero.

Name Description

CollectionName The desired collection ID for the package.

PackageName The desired name for the package.

ConsistencyToken A string 16 characters long containing the hexadecimal
representation of an eight-byte token used to ensure
consistency between the package bound in the database and
an application using that package. When a section is executed
within the package, you must provide this same value.
376 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Return value
Zero if successful, nonzero if unsuccessful. If the return value is nonzero, you
can call GetLastErrorString(), GetLastErrorType(), GetLastSQLCode(),
GetLastSQLError(), or GetLastSQLState() to get additional error information.

Related topics
EndBind(), CancelBind()
Appendix B. QMF for Windows APIs 377

378 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Appendix C. QMF for Windows tables and views

This section describes all of the tables and views that are added to the
database when QMF for Windows is installed.

C.1 Tables

The following tables in Figure 144 through Figure 153 will be created in a
database when QMF for Windows is configured to access it:

C.1.1 Q.OBJ_ACTIVITY_DTL

Figure 144. Object activity detail table
© Copyright IBM Corp. 1999 379

C.1.2 Q.OBJ_ACTIVITY_SUM

Figure 145. Object activity summarization table
380 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

C.1.3 Q.OBJECT_DATA

Figure 146. Object data table

C.1.4 Q.OBJECT_DIRECTORY

Figure 147. Object directory table
Appendix C. QMF for Windows tables and views 381

C.1.5 Q.OBJECT_REMARKS

Figure 148. Object remarks table

C.1.6 Q.RAA_SUBTYPE

Figure 149. RAA subtype table

C.1.7 RDBI.AUTHID_TABLE

Figure 150. AuthID table
382 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

C.1.8 RDBI.PROFILE_TABLE

Figure 151. Profile table

C.1.9 RDBI.RESERVED

Figure 152. Reserved table
Appendix C. QMF for Windows tables and views 383

C.1.10 RDBI.RESOURCE_TABLE

Figure 153. Resource table

C.2 Views

The following views in Figure 154 through Figure 161 will be created in a
database when QMF for Windows is configured to access it. Each section
shows the data definition language that creates the view and a graphical
presentation.

C.2.1 Q.RAA_OBJECT_VIEW
CREATE VIEW Q.RAA_OBJECT_VIEW
(

OWNER, NAME, TYPE, SUBTYPE, OBJECTLEVEL, RESTRICTED, MODEL, REMARKS
)
AS
SELECT A.OWNER, A.NAME, A.TYPE, A.SUBTYPE,

A.OBJECTLEVEL, A.RESTRICTED, A.MODEL,
B.REMARKS

FROM Q.OBJECT_DIRECTORY A, Q.OBJECT_REMARKS B
WHERE (A.OWNER = B.OWNER AND A.NAME = B.NAME)
AND (A.RESTRICTED = 'N'

OR A.OWNER IN (USER, CURRENT SQLID)
OR A.OWNER IN (SELECT C.SECONDARY_ID

FROM RDBI.USER_AUTHID_VIEW C)
OR EXISTS (SELECT D.AUTHID

FROM RDBI.USER_ADMIN_VIEW D));
384 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 154. RAA object view

C.2.2 RDBI.ADMIN_VIEW
CREATE VIEW RDBI.ADMIN_VIEW
(

"AUTHID"
)
AS
SELECT A.GRANTEE
FROM SYSIBM.SYSUSERAUTH A
WHERE A.SYSADMAUTH IN ('G', 'Y');

Figure 155. Admin view

C.2.3 RDBI.AUTHID_VIEW
CREATE VIEW RDBI.AUTHID_VIEW
(

PRIMARY_ID,
SECONDARY_ID

)
AS
SELECT A.PRIMARY_ID, A.SECONDARY_ID
FROM RDBI.AUTHID_TABLE A;

Figure 156. AuthID View
Appendix C. QMF for Windows tables and views 385

C.2.4 RDBI.PROFILE_VIEW
CREATE VIEW RDBI.PROFILE_VIEW
(

CREATOR,
"CASE",
DECOPT,
CONFIRM,
WIDTH,
LENGTH,
LANGUAGE,
SPACE,
TRACE,
PRINTER,
TRANSLATION,
PFKEYS,
SYNONYMS,
RESOURCE_GROUP,
MODEL,
ENVIRONMENT

) AS SELECT CREATOR, "CASE", DECOPT, CONFIRM,
WIDTH, LENGTH, LANGUAGE, SPACE,
TRACE, PRINTER, TRANSLATION,
PFKEYS, SYNONYMS, RESOURCE_GROUP,
MODEL, ENVIRONMENT

FROM RDBI.PROFILE_TABLE;
-- FROM Q.PROFILES;

Figure 157. Profile view

C.2.5 RDBI.RESOURCE_VIEW
CREATE VIEW RDBI.RESOURCE_VIEW
(

RESOURCE_GROUP,
386 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

RESOURCE_OPTION,
INTVAL,
FLOATVAL,
CHARVAL

) AS SELECT RESOURCE_GROUP, RESOURCE_OPTION,
INTVAL, FLOATVAL, CHARVAL

FROM RDBI.RESOURCE_TABLE;
-- FROM Q.RESOURCE_VIEW;

