AIX 5L Version 5.3

Understanding the Diagnostic Subsystem
for AIX

<|ll

SC23-4919-02

AIX 5L Version 5.3

Understanding the Diagnostic Subsystem
for AIX

<|ll

SC23-4919-02

Note
FBefore using this information and the product it supports, read the information in [FNotices,” on page 261]

Third Edition (July 2006)

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas
78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub @ austin.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book.
Content of This Book
Highlighting .
Case-Sensitivity in AIX
ISO 9000 . .
Related Publications .
Prerequisite Software

Chapter 1. Introduction .
Structure of Diagnostics
Strategy for Diagnostics
Diagnostic Commands .

Chapter 2. Operating Environments

Online Diagnostics

Standalone Diagnostics (POWER based only)
NIM Diagnostics . Ce e

Chapter 3. Diagnostic Components .
Diagnostic Controller .
Diagnostic Applications

Tasks and Service Aids
Application Test Units .

Test Unit 64-bit Porting Guide .
Diagnostic Kernel Extension
Diagnostic Library . .
Diagnostic Object Classes.
Diagnostic Header Files
Diagnostic User Interface .
Diagnostic Menu Examples

Chapter 4. Diagnostic Features .
Missing Options Resolution

Error Log Analysis.

Periodic Diagnostics
Automatic Error Log Analysis (DIAGELA) .
Loop Testing. G

Chapter 5. Diagnostic Packaging
Hardfile Packaging

CDROM Packaging (POWER based only)
Diagnostic Supplemental Media.

Chapter 6. Diagnostic Debugging Hints .
Debugging Hints for Diagnostic Applications .
Debugging Hints for Diagnostic Kernel Extension
Diagnostic Patch Diskette Procedure .

Chapter 7. Code Examples . . .
Example {DEVICE}_ERR_DETAIL.H: TU Specmc Outputs .
Example {DEVICE}_INPUT_PARAMS.H: TU Specific Inputs
Example TU Local Header File . e .
Example TU exectu Function.

© Copyright IBM Corp. 2004, 2006

< < << <K< <K<

awmNn =

Example TU Open/Close Device Interface .
Example TU Makefiles .

Example C Source File for TU Interrupt Handler.

Example TU Interrupt Handler Makefile .
Example Diagnostic Application .

Example Diagnostic Application Message Flle
Chapter 8. Diagnostic Task Matrix .

Appendix. Notices .
Trademarks .

Index

iv Understanding the Diagnostic Subsystem for AIX

. 235
. 241
. 241
. 243
. 244
. 253

. 257

. 261
. 262

. 265

About This Book

This book provides application developers with complete information about writing their own diagnostic
applications or service aids for the AIX® operating system. Programmers can use this book to gain
knowledge of the hardware diagnostic subsystem and the databases used to perform hardware
diagnostics. Topics include operating environments, diagnostic components, features and packaging,
debugging hints, and code examples.

Content of This Book

This edition of this book contains no technical changes. The content is identical to the previous edition.

Highlighting

The following highlighting conventions are used in this guide:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose
names are predefined by the system.

italics Identifies parameters whose actual names or values are to be supplied by the user.

monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a programmer,
messages from the system, or information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the Is command to list files. If you type LS, the
system responds that the command is "not found.” Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications
|AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs
|AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts
|AIX 5L Version 5.3 Commands Referencel
|AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 1|

Prerequisite Software
For the POWER-based platform, the bos.diag 4.3.3+ package is required.

For the Itanium-based platform, the bos.diag 5.1.0 package is required.

© Copyright IBM Corp. 2004, 2006 \"

Vi Understanding the Diagnostic Subsystem for AIX

Chapter 1. Introduction

This chapter contains the following topics:

* [Structure
* [Strategy

+ [Diagnostic Commands|

The section gives an overview of the diagnostic system. Key application modules are described
and their relationships to one another is shown.

Also, a figure is displayed that shows the relationship between the |Diagnostic Controller} [Diagnostid]
[Applications| and [Application Test Units]

The [Strategy| section gives an overview of the strategy used by the diagnostic system to discover and
analyze problems on the system.

The |Diagnostic Commands| section gives the usage and command line flags for the diag and diagrpt
commands.

© Copyright IBM Corp. 2004, 2006

Structure of Diagnostics

The Diagnostic System is a collection of application modules that work together to perform some software
or hardware action. This collection of application modules are comprised of various distinct components.

The following figure illustrates the diagnostic architecture:

Diagnostic

Controller
Resource Task
Selection Selection

Diagnostic Tasks
Applications (Service Aids)
Application
Test Units

Device Driver
or

Diagnostic Kernel
Extension

Diagnostic Architecture

The architecture shows that the Diagnostic Controller has two main functions:
* Resource Selection
» Task Selection

Tasks are operations that can be performed on a resource. Running Diagnostics, Displaying VPD, or
Formatting a Resource, are examples of tasks. Service aids are also considered as tasks.

Resources are devices contained by the system unit. The diskette drive and CD ROM drive are examples
of resources.

The [Function Selection Menu| contains selections allowing either resources or tasks to be displayed. When
Task Selection is made and a task has been selected, a list of resources supporting that task is displayed.
Alternatively, when Resource Selection is made, and a resource or group of resources are selected, then a
list of tasks supporting the selected resources is displayed.

2 Understanding the Diagnostic Subsystem for AIX

A|Diagnostic Application] or[Taskl may involve the use of |Application Test Unit| code, which in turn may
involve the use of a[Diagnostic Kernel Extension} or a Device Driver to gain access to the hardware.

The figure below illustrates the current diagnostic structure that allows access to diagnostic function
concurrent with system operation. Diagnostics for a given resource consists of an executable file
containing Diagnostic Application code, which controls the execution of one or more Application Test Units.
This executable is started by the Diagnostic Controller, which allows the user to select diagnostic modes
and devices to test. To properly execute the Application Test Units, the Diagnostic Application currently
must have detailed specific knowledge about each of the Application Test Units.

diag Command

v

Diagnostic Controller

i "Forked Process"

Diagnostic Application

exectu()
Test Units AIX Svst
WL LU L LI L L L LU L UL LI L Ll 4 |nterfg§e2m
Kernel e
Services . :
Device Driver

Diagnostic Structure

The exectu() interface is the call interface for Application Test Units, and contains all the information
necessary to run the Application Test Unit against a particular device and return results. PDiagex is a
special generic device driver written for use by Application Test Units, which can be used in place of the
functional device driver to provide a simple direct interface to the device under test. Doing so places a
greater requirement on the Application Test Unit to directly manipulate the device hardware, but in doing
so, it provides earlier use of the Application Test Unit during the hardware bring-up and debug phase,
since the Application Test Unit is not dependent on the availability of a working functional device driver.

Strategy for Diagnostics

The strategy for diagnostics is founded on:

» Staging diagnostics based on underlying hardware capabilities according to three levels of testing:
— Shared
— Subtest
— Full-test

* |solating defective field replaceable units (FRUs) such that there is the least impact to the system. This
is accomplished by either:

— Option Checkout
— System Checkout

Chapter 1. Introduction 3

Staging the Impact of Diagnostics
The impact of diagnostics is staged. There are three levels of tests supported by diagnostics:

Shared The tests in this category are nondisruptive. Diagnostics does not need exclusive access to run
these tests. All Diagnostic Applications (DA) should support the shared testing category since DAs
perform error-log analysis. Other possible shared tests are error circuitry testing, cyclic redundancy
checks of Loadable ROS, On Board Self Tests (provided the appropriate recovery procedures are
included), and selected functional testing such as diagnostic reads and writes.

Subtest The tests in this category apply to multiplexed resources such as Native 1/0O Planar and multiport
async cards. The sub-tests are disruptive, but only to a portion of the resource. To run these tests,
diagnostics needs exclusive access to the portion of the resource that is being tested.

Full-test The tests in this category impact the entire resource. Diagnostics must have exclusive access to
the entire resource to run these tests.

Option Checkout

If the configuration is viewed as a tree structure, diagnostics starts testing at the leaves of the tree, and
moves vertically and horizontally down the tree toward the root. The leaves represent terminal devices,
and the root is the processor.

The following algorithm generally describes the isolation strategy. It starts at an arbitrary node in the tree
and isolates to the correct FRU bucket based on the good or bad status of siblings and parent resources.

The steps are:
1. Test resource x. If no problems are detected, no further isolation is required.

2. Test a sibling of resource x, called resource y. If no problems are found, the fault of resource x is
isolated to resource x.

3. Test the parent of resources x and y. If no problems are detected, the problem has not been isolated
to a single failing resource. The FRU buckets associated with resources x and y will both be reported.
No further isolation is required. However, if the parent fails its tests, disregard the failures of resources
x and y and continue isolating the problem for the parent.

This general process of testing siblings and parents is repeated until a resource passes its tests or until a
DA indicates that no further testing is required.

The diagnostic subsystem attempts to isolate to a single failing device. When multiple child devices fail
their tests, the fault most likely lies with the parent. Thus the DA testing the parent in step 3 should name
the parent as being defective and indicate that no more devices should be tested, in which case the
diagnostic controller would only report the parent. The status of the child devices that have been tested is
identified in the DA’s control block.

System Checkout

Each resource in the system that has not been deleted from the resource selection list is tested during
system checkout. System Checkout selection is accomplished by selecting All Resources from the
[Resource Selection| Menu. User interaction is not allowed unless a problem has been detected and a
question needs to be asked to isolate the problem.

Configuration processing for system checkout is different from that for option checkout, which impacts the
effectiveness of the FRU Callout. Option checkout is the specification of an individual resource to test.
When option checkout is chosen, the option chosen is tested first, and if a problem is found, it is traced
back through its siblings and parents until it has been isolated. The configuration is processed from the
outside in. When system checkout is chosen, the configuration is processed from the inside out. For
example, the configuration is processed starting with the system planar, and works its way out on a

4 Understanding the Diagnostic Subsystem for AIX

per-card basis. First a card is tested, then the devices attached to the card are tested, and then the
devices attached to the device attached to the card are tested, and so on. This process is repeated for
each card attached to the system planar.

Option Checkout is more effective because the children are tested before the parent, which allows the
parent to determine its own culpability above and beyond its own test results. The parent can implicate
itself for no other reason than that its children are failing.

Diagnostic Commands

This chapter describes the commands available in the Diagnostic Subsystem.

+ [diag Command
. Command

diag Command

The diag command performs hardware problem determination. When you suspect there is a problem,
diag assists you in finding it. The command has the following syntax:

[-a]I[-s[-c]][-Edays][-e]I[-d Device[-c][-v][-e][-A]]I[-B[-c]1]I[-T taskname] |
[-S testsuite] | [-e -d Device -L pending | complete]

Most users should enter the diag command without any flags. The following flags perform various actions:

-A Advanced mode. Default is non-advanced mode.

-a Processes the changes in the hardware configuration. For example, missing and/or new
resources.

-B Tests the base system devices, such as planar, memory, processor.

-C Indicates that the machine will not be attended. No questions will be asked. Results are
written to standard output. Normally used by shell scripts.

-d Device Names the resource that should be tested. The Device parameter is a resource name
displayed by the command.

-E Days Number of days used to search the error log.

-e Causes the device’s [Diagnostic Application|to be run in|Error Log Analysis| mode.

-L pending | complete Log Repair Action for a resource specified with the -d and -c flags. Use pending if the part
has been replaced, but it is not yet known if this part will remain in the system. Use
complete if the part has been replaced and it is known that this part will remain in the
system.

-S testsuite Tests the Test Suite Group:

1. Base System

2. /0O Devices

3. Async Devices

4. Graphics Devices
5. SCSI Devices

6. Storage Devices

7. Commo Devices

8. Multimedia Devices

-s Causes the system to be tested in[System Checkout| mode.

-T taskstring Specifies a particular Task to execute. The taskstring depends on the particular task to be
executed. Seefor more information.

-V System Verification Mode. Default is Problem Determination mode.

Chapter 1. Introduction 5

diagrpt Command
Displays the conclusions made by diagnostics. The command has the following syntax:

lusr/lpp/diagnostics/bin/diagrpt [[-0] | [-s mmddyy 1| [-a]|[-r]
The diagrpt command reports the conclusions made by diagnostics.

If the user does not specify a flag, a scrollable menu with all diagnostic conclusion reports is displayed.

-0 Displays the latest diagnostic conclusion.

-smmddyy Reports diagnostic conclusions made after the date specified (mmddyy).
-a Displays the long version of the Diagnostic Event Log.

-r Displays the short version of the Diagnostic Event Log.

6 Understanding the Diagnostic Subsystem for AIX

Chapter 2. Operating Environments

This chapter contains the following topics:
+ [Online Diagnostics|

+ [Standalone Diagnostics|

+ [NIM Diagnostics]|

The Diagnostics operating environment consists of online and standalone diagnostics. The two
environments differ in the way they are packaged, installed, and executed. Diagnostics is a collection of
applications, the majority of which are device specific. These applications are packaged as filesets, with
each fileset associated with a device.

Online diagnostics is commonly referred to as running diagnostics from an installed hardfile. This implies
that the operating system, and the various device related packages have been installed.

Standalone diagnostics are packaged on removable media. The removable media contains the operating
system, and all device related applications, device drivers, ODM stanzas, etc. supported at a particular
release level. Third party devices and other devices not available for inclusion on the removable media at
release time are supported by [Diagnostic Supplemental Medial

Hardware Diagnostics can also be performed on NIM clients using a diagnostic boot image from a NIM
server, rather than booting from removable media or hardfile. Not only does this eliminate the need for
diagnostic boot media, it eliminates the need to have diagnostics installed on the local hardfiles of the

client machines.

Diagnostics are a secure application. The user must know the appropriate password to run diagnostics.
Diagnostics are inherently destructive, but this destructiveness is managed. The run-time status of each
device identifies the level of diagnostics that can be safely executed. In addition, the testing has been
structured so that some tests can only be executed in standalone mode.

Online Diagnostics

Online diagnostics can be run in three modes:

Concurrent Mode Allows the normal system functions to continue while selected resources are being
checked.

Service Mode Allows checking of most system resources.

Maintenance Mode Allows checking of most system resources.

Concurrent Mode

Concurrent mode provides a way to run online diagnostics on some of the system resources while the
system is running normal system activity. Because the system is running in normal operation, devices such
as the following may require additional actions by the user or diagnostic application before testing can be
done.

» SCSI adapters connected to paging devices

» Disk drive(s) used for paging, or are part of the rootvg

» LFT devices and graphic adapters if a Windowing system is active
* Memory

* Processor

© Copyright IBM Corp. 2004, 2006 7

Service Mode

Service mode provides the most complete checkout of the system resources. This mode also requires that
no other programs be running on the system. All system resources, except the SCSI adapter and the disk
drives used for paging, can be tested. However, note that the memory and processor are only tested
during Power On Self Tests (POSTSs).

Service Mode is entered by booting the operating system in service mode.

Maintenance Mode

Maintenance mode provides the exact same test coverage as Service Mode. The difference between the
two modes is the way they are invoked. Maintenance mode requires that all activity on the operating
system be stopped.

The shutdown -m command is used to stop all activity on the operating system and put the operating
system into maintenance mode. After setting the terminal type, use the command to start Diagnostics.

Standalone Diagnostics (POWER-based only)

Standalone diagnostics provide a method to test the system when the online diagnostics are not installed
and a method of testing the disk drives that cannot be tested by the online diagnostics.

Standalone diagnostics are currently packaged on [CDROM| They are run by placing the Standalone
Diagnostic CDROM into the cdrom drive, then booting the system in service mode.

