Program Validation for CISC AS/400s

Leif Svalgaard

During an AS/400 program encapsulation operation, a built-in OS/400 system routine calculates(a Program Validation Value that takes into account the object domain, the program state, and the instruction stream. This process imprints each program with a set of binary values that may be verified at any time to ensure that the program has not been altered since its creation. A much sought after alteration is to change the program’s state from user state to system state. In this paper we shall show how to alter the program validation value in such a way that it is correct after altering the state from user state to system state. System state programs are privileged and can access sensitive system areas at will.

What Information Do We Have?

Joseph S. Park states(that “the validation value seems to be derived using a multipart, yet simple, numerical hashing algorithm rather than traditional encryption techniques”. He also in other places repeatedly refers to the validation values (plural) suggesting that several values are computed. This also ties in with the reference to a “multipart” algorithm. He does not reveal where these values are stored. This will be our first challenge.

Where Are the Program Validation Values?

Create a very simple MI-program:

DCL DD DATA BIN(4) INIT(H'1234');

ENTRY * EXT;

PEND;

Dump the program using System Service Tools (STRSST):

 DISPLAY/ALTER/DUMP 10/11/99 11:31:36 PAGE 1

MI PROGRAM SUBTYPE: 01 NAME: X ADDRESS: 0041 07A67600 0000

SEGMENT HEADER (YYSGHDR)

 TYPE 01 FLAGS 91 SIZE 0002 EXT 0041 OBJ 07A67600 0000 SPLOC 07A67700 0020

EPA HEADER (YYEPAHDR)

 ATT1 80 JOPT 00 TYPE 02 STYP 01

 NAME X

 SPATT 80 SPIN 00 SPSZ 480 OSIZ 00000009 PBAU FF1C

 VER 3201 TIME 10/11/99 11:31:04 UP@ 002E 00EF5E00 0000

 AG@ 0000 00000000 0000 CT@ 002E 02FC0C00 0000 OHDR 0041 07A67600 0100

 RCVY 00000000 PERF 01000000 MDTS 10/11/99 11:31:04 JP@ 0000 00000000 0000

 COB@ 0000 00000000 0000 JID 00000000000000000000 OWAU FF1C

 IPL# 00000041 AL1 0000000000000000

 07A67600 0000 01910002 00410001 004107A6 76000000 40010000 00000000 004107A6 77000020 *................*

 07A67600 0020 80000201 E7404040 40404040 40404040 40404040 40404040 40404040 40404040 *....X *

The domain (0001 = user) is shown above at offset (hex) +0006. The program state (0001 = user) is shown at offset (hex) +015C:

OBJECT SPECIFIC HEADER (XPGMHDR)

 ATTR 4081200004000000 CODE 000200 ISSZ 000206 ISNO 00000001

 LSTB 0002B0 IEXT 0041 @IS 07A67600 0000 PGEC 000000 @SIC 07A67600 0210

 SICS 00005A SCEP 000038 @EOL 07A67600 0270 EOLN 0002 EOLS 000038

 @EXD 07A67600 02B0 EXDN 0000 EXDS 0000 BOMO 0002B0 BOMS 000001

 BSIZ 00 @TIP 00000000 0000 MEC@ 0000 00000000 0000 MDTG 004107A675000020

 MDTS 000A0C

 07A67600 0100 40812000 04000000 004107A6 75000020 000A0C00 004107A6 76000000 00020000 **

 07A67600 0120 00000000 00010002 060002B0 000A2B00 000007A6 76000210 00005A00 003807A6 *................................*

 07A67600 0140 76000270 00020000 382007A6 760002B0 00000000 0002B000 00010000 0001A8B1 *................................*

 07A67600 0160 80FC0000 01100120 00000000 00000000 0000A8B2 00020000 00000000 00000000 *................................*

Just next to the program state is a 16-bit value: 0001A8B1. If you change the MI-program slightly, this value changes as well. In addition, two other 16-bit values: A8B2 0002 starting at offsets (hex) +0172 and +0174 also change. It seems a good guess that these three halfwords collectively constitute the program validation values:

OBJECT SPECIFIC HEADER (XPGMHDR)

 07A67600 0100 40812000 04000000 004107A6 75000020 000A0C00 004107A6 76000000 00020000

 07A67600 0120 00000000 00010002 060002B0 000A2B00 000007A6 76000210 00005A00 003807A6

 07A67600 0140 76000270 00020000 382007A6 760002B0 00000000 0002B000 00010000 0001A8B1

 07A67600 0160 80FC0000 01100120 00000000 00000000 0000A8B2 00020000 00000000 00000000

Calculating the Program Validation Values

The little program we are examining has precisely one IMPI instruction and is only six bytes long:

IMPI INSTRUCTIONS

07A67600 0200 0200 A8B0 0000 0000 FNC2 X'000'(PGM), X'000'(PGM), X'B0'

This is not much to work with, although there is a tantalizing hint in the fact that ‘A8B’ can be found in two of the three validation values as well as in the program itself. Let us try a different little program:

ENTRY * EXT;

PEND;

Interestingly enough, although the program certainly looks shorter, it is actually longer. The IMPI instructions are:

07A5D400 0238 0238 15F3 LR B15, ICB

07A5D400 023A 023A 2BF0 UNSTK B15

07A5D400 023C 023C E120 F0D4 0250 TMBIBO X'0D4'(B15), X'20', X'0250'

07A5D400 0242 0242 E104 30D4 0256 TMBIBO X'0D4'(ICB), X'04', X'0256'

07A5D400 0248 0248 951E F018 LM B1, 15, X'018'(B15)

07A5D400 024C 024C 8F00 3078 BALL H0, PGM, X'078'(ICB)

07A5D400 0250 0250 A8AE 0000 0000 FNC2 X'000'(PGM), X'000'(PGM), X'AE'

07A5D400 0256 0256 A8AF 0000 0000 FNC2 X'000'(PGM), X'000'(PGM), X'AF'

In the ‘object specific header’ we find the validation values:

07A5D400 0140 D4000290 00020000 382007A5 D40002D0 00000000 0002D000 00030000 0001C061
07A5D400 0160 80FC0000 01100120 00000000 00000000 0000F708 C95F0000 00000000 00000000

Or pulled out for clarity:

 +015C: C061 ; V1

 +0172: F708 ; V2

 +0174: C95F ; V3

Simply adding up all the halfwords from offset 0238 through 025B and retaining only the low-order halfword of the result yields C060. This is very close to the V1 value, just as we found for the first little program. In both cases, the difference is 1. Also, V2 + V3 = 1C067, where the low-order 16 bits are almost the same as V1. Trying this on several other small programs confirms this conjecture. There are still small differences, but in general it seems that V1 ≈ V2 + V3. One way this could happen would be if V2 were the sum of all odd numbered halfwords and V3 were the sum of all even numbered halfwords. In other words: add up every other halfword starting at either the first for V2 or the second for V3. Marking the halfwords as follows:

07A5D400 0238 0238 15F3 LR B15, ICB

07A5D400 023A 023A 2BF0 UNSTK B15

07A5D400 023C 023C E120 F0D4 0250 TMBIBO X'0D4'(B15), X'20', X'0250'

07A5D400 0242 0242 E104 30D4 0256 TMBIBO X'0D4'(ICB), X'04', X'0256'

07A5D400 0248 0248 951E F018 LM B1, 15, X'018'(B15)

07A5D400 024C 024C 8F00 3078 BALL H0, PGM, X'078'(ICB)

07A5D400 0250 0250 A8AE 0000 0000 FNC2 X'000'(PGM), X'000'(PGM), X'AE'

07A5D400 0256 0256 A8AF 0000 0000 FNC2 X'000'(PGM), X'000'(PGM), X'AF'

and adding odd and even-numbered halfwords separately, we get:

sum of odd-numbered halfwords
 = 2F703
V2 = F708
sum of even-numbered halfwords
 = 3C95D
V3 = C95F
The low-order 16 bits of the sums are very close to V2 and V3. Again, trying this out on several other small programs confirms the conjecture that two separate running sums are made from alternating halfwords.