Figure 158. Resource view

C.2.6 RDBI.TABLE_VIEW
CREATE VIEW RDBI.TABLE_VIEW
(

OWNER, NAME, TYPE, SUBTYPE, OBJECTLEVEL, RESTRICTED, MODEL, REMARKS
)
AS
SELECT DISTINCT A.CREATOR, A.NAME, 'TABLE', A.TYPE, 0, 'Y', ' ', A.REMARKS
FROM SYSIBM.SYSTABLES A, SYSIBM.SYSTABAUTH B
WHERE (A.CREATOR = B.TCREATOR AND A.NAME = B.TTNAME)
AND (B.GRANTEE IN (USER, CURRENT SQLID, 'PUBLIC', 'PUBLIC*')

OR B.GRANTEE IN (SELECT B.SECONDARY_ID
FROM RDBI.USER_AUTHID_VIEW B)

OR EXISTS (SELECT C.AUTHID
FROM RDBI.USER_ADMIN_VIEW C))

AND (B.GRANTEETYPE IN (' ', 'U','G'))
AND (B.DELETEAUTH IN ('Y', 'G')

OR B.INSERTAUTH IN ('Y', 'G')
OR B.SELECTAUTH IN ('Y','G')
OR B.UPDATEAUTH IN ('Y','G'));

Figure 159. Table view
Appendix C. QMF for Windows tables and views 387

C.2.7 RDBI.USER_ADMIN_VIEW
CREATE VIEW RDBI.USER_ADMIN_VIEW
(

"AUTHID"
)
AS
SELECT A."AUTHID"
FROM RDBI.ADMIN_VIEW A
WHERE A."AUTHID" IN (USER, CURRENT SQLID)

OR A."AUTHID" IN (SELECT B.SECONDARY_ID
FROM RDBI.USER_AUTHID_VIEW B);

Figure 160. User admin view

C.2.8 RDBI.USER_AUTHID_VIEW
CREATE VIEW RDBI.USER_AUTHID_VIEW
(

PRIMARY_ID,
SECONDARY_ID

)
AS
SELECT A.PRIMARY_ID, A.SECONDARY_ID
FROM RDBI.AUTHID_VIEW A
WHERE A.PRIMARY_ID = USER;

Figure 161. User AuthID view

C.3 Table and view relationships

QMF for Windows lists are built using the views described above. The key
view for queries, forms, and procedures is the Q.RAA_OBJECT_VIEW. The
following diagram (Figure 162) shows the relationship and main use of all the
views and tables that this view interacts with.
388 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Figure 162. Q.RAA_OBJECT_VIEW relations

For the tables, the view called RDBI.TABLE_VIEW is the key and interacts
with other views and tables as shown in Figure 163.

Q.RAA_OBJECT_ VIEW
Looks at the owner names in Q.OBJECT_DIRECTORY and displays or fails
to display each object based on the conditions below. An answer of Yes to any
single question causes the query, proc, or form to be displayed in the list.
1. Does the Object Owner match the current USER id?
2. Does the Object Owner match the current SQLID?
3. Does the Object Owner match the Sec. Auth. ID of the current USER id?
4. Is the object SHARED? (That is Restricted =N)
5. Is the User a SYSADM?

RDBI.USER_ADMIN_VIEW
This view answers the question: Is the
User or a Sec. Auth. Id of the User, a
SYSADM?
It checks RDBI.ADMIN_VIEW for:
1. The current USER id
2. Sec. Auth Id of the Current User,

which it gets from here

RDBI.USER_AUTHID_VIEW
This view gets all rows from the base table
RDBI.AUTHID_VIEW where the Primary
ID is that of the current USER.
Thus it will list ALL SEC AUTH Ids for
the current USER

RDBI.AUTHID_VIEW
This view simply copies all rows from the
base table RDBI_AUTHID_TABLE

RDBI.AUTHID_TABLE
A base table listing Primary and Secondary
Authorization Ids

This table must be populated by the ststem
or database administrator. QMF for
Windows does not have access to the pre-
existing RACF/DB2 relationships during
or after the installation (Unless they are
stored in a custom DB2 table of the
administrators’ design)

RDBI.ADMIN_VIEW
This view gets a list of GRANTEEs from
The base table
SYSIBM.SYSUSERAUTH.
It takes GRANTEEs who have been

granted G or Y for SYSADMAUTH

SYSIBM.SYSUSERAUTH
Appendix C. QMF for Windows tables and views 389

Figure 163. RDBI.TABLE_VIEW relations

RDBI.TABLE_ VIEW constructs a list of tables as follows. It looks
for tables listed in base table SYSIBM.SYSTABAUTH. All tables in
SYSIBM.SYSTABAUTH have by definition already had authority of
some kind granted to at least one user.
This table must then have an answer of Yes to at least one of the
following six questions:
1. Is the GRANTEE = the current USER?
2. Is the GRANTEE = the current SQLID?
3. Is the GRANTEE = PUBLIC?
4. Is the GRANTEE = PUBLIC*?
5. Is the GRANTEE = a Sec Auth ID of the current USER?
6. Is the User a SYSADM?

PLUS
The table must have one of the GRANTEETYPEs U or G

PLUS
The GRANTEE for the table must have Y or G authority in one of
the following four categories
1. DELETEAUTH
2. INSERTAUTH
3. SELECTAUTH
4. UPDATEAUTH

RDBI.USER_ADMIN_VIEW
This view answers the question: Is the
User, or a Sec. Auth. Id of the User, a
SYSADM?
It checks RDBI.ADMIN_VIEW for:
1. The current USER id
2. Sec. Auth Id of the Current User,

which it gets from here

RDBI.USER_AUTHID_VIEW
This view gets all rows from the base table
RDBI.AUTHID_VIEW where the Primary
ID is that of the current USER.
Thus it will list ALL SEC AUTH Ids for
the current USER

RDBI.AUTHID_VIEW
This view simply copies all rows from the
base table RDBI_AUTHID_TABLE

RDBI.AUTHID_TABLE
A base table listing Primary and Secondary
Authorization Ids.

