
Redbooks Paper

Linux on IBM zSeries and

S/390: Porting LEAF to Linux
on zSeries

Preface
This Redpaper describes a port of the Linux Embedded Appliance Firewall
(LEAF) to Linux on zSeries. LEAF can be used in a specialized implementation
for routing in a large-scale Linux on zSeries installation (sometimes colloquially
known as a “penguin colony”).

Objectives
The objectives of this paper are:

� To discuss what LEAF is and how it works

� To show an example deployment method of LEAF on zSeries which takes
advantage of centralized management using z/VM

Gregory Geiselhart
Vic Cross
© Copyright IBM Corp. 2002. All rights reserved. ibm.com/redbooks 1

This paper does not discuss how to configure and operate LEAF, but instead
examines porting issues that may applied to other Linux projects requiring a
small footprint.

What is LEAF
LEAF is a project derived from the original Linux Router Project (LRP). LRP
described a way to implement a customized Linux distribution which was small
enough to fit on a floppy disk, and yet provide advanced routing functionality such
as traffic shaping, firewalling, and even DHCP and DNS service.

Both LEAF and LRP are designed to be as small as possible, primarily for
reliability and security reasons. The small footprint of LEAF/LRP makes it ideal
for recycling old PC hardware for use as routers.

There are a number of different LEAF and LRP sub-distributions, each with a
different focus or objective. For instance, the LEAF-Bering distribution (on which
this paper is based) was the first LEAF distribution to use the Linux 2.4 kernel, in
order to take advantage of the Shorewall firewall and other enhancements.

For more information about the LEAF project, and links to documents about how
LEAF works on the Intel platform, visit the project home page. There is a lot of
information on the site, including user and developer guides, installation
instructions, FAQs and HOWTOs, and testimonials. The LEAF Project home
page can be found at:

http://leaf.sourceforge.net

Important: This paper is not a recommendation on how to build Linux router
images on zSeries. It is a description of one way to do so, using a
purpose-built distribution of Linux.

In the IBM Redbook Linux on IBM ^ zSeries and S/390: Large Scale
Linux Deployment, SG24-6824, the authors describe a method of cloning
Linux systems which will work for any type of Linux system, not just routers.
However, LEAF offers some advantages (as used on zSeries under z/VM) that
make it attractive for the particular task of centrally managing Linux router
guests.

If anything, the paper reinforces the fact that almost anything you can do on
Intel Linux, you can do on zSeries Linux!
2 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

http://leaf.sourceforge.net
http://leaf.sourceforge.net

How LEAF works
As mentioned, LEAF is designed to be as small as possible, in terms of both
code size and system requirements. LEAF builds a filesystem entirely in memory,
and runs the Linux system from that - this eliminates the need even for a hard
drive. The boot process reads package files from some persistent medium
(usually a floppy disk, but can be a CD-ROM or network server) and builds the
filesystem in memory from the contents of those packages.

Once the filesystem is built, the package store is no longer required and can be
removed. This is a valuable security feature, as a potential cracker can only
corrupt the filesystem in memory; if a compromise is discovered or suspected, a
reboot of the router will return the system to a known state.

LEAF components
The main components of LEAF are packages, similar to packages such as RPM
or DEB used by other distributions. In keeping with the low-overhead nature of
LEAF, a LEAF package is basically just a tar archive with a particular format.

The LEAF developers build special kernels, with a small configuration to reduce
the footprint (the 2.4.18 kernel used in the LEAF Bering distribution on Intel is just
under 900kB in size, compared to nearly 2MB for the zSeries 2.4.7 installation
kernel). LEAF also uses an initial root device (initrd) which provides the bootstrap
facility that gets the router configuration started.

A key component of the LEAF distribution is a software utility called BusyBox.
BusyBox is a program described as a “multi-call binary”, which includes the
function of dozens of separate programs as shipped with a normal Linux
distribution. Using BusyBox for LEAF considerably reduces the amount of space
required for the distribution.

Boot process of LEAF on i386
When a LEAF router on the i386 platform boots, a series of actions take place
that lead to the eventual running of the router system. We will describe the
process in some detail here, so that we can later compare the differences
between the i386 process and the zSeries process.

Syslinux boot loader
The computer’s BIOS locates the boot devices, and loads the master boot record
(MBR) from that device. In this case, the code is part of the syslinux utility.
Syslinux reads its configuration file to determine options such as the command
line to be passed to the kernel. In the case of LEAF, there are additional
 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries 3

parameters passed in the kernel command line that are actually ignored by the
kernel, but picked up by the LEAF initialization script later in the boot process.
Syslinux loads the initial root device and the kernel image into memory, then
starts executing the kernel.

Linux kernel
The kernel is decompressed (if needed) and executed. The kernel then
decompresses and mounts the initial root device, and executes the system
configuration script.

Linuxrc
This is the system configuration script. The actions taken by this script can vary
between LEAF distributions, but usually at least the following actions will be
performed:

� Loading packages, from disk or other method such as TFTP
� Loading kernel modules (if required)
� Activating network interfaces
� Creating RAM disks for temporary or log files
� Other actions, such as creating symbolic links for BusyBox

The script parses the kernel command line to obtain some configuration
information, such as which packages to load and where to load them from.