The Standalone Diagnostic CDROM file system is mounted over a RAM-file system for execution.
Because of this, the CDROM drive (and the SCSI controller that controls it) cannot be tested by the
standalone diagnostics.

Device support that is not on the Diagnostic CDROM must be supported by |Diagnostic Supplemental|

Tasks not Supported in Standalone Diagnostics

Some tasks and service aids are not supported in standalone diagnostics. This is due to the fact that
Standalone diagnostics runs from a RAM-file system, they have no direct access to the hardfile.

See the [Diagnostic Task Matrix| for the list of supported tasks and their operating environments.

Console Configuration Diskette

The Standalone Diagnostic Package allows the use of a Console Configuration Diskette to accomplish two
tasks:

* Use a Different Async Terminal as the Console
» Set the Refresh rate on a High-Function Terminal

The [Create Customized Configuration Diskette] task allows this diskette to be created.

Different Async Terminal for Console

The Standalone Diagnostic Package allows a terminal attached to any RS232 or RS422 adapter to be
selected as a console device. The default device is an RS232 tty attached to the first native serial port.
However, a file is provided allowing the console device to be changed. The file name is /etc/consdef. The
format of the file is:

COMPONENT_NAME: (cfgmeth) Device Configuration Methods
#

FUNCTIONS: consdef

#

ORIGINS: 27, 28

8 Understanding the Diagnostic Subsystem for AIX

(C) COPYRIGHT International Business Machines Corp. YYYY,YYYY
A11 Rights Reserved
Licensed Materials - Property of IBM

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp

The console definition file is used for defining async terminal
devices, which are the console candidates at system boot. During
system boot,all natively attached graphic displays, any async
terminal on native serial port sl, and async terminals defined in
this file will display the "Select System Console" message. Only
one terminal may be selected as console. If the terminal
attributes are not specified in this file, default values from the
odm database are assumed. However, the Tocation and connection
attributes are mandatory. The Tocation value may be displayed with
the 1sdev command.

The entries must be in the following format:

ALTTTY:
connection=value
lTocation=nn-nn-ss-nn
attribute=value

ALTTTY:
connection=value
lTocation=nn-nn-ss-nn
attribute=value

Lines in this file must not exceed 80 characters. All comments
must be preceded by a pound sign (#) in the first column.

For backward compatibility, the "ALTTTY:" keyword is not required
for the first entry.

For example, to display the console selection message on the ttys
attached to the S1 and S2 ports, uncomment the following stanzas:

ALTTTY:
connection=rs232
location=00-00-S1-00
speed=9600
bpc=8
stops=1
xon=yes
parity=none
term=1bm3163

ALTTTY:
connection=rs232
location=00-00-S2-00
speed=9600
bpc=8
stops=1
xon=yes
parity=none
term=ibm3151

S S S e e T SR S IR e S S S T S SR S SR SR S S S SR S S TR S SR S S SR S Sk S S SR S Sk S SR S S R S Sk S S SR S Sk S SR S S 3 S Sk SR S 3R S 3k

High-Function Terminals 60/77-Mhz Refresh Rate

Certain high-function terminals may be set to run at a different refresh rate. The Console Configuration
Diskette may be created setting the appropriate refresh rate for the terminal used as the console. The
Standalone Diagnostic Package uses the default 60-Mhz rate. The [Create Customized Configuration|

Diskette| task allows this value to be changed, and a new Console Configuration Diskette to be created.

Chapter 2. Operating Environments

9

NIM Diagnostics

Hardware diagnostics can be performed on all NIM clients using a diagnostic boot image from a NIM
server, rather than booting from removable media or hard disk. This is useful for standalone clients,
because the diagnostics do not have to be installed on the local hardfile. Diagnostic support comes from a
SPOT resource.

In addition, diskless and dataless clients have another way of loading diagnostics from the network. You
can boot a diskless or dataless client from the network the same way you do for normal use, but with the
machine’s key mode switch in the Service position. If the client’s key mode switch is in the Service
position at the end of the boot process, hardware diagnostics from the server's SPOT are loaded. If a
standalone client boots with the key in the Service position, the diagnostics (if installed) are loaded from
the hard disk.

Running diagnostics in a NIM environment is very similar to running in Standalone mode.

See |Installing AlX| for more information on the NIM environment.

10 Understanding the Diagnostic Subsystem for AIX

Chapter 3. Diagnostic Components

This chapter contains information on the various components that make up the Diagnostic Subsystem
environment.

+ [Diagnostic Controller|

+ [Diagnostic Applications|

+ [Tasks & Service Aids|

+ |Application Test Units|

+ |Diagnostic Kernel Extension|
[Diagnostic Library|
[Diagnostic Object Classes|

+ |Diagnostic Header Files|

e |User Interface

[Diagnostic Menu Examples|

Diagnostic Controller

The Diagnostic Controller function is started when the root user enters the command. Various flags
that allow operations to be performed directly may be specified as input. For example, a flag may specify
that the system or a particular resource is to be tested or that the system is to be run unattended. If no
flags are specified, then the Diagnostic Controller presents menus to determine what the user wants to do.

|Diagnostic object classes| define the resources and tasks available for the Diagnostic Controller to work
with. Predefined data in these object classes specify various attributes about the resources and tasks that
may be available on the system.

The Customized Device object class (CuDv)contains information describing the resource instances
actually defined to the system. A defined resource instance may or may not have a corresponding device
driver that is used to control it. A resource may be a rack, drawer, adapter, disk, memory card, floating
point chip, planar, bus, and so on.

The Diagnostic Controller is a data-driven program. It uses information found in both the CuDv and the
[Predefined Diagnostic Resources| object class (PDiagRes) to generate a list of supported resources. This
list of supported resources is used to build the Resource Selection menu.

The Diagnostic Controller supports dynamic reconfiguration of processors by updating the Resource
Selection menu if a reconfiguration operation occurs while the diagnostic controller is running.

Given the user’s selection from the [Resource Selection Menul, the Diagnostic Controller employs the
PDiagRes object class to determine the appropriate [Diagnostic Application| (DA) to start. The Diagnostic
Controller waits for the DA to complete. Diagnostic Application status is returned by the exit system call.

The Diagnostic Controller employs a system-wide view of the configuration enabling the Diagnostic
Controller to walk through the configuration database testing resources. For example, if a resource fails its
tests, the Diagnostic Controller may attempt to test other resources until the problem has been isolated.
The Diagnostic Controller understands the dependencies between the resources. The term "resource” is
used in a generic sense and includes adapters, as well as terminal devices.

The Diagnostic Controller analyzes the conclusions made by the Diagnostic Applications and generates a

Problem Report. The Problem Report lists the field replaceable units (FRUs) that should be replaced, the
probability of failure associated with each FRU, and the reason why the diagnosis was made.

© Copyright IBM Corp. 2004, 2006 11

The Diagnostic Controller writes its analysis to the directory /etc/Ipp/diagnostics/data, and the [diagrpf
command, or|'Display Previous Diagnostic Results’|task, can be used at a later date to retrieve these
results.

In addition, notification of problems can be sent to external programs registered with the Diagnostic
Controller. The registration is by ODM objects in the PDiagAtt class. There are 2 possible registrations:

For Systems attached to a Hardware Management Console:

PDiagAtt:
DType = <fileset nickname>
DSClass = ""
attribute = "notify_service"
value = ""
rep = "S"
DClass = ""
DApp = <complete path to external notification program>

The program specified in DApp of the notify_service attribute is invoked when the system is managed by
a Hardware Management Console (HMC). The program is invoked with the diagnostic event log sequence
number of the diagnostic conclusion. The diagnostic event log API can be used to extract the specific data
of the diagnostic analysis and perform any customized notifications.

The <fileset nickname> is any 15 character (or less) string that represents which fileset ships this stanza.
Diagnostics does not use the nickname, but a unique value per fileset is required in DType to facilitate
installing and updating the attribute because the same attribute name can be shipped in other filesets. For
example, fileset devices.chrp.base.diag would ship a stanza like:
PDiagAtt:

DType = "DevChrBasDia"

DSClass = ""

attribute = "notify_service"

value = ""

rep =

DClass

DApp =

"S"
/usr/1pp/diagnostics/bin/diagServiceEvent

For Systems not attached to a Hardware Management Console:

PDiagAtt:
DType = <fileset nickname>
DSClass = ""
attribute = "notify_extern"
value = ""

rep = "s
DClass = ""
DApp = <complete path to external notification program>

The program specified in DApp of the notify_extern attribute is invoked when the system is not managed
by a Hardware Management Console (HMC). The program is invoked with the diagnostic event log
sequence number of the diagnostic conclusion. The diagnostic event log API can be used to extract the
specific data of the diagnostic analysis and perform any customized notifications.

The <fileset nickname> is any 15 character (or less) string that represents which fileset ships this stanza.
Diagnostics does not use the nickname, but a unique value, per fileset, is required in DType to facilitate
installing and updating the attribute because the same attribute name can be shipped in other filesets. For
example, fileset devices.chrp.base.diag would ship a stanza like:

PDiagAtt:
DType = "DevChrBasDia"
DSClass = "*"
attribute = "notify extern"
value = ""

12 Understanding the Diagnostic Subsystem for AIX

r.‘ep = "S“
DClass =
DApp = /usr/1pp/diagnostics/bin/diagServiceEvent

Control Flow of the Diagnostic Controller
Invoking the command without any flags starts the Diagnostic Controller which performs the following:

1.

Displays the [Operating Instructions| menu. The version number will reflect the version of the Diagnostic
code installed.

2. Displays the [Function Selection| menu, and starts the command associated with the user’s selection.

Invoking the command with flags starts the Diagnostic Controller and passes the flags on to the
Controller.

The Diagnostic Controller performs the following tasks:

1.

Initialize the user interface. It is assumed that if there is no display and keyboard, then the initialization
will fail.

 If -a, then performs configuration management.

* |If -s, then performs system checkout once.

» If -S#, then runs diagnostics on the resources indicated by the Test Suite ID.

» If a flag was not specified, Diagnostics prompts the user.

From the [Function Selection| Menu, allows the user to select one of the following:
» Select Diagnostics

* Select Advanced Diagnostics

» Select Task Selection Menu

» Select Resource Selection Menu

If Diagnostics or Advanced Diagnostics is selected, then the following happens:

+ The [Diagnostic Mode Selection| menu is displayed, to determine if System Verification or Problem
Determination should be run.

» |If Problem Determination is chosen, then the Diagnostic Controller automatically scans the error
log for any PERMANENT HARDWARE errors that have been logged within the last 7 days to
determine if any devices should be automatically tested. A problem report may be generated.

» Walks the configuration database to determine which resources in the current configuration can be
tested. This information is presented in the |Resource Selection Menul

» |If Advanced Diagnostics Routines is chosen, and the system is in |On|ine Service| mode of
operation, the Diagnostic Controller will display the|!est Method| menu to determine if the tests
should be repeated.

« |Initializes the input parameters to the Diagnostic Application (DA), which are contained in the
[TMInput - Test Mode Input] object class.

+ Runs the [Diagnostic Application| (DA) of the resource to be tested.
» Waits for the DA to complete.
« The Diagnostic Controller then:

— Performs isolation process.

— Presents conclusions to the screen.

— If no trouble is found, diagnostics exits with a return value of 0. Otherwise, a value of 1 is
returned if the hardware was tested bad.

If Task Selection Menu|is selected, then the following happens:
* The Diagnostic Controller displays a list of Tasks that are available for the system.

Chapter 3. Diagnostic Components 13

« After a task has been selected, a|Resource Selection Menu| appears if the selected task supports a
resource selection. After selection of a Resource, the task is called with the selected resource name
as a command-line argument.

» If the selected task does not support resource selection, then the task is invoked.
5. If[Resource Selection Menu|is selected, then the following happens:
* The Diagnostic Controller displays a list of Resources available on the system.

» After a Resource has been selected, a Task Selection Menu will appear containing the commonly
supported tasks for each selected Resource. After selection of a task, the task is invoked.

Return Status
The Diagnostic Controller returns the following values:

Diagnostic Controller Value | Meaning

DIAG_EXIT_GOOD 0 No problems found
DIAG_EXIT_DEVICE_ERROR 1 Error running diagnostics
DIAG_EXIT_INTERRUPT 2 Received an interrupt while running diagnostics
DIAG_EXIT_NO_DEVICE 3 Device to test was not found in system configuration
DIAG_EXIT_BUSY 4 Another Dctrl program is running
DIAG_EXIT_LOCK_ERROR 5 Cannot create lock file for diagnostic controller
DIAG_EXIT_OBJCLASS_ERROR 6 Error accessing ODM database
DIAG_EXIT_USAGE 7 Usage error

DIAG_EXIT_SCREEN 8 Screen size incorrect
DIAG_EXIT_NoPDiagDev 9 Device not supported by diagnostics
DIAG_EXIT_NO_DIAGSUPPORT 10 Diagnostics is not supported
DIAG_EXIT_NOT_MISSING 11 Device is not missing
DIAG_EXIT_NO_AUTHORIZATION 12 User is not authorized to run diagnostics
DIAG_EXIT_KERNSUPPORT 13 Device is not supported on the 64-bit kernel

Diagnostic Applications

Note: The Diagnostic subsystem supports 32-bit diagnostic applications only.

Most resources in a system have a Diagnostic Application (DA), started by the [Diagnostic Controller} that
tests an area. DAs are associated with each resource supported by diagnostics in the configuration
database.

DAs analyze the error log, display prompts and questions to the user, control which tests are run, call
[Application Test Units| and analyze test results.

The following topics are discussed in detail:
+ [Device Configuration|
+ [Determining the Level of Tests to Execute]
+ [Drivers Used for Diagnostic Purposes]
— [Production Driver Used for Diagnostic Purposes|
— |[Separate Diagnostic Driver Used for Diagnostic Purposes|
— |Diagnostic Kernel Extension Used for Diagnostic Purposes|
* |Acquiring a Greater Share of the Resource]

14 Understanding the Diagnostic Subsystem for AIX

[Error Log Analysis|

+ [Enhanced Error Handling Option|

+ [Persistent Variables|

[Field Replaceable Units (FRUs)|

[Specifying a Text Conclusion|

[Library Restrictions for Diagnostic Programs|
+ |Guidelines for Writing Diagnostic Programs using C++
» [Completion Status for Diagnostic Applications|
[Control Flow of a Diagnostic Application|
[SRN Architecture]

[Diagnostic Application Code Checklist]

Device Configuration

In some cases, the DA will have to configure a device in order to test it. If the Configuration Method
associated with the device does not contain the code that is required to load the device driver into the
kernel and initialize it, then the DA performs this function.

However, in most cases, the DA may use one of the diagnostic library functions provided to perform the
configuration. The following library functions aid in the configuration/unconfiguration process:

* |configure_device]
.

+ |diagex_cfg_state]
+ |diagex_initial_state

If a resource is reconfigured, then it must be restored to its initial state before the DA exits. Also, never
assume that the parent resource(s) are always configured.

Determining the Level of Tests to Execute

Each DA is responsible for determining the level of tests that can be safely executed. This determination is
a function of how the underlying device drivers support access to the device.

For nonshared, nonmultiplexed devices, the DA should attempt to open() the device with read/write
privileges and thus determine its access privileges. For shared or multiplexed devices, a more complicated
strategy needs to be developed. Perhaps the simplest method - at least from an application standpoint - is
to add support for an openx() system call to the device driver, where the ext parameter distinguishes
between port-level and card-level diagnostics.