This table must be populated by the system
or database administrator. QMF for
Windows does not have access to the pre-
existing RACF/DB2 relationships during or
after installation. (Unless they are stored in
a custom DB2 table of the administrators’
design)

RDBI.ADMIN_VIEW
This view gets a list of GRANTEEs from
The base table
SYSIBM.SYSUSERAUTH.
It takes GRANTEEs who have been

granted G or Y for SYSADMAUTH

SYSIBM.SYSUSERAUTH

SYSIBM.SYSTABAUTH
390 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Appendix D. Using the additional material

This redbook also contains additional material in CD-ROM or diskette format,
and/or Web material. See the appropriate section below for instructions on
using or downloading each type of material.

D.1 Using the CD-ROM or diskette

The CD-ROM or diskette that accompanies this redbook contains the
following:

Directory Name Description
Code Product Trial Installation Code
Developer Sample Code

D.1.1 System requirements for using the CD-ROM or diskette

The following system configuration is recommended for optimal use of the
CD-ROM or diskette.

Hard disk space: 40MB minimum free space
Operating System: Windows NT
Processor: Intel Pentium 200 or higher
Memory: 64 MB
Other: CD-ROM drive

D.1.2 How to use the CD-ROM or diskette

After inserting the CD-ROM into the CD-ROM drive, an installation window
will show up automatically. If it does not start automatically, you can start it
manually by double-clicking the AUTOSTART file in the CD-ROMs root
directory. Alternatively, you can create a subdirectory (folder) on your
workstation and copy the contents of the CD-ROM or diskette into this folder.

D.2 Locating the additional material on the Internet

The CD-ROM, diskette, or Web material associated with this redbook is also
available in softcopy on the Internet from the IBM Redbooks Web server.
Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/sg245746
© Copyright IBM Corp. 1999 391

ftp://www.redbooks.ibm.com/redbooks/

Alternatively, you can go to the IBM Redbooks Web site at:

http://www.redbooks.ibm.com/

Select the Additional materials and open the directory that corresponds with
the redbook form number.
392 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

http://www.redbooks.ibm.com/

Appendix E. Special notices

This publication is intended to help database administrators, application
developers, and end users to understand the concepts of QMF for Windows.
It explains how the needs for an Enterprise Query Environment can be solved
using the QMF family of integrated tools. The information in this publication is
not intended as the specification of any programming interfaces that are
provided by QMF for Windows Version 6.1. See the PUBLICATIONS section
of the IBM Programming Announcement for QMF for Windows Version 6.1 for
more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
© Copyright IBM Corp. 1999 393

responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

This document contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses
used by an actual business enterprise is entirely coincidental.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

AIX APPN
AS/400 AT
C/MVS C/VM
CICS CT
DATABASE 2 DataJoiner
DB2 Distributed Relational Database

Architecture
DRDA IBM
IMS Intelligent Miner
MVS/ESA Netfinity
OpenEdition OS/2
OS/390 OS/400
QMF RACF
RS/6000 S/390
SP SQL/DS
System/370 System/390
VSE/ESA VTAM
WIN-OS/2 XT
3090 400
394 A DB2 Enterprise Query Environment

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix E. Special notices 395

396 A DB2 Enterprise Query Environment

Appendix F. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

F.1 International Technical Support Organization publications

For information on ordering these ITSO publications see “How to get ITSO
redbooks” on page 399.

• Getting Started with Data Warehouse and Business Intelligence,
SG24-5415

• From Multiplatform Operational Data to Data Warehousing and Business
Intelligence, SG24-5174

• My Mother Thinks I’m a DBA - Cross-Platform, Multi-Vendor, Distributed
Relational Data Replication with IBM DB2 Data Propagator and IBM
DataJoiner Made Easy, SG24-5463

• Intelligent Miner for Data - Enhance Your Business Intelligence,
SG24-5422

• Accessing OS/390 OpenEdition MVS from the Internet, SG24-4721

F.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbooks Collection SK2T-8038

Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849

Netfinity Hardware and Software Redbooks Collection SK2T-8046

RS/6000 Redbooks Collection (BkMgr) SK2T-8040

RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037

IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 1999 397

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

398 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

How to get ITSO redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 399

http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbook fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
400 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Glossary

A
application programming interface (API). A
functional interface supplied by the operating
system or a separate orderable licensed
program that allows an application program
written in a high-level language to use specific
data or functions of the operating system or the
licensed program.

architecture. The number of processing units in
the input, output, and hidden layer of a neural
network. The number of units in the input and
output layers is calculated from the mining data
and input parameters. An intelligent data mining
agent calculates the number of hidden layers
and the number of processing units in those
hidden layers.

attribute. Characteristics or properties that can
be controlled, usually to obtain a required
appearance. For example, color is an attribute
of a line. In object-oriented programming, a data
element defined within a class.

D

DATABASE 2 (DB2). An IBM relational
database management system.

database table. A table residing in a database.

database view. An alternative representation of
data from one or more database tables. A view
can include all or some of the columns
contained in the database table or tables on
which it is defined.

data field. In a database table, the intersection
from table description and table column where
the corresponding data is entered.

data format. There are different kinds of data
formats, for example, database tables,
database views, pipes, or flat files.

data table. A data table, regardless of the data
format it contains.
© Copyright IBM Corp. 1999
data type. There are different kinds of
Intelligent Miner data types, for example,
discrete numeric, discrete nonnumeric, binary,
or continuous.