/sbin/init
The last stage in the bootup process is to start the init process, which reads the
/etc/inittab file and starts other processes (such as console gettys) as required.

/etc/init.d/rc
This script reads links from the /etc/rc?.d directories (for the desired runlevel) and
runs the linked programs in the configured order. This process is how system
daemons such as httpd and cron are started.

/sbin/getty
The getty processes are started by init, and manage the connected terminals.
They usually run the login program, which handles the process of user login.

The last three stages in this process are similar to the startup process of a
“normal” Linux distribution.
4 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

LEAF configuration system
The method used to configure a LEAF router is the lrcfg utility. This is a program
that allows an operator to make configuration changes to the package files on a
LEAF router. Each package contains a definition file which lrcfg uses to
determine which files in the package are configuration files that can be edited.
lrcfg launches an editor that allows the operator to make the required changes
to the configuration file.

When editing configuration files using lrcfg, only the version of the file that
resides in LEAF’s in-storage filesystem is changed. To make the change part of
the configuration of the router, the LEAF boot medium must be available for
lrcfg to write a new version of the modified package with the changes in place.

The main lrcfg panel is shown in Figure 1.

Figure 1 lrcfg main panel

Tip: This is a valuable security feature. Without access to the boot medium, it
is impossible to make inadvertent or malicious permanent changes to the
LEAF configuration.

 LEAF configuration menu

 1) Network configuration

 2) System configuration

 3) Packages configuration
 b) Back-up a package

 c) Back-up your LEAF disk

 h) Help
 q) quit

 Selection:
 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries 5

LEAF in the penguin colony
We now introduce the LEAF router concept to zSeries Linux. We discuss how
“z/LEAF” differs from Intel LEAF, describe the process we used to build a z/LEAF
system from scratch, and how our z/LEAF system works in practice.

Why use LEAF in a penguin colony
When running a large-scale Linux on zSeries installation, it is important that the
infrastructure overhead is kept as low as possible. This means that not only CPU
utilization, but also disk and storage consumption, must be minimized.

LEAF’s design fits this model very well. Designed originally to work on low-end
Intel hardware, it can run in as little as 8MB of RAM and be entirely contained on
a single 3 1/2” floppy disk. On zSeries, this low-overhead design makes it an
interesting candidate for use as a router in a large-scale Linux deployment.
Combined with features of z/VM, a collection of LEAF routers can be managed
from a central location.

Differences between Intel and zSeries LEAF
Overall, the structure of the LEAF installation has not changed. There are a few
areas that were slightly altered for LEAF’s use on zSeries.

Boot loader
On Intel LEAF, the Syslinux bootloader is used to load the kernel (with the
desired parameter line) and provide the initial root device. However, Syslinux is
not currently available on zSeries Linux, so we need an alternative.

The processing of Syslinux is quite similar to the boot process used by the
installation system kernels used by the major zSeries Linux distributors. These
kernels have an integrated loader which reads the kernel, parmfile and initial root
device into storage from either a tape device or a z/VM reader.

Since this is an established process in zSeries Linux, we have used the “z/VM
reader and installation kernel” boot method to replace Syslinux.

Kernel
As mentioned previously, the kernel being used is the kernel as supplied with the
distributors’ installation system. This kernel has the following advantages:

� Support for initial root device (initrd) built in

� DASD driver loaded as module
6 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

Accessing DASD using the DASD module is a desirable feature that provides
additional security. By attaching and detaching the configuration disk as required,
we can be reasonably sure that undesirable changes to the configuration cannot
be made.

Location of LEAF packages
We were unable to wait for the completion of the zSeries floppy disk drive
support1, so our LEAF implementation utilizes a Linux ext2 filesystem on a
shared z/VM minidisk for storing the LEAF package files. This disk is attached
during the running of the /leafrc script, and detached at the end of the script.

Bringing LEAF to zSeries
In this section, we describe the process we used to port LEAF-Bering to Linux on
zSeries.

Kernel
We used the SuSE 2.4.17 professional kernel for initial development. After
initially working with tuning the build, we decided that using a 64-bit distribution
gave no appreciable benefit, and in fact added to the size of the build. Therefore,
we changed to a 31-bit SuSE distribution. Table 1 lists the improvements we
were able realize in the size of the image:

Table 1 Space saved by switching to a 31-bit distribution

However, due to other considerations, we had to increase the storage allocation
to perform functional work with the system. This is described in “QETH driver
memory allocation” on page 17.

1 Of course, this is a statement made in jest. However, on a system such as the Multiprise 3000,
which provides emulated device support, it would be possible to define the machine’s floppy disk
drive as an accessible device, perhaps by creating a 2880 block emulated FBA disk on it. Since the
kernel file would occupy more space then this, however, it would not be practical for this application.

64-bit 31-bit

Kernel file 3.22MB 2.57MB

Initial root device 6MB 4MB

Storage required for IPL 24MB 16MB
 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries 7

Leafrc
The leafrc script, which functions as a system pre-build script to install the LEAF
packages and configure basic devices, required some work to allow for the way
that z/LEAF is set up.

As discussed, we used a shared minidisk (formatted ext2) to store the LEAF
package files. Rather than give the LEAF guests permanent access to this disk,
we chose to control access by having the guest link the disk when it is required.
In order to do this, we used the cpint utility.