Drivers Used for Diagnostic Purposes

There are different scenarios for configuring a resource to test. Depending on the relationship the resource
to be tested has with other resources, it may be desirable to use one method over another. For instance,
to unconfigure a resource in order to load a separate diagnostic driver or kernel extension, it is necessary
to unconfigure all of the children resources connected to the particular resource, if any. This could cause a
problem if the child resources are in use. In this case, it is desirable to use the production driver for
diagnostic purposes. In all cases, it is important to restore the resource (and child resources) to their
original state after testing.

Production Driver Used for Diagnostic Purposes

If the resource is in the DEFINED state, the resource must be configured before testing. After the resource
is configured, tests can be performed on the resource, and then the resource must be put back into its
original state.

Chapter 3. Diagnostic Components 15

Separate Diagnostic Driver Used for Diagnostic Purposes

If the resource is in the DEFINED state, the diagnostic driver may be loaded for testing, then unloaded
after testing. If the resource is in the AVAILABLE state because the production driver is loaded, it is
necessary to unload the production driver, load the diagnostic driver, perform the tests, unload the
diagnostic driver, and then reload the production driver. Any child resources must be unconfigured before
the resource under test can be unconfigured.

Diagnostic Kernel Extension Used for Diagnostic Purposes

If the resource is in the DEFINED state, the resource must be put into the DIAGNOSE state for testing. If
the resource is in the AVAILABLE state because the production driver is loaded, it is necessary to
unconfigure the resource and all its children, reconfigure the resource into the DIAGNOSE state, test i,
and then reconfigure the resource and all its children back to their original states.

Acquiring a Greater Share of the Resource

If further testing is required, then the DA should assist the user in determining if the user should proceed
with the testing.

For some devices, it may be best to ask the user to switch to another window and vary the device offline
before continuing. For others, it may be best to send software-terminate signals. And for still others, it may
be best to start the commands that have been specifically provided to gracefully degrade the system.

Error Log Analysis

If the dmode field in the|i Mlnpuﬂ, Test Mode Input, object class is set to either DMODE_ELA or
DMODE_PD, then [Error Log Analysis| should be performed. Error log analysis should be considered a
shared test.

The |getdainput| subroutine is used to get the test mode input parameters.

resource_alias Attribute

When a DA needs to analyze error logs from multiple resources, like the base system DA and system
planar, memory and |12 cache resources, or a DA wants to analyze error logs that are logged against
hardware events, like machine checks or environmental and power warnings (EPOW), then a PDiagAtt
stanza must be used to define the alias between the device under test and the additional resources.

For example, the DA for the system planar on the RSPC platform performs error log analysis for machine
checks that are logged by the RSPC Machine Check Error Handler. The following PDiagAtt stanza must
be used to define the alias between the resource, sysplanar0, and the machine check event,
MACHCHECK.
PDiagAtt:

DClass = "planar"

DSClass = "sys"

DType = "sysplanar_rspc"

attribute = "resource_alias"

value = "MACHCHECK"

rep = "n
DApp = nn

Thus, any error logged against "MACHCHECK" is analyzed by the DA for the resource of the class,
subclass and type of "planar/sys/sysplanar_rspc”, which is typically "sysplanar0”. Any repair action done
for the resource (sysplanar0) is associated with the error logged against "MACHCHECK".

Another example: The Diagnostic Application for the base system on the CHRP platform performs error log
analysis for the firmware generated error logs for the system planar, memory and |2 cache resources. The
following stanzas are used to invoke error log analysis from Problem Determination mode and to record
the repair action in the error log after the system verification procedure.

16 Understanding the Diagnostic Subsystem for AIX

PDiagAtt:
DClass = "planar"
DSClass = "sys"
DType = "sysplanar_rspc"
attribute = "resource_alias"
value = "mem@"
rep = "
DApp = nn

PDiagAtt:
DClass = "planar"
DSClass = "sys"
DType = "sysplanar_rspc"
attribute = "resource_alias"
value = "12cache0"
rep = HnH
DApp = unn

Enhanced Error Handling (EEH) Option

EEH is an error-recovery mechanism for errors that occur during load and store operations on the PCI
bus. EEH is made possible by EADS chips incorporated in newer POWER-based servers. In effect, each
PCI slot on the EADS is its own PCI bus. This allows each adapter to be isolated (which is useful if PCI
bus errors occur because error recovery can occur without affecting the operation of other adapters).
Isolating the failing adapter prevents a faulty component from causing problems on the system and allows
continued operation of other PCI devices during error recovery. Information about the faulty component
and nature of the error (recoverable versus permanent) is logged in the AIX Error log.

The Diagnostics Application interface includes the [pdiag_set_eeh_option| |pdiag_set_slot_reset], and
[pdiag_read_slot_reset subroutines. These subroutines provide the DA with the necessary tools for
adequate testing on the EEH option. The DA Support for this feature requires that the DA perform the
following sequence of instructions in order:

1. Open I/O Adapter Test Units (TU_OPEN).

2. Call|pdiag_read_slot_reset
Verify that the EEH option is supported.

3. Execute full suite of Test Units (normal Test Units execution for affected component).
If an EEH error is reported and EEH is supported:
- Call pdiag_set_slot_reset]
- Set the PCI slot to reset state (reset active) for the 1/0 adapter being tested.
- Report EEH error.
If an EEH error is reported and EEH is not supported:
- Report a software error

4. Close 1/0O Adapter Test Units (TU_CLOSE).

Supported Devices
Device Driver support for EEH is limited to the following devices that are supported by AIX 5L Version 5.2
with the 5200-01 Recommended Maintenance package:

Storage Adapters:
Gigabit Fibre Channel
PCI SCSI RAID Devices
PCI Ultra SCSI Devices
PCI Dual Channel Ultra3 SCSI Adapter (6203) *
PCI Dual Channel Ultra2 SCSI Adapter (6205) *

Communications and connectivity (PCI bus type)::
Token-Ring PCI 4/16 Adapter (2920 and 4959)

Chapter 3. Diagnostic Components 17

IBM® Ethernet 10/100 Mbps (2968)

10/100 Mbps Ethernet PCI Adapter Il (4962)

IBM 4-Port 10/100 Base-TX Ethernet PCI Adapter (4961) *
10/100/1000 Base-T Ethernet PCl Adapter (2975)

Gigabit Ethernet (2969)

TURBOWAYS® 622 Mbps PCI MMF ATM Adapter (2946)

2-Port Multiprotocol PCI Adapter (2962)

8-Port and 128-Port 232/422 Async PCI Adapters (2943 and 2944)
IBM 64-bit/66 MHz PCI ATM 155 adapter (4953 and 4957)

Encryption Adapters:
IBM PCI 4758 Cryptographic Coprocessor Card (4958 and 4963) *

IBM Crypto Accelerator (4960) *

Graphics and Miscellaneous:
GXT135P Graphics Adapter (2848) *
USB Open Host Controller (2737) *
GXT4500P (2842)*

GXT6500P (2843)*

Note: The devices above that are denoted with an asterisk (*) require the user to intervene and manually
recover the device after a bus error is encountered (for example, through device reconfiguration).
Also, you may need to reboot Graphics and USB devices because those devices may not
completely recover. If the device encounters an error during the configuration process, the device
will be left in the defined state until there is a subsequent configuration attempt.

Known Problems
The following EEH error labels contain incorrect Description fields:

Table 1. Description Fields

Label Incorrect Description Correct Description

EEH_ERR Unable to allocate in JFS2 snapshot EEH Kernel services error
PCI_TEMP_ERR Write error on JFS2 snapshot EEH temporary error for adapter
PCI_PERM_ERR Unable to write into a JFS2 snapshot EEH permanent error for adapter

All other fields in the error log are correct and relevant to the EEH error. Error Ids contained in the
lusr/include/sys/errids.h file are also correct. When contacting IBM service and support, please use the
Error Id field. The following are the Error Ids for these labels:

Table 2.

Label Error ID
EEH_ERR A1E9B3BF
PCI_TEMP_ERR 07AFC8D7
PCI_PERM_ERR D1E7854F

Persistent Variables

DAs must store state variables in the [DAVars| Diagnostic Application Variables, object class to support
loop mode. DAs are executed for each pass of loop mode, and thus lose state.

The [putdavar and |getdavar subroutines are used to put or get persistent variables.

18 Understanding the Diagnostic Subsystem for AIX

Field Replaceable Units (FRUs)

DAs report FRU Buckets to identify parts that need to be replaced. The subroutine is used to add
a FRU bucket to the [FRU Bucketf] object class in the configuration database.

As part of the FRU information, a FRU part number for a fru not in the ODM database can be returned by
the DA. The FRU part number is placed in the DAVars object class. Also, if the FRU bucket contains a
sub-FRU (for example a memory module or daughter cards), the DA must return its physical or logical
location code as part of the FRU bucket.

Each DA should base its good or bad status on the status of its children. A resource may pass its tests
and be labeled bad when it has multiple children that have been labeled bad.

If a problem is detected with resource x, which has a parent called resource y and a sibling called
resource z, then two FRU Buckets should be output.

* FRU Bucket 1 should identify the resources x and y, and any cables that can be identified. If the cables
cannot be uniquely identified, then the Service Repair Action should implicitly include any cables that
may be needed.

* FRU Bucket 2 should only identify resource x and any cables if possible.

The Diagnostic Controller decides which FRU Bucket to use, based on the good/bad status of the sibling.
If the sibling passes its tests, then FRU Bucket 2 is named.

Specifying a Text Conclusion

DAs can also specify a menu as a conclusion. A menu should be specified if the repair action can be
performed by the customer. For example, if the problem can be solved by formatting a hard disk, then a
menu should be specified.

Thesubroutine performs this function by adding the menu goal to the [Menugoal object class]

Library Restrictions for Diagnostic Programs

Library libc.a.min is the libc included in the standalone diagnostic package. Do not use any function that
is not part of libc.a.min in your application. If a function is used in a diagnostic program that is not an
exported symbol of libc.a.min, then an immediate software error (803-xxx) occurs when attempting to run
the diagnostic program in standalone diagnostic mode.

To ensure that all symbols used by your diagnostics application are included in the standalone
environment, compile and link the application code with the libc.a.min library found in the /usr/ccs/lib
directory.

One method is to create a directory containing the libraries needed for linking:
1. Copy libraries libodm.a, libcfg.a, and libcrypt.a to the new directory.
Make a link from /usr/ccs/lib/libc.a.min to libc.a in the new directory.
Make a link from /usr/ccs/lib/libc.a.min to libbind.a in the new directory.
Export LIBPATH to the new directory.

Compile and Link your application.

o~ e

You can ignore any unresolved symbols coming from libasl, or others that you know about.

Errors found indicating unresolved symbols must be fixed before the program will properly execute in
standalone diagnostics mode.

Chapter 3. Diagnostic Components 19

Guidelines for Writing Diagnostic Programs using C++
1. The standard library libC.a is not supported. Do not use this library’s API.

2. All of the language support functions in libC.a need to be statically linked at compile time. Use -1Cns.a
and -bI:/usr/Tpp/x1C/1ib/1ibC.imp arguments to compile with xIC.

3. Use an exception only for exceptional cases. For example, an exception should not be used for a
program’s normal flow of control.

4. Never throw an exception across a shared library and executable boundaries.
5. No kernel extension shall be written in C++.

Completion Status for Diagnostic Applications
DAs must issue the macro DA_EXIT() to exit.

Individual values can be set by calling the appropriate [DA_SETRC_XXXXXX()| macro definition.

The following values are defined:

DA_STATUS_GOOD No problems were found.

DA_STATUS_BAD A FRU Bucket or a Menu Goal was reported.

DA_USER_NOKEY No special function keys were entered.

DA_USER_EXIT The Exit key was entered by the user.

DA_USER_QUIT The Cancel key was entered by the user.

DA_ERROR_NONE No errors were encountered performing a normal operation such as
displaying a menu, accessing the object repository, and allocating
memory.

DA_ERROR_OPEN Could not open the device.

DA_ERROR_OTHER An error was encountered performing a normal operation.

DA_TESTS_NOTEST No tests were executed.

DA_TEST_FULL The full tests were executed.

DA_TEST_SUB The subtests were executed.

DA_TEST_SHR The shared tests were executed.

DA_MORE_NOCONT The isolation process is complete.

DA_MORE_CONT The path to the device should be tested. The next DA to be called is

either the parent or sibling, depending on the value of DNext in the
Predefined Diagnostic Resources object class.

Control Flow of a Diagnostic Application
The DA performs these tasks:
1. Displays first stand-by menu.

2. Obtains its input from the [TMInput object class.

3. References the state1 and state2 variables in the TMInput object class to determine if the child
devices which were tested during the current session are defective. If so, then the DA should name
the parent as being bad.

Determines the level of tests to run.

Calls TU_OPEN.

Calls|Application Test Units| (TU).

Calls TU_CLOSE.

Reconfigures the device if DA caused it to be configured.

Performs error-log analysis if the dmode variable in the TMInput object class is equal to PD or ELA.
Returns status to the Diagnostic Controller through the DA_EXIT() macro call.

©C 0O ®®NOO A

20 Uunderstanding the Diagnostic Subsystem for AIX

SRN Architecture

Diagnostic applications report problems through SRNs (Service Request Numbers). SRNs take the
following forms:

» Six-digit SRNs consist of two grouping of three digits seperated by the character "-" (for example,
922-101, where the first group of three digits is referred to as the source number. The second group of
three digits is referred to as the reason code. The source number is a unique number that identifies the
diagnostic application that produced the SRN. The source number is usually synonymous with the LED
field of the PADV object class of the configuration database. For a diagnostic applications that can not
use the LED value, for whatever reason, a value must be assigned to avoid duplication. The reason
code can be used to identify a particular failure cause detected by the diagnostic application.

» Other SRN Types. See the subroutine for details.

Six-digit SRNs should be grouped so that each set of FRU callouts are grouped together. For example, if a
Diagnostic Application callout consists of:

* 10 SRNs for FRU A
* 20 SRNs for FRU B
* 5 SRNs for FRU A most likely with FRU B next
* 6 SRNs for FRU B most likely with FRU A next

Then the SRNs should be grouped like the following:
* 921-111 to 921-120 FRU A

* 921-131 to 921-150 FRU B

* 921-211 to 921-215 FRU A FRU B

+ 921-221 to 921-226 FRU B FRU A

The guidelines for the Reason Codes for SRN Source Numbers 700 to 799 and 811 to 999 that are not
decoded from some type of special information are:

000 Reserved

001 Indicates that an adapter or device could not be found

002 to 100 Reserved

101 to 199 Reserved for non-ELA callouts with a single FRU

200 to 299 Reserved for non-ELA callouts with two FRUs

300 to 399 Reserved for non-ELA callouts with three FRUs

400 to 499 Reserved for non-ELA callouts with four or more FRUs

500 to 599 Reserved for non-ELA cases that require a special action such as waiting for a thermal device to
cool or checking the level of a device.

600 to 699 Reserved for ELA callouts with a single FRU

700 to 799 Reserved for ELA callouts with two or more FRUs

800 to 899 Reserved for ELA cases that require a special action, such as waiting for a thermal device to cool
or checking the level of a device.

900 to 999 Reserved

This is done to group the SRNs with like FRUs into one entry in the SRN Tables.

Diagnostic Controller Generated SRNs

The following table lists SRN generated by the diagnostic controller when the event shown in the
description column occurs.

Note: "xxx" in the following table represents the source number of the diagnostic application that
executed.

Chapter 3. Diagnostic Components 21

SRN Description

802-xxx The diagnostic did not detect an installed device (Online
Diagnostics).

803-xxx An error not related to the diagnostic tests occurred.

804-xxx A halt occurred in the diagnostic application.

801-101 The diagnostics did not detect an installed device

801-102 (Standalone Diagnostics).