F

field. A set of one or more related data items
grouped for processing. In this document, with
regard to database tables and views, field is
synonymous with column.

file. A collection of related data that is stored
and retrieved by an assigned name.

file name. (1) A name assigned or declared for
a file. (2) The name used by a program to
identify a file.

flat file. (1) A one-dimensional or
two-dimensional array; a list or table of items.
(2) A file that has no hierarchical structure.

formatted information. An arrangement of
information into discrete units and structures in
a manner that facilitates its access and
processing. Contrast with narrative information.

function. Any instruction or set of related
instructions that perform a specific operation.

I

input data. The metadata of the database table,
database view, or flat file containing the data
you specified to be mined.

instance. In object-oriented programming, a
single, actual occurrence of a particular object.
Any level of the object class hierarchy can have
instances. An instance can be considered in
terms of a copy of the object type frame that is
filled in with particular information.
401

M

metadata. In databases, data that describes data
objects.

O

output data. The metadata of the database
table, database view, or flat file containing the
data being produced or to be produced by a
function.

P

pass. One cycle of processing a body of data.

processing unit. A processing unit in a neural
network is used to calculate an output by
summing all incoming values multiplied by their
respective adaptive connection weights.

R

record. A set of one or more related data items
grouped for processing. In reference to a
database table, record is synonymous with row.

rule. A clause in the form head<== body. It
specifies that the head is true if the body is true.

S

Structured Query Language (SQL). An
established set of statements used to manage
information stored in a database. By using these
statements, users can add, delete, or update
information in a table, request information
through a query, and display results in a report.

symbolic name. In a programming language, a
unique name used to represent an entity such as
a field, file, data structure, or label. In the
Intelligent Miner you specify symbolic names, for
example, for input data, name mappings, or
taxonomies.

T

transaction. A set of items or events that are
linked by a common key value, for example, the
articles (items) bought by a customer (customer
number) on a particular date (transaction
identifier). In this example, the customer number
represents the key value.

transaction ID. The identifier for a transaction,
for example, the date of a transaction.
402 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

List of abbreviations

ADK application
development toolkit

ANSI American National
Standards Institute

APPC advanced program to
program
communication

API application
programming interface

APPN advanced peer to peer
networking

ASCII American National
Standard Code for
Information
Interchange

BI Business Intelligence

CAE client application
enabler

CP control point

CORBA Common Object
Request Broker
Architecture

CPI-C Common Programming
Interface-Communicati
ons

DB2 database 2

DBA Database Administrator

DBMS database management
system

DCL data control language

DDL data definition
language

DML data manipulation
language

DR distributed request

DRDA distributed relational
database architecture
© Copyright IBM Corp. 1999
DUW distributed unit of work

DW data warehouse

EIS executive information
system

FTP file transfer protocl

GID group ID

GUI graphical user interface

HTML Hypertext Markup
Language

HTTP Hypertext Transfer
Protocol

HLQ high level qualifier

IBM International Business
Machines Corporation

IDS intelligent decision
support

ISO International
Organization for
Standardization

I/O input/output

IM Intelligent Miner

IMS Information
Management System

ISDN integrated services
digital network

IT information technology

ITSO International Technical
Support Organization

JCL job control language

JDBC java database
connectivity

JDK java developers kit

JRE java runtime
environment

LAN local area network

LOB large object
403

LU logical unit

ODBC Open Database
Connectivity

OEM original equipment
manufacturer

OLAP on-line analytical
processing

OLTP on-line transaction
processing

OSA open systems adapter

OSI open systems
interconnection

POS Persistent Object
Service

QMF Query Management
Facility

RACF resource access control
facility

RAD rapid application
development

RAM random access
memory

RDBMS relational database
management system

ROI return on investment

RUW remote unit of work

SDF Server Definition File

SMP/E system modification
program/enhanced

SNA shared network
architecture

SQL structured query
language

TCP/IP Transmission Control
Protocol/Internet
Protocol

TP transaction program

UDB universal database

UDF user-defined function

UDP user datagram protocol

UDT user-defined type

VSAM Virtual Storage Access
Method

WAN wide area network
404 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

Index

A
access

existing QMF objects 183
objects stored at a database 183
objects stored in a file 186
table 188

access controll 102
access path 243
ACROSS 221
Active Server Page 263
add from list 204
add row condition 208
add sort condition 207
AddDecimalHostVariable 293
AddHostVariable 294
API 126
APPC

Conversations 51
Logical Units 50
LU 6.2 50
Sessions 51
Terminology 50
Transaction Programs 51

application development 125
application requester 26
application server 26
application services 49
ARPANET 27
ASCII 85
ASP 131, 263
assign user 110
asynchronous application 128
AT command 123
authorization ID 85
AVERAGE 222

B
bind

permissions 105
static package 115

bind packages 88
bind privileges 88
BindDecimalHostVariable 295
BindHostVariable 296
BindSection 297
© Copyright IBM Corp. 1999
BOTTOM 229
BREAK 222
business intelligence 3, 10