The leafrc script has modifications to install the cpint utility, as well as to install
the DASD driver and mount the package disk. Once packages are installed, the
disk is unmounted and unlinked.

LEAF packages
Not all of the LEAF packages available with the Bering distribution have been
ported to zSeries at this time. At present, the following packages have been built
and tested:

� root
� local
� etc
� tc

To assemble these packages for zSeries, we simply obtained the package list
from the existing i386 package file and reproduced the list using files from a
zSeries system. For many packages (local and etc, for example) no changes
were required since they contained no i386 binaries.

Running LEAF on zSeries
In order to get the most benefit from the LEAF packaging method, we can take
advantage of features of z/VM to manage the LEAF routers centrally.

Centralized boot files
Normally when you use the installation system to build a Linux system on z/VM,
you will transfer the kernel, parmfile and initial root device to the A disk of your
Linux userid and execute an exec that punches the files to the reader and IPLs. If
we used the same approach with our LEAF routers, we would have these files
scattered all over our z/VM system, making it difficult to keep releases
synchronized.
8 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

Instead, we will keep the files on a central userid A disk, and punch the files from
the central userid to the reader of the LEAF router we wish to IPL. Then, we use
the XAUTOLOG command to log on the LEAF userid. Adding an IPL command
to the LEAF userids’ directory entries will automatically IPL the card reader when
the guest logs on, commencing the LEAF boot process without any other
intervention.

The simple CMS EXEC shown in Example 1 gives an example of how the LEAF
router users can be automatically punched and logged on.

Example 1 LEAFIPL EXEC - sample LEAF IPL script

/* */
PARSE ARG LEAFID;
IF LEAFID = '' THEN DO
 SAY 'Usage: LEAFIPL rtrid';
 SAY ' where rtrid=the userid of the LEAF router to be IPLed.';
 EXIT 1;
END;
'PURGE 'LEAFID' RDR ALL'
'SPOOL PUNCH 'LEAFID' RDR'
'PUNCH SLES7PROF KERNEL A (NOH'
'PUNCH LEAF PARMFILE A (NOH'
'PUNCH INITRD LEAF A (NOH'
'XAUTOLOG 'LEAFID

We used this process quite successfully during early work on z/LEAF. When we
started looking at centralized configuration management (see “Centralized
configuration process” on page 10), however, we realized that we would need
two support guests: one running Linux to support the configuration process, and
another running CMS to provide the IPL processing. This seemed wasteful,
considering that the CMS guest would get very little use.

While we were considering this, we learned about the Linux “unit record” device
driver. This driver allows a Linux guest to interact with the VM spool; in particular,
it would allow us to keep the kernel, parm and initrd files in a Linux filesystem,
and punch to the LEAF guests’ readers from Linux. Now, we could use a single
management guest running Linux for configuration and starting the LEAF
images.

We copied our CMS IPL exec to Linux, and made some alterations to it to allow
running it on Linux2. Example 2 on page 10 shows the resultant REXX script.

2 Yes, perhaps we should have re-written the exec as a shell or Perl script, but with the shell scripting
skills of our team we decided it was easier to install Regina REXX than to do the re-write (even
though there are only six lines that require re-writing). Perhaps in a future revision of this paper it may
appear as shell script...
 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries 9

Example 2 leafipl.rexx - sample LEAF IPL script

#!/usr/bin/rexx
PARSE ARG LEAFID;
IF LEAFID = '' THEN DO
 SAY 'Usage: LEAFIPL rtrid';
 SAY ' where rtrid=the userid of the LEAF router to be IPLed.';
 EXIT 1;
END;
'/sbin/hcp PURGE 'LEAFID' RDR ALL'
'/sbin/hcp SPOOL PUNCH 'LEAFID' RDR'
'ur copy -b sles7.kernel /dev/vmpunch'
'/sbin/hcp CLOSE PUNCH'
'ur copy -t 'LEAFID'.parmfile /dev/vmpunch'
'/sbin/hcp CLOSE PUNCH'
'ur copy -b initrd.gz /dev/vmpunch'
'/sbin/hcp CLOSE PUNCH'
'/sbin/hcp CH 'LEAFID' RDR ALL KEEP NOHOLD'
'/sbin/hcp XAUTOLOG 'LEAFID

Centralized configuration process
On i386 LEAF, configuration changes are made by logging on to the LEAF router
and running the lrcfg program. This makes changes to the in-memory
filesystem of the LEAF router. If the changes are to be persistent, the relevant
package(s) are backed up to the boot medium.

On zSeries LEAF, we want the configuration process to be done entirely from a
central server. In order to do this, we change the processing of configuration
updates slightly.

On our central configuration machine, when a configuration change is required
for a LEAF router, we expand the package files into a temporary space and run
the configuration changes against those expanded files. When the change is
complete, we back up the altered packages, which writes the updated package
files ready for the next restart of the LEAF router.

If a dynamic configuration change is required, we run an additional command
that signals the LEAF router to re-link to the configuration disk and re-expand the
altered package(s).

Tip: For more information on the unit-record driver and corresponding utilities,
refer to the discussion on ur in Linux on IBM ^ zSeries and S/390:
Large Scale Linux Deployment, SG24-6824.
10 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

Router-unique packages
Since the LEAF IPL process includes the packages to be installed in the kernel
command line, one of the things that must be unique for each LEAF router is the
kernel parmline. This allows a different set of packages to be specified for each
router, as required.