Source Numbers
The following source numbers are defined for use by third party vendors.

Note: If the LED field of the PdDV object class for a particular device is different than the source number
shown in the table below, the LED takes precedence. Source Numbers shown in the following table

are hexadecimal values.

Source Number Description

661 IDE Tape Drive

66a USB Open Host Controller Type
66b USB Universal Host Controller Type
74b ATM Adapter

74d Sound Card

74e Fibre Channel Adapter

892 Graphics Display Adapter

893 Local Area Network (LAN) Adapter
894 Async Protocol Adapter

901 SCSI Protocol Device

902 Graphics Display

904 Parallel Port Attached Device

753 IDE CD ROM Drive

891 SCSI Device Adapter

752 IDE Disk Drive

805 CD Read/Write Drive

71 Generic Adapter (Not covered above)

Diagnostic Application Code Checklist

The following checklist can be helpful in ensuring successful Diagnostic Application (DA) code.
1. Code must execute Good Machine Path (GMP) testing without abending or returning an SRN under

the following conditions:

a. IPL Mode: Service from hard disk.
b. Select Advanced mode.

c. Select PD mode.

d. Run a single time.

Follow all instructions presented by the DA. If the question presented on a screen is unclear, note the

ambiguity and answer the question as you understand it.

22 Understanding the Diagnostic Subsystem for AIX

Use wrap plugs where required. Unplug cables as required.

Look for:

a. Spelling errors

b. Grammatical errors

Code must execute GMP testing without abending or returning an SRN under the following conditions:
a. IPL Mode: Service from CD-ROM.

b. Select Advanced mode.

c. Select PD mode.

d. Run a single time.

Use wrap plugs where required. Unplug cables as required.

Code must execute GMP testing without abending or returning an SRN under the following conditions:
a. IPL Mode: Normal.

b. Run diagnostics from command line in no-console mode.
diag -cd device

c. Run diagnostics from command line in no-console Advanced mode.
diag -Acd device

Code must execute Good Machine Path (GMP) testing without abending or returning an SRN under
the following conditions:

a. IPL Mode: Service from hard disk.
b. Select PD mode.

c. Select Advanced mode.

d. Select ALL Resources.

Follow all instructions presented by the DA. If the question presented on a screen is unclear, note the
ambiguity and answer the question as you understand it.

Look for: No interactive menus displayed while the application is executing.

Other test scenarios include:

1.

Bring the device to the DEFINED state; then run diagnostics to ensure the DA causes the device to be
made available. After testing is completed, ensure adapter is placed back in the DEFINED state.

If microcode is used by the device, rename the microcode file, run the DA, and make sure the DA
reports the absence of the file.

Run Advanced Diagnostics on the device. When a wrap plug is called for, do not use it. Make sure an
SRN is generated. Alternatively, do anything that causes an SRN to be reported. Check the SRN for
accuracy.

Try to cause an open error by renaming device driver. Ensure that a software error is reported.

Place the adapter in the DEFINED state. Cause the configuration to fail by renaming the method.
Observe how the DA handles this. In most instances, an SRN should be generated stating that the
device could not be configured.

Place the adapter in the second I/O planar of a supported system. Ensure the adapter is in the
DEFINED state. Run diagnostics to ensure the DA causes the device to be made available. After
testing is completed, ensure adapter is placed back in the DEFINED state.

Tasks and Service Aids

The Diagnostic Package contains programs that are called Tasks. Tasks can be thought of as performing a
specific function on a resource; for example, running diagnostics, or performing a Service Aid on a
resource.

Chapter 3. Diagnostic Components 23

Creating a Task

Note: The diagnostic subsystem only supports 32-bit Tasks and Service Aids.

Tasks are represented by an entry in the |Predefined Diagnostic Task object class (PDiagTask)l To create a
new task, a PDiagTask object is needed plus the binary executable of the task itself, as specified by the
PDiagTask->Action class member. When you are creating a task to display a subtask list, use a
%name,comma separated list in the PDiagTask-> Action field. The comma-separated list displays the
Taskld values of each subtask Taskld. If a task and its subtasks have the same Taskld, a %name can be
used. The following is an example of a task and subtask that have the same Taskld:

"%ThisTask,73,12,19" or "%ThisTask"

Some Task IDs are reserved for use by the Diagnostic Controller:

Task ID 0
Built-in Controller Task

Task ID 1000+
Reserved for Third-Party Use. Any number may be used above 999. A clash of task IDs by
third-party tasks may occur if the same task ID is used. The problem may appear to the user as
seeing a particular resource supported by a task, when in reality it is not. Each third-party
supported task should be able to handle the condition of a nonsupported resource given as a
command-line argument, if the PDiagTask->ResourceFlag is set.

Performing a Task

Menu

Select the following from the |[Function Selection| Menu:

Task Selection (Diagnostics, Advanced Diagnostics, Service Aids, etc.)
This selection will 1ist the tasks supported by these procedures.

Once a task is selected, a resource menu may be presented showing
all resources supported by the task.

The displaying of the resource menu is dependent on the value of the PDiagTask->ResourceFlag value.

Note: Many of these tasks work on all system model architectures. (The |Diagnostic Task Matrix| shows all
current supported tasks and their supported platforms.) Some tasks are only accessible from Online
Diagnostics in Service or Concurrent mode, others may be accessible only from Standalone
Diagnostics. While still other tasks may only be supported on a particular system architecture, such
as CHRP (Common Hardware Reference Platform), or RSPC (PowerPC Reference Platform®).

Fastpath with Unknown Resource

A fastpath method is also available to perform a task by using the -T flag with the command. This
means that the user does not have to go through most of the introductory menus just to get to a particular
task. Instead the user is presented with a list of resources available that support the task specified.

The current fastpath tasks are:

format Format Media

certify Certify Media

download Download Microcode
umcode_latest Download Latest Available Microcode
disp_mcode Display Microcode Level

chkspares Spare Sector Availability

identify PCI RAID Physical Disk Identify

24 understanding the Diagnostic Subsystem for AIX

Fastpath with Known Resource

Each of these tasks can also be invoked directly from the command line specifying the resource and other
task unique flags. This implies that the user already knows the resource to perform the task operation on.
See publications Diagnostic Information for Micro Channel Bus Systems or Diagnostic Information for
Multiple Bus Systems for more specific information on the tasks and flags.

Task List

The following is a list of all known supported tasks on the latest level of diagnostics. Tasks have been
separated into one of six groups.

+ |Run Diagnostics|

+ [Run Error Log Analysis|

+ [Display or Change Diagnostic Run Time Options|
[7135 RAIDiant Array Service Aid|

[Add or Delete Drawer Configuration|

+ |Add Resource to Resource List]

[AIX Shell Prompt]

[Analyze Adapter Internal Log)|

[Backup and Restore Medial

+ [Change Hardware Vital Product Data|

+ |Configure Dials and LPFKeys|

+ |Configure ISA Adapter|

+ [Configure Reboot Policy (CHRP)|

+ [Configure Remote Maintenance Policy (CHRP)|
+ |Configure Ring Indicate Power On Policy (CHRP)|
» [Configure Ring Indicate Power On (RSPC)|
[Configure Service Processor (RSPC)|

— [Call In/Out Setup|

— [Modem Configuration|

— |Site Specific Call In/Out Setup|

— |Surveillance Setup|

[Configure Surveillance Policy (CHRP)|

[Create Customized Configuration Diskette]
[Delete Resource from Resource List

[Disk Maintenance]

— [Disk to Disk Copyl|

— [Display/Alter Sector|

[Display Checkstop Analysis Results|

« [Display Configuration and Resource List]

+ [Display Firmware Device Node Information (CHRP)|
[Display Hardware Error Report

[Display Hardware Vital Product Datal

[Display Machine Check Error Log|

+ [Display Microcode Levell

[Display Latest Available Microcode Levell
[Display Previous Diagnostic Results|

Chapter 3. Diagnostic Components 25

[Display Resource Attributes]

+ [Display Service Hints|

+ [Display Software Product Datal

+ [Display System Environmental Sensors (CHRP)|
+ [Display or Change Bootlist|

+ [Display or Change BUMP Configuration|

+ [Display or Change Electronic Mode Switch]|

+ [Display or Change Multiprocessor Configuration|
[Display Test Patterns|

[Download Microcode]

[ESCON Bit Error Rate Service Aid|

[Fibre Channel RAID Service Aids|

[Flash SK-NET FDDI Firmware]

.

[Generic Microcode Download|

+ |Local Area Network Analyzer|

+ [Log Repair Action|

[Microcode Tasks|

[PCI RAID Physical Disk Identify|

[Periodic Diagnostics)

+ [Process Supplemental Medial

+ [Save or Restore Hardware Management Policies (CHRP)|
+ [Save or Restore Service Processor Configuration (RSPC)|
[SCSD Tape Drive Service Aid|

[SCSI Bus Analyzer]

[SCSI Device Identification and Removall
[Service Aids for use with Ethernef]

+ [Spare Sector Availability|

[SSA Service Aids|

[Update Disk Based Diagnostics|

[Update System Flash (RSPC)|

[Update System or Service Processor Flash (CHRP)|

Add or Delete Drawer Configuration

Attention: This diagnostic task has been removed in AIX 5.2. The information has been retained for
reference only.

Note: Not applicable to RSPC or CHRP systems.

This task invokes SMIT to provide the following options:
e List all Drawers

* Add a Drawer

* Remove a Drawer

The supported drawer types are:
* Media SCSI Device Drawer

26 Understanding the Diagnostic Subsystem for AIX

« DASD SCSI DASD Drawer

Add Resource to Resource List
Use this task to add resources back to the resource list.

Note: Only resources that were previously detected by the diagnostics and deleted from the Diagnostic
Test List are listed. If no resources are available to be added, then none are listed.

Shell Prompt

Note: Online Service Mode only.

This Service Aid allows access to the command line. To use this Service Aid the user must know the root
password (when a root password has been established).

Do not use this task to install code, or change the configuration of the system. It is intended to be used to
look at files, configuration, data, etc. Changing the system configuration, or installing code may produce
problems after exiting back to the Diagnostic Controller.

Analyze Adapter Internal Log (Device Specific)

The PCI RAID adapter has an internal log that logs information about the adapter and the disk drives
attached to the adapter. Whenever data is logged in the internal log, the device driver copies the entries to
the system error log and clears the internal log.

The Analyze Adapter Internal Log Service Aid analyzes these entries in the system error log. The Service
Aid displays the errors and the associated service actions. Entries that do not require any service actions
are ignored.

Backup and Restore Media

This Service Aid allows verification of backup media and devices. It presents a menu of tape and diskette
devices available for testing and prompts for selection of the desired device. It then presents a menu of
available backup formats and prompts for selection of the desired format. The supported formats are tar,
backup, and cpio. After the device and format are selected, the Service Aid backups a known file to the
selected device, restores that file to /tmp, and compares the original file to the restored file. The restored
file is also left in /tmp to allow for visual comparison. All errors are reported.

Certify Media

This task allows the selection of diskette or hardfiles to be certified. Hardfiles can be connected either to a
SCSI adapter(non RAID) or a PCI SCSI RAID adapter. The usage and certify criteria for a hardfile
connected to a non RAID SCSI adapter are different from those for a hardfile connected to a PCI SCSI
RAID adapter.

Note: The certify function for devices attached to a PCl SCSI RAID adapter is supported for certain PCI
SCSI RAID adapters only.

This task may be run directly from the command line. The following usage statement describes the syntax
of the fastpath command:

Usage:
diag -T "certify”

Chapter 3. Diagnostic Components 27

Change Hardware Vital Product Data

Use this Service Aid to display the Display/Alter VPD Selection Menu. The menu lists all resources
installed on the system. When a resource is selected, a menu displays all the VPD that are recognized by
the operating system for that resource.

Note: The user cannot alter the VPD for a specific resource unless it is not machine readable.

Configure Dials and LPFKeys

This Service Aid provides a tool for configuring and removing dials/LPFKs to the asynchronous serial
ports.

Since version 4.1.3 a tty must be defined on the async port before the Dials and LPFKs can be configured
on the port. Before version 4.2 the Dials and LPFKs could only be configured on the standard serial ports.
At version 4.2 the Dials and LPFKs can be configured on any async port.

This selection invokes the SMIT utility to allow Dials and LPFKs configuration. A tty must be in the
available state on the async port before the Dials and LPFKs can be configured on the port. The task
allows an async adapter to be configured, then a tty port defined on the adapter, and then Dials and
LPFKs can be defined on the port.

Configure ISA Adapter

Attention: This diagnostic task has been removed in AlX 5.2. The information has been retained for
reference only.

This task invokes SMIT to allow the identification and configuration of ISA adapters on systems that have
an ISA bus and adapters.

Diagnostic support for ISA adapters not shown in the list may be supported from a Supplemental Diskette.
ISA adapter support can be added from a Supplemental Diskette with the Process Supplemental Media
task.

Whenever an ISA adapter is installed, this Service Aid must be run and the adapter configured before the
adapter can be tested. This Service Aid must also be run (and the adapter removed) whenever an ISA
adapter is physically removed from the system.

If diagnostics are run on an ISA adapter that has been removed from the system, the diagnostics fail.
ISA adapters cannot be detected by the system.

Note: When using this Service Aid choose the option that places the adapter in the "Defined State”. Do
not select the option that places the device in the "Available State”.

Configure Reboot Policy (CHRP) on POWER4 and earlier RS/6000
systems
This Service Aid controls how the system tries to recover from a system crash.

Use this Service Aid to display and change the following settings for the Reboot Policy.

Notes:

1. This Service Aid runs on POWER4™ and earlier RS/6000® CHRP systems units only.

2. Because of system capability, some of the following settings may not be displayed by this Service Aid.
* Maximum Number of Reboot Attempts

28 Understanding the Diagnostic Subsystem for AIX

Enter a number that is O or greater.

Note: A value of 0 indicates 'do not attempt to reboot’ to a crashed system.

This number is the maximum number of consecutive attempts to reboot the system. The term "reboot”,
in the context of this Service Aid, is used to describe bringing system hardware back up from scratch,
for example from a system reset or power on.

When the reboot process completes successfully, the reboot attempts count is reset to 0, and a "restart”
begins. The term "restart”, in the context of this Service Aid, is used to describe the operating system
activation process. Restart always follows a successful reboot.

When a restart fails, and a restart policy is enabled, the system attempts to reboot for the maximum
number of attempts.

Use the O/S Defined Restart Policy (1=Yes, 0=No)

When ’Use the O/S Defined Restart Policy’ is set to Yes, the system attempts to reboot from a crash if
the operating system has an enabled Defined Restart or Reboot Policy.

When ’'Use the O/S Defined Restart Policy’ is set to No, or the operating system restart policy is
undefined, then the restart policy is determined by the 'Supplemental Restart Policy’.

Enable Supplemental Restart Policy (1=Yes, 0=No)

The 'Supplemental Restart Policy’, if enabled, is used when the O/S Defined Restart Policy is
undefined, or is set to False.

When surveillance detects operating system inactivity during restart, an enabled 'Supplemental Restart
Policy’ causes a system reset and the reboot process begins.

Call-Out Before Restart (on/off)

When enabled, Call-Out Before Restart allows the system to call out (on a serial port that is enabled for

call out) when an operating system restart is initiated. Such calls can be valuable if the number of these
events becomes excessive, thus signaling bigger problems.

Enable Unattended Start Mode (1=Yes, 0=No)
When enabled, 'Unattended Start Mode’ allows the system to recover from the loss of AC power.

