Contains static definition for matrix math methods.
/* * Soya3D * Copyright (C) 1999-2000 Jean-Baptiste LAMY (Artiste on the web) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Library General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * Contains static definition for matrix math methods. * * Here, a matrix is a float[16], and a vector or a point a float[3] (contrary to other part of Opale.Soya, where a point is 3 coords + a CoordSyst). * * @author Artiste on the Web */ public class Matrix extends Object { private Matrix() { } /** * The value of PI in float. */ public static final float PI = (float) java.lang.Math.PI; public static final float EPSILON = 0.001f; public static float pow2(float f) { return f*f; } private static float[][] stock = new float[1000][]; /** * Inverts a 4*4 matrix. Warning : this method works only if m[3] = m[7] = m[11] = 0f * and m[15] = 1f. * @param m the matrix * @return the inverted matrix or null if m is not invertable */ public static final float[] matrixInvert(float[] m) { // Optimized! float[] r = matrixInvert3_3(m); if(r == null) return null; r[12] = -(m[12] * r[0] + m[13] * r[4] + m[14] * r[ 8]); r[13] = -(m[12] * r[1] + m[13] * r[5] + m[14] * r[ 9]); r[14] = -(m[12] * r[2] + m[13] * r[6] + m[14] * r[10]); return r; } /** * Inverts a 3*3 part of a 4*4 matrix. * It IS NOT a complete inversion because other values in the matrix (such as the translation part) are set to 0. * It isn't a bug, other classes assume this. * @param m the matrix that will be inverted * @return the inverted matrix. Value 12, 13, 14 that represent the translation are set to 0. Return null if the matrix is not invertable */ public static final float[] matrixInvert3_3(float[] m) { float[] r = new float[16]; float det = m[0] * (m[5] * m[10] - m[9] * m[6]) - m[4] * (m[1] * m[10] - m[9] * m[2]) + m[8] * (m[1] * m[ 6] - m[5] * m[2]); if(det == 0f) return null; det = 1f / det; r[ 0] = det * (m[5] * m[10] - m[9] * m[6]); r[ 4] = - det * (m[4] * m[10] - m[8] * m[6]); r[ 8] = det * (m[4] * m[ 9] - m[8] * m[5]); r[ 1] = - det * (m[1] * m[10] - m[9] * m[2]); r[ 5] = det * (m[0] * m[10] - m[8] * m[2]); r[ 9] = - det * (m[0] * m[ 9] - m[8] * m[1]); r[ 2] = det * (m[1] * m[ 6] - m[5] * m[2]); r[ 6] = - det * (m[0] * m[ 6] - m[4] * m[2]); r[10] = det * (m[0] * m[ 5] - m[4] * m[1]); r[15] = 1f; return r; } /** * Multiply a 4*4 matrix by another, as if they were 3*3. * @param a the first / left matrix * @param b the second / right matrix * @return the result */ public static final float[] matrixMultiply(float[] b, float[] a) { float[] r = new float[16]; r[ 0] = a[ 0] * b[ 0] + a[ 1] * b[ 4] + a[ 2] * b[ 8]; r[ 4] = a[ 4] * b[ 0] + a[ 5] * b[ 4] + a[ 6] * b[ 8]; r[ 8] = a[ 8] * b[ 0] + a[ 9] * b[ 4] + a[10] * b[ 8]; r[12] = a[12] * b[ 0] + a[13] * b[ 4] + a[14] * b[ 8] + b[12]; r[ 1] = a[ 0] * b[ 1] + a[ 1] * b[ 5] + a[ 2] * b[ 9]; r[ 5] = a[ 4] * b[ 1] + a[ 5] * b[ 5] + a[ 6] * b[ 9]; r[ 