Some packages, however, contain router-unique files. The best example of this is
the etc package, which populates the /etc directory of the LEAF router. Each
router will have different versions of common configuration files (such as
/etc/hosts) which must be managed on a per-router basis.

The easiest solution is to duplicate these particular packages for each router, and
specify the name of the package file for that particular router on the kernel
command line. Using the LEAF router image name as part of the package name
makes it easier to identify which packages have been customized for a particular
router.

Starting a z/LEAF router
We now describe the process of starting a z/LEAF router image.

z/LEAF boot sequence
The LEAF boot sequence on zSeries is roughly similar to the boot process on
i386, except for the initial startup. Instead of using the syslinux utility as a
bootloader, the installation kernel’s internal loader is used to read the kernel,
parmfile and initial root device from the z/VM reader into storage, and start
executing the kernel.

Once the kernel is executing, the boot process is almost identical to i386.

Getting the LEAF system into the reader
Before we can IPL a LEAF guest from its virtual reader, the correct files must be
punched there. We do this from a central management guest, as described in
“Centralized boot files” on page 8.

Note: You could use the lrcfg program on each LEAF router to make
temporary changes. This is feasible, but be aware that by doing so you are
increasing the chances that a configuration change is made without being
saved.
 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries 11

Starting the z/LEAF guest
Once the files are in the guest’s reader, we can log the guest on and have it IPL
from the reader. Since we want this process to be fully automatic, we want the
IPL to take place automatically. There are two ways of getting the guest to IPL at
logon:

� IPL command in the guest’s directory entry

� PROFILE EXEC on the guest’s A disk containing an IPL command

The second option would be used if you wanted the ability to IPL the LEAF router
guests into CMS and perform operations there. This is not necessary, since we
do not expect to use CMS and have no other reason to give the guest an A disk.
Therefore, we will ensure that the directory entry for the LEAF guests has the
correct IPL command to start the guest from the virtual reader.

Having set up the guest so that it will automatically IPL when it is logged on, we
now need to provide a way for the guest to get logged on without intervention.
This is done using the XAUTOLOG command at the end of the IPL exec.

Running the z/LEAF guest
Once the z/LEAF guest is logged on and IPLed, no further action is necessary. It
will perform its boot processing and start functioning automatically.

Note: Remember that the userid you intend to use to log on other guests must
be authorized to do so! The AUTOLOG statement in a user directory entry lists
those users who are allowed to use XAUTOLOG to log that guest on. We
made sure that each of our z/LEAF guests had our configuration guest ID
listed in the AUTOLOG statement.

Tip: As with any unattended Linux guest, it is a good idea to have centralized
logging. Under VM, the easiest way to do this is to spool the guest’s console to
another userid. There are network-based methods (remote syslog, etc), but
spooling the console allows you to get message output from the very start of
the guest’s IPL.
12 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

Building z/LEAF
The process of building the z/LEAF system originally involved a lot of manual
command work. We started with a LEAF Bering system on Intel, to gain a
working understanding of the boot and configuration processes. Then, we moved
the initial root device to our Linux on zSeries system, and gradually replaced files
from the LEAF system with the equivalent packages from the zSeries Linux
installation.

BusyBox
The majority of the function of LEAF (outside the kernel and modules) is provided
by the BusyBox utility. BusyBox implements a large number of system utility
functions in a single file called a “multi-call binary”. Packaging many different
programs in a single binary is used for embedded projects such as LEAF for
three main reasons:

� Saving code space through non-duplication of code

Every executable file contains some common code that is used to load and
execute the program. Combining many programs into one file (compared to
the same programs in their own command file) means you have only one copy
of this common code, used by all the programs.

� Saving file system space through reduced filesystem overhead

Most computer filesystems have some inefficiency due to the way that file
space is allocated (in multiples of the filesystem block size, 4KB on zSeries).
This means that, unless the size of a file is an exact multiple of the block size,
some space will be wasted at the end of every file. If many programs share a
single file, part of only one block will be lost instead of one for every file.

� Reduced code size due to elimination of unnecessary functions

Most software utilities have a large number of features and functions compiled
in, which leads to a large executable file. Many of these functions might not be
used in the embedded application environment. When making a utility part of
a multi-call binary, the packager will usually take the opportunity to remove
some unnecessary options, thus reducing the file size.

The makers of BusyBox take many common Linux/UNIX utilities and package
them in a multi-call format. BusyBox can be customized so that the various
utilities are either included or excluded from the resulting binary.

Building BusyBox on zSeries was not difficult. For the purpose of this project, we
left out some components (such as modprobe) which were i386-specific code. To
build BusyBox, we issued the the command ./configure && make.
 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries 13

The biggest difficulty in building BusyBox was in making sure that the
components included in the build of the BusyBox binary matched up with what
was required by LEAF. This was made easier with the realization that the
components required would appear as symbolic links to the BusyBox binary on a
LEAF system. All we had to do was list the directories /usr/bin, /usr/sbin and so
on, looking for all the symbolic links and making the appropriate configuration in
the BusyBox header file.

Other system applications: SSHD
Once we had networking set up, we of course wanted to log on to our LEAF
routers over the network! To do this, we needed to provide a Telnet or SSH
daemon to support a logon interface. Following the process used earlier in our
system build, we simply copied the files from our source SuSE distribution into
the root package of our LEAF system.