If the system was powered-on when the AC loss occurred, the system reboots when power is restored.
If the system was powered-off when the AC loss occurred, the system remains off when power is
restored.

This Service Aid may be accessed directly from the command line, by entering:
/usr/1pp/diagnostics/bin/uspchrp -b

Configure Reboot Policy (CHRP) on POWERS5 Systems or Later

This Service Aid controls how the system tries to recover when power is restored after a power outage.

Use this Service Aid to display and change the following setting for the Reboot Policy.

Notes:

1.

This Service Aid runs only on POWER5™ systems or later.
Enable Platform Automatic Power Restart

When enabled, Enable Platform Auto Power Restart allows the platform firmware to restart a system
after power is restored following a power outage. If the system is partitioned, each partition that was
running when the power outage occurred is restarted as indicated by that partition’s setting of the SMIT
option:

Automatically REBOOT operating system after a crash

This Service Aid can be accessed directly from the command line by typing:
/usr/1pp/diagnostics/bin/uspchrp -b

Chapter 3. Diagnostic Components 29

The parameter setting can be read and set directly from the command line. To read the parameter, run the
following command:

/usr/1pp/diagnostics/bin/uspchrp -q platform-auto-power-restart

To set the parameter, run the following command:
/usr/1pp/diagnostics/bin/uspchrp -e platform-auto-power-restart=[0]1]

where
¢ 1 = Enable Platform Automatic Power Restart
¢ 0 = Disable Platform Automatic Power Restart

Configure Remote Maintenance Policy (CHRP)

The Remote Maintenance Policy includes modem configurations and phone numbers to use for remote
maintenance support.

Use this Service Aid to display and change the following settings for the Remote Maintenance Policy.

Notes:
1. Runs on CHRP systems units only.
2. Because of system capability, some of the following settings may not be displayed by this Service Aid.

» Configuration File for Modem on S1
Configuration File for Modem on S2

Enter the name of a modem configuration file to load on either serial port 1 (S1) or serial port 2 (S2).
The modem configuration files are located in the directory /usr/share/modems. If a modem file is
already loaded, it is showed by Modem file currently Toaded.

* Modem file currently loaded on S1
Modem file currently loaded on S2

This is the name of the file that is currently loaded on serial port 1 or serial port 2.

Note: These settings are only shown when a modem file is loaded for a serial port.

» Call In Authorized on S1 (on/off)
Call In Authorized on S2 (on/off)

Call In allows the Service Processor to receive a call from a remote terminal.

» Call Out Authorized on S1 (on/off)
Call Out Authorized on S2 (on/off)

Call Out allows the Service Processor to place calls for maintenance.

* S1 Line Speed
S2 Line Speed

A list of line speeds is available by using ’List’ on the screen.
* Service Center Phone Number

This is the number of the service center computer. The service center usually includes a computer that
takes calls from systems with call-out capability. This computer is referred to as "the catcher”. The
catcher expects messages in a specific format to which the Service Processor conforms. For more
information about the format and catcher computers, refer to the README file in the
lusr/samples/syscatch directory. Contact the service provider for the correct telephone number to enter
here.

e Customer Administration Center Phone Number

This is the number of the System Administration Center computer (catcher) that receives problem calls
from systems. Contact the system administrator for the correct telephone number to enter here.

» Digital Pager Phone Number In Event of Emergency
This is the number for a pager carried by someone who responds to problem calls from your system.

30 Uunderstanding the Diagnostic Subsystem for AIX

e Customer Voice Phone Number

This is the number for a telephone near the system, or answered by someone responsible for the
system. This is the telephone number left on the pager for callback.

* Customer System Phone Number

This is the number to which your system’s modem is connected. The service or administration center
representatives need this number to make direct contact with your system for problem investigation.
This is also referred to as the Call In phone number.

» Customer Account Number
This number could be used by a service provider for record keeping and billing.
« Call Out Policy Numbers to call if failure

This is set to either ’first’ or ’all’. If the call out policy is set to ‘first’, call out stops at the first successful
call to one of the following numbers in the order listed:

1. Service Center

2. Customer Admin Center

3. Pager

If Call Out Policy is set to ’all’, call out attempts to call all of the following numbers in the order listed:
1. Service Center

2. Customer Admin Center

3. Pager

» Customer RETAIN Login ID
Customer RETAIN Login Password

These settings apply to the RETAIN® service function.

 Remote Timeout, in seconds
Remote Latency, in seconds

These settings are functions of the service provider’'s catcher computer.
* Number of Retries While Busy

This is the number of times the system should retry calls that resulted in busy signals.
+ System Name (System Administrator Aid)

This is the name given to the system and is used when reporting problem messages.

Note: Knowing the system name aids the support team to quickly identify the location, configuration,
history, etc. of your system.

This Service Aid may be accessed directly from the command line, by entering:
/usr/1pp/diagnostics/bin/uspchrp -m

Configure Ring Indicate Power On (RSPC)

Attention: This diagnostic task has been removed in AlX 5.2. The information has been retained for
reference only.

This Service Aid allows the user to display and change the NVRAM settings for the Ring Indicate Power
On capability of the service processor.

Note: Runs on RSPC systems units only.

The settings allows the user to:
» Enable/Disable power on from Ring Indicate
* Read/Set the number of rings before power on

Chapter 3. Diagnostic Components 31

Configure Ring Indicate Power On Policy (CHRP)

This Service Aid allows the user to power on a system by telephone from a remote location. If the system
is powered off, and Ring Indicate Power On is enabled, the system powers on at a predetermined number
of rings. If the system is already on, no action is taken. In either case, the telephone call is not answered

and the caller receives no feedback that the system has powered on.

Use this Service Aid to display and change the following settings for the Ring Indicate Power On Policy.

Notes:

1. Runs on CHRP systems units only.

2. Because of system capability, some of the following settings may not be displayed by this Service Aid.
Power On Via Ring Indicate (on/off)

Number of Rings Before Power On

This Service Aid may be accessed directly from the command line, by entering:
/usr/1pp/diagnostics/bin/uspchrp -r

Configure Service Processor (RSPC)

Attention: This diagnostic task has been removed in AIX 5.2. The information has been retained for
reference only.

This Service Aid allows you to display and change the NVRAM settings for the service processor.
This Service Aid supports the following functions:

Note: Runs on RSPC systems units only.
» Surveillance Setup

* Modem Configuration

» Call In/Call Out Setup

 Site Specific Call In/Call Out Setup

Surveillance Setup

This selection allows you to display and change the NVRAM settings for the surveillance capability of the
Service processor.

The settings allow you to:

* Enable/disable surveillance

» Set the surveillance time interval, in minutes
» Set the surveillance delay, in minutes

The current settings are read from NVRAM and displayed on the screen. Any changes made to the data
shown are written to NVRAM.

Modem Configuration

Use this selection when setting the NVRAM for a modem attached to any of the Service Processor’s serial
ports. The user inputs the file name of a modem configuration file and the serial port number. The
formatted modem configuration file is read, converted for NVRAM than loaded into NVRAM. Refer to the
Service Processor Installation and User’s Guide for more information.

32 Understanding the Diagnostic Subsystem for AIX

Call In/Out Setup

This selection allows the user to display and change the NVRAM settings for the Call In/Call Out capability
of the service processor.

The settings allows the user to:

Enable/Disable call in on either serial port.
Enable/Disable call out on either serial port.
Set the line speed on either serial port.

Site Specific Call In/Out Setup

This selection allows you to display and change the NVRAM settings that are site specific for the call
in/call out capability of the service processor.

The site specific NVRAM settings allow you to:

Set the phone number for the service center

Set the phone number for the customer administration center
Set the phone number for a digital pager

Set the phone number for the customer system to call in
Set the phone number for the customer voice phone
Set the customer account number

Set the call out policy

Set the customer RETAIN ID

Set the customer RETAIN password

Set the remote timeout value

Set the remote latency value

Set the number of retries while busy

Set the system name

The current settings are read from NVRAM and displayed on the screen. Any changes made to the data
shown are written to NVRAM.

Configure Surveillance Policy (CHRP)

This Service Aid monitors the system for hang conditions, that is, hardware or software failures that cause
operating system inactivity. When enabled, and surveillance detects operating system inactivity, a call is
placed to report the failure.

Use this Service Aid to display and change the following settings for the Surveillance Policy.

Notes:

1.
2.

Runs on CHRP systems units only.
Because of system capability, some of the following settings may not be displayed by this Service Aid.
Surveillance (on/off)
Surveillance Time Interval
This is the maximum time between heartbeats from the operating system.
Surveillance Time Delay

This is the time to delay between when the operating system is in control and when to begin operating
system surveillance.

Changes are to take affect immediately

Chapter 3. Diagnostic Components 33

Set this to Yes if the changes made to the settings in this menu are to take place immediately.
Otherwise the changes takes place beginning with the next system boot.

This Service Aid may be accessed directly from the command line, by entering:
/usr/1pp/diagnostics/bin/uspchrp -s

Create Customized Configuration Diskette

This selection invokes the Diagnostic Package Utility Service Aid which allows the user to Create a
Standalone Diagnostic Package Configuration Diskette

The Standalone Diagnostic Package Configuration Diskette allows the following to be changed when
running diagnostics from removable media:

+ |High-Function Terminals 60/77-Mhz Refresh Rate|

The refresh rate used by the standalone diagnostic package is 60Hz. If the display’s refresh rate is
77Hz, then set the refresh rate to 77.

+ |Different async terminal console|

A console configuration file that allows a terminal attached to any RS232 or RS422 adapter to be
selected as a console device can be created using this Service Aid. The default device is a RS232 tty
attached to the first standard serial port (S1).

Delete Resource from Resource List
Use this task to delete resources from the resource list.

Note: Only resources that were previously detected by the diagnostics and have not been deleted from
the Diagnostic Test List are listed. If no resources are available to be deleted, then none are listed.

Disk Maintenance (SCSI Disks)
» Disk to Disk Copy
+ Display/Alter Sector

Disk to Disk Copy

This selection allows you to recover data from an old drive when replacing it with a new drive. The Service
Aid only supports copying from a drive to another drive of similar size. This Service Aid cannot be used to
update to a different size drive. The migratepv command should be used when updating drives. The
Service Aid recovers all LVM software reassigned blocks. To prevent corrupted data from being copied to
the new drive, the Service Aid aborts if an unrecoverable read error is detected. To help prevent possible
problems with the new drive, the Service Aid aborts if the number of bad blocks being reassigned reaches
a threshold.

Note: Use the migratepv command when copying the contents to other disk drive types. This command
also works when copying SCSI disk drives or when copying to a different size SCSI disk drive.
Refer to Operating system and device management for a procedure on [Migrating the contents of a
[physical volumel

The procedure for using this Service Aid requires that both the old and new disks be installed in or
attached to the system with unique SCSI addresses. This requires that the new disk drive SCSI address
must be set to an address that is not currently in use and the drive be installed in an empty location. If
there are no empty locations, then one of the other drives must be removed. Once the copy is complete,
only one drive may remain installed. Either remove the target drive to return to the original configuration,
or perform the following procedure to complete the replacement of the old drive with the new drive.

1. Remove both drives.
2. Set the SCSI address of the new drive to the SCSI address of the old drive.

34 Understanding the Diagnostic Subsystem for AIX

3. Install the new drive in the old drive’s location.
4. Install any other drives that were removed into their original location.

To prevent problems that may occur when running this Service Aid from disk, it is suggested that this
Service Aid be run from the diagnostics that are loaded from removable media when possible.

Display/Alter Sector

This selection allows the user to display and alter information on a disk sector. Care must be used when
using this Service Aid because inappropriate modification to some disk sectors may result in total loss of
all data on the disk. Sectors are addressed by their decimal sector number. Data is displayed both in hex
and in ASCII. To prevent corrupted data from being incorrectly corrected, the Service Aid does not display
information that cannot be read correctly.

Display Checkstop Analysis Results

Attention: This diagnostic task has been removed in AIX 5.2. The information has been retained for
reference only.

This Service Aid analyzes checkstop files and displays the results. During a system reboot, following a
checkstop, a data file is written to /usr/lib/ras that contains the state of the system at the time of the
checkstop. The files have names that begin with checkstop and end with either .A or .B.

The analysis of the file(s) produce a description of the problem and provide an action plan with repair
instructions or recommendations. Following the action plans, a detailed dump of the data that was saved
for the checkstop is displayed.

The following options are provided:
* Analyze Checkstop Files Created Within the Last 7 Days

Analyze and display the results of any checkstop file that was created in the last 7 days. This is the
same file(s) that the system planar diagnostics analyzed, but will provide more detail.

* Analyze All of the Checkstop Files
Analyze and display the results of all of checkstop files.

For either option, carefully read the results of the analysis and perform any recommended actions.

Display Configuration and Resource List

This Service Aid displays the item header only for all installed resources. Use this Service Aid when there
is no need of seeing the VPD. (No VPD is displayed.)

Display Firmware Device Node Information (CHRP)

This task displays the firmware device node information that appears on CHRP platforms. The format of
the output data does not necessarily have to be the same between different levels of the operating
system. It is intended to be used to gather more information about individual or particular devices on the
system.

Note: Runs on CHRP systems units only.

Display Hardware Error Report

This Service Aid provides a tool for viewing the hardware error log. It uses the errpt command.

The Display Error Summary and Display Error Detail selection provide the same type of report as the errpt
command. The Display Error Analysis Summary and Display Error Analysis Detail selection provide
additional analysis.

Chapter 3. Diagnostic Components 35

Display Hardware Vital Product Data

This Service Aid displays all installed resources along with any VPD that is recognized by the operating
system for those resources. Use this Service Aid when you want to look at the VPD for a specific
resource.

Display Machine Check Error Log

When a machine check occurs, information is collected and logged in a NVRAM error log before the
system unit shuts down. This information is logged in the error log and cleared from NVRAM when the
system is rebooted from either hard disk or LAN. The information is not cleared when booting from
Standalone Diagnostics. When booting from Standalone Diagnostics, this Service Aid can take the logged
information and turn it into a readable format that can be used to isolate the problem. When booting from
the hard disk or LAN, the information can be viewed from the error log using the Hardware Error Report
Service Aid. In either case the information is analyzed when running the sysplanar0 diagnostics in
Problem Determination Mode.

Note: The Machine Check Error Log Service Aid is available only on Standalone Diagnostics.

Display Microcode Level

This selection, located in the Microcode Tasks submenu, provides a way to display microcode on a device
or adapter. Once invoked, a list of resources are available for selection that supports this function. Once a
resource is selected, a specific application that supports that function on the resource is invoked. See the
description on for the stanza that is needed to achieve this.

This task may be run directly from the command line. The following usage statement describes the syntax
of the fastpath command:

Usage:
diag -T "disp_mcode"

Display or Change Bootlist

This Service Aid allows the bootlist to be displayed, altered, or erased.

The system attempts to perform an IPL from the first device in the list. If the device is not a valid IPL
device or if the IPL fails, the system proceeds in turn to the other devices in the list to attempt an IPL.

Display or Change BUMP Configuration

Attention: This diagnostic task has been removed in AIX 5.2. The information has been retained for
reference only.

This Service Aid is unique to the POWER-based SMP system units and provides the following functions:
» Display or Change Remote Support Phone Number

This function allows the remote support phone number to be displayed or altered.
+ Display or Change Diagnostics Modes

This function displays a dialog screen that lists the states of all the BUMP (Bringup Micro-Processor)
Diagnostic Flags. The states can be changed via the dialog screen.

» Save or Restore Diagnostics Modes and Remote Support Phone Number

This function allows the diagnostics modes and remote support phone number to be saved or restored.
The location of the save area is to be defined.