9] = a[ 8] * b[ 1] + a[ 9] * b[ 5] + a[10] * b[ 9]; r[13] = a[12] * b[ 1] + a[13] * b[ 5] + a[14] * b[ 9] + b[13]; r[ 2] = a[ 0] * b[ 2] + a[ 1] * b[ 6] + a[ 2] * b[10]; r[ 6] = a[ 4] * b[ 2] + a[ 5] * b[ 6] + a[ 6] * b[10]; r[10] = a[ 8] * b[ 2] + a[ 9] * b[ 6] + a[10] * b[10]; r[14] = a[12] * b[ 2] + a[13] * b[ 6] + a[14] * b[10] + b[14]; r[ 3] = 0; r[ 7] = 0; r[11] = 0; r[15] = 1; return r; } /** * Multiply a 4*4 matrix by another. * @param a the first / left matrix * @param b the second / right matrix * @return the result */ public static final float[] matrixMultiply_4(float[] b, float[] a) { float[] r = new float[16]; r[ 0] = a[ 0] * b[ 0] + a[ 1] * b[ 4] + a[ 2] * b[ 8] + a[ 3] * b[12]; r[ 4] = a[ 4] * b[ 0] + a[ 5] * b[ 4] + a[ 6] * b[ 8] + a[ 7] * b[12]; r[ 8] = a[ 8] * b[ 0] + a[ 9] * b[ 4] + a[10] * b[ 8] + a[11] * b[12]; r[12] = a[12] * b[ 0] + a[13] * b[ 4] + a[14] * b[ 8] + a[15] * b[12]; r[ 1] = a[ 0] * b[ 1] + a[ 1] * b[ 5] + a[ 2] * b[ 9] + a[ 3] * b[13]; r[ 5] = a[ 4] * b[ 1] + a[ 5] * b[ 5] + a[ 6] * b[ 9] + a[ 7] * b[13]; r[ 9] = a[ 8] * b[ 1] + a[ 9] * b[ 5] + a[10] * b[ 9] + a[11] * b[13]; r[13] = a[12] * b[ 1] + a[13] * b[ 5] + a[14] * b[ 9] + a[15] * b[13]; r[ 2] = a[ 0] * b[ 2] + a[ 1] * b[ 6] + a[ 2] * b[10] + a[ 3] * b[14]; r[ 6] = a[ 4] * b[ 2] + a[ 5] * b[ 6] + a[ 6] * b[10] + a[ 7] * b[14]; r[10] = a[ 8] * b[ 2] + a[ 9] * b[ 6] + a[10] * b[10] + a[11] * b[14]; r[14] = a[12] * b[ 2] + a[13] * b[ 6] + a[14] * b[10] + a[15] * b[14]; r[ 3] = a[ 0] * b[ 3] + a[ 1] * b[ 7] + a[ 2] * b[11] + a[ 3] * b[15]; r[ 7] = a[ 4] * b[ 3] + a[ 5] * b[ 7] + a[ 6] * b[11] + a[ 7] * b[15]; r[11] = a[ 8] * b[ 3] + a[ 9] * b[ 7] + a[10] * b[11] + a[11] * b[15]; r[15] = a[12] * b[ 3] + a[13] * b[ 7] + a[14] * b[11] + a[15] * b[15]; return r; } /** * Multiply a point by a 4*4 matrix. * @param m the matrix * @param p the point * the resulting point */ public static final float[] pointMultiplyByMatrix(float[] m, float[] p) { // Assume v[3] = 1. float[] r = { p[0] * m[0] + p[1] * m[4] + p[2] * m[ 8] + m[12], p[0] * m[1] + p[1] * m[5] + p[2] * m[ 9] + m[13], p[0] * m[2] + p[1] * m[6] + p[2] * m[10] + m[14] }; return r; } /** * Multiply a vector by a 4*4 matrix. * @param m the matrix * @param v the vector * @return the resulting vector */ public static final float[] vectorMultiplyByMatrix(float[] m, float[] v) { float[] r = { v[0] * m[0] + v[1] * m[4] + v[2] * m[ 8], v[0] * m[1] + v[1] * m[5] + v[2] * m[ 9], v[0] * m[2] + v[1] * m[6] + v[2] * m[10] }; return r; } /** * Compare 2 matrix. * @param a the first matrix * @param b the second matrix * @return true if a and b are equal (or very near) */ public static final boolean matrixEqual(float[] a, float[] b) { for(int i = 0; i < 16; i++) { if(Math.abs(a[i] - b[i]) > EPSILON) return false; } return true; } /** * Convert a matrix into a string. Useful for debuging soya. * @param m the matrix * @return the string */ public static final String