When we rebooted our router and attempted to connect using SSH, it was
unsuccessful. Starting the syslog server did not provide any information for us
(other than the log of the connection request by inetd). Running sshd from the
command line yielded the following error message:

sshd: error while loading shared libraries: libpam.so.0: cannot load shared
object file: No such file or directory

The SSH daemon as supplied with our source distribution was linked against the
PAM libraries, which we had not copied to our LEAF build. Our first thought was
to copy the libraries in and try again, but we consider PAM to be too much
overhead for a simple router image (which will not have users logging on in the
general course of events). So for now, console access via the VM TCP/IP stack
will do.

Using z/LEAF
Our z/LEAF environment consisted of the following guests:

LEAFMSTR was a SuSE Linux Enterprise Server 7.2 system

0191 disk: CMS A disk (original work prior to Linux ur device driver)
0200 disk: package files for all LEAF routers

Note: In the case of modprobe, it was much easier to simply bring a copy of
the binary over from the host distribution than to try and port the
platform-specific code in BusyBox to zSeries. Of course, that increased the
size of our resulting system.
14 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

0201 disk: swap (200 cyl)
0202 disk: root filesystem (3138 cyl)

LEAF routers

0200 disk: temporary read-only access to packages

In practice, we came across a few catches when using LEAF, most concerning
storage (which is the primary issue when working with in-storage Linux
distributions like LEAF).

Storage allocated in 8MB units
We wanted to be able to finely control the amount of storage given to our LEAF
routers. We were making changes to the size of the initial root device to make it
fit in a smaller size, so as to reduce the overall footprint of our router images.
Using DirMaint, we altered the initial storage size of our LEAF guests in 4MB
intervals. However, when we IPLed our LEAF images, Linux did not recognize
the storage change.

Figure 2 on page 16 shows an example; the command output comes from one of
our LEAF guests, LEAF2.
 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries 15

Figure 2 Storage allocation on LEAF2

We seem to have lost 4MB! Once we changed to 32MB, things were different, as
seen in Figure 3 on page 17.

hcp q stor
STORAGE = 28M
Ready;

dmesg | grep Memory
Memory: 19620k/24576k available (1924k kernel code, 0k reserved, 617k data,
48k init)

cat /proc/meminfo
cat /proc/meminfo
 total: used: free: shared: buffers: cached:
Mem: 21348352 15400960 5947392 0 4206592 7376896
Swap: 0 0 0
MemTotal: 20848 kB
MemFree: 5808 kB
MemShared: 0 kB
Buffers: 4108 kB
Cached: 7204 kB
SwapCached: 0 kB
Active: 704 kB
Inact_dirty: 10608 kB
Inact_clean: 0 kB
Inact_target: 36 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 20848 kB
LowFree: 5808 kB
SwapTotal: 0 kB
SwapFree: 0 kB
16 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

Figure 3 Storage allocation on LEAF1

This apparent 8MB boundary behavior reduced our ability to finely tune our
storage allocation.

QETH driver memory allocation
Before we started using networking on our LEAF images, we found that we could
successfully get them IPLed with a storage size of 24MB (anything smaller was
insufficient space to complete the init processing). This gave us sufficient storage
to start some daemons and verify from the console that things were working.
Once IPLing was sorted, the next stage was to get the routers on the network.
We included the QDIO and QETH modules from our source SuSE distribution,
IPLed our system, configured chandev, and loaded the modules. Then, when we
tried to start daemons, our system froze.

hcp q stor
STORAGE = 32M
Ready;

dmesg | grep Memory
Memory: 27664k/32768k available (1924k kernel code, 0k reserved, 617k data,
48k init)

cat /proc/meminfo
total: used: free: shared: buffers: cached:
Mem: 29585408 25669632 3915776 0 4214784 7430144
Swap: 0 0 0
MemTotal: 28892 kB
MemFree: 3824 kB
MemShared: 0 kB
Buffers: 4116 kB
Cached: 7256 kB
SwapCached: 0 kB
Active: 60 kB
Inact_dirty: 11312 kB
Inact_clean: 0 kB
Inact_target: 4 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 28892 kB
LowFree: 3824 kB
SwapTotal: 0 kB
SwapFree: 0 kB
 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries 17

Suspecting memory contention, we re-IPLed and checked memory usage before
and after module loading. We found that the storage consumed by the QDIO
driver was not significant (in contrast to the QETH driver, which has significant
storage consumption).

Figure 4 QETH storage utilization

The memory utilization of our LEAF guest has jumped by over 4MB. Once we
then tried to start various daemons, the system ran out of memory.