* Flash EPROM Download
This function updates the Flash EPROM.

36 Understanding the Diagnostic Subsystem for AIX

Display or Change Diagnostic Run Time Options
The Display or Change Diagnostic Run Time Options task allows the diagnostic run time options to be set.

The run time options are:
» Display Diagnostic Mode Selection Menus

This option allows the user to turn on or turn of f displaying the DIAGNOSTIC MODE SELECTION
MENU. The default value is on.

* Include Advanced Diagnostics

This option allows the user to turn on or of f including the Advanced Diagnostics. The default value is
off.

* Run Tests Multiple Times

This option allows the user to turn on or of f running the diagnostic in Loop Mode. The default value is
off.

Note: This option is only displayed when running Online Diagnostics in Service Mode.
* Include Error Log Analysis

This option allows the user to turn on or of f including the Error Log Analysis (ELA). The default value is
off.

* Number of days used to search error log

This option allows the user to select the number of days to search the error log for errors when running
Error Log Analysis. The default value is 7 days, but can be changed from 1 to 60 days.

» Display Progress Indicators

This option allows the user to turn on or off the progress indicators shown when running Diagnostic
Applications. The progress indicators are a popup box at the bottom of the screen indicating the test
being run. The default value is on.

» Diagnostic Event Logging

This option allows the user to turn on or of f logging information to the Diagnostics Event Log. The
default value is on.

» Diagnostic Event Log file size

This option allows the user to select the maximum size of the Diagnostic Event Log. The default value
is 100K, but can be changed from 100K to 1000K.

» Save changes to the database

This option allows the user to save any changes made to the run time options. Without saving the
changes, any changes made are only applicable to that session of diagnostics. The default value is no.

Display or Change Electronic Mode Switch

Attention: This diagnostic task has been removed in AIX 5.2. The information has been retained for
reference only.

This Service Aid is unique to the POWER-based SMP system units and displays the states of the Physical
and Electronic Keys. It also allows the electronic keys to be set.

Display or Change Multiprocessor Configuration (Multiprocessor
Service)

Attention: This diagnostic task has been removed in AIX 5.2. The information has been retained for
reference only.

This Service Aid is unique to the POWER-based SMP system units and provides the following functions:

Chapter 3. Diagnostic Components 37

» Display or Change Processor States
This function displays or changes the state of available processors.
* Bind Process
This function provides a tool for binding a process and all its threads to a specified processor.

Display Previous Diagnostic Results

This service aid allows a service representative to display results from a previous diagnostic session.
When the Display Previous Results option is selected, the user will be able to view up to 25 no trouble
found (NTF) and service request number (SRN) results.

This service aid also displays diagnostic log information. The diagnostic log can be displayed in a short
version or a long version. The diagnostic log contains information about events logged by a diagnostic
session.

This service aid displays the information in reverse chronological order. If more information is available
than what can be displayed on the screen, the Page Down and Page Up keys can be used to scroll
through the information.

Note: This Service Aid is not available when you load the diagnostics from a source other than a disk
drive or from a network.

This information is not from the error log maintained by the operating system. This information is stored in
the /var/adm/ras directory.

Display Resource Attributes

This task displays the Customized Device Attributes associated with a selected resource. This task is
similar to running the Isattr -E -l resource command.

Display Service Hints

This Service Aid reads and displays the information in the CEREADME file from the diagnostics media.
This file contains information that is not in the publications for this version of the diagnostics. It also
contains information about using this particular version of diagnostics.

This Service Aid presents a menu if multiple CEREADME files are present in the /usr/lpp/diagnostics/
directory. This allows other non-related CEREADME files to be displayed containing information about
unrelated functions.

Use the arrow keys to scroll through the information in the file.

Display Software Product Data

This task invokes SMIT to display information about the installed software and provides the following
functions:

» List Installed Software

 List Applied but Not Committed Software Updates
» Show Software Installation History

* Show Fix (APAR) Installation Status

» List Fileset Requisites

» List Fileset Dependents

» List Files Included in a Fileset

+ List File Owner by Fileset

38 Understanding the Diagnostic Subsystem for AIX

Display System Environmental Sensors (CHRP)

This Service Aid displays the environmental sensors implemented on a CHRP system. The information
displayed is the sensor name, physical location code, literal value of the sensor status, and the literal
value of the sensor reading.

Note: Runs on CHRP systems units only.

The sensor status can be any one of the following:

* Normal
The sensor reading is within the normal operating range.

 Critical High
The sensor reading indicates a serious problem with the device. Run diagnostics on sysplanar0 to
determine what repair action is needed.

* Critical Low

The sensor reading indicates a serious problem with the device. Run diagnostics on sysplanar0 to
determine what repair action is needed.

* Warning High

The sensor reading indicates a problem with the device. This could become a critical problem if action

is not taken. Run diagnostics on sysplanar0 to determine what repair action is needed.
* Warning Low

The sensor reading indicates a problem with the device. This could become a critical problem if action

is not taken. Run diagnostics on sysplanar0O to determine what repair action is needed.
* Hardware Error

The sensor could not be read because of a hardware error. Run diagnostics on sysplanar0 in problem

determination mode to determine what repair action is needed.
* Hardware Busy

The system has repeatedly returned a busy indication, and a reading is not available. Try the Service
Aid again. If the problem continues, run diagnostics, on sysplanar0 in problem determination mode to
determine what repair action is needed.

This Service Aid can also be run as a command. The command can be used to list the sensors and their

values in a text format, list the sensors and their values in numerical format, or a specific sensor can be
queried to return either the sensor status or sensor value.

The command can be run by entering one of the following:

/usr/1pp/diagnostics/bin/uesensor -1 | -a
/usr/1pp/diagnostics/bin/uesensor -t token -i index [-v]

Flags

-l List the sensors and their values in a text format.

-a List the sensors and their values in a numerical format. For each sensor, the following
numerical values are displayed as:
<token> <index> <status> <measured value> <location code>

-t token Specifies the sensor token to query.

-i index Specifies the sensor index to query.

-V Indicates to return the sensor measured value. The sensor status is returned by default.

Chapter 3. Diagnostic Components

39

Examples
1. Display a list of the environmental sensors:
/usr/1pp/diagnostics/bin/uesensor -1

Sensor Token = Fan Speed
Status = Normal

Value = 2436 RPM
Location Code = F1

Sensor Token = Power Supply
Status = Normal

Value = Present and operational
Location Code = V1

Sensor Token = Power Supply
*Status = Critical low

Value = Present and not operational
Location Code = V2

2. Display a list of the environmental sensors in a numerical list:
/usr/1pp/diagnostics/bin/uesensor -a

301187 FP1

9001 0 11 2345 F1
9004 0 11 2 V1
9004 1 9 2 V2

3. Return the status of sensor 9004, index 1:
/usr/1pp/diagnostics/bin/uesensor -t 9004 -i 1

9
4. Return the value of sensor 9004, index 1:
/usr/1pp/diagnostics/bin/uesensor -t 9004 -i 1 -v

2

Display Test Patterns

This Service Aid provides a means of adjusting system display units by providing displayable test patterns.
Through a series of menus the user selects the display type and test pattern. After the selections are
made, the test pattern is displayed.

Download Microcode

This selection, located in the Microcode Tasks submenu, provides a way to update microcode to a device
or adapter. Once invoked, a list of resources are available for selection that supports this function. Once a
resource is selected, a specific application that supports that function on the resource is invoked. See the
description on for the stanza that is needed to achieve this.

This task may be run directly from the command line. The following usage statement describes the syntax
of the fastpath command:

Usage:
diag -T "download"

Download Latest Available Microcode

This selection, located in the Microcode Tasks submenu, provides a way to determine which resources can
be updated from a specified source of microcode images. After you select a source of microcode images
from a list of possible sources, a list of resources is displayed, where each resource in the list was found
to have an older firmware image than what is available on the specified source. From this list, you can
select any or all of the resources. Then the resource specific download task is executed to update the
microcode with the image on the specified source.

40 Understanding the Diagnostic Subsystem for AIX

This task may be entered directly from the command line. The following usage statement describes the
syntax of the fastpath command:

Usage:
diag -T "download latest [-s source]"

The command form of this task is:
/usr/1pp/diagnostics/bin/umcode_Tlatest

For more information, refer to the command.
ESCON Bit Error Rate

Attention: This diagnostic task has been removed in AIX 5.2. The information has been retained for
reference only.

This Service Aid is used to check the bit error rate for an ESCON® adapter to assure that the link to the
host system is functioning properly. To run the ESCON Bit Error Rate Service Aid, the adapter must be
connected, configured, and on-line. If the adapter is not configured properly, the Service Aid is not able to
check the bit error rate.

Fibre Channel RAID (Device Specific)
The Fibre Channel RAID Service Aids contain the following functions:
+ Certify LUN

This selection reads and checks each block of data in the LUN. If excessive errors are encountered the
user is notified.

This task may be run directly from the command line. The following usage statement describes the
syntax of the fastpath command:

Usage:
diag -T "certify"
» Certify Spare Physical Disk
This selection allows the user to certify (check the integrity of the data) on drives designated as spares.

This task may be run directly from the command line. The following usage statement describes the
syntax of the fastpath command:

Usage:
diag -T "certify”

* Format Physical Disk
This selection is used to format a selected disk drive.

This task may be run directly from the command line. The following usage statement describes the
syntax of the fastpath command:

Usage:
diag -T "format”

* Array Controller Microcode Download
This selection allows the microcode on the Fibre Channel RAID controller to be updated when required.

This task may be run directly from the command line. The following usage statement describes the
syntax of the fastpath command:

Usage:
diag -T "download”

* Physical Disk Microcode Download
This selection is used to update the microcode on any of the disk drives in the array.

Chapter 3. Diagnostic Components 41

This task may be run directly from the command line. The following usage statement describes the
syntax of the fastpath command:

Usage:
diag -T "downTload”

* Update EEPROM

This selection is used to update the contents of the EEPROM on a selected controller.
* Replace Controller

Use this selection when it is necessary to replace a controller in the array.

Flash SK-NET FDDI Firmware
This task allows the Flash firmware on the SysKonnect SK-NET FDDI adapter to be updated.

Format Media
The Format Media task supports the selection of diskettes, SCSI hardfiles, or SCSI optical media.

This task may be run directly from the command line. The following usage statement describes the syntax
of the fastpath command:

Usage:
diag -T "format”

Generic Microcode Download

This Service Aid, located in the Microcode Tasks submenu, provides a means of executing a "generic”
script from a diskette. The intended purpose for this "generic” script is to load microcode to a supported
resource. This script is responsible for executing whatever program is required in order to download the
microcode onto the adapter or device.

This Service Aid is supported in both concurrent and standalone modes from disk, LAN, or removable
media.

On entry, the Service Aid displays information about what it does. It then asks for a "Genucode” diskette to
be inserted into the diskette drive. The diskette must be in tar format. The Service Aid then restores the
script file, "genucode”, to the /tmp directory. Then the script is executed. The script must at that point
then pull off any other needed files from the diskette. The script should then exec whatever program is
necessary in order to perform its function. On completion, a status code is returned, and the user is
returned to the Service Aid.

The genucode script should have a #!/usr/bin/ksh line at the beginning of the file. Return status of 0
should be returned if the program was successful, else a non-zero status should be returned.

Hot Plug Task

This Service Aid allows the user to choose a SCSI device or location from a menu and to identify a device,
located in a 7027 system unit.

The Service Aid also does the following:

* Generates a menu displaying all SCSI devices.
» Lists the device and all of it’s sibling devices.
 List all SCSI adapters and their ports.

» List all SCSI devices on a port.

42 Understanding the Diagnostic Subsystem for AIX

Local Area Network Analyzer

This selection is used to exercise the LAN communications adapters (Token-Ring, Ethernet, and (FDDI)
Fiber Distributed Data Interface). The following services are available:

» Connectivity testing between two network stations

Data is transferred between the two stations. This requires the user to input the Internet Addresses of
both stations.

* Monitoring ring (Token-Ring only)
The ring is monitored for a period of time. Soft and hard errors are analyzed.

Log Repair Action

The Log Repair Action task logs a repair action in the AlIX Error Log. A Repair Action log indicates that an
FRU has been replaced, and error log analysis should not be done for any errors logged before the repair
action. The Log Repair Action task lists all resources. Replaced resources can be selected from the list,
and when commit (F7 key) is selected, a repair action is logged for each selected resource.

The Log Repair Action can also be logged from the command line, using the diag command. The syntax
is the following:

diag -c -d Resource -L pending | complete

where

» pending indicates the part has been replaced, but it is not yet known if this part will remain in the
system.

» complete indicates the part has been replaced and it is known that this part will remain in the system.

Microcode Tasks

This selection provides a way to access the microcode and flashing features of Display Microcode Level,
Download Microcode, Generic Microcode Download, and Update and Manage System Flash/Update
System or Service Processor Flash.

Display MultiPath I/0 (MPIO) Device Configuration

The Display MultiPath 1/0 (MPIO) Device Configuration service aid displays the status of MPIO devices
and their connections to their parents It is capable of sending SCSI commands on each available path
regardless of the default MPIO path algorithm, therefore, it is useful for testing the unused path for
integrity. You may wish to run this service aid if you suspect there is a problem with the path between
MPIO devices and their parents.

This service aid is capable of the following:

1. Listing MPIO devices

2. Listing the parents of MPIO devices

3. Displaying the status and location of specified MPIO devices.
4. Displaying the hierarchy of MPIO adapters and devices

You can access this service aid directly from the AIX command line, by typing:
/usr/1pp/diagnostics/bin/umpio

Flags: None.

PCI RAID Physical Disk Identify
This selection identifies physical disks connected to a PCI SCSI-2 F/W RAID adapter.

Chapter 3. Diagnostic Components 43

This task may be run directly from the command line. The following usage statement describes the syntax
of the fastpath command:

Usage:
diag -T "identify"

Periodic Diagnostics

This selection provides a tool for configuring periodic diagnostics and automatic error log analysis. A
hardware resource can be chosen to be tested once a day, at a user specified time. If the resource cannot
be tested because it is busy, error log analysis is performed. Hardware errors logged against a resource
can also be monitored by enabling Automatic Error Log Analysis. This allows error log analysis to be
performed every time a hardware error is put into the error log. If a problem is detected, a message is
posted to the system console and a mail message sent to the user(s) belonging to the system group with
information about the failure such as Service Request Number.

The Service Aid provides the following functions:

» Add or delete a resource to the periodic test list
* Modify the time to test a resource

» Display the periodic test list

» Modify the error notification mailing list

» Disable or Enable Automatic Error Log Analysis

Process Supplemental Media

Diagnostic Supplemental Media contains all the necessary diagnostic programs and files required to test a
particular resource. The supplemental is normally released and shipped with the resource as indicated on
the diskette label. Diagnostic Supplemental Media must be used when the device support has not been
incorporated into the latest Diagnostic CDROM.

This task processes the Diagnostic Supplemental Media. Insert the Supplemental Media when prompted,
then press Enter. After processing has occurred, go to the Resource Selection list to find the resource to
test.

Notes:

+ This task is supported in [Standalone Diagnostics| only.
» Always process and test one resource at a time.

* Do not process multiple supplementals at a time.

More information on Diagnostic Supplemental Media can be found at the following link]Diagnostid
[Supplemental Medial

Run Diagnostics

The Run Diagnostics task invokes the Resource Selection List menu. When the commit key is pressed,
Diagnostics are run on all selected resources.

The procedures for running the diagnostics depends on the state of the Diagnostics Run Time Options.
See [Display or Change Diagnostic Run Time Options| section.