matrixToString(float[] m) { String s = "matrix 4_4 {\n"; s = s + Float.toString(m[ 0]) + " " + Float.toString(m[ 4]) + " " + Float.toString(m[ 8]) + "\n"; s = s + Float.toString(m[ 1]) + " " + Float.toString(m[ 5]) + " " + Float.toString(m[ 9]) + "\n"; s = s + Float.toString(m[ 2]) + " " + Float.toString(m[ 6]) + " " + Float.toString(m[10]) + "\n"; s = s + Float.toString(m[ 3]) + " " + Float.toString(m[ 7]) + " " + Float.toString(m[11]) + "\n"; s = s + "X: " + Float.toString(m[12]) + " Y: " + Float.toString(m[13]) + " Z: " + Float.toString(m[14]) + " W: " + Float.toString(m[15]) + "\n"; s = s + "}"; return s; } /** * Create a new identity matrix. * @return an identity matrix */ public static final float[] matrixIdentity() { float[] m = new float[16]; matrixIdentity(m); return m; } /** * Set a matrix to identity matrix. * @param m the matrix */ public static final void matrixIdentity(float[] m) { m[ 0] = 1f; m[ 1] = 0f; m[ 2] = 0f; m[ 3] = 0f; m[ 4] = 0f; m[ 5] = 1f; m[ 6] = 0f; m[ 7] = 0f; m[ 8] = 0f; m[ 9] = 0f; m[10] = 1f; m[11] = 0f; m[12] = 0f; m[13] = 0f; m[14] = 0f; m[15] = 1f; } /** * Create a scale matrix. * @param x the x factor of the scaling * @param y the y factor of the scaling * @param z the z factor of the scaling * @return the matrix */ public static float[] matrixScale(float x, float y, float z) { float[] m2 = { x, 0f, 0f, 0f, 0f, y, 0f, 0f, 0f, 0f, z, 0f, 0f, 0f, 0f, 1f }; return m2; } /** * Scale a matrix (this is equivalent to OpenGL glScale* ). * @param m the matrix * @param x the x factor of the scaling * @param y the y factor of the scaling * @param z the z factor of the scaling * @return the scaled matrix */ public static float[] matrixScale(float[] m, float x, float y, float z) { float r[] = new float[16]; r[ 0] = x * m[ 0]; r[ 4] = y * m[ 4]; r[ 8] = z * m[ 8]; r[12] = m[12]; r[ 1] = x * m[ 1]; r[ 5] = y * m[ 5]; r[ 9] = z * m[ 9]; r[13] = m[13]; r[ 2] = x * m[ 2]; r[ 6] = y * m[ 6]; r[10] = z * m[10]; r[14] = m[14]; r[ 3] = 0; r[ 7] = 0; r[11] = 0; r[15] = 1; return r; // return matrixMultiply(m, matrixScale(x, y, z)); } /** * Create a lateral rotation matrix (lateral rotation is around a (0, 1, 0) axis). * @param angle the angle of the rotation * @return the matrix */ public static float[] matrixRotateLateral(float angle) { if(angle == 0f) return matrixIdentity(); angle = (float) Math.toRadians(angle); float cos = (float) java.lang.Math.cos(angle); float sin = (float) java.lang.Math.sin(angle); float[] m2 = { cos, 0f, -sin, 0f, 0f , 1f, 0f , 0f, sin, 0f, cos, 0f, 0f , 0f, 0f , 1f }; return m2; } /** * Laterally rotate a matrix (lateral rotation is around a (0, 1, 0) axis). * @param angle the angle of the rotation * @param m the matrix to rotate * @return the resulting matrix */ public static float[] matrixRotateLateral(float[] m, float angle) { if(angle == 0f) return matrixIdentity(); angle = (float) Math.toRadians(angle); float cos = (float) java.lang.Math.cos(angle); float