C
C++ 172

considerations 173
setup 173

CALC 222
Call Level Interface 64
cancel query 189
CancelBind 298
CCSID 85
centralized administration 180
CGI 131, 263

programming 263
sample 263

change password 112, 246
ChangePassword 298
check

resource limits 243
check form 227
ClearList 299
Close 299
collection name 81, 88
column

add to form 214
column sequence 225
command line interface 15
command line mode 120
Commit 300
commit 130
Common Gateway Interface 263
Common Object Request Broker Architecture 127
communication protocols 25
compact installation 178
CompleteQuery 301
CONNECT 229
connection timeout 98
control resource consumption 92
CONVERT 229
convert to SQL 210
CopyToClipboard 301
CORBA 127
cost estimation 119
COUNT 222
covert to HTML 194
405

CPCT 222
CPI-C 54
create

empty form 212
global variable 281
lists 112, 247
new objects 197
procedure 227
prompted query 203
QMF objects 81
resource limits groups 92
sample tables 90
schedule 94
SQL query 199
substitution variable 279
table 198

Cross Tab Report 233
CSUM 222
custom installation 178
customize interface 249
customize toolbar 250

D
data 1

access 1
analyzis 1
exporting 103
manipulation 1
retrieval 1

data access infrastructure 11
data communication 25
data exchange protocols 25
data flow control 49
data link control 49
database 1

heterogeneous 5
navigational 2
relational 2

database connection
CLI 76
CPI-C 75
TCP/IP 74
trace 79
troubleshooting 79

database name 73
DB2 Connect 78
DB2 DataJoiner 15
decimal delimiter 82

decision cycle 9
decision support 14
default form 220
default table space 104
delete server connection 92
DeleteQMFObject 303
delivery technology 10
Delphi 154

ClearGrid 160
delete QMF object 168
execute query 169
get QMF object info 167
get query text 167
initialize query 165
initialize server 164
list queries 162
list servers 163
refresh query list 162
sample 156
save on server 171
save QMF query 171
save to file 172
setup 154

DHCP 47, 48
Direct Routing 33
DISPLAY 229
display report 186, 219
distributed reporting 5
DRAW 229
draw query 202
DRDA 11, 25

distributed request (DR) 63
DUW 63
level 1 62
level 2 63
private protocols 63
RUW 62

DSN_STATEMNT_TABLE 119
DSQAO 284
DSQCP 284, 285, 286
DSQDC 284
DSQEC 284, 286
DSQQW 284, 287
dynamic SQL 115, 243

E
EBCDIC 85
e-business 253
406 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

edit codes 215
e-mail 28
encoding schema 85
EndBind 303
Enterprise Query Environment 11

requirements 11
environment

multi vendor 15
ERASE 229
Execute 304
ExecuteEx 304
ExecuteStoredProcedure 305
ExecuteStoredProcedureEx 307
EXPORT 229
Export 308
export data 192
ExportForm 311
ExportReport 311

F
FastSaveData 313
fetch limit 98
FetchNextRow 134, 314
FetchNextRowEx 316
FetchNextRows 316
FetchNextRowsEx 318
filter objects 185
find 190
FIRST 222
FlushQMFCache 318
footing 218
form 211

add column 214
change 221
check 227
column sequence 225
column width 214
convert to HTML 256
create default 220
default 220
edit codes 215
HTML heading 256
indent 214
main window 213
save 218, 221
usage code 221

Form calculations 15
FORWARD 229

FTP 28

G
gateway 16, 33
GetColumnCount 134, 319
GetColumnDataValue 319
GetColumnHeader 320
GetColumnHeaderEx 320
GetColumnHeadings 134, 321
GetColumnValue 322
GetColumnValueEx 323
GetDefaultServerName 324
GetGlobalVariable 324
GetHostVariableNames 325
GetHostVariableTypeNames 325
GetHostVariableTypes 326
GetLastErrorString 326
GetLastErrorType 327
GetLastSQLCode 328
GetLastSQLError 329
GetLastSQLState 330
GetOption 331
GetOptionEx 332
GetProcText 333
GetProcVariables 333
GetQMFObjectInfo 334
GetQMFObjectInfoEx 336
GetQMFObjectList 132, 338
GetQMFObjectListEx 339
GetQMFProcText 340
GetQMFQueryText 341
GetQueryText 132, 341
GetQueryVerb 133, 342
GetResourceLimit 343
GetResourceLimitEx 348
GetRowCount 348
GetServerList 131, 349
GetServerListEx 350
GetStoredProcedureResultSets 351
GetVariables 352
GetVariablesEx 353
Global Variables 277
global variables 281
Gopher 28
governing 15
grant permissions 89
grid 272
GROUP 223
407

grouping 221

H
heading 218
history report 107
host address 29
host name 74
hostname 46, 47
hostnames 48
hosts file 48
HTML

dynamic reports 262
edit form 258
heading text 258
preview 259
response 267
scheduling 260

I
implementation samples 20
IMPORT 229
indent 214
Indirect Routing 33
infrastructure

solution 13
typical 11

InitializeProc 353
InitializeQuery 354
InitializeServer 130, 355
InitializeStaticQuery 356
Internet 253

environment 254
IP addressing 29
IP datagram 32
IP Routing

algorithm 35
table 34

IP routing 33
Isolation level 103
IsStatic 357

J
Java Database Connectivity 127
JDBC 127
join 205

L
Large Object 119
LAST 223
linear procedure 120
linear procedures 15
list

display 185
refresh 185
remove from 186
work with 247

list objects 184
LOB 119, 272
local host 36
local SDF 179
location name 73
logical unit 49
loopback network 30
Lotus 123

import data 233
Snap-In 232

M
MAXIMUM 223
maximum rows 98
Microsoft Access

Access Report List 240
Snap-In 238

Microsoft Excel
Import Data 236
Snap-In 235

middleware 16, 126
migrate from Query Manager 251
MINIMUM 223
modify data 192
multitasking 128
multithreading 128