Run Error Log Analysis

The Run Error Log Analysis task invokes the Resource Selection List menu. When the commit key is
pressed, Error Log Analysis is run on all selected resources.

44 understanding the Diagnostic Subsystem for AIX

Save or Restore Hardware Management Policies (CHRP)

Use this Service Aid to save or restore the settings from Ring Indicate Power On Policy, Surveillance
Policy, Remote Maintenance Policy and Reboot Policy.

Note: Runs on CHRP systems units only.

» Save Hardware Management Policies
This selection writes all of the settings for the hardware management policies to the file:
/etc/1pp/diagnostics/data/hmpolicies

* Restore Hardware Management Policies

This selection restores all of the settings for the hardware management policies from the contents of the
file:
/etc/1pp/diagnostics/data/hmpolicies

This Service Aid may be accessed directly from the command line, by entering:
/usr/1pp/diagnostics/bin/uspchrp -a

Save or Restore Service Processor Configuration (RSPC)

Attention: This diagnostic task has been removed in AIX 5.2. The information has been retained for
reference only.

Use this Service Aid to save or restore the Service Processor Configuration to or from a file. The Service
Processor Configuration includes the Ring Indicator Power On Configuration.

Note: Supported on RSPC system units only.
+ Save Service Processor Configuration

This selection will write all of the settings for the Ring Indicate Power On and the Service Processor to
the file:

/etc/1pp/diagnostics/data/spconfig
» Restore Service Processor Configuration

This selection will restore all of the settings for the Ring Indicate Power On and the Service Processor
from the file:

/etc/1pp/diagnostics/data/spconfig

SCSD Tape Drive Service Aid

This Service Aid provides a means to obtain the status or maintenance information from a SCSD tape
drive. Only some models of SCSI tape drive are supported.

The Service Aid provides the following options:
» Display time since a tape drive was last cleaned.

The time since the drive was last cleaned is displayed onto the screen. In addition, a message whether
the drive is recommended to be cleaned is also displayed.

» Copy a tape drive’s trace table.
* The trace table of the tape drive is written to diskettes.

The required diskettes must be formatted for DOS. Writing the trace table may require several diskettes.
The actual number of required diskettes is determined by the Service Aid based on the size of the trace
table. The names of the data files are of the following format:

TRACE[X] .DAT

where X is the sequential diskette number. The complete trace table consists of the sequential
concatenation of all the diskette data files.

Chapter 3. Diagnostic Components 45

« Display or copy a tape drive’s log sense information.

The Service Aid provides options to display the log sense information onto the screen, to copy it to a
DOS formatted diskette or to copy it to a file. The file name LOGSENSE.DAT is used when the log
sense data is written on the diskette. The Service Aid prompts for a file name when the log sense data
is chosen to be copied to a file.

SCSI Bus Analyzer

This Service Aid provides a means to diagnose a SCSI Bus problem in a free-lance mode.

To use this Service Aid, the user should have an understanding of how a SCSI Bus works. This Service
Aid should be used when the diagnostics cannot communicate with anything on the SCSI Bus and cannot
isolate the problem. Normally the procedure for finding a problem on the SCSI Bus with this Service Aid is
to start with a single device attached, ensure that it is working, then start adding additional devices and
cables to the bus ensuring that each one works. This Service Aid works with any valid SCSI Bus
configuration.

The SCSI Bus Service Aid transmits a SCSI Inquiry command to a selectable SCSI Address. The Service
Aid then waits for a response. If no response is received within a defined amount of time, the Service Aid
displays a timeout message. If an error occurs or a response is received, the Service Aid then displays
one of the following messages:

» The Service Aid transmitted a SCSI Inquiry Command and received a valid response back without any
errors being detected.

* The Service Aid transmitted a SCSI Inquiry Command and did not receive any response or error status
back.

* The Service Aid transmitted a SCSI Inquiry Command and the adapter indicated a SCSI bus error.
* The Service Aid transmitted a SCSI Inquiry Command and an adapter error occurred.
* The Service Aid transmitted a SCSI Inquiry Command and a check condition occurred.

When the SCSI Bus Service Aid is entered a description of the Service Aid is displayed.

Pressing the Enter key displays the Adapter Selection menu. This menu allows the user to enter which
address to transmit the SCSI Inquiry Command.

When the adapter is selected the SCSI Bus Address Selection menu is displayed. This menu allows the
user to enter which address to transmit the SCSI Inquiry Command.

Once the address is selected the SCSI Bus Test Run menu is displayed. This menus allows the user to
transmit the SCSI Inquiry Command by pressing the Enter key. The Service Aid then indicates the status
of the transmission. When the transmission is completed, the results of the transmission are displayed.
Notes:

1. A Check Condition can be returned when there is nothing wrong with the bus or device.

2. The operating system does not allow the command to be sent if the device is in use by another
process.

Service Aids for use with Ethernet

Attention: This diagnostic task has been removed in AIX 5.2. The information has been retained for
reference only.

This selection provides a tool for diagnosing Ethernet problems. This Service Aid is used to exercise the
Ethernet adapter and parts of the Ethernet network. The Service Aid works by transmitting a data block to
itself. This Service Aid works with a wrap plug or with any valid Ethernet network and can be used as a
tool to diagnose Ethernet network problems.

46 Understanding the Diagnostic Subsystem for AIX

When the Ethernet Service Aid is executed, one of the following messages is returned:
* No errors occurred.

» An adapter error occurred.

* A transmit time-out occurred.

* A transmit error occurred.

* A receive time-out occurred.

* A receive error occurred.

* A system error occurred.

* Receive and transmit data did not match.

» An error occurred that could not be identified.

» The configuration indicates that there are no Ethernet adapters in this system unit.
* Another application is currently using the adapter.

» The resource could not be configured.

Spare Sector Availability

This selection checks the number of spare sectors available on the optical disk. The spare sectors are
used to reassign when defective sectors are encountered during normal usage or during a format and
certify operation. Low availability of spare sectors shows that the disk needs to be backed up and
replaced. Formatting the disk does not improve the availability of spare sectors.

This task may be run directly from the command line. The following usage statement describes the syntax
of the fastpath command:

Usage:
diag -T "chkspares”

SSA Service Aids

This Service Aid provides tools for diagnosing and resolving problems on SSA attached devices. The
following tools are provided:

» Set Service Mode

* Link Verification

» Configuration Verification
» Format and Certify Disk

Update Disk Based Diagnostics
This Service Aid allows fixes (APARs) to be applied.

This task invokes the SMIT Update Software by Fix (APAR) task. The task allows the input device and
APARs to be selected. Any APAR can be installed using this task.

Update System Flash (RSPC)

This selection updates the system flash for RSPC systems.

The user provides a valid binary image either on diskette or qualified path name. The diskettes can be in
DOS or a backup format.

The flash update image is copied to the /var file system. If there is not enough space in the file system for
the flash update image file, an error will be reported. If this occurs, increase the file size of the /var file
system. The current flash image is not saved. The command automatically removes the
Ivar/update_flash_image.

Chapter 3. Diagnostic Components 47

After user confirmation, the command will reboot the system twice to complete the flash update.

Note: Supported on RSPC system units only.

Update System or Service Processor Flash (CHRP)

This selection, located in the Microcode Tasks submenu, updates the system or service processor flash for
CHRP system units.

Further update and recovery instructions may be provided with the update. It is necessary to know the fully
qualified path and file name of the flash update image file that was provided. If the flash update image file
is on a diskette, the Service Aid can list the files on the diskette for selection.

Refer to the update instructions, or the system unit’s service guide to determine the level of the system
unit or service processor flash.

Note: Runs on CHRP system units only.

When run from online diagnostics, the flash update image file is copied to the /var file system. If there is
not enough space in the /var file system for the flash update image file, an error is reported. If this occurs,
exit the Service Aid, increase the size of the /var file system and retry the Service Aid. After the file is
copied, a warning screen asks for confirmation to continue the update flash. Continuing the update flash
reboots the system. The system does not return to diagnostics. The current flash image is not saved. After
the reboot, the /var/update_flash_image can be removed.

When running from standalone diagnostics, the flash update image file is copied to the file system from
diskette. The user needs to provide the image on a diskette since the user does not have access to
remote file systems or any other files that are on the system. If enough space is not available, an error is
reported stating additional system memory is needed. After the file is copied, a warning screen asks for
confirmation to continue the update flash. Continuing the update flash reboots the system. The current
flash image is not saved.

The update_flash command can be used in place of this Service Aid. It is located in the
lusr/lpp/diagnostics/bin directory.

Attention: The update_flash command reboots the entire system. Do not use this command if more
than one user is signed onto the system.

7135 RAIDiant Array Service Aid
The 7135 RAIDiant Array Service Aids contain the following functions:
* Certify LUN

This selection reads and checks each block of data in the LUN. If excessive errors are encountered the
user is notified.

» Certify Spare Physical Disk
This selection allows the user to certify (check the integrity of the data) on drives designated as spares.
* Format Physical Disk
This selection is used to format a selected disk drive.
» Array Controller Microcode Download
This selection allows the microcode on the 7135 controller to be updated when required.
* Physical Disk Microcode Download
This selection is used to update the microcode on any of the disk drives in the array.
* Update EEPROM
This selection is used to update the contents of the EEPROM on a selected controller.

48 Understanding the Diagnostic Subsystem for AIX

Replace Controller
Use this selection when it is necessary to replace a controller in the array.

Application Test Units

Application Test Units (TU) are used by the Diagnostic Applications to test a device. Typically, due to either
their large size or their functional composition, TUs are more appropriately written as applications as
opposed to being included within device drivers.

This chapter defines requirements for Application Test Unit code and provides guidance for TU Developers
who need to develop code for multiple target environments. The TU code should be developed in ANSI C
language and according to generally accepted good programming practices, including, but not limited to:

Modularity
Readability

Self Documenting
Maintainability
Re-entrant Capability

The use of assembler-level code is strongly discouraged, but may be necessary in certain cases where
performance is critical to the effectiveness of the test function. Such code would not be considered
portable and would have to be rewritten for the target platform.

The following topics are discussed in detail:

[Test Unit Definition|

[Hardware Functional Coverage]

[Test Unit Numbering|

[Test Unit Code Device Open and Close]

Portability

[In-Service versus Out-of-Service Test Units]
[Recommended General Structure of Test Unit Code]
[Designing for Multitasking Environments|

[Persistent Data and the TU_INFO_HANDLE]

[Test Unit Call Interface)

[Definition of TU_TYPE Input Structure|

[Definition of TU_RETURN_TYPE Output Structure]
[Interrupt Handler Call Interface]

[Interrupt Handling in Test Units|

[Using the Interrupt Flag Bit Mask|

[Programming Interfaces for TUs and Interrupt Handlers|
[Configuration Services Device Attributes|

[Message Handling|

[Signal Handling|

[Definition of EXECTU()|

[PCI Configuration Space for 1/0 Devices|

[Test Unit 64-bit Porting Guide]

[Microcode Download/Display Requirements for Test Units|
[Enhanced Error Handling Option|

Chapter 3. Diagnostic Components 49

Test Unit Definition

Fundamental to the Test Unit methodology is a basic, modular building block that is referred to as a Test
Unit. A test unit is a single operation performed on the system or subsystem under test. Most often this is
an individual function test, such as a register read/write test. Several basic assumptions are made for the
test units:

* Only one modular test function is performed in each individual test unit.

» Test units are numbered, and the calling application specifies the number of the test unit it wishes to
execute.

* No environmental specific code is allowed in a test unit. This specifically includes user interface calls.
Also, device-access methods such as reads or writes are done with generic function calls, which can
then be defined in a different source file and coded, if necessary, to meet the specific requirements of
the target environments.

» Test units are grouped appropriately in source files. This allows custom building of executable libraries
to meet the requirements of the target environments.

* In cases where the same test unit may be used to test hardware in different ways based on some
control variables (for example, speed or mode settings), that test unit may be used to represent several
"logical” test units, each with a different test unit number. When the test unit is called, it would interpret
the test unit number requested and set the control variables appropriately.

Hardware Functional Coverage

The Test Unit package should be designed and implemented such that if the TUs are run in the
recommended order as documented, then a minimum coverage of 95% of the hardware function is
achieved.

Test Unit Numbering

Test Units should be numbered according to some logical sequence, which is determined by the TU
Developer. Zero should not be used as a TU number. The allowable range for TU numbers is 1 through
61439 (1 through EFFF hex). This numbering requirement must be respected even though the TU member
of the tucb header structure is defined as a 32 bit integer. It is desirable that a numbering scheme be
developed by the TU Developer allowing TUs to be executed in sequential numerical order when
executing them as designated. This might include spacing the TUs so that future TUs can be inserted into
the number sequence, where appropriate.

Test Unit Code Device Open and Close

Before a device can be tested by one of the test units, it must be opened for access through the
interfaces defined in|"Programming Interfaces for TUs and Interrupt Handlers"|. Also, when testing is
complete, the device must be closed and restored to its original state. The opening and closing of the
device for testing presents some problems that must be accounted for in the design of the Test Unit library
for the device:

» Errors may occur on the open and close operation, and these must be presented back to the calling
applications in a form those applications know how to handle; that is, test unit results.

+ Since the calling application will typically run through all or most of the Test Units for a given device, the
performance penalty of opening and closing the device for each call to a Test Unit is prohibitive.

» Under different conditions, test units may be run in different combinations and sequences, so the calling
application must be able to call the functions which do device open and close independent of the other
test functions.

Test Unit Conventions
To provide a standard solution for handling the above problems, the following conventions for Test Units
within a specific device library are required:

1. There must be a Test Unit number 1, referred to as TU_OPEN, which includes functions to initialize
data structures, place the device in the correct state for diagnostics, and open the device for testing. It

50 understanding the Diagnostic Subsystem for AIX

does not perform any other test functions. Any error conditions are returned as diagnostic results. The
define value TU_OPEN should be used as the numerical identifier for this Test Unit.
Specifically, TU_OPEN performs the following:

a. Sees that the TU_INFO_HANDLE parameter is set to NULL, allocates a memory buffer to hold
persistent data, and assigns TU_INFO_HANDLE to that address. For more information, see
['Persistent Data and the TU_INFO_HANDLE'}

b. Reads needed device attribute information by making calls to the configuration services

l(pdiag_cs_get_attr), and places appropriate information into the pdiagex_dds_t structure that is
passed as a parameter on the call.

c. Calls|pdiag_diagnose_state|to place the device into a testable state.
Calls pdiag_open to open the device for testing, and loads the interrupt handler, if one exists.
Assuming all the above functions are performed without error, returns a value of "0” as the major
return code.
2. There must be a Test Unit number 61439 (OXEFFF hex), referred to as TU_CLOSE, which closes the
device and restores the device to the original state it was in prior to diagnostics being invoked. The
define value TU_CLOSE should be used as the numerical identifier for this test unit.

Specifically, TU_CLOSE performs the following:

a. Callsto close the device, and unloads the interrupt handler.

b. Calls |pdiag_restore_state|to return the device to the state it was in prior to TU_OPEN.

c. Frees any memory buffers that were allocated by TU_OPEN. For the most part, the buffers that
need to be freed are "secondary” persistent data buffers, pointed to by pointers in
TU_INFO_HANDLE.

d. Assuming all the above functions are performed without error, returns a value of "0” as the major
return code.

e. A valid diagnostic sequence consists of a call to Test Unit TU_OPEN, some arbitrary number of
calls to Test Units other than TU_OPEN or TU_CLOSE, and then a final call to Test Unit
TU_CLOSE.

Portability

With today’s systems, multiple operating systems are typically supported on a single hardware platform.
Since these systems usually share the same hardware features, diagnostics need to be written to support
hardware failure analysis that works within any of these operating environments. For this reason, all TU
packages must be designed with portability in mind.