sin = (float) java.lang.Math.sin(angle); float r[] = new float[16]; r[ 0] = m[ 0] * cos + m[ 2] * sin; r[ 4] = m[ 4] * cos + m[ 6] * sin; r[ 8] = m[ 8] * cos + m[10] * sin; r[12] = m[12] * cos + m[14] * sin; r[ 1] = m[ 1]; r[ 5] = m[ 5]; r[ 9] = m[ 9]; r[13] = m[13]; r[ 2] = -m[ 0] * sin + m[ 2] * cos; r[ 6] = -m[ 4] * sin + m[ 6] * cos; r[10] = -m[ 8] * sin + m[10] * cos; r[14] = -m[12] * sin + m[14] * cos; r[ 3] = 0; r[ 7] = 0; r[11] = 0; r[15] = 1; return r; // return matrixMultiply(matrixRotateLateral(angle), m); } /** * Create a vertical rotation matrix (vertical rotation is around a (1, 0, 0) axis). * @param angle the angle of the rotation * @return the matrix */ public static float[] matrixRotateVertical(float angle) { if(angle == 0f) return matrixIdentity(); angle = (float) Math.toRadians(angle); float cos = (float) java.lang.Math.cos(angle); float sin = (float) java.lang.Math.sin(angle); float[] m2 = { 1f, 0f , 0f , 0f, 0f, cos, sin, 0f, 0f, -sin, cos, 0f, 0f, 0f , 0f , 1f }; return m2; } /** * Vertically rotate a matrix (vertical rotation is around a (1, 0, 0) axis). * @param angle the angle of the rotation * @param m the matrix to rotate * @return the resulting matrix */ public static float[] matrixRotateVertical(float[] m, float angle) { if(angle == 0f) return matrixIdentity(); angle = (float) Math.toRadians(angle); float cos = (float) java.lang.Math.cos(angle); float sin = (float) java.lang.Math.sin(angle); float r[] = new float[16]; r[ 0] = m[ 0]; r[ 4] = m[ 4]; r[ 8] = m[ 8]; r[12] = m[12]; r[ 1] = m[ 1] * cos - m[ 2] * sin; r[ 5] = m[ 5] * cos - m[ 6] * sin; r[ 9] = m[ 9] * cos - m[10] * sin; r[13] = m[13] * cos - m[14] * sin; r[ 2] = m[ 1] * sin + m[ 2] * cos; r[ 6] = m[ 5] * sin + m[ 6] * cos; r[10] = m[ 9] * sin + m[10] * cos; r[14] = m[13] * sin + m[14] * cos; r[ 3] = 0; r[ 7] = 0; r[11] = 0; r[15] = 1; return r; // return matrixMultiply(matrixRotateVertical(angle), m); } /** * Create a incline-rotation matrix (incline-rotation is around a (0, 0, 1) axis). * @param angle the angle of the rotation * @return the matrix */ public static float[] matrixRotateIncline(float angle) { if(angle == 0f) return matrixIdentity(); angle = (float) Math.toRadians(angle); float cos = (float) java.lang.Math.cos(angle); float sin = (float) java.lang.Math.sin(angle); float m2[] = { cos, sin, 0f, 0f, -sin, cos, 0f, 0f, 0f , 0f , 1f, 0f, 0f , 0f , 0f, 1f }; return m2; } /** * Incline a matrix (incline-rotation is around a (0, 0, 1) axis). * @param angle the angle of the rotation * @param m the matrix to rotate * @return the resulting matrix */ public static float[] matrixRotateIncline(float[] m, float angle) { if(angle == 0f) return matrixIdentity(); angle = (float) Math.toRadians(angle); float cos = (float) java.lang.Math.cos(angle); float sin = (float) java.lang.Math.sin(angle); float r[] = new float[16]; r[ 0] = m[ 0] * cos - m[ 1] * sin; r[ 4] = m[ 4] * cos - m[ 5] * sin; r[ 8] = m[ 