N
Needs

IS 10
needs

end user 12
power user 12
travelling user 13

network address 29
networking protocols 11
NFSNET 27
408 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

O
object

create new 197
working with 187

Object REXX 15
object tracking 107
ODBC 11, 126
OMIT 223
Open 358
owner ID 81

P
packages 81

authorization 82
replacing 82

path control 49
PCT 223
Persistent Object Service 127
Personal Portal 273

application support 274
Favorite 275

physical control 49
port number 74
POS 127
predictive governing 118
Predictive Governor 118
Prepare 359
preprocessor 115
presentation services 49
PRINT 229
print 192
PrintReport 359
procedure 196

Clear Grid 136
commands 229
create 227
DataIntoGrid 136
run 196, 230
save 230

programming
CGI 263
considerations 173

programming concepts 125
prompted Query

create 203
prompted query 175

view 209
provider DLL 75

Q
QMF

APIs 293
architecture 25
benefits 271
CGI programming 263
CGI sample 264
components 178
concepts 181
customize interface 249
existing installations 85
future 272
High Performance Option 7
history 6
HPO/Compiler 7
HPO/Manager 7
installation 177
internet 254
objects 83, 181
packages 81
prerequisites 25
procedure 196
Snap-In 231
tables 84, 379
views 379
web publishing 254

QMFWinLibrary_TLB 155
queries

predefined 12
query 1, 182, 188

add column 206
cancel 189
create 199
definition 1
draw 202
environment 3
needs 10
run 188, 201
save 211
types 188
view prompted 189

Query Management
challenge 9
characteristics 3
introduction 1

Query Manager 251
quick start 16
409

R
RDB name 73
reactive governing 118
ReinitializeServer 360
remote host 36
remove from list 186
report 212

column sequence 225
display 186, 219
footing 218
heading 218
preview 259
scheduling 260

report distribution 5
report management 5
reporting

distributed 5
needs 10

reporting environment 3
reports

predefined 12
resource governor 92
resource group 87
Resource Limit Facility 118
resource limits 85

check 243
result

order by 191
print 192
view 189

Rocket Personal Portal 273
Rollback 360
rollback 130
router 33
routing 49
row condition 208
RowLimit 133
RUN 230
run a query 188
run procedure 196, 230
RunProc 361

S
SAVE 230
save

default form 221
form 218
query 211

save procedure 230
save user defaults 194
SaveData 361
SaveQMFProc 363
SaveQMFQuery 133, 364
schedule 94, 95

day range 96
number 95
status 96
time range 96

schedule service 123
scheduling 122
SEND TO 230
server

set 197
server definition file 179

local 179
shared 179

server name 73
servlet 131
SET GLOBAL 230
set server 197
SetBindOption 365
SetBindOwner 367
SetBusyWindowButton 368
SetBusyWindowMessage 369
SetBusyWindowMode 369
SetBusyWindowTitle 370
SetGlobalVariable 371
SetHostVariable 371
SetOption 372
SetParent 373
SetProcVariable 374
SetVariable 375
shared SDF 179
SHOW 230
ShowBusyWindow 375
SMTP 28
SNA

Layers 49
Snap-In 231

Lotus 123 232
Microsof Excel 235
Microsoft Access 238

solution
cost 5

sort 191
ascending 191
condition 191
410 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

descending 191
SQL 2

dynamic 243
permissions 100
static 16, 243
verbs 100

SQL expression 206
SQLDS 63
StartBind 376
static queries 115
static SQL 16, 243
STDEV 223
stored procedures 15
string delimiter 82
subnet 30
substitution variable 202
Substitution Variables 277
substitution variables 279
SUM 223
symbolic destination name 75
SYNC_LEVEL 53
synchronization 128
synchronous application 128
SYNCPOINT 53

T
table 188

create new 198
join 205

table editing 103
TCP/IP 27, 47

Application Layer 28
architecture 28
Internet Layer 29
Network Interface Layer 29
Transport Layer 28

TCP/IP Architecture 28
TCPCT 223
Telnet 28
test connection 78
thin client 13
thread 128
timeouts 96
toolbar

customize 250
totals 221
TPCT 223
Trace 79

transaction services 49
transmission control 49
two phase commit 173
typical installation 178

U
UDP 28
unit of work 130
unused objects 107
usage code 221
user interface 5
user profile 85, 86

V
variables

global 277, 281
in registry 277
lifetime 277
pre-loaded global 283
structure 279
substitution 277, 279
user defined global 281
working with 277

variant 173
view

in Web Browser 259
prompted query 209

view prompted query 189
view result 189
view SQL 188
Visual Basic 135

export data 152
initialize query 140, 145, 150
initialize server 143, 148
list directory 144
list drives 144
list file list 144
list queries 139
list servers 138, 143, 148
sample 136
save query 151
setup 135

W
web

environment 262
publishing 15, 254
411

static reports 255
Web Warehouse 261
wildcard 185
WINDOWS 230
Windows NT scheduler 122
WinSock 37
wrapper class 173
412 A DB2 Enterprise Query Environment — Build It with QMF for Windows !

© Copyright IBM Corp. 1999 413

ITSO redbook evaluation

A DB2 Enterprise Query Environment - Build it With QMF For Windows !
SG24-5746-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Printed in the U.S.A.