With this confirmed, we now turn to the differences. Since the program’s state and domain are supposed to be folded into the validation values, we could conjecture that we have the small differences simply because we are not yet taking the state and domain values into account. An obvious guess is that the reason V1 is 1 higher than the sum (modulo 16 bits) of all the halfwords is that we should add in the state (which has the value 1 for these user state programs).

Returning to the very first little program we tried, we remember that we had:

 +015C: A8B1 ; V1
 sum of all halfwords
A8B0
 +0172: A8B2 ; V2
 sum of odd-numbered
A8B0
 +0174: 0002 ; V3
 sum of even-numbered
0000

Since the state value is 1 and the domain value is also 1, we cannot really tell them apart (yet), but we might guess that V2 includes twice the state and V3 includes twice the domain, because V2 and V3 are both 2 too large. We can actually test this guess by using SST to change the program state from user to system. Since the value for system state is hex 80 we should add hex 80 to A8B0 for V1 (=A930) and twice hex 80 to A8B0 for V2 (=A9B0); then save and restore the program to see if it does that without complaint. The result of the test bears out the conjecture.

Adding twice the state and domain to our sums for the second program yields:

 sum of odd-numbered halfwords plus twice the state = 2F703 + 2 = 2F705 V2 = F708
 sum of even-numbered halfwords plus twice the domain = 3C95D + 2 = 3C95F V3 = C95F
Now V3 is correct, but V2 is still 3 too large. When creating hash sums like this, it is common practice not simply to discard the high-order bits, but to fold them back into the result. Noticing that the high-order bits of the even-numbered sum is also 3, leads us to conjecture that the high-order bits of V3 should be folded into the low-order bits of V2. We note, for the record, that we also conjectured that the high-order bits (2 in the example above) of the odd-numbered sum should be folded into the low-order bits of V3. This conjecture turned out to be wrong – as were a few other ones along the way.

Let’s try another little program (just adding a line to the first program):

DCL DD DATA BIN(4) INIT(H'1234');

ENTRY * EXT;

CPYNV DATA, H'ABCD';

PEND;

07A67A00 0140 7A000280 00020000 382007A6 7A0002C0 00000000 0002C000 00020000 000193EB
07A67A00 0160 80FC0000 01200120 00000000 00000000 00005614 BDDB0000 00000000 00000000

IMPI INSTRUCTIONS

07A67A00 0210 0210 3411 SLWR W1, W1

07A67A00 0212 0212 8410 0200 LH H1, X'200'(PGM)

07A67A00 0216 0216 9119 2000 STW W1, X'000'(B2)

07A67A00 021A 021A A8B0 0000 0000 FNC2 X'000'(PGM), X'000'(PGM), X'B0'

 sum of all halfwords plus the state = 213EA + 1 = 213EB V1 = 93EB
 sum of odd-numbered halfwords plus twice the state = 5611 + 2 = 5613 V2 = 5614
 sum of even-numbered halfwords plus twice the domain = 1BDD9 + 2 = 1BDDB V3 = BDDB

Adding in the high-order bits (1) of the even-numbered halfwords again makes V2 come out correct. The high-order bit of V1 is now wrong. That was initially quite a disappointment, but further investigation of many other programs revealed that the high-order bit of V1 was always set, while on the average it should only have been set half of the time. So we simply posit that the high-order bit should always be set.