8] * cos - m[ 9] * sin; r[12] = m[12] * cos - m[13] * sin; r[ 1] = m[ 0] * sin + m[ 1] * cos; r[ 5] = m[ 4] * sin + m[ 5] * cos; r[ 9] = m[ 8] * sin + m[ 9] * cos; r[13] = m[12] * sin + m[13] * cos; r[ 2] = m[ 2]; r[ 6] = m[ 6]; r[10] = m[10]; r[14] = m[14]; r[ 3] = 0; r[ 7] = 0; r[11] = 0; r[15] = 1; return r; // return matrixMultiply(matrixRotateIncline(angle), m); } /** * Create a rotation matrix. * @param angle the angle of the rotation * @param x the x coordinate of the rotation axis * @param y the y coordinate of the rotation axis * @param z the z coordinate of the rotation axis * @return the matrix */ public static float[] matrixRotate(float angle, float x, float y, float z) { if(angle == 0f) return matrixIdentity(); angle = (float) Math.toRadians(angle); float d = (float) java.lang.Math.sqrt(java.lang.Math.pow(x, 2) + java.lang.Math.pow(y, 2) + java.lang.Math.pow(z, 2)); if(d != 1f) { x = x / d; y = y / d; z = z / d; } float cos = (float) java.lang.Math.cos(angle); float sin = (float) java.lang.Math.sin(angle); float co1 = 1f - cos; float m2[] = { x * x * co1 + cos , y * x * co1 + z * sin, z * x * co1 - y * sin, 0f, x * y * co1 - z * sin, y * y * co1 + cos , z * y * co1 + x * sin, 0f, x * z * co1 + y * sin, y * z * co1 - x * sin, z * z * co1 + cos , 0f, 0f , 0f , 0f , 1f }; return m2; } /** * Rotate a matrix (this is equivalent to OpenGL glRotate*). * @param m the matrix to rotate * @param angle the angle of the rotation * @param x the x coordinate of the rotation axis * @param y the y coordinate of the rotation axis * @param z the z coordinate of the rotation axis * @return the resulting matrix */ public static float[] matrixRotate(float[] m, float angle, float x, float y, float z) { return matrixMultiply(matrixRotate(angle, x, y, z), m); } /** * Rotation about an arbitrary Axis * @param alpha the angle of the rotation * @param p1 first axis point * @param p2 second axis point * @return the rotation matrix */ public static float[] matrixRotate(float alpha, float[] p1, float[] p2){ alpha = alpha * PI / 180f; float a1 = p1[0]; float a2 = p1[1]; float a3 = p1[2]; //Compute the vector defines by point p1 and p2 float v1 = p2[0] - a1 ; float v2 = p2[1] - a2 ; float v3 = p2[2] - a3 ; double theta = Math.atan2(v2, v1); double phi = Math.atan2(Math.sqrt(v1 * v1 + v2 * v2), v3); float cosAlpha, sinAlpha, sinPhi2; float cosTheta, sinTheta, cosPhi2; float cosPhi, sinPhi, cosTheta2, sinTheta2 ; cosPhi = (float) Math.cos(phi); cosTheta = (float) Math.cos(theta) ; cosTheta2 = (float) cosTheta * cosTheta ; sinPhi = (float) Math.sin(phi); sinTheta = (float) Math.sin(theta) ; sinTheta2 = (float) sinTheta * sinTheta ; sinPhi2 = (float) sinPhi*sinPhi ; cosPhi2 = (float) cosPhi*cosPhi ; cosAlpha = (float) Math.cos(alpha) ; sinAlpha = (float) Math.sin(alpha) ; float c = (float) 1.0 - cosAlpha ; float r11,r12,r13,r14,r21,r22,r23,r24,r31,r32,r33,r34; r11 = cosTheta2 * ( cosAlpha * cosPhi2 +sinPhi2 ) + cosAlpha * sinTheta2 ; r12 = sinAlpha * cosPhi + c * sinPhi2 * cosTheta * sinTheta ; r13 = sinPhi * (cosPhi * cosTheta * c - sinAlpha*sinTheta) ; r21 = sinPhi2 * cosTheta * sinTheta*c - sinAlpha*cosPhi ; r22 = sinTheta2 * (cosAlpha*cosPhi2 +sinPhi2) + cosAlpha*cosTheta2 ; r23 = sinPhi * (cosPhi*sinTheta*c + sinAlpha*cosTheta); r31 = sinPhi * (cosPhi*cosTheta*c + sinAlpha*sinTheta); r32 = sinPhi * (cosPhi*sinTheta*c - sinAlpha*cosTheta); r33 = cosAlpha * sinPhi2 + cosPhi2 ; r14 = a1 - a1*r11 - a2*r21 - a3*r31 ; r24 = a2 - a1*r12 - a2*r22 - a3*r32 ; r34 = a3 - a1*r13 - a2*r23 - a3*r33 ; float[] m2 = { r11 , r12 , r13 , 0f, r21 , r22 , r23 , 0f, r31 , r32 , r33 , 0f, r14 , r24 , r34 , 1f }; return m2; } /** * Rotation about an arbitrary Axis * @param m the matrix to rotate * @param alpha the angle of the rotation * @param p1 first axis point * @param p2 second axis point * @return the rotated matrix */ public static float[] matrixRotate(float[] m, float alpha, float[] p1, float[] p2) { return matrixMultiply(matrixRotate(alpha, p1, p2), m); } /** * Create a translation matrix. * @param x the x coordinate of the translation vector * @param y the y coordinate of the translation vector * @param z the z coordinate of the translation vector * @return the translation matrix */ public static float[] matrixTranslate(float x, float y, float z) { float m2[] = { 1f, 0f, 0f, 0f, 0f, 1f, 0f, 0f, 0f, 0f, 1f, 0f, x , y , z , 1f }; return m2; } /** * Translate a matrix (this is equivalent to OpenGL glTranslate*). * @param m the matrix to translate * @param x the x coordinate of the translation vector * @param y the y coordinate of the translation vector * @param z the z coordinate of the translation vector * @return the resulting matrix */ public static float[] matrixTranslate(float[] m, float x, float y, float z) { float[] r = new float[16]; System.arraycopy(m, 0, r, 0, 12); r[12] = m[12] + x; r[13] = m[13] + y; r[14] = m[14] + z; r[15] = 1f; return r; //return matrixMultiply(matrixTranslate(x, y, z), m); } public static float[] matrixPerspective(float fovy, float aspect, float znear, float zfar) { // this code is adapted from Mesa :) float xmax, ymax; ymax = znear * (float) Math.tan(Math.toRadians(fovy / 2f)); xmax = aspect * ymax; return matrixFrustum(-xmax, xmax, -ymax, ymax, znear, zfar); } public static float[] matrixFrustum(float left, float right, float bottom, float top, float near, float far) { // this code is adapted from Mesa :) float x, y, a, b, c, d; float[] r = new float[16]; r[14] = right - left; r[10] = top - bottom; r[0 ] = 2f * near; r[5 ] = r[0] / r[10]; r[0 ] = r[0] / r[14]; r[8 ] = (right + left) / r[14]; r[9 ] = (top + bottom) / r[10]; r[14] = far - near; r[10] = -(far + near) / r[14]; r[14] = -(2f * far * near) / r[14]; // error ? (this rem was in Mesa) r[1 ] = 0f; r[2 ] = 0f; r[3 ] = 0f; r[4 ] = 0f; r[6 ] = 0f; r[7 ] = 0f; r[11] = -1f; r[12] = 0f; r[13] = 0f; r[15] = 0f; return r; } }