SG24-5746-00

A
D

B
2

E
nterprise

Q
uery

E
n

vironm
ent

-
B

uild
it

W
ith

Q
M

F
F

or
W

indow
s

!
S

G
24-5746-00

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction to query management
	1.1 Basics about queries and data
	1.2 Enterprise query and reporting environment
	1.3 A short history of the QMF family

	Chapter 2. Wouldn’t it be nice?
	2.1 Typical IS Needs
	2.2 The Enterprise Query Environment
	2.2.1 IT issues
	2.2.2 User issues

	2.3 QMF for Windows: the solution
	2.3.1 Product Positioning

	2.4 Enterprise Benefits
	2.5 Implementation examples
	2.5.1 Financial industry
	2.5.2 Public services institution

	Chapter 3. Getting started
	3.1 The networking environment
	3.2 TCP/IP basics
	3.2.1 TCP/IP architecture
	3.2.2 IP addressing
	3.2.3 Subnets
	3.2.4 IP datagram
	3.2.5 IP routing

	3.3 Configuring your TCP/IP
	3.3.1 OS/390 OpenEdition
	3.3.2 AS/400
	3.3.3 AIX
	3.3.4 Windows

	3.4 SNA basics
	3.4.1 SNA layers
	3.4.2 APPC basics and terminology

	3.5 Configuring your SNA (LU 6.2, APPC, and CPI-C)
	3.5.1 Windows NT

	3.6 Data exchange protocols
	3.6.1 DRDA remote unit of work (RUW)
	3.6.2 DRDA distributed unit of work (DUW)
	3.6.3 Distributed request (DR)
	3.6.4 Private protocols
	3.6.5 Nonrelational access

	3.7 Connecting via Call Level Interface (CLI)
	3.8 Installing QMF for Windows
	3.8.1 Advanced installation
	3.8.2 Unattended installation

	Chapter 4. DBA’s guide
	4.1 Working with QMF for Windows Administrator
	4.1.1 Configure database connections
	4.1.2 Test the server connection
	4.1.3 Create QMF for Windows objects
	4.1.4 Bind QMF for Windows packages
	4.1.5 Granting Permissions
	4.1.6 Creating sample tables
	4.1.7 Delete a database server

	4.2 Governing and administration
	4.2.1 Creating resource limits groups
	4.2.2 Creating schedules
	4.2.3 Assigning users to the resource group

	4.3 Security
	4.3.1 Change password capability
	4.3.2 Lists

	4.4 Other DBA Tasks
	4.4.1 Convert dynamic SQL to static SQL
	4.4.2 DB2 UDB for OS/390 predictive governor support
	4.4.3 Large Object (LOB)
	4.4.4 QMF linear procedures
	4.4.5 Command line mode
	4.4.6 Scheduling with Windows NT

	Chapter 5. Developer’s guide
	5.1 Application development concepts using QMF for Windows
	5.1.1 Application Program Interface (API)
	5.1.2 QMF for Windows APIs or ODBC Applications?
	5.1.3 Synchronization Aspects
	5.1.4 Database Connectivity
	5.1.5 Web Development

	5.2 Main QMF for Windows APIs
	5.2.1 GetServerList()
	5.2.2 InitializeServer()
	5.2.3 GetQMFObjectList()
	5.2.4 InitializeQuery()
	5.2.5 GetQueryText()
	5.2.6 GetQueryVerb()
	5.2.7 SaveQMFQuery()
	5.2.8 Open()
	5.2.9 GetColumnCount()
	5.2.10 GetColumnHeadings()
	5.2.11 FetchNextRow()
	5.2.12 Close()

	5.3 Using Visual Basic with QMF for Windows
	5.3.1 Getting Started
	5.3.2 Application examples
	5.3.3 Example 1 — Execute a query stored on the server
	5.3.4 Example 2 — Execute a query stored in a file
	5.3.5 Example 3 — Execute an SQL statement

	5.4 Using Delphi with QMF for Windows
	5.4.1 Getting Started
	5.4.2 Delphi application example

	5.5 Using C++ with QMF for Windows
	5.5.1 Getting started
	5.5.2 C++ specifics

	5.6 General programming considerations
	5.6.1 Two phase commit
	5.6.2 Editing prompted queries
	5.6.3 Other QMF APIs

	Chapter 6. User’s guide
	6.1 Product Installation and configuration
	6.2 Basic concepts
	6.3 Accessing existing objects
	6.3.1 Objects stored at a server
	6.3.2 Objects stored in a file

	6.4 Working with objects
	6.4.1 Tables
	6.4.2 Queries
	6.4.3 Forms and Reports
	6.4.4 Procedures

	6.5 Create new objects
	6.5.1 Create new tables
	6.5.2 Create new queries
	6.5.3 Create new form and report
	6.5.4 Create new procedures

	6.6 Using Data Snap-Ins for QMF for Windows
	6.6.1 Lotus 123
	6.6.2 Microsoft Excel
	6.6.3 Microsoft Access

	6.7 Converting dynamic SQL to static SQL
	6.7.1 Dynamic versus static SQL

	6.8 Checking your resource limits
	6.9 Security
	6.9.1 Change password capability
	6.9.2 Lists

	6.10 Customizing the interface
	6.11 Migrating from OS/2 Query Manager

	Chapter 7. Web considerations
	7.1 Web presence basics
	7.1.1 How does it work?