Besides the operating environment differences, there is also the need for different types of user interfaces
for the different execution environments. For instance, system diagnostics for the field may use a different
interface than the hardware exerciser used in the design verification test.

By ensuring that the TU package performs no interaction with the user (output to screen and input from
keyboard), one third of the problem will have been solved. Then all the invocations of the TUs will be
made through one interface, and different types of user interfaces can be developed with no need to
change the TU package.

Another third of the problem concerns how the device gets accessed through the operating environment.
Since different operating environments have different device drivers (for example, UNIX® drivers,
DOS/WIN drivers, Firmware based, or generic 1/O, there must be a way to isolate the functional test from
the burden of knowing what driver/environment is being used for access. Therefore, standard
device-access routines are needed to perform the device accesses on the functional test’s behalf. The
device accesses typically needed for functional tests are:

* Device Open
* Read

Chapter 3. Diagnostic Components 51

* Write

* Interrupt Setup and Handling

» Direct Memory Access (DMA) Setup and Cleanup
» Device Close

The interface of these routines must be independent of the underlying device-access method (that is,
execution environment) by design, and must not change across operating environments. The internals of
these routines will change per operating environment, using the appropriate system/driver calls to
accomplish the device-access requests on the functional tests’ behalf.

In-Service versus Out-of-Service Test Units

The architecture described in this document is primarily for the creation of "out-of-service” Test Units,
meaning that the device being tested is not available for any other use by the operating system while it is
under test. In high-availability systems, however, it is often desirable to have Test Units which can be used
while the device is "in-service.” This may be especially true for devices which can have partial failures; for
example, DASD media, RAID, memory/cache arrays, and multi-port adapters. A variation of In-Service
diagnostics can sometimes be done with an Out-of-Service Test Unit that takes over the device for such a
short period of time that no service outage is detected.

Test units designed to be run truly concurrently with other operations on the same hardware component
will, in general, have to perform their testing through the "normal” functional device driver installed by the
operating system. Because the device driver model tends to be unique to each operating system, the Test
Unit written to that interface may not be easily portable to other operating systems. However, proper
structuring of the Test Unit library, as discussed below in['Recommended General Structure of Test Unit|
wiII help isolate into a single source file those functions which must be modified.

Recommended General Structure of Test Unit Code

The TU environment specified in this document is designed to provide source code portability of TUs
across multiple operating environments. TUs should only use the device and system interfaces specified in
this document to ensure portability. However, experience has shown that it is good programming practice
to isolate and abstract external functions so that any problems in porting can be corrected within a single
source code file. For this reason, it is strongly recommended that TU developers include a special source
file in their TU library for the purpose of providing that isolation and abstraction. The following describes a
recommended implementation of that source file, given to help promote consistency in TU development.
The consistency is very important for long-term maintenance of the Test Unit code.

TU libraries should include a C source file called interface.c, which provides a set of abstracted device
functions that can be used by the actual TU functions. The following is a list of functions that should be
implemented within the interface.c.

TU Function Description

dd_open Prepares a device for testing and obtains needed device attributes.

dd_close Cleans up after testing.

dd_read Performs a read operation.

dd_write Performs a write operation.

dd_dma Initializes, pins, and cross-memory attaches the user buffer for a DMA operation.
dd_dma_enable Enables/Disables a DMA operation.

dd_dma_cleanup Deallocates any resources previously allocated for a DMA operation.
dd_interrupt Processes interrupt conditions.

As illustrated below, these functions should provide mappings to one or more of the services described in
['Programming Interfaces for TUs and Interrupt Handlers'| .

52 understanding the Diagnostic Subsystem for AIX

The figure also illustrates how TU libraries should include a C source file that implements them
interface, which provides the program entry point for the TU library, decodes the specified TU number to
the correct internal function, and calls that function.

Test Unit Library

exectu()

*l interface.c

Test Unit ?.c" V
Source Files

dd_* functions

pdiag_* functions

Y

Operating Environment

Common Service Layer

General Structure of a Test Unit Library

Designing for Multitasking Environments

Test units should be designed with rules of re-entrance in mind. Although it is unlikely that a given set of
Test Units could be run simultaneously against the same device, it is possible that more than one of the
same type of device (or devices which are tested by the same TU code) exists in the system. Since it may
be desirable to run the Test Units concurrently as part of a system exerciser or a stress test for a specific
subsystem, it is possible that the same TU code may be run in different threads under the same process.
The use of static variables in this case could lead to data conflicts between the multiple instances of TU
code execution.

Persistent Data and the TU INFO HANDLE

Because of the requirement to allow multi-threaded, simultaneous execution of Test Units, the TU functions
must be written to be re-entrant, implying that statically defined variables or structure are not allowed.

Note: Static constant values are not a problem.
To illustrate the problem, imagine two threads of execution calling the same TU to run simultaneously

against two device instances of the same type. Values stored in static variables would get changed in both
threads of execution, probably leading to a program failure. Therefore, all variables and structures must be

Chapter 3. Diagnostic Components 53

either defined locally as stack variables, or created using allocated memory. Without static variables, it is
difficult to retain any data around from one execution of a TU to the next.

The intent of the TU_INFO_HANDLE pointer in the nterface is to provide the TU writer with a
pointer to a data buffer that will persist across multiple execution calls to specific Test Units. On the first
call to a TU library, the TU_INFO_HANDLE pointer will be set to NULL. The first TU, TU_OPEN, must
allocate the buffer and set the TU_INFO_HANDLE pointer. Data that the TU writer wants to have persist
(for example, device attribute information) can then be placed within that buffer, and the pointer to the
buffer will be passed back on each subsequent call to the TU library.

Because the data buffer remains allocated after the TU returns control to the calling application, it is the
responsibility of the calling application to free the buffer any time that a premature termination is required,
or after it calls the last TU (TU_CLOSE).

Data that should be kept in the persistent data buffer includes:

» The pdiagex_dds_t structure which contains several device attributes and is used as a parameter to the
cal.

* The PDIAG_INFO_HANDLE returned from the pdiag_open call, which is used as an input parameter to
all the other device operation functions.

* An indicator of the state of the device (DIAGNOSE or NORMAL)

» Other device-attribute information obtained from Configuration Services using the |pdiag_cs_get_attl1
function (to avoid the overhead of rerequesting it for each TU call).

» Any other information the TU writer would like to have persist from one call to the next.

Test Unit Call Interface

To execute test units, a C language function with the name has been defined to provide the
interface between the test unit code and the managing application. The definition of this interface has been
developed to:

» Hide the complexity of the structures and protocols used in performing functional tests

» Provide a uniform interface for all the different management applications that may invoke the test unit
code.

See the section ['Definition of EXECTU"}

Definition of TU_TYPE Input Structure

The interface is dependent on the definition of a Test Unit Control Block (TUCB) structure. The
TUCB is defined as a C language data type called TU_TYPE, and is located in the diag/tucb.h header
file. This header file must be used without modification and included in each source file using the structure.

To make the test unit functions available to a wide range of managing applications, this TUCB structure
must not deviate from the defined structure. No new data types or structures may be added. Each test unit
should be self-sufficient in the function provided. The data types OUTPUT_DATA and INPUT_DATA are
declared as 'void’ in the diag/tucb.h file. If these structures are to be used, two header files are required
to redefine these parameters:

+ The [[DEVICE} err_detail.h Filg|file should be used to define device specific error log detail output data
(OUTPUT_DATA).

+ The [DEVICE}_input_params.h Filg|file should be used to define device specific input parameter data
for a test unit (INPUT_DATA).

Both header files (if used) should be included before the diag/tucb.h file.

The TU_TYPE structure is specified as follows:

54 understanding the Diagnostic Subsystem for AIX

typedef struct tucb_t {
char =*resource_name;
TU_INPUT_TYPE parms;
} TU_TYPE;

The resource_name is a string containing the name of the hardware or physical device (as defined by the
operating system) on which to run the test unit. TU_INPUT_TYPE is a substructure of TU_TYPE, and
contains several input parameters, as specified in the following:

typedef struct tucb_in_t {
ulong tu;
ulong loop;
OUTPUT_DATA xdata_Tog;
ulong data_log_length;
INPUT DATA *tu_data;
ulong tu_data_length;
FILE *msg_file;

} TU_INPUT_TYPE;

See ['Definition of EXECTU()"| for structure member definitions.

Note: For most applications, the TU number and loop count are the only parameters required. However,
this interface allows for an open way of passing special parameters into the Test Units and
receiving detailed data back out, to allow for specialized testing environments.

Using such data requires specific knowledge about the Test Unit design in the calling application, and does
not allow for generic diagnostic handling, as would be required from a system management application.
However, this design would allow a remote diagnostic application, which could have detailed diagnostic
design knowledge, to work through a local agent function which only has generic diagnostic knowledge.
The local agent would only have to allocate buffers of the requested size, and pass data between the Test
Units and the remote diagnostic application.

Definition of TU_RETURN_TYPE Output Structure

Them interface expects, as a return value, a unsigned long major_rc return code value. As an
extension of this return value, a Test Unit Control Block (TUCB) return structure is included as a third
argument to the exectu() function call. The TUCB return structure is defined as a C language data type
called TU_RETURN_TYPE, and is defined in the diag/tucb.h header file. This header file must be used
without modification and included in each source file where the structure is used.

typedef struct tucb_out t {

ulong major_rc;

ulong minor_rc;

ulong actual_loop;
ulong data_log_length;
ulong severity;

} TU_RETURN_TYPE;

See ['Definition of EXECTU()"| for structure member definitions.

Return Codes

major_rc

The major_rc return value from the function should indicate the success or failure of the TU
which was executed. If all testing is successful, it should return a value of zero (0), otherwise a non-zero
value should be returned corresponding to a specific value. A managing application uses the major_rc
return code to determine the flow of the diagnostic procedure, and to look up the appropriate card level
Field Replaceable Unit (FRU) or FRUs to be replaced. To satisfy the failure-isolation requirements of all
managing applications, the return codes should be designed to be as granular as possible to provide
maximum fault isolation. For most purposes, this means attempting to isolate to a single FRU.

Chapter 3. Diagnostic Components 55

Note: When defining major_rc return codes, keep the following in mind:
* Never return memory offset information in the return code.

* Do not return any detailed information, such as failing bits, through the return code. Instead, use
the OUTPUT_DATA error log.

minor_rc

The minor_rc return value is used to pass back a more specific error indication, and would typically be
provided as an aid for fault isolation within a FRU, perhaps down to modules or I/O lines. This information
is intended for use in bring-up and debug, and in manufacturing, to point to a specific hardware defect.
Used in conjunction with the OUTPUT_DATA error log, the TU writer should be able to pass back enough
information to isolate to a failure to whatever level is needed. However, most management applications will
only be interested in the major_rc return value.

Interrupt Handler Call Interface

The diagnostic interrupt handler function for a device must be packaged in an executable module separate
from the Test Unit library. This module is loaded into the operating system and registered with the
diagnostic system services when the TU_OPEN calls the function.

When the services receive an interrupt, control is passed to these "second-level” interrupt handlers in
sequential order. Each interrupt handler reads the status of its respective adapter to see if it was the
source of the interrupt. If the Test Unit is waiting for the interrupt by calling the
|pdiag_dd_watch_for_interrupﬂ service, the sleep_flag will be set to 1, indicating that the interrupt handler
should do a|pdiag_dd_interrupt_notifyl when it has completed.

Interrupt handlers can use the device methods to read and write operations on the device. Typically, they
will read registers on the device to obtain more information about the interrupt, and write registers (if
necessary) to clear the interrupt condition. The content of any data passed back to the TU through the
data_area buffer, and whether the TUs even wait for interrupts, is a decision left to the designer of the TUs
and interrupt handler. That decision depends upon the operation of the specific device and how it is being
tested.

Syntax
The function entry prototype for an interrupt handler is as follows:

int device_interrupt (
PDIAG_INFO_HANDLE =*handle,
pdiag_addr_t data_area,
int32 xinterrupt_flag,
uint32 sleep_flag,
uint32 *sleep_word)

Parameters

Parameter Description

handle Pointer to a handle for use in device operations

data_area Buffer area where the interrupt handler can store information that the Test Unit can review
after interrupt processing is complete.

interrupt_flag Bit field indicating which interrupt occurred

sleep_flag Boolean value to indicate whether the waiting Test Unit should be notified

sleep_word Semaphore that the Test Unit is waiting for, used as a parameter to the

pdiag_dd_interrupt_notify service

56 Understanding the Diagnostic Subsystem for AIX

Interrupt Handling in Test Units

A typical sequence of events in the functional flow of a Test Unit is to set up a device operation through
reads and writes to the device address space, and then wait to receive an interrupt from the device to
indicate that an operation has completed or needs attention. Since interrupt handling is device-specific and
part of the test process, an interrupt handler function must be provided in addition to the Test Unit library.
When a device is opened for testing by Test Unit 1 (TU_OPEN), an interrupt handler may be loaded (if
one is needed) by passing an interrupt handler module name as one of the parameters on the
pdiag_open system service. A data buffer address is also passed as part of the input to the |pdiag_open
function, so the device methods know which interrupt handler to use, as well as where to pass back data
from the interrupt handler.

The purpose of the interrupt handler function is to receive the interrupt indication, possibly gather some
information from the device, clear the interrupt condition on the device, and notify a waiting Test Unit that
the interrupt has occurred. Clearing of the interrupt condition is critical, because the interrupt handler will
be called continuously as long as the interrupt condition exists. Since this function is called to handle a
specific device I/O interrupt, the information it gathers from the device is useful in diagnosing the device
behavior. The interrupt handler puts this information into the data buffer area (defined at device-open
time), where the waiting Test Unit can access it for analysis.

The basic flow of interrupt processing is shown in the "Interrupt Processing in Test Units” illustration. The
flow of events is as follows:

Test Unit Library

exectu Test Units Interrupt
Handler
- o >
|_> -t
- et
| data
| buffer A
Yy Y
Common Service Layer -

Interrupt Processing in Test Units

1. An caII is made to Test Unit 1 (TU_OPEN), which callsto open the device for

testing. Included in the input information passed to pdiag_open is the name of the interrupt handler
module and the address of a memory-allocated data buffer area.

2. ATest Unit is started, which performs some operations on the device, and then calls
|pdiag_dd_watch_for_interrupﬂ to wait for a response in the form of a device interrupt (or a time-out if
no interrupt occurs).

3. The device-methods layer receives an interrupt indication from the operating system.

The device-methods pass control to the registered interrupt handler.

&

Chapter 3. Diagnostic Components 57

5. The interrupt handler function gathers data from the device and places it in the data buffer area, clears
the interrupt, and releases the Test Unit from its WAIT state.

6. The interrupt handler completes and returns to the caller (the device methods).
The Test Unit continues execution by processing the data returned from the interrupt handler.

8. When testing is completed, a call is made to Test Unit OXEFFF (TU_CLOSE), which calls [pdiag_close
to close the device and unload the interrupt handler.

N

The cycle of device setup and wait for interrupt can be repeated as often as necessary during the
execution of the Test Units. Registration of the interrupt handler only needs to be done once, at the time
when the device is opened for testing. However, different interrupt handlers could be used (if necessary)
by closing the device, then reopening the device with a different interrupt handler module-name parameter.

Using the Interrupt Flag Bit Mask

The interrupt_flag parameter to the interrupt handling routine and the flag_mask parameter on the
[pdiag_dd_watch_for_interrupt| system service are used by the Test Unit and interrupt handler to
communicate the type of interrupt tha