The Validation Algorithm

We can now summarize our investigation as a short MI-program that for a given other program will compute the program validation values from the IMPI instructions and that program’s state and domain values. The program needs a space pointer to the program code. We leave undefined for the moment how to obtain such a pointer:

DCL SPCPTR .PGM; /* points to program object */
DCL SPCPTR .HALFWORD;

DCL DD HALFWORD;

DCL DD VALIDATION-SUMS CHAR(14);

 DCL DD STATE-SUM BIN(4) DEF(VALIDATION-SUMS) POS(1);

 DCL DD DOMAIN-SUM BIN(4) DEF(VALIDATION-SUMS) POS(5);

 DCL DD DOMAIN-SUM-HI BIN(2) DEF(DOMAIN-SUM) POS(1);

 DCL DD TOTAL-SUM BIN(4) DEF(VALIDATION-SUMS) POS(9);

 DCL DD EVEN-ODD BIN(2) DEF(VALIDATION-SUMS) POS(13);

DCL DD VALIDATION-VALUES CHAR(6);

 DCL DD V1-VALUE CHAR(2) DEF(VALIDATION-VALUES) POS(1);

 DCL DD V2-VALUE CHAR(2) DEF(VALIDATION-VALUES) POS(3);

 DCL DD V3-VALUE CHAR(2) DEF(VALIDATION-VALUES) POS(5);

DCL DD WORD BIN(4);

DCL DD CUR-OFFSET BIN(4);

DCL DD CODE-SIZE BIN(4);

 CPYBREP VALIDATION-SUMS, X‘00’;

 CPYBRAP CUR-OFFSET, PGM-CODE, 0; /* CODE is at offset 011C */
 CPYBRAP CODE-TOP, PGM-ISSZ, 0; /* ISSZ is at offset 0126 */
ADD-TO-SUMS:

 CMPNV(B) CUR-OFFSET, CODE-TOP/EQ(FIX-UP);

 ADDSPP .HALFWORD, .PGM, CUR-OFFSET;

 CPYBRAP WORD, HALFWORD, 0; /* extend */
 ADDN(S) CUR-OFFSET, 2;

 SUBN(B) EVEN-ODD, 1, EVEN-ODD/POS(=+2);

 ADDN(BS) DOMAIN-SUM, WORD/NNAN(ADD-TO-SUMS);:

 ADDN(BS) STATE-SUM, WORD/NNAN(ADD-TO-SUMS);:

FIX-UP:

 ADDN TOTAL-SUM, STATE-SUM, DOMAIN-SUM;

 CPYBRAP WORD, PGM-DOMAIN, 0; /* at offset 0006 */
 ADDN(S) DOMAIN-SUM, WORD;

 ADDN(S) DOMAIN-SUM, WORD; /* twice the domain */

 CPYBRA V3, DOMAIN-SUM; /* extract low-order */
 CPYBRAP WORD, PGM-STATE, 0; /* at offset 015C */
 ADDN(S) STATE-SUM, WORD;

 ADDN(S) STATE-SUM, WORD; /* twice the state */
 ADDN(S) STATE-SUM, DOMAIN-SUM-HI;

 CPYBRA V2, STATE-SUM; /* extract low-order */

 ADDN(S) TOTAL-SUM, WORD; /* once the state */
 CPYBRA V1, TOTAL-SUM; /* extract low-order */
 OR(S) V1, X’8000’; /* set high bit */

Changing to System State

If all we want to do is to change the program from a user state program to a system state program, we do not need the full algorithm, nor do we need to obtain a pointer to the program object’s code. The system state value is (hex) 80, while the user state value is (hex) 01. The difference is thus (hex) 7F. Using SST execute the following steps:

• Change the state value at offset 015C to 0080

• Locate V1 at offset 015E, add 7F to it, and set the high-order bit unconditionally

• Locate V2 at offset 0172, add 7F to it twice

That is all. The program is now a system state program with correct program validation values.

(

“To IBM’s credit, cracking the program validation value calculation algorithm is not an undertaking for the lighthearted” (Joseph S. Park, AS/400 Security in a Client/Server Environment, 1995, John Wiley, ISBN 0-471-11683-1, pg. 117)

2

(Joseph S. Park, AS/400 Security in a Client/Server Environment, 1995, John Wiley, ISBN 0-471-11683-1, pg. 118)