	7.2 Static reports
	7.2.1 Convert a standard QMF Form to HTML
	7.2.2 Report preview feature
	7.2.3 Scheduling

	7.3 Dynamic reports
	7.3.1 CGI

	Chapter 8. Summary
	8.1 Future directions
	8.2 QMF Personal Portal

	Appendix A. Working with variables
	A.1 Substitution variables
	A.2 Global variables
	A.2.1 User defined global variables
	A.2.2 Pre-loaded global variables

	A.3 Form variables

	Appendix B. QMF for Windows APIs
	B.1 AddDecimalHostVariable
	B.2 AddHostVariable()
	B.3 BindDecimalHostVariable()
	B.4 BindHostVariable()
	B.5 BindSection()
	B.6 CancelBind()
	B.7 ChangePassword()
	B.8 ClearList()
	B.9 Close()
	B.10 Commit()
	B.11 CompleteQuery()
	B.12 CopyToClipboard()
	B.13 DeleteQMFObject()
	B.14 EndBind()
	B.15 Execute()
	B.16 ExecuteEx()
	B.17 ExecuteStoredProcedure()
	B.18 ExecuteStoredProcedureEx()
	B.18.1 Export()

	B.19 ExportForm()
	B.20 ExportReport()
	B.21 FastSaveData()
	B.22 FetchNextRow()
	B.23 FetchNextRowEx()
	B.24 FetchNextRows()
	B.25 FetchNextRowsEx()
	B.26 FlushQMFCache()
	B.27 GetColumnCount()
	B.28 GetColumnDataValue()
	B.29 GetColumnHeader()
	B.30 GetColumnHeaderEx()
	B.31 GetColumnHeadings()
	B.32 GetColumnValue()
	B.33 GetColumnValueEx()
	B.34 GetDefaultServerName()
	B.35 GetGlobalVariable()
	B.36 GetHostVariableNames()
	B.37 GetHostVariableTypeNames()
	B.38 GetHostVariableTypes()
	B.39 GetLastErrorString()
	B.40 GetLastErrorType()
	B.41 GetLastSQLCode()
	B.42 GetLastSQLError()
	B.43 GetLastSQLState()
	B.44 GetOption()
	B.45 GetOptionEx()
	B.46 GetProcText()
	B.47 GetProcVariables()
	B.48 GetQMFObjectInfo()
	B.49 GetQMFObjectInfoEx()
	B.50 GetQMFObjectList()
	B.51 GetQMFObjectListEx()
	B.52 GetQMFProcText()
	B.53 GetQMFQueryText()
	B.54 GetQueryText()
	B.55 GetQueryVerb()
	B.56 GetResourceLimit()
	B.57 GetResourceLimitEx()
	B.58 GetRowCount()
	B.59 GetServerList()
	B.60 GetServerListEx()
	B.61 GetStoredProcedureResultSets()
	B.62 GetVariables()
	B.63 GetVariablesEx()
	B.64 InitializeProc()
	B.65 InitializeQuery()
	B.66 InitializeServer()
	B.67 InitializeStaticQuery()
	B.68 IsStatic()
	B.69 Open()
	B.70 Prepare()
	B.71 PrintReport()
	B.72 ReinitializeServer()
	B.73 Rollback()
	B.74 RunProc()
	B.75 SaveData()
	B.76 SaveQMFProc()
	B.77 SaveQMFQuery()
	B.78 SetBindOption()
	B.79 SetBindOwner()
	B.80 SetBusyWindowButton()
	B.81 SetBusyWindowMessage()
	B.82 SetBusyWindowMode()
	B.83 SetBusyWindowTitle()
	B.84 SetGlobalVariable()
	B.85 SetHostVariable()
	B.86 SetOption()
	B.87 SetParent()
	B.88 SetProcVariable()
	B.89 SetVariable()
	B.90 ShowBusyWindow()
	B.91 StartBind()

	Appendix C. QMF for Windows tables and views
	C.1 Tables
	C.1.1 Q.OBJ_ACTIVITY_DTL
	C.1.2 Q.OBJ_ACTIVITY_SUM
	C.1.3 Q.OBJECT_DATA
	C.1.4 Q.OBJECT_DIRECTORY
	C.1.5 Q.OBJECT_REMARKS
	C.1.6 Q.RAA_SUBTYPE
	C.1.7 RDBI.AUTHID_TABLE
	C.1.8 RDBI.PROFILE_TABLE
	C.1.9 RDBI.RESERVED
	C.1.10 RDBI.RESOURCE_TABLE

	C.2 Views
	C.2.1 Q.RAA_OBJECT_VIEW
	C.2.2 RDBI.ADMIN_VIEW
	C.2.3 RDBI.AUTHID_VIEW
	C.2.4 RDBI.PROFILE_VIEW
	C.2.5 RDBI.RESOURCE_VIEW
	C.2.6 RDBI.TABLE_VIEW
	C.2.7 RDBI.USER_ADMIN_VIEW
	C.2.8 RDBI.USER_AUTHID_VIEW

	C.3 Table and view relationships

	Appendix D. Using the additional material
	D.1 Using the CD-ROM or diskette
	D.1.1 System requirements for using the CD-ROM or diskette
	D.1.2 How to use the CD-ROM or diskette

	D.2 Locating the additional material on the Internet

	Appendix E. Special notices
	Appendix F. Related publications
	F.1 International Technical Support Organization publications
	F.2 Redbooks on CD-ROMs

	How to get ITSO redbooks
	IBM Redbook fax order form

	Glossary
	List of abbreviations
	Index
	ITSO redbook evaluation