One way around this would be to set up swap devices to give Linux some swap
space. While there is nothing wrong with this, it does increase the complexity of
the guest’s configuration, and the idea is to keep things as simple as possible.

cat /proc/meminfo
 total: used: free: shared: buffers: cached:
Mem: 21348352 15400960 5947392 0 4206592 7376896
Swap: 0 0 0
...
insmod qdio
Using /lib/modules/2.4.7-SuSE-SMP/qdio.o
qdio: loading QDIO base support version 2 ($Revision: 1.79 $/$Revision: 1.44
$)
debug: qdio_setup: new level 2
debug: qdio_labs: new level 2
debug: qdio_sense: new level 2
debug: qdio_trace: new level 2
cat /proc/meminfo
 total: used: free: shared: buffers: cached:
Mem: 21348352 15536128 5812224 0 4206592 7376896
Swap: 0 0 0
...
insmod qeth
Using /lib/modules/2.4.7-SuSE-SMP/qeth.o
qeth: loading qeth S/390 OSA-Express driver ($Revision: 1.135 $/$Revision:
1.53 $/$Revision: 1.18 $)
 qeth: allocated 0 spare buffers
...
qeth: Trying to use card with devnos 0x700/0x701/0x702
qeth: Device 0x700/0x701/0x702 is an OSD Express card (level: 2938)
with link type Gigabit Eth (portname: NIC0700)
 qeth: IPv6 not supported on eth0
cat /proc/meminfo
 total: used: free: shared: buffers: cached:
Mem: 21348352 19714048 1634304 0 0 7376896
Swap: 0 0 0
...
18 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

We could also allocate some expanded storage to our LEAF guests. The usual
way for Linux to handle expanded storage is with the xpram device driver, which
makes the expanded storage available as a block device. This is then used to
define swap space. We now end up with a variation of the previous solution, with
no appreciable advantage to the guest over just allocating the extra storage as
more central storage.

The 4MB3 requirement of the QETH driver is documented elsewhere. We
mention it here because in this situation, since it is a low-memory
implementation, it was an issue that caused a significant effect to our solution.

DirMaint files in our readers
Every now and then, we would find that an IPL of one of our LEAF routers would
fail. On accessing the console output, we would see the following message:

HCPGIR450W CP entered; disabled wait PSW 000E0000 00000232

This is an IPL failure wait-state that indicates that no IPL-able image was found.
This was very confusing, since the first command we issue in our IPL exec is:

'/sbin/hcp PURGE 'LEAFID' RDR ALL'

We assumed this command would clear the reader of any files. We checked that
all of our punch commands process successfully.

After one such failure, we IPLed CMS in our LEAF guest and issued the RDRList
command. The command output is displayed in Figure 5 on page 20.

3 Actually 8MB in total, since 4MB comes from the guest and another 4MB comes from CP.
 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries 19

Figure 5 Reader List command on LEAF2

At this point we remembered that we had done some operations on the guest
userid using DirMaint prior to the last punch of LEAF2’s reader. The DirMaint file
was not deleted by the PURGE RDR ALL that we issued from our LEAF IPL
exec.

We initially thought that the DirMaint file was not being deleted because it was
OPEN, and PURGE does not touch open files. This was not the case, however,
as while trying to diagnose the problem we discovered that the file was indeed
closed before the IPL and it was the IPL attempt that opened the file.

Further investigation revealed that we did not have sufficient privilege on our
LEAFMSTR guest. Since it was defined as a class G user, we could delete our
own spooled files but not those of any other user. Adding class D to LEAFMSTR
fixed our problem by giving LEAFMSTR sufficient privilege to operate on other
users’ output on the spool of our LEAF routers.

 LEAF2 RDRLIST A0 V 164 Trunc=164 Size=4 Line=1 Col=1 Alt=0
Cmd Filename Filetype Class User at Node Hold Records Date Time
 LEAF2 VMLINUX PUN A DIRMAINT VMLINUX NONE 10 OPEN- 000C
 (none) (none) PUN A LEAFMSTR VMLINUX NONE 33709 10/02 0:26:35
 (none) (none) PUN A LEAFMSTR VMLINUX NONE 3 10/02 0:26:42
 (none) (none) PUN A LEAFMSTR VMLINUX NONE 15096 10/02 0:26:42

1= Help 2= Refresh 3= Quit 4= Sort(type) 5= Sort(date) 6= Sort(user)
7= Backward 8= Forward 9= Receive 10= 11= Peek 12= Cursor

====>
 X E D I T 1 File

Curiosity: According to the VM online help, without class D privilege we
should not have been able to purge files on another user’s spool at all.
20 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

Enhancing LEAF on zSeries
There are a few ways in which z/LEAF can be enhanced and developed that we
did not have an opportunity to investigate fully.

The “Gold” z/LEAF build
This paper discusses experiences with z/LEAF that have been gained through
hacking and experimentation. To produce a real z/LEAF distribution, it would be
necessary to follow the build process in the same way as the LEAF developers
do when producing a build for i386.

LEAF is based on the Debian GNU/Linux distribution. To build a true LEAF
distribution, it would be necessary to start with a Debian installation on zSeries.

The process to be followed would be:

1. Obtain the correct kernel source tree, and patch it with the recommended
S/390 patches from IBM developerWorks.

2. Patch the kernel with the LEAF-recommended kernel patches, and build a
LEAF kernel.

3. Build the LEAF support packages (BusyBox, TinyLogin, etc) from source
using the LEAF configuration.

4. Copy the LEAF scripts (leafrc, lrcfg, lrpkg) to the system.

5. Build the LEAF packages, and copy them to package media.

6. Test your LEAF build.

Useful documentation on building packages for LEAF and compiling a LEAF
kernel are available from the LEAF project Web site. Note that you are not

Note: You can find out all about Debian on S/390 (including how to install it) by
going to the Debian GNU/Linux Web site at:

http://www.debian.org

Debian provides an installation method that can be run from any existing Linux
system. This makes it very easy to install a new Debian system. Look for
“debootstrap” in the installation documentation.

One thing to watch out for is the process of installing network connectivity. We
had to download the IBM OCO drivers from the IBM developerWorks site and
install them manually. We used the kernel 2.4.17 “31-bit no-timer” modules
from the “August 2001 stream” page.
 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries 21

http://www.debian.org

restricted to LEAF Bering, as you can port any of the LEAF builds (recall that we
chose Bering simply because it was based on the Linux 2.4 kernel).

BusyBox insmod for s390
The BusyBox package can provide the functionality of insmod, but the code is
specific to only two or three platforms (none of which is zSeries). This means that
we cannot use this code on zSeries.

To avoid this issue, we had to copy the insmod program from our host distribution
to the LEAF package. This increases the total size of the package compared to
using the BusyBox code.

In order to truly align z/LEAF with the LEAF builds on other systems, the insmod
code in BusyBox would have to be ported to s390 (and s390x for 64-bit).

Sharing system resources
One way to further minimize the overall resource consumption of a number of
z/LEAF routers would be to have them share as much system resource as
possible. The current IPL process, while it is easy to manage, does create a fair
amount of duplication. This duplication occurs for two reasons:

� Each z/LEAF router loads kernel and modules into its own storage

� The kernel, initrd and parameter files sit it the router guests’ readers

These issues could be addressed with some development. There is some
ongoing work in using facilities of z/VM to share storage between guests, for the
purposes of sharing kernel code. This is ideal for the z/LEAF scenario, since all
of the routers would run identical kernel code.

To reduce spool usage of the z/LEAF guests, our IPL script could be changed to
purge the reader after the IPL. However, this introduces a timing dependency
since we do not want to purge the reader until the guest has finished its IPL
processing. It would be better to change the leafrc script to purge the reader from
within the guest itself at an appropriate time.

Tip: The author will be continuing work on the z/LEAF port, so watch for
updates to this paper.

Note: The topic of using VM facilities to share kernel code among guests was
introduced in Linux on IBM ^ zSeries and S/390: ISP/ASP Solutions,
SG24-6299. It is a field of ongoing research.
22 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

Another method to reduce spool usage would be to use a kernel that IPLs over
the network (using kernel auto-configuration and a network-accessible root
device) instead of from an initrd in the VM reader. LEAF supports this
configuration, but some work would be required to verify its applicability to
z/LEAF.

How a multi-call binary works
The BusyBox package is one of the best examples of a multi-call binary. This
concept allows a single executable file to perform the function of dozens of
different utilities usually packaged as separate files. Multi-call binaries exploit a
number of operating system features that make it possible for a user of a system
to not even know that the programs they are running are all, in fact, the same file.

Invoking the BusyBox multi-call binary
There are two ways to invoke BusyBox functions. In the first method, you issue
the command busybox followed by the name of the function you want to issue.
For example, busybox ls would perform the directory list function (equivalent to
the usual ls command). This method requires no administration, but users of the
program would have to remember that they could not simply perform a function
by issuing the name of a command.

The second method is to set up a set of symbolic links to the BusyBox
executable, each with the name of a function implemented by BusyBox. When
BusyBox is run, it checks the name by which it was invoked, and uses that name
as the function to be executed. This method requires some administration, as the
symbolic links must be maintained, but system users can follow the normal
practice of performing a function by issuing the name of the command.

Restriction: The catch here is with the current broadcast support available in
zSeries Guest LANs and HiperSockets. Since the protocols used by kernel
auto-configuration (DHCP, BOOTP, RARP) use MAC-level broadcasts and rely
on consistent MAC addresses, they do not currently function on Guest LANs.
If your z/LEAF router was to configure itself over a “real” network via an OSA
things should work, but in our environment it would not because our z/LEAF
guests were all attached to QDIO Guest LANs.

We know of a project to provide true broadcast support to Guest LANs, but we
do not know if this work will provide the consistent MAC address that a z/LEAF
router would require (for BOOTP and RARP, in particular).
 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries 23

Figure 6 shows the symbolic links created for ln and ls commands.

Figure 6 BusyBox session

The first ls output shows that /bin/ls is a symbolic link to /bin/busybox. The
next part of the output (generated by providing an un-implemented option to the
ls command) shows that the BusyBox binary is being used to process the ls
command.

Figure 6 also shows us another feature of the BusyBox utility. In the full GNU
implementation of ls, the -G option is valid (it suppresses the display of the group
name from the directory list). In the interests of saving space, however, not all of
the function of the various utilities is provided. This is quite appropriate for

Tip: Current versions of BusyBox include a parameter that will make BusyBox
create appropriate symbolic links for all of the functions that the binary
implements. This means that you can start with an empty directory and have
BusyBox fill it with the right links for that build of the program.

pwd
/bin
ls -l l*
lrwxrwxrwx 1 root root 12 Oct 2 00:11 ln -> /bin/busybox
lrwxrwxrwx 1 root root 14 Oct 2 00:11 login -> /bin/tinylogin
lrwxrwxrwx 1 root root 12 Oct 2 00:11 ls -> /bin/busybox

ls -lG
ls: invalid option -- G
BusyBox v0.60.3 (2002.09.26-00:58+0000) multi-call binary

Usage: ls [-1AacCdeFilnpLRrSsTtuvwxXhk] [filenames...]

List directory contents

...

Note: In the first output you can also see login, which is a symbolic link to
/bin/tinylogin. TinyLogin is a partner program to BusyBox and performs the
functions of programs like login and sulogin. These functions could have
been implemented in BusyBox, but for security reasons it is preferred to have
a separate executable for login processing.
24 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

BusyBox, however, since the idea is to eliminate unused (or little used) functions
in the interests of reducing the executable size.

Writing a multi-call binary
So, how does a multi-call binary like BusyBox, when invoked using a symbolic
link, know what function to perform? The answer is that the way a multi-call
binary program is written differs from a normal program.

The C language is used for most systems programming on UNIX/POSIX
systems. Programs written in C always have a main() function, which is the first
part of the program to be executed. The main function is written in a particular
way, to allow the operating system to pass parameters to it. A typical main()
function declaration appears here:

int main(int argc, *char argv[])

The parameters passed to the main() function are argc, an integer containing the
number of parameters passed by the system to the program, and argv, the list of
the parameters passed. By convention4, there will always be at least one
parameter passed to the program: the name used to invoke the program. This is
usually the command typed by the user at the shell prompt to invoke the
command, and will just about always be the name of the file that contains the
program. In C notation, this value (the first item in the array called argv) is
argv[0].

Most single call binaries ignore the contents of argv[0], as the program is
designed to perform a single task and it is irrelevant what name the system used
to invoke the program.

A multi-call binary pays attention to this parameter, however, and uses it to
determine which function to execute. In the case of BusyBox, if argv[0] is the
same as the executable file name it will use the second item in the parameter list
(argv[1]) as the name of the function to be executed. If argv[0] is not the same as
the name of the BusyBox executable file, it will attempt to use the contents of
argv[0] as the name of the requested function.

4 On UNIX/POSIX systems, at least.

Note: Some programs, for security reasons, do make sure that the command
issued is correct. This can prevent a malicious user from executing a program
they should not have access to.
 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries 25

References

IBM Redbooks
� Linux on IBM ^ zSeries and S/390: Large Scale Linux Deployment,

SG24-6824

http://www.ibm.com/redbooks/abstracts/sg246824.html

Referenced Web sites
� Linux Embedded Appliance Firewall home page

http://leaf.sourceforge.net/

� Debian GNU/Linux home page

http://www.debian.org

The team that wrote this paper
This Redpaper was produced by specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Gregory Geiselhart is a project leader for Linux on zSeries at the International
Technical Support Organization, Poughkeepsie Center.

Vic Cross is the Linux for zSeries and S/390 Team Leader at Independent
Systems Integrators, IBM’s Large Systems Business Partner in Australia. He has
more than 15 years of experience in general computing, seven of which has been
spent working on S/390 and zSeries. He holds a Bachelor of Computing Science
degree from Queensland University of Technology. His areas of expertise include
networking and Linux. He is a co-author of IBM Redbooks Linux on
IBM ^ zSeries and S/390: ISP/ASP Solutions, SG24-6299, and Linux on
IBM ^ zSeries and S/390: Large Scale Linux Deployment, SG24-6824.

Thanks to the following people for their contributions to this project:

Terry Barthel, Dave Bennin, Alison Chandler, Roy Costa, Al Schwab
International Technical Support Organization, Poughkeepsie Center

Grant Bigham
IBM Global Services Australia
26 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

http://www.vm.ibm.com/devpages/chongts/
http://www.ibm.com/redbooks/abstracts/sg246824.html
http://www.debian.org

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. 27

This document created or updated on December 4, 2002.

Send us your comments in one of the following ways:
� Use the online Contact us review redbook form found at:

ibm.com/redbooks
� Send your comments in an Internet note to:

redbook@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

developerWorks™
DirMaint™
IBM eServer™
IBM®

Multiprise®
Redbooks(logo)™
Redbooks™
RMF™

S/390®
SP™
z/VM™
zSeries™

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus® Word Pro®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

®

28 Linux on IBM ̂zSeries and S/390: Porting LEAF to Linux on zSeries

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	Linux on IBM zSeries and S/390: Porting LEAF to Linux on zSeries
	Preface
	Objectives
	What is LEAF
	How LEAF works
	LEAF components
	Boot process of LEAF on i386
	LEAF configuration system

	LEAF in the penguin colony
	Why use LEAF in a penguin colony
	Differences between Intel and zSeries LEAF

	Bringing LEAF to zSeries
	Kernel
	Leafrc
	LEAF packages

	Running LEAF on zSeries
	Centralized boot files
	Centralized configuration process
	Router-unique packages

	Starting a z/LEAF router
	z/LEAF boot sequence

	Building z/LEAF
	BusyBox
	Other system applications: SSHD

	Using z/LEAF
	Storage allocated in 8MB units
	QETH driver memory allocation
	DirMaint files in our readers

	Enhancing LEAF on zSeries
	The “Gold” z/LEAF build
	BusyBox insmod for s390
	Sharing system resources

	How a multi-call binary works
	Invoking the BusyBox multi-call binary
	Writing a multi-call binary

	References
	IBM Redbooks
	Referenced Web sites
	The team that wrote this paper

	Notices
	Trademarks

